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CHAPTER 1

INTRODUCTION

Over the last decade, the amount of generated data has been growing up exponentially.
In [1], it was predicted that data storage needs would grow from 45 zetabytes in 2019 to 175
zetabytes by 2025. But the growth in data storage capacity is below these forecasts [2].
In addition, a report published in 2020 by the European Commission [3] pointed out
the increasing unbalance between offer and demand for raw materials needed to produce
Classical Storage Medias (CSMs), where examples of CSMs include tapes, HDDs, or
SDDs [4]. For these reasons, it is necessary to find alternatives to CSMs.

Among these alternatives, DNA data storage [2, 5, 6] appears as a promising solution
that benefits from highly increased density and durability compared to existing storage
solutions. Theoretically, DNA is 10° times more dense than tapes [2, 7, 8], which are
themselves the densest CSM. In addition, DNA has a durability of over 500 years, while the
durability of HDDs and Tapes is about 5 years and 30 years, respectively. Moreover, since
CSMs used in data centers must be kept under a certain temperature, they are responsible
of a high carbon footprint [9]. Oppositely, DNA can be stored at room temperature [10],
and thus, DNA data storage naturally goes towards the green transition.

The idea of storing data on DNA goes back to the sixties. At this time, the idea of a
future data storage media based on a genetic memory was discussed, and some of its ad-
vantages were already pointed out in [2, 11, 12]. However, the first two major experiments
that showed the true potential of DNA data storage were both conducted much later, in
2012 [5, 6], thanks to the recent advances in DNA synthesis and sequencing [2]. More-
over, a fully automated end-to-end DNA data storage device demonstrator was reported
by Microsoft and Washington University in 2019 [13].

1.1 Issues raised by DNA data storage in practice

Practical DNA data storage requires advanced technological processes from several

scientific fields including biology, bioinformatics, data science, signal processing, channel
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Introduction

and source coding. In order to advance and mature this technology, several issues need
to be addressed within these fields, or at the interface of these fields. This thesis will
mostly focus on DNA data storage issues related to channel coding, with the objective
of taking into account as much as possible constraints from other fields. We expect that
this approach will allow to get closer to a practical implementation.

We now describe into details the issues addressed in this thesis and their connections
with other scientific fields.

1.1.1 DNA sequencing and synthesis constraints

DNA sequencing is the operation by which the DNA is read, and DNA synthesis is the
operation by which the DNA is written. New sequencing technologies allow to drastically
reduce the cost and time of DNA sequencing [14, 15]. However, sequencing still takes
from a few hours to a few days [8], depending on the amount of DNA to sequence. In
addition, although major advances were observed recently, DNA synthesis still has a high
cost [16]. And synthesis also takes from a few days to a few weeks, depending on the
amount of DNA to synthesize.

Therefore, due to the synthesis and sequencing latencies, DNA data storage is currently
dedicated to cold data storage [2, 17], where the term "cold" refers to data which must
be stored for a long period of time (years, decades, centuries, ...). Furthermore, since
cold data is rarely accessed, the storage devices are optimized for long-term preservation
and low costs [8, 17]. For instance, the access latency in the Amazon Glacier storage
service [18] can take up to 12 hours.

Of course, making progress in DNA synthesis and sequencing techniques is clearly
out of the scope of this thesis. However, we will aim to identify and take into account
the constraints of existing techniques during our studies. This is why in Chapter 2, we
introduce into details the DNA data storage workflow and describe DNA synthesis and

sequencing techniques.

1.1.2 Type and amount of errors introduced by DN A data stor-
age

One of the main drawbacks of DNA data storage is the amount of errors introduced
during DNA synthesis and sequencing [19, 20]. While DNA synthesis introduces a low

amount of errors [19, 21], DNA sequencing is subject to a high amount of errors [19, 20].
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Introduction

These processes not only introduce substitutions, but also more unconventional deletion
and insertion errors. Furthermore, the amount of errors can vary depending on the DNA
sequencing technology and protocol [19, 20, 22].

Therefore, there is a need for accurate statistical models to represent the errors intro-
duced by the DNA data storage channel. Indeed, a reliable statistical model would allow
for in silico simulations of any numerical method (signal processing, coding, security,
etc.) developed for DNA data storage, before developing costly in vitro experiments. It
could also help better understand the different sources of errors. However, because of the
biological process involved in DNA data storage, it is not straightforward to model the
whole process. Hence, it is common to consider a simplified DNA data storage channel
model, with incorrect assumptions on, e.g., independent and identically distributed (i.i.d.)
errors [23, 24].

Therefore, in Chapter 3, we propose a statistical channel model which accurately
represents the DNA data storage channel. Our statistical model was trained on two
different types of data: a set of experimental data which came through the full DNA data
storage process, and a set of genomic data which were obtained from the sequencing of a

bacteria.

1.1.3 Correction of errors introduced by the DNA data storage

channel

In order to build reliable DNA data storage systems, it is necessary to implement effi-
cient error-correction solutions. However, most conventional error-correction solutions [25,
26, 27] only correct substitution errors, and completely fail at correcting insertions and
deletions. In this thesis, we will explore different solutions to correct insertion, deletion,
and substitution errors. Especially, we will investigate two solutions which both resort on
different techniques.

In Chapter 4, we introduce a first error-correction solution, which combines an ap-
proach from the bioinformatics field, and an approach from the coding field. This first
solution was developed in collaboration with the GenScale team of INRIA Rennes. In
Chapter 5, we introduce a second error-correction solution, which purely relies on channel
coding so as to improve the error-correction process. This second solution was developed
in collaboration with the Coding and Cryptography group of the Technical University of
Munich (TUM).
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1.1.4 Redundancy in the output data

When reading a DNA molecule, DNA sequencing outputs thousands of copies of the
same sequence, with different noise realizations. Therefore, DNA sequencing generates a
high amount of data, which contain a large amount of redundancy.

This is why in Chapter 6, we investigate efficient data deduplication algorithms [28]

so as to remove the redundant data and reduce the storage space.

1.2 The DnarXiv project

This thesis was apart of the DnarXiv project [29], funded by the Labex Cominlabs.
Note that the DnarXiv project started one year after the beginning of this thesis. This
project aims to tackle DNA data storage at the interaction of several research fields:

biotechnology, security, and coding:

— In the field of biotechnology, the project aims to investigate different techniques
to improve DNA synthesis and sequencing. It also aims to identify the various
constraints to consider so as to adapt and improve the security and coding parts.
Finally, it will allow to test the developed coding and security techniques under in

vitro experiments.

— In the field of security, the project aims to identify possible security threats in
the DNA data storage workflow. It also aims to develop novel DNA-based security
techniques, which would rely on the DNA structure. Until now, research on this axis
was carried independently on our work on coding. However, our channel simulator

was used to carry numerical experiments on the security aspects.

— In the field of coding, to which this thesis belongs, the project aims to explore

different solutions to unconventional errors introduced by DNA data storage.

One of the objectives of the project is also to develop a platform to numerically
simulate all together the different parts of the DnarXiv project. Our statistical channel
model was integrated in this plateform, for use by the different parts of the DnarXiv
project. Furthermore, to take into account the interactions between the different part of
the project, the error-correction solutions proposed in this thesis were also tested on this

plateform.
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CHAPTER 2

DNA DATA STORAGE WORKFLOW

In this chapter, we describe the DNA data storage workflow. We first describe DNA
and some of its biological principles. We then explain how DNA can be written through

synthesis, and how DNA can be read through sequencing.

2.1 DNA

The DNA (DeoxyriboNucleic Acid) [30, 31, 32] is a long molecule which serves as
support for the genetic information that is necessary for the development and functioning
of all living organisms. It is therefore a natural dense memory [33].

A DNA molecule is made-up from two attached strands that form the famous double
helix structure [34], see Figure 2.1. Each DNA strand contains a succession of nucleotides
attached to the strand backbone. A nucleotide is composed of a deoxyribose sugars, a
phosphate groups, and a single nitrogen which contains a base [35]. The order of the
nucleotides on the DNA strand is critical since it allows to encode different functions.

The bases are represented with letters that form the genetic code. There exists two
types of bases, which are the purine (two-carbone nitrogen ring) bases A (Adenine) and
G (Guanine), and the pyrimidine (one-carbone nitrogen ring) bases C (Cytosine) and T
(Thymine). The strands of the double helix are connected by hydrogen bonds between
the bases. Furthermore, strands of double strand DNA (dsDNA) are complementary in
the sense that a base A in one strand is always bonded to a base T in the other strand
(and vice versa), and a base C in one strand is always bonded to a base G in the other
strand (and vice versa).

Furthermore, the phosphate groups bond together the strand nucleotides between
the 5” (five prime) carbon and 3” (three prime) carbon of adjacent deoxyribose sugar
molecules [32]. The numbers 5 and 3 refer to the number of the carbon atom in a de-
oxyribose sugar, and where the carbons are clockwise numbered starting from the oxygen

atom. Thanks to its 5" end and 3~ end, the DNA molecule has by convention a reading
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Part , Chapter 2 — DNA data storage workflow

direction that goes from the 5" end towards 3~ end.

Deoxyribonucleic acid (DNA)
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Figure 2.1: Deoxyribonucleic acid representation. The right part of the figure shows the 3 components
that forms a nucleotide, how nucleotides A on its 5 carbon and G on its 3” carbon from same strand
bond together thanks to the phosphate group; and the hydogen bonds which is attaching nucleotides from
different strands T with A and C with G together. The left part shows the backbone of a DNA helix
(dsDNA) with its nucleotides attached together on and between the strands. Major and minor grooves
represent the parts of the dsSDNA where backbones are respectively far or close from each other.
Source: National Human Genome Research Institut (genome.gov).
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As mentioned before, DNA exists in all living organisms. It is an important piece
that explains how simple cells evolve into complex organisms such as human beings. For
instance, understanding how DNA works can help to prevent, detect and fight against
various diseases. Thus, we have invented sequencing techniques to read DNA, and syn-
thesis techniques to build DNA. Since these two techniques are at the basis of DNA data

storage, we now describe them into details.

2.2 DNA synthesis

DNA synthesis [36] is a process that builds single strands DNA (ssDNA) or dsDNA

molecules by linking nucleotides. There exists several techniques for DNA synthesis, which
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2.2. DNA synthesis

can be divided into two categories : natural synthesis (in vivo), and artificial synthesis

(in witro). For instance:

— DNA replication [37] in an in vivo DNA synthesis which relies on a polymerase
enzyme to construct from one dsDNA molecule two new dsDNA molecules. This
technique allows to replicate the genetic material from mother cells to daughter cells
(cells division). A DNA template (ssDNA), which is obtained after separating the

strands from dsDNA, is necessary to perform the synthesis.

— Polymerase Chain Reaction (PCR) [38] is an in vitro DNA synthesis that allows
to amplify (replicate) one or several DNA molecules. This allows to make a focus
on a particular DNA molecule for diagnosis purpose (for instance, look for COVID
DNA material), or to implement a random memory access on a DNA data storage

system [39], etc. PCR also relies on a DNA template to perform the synthesis.

— Gene synthesis [16] is an in vitro de novo DNA synthesis that aims to construct

from scratch a DNA sequence and bypass the necessity to use a DNA template.

Gene synthesis is employed for DNA data storage [40] since it allows to construct
almost any desired sequence. In this case, the synthesis constructs short synthetic ssDNA
sequences called oligonucleotides, or oligos [16, 41]. Gene synthesis is subject to different

constraints depending on the considering gene synthesis method:

— Chemical synthesis [36, 16, 42] is performed in parallel to synthesize from one
hundred (column-based method) to ten thousands (microarray-based method) dif-
ferent oligos at a time [43]. The length of each oligo is in between 10 to 300 nu-
cleotides. Both methods rely on the phosphoramidite approach, which is based on
a four-step cyclic reaction [42] that adds a nucleotide by cycle to obtain the final
oligos. Synthesizing oligos longer than 300 nucleotides tends to increase the amount
of errors [21]. Thus, to obtain longer sequences, synthesis is usually performed in
two steps. In the first step, the sequence is segmented, and each segment is synthe-
sized as a unique oligo as described previously. In the second step, the oligos are
assembled to form a longer sequence (the ordered sequence). In 2014, the cost for
a column-based synthesis was between 0.05 and 0.15$ per base, and the cost for a
microarray-based synthesis was between 0.00001 to 0.001$ per base [42]. Nowadays,
the chemical synthesis remains the most common synthesis employed for DNA data

storage [40].
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— Enzymatic-synthesis relies on particular enzymes that are used to construct de
novo oligos by adding nucleotides with the help of an enzyme, in a template inde-
pendent manner (oppositely to PCR). This technique is still at its infancy, but it
is expected to decrease synthesis costs and time, allow for longer oligos synthesis,

while being free of hazardous chemicals [16, 40, 44].

Due to its costs and because it is time-consuming, the synthesis process remains the major
bottleneck of DNA data storage. In the field of biology, the development of large-scale,
low-cost, and highly-reliable synthesise techniques could catalyze rapid progress on this
field [16].

2.3 DNA sequencing

DNA sequencing [45, 46] consists of determining the sequence of bases in a DNA
molecule. The human genome (6.10° bases) was sequenced for the first time using the
so-called Sanger sequencing, developed by Frederick Sanger in 1977 [45]. Although Sanger
sequencing was considered as the gold standard of sequencing during many decades [46],
the necessity for cheaper and faster sequencing led to the development of a new generation
of sequencing techniques called Next-Generation Sequencing (NGS) [47, 14]. NGS offers
a massively parallel sequencing with a high throughput, and drastically reduced costs, see
Figure 2.2. Therefore, NGS opened the door for a genome sequencing boom [48]. As a
matter of facts, to sequence the human genome assuming a seven times coverage (number
of same sequences), a unique Sanger sequencer, would take 100 years when a unique NGS
sequencer would take only two days.

Sanger sequencing allows to read long molecules with high accuracy [49] but suf-
fers from its low-throughput which makes genome sequencing highly time-consuming.
In the other hand, NGS sequencers offer raw read accuracy of 99.9% and has a high-
throughput [50], but it can only sequence short reads. This makes genome assembly
challenging, for instance because long repetitive regions of some genome sequences intro-
duce confusion regarding where a sequenced fragment really belongs. To tackle this issue,
a Third-Generation Sequencing (TGS) [51] was introduced. TGS can sequence long DNA
molecules that could contain up to 2 Mbp (Mega base pair: 2 million of paired bases) at
high-throughput [22, 52, 51]. Several TGS sequencers were developed by different compa-
nies such as (in an alphabetical order) Illumina, Oxford Nanopore Technologies (ONT),

Pacific BioScience (PacBio), etc.
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2.8. DNA sequencing

Cost per Human Genome
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Figure 2.2: Sequencing costs of a human genome through the years and compared to Moore’s Law.
The plot shows how human genome sequencing costs drastically decreased from hundred millions to less
than a thousands of dollars. Note that the impressive decrease that starts from 2007 is related to the
transition from Sanger to next-generation sequencing.

Source: National Human Genome Research Institut (genome.gov).
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Part , Chapter 2 — DNA data storage workflow

In this work we mainly focus on the ONT MinlON sequencer [15, 22]. The ONT
MinION is a portable TGS sequencer which can sequence long DNA molecules at a high-
throughput. In addition to having a small size (slightly bigger than a USB-key), it provides
results in real-time in the sense that sequencing results are accessible before the whole
sequencing is completed [15, 53, 22]|. Furthermore, when NGS sequencers cost hundreds of
thousands of dollars and a few thousands dollars for its reagents (substances to perform
the sequencing) [54], the ONT MinION costs 1000$ with a few hundred dollars for its
reagents. Thus ONT MinlION is affordable even for small laboratories and individuals.
These lasts features make it a good candidate for DNA data storage [55].

The ONT MinION works with nanoscale protein pores (nanopores) [22, 56, 57| which
serve as biosensors. Nanopores are fixed on an electrically resistant polymer membrane
which is immersed in an electrolytic solution. A constant voltage is applied to the solu-
tion to produce a ionic current through the nanopore. ssDNA molecules, being negatively
charged, are naturally driven through the nanopore nucleotide by nucleotide, from the
negatively charged part of the membrane to its positively charged side. A motor pro-
tein (called helicase) fixed on an adapter (oligo) added to a dsDNA molecules, separates
strands and controls the speed of the ssDNA through the nanopore. The electrical current
intensity inside the nanopore (reading region) changes depending on the 6-mer (group of 6
nucleotides) that is inside of it. Therefore the current intensity allows to identify 6-mers.

The ONT Minlon sequencing is performed through 3 main steps [15, 57, 56:

1. Library preparation: The DNA is prepared to meet some requirements and to
eventually achieve some goals. The most rapid library preparation takes 5-10 min-
utes, where adapters are ligated to dsDNA and finally a motor protein is added to
each dsDNA.

2. Sequencing: The dsDNA is driven through the nanopore nucleotide by nucleotide,
and a current signal related to the group of 6-mer that is on the nanopore is recorded,

see Figure 2.3.

3. Data processing: To decide which bases were read, a so-called basecalling step is
first performed over the sequencing results using a basecaller software. The base-
caller translates the electrical current signals of the successive 6-mers into a sequence
of bases A, C, G, T. The resulted sequences can be assembled, aligned, or mapped
with more efficiency than for the NGS because the fragments are longer. To illus-
trate this, we can imagine a situation where we have to put together pieces of a

puzzle, and having bigger pieces (long fragments) certainly helps to assemble the
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puzzle pieces quickly and to put them in the right locations.

Nanopore DNA sequencing

Unwinding
enzyme

Electrical current (pA)

Nanopore

W sy

e AR W
AARAANAN

MINNNVYE

lonic current

Figure 2.3: Nanopore DNA sequencing illustration. The left part represents dsDNA molecules and
their motors protein (Unwinding enzyme) attracted and driven through nanopores that are embedded
in a polymer membrane. The right part shows a dsDNA unwinded (separated) by the helicas of the
unwinding enzyme. One strand goes through the nanopore when the other one will be captured by
another nanopore. The right part also shows the basecalling step where the electrical signal is translated
into 5-mers (only for illustration).

Source: National Human Genome Research Institut (genome.gov).

However, despite some successive improvements, the ONT MinlON raw reads accu-
racy is about 94% [22]. Errors are due to different factors including the sequencing of
long homopolymers which are long repetition of the same base (e.g.: AAAA is an ho-
mopolymer of length 4) [19]. Therefore, to build reliable DNA data storage systems, it
is necessary to implement some mechanisms to retrieve the original data. One solution,
which we will explore in this thesis, is to rely on error-correction codes so as to eliminate
sequencing errors. However, one main issue for the design and evaluation of powerful
error-correction solutions resides in the fact that synthesis and sequencing remain costly
and time-consuming operations. Therefore, a first step would consist of numerically simu-
lating the whole process, including synthesis and sequencing. This is why the next chapter
introduces a statistical model to represent the DNA data storage channel, from the input

of the synthesis to the output of the basecaller.
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CHAPTER 3

DNA DATA STORAGE CHANNEL MODEL

In the previous chapter, we described the DNA data storage workflow. In particular,
we described how DNA can be written using DNA synthesis, and read using DNA se-
quencing. We then emphasized the fact that errors are introduced during DNA synthesis
and sequencing. Though, DNA sequencing with the MinION is the main contributors to
these errors. This is why in this chapter we introduce a novel DNA data storage channel
model that aims to model the whole DNA data storage process. As mentioned in Chap-
ter 2, in this work we consider the ONT MinlON sequencer. Thus, our channel model is
inspired from how the MinlON sequencer works, and takes into account the dependency
between the read k-mers and the observed errors, and the dependency between successive
errors. In addition, our channel model depends on some parameters which are set after a
training phase. In our work, we used two different types of data to train our model, a set
of experimental data which came through the full DNA data storage process, and a set of
genomic data which come from the sequencing of a Streptococcus thermophilus bacteria.
Each set has its advantages and drawbacks, which will be discussed in this chapter. In
both cases, we evaluated the performance of our channel model through two different
approaches: edit maps and Kullback Leibler (KL) divergence.

Thus, in this chapter, we introduce our DNA data storage channel model. We review
existing DNA data storage channel models. We then introduce our novel statistical DNA
data storage channel model. Finally, we compare channel models through numerical

evaluation.

3.1 Channel modelling

We now describe all the physical processes involved in writing and reading data in
DNA data storage [5, 6, 8, 58, 13], see Figure 3.1. The channel models the whole process
from synthesis to sequencing, including basecalling. Preprocessing and postprocessing

steps are not covered by the channel, and they will be described in more details in the
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next chapters. In what follows, the notation [1, V] represents the set of integers between

1 and V.

Channel
: AC...G )
0101...01 —>| Preprocessing > Synthesis
Y
AC...G Storage, PCR, ...
AC...G :
AC...G - !
0101...01 =----- Postprocessingl<c - -----1Sequencing < - - --- - -
— Write
--- Read

Figure 3.1: This figure represents the workflow to write and read data on a DNA data storage system.
A preprocessing step is usually performed to prepare and convert a binary file into bases A, C, G, T.
The channel models the whole process from synthesis to sequencing (including basecalling). The channel
outputs several copies of the same sequence. The output sequences are then postprocessed to rerieve the
original data.

3.1.1 Writing data (synthesis)

As described in Figure 3.1, the input binary sequence is first preprocessed and prepared
for the DNA synthesis. The synthesis operation then outputs DNA strands, as described
in Chapter 2. Each synthetic DNA strand is formed by successive nucleotides which
take values A, C, G and T [16]. In this work, we consider chemical synthesis described
in Chapter 2, in which oligonucleotides are synthesized and then assembled to form the
ordered sequences of nucleotides. The synthesis produces thousands of DNA molecules,
each representing a copy of the same synthesized sequence. It introduces a low amount

of substitutions, insertions, and deletions [19, 21, 59].

Formally, in what follows, we use x = (z1,--- ,zy) to denote the sequence of digits
to be synthesized, where each digit z; takes values in a quaternary alphabet, such that
Ty € {A, O, G, T}

24



3.1. Channel modelling

3.1.2 Reading data (sequencing)

For reading data, the stored DNA strands are sequenced. This produces digital signals
which are postprocessed to retrieve the original data. In this work, we consider the ONT
MinlION sequencer described in Chapter 2.

In a formal way to describe how the nanopore sequencer works, assume that the
sequence of nucleotides on a DNA strand can be represented by a sequence of bases

(a1, 9, ,0q, -+ ). A k-mer consists of a group of k successive nucleotides, such as
k-mer, = (Oétfk+17 At fy2, " aOét) (3-1)

that pass through the nanopore, thus producing a current level ¢;. The next k-mer defined

as

k-meftﬂ(apmz, k43, " Oét+1) (3-2)

produces the current level ¢;;1. We emphasize that each current level ¢; represents k
successive nucleotides, and that two successive levels ¢; and ¢, come from two successive
k-mers with £ — 1 bases in common.

Then, the basecaller transforms the current levels into sequences of bases with values
A, C, G, T. In this work, we used the Guppy basecaller [61, 60|, which is based on a
Deep-Learning approaches and is maintained by ONT. The basecaller outputs a FastQ
file which contains the read sequences and some metadata. Each sequence of this FastQ
file is called a "read'. We use V to denote the number of reads (i.e., the number of
output sequences), and we use y(®) to denote the reads (i.e., the output sequences), where
v e [1,V], and y§”) takes values in a quaternary alphabet {4, C, G, T}. The sequence y*)
is of length N®. The N® can all take different values, and in general, N) % N, where
N is the length of the input sequence x. This comes from the fact that the sequencer
introduces not only substitutions, but also insertions and deletions in the read sequences,
and error realizations vary from sequence to sequence [19, 20].

Note that by convention, DNA molecules have a reading direction that goes from the
5" end carbon towards 3" end carbon, see Figure 2.1. One strand is arbitrarily considered
as being the forward-strand when the second one is considered as being the reverse-strand.
In a reverse-strand, the sequence is reversed in the sense that the last bases become the
first, and each base is turned into its complement, i.e., A - T, C — G, G — C, and
T — A. Thus, forward and reverse strands are complementary and anti-parallel.

From an information-theoretic perspective, all the previous steps (synthesis, sequenc-
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ing, basecalling) can be modeled as a channel. As mentioned before, it is very useful to
have an accurate statistical description of the channel, for the design and performance
prediction of error-correction solutions, before launching costly in vitro experiments. We
now introduce our notation and describe state-of-the-art channel models for DNA storage.

We then present our proposed channel model.

3.2 Notation

In our model, x is the channel input sequence of length N, and =, € {A,C,G,T}.
In addition, kmer; = (x4 j41,- -, 24 1,%) is the k—mer of length k at position ¢. In
this section, although the sequencer outputs V sequences y(*), we drop the notation v and
assume that the channel only outputs one sequence y, with y, € {A,C, G, T}. We consider
this notation simplification since we assume that the error realizations are independent

from sequence y(* to sequence y*") whenever v # v'.

In what follows, we use Ins, Del, Sub, as abbreviations for Insertion, Deletion, Substi-
tution, respectively. In addition, Match stands for “no error”. In order to represent the
channel effect, we introduce a sequence e of length N, where e; € {Ins, Del, Sub, Match}
is the channel event at position ¢. The interest of considering the sequence e is that it is
aligned with the input x in the sense that e and x have the same length, and that error
event e; applies onto input symbol x;. In this sense, e, = Del means that the symbol z;
is deleted from the sequence, and e; = Sub means that the base value of z; is replaced
by another base denoted B, € {A,C,G,T}. In addition, e, = Ins means that one or
several symbols are inserted just after x;. In this case, we denote by L; the length of the

insertion, that is the number of symbols added after position ¢.

We consider that a given DNA data storage channel model is defined by a set of proba-
bility distributions for the successive e;. For instance, P(e;|kmer;, e; 1) is the conditional
probability of e, with respect to kmer, and the previous event e; ;. In addition, P(e;) is

the marginal probability of e;.

3.3 Existing DNA data storage models

We now review existing channel models for DNA data storage.

26
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3.3.1 1i.i.d. channel model

In the literature, the sequence e of events is often considered to be independent and
identically distributed (i.i.d.). Events e, are further assumed to be independent from the
input symbols z;, and the probabilities P(e;) are either inferred from sets of experimental
data, or fixed arbitrarily for simulation purposes [62, 23, 24, 63]. However, although it
can simulate the correct amount of errors, this model cannot represent bursts of errors,
see Figure 3.2, since it assumes that e; is independent from e; ;. In addition, it does not
take into account the effect of kmer; onto error event e;, while we know from several

other works [61] that a statistical relation between those exists.

3.3.2 Deepsimulator

Deepsimulator is a popular tool to simulate the DNA data storage channel [64, 65].
Deepsimulator relies on a Deep-Learning approach combined with a basecaller. In a first
step, Deepsimulator takes as input a sequence of bases, and simulates electrical current
levels which would be obtained after the sequencing, by relying on a Deep Neural Network.
In a second step, the current levels are sent to a basecaller which transcripts the current
levels into bases. Event sequences e generated by Deepsimulator contain some memory
and are statistically dependent from the input sequences x. However, after having per-
formed a significant amount of simulations, we could observe that Deepsimulator does
not reflect well the randomness of the DNA storage channel. For instance, as shown in
Figure 3.2, the same type of error appears in most of the simulated sequences in the same
particular position, which does not correspond to what can be experimentally observed
after synthesis and sequencing. In addition, we could also observe an inaccurate pre-
dominance of substitutions and insertions over deletions. Furthermore, in Deepsimulator
channel, we can observe some event positions ey where there is no observed errors (there
are only matches) over all the event sequences e , even though this is never occuring on

the experimental data.

3.3.3 Badread

Badread [66] is another simulator that relies on estimated transition probabilities
(provides by the simulator), which are the probabilities to replace a certain k-mer by
another specific sequence of length k' # k. The simulator picks one k-mers after each

other at random in the input sequence, toss a coin to decide whether introducing an
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error on the current k-mer, and if this is the case, uses the corresponding transition
probabilities to replace the k-mer by another sequence. However, in Badread, the user
has to specify many parameters such as the average reads-length, the total amount of
errors, the probability of error, etc. When we have access to examples of input and
output channel sequences, we can manually adjust the parameters of BadRead so as to
produce simulated outputs that fit with the examples, see Figure 3.2. However, incorrect
choices of parameters can lead to unsatisfying results, shown in the numerical results

section.

i.i.d. channel  deepSimulator channel badread channel experimental data

(ko

100 200 300 400 500
Error position

Insertion ® Deletion ® Substitution Match

Figure 3.2: Simulations and experimental results for a given sequence. The figures represents the
observed errors through the simulated and the experimental data. Each line represents one sequence e,
and each column represents the error eventse; at position ¢ (¢ € [1,500]) in each sequence. These figures
called edit maps allow to visually compare the channel model outputs to the experimental data to see if
they are similar.

Depending on the application, it is usually necessary to have a channel representation
which is as accurate as possible. Therefore, there is a need to develop more accurate and

ready-to-use models (without parameters).

3.4 Proposed channel model with memory

We now introduce our statistical channel model for DNA data storage [67] !, that aims
to solve the drawbacks of existing models. The proposed model takes into account the
statistical dependencies between the event sequence e and the input sequence x, and can
be seen as a Markov chain [68] with a memory of order k. Our model also considers
that event e; depends on kmer;, which allows to model editions due to successive k-mer
reads, according to the way the MinlON sequencer works. Our model also assumes some

internal memory in e, by considering that previous event e;_; can affect current event e;.
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3.4. Proposed channel model with memory

This allows to take burst errors into account.

Our model is then described by the following conditional probability distribution:

— P(e;|/kmery, e;1) characterizes the dependency between the current event e; €
{Ins, Del, Sub, Match}, the read kmer;, and the previous event e, ;. This cap-
tures the error dependency with the k-mer, and allows to consider bursts of errors

through the dependency to e; ;.

— P(L;|kmer,, e; = Ins) characterizes the insertion length L; depending on the read

kmer;. Note that deletions are always of length 1.

— P(B;|kmer;, e, = Sub) characterizes the probability to substitute the last base x;
of kmer; by the base B;, where x; # B;.

We assume that the probabilities P(e;|kmer;, e, 1) and P(L;|kmer,;, e, = Ins) do not
vary with t for £ <t < N. In addition, we observed from experimental data that the
probability to get an error is higher at the first position ¢ = 1 and at the last one t = N,
compared with middle positions 1 < t < N. Therefore, we allow for different probability
distributions P(ey), P(Li|e; = Ins), and P(ey), P(Lylenx = Ins), to be used when ¢ = 1
and ¢ = N. Finally, for 1 < ¢t < k, since no complete k-mer was observed already, we
consider probabilities P(e;|x;), P(B|zy, e, = Sub) and P(L|z;, e; = Ins) that only depend
on the input value z;.

The next step consists of learning all the probability terms from some sets of data, so
as to build the simulator. In this work, we trained the model over two different sets of
data with different characteristics: one set of experimental data, and one set of genomic
data. Each of the two sets of data has its own advantages and drawbacks, as will be

described in the following.

3.4.1 Training on a set of experimental data
Experimental data

At the beginning of the DnarXiv project, in order to obtain experimental data, we
performed the synthesis of nine sequences. In this set, 8 over 9 of the sequences were
obtained from text files extracted from the 'Little Red Riding Hood" story, and the "Uni-
versal Declaration of Human Rights'. The last sequence was constructed by introducing

plenty of long-homopolymers so as to track the errors that they introduce during the

1. The Memory Channel Model for DNA Data Storage "DNArSim" software is available on GitHub:
https://github.com/BHam-1/DNArSim
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sequencing [19, 20]. In addition, 6 sequences had length 500 nucleotides, and 3 sequences
had length 1000 nucleotides. The ordered sequences were built by ourselves to meet dif-
ferent requirements and synthesis constraints, and the DNA synthesis was ordered from
Thermo Fisher company, see Figure 3.3. Thousands of copies of each of the nine ordered
sequences have been synthesized. The resulting DNA strands, were then sequenced by
Emeline Roux at INRA STLO Rennes institute, see Figure 3.3. We then analyzed and
postprocessed the results. Thus, we can consider that the obtained experimental data

went through the whole DNA data storage channel.

Figure 3.3: The right part of the figure represents a test tube which contains thousands of copies of an
ordered synthetic DNA sequence. The left part represents a flowcell which is a consumable that is used
on the MinION sequencer to sequence DNA. The experiments were performed at INRAE STLO Rennes.

Training

To train our model, i.e., to estimate all the probability terms, we first used the set of
experimental data described previously.

This set was generated from U = 9 input sequences x™ (u € [1,U]), called the refer-
ence sequences. We had access to FAST5 files (current levels) obtained after sequencing
of the data, and then applied the Guppy basecaller. We used the "Super Accuracy' mode

of Guppy, which is three times slower than the "High Accuracy' mode, but offers a more
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reliable basecalling. We also used the default "Q10" quality score (QScore) of Guppy,
which is based on the basecalling quality score that is provided on the Fast(Q) files. The
Q10 parameter allows to filter the output sequences, so as to throw those which have
more than 10% of errors.

The basecalling of each reference sequence x (u € [1,U]), provided V, output
sequences y*¥) (u € [1,U], v € [1,V,]), for a total of V = 29: V. = 34604 output se-

u=1
quences obtained after sequencing. The output sequences y®¥) correspond to either

forward or reverse strands of x(*). For clarity, we denote the reverse strands by ¥ in-
stead of y*¥) and we denote by X the reversed version of x*). We refer to the dataset
(x(), %W y(u) $0)) ag SetF,

In order to do the training, as a first step, each read sequence y“*) was aligned with
its reference sequence x. The alignments were done using the ggsearch36 tool from the
FASTA software [69]. This tool allows to do global-to-global alignments, that is to say
that the whole read (from its first to its last base) is aligned against the whole reference.

For each pair (x),y(®?))  this first step provided one of the following cases:
— Aligned-read: the read was aligned against the reference.

— Unaligned-read: either the read cannot be aligned, or its alignment score is lower

than the minimum threshold.

— Reverse-read alignment: the read cannot be aligned against the reference itself but
can be aligned against X*). This behavior is due to the fact that the read represents
the reverse-strand of the DNA helix.

Note that after the alignment, some sequence can have more than 10% of errors, since the
Q10 parameter of Guppy is based on the basecalling quality and not on the alignment
quality.

In a second step, we used the aligned-reads to compute conditional probabilities in-
volving each k-mer contained in the sequences x, and the reverse-reads to compute
conditional probabilities involving each k-mer contained in the sequences (. For in-
stance, we estimated the conditional probabilities P(e; = E|kmer;, e, 1 = E’) by count-
ing over all the aligned-read pairs (x®), y(**)) and all the reverse-read pairs (X, )
the number of outcomes of each event E € {Ins, Del, Sub, Match}, divided by the num-
ber of outcomes of the considered (kmer;, e, 1 = E’). The other probability terms were

estimated following the same way.
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Advantages and drawbacks

Training on the set of experimental data has two advantages. The first advantage
is that the reference sequences x() are perfectly known, which makes the comparisons
between the reads and the reference fully reliable. The second advantage is that since each
read corresponds to the whole reference sequence, it makes global-to-global alignments
possible. On the other hand, the main drawback of this set is that it contains only
a small amount of data, due to high DNA synthesis costs. This insufficiency of data
led to plenty of unobserved pairs (kmer;,e;_; = E), since there are 4% x 4 different
such combinations. In our case, when a given combination (kmer,, e, | = E) was left
unobserved, we estimated the corresponding probabilities by averaging over all observed
combinations. In addition, the dataset was biased since one of the 9 reference sequences
contained a lot of long-homopolymers, which are known to introduce a lot of synthesis
and sequencing errors [19]. As a result, the overall error probability over this dataset is
high, about 10%. However, it was useful to learn the model over this first dataset, both
to validate the approach (since the reference sequences are perfectly known), and also to
have an example of DNA storage channel with a large amount of errors, which will be

useful in our simulations.

3.4.2 Training on a set of genomic data

Unfortunately, open access experimental datasets are rare and insufficient in terms
of size. This is why in the previous section, we only trained our model onto our own,
but small, set of experimental data. Oppositely, datasets of genomic data are way more
accessible through different genomic databases such as ENA Browser [70], GenBank [71],

etc.

Genomic data

A genome [72] is a DNA sequence that contains the whole DNA material related
to a particular living organism. It allows to define and identify living organisms, make
comparisons with other genomes from same species to identify variations that could be
responsible of diseases, etc. The complete genome of a living organism is usually built
by assembling fragments coming from parallel (or separate) sequencing, using de novo
genome assembly algorithms [73]. Assembly is computationally complex, since it relies

on the short overlaps that exist between the read fragments to construct a contigous
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sequence. For instance, NGS sequencing of the human genome can produce two to three
billion reads, with hundred copies of each. In addition, some reads are similar but belong
to different parts of the genome.

Depending on the considered specie, genome length is different and can contains from
a hundred up to 10'? nucleotides [74]. Thanks to NGS and TGS, hundred of thousands
genomes were sequenced with different sequencers (illumina, ONT MinlON, ...) and are

publicly available in online genomic databases.

Training

In this work [75], we considered a set of genomic data that contains U = 7 strains (sub-
types) [76] of the Streptococcus thermophilus bacteria [77], which provides U = 7 reference
sequences X, We had access to FAST5 files (current levels) obtained after sequencing of
the data, and then applied the Guppy basecaller with the same parameters and mode than
for the experimental data training. The basecalling provided V,, read sequences y (), for
each u € [1,U]. These read sequences contain forward and reverse strands, as in the
first dataset described in section 3.4.1. We refer to the dataset (x(),x®) y(wv) §wv)) ag
SetG.

However, training the model using genomic data is different from training over SetF.
Especially, when in Section 3.4.1, both references and read sequences barely reach 103
bases, in the genomics case, the reference sequences contain about 10° bases, and the
read sequences vary between 10° and 10° bases. Both the amount of bases and the
difference in length between reference and reads make it impossible to use global-to-global
alignments. Therefore, for this dataset, we consider global-to-local alignments. Global-
to-local alignments aims to align a whole read (from its first to its last base) against a
particular part of the reference. To perform this type of alignment we use minimap2
aligner [79, 78], which is very efficient at performing global-to-local alignments of very
long sequences in a reasonable time.

When using minimap2, we obtain different type of alignments:

— Primary alignment: the read is aligned against only one location of the genome and

can have few unaligned nucleotides on its extremities.

— Multiple possible alignment: The read is aligned against multiple parts of the
genome. It then has several secondary alignments and a unique primary alignment

which has the best alignment score.
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— Chimeric alignment: the read is aligned against one or multiple parts of the genome,

but some of its contents cannot be aligned. The read itself is called chimeric read.

— Unaligned read: none of the read can be aligned against the genome.

To obtain an accurate model after the training, we did not consider secondary alignments,
nor chimeric alignment. We then selected only primary-alignments, including those ob-
tained inside multiple possible alignments. In addition, we considered only reads that
have a length larger than 5000 nucleotides. The length constraint helps to avoid confus-
ing alignments, where a short read can be aligned to similar but different parts of the
reference. Also, long homopolymer regions, where the homopolymer length is more than
seven nucleotides are ignored during the training. The long homopolymers constraint
helps to prevent the case where after the alignment, an error can be put anywhere on
a long homopolymer, and the alignment score remains the same. Thus, using the long

homopolymer constraint, errors are affected to the correct k-mers.

We then used the same process as in section 3.4.1 in order to estimate all the probability

terms.

Advantages and drawbacks

As a main advantage, genomic data provide a much larger amount of data. All possi-
ble combinations (kmer;, e;,_; = E) were observed, and because of the large amount and
diversity in the data, there is a good balance between all k-mers. However, with genomic
data, the effect of DNA synthesis is not taken into account by the channel model. We
assume that this does not affect the structure of our channel model, because unlike Min-
ION sequencing, chemical synthesis introduces a very small amount of errors, although
this will certainly affect the amount of errors learned by the model. Furthermore, since
we are considering only primary-alignments to perform the training, the channel model
may introduce another type of bias. In fact, the training discards chimeric reads and
low-scoring alignments, i.e., sequences that have a high amount of errors. As a results,
the overall error probability over this dataset is about 3%. The amount of error is sig-
nificantly smaller than on SetE training because of two main factors. The first factor is
related to the read selection as mentioned previously. The second factor is due to the
large amount of data that is on SetG, which allows to remove the biases that have been

introduced by the homopolymers as on the SetF training.

34



3.5. Performance evaluation

3.4.3 Channel simulator

Once we get all the probabilities from training over one or the other set, we can build
a simulator that takes as input a given sequence and generates random output sequences

according to the channel model. This model has three main advantages:

1. In case of technology evolution (synthesis, sequencing, basecalling,..), the model can

be retrained with new sets of experimental or genomic data.

2. Our model also takes into account the basecaller, thus, it is faster than Deepsimu-

lator which requires to run the basecaller during simulations.

3. As opposed to a black-box approach, all our probabilities terms are explicit. The
values of these probabilities can then be used, either to better understand how errors
are introduced during the DNA storage process, or to incorporate them into channel

code construction and decoders, as will be done in the next chapters.

We now compare the memory channel model trained over SetE and SetG to the

existing channel models.

3.5 Performance evaluation

In this section, we compare our channel model with existing ones, onto our available
experimental data. We use two approaches for performance comparison. The first one
is based on a qualitative comparison using edit maps. The second one is based on a
quantitative comparison and relies on the Kullback-Leibler (KL) divergence. Furthermore,

we consider two scenarios.

— Scenario 1: The channel models were all trained on SetFE, and they where simulated
by taking as inputs some sequences of SetE. Thus, the channel models have also

learned from the sequences to simulate.

— Scenario 2: The channel models were not trained on SetF but they use their own
knowledge (for instance, Badread and Deepsimulator were taken as they are from
the online code). In this second scenario, our memory channel was trained on SetG.

Channel models simulations take as input some sequences of SetkE.
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3.5.1 Edit maps

Edit maps are scatter plots which represent 1000 event sequences e for different runs
of channel simulation. Each line represents one sequence e, and each column represents
the error events e; at position ¢ (¢ € [1,500]) in each sequence. We generated edit maps
for input sequences x® and x® (from SetE). A channel model is considered approaching
the experimental data when their edit maps are visually close. Visually close means that
they have close error patterns, close amount of errors, close type of errors.

We now present the obtained edit maps for four different setups. The first two setups
are both taking sequence x® as input, and then respectively run the scenario 1 for
the first setup, and the scenario 2 for the second setup. Since it contains a lot of long
homopolymers, the sequence x(?) is somehow a worst case approach. The last two setups
take as input x®, and then respectively run the scenario 1 for the first setup, and the
scenario 2 for the second one. In each setup, edit maps are obtained for different models,
by generating 1000 sequences at random from the model. Edit maps for experimental
data are also represented for comparison purpose, by taking the sequences as they are.
Regarding Badread, we set the fragment length parameter as equal to the input sequence
x(® length.

Figure 3.4 shows edit maps for the first setup, where the input sequence is x® and
the first scenario is considered. We observe that for the i.i.d. model, errors are incorrectly
uniformly distributed over all the sequence, while for Badread channel, the type and
amount of errors is different from the experimental data, in the sense that compared to
the experimental channel, Badread outputs a very small amount of deletions and a high
amount of insertions and substitutions. Finally, the memory channel model seems to be
the closest one to the experimental data. The edit map of Deepsimulator channel is not
represented because its basecalling step did not output sequences. The basecalling step
do not output a sequence when its quality score (Q10 by default) is not sufficient, i.e. it
contains more than 10% of errors.

Figure 3.5 shows the edit maps for the second setup, where the input sequence is
x( and the second scenario is considered. The memory channel model was trained on
SetG. Although they reproduce some experimental error patterns, the amount of errors
introduced by both channels is different from the experimental data. Badread seems to
introduce too much errors, when our memory channel introduces too few errors. In both
case, relying on edit maps alone, it is hard to say which one is closer to the experimental

data. Furthermore, the i.i.d. edit map is not represented because the errors remain
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Figure 3.4: Edit maps of simulations and experimental results for x(*). The channel models were all
trained on SetE. The edit map of deepsimulator channel is not represented because its basecalling step
did not output sequences. The basecalling step do not output a sequence when its quality score (Q10 by
default) is not sufficient, i.e., it contains more than 10% of errors.
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Figure 3.5: Edit maps of simulations and experimental results for x() . The channel models are using
their default training, while the memory channel model was trained on SetG. deepsimulator has the same
issue i.e., no output, thus, it is not represented. The i.i.d. is not represented because the error rate are
the same than previously, thus, its edit map will remain practically the same.
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uniformly distributed, thus, the same previous conclusion can be drawn. In the case of

Deepsimulator channel, the same issue related to no output during the basecalling persists.
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Figure 3.6: Edit maps of simulations and experimental results for 3. Except for deepsimulator which
have some issue to be trained, all the other channel models were trained on the SetFE.

Figure 3.6, shows the edit maps for the third setup, where the input sequence is x®,
and the first scenario is considered. We observe that in terms of amount, type, and
patterns of errors, badread and our memory channel model approach the most the ex-
perimental data. Deepsimulator channel seems to introduce a larger amount of errors,
and the amount of insertions is more important than in the experimental data. In ad-
dition, due to software issues, deepsimulator was not trained on SetE but uses it own
training. Furthermore, as in Figure 3.4, the i.i.d. channel model does not represent well
the experimental data.

Figure 3.7, shows the edit maps for the fourth setup, where the input sequence is x*,
and the second scenario is considered. We observe that although the type of errors seems

to be close between each channel model and the experimental data, the amount of errors is
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Figure 3.7: Edit maps of simulations and experimental results for x(®). The channel models are using
their default training, while the memory channel model was trained on SetG.
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different. Badread channel introduces too much errors, when our memory channel model
seems to introduce too few errors. In term of error patterns, it is difficult to tell which
channel model is better. Thus, based on edit maps alone, we cannot tell which channel
model is closer to the experimental data.

The edit maps are helpful to observe that some models are clearly not fitting the
experimental data, and to observe error patterns. However, as we have seen previously, it
can be difficult to accurately compare channel models which have edit maps visually close
to the experimental data. This is why we now introduce the Kullback-Leibler divergence

as a criterion for formal comparison of the models.

3.5.2 Kullback-Leibler divegence

Kullback-Leibler (KL) divergence [81, 80] is a measure from the information theory
field. It is a non-symetric measure that is used to compare two probability distributions
over the same variable z. It aims to measure the amount of information that is lost when
approximating a probability distribution p(z) by another probability distribution ¢(z).

KL divergence between distributions p and ¢ is defined as

N

= Z) X np(zt)
DKL(IUHQ)—;]?( 1) x 1 )

(3.3)

Although it measures the difference between two distributions, KL divergence is not a

distance because it is a non-symetric measure in the sense that

Drr(pllg) # Drr(qllp) (3.4)

KL divergence is also widely used to perform comparison between statistical models [80,
82]. Therefore, we use KL divergence to compare channel models to experimental data.
Moreover, by varying the parameter k, the KL divergence will allow us to compute dif-
ferent KL divergences for our memory channel model, in order to select the best memory

order k.

Method

For each event E' € {Match, Sub, Del, Ins}, we estimate the corresponding distribu-

tions P, (F) and IF’U(E ), respectively over the experimental data sequences y“*) from SetE
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and the channel models simulated sequences y“*), where v € [1,9] and v € [1,1000].
Thus, the marginal probability P, (E;) represents the probability to observe the event E
at position ¢ (¢t € [1,500]) on the input sequence x). Furthermore, to perform a fair
comparison between the channel models we consider the Scenario 2, where the channel

models were not trained on the SetF.

'U U

For each set y(**) and y(®* related to the sequence x, we compute four different
KL divergences. Each KL divergence represents the KL divergence between distributions

P,(E) and P,(E) for a particular event E, using equation (3.5):

al o PulE
Dgr(P,(E) ||IFD =Y P,(E IP’ EEt§7VE € {Match, Sub, Del, Ins} (3.5)
=1 u t

~

Then for each sequence x®), the four KL divergences (one for each event E) are summed

uv U’U

to obtain the KL divergence between y and y as shown in equation (3.6):

Dy (P,|[P,) ZDKL E)||P(E)) (3.6)

Thus, the overall KL divergence is the sum of the KL divergences related to each sequence

x| and we compute it as follows:

U
Dir(B||Bu) = Y Dxi(Bu||B.) (3.7)
u=1
This overall KL. divergence is calculated for each considered channel model simulated data
(Deepsimulator, Badread, i.i.d., our memory channel).
We also use equation (3.7) to evaluate the influence of the parameter k for our channel

model with memory. .

Numerical results

Figure 3.8 shows the KL divergence calculated between each channel model and the
experimental data which serves as reference. To choose the best memory order for our
memory channel model, we compute the KL divergence for multiple values of k. Thus,
except for our memory channel, all the KL divergences are constant because they are
independent from the memory order. Note that a low KL divergence means a better

model.
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Figure 3.8: KL divergence between the channel models and the experimental data.

We also observe some interesting results in Figure 3.8:

— Deepsimulator is the channel which is approaching the least the experimental data.
This result comes from the simulated event sequences e, which has many positions
E: where there are a few or no errors (100% of matches), even though we observe

errors at the same positions F; on the experimental data.

— Badread performed better than deepsimulator, because its simulated event sequences
e contain errors on all the positions E;. Thus, unlike Deepsimulator, it captures the
randomness of the experimental data. However, surprisingly, Badread performed
worst than the i.i.d. channel. Its is due to the fact that badread usually introduces
a high amount of errors compared to the experimental data, as observe in the edit

maps.

— As mentioned in the previous point, the i.i.d. channel model surprisingly performed
better than badread and deepsimulator. There are main reasons for that. The first
one is its errors probabilities parameters P(F), £ € {Match, Sub, Del, Ins}, which
were learned from the experimental data, and represent the average amount of errors
over all the experimental data. Therefore, the amount of errors introduced by the

i.i.d. channel on each position F; is usually close to the experimental data. Thus, the
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KL divergence penalties remain reasonable for the i.i.d. model. The second reason
is how the KL divergence is computed and its non-symmetric property. Indeed,
whenever the i.i.d. channel introduces a high amount of errors (unlike badread,
never above 10%) than the experimental data (i.e., P,(FE;) < P,(E;)), the KL
divergence penalty is smaller than if it was the inverse (i.e., Py(E,) > P,(FEy)),

because the multiplication factor in equation (3.5) remains P,(E;) in both cases.

— Among the considered channel models, based on the KL divergence, the memory
channel model is the one which approaches the most the experimental data. This is
probably due to the fact that our model takes into account the dependency between
the simulated sequences and how the errors are introduced. Thus, it introduces

amount of errors that are statistically close to the experimental data.

— In terms of memory order for our memory channel, we notice that a memory order
of k = 6 leads to the best KL divergence. When k > 6 the efficiency of the memory
channel model starts to decrease due to over-training issues. Therefore, in the
next chapters we set the memory order of the memory channel to & = 6, which is

consistent with how the nanopore sequencing works, over k-mers of length 6.

3.6 Conclusion

In this chapter, we proposed a channel model with memory for DNA data storage.
Through comparisons with edit maps and KL divergence, we concluded that the proposed
channel model represents experimental data more accurately than other existing models.
The memory channel will then allow for efficient source/channel codes design, and for
code performance evaluation before developing costy in-vitro experiments. The memory
channel model was already integrated in the simulator developed in the DnarXiv project.

The next two chapters introduce error-correction codes solutions that aim to correct
errors introduced by the DNA data storage channel. In the first solution, the memory
channel model is only used for simulation purpose. In the second solution, the knowledge

of the model is taken into account to improve the decoding.
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CHAPTER 4

FIRST ERROR-CORRECTION SOLUTION:
CONSENSUS AND LDPC CcODES

In the previous chapter, we introduced our memory channel model, and discussed
errors introduced during DNA synthesis and sequencing. Now, there is a need to develop
error-correction codes to correct errors introduced by the channel. Our memory channel
model will allow us to perform numerical simulations so as to design and evaluate the
proposed error-correction codes solutions. Due to insertion and deletion errors, standard
error-correction solutions completely fail to correct DNA data storage errors. Hence, there

is a need to develop specific error-correction solutions that can correct these errors.

In this chapter, we introduce a first error-correction code solution for DNA data stor-
age. This solution combines a consensus algorithm which comes from the field of bioinfor-
matics, with Non-Binary Low Density Parity Check (NB-LDPC) codes which come from
the coding field. Since after the consensus a few insertions and deletions remain, we intro-
duce a synchronization algorithm to be used before standard NB-LDPC decoding. The
synchronization algorithm relies on the NB-LDPC code structure, and helps to correct
the remaining deletion errors after the consensus algorithm. In the field of bioinformat-
ics, the consensus algorithm is a standard solution to correct errors introduced by DNA
data storage. Therefore, we wanted to see if its combination with a coding solution could

constitute a competitive solution for error-correction after DNA data storage.

In this chapter, we first introduce channel coding, and explain the main differences
between a conventional channel and the DNA data storage channel. We also review
existing DNA data storage Error-Correction solutions. We then introduce our decoding
scheme which combines a consensus algorithm, a novel synchronization algorithm, and
a standard NB-LDPC decoder. Finally, we show some numerical results to evaluate the

proposed decoding solution.
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4.1 Channel coding

In the field of telecommunications, the information transmitted from a source to a
destination is often subject to noise introduced by the transmission channel. Errors in-
troduced by the noisy channel can be corrected by relying on Error-Correction Codes
(ECCs). In order to retrieve the correct information, ECCs add redundancy (extra bits)
to the initial information before transmitting it.

Let x be the sequence transmitted over the channel, and let y be the received sequence.
The channel introduces errors, so that in general y # x, as shown in Figure 4.1. To recover
the sequence x, it is necessary to use an ECC that encodes the sequence x of length K, into
a new sequence c of length N (N > K), called a codeword. The sequence c is transmitted
through the channel instead of x, as shown in Figure 4.2. The channel decoder outputs a
sequence X, which is expected to be equal to the original sequence x. Given that N > K,
the redundancy in ¢ helps the decoder to recover x from the received sequence y.

Currently, the ECC solutions that offer the best trade-offs between complexity and
decoding performance are Turbo codes [25], LDPC codes [26] and Polar codes [83]. In this
work, we investigate the use of LDPC codes because there exists Non-Binary LDPC (NB-
LDPC) codes [84] for a long time. In addition, to be consistent with the DNA alphabet,
we use NB-LDPC codes that are defined over Galois Fields GF(4), i.e., four symbols are

allowed. Furthermore, a lot of LDPC code design tools are available in our research team.

= =(011000
Source X (011010)> Channel y ( )> Destination

1

Figure 4.1: Transmission without channel coding. The bit highlighted in red on the received sequence
Y, is not equal to the emitted bit on sequence x.

4.2 DNA data storage channel VS classical channels

DNA data storage channel is different from conventional telecommunication chan-

nels [85, 86, 87] in several aspects.
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x=(011010) ¢=(01101001) y=(01100001) %=(011010)
Source —»ChannEI Channel —»ChannE|—>Destination

Encoder Decoder

@E@

Figure 4.2: Transmission with channel coding. Although the bit highlighted in red on the received
sequence y is not equal to the emitted bit on sequence c, the channel decoder is able to guess the correct
sequence X.

4.2.1 Nature of errors

Most standard telecommunication channels are subject to additive noise, substitution
errors, or erasures. For instance, in the Binary Symetric Channel (BSC), a binary symbol
xy is flipped with a certain probability ps, see Figure 4.3a. As another example, the Binary
Erasure Channel (BEC) introduces erasures with a certain probability pe, so that either
y; = xy (no erasure) or y; =7 (erasure), see Figure 4.3b. Oppositely, the DNA data storage
channel is subject not only to substitutions, but also to insertion and deletion errors, see
Figure 4.4. Insertions and deletions introduce synchronization errors. In particular, a
deletion is different from an erasure in the sense that, the position of an erasure is known,
while the position of a deletion is unknown. Substitution errors in DNA data storage are

the same as in conventional channels.

Xt - Yt

O-‘__:___l__l_:__l__!?? _________ >0
pe

1 1-ps =1 1 1-pe ~1

(a) Binary Symetric Channel. (b) Binary Erasure Channel.

Figure 4.3: Examples of standard telecommunication channels

4.2.2 Symbol dependency

Most conventional channels are memoryless in the sense that the probability of the
output symbol y; depends only on the input symbol x; at the same position t. On the

opposite, due to synchronization errors and how the MinlON sequencer works, the DNA
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Match

y «—X¢

Sub. Ins.
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Figure 4.4: DNA data storage error channel. In this figure x; # x,*, and a is a vector of one or several
symbols.

data storage channel has memory. Thus, the probability of an output symbol y;, might

also depend on input symbols xy at positions ¢’ # .

4.2.3 Received data

A sequence x transmitted over a conventional channel produces a unique received
sequence y, of the same length N as x. In DNA data storage channel, a transmitted
sequence x produces V received sequences y(*, and due to the synchronization errors,
the length N of y() can differ from N.

While coding for conventional channels has a rich history and is well understood, only
few is known about coding for insertion and deletion channels [87, 88, 89]. In the next
section, we review existing ECCs solutions for synchronization errors, and for DNA data

storage in general.

4.3 Existing ECC solutions for synchronization er-

rors

There exist a wide range of ECC solutions to correct substitution and erasure errors,
and some of them achieve near-capacity performance, such as Turbo-codes [25], LDPC
codes [26], etc.. However, because of the loss in synchronization, the conventional ECC
solutions cannot be applied to correct insertion and deletion errors [87, 88, 89]. Existing
ECCs for synchronization errors can correct insertions and/or deletions only under some
restrictive assumptions. The first introduced ECC solutions for synchronization errors

were only able to correct one unique insertion or deletion [90]. Some more recent ECC
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solutions allow to correct a few insertions or a few deletions per codeword, but burst of
errors cannot be corrected [90, 91, 92]. Other ECCs are able to correct a few errors or a
unique burst of errors on a codeword of length /N, but only on a specific window of length
Nuyindow (Nwindow < N), i.e., if the distance (number of bits) between two corrupted bits
is larger than Nyingow, then the codeword cannot be corrected [93, 94].

In the context of DNA data storage, two main approaches are often considered. The
first approach consists of combining a consensus algorithm, with a standard channel de-
coder. The consensus algorithm is supposed to correct the vast majority of errors, while
the channel decoder handles remaining residual errors [97, 95, 96]. The second approach
relies on pure channel coding solutions, without resorting to a consensus algorithm [100,
99, 101, 98]. We explore the first approach in this chapter, while the second approach will
be explored in the next chapter.

In this chapter, we consider the consensus algorithm proposed in [102] together with
NB-LDPC codes [84] that fit the quaternary DNA alphabet. As an alternative to [95] in
order to handle the few remaining insertions and deletions, we propose a novel interme-
diate step which we insert between the consensus algorithm and the channel decoding.
This intermediate step consists in re-synchronizing the sequence at the output of the con-
sensus, by relying on the LDPC code structure rather than on additional markers. This
represents an interesting gain in terms of coding redundancy, which may allow to reduce
the expensive synthesis costs. In what follows we call this error-correction scheme the

CSL (Consensus, Synchronization, LDPC codes) solution.

4.4 Proposed CSL solution

We now describe our first proposed error-correction scheme for DNA data storage.
This scheme relies on three components: a consensus algorithm, a resynchronization step,
and a NB-LDPC decoder. The first component aims to provide a sequence of good quality
by relying only on the redundancy introduced by sequencing (e.g. the fact that sequencing
outputs not 1, but V' sequences), while the last two components aim to correct residual
errors. The consensus algorithm relies on the fact that known primers (short sequence
of about 40 nucleotides) are added at the beginning and at the end of the sequence x*,
(u € [1,U]). These primers consist of sequences of known bases which are mainly used
to select sequences of interest through biotechnology manipulations.

The CSL reconstruction solution is shown on Figure 4.5. The first step consists of
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applying the CCSA consensus algorithm [102] over M sequences selected at random among
the V sequences that have length greater than N and correct primers pgre and pepg.
The consensus algorithm then outputs one or several sequences y.ons(g) of length Ny.
If the consensus outputs a sequence of length N, = N, we set this sequence as Y.ons-
Otherwise, we pick a sequence of length N, < N as close as possible to N, and we apply

a synchronization method in order to get a sequence Y., ' of the correct length N.

In both cases, the sequence Yoons ' (0r Yeons if there is no need for synchronization) is
passed through the NB-LDPC decoder [84] to correct residual substitution errors. If the
sequence € is incorrect in the sense that ¢.H” # 0, we restart the full reconstruct process
(consensus + synchronization + NB-LDPC decoder), from another set of M random
sequences provided to the consensus. This process allows to reconstruct the original

sequence ¢ with a small number of restarts.

S X Channel c
0101..01 —— > ouré:g >| encoding >
encoding NB-LDPC
Synchronization
Ycons' yes
Y
s Channel y
Source _C X no cons
010L.01<—  JOU0Ce  |< Decoding @ CCSA | <—Wrseguences
NB-LDPC
A
¢ lvalid & iter<iterMax

Figure 4.5: This figure represents the full reconstruction solution based on the consensus, synchroniza-
tion, and NB-LDPC decoder.

We now describe into details each of the components of the CSL solution.

4.5 Consensus algorithm

Consensus algorithms are widely used techniques in the field of bioinformatics. They

aim to reconstruct a sequence y..,s called "consensus sequence', from a set of M sequences

y(™) called "edited replicas". It is expected that the consensus sequence Yoo, is error-free

or at least contains less errors than the edited replicas y(™. There exists various consen-
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sus algorithms, but most of them rely on alignments and majority votes to reconstruct

Yeons 103, 104].

The consensus algorithm we consider, called CCSA (Constrained Consensus Sequence

Algorithm) [102], has been specifically designed for DNA data storage by Dominique
Lavenier [102] in the framework of the DnarXiv project. CCSA takes as input M sequences
(yM, - y™)) selected randomly from the set of V' sequences output by the basecaller.
Then, for given parameters T" and [, the algorithm forms a directed graph whose nodes are
given by the subsequences of length [ that appear at least T' times among the M input
sequences. There is an edge between two nodes of the graph if the suffix subsequence
of the first node overlaps by at least d bases the prefix subsequence of the second node.
Finally, a Viterbi-like algorithm is applied over the directed graph in order to select the
path with the highest score between the start primer (psr¢) and the end primer (pepq).
Note that CCSA outputs either one or G sequences y.ons(g) of equal (highest) score but
of different lengths N, close to N. The score of a path is calculated by taking into account
the nodes weights (number of occurrence of the subsequence over the M sequences) and
the edges weights (I minus overlap length between the two subsequences) over the path. A
detailed description of the CCSA algorithm can be found in [102]. CCSA results reported
in [102], as well as our own simulations, show that this algorithm is able to correct most
of the errors introduced by the DNA storage process, although a few residual insertions,
deletions, and substitutions remain. This is why additional correction steps based on
NB-LDPC decoders are needed.

4.6 Low Density Parity Check Codes (LDPC)

LDPC codes [105, 26, 107, 106] are linear capacity-approaching block codes commonly
used in communication systems to correct channel substitution errors. In the binary case,
a [N,K] LDPC code is defined by a sparse binary parity check matrix H (see Figure 4.6)

of size (N — K) x N. A sequence c is a codeword if it satisfies the linear equation
cH' =0 (4.1)

Each row of H corresponds to a parity check equation where all the arithmetic operations
are modulo 2 (division remainder), and each column of H corresponds to a bit from the

codeword c. Furthermore, to generate a codeword c from the sequence x, a generator
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matrix G is derived from H for instance through a Gaussian-Jordan elimination [108], so

that G.HT = 0 and ¢ = x.G.

The LDPC parity-check matrix H can also be represented by a bipartite graph called
Tanner graph [109], see Figure 4.7. The Tanner graph contains two types of nodes: the
variable-nodes and the check-nodes. The variable-nodes correspond to the codeword bits
and the check-nodes correspond to the parity check equations. Therefore, the Tanner
graph contains N variable-nodes which are denoted VN; (i € [1, N]) and are represented
with circles, and N-K check-nodes denoted CN; (5 € [1, N — K]) and represented with
squares. There is an edge between a variable-node VN; and a check-node CN; if VN; is

involved in the parity-check equation j, i.e., H; ; # 0 .

oCoRrH
R ORr O
R OOoOR

o o !
OrR RO
1P P O O

Figure 4.6: An example of LDPC parity-check matrix H. Each row represents a parity-check equation
involving some of the codeword bits.

CN; CN, CN; CN,

VN, VN,) (VN5 VN, VNs VNg

Figure 4.7: Tanner graph representation of the parity check matrix H. The check-nodes CN; are
represented by squares, and The variable-nodes V' N; are represented by circles.

As an example, let us assume a received sequence y = [0 0 1 0 1 1]. When considering

the matrix H given in Figure 4.6, in order to verify if equation (4.1) is satisfied, the
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following parity check equations are calculated:

CNy: VN i@ VN, @ VN, =00000=0
CNy: VN;OVN3;DVN; =001D1=0
CN3y: VNyOVN;@VNg=001D1=0
CNy: VNs@VNs@VNg=10001=0

In this example, we see that all the parity check equations are satisfied. Thus, y is a

codeword.

Various LDPC decoders exist [108], and the standard Belief-Propagation (BP) decoder
is the most efficient in terms of decoding and complexity. The BP decoder is an iterative
decoder, which passes messages through the Tanner graph edges, from variable-nodes to

check-nodes and wvice versa.

The LDPC codes performance improves with large values of N [108]. However, as
mentioned in Chapter 2, the current synthesis technologies limits the length of the se-
quences to a few hundred nucleotides. Thus, to improve the decoding performance, we
use a NB-LDPC code which outperforms the binary LDPC codes on short sequences [84].
NB-LDPC codes are defined over Galois fields GF(q) of order ¢ > 2. Furthermore, for
consistency with the DNA alphabet, we consider ¢ = 4.

4.6.1 Galois Fields

Before describing NB-LDPC codes, we briefly introduce Galois fields. A Galois field [110,
111] is a field which contains a finite number ¢ of elements, that is GF(q) = {0, 1, ..., q}
. All GF(q) arithmetic operations, namely addition, subtraction, multiplication and divi-
sion, can be performed under field axioms constraints. Since GF(q) is a field, the result of
any arithmetic operation over GF(q) is an element of GF(q). GF(q) is either a prime field
if ¢ is a prime number, or an extension field if the order ¢ is a power of a prime number
i.e. ¢ = P, where P is a prime number and A € N* is a positive integer. Arithmetic
operations over a prime field can be done using integer arithmetic, followed by a modulo ¢
operation. However, in order to perform arithmetic operations over an extension field,

the elements of GF(q) are represented with polynomials of degree at most equal to A:

poly(X) = ax XM+ .+ a X +ag € GF(qg =P?) (4.3)
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Where a; are coefficients that take values in GF(P). Thus, to represent an element from
GF(P?) based on GF(P) elements, we need a vector of length \. Furthermore, extension
fields arithmetic operations are followed by a modulo Ir(X) operation, where Ir(X) is
an irreducible polynomial which cannot be factored over GF(P).

Let us consider a Galois field of 4 elements: GF(4) = {0,1,2,3}. Since GF(4) =
GF(2}), then, to perform arithmetic operations, we first need to extend GF(2) so as to

represent the elements of GF(4) with a polynomials of the form
poly(X) = a;. X" + ag € GF(4) (4.4)

Table 4.1, shows the polynomial representation of GF(4) elements.

’ Integer ‘ Vector ‘ Polynomial ‘

0 [0,0] [0.X'+0=0
1 0,1] [0.X'+1=1
2 [1,0] |1.X1+0=X
3 1,1] |1L.X'+1=1+X

Table 4.1: Polynomial representation of GF(4) elements

To define arithmetic operations over the field, we first define an irreducible polynomial
Ir(X) = X? + X + 1, which cannot be factorized over GF(2). Accordingly, Tables 4.2

and 4.3, show addition and multiplication operations, respectively.

@& | 0 [ 1 [ X [14X]
0 0 I | X [1+X
1 1 0 |1+X| X
X | X [X+1] 0 1
I+ X [1+X| X | 1 0

Table 4.2: Addition over GF(4)

In GF(2%), a subtraction is equivalent to an addition. Furthermore, the division can
be transformed into a multiplication with the inverse element. For instance, § = a ® b1,
where a,b,b™! € GF(q), and b~! is the inverse element of b. Since b ® b~! = 1. Thus,
inverse elements can be deduced from the multiplication table. Accordingly, Table 4.4
shows the results of the division operation over GF(4).

In order to perform the arithmetic operations on the GF(4) NB-LDPC encoder and

decoder, we use Tables 4.2, 4.3 and 4.4.
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® Jo[ t [ X [1+X]
0 J0] 0 0 0
1T 0| 1 | X |1+X
X |0 X |[1+x]| 1
[TX |0 [1+X| 1 |[1+X

Table 4.3: Multiplication over GF(4)

Lo | 1] X [I+X]
0 0 0 0
] I [1+X| X
X | X | 1 |1+X
I+X |[1+X| X | 1

Table 4.4: Division over GF(4)

4.6.2 NB-LDPC codes

In this work, we use NB-LDPC codes [112, 84, 113] in GF(4) for consistency with
the quaternary bases alphabet {A, C, G, T}. In this case, the non-zero elements of
the parity check matrix H take values in GF(4). Then, any codeword ¢ with elements
of GF(4) verifies c.H” = 0, where the arithmetic operations are evaluated over GF(4).
We consider a standard BP decoder initialized with probabilities obtained after applying
the CCSA algorithm over the data SetE described in Chapter 3. The NB-LDPC BP
decoder takes as input the consensus sequence y..s and seeks to output a sequence &
close to ¢ and that verifies the condition €. H” = 0. The decoding process is almost the
same as for binary LDPC, though the message formats and equations change slightly, and
some steps are added. To simplify the notation, we denote elements of GF(4) as integers
instead of polynomials, although as mentionned previously, the polynomial representation
is required to perform the arithmetic operations. In what follows, we use M;; to denote
the message that goes from the variable-node 7 to the check-node j, and we use Mj;
to denote the message that goes from the check-node j to the variable-node i. We now
describe the decoding process for the NB-LDPC code.

1. Initialize variable nodes with a priori probabilities. Unlike the binary LDPC

decoder, a vector of likelihoods is considered rather than a unique likelihood:

P(c; = 0lyi) Ple; = 1yi) Plei = 2|yi) Ple; = 3lyi)

) = | Bie; = olys)” Ples = Olys)’ Ples = Olys)’ Plei = Oly)

(4.5)
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The a priori probabilities P(c; = b|y;) were obtained from our experiments with the

CCSA algorithm.

2. Compute the variable-nodes to check-nodes messages M,; as

L(c;)[7] , if 1% iteration

L(c;)[r] JI  Mjulr] ., otherwise
J'€SCN:\{j}

(4.6)

where SCN; is the set of check-nodes that are connected to the variable-node VN;.
The notation j* € SCN;\{j} means that we consider all the nodes in SCN; except
the 7' node.

3. Permutation of the variable-nodes to check-nodes messages. In the binary
version, the non-zero elements h; ; (i € [1,N] , j € [1, N—K]) of H are equal to one.
Thus, it is not necessary to perform a multiplication M;;.h; ; of the message and the
non-zero element. However, the NB-LDPC code has non-zero elements h; ; €GF(q),
which makes a multiplication necessary. To do so, note that the multiplication over
GF(q) can be simplified using left shifts, see Table 4.3. Therefore, at the end of this
operation, elements of the message M,; are shifted to the left by h; ; positions. For
instance, if h; ; = 2, the message M;; = [ M;;[0], M;;[1], M;;[2], M;;[3] ] becomes
Mij = [ M;;[2], Mi;[3], My;[0], Mi[1] ].

4. Compute the check-nodes to variable-nodes messages Mj; as

i T, 7'/ c GF(4), Mji[T] = Z H Mz‘lj (47)

CNJ' =0,VN;=7 i/ESVNj \{Z}

where SVN; is the set of variable-nodes that are connected to the check-node CNj.

The sum Z allows to consider all the configurations where the parity-check
CN;=0,VN;=7
equation CNj is satisfied given that VN; = 7. Therefore, M;[7] corresponds to the

probability that CN; = 0 is satisfied given that VN; = 7.

5. Permutation of check-nodes to the variable-nodes messages. To inverse the

permutation introduced previously by h; ;, a division by h; ; is necessary. To do so,

2,79
note that the division over GF(¢q) can be simplified using right shifts, see Table 4.4.
At the end of this operation, elements of the message M ; are shifted to the right by
h; j positions. For instance, if h; ; = 1, the message M;; = [ M;;[0], Mj;[1], M;;[2], Mj;

becomes M ; = [ Mj;[3], M;;[0], Mj;[1], M;[2] ]
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6. Estimate ¢; with the a posteriori probability APP(c;), calculated as

Vs € GP(4), APP(c;)[r] = L(e)lr] S[gN M;il7] (4.8)

The decoded symbol & is set to be the maximum argument (arg max) of APP(¢;),
i.e. the element with the highest likelihood over APP(¢;). After computing the
temporary estimate of €, if € H" = 0, then & is a valid codeword, and we stop the
decoding. Otherwise, we repeat steps two to six until ¢. H" = 0 have been satisfied

or a maximum number of iterations has been reached.

However, the standard BP decoder as well as most existing LDPC decoders can only
correct substitution errors. This is why we now propose a synchronization method to
also correct a few amount of deletions. We only apply this synchronization step if the
consensus does not output a sequence of length N, = N, and by assuming that output

sequences of length N, < N only result from deletions.

4.7 NB-LDPC codes synchronization

In this section, we first show some results obtained when using the CCSA algorithm.

We then introduce the synchronization method.

4.7.1 Residual errors after the CCSA algorithm

In order to evaluate which kind of errors remain after the CCSA algorithm, we apply
this algorithm onto all the sequences contained in setF. More into details, we run the
CCSA algorithm 1000 times for each reference sequence x™, where u € [1,U]\{2}. For

u,v) at

a given reference x®, for each run of the algorithm, we select M sequences y{
random, where v € [[1, V] is the number of output sequences corresponding to x*). For a
given run, the M selected sequences are then used as inputs to the CCSA algorithm. We
also vary the parameter M, which corresponds to the number of sequences y**) taken
into account by the CCSA. Note that, we do not consider the sequence x(® because of its
high amount of long homopolymers, which makes it impossible to reconstruct a consensus
sequence using the CCSA.

Figure 4.8 shows rates and types of errors obtained after the CCSA algorithm with

respect to the number M of selected sequences. We observe that the amount of errors is
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Part , Chapter 4 — First error-correction solution: Consensus and LDPC' codes

relatively small on the output consensus sequence yens. However, although we consider
different values M of input sequences for the CCSA, the majority of observed errors are
synchronization errors (insertions and deletions). Furthermore, the value of M has only
a slight effect on the error rate, because except for the sequence x| the sequences from
SetE contain none or short homopolymers (< 3). This is why to use the NB-LDPC
decoder, it is first necessary to re-synchronize the consensus sequence V.,,s to handle

synchronization errors.

0.012 -
I Sub
0.001} — —1Ins and Del
9 0.008f _
© Al om —
— ] M 1 _—_—'__ ] —
= M =~ e
g 0.006 |
Q
0.004 |
0.002}
oJllllhlllllllll.llllllL
0 50 100 150 200 250

M

Figure 4.8: This figure represents the type and amount of observed errors in the consensus sequences
Veons- We observe that increasing M does not decrease the amount of synchronization errors (insertions
and deletions).

4.7.2 Synchronization algorithm

We now introduce a novel synchronization method, which allows to transform syn-
chronization errors that may remain in the consensus sequence Vo5, into substitution
errors. This method relies on the structure of the considered NB-LDPC code, and more
precisely on its parity check equations.

We use S(y) to denote the score of a given sequence y, which corresponds to the

number of unsatisfied parity check equations, that is the number of non-zero components

58



4.7. NB-LDPC codes synchronization

in the vector y. H”. For instance, let us assume an LDPC code using the parity-check

matrix H given in Figure 4.6, and a received sequence y = [0 0 1 1 1 1]. In order to

compute S(y), the check-nodes equations are evaluated :

CNy :
CNjy :
CNjs :
CNy :

In this case, S(y) = 2, since there are two unsatisfied parity-check equations.

VNI VN, VN, =000 1=1
VN2 @ VNs @ VN; =0@ 11 =0
VNI@VNs VN =0® 11 =0
VN; @ VN, @ VNs =1 1d1=1

(4.9)

We now describe the synchronization algorithm when the consensus outputs a sequence

Yeons Of length N — 1. This algorithm has 3 main steps:

1. Segmentation: the consensus sequence ye.s is segmented into multiple segments

of length l,. the segment length [; plays a crucial role as it addresses a tradeoff

between complexity and amount of substitution errors in the resulting sequence.

2. Insertion attempts: we then try to insert a base with arbitrary value "A" at position

1, then at position [; + 1, then 2./, 4+ 1, and so on. For each considered position, we

compute the corresponding sequence score S(Yeons). This step aims to detect the

segment where the deletion occured.

3. Definitive insertion: at the end, we permanently add a base "A" at the position

(i.ls)+1 (i € [0, % —1]) that gives the lowest score. This gives a new vector ¥ons '

Thus, on the sequence y.,, ' the deletion error has been transformed into one or

several substitutions depending on the position of the deletion in the segment.

Figure 4.9 illustrates the synchronization algorithm with an example. In this example,
the codeword ¢ =[ACGTCACGGA] after the CCSA consensus step is affected by the
deletion of the "C" base highlighted in red. To simplify the example, the score is here

calculated as the number of unsynchronized bases instead of the number of unsatisfied

parity-check equations. As the first step, the consensus sequence y,,; is splitted with [, =

2. At the second step, an arbitrary base "A" is inserted at the beginning of each segment,

and all resulting scores are computed. Finally, the base "A" is definitively inserted into the

segment with the lowest score, transforming the deletion into a substitution highlighted

in blue.

Even if the position and value of the inserted base are not entirely correct, adding this

39



Part , Chapter 4 — First error-correction solution: Consensus and LDPC' codes

codewordc: ACGCTCACGCGGA

Veors: AGTCACGGA

@
H
0
pY
0
@
@
pY

Segmentation < A

=2
AAGTCACGGA  SYew=1 N
AGATCACGGA | SHum=2
I j _
Liemoel A G T CAACGGA  Sym-2
A GTCACAGGA  SYos=6
AGTCACGGAA | SYay=7
Peﬁ”"?fve<AAGTCACGGA
insertion
Yeonrs A AGTCACGGA

Figure 4.9: This figure illustrates the proposed synchronization algorithm over the sequence example
¢ =[ACGTCACGGA]. The "C" base highlighted in red was deleted during the CCSA step.

base close to the correct position should greatly reduce the score by re-synchronizing the

output sequence Y.,,s = with the original codeword c.

Now, if the sequence ¥, ' is of lower length N — 7 (7 € N*)  then 7 bases are
inserted one after each other in a greedy maneer: the first base is inserted at the position
which gives the lowest score, then the second an third step are repeated so as to insert
the second base, and so on. This process allows to replace deletion errors by substitution
errors which can then be corrected by the NB-LDPC BP decoder. If after synchroniza-
tion, the decoder fails (unsatisfied parity check equations remain), a new consensus will
be restarted. Note that we only consider deletions, because the results of our experiments
showed that the proportion of deletion is more important than insertions in both sequenc-
ing and consensus steps. However, it would be possible to tackle insertions by slightly

adapting the synchronization algorithm.

This synchronization technique only relies on the LDPC code structure, and does not
require any additional redundancy, unlike in the solution with periodical markers proposed

in [62].

60



4.8. Numerical results

Algorithm complexity

The introduced synchronization algorithm checks T(%)(N — K)) parity check equa-
tions, where 7 corresponds to the number of deletions, % corresponds to the number of
segments, and N — K corresponds to the number of parity-check equations. Thus, the
algorithm complexity is linear with the code length N.

We now evaluate the CSL reconstruction solution through numerical simulations.

4.8 Numerical results

In this section, we evaluate the performance of our full CSL reconstruction method,

by using the channel model with memory described in Chapter 3.

4.8.1 Performance of synchronization algorithm and NB-LDPC

decoder

We first evaluated the performance of the synchronization algorithm followed by NB-
LDPC decoding, for various values of M. The synchronization algorithm being a novel
method, the main purpose here is to check if it helps to improve the NB-LDPC decoder
performance when there are deletions on the received sequence.

Each simulation run considers a randomly generated input sequences X of length K
in GF(4), where each element X; takes values in alphabet {A, C, G, T} at random. Each
sequence X is then encoded with a NB-LDPC code, which outputs sequences C of length
N in GF(4). Then, for each sequence C, a fixed number 7 of deletions are introduced
at random positions onto C, where 7 € [1,4]. In this set of simulation, we consider a
NB-LDPC code of length N = 200 in GF(4), and different code rate values: R = 1 (i.e.,

1
K =50), R=3 (i.e., K =100), R =3 (i.e., K = 150), and R = & (i.e., K = 180). The
segments length during the synchronization step is fixed to l; = 5. For each couple (7,R)
we consider 1000 simulation runs to evaluate the Symbol Error Rate (SER) and FER of
the synchronization algorithm and NB-LDPC decoding solution.

Figures 4.10 and 4.11 show the obtained SER and FER, respectively, obtained after
synchronization and NB-LDPC decoding. We observe that the code rates R = i and R =
% always allow to correct one deletion error, while for higher code rates, the probability of
error becomes important. Furthermore, when there are two deletions, the synchronization

and NB-LDPC decoding error rate is important no matter the code rate. This high error
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rate obtained under several deletions is related to two factors. The first one is related
to the process of transforming deletions into one or several substitutions. In this case,
multiple deletions introduce a high amount of substitutions that cannot be handled by
such short NB-LDPC code (N = 200). The second factor is related to the position of the
deletions when there are several. Indeed, if the deletions are not on the same segment
of length [, the first factor makes several parity-check equations incorrect because of the
substitutions. Thus, when executing the synchronization algorithm in a greedy manner,

the arbitrary base A is not introduced as close as possible of the deletion error.

10° | .
ol /_
=== R=9/10
e R=3/4
5 w2l m—R=1/2 §
w0
== R=1/4
10° .
10 F | i
1 2 3 4

T

Figure 4.10: This figure shows the synchronization and NB-LDPC decoding SER given a number of
deletion.

4.8.2 CSL solution evaluation

We considered sequences x") and x® among the nine sequences from SetE, and en-
coded the corresponding sequences with a regular (3,6) NB-LDPC code in GF(4) of size
(K =500, N = 1000) and code rate R = 1/2, constructed from a PEG algorithm [114].
We further set the segment length to [y = 50 for our synchronization method. To evalu-
ate the proposed reconstruction method, we considered three setups: (i) consensus alone,

(ii) consensus + NB-LDPC decoder without re-synchronization, (iii) consensus + re-
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e R=9/10
e R=3/4
w—R=1/2
——R=1/4

FER

T

Figure 4.11: This figure shows the synchronization and NB-LDPC decoding FER given a number of
deletion.

synchronization + NB-LDPC decoder. For each of these setups, we applied the successive
reconstruction steps 900 times, and evaluated the proportion of perfectly recovered se-
quences, called "success probability". This metric is of interest in our setup, since the
condition ¢.H” = 0 allows to check whether the original sequence was correctly retrieved,

and to stop the reconstruction accordingly.

Figure 4.12 shows the success probability for the two considered sequences x(") and x(*),
with respect to the number M of input sequences to the consensus. For both sequences, as
expected, the success probability increases with M, before reaching a peak at around M =
100. The decrease in performance after this peak probably comes from the fact that the
consensus has difficulties to handle too many sequences, due to the initial majority voting
operation. Then, we observe two different configurations, depending on the considered
sequence. For x()| it seems that the synchronization algorithm and the NB-LDPC decoder
are not useful, in the sense that the sequences at the output of the consensus are either
correct, or very far from the original data. On the opposite, for x®), we observe that
the synchronization algorithm greatly improves the success probability, while NB-LDPC
decoder alone after consensus does not help. This is probably due to the fact that for

x(®), most sequences at the output of the consensus contain a few amount of deletions
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Figure 4.12: This figure represents the proportion of correctly retrieved sequences with respect to the
number M of input sequences to the consensus.
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introduced by an homopolymer of length 6, which are transformed into substitutions by

the synchronization method.

4.8.3 The CSL solution in the full DnarXiv pipeline

The CSL solution was then fully integrated in the DnarXiv pipeline as shown in Fig-
ure 4.13. Olivier Boullé and Dominique Lavenier are in charge of the plateform which aims
to numerically simulate all together the different part of the DnarXiv project: Biotechnol-
ogy, Bioinformatics, Security and Coding. They performed some simulations to test the
pipeline. To do so, they encoded an image equivalent to 150k bases with three different

methods:

— Method Cons100: The consensus was used without channel coding, and the 150k
bases were fragmented into I = 1700 fragments fggnswo (1 € [1,1]) of size Nconsioo =
100 bases.

— Method Cons200: The consensus was used without channel coding, and the 150k
bases were fragmented into I = 800 fragments fggnsmo (1 € [1,1]) of size Ncons200 =
200 bases.

— Method CSL200: The consensus was used with channel coding. This method used
the CSL solution with a code rate R = % for the NB-LDPC code. Due to the code
rate R, 300k bases were obtained after the encoding. These 300k bases were then
fragmented into I = 1700 fragments fg%moo (i € [[1,1]) of size Nesraoo = 200 bases.

For each of these methods, the fragments contain an index part of 11 bases, and a payload
part which corresponds to 89 bases and 189 bases when N = 100 and N = 200 respec-
tively. Then the resulting fragments of each method were randomly assembled into DNA
molecules {cons100, cons200, and Eosraoo Of length equal to ten times (x10) the fragment

length of the considered method. For instance,

j 64 15 124 15 .
£681100 = [f 51200, JCS100: -+ 5100 J5Ta0)s 3 € [1,50000]
—— —— —— ——

1 2 9 10

is the j* DNA molecule, which contains 10 fragments selected at random, and the frag-
ment félssL)QOO was selected two times. The molecules are then extracted (selected) before
going through the memory channel model. The resulting simulated molecules are then
fragmented again into fragments fggmmo, ~ggn5200, fg%moo, which are edited versions of the

original fragments. These fragments are then clustered into clusters O(i), where ¢ € [1, I']
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and I’ < I. Then, the decoding is applied to each cluster O(7). In methods Cons200 and
Cons100, the decoding is done with the CCSA algorithm only. In CSL200, the decoding
is performed with the full proposed CSL solution.

Source ; Channel . Synthesis . Mgfs(i;;:]e
Encoding Encoding Simulation Simulation
Document Fragments Coded Duplicated
Fragments Fragments ﬂ
DNA Molecules
(simulated)
Memory Channel Model
Clustering Sequencing Molecule
= | poure | = gehcf)’:j'i‘ﬁ' — & <= | & Basecallng | <=| Extraction
9 9 Consensus] Simulation Simulation
Decoded Decoded Consensus Sequenced Extracted
Document Fragments Fragments Molecules Molecules

Figure 4.13: This figure represents the complete pipeline of storage and extraction developped in the
project DnarXiv. The parts specific to the CSL coding scheme are highlighted in green. Note that our
memory channel model is used to perform the sequencing and basecalling simulations.

Credit: Figure provided by Olivier Boullé and Dominique Lavenier.

Figure 4.14 shows a comparison between the three methods. The x-axis corresponds
to the number of DNA molecule reads, and the y-axis corresponds to the precision of
the sequences. The precision means the percentage of correctly aligned and equal bases
between the reconstructed fragment and the original one. The best method is the one
which has a high precision with fewer reads.

Unfortunately, it is disappointing to see that Cons200 and Cons100 methods have
better results than CSL200 method which includes channel coding. However, these results

have several explanations:

— The amount of information (without redundancy) contained on each
DINA molecule. In Cons200 method, there is no channel coding. Hence, each
DNA molecule contains two times more information than CSL200 method, which
has a code rate R = % Therefore, in Cons200 the majority of clusters O(i) are
retrieved faster and with enough fragments fggnsm to reconstruct a consensus se-

quence fggnsmo with the CCSA. In CSL200, some clusters O(i) are never retrieved,
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or they have not enough fragments fgs);moo to reconstruct a consensus sequence

fgs)moo before launching the synchronization and NB-LDPC decoding.

— The consensus sequence reconstruction. In CSL200 method, the consensus
algorithm is a bottleneck, since if no consensus sequence can be reconstructed, it
is not possible to launch the synchronization and NB-LDPC decoding. Thus, for

DNA molecules £ of the same length, to maximize the chances to retrieve all the

O(7) clusters, and thus, to reconstruct a consensus sequence @ for each fragment
f@_ it is better to increase the number I of fragments per DNA molecule than to

decrease the code rate R.

— The fragments length. When considering the same number M of input sequences,
the performance of the consensus algorithm is better on short sequences than on
long ones. In this case, although Cons100 and CSL200 methods contains the same

amount of information, because of their redundancy, we have that Ncgro0 = 2 X

Nconsi00- Therefore, the CCSA algorithm outputs a consensus sequence W for
much more clusters O(7) in Cons100 method than in CSL200 method.

Therefore, in the case where the number M of read DNA molecules with same length
N is fixed, it is better to increase the number I of fragments per DNA molecule than
to decrease the code rate R. Hence, the CSL solution is not well adapted for this case.
However, in some cases, the CSL solution can be useful as shown on Figure 4.12. In this
case, the number M of read fragments f@ in each cluster O(i) is the same for all the

methods.

4.9 Conclusion

In this chapter, we proposed a DNA data storage coding scheme, based on combin-
ing a consensus algorithm with a NB-LDPC code. We also proposed a synchronization
algorithm, which allows to re-synchronize the consensus sequences by transforming its
deletion errors into substitution errors. Through numerical simulations, we observed that
the synchronization algorithm allows to improve the decoding performance without adding
periodical markers. However, when there are multiple deletions the performance of the
synchronization algorithm starts to decrease. Furthermore, this coding scheme is highly
dependent of the consensus step, which needs a hundred of sequences to reconstruct a

consensus sequence. Thus, when it is not possible to reconstruct a consensus sequence,
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Figure 4.14: This figure shows a comparison between the methods Cons200, Cons100, and CSL200. The
x-axis corresponds to the number of DNA molecules reads, and the y-axis corresponds to the precision
of the outputs. Credit: Figure provided by Olivier Boullé and Dominique Lavenier.

the synchronization and NB-LDPC decoding cannot be used, which clearly penalizes this
solution. This is why in the next chapter, we introduce another coding scheme to replace
the consensus step. As a main feature, this second scheme only needs one or a few se-
quences to correctly decode the input sequence. Furthermore, unlike the CSL solution, it
can offer a tradeoff between the code rate R and the number of sequence M that need to

be used for decoding.
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CHAPTER 5

SECOND ERROR-CORRECTION
SOLUTION: CONVOLUTIONAL CODES
WITH DECODER AWARE OF THE
CHANNEL MEMORY

In the previous chapter, we presented a first ECC solution called CSL, which combines
a consensus algorithm, a synchronization algorithm, and a NB-LDPC decoder. Although
the synchronization algorithm allows to improve the decoding performance, the numerical
results showed that the performance is driven by the consensus algorithm, which does not
exploit coding. Therefore, we now introduce another error-correction solution based on
Convolutional Codes (CCs), which replaces the consensus step. We consider a particular
convolutional decoder initially proposed in [115] which allows to correct synchronization
and substitution errors. We then propose to augment the considered convolutional decoder
in order to take into account the memory channel model introduced in Chapter 3 so as
to improve the decoding performance.

In this chapter, we first describe standard CCs, and then review existing convolutional
decoding solutions which can handle synchronization errors. We then introduce our aug-
mented convolutional decoder solution, which takes into account our memory channel
model. Finally, we compare existing solutions to our solution through Monte-Carlo sim-

ulations.

5.1 Standard Convolutional Codes

Unlike block codes (LDPC codes, Polar codes,...), CCs [117, 116, 27] can encode
blocks of arbitrary length. Furthermore, the CC sends the parity-check bits, rather than

the parity-check bits and the information bits, as in block codes.
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5.1.1 Notation

In what follows we use:
— k. to denote the number of input bits.
— n, to denote the number of output bits.

— K. to denote the constraint length, such that to encode k. bits into n. bits, up to
K. bits can be involved in the parity-check equations. The constraint length can be

seen as a sliding window, which slides by k. bits after each encoding.

— Opoly to denote the generator polynomial, which provides the equations to generate
the n. output bits from the k. input bits. Thus, the number of polynomials on
the generator polynomial, is equal to n.. Since we consider a binary CC, all the

arithmetic operations are modulo 2.

— y% to denote the substring of y that starts at position B and ends at position £. If
£ < B, the substring y% is empty, i.e., y§ = 0.

5.1.2 CC representation

A (k.,n., K.) CC code has a code rate R = % and can be represented either with a

)
c

diagram, or with a state machine. Let us assume a (1,2, 3) CC with polynomial generator

Spoty = [0°+1,0*+ 5 +1]. The diagram representation for this CC is shown on Figure 5.1.

In this figure, the value of the two memory registers in grey define the current state .S; of
the encoder, with i € [0, 2%~ —1].

-1

110(1|1/0j0 11
NN

Figure 5.1: (1,2,3) CC diagram representation. The generator polynomial is 6o, = [0%+ 1,62+ 6 +1].
The first output bit in blue is obtained from the first polynomial §2 4 1, and the second output bit in red
is obtained from the second polynomial 62 + § + 1. The leftmost bit is the most recent input bit. The
grey boxes are memory registers, which retain older input bits.

Although the diagram representation is useful to understand the CC structure, a CC

can be represented in a more convenient way by a state machine, which will be used
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during the CC decoding. In the state machine, the number of states is equal to 2K¢~1,
and the states are denoted by S;. In order to avoid confusion later in this chapter, we
also refer to these states as internal CC states. The state machine of the (1,2,3) CC is
shown in Figure 5.2. The initial state is always set to Sy = 00 i.e., the memory registers
are initialized to zero. The transition from a state to another state is possible if there is
an edge which connects the two states. Each edge is labeled with a w;/c;..c,, notation,

tth

where w; is the input bit that allows the transition from state S; to state S;, and this

transition produces an output sequence c;..c,,.

Figure 5.2: (1,2,3) CC state machine representation. The polynomial generator is dpo1y = [6% +1,6% +
d+1].

5.1.3 Convolutional decoder

The decoder only observes received sequence y which may contain corrupted bits. Its
task is to infer the most likely state sequence S that produced the received sequence y.
Furthermore, due to the convolutional encoding, each bit y; only depends on the current
state s; and the next state s;y;. Therefore, the inference process is based on Hidden
Markov Models [68]. The decoding process also relies on a trellis structure, as shown
in Figure 5.3. The trellis structure is derived from the state machine, and it shows the
evolution of the state machine through time. The rows of the trellis correspond to the
whole possible states of the state machine, and each column represents a specific instant
t, with t € [0, nﬂ]], N being the received sequence length. Decoding over the trellis aims
to estimate s; as the most likely state at instant . The bit value w,; is then deduced from
s¢ and s;y1. Figure 5.3 illustrates an example where the received sequence y contains a

substitution error highlighted in blue, and the decoder infers the most likely sequence S
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that produced y. As a convention, the trellis path always starts and ends at the state .Sj.
Thus, K. — 1 zeros are added to the encoded sequence c in order to flush the memory
registers and put the internal CC state back to Sy. The added zeros are ignored after the
decoding. The example in the figure assumes a Viterbi decoding algorithm [118], which
selects the best path at each instant ¢ to find a path with maximum likelihood, e.g., which

maximizes P(S|y). Figure 5.3 also shows the estimated sequence W corresponding to the

path of maximum likelihood. However, in this work, rather than the Viterbi algorithm,
we consider the BCJR decoding algorithm [27, 119] named after its authors Bahl, Cocke,
Jelinek and Raviv. Unlike the Viterbi algorithm, the BCJR maximizes the A posteriori
Probability (MAP) P(s;|y). Although it is more complex than the Viterbi algorithm, the
BCJR algorithm has better performance [120]. We explain later in this chapter how the
BCJR algorithm works.

Figure 5.3: This figure shows a trellis on which the decoding process is performed for a (1,2,3) CC.
The polynomial generator is dpor, = [0% + 1,82 + § + 1]. The bit highlighted in blue in y is corrupted
because of a substitution. The decoding process uses a Viterbi decoding, where at each instant ¢ the best
path is selected and highlighted in green.

We now introduce the CC decoding scheme which tackles synchronization and substi-

tution errors.
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5.2 CC coding scheme for synchronization errors

In this work, we consider the CC construction which was first introduced in [115] and
later considered in [101, 121, 122], to correct insertion, deletion, and substitution errors.
The performance of this scheme can be further improved by considering a concatenated
code construction. The concatenated code construction considers a CC as inner code, so
as to correct synchronization errors and most substitution errors, and a LDPC [101] as
outer code, to correct the remaining substitution errors. In [121] to further improve the
bit error rate of the CC decoder, it was proposed to sum a random sequence, called offset,
with the encoded sequence, so as to create a dependency between the decoded sequence
and the states s, t € [0, nﬂ,, )

However, all these existing CC constructions target i.i.d. channels. Since the DNA
data storage channel is not an i.i.d. channel, to improve the decoding performance in terms
of BER and FER, we propose to take into account our memory channel model. In [101],
the inner CC allows to correct most of the insertion, deletion, and substitution errors,
while the outer LDPC code only corrects residual substitution errors. Therefore, it is more
critical to first improve the performance of the inner CC, which has a stronger influence on
the final reconstruction performance. This is why in this work we only work on improving
the performance of the inner CC, and do not consider the concatenated code construction
of [101]. We aim to propose an augmented version of the convolutional decoder, which
takes into account our memory channel model so as to improve the decoding performance.
In this section, we describe the main steps of the considered CC scheme. We first introduce
our notation for the encoding part and the decoding part of the coding scheme, which is

described in Figure 5.4. For simplicity we consider that all the sequences are in GF(4).

5.2.1 Encoder part

As input to the convolutional encoder, we consider a sequence w of length Ny. From
w, the convolutional encoder outputs an encoded sequence c of length N. An offset
sequence r is then added to c. The sequence r is a random sequence of length N. This
provides a sequence x = ¢ @ r, where the sum is in GF(4). It was shown in [121] that
in the case of a channel with synchronization errors, and under some assumptions, the
offset sequence improves the decoder performance by reducing the BER by a factor of
1072, The sequence x is then stored as a DNA molecule after synthesis. In this work

we consider a binary convolutional code. Thus, the input and output sequences of the
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Figure 5.4: CC coding scheme for synchronization errors.

decoder are respectively converted into binary and into GF(4) elements. The conversion
process transform each couple of bits into an element of GF(4) (and vice versa), with the

convention "00" — 0, "01" — 1, "10" — 2 and "11" — 3.

5.2.2 Decoder part

After sequencing, the DNA storage channel outputs V sequences (y, .-, y")),
where y®) is of length N v € [1,V]. We first describe how to apply the CC de-
coder to only one sequence y = y(*). At the end of the next section, we also discuss how
to perform the decoding over V' (V' < V') sequences y(). Note that the offset sequence
is taken into account directly inside the convolutional decoder. Although w, x and y®
are in GF(4), for simplicity, in the convolutional decoder we consider w, x and y*) as
binary sequences. We also use N to denote the length of the binary sequence x.

We now introduce the standard BCJR algorithm [27, 119], since an extended version

of this algorithm will be considered in our decoder.

5.2.3 BCJR algorithm

The BCJR decoding algorithm [27, 119] allows to estimate the input symbols w;. In
a binary case, this estimation is performed with the a posteriori likelihood ratios

(5.1)

L(wly) = log (th:m)

P(w; = 0ly)
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Figure 5.5: BCJR algorithm example on a partial trellis diagram, for time instants ¢ € [2,5] .

The value of w; is estimated according to the sign of the log-likelihood ratio: if £L(w,|y) >
0, then it is estimated that w; = 1, and if L(w|y) < 0, then it is estimated that w; = 0.
The absolute value of the log-likelihood indicates the confidence level of the estimation.

Using the Bayes rule, the a posteriori probability P(w;|y) can be written as

P(wy,y)

where the probability P(y) does not depend on w; and can be considered as a constant
term ignored in the computation.

The value of the input bit w; defines the transition from s; to syy1, denoted (s, s441).
Some possible transitions are shown in Figure 5.5, where w; = 1 corresponds to the
dashed lines, and w; = 0 corresponds to the solid lines. Moreover, at each instant ¢, only
one unique transition (s, s;41) is possible. Therefore, the probabilities P(w; = 0|y) and

P(w; = 1|y) can be expressed as

P(wt = 0|Y) = P(Sm St+1|Y)

(st,st+1):wt:0
and
P(w, = 1|y) = P(s, 5141]y)

(st,st41):we=1
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where Z P(s¢, s¢11) is the sum of all transition probabilities (s, s;+1) allowed by the value

we
wy. The a posteriori log-likelihood ratio can then be expressed as

Z P(Sta St-i-laY)

(st,8t41):we=1

Z ]P)(Sta 8t+17y>

(st,S¢+1):we=0

L(w|y) = log

Furthermore, thanks to the Hidden Markov Models inference process [68], the term
P(y, s, s¢+1) can be decomposed and efficiently estimated as

P(y, st, st41) :P(ygt_l)'nc> St)P(yzﬁcl).ncH’ St+1 |5t)P(Y§nC+1|St+1)

:at(st)%(st, St+1)5t+1(3t+l)

The term «y(s;) refers to a forward recursion, which allows to recursively compute
P(ygt_l)'nc,st). For instance, in Figure 5.5 the partial sequence yﬁt‘”'"c at t = 4 is
highlighted in blue. It is also shown how ag(sg) is recursively computed from the alpha
values an(sg) and as(s;) of the previous nodes at instant ¢ = 2.

The term [, 1(s441) refers to a backward recursion, which allows to recursively com-
pute P(y;, ,1|si41). For instance, Figure 5.5 shows the partial sequence y;, ., at t =4
in red. The figure also shows how [4(so) is recursively computed from the beta values
B5(s0) and B5(s2) of the next nodes at t = 5.

The term 7; (s, 5¢41) is called a branch metric P(y%;"

(t—1).nc+12
the partial sequence (y’zﬁcl).nc +15 Se41/8¢) at t =4 in green.

St11|se). Figure 5.5 shows

In what follows, we first introduce the convolutional decoder of [101, 121]. This decoder
is based on a modified BCJR algorithm which allows to correct not only substitutions,
but also insertions and deletions. We then show how to modify this convolutional decoder
so as to consider all the knowledge provided by our memory channel model. Especially,

we will take into account the memory introduced by previous events and by the k-mers.

5.3 CC decoder for synchronization errors

When designing the convolutional decoder, the first difficulty resides in the fact that
not only substitutions, but also insertions and deletions should be corrected, as shown

in Figure 5.6. Especially, it was observed in [101] that insertions and deletions break
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Match
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Figure 5.6: DNA data storage channel model.

the Markov property in the sequence of decoder internal states. In what follows, we first
describe the convolutional decoder which was proposed in [101, 121] to correct the three
types of errors for i.i.d. channel models. Especially, this decoder introduces an additional

drift variable, which restores the Markov property.

5.3.1 state-of-the-art CC decoder with drifts (Dec1)

We now describe the CC decoder which was introduced in [115, 121] and later consid-

ered in [101] to correct both synchronization and substitution errors.

States of the decoder

The successive internal states of the CC are denoted s;, where ¢t € [0,T], and T =
N/n.. For instance, if the CC has 4 states, s, takes values in {Sp, S1, So, S3}. Further, [115,
123] introduces an additional state variable d;, called the drift. The drift d; represents
the delay at time ¢ in the sequence, that is d; = Nb(INS); — Nb(DEL);, where Nb(INS),
(respectively Nb(DEL),) is the number of insertions (respectively deletions) that occurred
before transmitting the symbol x;. Between time instants ¢ and ¢ 4+ 1, we assume that
there is a maximum of I,,, insertions and of 1 deletion. As a result, d;;; lies in the
interval [d; — 1,d; + Inax]. Overall, between time instants ¢ = 0 and ¢t = T', we assume
that d; lies in the interval [Dpin, Dimax]. Both Inax, Dmin, and Dyay, will be parameters
of the decoder. Finally, the state of the decoder is denoted by the pair o; = (s¢,dy).
Figure 5.7 shows the trellis of the decoder, with state o, evolving between successive time
instants t =0,t =1, and t = 2.

For instance, let us assume a sequence

x = [ATACGTC]
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sent through the DNA data storage channel, and a received sequence
y = [AACGTC]

In this example, the channel has deleted the symbol T' highlighted in red on x. In
Figure 5.7 we show the subsequences y% considered on each branch. The solid lines
correspond to the input bit w; = 0, while the dashed lines correspond to the input bit
w; = 1. We now describe the different subsequences observed on the path highlighted in
blue in the trellis. We observe that at instant ¢ = 0 the blue branch which goes from
oo = (50,0) to a1 = (S, 0) corresponds to the substring y? = A(A = 00). This is because
dy — d; = 0, and thus, on this branch it is assumed that there is no insertion nor deletion.
Then, at instant ¢ = 1, the blue branch which goes from o7 = (5p,0) to o2 = (Sy, —1)
corresponds to the empty substring y3 = (). This is because d; — dyy1 = —1, and thus, on
this branch it is assumed that there is a deletion. Finally, at instant ¢ = 2, the blue branch
which goes from oy = (Sy, —1) to o3 = (Sp, —1) corresponds to the substring y3 = A.
In addition, the blue path is the most probable path, since it allows to resynchronize the
sequence, i.e., the 1¢ A and 2" A are located on the same positions in the trellis than in
the sent message x. Of course, this is just to illustrate how the drift allow to synchronize
the sequence. We now describe into more details how the different elements of the BCJR

decoding algorithm are computed.

A posteriori probability computation

The decoder aims to compute a posteriori probabilities P(w;|y), where

Plurly) = e (52)
and
P(wy,y) = Z P(y,o,0011). (5.3)

(t,0t41):we
During the computation of these probabilities, the drift variable d; allows to maintain a
Markov property in the sequence of states [121]. Hence, P(y, o, 041) can be decomposed

as

—1).nc+de.ne Net+dit1.ne
P(y, 00, 0ve1) = Py 0 o Py e 1 Ol TPty g1 |1
(5.4)
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t=1 t=2 t=3

Figure 5.7: Partial trellis diagram for Decl, for time instants ¢ € [0, 3], with I,. = 1 and dyyq €
[di —1,d; 4+ 1]. It is assumed that the sequence y = [AACGTC] was received. The blue path is the most
probable path, since it allows to resynchronize the sequence y.

—~+
o
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The three terms of the previous equation can be computed using a forward recur-

: t=1).nc+dg e :
sion for P(y{" V"t &) = ay(0), a backward recursion for P(Y oty met1Oe11) =

. . t.ne+dit1.n o
Bi+1(0441), and a branch metric computation for P(y(tﬁ).nﬁd;ncﬂ: oii1loy) = (o, 0011).

Forward and Backward recursions

The forward recursion allows to compute a;(o) for all ¢ € [0,7 — 1] as

at(at) = Z at71<0't71>7t<0't7170't) (5-5)

Ot—1

where ag(op) is initialized as

, ifag=(0,
ag(og) = ! 0,9 (5.6)

0, otherwise.

The backward recursion allows to compute 5;_1(o) for all t € [1,T] as

Bi(oy) = Z Ber1(oi1)7: (0, 0141) (5.7)

Ot+1

where fr(or) is initialized as

1, ifo=(0,N® —N)
Br(or) = (5.8)

0, otherwise.

Branch metric computation

FO,Oq

Flimax+1

N ?Stggltqit%rﬁon Deletion > Insertion

Y

Figure 5.8: Lattice structure used to compute branch metrics in Decl.
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We also want to evaluate the branch metric v;(o;, o411), which can be expressed as

t-nc+dt+1 MNe

(01 0141) = Pw)P(y )0 g deralds, st s141) (5.9)

where P(w;) = 1/4. The probability P(yztis(z*}r d+1 dey1]de, s¢, 8041) 1s evaluated by using

an efficient algorithm based on a lattice structure [124], see an example in Figure 5.8.
This lattice will allow to compute the probability to pass from state s; to state s;i1,
which corresponds to the emission of a certain symbol & = x’éﬁcl).nc 41 We consider the
Eﬁfgit:i d4,+1> Whose length corresponds to passing from drift d; to

drift d; 1. The lattice is equivalent to computing the probability to produce the observed

observed sequence y =y

sequence y from X, by considering all the possible paths of the channel model in Figure 5.8.
For instance, let us assume that the subsequence x = A is sent through the channel (see
Figure 5.6), and that the subsequence y = AAC' is the received sequence. One possible

path that would produce y from X is as follows:
— The initial position is F .

— The first transition is a match, represented by the orange arrow. Hence, this match

produces the first symbol A in the sequence y.

— The second transition is an insertion, represented by the the green arrow. This

insertion produces the second symbol A in the sequence y.

— The third transition is an insertion, represented by the green arrow. This insertion

produces the third symbol C' in the sequence y.

Therefore, the probability to obtain y = AAC from x = A is evaluated by identifying all
the possible path between points Fj and Fj z,,..+1 in the lattice. We now describe into
more details how the probability to produce y from x is recursively computed.

We recursively compute the probabilities on the lattice, as Vi € [0,1], and Vj €
[0, Limax + 1],

1 -
Fij=PeFi1;+ ZPiFi,j—l + Q(&i9;) Fi j—1 (5.10)

where

Q(&3]y;) = (5.11)

1 .
3P, otherwise.

In these expressions P, is the probability of a deletion, IP; is the probability of an insertion,

P, is the probability of a match, and P, is the probability of a substitution. Note that here,
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these probabilities come from the i.7.d. channel model. The computation is initialized as

1, ift=0and j=0
F ;= (5.12)
0, ifi<Oorj<O0

F; ; represents the probability at the lattice node [z, j] and it is computed recursively
through the lattice using (5.10). Moving vertically on the lattice means that a deletion
occurred, which corresponds to the first term of (5.10). Moving horizontally on the lattice
means that an insertion occurred, which corresponds to the second term of (5.10), where
the factor i represents the uniform probability to insert any base A, C, G or T. Moving
horizontally on the lattice means that either a match occurred if &; = y;, or a substitution

occurred if #; # y;. In both cases, this corresponds to the third term of (5.10), where
1
3
possible ones. Finally, after computing the last lattice node F} ;.. +1, we get

represent the uniform probability to substitute the current base # by any of the three

tnetdigyne
P(Y(tﬁl)ﬁﬁdﬁ,nﬁp dyy1|dy, Sty 5041) = Fra—dir1
Note that in our implementation, we first evaluate the lattice for the largest possible gap
Ivax + 1 between d; and dy4, and we extract partial values F g,,, 4,41 from the lattice
computation, for d; 7 — d; + 1 < I + 1. This is more efficient than generating one

lattice per possible value d;;q — d;.

This CC decoder was shown to be very efficient when targeting i.i.d channels. However,
as we saw in Chapter 3, error probabilities over the DNA data storage channel depend on
the read k-mers and on previous observed events. Thus, the performance of Dec! may
be improved by taking into account the DNA data storage channel. This is why we now
propose to modify Decl in order to take into account at first previous events (Dec2), and

then both previous events and read k-mers (Dec3).

5.3.2 CC decoder taking into account previous events (Dec2)

We now extend the previous decoder with drifts in order to take into account the

memory between successive events.
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t=0 2

Figure 5.9: Partial trellis diagram for Dec2, for time instants ¢t = 0, t = 1, t = 2, with L. = 1 and
dt+1 S [[dt -1, di + 1]]
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States of the decoder

The state of the decoder is now given by a triplet o, = (s, dy, e;), where e, is the
last event (insertion, deletion, match, substitution) observed before emitting symbol x;.
The event variable e; is added in order to preserve the Markov property when taking the
previous event e;_; into account. This results in a larger trellis which has 4 times more
nodes than for Decl, see figure 5.9 for an example. Note that at time instant, t = 0 we

assume that the channel starts with a match "M".

A posteriori probability computation

With this new state definition, equation (5.4) still applies. To evaluate the three terms
involved in the computation P(y, o, 0¢411), we still use a forward recursion, a backward

recursion, and a branch metric computation, each with modified expressions.

Forward and Backward recursions

The forward recursion is still given by (5.5), but the initialization is changed to also
take into account the initial event eq which is defined as ey = M. This gives the following
initialization:

1, lfO'OZ(O,O,M)
Oé()(O'Q) = (513)
0, otherwise.
In the same way, the backward recursion is still given by (5.7), but the initialization is

changed so as to take into account the final event ey as

P,,, ifo = (0,N® — N, M)
P,, ife=(0,N® —N,S)
Br(or) =Py, ifo=(0,N® — N, D) (5.14)

P;, ifo=(0,N® —N,I)

0, otherwise.
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Figure 5.10: 3D Lattice structure used to compute branch metrics in Dec2, for e, = M and e;11 = D.

Branch metric computation

Branch metric computation is more affected by the additional state variable e;. The
branch metric v;(oy, 0441) is now evaluated as

’Yt(a-ta 0't+1) = P(wt)P(yz;fiCSii:igi?nchl) diy1, €141 |dt, €t, St, 5t+1) (5-15)

t-nc+dt+1 MNe
(t—1).nc+de.ne+10

evaluated recursively using a lattice. Especially, in Dec2 a 3D lattice is necessary to

In this expression, the probability P(y diy1,€ia1|dy, €, Sty Sev1) 18 still
consider additional paths added by the dependency to previous events. The new lattice
contains four plans, where each plan represents a particular event e, € {M, S, D, I}, as
shown in figure 5.10. The moving rules are the same as in the lattice for Decl (see Fig-
ure 5.8), except for the fact that we can now move from a plan to another one, depending
on the considered event e;. For instance, in the case of an insertion, we should move
horizontally from [i,j — 1] nodes related to each plan toward the insertion plan, see green

arrows in Figure 5.10.

85



Part , Chapter 5 — Second error-correction solution: Convolutional Codes with decoder aware
of the channel memory

The recursive computation is initialized as

1, ift=0and j=0and e=¢
F o= (5.16)
0, ifi<Oorj<O0

We now define P,, ., as the probability to observe event es € {M, S, D, I} given that the
previous event was e; € {M, S, D, I}. The probabilities at successive nodes in the lattice

can be calculated recursively by using the following formulas:

Fijv=PpmFi1jam+PosmFisij1,8 +PosmFio1 1.0 + PismFicj-10 (5.17)
Fijs= ;(Pmﬁsﬂl,jl,M + P sFi1 1.8+ PassFicijo1p+PoFisq 1) (5.18)
Fiijp=Punaliijm +Pesalioijs +Pasalioijp +Pisalioijr (5.19)
Fijr= jl(]P)m—m'ﬂ,j—l,M + P yiF 1+ PasiFijoap + PisiFija 1) (5.20)
where
Figs =0, iHE =1, (5.21)
Fiju =0, if 2; #y;
At the end, we get
Myfﬁfﬁﬁﬁncﬂa dit1, €r41|de, €4, 8¢, 5041) = Fldps—di+1,e001 (5.22)

which allows to evaluate v(oy, 07411).

In Chapter 3, we observed that the event probabilities also strongly depends on read
k-mers, due to the way the nanopore sequencer works. This is why we now propose to

modify Dec2 in order to take into account both previous observed events and read k-mers.

5.3.3 CC decoder taking into account previous events and read
k-mers (Dec3)

In the third decoder, in addition to previous events, we also take into account the

statistical dependency between the current event and the underlying k-mer.
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States of the decoder

The state of the decoder is now given by a quadruplet o, = (s, dy, €4, m,), where n, is

a vector of length k which gives the current k-mer. Especially, if n; = [nit), U;t)a e 77]](:)]7

then ny1 = | gt),nét), e ,’r],(f),a:tﬂ], where z;,; is the symbol emitted at time instant
t + 1. This results in a larger trellis which has 2% times more nodes than for Dec2, see
figure 5.11. Note that 2* corresponds to the number of possible paths of length k in the
trellis. At stage t = 0, this new state variable is initialized as o = 0. In addition, for

t < ka we consider N = [77?), nét)a T 7771St—)17771$t)]'

So,-4,M,AAA

Internal CC state So.-4,M,TAA

Drift So,-4,M, TAA
0-3M,AAA ¢
So,-4,M,CTA So,-4,5,TAA
So-3M,TAA 1% :
So,-3,M,CTA So.-4,S,AAA -4,D,TAA
So,-3,M,GAA
\s,,-4,M,AAT 4,1, TAA
S0,-3,M,AAA L (S,-4,M,TAT '
| S,,-4,M,TAT
L S,,-4,M,CTT
So,-3,M,AAA i
Event ymer  ¥5,-4,5AAT
t=4 t=5 t=6

Figure 5.11: Partial trellis diagram for Dec$, for time instants t = 4, t = 5, t = 6, with I.x = 1 and
dt+1 € [[dt — 1,dt + 1]]

A posteriori probability computation

With this new state definition, equation (5.4) still applies. To evaluate the three
terms in P(y, o, 0:1), we still use a forward recursion, a backward recursion, and a

branch metric computation which we now describe.
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Forward and Backward recursions

The forward recursion is still given by (5.5), with initialization given by (5.13). The
backward recursion is still given by (5.7), but the initialization changes to take into account

the k-mers as follows:

P(M|n,), if o= (0,N® — N, M)
P(S|n,), ifo=(0,N® —N,S)
Br(or) = {P(Dly,), ifeo = (0,N® —N,D) (5.23)
P(I|n,), ifo=(0,N® —N,I)
0, otherwise.

Branch metric computation

The branch metric v.(o7¢, 0¢11) is now evaluated as

V(O Or1) = P(wt)P(YEﬁcfgfi:ixncﬂ, dit1, €441, nt+1|dt7 €t; Mys Sty St11) (5.24)
= P(wt)P(YEﬁSf;:izme, diy1, er1]ds, e, Nit15 Sty St41) (5.25)

because 1, is entirely determined by 7, and by the transition from s; to s;1;. The
probability P(yﬁﬁcfg ‘ifi di1s des1s €ep1lde, €0,My 41, 8¢, 5¢41) is evaluated from the same lattice
in 3D shown in Figure 5.10 and used for Dec2. However, compared to Dec2, the recursive
computation over the lattice now takes into account the observed k-mer n,. We now
consider the probability P(esy1|n,, e:) of edit ey € {M,S,D, I} conditionally to the

k-mer 7, and to the previous edit e, € {M,S, D, I}. We use the following formula to
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recursively compute the probabilities throughout the lattice:

Fijnr = P(Mneyr, M)Fiy 10 +P(M |1, S)Fi1j1s

(5.26)
+P(M|ne41, D)Fioyj—1.p + P(M |01, 1) Fimy 11
1
Fijs= g(P<S|77t+17 M)Fi_1 1m0 +P(Sg1, S)Ficj-1.s (5.27)
+P(S|n41, D)Fic1j—1,0 + P(S|mgr, 1) Fim1 j—11)
Fijp =P(Dmg1, M)F;_1 jm +P(D|nesa, S)Fia s (5.28)

+P(D|niy1, D)Fi—1jp + P(D|nesr, I Fiz g
1

Fijr= Z(P(Ilnm, M)F; j—1m + P41, S)Fij-1.8 (5.20)
+ P11, D)F; j—1.0 + P01, D) Fijo1.1)

At the end, we get

tn+dit1.nc -
]P)<y(t—1)n+dt.nc+1’ dta et’dt+17 €i+1, My, St $t+l) - Fl,dt+1*dt+1,€t+1 (530)

as for Decoder 2.

5.3.4 Decoding with several sequences

The three previous decoders only take into account one output sequence y, while the
DNA data storage channel outputs V sequences y*). In [101], it was proposed to decode
each sequence y*) independently and separately, and to aggregate the results a posteriori

by relying on the following formula:

2) (V)) _ Hl‘)/:l P(wy, y(v))

]P)(U)tbf(l), y( y LY P(wt)V*1 (531)

Note that this aggregation could be realized at different levels of the decoding, but it was
shown in [101] that it is more efficient to apply it on the a posteriori probabilities. In
addition [101] also proposed another more efficient but also more complex technique to
take into account multiple sequences directly inside the CC decoder. We did not consider
this second technique, as in this work, we rather investigate whether taking into account

previous events and read k-mers allow to improve the decoding.
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5.4 Numerical results

In this section, we evaluate the performance of Decl, Dec2, and Dec3. We first eval-
uate the performance of each decoder in terms of BER and FER. We then evaluate the

performance of Decl in the full DnarXiv pipeline.

5.5 FER and BER evaluation

We first evaluate the performance of Deci, Dec2, and Dec3, by running Monte-Carlo
simulations over our memory channel model. We consider both versions of our memory
channel model, 7.e., the one trained on the experimental data SetE, and the one trained
on the genomic data SetG. Both versions are considered because the overall error rates
differ between the two models: it is about 10% on the model trained on SetE, and about
3% on the model trained on SetG, as explained in Chapter 3.

Each simulation run considers a randomly generated sequence w, and each of its
elements w; takes value in the alphabet {A,C,G, T} uniformly at random. Then w
is encoded with a (k. = 1,n., = 2, K. = 3) CC, which uses the generator polynomial
Opoty = [02 + 1,82 4+ 0 + 1], and outputs a binary encoded sequence x of length N = 54.
The sequence x is then transmitted through our memory channel model, which outputs V'
sequences y™¥) (v € [1,V]). Then the Convolutional decoder takes as input M sequences
(M < V) randomly selected from the set y¥). We consider 10000 simulation runs to
evaluate the FER and BER of each decoder. Note that we consider short sequences due
to the complexity that is introduced by Dec3.

Figures 5.12 and 5.13 show the FER and BER, respectively, of the three decoders
over the memory channel model trained onto SetE. We observe on these figures that Dec?
has the best performance, which is expected since it fully takes into account the channel
model. The performance gain is even more significant when the number of sequences M
considered by Dec8 increases. We also observe that the performance of Dec2 is the worst,
most probably because this decoder does not take into account all aspects of our memory
channel model. We also notice that increasing M does not improve much the performance
of Decl. This is because Decl assumes an i.i.d. channel. Thus, aggregating the results
of separate decoding will less impact than when considering the memory in the channel.

Figures 5.14 and 5.15 show the FER and BER, respectively, of the three decoders over

the memory channel model trained onto SetG. As previously, we observe that Dec3 has
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Figure 5.12: FER with respect to the number of sequences M, over the memory channel model trained
onto SetF.
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Figure 5.13: BER with respect to the number of sequences M, over the channel model trained onto
SetE.
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Figure 5.14: FER with respect to the number of sequences M, over the channel model trained onto
SetG.
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Figure 5.15: BER with respect to the number of sequences M, over the channel model trained onto
SetG.
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the best performance, especially when M increases. Furthermore, performance of Dec2 is
still the worst, most probably for the same reasons mentioned before. Note that on these
figures the obtained BER and FER are lower than on Figures 5.14 and 5.15, because

overall error probability on SetG is lower than on SetF.

5.6 The convolutional decoder solution in the full
DnarXiv pipeline

Decl has also been tested by Olivier Boullé using the DnarXiv pipeline described
in Chapter 4. In this new set of simulations, the consensus and NB-LDPC decoder
highlighted in green on Figure 4.13 have been replaced by Dec1, which takes into account
only drifts. For now, only Decl was tested due to the high complexity introduced by
Dec3. The purpose of these simulations is the same as in Chapter 4, i.e., compare the
CCSA consensus algorithm, which does not use channel coding, to Dec! which relies on

the CC. To perform this comparison, the following protocol was used:
1. Convert a document into 200 fragments.

2. Encode each fragment with the (1,2,3) CC. The encoded fragments are of length
N =100 in GF(4) in a first setup, and of length N = 200 in GF(4) in a second

setup.

3. The obtained fragments are used as inputs for our memory channel model trained

on SetE, which outputs several edited replicas of each fragment.

4. The obtained sequences are then separated into 200 clusters, where we expect that

each cluster contains sequences related to one fragment of the document.

5. In order to reconstruct the fragments, on each cluster, M sequences are selected at

random and used either by Decl or by the CCSA consensus algorithm.

6. The average precision of all reconstructed fragments is then computed. The precision
means the percentage of correctly aligned and equal bases between the reconstructed

fragment and the original one.

Figures 5.16 and 5.17 show the precision of the two solutions when reconstructing
fragments of length N = 100 and N = 200, respectively. On both figures, we observe that
Dec1 significantly outperforms the consensus algorithm. These results are not surprising,

since the consensus algorithm is based on a majority vote. As a results, it needs much
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Figure 5.16: Deci and CCSA consensus reconstruction precision with respect to the number of se-
quences M, over the channel model trained onto SetE. Reconstructed fragments are of length N = 100
in GF(4).

Credit: Figure provided by Olivier Boullé.
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Figure 5.17: Deci and CCSA consensus reconstruction precision with respect to the number of se-
quences M, over the channel model trained onto SetE. Reconstructed fragments are of length N = 200
in GF(4).

Credit: Figure provided by Olivier Boullé.
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more sequences during the reconstruction. Unlike in Chapter 4, where the NB-LDPC
decoding relied on the consensus algorithm for sequence synchronization, Decl tackles
both synchronization and substitution errors, and can perform efficient decoding even
with a small number M of sequences. We also observe that the precision of the consensus
algorithm on Figure 5.17 where N = 200, is lower than its precision on Figure 5.16 where
N = 100. Hence, for larger values of N the consensus algorithm performance decreases.
This is because the consensus algorithm needs more sequences to perform reliable majority
votes. On the opposite, the performance of Decl remains the same since it does not
depend on the sequence length N, but on the amount of errors on the sequences.

These results clearly show the contribution of channel coding to reduce the number M
of sequences to process, and to increase the reconstruction precision. Furthermore, based
on the previous BER and FER evaluation, we have good reasons to think that in practice,
Dec3 could provide a better precision of reconstruction than Decl. In addition, unlike the
consensus algorithm, performance of Decd could increase when N becomes larger, since

generally speaking, the performance of channel codes is better when N increases.

5.7 Conclusion

In this chapter, we introduced a DNA data storage coding scheme based on CCs. We
then proposed two modified versions of the CC decoder initially proposed in [101]. We saw
through the numerical results that our modified decoder, which takes into account both
the memory of the observed events and the read k-mers, offers better performance than
the decoder of [101]. We also saw from numerical simulations that inside the DnarXiv
pipeline, the decoder from [101] outperforms the consensus algorithm. There is a need
to reduce the complexity of Dec3 before integrating it into the DnarXiv pipeline, which

may further improve the decoding performance.
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CHAPTER 6

DEDUPLICATION ALGORITHMS AND
MODELS FOR EFFICIENT DATA STORAGE

In this chapter, we investigate data deduplication algorithms for efficient data storage.
We present data duplication over an edit channel which is very close to the DNA storage
channel. We describe the Pivot-Based Deduplication Algorithm PBDA initially proposed
in [125], which allows to reduce the deduplication process complexity. We then propose a
modified version of the PBDA, called PBDA-SW (Sliding-Window), which improves the
PBDA deduplication ratios when considering high error rates. Finally, we compare the
performance of our PBDA-SW to the PBDA and to other existing solutions.

The work presented in this chapter was carried out during the first year of this thesis,
i.e., it was done before the work on the previous chapters. This chapter is also separate
from the previous ones in the sense that it addresses data deduplication, while previous
chapters were dedicated to channel coding. This is because, the DnarXiv project was
accepted at the end of the first year of this thesis. Therefore, the work on data dedupli-
cation was put aside in order to focus on the priorities of the DnarXiv project, namely
channel modeling and coding for DNA data storage. Therefore, the work presented in
this chapter targets data storage systems in general. At the end of the chapter, we discuss

how this work could be used in the context of DNA data storage.

6.1 Data Deduplication

Data deduplication [28, 126] aims to remove redundant copies of the same data on a
Data Storage System (DSS), so as to reduce the space used on the DSS. By doing so, it
can also reduce the network bandwidth. In this work, a DSS means one or several drives
accross one or several machines. Hence, data deduplication is a key feature for many
cloud and enterprise servers [127].

Figure 6.1 illustrates how deduplication reduces the amount of used space on a DSS.
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In this figure, each letter refers to a particular block of data, while same letters refer to
the same data. We see that the deduplication process removes the duplicated data by
saving only a unique copie of each data, while pointers (&) replace the redundant data

and point to the location of the unique copie of each data.

S|BIA[O

S Deduplication &S |&0|&S [&S |&O

I e[ e
S B

&0 |&0 [&A |&S |&B

Figure 6.1: This figure illustrates the data deduplication process. On the left side we observe the initial
blocks of data, which goes through the deduplication process. The right part shows how a unique copy
of each initial blocks is saved, while pointers, which are smaller than the original blocks, are used to refer
to the saved copies.

6.1.1 Deduplication VS compression

Deduplication can be considered as a compression operating on a large-scale. However,

deduplication is different [126] from classical compression [128, 129] on several aspects.

— Compression operates on one file at a time, by removing intra-file redundancy. Op-
positely, deduplication operates across an entire DSS to save a unique copy of each
data.

— Compression implies that a decompression step is necessary to retrieve the original
data. In contrast, deduplication uses pointers which point to unique copies of data.

Therefore, there is no need for a reconstruction step.

Classical compression is not well adapted for large-scale DSS, in the sense that it would

compress files individually, while deduplication operates over large sets of files.

6.1.2 Deduplication techniques

When applying deduplication, we consider that the data is split into a large number
of pieces called "chunks', where either a chunk corresponds to one file [127, 130], or each

file is split into several chunks [127, 130]. Prior works on data deduplication are mostly
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based on hash algorithms [28, 131, 127]. In these works, a hash key is generated for each
chunk contained in the DSS. Then, if it is a new chunk, its hash key is computed and then
compared to the lookup table of existing hashes. If the hash already exists in the table,
then the chunk is replaced by a pointer to the existing copie. Otherwise, a new entry is
added to the lookup table.

The deduplication can be executed as an inline [131, 127] or as a post-processing [131,

127] process, as we now describe.

— Inline deduplication processes the data before it is written onto the DSS. Inline
deduplication first sends the hash of each chunk to the DSS. A given chunk is
transmitted to the DSS only if its hash does not exist in the lookup table. In
addition to reducing the amount of stored data, inline deduplication also reduces
the bandwidth because it transmits only the chunks for which the hash is not in
the lookup table. However, the main drawback of this technique is the increased

writting latency [131, 127], i.e, several comparisons are performed before writing

the data to the DSS.

— Post-processing deduplication first writes the data to the DSS, and then cal-
culates the corresponding hashes. In this case, there is no overhead in the writing
latency. However, in order to write the original data, this process requires more
storage space [131]. Furthermore, this process needs additional resources to contin-

uously scan the DSS and look for deduplicable data.

In this work we consider inline deduplication so as to also reduce bandwidth.

6.1.3 Deduplication Granularity

Data chunking can be done at two different levels [130], and it has a direct influence

on the deduplication performance.

1. File-level: each chunk corresponds to a whole file. In this case, only a small number
of hashes (one per file) are generated. Therefore, the deduplication process has a low
complexity. However, if two large files only differ by one bit, no data deduplication
is possible.

2. Block-level: each file is divided into several blocks. The size of each block is either
fixed or variable.

— Fized-size: each file is splitted into blocks of the same size and each block

corresponds to a chunk. This makes it possible to deduplicate data whenever

99



Part , Chapter 6 — Deduplication algorithms and models for efficient data storage

the compared files have some chunks in common. The complexity of this ap-
proach is higher than the file-level approach, but it offers a better deduplication

performance.

— Variable-size: each file is splitted into blocks of variable sizes, and each block
corresponds to a chunk. Although it has the highest complexity, this approach
offers the best deduplication performance [127].

In this chapter, we consider the Pivot-Based Deduplication Algorithm (PBDA) intro-
duced in [125]. This algorithm aims to reduce the deduplication complexity compared
to existing approaches, while maintaining a reasonable deduplication performance. This

algorithm considers an inline approach, and a variable-size block-level deduplication.

6.2 Edit channel model

In this chapter, we consider an initial file x stored on a DSS, and a file y which is an
edited version of x. Here, we consider that edits are either insertions or deletions. We
then try to achieve the best possible deduplication of y. The file x corresponds to a non-
binary random sequence of length N, where each element z; takes values in the alphabet
Q = {0,1,...,¢g — 1} with a uniform probability distribution. We consider the same
i.i.d. channel model as in [125, 132]. This model is shown in Figure 6.2. It sequentially
introduces insertions with a probability IP;, and deletions with a probability P;. Note that
a substitution can occur when a deletion is immediately followed by an insertion. Let us
assume a sequence e of length R (R > N), which corresponds to the edit pattern, such
that e = (e1, €9,...,€eRr), and e, € {—1,0,1} such that:

— If e, = —1, then a deletion occurs, and hence, y is not updated. This event has
probability P,.

— If e, = 0, then there is no edit, and hence, y <= x;. This event has probability
1-P;, — Py

— If e, = 1, a new symbol a taken at random from (2 is inserted, and hence y < a.

This event has probability P;. The process remain on z;

Therefore, the sequence y is obtained from the sequence x, according to the edit pattern
e.
In what follows, we use d,, (n € [1, N]) to denote the drift value, which corresponds

to the number of insertions minus the number of deletions observed before transmitting
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Figure 6.2: Edit channel model.

the symbol x,1. Therefore, d, is defined as d,, = >, e;. Furthermore, we assume that
the probability of an edit P = P; + P; is relatively small, and that P; = P;.
This model allows to consider data deduplication from an information theory point of

view. Only a few works [125, 133, 134] have considered this approach.

6.3 Data representation

We now introduce some definitions before describing the PBDA in [125]. The sequence

X can be represented as

M-1) p(M-1) (M) [(M)

x =s pM s@ p@ s p P

where s is a segment which contains L, symbols, and p® is a pivot which contains L,
symbols, and i € [1, M]. M denote the number of blocks in x, and the block ¢ is given
by the concatenation of the substrings s®,p®. We assume that L, is relatively small
compared to Ly (Ls < L,). Moreover, L, has to be small enough so that the probability
of edit in a pivot p®¥ is relatively small, and large enough so that p” contains enough
symbols to perform reliable comparisons. We also assume that the file length N is divisible
by the block length Lp = Ls + L,. We can remark that the number of blocks on a file of
length N is M = %

We use ¢ to denote a chunk, which corresponds to the concatenation of G consecutive
segments and pivots as
z'—l—G)7

c=s p® . . s pi . andi+ G < M
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Finally, N = YL | I;, where [, is the length of the chunk c®, and T corresponds to
the number of chunks c. Since we consider a variable-size block-level deduplication, /; can

differ from one chunk to another.

6.4 Deduplication algorithms based on pivots

We now describe the PBDA initially introduced in [125], which considers an inline

approach with a variable-size block-level deduplication.

6.4.1 Operators

The symbol matcher operator ® that is used to compare pivots p»* and p®), of x

and y, respectively, is defined as
p @ p™) = (™ @ ™, pi™ o py™ e o piY) i € 1, M]

with

oy 1Rl = i)
p§z,x) ®p§z7y) — . p‘zl ) pzz ) 7j S [[17 LP]]
07 if p] 7 7£ p] 7

Therefore, p* perfectly matches p*¥) only if Vj € [1, L,], pji7x) o p§i,y) = 1. In this
case, the drift d,, is equal to 0 for n = iLg. Note that d,, = 0 can either mean that there
was no edit before the pivot p(¥), or that the number of deletions is equal to the number
of insertions.
We use S(p, u) to denote a shift operator, which shifts the pivot p by |u| positions to

the left or to the right, when u < 0 or u > 0, respectively. Hence,

— if u >0, then S(p,u) = (A,...,A,p1,D2, .- -, PLy—u)-

— if u <0, then S(p,w) = (Puj+1, Pluj+2, - - - PLy» Ay oo, A).

———

where A corresponds to a null value, and Vj € [1, L,], p; © A = 0.

6.4.2 Principle of the PBDA

To determine if the block (s, p) can be deduplicated, the PBDA only compares

the pivot part p). Therefore, it decreases the complexity of the deduplication process.
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The PBDA works as follow:

1. Initialization: the PBDA partitions the files x and y, respectively, into M segments
s¥) and s¥) of length L,, and into M pivots p®* and p®Y) of length L,, with
i € [1,M] and L, < L,. D, and D, are parameters which corresponds to the
positions of the next pivots to process in x and y, respectively. They are both
initialized to the position of the first pivot, that is D, = D, = L, + 1.

2. Chunk detection: a Consecutive Pivots Module (CPM) is used to determine the
size of the chunk c that can be deduplicated. The CPM, which will be described into
more details in the next section, identifies all the G consecutives blocks (s(9), p(9))
that are free of edits, with g € [1,G]. The CPM also determines the drift d,, (with
n = (G+1)Lg) on the pivot p{¢*+Y i e.. the pivot that comes after the deduplicated
chunk.

3. Update: the parameters D, and D, are updated as
— Dy =D, +(G+1)x(Ls+ L)
— Dy =D, +d,

The algorithm repeats steps two and three until © = M, or until an edit on a pivot is
encountered. We explain later in this section why the algorithm cannot handle edits on

pivots.

6.4.3 Description of the CPM

The CPM is the core component of the PBDA. It allows to identify deduplicable
chunks ¢, and to compute the drift d,,, which is needed to update D, if there is an edit.

We now explain into more details how the CPM works.
— The size of the deduplicable chunk is initialized as G = 0.

— In the case where p®* = p(¥)_ the size of the deduplicable chunk increases: G =
G + 1, and the positions of the next pivots are updated: D, = D, + (Ls+ L,), and
D, = D,.

— As soon as p("®) #£ p(#¥) the drift d,, (with n = iLp) is computed so as to correct

the position D, of the next pivot pt+1¥).

— The drift d,, is then computed to detect insertions or deletions. According to the

form of the resulting vector, the drift is set to
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u, if pt® © S(pY), —u) = (1,...,1,0,...,0)

—— —— L
—u, if p® © S(pi¥) u) = (0,...,0,1,...,1) 2

H/_/T,_/

u P—u

The CPM then outputs G and d,,. Note that to perform reliable comparisons, the maxi-
mum value of the shift v is fixed to % as in [125].

The PBDA allows to decrease the number of comparisons needed for chunks dedupli-
cation. However, when the channel error probability increases, the deduplication perfor-
mance decreases. This is because edits appear in the pivots, and hence, the algorithm
cannot deduplicate the remaining file. In this case, the PBDA stops its execution because
it cannot compute the drift since the resulting vector when comparing p®* and p®¥) has
neither the form (1,...,1,0,...,0) nor (0,...,0,1,...,1).

—_———— —_— ——

Lp—u u u Lp—u

6.4.4 PBDA performance

In this Section, we evaluate the deduplication ratios of the PBDA under various edit
probabilities P. The deduplication ratio corresponds to the amount of deduplicated data
divided by the amount of initial data. Each simulation run considers a couple of files x,
y. The file x of length n = 120000 is generated randomly, and each of its elements z;
takes value in the alphabet Q = {0,...,¢ — 1} uniformly at random, with ¢ = 64. The
edit channel has a certain probability of edit P = P; + P4, with P; = P;. We perform 1000
simulation runs for each considered value of P.

Figure 6.3 shows the deduplication ratios with respect to the edit probability P. We
observe that the amount of deduplicated data drastically decreases when P > 10~*. This
is because in this range, errors occur more often in the pivots, and then stop the dedupli-
cation process. Therefore, the PBDA should be improved in order to tolerate higher error
rates. This is why we now propose a modified version of the PBDA, called PBDA-SW
(Pivots-Based Deduplication Algorithm with a Sliding Window) [135], which can tolerate

edits in the pivots, and thus, increase the deduplication ratios.

6.4.5 Principle of the PBDA-SW

We now introduce the PBDA-SW [135], which is a modified version of the PBDA
in [125]. The PBDA-SW allows to continue the deduplication proccess even if there is an

edit in a pivot.
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Figure 6.3: Data deduplication ratio as a function of P. L, =6 and Ly = 94 (i.e., M = 1200)

In the channel model described in Figure 6.2, P; = P,;. Therefore, the expected value
of the drift d,, over the file is zero, i.e., E(d) = 0. As a result, each component x; of x
produces component y; of y, with ¢/ = ¢, or ¢/ # ¢ but i and i’ are close to each other.
Therefore, whenever there is an edit in a pivot, we propose to use a sliding-window of
length L,, = L,, which slides the pivot to the right by w € [1,n,] positions, ns being
the maximum number of slides. After each slide, there is an attempt to compute d,.
It is possible to compute d, with the CPM if there is no edits in the window. The

sliding-window stops its execution if d,, is computed, or if w = n.

For instance, let us consider a set of symbols {2 with ¢ = 16 and L, = 5. Let the
beginning of file x be:

x=1,..,A,B,3,4,C,D,5,E,6,F,...8,9B,2,C,3,1C, B, A, ...

s(1,x) p(l,x) s(2,%) p(2,x)

and the corresponding edit pattern:

e=0,...,0,—-1,-10,...,00,0,0,—1,0
—_——— ——

s(1) p() s p®
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The beginning of file y is then:

y=1,..,4,4,C,D,5 E,6,F,...89 B,2C,1,C, B, A, ...

pLy) s(2,y) p(2Y)

The CPM performs the pivot matching with
pt® = (4,C, D,5,F) and pY) = (D, 5, E, 6, F)

Since p*) ® p¥) #£ (1,...,1), the CPM outputs G = 0 as if there was no deduplicable
chunk. Then, the computation of d, (with n = 1Lpg) starts. There is no error in the
pivot, and since p** ® S(p"¥),2) = (0,0,1,1,1), then v = 2, and d,, = —2. Therefore,
the next pivot p¥) is shifted by d, = —2 positions to the left.

The second execution of the CPM performs the pivot matching with

p(27X) = (B7 27 07 37 ]') and p(2’y) = (B7 27 07 17 C)

Since p?® © p3¥) £ (1,...,1), then G = 0. Since the result of

L
P @ S0, v e |1, ]

2
is neither of the form (1,...,1,0,...,0) nor (0,...,0,1,...,1), there is an edit (deletion
\?/_/ —— ——— \?,_/
pP—u u u P—Uu

of the symbol 3) in the pivot p¥). Therefore, the drift d, (with n = 2Lg) cannot be

computed, and the sliding window technique is used:

— forw = 1, p®¥ = (2,0,3,1,0) and p®¥) = (2,C,1,C, B). The position of the
deleted symbol is still in p®¥). Thus, d,, cannot be computed, and the initial pivot
is shifted by w < w + 1 positions.

— for w =2, p®¥ = (C,3,1,C, B) and p®¥) = (C,1,C, B, A). The position of the
deleted symbol is still in p3¥). Thus, dy cannot be computed, and the initial pivot
is shifted by w < w + 1 positions.

— for w = 3, p®* = (3,1,C, B, A) and p®¥) = (1,C, B, A, 4). The position of the
deleted symbol is not in p¥), and p®* ©S(p®¥),u = 1) = (0,1, 1,1, 1). Therefore,
the drift dyy,, = —1 is computed.

Then the position of the next pivot D, and D, are updated the same way than in the
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CPM in [125], such that
D,=D,+(G+1) x(Ls+ L) and D, = D, + dg41

The deduplication process can continue.
Therefore, compared to the PBDA in [125], the PBDA-SW allows to continue the

deduplication process even if there are edits in a pivot.

6.5 Performance of the PBDA-SW

In this section, we compare the performance of the PBDA in [125] to some Brute Force
Methods (BFMs) for deduplication [125] and to our PBDA-SW through a theoretical

analysis and numerical simulations.

6.5.1 Theoretical analysis

We introduce a theoretical analysis that consists of evaluating the cost C defined as the
average number of comparisons of each algorithm. We consider an initial file x of length
N, and a file y which is an edited version of x. We then provide expressions of the average

number of comparisons necessary to deduplicate the file y given an edit probability P.

File-level BFM complexity

The file-level BEM [125] compares all symbols of x and y. The comparison stops if
it encounters unequal symbols or if it reaches the end of the files. The cost Cr is then

expressed as

Cr = Ni [(1 - P)i—l(ﬂ@)] + (1 =P)N"YNP) + N1 —P)N (6.1)

i=1
In this expression, the first term corresponds to the average number of comparisons given
that the (i — 1) symbol is correct (has no edit), while the i** symbol is edited. The
second and third terms are special cases which correspond to the case where the (N — 1)
symbols of the file are not edited while the N** one is edited, and to the case where none

of the N symbols was edited, respectively.
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Block-level BFM complexity

The block-level BFM [125] first divides x and y into M blocks, and then compares
the symbols of each block. The comparison stops if the algorithm encounters unequal
symbols, or if it reaches the end of the block. In both cases, the next blocks are then

compared, and so on until the last block was compared.

The corresponding cost Cg can be expressed as

Cp = M[Lfl[u — P (iP)] + (1 = P)"» ! (LpP) + Lp(1 — P)*> (6.2)

i=1
where M corresponds to the number of blocks to compare. Except for considering blocks

of length Lp rather than the entire file, all three terms are the same as in equation (6.1).

PBDA complexity

The PBDA [125] only compares the pivot part of each block rather than the whole
block. We ignore the case where an edit exists in the pivot because it stops the execution

of the PBDA, i.e., the deduplication is aborted. The cost Cpppa is then expressed as
Cpppa = M|Ly(1 = P)* + L2(1 = (1= P)")] (6.3)

In this expression, the term L,(1—P)" corresponds to the average number of comparisons
given that the segment s of length L, is not edited. The term Lf, (1 —(1 —]P’)LS> corresponds
to the average number of comparisons given that the segment s contains at least one

edition, where Lf, correponds to the number of performed comparisons to determine the
drift d,,.

PBDA-SW complexity

Like the PBDA, our PBDA-SW only compares the pivot part of each block. However,
if there is an edit in a pivot, our algorithm can continue the deduplication process after

performing some extra comparisons through the sliding-window. The cost Cpgpa.sw is
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then expressed as

CpBDA-SW = M[ Lp(1—P)"»
+ Lpn(1 = P)ks (1 (1 - P)*?)
+ Lpng(1— (1 =P)%) (1 - (1-P)"7)
+ Lp?[l = (1= P)"s](1 — P)*7]

The first term corresponds to the average number of comparisons given that there is
no edit in the block (segment and pivot). The second term corresponds to the average
number of comparisons given that there is no edit in the segment s, but there is at least
one edit in the pivot p. The third term corresponds to the average number of comparisons
given that there is at least one edit in the segment s and at least one edit in the pivot
p. The fourth term corresponds to the average number of comparisons given that there
is at least one edit in the segment s but no edit in the pivot p. The parameters M and
n, correspond to the number of blocks in x and the number of maximum slides of the

sliding-window, respectively.

Numerical cost comparison

We consider an initial file of length N = 1.2 x 10°, and we evaluate the previous costs
given various edit probabilities P, see Figures 6.4 and 6.5. The better algorithms are
those with the smaller costs. In the case of the PBDA-SW, we consider various maximum
number of slides ny = {L,, 2L,, 3L,}.

In Figure 6.4 we consider segments of length L, = 94 and pivots of length L, = 6.
Hence, the number of blocks is M = 1200. In the case of Figure 6.5, we consider segments
of length L, = 9994 and pivots of length L, = 6. Hence, the number of blocks is M = 12.
In both figures, we observe that for low edit probabilities, the number of compared symbols
is the smallest in both the PBDA and PBDA-SW, and that the PBDA-SW number of
comparisons is practically the same as in the PBDA. This is because the probability to
observe an error in the pivot is low. Therefore, the sliding-window is rarely used. We also
observe that when P > 10~*, the PBDA-SW cost starts to increase because the sliding-
window is often used. In addition, although for larger edit probabilities the file-level BFM
has a small number of comparisons, its deduplication ratios will become very poor as we
will see in the next section. Furthermore, the block-level deduplication has the highest
number of comparisons, and until P = 1072, it is worst than the PBDA-SW.
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Therefore, compared to the PBDA, the complexity of our PBDA-SW only increases

slightly when P > 10~* because the sliding-window is more often used.
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Figure 6.4: Number of compared symbols as a function of P. This figure considers parameters N =
120000, L, = 94, L, = 6, M = 1200.
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6.5.2 Deduplication ratios

We also evaluate the algorithms in terms of deduplication ratios through numerical
simulations. Each simulation run considers a couple of files x and y. The file x of length
n = 120000 is randomly generated, and each of its elements z; takes value in the alphabet
set @ = {0,...,q — 1} uniformly at random, with ¢ = 64. We perform 1000 simulation
runs for each considered value of edit probability P.

Figure 6.6 shows the deduplication ratio for the considered algorithms with respect to
edit probabilities P. Except for the BFM file algorithm, we consider two cases for each
algorithm. In the first case, we fix Ly = 94 and L, = 6 (i.e., M = 1200), while in the
second case we fix Ly = 9994 and L, = 6 (i.e., M = 12). It is not surprising to observe
that the BFM block algorithm has the best results, because it goes through each block
symbol by symbol. Hence, if there is a deduplicable block, the BFM block will find it, but
at a high cost. In addition and very interestingly, the PBDA-SW allows to significantly
increase the performance of the initial PBDA in [125], and it almost fits the BEM block

algorithm performance for a much lower cost. Indeed, when P < 10~*, compared to the
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Figure 6.5: Number of compared symbols as a function of P. This figure considers parameters N =
120000, Ly = 9994, L, = 6, M = 12.

BFM algorithm block, the PBDA-SW reduces the deduplication complexity by a factor
of 10 when L, = 94 and L, = 6, and by almost a factor of 10> when L, = 9994 and
L, = 6. The BFM file deduplication ratios are smaller because if only one symbol of the
file is edited, then the deduplication fails. We can also notice that for all the considered
algorithms, the deduplication ratio starts to drastically decrease when P > 10~3. This is
because there are errors on most of the blocks.

Figure 6.7 shows the impact of the maximum number of slides ng on the performance
of the PBDA-SW. In this figure, we consider different values of parameters M and n, with
respect to P. In the first case, we consider M = 1200 (i.e., Ly = 94 and L, = 6), and three
different values of ny = {L,,2L,,3L,}. We observe that compared to ns = L, setting
ns = 2L, and ny = 3L, allow to improve the deduplication ratios, particularly when P
increases. This is because the deduplication is operated with a smaller granularity (large
number of small blocks). Therefore, the sliding-window is often used. The deduplication
ratios between n, = 2L, and ny = 3L, are quite the same because when P is small, sliding
the window by only a few positions is enough to remove the edits from the window. On
the opposite, for large values of P, considering ny; = 3L, does not improve the results
because other errors can be encountered on the 3Lp positions. Therefore, ny = 2L,, offers
the best tradeoff between cost and performance. For the other cases where M = 120 (i.e.,
Ly =994 and L, =6) or M =12 (i.e., Ly = 9994 and L, = 6), increasing n, has a slight

effect or no effect at all. This is because the granularity is too high (few number of large
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Figure 6.6: Data deduplication ratio as a function of P for the four different algorithms. For the PD
and SW-PD, we consider L, =6, Ly =94 (i.e., M =1200), and L, =6, Ly = 9994 (i.e., M = 12).

blocks). Therefore, the probability to observe an edit in the pivot decreases, and hence,
the sliding-window is not used much.

Therefore, the effect of ny is more important when dealing with a smaller granularity.
Furthermore, it is not necessary to consider a large values of sliding ng because for small
values of P only a few slides are necessary, while for large values of P, other edits appears

after a few slides.

6.6 PBDA-SW in the context of DNA data storage

We now discuss how the PBDA-SW could be used in the context of DNA data storage.
The edit channel described in Section 6.2 is very similar to the DNA data storage chan-
nel. Indeed, the DNA data storage channel takes as input a sequence x and outputs V'
sequences y) (v € [1,V]), where each sequence y) is an edited version of x. Moreover,
depending on the amount of sequenced data, the FastQ file produced by the sequencer
contains a few to hundreds gigabytes of redundant sequences (y)). Therefore, it could
be possible to deduplicate the y) sequences, for storage on a DSS.

However, the DNA data storage channel presented in Chapter 3 has a high edit proba-

bility P over the sequences y*). Indeed, depending on the sequencing protocol, P can vary
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Figure 6.7: Deduplication ratios of the PBDA-SW, with respect to the maximum number of slides.
This figure considers parameters Lp = 6, M = {12,120, 1200} and ny = {L,,2L,,3L,}.

from 1072 to 107! [19, 20]. Furthermore, the DNA data storage channel also introduces
substitutions. As a result, P = P; + Py + Py, and P; # P,;. Therefore, the PBDA-SW
should be further improved: (i) tackle higher error probabilities, (ii) handle substitution
errors, (iii) consider the asymetric case P; # Py.

Interestingly, some notions used in the PBDA-SW| show connections with some ideas
developed in the previous chapters on channel coding. First, in Chapter 4, the sequence
output by the consensus has a low error probability, and it is divided into small blocks for
the synchronisation. Although it does not rely on a sliding window, the synchronisation
algorithm tries to insert some bases on each considered block. Second, in Chapter 5, the

CC decoders use the drift variables d,, as state variables.

6.7 Conclusion

In this chapter, we introduced the PBDA-SW as an extended version of the PBDA
initially proposed in [125] for data deduplication. We saw through a theoretical analysis
and through numerical simulations that our PBDA-SW significantly improves the dedu-

plication performance at the expense of a slightly increased complexity. However, the
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deduplication ratios of the PBDA-SW remain poor when the probability of edit P > 10~2.
Therefore, to use the PBDA-SW in DNA data storage, it should be further improved.
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CHAPTER 7

CONCLUSION & PERSPECTIVES

In this thesis, we addressed several issues toward implementing practical DNA data
storage systems. We first proposed a memory channel model, which accurately repre-
sents the DNA data storage channel. In addition, we proposed and evaluated two error-
correction solutions. Especially, the second solution based on convolutional codes allowed
for an important gain in performance compared to the first solution which relies on a
consensus algorithm followed by LDPC codes. In addition, the second solution improved
state-of-the-art convolutional codes for DNA data storage, by taking into account our
memory channel model. Finally, we also proposed a data deduplication algorithm called
PBDA-SW, which showed improved data deduplication performance compared to existing
solutions, while maintaining a low algorithm complexity.

We now describe some perspectives to improve the proposed solutions, and we identify

other important research directions.

7.1 Memory channel model

In this section, we describe some perspectives that could improve the memory channel

model:

— Consider chimeric and unaligned reads: when training our memory channel
model, both unaligned and chimeric reads were discarded from the training pro-
cess. These reads were ignored because the length of the unaligned parts were too
large. We observed that these reads are either completely different from the original
sequence [136], or only show some small similarities. Thus, they introduce some
specific error patterns which should be taken into account during the training. The
amount of chimeric reads is relatively small compared to the amount of total reads.
For instance, in [136] and [137] the amount of chimeric reads is about 1%, while in

our SetG and SetE, the amount of chimeric reads is about 2% and 10%, respectively.
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One possible solution to take chimeric reads into account could be to consider two
running modes for the memory channel model. One mode would be dedicated to
the chimeric and unaligned reads, and another one would be dedicated to primary
reads. The memory channel model could then switch from a mode to another during

the simulation.

— Build a genomic data simulator: the proposed memory channel model allows to
simulate a whole sequence, i.e., the model takes as input a sequence x and outputs
V sequences y), which are edited version of the whole sequence x. This behavior is
well adapted to the case of DNA data storage. However, when considering genomic
data, a sequence x can produce V sequences y(*), but each sequence y*) is an edited
version of a small region (substring) of x. Therefore, it could be interesting to find
a way to model the sequences y(* so that they correspond to regions of x rather
than to the whole sequence. Hence, this model could also be used for genomic

simulations, which would be of interest for the bioinformatics community:.

— Sequencing protocol database: in our work, we trained our memory channel
model on data sequenced with a particular procotol. We used a specific library
preparation kit (used to prepare the DNA), a specific flongle flow cell (sensor that is
used to sequence the DNA), and basecalled with a specific version of guppy. Hence,
given that some experimental data is accessible, it would be interesting to build
various error profiles, each one related to a particular sequencing protocol. This
would allow users to choose the error profile of the memory channel model that best
fits their needs.

7.2 CSL solution

In this section, we describe solutions that could improve the performance of the CSL
decoding scheme. At first, in this solution, there is a need to improve the consensus
algorithm. But the synchronization algorithm could also be improved as follows.

This algorithm splits the sequence into segments of length [,, and then arbitrary inserts
the base "A" at the beginning of each segment to compute the score S. To further improve

the synchronization performance, it could be interesting to insert the arbitrary base "A"

by dichotomy over the sequence y.ons-
The code rate of the NB-LDPC code could also be optimized. Indeed, the amount of

errors after the consensus step is relatively small. Hence, if ¥,,5 is correctly synchronized,
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the NB-LDPC decoder could correct the remaining errors even with a high code rate.

7.3 CC decoder

The CC decoder called Dec3 in Chapter 5 could be improved in terms of algorithm

complexity and performance. We now describe some of the possible improvements.

— Consider a smaller memory order k: we observed in Figure 3.8 that the memory
channel model is also accurate for values of £ smaller than 6. Therefore, one could
consider a smaller memory order & (i.e., k < 6) in the decoder, which would reduce
the decoding complexity while maintaining the performance hopefully better than
Dec! and close to Dec3 (with k = 6).

— Consider dynamic parameters D,,;,, and D,,,,: currently, we consider that
Dinin = Dz However, given that in our model P; # Py and P; < Py, considering
D,in # Dipae could decrease the complexity of the algorithm since several nodes of
the trellis would be removed. D,,;, and D,,,, should be fixed according to the edit

probabilities of our memory channel model.

— Consider forward and reverse strands: except in the case of long homopoly-
mers, considering both forward and reverse strands could improve the performance
of Dec3. This is because while a k-mer on the forward strand introduces errors on a
particular position, its reverse on the reverse strand may be less sensitive to errors.
However, in this case, it would be necessary to add a step which identifies forward
and reverse reads before decoding them. The identification could be done either by
adding two different short sequences of about 10 bases at the beginning and the end
of the strand to synthesize, or by performing alignments between the reads. The
first solution would increase the synthesis cost, while decreasing the identification
complexity. The second solution would not require to add bases to the strand to

synthesize, but the identification complexity would increase.

— Consider FastQ) files metadata: among the metadata produced by the sequencer,
a score called "phred score" indicates the reliability of the basecalling on each symbol
of the sequence. The phred score can also be expressed as a probability of error.
Hence, it could be possible to initialize the decoder a prior: probabilities with this

information, so as to improve the decoder performance.
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7.4 'Toward a reliable DNA data storage decoder

Error-correction decoding can be placed at different stages after DNA sequencing,
but the best decoding performance could maybe be obtained when directly decoding the
electrical current signal. This is because the current signal contains an analog information
that is richer than the digital information (e.g., DNA bases values) contained in the FasQ
file. In addition, the data in the FastQ file may contain additional errors introduced by
the basecaller.

The basecaller in the MinION relies on a DeepLearning approach to transform the
current signal into DNA bases. To the best of our knowledge, there is no practical solution
that purely relies on channel coding to convert the current signal into DNA bases. This is
not surprising since the MinlON sequencer is mainly used for genomic data experiments,
so as to sequence the genome of living organisms, which of course do not contain channel
codes.

However, in the case of DNA data storage, we can encode the DNA sequences. There-
fore, rather than using the basecaller, it could be possible to rely on a channel decoder
in order to transform the current signal into DNA bases while correcting errors at the
same time. Furthermore, since the basecalling is a high time-consuming step, the channel

decoder could maybe reduce DNA sequencing time.
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Algorithmes pour la synchronisation de données et leur stockage sur ADN

Mot clés : Stockage de données sur ADN, modéle de canal, NB-LDPC, Codes convolutifs,

erreurs d’insertion et de suppression, déduplication de données

Résumé : 175 zettaoctets. C’est la capa-
cité estimée pour pouvoir stocker les don-
nées numériques en 2025. Malgré le fait que
des centres de données plus grands que des
stades et a forte empreinte carbone sont dé-
ployés chaque année, la croissance de la ca-
pacité de stockage est inférieure aux besoins.
Le Stockage de Données sur ADN (SDA)
pourrait étre la solution. En effet, TADN est
un support extrémement dense de stockage
de données. De plus, il a une trés longue
durée de vie et peut étre stocké a tempeé-
rature ambiante. Cependant, le principal in-
convénient du SDA est sa grande quantité
d’erreurs d’'insertions, suppressions, et substi-
tutions. Par conséquent, pour construire des
SDA pratiques et fiables, il est nécessaire de
mettre en ceuvre des solutions de correction
d’erreurs. Cependant, la plupart des solutions
de correction d’erreurs conventionnelles ne

corrigent que les erreurs de substitution et
échouent complétement a corriger les inser-
tions et les suppressions. Cette thése vise a
résoudre plusieurs problemes liés a la mise en
ceuvre de systémes pratiques de SDA. Nous
avons d’abord proposé un modéle de canal
avec memoire, qui modélise avec précision
le canal de SDA. Ce modéle de canal per-
met notamment de faire des simulations nu-
mériques et de concevoir des codes correc-
teurs d’erreurs efficaces. Nous avons ensuite
proposé et évalué deux solutions de correc-
tion d’erreurs. La deuxiéme solution basée sur
des codes convolutifs a notamment permis un
gain de performance important par rapport a
la premiére solution et aux codes convolutifs
de I'état de I'art. Enfin, nous avons également
proposé un algorithme de déduplication de
données appelé PBDA-SW, qui améliore I'état
de l'art.

DNA data storage algorithms and synchronization

Keywords: DNA data storage, channel model, NB-LDPC, Convolutional Codes, insertion and

deletion errors, data deduplication

Abstract: 175 zettabytes. This is the pre-
dicted digital data storage needs for 2025. De-
spite the fact that data centers larger than sta-
diums and with a high carbon footprint are
deployed every year, data storage capacity
growth is less than required. DNA data stor-
age could be the solution. Indeed, DNA is an
extremely dense data storage media. In ad-
dition, it has a very long durability, and can
be stored at a room temperature. However,
the main drawback of DNA data storage is its
high amount of insertion, deletion, and substi-
tution errors. Hence, to build reliable practi-
cal DNA data storage systems, it is necessary
to implement error-correction solutions. How-
ever, most conventional error-correction solu-
tions only correct substitution errors, and com-

pletely fail at correcting insertions and dele-
tions. This thesis aims to address several is-
sues toward implementing practical DNA data
storage systems. We first propose a memory
channel model, which accurately models the
DNA data storage channel. Especially, this
channel model allows to run numerical simu-
lations and to design efficient error-correction
codes. We then introduce and evaluate two
error-correction solutions. Especially, the sec-
ond solution based on convolutional codes
allows for an important gain in performance
compared to the first solution and to state-of-
the-art convolutional codes. Finally, we also
propose a data deduplication algorithm called
PBDA-SW, which improves state-of-the-art on
data deduplication.
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