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"The best translations are always the ones in the language the author
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Résumé

La description de la couverture biophysique des surfaces terrestres, appelée occupation du
sol, est d'une importance capitale dans de nombreux domaines, allant de 'urbanisme aux
études climatiques en passant par la sécurité alimentaire. Historiquement produites a la
main, les cartes d’occupation du sol ont profité de I'essor de I'imagerie satellitaire et des
méthodes avancées de vision par ordinateur pour gagner en précision et en fréquence de
mise & jour. Elles souffrent toutefois de deux inconvénients limitant leur utilisation. D’une
part, la résolution spatiale des cartes produites est fixe. Or une carte d'une résolution
de 10 meétres ne conviendra pas a l'analyse de phénomeénes a grande échelle, ni a 1’étude
d’objets de moins de 10 métres. D’autre part, la nomenclature de la carte est choisie
)
pour répondre & un besoin spécifique qui ne correspond pas nécessairement aux besoins
d’un autre utilisateur. Ainsi, une carte peut regrouper sous le terme "bati" un ensemble
)
d’éléments tels que des "routes" et des "habitations", qui dans d’autres nomenclatures
Y
seront classés séparément.

Les approches actuelles de traduction de nomenclatures sont principalement fondées sur des
méthodes de traduction sémantique (LCCS...) appliquées au niveau de la nomenclature en
comparant les définitions de classes (la classe "bl¢" sera traduite en "herbacée"). Ce faisant,
elles négligent le fait que deux objets de la méme classe peuvent étre traduits différemment
en fonction, par exemple, de leur contexte spatial ou de leur évolution temporelle. En
outre, la traduction de la résolution spatiale est généralement traitée distinctement de la
traduction de nomenclature alors que ces deux notions sont intimement liées (un arbre
seul ne peut pas étre traduit en "forét").

Cette thése aborde ce probléme en proposant des méthodes de traduction contextuelle
augmentant les possibilités de réutilisation et de génération de nouvelles occupations des
sols. Dans un premier temps, nous proposons différentes stratégies, principalement fondées
sur des réseaux de neurones a convolution apprenant a traduire une carte source en une
carte cible en fonction du contexte. Nous montrons I'importance cruciale du contexte
spatial et géographique (une forét en montagne est probablement constituée de coniféres)
sur de multiples exemples de traductions. Dans un deuxiéme temps, partant du constat que
les modéles de traduction multi-langues donnent de meilleurs résultats que ceux entrainés
a traduire d’'une seule langue source vers une seule langue cible, nous proposons un modéle
de traduction multi-cartes permettant d’obtenir plusieurs nomenclatures cibles a partir
d’une carte source. Nous montrons que ce modeéle permet d’obtenir des résultats plus
robustes que les modéles entrainés sur une seule traduction, en particulier sur des cartes
avec peu d’échantillons d’entrainement. Troisiemement, nous expérimentons différentes
configurations de fusion multimodale fusionnant des images satellites (optiques et radar)
et des données d’élévation du terrain avec des cartes d’occupation du sol. Enfin, nous
définissons la notion et proposons une méthode pour construire un espace de représentation



sémantique commun a toutes les occupations du sol. Nous ne représentons alors plus la
traduction comme le passage d'un espace de représentation discret & n classes (une
nomenclature) vers un autre espace, mais comme un simple changement d’interprétation
d’un espace de représentation sémantique continu commun & toutes les nomenclatures. Nous
proposons une premiére application de la notion d’espace de représentation sémantique a
la traduction, en nous concentrant sur la traduction de cartes sources non vues pendant
I'entrainement du modeéle de traduction. Les codes et jeux de données (France entiére, six
cartes d’occupation du sol, images satellite, vérité terrain) produits au cours de cette thése
sont rendus accessibles pour la reproductibilité et des comparaisons futures.



Abstract

The description of the bio-physical coverage of the Earth’s surface, termed land-cover, is
of utmost importance in recent decades in many areas, ranging from urban planning to
climate studies and food security. Historically manually produced, land-cover maps now
take advantage of the recent boom of satellite imagery and computer vision techniques
to gain more accuracy and higher update frequency. However, they still suffer from two
disadvantages limiting their use. On the one hand, the land cover map spatial resolution
is fixed, while a map at 10-meter spatial resolution will not be suitable for analysing
large-scale phenomena, nor for monitoring objects less than 10 meters. On the other hand,
the map nomenclature is chosen to meet a specific need which does not necessarily suit
another user’s needs. For instance, a nomenclature may group under the term "built-up

"roads" and "dwellings", which other nomenclatures

areas" a set of elements such as
may classify separately. Current approaches target to adapt these nomenclatures and
spatial resolutions. They are mainly based on pure semantic translation methods (LCCS...)
applied at the nomenclature level by comparing class definitions. In doing so, they neglect
that two objects of the same class can be translated differently depending, for instance,
on their spatial context or temporal evolution. This thesis addresses this interleaved
problem by proposing context-wise translation methods to increase re-use possibilities
and new land-cover map generation. First, we propose different strategies, mainly based
on convolution neural networks, learning to translate a source map into a target map
context-wisely. In particular, we show the crucial importance of taking into account spatial
and geographical contexts (a forest in the mountains is probably occupied by conifers)
on multiple translation cases. Secondly, based on the observation that multi-language
translation models provide better results than those trained to translate from a single
source language to a single target language, we propose a multi-map translation framework
allowing us to obtain several target nomenclatures from a unique source map. We show
that this model allows for more robust results than models trained on a single translation,
especially on maps with limited training samples. Thirdly, we experiment with different
multi-modal fusion configurations merging satellite images (optical and radar) and elevation
data with land-cover maps. Finally, we define the concept of, and propose a method
to build, a semantic representation space common for all land-cover maps, no longer
representing the translation as the transformation from a discrete representation space
with n classes (a nomenclature) to another but as a simple change of the interpretation
of a continuous semantic representation space shared between all nomenclatures. We
propose the first application of the concept of common semantic representation space to
translation, focusing on the translation of source maps unseen during the translation model
training. The codes and datasets (France-wide, six land-cover maps, satellite imagery,
and hand-annotated ground truth) produced during this thesis are also accessible for
reproducibility and potential comparison purposes.
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CHAPTER
(-

Introduction

Land-cover (LC) is the "(bio-)physical material over the Earth’s surface" [105]. As such,
the land-cover is both spatially continuous (can be observed at an infinite number of
different scales) and semantically continuous (an infinity of biophysical variables, such
as humidity, height, biomass or chemical composition, describes each object). Modelling
land-cover information requires using a categorisation method to represent this "infinite
information" in a finite set by defining one (or, more rarely, several) scales of observation
and a finite number of biophysical categories [321], e.g. forest, water... Land-cover
classification aims to obtain this categorisation while preserving geolocation information.
The product resulting from this process is called a land-cover map. This selection and
combination of a finite number of biophysical variables into a finite number of groups,
called classes, is referred to as the land-cover map nomenclature. Similarly, we speak of
spatial resolution to describe the scale of observation adopted.

The knowledge of the elements comprising the soils and the subsoils of the Earth’s surface
is fundamental in many fields of research [104, 171, 255]. Consequently, over the last 30
years, Land-cover maps have become a mandatory baseline for monitoring the Earth’s
surface status and dynamics. They are, for example, used in areas as varied as urban
planning [188] to better understand the mechanisms of artificialization [356|, for the study
of the climate since they allows albedo estimations [308] or even food security by estimating
the proportion and type of cultivated areas [3]. It is also a large-scale monitoring tool for
agricultural and environmental protection policies [64]. For that purpose, despite being a
notoriously time-consuming procedure [250], many land-cover map products have been
generated, covering the entire Earth’s surface multiple times, at several spatial scales, and
with various nomenclatures [106]. Therefore, the production of land use maps represents
an economic, environmental, and scientific challenge.

Land-cover maps are generally tailored to offer a specific nomenclature and spatial
resolution that meet a given user needs [292]. In the following sections, we focus on the
challenges associated with the design and use of these maps. In particular, we show the
considerable impact the choice of spatial resolution and nomenclature can have on the the
map’s potential applications. From this observation, several approaches, termed land cover
translation (or harmonisation), have been proposed during the last 40 years to relax the
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constraints related to the choice of a nomenclature and a fixed resolution. The translation
aims to transform a source land-cover map nomenclature and resolution into a target one.

Current approaches, illustrated, for instance, by the well-known LCCS framework [68],
assume that all elements of a given source class have the same possible translation. By
analogy with language translation, we argue that those approaches act precisely like a
word-by-word translation, as a given source class is always translated into the same target.
Keeping this analogy, this manuscript focuses on breaking the word-by-word translation
paradigm by incorporating context information, e.g. a forest in a mountainous area should
not necessarily be translated identically as a forest near the sea. In this perspective,
this manuscript identifies different context elements that can be beneficial for translation
based on local spatial context (Herbaceous near Water might be Wetlands), geographical
location or temporal constraints and propose ways to incorporate them into an operational
translation framework.

Performing a manual analysis of the tremendous number of contextual elements and
determining how to use them to improve translation is a time-consuming procedure not
usable under operational constraints as a new analysis is required for each new source
or target map. Instead, this manuscript explores data-driven strategies in which the
contextual elements and how to use them are directly learned from existing source and
target map samples.

Over the last decade, deep learning has been at the heart of significant advances in various
disciplines, such as computer vision and natural language processing, thanks to its good
results on various data [176] such as images [168| and text [318]. In general terms, deep
learning can be seen as one of the numerous machine learning methods, 7.e. as a set of
automatic algorithms determining input data characteristics leading to a targeted result.
The main advantage of deep learning methods lies in their ability to self-extract groups of
well-tailored features from the input data to answer the problem [101]. This allows them
to respond effectively to the problem posed without requiring a "manual" definition and
computation of those features. This manuscript leverages this automatic feature extraction
to extract contextual information for translation without explicitly defining the contextual
elements to take into account.

As this thesis is to the best of our knowledge, the first to explores the potential of
modern deep learning methods to perform land-cover map nomenclature and resolution
translation, we first describe in the following sections the precise framing of the land-cover
map translation. In particular, we describe the main characteristics of the land-cover maps
and identify the different contextual information that can be used to achieve accurate
translations. We also formalise the problem of land-cover map translation into three
increasingly difficult problems. Finally, we present an overview of the contributions of this
thesis.
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1.1 Key concepts in land-cover mapping

1.1.1 A brief history

Old maps, such as the 1665 Atlas of Joan Blaeu [25], have always included some land-cover
information as geographical markers, e.g. after the third forest turn on the right. As
current topographical maps, they were designed as an abstract representation of reality in
which elements are amplified, simplified or even not represented depending on the intended
use of the map. For instance, Joan Blaeu’s |25| atlas focuses on the road network and
considerably simplifies forest geometry representing only specific ones visible from the
road.

It will be necessary to wait for the development of aviation and photography, alleviating
the need for the tedious collection of in-situ observations, for land-cover to become a proper
cartographic subject resulting in the first real land-cover maps [207], i.e. geometrically
accurate and spatially continuous land-cover focused cartographic products [192]. Often
driven by military needs, those first land-cover focused maps were designed manually by
photo interpreters analysing the images collected with a nomenclature focusing on potential
obstacles for soldiers [194]. Due to the tedious aspect of this operation, Land-cover maps
were mainly produced solely on a small spatial extent and never updated. Note that photo
interpretation is still used nowadays for its outstanding quality results, which are difficult
to match even with the current state-of-the-art image automatic analysis [296]. It not
only provides some of the land-cover maps considered as references [118] but is also used
for the constitution of data sets used for the automation of land-cover production and
validation|[189).

In the 1970’s, the rise of computing science and the first satellite images [73, 81| launched
the era of automatic remote sensing, i.e. the production of these maps by algorithms
analysing images. The first algorithms were either based on physical modelling [146],
requiring to manually define explicit sets of rules to translate an image pixel into a
class ("a pixel with a high blue value is probably water") or on statistical resemblance
analysis [35]. In parallel, the field of machine learning, which we can define as algorithm
learning to "automatically improve through experience" [217], emerged and progressively
replaced explicit sets of physical rules with implicitly learnt ones. The machine learning
algorithms used for remote sensing mainly belong to the supervised learning paradigm.
They learn the features responsible for class assignment on pre-existing pairs of image /map
examples. Once trained, the algorithm can be applied to produce maps on new images.
The machine learning community referred to the transformation of the almost continuous
image information into a set of discrete classes as classification [166]. Therefore land-
cover mapping is often termed land-cover map classification. These automated methods
exhibited the advantage of their processing speed. They allowed the analysis of ever-larger
geographical areas announcing the arrival of the first global-scale maps [191].

In recent years, the exponential improvement of satellite image resolution fostered the

3 /295



emergence of a new paradigm replacing the independent per-pixel classification with a
neighbour-aware pixel classification. This new paradigm called semantic segmentation,
combined with the arrival of ever more efficient learning algorithms enabled the emergence
of highly accurate maps with rich nomenclatures, high spatial and temporal resolution [334].
However, these improvements are made at the cost of an ever greater need for training
data, particularly by analysing large time series of multi-spectral images via ever more
resource-intensive algorithms [239]. As a result, producing land-cover maps remains a
tedious process, based on advanced technologies and implying significant investment [203].

Ensuring that each map can be used for the highest possible number of applications
is essential. From this observation rose a new field of study between the ’70s and the
beginning of the century: Land-cover map standardisation [119]|. Standardisation aims to
codify the nomenclature conception by using a shared vocabulary to facilitate the interop-
erability between LC. Considerable research was conducted on standardisation resulting
in various solutions such as the famous Land-Cover Classification System (LCCS) [67], its
improvement Land Cover Meta Language adopted as (ISO: 19144-2), and more recently,
the EAGLE project [9]. However, none of those frameworks has been universally adopted
by the remote sensing community for many reasons detailed in [54, 145]. Amongst those
reasons, one of them is that, although indisputably necessary, nomenclature standardisa-
tion mainly focuses on methods applicable when creating new maps. They often do not or
only partially adapt to the pre-existing maps and does not address resolution translation.

This thesis focuses on increasing the potential use of land-cover maps by presenting
translation methods adapting the resolution and nomenclature of existing maps. The
following sections introduce the notions of nomenclature and resolution and explain all
the related issues.

1.1.2 Nomenclature

General definition A map’s nomenclature (often termed classification system/class
set /classification /legend) describes the categorisation of the infinite set of existing objects
into a finite number of classes. Each class is described by a textual definition, which
explains its expected content. Let U be the universal set of all possible objects on the
ground surface, and let nq, n, ..., n, be a nomenclature with m classes. The formulas below
summarise some essential properties of the nomenclature.

Equation 1.1, referred as the completeness formula, states that the union of all the classes
inside a nomenclature gives all the possible land-cover map types. Conversely, it ensures
that each existing object on the Earth’s surface can be associated with at least one class [79].
In other words, there must be no element that does not fit into the nomenclature. It is
essential to specify that this principle often only applies to objects included in the map’s
spatial extent, which makes it challenging to use the nomenclature of a land-cover map
covering a spatial extent A to one covering another spatial extent B. Moreover, some
land-cover maps like Corine land-cover [121] defined their nomenclature some decades
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ago and can have difficulty mapping recent land-cover types such as agrivoltaism surfaces
mixing solar panels and pastoral activities. This results in potential no-data areas that
are not reflected by Equation 1.1.

Equation 1.2, referred to as the unicity formula, states that the intersection of two classes
gives the empty set or, in other words, that there should be no overlap between the
definitions of the different classes [68|. It guarantees the unambiguity of the attribution
of a class or that an object can only belong to a single class. A nomenclature’s content
stems from a compromise between the user needs and the obtainable accuracy given the
algorithms and data used.

n; m n; = @ (1'2)
ij=1
i#j
Nomenclatures are traditionally organised hierarchically. The first level of the nomenclature
has a minimal number of classes that can be divided into other classes when considering
further levels (see Figure 2.1).

Land-cover and Land-use From the 1920’s, we began to build an actual formalisation
of the semantic content expected in a land-cover map, among other things, via the work
of [266|. Foreseeing the economic potential of this type of mapping, particularly in terms
of agricultural taxation, the author proposed to distinguish land-cover (the biophysical
categories mentioned above, e.g. "forest") from land use (the anthropic use of land-cover,
e.g. "forestry") which he believed to have more potential use cases. This is the first
of many works to raise this distinction which agitated the world of cartographers and
then the remote sensing community throughout the century [192]. Even though the
transition from one to the other may seem trivial at first glance, the complexity stems
from the multitude of possible associations between the cover and use [193|. For instance,
grass-occupied soil can have various associated uses, like agricultural or recreational use
(stadium) or even no use (natural meadow). [80] note that while most maps produced
between the early XX century and the 1970’s were land-use oriented, ulterior maps
were more land-cover oriented. They link this phenomenon to the evolution of mapping
methods and, in particular, the arrival of the first low-cost, large-scale satellite images
(Landsat-1) and the rise of computing, making possible their automatic interpretation.
Their low spatial resolution compared to aerial images complicated land-use inference,
which generally requires an analysis of the textural aspect of the image. Consequently, a
progressive transition between land-use and land-cover mapping is observed due to the
impossibility of determining the corresponding use.
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The beginning of the XXI** century is marked by considerable improvement in satellite
imagery resolution (Ikonos 2001, Quickbird, Spot5 2002), making use and cover analysis
possible. Although the mixing of land-cover map and land use terminologies is pointed
out as weakening the use of one or the other [53|, most maps from then on mixed the
two notions. Thus, in its current acceptance, the land-cover map nomenclature includes
both the cover and use. The choice of the proportion of incorporated land-use class stems
mainly from a compromise between preserving a high accuracy and responding to end
users’ needs.

1.1.3 Resolution

In remote sensing, the term resolution can either designate the: (i) temporal resolution, (ii)
spectral resolution (iii) radiometric resolution or (iv) spatial resolution [238|. By analogy,
we describe below the notion of resolution for a land-cover map.

Temporal resolution Traditionally describes the time step between two image acquisi-
tions over a given area. By analogy, temporal resolution describes the time-step between
two versions of a given land-cover map over a given area in this land-cover map oriented
PhD manuscript.

Spectral resolution Traditionally describes the width and number of bands in the
electromagnetic spectrum acquired by the imaging sensor. In this land-cover oriented
manuscript, an analogy with nomenclature could be made. However, the remainder of the
manuscript never refer to spectral resolution to avoid confusion and improper use of this
term.

Radiometric resolution Sensitivity to slight energy difference in the image. Not
applicable to this land-cover oriented manuscript.

Spatial resolution Describes the smallest distinguishable object by the sensor. By
extension, spatial resolution is also used to qualify the smallest object visible in an image
while being potentially different from the sensor resolution. To clarify the presentation,
the term resolution always designate the spatial resolution in the remainder of this PhD
manuscript unless mentioned explicitly.

Land-cover map spatial resolution General definition Cartographic spatial resolu-
tion is commonly defined as the smallest element visible [86] on the map. Unlike printed
maps, where spatial resolution is assessed through a cartographic scale, e.g.. lcm on the
map represents 1km in the real world, land cover maps are intended to be used in a digital
format to preserve precise geometric information. Consequently, Land-cover map spatial
resolution is directly computed on the digital data and traditionally expressed in square
meters, e.g.. the smallest element visible in the data is 100m? on the ground.
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For a map in raster format, it is regularly associated with the spatial extent covered
by one of its pixels. This assumption makes sense on maps resulting from automatic
remote sensing. The classification is generally performed at a pixel level fostering a spatial
resolution identical to the imagery used. Conversely, it is typically false for maps resulting
from photo interpretation as they usually process the classification at an object-level,
i.e. on a group of pixels, by manually drawing land-cover areas on images. To ensure
both the global consistency of the product and reasonable conception time, they represent
land-cover only if it covers a sufficient area, that is, an area superior to a fixed threshold.
This threshold is referred to as the minimum mapping unit (MMU) and might differ
significantly from the pixel size of the rasterised map version provided [267]. MMU might
vary depending on the considered class or the spatial context, e.g. it is often different
inside urban areas [322]. MMU can also include more constraints than the simple area
threshold, such as width threshold on linear structures [164] or threshold on class proportion.
Geometric and semantic information is partially lost due to the MMU, as multiple pixels
with different classes might be grouped to achieve a sufficient spatial extent. As this thesis
processes rasterised version of maps, we clearly distinguish the pixel resolution from the
minimum mapping unit. As a way to simplify future discussion, we use the term object to
describe either a pixel or a group of pixels. For instance, we state that "the translation is
conducted at an object level" to designate that we transform the characteristics of each
pixel /group of pixels independently, depending on their specific features. In opposition,
we state that a "translation is conducted at a map or nomenclature level" when all objects
with the same class are translated the same way.

Those spatial resolutions are strongly correlated to the nomenclature as the observation
of a given class can only make sense within a specific range of resolution. For instance,
the notion of "individual tree" does not make sense at one km? resolution, while "forest"
does. In addition, the resolution of a map strongly constrains its use. As the resolution
of the map increases, more phenomena will be identifiable, e.g. observing an urban heat
island at a 1km? resolution prevents fine-grain analysis. Additionally, spatial resolution
tends to be constrained to the user’s needs. Indeed, working with highly resolved maps
is difficult when studying large-scale phenomena (such as climate-related topics) since it
represents a massive volume of data and can behave like noisy data by adding too much
information compared to the actual need.

1.2 Problem statement

This section introduces the precise framing in which we address land-cover map translation.
Specifically, we provide insight into current issues with land-cover map translation methods
and show the different ways in which land-cover map translation can be addressed.

We define land-cover map translation as the procedure aiming to transform simultaneously
an existing map resolution and nomenclature into a target one. We argue that translation
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is of significant interest for many downstream tasks as suggested by the plethoric number

of papers using it for tasks as diverse as land-cover map fusion|[285] comparison [204]

or change detection [135, 208]. We identified the main potential applications requiring
translation in the Figure 1.1 described below:

A The translation of an old source map into the same nomenclature and resolution

as a more recent one enables studying land-cover change detection on matching
classes and resolution.

Translating a recent source map to the same nomenclature and resolution as an old
target provides an update version of the old map.

Translating a high quality land-cover map into a target nomenclature and resolution
can provide validation samples to evaluate the quality of a target map.

Translation can be used to harmonise multiple source data into a single target
nomenclature resolution to achieve a downstream task such as land-cover fusion.

Translation can be used to complete a small extent target map by incorporating
the results of the translation of a large spatial extent source land-cover map.

Translation can be used to simplify the spatial resolution of a highly resolved
source into a coarser resolved one.

G Conversely, translation can be used to improve the source resolution.

H Translation can be used to, modify the nomenclature of the source, add new

classes, merge some classes.

Global scale Continental scale National scale Local scale

T o =
. ‘ﬁ“ M o J

2015)

GlobCover (2004) National Low-Res map

Figure 1.1: Main possibilities for land-cover map translation. (A) change detection, (B)
updating, (C) validation, (D) harmonization, (E) completion, (F) spatial simplification,
(G) spatial improvement, (H) semantic modification. See [106] for more details about the
existing land-cover maps.
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All those applications are, of course, also realisable using the traditional image-to-land-
cover classification paradigm. However, we argue that the land-cover translation and
the image classification paradigm are widely different and exhibit different strengths
and weaknesses presented in Table 1.1. The main advantage of translation is to avoid
processing vast stacks of temporal image acquisitions, which is both time and money-
consuming, by leveraging the information already summarised in existing maps. Despite
translation being a complex task (as exposed in the following sections), the state-of-the-
art chapter shows that most works focus on the translation applications rather than
the translation framework itself [344| resulting in low-quality translation. For instance,
proposed translation approaches generally address the resolution and the nomenclature
translation as two distinct problems. However, these notions are intimately intertwined, as
pointed out in the previous section. For clarity, we address the main issues of the current
state-of-the-art solutions separately in the two following paragraphs.

Image Classification Land-cover translation
Pros Cons Pros Cons
Discrete and compressed
. Requires huge temporal and A single source map information representation
Images — many geometric . . . .
Nature L . multispectral images stacks resumes a temporal = some information
and semantic information . . .
and potentially multi modal data stacks of images are enhanced but some are
laking

Unusual features (Semantic, geometric,
neighorhood) = lack of prior works

Temporal, radiometric, texture Spatial and temporal generalization
common features in computer vision issues = Domain adptation

High, many providers,

high temporal resolution

Features Easy rule based predictions

Availability Most maps are rarely updated

Input data Data volume

o High = multi modal,multi-temporal | light = one or few maps

characteristics | & storage g ’ P © P

Noise Sensor noise — generally Heavy systemic noise

i light and random (source map errors)
Potentially all classes defined In practice, land-use classes are
Predictable by a distinctive temporal, pra ! . ¢ . . Widely depends on the source
. N often badly predicted, most remote | Potentially, all classes provided .

classes radiometric or texture . ? nomenclature and resolution
. 3 sensed map have less than 20 classes
Output pattern are predictable
characteristics | Computation time Long Short

Table 1.1: Comparison between the image to land-cover classification paradigm and land-
cover map translation.

1.2.1 Nomenclature translation issues

Starting from the observation that the previously mentioned nomenclature standardisation
methods failed to unite all remote sensing practitioners under a single standardisation tool
and that those methods are often not applicable to already existing maps, many works
have attempted to propose nomenclature translation approaches to transform a source
nomenclature into a target one [119]|. In this section, we briefly introduce their main
limitations to explain the necessity of developing new approaches.

Existing translation methods are based on semantic analysis of class definitions and
operate directly at the map nomenclature level: they seek to associate each source class
with its potential corresponding target class, as shown in a simple version in Figure 1.2.
In a nutshell, those methods generally rely either on an expert knowledge-based analysis,
or on distances computed from an ontological representation of the classes, or on a ratio of
shared features. A comprehensive presentation of how those methods define those semantic
relations is given in Section 2.1.1.2. They often determine multiple possible associations
per class, e.g. a Forest can either be translated as Coniferous or Broad-leaved. However,
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they do not define object-level contextual conditions in which one translation is more
likely than the other such as "Broad-leaved is a better translation for thin forest on a
riverside". Thus, the only translation performed is the strongest one semantically, 7.e. the
closest in an ontology or the one with the highest number of shared features. This single
final association is referred to as a hard-association by [180]|. By analogy with the field
of text translation, we consider these methods comparable to word-for-word translation
of dictionaries of two languages. All possible word translations are known, but only the
closest semantically is used. This causes multiple problems. First, the closest semantically
can be ill-defined, e.g. Forest should theoretically be equidistant semantically from Conifer
and Broad-leaved. Secondly, the closest semantically is not necessarily the most observed
statistically. For instance, a class Building is semantically closer to Dense urban than
Sparse urban as the second one might include many features other than buildings, e.g.
gardens. However, as the two translations are meaningful and in order to reduce the error
rate, Building should rather be translated into Sparse urban areas if Sparse urban are
more frequently observed.

Source LC Urban Soy Corn Forest ?
) &/—/ 4//7 ¥
Target LC City Crops Open forest | Closed forest | Wetlands

Figure 1.2: Example of semantic translation between two nomenclatures. Methods to
determine the possible associations are presented in Section 2.1.1.2.

The resulting translated maps are of even lower quality as the number of possible associa-
tions for each source class is high. In order to overcome this problem, most of the studies
using translation drastically reduce the number of classes in the target nomenclature to
maintain good translation quality. To give an order of magnitude of the hard association’s
effect on the translation quality, we refer the reader to [225] results on the comparison
between an expert-based hard-association translation output and the target LC, which
resulted in a limited 57% agreement in their use-case.

Fusion of the translation of several source land-cover maps (land-cover fusion) is sometimes
used to replace the nomenclature level translation by an object level one. For instance, if
the first map translates one pixel into Conifer or Broad-leaved and the second map translate
the same pixel into Conifer or Shrub the resulting translation should be Conifer. The
several source map translations are merged at the pixel level. Using the same terminology
as [180], we refer to this object-level translation as soft-association methods. However,
this strategy supposes the availability of several sources with comparable resolutions.

To obtain good quality translations, linguists translate a word differently based on its
context of use. By analogy, we propose to determine context elements that allow the
translation of two objects of the same class differently. To our knowledge, no work has
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been carried out on this subject. We propose below an initial analysis of the types of
context that can be used when translating a land use at a pixel level. We distinguish four
main types:

1. Spatial context: Local spatial pattern of the object to translate. It can further
be decomposed into two aspects: i) the object’s inner characteristics (shape, area,
...) and ii) the relations with close-by neighbouring objects (class, shape, ...) on
the map. The notion of "closeby neighbouring" can not be defined precisely as it
widely depends on the source map resolution and both the considered source and
target /nomenclature. We present in Figure 1.3 some examples of a pixel of a given
class.

2. Geographic context: Depends on the geographical location of the mapped object.
In general terms, it accounts for spatial relationships at wide spatial extents. It can
either involve i) the spatial context between the object of the source map for far-away
structures, such as "an area of water far from the sea is not a saltwater marsh" or ii)
spatial correlation with elements not inside the source map: geo-morphological or
climatic features such as a tree in a mountainous area having a high probability of
being a conifer.

3. Temporal context: Some land-cover classes are partly defined by their temporal
patterns. For instance, Corine land-cover Rice fields include parcels which "As part
of regular cultivation cycle, rice fields are occasionally left fallow for 1-3 years.".
Incorporating temporal context implies using multiple source maps. In this example,
three annual maps are needed to provide the required temporal context, as there
may be no evidence of the land-cover class at a given epoch.

4. Structured label noise: Land-cover map often exhibits specific error spatial
patterns [241] and specific error distributions. Figure 1.4 displays some of those
specific patterns, such as isolated erroneous pixels or salt and pepper aspects on a
small area. Instead of neglecting errors present in both the source and target map, one
could leverage those specific error characteristics to increase translation quality. For
instance, if a source pixel is classified Water while the target is Forest, the erroneous
map might be identified based on the spatial patterns and error distribution of source
and target maps. The ratio between the different error patterns can significantly
change from one map to another due to changes in the conception method and data.
For example, photo-interpreted maps do not exhibit isolated or "salt and pepper"
pixels errors but are more prone to big area misclassification than automatically
generated ones. For coherence with the three other terms we term Structured label
noise as Cartographic context.

These different contexts have in common that they are challenging to set out in the
form of explicit rules as they vary according to the intended translation and are plethoric.

11 / 295



However, it seems possible to learn these rules implicitly by training an algorithm to
analyse existing maps.

Mosaic landscapes Water / pastures
pasture/crops = wetland

Pastures inside urban area  Small pastures inside forest

= green urban area = clearing
1 F Tl P
i 'i =5

-

Mostly pastures

Urban Industrial Cereals Maize Pastures Broad-leaved Conifer Water
High ) Low
-— -_— -— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -
Scale Scale

Figure 1.3: Example of various spatial contexts for a single class (Pasture) of the OSO
map. Spatial context analysis can be used to determine potential land-cover map classes
such as wetlands, or land-use classes such as green urban area.

Peculiar neighboring Peculiar shape Edge artifacts

Isolated pixel h ’ : ]
P small square urban/vines) (industrial area / linear shaped) between two classes
Py o

"Salt and pepper"

Urban Industrial Colza Cereals Protein crops Soy Sunflower Maize Vines Shrubs Water

Figure 1.4: Various spatial patterns for errors in land-cover mapping.

1.2.2 Spatial resolution translation issues

The resolution translation can be either perceived as a super-resolution problem if one
wishes to increase the map’s resolution (by analogy with traditional image processing
methods) or as a problem of cartographic generalisation if one wishes to decrease the
resolution. We provide an in-depth analysis of those notions in Section 2.2, while this
section only underline the main issues to tackle.
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Figure 1.5: Example of a two-class land-cover map downsampling of factor 5. The result
of the Nearest neighbour, a Majority voting and a hypothetical spatial context-aware
resampling method are compared. Non-spatial context-aware methods i) perform poorly
on cells with multiple land-cover map by erasing most of the information ii) do not provide
potential new land-cover map classes

Historically carried out using a set of manually implemented rules, cartographic generali-
sation aims mainly at summarising the information in a map for better visualization [278§].
It proceeds through different object operators such as collapsing, simplifying, displacement
and exaggeration (e.g. simplifying the object shape) [82]. The traditional cartographic
generalisation definition differs from the one expected for land-cover map generalisation by
its objective: Land-cover map generalisation does not seek good visualisation or represen-
tation properties but to preserve, as much as possible, the geographical location and the
semantic content of each object. This prevents the use of operators such as displacement or
collapsing that do not preserve the geographical location. On the other hand, Land-cover
map generalisation merges objects, including those belonging to different classes, even if it
means creating new classes describing mixed land cover, e.g. a class for areas where small
pastures and crop parcels are observed in a mosaic pattern. Multiple works have focused
on this land-cover map generalisation issue using a tedious definition procedure of sets of
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rule-based transformations that need to be redefined from scratch for each end-user needs
and sometimes involve manual corrections. Therefore, no generic generalisation method
can be applied to any land-cover map [143|. Moreover, most of the time, only the resulting
generalised product is provided to users, not the generalisation framework. Consequently,
most works involving generalisation tackle the resampling using the deletion operator
through simple interpolation strategies such as majority voting or nearest neighbour. A
comparison of those simple operators and a potential spatial context-aware resampling
method is presented in Figure 1.5. The currently used nearest and majority voting method
tend to neglect much land-cover information as the resulting map only accounts for one
of the two classes initially present in the cells (Vegetation or Water). Conversely, by
leveraging spatial context, one can achieve a resampling that combines the Vegetation and
Water into new classes accounting for all the information initially included in the map.

Despite numerous works on a satellite image super-resolution for land-cover mapping [149],
super-resolution is much less studied using maps as input due to two main reasons. First,
defining explicitly rules to achieve super-resolution is a complex task which required signif-
icant advances in computer vision to train algorithms to perform it implicitly. Moreover, it
involves adding more resolved data than the source map. Current most successful methods
use convolutional neural networks to extract contextual information from images to learn
to obtain high-resolved maps from coarse ones [202].

1.2.3 Towards continuous mapping

In [321], the authors advocate for the end of the land-cover classification paradigm. Making
the same observation as the one we presented earlier on the land-cover map inherent
continuous nature, they propose to replace classification, which inherently discretises the
land-cover in a limited set of discrete classes by an object-based approach. In other words,
instead of mapping an area with a single descriptor such as "forest", they propose to map
it at an object level with a set of features which could, for instance, include information
on the tree cover, tree height, tree essence, and eventual grassland presence. This new
paradigm for land-cover mapping encountered considerable success during the past two
decades, and multiple projects are now conducted to implement this paradigm in real
operational cases such as the Spanish SIOSE [28], the EAGLE concept [8] and more
recently, the CLC+ project [247]. This new paradigm gives LULC maps significantly
richer information but also suffers a usability gap [353]. Moreover, as the manually defined
features are often difficult to predict automatically [354] most of the current object-level
approaches rely on photo interpretation.

Driven by recent advances in natural language processing on the semantic representation
of words, sentences and concepts, a few works have recently chosen to learn to encode
each pixel of images to output a per-pixel semantic representation of the object rather
than classes [32]. They demonstrate that it enables to perform zero-shot land-cover map
classification [246], i.e. to predict other classes than those used for training. We argue
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that those learnt semantic features could be perfectly tailored to replace the difficult
to automatically predict manually defined features mentioned above, especially in the
land-cover translation setup. Indeed, unlike image classification, in which only the targeted
classification can be semantically encoded, in the translation case, the semantic encoding
can both be applied to the input (a land-cover map) and the output (another land-cover
map). Theoretically, this could enable to train a model to translate a set of maps between
each other and then apply this model to translate unseen during training source maps
into unseen during training target maps. This is particularly interesting since it implies
that if a model is trained on a sufficient number of translations, it would then be able
to be applied to any new land-cover map without needing a sample of data for training.
The obtained object-level semantic representation of land-cover (in this case, pixel level)
could then exhibits the same properties as those expected for the object-based paradigm
mentioned previously.

1.2.4 Challenges

Current solutions for land-cover map translation rest on manually defined sets of rules to
perform both the nomenclature and the resolution translation. As underlined previously,
we argue that contextual information can help perform significantly better translations.
Since defining manually defined context rules for each kind of possible class is unfeasible,
we propose to learn those rules directly from sets of examples using deep learning methods.

The main drawback of learning translation from data is that it requires the existence of
target samples for the learning procedure. The first challenge is to propose methods with
either high generalisation ability (perform well on vast spatial extent even when trained
on small ones) or that can train to translate into a target nomenclature without needing
explicit target examples.

As land-cover mapping is nowadays carried out on scales ranging from entire countries to
continents and worldwide, the proposed solutions should lean toward identifying numerous
kinds of context and class spatial repartition. In particular, all experiments are conducted
France-wide (550,000km?) to ensure the robustness of the learnt method.

As such, it involves defining ways to include far-off geographical contexts. This task is
challenging as the convolution neural network used in this manuscript can only process
small spatial extents due to memory limitations. For instance, studying a 25x25km area
with a 10-meter resolved map implies using a 2500x2500 pixel image which is significant
for CNN while small for geographical context.

The method should also be robust to errors in both the source and target maps, as most
current land-cover map exhibits 10 to 30% errors. As seen in Figure 1.4, most errors tend
to be systematic, with some objects in particular spatial contexts being more prone to
errors. Thus the method could theoretically learn to reproduce target errors which is not
the desired output. Independent validation data should be provided to evaluate whether
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the method replicates target errors.

Since free Earth observation satellite programs such as the Sentinel mission started only
recently (the sentinel mission started in 2015), most previous land-cover maps tend to
be produced only a single time or with a significant time gap between each map due to
high production cost. Translation methods should therefore be able to learn on pairs of
source/target maps with long temporal gaps, increasing further the noise problem.

Translation also presents the problem of high-class imbalance that might be challenging for
learning methods. According to Corine land-cover, the European reference for land-cover
mapping, arable crops (the primary land-cover type over France) is around 16000 times
more prevalent than the less common Corine land-cover classes agro-forestry. The rarer
those training classes are in the training data, the harder they are to predict. Nonetheless,
obtaining good results on rare classes is crucial for many applications; otherwise, they
would not have been included in the source or targeted nomenclature.

Lastly, computational efficiency needs to be evaluated as land-cover mapping methods
tend to be applied to sizeable spatial extents using large volumes of multi-temporal and
multi-modal data. More specifically, translation methods should partly be assessed based
on their performance/complexity trade-off against traditional image-based methods.

1.2.5 Problem statement

From the analysis of challenges conducted above, we derive the following problem statement:

Is machine-learnt context-aware land-cover translation viable to pro-
duce high-quality land-cover maps usable under operational con-

straints?

To answer this general question, we decompose the problems into four sub-questions:

1. How to translate from a source to a target using various context information?

2. Should land-cover translation be cast as an inherently multi-task problem in which
one performs multiple source translations into multiple target ones? For which
benefit?

3. In which conditions on the nomenclature and resolution of the source and target
map should additional data, such as images, be used to improve translation? How
shall the additional data and maps be merged?

4. Are class textual definitions an informative tool to enable using a model on nomen-
clature and resolution unseen during its training?

The following section presents in a condensed way the outline of this manuscript to answer
these different sub-problems.
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1.3 Contents

The following section reviews the content of this PhD manuscript. We assume that the
reader is familiar with traditional machine learning algorithms, such as random forest,
Principal Component Analysis (PCA) or t-distributed stochastic neighbour embedding
(t-SNE) and deep learning. More specifically, we assume that the following concepts
are familiar to the reader: supervised learning with a machine learning model, the main
kinds of deep neural nets (perceptrons, convolutional neural networks, transformers) and
training losses. We refer the reader to books [27, 101, 155] and available online material®
if necessary. We provide for readers who just want a short explanation of key principles,
a very concise (thus incomplete) presentation of deep-learning focusing on convolution
neural network in Appendix G.

1.3.1 State of the art

In Chapter 2, we extensively review work related to translation. To clarify, we review
nomenclature and resolution translation methods separately since most research does so
even though, as mentioned earlier, those two aspects are highly intertwined. Section 2.1
reviews works on the nomenclature translation problem. We first present attempts to create
universal nomenclatures applicable to all maps that are easily modulable to transform
into other nomenclature. Then, we present some procedures to define links between
two nomenclatures. Third section focuses on performing nomenclature-level or per-object
translation once the class relations are characterised. Section 2.2 reviews work on resolution
translation. We first present works focusing on down-resolving maps. Conversely, we then
present works focusing on increasing map resolutions. Section 2.3 presents works focusing
on how to learn to translate the four-levels of context we identified in section 1.2.1, namely
. spatial, geographical, temporal, cartographic. Section 2.4 reviews works focusing on
improving translation using multi-task and multi-modal data fusion that inspire the design
of our methods for translation. Lastly, Section 2.5 reviews work focusing on how to learn
to obtain a continuous semantic representation of a land-cover map to alleviate the need
for a sample of existing targets based on semantic encoding.

1.3.2 Datasets and Evaluation metrics

In Chapter 3, we present the different datasets used for our experiments. As no works
previously focused on learning the land-cover map translation, we needed to generate our
training datasets. We publicly released those datasets which can hopefully foster more
research on the translation problem or be used more widely for research on land-cover

'http://introtodeeplearning.com/
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map fusion and multi-modal data fusion.

e OSO-to-CLC dataset was first released with our first paper on a single source to
single target land-cover map translation. It holds 20k tiles of source/target pairs,
covering all the 550,000km? of France’s mainland territory. We included two dates
for each land-cover map (2016/2018 for one and 2012/2018 for the other) and a more
than 5000 point manually photo-interpreted ground truth focused on target classes.
This dataset has been downloaded around 20 times since its publication.

e MLULC (Multi Land use land-cover map) was released later. While our first dataset
could only be used to evaluate the translation from one land-cover map to another,
MLULC can be used as a benchmark for multi-source to multi-target land-cover map
translation, Land-cover map fusion, and image and map fusion. The dataset still
covers the whole 550,000 km? of France’s mainland territory. However, it includes
six land-cover maps, 10 m Sentinel-2 cloud-free mosaic with visible and near-infrared
spectral bands, the ALOS-WORLD3D digital elevation model and the corresponding
aspect value, and 10 meter Sentinel-1 GRD with dual polarisation. MLULC was
already downloaded more than 190 times at the time of writing.

In the last section, we present the metrics we use to assess all results. More specifically,
we present two ways of assessing quality: i) comparison to target and ii) comparison to
independent ground truth, the first offering estimation off per-class metrics while the
second enables estimation of sensitivity to errors of the target data. We also provide
formulas and short descriptions of used metrics.

1.3.3 Mono land-cover map translation

Chapter 4 explores the potential of machine-learning based context analysis for land-cover
map translation. We work on the most straightforward setup: trying to obtain a single
target map from a single source one, which we refer to as the mono-translation setup.
We focus on pure land-cover map translation without using additional data such as im-
ages to identify the potential of context wise translation solutions. Section 4.1 presents
a preliminary study comparing the non-contextual nomenclature level translation with
simple context-aware techniques. We first present two traditional translation methods that
perform nomenclature and resolution translation separately. Then we also introduce some
simple statistical baselines based either on probability modelling or random forest. We
show that such an approach performs poorly in many translation cases and presents few ex-
periments on local spatial context. In Section 4.2, we introduce one of our key-contribution,
the Asymmetrical-Unet (A-Unet) proposed for spatial context-aware translation. The
network is designed to have the following characteristics: i) change the input resolution
into the output ii) take into account large spatial context patterns iii) preserve spatial
generalisation ability iv) ensure that rare classes are preserved. In Section 4.3, we answer
the geographical context problem by adding a small geographical coordinate sub-module
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to encode geographical knowledge and demonstrate the potential of this method to take
into account far-off spatial contexts. In Section 4.4, we experiment with the temporal
dimension of translation. We first focus on the impact of noise induced by the temporal
gap between the source and target on the learning results by comparing three different
scenarios. Secondly, we evaluate the potential of the temporal context presented earlier by
using multiple dates on the source map. Lastly, in section 4.5, we present a strategy to
mitigate the impact of target errors during the training procedure.

1.3.4 Multi-land-cover, Multi-modal translation

In Chapter 5, we successively broaden the translation problem to i) perform multi-source
multi-target translation and ii) incorporate other types of data. Building a successful
multi-land-cover map translation framework is crucial as obtaining multiple nomenclatures
and resolutions from a single one is a step towards obtaining a continuum of nomenclatures
and resolutions. Furthermore, designing ways to add complementary pieces of information
such as optical images or DEM is not only interesting for the translation problem. It also
offers an insight into the high complementarity of those products when trying to obtain
high-quality land-cover maps. This task exhibits high importance as the fusion between
images and land-cover map databases have always been a standard procedure in photo
interpretation but is poorly addressed by current automatic methods. In section 5.1, we
present the multi land-cover translation network MLCT-Net we design to address the multi-
translation task. The network learns to project all maps into a shared representation space
before translating to ensure high generalisation ability, even for maps with few training
data. We demonstrate that learning a single multi-land-cover map translation model
outperforms widely training multiple mono-translation models. Section 5.2 investigates
methods to incorporate multi-modal data into the MLCT-net network to improve the result.
We thoroughly present experiments for various kinds of data (optical, DEM, SAR) and
demonstrate the interest in land-cover map translation for improving current land-cover
mapping methods.

1.3.5 Building a continuous semantic land-cover map

Chapter 6 focuses on obtaining a continuum of representation nomenclature and resolution
for land-cover maps. We propose to represent each land-cover map class in a continuous
semantic space based on class definition, e.g. Corn is closer to Soy than Water in the
semantic space. As mentioned earlier, no works have explored this subject from a land-cover
map translation perspective. Thus, we take deep care in defining the suitable characteristics
for such space and exploring some of the possible applications. In section 6.1, we introduce
precisely the yet unexplored in the literature notion of continuous semantic space for
land-cover translation. In section 6.2, we describe the expected properties of the semantic
space and propose related quality evaluation metrics. In section 6.3, we investigate how

19 / 295



to build this semantic representation by comparing a pre-trained language model with
a specially fine-tuned to land-cover translation one. In section 6.4, we propose the first
application of semantic space to land-cover res-sampling and zero-shot translation.

1.3.6 Publications

Significant parts of the work presented in this PhD manuscript were published in interna-
tional journals and conferences during the completion of the doctorate.

International journals

e Baudoux, L.; Inglada, J.; Mallet, C. "Toward a Yearly Country-Scale CORINE
land-cover map without Using Images: A Map Translation Approach." Remote Sens.
2021, 13, 1060., https://doi.org/10.3390/rs13061060

e Baudoux, L.; Inglada, J.; Mallet, C. "Multi-nomenclature, multi-resolution joint trans-
lation: an application to land-cover mapping", International Journal of Geographical
Information Science, 2022, https://doi.org/10.1080/13658816.2022.2120996

International conferences

e L. Baudoux, J. Inglada and C. Mallet, "Contextual land-cover map Translation
with Semantic Segmentation," 2021 IEEE International Geoscience and Remote
Sensing Symposium IGARSS, 2021, pp. 2488-2491, https://doi.org/10.1109/
IGARSS47720.2021.9553693

e L. Baudoux, J. Inglada and C. Mallet, "Deep-Learning Based Multiple Land-
Cover Map Translation," IGARSS 2022 - 2022 IEEE International Geoscience and
Remote Sensing Symposium, 2022, pp. 1260-1263, https://doi.org/10.1109/
IGARSS46834.2022.9883056

Code In a commitment to reproducible research, we provide our main research code
under free software license in the following repositories:

e https://github.com/LBaudoux/Unet_LandCoverTranslator

e https://github.com/LBaudoux/MLULC
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CHAPTER
N\

Literature review

This chapter reviews valuable works to understand the remainder of the manuscript. Land-
cover map translation being an understudied subject, some of the hereafter mentioned
works belong to diverse scientific fields such as cartography, remote sensing, natural
language processing, computer vision and machine learning. Since this PhD thesis is most
likely to be read by members of the remote sensing field, we assume good knowledge of
related topics from the readers. We already provide the readers’ computer vision and
machine learning materials in Section 1.3. Additional material is provided each time a
concept not commonly found in remote sensing is addressed.

2.1 Nomenclature Translation

Nomenclature translation methods aim to transform all classes from a given source
nomenclature to a target one. Nomenclature translation is as a two-step procedure
which: i) define the relations between the classes of the two nomenclatures and ii) Use
those relationships to translate each source class. Let S (respectively T) be the source
(respectively target) nomenclature defining a a set of classes as described in Equation 2.1.

S={S;,|1< i< cswith cs number of source classes } @.1)
T ={T;,| 1<, < cr with cr number of target classes } '

Each class is described as a set holding all the objects (in this case, pixel pyx) belongings
to that class; for instance, source class 1 and target class 3 are described in Equation 2.2.

Si ={pk,| 1 <k < ts(1) with ts(1) total number of pixels with source class 1} 2)

Ts = {pr, | 1 < k < tr(3) with tr(3) total number of pixels with target class 3}

[335] and [145] distinguish four possible types of correspondence between a source class S;
and a target class T; namely: the perfect match when the two classes describe the same
objects (Equation 2.3), the inclusion of S; in T; (Equation 2.4), e.g. S; is "corn field" and
T; is "cropland", and conversely the inclusion of T; in S; (Equation 2.5) or no relation at
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all (Equation 2.6).
Si=T,. (23) SNT;=S5. (24 S5NT;=T, (2.5) SNT;=0. (2.6

From observation of real land-cover map translation scenarios, we derive one more relation,
namely: the partial overlap, i.e. Wetland can partially overlap with Water or Grassland,
but is not included them (Equation 2.7 where Sf denote objects that are not in class S;).

SNT;#0 and SNTF#0 and SFNT;#0. (2.7)

Translation from a source class S; is straightforward in the case of Equation 2.3 and
Equation 2.4 as all pixels belongings to S; also belong to T;. The two other cases are
more challenging as some elements of S; belong to T; while some do not. The following
sections first review how to define those relations between classes or, in other words, how
to identify the Equation corresponding to each couple of source/target classes. We then
review how to translate using those relations once they are defined.

2.1.1 Defining the relations between classes

The following sections review works in chronological order to highlight current nomenclature
translation trends. The first section reviews nomenclature standardisation attempts starting
in the '70s which proposes to define all land-cover maps with a single nomenclature system
to avoid the partial overlap problem. The second section introduces works starting in the
'90s on nomenclature harmonisation, ¢.e. which tries to establish the links between two
nomenclatures.

2.1.1.1 Nomenclature standardisation

Nomenclature standardisation frameworks, also termed classification systems, aim to
provide a single unified nomenclature in which all land-cover map can be expressed.
Nomenclature standardisation requires providing an accurate definition of each class
content through a set of descriptors (classifiers) [144]. For example, a class Forest is not
simply described as "multiple high trees gathered on a wide spatial extent" because the
highly subjective terms "multiple", "high", "gathered", and "wide" can be interpreted
differently depending on readers field of work or the spatial extent they are mapping.

Table 2.1 reviews some of the most famous standardisation approaches to date. This table
does not seek exhaustivity due to the high number of either country or thematic-specific
standardisation system but tries to highlight the main trends. We propose to distinguish
three main archetypes of standardisation approaches :

e The predefined classes, hierarchical classification system (PDCHCS) represented in
Table 2.1 by USGS-LULC, CLC, GEOCOVER, NLCD and NLUD-C: This approach
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first proposed by [6] with the USGS-LULC defines an ontological representation of n
classes that can aggregate multiple classes into a single one as shown in Figure 2.1.
This approach was later extended with IGPB-DIS [190] system and is still used in
many currently produced land-cover maps. The main advantage of this strategy is
its simplicity and the possibility to fuse multiple classes into one to reduce thematic
eITors.

e The hierarchically organised classifiers classification system (HOCCS) represented
in Table 2.1 by LCCS, IGPB-DIS, SASLCCS, AARS, NFI and NALCMS: This
approach first proposed by LCCS [68] avoid defining a fixed set of classes. It first
consists of a three-level hierarchical dichotomous nomenclature structure comparable
to the PDCHCS-based classification system resulting in 8 classes distinguishing
vegetated and non-vegetated (level 1), terrestrial and aquatic (level 2), artificial and
natural (level 3) land-cover map types. Then instead of keeping this hierarchical
structure, LCCS proposes a modular phase which defines a set of hierarchically
organised descriptors such as Life Form, Cover, Height, and Macro pattern (examples
of descriptors are presented in Figure 2.2). Those descriptors are intended to
be grouped to form various sets of mutually exclusive classes. This represents a
significant paradigm shift. Instead of focusing on classes name, this approach focuses
on their descriptors. The descriptor set has evolved over time and has been adopted
as an ISO standard under Land-Cover Meta Language (LLCS 3.0).

e The object-oriented classification system (OOCS) represented in Table 2.1 by EAGLE
and SIOSE: This recent approach is illustrated by the EAGLE [8] project. Like
LCSS, this approach focuses on defining land-cover map descriptors. However, these
descriptors are intended to be applied at an object level. This enables the creation
of maps in which each object is described as a potentially unique set of descriptors
instead of a predefined class. Some argue that it is a new paradigm that cannot be
perceived as a classification system [321] since there is no class anymore.

Standardisation considerably simplifies the translation by ensuring that the source and
target nomenclature are both a subset version of the standardised one. Indeed, in this
configuration, the previously mentioned partial overlap between two classes is rarely
observed. However, from Table 2.1, we observe that none of the three presented paradigms
has been commonly adopted [41]. A detailed review of the potential reasons for the
non-adoptions of a standardised system is presented by one of the LCCS creators in [145].
To summarise their observation, the main difficulty is that depending on the covered
spatial extent and the thematic purpose, the descriptors of a class can vary profoundly. For
instance, a forest definition often includes descriptors on tree height or coverage or even
tree essence that varies profoundly depending on the geographical area and the intended
usage of the map [42]. Even when using one of the PDCHCS or the HOCCS approaches,
two forests can have widely different definitions, which considerably limits the interest in
standardising in the first place. Moreover, some descriptors can be challenging to determine
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for given pixels either due to a lack of information in the raw data or the algorithm used to
make the map [178]. Lastly, to the best of our knowledge, the OOCS approach is currently
only used in operations set up in Spain through the SIOSE project [28] (the EAGLE
concept is not applied yet but is expected to be used for the Corine land-cover map product
CLC+ in 2024). This is mainly explained by the fact that mapping descriptors represent
a tremendous amount of work at an object level (many descriptors per pixel instead of a
single class) when photo-interpreted and the difficulty through automatic image analysis.
The most closely related automatic strategy found in literature focuses on unmixing the
content of each pixel into fractions of the target classes [24, 31, 83, 84]. Those approaches
are comparable to OOCS, for which the descriptors are the target class percentage inside
a given object instead of physiologic/biotic descriptors. Using the same terminology as
[75], we refer to those maps expressed at pixel levels with target class percentage as "fuzzy
land-cover map classification". Conversely, the traditional one class per pixel approach is
termed "crisp land-cover map classification".

/ Level 1 \ Level 2 ‘ Level 3

Broad-leaved
forest

Artificial surfaces

Agricultural areas Forest Coniferous
forest
Forest and semi- . Shrubs andjor Mixed
> herbaceous
natural areas o Forest
\ associations

Open spaces with

Wetlands . ;
little/no vegetation

Water bodies

k J N 4 | s 4

Figure 2.1: A simplified example of hierarchical classification based on the Corine land-
cover 3 level nomenclature. Green illustrates the per-level classification of an oak forest.
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Figure 2.2: LCCS standardisation approach with the example of the classification of an oak
tree forest. The first phase (dichotomous phase) is similar to the hierarchical classification
and enables an 8-class nomenclature at its third level. The second phase describes the class
with a custom set of descriptors. Oak forest definition could incorporate a height descriptor
stating that an oak tree is between 3 and 20 meters tall. The descriptors are hierarchically
organised according to their expected mappability (the difficulty of determination).

2.1.1.2 Nomenclature harmonisation

The previous section point out that most land-cover fallow different standardisation method
making standardisation based translation difficult. This section investigates nomenclature
harmonisation methods that enable associations between classes of different nomenclatures
even when they do not fallow the same standardisation method. Many methods have been
proposed to find the relations between two classes, most relying on a semantic analysis of
the class definition [339].

The simplest solution is to assess the possible association through expert knowledge [234].
When challenging to obtain from the source map classes are targeted, remote sensing data
are often integrated to bring additional information on the target class characteristics [1].
This strategy has the advantage of simplicity, albeit not allowing a detailed understanding
of the quality of the translation. Moreover it is hardly generalisable as two different experts
can provide different associations, especially on nomenclatures with a high number of
classes [78] (more than 10).

Numerous more sophisticated solutions have been proposed to automatically estimate the
similarity between classes based on semantic similarities [55, 147|. Semantic similarity is a
family of metrics assessing quantitatively two class closeness based on their definitions. It
can be computed in numerous ways. For instance, one can represent the two nomenclatures
into a shared hierarchical nomenclature tree like the one presented in Figure 2.1 and
then count the number of links that separate the two classes [220]. The main advantage
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of this method is that it ensures symmetric properties for the semantic similarity, i.e.
d(Si, T;) = d(T},S;). It can also be perceived as a distance measurement used to embed
classes in a euclidean representation space [93|. However, it assumes that the source
and target nomenclature can both be represented into a single unified hierarchical tree
with for each class of Level n+1 only a single super-class at Level n. Based on the
observation that this assumption is often not met [123], i.e. a herbaceous class might be
simultaneously in the super-class natural grassland, crops or pasture, other kinds of shared
nomenclature representation structures have been proposed such as semi-lattices [159]. The
main advantage of a semantic similarity-based approach is that it defines a correspondence
value between each source and target classes [65].

Some recent references in semantic similarity computation are based on using the LCCS
standardisation framework [305|. All nomenclatures are first expressed into the LCCS
framework in a standardisation step which is challenging in multiple cases [54|. The class
association is then determined by computing the percentage of shared descriptors between
classes using a simple version of the Tversky loss [313| defined in Equation 2.8 where s;
and t; denote the descriptors of the class S; and T; and |s; N t;| the number of descriptors
shared by the two classes.

Similarity = > (2.8)

Multiple improvements to this formula have been proposed in the literature. For in-
stance, [76] propose to take into account the descriptors of S; that are not included in T;
(the dissimilarities) since the original equation only focuses on the shared ones (the similar-
ities) while both information is equally important. Furthermore, [252] proposes assigning
different weights depending on the descriptors as they do not necessarily all revert the
same importance. Lastly, in the case of hierarchically organised nomenclature, [253, 254|
assigns different weights to each feature based on the hierarchical level of the source and
target class. An important observation is that those attribute-based semantic similarities
measurement does not preserve the symmetric property of ontological-based measurement,
i.e. d(Sj, Tj) # d(T;,S;); thus, they do not correspond to the mathematical definition
of a distance metric. From a semantic point of view, this is meaningful, especially in
hierarchically organised nomenclatures. For instance, wheat crops is very close to cropland,
semantically speaking, as they all belongs to a cropland. Conversely, cropland is not so
close to wheat crops as all are not wheat crops. For a complete review of the different
semantic similarity measurements, refer to [271].

Another way of defining a relationship between two nomenclatures is data-driven, with
a direct comparison of pairs of maps. Statistical links between the nomenclatures are
obtained by analysing spatially co-occurring sources and target classes. A first naive
approach uses a confusion matrix between the source and target maps and assigns the most
likely class in the target nomenclature to each source class. [56] propose to translate a
source map into a coarser resolved target map by using the number and class of the source
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pixels inside each targeted segment as information to train a discriminant analysis. More
recently, Latent Dirichlet Allocation has been adopted in [180] as an unsupervised way to
merge statistical analysis with semantic distances between classes. One of the method’s
main advantages is that there may be a significant difference between the theoretical
semantic content of a class and its actual content, limiting the real meaning of the measures
of semantic similarities. For instance, suppose that the class crops of a source map has
an accuracy of 70% (because of confusion between the two classes natural and cultivated
grasslands). The semantic definition of the class only accounts for 70 % of the actual
content of the class. Determining these associations on the real content of the target
classes through a data-driven rather than definition-driven approach tackles this issue.
However, it exhibits two main limitations: it is not flexible and result in poor quality
similarity metrics if a huge resolution gap exists between the source and target.

An important observation is that most real case nomenclature harmonisation results in
low semantic similarity scores between a source class and its ideal target [65]. For instance,
[78] computed the semantic similarity between two famous land-cover maps (CLC, the
reference for Europe land-cover and NLCD, the referenced for USA). They conclude that
amongst the 44 classes of CLC and the 21 classes of NLCD, only three semantic similarities
are equal to 1. Thus, most classes exhibit the partial overlap mentioned at the beginning
of the section.

2.1.2 Translation based on the semantic relation(s) between classes

Once the relations between all the source and the target classes are obtained, the translation
from the source nomenclature to the target is performed.

This task is straightforward when class S; has a unique association in the target nomen-
clature (Equations 2.3 and 2.4). Other cases are far more challenging and are poorly
addressed by semantic methods [120, 145, 165]. Two different strategies can be adopted: i)
The hard association method, which consists in assigning to each source label its most
likely correspondence, and ii) The soft-association method, when one tries to act at the
object level by assigning a different label to a source label depending on some object
characteristics.

The hard association method, by far the most observed in literature [120, 142, 272, 309,
311, translates each source class into the most similar target class. This approach has
a significant limitation: when a class has more than one non-zero semantic counterpart,
translating it to the semantically closest class de facto ignores all other possible associations.
By analogy with the natural language processing field, we compare this approach to a
"word by word" translation in which one knows all the possible translations for a word
but only assigns the most frequently observed one. Those issues are illustrated by [225]
who translated GLC2000 [17] into CORINE land-cover map [121] only using a semantic
hard association approach. They obtained a low 57% agreement with the observed
correspondence between the two maps.
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The soft association method tries to translate each source class into several target classes
depending on some contextual information. They either rely on: i) local spatial context
summarization [56] or ii) on merging multiple independent land-cover map translation
contexts [317]. For example, local context summarisation is illustrated by [56], which
performs the translation at an object level (the object is a segment based on the target
segmentation). Based on multiple source pixels class distributions inside each segment, one
can train a model (a discriminant analysis) to predict the target class. With this strategy,
two source pixels with the same class in the source nomenclature can be translated into two
different target classes, provided those two pixels belong to two distinct segments. However,
this method has many limitations. First, the targeted map must have a coarser resolution
than the source one. Moreover, the method assumes that the target map segmentation is
available as source input, which might not be the case in an operational scenario. Last
but not least, semantic distances are evaluated for a pair of source/target classes and in
no way for a fusion of multiple source classes into a single target [65]. Thus it requires
relying data-driven strategy to proceed to translation.

The other strategy merges several source maps to obtain a single target. A semantic
harmonisation method determines the associations between source and target classes for
all maps. Then, a vote is cast at the pixel level to determine the target label according
to the pixel composition in the source classes. Multiple methods have been proposed for
such a decision: sum [157] or weighted sum [55, 317| of the semantic similarities of source
maps. Recently, [180] proposed a hybrid approach, combining the semantic similarities
with statistical correspondences between source and target classes. They trained a Latent
Dirichlet Allocation model to obtain a discriminant embedding of the spatial co-occurrence
between the classes of the two source maps for 300x300 pixel tiles. Once this spatial
co-occurrence embedding is obtained, they rely on a simple probabilistic model to predict
the target. They assume that the spatial co-occurrence of the classes observed in the
300x300 pixel tiles is statistically informative on the per-pixel translation. For instance,
a tile where 80% of pixels labelled S! in source map one and S? in source map two
corresponds to the target class T;, should translate all pixels of the labelled simultaneously
S} and S7 in T;. The authors pointed out that this assumption is not always met, especially
when there is a resolution gap between the two source maps, making the method usable
only with maps with the same resolutions. Moreover, this soft association model requires
the availability of multiple source maps. Therefore, [202] replaced the multiple maps
approach with satellite images to perform soft association without using several source
maps. The method relies on the idea that one can learn to classify an image into a target
land-cover map using only the source map and prior knowledge of the spatial co-occurrence
between the source and target classes. Each image’s expected target class distribution is
estimated using the source map and the co-occurrence matrix. Then a network is trained
to predict this expected target class distribution using a Kullback—Leibler divergence loss
function. This method suffers two principal limitations. First, it only uses the source
map to estimate the target class distribution instead of using it jointly with the image,
losing all the location information. Moreover, it assumes that feeding the network with
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the expected class proportion for a given image result in a consistent classification. In
an informal and simplified way, this can be conceptualised by the idea that if one knows
that 20% of pixels should be water and that the remaining are trees, if inside the data
20% of the pixels shares similar features, it seems plausible to classify all blue pixels as
water. However, we argue that the higher the number of target classes, the less consistent
these assumptions get. Consequently, [202] only presented their results for a target map
with four classes (Water, forest, field, and impervious surfaces) with a source map with 20
labels.

To summarise, current nomenclature translation techniques are conducted as a two-
step procedure. They first define the relations between each source and target class
through semantic or statistical analysis. This is almost straightforward when all maps
are standardised from the beginning, but it is otherwise more challenging. Then, they
perform either a complex association that gives poor quality results or a soft association
that either requires downgrading resolution or merging multiple maps.

These methods all disregard the different contexts mentioned in the section 1.2.1 (spatial,
temporal, geographic, cartographic). For example, the class Grass of GlobeLand30 [43|
can be translated into several CORINE land-cover map classes: Green urban areas, Sports
and leisure facilities, Pastures, Natural grassland or Sparsely vegetated areas. In such
cases, an analysis of the local neighbourhood is required—this advocates for integrating
the spatial context in the translation task. As in natural language processing (NLP),
land-cover map translation involves too many possible contextual configurations and cannot
be manually defined. In NLP, this issue is tackled using machine learning procedures on
text corpora [330]. Surprisingly, no attempt at land-cover map translation using machine
learning-based contextual translation frameworks has been proposed in the literature so
far.

2.2 Spatial resolution translation

This section reviews current work on changing the resolution of land-cover maps. Changing
the resolution of a map is a complex problem that can not be tackled using the same
technique as those used for images. Changing an image’s resolution is tackled using
interpolation techniques that compute local neighbourhood interpolation, .e. weighted
means. This is not possible with maps, as the pixel values denote categorical variables. If
a forest is labelled 1, water is labelled 2, and a cropland is labelled 3, the mean between
a forest pixel and cropland (1T+3 = 2) should not be considered as water. To avoid this
problem, most of the land-cover focused works used discrete interpolation methods, either
nearest neighbour or majority voting, that account only for a part of the information,
as illustrated by Figure 1.5 on page 13. A clear distinction must be made between the
terms up/down-resolving and up/down-scaling. Up/down-resolving is the operation to
either increase (up) or decrease (down) the number of pixels of a given image. On maps,
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this consist of obtaining more/less pixels respectively on the same spatial extent, i.e. an
up-resolve map has a finer resolution than the down-resolve one. Conversely, up/down-
scaling is a cartographic-specific term which consists of either increasing (up) or decreasing
the scale of the map. As large-scale values describe coarsely resolved maps, an up-scale
map has a coarser resolution than the down-scale one (opposite of the up-resolution). For
clarity, we only use the terms up-resolve (obtain a fine resolved map) and down-resolve
(obtain a coarse resolved one). This section review works on down and up-resolving maps
separately as the involved methods are significantly different. We put to the reader’s
attention that far more literature on the down-resolving of maps can be found than on
up-resolving, which is the exact opposite of what is observed in images. Consequently, the
up-resolving section mostly mention works on images rather than maps that might need
some adaptations to work on categorical data.

2.2.1 Down-resolving land-cover maps

Down-resolving land cover maps consist in resuming multiple ps source categorical pixels
into pr target pixels (with pr < ps). The different methods proposed in the literature can
be categorised according to i) how they aggregate ps pixels into M groups and ii) How
they resume the information inside the M groups.

Two aggregation strategies are commonly found in the literature: the grid one and the
target segment aware. The grid aggregation strategy consists in packing the ps pixels
according to a regular grid with pr cells, as illustrated in Figure 1.5. It is the most
commonly adopted strategy as it does not involve any extra knowledge. Conversely, the
target segment aware aggregation strategy assumes one already has access to the M intended
groups. For instance, cadastral parcels can be used to aggregate multiple source pixels into
a single value per parcel to which they belong. In the land-cover translation scenario, we
do not assume that the target segmentation can be used as an input as it would drastically
reduce the use case. A third and less studied strategy, the characteristics-based aggregation,
groups the ps pixels according to their characteristics, either semantic [293| (put adjacent
objects with the same class into one group) or geometric [329] (put adjacent objects with
the geometric characteristics like shape or orientation into one group). However, those
methods are usually defined for working on vector databases and are thus ill-defined when
working on images as they induce strong spatial deformations. Conversely, we observe
that context-wise semantic segmentation methods are known for their ability to learn to
predict the target segmentation. We argue that in the specific case of learnt land-cover
translation, one could theoretically achieve a third grouping strategy (neither grid nor
target segment aware) that we term context-aware grouping.

Multiple strategies have been proposed to resume the information on land-cover maps. The
most straightforward strategy adopted in most studies dealing with multiple land-cover
maps with various resolutions is to rely on the nearest neighbour interpolation [286] as
this method is simple and does not require additional information. However, only one
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source pixel inside each of the M groups is responsible for the final classification; most of
the source information is lost. The second most adopted strategy is the majority voting
rule, which resumes the content of the M groups using the most frequently observed
class, better reflecting the actual content of each group. An interesting observation is
made by [345], which showed that the map obtained from either nearest or majority rule
techniques applied to a fine resolved source map and the classification from a coarse image
give significantly different results. They underlined that those techniques do not give
satisfactory results as they do not realistically resume the information. They link this
problem to the fact that, as the resolution gap between the source and target increases,
the majority class tends to represent only a tiny fraction of all the pixels inside one group.
For instance, if in every group, the majority class is S; and represents 25% of pixels inside
the group, the resulting majority voting resume all the groups to S; despite S; being only
25% of the land-cover observed in the source map. [153] proposed an interpolation method
that preserves the per-class areas observed in the source map to partially alleviate this
problem. However, this interpolation technique presents the reverse problem. For instance,
the group with the highest proportion of S; will be classified S;, even if it represents only
5% of the group, if there are a hundred target groups and a class S; representing 1% of the
area in the source map. [291| observes that all those methods completely neglect the noise
in the land-cover maps, which can reach 50% depending on the considered land cover and
class. They propose to correct the majority voting using the confidence in each source
pixel classification (they assume the availability of this confidence matrix).

However, those strategies neglect that when resuming information, one might want to
prioritise some information by giving it more weight. For instance, classes such as Closed
forest are often defined with a statement such as "more than 85% of the area should be
covered by trees". Consequently, if the group have 51% of pixels labelled Closed forest, the
resulting label should not be Closed forest even if it is the majority class. This idea of down-
resolving a map by applying selective rules depending on some intended characteristics of
the down-resolved map closely relates to Cartographic generalization [261]. Those rules
detail how to combine a set of operations to transform the resolution of the maps [233].
Many attempts at classifying those operators can be found in the literature [39, 82, 211,
347]. They usually distinguish the operators that modify the attributes (the class) of the
object, such as a reclassification operator, from those that modify its geometry, such as
a displacement operator, which represents the object slightly out of place. The set of
operators used for land-cover map generalisation might vary profoundly depending on
the objective of the generalization [143]. In particular, attribute operators are usable in
the land-cover translation case as we seek to reclassify data. Conversely, most geometric
operators are unusable as we need to preserve the correct geo-location of objects. A
recent trend in land-cover map generalisation tends to make the generalisation model
more and more aware of the spatial context of an object before generalizing [329], through
machine leaned strategies [301], in order to improve the classification of heterogeneous
areas. Current attempts mainly focus on training deep learning models [276], usually
in a self-supervised manner using generative adversarial networks due to the lack of a
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clear definition of a correct generalization when one wants to achieve a map with high
readability [306]. However, in the specific land cover translation case, this consideration is
irrelevant as we do not seek the land cover’s readability but to represent the information
semantically and geometrically accurately. Moreover, those cartographic generalisation
methods are for now only applied to spatially discontinuous objects of a single class, such
as roads or buildings |77, 275, 343]. In the land-cover translation, we must necessarily
perform transformation on spatially continuous space with multiple classes. For instance,
if a forest is adjacent to a crop field, augmenting the size of the forest necessarily reduce
the crop field and eventually require reclassification.

2.2.2 Up-scaling: land-cover super resolution

Increasing the resolution of land-cover maps is a hot topic that involves numerous studies.
However, most focus on how to transform coarse images into finely resolved maps [158, 304,
360] rather than on how to transform coarse maps into fine resolved ones. They either rely
on: i) the use of multi-temporal acquisition of images and make use of the slight spatial
shift occurring between each acquisition to estimate a super-resolved version of the images
and then proceed to classification [184] or ii) on a two-step procedure which first estimates
the fraction of each class inside each coarse image pixel using a spectral unmixing method
and then use this fuzzy classification to determine a high resolved map [183]. We point
out that the current state-of-the-art methods in super-resolution of land-cover map using
images rely on deep convolutional neural networks to analyse the spatial context of each
pixels [149, 182].

Conversely, very few works directly address how to transform coarse maps (instead of an
image) into finely resolved maps. The limited work on the subject mainly comes from
the previously mentioned two-step procedure of creating a fuzzy classification from a
coarse image and then super-resolving it. This second step, i.e. super resolving a coarse
fuzzy classification into a highly resolved crisp classification, closely relates to this PhD
manuscript objective of super resolving a coarse crisp classification into a higher resolved
one. Indeed, a crisp classification can be seen as a particular case of fuzzy classification
where each pixel has a 100% fraction of a single class and 0 for all others. [29] assimilate
this problem as an inverse problem [23, 295]. They argue that the forward problem, i.e.
determining coarse fractions from a fine resolved crisp land-cover map, is straightforward.
Conversely, they insist that the inverse problem is inherently under-determined as multiple
plausible solutions can be found. They insist on the need to use prior information that
resolve the inherent ambiguity by constraining the number of spatial patterns of classes
that can occur at that resolution. Literature can be divided either by the prior information
or the algorithm used. Prior information relies most of the time on predefined assumptions
on the spatial distribution of the labels, such as the supposition that the output high
resolved classification should be the one with the higher maximum class auto-correlation
with coarse maps [10, 213, 319| or a mix between ensuring a spatial continuity of same
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class object, which is a common assumption [268], and preserving class proportions [298|.
More rarely, this preliminary information is directly extracted from images [287]. The
algorithm used for performing the super-resolution also varies profoundly from linear
interpolation [319] to Hopfield networks [298], to genetic programming [213].

Nonetheless, the crisp and coarse classification to crisp and highly resolved classification
task is significantly more challenging than using a fuzzy classification as input as it
increases the inherent ambiguity of the problem, i.e. the problem is less constrained
and thus has more solutions. Instead of giving exact information about the expected
proportion of each class for a given coarse pixel location, only one class is provided. To
the best of our knowledge, the only proposed method classifies a high-resolved image into
a finely resolved land cover using a coarse one during training [202]. As explained in
Section 2.1.2, this works assumes that the transition matrix M between the coarse and
high resolved land-cover map is known. Each coarse label S; probability of corresponding
to a fine resolved target T; is known. For a given source map, one can estimate D the
expected number of pixels labelled T; in the target map while being labelled S; in the
source map by simply multiplying the n number of pixels labelled S; by the probability for
a pixel label S; to be T; in the target map M(S;, T;) as D(T;|S;) = n* M(S;, T;). A deep
convolutional neural network is trained to predict this expected target label distribution
using a statistic-matching loss function. However, as pointed out previously, this method
performs poorly as the number of target labels increases and uses the source map only as
a guide for training an image classification procedure.

In a slightly different setup where the source and target maps are continuous (vegetation
height), [198] proposed a solution that alleviates the need to assume prior knowledge of
M by replacing the distribution-based loss with a per-pixel loss by assuming that if a
coarse pixel has an X value then the global average of all super-resolved pixel inside the
coarse one should be close to X. In practice, they process each source pixel value with a
Multi-Layer Perceptron (MLP) and compute the sum of the mean absolute error (MAE)
between multiple corresponding targets predicted values and the coarse source pixel. They
argue that this per-pixels loss function results always in the same solution for one specific
coarse source pixel value independently from its spatial context. Thus, they also propose
to add information on the pixel location by processing the x and y pixel coordinates in a
separate (MLP) and merging it with the pixel representation. However, their methods
appear challenging in the land-cover setup, as the categorical representation of land-cover
data prevents using their per-pixel MAE loss. Furthermore, it still neglects the geometric
information of the source map by processing only the image. Lastly, choosing a per-pixel
analysis with an MLP prevents the analysis of the spatial context, which appears not
optimal for the super-resolution task. Indeed pixel super-resolution in a land-cover map
should be highly dependent on the surrounding of the considered pixel, i.e. a pixel in a
middle of a forest or on one of its edges should not be super-resolved the same way.

To sum up, this state-of-the-art on-resolution translation pledges for the use of spatial con-
text information to obtain high-quality results. Moreover, Convolutional neural networks
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(CNN) achieve the current state-of-the-art results both in the super and down resolution
cases. However, as current literature only includes a limited number of works on CNN
applied to maps, discussion on the potential and limitation of this technique on the data
must be conducted.

2.3 'Translation using the four levels of context

In the introduction, we identified four relevant context information levels that one could
use to achieve high-quality translation (spatial, temporal, geographical, and cartographic).
This section focuses on considering four different contexts using a data-driven strategy
rather than the earlier rule-based approach. Influenced by the state-of-the-art results

obtained by convolutional neural networks, we mainly concentrate on strategies adopted
in this field.

2.3.1 Spatial context: analysing the spatial relations between
objects

We assume that the reader already has knowledge of deep learning and convolution neural
networks and do not detail the underlying methods in this manuscript. We suppose
that the reader is familiar with supervised training, convolutions and their parameters
(size, stride, dilation), convolution neural network and continuous optimization with loss
functions. Readers unfamiliar with those topics are preferably referred to |27, 101, 155|
and available online material'. However, for a concise (3 pages) introduction to the main
principle of machine learning and deep learning concepts used in this manuscript, refer to
Appendix G.

2.3.1.1 Definition

Spatial context has long been recognised as a significant element in computer vision [15]
and, more specifically, in the characterisation of land-cover maps [288]. Two levels
of spatial context for a given land-cover map object are identified. The inner spatial
context, commonly used in the remote-sensing community through the term (GEographic)
Object-Based Image Analysis (GEOBIA or OBIA), increases classification performance
by describing the shape characteristics of the object to classify [18]. For instance, a
linear-shaped element is probably a road or a river but is unlikely an ocean. Those
methods, traditionally used to classify images, consist of a two-step procedure [130]. First,
the images are segmented in homogeneous areas using a segmentation algorithm, the
homogeneousness criterium being user defined. In the land-cover translation scenario,
the first step of this procedure is by nature irrelevant as we already have access to a

http://introtodeeplearning.com/
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homogeneous segmentation in the form of contiguous pixels with the same class in the
source map. However, one must notice that this source segmentation might significantly
differ from the target one resulting in geometric inaccuracies. Secondly, the information on
each segment characteristic is computed. Those different characteristics can be grouped
into three distinct categories [71]: spectral information (e.g. the average pixel value inside
one segment, its standard deviation...), textural information (e.g. spatial patterns of the
pixels inside the segment), and shape characteristics (e.g. is the segment wide, linear,
circular ...). As we assume in the land-cover translation scenario that the segment holds
one homogeneous categorical variable (the same class for all pixels in the segment), the
notion of spectral or textural information is irrelevant. Conversely, we present in the
Table 2.2 a set of common shape indicators computable on the land-cover translation
setup, mainly inspired from [151]. We acknowledge that many other indicators have been
proposed but argue that, as underlined by [130] most of them are highly-correlated and,
therefore, including all of them does not improve classification accuracy.

Name Formula Description Helps to discriminate
m
Area Ap = % > xi(Vit1 — ¥i-1)  xi: x coordinate of the ith point of the polygon. all classes: discriminates small objects from larger ones
i=1
Elongation EL=A,/P, P,: Perimeter of the polygon elongated objects: roads, rivers, sand coastlines
Circularity Cl = %”p = 47;;" Acp: Area of the circle with the same perimeter compact objects: circular irrigated crops, some planted forest
< b
- Wide extent object in which other object are inserted: urban areas
NestedPoly - ) he ber of polygons inside the polyg L Loy
estedPoly Count the mumber of polygons inside the polygon (parks, road, buidings) and croplands ( 60% of France cover)
o . regular/irregular shaped polygons: a rectangle cropland
Convexity co=2 Acy: Area of tl vext hull of the poly [T ¥ B
onvexity Ach chi Area ol the convex utl of the polygon has CO = 1, conversely a star shaped building have a lower CO
MBRH - Minimum bounding rectangle height . -
. _ L - s Estimate the shape spread: building have usually
MBRW Minimum bounding rectangle width stimate Lhe shape spread: bullding have usually

MBRArea MBRHeight x MBRWidth Minimum bounding rectangle area small spatial spread compared to Forest or croplands

Complementary with elongation:
helps to distinguish ellongated from compact objects
MBRAngle Angle between the width of the MBR and the North ~Spatially oriented objects: vineyards are often South oriented

MBRFlatness ,‘"jggx Flatness of the minimum bounding rectangle

Table 2.2: Common shape features used for evaluating the shape of an object mainly
inspired from [151].

Conversely, the outer spatial context, often termed as texture when the considered object
is a pixel or as fragmentation when the considered object is a segment, describes the
surrounding of the object [16], i.e. this green object is surrounded by green, blue ones.
This outer spatial context has been widely studied in images by studying spectral variations
between objects. However, to the best of our knowledge, no study has been conducted on
describing the outer spatial context directly on a land cover map, i.e. a grassland near a
river is probably a wetland.

The last ten years have demonstrated the high ability of Convolutional neural networks
(CNN) to automatically directly learn custom context indicators (rather than manually
defined ones). Therefore it appears attractive to explore those techniques to perform inner
and outer spatial context-wise land-cover translation.

2.3.1.2 CNN based spatial context analysis

We highlight that as no previous work has been conducted on applying CNN using land-
cover maps as input, we refer to literature on traditional images. Therefore some of the
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conclusions obtained in the mentioned papers will not apply to land-cover maps. For
instance, CNN are known to be far more sensible to texture than shape information on
traditional images [96, 117|. However, they can also extract shape information in a low
texture environment [12] such as the one met in land-cover translation.

[315] stated that the number of papers dealing with land-cover classification through deep
learning has almost doubled yearly since 2015. More importantly, they pointed out that
convolutional neural networks performed better than other methods to learn very different
spatial contexts, as demonstrated by the various studies on specific land-cover types such
as urban land-use [133], wetland [141], forest [110] or agriculture [169]. Most work focuses
on learning spatial context and considers all the exploitable spatial contexts from the inner
one to the farthest possible outer spatial context, which has been recognised as helpful in
many domains [365]. The maximum distance influencing the classification of a pixel by
the network is referred to as the receptive field. According to [197], it consists either of
techniques that down-resolve the images before convolution [69], techniques that modify
the convolution properties such as dilated convolutions [186] or increasing the depth of
the network. Since reviewing all the network architectures would be impossible, we only
review the two networks our work is built on.

The first one is the famous U-Net architecture [257] which offers a good compromise
between having a large receptive field through downs-resolving while preserving high-
resolution information through skip connections [341]. This network is commonly used in
the remote sensing community for its lightweight aspect, which enables both rapid training
and inference and avoids overfitting on small datasets. We present the U-Net architecture
in Figure 2.3.
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Figure 2.3: Original U-Net-architecture from [257]. The image is progressively down-
resolved to ensure large receptieve field. Conversly, copy is used to preserve edges informa-
tions.

The second, called atrous spatial pyramidal pooling, comes from the deeplabV3 architec-
ture [45] and is inspired by [115]. It proposes producing multiple down-resolved versions
of the same feature maps using dilated convolutions. The core idea behind the dilated
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convolution is illustrated in Figure 2.4. Instead of performing the convolution on the
eight direct neighbours of a given central pixel (like the upper row of the Figure 2.4), the
convolution filter is split to still take into account eight neighbours but at an increased
distance from the centre pixel (as is in the second or third row of the Figure 2.4). All the
outputs down-resolved images are then concatenated and given to another convolution
layer.
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Figure 2.4: ITllustration of spatial pyramidal pooling architecture [45]. The input feature
map is convoluted with various independent dilated kernels and a mean average filter. The
down resolution is achieved through a stride parameter on the convolution represented on
this illustration. The different feature maps obtained are then concatenated and linearly
combined by a 1x1 learnt kernel.

One primary specificity of learning spatial context for land-cover mapping is that a large
network receptive field is insufficient. Indeed, there is no guarantee that all the relevant
spatial context is present in the image in the first place. This stems from two phenomena.
First, most studies on land-cover mapping focus on a specific spatial extent; information
close to but outside the spatial extent is ignored. Secondly, neural networks can only
process limited-size images due to memory constraints. The remote sensing community
usually uses a patch-based approach to decompose the study area into small patches that
are classified separately [277]. For instance, most of them process images from a few
dozens of pixels [273] up to a thousand pixels [359] width, which for a 10-meter resolution
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image correspond to 10 km. Consequently, the spatial context can not include far-range
information, such as whether the pixel is in a mountainous area.

[7] demonstrated that increasing the receptive field of a network is always beneficial but
that the increase of accuracy follows a logarithmic curve. They linked this behaviour
to [196] works that demonstrate that more weight is always given to the centre of the
receptive field. This appears problematic as far-range spatial context is lowly taken into
account. Moreover, far-range context is not directly interesting by itself, i.e. knowing the
class of an object 20km away from the object we want to classify is not really informative.
The potential resides in the combination of all the object classes and spatial arrangement
from the closest to the farthest ones, i.e. the general characteristics of a wide area around
the object to classify, such as geomorphological information (the area is far from the sea
and near a mountain) or landscapes (the area is fragmented into small parcels). For this
specific context information, there is no real reason to give more weight to the centre of the
area. The following section introduces methods to incorporate information on wide-scale
spatial context, which we term Geographic context.

2.3.2 Geographic context: Tackling specific regional land-cover
patterns

We define geographic context as the macro-scale spatial patterns of classes. The spatial
distribution of land-cover classes is highly correlated to environmental, climatic and
anthropogenic factors [171]. For instance, in France, trees in mountainous areas are likely
to be conifers, the crops cultivated in the northern and southern part of the country are
different (due to temperature gradient), and far from cities areas are more likely to hold
shrubs than close one (fallow croplands). Consequently, a land-cover translation should be
aware of this geographic spatial context.

We can distinguish two main strategies in the literature. The first one is defining
homogeneous from a land cover point of view spatial units. For instance, [129] proposed
to decompose the globe into 61 bio-realms representing unique combinations of biome
and biogeographical realm [177], for which the land-cover macro-scale spatial patterns
are considered homogenous. Those homogeneous areas are either used to train separate
models on different zones like in [139] or to fine-tune multiple local models from a global
one [150, 174|. This strategy has the main limitation that it is time-consuming as it requires
training/fine-tuning multiple models. Moreover, its performance is highly dependent on
how the local areas are defined, i.e. Eco-climatic areas used in [139] do not give the
same information as the grid area used in [174]. Lastly, [129] observes that, in reality,
macro-scale spatial patterns of land-cover do not exhibit sharp divisions but progressive
ones, which this strategy does not deal with.

The second strategy is to feed the classification model directly with information on
geographic localisation [201]. Very few works have been conducted so far and to the best
of our knowledge, no attempts other than our work [19] experimented with this approach
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for land-cover map mapping. Attempts in literature mainly concentrate on using the
geographic coordinates to produce a coordinate embedding that could later be used for
any classification task. For instance, [348| propose to build a vocabulary V = t1,t2, ..., tn
consisting of n words extracted from image tags collected worldwide on data sources such
as Flickr, Twitter, and Foursquare. Then they proposed a spatial grid-based approach
for each cell represented by the tags found in the cell. For instance, if the vocabulary
includes three words("water", "Eiffel tower", "glaciers"), a grid cell on the Paris area is
encoded as (1,1,0) as there is water and Eiffel tower in Paris but no glaciers. To avoid
having two close-by cells with very different embedding, they also include a neighbourhood
weighting on the embedding. As they argue that building this per grid cell embedding is
tedious, they proposed to train an MLP to predict this embedding directly from the grid
cell coordinate. This grid-level semantic embedding can provide helpful information when
training a machine learning method. [49|, which focuses on image classification based
on geotags, established an interesting comparison between using geographic coordinates
to either: i) establish a whitelist of possible target labels depending on the location;
e.g. was a Swann already observed nearby those coordinates if yes then the Swann is a
possible prediction otherwise its not ii) train an MLP to predict a per-label correction
from the coordinates, to be multiplied with the per-class prediction obtained with a
pre-trained CNN (with fixed weights) applied to the image with the corresponding (the
same strategy is found in [200]) or iii) learn the image per-class prediction and coordinate
per-label correction simultaneously. They demonstrate that training using the image and
the coordinates simultaneously works better on small datasets. Conversely, combining
a pre-trained image prediction with a learnt coordinate correction is more efficient on
bigger ones. The main potential of [49] is that, unlike other methods, it does not process
data according to a predefined grid but directly the coordinates. This considers that
macro-scale spatial patterns of land-cover exhibit smooth variation instead of the sharp
ones involved by predefined grid systems.

Interestingly multiple other research has been conducted to incorporate 1D location
information (different from 2D geographical coordinates), such as in natural language
processing to add information on word location inside sentences or in 3D protein structure
analysis to add information on the sequential order of amino acid [363]. The current
state of the art approach, relies on a strategy called positional encoding [318] which was
developed to encode word position in sentences. The core idea is that a correct location
encoding should i) be unique for each location ii) ensure that distance in the embedding
space between any two locations (e.g. between the 2°¢ and 4*® word) should be consistent
across sentences with different lengths and iii) Should be bounded to generalize to any
sentences length. They proposed to encode the word position using a set of sine and cosine
functions with varying frequencies before adding them to the network. Let d be the total
number of dimension of a word embedding and k be one of those dimension, then position
encoding is given by Equation 2.9.
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As the positional encoding provides a tremendous improvement in the natural language
processing field, some works have been conducted to adapt it to work on 2D location
information that could be used into CNN. We distinguish two kinds of coordinates that
can be position encoded: the intra-image coordinates termed pixel coordinate (the pixel
is in the i® row and j*' column) and the geographical coordinates (this pixel is locates
at X/Y longitude/latitude). Current work focus solely on pixel coordinates. They aims
to remove the convolution translation invariance [187]. All pixels are submitted to the
same convolution when using a CNN, which might be unsuitable in some specific cases,
i.e. when working with rasterized wind data, a different part of the images is not exposed
equally to wind [314]. [235] propose a strategy encoding image pixel coordinates using a
simple adaptation of the positional encoding: rows and columns are independently encoded
using Equation 2.9 and concatenated.

In the land-cover translation scenario, we aim to use geographical coordinates. Two
key difference are observed with pixel ones. First, the translation invariance should be
preserved as all the pixels of one patch belong to the same limited spatial extent; thus have
the same geographic context. Consequently, each pixel of a patch should be summed with
the same geographical context embedding. Secondly, while pixel coordinates are the same
in train and test (there is always a first row/column pixel), the geographical coordinates
used are different in training and testing. Thus the effectiveness of positional encoding is
yet to be shown in this case as it requires generalisation ability.

2.3.3 Temporal context

2.3.3.1 Definition

We define the temporal context of a land-cover nomenclature as all the explicit and implicit
temporal patterns exhibited by the classes of the nomenclature. Explicit temporal patterns
include all information on temporality included in the class definition. For instance, in
the Rice Field definition presented in Definition 1 we underlined typical explicit temporal
patterns. We observe that inside a definition, multiple temporality levels might be included,
"periodically" here describes a temporal pattern occurring multiple times across a year.
At the same time, "regular cultivation cycle" and "occasionally left fallow for 1-3 years"
describe a pattern with a lower temporality (every three years).

"Rice Fields: Cultivated land parcels prepared for rice production, consisting
of periodically flooded flat surfaces with irrigation channels. As part of reqular
cultivation cycle, rice fields are occasionally left fallow for 1-8 years. These

(1)

parcels are considered to be rice fields, too." - Corine Land-cover
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Implicit temporal patterns include all information on temporality that is not directly
included in the class definition but characterises the class content evolution across the
land-cover reference period. For instance, a Wheat class inside a map covering an annual
period describes a temporal pattern with a period of bare soil followed by wheat growth
and another bare-soil period.

Those temporal patterns are directly influenced by the reference period covered by a
land-cover map. On the same given spatial extent, a map covering a monthly period
distinguish Bare soils from Vegetation, an annual distinguish Fallow from Annual crops
and Perennial ones by studying the variation of vegetation across the year, and a map
covering several reference year distinguish Natural areas from Cultivated ones by studying
the vegetation variation across multiple years [221]. Translating often involves matching
classes with different temporal contexts, e.g. a Rice crops observed during a one-year
period, one observed once during a three-year period or a flooded area observed during a
one-month period.

Land-cover translation temporal context must be clearly distinguished from the operational
temporal gap between the source and the target map encountered when training a machine
learning model to perform the translation. We consider this temporal gap as noise-inducing
and address it in the following subsection.

2.3.3.2 Methods

Historically, classification from multiple images with different acquisition dates is mainly
proceeded by concatenating all images into a single one and directly processing the raw
data [91, 126]. A common strategy to improve this multi-temporal classification was
to complement it with additional spectral features computed separately for each date
based on spectral indices such as NDVT [103, 323| or EVI [13, 26] and texture indices [88].
SpectroTemporal aware features were later proposed to reflect the temporal evolution
of the data better. Standard spectrotemporal features mainly include statistical metrics
(average, min/max, standard deviation of per pixel spectral values on the period) [51,
89, 95, 210], phenology metrics derived from statistical metrics (beginning/end, length,
amplitude of the growing season) [148], or on reshaped raw data feature space through
dimensionality reduction techniques such as PCA [100]. In the land-cover translation
scenario, those spectrotemporal features are not applicable as they were designed to work
on continuous feature space, i.e. the average value of a pixel for different reference periods
has no real meaning on land-cover maps as it involves doing the mean of categorical
variables. Therefore, those works should be adapted to be usable in the land-cover maps
translation setup.

The obtained features are historically used to train various machine learning algorithm
including decision tree [95, 126], random forest [51, 139], support vector machines [37,
100], Gaussian Maximum Likelihood [148, 249]|, or multi-layer perceptron [13, 103|. More
recent works focusing on the integration of large temporal sequences of data into neural
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architectures (RNN [137], LSTLM [273]|, transformer networks [94]) are considered out of
scope of this manuscript as most land-cover maps are only available in very small temporal
sequences. Indeed most are produced only once or on less than five reference periods.

2.3.4 Cartographic context: learning with noisy data

Translation raises questions about the impact of source and target data errors. The
traditional rule-based translation approach de facto ignores this problem as (i) the target
map is not used in a learning procedure; target map errors can not be learnt (ii) the
nomenclature translation is based on source class description, which does not take errors
into account. Thus errors in the source map are agnostically translated into target classes.
Learning to translate from a source to target behave oppositely. First, some errors in the
source maps can potentially be compensated by the translation procedure. For instance
if all roads in the source maps are misclassified as urban areas, some of them can be
correctly classified as roads in the target nomenclature by using this specific erroneous
spatial pattern of linear-shaped urban areas to distinguish roads. Secondly the targeted
map errors can influence the translation results. For instance, if all roads in the target
map are misclassified as urban areas, the network might learn to replicate the same error
by transforming all roads of the source nomenclature to urban areas. Fighting against the
effect of label noise is mandatory as the method should be designed to be able to translate
between source and target with numerous classes, which tend to be have significant error
rates [302].

Learning with noisy data is a highly studied subject. The manuscript only focuses on label
noise (in opposition to image noise). Label noise in land-cover mapping can be systemic or
random depending on the noise source [87]. Most of the systemic noise in land-cover maps
is induced by errors of the classifier producing the maps, which tend to repeat the same
error on similar objects. Therefore it is instance dependent rather than class dependent.
For instance, Croplands pixels on the field’s edge can be classified as a Forest, with this
confusion only happening in this specific spatial setup. Random label noise is more often
observed on photo-interpreted maps, mainly due to temporal gaps between the data used
and the target temporality. In the real case scenario, most errors tend to be observed
between classes semantically close for photo-interpreted land-cover maps or on classes
close in the feature space for automatically derived land-covers. Unlike image noise which
is often considered additive to the true information, label noise behaves as correlated to
original information noise.

[284| propose to classify the different deep learning approach to deal with label noise in
four categories: i) architecture-based [336] ii) regularization based [280] iii) Loss based [205]
iv) sample selection based [283], which can be combined [364|. Loss-based strategies, which
aims to correct the loss computation by assuming some knowledge on the label noise
appears particularly relevant in the land-cover translation case as unlike most problems
a noise transition matrix is most of the time provided (also termed confusion matrix in
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remote sensing). For instance, assuming that the noise transition matrix is known, one
can correct the prediction of the network by multiplying it by its error probability [237].

However, current loss based solutions use transition matrix to correct prediction at a
per-pixel level, e.g. if Forest is misclassified in Water 20% of the time in the target map,
then noise transition aware loss encourages the prediction on a Forest pixel to be 80%
Forest 20% Water. We believe it corresponds to misuse of the noise transition matrix,
which are class level indicators rather than instance level [46], i.e. one object is 100%
Forest or Water, and 20% of all objects labeled Forest should be Water. We underline
that the main reason for the current misuse of the noise transition matrix is that they
were mainly developed to address image classification. In this setup, one image has one
class. Thus, in an iterative algorithm such as those used to train deep learning models,
each iteration only processes a small number of objects per-class. This prevents computing
per-class distribution estimates such as the previously mentioned 20% of all objects labeled
Forest should be Water as there could be only two images labeled Forest. We argue that
in the case of land-cover translation, we could alleviate this limitation as we have access
to the vast number of annotations; land-covers are semantic segmentation of images in
which each pixel has one class. We underline that only a very limited number of works
have been conducted to adapt label noise correction methods to semantic segmentation
maps and that none of them was loss based to the best of our knowledge.

2.4 Robust translation

This section focuses on obtaining high-level quality translation models, which we mainly
define as: i) robust to change in the class distribution and spatial arrangement to enable
generalisation on spatial extent not covered initially, ii) able to preserve a maximum of
the target class diversity. Three main research fields have been proposed in the traditional
image to land-cover classification.

First, domain adaptation [312] defines methods able to achieve high-quality results when
the training and testing data exhibit statistically different distributions [167|. Radiometric
values in two different eco-climatic areas can be widely different; the results of a model
trained on one ecoclimatic area might not be transferable to another. In the case of
land-cover map translation, spatial domain-adaptation does not deal with radiometric
values but with class distribution and varying spatial patterns, e.g. fragmented-crop
landscapes might be observed in the training data while open-field is observed in the
testing data. The literature mainly focuses on extracting and projecting features into
a representation space shared between the training and the testing data. In this space,
training and testing data are expected to exhibit the same statistical properties without any
observable shift between them. Traditional methods mainly rely on statistical matching
strategies such as multidimensional histogram matching [138], or principal component
analysis (PCA) [228]. More recent works adopted deep neural networks for their high
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generalisation ability [226]. Two constraints are found in the literature to enforce the
training and testing to be mapped into a shared space: (i) minimising the distance in
the representation space between two identical elements through a loss term [231], (ii)
adversarial training [342] in which a discriminator enforces source and target observations
to be comparable. In the land-cover translation scenario, loss based strategy aims to ensure
minimal distance in the representation space for comparable target classes independently
from their nomenclature. For instance, Forest, Coniferous, Broad-leaved or Shrubs should
all be represented closely in the representation space, to ensure that a model trained to
translate a source map into a target on area where there is no shrubs is usable on an area
with shrubs. This shared representation space should not only account for classes but also
spatial context, i.e. two elongated forest should be represented closer from one another
than a more circular one. Theoretically adversarial training should obtain the same result
but is confronted with the well-known difficulties in optimising adversarial networks and
are not be explored in this manuscript.

A second strategy is to rely on multi-modal data fusion, which focuses on defining methods
to combine heterogeneous sources of information [98]. Fusing independent sources of
information (such as image, text, video, or audio) describing the same object tends to
enforce learning an object representation less sensitive to local variations and imprecision.
Most current research focuses on merging optical and radar data in land-cover mapping
as they bring complementary features [269]. In the land-cover translation setup, image
and map fusion could enable to learn a more robust representation of the data, enabling
the prediction of higher class diversity. Papers resuming the output of the GRSS data
fusion contest (held each year since 2006 [232]) are a rich source of information on the
current state-of-the-art method for performing a fusion of remote sensing data. Until 2018,
proposed methods relied on extracting manually defined features from the various data,
like NDVI for optical data and class proportion for land-cover data [349] and feeding it
to an ensemble classifier (often random forest). [340| pointed out that the 2018 contest
was the first one in which the best results were always observed using deep learning to
extract features from raw data directly. From then on, even though some slight changes
are observed in the deep learning architecture, the core remains the same. Each data
is encoded using a separate network and merged at a level of abstraction, going from
simply concatenating all raw data to just before a final classification layer. Even though
fusing multiple data at the raw-data level should yield the best inference as it ensures
that no information is lost, [170]| observe that various complicating factors such as noise
and contradicting data might benefit from fusing the different data at a higher level
of abstraction [160]. Different works have concluded differently on the best location to
merge data. Choosing the right location to perform data fusion remains highly empirical
and depends on the task and the chosen architecture [134, 244|. Experiments are yet
to be conducted for the land-cover translation setup. A recent trend in multi-modal
data fusion, is to incorporate an attention mechanism [21|. First introduced for natural
language processing, it learns to balance each feature’s importance better by analysing all
features simultaneously [48, 318]. Figure 2.5 presents one of the multiple adaptations of
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the attention mechanism to images proposed by [358]. The main idea is to process a set of
feature maps in three independent feature linear combination layers (f,g,h). The attention
map is obtained as the scalar product between transposed f and g. It corresponds to a
learnt per-pixel weight. Lastly, the scalar product between this attention map and h is
computed to obtain the output of the attention mechanism. Following [199] observation,
we underline that the attention mechanism can be used to give selectively more weights to
some modalities when merging multiple data sources.
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Figure 2.5: Per-pixel Self-Attention mecanism for CNN proposed by [358]. Figure repro-
duced from [358].

The last strategy consists in multi-task learning, which aims to improve inference accuracy
on several tasks by training simultaneously on all of them [74], based on the assumption
that at least a subset of the task is related [361]. In the image to land-cover classification,
common multi-task strategies involve either predicting simultaneously land-cover and
land-use [22], land-cover and change detection [63] or land-cover and height [38]. We argue
that land-cover translation is an ideal setup for multi-task prediction. The translation
could benefit from training a single model to transform one source land-cover into multiple
targets. For instance, recent advances in natural language processing have shown that
learning single multiple translation models achieved comparable results with learning
multiple one-to-one cases. However, the former yields more robust results on languages
with few samples and has better generalisation abilities [59]. Multi-language training seems
to benefit from the obtained multi-language common representation space [245]. Multitask
networks are also commonly trained with the dual objective of reconstructing the input
data (self-reconstruction) and achieving the desired tasks [346] to enforce mapping to a
shared representation while preserving the unique features of each input.

46 / 295



2.5 Towards learning a semantically consistent repre-
sentation of land-cover maps

We mentioned in Section 1.2.3 that the current trend in land-cover map standardisation
is to perform an object-based nomenclature, in which each object is assigned a set of
descriptors depending on its characteristics [4]. A similar tendency is observed in the field
of zero-shot learning. The core idea in zero-shot learning is to train a network to encode
a subset of classes into a consistent semantic space. At inference, classes unseen during
training are predicted based on auxiliary information on the links between the classes
used for training and the unseen ones. [90| takes the example that with the information "a
zebra is more-or-less like a horse but with black-and-white stripes", a child can recognise
a zebra without seeing one before, provided he was first taught what a horse and a stripe
pattern look like.

We believe that this notion of semantic representation at an object level should be a
cornerstone of machine-learnt translation for two reasons: operational and information
preservation. First of all, from an operational point of view, working on semantic repre-
sentation on classes could alleviate the need to retrain the method at each new source or
the target map, i.e. once the concept of "forest", "trees", "coniferous", "broad-leaved",
"mixed forest", "dense vegetation" have been learnt by the model at various scales and
on various spatial extent through the use of multiple sources and target maps it should
not be necessary to retrain the model if one wants to translate the concept "woodland".
Secondly, from an information preservation point of view, the whole idea of applying a
machine learning strategy is to extract contextual information on each object of the source
land-cover map to perform better translation than a non-context-wise one. However, while
precious, this contextual information is lost once used to assign the target class.

[324] reviews current strategies used for zero-shot learning. They first propose to distinguish

them according to the nature of the learnt semantic representation: manually engineered
semantic spaces or learnt ones. From a land-cover translation point of view, the LCCS
framework presented earlier might be seen as manually engineered semantic spaces in
which each class is described by a set of descriptors. They also distinguish them by the
nature of the method trained to map into the semantic space. Classifier-based approaches
focus on how to directly learn a classifier for the unseen classes, while instance-based
focuses on obtaining labelled instances belonging to the unseen classes and using them for
classifier learning.

Most works for land-cover map focus on the method to train rather than on the nature of
the semantic space. For instance, from a land-cover mapping point-of-view, one of the
first works was conducted by [107, 246]. They used a pre-trained word2vec [214] model to
translate each class name into a feature vector. They then trained a CNN to obtain these
feature vectors from a source image, i.e. instead of training to assign to each pixel a class,
such as a forest, they assign the corresponding feature vector. During the test phase, they
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rely on a simple approach, such as a k-nearest neighbour, to assign unseen classes.

We believe that more importance should be given to the definition of the embedding space.
Indeed the traditionally used word2vec representation of classes has many limitations,
namely: i) it only takes into account the class name rather than class description, ii) it
is not specialised in land-cover; natural grassland and cropland can be very close in the
feature space while we traditionally make a distinction between the two in land-cover
mapping.

An important observation is that significant works on label encoding have been conducted
during the last decades, especially on how to encode label hierarchy [256], class co-
occurrence statistic [212], semantic attributes [172] and subsets of those information [279.
Thus it appears interesting to see how to adapt those works to encode semantically and
contextually land-cover maps.

2.6 Conclusion

In summary, current land-cover translation solutions address the nomenclature and res-
olution translation separately. Nomenclature translation solutions are mainly based on
semantic associations evaluated at the nomenclature level (LCCS, EAGLE ...). Most of
the time, all pixels of a given source class are only translated into a single target (the
semantically closest one). Resolution translation is, on the contrary, tackled using either
simple interpolation techniques such as the nearest neighbour or majority voting that are
not able to infer new classes (a patchwork of water and trees is probably a wetland) or
not addressed when it comes to land-cover super-resolution (exception made of [202]).
We propose to investigate how to improve translation by performing the nomenclature
and resolution translation context-wisely jointly. The currently best-performing methods
to incorporate spatial, geographical and temporal contexts replaced manually defined
feature-based solutions with machine learnt ones, principally convolution neural networks.
As those solutions require training data, we present the dataset used for our experiments
in the following section.
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CHAPTER
V)

Datasets

This chapter introduces the datasets used during this PhD thesis. Learning the translation
requires selecting land-cover maps to train the models. As we concentrate on supervised
learning strategies, the introduced datasets propose pairs of the corresponding source
and target maps. Since no public dataset with multiple land-cover maps is available,
the Multiple Land-use Land-cover (MLULC) dataset, including six land-cover maps, is
introduced. A smaller version of this dataset, the OSO to CLC dataset, is also provided
to enable specific experimentation. The slight variations between the two datasets are
explicitly mentioned when appropriate. Section 3.1 introduces the different steps to create
a land-cover translation dataset. Criteria influencing the choice of the study area and the
choice of the used land-cover maps are emphasised. Section 3.2 introduces the study area
and the used land-cover maps main characteristics. Section 3.3 presents the differences
between the land-cover maps and underlines the main challenges of the dataset. Section 3.4
introduces additional data (optical images, synthetic aperture radar images and digital
elevation models) provided with the dataset that can be used to improve the translation
quality. Finally, Section 3.5 presents a manually built ground-truth dataset that enables
fair assessment of the quality of the translation by avoiding quality evaluation based on a
comparison to a noisy target reference. This last section additionally reviews the metrics
used in this PhD manuscript to assess the quality of the translation.

3.1 Dataset creation protocol

This section introduces the different operations used for the dataset creation and highlights
the elements that influence the choice of the study area and land-cover maps. The dataset
creation procedure involves seven steps presented in the following subsections.

Download Land-cover maps can be distributed in two different formats: raster or vector.
Raster format (i.e. image format) describes the land cover using a grid, in which each
cell is represented by a pixel value. This format is usually the one used by land-cover
maps stemming from automatic image classification. Conversely, vector format describes
the land-cover using a set of spatially contiguous polygons, often obtained by manual
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delineation by photo-interpreters. As this manuscript focuses on convolutional neural
network application, raster format is the final delivery format of our dataset. However,
when possible the land-cover are dowloaded in vector format as the dataset creation
procedure involves re-projecting all land-cover maps in the same geographic coordinate
system, which involves significant deformation on raster data [274|. Those vector maps
are rasterised after the reprojection and aligning step.

Alignment and reprojection All maps are cropped and aligned according to France’s
borders and are re-projected to the French official projection system EPSG:2154. This
step involves nearest neighbour resampling for maps only available in raster format to
preserve the original resolution. This step produces a spatial shift for raster maps with a
degradation of the geometric resolution that can reach half the size of a pixel in the input
image x or y directions [260] and g pixels in the diagonal directions [274].

Optional reclassification Land-cover classes with unclear (such as Other) or mixed
content can be reclassified at this stage by either merging them with other classes or
labelling them as no-data.

Rasterization Vector maps are rasterised. The resolution is determined using the
official target pixel resolution when provided or is arbitrarily considered as half the MMU
value.

Patch decomposition CNN are originally built to analyse traditional photography,
which exhibits a limited number of pixels (often less than 1, 000 x 1, 000) or can be
resized. Conversely, this assumption does not hold for the obtained raster land-cover map.
The number of pixels is often very high (120, 000x 120, 000 for a ten-meter map covering
all of France), and can not fit directly in memory when processed by a CNN. A common
strategy is to rely on a grid-based approach to decompose the wide image into a subset of
smaller images, as represented in Figure 3.1. Each of these small images, termed patch, is
then processed by the CNN like it would have been for traditional photography. One of
the main limitations of the patch-based approach is that areas close to the edge of the
patch only have access to a limited amount of spatial information, as up to half of it might
be outside of the patch (Figure 3.1). To circumvent this issue, a common strategy is to
process spatially overlapping patches. However, this strategy is incompatible with some of
the random train/test split procedure presented in the following paragraph as it would
make it possible to identify neighbour train/test patches using the overlapping area. Of
course, in an operational setup in which one wants to produce a France wide map, one
should use spatially overlapping patches. However, for experimental purpose, experiments
are carried out with non overlapping patches to enable unbiased measurements. We choose
to perform translation on a 6x6 km? which ensures reasonable memory consumption (
600x600 pixel for a 10m land-cover map and 60x60 for a 100m one), while limiting the
proportion of pixel under edge influence.
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Train/test /validation split Patches are separated into a train (65%), test (35%) and
validation (5%) to ensure that the CNN is not evaluated on the data used for training
it. This separation can either be random or geographically organised, as illustrated in
Figure 3.2. The first strategy enables estimating accurate metrics over France. In contrast,
the second is more appropriate for evaluating spatial generalisation ability and is more
difficult to analyse as it highly depends on the chosen geographical repartition. We choose
to rely on random sampling to design this dataset to simplify the analysis of the results
and make the quantitative translation result comparable to those assessed by the original
land-cover producer.
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Figure 3.1: Patch based based approach. A France wide map is split into small tiles
to enable processing by a neural network. This strategy creates a detrimental loss of
information on the edge of the patch as each patch is analysed independently from others
(right). For visibility issues 20x20 km? patches are represented while 6x6 km? are used.
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Figure 3.2: Separation of train (green), test (purple) and validation (blue) data performed
randomly (left) or with a spatially systematic approach (right).
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3.2 Study area and used land-cover maps

This section focuses on the land-cover maps used for the experimentation presented in
this PhD manuscript. The maps shown here were selected from the numerous existing
ones based on four criteria.

1. Spatial extent: To ensure spatial overlap between maps, we selected a spatial extent
on which our study is conducted: the whole 550,000 km? of mainland France territory.
Selected maps should be broad enough to ensure enough class and landscape diversity.
We arbitrarily set up a 1% overlap with the territory selection limit. We underline
that the smaller the spatial extent is, the less geographical context there is. Learning
to analyse geographical context on a small extent land-cover map, even though
possible, is less interesting as it provides results close to a non-context wise method.

2. Nomenclature diversity: Selected land-cover maps should at least include ten
classes to ensure a minimum diversity of classes. Otherwise, the translation is either
straightforward (as all the pixels of the source class should only be translated into a
single target) or impossible (when the source class shall be translated into multiple
target as the less source classes the less spatial context).

3. Semantic accuracy: Selected maps should exhibit at least a 70 % overall accuracy
to avoid working on too noisy data. The 70% bound is chosen arbitrarily to limit
the number of classes with a per-class accuracy below 50%. Indeed each class with
an accuracy below this number holds more erroneous than reliable examples and
is deemed to enforce the model to learn erroneous translations. We underline that
removing all land-cover maps holding at least one class below 50% accuracy per
class accuracy is, in practice, unfeasible as it would remove too many automatically
classified maps.

4. Open access license: To be selected, a land-cover map must be published under an
open access policy. This ensures that datasets can be shared to foster more research
on land-cover map translation.

This first section gives some insightful details about France’s territory’s characteristics.
We then review the characteristics of the six-land-cover maps fulfilling the previously
mentioned criteria. Lastly, we provide a first analysis of the associated challenges in terms
of compatibility for semantic translation and machine-learning-related challenges.

3.2.1 Study area

Metropolitan France, i.e. the part located on the European continent, covers an area
of 550,000 km?, making it the third largest country in Europe. This vast spatial extent
enables building a large patch-based dataset, ensuring sufficient data to perform train/test
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splits between patches with all classes and features in both datasets. Moreover, it avoids
the need to restrain the patch size to very small spatial extents like the 32x32 pixels
of [273], which necessarily limits the spatial context available.

France’s varied landscapes make it challenging for land-cover map translation. As a
coastal country, it is bordered by maritime facades to the North, West and South, with
a total length of coast greater than 3,427 km. These coastlines offer varied landscapes,
from fallout mountain ranges in the South-East, plateaus ending on cliffs in the North or
vast sandy plains in the South-West. France’s territory also offers various topographical
units via multiple eroded massifs (Armorican, Central, Corsica ...) or higher ones (Alpine,
Pyrenean) with a peak at 4,808 meters above sea level. These massifs delimit several
sedimentary basins, especially the Aquitaine Basin to the South-West and the Paris Basin
to the North. The latter exhibits particularly fertile soil resulting in an agricultural land
spatial distribution asymmetry.

Legend

I Mountainous climate

[ Mountainous margins climate
[ Degraded oceanic climate

[ Altered oceanic climate

[ Oceanic Climate

[ Altered Mediterranéan climate
[ "South-West basin" climate

[ Mediterranean climate

I Mediterranean climate (Corsica)

A 0 100 200 km
[ —

Figure 3.3: Eco-Climatic areas defined by [154]. For convenience, areas under 100km? are
removed. We added a distinct Ecoclimatic area for Corsica, which was not represented in
the original map (this climate is close to the Mediterranean one).

The fairly marked climate regional variations of metropolitan France are also interesting
as they enforce intra-class diversity and spatial contexts, i.e. forest tree density or tree
essence vary significantly depending on the climate. France’s climate is organised in two
gradients. The Atlantic Ocean on the West coast creates a West-East gradient with a
higher wind exposure and annually more stable temperature on the West. Additionally,
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the traditional North-South gradient, with higher temperatures in the South (Northern
hemisphere), is reinforced by the presence of the Mediterranean sea in the South. These
climates can all be declined in more local variants due to mountainous areas (East and
West borderline). Figure 3.3, for instance, presents an Eco-climatic area delineation into 9
areas proposed by [154].

France also encompasses broadly different land-cover types heterogeneously distributed.
About 5% of its territory is currently artificialised in scattered urban blocks, the Paris
region alone representing nearly 20% of the population while accounting only for 2% of the
country’s total surface. This asymmetry is materialised by a "diagonal of low densities"
from North-East to South-West, characterised by a low population compared to the rest
of the country. Most of the surfaces are dedicated to agriculture (60%), with a prominent
contrast depending on the region’s climate and geological characteristics, e.g. a fragmented
hedgerow landscape on the West side of the country and Open-field areas in the Paris
region. France is also one of the most wooded countries in Western Europe, with forests
occupying 34% of the metropolitan territory, mainly in the form of deciduous trees but also
of conifers in the mountains and the planted forest of the moors to the West. Wetlands,
which covered nearly a quarter of the country, have declined sharply since the 19" century
and represent less than 1% of the territory to date, as do lakes and rivers.

To sum up, the broad range of landscapes and climate makes the study area interesting for
evaluating land-cover translation in a wide variety of situations. However, the prominence
of two super-class, Forest and Agricultural land (94% of the territory), enforces the
selection of maps with rich nomenclatures. For instance, translation into a simple 5-class
nomenclature, including a Forest and a Cropland class, easily achieves high-quality results.

3.2.2 Selection of a restricted number of land-cover maps

Numerous land-cover maps respect the four criteria presented above. For instance, amongst
the land-cover maps reviewed by [106], six global (MCD12Q1, GlobCover, GLCNMO,
GLC SHARE, GeoWiki) and 3 Europe comprehensive (CORINE, LUCAS on 2km grid,
GlobCorine) land-cover products respect the above criteria. Additionally, other global
products proposed since 2015 (GlobLand30, ESRI LULC) and various France-wide (OSO)
or local scale land-cover maps (OCSGE, MOS with one map per administrative area,
CRIGE-PACA) all match previous criteria. As we can not analyse all possible translations,
we arbitrarily choose to focus only on six maps. The selection of those six maps tries to
maximise the complexity of translation by enforcing high diversity in production method,
spatial resolution, nomenclature and spatial extent.

Amongst those four characteristics, the production method is the most important to
diversify as it influences the three other ones. Photo-interpreted land-cover maps usually
exhibit rich nomenclatures (more than 15 classes), often mixing land-use and land-cover
definitions, coarse spatial resolution and are often coarser when they cover a wide spatial
extent. Unlike most automatically obtained land-cover maps, they exhibit a minimum
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mapping unit which correlates the classification of one pixel to its surroundings. They
often exhibit fewer errors (around 10%) than automatically derived ones, with most errors
being region shaped, i.e. multiple contiguous pixels are all misclassified identically and
with the same magnitude per-class error ratio. Conversely, most automatically derived
land-cover maps exhibit smaller nomenclatures (less than 15 classes), mainly land-cover
oriented, as land-use is often challenging to obtain from images. Their spatial resolution
is often significantly higher, and they rarely exhibit a minimum mapping unit, i.e. the
content of one pixel is less dependent on its surrounding. They often exhibit significantly
higher error rates (up to 35%), most errors exhibiting systematic spatial (edges between
land-cover) and class (class close in the feature space are more likely confused) patterns.
Nomenclature, resolution and error patterns of automatically obtained maps highly depend
on the source data used (MODIS, Sentinel, PROBA-V...) and the algorithm characteristics
(pixel classification vs OBIA classification, RF vs SVM vs Deep learning).

Lastly, the selected land-cover maps should be temporally close to ensure that the learnt
translation does not suffer significantly from a temporal gap between the source and target
land-cover. We arbitrarily set this closeness limit to 10 years.

3.2.3 Presentation of the input land-cover maps

Table 3.1 summarises the main characteristics of the six land-cover maps selected which
exhibits a broad range of production methods (either photo-interpreted or automatically
generated, different Source data), spatial resolutions (from 10 to 100 m), nomenclatures
(from 11 to 44 classes, cover and use) and spatial extent (from 10,000 to 550,000 km?):
CGLS-LC100 [33], CORINE land-cover map [218], OSO [139], OCS-GE cover, OCS-GE
use, and MOS.

CGLS-LC100 [33]  CLC [218] 080 [139] OCS-GE cover [229]  OCS-GE use [229] MOS
Extent World Europe France West and South France West and South France Paris area
Generation Machine-Learning Photo-interpreted =~ Machine-Learning Photo-interpreted Photo-interpreted Photo-interpreted
Source data PROBA-V Landsat, Sentinel-2 Sentinel-2 Aerial imagery Aerial imagery Aerial imagery
Distribution format raster vector raster vector vector vector
Selected year 2018 2018 2018 2014-2015 2014-2015 2017
Number of classes 12 44 23 14 17 11
Pixel resolution (m) 100 100 10 10 10 20
Minimum mapping unit (m?) 10,000 250,000 100 200-2,500 200-2,500 400
Official geometric accuracy (m) 100 100 10 5 5 5
Official semantic accuracy 73 % (Europe) 92 % (Europe) 87% (France)
Accuracy on ground truth 80% (France) 88% (France) 86% (France)

Table 3.1: Main characteristics of the six selected LULC maps.

In order to reduce the impact of changes occurring between two maps in the translation
procedure, we carefully selected the year of the maps to make them the closest possible to
each other (selected years are indicated in Table 3.1). Few maps are produced on a yearly
basis which inevitably generates discrepancies between the six maps.

The Copernicus Global Land Service land-cover map (CGLS-LC100) map has global
coverage and is released annually in raster format. Based on PROBA-V image time series
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classification with a supervised Random Forest framework [33], each map covers a civil
year reference period with five released versions so far (2015, 2016, 2017, 2018, 2019) *.
Main map characteristics include a spatial resolution of 100 m, up to 22 classes (with a
fine-grained separation into 12 forest labels), and hierarchically organised into a 3-level
nomenclature. Level 1 merges all forest classes into one (leading to 11 classes), and level 2
distinguishes open from closed forests. We choose to rely on the level 2 nomenclature (see
Table A.6), instead of the level 3 due to its higher accuracy (estimated overall accuracy
over Europe of 80% at level 1, 73% at level 2 and not communicated at level 3 [310]).
Indeed, our proposed solution relies on a supervised learning process: inserting a too
significant noise level would be detrimental [224]. Moreover, working with level 3 labels
would have also required dealing with complex classes such as Unknown open forest types
that are poorly handled by translation systems.

CGLS-LC100m Corine Land-cover 0SO

foa

% OSCGE-use y MOS ‘

OSCGE-cover

(

W 0250 500km
| I
Figure 3.4: Spatial extent of the 6 land-cover maps used in this work.

The CORINE land-cover (CLC) database and its 92% thematic accuracy [218| has been
the reference for land-use and land-cover map documentation at the European scale for the
last three decades. As part of the European project Copernicus, five versions of the product
have been released so far (1990, 2000, 2006, 2012, 2018)2, covering up to 39 countries in
2018. CLC is mainly generated through visual inspection of both mono and multi-temporal
high resolution/very high-resolution optical satellite images (Landsat, Sentinel-2, SPOT),

https://land.copernicus.eu/global/products/lc
2https://land.copernicus.eu/pan-european/corine-land-cover
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complemented with local databases. CLC is released dually in vector format with a
250,000 m? minimum mapping unit (MMU) for classes represented by polygonal objects
and an additional 100 m width constraint for linear features and in raster format with
a 100 x 100 m pixel spatial resolution. The nomenclature includes up to 44 classes (see
Table A.2), hierarchically organised into a 3-level nomenclature. Most current translation
methods relie on the first or second level of nomenclature as the translation accuracy highly
depends on the semantic and spatial correspondences between the source and the desired
nomenclatures, which increase for land-cover map with few classes [20]. Conversely, in
the following, we target full CLC level 3 translation (44 classes) to understand better and
assess which classes can be distinguished using contextual methods. Indeed, context-based
translation solutions exhibit a significant potential for some challenging CLC level 3 classes
(e.g., Mized Forest, or Green urban areas) that calls for fine assessment.

The Occupation des Sols Opérationnelle (OSO) covers Metropolitan France and is
released annually in raster format. Based on Sentinel-2 image time series classification
with a supervised Random Forest framework [139], each map covers a civil year reference
period with six released versions so far (2016, 2017, 2018, 2019, 2020,2021). Main map
characteristics include a spatial resolution of 10 m, 23 classes with a fine-grained 11 class
agricultural discrimination (see Table A.1), and an overall accuracy higher than 85%.
This product is valuable to this study for its high resolution coupled with a detailed crop
nomenclature. The OSO product is freely distributed around April each year 3.

The Occupation des Sols & Grande Echelle (OCS-GE) map covers West and South-
West France (125,000 km?), and is expected to be updated at least on a 5-year basis.
Based on photo-interpretation of aerial visible and near-infrared imagery at 20 cm, each
administrative state is mapped independently, with the first campaign between 2014-2015
and one between 2019-2021(*). Our work only includes 2014-2015 maps, the more recent
one still being under review at the moment of this writing. Main map characteristics
include a spatial class-dependent resolution between 5 and 10 m, a minimum mapping unit
between 200 and 2,500 m? depending on the class and the location and two land-cover
map/land-user nomenclatures: 14 labels for land-cover map (see Table A.4) and 17 for
land-use. This joint LC/LU product is particularly interesting in studying automatic
land-use prediction from land-cover map. So far, the two products are generated on
the same spatial support: a territory segmentation is automatically performed using a
database with road and rail network to obtain a global skeleton which is later subdivided
in more refined units by photo-interpreters independently for land-use and land cover. In
the remainder, we refer to those two nomenclatures as OCS-GEc for land-cover map and
OCS-GEu for land-use. The choice has been made to remove the following three classes
from OCS-GEu: Other primary productions, Other transport networks and Unknown use,
due to their mixed and complex content.

The Mode d’Occupation des Sols (MOS) map covers the Paris region (12,000 km?) and is

3https://www.theia-land.fr/en/product/land-cover-map/
‘https://geoservices.ign.fr/ocsge
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released approximately every four years in vector format. Based on the visual interpretation
of 0.15 m aerial optical imagery, each map covers a civil year reference period with nine
released versions so far (1982, 1987, 1990, 1994, 1999, 2003, 2008, 2012, 2017)(®). Main
map characteristics include a spatial resolution of around 20 m, up to 81 classes (with a
fine-grained 68 built-up classes), hierarchically organised into a 4-level nomenclature. The
choice to rely only on the 11 class level 1 nomenclature (see Table A.3) has been made
since the other levels are not freely available.

3.3 MLULC challenging characteristics

This section briefly highlights some of the main challenges faced when translating between
the six selected land-covers. We identify four principal challenges: nomenclature translation,
resolution translation, translation of erroneous land-cover maps, and spatial generalization.

3.3.1 Nomenclature translation issues

3.3.1.1 Quantifying the nomenclature translation issues

We provide in Appendix B various tables describing independently for each source/target
map the main semantic correspondences from one class to another based on a manual
analysis of the main semantic links (see Section 6.2.2.4 for more detail on this procedure). In
particular, we established that amongst the independent translation of the 118 accumulated
classes of the dataset into each of the five other nomenclatures (590 possible source/target
association), only 315 (53.3%) source classes have a single relatively close correspondence
in the target nomenclature (denoted 1-to-1 translation), i.e. for which one translation
appears more consistent than all the others. The translation of those 315 source classes
results in 151 target classes; thus 25.6% of classes are semantically easily obtainable.
Conversely, 11.6% of classes can never be obtained by semantic translation of a source
map due to a lack of semantic correspondence (denoted 0-to-1 translation). Appendix C
presents for each source to target map translation the proportion of target classes obtained
from a 1-to-1 and O-to-one translation (with two different techniques) to help identify
the most challenging translation scenarios from a semantic point of view. The main
observation is that the only source map usable to obtain more than 50% of target classes
using a pure 1-to-1 semantic approach is CLC due to its high number of classes. All
other source-to-target translation scenarios exhibit configurations in which the proportion
of target classes obtained by translating one source class into multiple targets is above
70%. Obtaining high-quality semantic translation requires defining context or ancillary
data-based criteria to translate each of those source classes into their multiple possible
translations. Synthetically, the most challenging class to obtain are OSO fine grained

Shttps://www.data.gouv.fr/fr/datasets/mode-doccupation-du-sol-mos-en-11-postes-en-2017/
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11 agricultural classes, CLC 11 urban classes and 5 wetland oriented classes and almost
all OCGSE use classes due to a lack of semantic correspondences in the other land-cover
maps.

3.3.1.2 Imperfect semantic matching

We underline that even source classes with a clear principal semantic correspondent in
the target nomenclature (1-to-1) often corresponds to an imperfect translation due to:
variations in class characteristics, temporal patterns and arbitrary rules.

Varying class characteristics Class definition often includes a threshold on specific
characteristics expected for an object to be attributed to the corresponding classes. Those
thresholds are often widely different depending on the considered land-cover map. For
instance, we provide below the threshold definition to attribute the class Broad leaved
forest for CLC (2), OSO (3), and OCSGE cover (4).

"The predominant classifying parameter for this class is a crown cover density of
> 80 % or a minimum 500 subjects/ha density [...| The minimum tree height is  (2)
S5m." - CLC

" Land with an absolute tree cover rate greater than or equal to 10 % with trees

(3)

reaching or capable of reaching a height greater than 5 meters on-site” - OSO

" Absolute tree cover rate greater than or equal to 25%" - OCSGE cover"” (4)

Even though translating one of those classes into one of the other is the natural translation,
it results in inaccurate translation for objects between the source and target thresholds.
As many such inconsistencies are observed in the dataset, we can not present them
all. However, we underline that this class characteristic variation mainly affects biotic
land-cover types.

Varying temporalities We highlight that due to the production scheme of CLC, CLC
class definition tends to exhibit a multi-year temporal pattern, especially for agricultural
areas, shrubs and forest areas (see Section 2.3.3.1). Conversely, all other maps tend to
define their classes on a year-based analysis, making the translation to CLC difficult when
only one source map is used. The translation from CLC to one of those maps is ill-defined
in those classes if no additional data with a date close to the target map is used.

Arbitrary rules Land-cover maps often include sets of arbitrary rules, mainly in forms
of spatial constraints that separate different land-cover types. Most affected translation
includes the distinction between different sorts of water objects, such as the separation
between salted and non-salted waters in Figure 3.5 (i.e. CLC Water courses, Water bodies,
Coastal lagoons, Estuaries, Sea and Ocean, CGLS, Permanent waters bodies, Ocean).
Occasionally some other land-cover types can exhibit those spatially arbitrary delineations.
For instance, OCSGE use Secondary or tertiary production and residential usage seems
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to include all elements inside an arbitrary, non-constant across-territory buffer around
built elements while not giving information on this buffer in the class definition. Therefore
translating those classes implies to infers those arbitrary rules directly from the map by
using additional data or inferring them from context.

\‘:;-F‘?(r D Arbitrary spatial delimitation
(saline/non saline water)

A A

L ™= | Errorsin source, over-estimation

'l - of the "pink" land-cover

. * Semantic Gap, Wetland (grey)is
defined in target but not in source

Resolution Gap

Figure 3.5: Illustration of the resolution and semantic discrepancies between OSO and
CLC. See Tables A.2 and A.1 for the detailed nomenclatures.

3.3.1.3 Constraints specific to machine-learnt translation

The high over-representation of forest and agricultural lands in France (94%, see Section 3.2)
compared to the rest of land cover fosters a significant inter-class imbalance, especially for
maps with a high number of urban or wetland-oriented classes such as CLC and MOS
or land-use oriented such as OCSGEu. For instance, in the CLC map, the ratio between
the most and the least represented classes is higher than 200 in level 2 and higher than
7000 in level 3. When performing manual semantic translation, this does not represent a
significant issue as long as the statistically most frequent classes are advantaged compared
to statistically less observed one on 1-to-n translations (which is not the case in most
current translation frameworks). However, from a machine-learning point of view, this is
challenging as it requires a solution that is not too favourably biased towards the most
statistically probable translation.

3.3.2 Resolution translation issues

In the dataset, the gap of pixel resolution is of a factor of 100 between the most resolved
maps (OSO, OCSGE) and the least resolved ones (CGLS-LC100, CLC) and goes up to
2500 when the minimum mapping unit is taken into account. Figure 3.5 illustrates this
resolution gap between OSO and CLC, i.e. 100 OSO pixels are resumed into one CLC
pixel, and each CLC segment at least includes 25 pixels (one segment resume at least 2500

OSO pixels).
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In the case of up-sampling (e.g. CLC translated to OSO), this very wide resolution gap
necessarily implies using highly resolved additional data to obtain both a semantically
and geometrically more refined segmentation of the territory, e.g. to predict 2500 pixels
with potentially different target classes from a 25 pixels segment with a single source class.
However, Section 2.4 underlined that very few works study how to merge additional data
and maps in a context-aware fashion. Thus research must be conducted on this particular
topic. Examples of usable additional data are provided with the dataset and presented in
Section 3.4.

In the case of down-sampling (e.g. OSO translated to CLC), most current resampling
techniques use a grid-based approach (e.g. a cell of 100 OSO pixels is resumed into one
CLC pixel) to resample the land-cover map. Section 2.2.1 underlined that the technique
used for resuming the information, either nearest neighbour or majority voting, neglects
information for heterogeneous cells holding multiple classes. We argue that context and
class proportion should be used to obtain specific classes, e.g. a cell mixing OSO Water
and Pastures should be translated a CLC Inland wetlands.

From a machine-learning point of view, we underline that learning the MMU on the dataset
is a difficult task that requires a spatial context-aware translation framework that learns
rules such as: ’If two adjacent areas of discontinuous and continuous urban fabric occur,
each of them <25 ha, but in total >25 ha, they should be mapped as one single polygon,
and discontinuous urban fabric is privileged’. The main difficulty in learning the minimum
mapping unit is that errors in the source or target maps can be perceived as minimum
mapping rules when they exhibit systematic patterns. For instance, if small discontinuous
urban fabrics are often confused with industrial and commercial units, the method could
transform the previous rule in ’If two adjacent areas of industrial and commercial unit and
continuous urban fabric occur, each of them <25 ha, but in total >25 ha, they should be
mapped as one single polygon, and discontinuous urban fabric is privileged’. The impact
of errors on the dataset is addressed in the next Section.

3.3.3 Errors

Appendix E presents the confusion matrices of the France wide-land-cover maps (CLC,
CGLS-LC100, OSO) computed on the ground-truth provided with the MLULC dataset (see
Section 3.5.1) (official confusion matrices are available but produced using heterogeneous
methods and does not cover the same spatial extent). From these confusion matrices we
derive Figure 3.6, which presents the dispersion of per-class accuracies.

We observe that most of the land-cover maps exhibit a high precision variation depending
on the considered class. For instance, almost half of CGLS-LC100 level 2 classes exhibit
an accuracy of less than 70% and two classes of OSO exhibit a precision below 30%. From
a translation point of view, this is challenging, as errors in the source map have a high
risk of being mistranslated into the targeted nomenclature, i.e. translating from a map
with 70% accuracy is unlikely to give a target map with higher accuracy.
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Finally, unlike semantic-based translation methods that are very sensitive to errors in
source data, machine learnt methods are more sensitive to errors in target data. For
instance, a per-class analysis of the OSO product reveals that the OSO Road surfaces are
more than 50% of the time misclassified as Industrial and Commercial units. Thus, the
translation from MOS Transports to OSO is likely to learn to translate into Industrial and
Commercial units.

CGLS-LC100 _ . I
level 2 ' L
CLC level 3+ t T 1
0S0 - : ; T
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Per-class precision observed on ground-truth

Figure 3.6: Box plot illustration of per-class accuracy dispersion for the three France-wide
land-cover maps of the dataset. Per class accuracy are computed on the ground truth
presented in Section 3.5.1.

3.3.4 Spatial generalization

Since several maps do not cover the whole French territory, the number of available
maps varies depending on the considered location, as shown in Figure 3.4. Using this
particularity, one can study spatial generalisation to unseen areas on a real operational
setup, e.g. translate the OSO map into MOS (less than 2% of the territory) to obtain a
France wide MOS. However, this raises two main concerns. First, some OSO classes such
as glaciers, natural grassland, or bare soils are never seen in the MOS original extent (see
Figure 3.4). The translation from those OSO classes to a MOS class is never learnt. In this
configuration, a first solution is to rely on rule-based non-contextual translation for those
specific classes. Developing a machine learning strategy to address this issue is far more
challenging and is discussed in Section 5.1. Consequently, they are hard to fit in the MOS
nomenclature. Secondly, from a machine learning point of view, this difference in spatial
extent creates a significant imbalance between the number of patch of the different LULC,
making approaches performing multiple translations at the same time or multi-data fusion
more difficult.

3.3.5 Conclusion

As we aimed to study translation in complex cases, the six selected land-cover maps exhibit
complicated nomenclature and resolution translation problems and include a significant
number of errors.
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From the observation that the spatial co-occurrence between source and target classes
observed between two maps of the dataset directly depends on the nomenclature, the
resolution and the errors, we propose to summarise the difficulty by comparing the
semantic-based nomenclature translation matrices provided in Appendix B with the spatial
co-occurrence. As an illustration of this idea, we provide Table 3.2 in which we compare
the observed percentage of spatial co-occurrence between OSO 2018 pixels at 10 m and
CLC 2018 (at level 2 for readability) with their possible semantic association, e.g. one
pixel labelled as Discontinuous urban fabric in OSO should semantically be translated into
Urban fabric in CLC. In contrast, this association is only observed 45% of the time in the

dataset.

OSO Classes CLC Classes Observed
Dense urban Urban fabric 87%
Sparse urban Urban fabric 45%
Industrial and commercial Industrial, comercial and transport units 14%
Roads Industrial, comercial and transport units 16%
Rapeseeds Arable land / Heterogeneous agricultural areas 91%
Cereals Arable land / Heterogeneous agricultural areas 90%
Protein Crops Arable land / Heterogeneous agricultural areas 91%
Soy Arable land / Heterogeneous agricultural areas 91%
Sunflower Arable land / Heterogeneous agricultural areas 89%
Maize Arable land / Heterogeneous agricultural areas 83%
Rice Arable land / Heterogeneous agricultural areas 96%
Tubers Arable land / Heterogeneous agricultural areas 96%
Orchards Permanent crops / Heterogeneous agricultural areas 62%
Vineyards Permanent crops / Heterogeneous agricultural areas 82%
Pastures Pastures / Heterogeneous agricultural areas / Artificial non-agricultural vegetated areas 69%
Lawn Shrub and herbaceous associations 39%
Shrub Shrub and herbaceous associations 41%
Broad leaved Forest / Artificial non-agricultural vegetated areas / Heterogeneous agricultural areas 82%
Coniferous Forest / Artificial non-agricultural vegetated areas / Heterogeneous agricultural areas 79%
Mineral surfaces Open space with little or no vegetation / Mine, dump and construction sites 86%
Sand Open space with little or no vegetation 65%
Glaciers and snow Open space with little or no vegetation 100%
Water Inland water / Marine Water 84%

Table 3.2: Semantic association between OSO and CLC level 2. The third column gives
the observed percentage of spatial co-occurrence between one of the source class and all
the proposed semantic translation(s) i.e. only 62% of OSO orchards pixels are translated
into one of the semantically corresponding CLC class Permanent crops or Heterogeneous
agricultural areas .

3.4 Ancillary data for enhancing the translation process

In the previous section, we explained that land-cover map translation is a difficult task
that can even be impossible to achieve using just one source/target pair of maps due to a
lack of semantic correspondence, a gap in resolution, and errors. In this section, we briefly
present additional data that can be used to improve the translation quality when facing
one of those cases. More specifically, we introduce data rich in semantic information to help
with the lack of semantic information and errors and geometric information to help with
the resolution gap. We investigate three sorts of data: Optical imagery, Synthetic aperture
radar imagery, and Digital Elevation model. Mono-temporal data acquisitions are used to
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increase the translation quality in those challenging cases. Multi-temporal acquisitions
are deliberately ignored as we focus on the complementarity between additional data
and land-cover maps for translation rather than producing the best quality maps. The
choice of the data provider is made according to three main factors, the open access rights,
which enable to share the dataset, the resolution of the data, which should be close to or
higher than the most resolved map (10 x 10m), and the worldwide availability to enable
comparable results on different spatial extents.

3.4.1 Optical imagery: Sentinel-2

Optical imagery, also termed optoelectronics, acquires information based on the reflection
of the sunlight on the Earth’s surface. The data is collected using mainly the wavelength
between 400 and 1400 nanometers. Amongst the multiple optical data providers, we
selected Sentinel-2 according to three criteria:

e A 10-meter spatial resolution, on par with highest resolved maps, to test the coarse
to fine resolved translation in a non-ill-defined setup. As we do not seek to test
the image potential for a given target land-cover, but it’s complementarity with
the source, more resolved images are irrelevant as the additional gain in translation
accuracy would only be due to the image.

e The availability of cloud-free synthesis. As we proceed to a mono-temporal analysis
at a France-wide scale, we require cloudless images to proceed with relevant data
fusion.

e Free open access right enabling redistribution. This enables the distribution of the
MLULC dataset.

The twin satellites Sentinel-2A and 2B are carrying multi-spectral optical sensors acquiring
thirteen spectral bands at different spatial resolutions [72]. As we are mainly interested
in gaining geometric information, we only keep the four 10-meter resolved bands (Red,
Green, Blue and Near-infrared) in our analysis. The two satellites exhibit the same orbit
but are phased at 180° to enable a temporal resolution of 5 days at the equator (slightly
better at higher latitudes).

Two main levels of pre-processing Sentinel-2 images are distributed. Level 1 provides
geometric correction to account for the main image distortions factor (satellite’s motion,
Earth’s rotation, acquisition angle, orbit and terrain topography) to provide an accurate
location for each pixel. Level 2 adds to level 1 the atmospheric properties, which are
not constant in time and thus require corrections for applications performing a temporal
analysis of an object, i.e. it removes exogenous factors such as atmospheric absorption or
scattering.

As we do not plan to use multi-temporal acquisitions of Sentinel-2 but only a single
one across all of France, those two processing levels are insufficient. Indeed, they do not
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consider the cloud cover, which is more or less critical depending on the geographical areas
and strongly degrades the data availability [289]. We relied on the Weighted Average
Synthesis Processor (WASP) algorithm [109] implemented by the Theia French Land Data
Center to produce a cloudless synthesis image. The core idea of the WASP processing
chain is to perform a weighted average of all the Sentinel 2 images available during 45 days.
The weight of each date is determined by taking into account both the time gap between
this date and the mid of the 45-day date (to ensure a spectral coherence between adjacent
pixels) and the likeliness of the pixel being cloud occulted. An almost cloudless single
France wide-image with only a slight spectral shift between two tiles of different orbits
is obtained. However, this processing chain still exhibits artefacts when all acquisitions
during the 45-day periods (8 to 9 acquisitions) are cloudy on the same pixel. Artefacts are
also observed on surfaces, such as snow and water, that change quickly over time.

Adding geometric information to the land-cover translation, such as the target segmen-
tation, using an image, implies using an image from which target segmentation can be
inferred. We observe that the potential of target segmentation inference from an image
widely depends on the considered date, especially for agricultural land-scapes (60% of
French territory) in which the visible segmentation varies across the year. The choice of
the 45-day period is essential as land-cover map mapping accuracy widely depends on the
date used due to seasonal variation [185|. A first constraint on selecting the date is that
the usage of 45 days (9 images) does not ensure a cloudless synthesis, especially in the
very cloudy months between October and March (the kept image must be outside of this
period). To our knowledge, no studies focused on the best dates to perform land-cover map
mapping over France. However, some thematic-specific studies on urban areas [248| have
demonstrated to produce more accurate land-cover maps during the Spring or Autumn
season. Since we previously mentioned that France’s land-cover map mainly includes
croplands (nearly 60%) and that most of them are already harvested in the autumn season,
we selected a spring season cloudless synthesis centred on mid-April 2019. Ideally, we
would have processed the 2018 image to be as close as possible to land-cover maps, but
the synthesis of 2018 was too cloudy.

Last but not least, the image is aligned with the different land-cover maps in an alignment
step. It mainly consists of a re-projection from EPSG:4326 to EPSG:2154 on the same grid
as the one used for the land-cover map. This involves resampling, for which we relied on a
bi-cubic interpolation. As such, the effective resolution of the obtained image is slightly
under the original one.

3.4.2 Radar image: Sentinel-1

Radar imagery acquires information based on the reflection of a radar signal emitted by
the satellite on the Earth’s surface. The data is collected using a wavelength between a cm
and a few meters. Since the reader might not be familiar with the SAR imaging system,
this section provide critical relevant information for understanding the dataset. However,

65 / 295



for a real in-depth explanation of the radar imaging system, we refer the reader to [14, 62,
219]. We selected the Sentinel-1 data following the same criterion list as the one used to
select the data provider for optical images.

The twin satellites Sentinel-1A and 1B carry a C-SAR (synthetic aperture radar) instrument
acquiring in dual polarisation (HH+HV, VV+VH) with an incidence acquisition angle
between 20-46°. This right-sided acquisition angle has many consequences, such as
producing images with a pixel resolution varying across the satellite track. The Sentinel-1
data are either distributed with all the possible information (complex signal with phase and
amplitude) and with the unequal pixel size in a mode called Single-Look Complex (SLC)
or in a simpler form including only the modulus of the signal (with no phase information)
in a resampled 10m x 10m pixel-sized image in a mode called Ground Range Detect (GRD).
As our work does not involve phase exploitation, traditionally used for SAR interferometry,
we only discuss the characteristics of the GRD product.

Radar images’ main characteristics stem from the used wavelength in the case of Sentinel 1,
the C-band, which corresponds to 5.5 cm. As a diffraction-limited system [209], a radar
imaging system cannot acquire information on objects too small compared to the wavelength
used. Clouds mainly consisting of water droplets of a millimetre width are seen through,
enabling image acquisition even in cloudy weather. More generally, the use of a significantly
higher wavelength than optical imagery brings widely different information. For instance,
the signal tends to penetrate the tree and soil cover a bit before being reflected. It provides
additional geometric information that is not seen in an optical image.

However, because the radar signal is coherently emitted in space and time, the multiple
backscattered signal of a single pixel content creates some constructive and destructive
interference. This sum of signals inside each pixel results in a noise-like pattern referred
to as speckle, which can be modelled as a multiplicative noise (assuming a set of realistic
assumptions referred to as the Goodman hypothesis [102]). As speckle makes the radar
images usage considerably harder, various denoising (despeckling) methods have been
proposed. Local spatial filtering methods have been proposed and perform local weighted
means to reduce the noise at the cost of down-resolving the image. Temporal filtering
methods have also been proposed. They use the random aspect of the noise by averaging
multiple noise-independent acquisitions, with the drawback of being inconsistent on surfaces
changing over time. Lastly, mixes between those strategies have also been proposed to
alleviate the problems of both methods.

Since we mainly want to preserve the geometric information rather than the radiometric
one, we propose performing a temporal average of 3 years of sentinel-1 acquisition across
France (2017-2019). As the SAR acquisition is realized with an angle, each object can be
seen from two points of view depending on the orbit direction (ascending or descending).
We randomly selected the descending. Furthermore, we only included images from the S1B
satellite to avoid averaging with the S1A, which has very slightly yet different acquisition
parameters. This results in averaging up to 120 GRD images on some locations producing
a nearly noiseless SAR image.
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Preprocessing steps include: calibration to consider the incidence angle and remove thermal
noise, orthorectification and a temporal average. As the last step, we reprojected all the
images in EPSG:4326 along the grid used for land-cover maps, which involves a bi-cubic
resampling. All the processing steps except the temporal average are proceeded using the
S1Tiling software®.

3.4.3 DEM: Alos-World3D

Elevation and land-cover are highly intertwined, making elevation a good additional data
to increase the quality of land-cover translation. For instance, France vineyards tend to be
cultivated on lands with a slope (that ensures excellent drainage properties) south oriented
(to ensure high solar exposition).

Ideally, the digital elevation model (DEM) should be around 10 meters resolved to exhibit
the exact resolution as the most resolved maps. However, even though some corresponding
digital elevation models are available in France, they do not provide the worldwide extent
mentioned. We choose to rely on one of the two publicly available worldwide DEM at
30x30m resolution: Alos-World3D [2] (AW3D30) was chosen over the SRTM due to its
higher height accuracy [264].

The AW3D30 provides a single image, with each pixel representing the height of the object
inside with a 5-meter precision. The data is reprojected in EPSG:2154 using the same
grid as the one used for land-cover maps and a bi-cubic resampling algorithm.

Commonly computed DEM-derived features (slope, aspect, topographic position and
roughness index) are also provided to help to increase the quality of the translation. In
particular, we underline that high slope areas are often mineral areas, that some crops,
such as vineyards, exhibit a specific slope orientation towards the sun (aspect), and that
wetlands are often observed downhill (topographic position index).

3.5 Ground truth and quality measurement

3.5.1 Ground-truth datasets

Comparison between translated and target maps is the simplest way to assess the quality of
the translation. Comparison can be performed pixel-wise all over the test set, offering many
samples per class to evaluate absolute and per-class metrics. However, those measurements
are maximised only when the translation exhibits the same errors as the target data, i.e. a
translation corresponding at 100% to CGLS is a translation replicating the 30% error rate
of CGLS. We refer to this comparison as an agreement measure rather than an accuracy
measure. Moreover, it is worth noting that the agreement measure can only be computed

Shttps://gitlab.orfeo-toolbox.org/sl-tiling/s1tiling

67 / 295


https://gitlab.orfeo-toolbox.org/s1-tiling/s1tiling

on the intersection between the source and target maps. For instance, the agreement
measurement between the translation from MOS to OSO and OSO can only be computed
on the Paris area, while the result of the CLC-to-OSO translation can be computed over
entire France. Consequently, those two agreement measurements are not comparable.

Conversely, the comparison with an independent ground truth gives a better estimate
of the accuracy. However, creating such a ground truth on each specific map spatial
extent for all of the six maps with a large enough sample to compute significant per-class
accuracies [85] is unrealistic for both time and lack of expertise reasons. This ground
truth should be country-wide (to study generalisation to broader spatial extents) and
with classes compliant with the specifications of each map. During this PhD, we released
two ground truths datasets; one including ground truth annotation for the six land-cover
maps of the MLULC dataset, including 2,300 points and one specifically focusing on CLC
at level 2 but with a higher number of annotations (5,000) to ensure enough per-class
sample to estimate per-class metrics. As the creation procedure of those two ground truths
are identical, we only focus on the broad one (including the six land-cover maps) in the
remaining to simplify the reading.

The choice of the ground truth sample size and sampling strategy directly influences
the precision of the computed metrics. To enable a fair comparison between different
land-cover maps, the sampling strategy consist in annotating the same sample for all land-
cover maps, ¢.e. one ground truth point is annotated six times. As a direct consequence,
stratified random sampling strategies aiming to provide enough samples per class to
compute accurate per-class metrics are difficult to conduct. We choose to rely on pure
random sampling, which provides accurate overall accuracy across the territory at the cost
of poor per-class metrics estimation. For a suitable ground truth sample size n ensuring
reasonable overall accuracy evaluation, we rely on Equation 3.1 [52, 230|:
Z2a(l — )

n=— (3.1)
where z is a percentile from the standard normal distribution, « is the real overall accuracy
and m is the authorised margin of error. We arbitrarily choose z = 1.96 and m = 2%,
corresponding to a 95% confidence interval with a 2% margin on the overall accuracy
prediction as those values are the most commonly found in land cover literature. We
choose to set @ = 50% (the worst-case scenario leading to the largest available sample
size), as we can not predict the real overall accuracy of the different translations. This
results in an expected ground truth sample size n = 2, 300.

These 2,300 points are randomly sampled from the test set; thus, they can not be used to
compute per-class accuracy due to the low (or null) number of samples for rare classes.
We also provide 400 additional points (non-randomly sampled), focusing on rare classes
to ensure an arbitrary minimum number of 15 points per class to enable rough per-class
metric estimation. The points in the ground truth are sampled with a minimum distance
of 2.5 km to reduce spatial correlation. The MMU of CLC on linear elements does not
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guarantee independence below this distance.

Ground truth labelling relies on photo-interpretation of Sentinel-2 (multiple dates available)
and Spot 6 and 7 (High resolution) imagery, and two independent sources of information:
(i) the French authoritative cartographic database (BD Topo), yearly updated at 2 m
with more than a hundred classes, and (ii) the national Land Parcel Information System
(RPG, Registre Parcellaire Graphique), a 10 m farmers declarative database for European
Common Agricultural Policy (CAP) [36]. We consider the target data valid unless it
disagrees with those sets, in which case photo interpretation is performed. Such ground
truth exhibits multiple limitations:

e First, the BD Topo and RPG only cover about 75% of France since some structures
are excluded (e.g., sidewalks), and information is lacking (missing farmer declarations,
especially for crops not included in CAP subsidies). Thus exhaustive ground truth
representation of some classes is not guaranteed.

e The generated ground truth is a partially corrected version of the original data
instead of a completely independent ground truth (i.e., favourably biased toward
the original data).

e The 400 additional points are mostly added on the rarest of the 44 CLC classes
to increase their sample size. Thus they abide by the 25 ha MMU of CLC, which
significantly affects statistics for other maps. For instance, most CLC Sport and
leisure facilities additional points added are golfs since they cover large surfaces
and subsequently artificially enriches the MOS Artificial green urban areas with
numerous golfs.

e A France-wide ground truth can only be used to assess France-wide quality: evaluation
of translation quality on a smaller extent ( MOS, OCSGE) can not be performed.

The obtained ground truth enables fairly computing the original land-cover accuracy. The
obtained accuracy for OSO (86%) and CGLS-LC100 (73%) ( is on par with their official
nomenclature (respectively 87% and 72% at the European level for CGLS-LC100) while
the one of CLC strongly differs (89% on the ground truth compared to 94.2% in [218].
This stems from multiple variations with CLC’s quality assessment protocol :

e Two different operators double-checked the CLC official validation dataset, while
ours includes only one interpretation for each point.

e The official validation is achieved with respect to the CLC initial segmentation (to
avoid taking into account geometric errors, separately evaluated), while ours correct
CLC segmentation when needed. Therefore, our interpretation of the same point
might differ, especially on the edges.

e The official validation is performed on the vector data, while ours is performed on a
rasterised version, which tends to amplify CLC segmentation errors.
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Evaluation data Target map Random ground truth Enriched ground truth

Sample size >100,000 for all LULC 2,300 2,300+400
Minimum sample per class >1,000 0 10
Pros Big sample size = per-class - France wide coverage - France wide coverage
metrics are computable for all maps for all maps
Cons - Same errors as target data - Small minimum - Partially biased to increase
) - Only covers the target extent sample per class sample size of rare classes
- Overall accuracy - Overall accuracy - Per class accuracy
Usage .. o
- Per class accuracy - Generalisation - Generalisation

Table 3.3: Summary of the characteristics of the three data sets used for translation
evaluation.

3.5.2 Quantitative indices

Quantitative evaluation is performed using traditional land-cover metrics to compare with
other works. In particular, we provide the confusion matrix to discriminate the nature of
errors. The Overall Accuracy computation is used to account for global quality. LULC data
sets are highly class-imbalanced: high accuracy can be achieved by correctly predicting
the most frequent classes (often not the most difficult to discriminate). Therefore macro
f1-score and Kappa are computed to assess the quality of the translated classes more
accurately. Standard per-class metrics (precision, recall, fl-score) are also computed. We
underline that other metrics used in semantic segmentation could have been used but
exhibit either a perfect correlation with one of those indicators (IoU and fl-score), or
are not commonly found in the land-cover field (mean Average Precision) preventing
comparison with other works. Formulas for per-class metrics and overall metrics are given
in Equations 3.2 and 3.3, respectively.

=S i n=S" " FL,=Y 2P0 (3.2)
1 m;j; 1 mj; i pi + i
> mij c
— 1 OA — pe
OA="L mF1=>Y"F1, K = 1—”. (3.3)
> mj ni= ~ Pe
ij=1

pi, ri, and F1; are the precision, recall, and f-score for a given class /, respectively. OA is
the overall accuracy, mF1 is the macro fl-score, c is the number of classes, and mj; is the
element in the j* row of the i*" column of the confusion matrix, i.e., the number of pixels
of class j classified as /. pe is the hypothetical overall accuracy obtained with a classifier
replicating the class proportions randomly. These statistics are computed separately by
comparing the translation with (a) the target LULC and (b) the ground truth. For clarity,
we denote OA,, and mF1,, the metrics computed by comparing the translation to the
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target and OAg and mF1, the metrics computed by comparing the translation to the
ground truth. We underline that all the metrics displayed in this manuscript are rounded
to the closest per cent, as we believe variations below a per cent are not interesting from
an operational point of view. Moreover, to be statistically significant, it would require
dozens of independent training for each experiment as the results between two different
training of the models of this manuscript often vary up to 0.25%.

Evaluating the quality of the geometric preservation of a map is rarely done in land-cover
map classification studies while being extensively studied in image reconstruction or
denoising [262]. Thus, we lack predefined quantitative measures to assess it. We propose
to use the Edge Preservation Index (EPT),also termed Edge correlation [199], traditionally
used in [351]. It computes the correlation between edges in a pair of images. EPI is defined
as [265]:

(Al — Al At — At)

EP| = — = 2 —
\/F(A/ — DI, Al— A (At — At, At — At)

(3.4)

where [ is the map predicted by the network, t is the ground truth target, A denotes a
high pass filter (we use a simple Laplacian kernel), Al denotes the mean of the high pass
filtered image, and I is defined as:

Fooy) = Y x(i) x y(i.f), (3.5)

ij€(nr,nc)

where nr and rc represent the number of pixels in rows and columns, respectively, of the
given image.

Since we work on categorical data, edges are discretized (0 = non edge, 1 = edge). Ideally,
the EPI should be computed between the prediction and perfectly segmented ground
truth. Since creating an object-oriented ground truth would be overly time-consuming, we
compute the EPI between the prediction and the target. It assesses the agreement between
the prediction and the target edges rather than the true correlation between the prediction
and a perfect segmentation. The larger the EPI value is, the more edges are maintained.
The EPI value is highly dependent on the expected proportion of edge in the target, which
makes it quite comparable to the dependence of the proportion of each class of the kappa
value. Unlike Kappa, for which interpretation key enabling distinction between low and
high agreement have been provided [173, 281], no such key exists for EPI. We propose
to build an interpretation key for each land-cover maps (see Table H.1) using a protocol
described in Appendix H. We propose to use the average of each threshold resulting in the
following key: poor (EPI<0), slight (0 < EPI < 0.16), fair (0.16 < EPI < 0.30), moderate
(0.30 < EPI < 0.45), substantial (0.45 < EPI < 0.60), almost perfect (EPI > 0.60).
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CHAPTER
—

Mono land-cover map translation

This chapter tries to answer the question: How to translate from a source to a target
leveraging various context information? In this direction, we decompose the chapter in
the following sections.

First, Section 4.1 introduces baseline land-cover map translation methods directly inspired
by the literature. As current literature relies principally on a resampling followed by
nomenclature-level rule-based translations, these non-contextual methods are assimilated
as a reference group to evaluate the performance of the context-aware methods presented
in other sections.

Secondly, Section 4.2 investigates the potential of spatial context for translation. First, a
method based on standard manually defined shape indicators is used to perform context-
wise translation using the shape of the object a pixel belongs to. Secondly, a convolutional
neural network is used to replace manually defined features with learnt ones, hoping to
extract spatial context information better.

Section 4.3 focuses on the geographical context. First, we identify and compare two
data sources of geographical context, i.e. ecoclimatic areas and geographical coordinates.
Two different strategies are proposed to leverage these data based on independent model
training per area or direct incorporation as learnable features to train a single model. We
then focus on incorporating geographical coordinates in the Convolutional neural network
proposed in the previous section.

Section 4.4 addresses the temporal context. A first investigation of the potential of multi-
temporal analysis is conducted. In particular, a distinction between improvements due to
higher temporal information and those due to a higher ability to identify source errors
is conducted. Secondly, the effect of a temporal gap between the source and target map
used for learning the translation is assessed and linked with real operational situations.

Section 4.5 addresses the cartographic context. We propose a loss-based method to learn
translation when the target data is heavily noisy (30% when the target is CGLS) using
the noise confusion matrix provided by the land-cover map producers.

All experiments are conducted on the MLULC dataset introduced in Section 3, leading
to 26 possible translations with various resolutions and nomenclatures. Therefore we
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expect the results to be generalizable to other land-cover maps. As no additional data
is considered in this section, we underline that the presented translations results from
coarsely resolved sources (CGLS and CLC) to highly resolved target maps (OSO, OCSGE
use, OCSGE cover, MOS) are ill-defined but still presented for reference.

4.1 Map translation without contextual information

4.1.1 Motivation

This section proposes a set of translation baselines, inspired by the state-of-the-art, that
we used as references to estimate the potential of the context-wise methods introduced
later on. The six proposed baselines, summarised in Table 4.1, reflects the diversity of
translation approaches proposed in the current literature. We identify three key differences
between translation methods: soft or hard association, semantic or statistics translation,
and learnt or manually defined resampling. We review them briefly below.

Section 2.1.2 distinguished the hard association, i.e. one source class is translated into a
single target class, from soft association, i.e. one source class have varying translations
depending on the considered pixel. We underlined that current soft association techniques
either require downsampling or merging multiple source. As this thesis mainly focuses
on the translation framework rather than on merging hypothetically available maps, soft
association baselines proposed in this section relies on source down-sampling.

We also distinguished baselines according to the nature of the translation performed:
Semantic or Statistic. Semantic translation (HardSem, SoftSem) of source relies on a
set of manually defined rules linking the source and target nomenclature with the main
advantage of not requiring an existing target sample for training. Statistic based methods
(SoftStat, Soft MaxProba, SoftLearntFreq, SoftLearntGridPattern) evaluate the
correspondence between source and target classes by computing spatial co-occurence
between source and target classes on pairs of spatially overlapping source and target.

Finally we distinguish machine-learnt statistic downsampling strategies (SoftLearntFreq,
SoftLearntGridPattern) from manually defined ones (SoftSem, SoftMaxProba).
Manually defined downsampling techniques combine translation conducted independently
for multiple source pixels to obtain a single target class. This approach inherently ignores
the potential translation synergies of the different source pixels. For instance, Water and
Grasslands are not very close semantically and statistically from Rice crops when analysed
separately. Conversely, when 2 pixels, one of Water one of Grassland, are to be translated
together into a single target class, Rice crops is a semantically and statistically valid
translation. The machine-learnt statistic downsampling strategies enable an analysis of
those source class compatibilities instead of considering each translation independently.

In the next subsection, we present the implementation details of each corresponding
baseline used in this manuscript.
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4.1.2 Baselines implementation

Three of the six baselines mentioned below (HardSem, HardStat, SoftLearntFreq) are
found in the literature. The three others are natural adaptations of close-by methods and
are part of our contribution to the translation problem.

HardSem (Figure 4.1) is the most commonly found approach in literature. It relies on
a separate nomenclature and resolution translation. Most works perform the resolution
translation before the nomenclature translation. However, we argue that the resolution
translation should always be performed on the target nomenclature to keep the most
relevant information and thus proceed in this order: HardSem first applies a semantic
translation, then the resolution one. The semantic translation is performed in a hard
association manner, 7.e. one source class is associated with one unique target class.
Since finding the main correspondent of each source class into the target nomenclature is
straightforward for a human operator, the association is performed manually instead of
using a semantic harmonisation tool such as LCCS. The results of this one source/one
target class association is provided in Appendix A with the nomenclature of each of the 6
maps. For instance, all the pixels of class Individual housing of the MOS map are translated
into Built up in the CGLS-LC100 map. Most current papers perform the resampling using
the nearest neighbour method. This is not detrimental when the target resolution is equal
to or finer than the source. However, this resampling method is the worst possible when
the target resolution is coarser than the source. n source pixels are resumed into a single
target one using only the content of one of them, thereby ignoring all the others. Instead,
we propose to perform, in this case, the resampling using a majority voting rule, i.e. the
class of the target pixel is the most frequently observed one amongst the n source pixels.
This resampling system is rarely used because it is more computationally intensive and
rarely implemented in the standard image processing software.

Predicted
Source f Hard semantic \ target
association

S1 | S| S| S Ty | i | T | T2

S;: "class T, : "class | two Ty
S Sy | s S 1. . z ! L T 7 | - — four "Ty o T;
R R R | definition" definition" £\> 1 2 | Majority
s1 | S| s | s S,: "class T, : "class S P I I S voting o

nition" inition" Ene Tl'l four "T,"
S | S | S | sy definition definition nlnln|n three "
T3 : "class

\ definitiory

Figure 4.1: The HardSem translation: Source S; and S; are translated into their closest
semantic correspondent, target class T, and T}, respectively. A down-resolution translation
of factor 2 is then performed using majority voting.

HardStat relies on the exact same strategy: nomenclature translation followed by a
resolution translation (see Figure 4.2). The only difference is that the nomenclature
translation is based on statistical matching. An association matrix, giving the spatial
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co-occurrence proportion of each source with each target class, is computed. Each source
class is translated into its most frequently spatially co-occurring target class. For instance,
if a source class S; is observed at the same location than a target class T, in 10% of
cases, class T; in 60% and class T,, in 30%, S; is translated into class T;. As some of the
soft baselines presented use a machine-learning algorithm such as the Random forest, we
underline that this method gives strictly equivalent results to training a random forest to
perform the translation from source to target using only the source class as a feature.

Predicted
Source / Hard Statistic \ target
association
S S S S T T T T
T e g | 0
bl Bl B T, T, T3 T | T | T T2 (Majority :
S| S| s s | Sp|40%)10%|60%] |S1= T3 w | ||| Voting one Ty
3 o
o s s s |S2(20%[70%[10%] [S;=T, | [ .14 eS| o

\Association matrix /

Figure 4.2: HardStat: Source S; and S; are translated into the most frequent corresponding
target , target T, and T,, respectively. A down-sampling of factor 2 is then performed by
majority voting.

SoftSem presented in Figure 4.3 can be used when the target resolution is coarser than
the source one. It relies on a separate nomenclature and resolution translation. The
nomenclature translation is achieved by using the soft association between the source
and the target maps described in Appendix B. Each source class might be semantically
linked with multiple target ones. Since we do not assume prior knowledge of the target
segmentation, the resolution translation is performed with a grid-based approach. The
possible target translations of the two source pixels are summed, and the target class with
the most votes is assigned. Thus two pixels with the same source class can be translated
differently depending on their neighbourhood.
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Figure 4.3: SoftSem: Source S; and S; are associated to all their possible semantic
correspondent ( T,/ T, and T,/ T,, respectively). A down-sampling of a factor 2 is then
performed by majority voting.
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SoftMaxProba (Figure 4.4), based on [60], can be used when target’s resolution is
coarser than source’s. It relies on a separate nomenclature and resolution translation. The
nomenclature translation is achieved using the same association matrix as the HardStat.
The average of all the observed proportions of co-occurrence for each of the n source
pixels is performed, and the most probable one is then assigned to the target. This acts
differently than the HardStat method, which only considers one possible translation per
source pixel (the most frequently observed one). However, the statistical links between
the source and target nomenclature do not consider multiple source class compatibility.

40% | 40% | 40% | 20%

20% 30%
40% | 40% | 40% | 20%
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25% 20% Predicted
Source T 20% | 20% | 20% | 20%
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S1 | S| S| S T T, Tj3 10% | 10% | 10% | 70% Local
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S1 S| S| S 10% | 70% | 70% | 70% verage
S, [20% | 70% [ 10% e i T, T,
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60% | 60% | 60% | 10%
60% 35%
60% | 60% | 60% | 10%
60% | 10% | 10% | 10%
22.5% 10%
10% | 10% | 10% | 10%

Figure 4.4: SoftMaxProba: the translated class is obtained by averaging the probability
of each source class to correspond to each target class and choosing the most probable one.

SoftLearntFreq directly inspired from [56], can be used when the target resolution
is coarser than the source one (Figure 4.5). It relies on a simultaneous nomenclature
and resolution translation and tries to alleviate the Soft MaxProba main limitation by
considering multiple source class compatibilities. The core idea is that compatibility can
be inferred from data through machine learning algorithms. For instance, one can learn to
translate differently depending on the proportions of each source class amongst n-pixels to
translate into one. Additionally, it enables us to learn thresholds rules such as "it is forest
only if trees cover more than 70% of the surface”. Unlike [56], we do not assume prior
knowledge of the target segmentation, relying instead on a grid-based segmentation at
the target resolution. This approach appears more realistic in most land-cover translation
problems, as the target segmentation is usually unknown. Moreover, [56] analysed the
proportions of classes using a discriminant analysis while we replaced it with a random
forest, showing better results in our case. Implementation details: A cross-validation
experiment is conducted to estimate the best random forest parameters according to the
mF1,, using a grid search approach on the number of trees (50 to 500, with a 50 step),
maximum tree depth (from 5 to 40, with a 5 step) and the minimum samples per leaves
(from to to 1 to 101, with a step 10). Even though slight variations are observed between
different map 100 trees, with a 25 maximum depth and 10 minimum samples per leaf
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appears sufficient to achieve the best mF1 score for all maps at +1%.

It's "To," only if B i
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Figure 4.5: SoftLearntFreq: The frequency of each source class is used to train a random
forest. Translates differently depending on the proportion of each source class.

SoftLearntGridPattern (Figure 4.6) is very close to SoftLearntFreq. However, instead
of learning how to translate source class proportions, the method directly processes the
n pixels preserving their local spatial arrangement. We replace the random forest with
a convolutional neural network, the ResNetb50, as a random forest would be unable
to learn all the possible patterns due to the very high number of configurations (16
in the Figure 4.6 with only two source classes and a small downsampling factor of 4).
Implementation details: We used the classical RestNet50 implementation [114] in its
pytorch implementation !.

STy 5B T, B8
STy BSP{Tg BB8(Ts| By
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ECJ*

D
S1 | s1 | s1 | s >
T1 T3
S | S1 | S1 | S
ResNet50
S S, S, S,
Ty T2
S2 | S2 | S2 | S
Source Predicted
Target

Figure 4.6: SoftLearntGridPattern: The translation of each source class is performed
by a ResNet50 trained to translate differently based on the local class spatial arrangement.

'https://pytorch.org/hub/pytorch_vision_resnet/
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4.1.3 Results

4.1.3.1 Qualitative analysis

Figure 4.7 presents an illustrative sample of patches of translation obtained on our France-
wide test set. Only translations from high to coarse resolved maps are displayed to be
able to compare the result of the four Soft baselines.
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Figure 4.7: Sample of results for six different areas with each of the six baseline methods.
The class/label correspondence tables of each LULC are available in Appendix A.
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We categorize those results into three qualitatively homogeneous groups: the semantic
group ( HardSem, SoftSem), the simple statistic group (HardStat,SoftMaxProba),
and the machine-leaning based downsampling group (SoftLearntFreq, SoftLearnt-
GridPattern). The distinction between those three groups is especially visible in the
second column for which OSO 19: Woody moorlands is translated as CGLS 20:Shrubland by
semantic-based methods, as CGLS 12:Open forest by simple statistic methods or as a mix
between CGLS 20: Herbaceous vegetation and Shrubland by more machine learning based
methods. The difference between the semantic group and the other is mainly observed
for classes for which the main semantic correspondent differs from the statistically most
observed one. Such differences are often observed on erroneous source classes, as semantic
translations assume that the description of a class and its real content is identical, i.e.
no errors in the source map. For instance, in the second column (OSO to CGLS-LC100),
the source OSO maps widely overestimates Bare rockareas (in red) which are wrongly
translated into CGLS-LC100 Bare / sparse vegetation (in grey). Conversely, statistic
methods determine the translation based on the real noisy content of the source and
target class resulting in different translations, e.g. most OSO Bare rock corresponds to
Herbaceous vegetation in CGLS. Consequently, statistic methods partially compensate for
errors in the source maps but are prone to replicate errors of the target.

The simple and machine learnt statistic groups often give almost identical results. Most
of the differences are located on the edges of objects, as illustrated in the two last columns.
For instance, edges between OCS-GEc 1111: Built-up areas and 222: Herbaceous formations
are translated as CLC 211: Non-irrigated arable land by simple statistic methods while
being translated as 242: Complex cultivation patterns by the machine learnt ones. This
distinction makes sense as the surrounding of small cities are very often classified as 242
in the CLC product and is only obtainable by learning to perform the dual translation of
the two classes simultaneously. We highlight that those two groups are highly dependent
on the noise in the target. For instance, CGLS-LC100 tends to misclassify Water as Open
Forest on rivers, and both groups replicate the same error in the translation as shown in
the fourth column (MOS to CGLS-LC100).

A general weakness shared between all those methods is that they fail to predict many
classes resulting in a low diversity of translated classes. Moreover, none of them can apply
the CLC MMU of 25ha (25 pixels), resulting in this noisy single isolated pixels pattern.

4.1.3.2 Quantitative analysis

As for the qualitative review, quantitative metrics for soft association methods can only
be computed for translation in which the target map is coarser resolved than the source
one. Tables presenting the quantitative translation results hold empty cells for translation
in which the target is identically or higher resolved. In this case we arbitrarily consider
that SoftSem is identical to the HardSem . Similarly, other soft methods are considered
identical to the HardStat.
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Source CGLS (P) CLC (C) 0S0 (0) OCS-GEc (G1) OCS-GEu (G2) MOS (M) Total Average
Target C O GL G2 M|[P O GIL G2 M|P C Gl G2 M|P C O G2|P C O GI|P C O | average | on soft
HardSem 52 42 56 70 75|65 49 67 77 79|57 54 69 76 80 |53 39 34 87 [54 37 31 75 [77 T2 59 |61 58
SoftSem 62 59 82 |56 41 57 40 80 76 62 61
0A HardStat, 54 44 65 70 75 68 55 71 78 79|61 54 73 80 81 55 41 49 8 54 37 41 78 80 77 62 |64 60
% | SoftMaxProba 65 61 82 57 44 57 40 83 81 65 63
SoftLearntFreq 72 62 82 63 47 62 41 84 81 66 66
SoftLearntGridPattern 72 62 82 63 47 62 41 84 82 66 67
HardSem 13 17 22 15 24 (46 32 36 31 4236 17 36 20 38 |24 9 17 27|19 8 8 2935 17 19|25 23
SoftSem ‘ 38 19 38 ‘ 27 10 ‘ 20 8 ‘ 38 19 25 24
mF1 HardStat 13 18 19 16 24 47 32 33 30 42|33 16 34 20 38 26 10 20 27 19 8 10 27 31 15 18 |24 22
% | SoftMaxProba 36 18 39 27 10 20 9 32 17 25 23
SoftLearntFreq 48 26 41 38 18 28 12 42 24 31 27
SoftLearntGridPattern 47 24 42 37 15 28 12 43 25 30 27
HardSem 28 5 6 5 17|30 6 6 7 20(32 30 28 32 57 |29 29 29 79 |31 31 29 77 |53 49 3830 38
SoftSem ‘ 36 36 58 ‘ 28 32 ‘ 32 36 ‘ 54 54 31 41
EPI HardStat 275 3 5 16 30 6 5 7 20|30 27 25 31 56 30 29 30 80 31 31 30 77 47 46 38|29 37
SoftMaxProba 36 36 58 28 32 32 36 54 54 31 41
SoftLearntFreq 42 36 56 35 31 34 33 56 54 31 42
SoftLearntGridPattern 42 35 57 35 31 35 32 57 55 31 42

Table 4.2: Agreement metrics between the prediction and the target map for all pairs
of overlapping source/target maps. Cells are coloured in grey for methods based on
statistical correspondences and in white for those based on semantics. Cells are kept
empty for soft baselines when the target resolution is not coarser than the source. The
average performance is computed (i) on the 26 translations, filling the empty cells with
their corresponding HardSem or HardStat results (Total average) or (ii) on the nine
translations when the target resolution is coarser (Average on soft).

Source P C O Total

Target cC O GI G2 M|P O GI G2 M|P C Gl G2 M | average
HardSem 47 46 62 79 81|72 51 76 8 85|68 64 86 86 92|72
SoftSem 71 65 92 | 72
0A HardStat 52 45 68 80 81|68 57 77 85 85|64 63 8 89 91 | 73
&t | SoftMaxProba 67 66 92 | 73
SoftLearntFreq 73 68 92 | 74
SoftLearntGridPattern 73 68 92 | 74
HardSem 12 18 29 22 26|62 42 56 55 60|45 20 51 30 41 |38
SoftSem 47 22 43 | 38
mF1 HardStat 13 18 22 25 26 (59 37 50 48 57|35 17 48 31 41 |35
&' | SoftMaxProba 37 20 42 | 36
SoftLearntFreq 41 26 44 | 36
SoftLearntGridPattern 41 28 45 | 37

Table 4.3: Quality of the translation computed on ground truth. Cells are coloured in grey
for methods based on statistical correspondences and white for those based on semantics.
Cells are kept empty for soft baselines when the target resolution is not coarser than the
source. The OAg is evaluated on the 2300 random points ground truth, while the mF1g,
is computed on the 2700 points enriched with rare classes.

Table 4.2 resumes the agreement metrics of the various methods, Figure 4.8 resume the
per-class agreement metrics, while Table 4.3 resumes the accuracy on the ground truth.
The agreement metrics assesses the agreement between the target land-cover map and
the translated map giving a detailed insight into predicted class diversity. However, it is
maximised only when the translation method learns to replicate errors. Conversely, the
ground truth enables us to determine the robustness to label noise but is not well suited
for per-class metrics as the ground truth is too small. Lastly, agreement is computed on
the target map extent, i.e. can not be computed between two maps with no overlap (MOS,
OCSGE-cover and use). Conversely, accuracy on ground truth can only be computed on a
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wide extent to avoid a too small sample size. Thus the translation results on the ground
truth are only provided when the source map is CLC, OSO or CGLS-LC100.
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Figure 4.8: Per-class F1 agreement computed on the sum of the translation confusion
matrices of all the sources to one target. See Appendix A for class label.

The first observation is that textbfHardSem, which is by far the most used in literature,
gives worse results than HardStat. This underlines that in the case of a source class
with multiple possible translations, the closest semantically is often not the most probable
statistically. This observation is of utmost importance as current nomenclature translation
methods mainly focus on defining semantic similarity between class definitions rather than
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defining a probabilistic matching between all the source and target classes. It pledges for
more research on automatic statistical matching methods such as those presented in this
manuscript.

A second observation is that when target is coarser than source, the four baselines perform-
ing soft associations (SoftSem, SoftMaxProba,SoftLearntFreq, SoftLearntGrid-
Pattern) give better results than HardSem and HardStat. This behaviour advocates
for the need to perform the resolution and nomenclature translation jointly rather than
separately, as most methods do.

The SoftSem and SoftMaxProba baseline comparison reveals that the latter exhibits a
significantly higher OA,; and OAg than the first while achieving almost the same mF1,,
and mF1g. It appears that statistic-based methods are biased towards achieving the
highest possible overall accuracy while neglecting the diversity of translated classes (see
Figure 4.8). The methods proposed in this manuscript should thus focus on ensuring
target class diversity.

The last observation is that the SoftLearntFreq and SoftLearntGridPattern methods
outperform the others significantly (+6% OA,; compared to HardStat). We link this
behaviour to the fact that they learn the direct translation of a combination of source
classes instead of combining individual class translations. We note that the knowledge of
the local spatial arrangement also increases slightly all metrics.

4.2 Spatial Context

This section investigates the spatial context potential for translation. First, we propose
a simple yet efficient way to evaluate spatial context based on manually defined shape
features (area, elongation, compactness...) , e.g. is the water pixel in a linear shaped
object or not. Once determined we train a random forest to use this shape information
to translated differently pixels with the same class but exhibiting to different shape e.g.
the random forest learns that a water pixel in a linear shape object should be translated
into river while other should be translated into lakes. Secondly, we propose a more
complex approach replacing those manually defined features with automatically learnt
ones, hoping that it could increase the translation quality. The proposed approach relies on
a convolutional neural network method that jointly performs nomenclature and resolution
translation.

4.2.1 Manually defined shape indicators

4.2.1.1 Motivation

This section is built on the observation that two pixels with the same source class but
a different target class often belong to segments with very different shapes. Figure 4.9
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illustrates this idea by displaying segments with the same MOS classes but a different
CLC translation. For instance, two pixels belonging to two different MOS Forest segments
should be translated into (i) CLC Non-irrigated arable land when the Forest exhibits a
thin linear-shaped structure, i.e. is a hedgerow or in (ii) CLC Broad-leaved forest when
the Forest exhibits a more circular shape structure with a significantly larger area. We
argue that the knowledge of the shape of source segments is crucial for translation.

MOS: Forest MOS: Water MOS: Collective housing MOS: Mine/dump/construction
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Figure 4.9: Illustration of the relevance of the shape information for translation. For each
of the MOS classes, Forest, Water, Collective housing and Mine/dump/construction, two
different objects with different CLC translations are provided. Shape analysis of those
MOS objects appears relevant to determine which CLC class to assign.

Section 2.3.1 identified two approaches for extracting shape information in the literature:
manually defined shape features (MDSF) or machine-learnt shape features (MLSF). As no
works have focused on incorporating shape in the land-cover translation framework, this
section studies MDSF' as a simple tool to improve translation. An MLSF method dealing
with the shape and class spatial correlation is explored separately in Section 4.2.2.

Manually defined shape features have partly been explored in Geographic-object based
image analysis (GEOBIA). In land-cover mapping, GEOBIA segmentations are often
obtained from automatic image analysis methods aiming to group pixels in homogenous
segments. The automatic algorithms are parametrized to achieve a tradeoff between (a)
ensuring that contiguous pixels belonging to different classes belong to different segments
and (b) that pixels belonging to the same class belong to the same segment. For instance,
all contiguous pixels of a Forest must belong to a single segment, and this segment must
only include Forest. As most approaches favorites (a), an over-segmentation is observed in
most applications, e.g. a single Forest is composed of multiple segments. Consequently,
few experiments on the use of MDSF for land-cover mapping have been conducted as
the used segmentation often poorly reflects the true shape. Conversely, in the land-cover
translation scenario, obtaining the source segmentation is straightforward and directly
reflects the geometric properties of the object to translate. As the few works conducted
on using those MDSF for land-cover mapping focus principally on urban area change
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detection, we lack a proper analysis of the best MDSF to use. The experimental setup
section, first proposes a set of common shape indicators obtained from the literature that
could provide helpful information for translation.

Additionally, shape information is rarely included in land-cover map nomenclature def-
initions to ensure that nothing is misclassified due to a peculiar shape. Establishing
rule-based semantic translation based on shape information is unfeasible. A machine
learning (ML) strategy is explored to learn to translate using both the source label and the
MDSEF'. The choice of the ML method is discussed to both respects the characteristics of
the MDSF and offer the possibility to obtain a general intuition on which shape elements
are important for land-cover translation.

4.2.1.2 Experimental protocol

Manually defined shape features Ten shape features, commonly used in the GIS
community [18] and easily analysable, are experimented with (refer to Table 2.2). We
succinctly introduce them below and underline examples of classes for which they are
sufficient alone to improve translation significantly. Combining those MDSF can help
identify more classes not mentioned below. Area is used to evaluate the size of the
segments and is particularly informative when the source resolution is finer than the
target e.g. a 100m? grassland is probably a garden while a 10°m? is probably a pasture
or a natural grassland. Elongation is used to evaluate the "thickness" of a segment
using the ratio between area and perimeter (close to 0 for elongated segments). It helps
translating segments involving thickness constraints e.g. translating water in a river or
lake, or with cartographic generalisation rules e.g. a thin forest is probably a hedgerow
between crops classified as arable crops in CLC. Circularity compares the segment area
to the area of a circle with the same perimeter (1 for a circle). Especially useful to
translate circular irrigated crops. NestedPoly counts the number of the segment within
the considered segment and is the only selected MDSF rarely found in the literature. It
enables translating classes characterized by density constraints e.g. an urban area segment
holding many other segments of different land-cover classes is less likely to be a dense urban
area. Convexity is the ratio between the area and the convex hull area of a segment. It
indirectly evaluates the shape complexity. It is mainly used in urban mapping to distinguish
different building’s usage. MBRH, MBRW, MBR Area, MBRFlatness Height, width,
area and Elongation of the minimum bounding rectangle of the segment. Complementary
to Area, it helps to evaluate the Height, Width disproportion and, indirectly, the global
spread of the land cover. MBRArea=Area implies that the shape is rectangle e.g.
pastures often exhibit rectangle patterns while natural grassland do not. MBRAngle
gives a rough estimate of the principal orientation of the segment. Especially useful to
translated land-cover classes correlated to sun position and topography e.g. hillsides
vineyards, or wind constraints e.g. hedgerows planted to limit wind influence.

Figure 4.10 presents the correlation matrix between the different shape indicators of
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CGLS-LC100, CLC and MOS. The diagonal delivers the auto-correlation of the indicators
for one map. For instance, the left top cell presents the auto-correlation of CGLS-LC100
shape indicators. A first observation is that the shape indicators of one map tend to be
highly correlated, especially the Area, MBRH, MBRW, MBR Area and NestedPoly.
This is easily explainable as wide area polygons necessarily have a wide MBR Area (thus
a wide MBRH and MBRW) and is more likely to have multiple inserted sub-polygons.
Additionally, the correlation between two features of the same map is highly dependent
on the resolution and nomenclature of the map. For instance, The MBR Angle is mostly
positively correlated with the other features for CGLS, negatively for CLC, and almost
unrelated to MOS.

Interestingly, inter-correlation between two map features exhibits the same sort of correla-
tion as those observed inside one map. In particular, we observe that those inter-correlation
coefficient are high (most of the time superior to 0.5), denoting that source map segmenta-
tion shape indicators provide information on target segmentation shape.

1.00

0.75
MBRANgle
Circularity

MBRFlatness

NestedPoly
Convexity
Elongation
Area

MBRH
MBRW
MBRArea
MBRANgle
Circularity
MBRFlatness
NestedPoly
Convexity
Elongation

0.50

00TDT-S19D

r0.25

r0.00

210

r—0.25

r-0.50

MBRANgle
Circularity
MBRFlatness
NestedPoly
Convexity
Elongation

SON

-0.75

-1.00

y
ss

NestedPoly
y

ation
y
S

NestedPoly
Ity
n

Elongatio

y
S

NestedPoly
y

Area
Elongation

MBRANgle
Circularit

MBRANgle
Circularit
MBRFlatnes

MBRFlatnes

(]

—=
o
Co
g5
o
=0

Convexit

Elong
Convexit

MBRFlatne
Convexit

Figure 4.10: Spearman’s correlation coefficient between the shape indicators of CGLS,
CLC and MOS. The diagonal of the matrix denotes the autocorrelation between the
indicators of the map. The rest of the matrix gives the correlation between the shape
indicators of different maps.

Unfortunately, as MDSF computation is particularly time-consuming for high-resolved
maps as it requires both i) to have access to a vectorised version of the map and ii) to

compute the indices for each of them, experiments are only conducted for the three coarser
of the six maps: CGLS-LC100, CLC, and MOS.
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Machine Learning The selected machine learning algorithm must be robust to highly
correlated features. Moreover, the model’s decision should be interpretable to understand
important shape characteristics. The random forest algorithm exhibiting these two
characteristics [97] appears a natural choice. Source labels are one-hot encoded and
combined with the MDSF features to train the random forest algorithm. This method is
termed SpaShape. The HardStat method is used as a control to evaluate the role of
shape indicators since its results are identical to a random forest trained using the source
labels as features.

Implementation details: As pixels belonging to different patches might belong to the
same segments, the independence between training and testing can not be ensured using
the train/test based on patch separation presented in Section 3.1. We process the raw
vector version of the map. Adjacent segments with the same class are merged to limit
arbitrary segmentation artefacts, and MDSF are computed. Segments are randomly split
in train/test using the same ratio as in the MLULC dataset (65,35) and rasterised to
the source resolution. The random forest is trained pixel-wisely on truly independent
train segments while preserving the fact that two pixels of a given segment have the same
feature but can have a different corresponding target class. The confusion matrix and
afferent metrics computed on the test are corrected by sample inclusion probability to be
comparable with the results of the baselines, i.e. the random split in train/test/validation
at the segment level might introduce a slight shift in the respective proportion of each
class.

The same grid search cross-validation strategy as for SoftLearntFreq is used to get
the best parameters for the random forest with almost identical results: 300 trees, five
minimum samples per leaf and a max depth of 25.

4.2.1.3 Results

Quantitative aspect Qualitative aspect does not differ much visually as target classes
benefiting from MDSF-aware translation are mostly rare classes. Therefore, we only
present quantitative results in this section. Table 4.4 compares the results with the two
hard-association baselines. A first observation is that the effect of adding shape information
widely differs depending on the considered translation. When translating from a coarse
map (CLC or CGLS-LC100) to a highly resolved one (MOS), adding spatial context
does not improve the translation significantly (+0.5%O0A,, and mF1,,). This is widely
understandable because the translation is ill-defined. Additional high-resolved data is
mandatory to obtain good results. Moreover, as very large objects usually encompass
various classes due to the minimum mapping unit, their shapes give limited information
on their actual content. On the contrary, when the source resolution is finer or comparable
to the targeted one, the overall agreement and agreement fl-score are improved by a vast
margin (+4%O0A,,+6%mF1,,) compared to the best baseline, HardStat). We underline
that those results are even better than those observed with the soft-translation methods.
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Source CGLS (P) | CLC (C) | MOS (M) | Total
Target C M P M P C average
HardSem | 52 75 65 79 |77 T2 70

OA,, | HardStat | 54 75 68 79 |80 77 72
SpaShape | 57 75 70 80 |84 83 75
HardSem | 13 24 46 42 |35 17 30
mF1,, | HardStat | 13 24 47 42 |31 15 29
SpaShape | 19 25 52 42 |39 24 34

Table 4.4: Agreement metrics obtained using shape indicators compared to baselines

Feature Importance We study the importance of each MDSF indicator to provide
insight into shape elements impacting land cover translation. Feature importance is
assessed using a random feature permutation approach which is more robust to the highly
correlated features than the more traditional mean decrease in impurity [30]. A random
forest is first trained on the training set. Then, an iterative comparison is conducted on
the test set between the obtained mF1,, and the mF1,; obtained with one randomly
shuffled feature. This strategy for assessing feature importance tends to underestimate the
importance of correlated features [30]. Consequently, the importance of Area, MBRh and
MBRW features is probably underestimated. Figure 4.11 presents the results of the feature
importance evaluation when MOS is used as the source map, but the same observation
can be made using other source maps. The main observation is that the most important
features tend to be either those assessing the spatial extent of the objects (Area, MBRarea,
NestedPoly) or the shape compactness (Elongation). It appears important to ensure that
any proposed spatial context-aware methods can assess the size of the object they are
translating.
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Figure 4.11: Feature importance for the mF1,; metric for the translation from MOS to
either CLC or CGLS evaluated using a random feature permutation technique. The source
label feature is removed for readibility due to its high importance score (0.55). Some
features importance might be underevaluated due to high feature correlation (refer to
Figure 4.10)
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Discussion Our experiments demonstrate that the use of simple MDSF significantly
improved the translation results when the source resolution is finer than the target one
(+4%0A,,,+6%mF1,,). Conversely, when the source resolution coarse the observed
improvement is low (+ 0.5%). We link this behaviour to the fact that MDSF usage
relevance directly depends on the assumption that segment shape accurately reflects its
semantic content. However, land-cover maps with coarse resolution often mix multiple
land-cover inside a single segment, especially when the minimum mapping unit is high
(CLC). This effect is further amplified by the fact that low-resolution land-cover maps
often exhibit complex shaped segments, including holes (NestedPoly>1) for which MDSF
provides unreliable information e.g. Circularity does not reflect accurately segment
compactness if the shape has a big hole in it.

The experiment design, i.e. a limited number of manually defined shape indicators,
probably leads to an underestimation of the shape information potential for translation.
MLSF could partially alleviate this problem by automatically learning translation-tailored
shape features instead of arbitrarily chosen ones.

4.2.2 Machine Learnt contextual features

4.2.2.1 Motivation

The previous section underlined that the shape of source segments might significantly
improve the land-cover map translation. However, the method relies on manually defined
shape features, which cannot precisely estimate all possible shapes. This section investigates
how to learn translation-tailored contextual features automatically. Unlike the previous
section, the proposed method also incorporate the previously neglected neighbouring
spatial context e.g. sand is usually near the sea and wetlands near rivers. Inspired by
the literature review conducted in Section 2.3.1, a Convolutional Neural Networks (CNN)
approach is experimented as they are perfectly tailored to integrate the semantics of the
pixel with its spatial context.

4.2.2.2 Method

Resolution gap Unlike land-cover map classification, which usually preserves the input-
data spatial resolution, translation is frequently confronted with a difference between
source and target resolution. A first simple strategy to deal with the resolution gap is
to either (i) resample the source to the target resolution before network processing or
(ii) resample the output to the target resolution. (i) is mainly used when the source
resolution is coarser than the target, while (ii) is used when the source is finer resolved.
Resolution and nomenclature being highly intertwined, it appears detrimental to process
them separately, especially when translating from a fine resolved to a coarse target map
(see Figure 1.5). This section primarily focuses on the case of translating a fine-resolved
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map to a coarse target by adapting the network architecture to translate nomenclature and
resolution simultaneously. The reverse translation from a coarse to a highly resolved map
involves using additional data, complexifying the distinction between the spatial context
importance and the additional data. We address this issue separately in Section 5.2.2.

A downsampling network Image to land-cover map classification is traditionally cast
as a semantic segmentation task, in which a set of remote sensing images are transformed
into a class map [136, 206, 236|. Similarly, we observe that land-cover map translation can
also be seen as a semantic segmentation task where the input pixels are not physical values
(namely, the optical spectral bands or SAR polarized channels), but semantic classes,
1.e., nominal categorical data with low cardinality. Therefore we base our network on
a popular semantic segmentation network, the U-Net [257] introduced in Section 2.3.1
and presented in Figure 2.3. The main idea of U-Net is to encode the image input into
a vector representation using successive down-sampling and convolution steps and then
restore (decode) the image using successive up-sampling and deconvolution layers. Skip
connections between the encoder and the decoder convolutions are used to avoid losing
spatial information during the MaxPooling process. The standard U-Net skip connections
impose aggregating features of the same scale in the encoder and decoder sub-networks
resulting in output with the same resolution as the input. We propose a simple U-Net
adaptation, termed Asymmetrical U-Net A-Unet, to achieve the desired simultaneous
nomenclature and resolution translation. Figure 4.12 presents it implementation for a
resolution gap of a factor 10. It consists in (i) removing some of the skip connections
and (ii) choosing different MaxPooling ratios for the down-sampling and the up-sampling
parts. Let r be the resizing factor between the input and the output of the network,
and D = (di, dy, ..., d), d; € N the downsizing factor of the different pooling layers in the
encoder. We need to ensure that:

Pooling parameters must be as small as possible to reduce the loss of spatial detail.
h
D = argming, H d;. (4.2)

This problem has a unique solution obtainable by prime decomposition [355]. In the OSO
to CLC translation case, the target map is ten times smaller than the source map. This
leads to apply a five and a two pooling layers in the asymmetrical part of the encoder. To
avoid information loss, we apply the two pooling layers first. In the case where the source
and target resolutions are identical, this network is equivalent to a U-Net. In the case
where the source resolution is coarser than the target, the A-Unet first resample the source
to the target resolution using the nearest neighbour operator and provide the data to a
classical U-Net. We remind the reader that this problem is ill-defined without additional
data and that this solution is only proposed to provide reference results for Section 5.2.2.
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Figure 4.12: Our U-Net adaptation. An asymmetrical encoder-decoder is designed to
handle the downsampling of fine-resolved sources to coarse-resolve targets efficiently.

Implementation details: As we rely on the basic U-Net architecture, the only hyper-
parameters to tune are the: optimizer, learning rate, batch size and the number of feature
maps of the first convolution block (the number of feature maps is simply increased by a
two factor at each block in the U-Net architecture). We relied on Adam optimizer [163|
as it offers a quick convergence with high robustness to learning rate value. Multiple
loss are tested by reducing the loss of factor 0.5 starting from 0.02 using an "on plateau
strategy". Experiments on the number of feature maps and batch size are conducted on
the OSO to CLC translation as it involves the most resolved source map with the most
target classes. 8, 16, 32, 64 feature maps were tested (the original implementation used
64). We highlight that 32 feature maps were sufficient to reach a performance plateau
both in terms of OA,; and mF1,,. Various batch sizes ranged from 12 to 192 with a 2
factor step. The results from batch size 12 to 120 are almost identical, with less than 1%
difference for all translations and started to decrease slightly above this number.

Loss The standard loss for semantic segmentation tasks is cross-entropy (CE), defined
as the sum of the target entropy and the relative Kullback-Leibler divergence between the
target and the prediction. Let n be the number of predicted elements, ¢ the number of
classes, p a softmax prediction of the network and y the ground truth. p'(k) denote the
predicted probability that the i*! element belongs to class k. y/(k) = 1 if the true class of
the i elements is k and y’(k) = 0 otherwise. The CE loss is computed as:

Lee(p,y) ZZy )log (p'(k)). (4.3)

i=1 k=1

The principal limitation of CE is that it does not suitably handle imbalanced classes.
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As stated previously, our case study holds highly imbalanced data, which prevents its
adoption.

Many approaches have been proposed [257, 263] to cope with the class imbalance issue,
such as the weighted cross-entropy [124] or focal loss [181]. We review below three losses
for which we present the results in the following section.

The focal loss is built on the idea that rare classes are challenging to predict and thus
result in low p’(k) values. It proposes to weight the cross-entropy inversely to the p’(k)
value. A manually chosen « factor gives more or less importance to those low prediction
values (when o = 0, the focal loss is equivalent to CE).

Loca(p.y) = + 32 3"y (K)(1 — p/(K))" log(p'(K). (4.4

i=1 k=1

Additionally, region-based losses target to maximize the overlapping ratio between p and
y. Among all these losses, we select the Dice loss [216]: it computes an approximation of
the F1l-score metric, which is vastly used in the remote sensing community. The Dice loss
is computed as follows:

c

23" pi(k)y'(K)
Lpice =t — Z — n : (4.5)

1 =P+ 2 yi(k)

We combine the CE and the Dice loss, as suggested in [140, 161, 240, 328], to incorporate
benefits from finer decision boundaries (Dice) and accurate data distribution (CE). This
alleviates the problem of high variance of the Dice loss.

Lce+pice = Lee + Lpice. (4.6)

Preprocessing Unlike image-to-land-cover classification, which takes continuous vari-
ables as input (pixel Digital Number), Land-cover map translation takes categorical
variables (classes). Distances computed between two input values convey meaning on im-
ages, i.e. a 2 difference in radiometry is smaller than a 4, while it does not on raw land-cover,
i.e. the 2 and 4 difference between a forest labeled "1" and water "3" or a forest and crops
"5" can not be compared. The first pre-processing is to transform the input to ensure that
distances between classes convey meaning. In this section, we assume no prior knowledge of
interclass distances and thus consider that all pairs of classes should be equidistant. One-hot
encoding is used to achieve this goal: each pixel is encoded as a vector with each dimension
encoding for the presence (1) or the absence (0) of a given land-cover class. For instance in
the previous examples Forest = (1,0,0,0,0), Water = (0,0,1,0,0) and Crops = (0,0,0,0,1),
thus the euclidean distance D D(Forest, Water) = D(Forest, Crops) = D(Water, Crops) = 1.
Chapter 6 explores an another encoding paradigm for labels in which inter-class dis-
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tances better reflect semantic differences. We underline that even though this step is not
mandatory, it increases the network learning speed (= 3 times).

Comparative assessment UNetBili, a method that processes the source map through
a U-Net and resamples the predicted logits using bilinear resampling, is used as a compara-
tive baseline to evaluate if the common nomenclature and resolution translation of A-Unet
improve translation quality. DeepLabV3 a DeepLabV3 architecture (see Section 2.3.1.2)
with a ResNet50 backbone is used to evaluate if a deeper network achieving better results
in most semantic segmentation tasks can improve translation results. Unlike UNetBili,
the resampling problem is directly addressed by the Spatial Pyramidal Atrous module (see
Figure 2.4).

4.2.2.3 Results

Qualitative analysis As the 26 possible France-wide translations can not be displayed,
we selected a set of illustrative patches that enables discussing the strengths and weaknesses
of the proposed solution. The translation results of HardSem, HardStat and A-Unet
are presented in Figure 4.13.

The A-Unet spatial context-wise translation method obtains significantly different results
than the baselines. As discussing all the qualitative improvements is impossible, we
categorize those improvements (nomenclature or resolution based), illustrate them with
some examples visible in Figure 4.13, and try to highlight the reasons for the observed
improvement in order to enable a better understanding of the method strengths and
weaknesses.

From a nomenclature point of view, the use of spatial context is beneficial for classes with:

e A characteristic shape, e.g. in the fourth row (OSO to CLC) the CLC class 124: Air-
ports is partially predicted using the particular "crossing road" pattern observed in
the OSO map.

e A characteristic pattern, e.g. mixed forest, dense urban (not illustrated in Figure
but well visible in the France-wide result)

e An inside segment translation gradient, e.g. Forest is more likely to be denser in
the middle than on the edges. Forests are translated as Open Forest on the edges
and Closed Forest in the middle in row 2 and 3. This observation also concerns
distinction such as CLC 111: Continuous urban areas and 112: Discontinuous urban
areas.

e A spatial co-occurrence pattern, e.g. OCSGEc 221: Herbaceous Formation is trans-
lated in OSO 13: Pastures near forest and in 6: Cereals (the dominant crop type in
France) far from it in row 6.
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Figure 4.13: Translation results of the HardStat, HardSem and A-Unet method for various
source/target couples
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From a resolution point of view, spatial context contributes to:

e cnable slight super resolution based on spatial patterns, e.g. in row 8, individual
OCSGEc 1111: Built-up areas are partially retrieved from coarse OCSGEu 235:Sec-
ondary or tertiary production and residential usage based on 411:Road networks
density.

e learn the CLC 25 adjacent pixels minimum mapping unit (MMU), e.g. A-Unet
partially succeeds in learning MMU in rows 4 and 9.

The method exhibits the following qualitative limitations:

e The MMU is only partially learnt, e.g. single isolated pixels artefacts are still
occasionally visible in rows 4 and 9.

e Linear shape structures are badly predicted, e.g. in the 5" row OSO 4:Road surfaces
are only partially translated to MOS 10:Transports. In particular, even though
baselines perform slightly better than the A-Unet. We link this behaviour to the fact
that U-Net architectures are known to perform poorly on linear segment prediction.

Quantitative Improvement To better understand the potential of context-wise meth-
ods, Table 4.5 presents the method’s quantitative results regarding the agreement between
the translation and the target map. Those first results reveal an average +5% OA,, and
mF1,; improvement between the best baseline SoftLearntGridPattern and the A-Unet.
Interestingly, this comes at the cost of reducing the average EPI by 3%. We link these
paradoxical results to a qualitative observation that can be made in Figure 4.13, the
A-Unet translation significantly alters the geometric shape compared to the baselines.
For instance, the previously mentioned translation gradient of the forest to CGLS Closed
Forest or Open Forest based on pixels distance to forest border results in a "buffer-like"
translation agreeing highly to the target CGLS while losing precise edges delimitation.

Table 4.6 presents the quantitative results of the method between the translation and
the manually built ground truth. A fine analysis requires the distinction of two groups of
maps. Group A includes experiments where the source and target exhibit a France-wide
spatial extent (CLC, OSO and CGLS). Conversely, group B includes those where the
target covers a smaller extent (OCSGEc, OCSGEu, and MOS).

Group A OA,; and OA,: are computed on the same extent (France-wide) and should
be identical (+£1t02%) depending on the map. OA,; > OAg implies that the method
is learning to replicate target map errors, which increases OA,; and decreases OAg:.
Conversely, OAg: > OA,; implies the correct translation of pixels that are erroneous in
the target map. When the source or target is CGLS, the most erroneous map with 72%
accuracy, the A-Unet OA,, is on average superior to OA,: from 4% underlying that the
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network is prone to replicate target errors. In other cases, no significant differences are
observed. Interestingly, A-Unet translations between Group A land-covers is in average
11% better in OA,; than SoftSem ones while only 5% higher in OA,;. As the SoftSem
method is insensible to target noise, this underlines A-Unet lack of label-noise robustness.

Conversely, Group B OA,, and OA,;: are not computed on the same extent (target extent
vs France-wide) and thus not comparable. However, they enable studying the spatial
generalization ability of the framework. As the OA,: of baseline methods exhibit less than
1% difference with those obtained by the A-Unet, we conclude that the methods perform
poorly on spatial generalization. Especially when translating one of the maps of group A
into MOS, the obtained France-wide MOS is significantly better using a baselines instead
of A-Unet. This can mainly be imputed to unseen spatial patterns. For instance, the
original MOS spatial extent does not include sea areas corresponding to patches entirely
covered by water; translating such patches can result in strange predictions such as forest).

The comparison between A-Unet and UNetBili reveals that performing jointly resolution
and nomenclature translation performs slightly better (average +1% OA,,, +2.5% mF1,;).

The comparison with the agreement metrics obtained for the six translations using the
manually defined shape feature (see Table 4.4) demonstrates that using a simple manually
defined features procedure is sufficient to achieve results close from those obtained with
the A-Unet when translating MOS to the coarse CLC or CGLS maps (1.5% OA,; and
5.5% mF1lg).

Interestingly, the A-Unet and its 3 million trainable parameters give almost identical
results in most cases to the DeeplabV3 network (see Figure 2.4) on a ResNet50 backbone
(40 million) parameters. It even performs significantly better when the source or target
map is MOS, as the training set is especially tiny (around 250 patches) due to the quick
overfitting of the Deeplab framework. Additionally, as achieving A-Unet performance does
not benefit from increasing the number of feature maps, we choose to mainly focus on
adding more information or changing the training characteristics (loss, goal) rather than
increasing the architecture depth and complexity.

Source P [C [0} G1 G2 M Average
Target cC O GI G2 M ‘ P O GI G2 M|[P C GI G2 M|[P C O G2|P C O GI|[P C O]° &
SoftSem 52 42 56 70 75 65 49 67 77 79|62 59 69 76 82 |56 41 34 87 |57 40 31 75 |80 76 59 |62
SoftLearntGridPattern | 54 44 65 70 75 68 55 71 78 79 |72 62 73 80 82 |63 47 49 89 |62 41 41 78 |84 82 62 |66
OA,;  UnetBili 61 53 67 76 75 73 57 71 79 78|75 66 79 86 84 |66 52 56 92 |67 48 49 79 |84 82 61 |70
DeepLabV3 62 55 68 78 T4 73 58 72 80 78 |77 68 79 86 83 |68 54 56 92 |68 49 49 79 |84 82 60 |70
A-Unet 62 55 68 78 76 73 58 72 80 79|77 68 79 86 85|68 54 56 92 |68 49 49 79 |84 82 63|71
SoftSem 13 17 22 15 24 46 32 36 31 42|38 19 36 20 38 |27 10 17 27 |20 8 8 29 |38 19 19 |25
SoftLearntGridPattern | 13 18 19 16 24 47 32 33 30 42|47 24 34 20 42 |37 15 20 27 |28 12 10 27 |43 25 18 |27
mF1l,; UnetBili 26 25 26 18 31 56 34 35 24 41 |55 34 45 27 51 |44 21 29 44 |37 16 22 40 |45 27 20 |35
DeepLabV3 26 26 27 19 29 53 36 35 30 40 |60 37 45 27 50 |48 24 29 44 |38 19 22 40 (45 26 18 |34
A-Unet 26 28 27 19 32 56 36 35 30 41 |60 37 44 27 53|48 24 29 44 |40 20 22 40 |46 29 21|35
SoftSem 28 5 6 5 17 30 6 6 7 20[36 36 28 32 58|28 32 29 79 |32 36 29 77|54 54 38|31
SoftLearntGridPattern | 27 5 3 5 16 30 6 5 7 20[42 35 25 31 57|35 31 30 80 (35 32 30 77|57 55 38|31
EPI UnetBili 22 4 3 3 11 27 5 4 5 17 139 35 25 28 49|30 28 24 77 |28 30 21 70 |50 54 28 |28
DeepLabV3 2 4 3 4 9 27 6 5 6 15139 36 25 28 46 |31 29 24 77 |29 30 21 70 |48 53 17 |28
A-Unet 22 4 3 4 12 27 6 5 6 17139 36 25 28 49|31 29 24 77 |29 30 21 70 |50 55 29 |28

Table 4.5: Agreement between translation results and targeted maps, for the two best
baselines, UNetBili A UNet followed by a resampling layer, A DeeplabV3 architecture
and the A-Unet
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Source P C O Average
Target cC O GI G2 M|P O GI G2 M|P C GlI G2 M
SoftSem 47 46 62 79 81|72 51 76 84 85|71 65 86 86 92|72
SoftLearntGridPattern 52 45 68 80 81|68 57 77 8 85|73 68 86 &89 92|74
OAg: | UnetBili 57 50 69 81 76|69 58 77 86 76 |74 69 86 91 87 |74
DeepLabV3 57 51 70 82 73|69 58 78 86 74 |74 70 8 91 82 |73
A-Unet 57 51 70 82 76|69 58 78 8 78 |74 70 86 91 87 |74
SoftSem 12 18 29 22 26|62 42 56 55 60|47 22 51 30 43|38
SoftLearntGridPattern 13 18 22 25 26 |59 37 50 48 57 |41 28 48 31 41 | 36
mF1lg | UnetBili 21 22 30 26 22|51 36 44 42 38 |52 39 53 34 37 |37
DeepLabV3 21 24 31 26 17 |51 36 45 42 30 |53 39 53 34 32 |37
A-Unet 21 24 31 26 22|51 36 45 42 38 |53 39 53 34 39 |37

Table 4.6: Comparison between translation results and ground-truth for the two best
baselines, UNetBili (a UNet followed by a resampling layer), A DeepLabV3 architecture
and the A-Unet. Unlike the agreement measure, which is computed on the target original
spatial extent, this measurement is computed France-widely.

We compared the different loss functions on the OSO to CLC translation, which we
considered the most interesting variety (44 labels in CLC) of predictable classes (OSO is
highly resolved with 23 classes). Table 4.7 resumes the MF1,, and OA,, of the different
loss functions introduced earlier while Figure 4.14 presents the F1-score per class. Our
observation is that CE obtains the highest OA,; but the lowest mF1,,. All our attempts to
increase the mF1,, score worsens the OA,, metrics; a compromise must be made between
having a higher OA,;/mF1,,. A simple rule of thumb to compare the different losses is to
use the CE as a reference for computing the ratio between the improvement of mF1,; and
the decrease of OA,,. For instance, the focal loss with ov =2 increased the mF1 from 2%
and decreased the accuracy of 1% resulting in a 2/1 ratio. With this strategy, we conclude
that the combined CE and Dice loss offers the best compromise (5/2 ratio).

CE focal a =0.5 focal a =1 focal @« =2 focal « =5 Dice CE-+Dice

OA,; 68 68 67 67 65 65 66
mFl,, 37 37 38 39 40 40 42

Table 4.7: OSO to CLC translation OA,; and mF1,, for different loss functions. The focal
loss is computed with different alpha values.
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Figure 4.14: mF1,, computed between CLC translated from OSO and the original CLC
map for various loss functions.
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4.2.2.4 Conclusion

This section presented experiments on how to consider the spatial context for translation.
We separated our analysis into two parts, the first one studying the potential of manually
defined shape features to help the translation. Although significant improvements are
observed compared to the baselines, we highlighted that using manually defined features
instead of learnt features might be detrimental to the quality of translations. We secondly
proposed a deep learning-based method that jointly analyses the shape of the object a pixel
belongs to and the classes of neighbouring pixels. We obtained significant improvement in
most cases. However, we underlined that the current method lacks spatial generalization
compared to Semantic baselines and is sensitive to target noise. Those problems is
addressed in the next sections.

4.3 Geographic context

Section 3.2 observed that land-cover classes are heterogeneously distributed over France for
various anthropic and bio-physical reasons. The spatial heterogeneity is further increased
by the uneven distribution of errors on the territory resulting from annotation by different
human operators depending on the localisation or local fine-tuning of machine learning
models.

We argue that information about wide-scale spatial heterogeneity, which we refer to as
geographic context, is valuable for translation as information such as "this pizel is in a
mountainous area” drastically influences the probable translation e.g. a forest is probably
composed of coniferous stands. This spatial heterogeneity could theoretically be taken into
account directly by the network if all of France were processed as a single input. However,
the patch-based approach used to circumvent memory limitation prevents it. Answering
how to incorporate geographic context is mandatory.

Section 4.3.1 focuses on identifying potential sources of geographic context suitable for
translation. Section 4.3.2, proposes a methodology to incorporate one of these potential
sources in the A-Unet architecture.

4.3.1 Determining a source of geographic context

To simplify our analysis, the experiments conducted in this section only focus on the
CGLS to CLC translation. This choice is made based on the observation that this small
to high number of classes is a France-wide challenging translation for which the impact
of geographic context should be especially visible. Therefore it simplifies comparison
between methods. The impact of geographical context on other translations is detailed in
section 4.3.1.
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4.3.1.1 Motivation

Section 2.3.2 points out that geographical context is difficult to apprehend as many
elements influence class distribution (topography, climate, anthropogenic factors, pedology,
error paterns ...). Additionally, abstract notions such as distance thresholds can help
translation, e.g. inland wetlands are far from the seashore while maritime wetlands are
not. Designing a geographical context-aware method using the vast amount of multimodal
data sources needed to learn such notions is challenging.

State-of-the-art techniques rely on stratified training in which a separate classifier is trained
for areas with different geographical context [139]. This alleviates the need to incorporate
multiple data sources in training but assumes prior knowledge of homogenous geographical
context areas. For instance, the OSO map is generated by training independent classifiers
on eight different ecoclimatic areas (see Figure 3.3) based on climate variables by [154].
An implementation, termed HardStatEcoCli, is presented in the following section.

From a theoretical aspect, stratified training introduces the idea that each area is completely
independent. For instance, if forests in an area are always composed of coniferous stands,
then translating forest to broad-leaved or water are comparable errors. Indeed resulting
models only use the information of their respective areas and thus do not have access to
more general knowledge. This results in sharp edges between two different areas, e.g. all
forests are translated into conifer in area 1 and broad-leaved in area 2. As geographic
context can be a more progressive gradient, we propose directly feeding a unique model
with using the area identifier as an input feature. An implementation of this method
termed LearntClassEcoCli is presented in the following section.

The core limitation of the two previous approaches is that they often focus on a single
source of geographical context, in the previous example, eco-climatic areas, neglecting all
the other sources. This drastically constrains the potential of geographical context to the
quality of the defined areas. In Section 2.3.2 we observe that land-cover may co-variate
with its spatial coordinates (latitudes and longitudes). Close-by coordinates generally
exhibit similar topography, climate and pedology. Conversely, those geographical variables
are highly correlated to the coordinates. For instance, in France, the temperature tends to
be higher for low latitude values while precipitation tends to be lower, the wind is more
pronounced on the West side of the country due to the proximity to the seashore, and
mountainous areas are only observed at specific latitude and longitude. One could directly
use the spatial coordinates as a proxy to assess geographical context. However, unlike the
eco-climatic areas, the link between the geographical context and the coordinates is not
easy to analyse. We can not easily define a stratified approach in which different models
are trained depending on the coordinates as we do not have direct knowledge of the links
between coordinates and geographical context. Therefore using a machine-learning strategy
to use geographical coordinates as features seems appropriate. A simple illustration is
that once trained to learn the main characteristic of the land-cover map of a country, one
can realise an educated guess on the nature of an element in an area only by knowing its
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coordinates. For instance, if one is asked to guess what is the land-cover map at 48.8566
N, 2.3522° E, he would probably answer buildings, provided he previously learnt that
some close-by coordinates belong to Paris. An implementation of this method termed
LearntClassLatLon is presented in the following section. As the Stratified approach is
the only common strategy in land-cover mapping literature, a comparison with the two
other methods has to be conducted.

4.3.1.2 Experimental protocol

HardStat introduced in Section 4.1.2 assigns to each CGLS class the most frequently
observed CLC correspondent on the training set, 7.e. if CGLS Closed forest pixels are
observed at the same place as CLC Broad-leaved forest pixels 80% of the time on the
training set, then "Broad-leaved forest is the most probable translation for Closed forest.
We underline that HardStat method gives identical results as a random trained to
translate using only one feature (the class of the considered pixel). HardStat is used as a
control to evaluate the gain or benefits of the other methods.

HardStatEcoCli is very similar to HardStat. However, instead of assigning to each
CGLS class the most frequently observed CLC correspondent on the whole training set,
it assigns to each CGLS class the most frequently observed CLC correspondent in the
considered ecoclimatic zone. For instance, if Closed forest pixels correspond at 90%
to Broad-leaved forest in an ecoclimatic area A and at 70% to Coniferous forest in an
ecoclimatic area B, the translation of Closed forest is different depending if the considered
pixels is in area A or B. As predefined ecoclimatic areas are required, we rely on the
same ecoclimatic map as OSO [154]. This method is used as a comparison tool to assess
if learning to analyse the geographical context from features is better than using those
features to perform stratified learning.

LearntClassEcoCli proposes to use the directly ecoclimatic information as a feature
used in a machine learning model. A random forest model predicts the CLC class of a
pixel based on the CGLS class and the ecoclimatic zone it belongs to. This approach offers
the possibility to avoid training multiple independent models as for HardStatEcoCli.

textbfLearntClassLatLon is based on the same idea as LearntClassEcoCli but processes
the geographical coordinates directly instead of the ecoclimatic zone as a feature. A random
forest is trained to predict the CLC class based on the CGLS class and the latitude and
longitude. Three sub-methods are also proposed to study the influence of the coordinates
alone. LearntLatLon only use the coordinates with no information of the CGLS class.
LearntClassLat, only have access to CGLS class and the latitude. LearntClassLon
only have access to the CGLS class and the longitude.

Implementation details: Class used as input features for LearntClassEcoCli and
LearntClassLatLon, are one-hot encoded. Similarly the ecoclimatic areas used as input
features of LearntClassEcoCli are also one-hot encoded. We underline that those
methods are trained on the training patch of the MLULC dataset after applying an
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exclusion buffer on the patch’s edges to limit the risk that the use of coordinates breaks the
independence between the train and test. An arbitrary 2.5km buffer is used based on the
observation that the 25ha and 100m width CLC MMU does not guarantee independence
below, i.e. each patch being 6x6 km wide only a 1timeslkm area in the centre of the
patch is used for training. Additionally, instead of using the exact coordinates of the
considered pixel, each pixel is annotated with the pixel coordinates in the centre of the
patch it belongs to.

4.3.1.3 Results

‘ HardStat | HardStatEcoCli LeanrtEcoCli ‘ LearntLatLon LearntClassLat LearntClassLon LearntClassLatLong
OA,; 54 55 55 49 55 54 61
mFl,g | 13 16 17 | 16 18 17 28

Table 4.8: Agreement measurement computed between CLC and the translation result of
various geographic context aware methods

Table 4.8 presents the results of each of those methods. First, we observe that geographical
context-aware method obtains better results than HardStat. Note that the mF1,, remains
unsurprisingly low as the translation from CGLS to CLC involves translating 12 classes
into 44. Secondly, LearntLatLon perform globally worse than HardStat (-6% OA.,)
while its mF1,, score is higher (+3%). This underlines that a higher class diversity can be
obtained using a pure coordinate analysis rather than the CGLS classes. More interestingly,
the results demonstrate that the simultaneous use of coordinates and the CGLS class
(LearntClassLatLon) can significantly improve the translation into CLC compared to the
HardStatEcocli and LearntClassEcoCli baselines. Lastly, by comparing those results
with those presented in the spatial context section, we observed that the obtained OA,,4
and mF1,, for the LearntLatLon are identical between the A-Unet and this random
forest with CGLS labels and coordinates. This is particularly interesting as it suggests
that for this specific translation, the geographical context might have the same order of
importance as the spatial context.

To better understand how the geographical context can improve the results, we provide the
per-class F1-score histogram for the different methods in Figure 4.15. A first observation
is that HardStatEcocli and LearntClassEcoCli give almost identical results except
for the CLC Bare rock and Water bodies, for which the LearntClassEcoCli get slightly
higher results. This underlines that learning to interpret geographical context, i.e., how to
analyse ecoclimatic areas, might slightly improve translation compared to a stratification
into multiple independent models. The second observation is that the LearntLatLon,
which, unlike other models, has no access to the CGLS labels, outputs a significantly more
expansive number of classes than HardStat, HardStatEcoCli and LearntClassEcoCli.
For instance, it predicts partially classes such as Rice Fields, which are difficult to translate
using only CGLS labels or Climate based indicators. This is explained by the fact that
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those classes are spatially constrained to a limited area, i.e. Rice crops are only observed in
a particular region. Lastly, LearntClassLatLon widely outperforms any other methods.
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Figure 4.15: Per class Fl-score of the translation into CLC for different geographical
context methods. For visibility, only the 26/44 CLC class (non-zero fl-score) are displayed.

Figure 4.16 compares the OA,, of the geographical context methods with the OA,; of
the HardStat method by summarising results on 30x30 km grid. Blue (reciprocally red)
pixels denote the areas where the geographical context method obtains better (reciprocally
worse) results than the HardStat method. As the aspect of the HardStatEcoCli and
LearntClassEcoCli maps are identical, we only provide one for readability. The first
observation is that adding the geographical context does not improve the translation
homogeneously across France. Most of the improvements are observed in the Southern
part of France, mainly in the mountainous areas and the Mediterranean coastline (which
exhibits a specific climate). LearntClassLatLon improved the results in more areas. For
instance, blue parts observed on the west coast are due to the successful translation from
CGLS class Closed Forest" to CLC class Coniferous forest of a vast coniferous forest area,
which is the only one of this size outside a mountainous area inside the French territory
(otherwise it is translated into "Broad-leaved forest").

HardStatEcoCli & LearntEcoCli LearntLatLon LearntCGLSLatLon

OAgt difference (%)

Figure 4.16: Spatial distribution of translation improvement using various techniques
compared to the HardStat method. Blue areas denote the location where the considered
method outperformed the HardStat method, and red areas give the opposite information.
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4.3.1.4 Conclusion

We conclude that the best feature to assess geographical context is the geographical
coordinates as it substantially improves the stratified ecoclimatic training and does not
require incorporating multi-modal data. In particular, our experiments underline that both
latitude and longitude are needed to get a refined analysis of the geographical context. The
achieved translation improvement is not distributed homogeneously across the territory.

Moreover, in the case of the CGLS to CLC translation, the improvement of using coordi-
nates is equivalent to the one fostered by using the spatial context with A-Unet. Therefore
developing ways to incorporate geographical context into the A-Unet appears important.

4.3.2 Incorporating geographical coordinates into a convolutionnal
neural network

4.3.2.1 Motivation

Section 2.3.2 underlined that little work had been conducted on incorporating geographical
coordinates in machine learning frameworks, especially on convolutional neural networks.

The few works addressing this issue underlined the difficulty of using GPS coordinates
directly as the input of a neural network [348]. However, they did not formulate hypotheses
on the underlying reasons and simply observed that very fine location indicators such as
GPS coordinates are difficult to analyse for the classifier [294].

In natural language processing, the position of words in a sentence is often used to improve
the translation. These word positioning problems share with geographical coordinates
the idea that training and testing values might differ, i.e. No sentence in the training
data is 24 words long, but some sentences of the testing data are. To tackle this problem,
a positional encoding strategy was proposed by [318] (See Section 2.3.2). It transforms
the coordinates using a fixed set of size 2d composed of cosine and sine functions with
different frequencies. Let x be the considered position in an input sentence, pj c R9 be
its corresponding encoding, and d be the encoding dimension. Then f : N — R? is the
function that produces the output vector Eﬁ and is defined as shown in Equation 2.9.
The attracting aspect of this transformation is that it ensures that all positions have a
unique encoding while ensuring that this encoding value always remains in a constant
range between -1 and 1. Moreover, close by values remains close by in the encoding; for
instance, the cosine similarity between the encoding of position one and position 2 is higher
than between position 1 and 9. This is interesting as it might help the network to find
relations of proximity between objects which we previously underlined as important for
land-cover map translation.

Section 2.3.2 pointed out that positional encoding is also used in computer vision to break
the translation invariance of convolution by encoding pixel location e.g. to distinguish the
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upper left pixel of an image from the right bottom one. However, no guarantee exists on
the efficiency of positional encoding for geographical coordinates as the problem exhibits
widely different characteristics. First, the proposed approach should not break pixel
translation invariance as geographical context on 6kx6 km patches is homogeneous, e.g. a
forest in the upper part of a patch should be treated the same way as one in the bottom.
Consequently, all pixels of the same patch should have the same positional encoding.
Instead, the approach aims to break the patch invariance to translation, 7.e. the same
patch in the North and South of France should be translated differently. Secondly unlike
pixel coordinates which are the same for training and testing patches, 7.e. the first pixel
is a notion existing both for training and testing, geographical coordinates are different
between training and testing. It requires a generalisation ability that is not required for
pixel positional encoding. We present in the following sections the experiments conducted
to evaluate the potential of positional encoding on geographical coordinates.

4.3.2.2 Methods

Figure 4.17 resumes the different experimented methods concisely. All the presented
methods only have access to the coordinates of the patch’s centre pixel instead of providing
each pixel’s geographical coordinates. This directly stems from the observation that
geographic context is defined as wide-scale context, 4.e. is the same on a 6x6 km? patch,
and that using per pixel location would break the translation invariance as discussed
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Figure 4.17: Presentation of four different methods (purple boxes) to add geographical
coordinates to A-Unet. Each methods is used independently.

As a simple reference baseline, we propose to concatenate to the input map two new
dimensions, one with the latitude and one with the longitude value. This simple baseline

is referred to as the ConcatCoord method.

As a more evolved solution, we propose feeding the coordinates to a small multi-layer
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perceptron to learn a coordinate embedding that can be added to the network. MLPCoord
adds the output of the MLP to the bottleneck of A-Unet so that the positional information
only influences a coarse scale using simple addition. MLPCoordFilter is identical to
[49], one of the only approaches found in the literature using geographical coordinates. It
adds the output of the MLP at the end of the network.

Lastly, we propose MLPPosEnc which use the same strategy as MLPCoord method,
but using the positional encoding before the MLP discussed earlier. Unlike the traditional
sequence-to-sequence architecture, the positional encoding must be in 2D to integrate both
latitude and longitude. The authors of [235] proposed a strategy for image coordinates:
rows and columns are independently encoded and then concatenated. We adopt the same
strategy with the latitude and longitude coordinates. Let x and y be the longitude and
latitude. py,, is the corresponding positionally encoded matrix. d is the dimension of the
encoded matrix, corresponding to the number of feature maps generated by the CNN layer
where the positional encoding is added.

[ sin(xwy) ] [ sin(ywr) ] [ sin(xwy) ]
cos(xwi) cos(yws) cos(xwi) .
Px = Py = : Px,y = : with w; = 10000279
sin(xwq/a) sin(ywq/a) sin(ywdya)
| cos(xwaqya). a/2 | cos(ywaqa). a2 | cos(ywaya). J
(4.7)

The resulting encoding py, is given to a one layer perceptron to preprocess the positional
encoding. Adding more layers did not show significant improvement in our results.

4.3.2.3 Results

Table 4.9 presents the agreement measurements for the four different geographical coor-
dinates encoding methods. We underline that for processing times concerns, we did not
train each of the 26 models a dozen times to obtain a standard deviation estimation of
each approach and thus can not conclude on the statistical significance of each value of
the table. However from experience, we estimate the OAg and mF1,, variations between
training to be between +0.3% for OA; and £1% for mF1,,. We additionally provide in
Figure 4.19 the per-class metrics of the OSO to CLC translations with error bars indicating
the standard deviation over 10 independent training to give an insight into the training
variability.

A first observation is that the ConcatCoord obtains slightly worse results than not
using coordinates. This is directly linked to the fact that it enforces learning maps and
coordinates features with the same first convolution layer despite being unrelated.

Interestingly, the MLPCoord approach obtains almost identical results as using the
A-Unet without coordinates confirming that using geographical coordinates directly is
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not efficient as explained in other studies [294]. Even though the MLPCoordFilter
proposed by [49], slightly improve the results, the proposed MLPPosEnc achieve a more
significant improvement (+1% OA,; and +3% mF1,;) encompassing wide per translation
differences from -2% to +8% OA,; and -3% to +12% mF1,,. Explaining the reason for
each improvement /non-improvement for each translation is unfeasible as it depends on
the source and target nomenclature complementarity, but some general rules are observed.

In general, the biggest improvements are observed when translating OCSGE cover and use
into CGLS, CLC and OSO. This can widely be imputed to the peculiar spatial extent of
OCSGE (see Figure3.4), i.e. divided into two areas, one in the North and one in the South.
The North and South parts belong to widely different ecoclimatic areas conditioning many
translations. For instance, OCSGE use Forestry mainly concerns Broad-leaved trees in
the North and Coniferous in the South, and OCSGE cover Herbaceous vegetation
mainly includes pastures in the North and croplands in the South. Geographical context
incorporation help to translate each part of the map independently. Even though this
difference in geographic context also helps to translate CGLS, CLC and OSO into one
another, their France wide-extent partially reduces the quantitative impact of this improve-
ment. For instance, trees in the south part of OCSGE account for approximately 10 15%
of CGLS, CLC and OSO trees (France wide maps) but for more than 50% of OCSGE.
Thus the maximum improvement on tree translation by adding geographical context in
the south part is 10 15% for France-wide maps while being close to 50% for OCSGE.

Conversely, using coordinates brings no improvement or worsens the results when the
source map or target is the MOS map. We link this behaviour to the fact that the MOS
is by far the one with the smallest spatial extent (around 2% of France’s territory). The
geographical context is almost the same in all areas, making the geographical coordinate
encoding useless. Moreover, we observed some overfitting of the network due to the small
number of coordinates which downgrades the results on the test set.

Source [ CGLS (7) CLC () 050 (0) OCSGE cover (G1) [ OCSGE use (G2) [ MOS(M) | .
Target [C 0 Gl Gz M|P O GI Gz M|P C Gl G2z M|P C 0 Gz [P _C O GI|P _C 0| o
NoCoord 62 55 68 78 76|73 58 72 80 79|77 63 79 86 85|68 54 56 92 |67 49 49 79 |84 82 63 71
ConcatCoord 62 54 68 78 76|72 58 72 79 79|77 67 79 86 85|68 54 55 92 |66 48 49 79 (83 82 63 70
OA | MLPCoord 63 55 68 78 76|73 58 T2 80 79|77 68 79 86 85|69 55 57 92 |67 51 50 79 |8 8 63 71
MLPCoordFilter 63 56 68 78 76|73 58 72 80 79|77 68 79 86 85|69 56 57 92 67 52 51 79 |8 82 63 71
MLPPosEnc ‘65 57 69 78 76|75 59 73 80 79|77 69 80 8 85|71 58 58 93 69 54 53 79 |86 84 64|72
NoCoord 26 28 27 19 32 |56 36 35 30 41|60 37 44 27 5348 24 29 44 40 20 22 40 |46 29 21 35
ConcatCoord 26 28 27 19 32 56 34 35 30 41|60 37 44 27 53(47 25 20 44 |41 20 22 40 |46 28 21 35
mF1 | MLPCoord 27 28 27 19 32 [56 36 36 30 41|60 38 44 27 53 (48 27 20 44 |43 22 23 40 [45 29 21 35
MLPCoordFilter 28 28 28 19 33|56 36 36 30 41|60 38 44 27 53|49 29 29 43 45 23 24 40 |45 29 22 36
MLPPosEnc ‘30 29 30 20 33|58 37 38 30 41|61 40 45 27 53|52 34 31 43 52 29 25 40 |45 30 23|38

Table 4.9: Agreement between the translation results of the different geographical coordi-
nate aware models and the target maps. The backbone network is A-Unet.

Table 4.10 presents the results of the different geographical coordinates encoding methods
on the ground truth. Translation learnt on France-wide source to local extent target
can not be used to produce France-wide target using geographical coordinates encoding
methods as only local extent coordinates are seen during training. Therefore metrics
computed on the France-wide ground truth can only be computed for the six France-wide
sources to France-wide target translations. This, of course, represents a major limitation
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to the method that is addressed in the next chapter. The observations of the ground truth
results confirm the improvement observed in agreement metrics, ensuring that observed
improvements are not due to a higher ability of the network to replicate target errors when
using coordinates.

Source CGLS (P) [ CLC (C) [ 0SO (O)

Target c O P O P C Average
NoCoord 57 51 69 58 74 70 63
ConcatCoord 56 51 69 57 73 69 63

OA  MLPCoord 58 52 69 58 74 70 64
MLPCoordFilter | 58 53 69 58 74 70 64
‘ MLPPosEnc 60 55 70 59 |75 71 65
NoCoord 21 24 51 36 53 39 37
ConcatCoord 22 24 51 36 53 40 38

mF1 MLPCoord 22 25 52 36 53 41 38
MLPCoordFilter | 24 25 52 36 53 42 39
| MLPPosEnc 27 28 |53 36 |56 45 |4l

Table 4.10: Comparison between the different geographical coordinates aware models
translations and the ground truth. The backbone network is A-Unet. Only translations
for which the source and target spatial extent are France-wide can be computed.

To evaluate the ability of the network to interpolate geographical context from a limited
number of training patches, Figure 4.18 presents the evolution of the agreement metrics
depending on the training size for NoCoord and MLPPosEnc. The validation and test
patches are fixed and represent each 5% of patches. A first observation is that NoCoord
and MLPPosEnc results stabilized at the same training size (between 70-80% of all
patches). It underlines that using the coordinates does not imply increasing the training
size compared to a no-coordinate approach. We also observe that even when only 5% of
the patches are in the training set, the MLPPosEnc gives slightly better results than the
NoCoord one. We conclude that using coordinates is never detrimental. Lastly, using
40% of patches to train MLPPosEnc gives the same results as using 90% with NoCoord
underlying the vast potential of coordinates to reduce training size.

60

0 20 40 60 80 100
Percentage of data in the training set
—e— OA NoCoord —e— OA MLPPosEnc mF1 NoCoord mF1 MLPPosEnc

Figure 4.18: Agreement for OSCGEu to CLC translation depending on training set size.

107 / 295



mmm NoCoord m== ConcatCoord MLPCoord mw== MLPCoordEndFilter mw= MLPPosEnc

08

06

mF1l

04 I [ I

o —

B S S AR AnRedegddd NN R

< — — LS B T |
IS8 S SFARNYRIIZTAA
lass

0.2

00 . III ‘l
N 8

111

IS

0313
o321

LC

Figure 4.19: Per class agreement F1-score of the OSO to CLC translation using the different
coordinate encoding methods. Errors bars are computed as the standard deviation over 10
indepent training. Only the 37/44 CLC classes with non zero F1-score are displayed for
readability.

4.3.2.4 Conclusion

We first focused on determining potential data sources of contextual information. Instead
of adding all the multi-modal data that could provide geographic context information,
we propose to use the geographical coordinates directly to improve the translation. By
comparing the result obtained by a random forest trained to use coordinates with one
trained using Ecoclimatic areas, we obtained an intuition of the high potential of using a
coordinate approach.

The second section investigates how to incorporate those coordinates to a convolutional
neural network. Inspired by recent advances in natural language processing, we proposed
to use positional encoding to ensure that the coordinate feature extraction learnt on the
training set transfer well to the test set. The results demonstrate the effectiveness of
the method in improving translation accuracy. However, this solution suffers one main
limitation: it requires the training data to be more or less homogeneously dispatched
over the studied area. This is not an issue as long as no spatial generalisation is needed
but it becomes problematic if one wants to increase the spatial extent of a target map
using a wide extent source. We address this issue in Section 5.1. Additionally, we point
out that since no comparison between the MLPPosEnc method and a stratified training
based on EcoClimatic areas was conducted during this PhD, no conclusion is made on
the hypothetical superiority as results obtained using the random forest algorithm are not
transferable to those obtained with a CNN. However, we underline that unlike the current
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state of the stratified art training, the MLPPosEnc does not require pre-defined knowledge
of the area and only needs to train a single model.

4.4 Temporal context

This section focuses on the impact of temporal context and how to integrate it. We
distinguish two underlying kinds of temporal context. The semantic temporal context, dis-
cussed in Section 2.3.3.1, is the one directly implied by the source and target nomenclature
definitions. For instance, CLC Rice fields definition states, "As part of regular cultivation
cycle, rice fields are occasionally left fallow for 1-3 years. These parcels are considered to

be rice fields, too."

and the "Pastures" definition states "Lands that are permanently used
(at least five years) for fodder production.". Conversely, the "Rice crops" definition for
OSO only includes rice fields cultivated in the considered year. Thus the translation from

0OSO to CLC requires three years of OSO maps to perform the correct translation.

The second one, we refer to as the temporally constrained context describes the potential
temporal gap between the source and target used for learning. For example, translation
from OSGEc to CLC involves learning the translation from a 2014 map to a 2012 or
2018 map. This temporal gap constraint is not a problem for traditional semantic-based
methods as they do not learn the translation on existing maps. Conversely, it could
represent a considerable limitation if this temporal gap significantly affects the translation
results. This section investigates those two temporal contexts separately. We exclude from
this study the use of image time-series to preserve a pure land-cover translation approach.

The following experiments focus on the OSO to CLC translation, as (i) CLC is the maps
with the highest number of classes with temporal context (ii) 3 consecutive years of OSO
maps (2016, 2017, 2018) can be used for CLC 2018 translation. The CGLS-LC100 to CLC
translation could have also been studied as four consecutive years of CGLS are available
but would have been more challenging to analyse due to the lower diversity of predictable
classes using CGLS and the high error rate of the original CGLS product. Eventually,
since the OSO 2016 and 2017 nomenclature merges most of the agricultural classes into
two superclasses, Summer crops and Winter crops, we perform similarly for the OSO 2018
products, i.e. all the OSO products included 17 classes.

4.4.1 Multitemporal source translation

4.4.1.1 Motivation

Section 2.3.3.1 underlines that state-of-the-art for incorporating multitemporal information
into a classical land-cover map generation problem involves analysing a large time series
of images. The literature shows the current superiority of correctly encoding the temporal
context provided by satellite image time-series into a deep-based architecture (using
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Transformers or Recurrent Neural Networks with adapted cells) w.r.t. manually defined
features based on the variation of given spectral indices.

However, taking into account temporal context in the land-cover map translation case is
widely different due to the difference in nature of the problem and data availability :

e Temporal ordering does not matter: nomenclature definition such as CLC "Rice
Field": "[...] rice fields are occasionally left fallow for 1-3 years. [...]" does not include
a notion of temporal ordering, i.e. it does not matter if the field was occupied by
rice the last year, two years ago or three years ago but only that it was occupied by
rice once during the three years.

e We do not have access to substantial temporal stacks of land-cover maps: most
land-cover maps have been produced for less than ten different periods, many of
them only once.

The limited and irregular temporal sampling through decades of LC maps prevents from
designing a specific method for temporal information extraction. We assume assume that
using a simple approach, such as concatenating multiple versions of the source maps, is
sufficient to achieve improvement. We instead focus on understanding the reason behind
the potential improvement. Especially as the fusion of multiple dates of a source requires
frequently updated land-cover maps, the method discussed here is mainly intended to
be used on automatically classified land-cover maps (ACLC). Section 2.3.4 pointed out
that those ACLC exhibit particular spatial error patterns that might vary depending
on the year due to changes in the classification algorithm or in the data used. When
attempting a multitemporal analysis on such source, learning different features per year
could improve translation results by better detecting source errors rather than exploiting
temporal context. We argue that understanding the reason behind potential improvements
is crucial for future studies on multi-temporal map denoising. Refer to Section 5.2.1 for a
more elaborate way than concatenation to incorporate multiple sources of data information
(such as images, maps, Digital terrain model).

4.4.1.2 Experimental protocol

We compare three methods with different temporal information extraction power:

Concat feeds the network with a temporally ordered concatenation of OSO 2016, 2017,
and 2018. Since input is one-hot encoded, we underline that the first 17 channels describe
OSO 2016, channels 17 to 34 describe OSO 2017, and the remaining 34 to 51 OSO 2018.
In this setup, the network might learn different features for the same land-cover class
depending on its year of observation.

Shuffle randomly exchanges the temporal order of the concatenation for each patch, e.g.
in one patch, the first 17 pixels describe OSO 2018 while in the other patch, the first 17
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channels describe OSO 2017. In this setup, the same features are learnt for all years for
a given land-cover class. However, the learnt features can be oriented towards detecting
some error patterns specific to a given year, e.g. focus on distinguishing OSO 2018 roads
which are far less erroneous than other years and exhibits different spatial pattern.

Mean replaces the concatenation by the temporal average of one-hot encoding. For

instance, in a two-class setup a pixel classified as class one during two years and as class
2 1
373
ordering making it difficult for the network to learn year-specific features.

two during one year is encoded as e = [£, 2]. This encoding is independent from temporal

Theoretically in a scenario where a multi-temporal analysis only benefits from the temporal
semantic context, the results of this three methods should be identical, i.e. temporal
ordering should not matter. A higher score of the Concat compared to other methods
would indicate that learning custom feature per year is beneficial for the translation, which
could be linked to a higher ability to identify source errors.

To comfort the distinction between improvement fostered by semantic context from those
fostered by a higher ability to compensate source errors, CLC classes with annual temporal
context elements are manually identified (see definitions in Appendix D). This results in
the selection of 10/44 CLC classes which should be the only to one to benefit from the
multitemporal analysis under a no-noise compensation scenario. It mainly concerns, crop
oriented classes such asNon-Irrigated arable land and Rice fields (crop rotation with fallow
land period) or Pastures ( used for fodder production at least for 5 years) and natural
landscapes such as Natural Grasslands (no human influence for long period), Moors and
heathland and Sclerophyllous vegetation (includes crops left fallow for 3 years and more),
Transitional woodland/shrub (includes recently cut/reforested areas), Burnt areas (recently
burnt) and Glaciers and perpetual snow (permanent over several years). Those classes are
displayed in green in the per-class histograms of the results section.

Lastly, OSO 2016 to CLC 2018, OSO 2017 to CLC 2018 and OSO 2018 to CLC 2018
translation results are presented as control values to evaluate the benefit of a multi-temporal
analysis over a mono-temporal one.

4.4.1.3 Results

0S02016 0S0O2017 0OS0O2018 Mean Shuffle Concat
OA,; | 68 68 68 68 68 69
mF1,. | 37 39 37 39 40 42

Table 4.11: Average over ten independent training of the agreement metrics for the OSO
to CLC translation in different temporal configurations

Table 4.11 presents the translation results from OSO to CLC using the multiple methods
described above. A first observation is that the Concat multi-temporal analysis improves
translation quality, especially in mF1,, (+5%). The fact that the Mean and Shuffle
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methods perform worse than Concat underlines that temporal ordering does matter. As we
pointed out that CLC class definitions don’t include temporal ordering notions, we assume
that the main benefit of ordered temporal sequences is to enable the network to learn
year dependent features describing year specific noise patterns rather than exploiting the
temporal semantic context. To obtain a rough estimate of the proportion of improvement
due to better noise detection or temporal semantic context, we provide Figure 4.20
presenting per class results. CLC classes, including a multi-year temporal criterium in
their definition, are displayed in green.
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Figure 4.20: Agreement F1-score per class for the OSO to CLC translation in different
temporal scenarios. CLC classes including multi-year temporal criteria in their definition,
are in green. Red values indicates CLC classes with no such criteria but a high gap between
one of the multitemporal method and the per-year methods. Only CLC classes with a
non-zero F1 score are displayed for visibility. Errors bar are computed as the standard
deviation of 10 independently trained models.

First, we observe that the three proposed method gives almost always better results
than mono-temporal analysis. However, in most cases, the improvements are small,
e.g. 112:Discontinuous urban fabric mF1 is, on average, 2% higher using Concat than
only one date. Focusing on the "green" classes reveals that only three of the 8 classes
benefit significantly from a multitemporal analysis: 211:Non permanently irrigated crops,
231:Pastures, 321:Natural Grasslands. In the remaining 5 classes, the incorporation of
multitemporal data did not increase the results. Additionally, looking at red classes
reveals that the most significant improvements are observed on classes with no temporal
constraints, such as 124:Airport or 313:Mized Forest. We highlight that in those cases
the Concat method usually performs better than the two other methods. We directly
link those improvements to special error patterns varying across years of the OSO map,
e.g. Airports roads in OSO are widely imprecise, and a change in data used for training
fostered a difference in the road’s spatial distribution in 2018 compared to other dates.

We comfort the constatation that learning custom per-dates features counteracts the noise
in the source map by observing that only 4 out of the eight predicted "green" classes
exhibit the same results for the three implemented methods: 231:Pastures, 311:Natural
grassland, 313:Scelorypyllous vegetation, 314: Transitionnal Woodland/Shrubs. In four
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other cases, the Concat method performs better than the two other methods.

To sum up, we conclude that conducting multitemporal source land-cover translation is
beneficial for the quality of translation. We underline that the main improvement is not
due to a higher ability to analyse the temporal semantic context, as all three methods
should perform equally (only =~ 1-2% mF1 improvement). Instead, we link most of the
improvement to a higher ability to identify source errors by enabling learning custom
features per date (+5% mF1).

4.4.2 Temporal gap effects

4.4.2.1 Motivation

Ideally, source and target used to train our models should represent the same time period.
Unfortunately, under operational uses, many land-cover translations can not be learnt on
pairs of temporally matching sources and targets. This temporal gap inherently affects
the training procedure by adding some label noise, i.e. each source pixel is learnt to be
translated into what was or will be its corresponding target class in the past/future.

The amount of temporal gap induces noise correlated to the land cover change proportion
observed between the two dates. This proportion depends, of course, on the temporal gap
size and the spatial extent, i.e. some areas are prone to land-cover change. Additionally,
land cover change proportion also highly correlated to the resolution, i.e. small changes
are more likely, and nomenclature, i.e. the most probably changing classes over time, are
crops-oriented classes.

In this section, we assume that land-cover map changes slightly between two dates as
long as the period considered remains modest (within ten years), the considered spatial
extent is wide enough (country scale), and the nomenclature is not focused on temporally
changing classes. For instance, less than 2% changes are observed for CLC 2012/2018,
MOS 2012/2017 and CGLS-LC100 2015/2018 over France. We hypothesise that under
those assumptions learning land-cover map translation with a temporal gap between source
and target should not bring detrimental changes to the translation quality as it induces a
reasonable amount of noise (2%) compared to the noise inherently included in the land
cover maps (e.g. CGLS product is only 72% accurate). This section focuses on testing
this hypothesis by proposing three different operational setups with different temporal
gaps to evaluate the robustness of the method to this temporal induced noise.

We underline that in the special case of the OSO, those assumptions are not met. In-
terestingly a stable 25% +1% change is observed between all the different combinations
of periods between 2016 and 2019, i.e. the 25% change between OSO 2016 and OSO
2017 is also observed between 2016 and 2019 or 2017 and 2018. We links this behavior
to OSO crop nomenclature with an annual rotation between summer crops and winter
crops explaining 15%. The remaining 10% is mainly observed on erroneous areas or edges
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between different land-cover types. As those circumstances add a considerable amount
of noise, we consider that a specific method robust to label noise must be designed and
address this issue separately (see Section 4.5).

4.4.2.2 Experimental protocol

To evaluate the robustness of the method under a reasonable amount of changes, we present
three scenarios corresponding to different time gaps between source and target land-cover
maps and, subsequently, three specific operational use cases. Two reference years for CLC
(2012 and 2018) and two for OSO (2016 and 2018) are selected. The experiments are
conducted on CLC at level 2, which exhibits a 15 classes nomenclature, to simplify the
analysis.

Scenario 1 corresponds to a scenario aiming for the automatic extension of CLC to a
broader area, assuming that CLC has not yet been generated over a full area of interest. It
could be particularly relevant for the forthcoming editions of CLC: one would only need to
generate a high-quality sample version on specific areas, and our framework could fill the
gaps. This methods trains and tests on OSO 2018 and CLC 2018. This scenario represents
a no-temporal gap setup.

Scenario 2 corresponds to the updating operational setting. First, a translation model is
trained on a pair of pre-existing OSO and CLC products. Then, the model is applied to
the OSO product of the year for which the new CLC map is to be produced. We assume
that the most recent OSO product is 2018 and that we want to produce CLC 2018. The
translation model is trained using CLC 2012. We choose to pair it with OSO 2016 to
minimize the disagreement in the training data caused by land-cover map changes. In this
scenario, OSO 2018 is translated with the learnt model, and CLC 2018 is used as reference
data for validation.

One limitation of Scenario 2 is that if the learning algorithm can cope with discrepancies
in the training data, it may be better to use the most recent OSO map in the training
phase. This would allow taking into account the evolution of land-cover map, which
does not affect the translation itself. For instance, one could assume that climate change
makes wetland areas dryer. It would not introduce a change between CLC 2012 and CLC
2018 (dryer wetlands are still wetlands) but could introduce an evolution in OSO. Indeed,
OSO does not have wetland classes, and wetlands in CLC correspond to water, sand,
grasslands or moorlands in the OSO nomenclature. In this situation, some CLC wetlands
could transition from water to sand, grassland or moorland. This would mean that the
translation rule learned between OSO 2016 and CLC 2012 could not be applied to OSO
2018. In order to assess this situation, we propose Scenario 3, in which the translation
model is trained by pairing CLC 2012 with OSO 2018. This model is then applied to OSO
2018. CLC 2018 is used for validation. The underlying assumption is that the model fails
to learn some of the associations imposed by the training data that correspond to real
changes from the point of view of the CLC nomenclature.
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4.4.2.3 Results

As the scenarios gives almost identical results visually this section focuses on quantitative
assessment. We provide a web interface to visualize results at a France-wide scale for
scenario 2 at https://oso-to-clc.herokuapp.com/.
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Figure 4.21: mF1 obtained by performing ten different initializations of the network for
each scenario. Error bars indicate the standard deviation over the 10 trials.

Figure 4.21 presents the per-class results of the different scenarios computed on the ground
truth. The original CLC 2018 level 2 map is also compared to our ground truth (achieves
a 86% OAg:, 85% mF1,). The first scenario, which translates OSO 2018 into CLC 2018
in both the train and test phase, obtains an 81% OA, and a 63% mF1,. The second
scenario, training a model to translate OSO 2016 into CLC 2012 and then using it in
the test phase to translate OSO 2018 into CLC 2018, achieves a 79% OAg:, 60% mF1,,
slightly under-performing the first scenario, especially on urban classes. This could partly
be explained by the difference between the OSO 2016 and 2018 products in per class
thematic accuracy. Additionally, it could also be imputed to the difference between the
regularisation needed to correct land-cover map changes between OSO 2016 and CLC
2012 versus OSO 2018 and CLC 2012. The third scenario translates OSO 2018 into CLC
2012 with the underlying hypothesis that changing areas between 2012 and 2018 are only
considered as additional noise achieves a performance qualitatively and quantitatively
similar to the first scenario (81% OAg:, 61% mF1,). This scenario obtains reasonably
good results while not needing a common time stamp of the source and target for learning
(scenario 1) and no older source map (scenario 2).

The analysis of the three scenarios reveals that, under the mentioned constraint of learning
the translation with a limited temporal gap between the source and the target and on a
wide spatial extent, the temporal gap does not deteriorate the results. Interestingly this
statement holds for all classes.
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4.5 Cartographic Context

4.5.1 Motivation

The image to the landcover classification paradigm often faces reasonable amount of noise
in the input image while the label noise in the target used for training is often unknown.
Conversely, translation between cartographic products involves working with significant
label-noise in both source and target (5 to 30% errors) for which the noise distribution
is most of the time known in the form of a confusion matrix provided by the land-cover
maps producer.

Precisely estimating the impact of source and target label noise on the translation training
is unfeasible at large scale as it would require noise-free data. However, we still can
estimate the proportion of errors replicated by the translation as the gap between OA,,
and OAg; for translation between France-wide maps (-2% to +7% taking into account a
+2% uncertainty on OA,:). We argue that developing a method that could reduce this
overfitting to target errors could increase the results by approximately up to 7%.

This section focuses on how to tackle target label noise which we believe more impactful
than source label noise. Source errors are already partly compensated by learnt translation
as 1) they define translation on real data, i.e. they also learn to translate erroneous source
pixels into the expected target classes ii) the approach relies on spatial context analysis,
e.g. roads misclassified as urban areas can be identified based on their linear shape and
correctly translated. Moreover source errors can also partially be compensated by the use
of multi-temporal inputs (previous section), or multi-modal data (next chapter).

4.5.2 Idea

As underlined in the literature review, learning with noisy target labels has been a core
subject in the machine learning community for decades. However, limited work has been
conducted on the specific case of semantic segmentation (per-pixel classification) and
land-cover mapping field. Using the classification of [284] mentioned in Section 2.3.4, we
underline that current methods used in the land-cover field are mostly based on building
architecture performing sample selection [5, 179, 338] (detect noisy elements and corrects
or remove them from training) or regularization [132]. We believe this is detrimental as
some interesting specificities of land-cover mapping and semantic segmentation could help
build a custom loss adjustment-based solution to improve the quality of the translation.

First, semantic segmentation exhibits a considerable difference from other classification
problems. When performing a per-image classification, the network can only access a very
constrained sample of classes per iteration. For instance, the current state of the art on
the Image-Net dataset used a 128 batch size on a dataset with 120 classes. This implies
that, at best, each class has a unique sample at each iteration. This is not the case in
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semantic segmentation. For instance, in our case, with a batch size of 30 and a 600x600
patch size, we might have access to multiple thousands (even millions) of examples for
almost all classes (except the very spatially constraint one) as each pixel corresponds to a
single classification.

Secondly, when classifying standard computer vision datasets such as image-net, no
information is provided on the per class noise as it was never assessed. Conversely, one
specificity when working with land-cover maps is that most of them are provided with a
confusion matrix to assess the quality of the product. We refer to the confusion matrix
as a noise transition matrix for coherence with works on noisy label correction [237].
Interestingly we did not find previous works that integrate those noise transition matrices
in the loss function in the land-cover field, while this strategy was proposed several years
ago in computer vision. Those strategies apply the idea that the loss function can be
corrected using the noise transition matrix as per-instance information, i.e. if one element
is T; in the target map but is 80% of the time truly T; and 20% T;, then the network
should predict this element as 80% T; and T; 20%.

Those strategies appear widely sub-optimal as we have access to numerous examples of
each class. Indeed the knowledge that T; is 80% of the time truly T; and 20% T; does not
truly reflect per-element information. In reality T; elements should either be T; at 100%
in 80% of cases and T; at 100% in 20% of cases. Instead of performing a per element loss
correction, the loss correction should use the distribution of target labels. For instance,
if there are 10° pixels of class T; in the target map, then the network should predict
8 x 10* T; and 2 x 10* T; each with a 100% confidence. To our knowledge, this strategy,
which involves knowing the noise transition matrix and having access to large enough class
distribution at each iteration, has never been explored.

4.5.3 Experimental Protocol

As we evaluate the quality of the translation on our ground truth the source map usable
in this experiment only includes CGLS, OSO and CLC. Experiments are conducted on the
0OSO to CGLS translation as translating into CGLS is the most complicated from a noise
point of view (28% noise) and is not ill-defined due to a higher target spatial resolution
(as the CLC to CGLS translation).

Implementing a distribution-based loss correction error The proposed solution is
inspired by [202] consist in matching distribution for label super-resolution. We process in
in three steps.

First, we need to evaluate the class distribution from the network output in a differentiable
way. We first apply a softmax layer to obtain per-class confidence between 0 and 1, with
all the per-class confidence summing to one for each pixel. Let pj’-' (X = k) be the predicted
confidence value for the i*" pixel to be of class k while being annotated as class j in the
target, then Oj(k) defined in Equation 4.8 approximates the number of pixels labeled as j
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in the target and k by the network:

O;(k) = Z p}(X = k) with n; the total number of pixels of class j in the target.
i=0

(4.8)
As the number of pixels labeled j might vary from one iteration to the other, we normalize
O;(k) by the n number of pixels labeled j, which gives the probability that a pixel labeled
J in the target is labeled k by the network (Equation 4.9):

(k) = ——. (4.9)

Secondly, we need to have access to the probability that an element labeled j in the target
is, in truth k. This is given by the noise transition matrix available with most land-cover
maps. We denote this value N;(k). In our case, we can either evaluate this noise transition
matrix directly using the manually built ground truth or the official noise transition matrix
provided with the dataset. Using the same ground truth for obtaining N;(k) than the one
used for evaluating the results might overestimate the proposed method’s potential by
informing the network of the ground truth distribution used at test time. We always use
the official confusion matrix unless explicitly mentioned otherwise.

Thirdly, we evaluate the difference between the previously defined discrete probability
functions P; and N;. We compute Kullback-Leibler divergence between the predicted class
distribution P; and the expected one N; for all pixels denoted j in the target as defined in
Equation 4.10:

c

N;(k
KL;(P;||N;) = N;(k)log (%) with c the total number of classes. (4.10)
k=1 J

This loss could theoretically be computed for each target class, outputting a divergence
for each class distribution and averaged. However, this method would give the same
weight to all class distributions, which would be widely detrimental to the OAg by giving
equal weight to rare and frequent classes. We propose to proceed to a weighted by class
proportion mean of those Kullback-Leibler divergence measurements giving the Noise
Divergence loss defined as:

“~ KL;(P;||N;)n;
LND ZE J( CJH J)nJ. (411)
=1y
1=1

Our first experiment consist in using the Noise Divergence loss to train a network and

compare the obtained OAg and mF1, with the one obtained with the Cross-Entropy.

Studying the importance of the noise quality matrix As this method relies on
a noise matrix obtained from the land-cover map provider, the quality of this transition
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matrix is uncertain. More specifically, as most confusion matrices are computed on
size-limited ground truth, per-class confusion might be widely inaccurate.

Moreover, the confusion matrix provided by the land-cover map is not necessarily computed
to the same spatial extent as the one on which the translation is performed. For instance,
the CGLS official confusion matrix for level 2 is only available at global scale. As error
patterns can vary depending on the regions, it might be significantly different from one
computed on France only. Thus it appears crucial to test the method’s robustness to the
quality of the noise confusion matrix.

We designed two experiments. The first compares the OA,; and mF1, obtained when the
Lnp use the official noise transition matrix or the ground truth noise transition matrix.
Lnp using the ground truth should provide an upper bound of possible results as it partially
breaks the independence between training and testing (should only be used as a comparison
tool). The results obtained by the Lyp using the official CGLS noise transition matrix,
which appears significantly different from the one obtained on ground truth (Figure 4.22),
provide a first insight into the method robustness to errors in the noise matrix.
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Figure 4.22: Probability for each CGLS class (in row) to be confused with one another (in
column) according to the official confusion computed worldwide (left) or on France-wide
ground truth (right). The Black line indicates that there is no "Moss and Lichens" on the
France-wide extent.

—+0.0

A second experiment introduces various noise levels in the official noise transition matrix.
Noise in land-cover maps is directional, ¢.e. all errors are not equiprobable. To preserve the
erroneous class distribution, we redistribute the additional noise in the same proportion as
the one observed in the original matrix, i.e. if we increase the CGLS official noise transition
matrix by a 5% ratio, CGLS 1:"Closed Forest" will have Nj(1) = 0.95N;(1) = 0.95 % 0.82.
Let ccers denotes the number of CGLS classes (12), the remaining transitions are computed
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according to Equation 4.12:
Ni(k)

Ny (k) = Ny(k) + (Ni(1) = Ny (1)) g5 :
Ny (i)

(4.12)

Comparison with other methods We propose comparing four loss-based strategies
to improve results when training on noisy labels.

The Mean Absolute Error (MAE) has been mathematically demonstrated to be a noise-
robust loss function [99]. As its implementation is easy and not computationally intensive,
most current loss-based noise correction compares to it, which makes it an interesting
baseline to compare to other works.

Lae = + 37 S 1K)~ (PR (4.13)

i=1 k=1

The Symmetric cross-entropy [326] (SCE) has also been proposed to tackle label noise.
Unlike cross-entropy, reverse cross-entropy is a noise-robust loss function. The authors
propose a linear combination of cross-entropy (good convergence) and reverse cross-entropy
(noise robust) to achieve better results than cross-entropy alone. Using the same notation
as those used for Equation 4.3 we obtain Equation 4.14.

Lsce = alce + Blree = %Z > " ay'(k)log(p'(k)) + Bp'(k)log(y' (k). (4.14)

i=1 k=1

We obtain the best results for this technique using & = 0.1 and 5 = 1. Solely those results
are presented.

The simplest loss correction approach to take into account the per-pixel classification
uncertainty is to consider a uniform class noise. This strategy refered as the Label
Smoothing regularisation [242] (LSR), uses the cross-entropy loss (Equation 4.3) but
replaces the one-hot encoded label by a soft encoding version i.e. instead of having y'(k) if
the i*" element true class is k and 0 otherwise, y’(k) follow Equation 4.15 with smooth < 0.5.

(4.15)

1 — smooth, if i*" true class is k
else [~

pl(k) = { smooth

c—1 7

The last experimented strategy relies on the noise transition matrix to compensate for
errors at a pixel level. Known as the Forward Correction [237] (FC), this strategy multiplies
the network prediction with the ground truth noise matrix during the training phase to
obtain a corrected prediction (see Equation 4.16).

1 n c . .
Lrc =7 '(k)log(p' (k)N (k ith j; target class of i. 4.1
Fe == D y(K)Iog(p/(K)N; (K)) with j; target class of . (4.16)

i=1 k=1
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4.5.4 Results

Table 4.12 presents the effects of the different loss both in terms of agreement and on
the GT. In terms of agreement with the target, the cross-entropy is, as expected, the
best-performing function. Interestingly the noise correction loss tends to give comparable
results with the CE regarding the result/target agreement except for the noise transition
matrix aware losses (FC and ND).Our solution is by far the worst in terms of resemblance
to the target with -8% in OA,; and -6% in OA,,r1. Conversely, compared to the ground
truth, the best method for OAg; is the SCE and the best in mF1, is our ND loss. Even
though the results obtained are stable across multiple independent trainings (mF1g,
standard deviation is around 2% for each method), we underline that those results are
not statistically significant due to the limited ground truth size (2300 points for OAg;
and 2700 mF1,). The results presented here should be taken cautiously, as only global
tendencies can be observed. Comparing the results of NDog and NDg, is also interesting as
despite the vast difference between the official and the ground truth confusion matrix, the
results are not significantly different. This demonstrates partial robustness to an imperfect
confusion matrix as the observed drop down in mF1g, is only 2%.

CE MAE SCE LSR FC ND, NDg

OA,e 77 76 v 77T 73 69 68
OAg: T2 T2 73 72 69 72 72
mFl,, 61 38 60 60 39 55 48
mFlg 53 36 99 56 39 60 62

Table 4.12: Comparison of various noise correction methods.

Figure 4.23 compares the per class F1-score of the different method. We observed a global
tendency to achieve higher results using the ND loss than any other baselines in seven
(out of eleven) of the reported classes. The largest improvement is observed on the 60:
"Bare / Sparse vegetation", reaching nearly a 40% F1-score while being close to 0% for all
other methods. However, we can not conclude further due to sample size limitation.
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Figure 4.23: Per-class Flg for the OSO to CGLS translation. Error bars are estimated
using the Equation F.14 presented in Appendix F.
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Figure 4.24 presents the evolution of the mF1, depending on the noise level inserted
inside the official confusion matrix. Increasing the noise matrix with a 15% noise ratio, the
ND, g loss remains better than the traditional CE loss. This demonstrates the usability of
our method even with imperfect approximations of the noise matrix.
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Figure 4.24: mF1, obtained by training the network with the NDygs with an increasing
directional noise ratio. We provide the mF1 score for the CE and ND,, as respective
expected lower and upper bounds of the method.

4.5.5 Conclusion

We introduced a Noise Divergence loss built on the idea that land-cover translation is a
specific problem in which we have access at each iteration to a vast amount of labels for all
classes and an accurate transition matrix. We propose to compute the divergence between
the per-target class distribution of network prediction and the expected distribution (the
noise transition matrix). The results demonstrate a global tendency of the method to
outperform other loss correction methods in terms of mF1z. However, due to the small
ground truth size, we can not conclude on statistical significance. We underline that a
common strategy would be to work on simulated label noise. Albeit results obtained from
a noise label simulation are not transferable to real noise scenarios as noise simulation
techniques are unable to reproduce accurately real land-cover noise, which is directional,
often systemic, and location dependent (i.e. edges of object), class dependent and not
homogeneously distributed geographically. We also observed that our method is quite
resilient to errors in the noise translation matrix used for learning, making it usable in real
operational cases. Lastly we point out that more experimentation should be conducted to
determine the amount of noise required to make such loss correction approach better than
cross entropy. Some preliminary experiment conducted on the translation from CGLS to
CLC suggest that the method is not suitable for small amount of noise as under the 10%
noise of CLC cross entropy seems to give better results than our noise corrected loss.
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4.6 Conclusion

The translation of land-cover maps is traditionally performed at the scale of the map
nomenclature by associating each source class and target class. Starting from the observa-
tion that two elements of the same source class might have highly different translations
according to their spatial, geographical and temporal context, we proposed to replace
the nomenclature-levelled translation with methods performing translation at the scale
of the pixel. Pixel-scale translation should allow two source pixels of the same class
to have a different translation in the target nomenclature. To assess the quality of the
proposed methods, we first proposed six baselines inspired by the current literature on map
translation. The first two HardSem and HardStat are the most commonly found in the
literature and associate a single target class with each source class. The other four methods
are based on the idea that when the target map has a lower resolution than the source, it is
possible to carry out a combined translation of several source pixels, slightly improving the
translation quality. The key takeaway of this section is that statistical translation generally
achieves better results than semantics. Indeed, when a source class can be translated in
several ways, the semantic translation does not guarantee that the translation carried
out is the most probable. This effect is all the stronger as the translation is carried out
in an area of limited spatial extent. Thus, the apparent semantic translation of OSO’s
Broad-leaved forest class in CLC nomenclature is Broad-leaved forest. However, if the
translation is performed on the Paris area, the statistically most probable translation is
Green urban areas. This observation is crucial because current methods such as LCCS are
based on the idea that the translation from one class to another must rely on proximity
between semantic attributes of source and target classes rather than an on a probability of
association. It leads to a considerable deterioration in the quality of map translations. The
second lesson of these experiments was to emphasise that statistical methods favouring
the global resemblance to the target map tend to provide a lower diversity of classes than
semantic methods. This underlines the importance of considering solutions to preserve
this diversity as much as possible.

Secondly, we explored the potential of spatial context for translation. We first hypothesise
that knowing the shape of the object to which the pixel to be translated belongs increases
the quality of the results of a translation significantly. To confirm this hypothesis, we
started by estimating the shape of the objects using shape indicators commonly used
in the GIS community but rarely used on land-cover maps. As the nomenclature does
not include in the definitions information on the expected object shape (e.g. it does not
indicate that a river is a thin elongated shape) we proposed to learn directly on the dataset
how to use these indicators to perform a translation. Results demonstrated that the shape
information allows a significant increase in the diversity of the predicted classes when the
target resolution is equivalent to or lower than the source. Starting from the observation
that these shape indicators are probably not perfectly tailored to the translation, we
introduce a method capable of learning by itself to exploit the shape of objects and include
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the influence of neighbouring pixel classes. This method, called A-Unet, is based on
adapting a convolution network to enable it to translate the resolution and nomenclature
simultaneously. The analysis of the results highlights several important points. First,
the joint use of the shape and the neighbourhood significantly improves the quality of
the translation both visually and qualitatively: +5% OA,, and +8% mF1,, on average
compared to the best baselines. However, we point out several limitations of the method.
It is generally less good at preserving translation geometry than baselines and does not
generalise well spatially. Furthermore, we observe that the map with the smallest spatial
extent (MOS) does not benefit significantly from using context. We explain this mainly
by the small size of the training set used. Observing that a change of architecture does
not improve the results, we postulate that efforts should focus on adapting the training
procedure.

The following section focuses on the geographical context. We start with the hypothesis
that using geographic coordinates is a simple way to learn this context based on the
observation that two close coordinates share the same geographical context. Experiments
show that this method is more likely to improve the translation than considering a
predefined ecoclimatic zone. Based on this observation, we propose incorporating the
geographical coordinates into the network. Making the same observation as other works,
we show that integrating the coordinates directly into a network does not work. We
propose an approach based on positional encoding, a strategy that has proven itself in NLP.
The results demonstrate the method’s effectiveness, even when the size of the training set
does not allow fine learning of the geographical context. In particular, we demonstrate
that the proposed approach is always superior to coordinate-free translation.

The fourth section focuses on the temporal context of translation from two different angles.
We first question the relevance of using multiple dates from a source map to improve the
translation quality. We start from the observation that multiple classes include a notion
of temporality, i.e. it is class A if class A has at least been observed once in the last
three years. We hypothesise that the temporal order of the source maps does not matter
because the definitions never precisely stipulate a date but always a period. We show that
the incorporation of this temporality allows a significant increase in the quality of the
translation, mainly for the target classes, including a notion of temporality, but also, in a
lesser way, for others. We explain this by the fact that combining several source maps
allows the method to distinguish errors in the source data better improving the translation
quality. Secondly, we emphasise the existence of a temporal context specific to the "learnt"
translation paradigm: the temporal spacing between the source and target data used to
learn. We hypothesise that the temporal spacing between the source and target maps
adds only little noise to the learning compared to the noise generated by the errors in the
original maps, as long as the learning is carried out on a large area and that the time
spacing remains reasonable. We propose three distinct learning scenarios corresponding to
different operational situations. Results show that the temporal spacing only very slightly
deteriorates the results. In particular, there is no significant difference between training a
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network to translate two maps with the same date (scenario 1) and two maps with a time
gap (scenario 3). In both cases, the resulting map gives a translation corresponding to the
date of the source map. This critical finding guarantees the operational usability of learnt
translation methods.

Lastly, we focused on tackling the cartographic context of translation, which involves
working on, by nature, noisy data. We first underlined that creating a source noise resilient
translation method is a complicated task as it involves evaluating instance-specific noise
probabilities. We argued that the detrimental impact of source noise on translation was
limited as errors tend to exchange two semantically close classes that tend to have the
same translation. Moreover, as our spatial and temporal context-aware methods can
already partially evaluate those source noise characteristics, we believe that efforts must
concentrate on tackling the target noise effect. We presented a method for tackling target
noise based on the idea that the land-cover translation exhibits specific characteristics:
a large amount of annotation at each iteration and an available noise transition matrix.
Thus we propose to compute the divergence between the expected per class distribution
(noise transition matrix) and the observed one. Despite being unable to assess statistical
significance due to ground truth size, our method seems to outperform commonly used
loss-based correction strategies in terms of output class diversity (+7% mF1, compared
to cross-entropy). Furthermore, the methods appear to be resilient to a significant noise
level in the noise transition matrix used for training, making it usable in real operational
scenarios. We believe additional experiments should be conducted on this loss function
using a broader ground truth and more datasets to comfort the results.

As the experiments were carried out on a wide variety of translations (up to 26 different),
we are confident in the ability to generalise these results to other land-cover maps than
those in the data set. By focusing only on these 26 translations, we can identify some
limitations of the proposed methods. In particular, the use of context to translate CLC
to any other map generally offers only slight improvement, which is explained by the
fact that the difference in resolution is considerable with the other maps (up to a factor
of 2500) due to CLC’s MMU. Therefore, it seems essential to propose data insertion
methods that are more spatially resolved to improve the translation quality. This would
also improve the preservation of target geometry which, as evidenced by the value of EPI,
is poorly preserved by the methods presented. This would also significantly increase the
values of OAg and mF1g, which remain, with the notable exception of the OSO to CGLS
translation, lower than that of the original products. Lastly, the methods suffer from a
significant lack of generalisation ability which should be compensated for applications
such as extending a land-cover map on a broader spatial extent using a source map with a
broad spatial extent.
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CHAPTER
@) |

Multi-land-cover, Multi-modal translation

5.1 Multi-land-cover map translation

5.1.1 Motivation

In the previous chapter, we introduced a Convolutional Neural Network based encoding-
decoding strategy to translate land-cover maps using spatial context. The core idea lies
in the possibility for each map pixel to be translated differently depending on its close
surrounding pixels. However, this supervised method is designed to perform mono-land-
cover map translation, i.e. a single source is translated in a single target. It requires the
two maps to overlap, at least partially, spatially. When impossible, a pivotal map that
spatially overlaps the two others might be used, but this is likely to drastically lessen the
translation performance by requiring two translations instead of a single one. Multiple
translations require separate training phases. With few training samples, the performances
are likely to be limited.

Recently, deep learning methods have achieved state-of-the-art results in natural language
processing and, more precisely, in language translation [59, 307|. State-of-the-art methods
have shown the superiority of multi-lingual trained models against their mono-lingual
counterparts [59], especially for languages with a small number of translation examples.
Multi-language training seems to benefit from the obtained multi-language common
representation space [245]. Finding shared representations is also frequently addressed
by the remote sensing community for combining multi-modal data from various sensors,
with varying resolutions and information into a compact and discriminative embedding
[11, 127, 128, 223|. Surprisingly, this question remains unaddressed for the land-cover
map translation task at a pixel or object level. Therefore, this section tries to answer the
following question: can we find a shared space for multi-land-cover map translation that
would be beneficial for their individual generation?

Even though a current trend in computer vision is to address the projection into common
representation space with vision transformers, we adopted a Convolutional Neural Network-
based solution that requires far less training and is thus suitable even for land-cover with
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small spatial extent (Figure 5.1). Independent U-Nets are trained to project each land-
cover map into a shared representation space. This, tailored for translation representation
space, enables both translation and the self-reconstruction of the input land-cover maps
to ensure that no information is lost during the mapping to the shared space.

Positional
Encoding
sin(zw;)
Geographical cos(auwn) Linear Layer
Coordinates : : I::> x2 g
X,y sin(yways) -
cos(ywu) |,
Decoder A -
E(rlj:_?\ldEe_ll'_ )A (Pyramidal o
pooling) >

Decoder B
(Pyramidal
pooling)

Encoder B
(U-NET)

LCB
9071

Common
representation

Figure 5.1: Overall multi-land-cover map translation architecture. Our network ( blue
boxes) is trained to perform both self-reconstruction and translation. There is no restriction
in the number of maps that can be embedded into the common representation. For
convenience, we only represent two maps (A and B). Red and orange arrows represent
the possible paths for maps A and B, e.g. A can be either translated into B or self
reconstructed into A. At inference, only one source map is required.

The key contributions of this section are summarised as follows:

e We propose a method to perform multiple translations at the same time using a
single translation model.

e We ensure that the method projects all land-cover maps into a shared representation
space in which two different maps of the same extent are represented closely. This
ensures that the shared representation space encodes elements with comparable
characteristics in terms of semantics and context independently from the land-cover
map used, increasing spatial generalisation for maps with limited spatial extents.

e We conduct a comparative evaluation of the approach with the mono-land-cover
map translation presented in the previous chapter.

127 / 295



5.1.2 Method

5.1.2.1 Training protocol

We aim to find a simultaneous transformation of the nomenclature and spatial resolution of
the six maps (see Section 3.2). Inspired by the literature review conducted in Section 2.4,
we enforce the translation to use a intermediate common representation space for all maps.
This representation in a common space is referred as an "embedding". This leads to reach
two consecutive objectives: 1) project each map into a shared embedding space; 2) decode

this embedding into each of the six maps.

Inspired by recent works on multi-modal data representation [40, 134, 152, 337, 352],
we propose to train separate encoders and decoders for each map, and subsequently use
cross-reconstruction to enforce common representations of land-cover maps representing
the same spatial extent (see Figure 5.2). We train our network to both reconstruct a
given land-cover map with one decoder and to translate into the desired target land-cover
map with another decoder. This dual objective enforces the embedding to be rich enough
to preserve all source map information (reconstruction) while encoding it suitably for
translation.

Even though cross-reconstruction encourages the learnt embedding to be comparable for
all land-cover map, it does not guarantee it. Therefore, many of the previously cited works
also included a constraint on embedding pairs of corresponding data (e.g., using adversarial
training or a loss term for embedding comparison). We adopt the latter strategy which
avoids the convergence complexity of adversarial training. A Mean Square Error between
embeddings covering the same spatial extent is thus computed.

Instead of computing the loss for all available maps covering one spatial extent, the
network is trained by computing the loss for only one pair of maps at each optimisation
step. This pair-wise optimisation is used as a workaround for GPU memory limitations.
Indeed, land-cover map translation requires large image patches (600x600 pixelsx the
number of classes) to account for the MMU of some of the maps. Also, simultaneously
training multiple networks is memory consuming. This pair-wise optimisation enables
the use of a larger batch size and achieves a better result than optimising all different
maps simultaneously on smaller batches. This iterative pair-wise approach is also the one
generally used in multi-lingual model training [59].

To sum up, at each iteration, two patches, A and B belonging to different maps but
representing the same spatial extent are encoded by distinct U-Net producing Encoded A
and Encoded B. A first loss term Lenp (detailed in Section 5.1.2.3) is computed between
the two embeddings to estimate their resemblance, then each embeddings is processed by
each decoder resulting in two translations (Encoded A into the decoder of B, and Encoded
B into the decoder of A) and two self reconstructions (Encoded A into the decoder of A,
and Encoded B into the decoder of B). Two loss terms evaluating the quality of the two
translations L, and the two reconstructions L, are then computed.
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5.1.2.2 Network

The design of our Multiple Land-Cover Translation Network (MLCT-Net) is made according
to the following observations:

1. The encoder must have a sufficient receptive field to encode each object using its
surroundings. Thus, the architecture is constrained by the MMU of each map. Since
CLC has a 250,000 m?> MMU, the theoretical receptive field should at least have
a 250,000 m? width. An embedding with a ground resolution of 10 m leads to at
least a 250 pixels wide receptive field. Achieving this size of receptive field using
only convolution is unfeasible as it would require very large networks and would be
inefficient due to gradient vanishing problem. Pooling strategies appears well suited
to increase the receptieve field as land-cover often offers wide homogeneous regions
limiting the information loss.

2. The decoder should remain as simple as possible to ensure that the learnt embedding
remains as identical as possible for all land-cover maps. Decoders with high capacity

may lead to a latent space with small information content [47].
X
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Figure 5.2: The proposed cross-encoder architecture. In purple and green, two land-cover
maps with respectively ¢; and ¢, classes and r; X  and r, X r, pixels. We represent in
orange the common embedding space.

We develop the architecture illustrated in Figure 5.2. It is mainly composed, for each
map, of a (1) a nearest neighbour resampling to the highest spatial resolution (10m), (2) a
U-NET [257| encoder, (3) and a pyramidal spatial pooling [44] followed by a 1-pixel wide
kernel convolution layer as a decoder. This architecture meets each of the above criteria.
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The resampling enables using the same architecture for each map. However, this strategy is
only feasible if the gap between the lowest and the highest resolutions remains reasonable
compared to the GPU memory. A low resolution enforces patches to cover a wide area to
get a grasp of the spatial context. This results in very large patches for the maps with
higher resolutions. The U-Net addresses the receptive field size by down-sampling the
input multiple times, which is more memory efficient than increasing the network depth.
Our encoder architecture exhibits only two differences with the original U-Net architecture.
The first one is the use of Group Normalisation [332] instead of Batch Normalisation. This
enables a stable normalisation, even on a small batch size. The second one is the use of 5
down-sampling blocks, instead of 4 in the original paper, to widen the receptive field.

5.1.2.3 Losses

At each optimiser step, the loss is computed for one pair of maps using Equation 5.1:
L= Lrec + Ltra + Lemb- (51)

Let Ea(A) denote the the result of encoding A with its dedicated encoder and Da(Ea(A)) de-
note the processing of A by its dedicated encoder-decoder (self reconstruction). Da(Eg(B))
denotes the encoding of B is processed through the decoder A (translates B into A). We
denote Ej(A) the i dimension out of w dimensions of the encoded version of A.

Liec = Lce(Da(Ea(A)), A) + Lce(Ds(Es(B)), B) is the reconstruction loss enforcing the
embedding to preserve map-specific information: computed as the sum of cross-entropies
(Lce see Equation 4.3) between the two self-reconstructed and their respective sources.

Lira = Lce(Da(Eg(B)), A) + Lce(Dg(Ea(A)), B) evaluates translation quality: computed as
the sum of the two cross-entropies of the two translated maps and their respective targets.

Lemb = £ > (Ej(A)— EL(B))? is the Mean Square Error (MSE) loss between the embedding
i=1

of the two source maps which enforces the representation to be shared between maps. The
global loss is theoretically minimal when the three following assumptions are simultaneously
met: 1) the self-reconstruction of each map is perfect; 2) the translation is also perfect; 3)
embeddings on the same areas are identical.

The Cross entropy combined with Dice loss explored in the previous chapter can be used
here instead of traditional cross entropy to improve mF1. However it complexifies the
loss significantly by adding four more terms making the optimisation more challenging.
As the optimisation take more times, using such loss would have reduced the number of
experiment presented in this section with this combined loss all the experiments presented
in this section are carried using solely the cross entropy.
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5.1.2.4 Geographical context

The same geographical coordinate encoding strategy as in the previous chapter is used.
However, we add a softmax transformation after the MLP and replace the addition
by a multiplication between the geographical context and the embedding of each map
(Figure 5.2). Softmax followed by a multiplication aims to maintain the generalisation
ability to areas unseen during training.

Since each translation does not necessarily need the same geographical context information,
one could learn one geographical context per pairwise translation. However, it would be
impossible to generalise the translation to an area of the target map unseen during training.
For example, learning a specific geographical context for the OSO-to-MOS translation
is only possible on the Paris region. To preserve the common representation space, we
train a unique MLP on the set of coordinates of the patches. This unique geographical
context representation slightly worsens the translation quality compared to learning a per
translation representation. However, it is the only way to maintain the ability to translate
maps on areas not included in their original spatial extent.

5.1.2.5 Comparisons

Since, to the best of our knowledge, no other multi-land-cover map translation method has
been published, we compare our approach to the methods introduced in Chapter 4: the
baselines and the 26 A-UNet trained independently. We refer to those multiple A-UNet as
the mono-land-cover map translation method. Results with the multi-map approach are
expected to be better than with the two first non-contextual translation methods. They
should be at least on par with the mono-map translation method, and better on land-cover
maps with few training patches, as observed in natural language processing.

5.1.3 Results

5.1.3.1 Qualitative assessment

Figure 5.3 presents the 12 translation results obtained on a patch belonging to the Paris
region in Figure 3.4. Each row corresponds to the translation of one source map into
the four others available for this area. Unsurprisingly, translations from coarse to high
resolution maps results in almost similar performance than associating one unique target
class to all the pixels of given source. External data (such as satellite imagery) could
participate in increasing the translation performances. The second observation is that our
network may face some difficulties in learning the MMU of CLC (25 pixels) as shown by
the small three pixel wide urban areas (in red) in Figure 5.3 (first column). Commonly,
network training leads to replicate in the predictions the bias observed in the original data.
The most striking example is OSO road class, which has a 45% recall in the original data.
It is often confused with Industrial and commercial units (ICU). When learning to translate
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a road from a given land-cover map source map to the OSO map, the corresponding class
has a high probability of being an OSO ICU, as illustrated with the MOS-OSO translation
case in Figure 5.3 (3" row, 2°¢ column). This also increases the difficulty in quantitatively
assessing the quality of the results using the target data as reference.
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Figure 5.3: Translation scenarios for all land-cover map available on a 6x6 km? patch
belonging to the Paris region.

Figure 5.5 presents a set of patches selected for their representativeness of the behaviour
of the multi-LC. The first observation is that the spatial context influences the translation
mainly on object edges, especially when the source exhibits a low resolution, e.g. in the
first row, the border of a CLC Discontinuous urban area is translated into an OSO pasture
area. The second observation is that when the gap between spatial resolutions remains
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limited, the translation provides a successful context-dependent translation (i.e., the same
class is translated differently depending on its neighbourhood), as shown for example in
Figure 5.5 (second row): OSO sparse urban and Industrial and Commercial Units are
satisfactorily translated into either MOS Individual housing, Collective housing or Activity
areas, depending of each source class density or on the third row, where MOS Forest is
translated into CGLS-LC100 Open forest or Closed forest, depending on the elongated
shape of the object. Thirdly, despite context, some cases remain difficult without external
data. This could for example be used in the fifth row where an OCS-GEc Water area must
be translated into the land-use counterpart. Most of the time, such areas are classified as
No-use in OSC-GEu. However this water lake is used for farming which the network fails
to predict. This difficult case illustrates well the main limitation of this method.

Figure 5.6 presents the qualitative comparison of Statistic, Semantic, Mono-LC, and
MLCT-Net on the same spatial extents. A first observation is that mono-land-cover map
and MLCT-Net gives visually almost identical results. The two methods outperform the
semantic and statistic baselines when source classes have multiple probable translations.
For instance, for OCS-GEu (G2) to CGLS translation, "Agriculture areas" are translated
solely into "croplands" by the semantic method while being translated quite accurately
both into cropland and pastures by the context-aware methods. The same observation holds
for urban areas in the OCS-GEu to OCS-GEc translation (and OCS-GEc to OCS-GEu).
A second observation is that pure semantic based translation outperforms other methods
on erroneous classes in the original target data. For MOS to OSO translation, roads (black
on the MOS map) are always translated into industrial and commercial units except by
the semantic baseline. This behaviour is learnt from the original OSO map, which often
presents this confusion. Conversely, the learnt methods outperform the semantic baseline
when the source map is erroneous. In the reverse translation case, the erroneous industrial
and commercial units (truth: roads) are correctly translated into roads in the MOS maps
by all methods except the semantic one.

To assess if land-cover maps are all embedded in a shared representation space, Figure 5.4
presents the embedding of a 6x6 km? patch of the test set for five different maps. As
displaying 30 dimension embedding is unfeasible, a dimension reduction technique is used
to reduce to 3 dimensions for RGB visualisation. Principal Component Analysis (PCA) is
used as, unlike methods such as T-SNE, it enables to re-use the same reduction model
(trained using a subset of the training set) for various patches of test set, ensuring that
the representation remains stable for all test patches. The first observation is that all
embeddings look similar, which was expected through the double constraint of cross-
reconstruction and the MSE computation between embeddings. The second is that edges
have a particular behaviour in the embedding. This is particularly visible on coarse
resolution maps (such as CLC) with a gradient on each object near the edges. We link this
behavior to the higher uncertainty of the translation near object boundaries. The third
observation is that the learnt embedding for coarse resolution maps has a blurrier aspect
than high resolution ones. This is, for example, clear on the CGLS-LC100 embedding,
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especially on Built up areas. We relate this behaviour to the relative broad semantic
content of such class in a low resolution map compared to a higher resolution one (i.e.,
a Built up area might simultaneously include trees, dense or sparse urban and roads).
Another observation is that close values in the embedding space for two classes often
reflect close semantic values. For instance, all artificial surfaces appear in light blue, all
forest types in light to strong red, all crops and pastures in dark blue. This closeness
might be beneficial for tasks such as zero shot learning since semantically close elements
are represented closely in the embedding space. For instance, the model is never trained
to translate CGLS Ocean in one of the MOS class as there is no ocean in the Paris
area. However translation is easy to perform as the CGLS Ocean representation in the
embedding space is closer to MOS Water than any other MOS class. The last observation is
that when one class of a land-cover map establishes a complex semantic relationship with
another land-cover map, it is often visible in the embedding. For example, the OSC-GE
cover class Herbaceous vegetation mixes cultivated areas and natural grasslands while all
other land-cover maps make a clear distinction between those two vegetation types. This
leads to distinct embeddings.

LIRS

CGLS-LC100 CLC 0SO OCS-GEc OCS-GEu

Figure 5.4: Shared embeddings (below) for five land-cover maps of interest (fop). Colors
result from a dimension reduction from the original 30-dimension embedding to 3 dimensions
(RGB) using Principal Component Analysis.
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Figure 5.5: Benefits and limitations of multi-land-cover map translation. Each square

highlights an area with meaningful spatial context (see text for more details).
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Figure 5.6: Visual comparison between the output of MLCT-Net and existing baselines.

5.1.3.2 Quantitative assessment

All conceivable translation scenarios are tested. Table 5.1 reports the agreement metrics.
We remind the reader the agreement can only be computed on the intersection of the
source and the target extents. Context-aware translation methods have higher agreements
than their semantic and statistical counterparts. The improvement between contextual
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and non-contextual methods ranges from 1% to 17%. The smallest differences are usually
observed when the source map has a coarser spatial resolution than the target. It is
impossible to obtain high scores on a spatial super-resolution task without adding fine
geometric and spatial information (e.g., high resolution images on the same extent). In
practice, a good rule of thumb is to estimate that the MMU of the target maps is always
of the same magnitude than the source one (i.e., translation a 25 ha MMU land-cover map
results in a more or less 25 ha MMU). Conversely, significantly better results are observed
when a high resolution map is translated into a coarser one.

Source CGILS (P) CLC () 050 (0) OCS-GEc (GI) [OCS-GEu (G2) [MOS (M) [,
Target C O GI G2 M|[P O Gl G2 M|P C GI GZ M|P C O G|[P C O GI|P C 0 |V
SoftSem 52 42 56 70 75|6b 49 67 77 79 |62 59 69 76 82 |56 41 34 87 |57 40 31 75 |80 76 59 |62

oA | SoftLeamntGridPattern | 54 44 65 70 75|68 55 7L 78 79|72 62 73 80 8§ |63 47 49 89 |62 4L 41 78 |84 82 62 [0
mono-LC 65 57 69 78 76|75 59 73 80 79|77 69 80 86 85 |71 58 58 93 |69 54 53 79 |86 84 64 [72
multi-LC 65 57 69 78 76|74 59 73 81 79|76 63 80 86 86|71 60 58 93 |70 57 54 81 |86 84 64|73
SoftSem 13 17 22 15 24 |46 32 36 81 42|38 19 36 20 88 |27 10 17 27 |20 8 & 29 |38 19 19 |25

) | SoftLearntGridPattern | 13 18 19 16 24 |47 32 33 30 42|47 24 34 20 42|37 15 20 27 |28 12 10 27 |43 25 18 |27
mono-LC 30 20 30 20 33|58 37 38 30 41 |61 40 45 27 53 |52 34 31 43 |52 20 25 40 |45 30 23 [38
multi-LC 35 30 30 20 34|57 37 37 20 41 |57 41 44 27 54|53 39 34 44 |50 34 27 46 |48 33 24|39
SoftSem 28 5 6 5 17[30 6 6 7 20|36 36 28 32 58|28 32 29 79 |32 36 20 77 |54 54 38|31

EPI SoftLearntGridPattern | 27 5 3 5 16 | 30 6 5 7 20|42 35 25 31 57|35 31 30 80 |35 32 30 77 |57 55 38|31

1 mono-LC 2 4 3 4 12|20 6 5 6 17|39 36 25 28 49 |31 29 24 77 |29 30 21 70 |50 55 29 [38
multi-LC 23 4 3 4 13|28 6 4 6 18|41 38 26 51 31|31 31 25 79 |30 31 23 72|52 55 29 [0

Table 5.1: Agreement between translations and target maps. P: CGLS-LC100, C: CLC,
0: OSO, G1: OCS-GEc, G2: OCS-GEu, M: MOS. Best values are in bold.

mF'1 differences revealts that mono and multi-land-cover map translations successfully use
spatial context to outperform the simpler counterparts in terms of number of predicted
classes. Wr provide the observed per-class fl-score in Figure 5.7. Since displaying all the
26 possible configurations would be counterproductive, we add the confusion matrices
of all maps for each target, resulting in one confusion matrix per target map. We then
compute the per-class fl-score, e.g. CLC per-class fl-score is computed on the fused
confusion matrix of OSO-to-CLC, MOS-to-CLC, PROBA-to-CLC, OCS-GEc-to-CLC and
OCS-GEu-to-CLC. In Figure 5.7, a high fl-score is reached when the translation from all
sources to the considered target is successful. The well predicted classes are identical for
all methods. The translation into CLC is the one for which context-wise methods are the
most beneficial, as it significantly increases the number of partially predictable classes,
compared to the semantic and statistical baselines. The insertion of context mainly helps
specific classes, especially those defined by a spatial pattern such as CLC Heterogeneous
crops (mix between arable and permanent crops), and on spatially correlated classes.
Forests in mountainous areas mainly include coniferous stands. Thus, a forest in this area
is more likely to be translated as Coniferous than Broad-leaved.

Our approach has a similar agreement to the mono-land-cover map scenario, exhibiting
close scores in most cases. However, it tends to slightly under-perform on the OSO-any
other configuration. This is mainly due to the fact that our MLCT-Net tends to have
more difficulties in learning the MMU than the mono-land-cover map counterpart. This
observation is comforted by noticing that the mean area of errors in the multi-land-cover
map model is significantly smaller. This can partly be explained by the difficulty in learning
the concept of MMU in a shared representation space, due to the risk of also applying
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the same MMU when translating finer resolution land-cover map. One could argue that
learning the MMU only requires estimating the area occupied by classes and filtering non
adequate small areas. However, this would overlook that estimating areas is not a trivial
task for a network fed with image patches due to the lack of information on edges (ideally,
this would require processing the whole data at once, which is unfeasible). Furthermore,
undetected areas in the target data act like a generalisation procedure neglecting some
of the information. While this last statements affect both multi and mono-land-cover
map models, the difficulty in learning the MMU naturally increases as the number of
generalisation rules (and errors) increases, explaining the poorer MMU learning of the
multi-land-cover map model compared to its mono-land-cover map counterpart. Since
OSO is the highest resolution map used in this study, translation, from OSO are the most
prone to MMU errors explaining the observed slight under-performance compared to the
mono-land-cover map model.
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Figure 5.7: Per-class f1 agreement computed on the sum of the translation confusion
matrices of all the sources to one target.
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5.1.3.3 Impact of the number of input land-cover maps

We propose to analyse the influence of the number of maps fed into MLCT-Net on the
quality of the translation. Figure 5.8 displays the accuracy measured on ground truth
depending on the number of target maps used for learning. Each histogram represents the
stacking of translation results from all three France-wide maps (CGLS, CLC, OSO) to
the considered target. For instance, the first histogram presents the average translation
results of CLC to CGLS and OSO to CGLS-LC100 for different models trained to perform
mono-LC (1 map) or multi-LC translation using (2 to 6 maps). The three histograms
OSC-GE cover, OSCGE use, and MOS are directly dependent on the network’s spatial
generalisation ability as they result from the average of translation performed to a broader
extent than their original one. For instance, the MOS histogram is obtained by averaging
France-wide translated MOS using CGLS, CLC or OSO as input, while the actual MOS

only covers the Paris region. Error bars are computed as the mean of uncertainties
estimated using Equation 5.2.

u(t) = %ZZ\/M’ (5.2)

n

where u(t) is the uncertainty for a target map t, s is the considered source map, OAs is the
estimated accuracy of the translation from source s to map t, z = 1.96 for 95% confidence,
and n is the ground truth sample size.
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Figure 5.8: Mean accuracy per target land-cover map for different models trained with
one (mono-land-cover map) up to six maps. The red-dotted line separates land-cover map
available France wide (left) from those with smaller spatial extent (right).

Our first observation is that although the model trained on six maps tends to perform
better in the majority of cases, the performance variations observed on CGLS-LC100, CLC,
and OSO remain insignificant given the size of the ground truth sample. This statement
prevents us from concluding on a real advantage of using a multi-land-cover map model for
these three maps. This observation is further supported by the fact that there is no stable
trend of a performance increase when going from 2 to 6 maps. Thus additional experiments
with more maps are required for further analysis. On the other hand, a more significant
trend is observed on the MOS, OCS-GEc¢ and OCS-GEu maps, which all initially covered
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only a fraction of the territory. The progressive performance growth with the increasing
number of maps comforts the previous analysis of greater robustness to generalisation to
new landscapes of multi-LC models compared to the mono-land-cover map model.

5.1.3.4 Land-cover map extension

The generalisation ability of a deep neural network is a key feature when studying the
representativeness of the shared space and subsequently the "universality" of such learnt
representation. A universal representation should be able to represent all land cover types
independently from the spatial extent enabling to use a model trained on small spatial
extent maps to broader extents. This would allow to generate only high quality land-cover
maps on a restricted area without spending too much time.

We propose to evaluate the ability to retrieve the target MOS, OCS-GEc and OCS-GEu
over France from the sources OSO, CLC and CGLS land-cover maps, while the 3 target
land-cover maps originally covers less than 20% of the country. Each source map is
translated into one of the targets at a France-wide scale. The translation may face unseen
classes during training in both source and target maps (e.g., there is no glacier on the
original MOS spatial extent) resulting in wrong translations. Therefore, for each pair of
source/target maps, the semantic baseline is used to translate source classes unseen during
training. Unseen target classes during training are ignored. OCS-GEc Snowfields and
glaciers and Other non-woody formations are considered unseen due to numerous errors in
the OCS-GE data. In this setup, mono-land-cover map models cannot be trained with the
geographical coordinates sub-module since they are trained solely on the original target
spatial extent. To be able to assess if differences between the mono and multi-land-cover
map models are due to the use of the geographical coordinates sub-module, we provide
the multi-land-cover map results with and without it.

Source P C [0) Aver,
Target C O GI G2 M|P O GI G2 M|P C GI G2 M| Ve
SoftSem A7 46 62 79 81 |72 bl 76 84 8 |71 65 86 86 92 |72

SoftGridPattern | 52 45 68 80 81 |68 57 77 85 85 |73 68 8 89 92 |74
mono-LC no ¢ 57 51 70 82 76|69 58 78 86 78|74 70 8 91 87 |74

OA

€ | mono-LC 60 55 X X X |70 59 X X X |75 71 X X X |X
multi-LC no ¢ 57 52 71 83 82 |71 59 78 86 86|78 70 87 91 93|76
multi-LC 60 53 74 83 83|71 59 79 86 86|78 70 87 92 93|77
SoftSem 12 18 29 22 26 |62 42 56 55 60|47 22 51 30 43 |38
SoftGridPattern | 13 18 22 25 26 |59 37 50 48 57 |37 20 48 31 42 |36

mFly mono-LC no ¢ 21 24 31 276 2? 51 36 4‘3 42 28 53 39 5'3 34 %(J ‘37

mono-LC 27 28 X X ), i ), 3 ), 3 3 ) 3
multi-LC no ¢ 21 18 33 27 29 |57 34 51 41 55|58 34 57 32 48 |40
multi-LC 27 22 37 27 30|56 33 52 43 46 |59 43 57 33 50|41

Table 5.2: Translation results for the 3 full France maps computed on the ground truth.
"no-c" corresponds to ablation cases where the geographical coordinate sub-module is
removed. X denotes impossible translations with the geographical context encoding.

Table 5.2 presents the results computed on the ground truth. We observe that the
multi-land-cover map model outperforms the mono model, especially in terms of mF1g.
Satisfactory MOS map translation heavily relies on the coordinate sub-module (0.39
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for mono-land-cover map with no coordinates, 0.48 for multi-land-cover map with no
coordinates, 0.5 for multi-land-cover map with coordinates). This can be explained by the
fact that the geographical context is most useful when translating unseen objects during
training (such as sea). The maps with limited spatial extent, exhibiting a lower diversity
of classes and objects, benefit the most from the geographical context. On the contrary,
the coordinate sub-module seems less useful on the two OCS-GE maps, which perform
almost the same with and without it due to training on larger and more diverse areas.

5.1.3.5 Geographical context encoding

Visualising the learnt geographical encoding is crucial to better understand its effect
on translation accuracy. Figure 5.9 compares the encoding using the six maps and the
mono-land-cover map approach trained on the OSO-to-CLC translation. It is obtained
by applying a PCA to the output of the MLP. First, the representation obtained for the
multi-land-cover map approach does not seems correlate with the number of maps or the
nature of maps covering each area (see Figure 3.4). Secondly, it seems that this encoding
correlates well with major French geographical landscapes such as Alpes and Pyrenees
mountains, the Paris basin, and the Mediterranean seashore. These results underline
that the learnt geographical encoding through a multi-land-cover map approach learns
to discriminate translation based on specific characteristics, by representing comparable
geographic context such as high mountains in a comparable way even when they are
spatially far-away. Conversely the results with the geographical encoding obtained by the
mono-land-cover map model seems to be proner to learn a land-cover specific representation
to compensate for local source and target errors.

Figure 5.9: PCA representation of the learnt geographical context embedding for our
multi-land-cover map model (left) and the mono-land-cover map OSO to CLC model
(right). One may easily delineate the main French landscapes, namely 1) Paris basin, 2)
Atlantic seacoast, 3) Medium mountains, 4) High mountains, 5) Mediterranean seashore.
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5.1.4 Conclusion

We comprehensively investigated the potential of country-wide multi-land-cover map
translation with our novel MLCT-Net model. In order to obtain higher-quality translation
than models trained on specific translations or non-spatial-context-aware translation
methods, we inspired ourselves by recent work on multi-task and multi-modal deep
learning models. Namely, we designed a multi-encoder decoder network incorporating
a three-term loss: 1) a translation loss to evaluate the quality of the land-cover map
translation, 2) a self-reconstruction loss to ensure that the embedding preserves each
map information, 3) a maximum distance loss on the embedding to ensure that similar
features of different maps are encoded the same way to ensure high-quality results even on
unseen spatial extents. Each encoder learns to project a specific map into a representation
space shared between all land-cover map. Conversely, each decoder translates this shared
representation space into one target land-cover map. Our key contribution is such a
universal country-wide representation space which demonstrates an increase in translation
generalisation.

We comprehensively evaluated our method by comparing the obtained translations to the
original land-cover map and a manually annotated ground truth. Our method outperforms
the standard semantic and statistical methods that only focus on exploring per-class
associations instead of defining context-aware ones. The average improvement is about
9.5% in overall agreement between source and translation compared to the semantic
baseline (6.2% for the statistical baseline). In contrast with the mono-land-cover map
method, although we do not learn specific translation parameters, the multi-land-cover
map method is only 0.4% worse in terms of overall agreement. Furthermore, statistics
computed on ground truth reveal that the multi-map model outperforms the mono-map
when computing the translation of maps on a spatial extent that they do not initially
cover. These results demonstrate that learning a universal representation for multiple
land-cover maps improves the robustness of the translation.

5.2 Multi-modal land-cover translation

The previous contextual translation methods considerably improve the translation com-
pared to traditional methods. However, they fail to correctly predict many classes, as
evidenced by the low average mF1l, (39%). We attribute this problem to the lack of
information necessary for the translation in the source map. We define the notion of
the semantic gap as the abstract measurement of the gap between the source semantic
information available (the classes and context) and the information necessary to predict all
target classes. For instance, translating a source map with a single agricultural class (e.g.
CGLS) to a 12 agricultural classes target map (e.g. OSO) suffers from a wide semantic gap
that a contextual analysis cannot fill. Similarly, we define the notion of the geometric gap
as the abstract measurement of the gap between the local resolution of an available source
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object and its target resolution. For instance, the translation of a CGLS Forest whose
geometric precision is about 100 meters to an OSO Forest whose geometric resolution
is between 10 and 20 meters suffers from a wide geometric gap. The low EPI values
particularly underline the importance of this geometric gap.

Overcoming these two gaps requires fusing additional sources of information with the
source map. A large variety of sources can theoretically be used to reduce the two gaps.
Most current literature focuses on fusing several maps with various nomenclature and
resolution. On the other hand, few studies have focused on the fusion of other data
types, such as remote-sensing images. These works generally simply use the source map
as masking data to improve a classification entirely carried out on the images, e.g. the
image pixel can only be classified as wetland if it is classified as a wetland in this reference
map [33|. They neglect the context information by relying only on nomenclature.

This section proposes to replace this "pure image classification filtered with a reference
map" with a joint image and map fusion classification. Based on the experiments conducted
in the previous parts, we limit the study to developing a method compatible with the
MLCT-Net architecture that has shown good translation robustness even on land-cover
map with small spatial extent. The nature of additional data can widely change depending
on operational constraints such as the target nomenclature and resolution and the data
availability. Therefore a versatile architecture is developed based on giving selectively
more weight to the data the most well-suited for a given prediction.

We propose a comparison of different multi-modal sources of information to evaluate
the versatility of the proposed method. Unable to test all potential data sources, we
focus on three types of data: optical image, radar image, and Digital Elevation Models
(DEM). Those data being the most commonly used to produce land cover maps seem
well-tailored to bring semantic information. However, their capacity to fill the semantic
gap is still to be discussed as it depends directly on the amount of information that is
not already analysable using a single source map. The selected data have a resolution
close to the highest resolved map to fill the geometric gap. We deliberately exclude the
analysis of multi-temporal remote-sensing data from the study to avoid an additional layer
of complexity.

To sum up, the key contributions of this section include:

e An improved translation tool based on a versatile image and map fusion framework
built on the MLCT-NET architecture.

e An evaluation of the ability to fill the semantic and resolution gap of three mainstream
data sources.

The first section presents various possible image /map fusion methods based on the MLCT-
net architecture and the state-of-the-art. The second section introduces the three additional
data incorporated into our study and discusses their potential to reduce the semantic and
geometric gaps. The third section presents the experimental protocol designed to compare
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the different fusion approaches and evaluate the potential of the different additional data.
Lastly, we present the results of the experiments.

5.2.1 Data fusion architecture for translation

This section presents various MLCT-Net-based architectures to fuse a source map with
remote-sensed data. First, from the literature review conducted in Section 2.4, we identify
the stage of insertion in the architecture as a critical architecture component that may
vary depending on the data and task.

Secondly, based on the observation that the relative importance of the considered additional
data and source map should vary depending on the considered translation, we propose to
investigate the attention mechanism mentioned in Section 2.4.

Lastly, inspired by the MLCT-net representation space shared between all maps, we
propose to learn a representation space shared between the additional data and the maps.
This could enable training a single network per additional data independently from the
considered translation e.g. an image is encoded through a single encoder, fused with a given
source map representation, and decoded into any land-cover map without requiring one
image encoder per translation. We term Specificity, the additional data model dependence
on the translation. A not-specific model is observed when a single model encodes the
additional data independently from the considered translation. A target-specific model
learns a different model depending on the target translation.

5.2.1.1 Fusion stage

Traditionally, three fusion strategies are identified: early/ mid/ late-stage [320]. There are
no best strategies, and the best methods depend on the data, architecture and training
task [134, 244|. As Land-cover translation has rarely been studied no previous work can
give insight on the strategy to adopt: we propose to compare those three strategies.

The Early fusion approach (see Figure 5.10) is constant across all literature and always
consists of a simple concatenation of the LC with the image before feeding it to the encoder.
This approach assumes that features from the LC and the images are similar. In our case,
we expect this method to perform poorly as CNN on images intensely focuses on texture,
while low-texture land-cover maps are rich in terms of geometric information.

The Mid fusion (see Figure 5.12) consist in processing the map and additional data
in separate encoders to fuse progressively shared features. Plethoric solutions have
been proposed. Those presented in this section are based on solutions known to perform
reasonably for multiple tasks. The Mid-1 is based on the Fuse-net architecture [113], easily
adaptable to work with the U-NET encoder architecture by simply adding a max-pooling
layer to the image encoder. It processes the image and map representations in parallel in
two identical architectures, fusing the image representation with a simple addition at each
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encoding block of the U-Net. The Mid-2 architecture improves the Fuse-net architecture
by replacing the addition with a simple channel-wise attention module based on the
Squeeze-and-Excite (SE) block (described separately in Section 5.2.1.2). Coincidentally,
this makes the methods comparable to the Multi-Modal Transfer Module architecture
(MMTM) proposed by [156]. Lastly, we introduce Mid-3, which fuses higher-level features
in the decoder part of the U-Net using the same SE block as Mid-2.

Late fusion methods (see Figure 5.11) consist of training simultaneously one network
per modality and either concatenating or summing their results just before the last
classification layer. We use the same architecture for learning the representations, as
commonly performed when the two modalities are identical. Like Mid-2 and Mid-3
architectures, we propose to fuse the different representations using SE.
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5.2.1.2 Channel attention

A current trend in computer vision is to incorporate attention mechanisms into the
networks, i.e. methods to give more importance to some features than others. We
distinguish two sorts of mechanisms based on the nature of the features considered: (i)
spatial attention, when features are considered spatially (ii) channel-wise attention, when
features are considered per-pixel. Spatial attention, for instance, implemented in Vision
transformers [70], leverages the spatial sequence of pixels to give more importance to some
parts of the feature maps. In our case, we deliberately ignore those methods as they
require vast amounts of training data to achieve satisfying results. Moreover, as they are
memory-consuming, training simultaneously with the six land-cover maps is unfeasible.
On the other hand, Channel-wise attention appears very interesting, given the properties
of the MLCT-Net. Indeed, different channels of the MLCT-net common representation
space encode for different land-cover types (see Figure 5.4). When fusing image and map
features at the common embedding stage (Late fusion), it could be beneficial to give more
influence to some image or map representation channels depending on their reliability on
the land cover encoded by the considered channel. The experimented channel attention
mechanism relies on Squeeze-and-Excite introduced in [131]. It consists of a three-step
procedure presented in Figure 5.13.: i) a global average pooling computes separately the
per-channel mean for the image and map representation ii) the two per-channel means
are concatenated and processed by a linear layer outputting separate per channel weights
for the image and map representation iii) the image and map representation channels are
multiplied separately by the previous weights and then added together.

5.2.1.3 Image representation specificity

MLCT-Net aims to perform multiples translations using a single model. Its core idea is to
translate one source map into multiple target ones and thus can be seen as a multi-task
network. A core question when fusing multi-modal data into a multi-task model relies on
the dependency between each task and the multi-modal data. This requires answering the
question "should the multi-modal fusion model be dependent on the task ?". For instance,
when fusing an image with a source land-cover map, should the model used to encode the
image be the same if the source land-cover is A or B? Should it be the same if the target
land cover is A or B 7 To our knowledge, no previous works have been conducted to evaluate
this multi-modal multi-task fusion in the remote sensing field. However, some works in
the medical imagery field suggest that training a single multi-modal model to perform
multiple tasks can outperform training a separate multi-modal model per task [357].

The learnt representation can be distinguished into four levels of specificity. We illustrate
this idea with the following example: we target translating LC A, B and C into one another
and use an optical image as additional data.

Level-1 learns a unique image representation, ¢.e. a unique image representations is
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combined with the representations of A, B, and C. We refer to this method as the Unique
method as a unique universal image representation is learnt.

Level-2 learns one image representation per source land-cover map, 7¢.e. the image
representation combined with the source map A representation is different from the one
combined with the B or C representation. We refer to this method as the SourceSpe
method, as one specific image model is learnt for each source map.

Level-3 learns one image representation per target land-cover map, i.e. the image repre-
sentation combined with the A representation is not the same if the goal is to obtain B or
C. The image representation fused with A and with B is identical if the target for A and
B is C. We refer to this method as the TargetSpe method, as one specific image model is
learnt for each target map.

Level-4 learns one image representation per source/target pairs. We do not present level
four results implying training n x (n — 1) image models.

5.2.2 Remote-sensing data sources

Our experiments incorporate three different sources of remote-sensing data, presented in
Section 3.4, to alleviate the semantic and geometric gaps. Data are standardised using
their respective mean and standard deviation.

5.2.2.1 Optical imagery: Sentinel-2

The first source is optical images. As land-cover maps are mainly produced by analysing
optical images, they should be the best fitted to increase land-cover translation ability.
They can both bring semantic and geometric information. For instance, such images
could help retrieve the previously mentioned OSO agricultural classes. However, we
underline that this data is insufficient to achieve perfect translation, as (i) we only process
mono-temporal images, (ii) multiple land-cover maps such as CLC or OCSGE cover and
use are not solely based on image analysis but also stem from fusing with independent
databases. The core question is to identify to which extent a single image provides
complementary information to source map. All experiments are conducted on Sentinel-2
cloudless synthesis.

5.2.2.2 Radar imagery: Sentinel-1

The second source is Synthetic-Aperture Radar imagery which offers some interesting
properties. In particular, the high wavelength used in radar acquisition conveys a different
radiometric information that could partially fill the semantic gap in classes related to
water, urban areas, or glaciers. From an operational point of view, SAR images are more
readily available for a task involving a mapping with temporal constraints or under tropical
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conditions as they are insensible to weather conditions. All experiments are conducted on
the Sentinel-1 mosaic averaged temporally to reduce speckle noise.

5.2.2.3 Digial Elevation Model: ALOS World 3D

The last source is a Digital Elevation Model (DEM). DEM provides interesting semantic
information for very specific classes correlated to topographic specificities (e.g. conifers and
snow are often observed at high altitudes). It could also help fill the geometric information
for classes exhibiting a geometry correlated to topography. For instance, tree density
might change abruptly on the ridge of mountains (due to both luminosity and humidity
variations on both sides), resulting in a change in land-cover classification. All experiments
are conducted on ALOS World 3D and the related features computed (exposure, TPI,
roughness).

5.2.3 Experimental protocol

5.2.3.1 Finding the best architecture

Many architectures can be obtained by combining the Fusion stage and Specificity char-
acteristics presented earlier. We test all possible Fusion stage - Specificity combinations
to determine the best configuration. For instance, we test the Late fusion either with
a Unique, SourceSpe or TargetSpe specificity. We underline that the Early fusion
methods are always Source Specific as the image and source map are concatenated from the
start and thus can not be analysed separately. This results in 13 network configurations: 1
for Early and 3 for Mid-1, Mid-2, Mid-3, Late.

As we aim to obtain a versatile architecture usable with other data than the three
experimented, we consider best architecture the one that obtains the best results on
average across the three additional data. Subsequently, we test each architecture with
each additional data separately, i.e. the 13 configurations are trained using optical images,
SAR and DEM, resulting in 39 models.

5.2.3.2 Assessing the potential of multi-modal translation

Multi-modal translations should obtain a higher quality than using only the map or
classifying the remote-sensed data without any source map information. We compute
the classification of the additional data without any source map using the same U-Net
architecture as the one used for fusion: we train to classify the S1 and S2 data into each
of the target maps (the DEM-only classification is not presented as it gives poor results).
We underline that a separate model is trained for each of the specific spatial extents of the
dataset. For instance, three models are trained to classify S2 into CLC, one France-wide
(corresponding to OSO to CLC or CGLS to CLC translation), one on the OCSGE spatial
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extent, and one on the MOS spatial extent.

5.2.4 Results

5.2.4.1 Finding the best architecture

Table 5.3 present a comparative study of the 13 configurations in terms of OA,; using
Sentinel-2 data. The that the same conclusion can be drawn using the other additional
data (see Appendix I). A first observation is that the specificity does not affect the results
for a given fusion stage. This underlines that training a unique model, independent from
the considered translation, is not detrimental compared to training multiple independent
ones. This is interesting for operational cases, as training a single model is more time
efficient. It indicates that a single model can learn to map remote-sensed images into a
universal representation space.

Moreover, we observe that the Late fusion always performs better than the other con-
figurations. This statement holds for the three data. We hypothesise that this could
be attributed to the necessity to considerably transform the map and image features to
make them complementary, preventing fusion at earlier stages. In the following section
we only consider the Late - Unique method as it obtains the best results in the least
computationally expensive way.

Source CGLS (P) CLC (C) 050 (0) OCSGEe (GI) _[OCSGEu (G2 _[MOS (M) [,
Target C O GI G M|P O GI Gg M|P C GIL Gg M|P C O Gz|P C O Gi|p C o |
Barly | SourceSpe | 68 70 78 85 85 |77 70 79 86 85 |76 67 79 86 86 |72 61 66 92 |72 60 66 84 |87 85 70 | 77
Unique |68 70 78 85 8 |77 70 79 8 85|76 67 80 87 86|73 60 66 92 |72 60 66 84 |87 85 71 |77
Mid-1 | SourceSpe | 67 69 78 85 85 |76 69 78 85 85 |75 66 80 ST 86 |72 59 66 92 |72 59 65 84 |87 84 71|76
TargetSpe | 67 69 78 86 85 |77 70 79 8 85 |76 67 80 86 8 |72 60 67 92 |73 60 66 84 |87 8 71 [77
Unique | 67 69 77 8 85|77 70 79 86 85 |76 67 S0 86 86 |73 60 67 92 |72 58 G5 82 |87 85 71 |76
Mid-2 | SourceSpe | 67 70 78 85 85 |77 69 79 86 84 |77 67 80 86 86 |72 60 68 92 |72 59 65 84 |8 85 71|77
TargetSpe | 67 69 78 85 85 |77 69 S0 86 84 |76 67 S0 87 86 |73 60 68 92 |72 58 65 83 |86 85 71 [76

Unique 68 71 79 8 8 |78 70 79 8 8 |77 68 81 87 8 |74 61 68 93 |73 59 66 8 |8 85 71 |77
Mid-3 | SourceSpe | 67 71 79 8 86 |77 70 8 8 85 |77 67 81 8 8 |72 61 69 92 |73 59 66 85 |8 8 71 |77
TargetSpe | 68 71 79 86 86 |77 70 79 8 84 |77 67 80 8 8 |73 61 68 92 |73 59 66 84 |87 85 71 |77

Unique 71 73 81 87 86|79 73 81 87 86 |78 70 82 88 87 |75 64 70 93 |75 64 70 87 |87 85 72|79
Late | SourceSpe | 71 73 81 87 86|79 73 81 87 86|77 69 82 88 87|75 63 70 93 |75 63 69 86 |87 85 72|79
TargetSpe | 71 73 81 87 86|78 73 81 87 86|77 70 82 88 87|75 64 70 93 |74 63 69 86 |87 85 72|79

Table 5.3: Comparison of various Fusion strategies using a Sentinel-2 cloudless synthesis,
the 6 land cover maps and the MLCT-net in terms of OA,,.

5.2.4.2 Comparing the remote-sensed data sources

Figure 5.14 compares the results obtained for the three different remote-sensed images
using the Late - Unique. We first observe that for the the coarse-to-fine resolution
case, additional data sources considerably increases the qualitative aspect of the result
compared to the pure map translation approach. This is, for example, well illustrated by
the first and last row of Figure 5.14 (respectively, CLC to MOS and CGLS to OCSGEu
translation). When the source resolution is equivalent to or finer than the target one,
more data only marginally increases the semantic accuracy, e.g. the S2 mosaics improves
the MOS to OSO translation by helping to retrieve agricultural classes. We observed that
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fusion gives significantly different results than using each separately. For instance, in the
CGLS to OCSGEu translation, the fusion-based approach is the only one able to retrieve
411: "Road Networks".

Those results are comforted by the analysis of the OA,; and mF1,, (Table 5.4). In
particular, the observed average +2% OA,, and mF1,; increase between the map-+S2
and S2 only strategy encompass widely heterogeneous per-translation results. When the
source map is CGLS or CLC (the coarsest maps), the difference between using only S2
or fusing S2 with one of those two maps is almost nonexistent and slightly detrimental
(-0.6% mF1,z) due to the difficulty of optimising the MLCT-Net: coarse information is
often of low interest when predicting a fine-resolved map, as one source object might
encompass multiple target land-cover types. Conversely, when the source map is identically
or more resolved than the target, the fusion performs significantly better than using the
image-alone strategy (+4.6% mF1,,). We conclude that land-cover to additional data
fusion is only relevant when the source resolution is comparable or higher than the target.

Another observation is that fusing S1 still performs reasonably well and is often preferable
to the S2-only approach. Therefore it appears possible to perform our land-cover fusion
strategy even in areas where optical imagery suffers from cloud occlusion.

The OA,; and mF1,, of the map-only translation approach are always lower or equivalent
to the S2-only strategy. Consequently, land-cover translation could appear inefficient
for operational use as using a single image often outperforms the land-cover translation
approach. However, we argue that this higher OA,; and mF1,, is mostly due to a higher
capability of the network to replicate target errors when using an image as source data
instead of the map. This behaviour is demonstrated in Table 5.5 using the ground
truth. We observe that the map-only approach often exhibits higher metrics than the
S2 only, especially when the fine-resolved OSO map is translated into one of the others.
Furthermore this two overall metrics encompass significant per-class differences, illustrated
in Figure 5.15. The map-only translation approach significantly outperforms the S2-only
approach for classes with various semantic definitions such as CGLS 70: "Snow and Ice",
CLC 212: "Permanently irrigated land", OCSGFEc 1112: "Undeveloped areas”. Secondly,
we observe that fusion strategies seem to keep "the best of the two worlds" when either
the map or the additional data obtain results used alone while the other performs well as
well illustrated by the OCSGEc 1112 class example.

Additionally, Table 5.5 shows that the fusion between the image and map is most of the
time beneficial compared to using each data separately exception made of the translation
into the MOS map. As mentioned previously, those measurements on the France-wide
ground truth test in the case of the translation into MOS, the ability of the method
to spatially generalise from an original MOS extent. We conclude that the proposed
fusing method does not guarantee efficient spatial generalisation ability, 7.e. the universal
image-+map representation space is non-homogenous across the territory preventing spatial
generalisation.
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Lastly, we observe that the S1 and DEM data are rarely more beneficial than the S2 data
except on very specific classes such as "Snow and Ice" equivalent classes for CGLS, CLC

and OSO.
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Figure 5.14: Comparison of the translation results using various remote-sensed images and
the Late-Unique fusion strategy. Map, sl and s2 results are obtained using respectively
only the source map, only the Sentinel-1 data, and only the Sentinel-2 data. map-s2
correspond to results obtained by fusing the image and map representation using the
Late-Unique fusion strategy.
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Source CGLS (P) CLC (C) 050 (0) [OCSCEc (G1) | OCSGEu (G2) | MOS (M) [ Total
Target C 0 Gl G2 M|P O GI GZ M|P € GI G2 M P € O G2 P C O GI|P € 0O |average
Map only 65 57 60 78 76 |75 50 73 80 70 |77 69 80 86 85 |71 58 58 93 69 54 53 70 |86 84 64 | 72
S1 only 60 67 77 84 83|77 67 77 8 83|77 69 Tr 84 83 71 57 59 8 71 57 59 77 |8 82 65 |74
$2 only 70 74 81 87 86|77 74 81 87 86|77 70 81 87 8 74 60 68 8 74 60 63 80 |86 8 70 [77
oA | Map = DEM 64 59 72 80 80|73 60 74 82 81|76 69 80 87 86 72 61 60 93 71 58 56 82 |86 84 64 |73
P2 Map + Aspect 66 57 70 79 77|76 60 73 81 80|78 68 80 86 86 73 61 59 93 72 57 55 81 |87 84 64 [73
Map + DEM +Aspect |67 60 72 80 81|75 60 74 81 82 |79 69 80 8 8 74 61 60 93 73 59 55 81 |87 84 63 |74
Map -+ S1 70 68 79 86 85|78 68 79 86 85 |77 70 82 88 87 73 63 65 93 73 62 63 8 |87 85 69 |77
Map | S2 71 73 80 87 86|79 73 80 87 86|78 70 82 88 87 75 64 70 94 75 63 69 86 |87 85 73|79

Map only 30 29 30 20 33 |58 37 38 30 41 |61 40 45 27 53 52 34 31 43 52 29 25 40 |45 30 23 |38
S1 only 30 44 39 26 43 |55 44 39 26 43 |55 38 39 26 43 50 28 32 27 50 28 32 38 |46 27 29 [36
$2 only 43 53 48 36 58 |59 53 48 36 58|59 43 48 36 58 54 36 45 37 54 36 45 48 |50 40 35 [47
Lpy | Map + DEM 35 35 34 20 40 |58 37 39 20 45 |58 41 47 28 55 54 38 35 44 52 37 30 49 |50 39 24 [4I
Map -+ Aspect 35 30 32 20 35|61 37 37 24 43 |63 40 44 23 53 55 39 33 35 53 35 27 47 |49 37 23 [39
Map -+ DEM +Aspect |35 35 33 21 41 [62 38 40 28 46 |62 42 48 28 54 56 38 36 44 54 37 29 48 |50 40 25 |4l
Map + S1 41 43 42 26 52 (G0 46 43 31 54 |60 43 47 27 57 55 41 39 41 54 40 35 53 |51 44 32 [15
Map + S2 44 50 47 30 57 |65 52 48 36 57 |64 47 50 38 60 62 44 45 49 61 44 44 |57 |49 44 36 |49

Table 5.4: OA,z and mF1,, comparison for various additional data fusing. Grey columns
denotes translation for which the source map is higher resolved than the target one

Source CGLS (P) CLC (C) 0SO (0) Average
Target C O GIL G2 M|P O GI G2 M|P C GI G2 M &
Map 60 53 74 83 83 |71 59 79 86 86|78 70 87 92 93|77
OAg | 82 63 70 82 89 81|69 70 82 89 81|69 63 82 89 81 |77

Mapis2 |70 72 84 91 67 |71 72 85 91 66 |72 72 88 92 69 | 77
Map 27 22 37 27 30|56 33 52 43 46 |59 43 57 33 50 | 41
mFlg | S2only |37 40 46 31 39 |52 40 46 31 39 |52 37 46 31 39 |40
Mapis2 | 44 41 47 37 30|58 48 50 42 29 |59 47 55 43 30 | 44

Table 5.5: OAg and mF1, comparison for the map only, s2 only, map+s2.

5.2.5 Conclusion

We presented a strategy to fuse remote-sensed images and map representation to both
improve results and study the potential of re-using existing land-cover maps as input of
the traditional image-to-land-cover classification procedure. As we consider that both the
image and map should be fused using a context-aware method to increase the amount of
information available, we proposed to adapt the MLCT-Net. The first section introduced
how to fuse additional data inside our MLCT-net architecture. From our experiment
we observe that the fusion should be performed at the land-cover representation space
level. Since the land-cover representation discriminates different land-cover using different
dimensions, the land-cover and image representation dimensions should be weighted
differently depending on their content. Moreover, learning a single representation space
for the additional data, independent from the source and target map, appears sufficient.
Secondly, we focused on the impact of different sources on the quality of land cover
translation. Experiments demonstrate that fusing additional data mainly the quality of
translation for all source/target map couples. However, we also pointed out that the
difference between classifying the remote-sensed data alone and fusing dit not significantly
improve the results when the source is significantly coarser than the target. Therefore we
argue that fusion between image and representation should mainly be conducted using
a source map with an equivalent or finer resolution than the target. Note that those
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Figure 5.15: Highest observed per class F1,g for each source to target translation.
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conclusions are drawn from experiments on a limited number of maps and that other
factors could have played a role. Especially one could argue that the fact that results using
the remotely sensed image and low-resolved map fusion are not better than just using the
image could be a mere coincidence. Instead, one could argue that the core reason lies in
the complementary between the nomenclature of the source and target maps, e.g. CLC
to OSO translation does not give bad results because CLC has a coarse resolution but
because CLC nomenclature brings no more information to obtain OSO than the image.
However, we found it unlikely as the ~ 50% mF1 obtained by classifying the S2 image into
CLC or CGLS indicates that many classes are not obtainable from the image data alone.
Lastly, we observed that the S2 imagery always achieved the best results amongst the
three additional data experimented on, both used alone or merged. However, in multiple
cases, the difference with S1 images remains modest, which underlines the possibility of
performing this on areas where S2 images suffer from significant cloud occlusion.

5.3 Conclusion

This chapter focused on improving the translation methods to make them usable in
multiple operational cases. Two research axis are developed: i) building a multi-translation
framework to enable predicting multiple land-cover maps translation from a single source
while ensuring good spatial generalisation properties and ii) fusing additional data to
increase the quality of the translation.

The A-UNet trained to perform a single translation suffered both from a lack of spatial
generalisation and was sensible to the noise in the source and, more importantly, in the
target map. To alleviate those issues, we proposed to comprehensively investigate multi-
land-cover map translation with our novel MLCT-Net model driven by the observation
that models trained to perform multi-lingual translation outperformed models trained
to perform each language separately. In order to increase the translation ability of our
model on maps with small spatial extent by reducing both over-fitting and increasing the
spatial generalizability, a multi-encoder decoder network was designed, incorporating a
three-term loss. A universal country-wide representation space of the six land-cover map
was obtained and demonstrated good translation results compared to training separate
A-UNet. In particular, the multi-land-cover map model obtained a higher OA;; and mF1,,
(+2 and +3% respectively) than the mono-land cover baselines while achieving almost the
same scores in terms of OA,; and mF1,, demonstrate better noise robustness. Moreover,
the multi-LC training enables significantly increased cartographic generalisation ability

(on average +7% OAg and +9% mF1, when translating CLC, CGLS or OSO into MOS).

Secondly, we investigated the potential of fusing additional data sources to increase the
quality of the translation, especially in the case where the source map is coarser than the
target. Land-cover maps are rarely used as raw data to predict other land-cover maps and
are not jointly analysed with images. We proposed to adapt our multi-land-cover map
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model to perform this fusion. In particular, learning a single universal image representation
is sufficient to achieve the best translation results, i.e. all land cover can be inferred from
a single image representation. Moreover, the late strategies appear to be the best suited
in the specific case of land-cover translation, with a shared representation space for all
land-covers. We thoroughly examined the effects of three different kinds of additional data
(optical, SAR, DEM) and observed that fusing additional data with a map representation
significantly improves the results, provided that the source map is not too coarsely resolved
compared to the target. Indeed, a coarsely resolved source map conveys little information
on the expected output class and does not bring extra information.

To sum up, this section presented significant improvement to the learnt spatial and
geographical context translation method by increasing the quality of the translation,
the spatial generalisation ability, and the noise robustness. However, the current multi-
landcover strategy appears widely inefficient as (i) multiple source classes with close or
identical content are learnt separately, e.g. the "coniferous forest" of the CLC, OSO and
OCSGEc map are all mapped using a separate encoder, (ii) multiple target classes with
close or identical content are learnt separately, e.g. the network learns separately the
concept that "herbaceous near water" is likely wetlands for the OSO to CLC translation
and the OCSGEu to CLC translation. This fosters multiple operational constraints: a
source map can only be translated into one of the target maps used during training and
only if the source map was also included in the training. For instance, the MLCT-Net we
trained on the six land cover is able to translate one of those maps into one of the other
five but can not use as a source or target any other maps even if it exhibits close semantic
and resolution characteristics. We address this problem in the following chapter.
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CHAPTER

Building a semantically continuous land-cover
representation

6.1 Introduction

Previous sections considered the translation as the transformation between a discrete
representation space with n dimensions formed by the cs source classes to another with cr
target classes. In those sections, the CGLS Closed Forest and OCSGE Broad-leaved trees
translations are learnt distinctly using two different one-hot encodings (see Equation 6.1).
As each nomenclature is considered an independent representation space, adding a new
source or target nomenclature requires retraining the algorithm from scratch.

CGLSclosedrorest = [1,0,0,0,0,0,0,0,0,0,0,0] 61

OCSGEcovergoadreavedtrees = [0,0,0,0,0,0,0,1,0,0,0,0,0, 0] (6.1)
We observe that a person taught that CGLS Forest is translated either into OCSGE use
Forestry or Without use, depending on the context, is able, without additional information,
to suggest that MOS Forest can be translated similarly. This ability to generalise a
translation model to new source and target nomenclatures without specific training is
termed zero-shot translation.

Contrary to our methods, the person is aware of the semantic links between the differ-
ent classes. She/He relies on a global understanding of class definitions to estimate a
resemblance between classes.She/He assumes that a unknown class must be approximately
translated to classes that resemble it the most amongst the ones he learned. We assimilate
this understanding to a capacity to represent the translation not as the transformation
from a discrete representation space to another but as a change in the interpretation of a
single representation space including all possible land-cover labels.

Finding a way to train the model on such a common nomenclature representation space
could avoid retraining the network with each new source or target nomenclature. This
could be particularly useful when no preexisting training samples of the new nomenclature
is available.
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The approaches currently representing multiple nomenclatures in a unified space have been
presented in Section 2.1.1.1 under the term standardisation (LCCS, EAGLE). However,
those semantic spaces are unsuitable for our paradigm, as their representation spaces are
discretely defined. For instance, EAGLE offers more than 570 dimensions (expandable),
describing distinct attributes with seven discrete values according to how mandatory the
attribute is/is not. The notion of distance between two classes is not clearly defined. For
instance, the distance between classes for which the second attribute is either valued x
(The attribute is not relevant for the class) or 0 (the attribute is not in the definition) or
2 (The attribute is mandatory) require defining subjective rules. Moreover, it requires
weighting each attribute/dimension arbitrarily.

14

. | ial OCSGEc
Mineral material areas CGLS
Undeveloped areas

Bare soils Areas with other composite materials
Bare / sparse vegetation Urban / built up

Built-up areas

Snow and Ice

Snowfields and glaciers
Moss and lichen

Cultivated and managed vegetation/agriculture (cropland)
Herbaceous formations

Herbaceous vegetation
Water surfaces

Herbaceous wetland Shrub and sub-shrub formations

opensee Shrubs
Permanent water
Broad-leaved trees - .
—11 Mixed trees Other non-woody formations
Open forest Liana-like vegetation
Coniferous trees
Closed forest.
T
_2 _1 0 1 2

Figure 6.1: Manually defined 2D semantic representation space for the OCSGE cover and
CGLS maps. The closer two classes definitions are, the closer their semantic encoding.

We propose a method projecting a class into a continuous nomenclature representation
space based on its definition. Like the person’s mental representation space, it should
bring two semantically close classes near in such a space. The metric space in which
semantically similar classes are close to each other is called semantic space in the literature.
Instead of one-hot encoding CGLS Closed Forest and OCSGE cover Broad-leaved trees, we
encode them in a single space in which they are closer to one another than classes such
as OCSGE cover Bare soil. We illustrate this idea by proposing a 2D manually defined
semantic representation space with the classes of these maps in Figure 6.1. The resulting
encoding of the two previous classes is then given in Equation 6.2.
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—0.6
C‘GLSC/osedForest = (_1 2)

(6.2)

OCSGECOVGI‘Bmad_/eaveC/ = ( 235)
This semantic encoding can replace the standard one-hot encoding as input and output
data of the networks, as shown in Figure 6.2. To date, the few examples of the application
of semantic spaces in land-cover mapping are mainly in zero-shot image classification or
segmentation. A model is trained to project pixels into a semantic space obtained by
applying a pre-trained language model [246]. Unlike image classification, in translation,
the semantic representation space can be applied to both source data (a map) and target
data (another map). Encoding the source maps provided to MLCT-Net during training
could allow spatial context-wise translation of maps never seen during training at the
time of inference (e.g. US NLCD — CLC) based on the idea that the translation of the
unseen classes fallows approximately the same contextual rules than the classes seen during
training with an encoding close to the unseen class. We refer to this scenario as zero-shot
source translation. Encoding the target maps, could allow each source map object to
be projected differently into the semantic space depending on its spatial context. For
instance, a pixel of OCSGE Herbaceous formations could be projected closer to Herbaceous
wetlands or Herbaceous vegetation depending on its distance from a water point. Instead of
outputting a fixed nomenclature with n classes, we could obtain a continuous representation
that can be derived into a nomenclature never seen during training (CLC — NCLD). We
refer to this scenario as a target zero-shot solution.

Training models or comparing methods producing semantic representation space requires
assessing the quality of the nomenclatures encoding on a ground truth. As no public dataset
with multiple nomenclatures has been released yet, we created a small land-cover definition
dataset (LCDD). Ten nomenclatures are selected for their semantic diversity: the 6 of the
MLULC dataset, the one of ESRI land-cover map', and three different nomenclature of the
MODIS Land Cover Type MCD12Q1 [290] using different standardisation approach. We
introduce the LCDD 169 class definitions in Appendix D. The following section discusses
the expected properties desired for a semantic space and related evaluation criteria. We
underline that the small size of the dataset prevents training complex models but can be
used to train very simple models.

https://livingatlas.arcgis.com/landcover/
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Figure 6.2: Comparison between a translation with one-hot encoding using a MLCT-Net
with a u-dimension shared representation space (top) and a d-dimension semantic encoding
(bottom) for land-cover map A (ca classes) and B (cg classes). A similar colour represents
a comparable representation space, i.e. same number of dimensions encoding comparable
features. Semantic encoding requires a single network since both the input and output
share the same representation space. MaxDim: classifies the final map as the class with
the highest logit value. ASPP: atrous spatial pyramidal pooling.

Our zero-translation framework based on semantic representation space can be decomposed
into three main steps:

1. Class definitions are encoded using a language model in a continuous semantic
representation space. Two approaches have been proposed in the literature so far: a
bag-of-words [58] trainable using a few land-cover classes definitions such as those
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of the LCDD and a Word2Vec [246]) model trained on large generic text corpora
not land-cover specific. We compare those two approaches and propose a third one
based on a transformer architecture trained generic text corpus.

2. The three explored techniques result in very high dimensional representation spaces
(300 - 1 000 dimensions) that are unusable to encode land-cover data fed to a network
for memory concerns. Moreover, models trained on generic text corpora encode for
semantic notions irrelevant from a land-cover point of view e.g. the word water is
close to surf. Different supervised or unsupervised dimension reduction techniques
are explored to reduce the dimensions. In particular, we introduce a new supervised
dimension reduction technique based on a multi-layer perception trained using the
small LCDD dataset.

3. Land-cover maps used to train a translation CNN are first semantically encoded
using the dimension-reduced SRS. At inference, an unseen map is encoded using the
same semantic space and fed to the network.

The first section defines a set of desired properties for a land-cover semantic representation
space and related evaluation criteria. We point out that this first section is part of our
original contributions, as the only two previously existing works [58, 246] did not define
them explicitly. The second section introduces and compares the different natural language
models and dimension reduction techniques based on the evaluation criteria presented in
the first section. Finally, we propose the first example of applications of these semantic
spaces to the zero-shot translation case.

6.2 What is an ideal semantic representation space 7

A Semantic Representation Space (SRS) aims to reflect the proximity between
different concepts in a space with a finite number of dimensions [195]. In our land-cover
case, we aim to obtain a continuous metric space endowed with a distance metric (Euclidean
distance, for example) in which semantically close classes are also close in the sense of the
metric. This section first defines the notion of land-cover SRS in a broad way independently
from our desired application (zero shot translation). In particular, we discuss, how and
what to encode in class definitions and the notion of proximity in the SRS and its link
semantic similarity. We then define additional characteristics that the space should exhibit
to be usable in the specific case of zero-shot translation.

For simplification, we use the notations of Section 2.1 (see Figure 6.3). S; and T; are sets
holding all the source pixels classified i (out of cs classes) and all the target pixels labelled
J (out of cr classes). s;, t; denote the descriptors of the source class i and target class
j in a considered standardisation system. s;(v) denotes the v! descriptor of the source
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Figure 6.3: lustration of encoding of classes using a standardisation system (EAGLE)
and a continuous semantic representation space. Standardisation systems use discrete
variables (x: "should not be included", 0: "can be included but not in definition ..."),
while SRS use abstract conitnuous variables (here 5). For clarity only 15 discrete variables
are displayed for EAGLE while the matrix used for CLC includes more than 350 variables.

class i in the standardisation system. s/, t; denote their descriptors in the SRS, with s/(u)
being the u™ dimension out of g dimensions of the SRS. We underline that s;(v) might
be a discrete encode variable, depending on the standardisation system, while s/(u) is a
continuous variable from the SRS.

6.2.1 Encoding class definitions

Our semantic space should be able to encode for all information present in the class
defintion. The space must include semantic properties of the objects, including their
cover and use. Additionally, it should integrate spatial resolution information (commonly
provided in the form of a threshold). Lastly, it should differentiate between inclusion and
exclusion statements, e.g. if Crop definition excludes pastures, Crop should not be close
to Pastures even though the term pasture appears in its definition.

In the particular case of hierarchical nomenclature, we consider each hierarchical level as
a distinct nomenclature, accumulating the semantic content of the previous levels. We do
not aim to create multiple sub-spaces encoding the notion of class hierarchy separately,
as the hierarchical division of nomenclatures is often widely different from one map to
another.

As underlined before, the SRS is used to encode land-cover maps before feeding them two
Convolution neural networks such as those presented in the previous sections. As such,
the definitions should be encoded with continuous variables that enables straightforward
distance computation or interpolation. We insist that standardisation approaches such as
LCCS or EAGLE result in high-dimension discrete spaces encoding with discrete variables.
In the remainder, we assume a continuous space, thereby neglecting the standardisation
approaches.
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6.2.2 Computing proximity between classes

Class SRS encoding must reflect the semantic proximity between class definitions. Analysing
the quality of a semantic space requires: (i) defining a measure M; of proximity between
class definitions and a measure M, of proximity between classes in SRS, and (ii) defining
the correlation link expected between M1 and M2.

6.2.2.1 M1: Proximity between classes

Computing the proximity between class definitions can be achieved using three different
measurement methods.

The Binary Overlap Measure (BOM) is based on a manual distinction between
classes sharing elements in common with others. This binary metric is implicitly used by
nomenclature translation system relying on expert knowledge [1]. As the binary behaviour
does not allow a satisfactory comparison of the degree of resemblance, a few more evolve
techniques such as [55, 56| assess it using a three level granularity (expected, uncertain, or
unexpected). As there is little doubt about the existence or not of an element in common
between to two classes, BOM is rarely false.

BOM(s;, t;) = (6.3)

1 if 5,' N TJ 7é @,
0 else.

Section 2.1.1.2 introduced the notion of Semantic Similarity Measure (SSM) (Equa-

tion 2.8). Often based on a proportion of attributes shared between two classes, it is

adopted by most semantic approaches. It measures the resemblance with a higher granu-

larity than BOM. However, it is often very biased because it depends enormously on the

relative weight given to each attribute, arbitrarily fixed in the method.

The Statistical Co-Occurrence Measure (SCOM) computes the proportion of pixels
of each target class corresponding to a given source. This measurement is normalised by
the proportion of each target class. It offers a high granularity while avoiding arbitrary
weights. Source/target map errors might reduce the correlation between this observed
statistic relation and the expected semantic one. Conversely to SSM and BOM, SCOM is
only based on measurement conducted on real map samples and ignores class definitions.

6.2.2.2 M2: Measuring proximity in the representation space

We restrict this manuscript scope to SRS in Euclidean geometry. We underline that
approaches encoding in non-Euclidean geometries, such as hyperbolic spaces, have shown
encouraging results, especially for encoding hierarchical data in low-dimensional spaces [162,
227|. They require a very high numerical precision for distance computation (64 or even
128-bit): we consider them unsuitable and deliberately ignore them.
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In Euclidean space, the Euclidean distance is commonly adopted for distances (Equa-
tion 6.4). Many works have pointed out that this measure is unsuitable for high-dimensional
spaces, which may be problematic for some of our semantic spaces.

La(s, 1)) = 4| D_(sf(u) — ti(w))>. (6.4)

The Manhattan distance is often used as a replacement for higher-dimensional spaces (see
Equation 6.5). As the Euclidean distance, the Manhattan one is not scale-invariant. This
is not an issue as long as the amplitude of variation of each dimension correlates to the
semantic gap.

Z|s — ti(u)|. (6.5)

In other cases, a commonly solution in high dimensional spaces is the cosine distance
(Equation 6.6). Instead of focusing on the difference s; and t;, the cosine distance computes
the cosine of the angle between both. CosineDistance = 0 when vectors are collinear, 1
when they are orthogonal, and 2 when they are opposite.

CosineDistance(s;, t;) = 1 — vl : (6.6)

6.2.2.3 Relating M1 and M2 scores

Let My(s;, t;) be the measure of the proximity between s; and t; definitions. We denote
My(s], J) the proximity of their respective encodings. C is the constraint the semantic
space should minimize. We propose the distinction between two kinds of semantic spaces.

Distance-conservative semantic spaces (DCSS) aim to ensure the distance between
two encodings is identical to one of the continuous proximity measurements (SSM, SCOM,
Equation 6.7). Training a natural language model or a dimension reduction model to
obtain a DCSS is a difficult task as it requires a training dataset associating to each couple
of source target class an expected distance value. No such dataset currently exist for
significant number of maps and would be difficult to define as current SSM and SCOM
measures does not ensure the preservation of the triangular inequality: some inter-class
distance might be mutually exclusive.

Concss(si, t7) = [Mu(si, ;) — Ma(s], t)]. (6.7)
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Neighbour-conservative semantic spaces (NCSS) aim to ensure that classes with
close definitions are encoded more closely in the semantic space than classes with far
definitions. NCSS only constraints the neighbourhood without constraining the distance:
the distance between Water and Cereals can be 0.2 or 3000 as long as it is higher than the
distance with Maize. This makes models targeting NCSS easy to optimize even for NCSS
with low number of dimensions. We distinguish two subcategories of NCSS, Absolute-
Neighbour conservative semantic spaces (ANCSS) and Relative-Neighbour conservative
semantic spaces (RNCSS). For ANCSS, target classes partially corresponding to a given
source class (BOM = 1) are closer to this class in the semantic space than any other target
class (Equation 6.8). They distinguish close/far classes in a binary manner. For instance,
Cereals, Maize, and Tubers should be closer to the source class Agriculture than any other,
but there is no constraint on how far each class should be or if Maize is closer than Cereals.
Conversely, RNCSS (see Equation 6.9) ensures that each target class encoding respects
the correct proximity ordering to a source class by defining each neighbour relatively. For
instance, Maize should be closer to Agriculture than Cereals which should be closer to
Agriculture than Water.

MQ(S{ t{) if BOM(S,', t:,) =0.

17 j
0 else.

Cancss(s}, tjl) = {

‘MQ(S;, tj,) — M2(${ t;()’ if MQ(S;, t{) > M2(5{ t;() & Ml(S,', tj) < Ml(S,', tk).

i g i
Criess(sis £ t) = { [ Ma(s], t;) — Ma(si, tp)| if Ma(s], t}) < Ma(s], t,) & My(s;, t;) > Ma(si, t).
0 else.

(6.9)

For land-cover translation, an ANCSS is sufficient as translating an unknown source
nomenclature can be achieved by simply translating the unknown class similarly to the
few closest classes in the SRS. As training, a model to produce an ANCSS is significantly
simpler (does not require knowing the precise semantic distances, nor the relative ones),
this manuscript only considers ANCSS.

6.2.2.4 Evaluation of the SRS

We evaluate the SRS on its ability to ensure that classes determined as a neighbour in
the LCDD dataset (BOM=1) are also neighbours in the SRS. We first describe how we
determined neighbour classes in the LCDD dataset and then introduce two quantitative
metrics assessing the neighbour preservation quality.

Determining neighbours classes in the LCDD dataset Neighbourhood inside the
LCDD dataset (BOM) is determined by hand independently for each source/target couple
of nomenclature. Following notations of Section 2.1, we consider that S; has a single
neighbour T; when they include the same objects (Equation 2.3) or when all the objects
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of S; are included in T; (Equation 2.4). When T; is included in S; (Equation 2.5), S; has
multiple neighbours, all classes included in S;. Without overlap (Equation 2.6), the classes
are considered as non-neighbours. As mentioned in Section 2.1, determining by hand the
pairs of classes establishing these relationships is relatively simple and leads most of the
time in consensus results between several analysts [339].

The distinction of neighbour classes is more difficult to apprehend when a source class
partially overlaps with several target classes [57] (see Equation 2.7). Generally, we consider
here that all the target classes establishing a partial overlap are neighbours. However, we
place two notable exceptions. When the partial overlap is due to a difference in the spatial
resolution of the analysis, S; may have the constraint of necessarily including a certain
number of target classes (T}, Tk...) without the converse being true. For instance, road and
airport are partially overlapping as some road pixels do not belong to airports, and some
airport pixels do not belong to roads. However, an airport necessarily contains roads (the
runway ), while the reverse statement is invalid. In this case, we consider an asymmetric
link in which §; (airport) is close to T; (road) without the converse being true. The second
exception is when the partial overlap is due to an apparent lack of correspondence between
a source class and the set of target classes. The CLC Wetland class has no equivalent in
the OSO, MOS, or OCSGE nomenclatures. Then, an asymmetric neighbour link is also
used ( Wetland is considered a neighbour with Water or Herbaceous areas in the OCSGE,
while the converse is invalid).

We point out that determining a neighbourhood relationship between a source class
and the classes of several nomenclatures simultaneously is not considered. This would
imply some difficult determination such as the Forest of map A is closer to the Forest of
map B than the Forest of map C. Consequently MOS Water necessarily has at least five
neighbours among the MLULC nomenclature (one per land-cover map). Using the above
protocol, we manually define the neighbors of the 169 classes of the LCDD independently
for each target nomenclature (Appendix B).

Evaluation of SRS neighborhood preservation We derive two distinct neighbour
conservation quality metrics (Figure 6.4). First, we define the Closest Neighbour metric
(CN) as the proportion of source class encoding having for closest target encoding one of
the expected neighbour (BOM=1). We simply average Equation 6.10 for all source and
target couples. In practice, this metric directly reflects the proportion of classes for which
the closest neighbour in the SRS is one of the possible neighbours.

CN(S, T) = — Z Z £(5,T))

e
| _ o (6.10)
with (S, T) = {; 1f1 argming My(s/, t') = t; and BOM(s;, t;) = 1
else

Secondly, the Neighbor preservation (NP) metric evaluates the overall preservation of
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all neighbours. The proportion of target encoding labeled as not neighbouring the encoded
source class but closer to it than at least one of the expected neighbours. For instance, if
the representation of Cereals has for nearest neighbour Corn, then Water and Rapeseed,
whereas Corn must be the neighbour of Corn and Rapeseed, this measurement equals 2/3.
In practice, a source class with x neighbours in the target nomenclature achieve a 1 NP
when the x closest element of the source class in the SRS are only those neighbours. A
measure close to 0 indicates that multiple non-expected neighbouring classes are closer
than one of the expected neighbours.

Good closest neighbour Bad closest neighbour Good neighbours Bad neighbours
A A A
A A
O O
A A
A
A A A A
O O
3 3 3 3
> > > >
CN=1 CN=0 NP=4/4=1 NP =2/4
Considered source class [] Other source classes A target_class expected to be non targ_et class expected to be
neigbour to source class neigbour to source class

Figure 6.4: Hlustration of the Closest Neighbor (CN) and Neighbor preservation metrics
(NP) considering a single source class example. The metrics over a nomenclature are
computed by the averaging the results over all source classes.

6.2.3 Constraints specific to the zero-shot use-case

This section identifies additional criteria when the SRS is aimed specifically to be used to
encode map feed to a CNN to achieve zero-shot translation.

First, a model trained to project n nomenclatures in an SRS should be able to encode a
new nomenclature unseen during training without changing the encoding of the n first
nomenclatures. Machine learning-based models that project class definition into the SRS
should thus be trained inductively and not transductively.

A second immediate consequence is that it must guarantee that the encoding of two
different nomenclatures is not spatially disjoint. As nomenclatures have very different
description schemes, the model is likely to encode different nomenclatures at different
locations in the SRS space. This representation shift could prevent the network from
interpolating the translation of the class of an unseen nomenclature based on the position of
the seen one, as it could be encoded in a completely different way. We propose two simple
unsupervised shift measurements, Inertia and CH, that aim to quantify the average shift
between two nomenclature representations.
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Figure 6.5: Ilustration of the Inertia and Cluster homogeneity (CH) metrics (three
nomenclatures). Inertia compares the average variation of distance of the nomenclatures
to the SRS. CH evaluates the homogeneity of the nomenclature distribution into the SRS
space. The desired SRS should look like the one in the first column.

Under a no-shift between nomenclature scenario, all nomenclatures should approximately
have the same centroid coordinates as they are on average at the same location in the SRS
(as illustrated in the first row, the first column of Figure 6.5). The inter-nomenclature
Inertia measurement gives an order of magnitude of the dispersion around the empirical
centre of SRS. It compares the average distance between the centroid of the SRS (centroid
of all classes) and the classes of a given nomenclature with the average distance between
the centroid and the classes of all other nomenclatures. We normalise this value in order
to get a distance percentage of variation. For instance, a nomenclature A with Inertia of
0.1 indicates that the classes of A are, in average, 10% further from the centroid of all
classes than the classes of other nomenclatures. Let V denote the centroid of all the classes
independently from their nomenclature, and N denote the set of all the v nomenclatures
available. We denote Nj the h'® nomenclature, Nj,. the it of the h'® nomenclature, and
¢n the number of classes of N,. Inertia is given by Equation 6.11. This metric is directly
inspired by the notion of intra-class and inter-class inertia used by the clustering algorithm,
which aims either to minimise intra-class inertia or to maximise inter-class inertia (achieving
one objective achieves the other). Our inter-nomenclature inertia measure is equivalent to
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the notion of inter-class inertia, but should be minimised rather than maximised.

Ch
o 2 Ma(Ny,, V)
=1

i_

Inertia(Np) = ——— : (6.11)
%J; ci,, = MZ(NJ'H V)
J#h

The second, based on the hierarchical clustering algorithm [222], aims to verify that the
classes of each nomenclature are approximately homogeneously dispatched in the SRS. The
hierarchical clustering algorithm is tasked to find the same number of clusters as the number
of nomenclatures. In a homogeneous space, each cluster should include approximately
the same proportion of each nomenclature as the proportion observed globally e.g.. If
OSO represents 10% of the classes, each cluster should include approximately 10% of OSO

classes. This shift measurement evaluates the distance to this homogeneity objective.

Let P(N,) = =% represent the proportion of classes belonging to the h nomenclature.
G
j=1
Let AG; denote the i" cluster, AG;(N,) denote the number of classes belonging to h
nomenclatures in the i'* cluster. The cluster homogeneity value CH (Equation 6.12) is
only used to compare different SRS: there is no theoretical obligation that each cluster
exhibits precisely the same proportion of each nomenclature. However, it can be used
to compare different SRS with comparable CN or NP measurement: a lower cluster
value indicates a more homogeneous space in which each nomenclatures is homogeneously

dispatched in the space .

CH(N) = 3 (G
L AG(N)

J

P(N,)). (6.12)

The Neighbor Stability (NS) evaluates the potential to interpolate encoding between
two neighbouring classes while preserving neighbourhood links (Figure 6.6). Let s! and
t; be two neighbouring classes. Any encoding between s; and t; should be closer to s,
t; or one of their neighbours than any non-neighbour classes. For instance, an encoding
between Cropland and Wheat should be closer to Corn than Water. To verify this
characteristic, we regularly sampled 20 points on a segment going from the source to the
target class. We estimate the proportion of the segment closer to one of those neighbours
by computing the proportion of those 20 points closer to one of the potential neighbours
than a non-neighbouring element. A 100% NS implies that approximately 100% of the
segment between two neighbouring elements respects the neighbour’s preservation. In
those conditions, one could imagine using simple arithmetic combinations between classes
while ensuring that the results are still be semantically meaningful e.g. w should
be closer to Rice than Forest when NS is high.

Lastly, we point out that an SRS need to have a small number of dimensions (less than
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100) to avoid excessive memory consumption in perspective to encode land-cover map feed
to CNN. To give an order of magnitude of the problem, a 600x600 pixel patch encoded
in a 100-dimensional space using a float 32 precision represent a 1.15 GB memory usage
alone. The 32GB GPU used in this thesis would only be able to load 26 patches at a time,
decomposed in 13 input and 13 output, without even considering the memory consumption
of the network computation itself. From a theoretical point of view, small dimensional
SRS are sufficient to encode fairly the notion of proximity between classes, as evidenced
by the encoding in only two dimensions proposed for two nomenclatures in Figure 6.1.

Zoom

A A A

100% of the line is closer
to purple (or orange) than
blue. NSgrget=100%

N
4
4
Iy
L
S

50% of the line is closer to
green than red.
NSsource=50%

. Expected neighbours of xpected non-neighbours of
|:| Considered source class . .
in the target nomenclature in the target nomenclature
Considered target class Expected neighbours of IEFxpected non-neighbours of
(an expected neighbour in the source nomenclature in the source nomenclature

of [lin target nomenclature)

Figure 6.6: Neighbour Stability (NS) metric illustration between one source and one target
class. The considered target class is one of the expected neighbors of the source. NS
estimates the percentage of elements on a segment from source to target that are closer to
one of the expected neighbours of source (BOM(s;, t;) = 1) in the target nomenclature
NScource than any other target class. Reciprocally NSi,ze estimates the elements that
are closer to one of the expected neighbor of the target class in the source nomenclature
((BOM(t;,s;) = 1) than any other source class.

6.3 How to built a SRS for land-cover translation ?

The main difficulty faced when aiming to obtain a model projecting land-cover classes
in a continuous semantic representation space is the lack of wide land-cover definitions
dataset preventing to train task-specific complex language model. To alleviate this issue
we propose a two step procedure. First we project the land-cover definition into an SRS
by using either a simple language model that can be trained on our small LCDD dataset
or more complex models trained using generic text corpora unrelated to land-cover. We
evaluate those models based on their capacity to respect the properties mentioned in the
previous section. The different obtained SRS exhibits the two same limitations: (i) some
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of the abstract variables used to encode classes takes into account concepts irrelevant
from a land-cover point of view (ii) the SRS are to high dimensional to be usable to
encode maps fed to a convolution neural network (>300 dimensions). Therefore, the
second step compares different dimension reduction techniques aiming to recombine the
numerous encoding variables into a smaller number of well designed one. In particular we
explore a supervised dimension reduction technique trained to optimise the neighbourhood
constraints defined in the previous section using the LCDD dataset. In the remainder,
we denote HDSRS, the high-dimensional SRS obtained as the output of one of the three
previous methods and LDSRS, the low-dimensional SRS we aim to obtain.

6.3.1 Using language models to obtain high-dimensional SRS

As only a few works have been conducted in obtaining SRS from land-cover definitions,
this section evaluates the current main semantic embedding models. We first present a
Bag-of-Word model proposed for land-cover translation by [58] that we train directly on
the LCDD dataset. Then we present a Word2Vec model proposed by [246] for zero-shot
land-cover semantic segmentation from images trained on large text corpora. Lastly, we
propose replacing those two models (the only one found in the literature for land-cover
class embedding) with a transformer-based architecture trained on text corpora that we
believe more adapted to work the complex sentences of class definitions.

6.3.1.1 Bag-of-words

Overall idea The bag-of-word approach [112] (BOW) proposed by [58] is the only
model applied to the land-cover translation task in the literature. This model determines
all the words used in the land-cover definitions to build a land-cover term dictionary.
Each definition is then encoded as the count of the words inside it. For instance, in a
setup where the only available land cover definitions are (5) and (6), the dictionary is {"For-
est" "natural""tree","vegetation","with" "higher","than", "5m","Orchards"," Cultivated" }.

"Forest : natural tree vegetation with tree higher than 5m” (5)

"Orchards: cultivated tree " (6)

Using each word of the full dictionary as one of the encoding dimensions of the BoW with
a value equal to the number of word occurrences in the definition, we obtain Figure 6.7.

Forest natural tree  vegetation  with higher than 5m Orchards Cultivated

Forest 1 1 2 1 1 1 1 1 0 0

Orchards | © 0 1 0 0 0 0 0 1 1

Figure 6.7: Bag-of-word encoding of two schematic classes Forest (5) and Orchards (6)
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In practice, this encoding is very sensible to the class definition length thus [58] normalise
the encoding values by the number of words in the class definition e.g. Orchard encoding
becomes Orchards = [0, 0, %, 0,0,0,0,0, %, %] In order to emphasise the importance of
class-specific words, they adopted a common total frequency times inverse document
frequency weighting scheme. Each term is weighted such that a term that frequently
appears in one definition but not in the other exhibits a high weight. Let ng(t) be the
number of times the word t appears in the definition of class i, L, be the number of words
in class i definition, h(t) be the number of classes including t in their definitions and D be

the total number of classes. The resulting weight is obtained using Equation 6.13.

PN ”s,-(t) D
si(t) = L /nm

(6.13)

Implementation details We follow [58|. Each class description is first converted into
a list of terms that are used to build the dictionary. In most cases, a term represents a
single word but it also includes small phrases for distances/surfaces informations (e.g. "5
m"), and locations (e.g. "Alpine grasslands"). Unlike [58|, we add a few more constraints
due to the small number of definitions and their limited size: each word is considered case
insensitive, and plural and singular words are considered as a single key. This results in a
987-term dictionary inducing a 987-dimension HDSRS.

Strengths and weaknesses of the method The core advantage is that the model
is directly built on existing land-cover definitions. The HDSRS only considers concepts
related to land cover and ignores unrelated concepts. However, this approach suffers
multiple limitations:

e the method is entirely dependent on the exhaustivity of the dictionary. As we
considered that the HDSRS should be obtained inductively to enable zero shot
land-cover translation, a nomenclature not used to build the HDSRS can include
terms not encodable using the original dictionary. This results in a partial loss of
class information.

e the method ignores grammar and order. This prevents learning concepts such as
inclusion and exclusion. For instance, a statement such as "this class includes A and
excludes B" is encoded as the reverse statement.

e the distance is based on the weighted co-occurrence of words between the definitions.
It does not consider word meaning or semantic importance. Classes "Forest: high
trees" and "Conifers: needle-leaved stands" have no common words but describe the
same object. Consequently, the notion of threshold is also not encoded. For instance,
a Forest defined as "with at least 80% coverage" is not closer from one with a 70%
threshold than one with a 10%.
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6.3.1.2 Word2Vec

Overall idea Instead of producing an encoding per class based on word frequencies like
the BOW, the Word2Vec approach [215], aims to provide an encoding per word taking
into account semantic meaning. The core idea is that a word semantic meaning can be
inferred by analysing the words frequently used next to it. For instance, Coniferous is
often located close to the word tree in a sentence, semantically linking those two terms.
Word2Vec have been explored to perform many zero-shot classification tasks, especially
semantic segmentation [32]. To our knowledge, the only attempt in the land-cover field
deals with remote-sensed image zero-shot semantic segmentation [246]. This work did
not focus on translation and encoded solely the class name and not the class definition,
making it hardly generalisable to translation: many classes can have the same name (thus
the same encoding) but different content.

The word embedding procedure consists in building a dictionary of all possible words
leading to a one-hot encoded version of each word (the same 10-word dictionary as above
results in tree = [0,0,1,0,0,0,0,0,0,0]). A small 1-hidden layer perceptron processes
sentences with a sliding window trying to predict the n'" word given the x previous and
x later words. For instance, in the previous example, using x = 2, one iteration of the
algorithm on "Forest : natural tree vegetation with trees higher than 5m" could consist in
training the perceptron to predict vegetation given the 2 previous (natural, tree) and 2
later words (with, tree) (Figure 6.8). The first layer of the perceptron processes each of
the four one-hot encodings iteratively in a d-dimensional space (using d neurons). The
four d-dimensional vectors are averaged and fed to the second linear-layer, predicting the
middle word.
"Forest : natural treem with| tree|higher than 5m

A

1 x dictionary size 1xd

natural *i }::>| |-
tree *i |:{>| 1xd 1 x dictionary size
M | [vegetation]
with | wp B>
tree ’i |::>| I-

. Linear combination Linear combination
* ne-h n in |:|'> . ) » Aver *
one-hot encoding with shared weights erage + softmax

Figure 6.8: Illustration of the Word2Vec algorithm using a window of size 2 . Once trained,
the word embedding is the output of the first linear layer (orange arrows).

Once trained on several sentences, the word embedding is then considered to be the
d-dimensional space obtained after the first layer. We obtain the class definition encoding
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as the average of all its words encoding.

Implementation details We used the Word2Vec implementation available at?. The
model is pre-trained on the Google News datasets, including more than 300 billion
words. As for the BoW method, we observe that some word combinations are essential.
However, instead of defining manually a set of rules of which words should be gathered,
the Word2Vec developers identify terms that are frequently similarly ordered based on
n-gram models [214]|. The pre-trained Word2Vec model uses a 10-dimensional window and
encoded in a 300-dimensional HDSRS.

Strengths and weaknesses This method partially alleviates the BoW limitations by
replacing definition encoding based on terms frequency with an average of estimated word
semantic meaning. The computed distance in the semantic space conveys more semantic
meaning than the BoW approach. However, Word2Vec ability to reflect semantic meaning
widely depends on the window size, the number of words used for training and d. The small
size of the LCDD dataset prevents from training the Word2Vec method: a pre-trained
Word2Vec is thus used. Some of the resulting encoding dimensions might be irrelevant
for land cover as the pretraining is conducted on a generic dataset. For instance the
closest term embedding of Coniferous is In your garden and the second closest of Ocean
is Neptune. Additionally, this method still disregards word order as the class encoded is
realised by averaging all the words encoding of the definition independently from their
order.

6.3.1.3 Transformer based encoding

Overall idea Alleviating the limitations of the previous methods requires: (i) developing
a method to address words outside the dictionary encountered at inference, (ii) taking into
account word ordering, (iii) proposing a context-wise encoding (e.g. the terms water in the
definition of rice, wetland, water course, and sea have close yet not identical meaning). In
2018, BERT was introduced in [66] to tackles all those issues simultaneously by combining
several independent works handling each of those problems. Since various models have
been proposed to improve the results but are based on the same overall idea. For clarity,
we introduce concepts based on the original Bert implementation. We then discuss the
difference with the recent model we used.

First they rely on tokenisation, i.e. sub-words units. The most straightforward tokenisation
algorithm is to work directly on a per-character basis [50]. The dictionary includes each
character of the training set individually. Per-character dictionaries are often complete
even when using a small training dataset, e.g. considering only letters (26 characters).
They do not suffer from out-of-dictionary issues at inference. However, each element of
the dictionary conveys a very high diversity of semantic meaning depending on its context,
making per-character tokenisation hardly usable. For instance, the letter ¢ in the word

2https://radimrehurek.com/gensim/models/word2vec.html
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tree or water has a completely different meaning. Various strategies proposing an trade-off
between word and character level tokenisation have been proposed based on sub-word
decomposition, water = wa + ter for instance. The BERT and subsequent methods are
mostly based on the sub-word tokenisation algorithm proposed by [331].

Secondly, to consider word ordering and achieve context-wide encoding, the BERT paper
adopts the transformer architecture proposed by [318| that incorporates the positional
encoding module. The key contribution of the BERT is to propose a way to consider the
word context in a non-directional manner. They replace the traditional natural language
processing objective of predicting the next word given the sequence of the previous ones
with the task of predicting randomly masked words on the whole sentence. We underline
that those architectures jointly produce an encoding per-word context-wisely (the same
word is encoded differently depending on the sentence) as well as a sentence encoding.
Hereafter, we consider that a class definition encoding is the average of all the word
encodings.

The transformer architecture often comes with a hundred million parameters (approxi-
mately 300 million for BERT’s original implementation) making them untrainable on the
tiny LCDD dataset due to overfitting concerns. Thus we rely on an available pre-trained
model. We underline that comparing the available models is difficult as most of them are
assessed on different tasks and datasets.

Implementation details As comparing all the available pre-trained models is unfeasible,
we rely on a comparison of different top-performing models on 20 different datasets
conducted by [251] and regularly updated®. We choose the MINILM [325] model, whose
training uses two networks, a teacher (a regular BERT), and a student (a small BERT),
enforcing the student to have the same attention parameters as the teacher. This distillation-
based principle [122] enables a small student network to achieve comparable results to
the big one. We rely on the student network. The implementation used is the official
implementation provided by the hugging face library 4 trained on a 1Billion word dataset
°. This results in a 387-dimension HDSRS.

Strengths and weaknesses Even though this strategy alleviates most of the limitations
encountered by the previous methods, the unavailability of a large land-cover-oriented
dataset prevents from training on pure land-cover-oriented tasks: the distances computed
in the semantic space still consider some irrelevant concepts.

3https://www.sbert.net/docs/pretrained_models.html

‘https://huggingface.co/microsoft/MinilM-L12-H384-uncased?text=I+like+you.+I+love+
you

Shttps://huggingface.co/sentence-transformers/all-MinilLM-L12-v2
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6.3.1.4 Comparison on the LCDD dataset

Quantitative assessment Unlike the two pretrained models (Word2Vec and MiniLM),
the BoW is built using the LCDD dataset. To simulate the operational setup of a zero-shot
land-cover translation, we iteratively use nine nomenclatures of the LCDD to train the
model and use the last remaining one (termed unseen nomenclature) at inference. As
some words of the unseen nomenclature can be out of the BoW dictionary, each model is
different.

We compute the metrics mentioned in Section 6.2 for each model considering the unseen
nomenclature as the source or the target. For instance, a BoW model trained using all
nomenclatures except CLC, is evaluated using the metrics considering CLC either as
the source or target nomenclature (CNsoyrce;, CNiarger). We resume the results of those
metrics using different M, measures in Table 6.1. Results from Inertia and CH values
describe different notions depending on the M, measures. An inertia of 0.12 computed
using Euclidean distance implies that in average the unseen nomenclature exhibits a 12%
difference in terms of distance to the HDSRS centroid compared to seen nomenclatures. A
0.12 inertia computed using cosine distance implies a 12% angular variation. Thus, the
best Inertia and CH values are compared independently per metric in this case. Conversely
CN, NP and NS which are percentage based on M, metrics are comparable even when
using different metrics thus we jointly assessed their best value for all metrics.

First, as the M, measure maximising the CN, NP and NS is almost exclusively the Cosine
Distance, we consider it the most relevant metric. We underline that this was expected as
the three spaces are high dimensional (from 300 to 987 dimensions) and some have been
explicitly optimised for this metric (Word2Vec). Thus all the following observations are
conducted by considering the results obtained with cosine distances.

A second observation is that the transformer-based encoding better preserves the closest
neighbour (CN), the nearest neighbours (NP), and the overall shape (NS) at the cost of a
worst inertia and CH value than the BoW approach. Therefore the transformer produces
a better HDSRS from a pure proximity preserving point of view but introduces a slight
semantic shift between land-cover maps. As the difference in CN and NN is very high (10
to 15% higher), we still consider Transformers as the most suitable solution.

BOW PreWord2Vec MiniLM
euclidean manhattan cosine | euclidean manhattan cosine | euclidean manhattan cosine
CN source | 39 37 60 58 59 64 60 59 76
target | 32 37 58 58 59 64 60 59 76
NP source | 46 47 63 62 61 67 62 62 76
target | 43 47 61 62 61 67 62 62 76
NS source | 83 91 96 88 88 92 90 90 95
target | 59 64 68 65 65 67 66 66 70
Inertia 0.13 0.05 0.07 0.16 0.16 0.15 0.14 0.14 0.18
CH 0.4 0.13 0.12 | 0.31 0.38 0.278 | 0.21 0.47 0.17

Table 6.1: Quantitative of the three HDSRS obtained by three different semantic embedding
methods
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Figure 6.9: PCA representation of the HDSRS obtained with a trained on generic text
corpora Transformer.

Qualitative assessment Two different dimension reduction techniques are used to
evaluate qualitatively those HDSRS. PCA is used to evaluate the global aspect of the
HDSRS as it preserves approximately all pairwise distances. Conversely, T-SNE preserves
the topology of the neighbourhood.. Only the results for the transformer-based method
are illustrated in the main text (see Appendix J for other configurations).

Globally the HDSRS appears well structured (see Figure 6.9) with clusters of similar
land-cover nature: croplands are mainly concentrated in the bottom part of the figure,
forest on the right side, unvegetated areas in the middle and urban areas on the left side.
However, many local inconsistencies can be detected, e.g. MCD12Q1 Urban and Built-up
Lands is surrounded by water areas. Additionally a slight semantic shift between the
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various maps is observed. For instance, MOS and the two OCSGE are only represented
on the left side, MCD12Q1 on the right. Some clusters are also observed, such as the
OSO crops, far from the rest of arable crops and next to fruit tree and berry plantation of
CLC. This shift between nomenclatures directly stems from nomenclature-specific ways
to describe comparable land-cover. For instance, the CLC nomenclature details many
inclusion and exclusion criteria, while those notions do not appear in CGLS.
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Figure 6.10: T-SNE representation of the HDSRS obtained with a trained on generic text
corpora Transformer.

Figure 6.10 illustrates that despite having coherent local neighbours association from
a generic point of view, observed association are not necessarily those expected from a
land-cover one. For instance, Natural grassland and Pasture are nearest neighbors in the
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HDSRS while most semantic based standardisation system would have consider them far
apart as one describes a natural area and the other croplands.

The same observation can be drawn for the Word2Vec encodings provided (Appendix J).
The BoW encodings distinguishes itself from the others by a pronounced outlier like visual
aspect underlying that a few classes are encoded very differently than the others. The
BoW on average better Inertia and CH thus hides that a few rare classes are encoded
poorly. We link this behaviour to the use of word proportion instead of semantic meaning:
some classes exhibits unique words resulting in a specific encoding.

6.3.2 SRS optimisation through dimension reduction

6.3.2.1 Motivation

The initial results of Step 1 are already satisfactory albeit neighborhood conservation
is not guaranteed. The main reason is that the encoding task is not land-cover specific.
It could be interesting to only extract the relevant features from the 384 dimensions of
the SRS. In particular since such a high dimension leads to technical constraints (32GB
memory GPU). We propose to investigate how to reduce the number of dimensions while
keeping only land-cover relevant elements.

Numerous techniques have been proposed so far [316]: feature selection (some dimensions
are removed), matrix projection (linear combination of dimensions), manifold learning
(non-linear combination), or auto-encoders (the data is reprojected in fewer dimensions
with the constrain of ensuring that the original space can be retrieved). Most are self-
supervised exhibiting principally three different objective functions: preserving the distance
observed between elements in the HDSRS in the LDSRS (e.g. Isomap [300], Locally Linear
Embedding [259]), the nearest neighbours (Neighborhood Preserving Embedding [116]),
the information (auto-encoder reconstructs the original HDSRS from the LDSRS). All
those objectives try to keep the information of the HDSRS while we point out that many
of them are irrelevant from a land-cover point of view. Therefore the LDSRS obtained by
those techniques is unlikely to exhbits better metrics than the HDSRS it stems from.

Instead, we propose to investigate supervised dimension reduction techniques using the
LCDD dataset to keep only relevant information. Unlike self-supervised techniques which
target that closeby elements in the HDSRS remain closeby in the LDSRS, we directly target
that closeby elements in LDSRS are closeby in terms of definition (BOM). Additionally,
the proposed method must ensure that no shift is observed between nomenclatures to
ensure good zero-shot properties. As the dimensionality reduction techniques should be
usable under the zero-shot translation setup, the dimension reduction model should be
trained inductively. Consequently, transductive solutions as T-SNE will not be discussed.
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6.3.2.2 Method

Overall idea Instead of preserving HDSRS neighbours like self supervised methods, we
propose supervising the dimensional reduction by enforcing the preservation of neighbours
in terms of class definition. Thus we aim to create an Absolute neighbor-preserving
space. This constraint is implemented by training a dimension reduction model with the
same information on the neighbourhood (BOM) required to compute the CN metric. For
instance, the dimension reduction model is trained to represent closely in the LDSRS OSO
Broad-leaved and MOS Forest as we labelled them as a neighbour (BOM=1). We detail
the chosen dimension reduction model and how to apply neighbourhood constraints on
the LDSRS below. Figure 6.11 illustrates the overall framework.

Dimension reduction model Th model design is based on two principal observations.
First, the model is only trained using a small dataset (less than 169 class definitions, as one
nomenclature is kept for testing) on a high dimensional space (at least 300). Therefore, the
model should exhibit a small number of learnable parameters to limit overfitting. Secondly,
the model should be able to apply a non-linear transformation in order to obtain better
neighbour preservation in the LDSRS than those observed in the HDSRS. We rely on a
small backbone based on a simple 1-hidden layer perceptron. This MLP takes for input
the 384 dimensions and reduces them to x-dimension with x < 100. The best x value is
experimentally determined and presented in the next section.

We adopt an adversarial training setup, in which a second MLP is tasked to predict the
land-cover nomenclature from its encoding in the LDSRS. This setup drastically reduces
the risk of nomenclature shift in the resulting LDSRS. The two MLP include dropout
layers with high dropout rates (0.3) to regularize the loss and limit overfitting.

Dimension
reduction
network

Adversarial
network

384 dimensions x dimensions

S'i

t T Otol
i i value
tx tlk
Triplet Loss: Adversarial loss:
Are s"; closer from t"; Are s";jand t"; from the
than t"y ? same nomenclature ?

Figure 6.11: Overall dimension reduction architecture framework in the case a source class
si expected to be closer from t; than t,. During optimisation the transformer parameters
are fixed (only the two MLP are trained)

Loss function The model should learn the notion of neighbour in a binary fashion. Let
s denote the representation of source class i in the LDSRS. The loss uses three elements:
the source class representation s/, a neighbour target t/, and a non-neighbour one ¢;.
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We aim to obtain My(s/', t/') < Ma(s/,t/). Instead of constraining the distance value,
this constraint focuses on pairwise relative value, which is less restrictive. This weakly
constrained optimisation enables obtaining low dimension SRS pretty easily. We implement
this distance constraint using the Triplet Loss proposed by [270] given in Equation 6.14. €
represents a margin value arbitrarily fixed. We underline that in its original form, the M,
metric used is the Euclidean distance, but any other distance metric could also be used.

TripletLossy,(s;', t/, ;) = max(0, Ma(s/', t/') — Ma(s}', t/) + e). (6.14)
Optimising both Euclidean and Cosine distance is possible without deteriorating the
quality of the results, we combine two triplet loss functions to enable using both metrics
in Equation 6.15:

TripletLoss(s! tj’ ,t)) = TripletLossg,ciidean(s, tj{’, t,) + TripletLosscosine(s! tj{’, t)) (6.15)

The arbitrary margin value is set to 1 for Euclidean and 0.5 for cosine. The results are
insensible to the margin for Euclidean TripletLoss but must be between 0 and 1 for the
cosine as a cosine between 0 and one denotes positively correlated variables.

The adversarial training ensures that the classes of different nomenclatures are mapped
into the same part of the space. The dimension reduction MLP is optimised to make
the Adversarial MLP predicts that the source and target encodings belong to the same
nomenclature (Adversarialyistake). In contrast, the adversarial MLP is optimised to predict
the contrary (Adversarialye). Let A(s/', ],
We will consider that the Adversarial network should output 1 when considering two classes

t;/) denote the output of the adversarial network.

belonging to the same nomenclature and 0 otherwise. Adversarialyistake and Adversarialy,,e
are given in Equation 6.16 and 6.17.

Adversarialmistake(S; ) = Lce(A(s], t), 1). (6.16)
Adversarialyue(s;, t!, t)) = Lee(A(s]', t]),0) + Lee(A(s!, t), 1). (6.17)

To sum up, the dimension reduction MLP is optimised using the full loss (Equation 6.18),
while the adversarial network is only optimised using the Adversarialy,e loss.
DimRedLoss(s;', t/, t;;) = TripletLoss(s;’, t]', t;}) + Adversarialmistake(S; , t7'). (6.18)
Training procedure The model is trained iteratively using nine of the ten nomenclatures
and we evaluate the quality metric on the last nomenclature. The training is carried out
at each iteration on approximately 150 definitions embedded into the 384 dimensions.

Therefore the model is inherently overfitting despite its small size and the dropout
regularisation.

181 / 295



Comparison with other dimension reduction techniques We compare our method
to the two most commonly used unsupervised dimension techniques: (i) Principal com-
ponent analysis (PCA) which linearly combines the HDSRS dimensions in a few new
uncorrelated dimensions and (ii) Isomap, a non-linear combination of dimension that aims
to preserve local neighbourhoods based on geodesic distance measurement.

We also compare to a supervised dimension reduction technique called Latent Dirichlet
allocation (LDA). LDA projects the input data into a linear subspace made of the directions
maximising the separation between labeled groups. As we do not have access to groups
but to neighbours, we define a group as a set of classes of different nomenclatures that
are all pairwise neighbours. For instance, OSO Coniferous, MOS forest and CGLS Open
Forest are all pairwise neighbours, which can be considered as one group. In order to
optimise the results, we reduce the number of classes belonging to multiple groups as much
as possible. In particular, we will consider that two classes of the same nomenclature can
belong to the same group provided they are neighbours of the same classes in the other
nomenclature e.g. OSO Broad-leaved and Coniferous belong to the same group.

6.3.2.3 Results

We first evaluate the number of dimensions required to achieve the best metrics for each of
the methods (Figure 6.12). PCA quickly reaches a plateau with few dimensions (around
10), with metrics very close to those obtained for the HDSRS space. The ISOMAP method
performs significantly worse than the other methods. PCA performs well but does not
provide a LDSRS with better characteristics than the HDSRS.

LDA method achieves better metrics than those of the HDSRS making it an adequate
solution. The method is very efficient in small dimension space (10 to 20) and worsens when
more dimensions are used, especially Inertia and CH metrics. Under 40 dimensions, the CH
metric is better than the MLP one, indicating that the classes of different nomenclatures
are slightly more homogeneously distributed.

The MLP dimension reduction consistently outperforms other solutions on all other
metrics. Interestingly this statement holds even when comparing the 5-dimensional space
obtained by MLP with less reduced space obtained by other techniques. Even though the
best results with the MLP method are observed for 60 dimensions, the difference with
the 5-dimensional space is minimal + 2% for all metrics. In particular, we observe an
improvement of 10% in CN, and NP compared to the metrics computed directly in the
HDSRS space.

We underline that the average 85% CN is significantly lower from the metrics observed on
the training nomenclatures (97% CN with five dimensions, 99% with 100). This is easily
understandable as the tiny size of our dataset inherently leads to overfitting. Thus, results
could be significantly higher with a more extensive dataset.
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Figure 6.12: Dimension reduction technique metrics under zero-shot constraint depending
on the number of output dimensions. For Inertia and CH, lower values denote the best
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6.4 Applications to land-cover translation

We highlighted two applications of SRS: zero-shot source and zero-shot target translations.
At the time of writing, zero-shot target is still under experiments and will be included
later in Appendix. This Section focuses solely on the zero-shot source, i.e. encoding the
input land-cover maps into the SRS and training a network to translate them into various
targets. At inference time, unseen source maps are encoded and provided to the network
to translate them into one of the target map seen during training. It avoids training new
translation models when an unseen source map is provided. Additionally, as the unseen
map is never used for training, it alleviates the constraint of translating only source maps
with partial spatial overlap. The following section first presents the architecture and
training procedure used for our zero-shot source configuration. Results and comparison
with other methods are discussed in the second part.

6.4.1 Using SRS for zero-shot source translation

6.4.1.1 Architecture

The overall architecture, termed OneEncoder(Figure 6.13), encode each map into a
15-dimension SRS. For instance, all pixels of OSO forest are replaced by the semantic
encoding of forest obtained from the Transformer-+MLP. Secondly, All maps are resampled
using a bilinear resampling algorithm to the maximum resolution (10x10m). We underline
that using a continuous resampling algorithm instead of a discrete one (nearest neighbour)
is directly made possible by semantic encoding. Lastly, the maps are fed to a single U-Net
encoder and then decoded by map-specific decoders. The use of a single-encoder instead
of multiple ones like for the MLCT-Net (Section 5.1) is made possible by the use of
semantically encoded inputs instead of one-hot encodings.

o
o
[Se)

Figure 6.13: OneEncoder architecture using a 15 dimensional semantic representation
space (in orange). A unique encoder is used for all maps while decoders are target specific.
Only 2 maps are represented for readability but the architecture can take any number of
maps. White arrows denote the self-reconstruction goal.
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6.4.1.2 Losses

Similarly to the MLCT-Net, we choose to perform q dual objective training: translation
and self-reconstruction. Self-reconstruction is important as it enforces the encoder to
avoid losing classes that have no direct equivalent in the other training nomenclatures
(such as CLC Wetlands). The total loss is obtained by summing the translation and self
reconstruction loss computed using Cross-Entropy. Let S be the source map and T be
one of the target maps. Let E(S) denote the encoded version of S and D (E(S)) denote
this encoded-decoded into the T nomenclature, the loss is given in Equation 6.19).

L(S, T) = Liran + Lsetr—rec = Lce(D7(E(S)), T) + Lce(Ds(E(S)), S). (6.19)

6.4.1.3 Training procedure

In an ideal setup, the SRS dimension reduction MLP and the network would be trained
with hundreds of different maps, enabling the encoder to be trained with thousands of
different encoding values. However, the dimension reduction MLP is trained only on 9
nomenclatures (all the LCDD nomenclatures except the one used at inference.) Similarly,
the network is only trained on 5 out of the 6 land-cover maps of the MLULC dataset.
Consequently, the network is likely to quickly overfit the training data, restraining the
ability to analyse unseen during training semantic encodings.

A noise-based data augmentation technique is used to artificially compensate for the
small number of maps. Slight jitter is added around each embedding of the HDSRS to
regularize the learning of the MLP. We assume that for a given source nomenclature,
all the elements closer to class s; than all the other classes of the source nomenclature
belong to this class. Instead of encoding a map with ¢ classes with ¢ distinct semantic
encodings, the c¢ classes can be encoded with an infinity of encodings that respect the
previous distance constraint. In practice, each source patch is semantically encoded with
this random distance-constrained noise using a single noisy-encoded value for each pixels
of a given class. Conversely, the same class is encoded differently in two different patches.

This noise is strong from a translation point of view, as it might change the closer class
in the target nomenclature. This leads to insert a additional noise constraint. Since the
SRS is built using a triplet loss, all elements below half the margin distance from the
source encoding are closer to one of the original neighbours than to the non-neighbour
elements. By combining with the previous noise definition, we constraint the noise to both
ensure that the noisy-encoding is closer to the original encoding than any other source
class encoding and at a maximum distance from it of half the margin.

We will denote OneEncoder the OneEncoder method used at inference on the same
nomenclature used for training (not zero-shot like in previous chapters). We denote
ZeroShot the OneEncoder used at inference on a different nomenclature than those used
for training (zero-shot source).
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6.4.1.4 Comparisons

SemEnc computes the translation directly from the semantically encoded source map
using the Transformer followed by the MLP. Each source class is translated into the closest
target class in the SRS without considering the spatial context. It is analogous to the
HardSem method (Section 4.1) as the translation is performed at the nomenclature level
(all pixel of source class i are translated the same way and based on semantic assumptions,
here on proximity in the SRS space).

HardSem is the only baseline that does not require the computation of a model based
on pairs of spatially overlapping patches and is thus used as the current reference in terms
of zero-shot translation.

HardStat aims to associate each source class to each most frequently co-occurring targets.
This method is not zero-shot, as the co-occurrence is directly determined from pairs of
overlapping maps. It provides an interesting comparison to evaluate if the zero-shot source
context-wise model only uses the knowledge acquired during training on target class
probability of occurrence. For instance, a model trained to perform CLC/OSO translations
will learn that amongst the 11 agricultural classes of the OSO map Cereals and Pastures
are the most frequent. At inference, when translating MOS to OSO, the model could
preferably translate all MOS Crops pixels to Cereals based on this prior knowledge.

The MLCT-Net provides an intuition on the upper bound of obtainable results as trained
on all nomenclatures. At inference, with unseen source map, ZeroShot results should
be at best equivalent but more probably lower than the MLCT-Net. Conversely, when
processing seen source nomenclatures, OneEncoder and MLCT-Net results should be
equivalent. Obtaining on-par results on seen during training maps would indicate that
using a single encoder is sufficient to encode any map despite a resolution shift.

6.4.2 Results

6.4.2.1 Qualitative analysis

Figure 6.14 and Figure 6.15 present the results of the zero-shot translation. SemEnc
results illustrate well the quality and limitation of the SRS space as they are obtained by
associating each source class to the closest target class. First, SemEnc translations are
often different from those of HardSem. Most of the time, differences are observed for
source classes that establish multiple semantically equivalent translations. For instance,
CGLS Cropland are respectively translated into OSO Cereals or Tubers by HardSem and
SemEnc (second column of Figure 6.14). From a purely semantic point of view, any of
those translations is equally valid (as the translation into Soy or Corn). In practice, one
unique translation must be chosen when performing non context-wise translations. We
underlined in Section 4.1 that we made the arbitrary choice to choose the most frequently
observed class in order to maximize the HardSem statistic when multiple equally valid
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Figure 6.14: Comparison between translation using the baselines and the ZeroShot model.
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Figure 6.15: Comparison between translation using the baselines and the ZeroShot model.
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semantic translations are possible. Conversely, no such choice is made for the SemEnc
method: it outputs a semantically consistent class while not necessarily being the most
frequent one. Consequently, from a purely quantitative point of view, the HardSem
method will perform better than the simple SemEnc translation.

ZeroShot results are highly differs from the other methods. They efficiently retrieve some
spatial context information (e.g. third column of Figure 6.14, an OSO patch localized in a
mountainous area with Broad-leaved and Natural Grasslands is translated into OCSGE use).
From a purely semantic point of view, Natural Grasslands should be translated as No-use
in the OCSGE use and is translated as such by the HardSem and SemEnc method. As
most OSO Natural Grasslands are spatially co-occurring with OCSGE use Forestry areas,
the HardStat method translates them into it. The MLCT-Net and ZeroShot methods
translates them into Forestry areas when close to forested areas or when being narrow
and linear shaped. They also translate accurately the parts corresponding to grassland
in valley areas into Agriculture. The comparison between MLCT-Net and ZeroShot
results reveals that the ZeroShot framework tends to output less buffered results with a
finer geometric aspect. This is particularly visible on linear structures such as the MOS
roads (last column of Figure 6.14). This context-retrieval ability is observed on numerous
other examples such as the distinction between CGLS open and Closed forest (second
column of Figure 6.15), or the convincing translation of OSO Pastures area between forest
patches, near cities and alongside the roads (third column of Figure 6.15).

However, we observe that ZeroShot performs poorly when the target is CLC (first and
the last column of Figure 6.15). Unlike the other methods that do not apply (HardSem,
HardStat) or underestimate CLC minimum mapping unit (MLCT-Net), ZeroShot
tends to eliminate too much information. We link this behaviour to the fact that learning
such coarse MMU rules using a single encoder trained with various resolutions is a difficult
task. Conversely, when CLC (first column of Figure 6.14) is translated into a fine resolved
map (OSO), we observe a strange linear filamentous-like pattern in the ZeroShot results
for Vineyards. Once again, we impute this behaviour to the significant resolution gap,
making it difficult for a single encoder to perform accurate shape retrieval.

6.4.2.2 Quantitative analysis

Table 6.2 compares the results of the MLCT-Net (without geographic coordinates
encoding) and the OneEncoder method. OneEncoder results appear almost identical to
the MLCT-Net method (+ 1% OA,g and mF1,g). When the two networks are trained
and tested using the six LULC of the MLULC dataset, replacing the six encoders with
a single one is only very slightly deteriorating the quality of the results while dividing
the number of parameters by 6 (the lightweight decoders are negligible). This underlines
that comparable features can be used to translate all maps despite the resolution gap
between the land covers. This observation seems in adequation with traditional image
classification convolution neural networks that are often trained using multiple zoom levels
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of comparable objects on a single architecture.

Source P C (6] Gl G2 M

Target cC O Gl G2 M|P O Gl G2 M|P C Gl G2 M|P C O G2/P C O GIL|P C O
OA.e | OneEncoder | 62 54 67 77 76|73 58 71 79 78 |77 67 78 8 85|67 54 56 91 |67 47 48 79 |84 81 62
MLCT-Net |62 55 68 78 76|73 58 72 80 79|77 68 79 86 85|68 54 56 92 |68 49 49 79 |84 82 63
OneEncoder | 25 26 27 18 31 |54 36 34 29 40 |59 35 43 26 53 |46 23 27 43 |39 19 21 38 |46 27 21
MLCT-net |26 28 27 19 32|56 36 35 30 41|60 37 44 27 53|48 24 29 44 |40 20 22 40 |46 29 21

mF1,,

Table 6.2: Translation using multiple encoders (MLCT-Net) or a single universal one
(OneEncoder)

Table 6.3 compares the results of ZeroShot with other models. ZeroShot obtains, on
average better results than HardSem method (+6% OA,,,+3% mF1,;), demonstrating
its ability to use context. It is also obtains better than HardStat (+3% OA,.;,+3%
mF1,,), demonstrating that this higher ability is not solely based on a higher capacity to
translate into the global statically most frequent class but on real spatial context analysis.
Interestingly, when studying individual source-to-target translation, we observe that the
zero-shot translation from CLC to other nomenclatures achieves significantly worse results
than using HardStat or HardSem baselines. We link this behaviour to the fact that the
44 classes of CLC account for almost a third of all the classes of the ten nomenclatures of
the LCDD dataset. Thus, under zero-shot circumstances, the SRS built by training on
the nine other nomenclatures have considerable difficulties to accurately represent CLC
classes. Circumventing this issue would require significantly increasing the LCDD dataset
size. Conversely, other translations, such as the ZeroShot from OCSGE use to CGLS,
often outperforms the baselines (+12%O0A,;). ZeroShot performs significantly worse
than MLCT-Net trained on the unseen map, underlying that room for improvement still

exists.
Source P C o Gl G2 M Average
Target ¢ O Gl G2 M|[pP O Gl G2 M|P C Gl G2 M|p C O G2|p C O GI|P C O

HardSem 52 42 56 70 75|65 49 67 77 79|57 54 69 76 80 |53 39 34 87 |b4 37 31 75 |77 72 59 |61

0A HardStat 54 44 65 70 75|68 55 71 78 79|61 54 73 80 81|55 41 49 89 |54 37 41 78 |8 77 62|64

i ZeroShot 57 49 62 72 72|69 54 70 78 77|71 60 72 81 81|65 45 51 83 |66 45 47 75 |85 81 62 | 67

MLCT-Net |62 55 68 78 76 73 58 72 80 79|77 68 79 8 8 |68 54 56 92 |68 49 49 79 |84 82 63 |71

HardSem 13 17 22 15 24|46 32 36 31 42|36 17 36 20 38|24 9 17 2719 8 & 29 (35 17 19|24

mF1 HardStat 13 18 19 16 24|47 32 33 30 42|33 16 34 20 38 |26 10 20 27 |19 8 10 27 |31 15 18 |24

% | ZeroShot 11 23 24 18 24|38 31 34 20 36|39 21 38 24 39|43 13 22 20 |35 15 20 31 |41 14 19|27

MLCT-net |26 28 27 19 32 56 36 35 30 41 |60 37 44 27 53 |48 24 29 44 |40 20 22 40 |46 29 21 |35

Table 6.3: Translation under zero-shot constraint. MLCT-Net results are displayed
as upper bound performance limit. Bold values denote best performing method among
HardSem, HardStat and ZeroShot.

6.5 Discussion

This section investigated the semantic encoding of land cover classes to increase the
potential of learnt land-cover translation models. In particular, we build a semantic
representation space encoding the class definitions in the form of a continuous variable
ensuring the proximity between semantically close classes and proposed a list of criteria
and metrics to evaluate it.
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A trained on generic text corpora transformer model is used to represent each class
definition in the form of 384 continuous variables. We show that this encoding method
analysing the whole definition and not sensitive to words outside the dictionary, represents
the land cover classes significantly better than the current methods used in literature

(BOW, Word2Vec).

Nonetheless, the obtained encoding is insufficient for map translation as class proximity is
imperfectly applied and exhibits too many dimensions to be used in one of the convolutional
neural network architectures explored in the previous Chapters. We investigate a supervised
dimension reduction method to select the semantically meaningful information from a
land cover map translation point of view. We optimise the low-dimensional space based
on relative proximity between neighbouring and non-neighbouring classes rather than bare
distances. The low-dimension encoding obtained adequately represents classes belonging
to nomenclatures never seen during training, demonstrating the viability of the process.

We then propose the application of this low-dimensional semantic representation space
for the zero-shot source translation problem. A model is trained to translate several
semantically encoded maps and tested on unseen ones. We demonstrate that such a model
obtains better results than the baselines. However, the difference with the methods trained
on all nomenclatures reveals that improvements are still possible.

The proposed SRS embedding model could be further improved. In particular, it is
necessary to significantly increase the size of the LCDD definition dataset on which the
dimension reduction method is based. Its limited size prevents correctly encoding specific
concepts of classes seldom present in the nomenclatures used, such as wetlands. In addition,
it is also necessary to increase the size of the data set used to train the MLULC translation
model (here, five nomenclatures are used during training and one for testing). Indeed,
a translation model trained on numerous maps will better generalise to unseen during
training.

From an application point of view, efficiency on the zero-shot target problem is still to be
demonstrated. The translation model is directly trained to represent the source land-cover
map in the semantic representation space. Thus, the contextual translation map obtained
would no longer be a simple representation in the form of a fixed number of classes but a
contextual representation in the semantic space. A pixel of a herbaceous area near water
would be placed in the semantic space between the two classes allowing to classify the
pixel as herbaceous, water or wetland.

Lastly we point out that SRS could be used for other applications than zero-shot translation.
In particular, we believe that such continuous representation is useful for land-cover fusion
or change-resolution as it enables deriving new classes through simple arithmetic operations
e.g. water + grassland = wetland.
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CHAPTER
~J

Conclusion

This last chapter presents our concluding remarks. In particular, we summarise this work’s
key takeaway and offer some perspectives.

7.1 Long story short

Context Land-cover products exhibit a fixed nomenclature and resolution restraining
their potential adoption and re-use to situations where the nomenclature and resolution of
the considered product are adapted. Additionally, as each product exhibits widely different
specifications, they are hardly interoperable, i.e. one can not easily replace a land-cover
product with another one. Numerous standardisation approaches have been conducted to
alleviate those issues, increasing their re-usability. However, none of those frameworks has
been universally adopted by the remote-sensing community. Therefore, multiple attempts
to harmonise existing nomenclatures have been proposed based on the semantic analysis
of class definitions. Even though acknowledging multiple possible translations between a
source class and all the classes of the target nomenclature (e.g. Forest can be translated
either into Broad-leaved or Coniferous), those methods only proceed to the translation
into the semantically closest as they do not define in which context a translation is more
relevant than another (e.g. Coniferous is the best translation in mountainous areas).
Moreover, the resolution translation is addressed independently from the nomenclature
translation while those notions are intertwined.

Solutions We proposed to replace the actual nomenclature-level land-cover translation
(NLLCT) with pixel-level land-cover translation. We investigated context-wise solutions
that enable reclassifying and changing the resolution of existing land-cover maps. Specifi-
cally, we first focused on which information should be considered for land-cover translation.
We proposed a convolution neural network (A-UNet) to account for spatial context
and incorporate wide-scale geographical information using learnt geographical coordinate
features. Even though those methods significantly increase the number and quality of
predictable classes compared to NLLCT, they lacked spatial generalisation ability for
maps with a small spatial extent. Hence, inspired by the outstanding results of language
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models trained to translate multiple languages, we introduced MLCT-Net, a first multi-
land-cover translation framework, significantly improving the spatial generalisation ability.
Since the translation between a source and target nomenclatures might be ill-defined
due to a lack of either semantic information in the source map or a higher spatial target
resolution, we present a versatile solution able to merge context-wisely various highly
resolved image sources with map representation. We observed that image and map fusion
considerably improve translation quality. Lastly, we claim that training models to translate
each land cover as the transformation from an independent representation to another is a
real operational burden and requires retraining the translation model for each map. We
underlined that, theoretically, one could infer the translation of an unseen map based on
knowledge acquired on previous maps. We investigated the potential of semantic represen-
tation spaces and introduced metrics to qualify them. We compared different solutions and
proposed a way to adapt them for land-cover translation. We present an application for
zero-shot source translation, better performing than standard NLLCT methods. Table 7.1
offers a comprehensive view of the principal results evaluated on the six land covers of the
MLULC dataset. For simple one-source to one-target translation, our A-Unet improved
the state-of-the-art by 10 points both in OA,; and mF1,, without taking into account
geographical coordinates and by respectively 11 points and 13 points with them. The
multi-land-cover translation training of MLCT-net increases the generalisation ability of
3 points OA,: and 5 points in mF1, compared with A-Unet. The versatile image fusion
architecture significantly improves the quality of the result when the source is finer resolved
than the target (+8% mF1,, compared with MLCT-NeT, +5% compared with the image
only approach). However, it is irrelevant when the source map is very coarse compared
to the target, as the pure image classification performs identically (+1% compared to
the image-only approach). Lastly, the zero-shot model offers a compromise between the
constraint of fully supervised training and the results obtained by NLLCT methods. We
believe that the results presented in this manuscript are generalisable to other land-cover
maps as our experiments were conducted at a wide scale with very different land-cover
maps.

Translation difficulty Beyond the global results, the high heterogeneity of per trans-
lation results (from 0 more than 25% mF1,, improvement) illustrates that performance
mainly depends on the source and target complementarity. As this manuscript delib-
erately focuses on challenging translation cases with poorly compatible nomenclature
and resolution, we gain a broad understanding of the potential of land-cover translation
and its limitations. In particular, we pointed out several factors weakening translation
performance, such as classes defined by specific temporal patterns or errors in the source
and target maps used to train the model. Even though enabling improvement, the straight-
forward multi-temporal source translation framework and the divergence-based loss for
noise correction still require far more research to allow translation at its full potential.
Especially investigating how to consider the errors in source and target simultaneously
could tremendously improve the translation. That said, in more straightforward and more
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realistic translation setups, in which the source and target characteristics are relatively
comparable, translation can quickly produce products of quality comparable to image
classification-based ones. For instance, when translating OSO into the ESRI land-cover
map (23 classes 10m to 9 classes 10m, both obtained from sentinel imagery), the OA and
mF1 go up to 90% and 70% respectively without using additional data while needing less
than 12 hours to train. This is interesting for operational purposes as it could be used to
increase the update rate of some land-cover maps, such as CLC products released only
once each six years.

OA,¢ mF1,, OAg: mF1g, Time

Average DownRes UpRes | Average DownRes UpRes | Average SameExt SpaGe | Average SameExt SpaGe
HardSem* 61 58 63 25 23 26 72 58 81 38 33 40 <1 hours
HardStat* 62 61 63 25 24 25 72 58 82 35 30 39 <3 hours
SoftLearntFreq* | X 66 X X 27 X X X X X X X <3 hours
A-UNet 71 71 71 35 40 33 4 63 82 37 37 37 ~ 12 hours
A-UNet + coord | 72 73 72 38 44 34 X 65 X X 41 X ~ 12 hours
MLCT-Net 73 73 72 39 45 35 77 65 85 41 40 42 ~ 24 hours
S2 only 7 75 79 47 48 46 7 67 84 40 43 39 ~ 12 hours
MLCT-Net +S2 | 79 76 80 49 53 47 77 72 81 44 50 40 ~ 24 hours
ZeroShot 67 67 67 30 31 30 74 61 82 37 35 38 ~ 12 hours

Table 7.1: Main results on the MLULC dataset. Methods with a * are baseline methods
existing prior to our work. X denotes metrics not computable for a given method. .,
metrics are computed by comparing the translation with the target while z metrics are
computed on ground truth. Average metrics are computed accross all the 26 experimented
translations for ,; and 15 for ,. DownRes (reciprocally UpRes) metrics corresponds to
the average metric value taken only on translations where the source is finer (coarser)
than the target. SameExt (reciprocally SpaGe) corresponds to the average metric value
taken only on translation where the source and target maps have the same spatial extent
(reciprocally when the target has a smaller spatial extent), i.e. OAzSpaGe indicates the
spatial generalisation ability of the method. As each SameExt/SpaGe/UpRes/DownRes are
average results of different translation. Intercomparison between those values is irrelevant.

7.2 Insight on potential improvement for operational
use

The quality of the translated products obtained using NLLCT approaches was generally too
low to enable translation in real operational setups. Thus, most works either required to
fuse multiple source land-cover translations or assumed knowledge of target segmentation
to retrieve products with decent quality. We believe the various solutions proposed in this
manuscript could enable new use cases introduced in Figure 7.1. As we needed more time
to test every one of them, we outlined below different perspectives and improvements that
could be applied to our method to achieve each of them.

Change Detection and Updating One has access to a source and a target map
covering the same spatial extent with a temporal gap and wants to ensure that they have
the same nomenclature and resolution to make them comparable. For instance, one wants
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Figure 7.1: Main possibilities for land-cover map translation. (A) change detection, (B)
updating, (C) validation, (D) harmonisation, (E) completion, (F) spatial simplification,
(G) spatial improvement, (H) semantic modification.

to study land-cover change between a 2000 and a 2020 map produced using different
nomenclature and resolution. We addressed this case in the example of OSO 2018 to CLC
2012 and obtained accuracy up to 82% at level 2 and 69% at level 3. As the OSO map is
produced each year, one could thus create a translated version of CLC each year instead
of each six years and reduce the year-long process needed to develop the CLC map. We
believe the temporal gap is a reasonable amount of noise (the change between the two
dates) compared to the noise already in the source and target maps. This is often the case
for vast spatially overlapping maps with reasonable temporal gaps like those experimented
on in this manuscript. However, more research should be conducted on other situations,
especially on informing the network of the temporal gap-induced noise characteristics. In
particular, we believe that an active learning-based solution, such as the one proposed
by [179], could be used to learn to differentiate temporal noise from other map errors
automatically. This could pave the way to proceed to translation on maps with significant
temporal gaps (20 years or more) while increasing noise robustness.

Validation One could translate high-quality reference land-cover maps into the exact
nomenclature and resolution as a target map one wishes to validate. The comparison
between the target and this high-quality translation reference could be used to evaluate
the quality of the target product. However, as we pointed out, that translation has highly
heterogenous per-class results, so providing per-pixel translation uncertainty with the
translated map would be necessary. At the time of writing, raw classifier confidence scores
are available. However, we believe in the importance of using approaches such as the one
proposed by [108] to calibrate this confidence score into a real probability of errors.

Harmonisation One aims to translate multiple source maps into a single target nomen-
clature and resolution. This is mainly used to compare different maps, but it could also
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be used the other way around to produce several maps from a single one. For instance,
multiple worldwide land-cover products have been obtained in the last decade based on
Landsat and Sentinel imagery with comparable resolutions and nomenclatures. Therefore,
a translation could be used to bring all those products accurately from a single source map
instead of independently reclassifying those image time series. However, as the zero-shot
target procedure still needs to be fully operational, the translation method will not alleviate
the need for existing training samples of each target class.

Completion One aims to extend the spatial extent of a target map. We train a model
to translate source maps with the desired spatial extent into a target on the target map
extent. At inference, the model is used to translate the whole source map and obtain
a broad extent target. We compared our results with those obtained by training to
classify a single image into the target and showed that translation gives better results than
image classification when the target has a minimal spatial extent. On a bigger extent, we
showed that the fusion of image and map translation performs significantly better than
single-image classification. We attribute this to the fact that translation suffers less from
domain adaptation problems, e.g. a "forest" class remains "forest" in the South or North
of France while the radiometry and features vary deeply. Thus we believe in the high
potential of translation methods for completion. However, we pointed out that translation
baselines are more robust in many cases than our machine-learnt solutions. This pledge
for more research on improving our method’s robustness to spatial generalisation. In
particular in the potential of data-augmentation techniques as they are commonly used to
tackle generalisation in the image classification field [299]. This would require developing
new land-cover-specific data augmentation methods by proposing, for instance, a realistic
label-noise augmentation that could be applied to the source land-cover maps.

Spatial simplification/improvement One aims to change the resolution of source
land-cover maps. Our experiment showed that the method works well for downsampling
maps with some minor problems learning very coarse minimum mapping units. Conversely,
we did not obtain satisfactory results in upsampling maps. The upsampling without
any additional data is ill-defined and thus naturally gives poor results. Our attempts to
improve the translation results using highly resolved image data did not provide better
results than the image data alone, making the map translation approach obsolete. We
point out that no satisfactory solutions have been proposed apart from [202] only targeting
a 4-class nomenclature. Inspired by recent advances in image super resolution [34, 350,
we believe that generative adversarial networks provide an exciting solution to explore.

Semantic modifications One aims to change the nomenclature of a map. This
setup is used in all our experimentations and gives satisfactory results. As for now, the
translation methods can translate any source nomenclature (even unseen during training)
into one of the target nomenclature seen during training. However, we need to provide
tools to combine different target nomenclatures efficiently. For instance, one wants to
obtain OSO nomenclature with the wetland of CLC and the Open forest of CGLS. As
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the method currently outputs the OSO, CLC and CGLS translations, one could define
postprocessing rules to merge the different classes. This would face cases where a pixel
can be assigned multiple classes. A second, more advanced solution could be to rely on
per-class prototypes [282] as they could be combined to derive maps with a unique set of
classes while ensuring a unique class for each pixel. A third solution relies on targeting
the Semantic representation space directly as the output of the translation framework, as
it provides an off-the-shelf method to pick the desired output classes. We point out that
quantitatively assessing those solutions’ results is difficult as no ground truth data of such
recombined nomenclature is available.
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APPENDIX

Land cover nomenclatures

Main semantic link

id name C a1 a9
1 Continuous urban fabric 111 9 1111 235 7
2 Discontinuous urban fabric 112 9 1111 235 6
3  Industrial or commercial units 121 9 1111 235 8
4  Road surfaces 122 9 1112 411 10
5 rapeseeds 211 8 221 11 3
6  cereals 211 8 221 11 3
7  protein crops 211 8 221 11 3
8  soy 211 8 221 11 3
9  sunflower 211 8 221 11 3
10 maize 211 8 221 11 3
11 rice 211 8 221 11 3
12  tubers 211 8 221 11 3
13 Intensive grassland 231 4 221 11 3
14 Orchards 222 3 2111 11 3
15  Vineyards 221 2 213 11 3
16 Broad-leaved forest 311 1 2111 12 1
17 Coniferous forest 312 1 2112 12 1
18 Natural grasslands 321 4 221 63 2
19  Woody moorlands 324 3 212 63 2
20 Bare rock 332 7 121 63 2
21 Beaches, dunes and sand plains 331 7 1121 63 2
Glaciers and perpetual snow 335 10 123 63 2
Water bodies 523 12 122 14 4

22
.

Table A.1: OSO nomenclature. The main semantic link column gives for each OSO class
the semantically closest class in the other LULC.



color id  name Main semantic link
P O GI G2 M
111 Continuous urban fabric 9 1 1111 235 7
112 Discontinuous urban fabric 9 2 1111 235 6
121 Industrial or commercial units 9 3 1111 235 8
122 Road and rail networks and associated land 9 4 1112 411 10
123 Port areas 9 3 1112 414 8
124 Airports 9 3 1112 413 10
131 Mineral extraction sites 7 20 1121 13 11
132 Dump sites 9 20 1122 43 11
133 Construction sites 9 20 1121 61 11
141 Green urban areas 4 13 221 235 5
142 Sport and leisure facilities 9 3 1111 235 5
211 Non-irrigated arable land 8§ 6 221 11 3
212  Permanently irrigated land 8§ 13 221 11 3
213 Rice fields 8§ 11 221 11 3
I 221 Vineyards 315 213 11 3
222 Fruit trees and berry plantations 2 14 2111 11 3
223  Olive groves 2 14 2111 11 3
231 Pastures 4 13 221 11 3
241 Annual crops associated with permanent crops 8§ 13 221 11 3
242  Complex cultivation patterns 8 14 221 11 3
243 Mainly agriculture but significant areas of natural vegetation 8 14 2111 12 3
244  Agro-forestry areas 1 16 2111 12 1
311 Broad-leaved forest 1 16 2111 12 1
B 312 Coniferous forest 117 2112 12 1
313 Mixed forest 1 17 2113 12 1
321 Natural grassland 4 18 221 63 2
322 Moors and heathland 3 19 212 63 2
323 Sclerophyllous vegetation 3 19 212 63 1
324 Transitional woodland/shrub 3 19 212 12 1
331 Beaches, dunes, sands 7 21 121 63 2
332 Bare rock 7 20 121 63 2
333 Sparsely vegetated areas 7T 18 221 63 2
334 Burnt areas 3 19 212 63 2
335 Glaciers and perpetual snow 10 22 123 63 2
411 Inland marshes 5 19 212 11 2
412 Peatbogs 5 19 212 11 2
421 Salt marshes 7 21 1121 63 2
422  Salines 11 21 1121 13 11
423 Intertidal flats 11 21 1121 63 2
511 Water courses 11 23 122 63 4
512 Water bodies 11 23 122 63 4
521 Coastal lagoons 11 23 122 63 4
522 Estuaries 12 23 122 63 4
523 Sea and ocean 12 23 122 63 4

Table A.2: CLC nomenclature. The main semantic link column gives for each CLC class

the semantically closest class in the other LULC.
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Main semantic link

Cc P O GI G2

color id name

1  Forest 311 1 16 2111 12
2 Semi-natural areas 321 3 18 221 11
3  Crops 211 8 6 221 11
4 Water 511 11 23 122 414
5 Artificialized green urban areas 142 4 2 221 235
6  Individual housing 112 9 2 1111 235
B 7 Colective housing 111 9 1 1111 235
8  Activities 1219 3 1111 235
9  Facilities 111 9 2 1111 235
10 Transports 122 9 4 1112 411
11 Mine/dump/construction 131 ' 9 3 1121 13

Table A.3: MOS nomenclature. The main semantic link column gives for each MOS class
the semantically closest class in the other LULC.

Main semantic link

color id name o P O 2 M
1111 Built-up areas 111 9 1 235 6
1112  Undeveloped areas 1229 4 411 10
1121 Mineral material areas 131 ' 9 21 412 11
- 1122  Areas with other composite materials 132 9 3 43 11
121  Bare soils 332 7 20 63 2
122 Water surfaces 512 11 23 414 4
123 Snowfields and glaciers 335 10 22 63 2
2111 Deciduous stands 311 1 16 12 1
2112 Conifer stands 312 1 17 12 1
2113 Mixed stands 313 1 16 12 1
212 Shrub and sub-shrub formations 324 3 19 63 1
213 Other woody formations 221 3 15 11 3
221  Herbaceous formations 211 8 6 11 3
222 Other non-woody formations 334 4 18 63 2

Table A.4: OCS-GEc nomenclature. The main semantic link column gives for each
OCS-GEc class the semantically closest class in the other LULC.
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Main semantic link

color id  name C P O G1 M

11 Agriculture 211 8 6 221 3
12 Forestry 311 1 16 2111 1
13 Extraction activities 131 7 20 1121 11
14 Fisheries and aquaculture 521 11 23 122 4
235 Secondary or tertiary production and residential usage 112 9 2 1111 6
411 Road networks 122 9 4 1112 10
412 Rails networks 122 9 4 1121 10
413 Overhead networks 124 9 23 1112 10
414 River and maritime transport networks 123 12 3 122 10
42 Logistics and storage services 121 9 3 1111 8
43 Public utility networks 121 9 3 1111 8
61  Transitionnal Areas 133 9 3 1121 11
62  Abandoned areas 322 2 3 212 11
63  Without use 321 2 18 212 2

Table A.5: OCS-GEu nomenclature. The main semantic link column gives for each
OCS-GEu class the semantically closest class in the other LULC.

i Main semantic link
color id name

C O Gl G2 M

11  Closed forest 311 16 2111 12 1

12 Open forest 231 16 212 12 1

20  Shrubland 221 15 213 11 3

30  Herbaceous vegetation 321 13 221 11 3

- 90 Herbaceous wetland 411 23 122 63 4
100 Moss and lichen 333 20 222 63 2

60 Bare / sparse vegetation 332 20 121 63 2

40  Cropland 211 6 221 11 3

B 50 Built-up 112 2 1111 235 6
70  Snow and ice 335 22 123 63 2

80  Permanent water bodies 512 23 122 14 4

- 200 Ocean 523 23 122 414 4

Table A.6: CGLS-LC100 nomenclature. The main semantic link column gives for each
CGLS-LC100 class the semantically closest class in the other LULC.
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APPENDIX

Semantic correpondance analysis between maps
of the MLULC dataset

The following figure presents the porposed handcarfted semantic translation from source
(in row) to target in column for all couple of source/target maps. Blue square indicates
strong semantic correspondance. The codes of classes are provided in appendix. For
instance, in Figure B.1 the first row presents the possible semantic association for the
CGLS class 1 (Closed Forest) which establish three semantic semantic relation with CLC
class 22,23,24,25 (Agro-Forestry, Broad-leaved Forest, Coniferous Forest, Mixed Forest).
Note that some possible semantic translations are not represented as they are perceived
as weaker. For instance, it could also be translated in CLC class 21 (Land principally
occupied by agriculture, with significant areas of natural vegetation) but the semantic link
is weaker as class 21 includes other stuffs than Forest.
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Figure B.1: Semantic translation from CGLS-LC100 (in row) to CLC (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.2: Semantic translation from CGLS-LC100 (in row) to OSO (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.3: Semantic translation from CGLS-LC100 (in row) to OCSGE-cover (in column).
For more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.4: Semantic translation from CGLS-LC100 (in row) to OCSGE-use (in column).
For more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.5: Semantic translation from CGLS-LC100 (in row) to MOS (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.6: Semantic translation from CLC (in row) to CGLS-LC100 (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.7: Semantic translation from CLC (in row) to OSO (in column). For more
explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.8: Semantic translation from CLC (in row) to OCSGE-cover (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.9: Semantic translation from CLC (in row) to OCSGE-use (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.10: Semantic translation from CLC (in row) to MOS (in column). For more
explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.11: Semantic translation from OSO (in row) to CGLS-LC100 (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.12: Semantic translation from OSO (in row) to CLC (in column). For more
explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.13: Semantic translation from OSO (in row) to OCSGE-cover (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.14: Semantic translation from OSO (in row) to OCSGE-use (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.15: Semantic translation from OSO (in row) to MOS (in column). For more
explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.16: Semantic translation from OCSGE-cover (in row) to CGLS-LC100 (in
column). For more explanation on how to read the Figure refer to the presentation of
Appendix B.
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Figure B.17: Semantic translation from OCSGE-cover (in row) to CLC (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.18: Semantic translation from OCSGE-cover (in row) to OSO (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.19: Semantic translation from OCSGE-cover (in row) to OCSGE-use (in column).
For more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.20: Semantic translation from OCSGE-cover (in row) to MOS (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.21: Semantic translation from OCSGE-use (in row) to CGLS-LC100 (in column).
For more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.22: Semantic translation from OCSGE-use (in row) to CLC (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.

Figure B.23: Semantic translation from OCSGE-use (in row) to OSO (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.24: Semantic translation from OCSGE-use (in row) to OCSGE-cover (in column).
For more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.25: Semantic translation from OCSGE-use (in row) to MOS (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.26: Semantic translation from MOS (in row) to CGLS-LC100 (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.27: Semantic translation from MOS (in row) to CLC (in column). For more
explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.28: Semantic translation from MOS (in row) to OSO (in column). For more
explanation on how to read the Figure refer to the presentation of Appendix B.
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Figure B.29: Semantic translation from MOS (in row) to OCSGE-cover (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.

259 / 295



10
11
12
13
14

~

B ....
; J m

Figure B.30: Semantic translation from MOS (in row) to OCSGE-use (in column). For
more explanation on how to read the Figure refer to the presentation of Appendix B.
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APPENDIX

Semantic vs statistic translation

Table C.1 gives the proportion of target classes that can be obtained from the translation
of one single source to one single target (1-to-1), one source into multiple target (1-to-
n) and no source class corresponds to the target (0-to-1) estimated using the matrices
in Appendix B. High 1-to-1 values denotes easy translation as all pixels with a class
establishing a 1-to-1 translation shall be translated the same-way. High 1-to-n values
denotes complicated translation as pixels with the same class shall be translated into
multiple targets which requires context analysis or additional data. High 0-to-1 denotes ill
defined translations in which multiple target class have no clear source class correspondent.
We estimate those proportion using to different approaches, symmetric and asymmetric.
The asymmetric method only consider the source to target translation matrix while
the symmetric one combine the source to target with the transposed target to source
translation matrix. This asymmetric translation considers that a source class can not only
be translated into its main semantic correspondents (asymmetric) but also in all target
classes that can be translated into the source. For instance, OSO Wheat crops have a
clear main semantic correspondent in the CLC nomenclature : Non-irrigated arable crops,
thus all Wheat crops shall be translated into Non-irrigated arable crops in a "1-to-1" way.
However, this results in the fact that classes such as Mainly agriculture but significant areas
of natural vegetation which might partially include Wheat crops have no corresponding
source class in the OSO to CLC translation matrix resulting in a high "0O-to-1" proportion.
Conversely, when one considers the reverse CLC to OSO translation both Non-irrigated
arable crops and Mainly agriculture but significant areas of natural vegetation can both be
translated into OSO Wheat crops. In practice this implies that the asymmetric (symmetric)
measurement tends to underestimate (overestimate) the proportion of 1-to-n translation
and overestimate (underestimate) 1-to-1 and 0-to-n translations. Therefore one should
consider that the correct proportion of classes establishing each of the configuration is
comprised between the symmetric and asymmetric values.

261 / 295



CGLS CLC 050 OCSGE OCSGER N0

a CLC 0S0_OCSGEc OCSGEw MOS | CGLS 080 OCSGEc OCSGEW MOS | CGLS CLC_OCSCE:_OCSGE: MOS | CGLS CLC_0S0_OCSGE: MOS | CGLS CLC_0S0_OCSGE: MOS | CGLS CLC_0SO_OCSGE:_OCSCEw | "
T-to-1 (%) [4 13 35 4 36 58 65 8 57 63 50 34 12 28 5 1 11 26 21 54 B 6 1 5 1 7 ] 31
Assymet 0 83 58 58 55 34 35 22 36 37 34 16 58 30 46 59 62 T4 65 37 92 94 96 79 55 92 94 83 79 65 60
+ 7 28 9 | 00 7 0o 16 s0 o 42 9 |o % 0 u 9 |o 00 0 o |o 2 0 7 7 9
B 35 4 36 58 65 8 28 63 33 2 35 14 27 41 4 17 7 36 8 2 4 14 45 8 2 17 4 21 24
Symetric 92 58 72 55 3 35 22 72 37 7 98 65 86 64 59 87 83 86 64 92 98 96 86 55 92 96 83 79 79 72
o7 14 0 s 00 0 0o Jo 00 0 0 |o 9 o0 7 0o |o 00 0 o |o > 0 7 0 ]

Table C.1: Estimation of the proportion of target classes obtainable from translation
where one source class is translated into a single target class (1-to-1), into multiple target
classes (1-to-n), or where no source classes is found for the the target (0-to-1) for each
source and target maps of the MLULC dataset. 2 different estimation technique are used.
Symmetric use the source to target and the reverse target to source translation matrix
(given in Appendix B) to estimate all possible translation from each source class to each
target class, i.e. possible source to target class translation also includes target classes that
are translated into source. Asymmetric only considers the source to target translation
matrix.

262 / 295



APPENDIX

Class definition
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APPENDIX

Confusion matrix of CGLS-LC100, CLC, OSO
on our ground truth

Predicted
1 2 3 4 5 6 7 8 9 10 11 12

4 14 77 5 . 192 6 1
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Figure E.1: Confusion matrix of CGLS-LC100 computed on our ground truth normalized
by number of elements predicted, i.e. Color on the diagonal reflects per-class precision.

274 / 295



Predicted

1 2 3 4 5 6 7 8 9 10 11 12
1 a5 4 1 17
2| 57 9 11 20 4
0.8
4| 14 77 5 183 192 6 1
5 4 6 1 7 12 5 1 4 0.6
R 0
= o
- ]
< s
5 g
s 7 1 1 27 1 5 1 1 3 5
L 0.4
8 4 36 3 27 1
9 2 14 2 6
10 2 2 L 0.2
11 9 8 3 9
12 1
0.0

Figure E.2: Confusion matrix of CGLS-LC100 computed on our ground truth normalized
by number of elements in the ground truth, i.e. Color on the diagonal reflects per-class
recall.
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Figure E.3: Confusion matrix of CLC computed on our ground truth normalized by
number of elements predicted, i.e. Color on the diagonal reflects per-class precision.
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Figure E.4: Confusion matrix of CLC computed on our ground truth normalized by
number of elements in the ground truth, i.e. Color on the diagonal reflects per-class recall.
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Figure E.5: Confusion matrix of OSO computed on our ground truth normalized by
number of elements predicted, i.e. Color on the diagonal reflects per-class precision.
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Figure E.6: Confusion matrix of OSO computed on our ground truth normalized by
number of elements in the ground truth, i.e. Color on the diagonal reflects per-class recall.
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APPENDIX

Assessing sampling error uncertainty

As we did not find published work on estimating per-class Fscore margin of error depending
on the ground truth size, this appendix provide a simple statistical formula. We use the
notation introduce in Figure F.1 in our formulas.

Predicted class
Total population Positive (PP) Negative (PN)
=P +N s
Positive (P) True positive (TP) | False negative (FN)
R R BT Negative (N) False positive (FP) | True negative (TN)

Table F.1: Confusion Matrix illustration

We define the following values:

TPR = recall = E L

P TPLEN (F-1)
N TN
TNR=—=———. F.2
N ~ TN+ FP (£.2)
TP
PPV = precision = TP FP (F.3)
Fl...— 2precision x recall PPV x TPR A (F.4)

precision + recall = PPV + TPR B

Margin for TPR and TNR values can be computed [52, 230]. Assuming a confidence level
of 95% (z = 1.96) and n the per class sample size, TPR (same for TNR) is computed using

TPR(1 - TPR
5TPR = Z\/ ( n ) (F5)

Equation F.5 :

To estimate PPV uncertainty we rewrite Equation F.3 using F.1 and F.2. We obtain
Equation F.6 :
TP P x TPR C

TP+FP PxTPRIN(I—TNR) D (£.6)

PPV =

280 / 295



As P and N corresponds to ground truth values, they are considered exact (with no
uncertainties). Then we can compute uncertainties for PPV by merging Equation F.6
and F.5. We obtain Equation F.9 :

5C = PdTPR- (F?)
dp = Porpr + Nopnr.
doc  Op
doppy = PPV(— + —=). F.
% (7 +75) (F.9)
Finally, by merging Equation F.4 with F.5 and F.9 we obtain Equation F.14 :
A= PPV x TPR. (F.10)
B = PPV + TPR. (F.11)
_ Oppv | OTPR
da = A( =Y, + TPR)' (F.12)
55 = 5PPV -+ (STPR- (F13)
A dp OB
=2—(—+ —=). F.14
OF1 B( + B) ( )
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APPENDIX

Machine Learning and Deep Learning: short
introduction

This section concisely introduces the main principle behind machine learning and con-
volution neural networks to facilitate reading for users with limited knowledge of those
techniques. For an in-depth review of all the underlying concepts, refer to |27, 101, 155].

G.1 Machine Learning

Machine learning englobes a set of methods (including deep learning) designed to solve a
problem by implicitly modelling a set of discriminative rules using real data. An illustra-
tion of the difference between solving a problem with machine learning and imperative
approaches can be given using the example of water areas detection on optical satellite
images. An imperative approach would consist in assuming a prior knowledge of water
characteristics (e.g. water is blue) and writing an algorithm that will annotate all blue
areas as water areas. Conversely, in a machine learning-based approach, one provides
the algorithm with a set of areas annotated as water/not water and lets it determine a
distinctive criterium to distinguish the water areas.

The phase allowing the method to produce the model to respond to the problem from
the data provided is referred to as the learning or training phase. It is systematically
followed by a validation phase carried out on another set of data to ensure the validity of
the model obtained and its ability to generalize (i.e. its transferability to other data ). If
the network performs better on seen during training data than on unseen data (validation),
the network is said to overfit.

Machine learning methods differ from each other both by the algorithms used for building
the model and their training methods, that is to say, by the method making it possible to
obtain the model. Thus, we distinguish supervised training, for which the data is labelled
(we compare the expected output and the output for each input) from unsupervised
training. In our land-cover scenario, we will always assume that we have an existing sample
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of the desired target. Only supervised training methods are explored in our manuscript.

Deep Learning is a subset of the Machine learning algorithms for which the model is built
using neural networks algorithm.

G.2 Neural network

One of the multiple representations of the basic brick of a neural network is the perceptron

[258].

Inputs Weights Neuron Qutput

OH || | |

Bias

Figure G.1: Perceptron|258|

The following explanations are based on the figure G.1. Let (X, Xz, ..., X,) be a set of
input variables corresponding to data provided to the network. The neuron ¥ performs
a weighted summation of these different input variables with per input variables weight
denoted (wy, wo, ...,w,). Finally, it applies an activation function denoted a to this sum and
returns the result. The activation function allows, among other things, the resolution of
non-linear problems. A classic example of a is the Rectified Linear Unit (ReLU) function

defined as follows:

ReLU(x) = {0 <0, (G.1)

x if x > 0.

As explained above, machine learning methods are based on two phases (training and
inference). In the case of neural networks, the training determines the ideal values of the
w; to answer the stated problem. Training a neural network is an iterative process in which
w; are initialised with random values that are progressively adjusted as training progresses.
At each iteration, the network process a set of values (Xi, Xz, ..., X;;) input for which the
expected output y is known. A comparison between the output of the neurone and the
expected value y is then computed using a loss function. Multiple error functions have
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been defined depending on the problem type (classification, regression) and the data to be
processed. The choice of the loss function greatly conditions the result obtained.

Once the difference between obtained and expected results has been measured, we de-
termine how to update the weights w; using the gradient descent algorithm. We set,
xU) = (Xl(j), Xz(j), o X,sj)) the jt" set of variables corresponding to a statistical individual
and X,-(j) the i" variable of the j** set. We then call f(xU)) the output obtained by the
perceptron for the jt set and yU) the expected real value for this set. We can then write:

E)Loss(f(x(f))7 y(f))
&u,- .

wj — wj —Ir (G.2)
Ir is called the learning rate and is a network hyperparameter. If this parameter is too high,
the network weights vary significantly at each iteration to provide a convergence towards
a minimum for the considered x¥) and partly forget the learning carried out during the
previous iterations. Conversely, if it is too weak, the network will need many iterations
before obtaining a relevant result. If the error function used is the function Mean square
error ou Ecart Moyen Quadratique (MSE), we can write based on the previous equation:

wi — wj — Ir(yY — f(x(j)))x,-(j). (G.3)

We then iterate these operations on the xU) at least until the error function converges.
The resulting weight is then fixed, forming the model used for inference and marking the
end of the training phase.

Deep learning or deep learning is based on stacking these building blocks in layers, the
output of one of these layers constituting the input of the next (see figure G.2). We then
update the w; (one per arrow on our diagram) by calculating the error on the last layer and
back-propagating it. A challenge is then to ensure the convergence of the error function,
which does not necessarily converge to the solution, but potentially to one of the many
local minima. The choice of specific parameters (learning rate, number of layers, etc.)
dramatically conditions the convergence capacity of the network. One of the many possible
techniques to facilitate and accelerate the convergence of the network is to randomly group
the observations into packets before submitting them to the network to limit the risk that
the network over-learns at each iteration. These packets are called "batches".

Through this short introduction to the principles of neural networks, we identify two main
points of interest that have been addressed during this internship:

e Deep Learning consists of a set of methods based on neural networks performing
learning that can be supervised or unsupervised. The supervised or unsupervised
approach often depends on the availability of ground truth. If possible, these two
forms of learning should be studied in this study.

e Many hyper-parameters (parameters often chosen empirically) are involved in such
networks: learning speed, number of layers, number of neurons in each layer, cost
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function... Their choices significantly affect the results provided by the network. It
is therefore essential to study their influence.

Inputs Layer Layer Output

J

Bias

OO
w )mt‘)»;\

/ zp
Figure G.2: 3 layers Multi-Layer Perceptron ou Perceptron multi-couches (MLP)

G.3 Convolution neural networks

As we seek to perform land-cover translation on rasterized land-cover, it is necessary to
rely on deep learning architectures efficient in image processing. Such architectures mainly
rely on the spatial filter convolution of an image. This type of network is arranged in the
same way as on the MLP (see G.2). The input X; is then replaced by a matrix (an image)
and the w; by convolution filters. The parameters of each filter are learned during the
training phase and correspond to feature detectors (elements of interest) present in the
image. The idea is that the network learns to recognize through these filters the important
elements of an image to perform the expected task. The result of the convolution of an
image by one of these filters is called an activation map (or feature map) and corresponds
to the highlighting of the places where the feature is present. An example of convolution
is presented in figure G.3.

Layer 1 feature map

Figure G.3: Convolution by a 3x3 filters
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A brief illustration could be given by taking the example of a simple 3-layer network of a
neuron aiming to determine "green urban areas" on an image. A conceptual view of what
could be learned by the network is that the first layer carries out a convolution by a filter
aiming to detect grasslands. The second then seeks to determine on the activation map
obtained if an element resembling a city is convolved by a grassland detector (since the
city present in the activation map has also been convolved by the grassland filter). We
then obtain a second activation map corresponding to the places where a green urban
area is possible in a city. Finally, the last neuron sums the elements present on the feature
map and returns 0 or 1 depending on the absence or presence of grassland in a city. This
example illustrates, in particular, that the more the number of layers increases, the more
the concepts learned become abstract, making it resolve the complex task.

Each convolution layer is characterized by its number of filters and the stride at which it
moves on the image. Filters are characterized by their size. For each convolution layer,
the number of parameters to be learned by the network is equal to the product between
the size of the filter and the number of filters present in the layer. We can classically break
down a CNN into four structuring elements that are successively stacked (see Figure G.4):

e A convolution layer: convolution between the features and the image to see if (and
where) the feature is present. This is always at least the first layer of the network.
Features are learned gradually during training. The number of feature maps, as well
as the size of the features, are part of the hyperparameters of the network.

e A pooling layer (typically ReLU): we reduce the size of the feature maps. This
considerably speeds up the calculation times (by reducing the number of pixels).

e A layer of normalisation (typically Batch Normalization (BN)): we normalise the
input values to speed up learning and reduce the risk of over-fitting.

e An activation layer (typically ReL.U).

Those four structuring elements are stacked multiple times to increase the depth of the
network into what is referred to as a layer. For instance, a two-layer network can be
composed of the first layer with a convolution followed by an activation layer and a second
layer, taking the output of the first layer and convolution and an activation layer as
input. An important observation is that at each convolution, the value of one pixel is
influenced by its neighbourhood. The convolution by a 3x3 filter modifies the value of
one pixel using the values of its eight neighbouring pixels. Stacked convolution increases
the size of the neighbourhood at each layer. The maximum neighbourhood size is termed
receptive field and is a key element in leveraging spatial context. A small receptive field
only enables to analyse of far-range influence. Various solutions exist to increase the
receptive field. The first strategy is to increase the network depth, as each convolution
will increase the receptive field. However, the bigger the network, the more complex the
training is due to vanishing gradients [176] and potential overfitting due to an increased
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number of learnt parameters. The second strategy is to modify the convolution parameters
by either using bigger filters (which is memory-consuming as it increases the number of
learnt parameters) or dilated filters (instead of processing the nearest neighbours, the filter
process the neighbours at a given distance). The last one is to modify the feature maps by
reducing their size through, for example, a pooling layer.

Figure 7?7 shows the effect of different layers on the histogram of a feature map.

1 Layer

Convolution Batch Norm RelU Max pooling
1

ﬁ n other layers

I 1 I

g

A

Figure G.4: Convolutional Neural network with a single layers
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APPENDIX

EPI interpretation key

The Edge Preservation Index (see Equation 3.4) is highly correlated to the edge proportion
in the reference. To distinguish 6 levels of EPI value (poor, slight, fair, moderate,
substantial, almost perfect) we built an interpretation key based on a comparison with
other traditional metrics previously (precision, recall, fscore, and Kappa). Figure H.1
presents the EPI, fscore and kappa value for different precision, recall values. As EPI and
kappa value depends on the reference’s edge proportion, those plots varies depending on
the considered land-cover map. We display here the plot for the maps with the smaller
(OCSGE use) and bigger (CGLS) edge proportion. The principal take away are listed
bellow:

e Kappa and EPI value exhibits 0 value when the precision on edge prediction is
identical to the edge proprtion in the dataset. A value bellow 0 indicates that a
random classifier replicating edge proportion would perform better than the evaluated
classifier.

e When the reference’s proportion of edges is high (right figure), the fscore is a bad
indicator when its value is below 0.4 as its only takes into account variation in recall
and is relatively insensible to broad precision variation.

e When the reference’s proportion of edges is low (left figure), the fscore and the
Kappa are bad indicators when their value are below 0.4 as they exhibits both a
precision and recall asymptotic behavior when the precision and recall widely differ,
i.e. they become insensible to wide precision or recall variation, only focusing on the
lowest of the two values.

e Kappa, EPI and fscore exhibits almost the same pattern twoard precision and recall
when they reach a 0.8 value making them all usable.

To sum up, the main advantage of the EPI compared to fscore and kappa is that it
enable studying quality variation when the precision and recall even when the edges are
poorly detected. Based on those plots we identify the 6 levels (poor, slight, fair, moderate,
substantial, almost perfect) by assuming that each levels must represents the same overall
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OCSCEu (13% edges) CGLS-LC100 (40% edges)
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Precision Precision

Figure H.1: EPI (black line and colormap), fscore (red lines) and kappa (white line), for
different precision recall value. The left plot is computed assuming 13% edges (OCSGE
use) while the right is computed assuming 40% edges (CGLS). We underline that since
we assume the target proportion of edges in a binary classification setup (edge/non edge)
some recall /precision couple can not be observed, in which case they are represented in
white.

Target CGLS CLC O0OSO MOS OCSGE cover OCSGE use Average
Edge proportion 40 33 23 19 15 12

Poor 0 0 0 0 0 0 0

Slight (percentile 20) 13 14 16 17 18 18 16

Fair (percentile 40) 26 28 30 31 32 32 30
moderate (percentile 60%) | 40 42 45 46 47 47 45
Substantial (percentile 80%) | 58 60 62 63 63 63 62

Table H.1: EPI interpretation key, based on percentile of EPI values above 0 computed on
diagrams such as the those presented in Figure H.1.. Value above the substantial threshold
are termed almost perfect

area on the graph except for the poor value that represent EPI value below 0. As those
values depends on the proportion of edges we review the per land-cover results in Table H.1.
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APPENDIX

Map and S1/DEM fusion

results

Source CGLS (P) CLC (O) 050 (0) OCSGEc (GI) [ OCSGEu (G2) _[MOS (M) [, "
Target cC O Gl G2 M|P O GI G2 M|P C Gl G2 M|P C O G2|P C O GL|P C O ‘ . ©
Early SourceSpe | 64 60 73 82 82 |75 62 75 83 83|74 64 78 8 8 |70 57 59 89 |69 55 56 |79 86 84 66

Unique 65 63 75 84 84|76 64 77 8 85|73 65 79 86 86 |70 59 61 91 |70 57 59 82 |87 84 67 74
Mid-1 SourceSpe | 65 62 76 83 84 |77 65 77 8 84 |73 66 8 87 8 |71 59 60 90 |71 57 59 82 |8 84 66 T4
TargetSpe | 64 64 75 83 84 |77 65 76 84 85|74 64 8 87 8 |69 59 61 92 |71 58 58 81 |87 83 67 T4
Unique 65 62 75 8 83|75 64 T7 8 8|74 66 79 8 8 |71 59 61 90 |70 56 58 80 |87 85 67 T4
Mid-2 SourceSpe | 66 63 74 83 83 |76 64 77 8 84 |73 67 79 8 8 |70 60 61 90 |71 57 58 80 |87 84 67 T4
TargetSpe | 66 62 75 84 82|75 63 78 8 85|74 65 8 8 8 |72 60 62 91 |70 55 57 79 |8 85 67 T4
Unique 66 64 75 84 8 |76 65 77 8 8|73 66 79 87 & |71 H9 62 92 |71 57 60 82 |87 85 67 75
Mid-3 SourceSpe | 66 63 76 85 83 |76 64 77 8 8 |74 67 81 8 8 |69 59 61 92 |70 57 59 81 |87 8 66 75
TargetSpe | 64 62 76 85 84 |76 64 78 8 84 |75 65 8 8 8 |69 59 62 92 |70 58 58 83 |8 8 66 75
Unique 70 68 79 86 85|78 69 79 8 85|77 70 82 88 87|73 63 65 93 |73 62 63 85 |87 85 69 77
Late SourceSpe | 70 69 79 86 85|78 69 79 86 85|76 70 82 88 86 |72 63 64 92 |72 62 62 84 |87 81 68 77
TargetSpe | 69 67 78 86 85|78 68 78 86 85|76 70 82 88 8 |72 62 65 93 |72 62 62 84 |8 85 68 77

Table I.1: Comparison of various Fusion strategies using Sentinel-1, our 6 land cover maps

and the MLCT-Net in terms of OA,,.
Source CGLS (P) CILC (O) [0S0 (0) OCSGEc (GI) [ OCSGEu (G2) [ MOS (M) [,
Target C 0 Gl G2 M|[P O GI G2 M|P C GI G2 M|[P C O G2[P C O GI|P C O |
Early | SourceSpe | 59 54 69 78 78|71 57 72 80 80 75 65 78 8 85|70 57 57 91 |70 54 52 80 |86 84 64|71
Unique 60 56 T 80 80|72 57 73 81 81 75 65 78 8 8 |71 58 56 91 |70 54 52 79 |8 83 64|72
Mid-1 | SourceSpe | 60 57 70 80 80|73 58 73 81 81 75 65 78 8 8|71 58 56 91 |70 54 52 79 |86 83 64|72
TargetSpe | 60 57 70 80 80|73 58 73 81 81 ‘ 75 65 78 8 8|71 58 56 91 |70 54 52 79 |86 83 64|72
Unique 60 56 70 80 80|72 57 73 81 81 75 66 78 8 85|71 58 56 91 |70 54 52 79 |8 83 64 |72
Mid-2 | SourceSpe | 60 57 70 80 80|73 58 73 81 81 75 65 78 8 8 |7l 59 56 91 |70 54 52 79 |8 83 64 | 72
TargetSpe | 60 57 70 80 80|73 58 73 81 81 ‘ 75 65 78 8 8|71 58 56 91 |70 54 52 79 |8 83 64 |72
Unique 61 58 71 80 80|73 59 73 82 8 T5 65 79 8 85|71 58 H8 92 |71 56 54 81 |8 84 64 | 72
Mid-3 | SourceSpe | 61 57 71 80 80|72 59 73 82 82 75 66 79 8 8 |71 59 58 92 |71 56 54 81 |86 84 64 | 72
TargetSpe | 60 57 71 80 80|73 59 73 82 8 75 65 79 8 8 |7l 58 58 92 |71 56 54 81 |86 84 64 |72
Unique 67 60 72 80 81|75 60 74 81 82 79 69 80 86 86|74 61 60 93 |73 59 55 81 |87 84 63|74
Late SourceSpe | 67 59 72 80 80|75 60 74 81 8 79 68 81 8 8|74 61 60 93 |73 59 55 81 |87 84 63|74
TargetSpe | 67 60 72 80 81|75 60 74 81 8 79 68 8 8 86|74 61 60 93 |73 60 55 81 |87 84 63|74

Table 1.2: Comparison of various Fusion strategies using DEM+Aspect,

maps and the MLCT-Net in terms of OA,,.

our 6 land cover
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APPENDIX

Viual representation of SRS obtained with
BoW and Word2Vec
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Figure J.1: PCA representation of the HDSRS obtained with a trained on generic text

corpora Word2Vec.
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Figure J.2: TSNE representation of the HDSRS obtained with a trained on generic text
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Figure J.3: PCA representation of the HDSRS obtained with a trained on LCDD BoW.
OSO is here the test map, unseen when building the dictionnary:.
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Figure J.4: TSNE representation of the HDSRS obtained with a trained on LCDD BoW.

OSO is here the test map, unseen when building the dictionnary.
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