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RESUME DU MANUSCRIT

Comme explicité par le rapport du Groupe d’experts Intergouvernemental sur I’Evolution
du Climat (GIEC, 2022), le changement climatique produit de nombreux déséquilibres de
I’écosysteme qui entrainent une large extinction d’especes animales et végétales. Dans
ce contexte, le développement de modeles qui permettent de prédire le futur de la biodi-
versité est devenu un probleme majeur. Plusieurs avancées ont été faites en ce sens, en
particulier en étendant les modeles de distribution d’especes (Species Distribution Mod-
els, SDM, Guisan and Thuiller, 2005), qui traitent les especes séparément, aux modeles
joints de distribution d’especes (Joint Species Distribution Models, JISDM, Pollock et al.,
2014). Les JSDM permettent de formaliser I’interdépendance entre les especes et de com-
prendre son impact sur la composition des communautés. De plus, modéliser les variables
réponses (dans notre cas, I’abondance d’especes) peut nécessiter de prendre en compte un
grand nombre de covariables explicatives possiblement fortement corrélées, ce qui est le
cas pour les variables climatiques. Ainsi, SDM et JSDM demandent a étre régularisés. La
régularisation peut étre effectuée par exemple a travers une réduction de dimension fondée
sur des modeles a composantes. Ceci consiste a supposer qu’il existe un petit nombre
de dimensions latentes explicatives que nous cherchons a capturer au travers de combi-
naisons linéaires de variables explicatives que nous appelons “composantes”’. Dans cette
thése, nous voulons construire des composantes qui peuvent étre interprétées comme de
nouvelles et pertinentes variables synthétiques.

La régression linéaire généralisée sur composantes supervisées (Supervised
Component-based Generalized Linear Regression, SCGLR, Bry et al., 2013) et son
extension thématique, THEME-SCGLR (Bry et al., 2020b), sont des approches couplant
I’estimation des modeles linéaires généralisés (Generalized Linear Model, GLM, Mc-
Cullagh and Nelder, 1989) multivariés avec la recherche de composantes explicatives.
Cependant, SCGLR a deux limitations majeures. Premierement, cette méthode suppose
que toutes les réponses sont expliquées par les mémes dimensions latentes. Dans de
nombreux contextes, cela peut ne pas étre le cas : les réponses peuvent étre tres différentes
et sont donc susceptibles d’étre modélisées a partir de dimensions explicatives qui sont,
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dans une certaine mesure, spécifiques. Comme deuxieme limite, SCGLR suppose que
toutes les réponses sont indépendantes conditionnellement aux variables explicatives.
Néanmoins, dans un contexte d’analyse multivarié€e, les dépendances mutuelles entre les
réponses doivent, en toute rigueur, €tre prises en compte. L'objectif principal de cette
these est de surmonter ces limitations des versions précédentes de SCGLR.

Nous proposons d’abord d’étendre SCGLR de maniere a trouver des groupes de vari-
ables réponses modélisés par des dimensions explicatives spécifiques. Les méthodes
de classification ou les techniques classiquement utilisées dans la littérature d’écologie
statistique pour identifier des groupes ne considerent pas les données d’occurrence ou
d’abondance comme des réponses a des variables explicatives (Dufréne and Legendre,
1997; De Caceres et al., 2010). Dans 1’objectif de prendre en compte la modélisation des
variables réponses dans la classification, nous proposons de combiner la méthode SCGLR
avec un modele de mélange fini (Finite Mixture Model, FMM, McLachlan and Peel, 2004)
sur les réponses, chaque classe étant caractérisé€e par des composantes explicatives propres.
Dans un second travail, comme pour THEME-SCGLR, la matrice réponse est modélisée
par un partitionnement thématique des variables explicatives, nommés “thémes”. Ainsi,
la régularisation est effectuée afin de chercher, dans chacun des thémes, un nombre ap-
proprié de composantes qui contribuent a la fois a la prédiction de la matrice réponse et
a la capture d’informations pertinentes dans chacun des themes. De plus, nous relachons
I’hypothese d’indépendance conditionnelle. Dans un contexte écologique par exemple,
les co-occurrences d’especes qui ne sont pas expliquées par les variables environnemen-
tales demandent a €tre modélisées. Avec cet objectif en té€te, nous modélisons la matrice
de variance-covariance conditionnelle des réponses au moyen d’un ensemble de variables
aléatoires latentes appelées “facteurs”.

Maintenant que les principaux objectifs de la these ont été exposés, le manuscrit pro-
pose dans un deuxieme chapitre un état de I’art qui ne se veut pas exhaustif mais plutot
introductif aux différentes méthodologies dont nous avons besoin pour développer nos
approches.

Les modeles linéaires généralisés (GLM, Nelder and Wedderburn, 1972) sont intro-
duits dans un contexte ou la distribution gaussienne est inappropriée au type de variables
étudiées, comme les données qualitatives ou discretes. Les GLM couvrent I’ensemble de
ces situations en permettant aux observations d’étre issues de variables aléatoires ayant une
distribution appartenant a la famille exponentielle (Binomiale, Gamma, Normale, Pois-
son...). Contrairement au modele linéaire classique, I’espérance de la variable aléatoire
n’est pas définie directement par une combinaison linéaire des variables explicatives, mais
au moyen d’une fonction la reliant a ces dernieéres. Pour plus de détails, McCullagh and
Nelder (1989) proposent un apercu complet de ce sujet et Fahrmeir (1994) étend les GLM
au cas de I’analyse multivariée.
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Elaboré a partir des moindres carrés partiels repondérés itérativement (Iteratively
Reweighted Partial Least Squares, IRPLS, Marx, 1996), SCGLR permet de construire des
composantes dans un contexte de GLM multivariés. Contrairement aux méthodes comme
les moindres carrés partiels (Partial Least Squares, PLS, Wold et al., 1984) ou au mod-
¢le linéaire généralisé a vecteur de rang réduit (Reduced Rank Vector Generalized Linear
Model, RRVGLM, Yee and Hastie, 2003), SCGLR optimise un critere de compromis en-
tre la qualité d’ajustement (Goodness-of-Fit, GoF) du modele et la pertinence structurelle
(Structural Relevance, SR, Bry and Verron, 2015) des directions dans les variables explica-
tives. Cette méthodologie permet a la fois de trouver des directions explicatives fortes et
interprétables, et de produire des prédicteurs régularisés dans le cadre de grande dimen-
sion. Par la suite, SCGLR est raffinée de maniere a modéliser différents types de données
(Chauvet et al., 2019; Bry et al., 2020a,b).

Les modeles de mélanges finis (FMM) se caractérisent par un cadre paramétrique dans
lequel I'objectif est de modéliser une distribution de probabilité inconnue par une somme
finie de distributions. Les FMM fournissent une approche mathématique a la modélisa-
tion statistique d’une grande variété de phénomenes aléatoires. En raison de leur utilité
et d’une méthode de modélisation extrémement flexible, les FMM continuent de recevoir
une attention croissante, tant d’un point de vue pratique que théorique (voir McLachlan
and Peel (2004) pour un livre de référence). L'étendue et le potentiel d’application des
FMM se sont considérablement élargis. En effet, de nombreux champs de recherche dans
lesquels les FMM sont impliqués peuvent étre cités : astronomie (Lee et al., 2012), écolo-
gie (Pledger and Phillpot, 2008) ou les approches quantitatives de la psychologie (Colder
et al., 2002) et de la sociologie (Jones et al., 2001).

Les modeles a facteurs sont introduits par Spearman (1904); Thomson (1916); Thur-
stone (1931) pour des données issues de la psychologie. Depuis, cette méthode a été large-
ment diversifiée comme le montre les travaux de Bartholomew (1995); Saidane (2006) et
Tami (2016). Les facteurs sont des variables aléatoires latentes non-corrélées résumant
un ensemble de variables observées corrélées. Les variables observées sont décrites par
une combinaison linéaire des facteurs, un parametre de moyenne et une erreur de mesure.
Les facteurs n’étant pas observés directement, ils doivent étre prédits en méme temps que
I’estimation des parametres du modele. Les méthodes fréquentistes proposées pour es-
timer les parametres sont soit basées sur le maximum de vraisemblance d’un échantillon
de matrice de variance-covariance (Joreskog, 1967, 1969) soit sur 1’algorithme Espérance-
Maximisation (EM, Dempster et al., 1977; Rubin and Thayer, 1982; Jamshidian, 1997).
Afin d’identifier le modele, toutes les méthodes existantes doivent imposer des contraintes
sur les parametres.

Ensuite, dans un troisieme chapitre, le manuscrit présente le cadre et les objectifs de
modélisation pour lesquels nous proposons de combiner SCGLR avec un FMM. Nous en
profitons pour décrire I’algorithme global qui combine 1’algorithme EM pour estimer les



parametres du modele de mélange et 1’algorithme du gradient normé projeté itéré (Pro-
jected Iterated Normed Gradient, PING) qui permet de trouver les composantes. Dans ce
travail, nous utilisons une modélisation inspirée de Dunstan et al. (2011, 2013) qui suppose
que les especes peuvent étre classifiées dans un petit nombre de groupes en fonction de leur
réponse a un gradient environnemental. Dans le modele proposé par Dunstan et al. (2011,
2013), les réponses a I'intérieur d’un groupe partagent les mémes parametres de régres-
sion mais possedent un parametre de moyenne spécifique a chaque espece. Contrairement
a cela, nous proposons d’autoriser les réponses a posséder leurs propres parametres de
régression. Nous définissons un groupe comme un ensemble de réponses dépendant de
dimensions explicatives communes. Pour y parvenir, le critere compromis de SCGLR est
amélioré de maniere a empécher les groupes de réponses de dépendre de sous-espaces
explicatifs trop proches.

Deux schémas de simulation sont mis en ceuvre pour évaluer les performances de la
méthode implémentée. Le premier porte sur 1’identification de groupes de réponses dans
un cas de fortes corrélations entre variables latentes engendrant les espaces explicatifs.
Dans cette simulation, nous cherchons quelle combinaison d’hyper-parametres permet de
retrouver les vrais groupes de réponses. Nous utilisons 1’index de Rand (Rand Index, RI,
Rand, 1971) et I'index de Rand ajusté (Adjusted Rand Index, ARI, Hubert and Arabie,
1985) pour évaluer la qualité de la classification. Les hyper-parametres étant trées nom-
breux, nous choisissons une heuristique permettant d’approcher une bonne combinaison
grice au critere d’information Bayésien (Bayesian Information Criterion, BIC, Schwarz,
1978). Afin de comparer les performances de notre approche, nous calculons les temps de
calcul ainsi que les RI et ARI des partitions trouvées par d’autres méthodes de la littérature.
Dans la deuxieme expérience, nous étudions la détection du vrai nombre de composantes
dans un contexte de faible corrélation entre les variables latentes. Un autre objectif de
ces simulations est de traiter conjointement plusieurs types de réponses modélisées par de
nombreuses variables explicatives présentant a la fois des ensembles de variables haute-
ment redondantes et des variables isolées. Une telle structure de données est souvent ren-
contrée en pratique lorsqu’aucune présélection de variables explicatives n’a été effectuée,
et entraine des difficultés de modélisation et d’estimation.

Nous appliquons ensuite notre approche a un jeu de données constitué d’abondances
d’especes végétales se trouvant dans les foréts humides du bassin du Congo. Pour prédire
ces abondances, des variables climatiques ainsi que quelques variables caractérisant la
localisation ont été mesurées. L’application de notre méthode permet de détecter trois
groupes d’especes. Le premier contient les abondances qui seraient liées a un gradient
de température et qui seraient sensibles a un déficit en eau. Le deuxieme contient les es-
peces liées a un gradient régional opposant des zones a saison seche fraiche et pauvre en
lumiere (les cotes du Gabon) et des zones a fort taux d’évapotranspiration (limite nord des
foréts d’Afrique centrale). Enfin, il apparait que les especes qui ne sont connectées a aucun
gradient en particulier mais seulement a une combinaison quelconque de variables clima-
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tiques composent le troisieme groupe. En effet, comme détaillé par Réjou-Méchain et al.
(2021), dans les données récoltées, une part importante de la liaison entre les abondances
d’especes et les variables climatiques est due au hasard. De plus, nous montrons, méme
si I’amélioration est modeste, que les groupes trouvés permettent une meilleure prédiction
des abondances. Cependant, il faut préciser que la prédiction des abondances a partir des
seules variables climatiques est connue pour étre mauvaise (Beale et al., 2008).

Le quatrieme chapitre est constitué d’une deuxieéme approche que nous proposons ol
I’extension thématique de SCGLR et les modeles a facteurs sont combinés. Nous présen-
tons aussi une nouvelle maniere de fusionner les algorithmes PING et EM. En effet, bien
qu’il existe des travaux proposant I’estimation des GLM dans un contexte de modele a fac-
teurs (Generalized Linear Latent Variable Model, GLLVM, Skrondal and Rabe-Hesketh,
2004), aucun consensus ne permet de définir la bonne maniere d’effectuer cette estima-
tion. Ainsi, contrairement aux méthodes fréquentistes se basant sur une approximation
de la log-vraisemblance (Hui et al., 2017; Niku et al., 2017; Korhonen et al., 2023), nous
présentons une méthode inspirée de Saidane et al. (2013) estimant les parametres apres la
linéarisation du modele. Comme dans le travail précédent, nous cherchons des groupes de
réponses. En effet, des réponses partageant de fortes corrélations conditionnelles positives
ou négatives demanderaient a étre groupées. Ainsi, grace au positionnement multidimen-
sionnel (Multidimensional Scaling, MDS, Cox and Cox, 2008) et a une distance fondée sur
la matrice de corrélation conditionnelle issue de la matrice de variance-covariance condi-
tionnelle modélisée par le modele a facteurs, nous proposons d’identifier ces groupes.

Différentes expériences numériques sont réalisées pour tester les performances de cette
approche. La premiere consiste encore une fois a s’assurer que la bonne combinaison de
composantes et de facteurs est retrouvée a 1’aide du BIC. La deuxieme a pour objectif de
déterminer quelle combinaison d’hyper-parametres permet d’identifier la meilleure parti-
tion, au travers du RI et de ’ARI, dans un cas ou les groupes sont simulés de maniere plus
ou moins séparés. De la méme manicre que dans les simulations précédentes, ces expéri-
ences permettent de modéliser une matrice réponse incluant plusieurs distributions. La
nouveauté réside dans le partitionnement des variables explicatives (encore nombreuses
et redondantes) en deux themes distincts. Dans un contexte de variables réponses bi-
naires, nous comparons ensuite le temps de calcul, le RI et I’ARI de notre méthode avec
la librairie @ gllvm (Niku et al., 2019b) sur des jeux de données simulées de différentes
tailles. Cependant, dans cette troisieme expérience, dans un objectif de comparaison, nous
nous limitons a un petit nombre de variables explicatives accompagnées d’une covariable
additionnelle catégorielle.

Cette nouvelle approche a ensuite été testée sur un jeu de données constitué de mesures
(abondance, richesse, diversité) réalisées sur des communautés de carabidés et de plantes
vasculaires dans des champs de céréales des Vallées et Coteaux de Gascogne. Pour
prédire cette biodiversité agricole, des variables explicatives réparties en quatre themes
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ainsi qu’une variable binaire représentant I’année d’observation (2016 ou 2017) ont été
récoltées. Le potentiel de prédation, I’intensité fermiere et I’hétérogénéité paysagere liée
aux couverts semi-naturels et a la mosaique des cultures sont les themes incorporés dans la
modélisation. Apres utilisation de la méthode, il apparait que seul le theme d’intensité fer-
miere est pertinent dans la prédiction de I’agrobiodiversité. Plus particulierement, se sont
les variables explicatives représentant le traitement par herbicides, le nombre d’opérations
effectuées par les fermiers, la profondeur du labourage et la quantité d’azote qui sont le plus
impliquées dans cette prédiction. Les groupes de réponses identifiés grace a la matrice de
corrélation conditionnelle sont au nombre de quatre. Le premier regroupe des mesures
faites sur les carabidés possédant de tres fortes corrélations conditionnelles tandis que les
autres groupes sont composés d’un mélange entre plantes et carabidés.

La présentation et le développement de nouvelles méthodes étant faites, nous décrivons
dans un dernier chapitre les travaux en cours ainsi que les perspectives pour I’avenir des
composantes supervisées. Nous expliquons d’abord pourquoi nous pensons que les com-
posantes construites par SCGLR seraient plus intéressantes que des composantes clas-
siques (ACP, PLS ...) sur des données issues de I’écologie. Ensuite, nous proposons de
nouvelles approches permettant de combiner les versions précédentes de SCGLR a celles
détaillées dans ce manuscrit. En effet, Chauvet et al. (2019) ayant étendu SCGLR au
modele mixte, nous supputons que I’incorporation de ces travaux dans des contextes de
mélanges sur les réponses ou de modeles a facteurs latents permettrait une meilleure ex-
ploitation de I’information contenue dans les données. Finalement, nous soumettons un
moyen de construire des composantes pour lesquelles les vecteurs de coefficients associés
possedent des zéros pour les variables explicatives non pertinentes dans la prédiction de
la matrice réponse. Dans I’esprit de Simon et al. (2013), ce moyen pourrait aussi €tre
envisagé pour I’identification de thémes pertinents.

Enfin, nous détaillons en annexe le matériel supplémentaire dont nous avons eu besoin

dans ce manuscrit. Nous présentons les considérations théoriques de 1’algorithme PING
ainsi que les expressions analytiques des sous-criteres utilisés pour définir SCGLR.
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This chapter exposes the context and the main objectives of this work.



Chapter 1. Introduction

1.1 Context of the work

As highlighted by the report of the Intergovernmental Panel on Climate Change (IPCC,
2022), the climate change produces many ecosystem imbalances which might involve large
extinctions of animal or plant taxa. In this context, the development of models which
allow to predict the future of the biodiversity has become a crucial issue. A number of
advances have been made, in particular by extending Species Distribution Models (SDMs,
Guisan and Thuiller, 2005), which treat the taxa separately, to Joint Species Distribution
Models (JSDMs, Pollock et al., 2014). Both SDMs and JSDMs are based on a Generalized
Linear Models (GLM, McCullagh and Nelder, 1989) structure. JSDMs allow to formalize
the interdependence between taxa, and to understand its impact on the composition of
communities. Besides, modeling responses (here, the abundances of taxa) requires taking
into account a large set of possibly highly correlated explanatory covariates, which is the
case of climatic variables, so SDMs as JSDMs demand regularization. This can be carried
out by means of component-based dimension reduction. It consists in assuming that there
is a small number of common latent explanatory dimensions, which we aim to capture
through as many linear combinations of the explanatory variables, named components.
Moreover, the case where the explanatory variables outnumber the observations (referred
to as “high dimensional”) is likely to become a new standard (Warton et al., 2015). In this
thesis, we aim to build components which can be interpreted as new and relevant synthetic
climatic variables.

The Supervised Component-based Generalized Linear Regression (SCGLR), intro-
duced by Bry et al. (2013), bridges the multivariate GLM estimation, with the component-
based dimension reduction of the explanatory space. More formally, a response matrix Y
is assumed to depend on a set X of explanatory variables, and a set A of additional covari-
ates. Explanatory variables are supposed many and redundant, thus demanding dimension
reduction and regularization. By contrast, additional covariates contain few selected vari-
ables which are forced into the regression model, no regularization being carried out with
respect to them. Originally, SCGLR was designed to extract from the explanatory vari-
ables a sequence of components f* = Xu”, where u” is a loading vector. Denoting 7;,
the kth linear predictor associated with response yy, it is then assumed that

mo=> (Xum)yl + Ady,
h

where ' and ), are regression parameters. However, SCGLR still has two major lim-
itations. First, SCGLR assumes that all the responses are explained by the same latent
dimension. In several contexts, this might well not be the case: the responses could be
very different, and are thus likely to be modeled from explanatory dimensions which are,
to some extent, specific. As a second limitation, SCGLR assumes that all the responses
are independent conditional on the explanatory variables. Nevertheless, in a framework
of multivariate analysis, the mutual dependencies between the responses need to be taken
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into account. The main objective of this thesis is to overcome these limitations of former
versions of SCGLR.

We first propose to extend SCGLR so as to find groups of response variables being
modeled by the same specific explanatory dimensions. The clustering models or tech-
niques classically used in statistical literature to identify groups do not consider the pres-
ence or abundance data as responses to explanatory variables (Dufréne and Legendre,
1997; De Céceres et al., 2010). In order to take the modeling of outcomes into account
within the clustering, we propose to combine the SCGLR model with a Finite Mixture
Model (FMM) of responses (see McLachlan and Peel (2004) for a reference book), lead-
ing to a method of response mixture SCGLR we name rmSCGLR. In our work, we use
a modeling approach based on Dunstan et al. (2011, 2013), which assumes that all out-
comes can be clustered into a small number of groups with respect to their responses to
environmental gradients. In their model, the outcomes within a group share the same re-
gression parameters with an intercept specific to each outcome. By contrast, we propose
to entitle responses to their own regression parameters, and to define the gth group as a
set of responses depending on the same common explanatory components

Nkg = Z (X’LLZ') ’71?9 + Aékga
h

where ug is the loading vector of the hth specific component of group g. To estimate the
model parameters, we propose a criterion extending that of SCGLR, and develop an algo-
rithm combining component-based model and Expectation Maximization (EM, Dempster
et al., 1977) estimation.

Then, in a second work, we propose to relax the conditional independence assumption.
In an ecological context for instance, the species co-occurrences that are not explained by
the environmental variables demand to be modeled. With this aim in mind, we model the
conditional variance-covariance matrix of the responses by means of a set G of random
latent variables called factors. However, even though a strong conditional covariance be-
tween responses may hint at a biological interaction between species (Pollock et al., 2014),
Poggiato et al. (2021) argue the conditional correlations cannot distinguish the biotic from
the abiotic effects. Moreover, we henceforth assume that the response matrix is modeled
by a thematic partitioning of the explanatory X, ..., X, named “themes”. We thus
search for components in each theme to model Y. The linear predictor writes as a linear
combination of deterministic latent variables (the components), stochastic latent variables
(the factors) and additional covariates

Hy HR
=3 (X1U’f) YA+ (XRu’}z) e + Ay + Gby,
h h

where by, is a vector of parameters. An approach, named Generalized Linear Latent Vari-
able Model (GLLVM, Skrondal and Rabe-Hesketh, 2004), has been proposed to combine
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GLM with random latent variables. Unfortunately, in the particular case of factors, the
log-likelihood derived from GLLVM cannot be solved analytically. In absence of consen-
sus about the maximization of the log-likelihood, we propose to use a modeling approach
based on Saidane et al. (2013), which assumes that this maximization should be performed
through the EM algorithm iteratively performed on a linearization of the model. To esti-
mate the model parameters, we present an algorithm encapsulating thematic component-
based model estimation and factor model estimation. We name the methodology resulting
from this development: Factor SCGLR (F-SCGLR).

Across the manuscript, many simulations schemes are presented with the aim to illus-
trate the interest of our developments and the good performances of the proposed algo-
rithms. To challenge rmSCGLR, we propose simulation studies with specific explanatory
dimensions. The main objective of rmSCGLR in these situations is to detect the true
groups of responses. The performances of F-SCGLR are tested by simulating the co-
variance between the responses so as to get blocks in the conditional variance-covariance
matrix. F-SCGLR has to identify these blocks of responses sharing mutual dependencies.
All the simulations highlight the importance of a relevant selection of the many hyper-
parameters involved in the model. Moreover, rmSCGLR and F-SCGLR are respectively
compared to ecology-oriented ® packages ecomix (Dunstan et al., 2011, 2013) and gllvm
(Niku et al., 2019b). Finally, in order to give relevant tools for applied statistical modelers
as biologists or ecologists, our methods are used to analyze ecology datasets.

1.2 Preliminary notations

The manuscript contains mathematical developments which use notations listed hereafter.

e Leta,b € RY be vectors and W € RV*Y be a symmetric positive definite matrix.

The Euclidean scalar product between a and b with respect to metric W is given
a,b .

by (a,b)y, = a®Wb. Likewise, cosw (a,b) = _lably denotes the cosine

 lally [1blly
of the angle between a and b with respect to metric W'.

e If a and b are centred and W = %I ~, the cosine defines the linear correlation
coeflicient, denoted p. In this paper, unless otherwise stated, the correlation refers
to this coeflicient.

e A =lay,...,ap] € RN and B = [by,...,bg] € RV*? being matrices, the
space spanned by their column-vectors is denoted by span[A, B].

e Let w, be the weight of unit n, and W = diag(w,),=1_.n. Let RY be endowed
with metric W, and let A € RV*? be a matrix. The W -orthogonal projector onto

span[A] is given by IV, = A (ATWA)_1 ATW . Thus, the cosine of the

span[A



Section 1.3. Outline

angle between a vector b € RY and span[A] with respect to metric W is given by
cosw (b, span[A]) = cosw (b, I3 A b).

e Let A, B ¢ R¥*F be two real matrices. The Frobenius product is computed
as (A, B)p,, = Tr(A*B), where Tr denotes the trace of a matrix and A* =
Wt ATW the adjoint of A.

e The unit orthogonal projector with respect to the Frobenius norm is given by
wq‘g:;n[A] - H:g/;m[A]/\/rank (A)

1.3 Outline

The manuscript is organized as follows. Chapter 2 presents the state-of-the-art of the
statistical methodologies we need to develop our approaches. An introduction of the GLM
is given in Section 2.1, the original component-based models and SCGLR are recalled in
Section 2.2, while Section 2.3 and Section 2.4 respectively focus on the presentation of
the usual finite mixture and factor models. Chapter 3 is dedicated to the response mixture
extension of SCGLR we propose. As for the factor model extension, Chapter 4 details
how we relax the independence assumption between the responses. The supplementary
materials we need in this work are given in Chapter 6.
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The main objective of this chapter is to present a non-exhaustive state-of-the-art of the
statistical research fields encountered in the thesis.
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2.1 Generalized Linear Models

The Generalized Linear Models (GLM) are introduced by Nelder and Wedderburn (1972)
in a context where the Gaussian distribution assumption is inappropriate, as for qualitative
or discrete data. GLMs cover the modelisation of all these types of data by allowing the
random response variables to have any distribution from the exponential family. Contrary
to the original linear model, the expected value of the random response variable is not
directly equal to the linear predictor defined by a linear combination of the explanatory
variables, but as a function which links the response variable and the explanatory variables.
For further details, McCullagh and Nelder (1989) propose a complete overview of this
subject, and Fahrmeir (1994) extend this overview to multivariate data analysis.

2.1.1 Definition of Generalized Linear Models

Let {y,,n = 1,..., N} be a sample of the random variable y having one of the distribu-
tions of the exponential family. The y,,’s are assumed independent and their distribution
can be expressed in the form

L) = (02~ 50 1 oy, @
oo i

where a,, b and c are known functions depending on the type of the distribution, 8, is a
canonical parameter and ¢ is the dispersion parameter. The function a,, writes a,, = ¢/w,,
where w,, is the weight associated with the nth statistical unit. For all the distributions
belonging to the exponential family, the expectation and the variance can be expressed
thanks to the functions a,, and b. Let

N N
@ y = Z myn Z ym n))

be the sample log-likelihood. The general conditions given by Kendall and Stuart (1961,
pages 8-9) yield

i) -verfit-
< Efya] = 0'(6,)
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and
E B?g] +E <§é’;> ] =0 (2.2)
H'(6,) o = V(0 )| _
@El e ( an(9) )]‘0

& Vya] = a, (o) (0,).
We can thus rewrite the variance as a function of the expectation of y,,
Vya] = an() 0" o ()" (E [ya]) -
Denoting i, := E [y,] and v := 0" o (/) ~?, the independence of the y,,’s leads to

V [y] = diag (an(0)v(tn)) ey . -

,,,,,

As in the classic linear model, we may introduce a set X € RY*¥ of explanatory
variables linearly involved in the model through the linear predictor 1 expressed as

n= X8,

where B € RY is the regression parameter vector. Moreover, contrary to linear models,
the linear predictor is connected to the expected value through a strictly monotonic and
twice-differentiable link function A such that, for all n

M = h(lun)'

The link function which associates the expected value to the canonical parameter is called
the canonical link function. In this case, we have

N = Op-

2.1.2 Maximum likelihood estimation

Now, we present the process to maximize the likelihood of a GLM. We recall the log-
likelihood function

HO;y) =D ln(bn; yn),

n=1
where ©® = {0,,;n = 1,..., N} is the vector of parameters and
U (O yn) = 10 (L, (Y5 0n))
~ Ynbn — b(0n)

() + (Yn, D).
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2.1.2.1 The maximum likelihood estimation from the chain derivative rule

The maximum likelihood estimation equations with respect to the parameter vector 3 are
obtained from the chain derivative rule. Foreachn =1,..., Nandforeachp =1,..., P,
we then have

O, 0l 06, Oy, O
9By 00y Dpin Oy 9B,
Yo —b'(0,) 1 1
1" ! Lnp-
an(®)  0"(0n) W' (pan)

Thus,
1
= n; h (Mn)(yn - ,un)'
aﬁp nz:l Y Vya]h/ (:un)
Finally, the maximum likelihood of the vector 3 is a solution of
ol on
— =0 X"W_—(y—pn)=0 2.3
o8 o (y —p) =0, (2.3)

where we denote

on .= diag <877n>
On Otin ) s, v

.....

and

=1,...

0
We may note that, since the matrix W and a—n, as well as the vector p, depend on
u

B, Equation (2.3) is not linear in 3. So, we shall use an iterative process to estimate the
parameters.

2.1.2.2 Two iterative estimation methods

Two classic iterative methods can thus be performed to maximize the likelihood: the
Newton-Raphson (NR) method and the Fisher Scoring Algorithm (FSA). At iteration ¢,
the estimation 8+ is obtained from the previous estimate 3 by

921 )\ ! ol (t)
B+ — gt _ (E [W] ) ((9[3) for the FSA, (2.4)

~ 10 «~
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and

) 21 YO\ g\ @
B =pB" — <&38,3T> (%) for the NR method. (2.5

As mentioned by Osborne (1992), the FSA inherits most of the good properties of the NR
method. Furthermore, in a context of distributions belonging to the exponential family,
the calculation of the expectation of the Hessian matrix is possible. Indeed, the constraint
given by Equation (2.2) gives for the general term of Equation (2.4)

0?1 N 9%,

El%pﬁﬁq] EE[W@]]
N o, \ (0l
--x=(5) (55)

LnpTng E [h/(ﬂn)Q(yn - Mn)j
1 Viyall (pn)? Viyn]h' (1)

N
-2 T EY

V[yn]h/(ﬂn)

As noticed by Nelder and Wedderburn (1972) and detailed by McCullagh and Nelder
(1989), the FSA and the NR method are equivalent in the case of a canonical link. In-
deed, the canonical link is defined by

iM=1

Mo = 0 = h(/vbn) = xZB

or, in other words

N — / 1
h:(b)l and hzm

In this case, we have

Ol Oy O'(0,)
on, 00, 06, b(0n).

The chain derivative thus becomes

ol, 0l 90, Opn, Oy
B, 96, O, Oy, 86p
Yn — b’(@ )
an () b”(9 )
yn — ' (0n)
= Lpp——.
P an(9)

b (6,)0y

~ 11 «~
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Finally, the terms involving the second derivatives in Equation (2.5) are calculated as

9%, 0 (3: yn—,un>
08,08, 0B, '™ an(9)

Tpp Ofin
an(¢) 0B,
an(6) Onn 08,

b//(en)

= _xnpan an(¢>

TypTng
V[yn}h/(ﬂn)Q .

This proves the equivalence of the FSA and the NR method for the canonical link function.
Thus, in both cases, the matrix part of Equation (2.4) and Equation (2.5) writes

!
0BoBT

2.1.2.3 The IRLS algorithm to estimate GLM parameters

= XTwWX.

In the following, we use the previous iteration in order to estimate the parameter vector 3.
Then, step ¢ + 1 writes

B+ ( XTW® X)*l XTW ) gp® (2.6)

where for all n, the working variable (or pseudo-response) w,, is calculated as the first
order expansion of & at point ("

wl = h (uP) + b (1) (g — 1)
=l B+ 0 (u) (v — nl).
Equation (2.6) can be seen as a least squares regression step of w® on X weighted by

W ® in the linearized model
w® = X8+ ¢W,

where E[¢®] = 0 and V[¢®] = W®~1 This development leads to the iterations of the

Iteratively Re—weighted Least Squares (IRLS, Green, 1984) algorithm recalled in Algo-
rithm 1.

In the particular case of the canonical link, the update of the weight matrix is simplified.
We can recalculate W by

WD — diag Gan(@h' (“g))rl>

~ 12
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Algorithm 1: The IRLS algorithm

while not convergence do
= ) + g 1 () (- )

WD — ding ([anw)v (w0) b ()" )

R

gl — (XTw(t—i-l)X)_l X T (1) gy (t+1)
pt) = p-1 ( Xﬁ(tm)

t—t+1
end

2.1.3 Special cases of GLMs

Three particular cases of GLM are used in this thesis and deserve mentioning
1. The Gaussian distribution

A continuous random variable y ~ A (u, 0%) has a probability density function of
the form

Ly p,0) = —— eXP<_(y—M)2>

2702 202
p 1 ly* 1 >
= exp (y(ﬂ) exp (—202> exp (—202 b In(27w0?) |,

where 6 = h(u) = p, which characterizes the canonical link function as the identity
function. The known functions are respectively defined by a(c?) = o2 and b(0) =
%02. Thus, the expectation and variance are respectively given by

2. The Poisson distribution

A discrete random variable y ~ P () has a mass function of the form

L(y; ) = Mex;!(_m
= exp (yIn (u)) exp(—p) exp (= In(y!)),

where the canonical link function # = h(u) = In(u) is defined by the logarithmic
function. The known functions are respectively defined by a(¢) = 1 and b(0) =

~ 13
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exp(#). Thus, the expectation and variance are respectively given by

Ely] = '(6) = exp() = exp(In(p)) = p
VIy] = a($)b"(0) = exp(0) = exp(In()) = p.

3. The Bernoulli distribution
A binary random variable y ~ B(u) has a mass function of the form

L(y;p) = p# (1 — p)' "
= exp (yhn (2 ) Jexp (—tn (=
oo (725)) o (o (5)

where the canonical link function § = h(y) = In <1M> is defined by the logit
—p

function. The known functions are respectively defined by a(¢) = 1, b'(0) =
0 6
logit™*(0) = _exp() and 0" (0) = &)2. So, the expectation and the
1+ exp() (1 +exp(0))

variance are respectively given by

Ely] = '(0) = logit™" (0) = logit™" (logit(u)) = p
N A S O A S O
BT T VI e

For more examples about distributions from the exponential family, see Trottier (1998).

2.2 Component-based models

The main idea of the component—based models is to assume that the information contained
in the explanatory variables X should be summarized into a small number of synthetic
variables fq,..., fg called “components”. The latter are defined as linear combinations
of the original explanatory variables and need to be orthogonal with the aim to avoid the
linear redundancy of the information. Each component then writes f;, = Xuy, where
up, is a loading vector. In a regression context, the components are considered as new non
correlated explanatory variables to replace X . The different component-based approaches
presented in this part only differ in the manner the components are built.

2.2.1 Reminder of PCR and PLSR

We consider the classical linear model y = X3 + €. We assume that the response is
centered and that the P explanatory variables are normalized.
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2.2.1.1 Principal Components Regression (PCR)

In this approach, the linear combinations of the explanatory variables f;, ..., fg are the
principal components. The first principal component f; = Xw; is designed to capture
as much empirical variance as possible in X. So, u; is the solution of the optimization
program

max V[Xu] < max HXuHi

uTu=1 uTu=1

< max uw! XTXu.
uTu=1

Each subsequent component then captures as much as possible of X’s variance not ac-

counted for by former components, under the constraint that it is orthogonal to the former
components.

Now, let us take the principal components as a set of non-redundant explanatory vari-
ables. Due to the orthogonality, the predictor of the random response variable y writes

H
Uecr = Y Yn (2.7)
h=1
where 7y, is the coefficient of the classical regression of y on f}, that is
~ -1 <fh7 y>
Y= (Fufn) Fay=72"25 (28)
< g ) 4 <fh7 fh>

The predictor given by Equation (2.7) can then be expressed with respect to the original
explanatory variables

H
Ypcr = Z AnXup = X Bpcr,
h=1

. b
where Bpcr = > 41 YhUh.

An important disadvantage of PCR is that the principal components do not take into
account the response variable y in their construction. Thus, in order to model the response
vy, supervised components should be preferred. This is, for instance, what does the Partial
Least Squares Regression (PLSR).

2.2.1.2 Partial Least Squares Regression (PLSR)

Originally introduced by Wold (1966), the PLS regression has become a standard in ap-
plied statistics, particularly in the field of chemometrics (Fonville et al., 2010). Contrary
to PCR, the loading vector u;, maximizes the covariance between the component f; and
the response y. The optimization program thus becomes

uTu=1 = uTu=1

argmax cov (Xu,y) argmax (Xu,y)
up = .
Xu—Lfla"'vfh—l Xuj—flw"afh—l

~ 15
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The orthogonality between the components can be ensured either by deflating the design
matrix X at each step of the PLS algorithm or by adding an orthogonality constraint to the
optimization program. Moreover, it is straightforward to show that the hth PLS loading
vector uy, also solves

uTu=1 =

X'u’J—flw"vfh—l

uTu=1 ,

{argmax cov (Xu,y)? {argmax p(Xu,y) V[ Xu]
u =
Xu L fla"'7fh—l

indicating that the PLS components attempt a trade-off between capturing the highest vari-
ance in X (through V[X u]) and modeling the response vector y (through p (X u, y)z).
As aresult, there exists a vector of coefficients BPLSR, which can be expressed with respect
to the sequence of PLS loading vectors, such that yp sg = X BPLSR.

2.2.2 Extension to GLM

We henceforth present few extensions of PLSR that have been proposed in the literature
to deal with the GLM framework.

2.2.2.1 Principal Component Generalized Linear Regression (PCGLR)

Extending PCR to PCGLR (Marx and Smith, 1990) is straightforward: one just has to use
the principal components as the GLM’s new explanatory variables. Indeed, in the IRLS
algorithm, the regression parameter of the hth principal component writes

% _ <fh7w>
(Fn, fn)’

where w is the working variable. However, PCGLR suffers from the same drawback as
PCR: the principal components are not supervised by the response vector y.

2.2.2.2 PLS Generalized Linear Regression

The approach proposed by Bastien et al. (2005) elaborates on the fact that the PLSR of
aresponse y on X = [x1,...,xp|, where the explanatory variables are standardized,
gives a component of the form

fl . 25:1 COV(y7 mp)mp

Vi covly, @)

where the covariance between y and the explanatory variable x, represents the coefficient
associated with the simple Ordinary Least Squares (OLS) regression of y on x,. The
higher rank components can be produced in the same way, after replacing each explanatory
variable x,, with its OLS regression residuals on fj_;. Hence it is proposed to substitute

~ 16
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the OLS regressions by the standardized sum of predictors given by Generalized Linear
Regression (GLR) of y on each x,, to extend this method to GLM.

As highlighted by Bry et al. (2013) and Chauvet (2019), this extension may seem awk-
ward due to the inconsistency of the weighting of the observations. Indeed, GLR of y
on x, alone implicitly uses a specific weighting matrix W),, which is different from the
weighting matrix associated with GLR of ¥y on components. Thus, the estimated variance
structure of observations according to the model based on components is never used by
this method.

2.2.2.3 Iteratively Reweighted Partial Least Squares

Another way to extend the PLSR to GLM is the Iteratively Re-weighted PLS (IRPLS) ap-
proach developed by Marx (1996). IRPLS might thus be viewed as an IRLS algorithm
in which the step of weighted least squares regression used to update parameters is sub-
stituted by a weighted PLS regression. More formerly, let w® and W® respectively be
the working variable and the weight matrix at the ¢-th iteration of the IRLS. Instead of the
classical update for 3, also given by Equation (2.6), Marx (1996) rather suggests to take

B = PLSRy (w, X)),

where PLSR () (w(t), X ) refers to the PLS regression of w® on X, where the obser-

vations are weighted by W(®). Thus, contrary to PLSGLR, the weighting matrix derived
from the GLM’s maximum likelihood estimation is taken into account in the PLS regres-
sion. This method has been extended to the multivariate case by Bry et al. (2013).

2.2.3 Supervised Component-based Generalized Linear Regression

Elaborating on the Iteratively Reweighted Partial Least Squares (IRPLS) developed by
Marx (1996), Bry et al. (2013) proposed a methodology called Supervised Component-
based Generalized Linear Regression (SCGLR) which combines the multivariate Gener-
alized Linear Model (GLM) estimation with the component-based dimension reduction of
the explanatory space. Unlike methods as Partial Least Squares (PLS, Wold et al., 1984)
regression or Reduced Rank Vector Generalized Linear Model (RRVGLM, Yee and Hastie,
2003), SCGLR optimizes a general and flexible trade-off criterion between the Goodness-
of-Fit (GoF) of the model and the Structural Relevance (SR, Bry and Verron, 2015) of
directions with respect to the explanatory variables. This methodology allows both to find
strong interpretable explanatory directions, and to produce regularized predictors in the
high-dimensional framework. Later on, SCGLR has been extended and refined in several
ways. First, Chauvet et al. (2019) proposed to combine SCGLR with Schall’s algorithm
to estimate a model with random effects. This extension aims at modeling responses with
repeated measures or a group design on individuals. Later yet, SCGLR was extended
to Cox’s model for survival data (Bry et al., 2020a). More recently, Bry et al. (2020b)
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extended it to a partitioning of the explanatory variables, following the approach of Bry
and Verron (2015) called THEmatic Model Exploration (THEME). In this context, Gen-
eralized Linear Regression (GLR) demands dimension reduction and regularization with
respect to each theme, i.e. variable group. An @ package SCGLR (Mortier et al., 2016)
is available at https://CRAN.R-project.org/package=SCGLR but we recommend to use the
link https://github.com/SCnext/SCGLR to access the latest version.

2.2.3.1 The SCGLR context

In the framework of a multivariate GLM (Fahrmeir and Tutz, 2013), we consider K

response-vectors encoded in a response matrix Y = [y1,...,yx| € RV*X to be pre-
dicted through explanatory variables partitioned into two groups. The first one A =
[ai,...,ag] € R¥*E is a group of covariates that are only few, and weakly or not

redundant. These variables are a priori assumed to be interesting per se, and their
marginal effects have to be taken into account explicitly in the model. The second group
X = [zy,...,xp] € RV*P is one of numerous and possibly highly redundant covariates,
considered as proxies to latent dimensions, which must be found and interpreted. Thus,
the matrix X demands dimension reduction and regularization. To achieve this, SCGLR
searches for explanatory components in X jointly supervised by the response set. In this
part, for simplicity’s sake, we shall consider a single-component model. A component
f € RY writes f = Xwu, where u € R is a loading vector. The linear predictor associ-
ated with response y is then given by

N = (Xu) Yi + Adk,

where -, and dj, are regression parameters. The component f is common to all the re-
sponses, and for identification, we impose uT M ~1u = 1, where M € RP*" is a given
symmetric positive definite matrix. It is assumed that the responses are independent con-
ditional on the explanatory variables, and consequently on the component.

2.2.3.2 Measuring the Goodness-of-Fit

Given the component, the parameters of the GLM must be estimated, and we refer the
reader to McCullagh and Nelder (1989) for a complete overview of GLM methodologies.
Here, we make use of the Fisher Scoring Algorithm (FSA). Let wy, be the working variable
associated with the response y;, and W, ! its variance matrix. In the spirit of Nelder and
Wedderburn (1972), wy, can be viewed as the response in the linearized model

wy, = (Xu) v, + Ay, + Ck,

with E[¢,] = 0 and V[¢i] = W, . Due to the product u~s, this linearized model derived
from the FSA is not linear indeed, and must be estimated through an alternated weighted
least squares process, estimating in turn {~, 0 } and w.

~ 18
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Let HZ:;I[ 1,1 be the projection on span[f, A] with respect to Wj,. The loading vector
u solution of the least squares minimization may alternatively be viewed as the solution
of the following equivalent optimization programs
. W, 2
min Y ay |wg — I i f, 4] Wk

TAf—1qy— W,
w,ul M—1lu=1 1 k

2
. Wi

& min E o HH w H
wuT M- lu=1 B\ span(f, a1 Wk Ly,

K
. 2 .. 92 W,
= u’uTr]\r/lfl_nlu:1 kz::l e%3 Hwk HW,c Sy, (wk> Hsp;I[f,A] w"’)

K
: > 2 2 W,
< T M Luet Pt o [lwelw, [1 — OSw;, (wk’ Hspa’?l[f,A]wk)}

And max wA(/u’)?

wul M—1u=1

with ¥s(u) = S5 oy ||wk||?,vlc oSy, (wk, H:;:l’;[f,A]w@, where {aq,...,ax} is a
weighting system reflecting the a priori relative importance of working variables. Now,
1 4 is merely a Goodness-of-Fit (GoF) measure, and maximizing it does not lead to strong
and interpretable components. The GoF measure must therefore be aptly combined with
a measure of Structural Relevance (SR) to achieve both meaningful and predictive dimen-
sion reduction, together with regularization.

2.2.3.3 Measuring the Structural Relevance of components

Bry and Verron (2015) proposed the SR measure as a possible extension of the compo-
nent’s variance to measure the ability of a component to capture information in a set of
variables containing latent structures such as variable-bundles. Informally, a bundle is a
set of variables correlated “enough” to be viewed as produced by a common latent dimen-
sion. Let N' = {INy,..., N;} be a set of J symmetric semi-definite positive matrices,
Q = {wi,...,ws} aset of weights and [ a scalar such that [ > 1. We call W the weight
matrix reflecting the a priori relative importance of observations (typically, W = %I N)-
Finally, consider component f = X u, where u is constrained by u” M ~1u = 1. The as-
sociated SR measure ¢ is defined as the following generalized average of quadratic forms

of u
1/1

¢(u) = ;%’ (UTNju)l

The matrices IN; are chosen such that the quadratic forms u” IN;u measure the closeness
of the loading vector w, or equivalently the corresponding component, to some reference
structures (variable-bundles or subspaces). Typically, if M~ = I'p and N is the orthog-
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onal projector on a reference subspace Sy, that is IN; = Ils, then

u"Nju = (Nju, Nju) since N; = N;N; = NIN;

Njul®

_ N et g = 1
]

= cos® (u, Sj) .

The locality of the bundles to be tracked by components is tuned through the hyper-
parameter [. Components will line up with a more or less local bundle depending on
whether [ is greater or smaller, respectively. To illustrate this, let us pick up extreme values
of [:

e If | =1, the SR writes

J J
P(u) = wu"Nju=u" (Z ijj> u.
j=1 Jj=1

The directions having the maximal structural relevance being the principal compo-
nents, the maximization of this quantity leads to the first eigenvector of the corre-
sponding PCA. In the particular case where IN; is the orthogonal projector on a
reference subspace S and all w;’s are equal, this PCA is the generalized canonical
analysis (Kettenring, 1971) of the set of subspaces {S;,j =1,...,J}.

e We now consider the case where [ — oo. We consider the quantity

| IN; | == sup  ul Nju.
wul M—1u=1
Then
- If there exists j* such that, for all j # j*, | IN;|| < || IN;+||, we have
argmax ¢(u) = argmax u’ Nj-u.
wuT M—1u=1 uul M—1u=1

In this case, the loading vector u will be drawn to the subspace S+ associated
with IV. j*-

- If there exists A such that, forall j = 1,...,J, || IN;|| = A, then the first eigen-
vector (associated with the maximum eigenvalue) of the IV; having maximum
weight w; maximizes ¢(u). If all w’s are equal, the first eigenvectors of all
Nj’s maximize it. It follows that in the particular case where IV; = IIs, and
all w’s are equal, any vector u belonging to any S; maximizes ¢(u). So, u
will be drawn to the S; closest to it.

~ 20
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e As previously mentioned, taking [ = 1 draws the components towards the principal
components, while increasing [ infinitely leads the component to stick to the closest
explanatory variable. Taking 1 < [ < oo will make u focus on close local bundles
of S;’s. The higher [, the more local the bundle. Hence, [ may be considered as a
bundle locality parameter.

In this thesis, we present three particular examples of SR worth mentioning.

e Component Variance
Let X being composed of centered numerical variables. We want to find a direction
span|u| capturing the highest possible inertia of the observations. We take N =
{XTW X}, Q= {1} and | = 1. Thus, the SR measure writes

o(u) = uT XTW Xu = | Xul? = V[Xul.

With the constraint uZ M ~!u = 1, we recognize the maximized criterion of the
PCA of X with metric M and weights matrix W. However, in practice, explana-
tory variables are most often a mixture of numerical and nominal variables (see for
instance Escofier and Pages (1984, 1998); Pages (2021)). We consider

X: I:.’,C]_?...,wP?X]J"'?XQ]’

where x4, . .., xp are numerical variables, and X, ..., Xq are blocks of centered
indicator variables, each block coding a categorical variable (X, has L, —1 columns
if the corresponding variable has L, levels, the removed level being taken as refer-
ence level). In order to get a relevant PCA of (X, M, W), we must consider the
metric block-diagonal matrix

M~ = diag (2{ Way,...,. 2t Wap, X{WX1,..., X ;WXq) .

This matrix bridges ordinary PCA of numerical variables with Multiple Correspon-
dence Analysis (Greenacre and Blasius, 2006).

¢ Block’s variance captured by component
We assume that X consists of P standardized numerical variables. In this case, we

take N = {(XTWX)z} Q = {1} and [ = 1. We consider
d(u) = u” (XTWX) u
=u" (X"TWXX"WX)u
P
=Y ffWa,x[Wf
p=1
P
=2

p=1

fawpﬁzv'
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If we impose that || f]|3; = 1, ¢(u) is the inertia of the variables along span| X u], it
is maximized by the first dual eigenvector of the PCA of (X, M, W). But the con-
straint || f||%, = 1 amounts to taking M ~1 = XTW X , which is a problem when
XTW X is not regular. Therefore, this choice of M will generally be discarded in
favor of a regularizing M (see below).

e Variable Powered Inertia
The previous criterion can be extended to something called Variable Powered Inertia
(VPI). Taking J = P, N, = X"Wx,a] WX andw, = 1/Pforallp=1,... P,
and [ > 1, the VPI writes

p 1/1
o(u) = (Z Wy (uTXTmemZWXu)l)
p=1

P 11
= (PZ (Xu,a:pﬁi,) . (2.9)

p=1
One can see how the value of [ tunes the locality of bundles considered
- If I = 1 and for all j, w; = 1, the VPI gives back the previous block-variance
criterion.
- If [ = 2 and for all j, w; = 1, the VPI yields a varimax criterion initially
introduced by Kaiser (1958).

For a block X consisting of P categorical variables X, each of which being coded
through the set of its centered indicator variables, we will take

p S\
o(u) = (113 > <Xu,HXpXu>W> :

p=1

The locality of a bundle of correlated variables is defined by the within-bundle cor-
relation: the higher the correlation, the more local the bundle. The main objective
is to focus on the most interpretable directions. On Figure 2.1, we plot the VPI in
the particular case of four coplanar variables.

How to choose M
To achieve regularization, we shall present how to play on M. For any of the above-
mentioned SR measures, it is convenient to choose

M =7Ip+(1-7)X"WX,

where 7 € [0,1] is a ridge-like tuning parameter (Hoerl and Kennard, 1970a,b). For
instance, if the variables in X are quantitative and standardized, M —1 = Jp, whereas
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! 1
1 '

i
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o(u) !
v ) ¢ (u)

Figure 2.1: Polar representation of the VPI. Vector w is depicted by the complex number
. oL

z = ¢ where 6 € [0, 2r[. Component f = X wu cuts the curve z(f) = (gb(ew)) e ata

point of radius equal to ¢(u)'. Curves 2 are graphed for [ € {1,2,4,10,50}.

if they are categorical, M ~! will be the metric of the Multiple Correspondance Analysis.
This convex combination extends that proposed by Tenenhaus and Tenenhaus (2011) to
tune regularization. A main advantage of this constraint is to overcome the limitation of
the singularity of the matrix XTW X. For more details on the influence of the hyper-
parameter 7 in the SCGLR context, we refer the reader to Bry et al. (2020a).

2.2.3.4 The SCGLR combined criterion

The SCGLR combined criterion, proposed by Bry et al. (2020b), introduced a hyper-
parameter s € [0, 1] to tune the importance of the SR relative to the GoF. SCGLR attempts
a trade-off between ¢ and 14 by solving

max  P(u)®ha(u)'

wulT M—1lu=1

& 1 1—s)l .
L sin(o(w) + (1= ) In(ua(w))
When s = 0, the criterion identifies with the GoF, while at the other end, taking s = 1
makes it identify with the SR. Thus, increasing s intensifies both the focus of compo-
nents on “strong” dimensions, and the regularization. This role is similar to that of the
penalty coefficient in penalty-based methods such as the ridge regression, the least ab-

solute shrinkage and selection operator, or the elastic net (Hoerl and Kennard, 1970a,b;
Tibshirani, 1996; Zou and Hastie, 2005).
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This compound criterion is quite general. Indeed, the GoF measure adapts any situa-
tion where a likelihood function is available for the model taking the components and A as
covariates. Generally, this likelihood involves a vector of parameters. The maximization
is carried out alternating two steps:

(i) Given u, maximize the criterion with respect to the parameter vector. This step is
performed using a classical likelihood maximization algorithm relevant to the situation.

(ii) Given the parameter vector, maximize the criterion with respect to w using a
dedicated algorithm: PING (for Projected Iterated Normed Gradient) recalled in Section
2.2.3.5.

We hereafter give Algorithm 2 corresponding to the SCGLR method.

Algorithm 2: The SCGLR algorithm

while not convergence do

Finding the component with the PING algorithm
u™Y = argmax ¢ (u(t))s ha (u(t)>1_s

wul M—1u=1

f(t-l—l) = Xutt+D
1) — [f(t+1)’A}

Computing the model parameters with the IRLS algorithm
fork=1,..., K do

(,y(t-l-l)’ 5(t+1)T)T _ (T(t+1)T‘;‘/vk(lt)T(.f+1))’1 T(t+1)TWk(t)w,(:)
NSkH =h" (nntljl))’vnzlv"wN

it = () (o — ) ¥ = 1N

W, = diag Gank(%)”k (™) P ™) ]1>

n=1,...,IN
end

t+—t+1
end
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2.2.3.5 Brief reminder of the PING algorithm

PING is an algorithm designed to maximize, at least locally, any criterion C'(v) on the
unit sphere (Chauvet et al., 2019; Bry et al., 2020a,b). The key idea is to stay close enough
to a current starting point v® by maximizing the criterion through a Gauss-Newton uni-
dimensional procedure on an arc previously chosen. The new iteration v**1 is defined
as the maximum of C'(v) on this arc. The fixed point of the resulting algorithm is a local
maximum of the criterion. Further details and developments are given in Supplementary
Material.

2.2.4 Extension to a partitioning of explanatory variables

In this section we assume that the explanatory variables are partitioned into 12 conceptu-
ally homogenous thematic variable groups X = [X;,..., Xg|, viewed as explanatory
themes. The search for components in multi-block analysis is an ongoing statistical re-
search field, in which several approaches have been proposed, e.g. Multi-Block PLS (MB-
PLS, Wangen and Kowalski, 1989), the PCA performed separately on each block (Wester-
huis et al., 1998) or the PLS Path Modeling (PLS-PM, Tenenhaus et al., 2005). The term
“theme” was first introduced to develop the Structural Equation Exploratory Regression for
THEmatic models with Multiple Equations (THEME-SEER, Bry et al., 2009, 2012). We
might also cite the work of Bougeard et al. (2018) who propose to rewrite the regularized
Generalized Structured Component Analysis (rGSCA, Hwang and Takane, 2004; Hwang,
2009), the regularized Generalized Canonical Correlation Analysis (rGCCA, Tenenhaus
and Tenenhaus, 2011) and the THEmatic Equation Model Exploration (THEME, Bry and
Verron, 2015) in an unified framework. Finally, Bry et al. (2020b) introduce THEME-
SCGLR in order to extend SCGLR so as to deal with a partitioning of the explanatory
variables.

2.24.1 THEME-SCGLR’s components

The conceptual model stating that variables in Y are dependent on R themes X1, ..., Xg
plus a set of covariates A, and that structurally relevant dimensions should be explicitly
identified in the X,.’s, will be referred to as “thematic model”. For the sake of simplicity,
let us momentarily restrict ourselves to the model having a single component per theme.
The linear predictor for response yj, writes

e = (Xaw1) Y1 + - - + (XguRr) Vg + Adk.

The main objective of THEME-SCGLR is to track down structurally relevant dimensions
in spaces span[X,], that can ground a good explanatory and predictive model of Y. To
achieve theme-specific regularization, the SCGLR criterion has to be adapted. Denoting
fr = X,u, the (only) component of theme X,., we have H:;/aﬁl[fl,---, froA] = H:;’;[f” Al
where A, = [f1,..., fr—1, fr41,..., fr, A]. For each theme, the GoF measure thus
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becomes
K

2 W
ba, (uy) = ; o | w3y, costy, (wi, TIE o 4 qw0) (2.10)
The SR measure remains the same ¢ (u,.) as given by Equation (2.9). Finally, the opti-
mization program can be solved by iteratively maximizing in turn the trade-off criterion
on every u,

vr, max  sln(¢p(u,)) + (1 —s) In(a, (u,)). (2.11)

Up,ul M~ 1u,=1

2.3 Finite Mixture Models

Finite mixtures of distributions have provided a mathematical approach to the statistical
modeling of a wide variety of non homogeneous random phenomena. Because of their
extremely flexibility, Finite Mixture Models (FMMs) have continued to receive great at-
tention, from both a practical and a theoretical point of view (see McLachlan and Peel
(2004) for a reference book). Indeed, the extent and the application potential of FMMs
have widened considerably. Many fields in which FMMs have been applied can be cited,
for instance: astronomy (Lee et al., 2012), ecology (Pledger and Phillpot, 2008), psychol-
ogy (Colder et al., 2002) or sociology (Jones et al., 2001). The FMMs provide a convenient
parametric framework in which the objective is to model an unknown probability distri-
bution function (pdf) of a random variable by a finite sum of distributions.

Lety = (y1,...,yn)T € RY be the observed sample vector. The observations are
assumed to be modeled through a FMM. The estimation problem of the FMM consists in
finding a good approximation of the pdf L, modeled as a finite sum of G densities with a
sample y of independent realizations of a random variable

G
L(Yn;©) = pydy(yn; 0,), (2.12)
g=1

where d, is a density, 0, the parameter of this density and p, the gth a priori mixing
probability. The probability conditions are respected with the constraints p, € [0, 1] and
Z?:l py = 1. © denotes the vector of the model parameters, composed of the parameters
6,’s and p,’s.

2.3.1 The Gaussian mixture

Originally, the FMMs were developed in order to model a linear combination of Gaussian
distributions with different means and variances. Indeed, if the data structure is composed
of several groups, a single Gaussian distribution cannot capture the entire information.
Informally, in the case of multi-modal distribution, a unique Gaussian density does not
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allow to fit the curve. As a result, the Gaussian mixture can be seen as an unsupervised
classification method (Biernacki et al., 2000; Hunt and Jorgensen, 2003; El Attar, 2012).

In a Gaussian mixture framework with G groups, each having mean 1, and variance
03, the pdf writes

2 2
2mo; 2 0y

G 2
Ly ©) = 3 22 exp <—1(y" ~ o) ) ,
g=1
where the set of parameters is @ = {pi,...,pg, ft1,-- -, 4G, Os, - - ., 0% }. With this in
mind, we ought to estimate the parameters of the Gaussian mixture model. To achieve
that, we want to maximize the log-likelihood. The observations being independent, the
model log-likelihood is given by

[(©,y) =In(L(y:8)) = > In(L (4 ©)).

Originally, the estimation of the mixture parameters was performed by maximum likeli-
hood as proposed by Day (1969) and Wolfe (1970). However, the log-likelihood being
difficult to maximize directly, and the group memberships of the observations being un-
known, we shall adopt the Expectation Maximization (EM, Dempster et al., 1977) algo-
rithm to estimate the model parameters. In the next section, we give a brief recall on the
EM algorithm.

2.3.2 The standard EM algorithm

Initially introduced by Dempster et al. (1977), the EM algorithm aims at finding a local
maximum of the likelihood in a context of a random latent variable model. Indeed, in this
framework, the (log-)likelihood may be difficult to maximize or may not have an analytic
expression. Since the reference paper, many works have described the properties of the
EM algorithm, for instance we shall cite Lauritzen (1995); Lin (2010) for missing data,
Redner and Walker (1984); Muthén and Shedden (1999) for the mixture model or Rubin
and Thayer (1982, 1983) for the factor analysis. For a comprehensive overview on the EM
algorithm, we refer the reader to the nice informal tutorial by Chauvet (2019).

Let y be a random variable and L(y;#) its probability distribution function, where
0 is an unknown parameter. The objective is to maximize the log-likelihood I(6;y) =
In(L(y; 0)) to estimate §. However, due to the presence of the random latent variable
z € (1., this log-likelihood is too complicated, if not impossible, to maximize. We need to
construct a sequence of parameters (H(t))t such that the log-likelihood [ (G(t); y) increases
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with ¢. To achieve that, we calculate

L(6;y)—1 (Q(t); y) =In(L

Thanks to the concavity of the logarithm function, we shall use the Jensen’s inequality

(Cover and Thomas, 2006, pages 25-30)
L(y,z;0) L(y,z;0)
n(E| =222 19O ) > |In | =22 77 O
n( l ‘y ) - (L(y72; o) )|

L(y,z60)
We thus have
L(y,z0)
) — 1 (0. » %5 w0
1(6:y) —1(9 ,y)2/Qzln<L(y7Z;0(t))>L(Z|y,9 ) dz
::P(Q,Q(“)

where the auxiliary function P defined by P(6,6®) is seen as a lower bound for the de-
viation of the log-likelihood from 60® to 0. Henceforth, we need to find 81 such that
PO, 9®)) > 0. With this aim in mind, we chose (*1) as the solution of the maxi-
mization of P(#,0®") with respect to §. Then, by definition, we obtain

p(@(tﬂ)’ M) > P(HY, 9(1?)>'
Moreover, P(6®), §®) = 0. We thus demonstrate the increase of the log-likelihood with ¢

L0 y) —1(09;y) > P (04,00) > 0.

The logarithm allows to rewrite the auxiliary function as a difference

P (9’ g(t)) =Q (9’ 9(0) —-Q (g(t)’ 9(0) 7
where

Q (9, G(t)) = /Q In(L(y,z0))L (z|y; H(t)> dz.

zZ
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Since Q (9(”, 9(”) does not depend on 6, maximizing P (9, Q(t)) with respect to 6 is then
equivalent to maximizing () (9, Q(t)) which can be expressed as the conditional expec-

tation of the complete log-likelihood I(#;y, z) conditional on y at the current value §®).
Algorithm 3 summarizes the most widespread form of the EM algorithm.

Algorithm 3: The EM algorithm

while not convergence do

Step E: Q(0,0)) = E [1(0; y, 2)|y; 0]
Step M : 00+ = argmax Q (9, 0(”)
0

t<—t+1

end

However, we may note that there does not exist any a priori on the number of iterations
needed. Furthermore, the convergence is ensured to a local maximum of the likelihood.
For more discussions on the EM algorithm, see those provided after the paper of Dempster
et al. (1977, pages 22-38).

2.3.3 EM algorithm for a Gaussian mixture model

Let z,, be the latent indicator variable equal to 1 if the observation y,, belongs to the gth
group, and O otherwise. Let z,, = (2,,4; ¢ = 1,...,G) be the indicator vector of group
membership of observation y,, and let Z = |zL;n=1,...,N| be a N x G matrix.

Conditional on z,, = 1, the pdf for the observation y,, is d,, the Gaussian distribution
having mean 41, and variance ag. The model complete log-likelihood writes

A 1y — )"\ ] ™
(©;y,Z) =1n H H J = exp (—22g>
n=1g=1 | \/ 270} Og

N G 2
1 (y,, —
= E E an 111 pg eXp <_ (y 2/Lg> ) .
n=1 g:l z/ 271-0-3 2 Ug

The M step of the EM algorithm consists in maximizing with respect to ® the conditional
expectation of the complete log-likelihood E [[(©; y, Z)|y; ©']. The solution is then in-
jected into ©®’, and the conditional expectation is updated in the E step.
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2.3.3.1 The expectation (E) step

With z,, = g meaning that the gth coordinate of the vector z,, equals 1, the conditional
expectation of the complete log-likelihood writes

E[l(©;y,Z)|y; 0] = Y E[In (L(Yn, 2n; 0)) [yn; 0']

S
Il
—

I
hE
Ma

P(zn = g|yn; 0,) In (L(Yn, 2n = g;6y))

3
I
A
i
_

Il
hE
Ma

P(zn = glyn; 0lg> In (P(z, = g;04) L(yn|2n = g;6,))

3
Il
i
o
Il
—_

I
™=
Ma

g I (pgdg (Yn; 0y))

S
Il
N
Q
Il
—

I
™=
Ma

2
09

1 1 (y,, — 11)>
Qing [ln (pg) — 3 In (2#05) - Q(y'ug)} ;

S
Il
—
)
Il
—

where the posterior group membership probabilities of each observation y,, are computed
as
L(ym Zn = 9; 99) _ pgdg(yn; 99)

L(yn7 99) 25:1 prdr(yTw 9r>

Qg = P(2n = glyn; 0y) =

2.3.3.2 The maximization (M) step

The M-step maximizes with respect to © the conditional expectation of the complete log-
likelihood, subject to the constraint 290:1 py = 1. We maximize the corresponding La-
grangian

L(O,N)=E[(O;y,Z)|y;©'] — A (Zpg - 1) :

The maximization with respect to p, yields

N
Vp, L(O,X) =05 ) any = py)

n=1

N @ G
= ZZ%:AZI%
p

n=1g=1
N—_—— N——
=1 =1
S N =\

So, the solution p, is

. 1 Y
Pg = Z Qng-
n=1
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The estimates /i, and 62 are obtained as the solutions of

N
Vi £(O,N)=0& V), {Z g (Yn — ,Ug>2} =0
n=1

N
Ang Za/ng(yn_ug) =0
n=1

N N
< Z QnglYn = Mg Z Qg
n=1 n=1

N

&y =
I 27]:7:1 Qng

and

ad 2 (Yn — NQ)Q
VUE?[’(@’ )\) =0« VUS {712:1 Olng (hl (0'9) + 02)} =0

al 1 Yn — W ?
W T

= \E

N 1 N )
<:>z:O‘"g:;z:o%g(yn_,%f)

n=1 g n=1

N 2
I > n=1Cng (Yn — /lg)
g, 6 = N .
Zn:l ang

9

2.3.3.3 The FMM estimation algorithm

As aresult of the aforementioned developments, we shall use Algorithm 4 to estimate the
parameters of the Gaussian mixture model.

2.3.4 Extension to a response mixture model

In a context of multiple and numerous response variables, we have to cluster the outcomes
instead of the statistical units as in the original and classical FMM approach. The interest
of response clustering has already been shown in several works, e.g. those of Monni and
Tadesse (2009); Ovaskainen and Soininen (2011); Pledger and Arnold (2014); Mortier
et al. (2015) and Hill et al. (2020). In this thesis, we opt for the modeling approach pro-
posed by Dunstan et al. (2011, 2013). The authors propose the Species Archetype Model
(SAM) which supposes that all responses (species) can be clustered into a small number
of groups with respect to their responses to environmental gradients. In their model, the
responses within a group share the same regression parameters with only an intercept spe-
cific to each response. More formally, let Y € RY*X be the multivariate response matrix,
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Algorithm 4: The EM algorithm applied to Gaussian mixture

while not convergence do

Expectation step
forn=1,...,Ndo
forg=1,...,Gdo
ey _ Py (a3 0))
S Dy L MY
end
end

Maximization step

forg=1,...,Gdo

p§t+1 _ Zn . a(t+1)
N t+1
M(t—&-l) _ Zn 1 Oé( ; )yn
g T]:/ ; a(t—i—l)
2
N (t+1) (t+1)
o2 (t+1) 2in=1 O (y My )
1
? 7]’:[:1 Ofgzt; )
end
t+—t+1

end

At the end, we can classify the observations according to their posterior
probabilities. An observation y,, is assigned to cluster g if

Oégltgm'xx) > O[ tmmx v,r. # g
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we call y, the kth response variable and ,,;, its nth observation. The model writes

G N
L (yk; ek’) = Zpg H dk(ynknunkg)>
g=1 =1

where d, is a distribution belonging to the exponential family, with expectation 4. The
kth canonical link function Ay, is defined by

hi(fnkg) = Bok + wfﬁg,

where x,, is the nth row of the explanatory matrix, (o the specific intercept of response
Yy, and B, the regression parameter vector of the gth group common to all the statistical
units.

2.4 The standard factor model

Standard factor models were introduced by Spearman (1904); Thomson (1916); Thurstone
(1931) in a psychology framework. The main goal of these models is to find a reduced
number of non observed variables (called factors) to synthesize the information enclosed in
multivariate data. They are a way to sum up and model the dependency between observed
variables. Ever since then, these methods have been largely developed and diversified, see
for instance Bartholomew (1995); Saidane (2006); Meyer (2009) or Tami (2016) for good
reviews and more examples of factor models developments. The factors are uncorrelated
random latent variables summarizing a set of observed variables correlated to some ex-
tent. The observed variables are described as linear combination of factors plus a mean
parameter (a.k.a. the intercept) and an error term. The factors not being directly observed,
they must be predicted together with the model parameters estimation. The frequentist ap-
proaches developed in order to estimate the model regression parameters are either based
on the maximum likelihood of the sample variance-covariance matrix (Joreskog, 1967,
1969) or on the EM algorithm (Rubin and Thayer, 1982; Jamshidian, 1997). For identi-
fication purposes, all of the methods need to impose constraints on the parameters. We
refer the reader to Bartholomew et al. (2011, Chapter 3) for an overview of the subject.

2.4.1 Writing the factor model

Let Y € RV*X be the matrix of the observed variables. We call y,,;, the value of the kth
variable for the nth observation. Hereafter, the vector indexed by n is composed of the nth
row of the associated matrix, while the vector indexed by £ is its kth column. Denoting
9r = (g1, - - -, gns) the vector comprising a realization of J factors for the nth statistical
unit, the model for 3, writes

Ynk = fnk T g,fbk + Enk,
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where /1, is the intercept, by the regression parameters (or “loadings”) on the factors and
€nk the error term. This writes matrix-wise

Y=p+GB+e

where p € RV*K is the matrix of the intercepts, G € R/ the matrix of factors, B €
R7*X the matrix of loadings and e € RV*¥ the matrix of errors. Foralln = 1,..., N,
the model writes
Yn = MUn + BTgn + En,

where Y,,, tn, gn and g, are the vectors composed of the nth rows of the matrices Y, u, G
and e respectively. The vectors of factors are assumed drawn from a multivariate normal
distribution and independent across statistical units, that is g,, ~ N;(0, I ;). The latter are
moreover supposed independent from the error measures drawn from €,, ~ Ny (0, ¥),

Yn ~ N (pin, BB + W),

The model is thus constructed such that all the covariance between variables is accounted
by the .J factors. Besides

Yn|gn ~ Ni(ttn + BT g, ¥).

Denoting © = {u, B, ¥} the set of parameters, the complete log-likelihood of the model
writes

(©;Y,G)=In(L(Y,G;09))

I
hE

In (L(yn’gm ®>> + In (L(gm 6))

3
Il
—

I
™=

{~In ((2m)"2det(®)"?) — In ((27)"/?)

i
L

N | —

(yn - Hn — BTgn)T ‘I’_l (yn — Hn — BTgn) - ;ggjgn}

I
ol
M=

{(K + J)In(27) + Z In(c}) + gl g,

n=1 k=1
LS| Ty \2
+> 5 (ynk: = Hnk — gnbk) :
k=1 %k

Thanks to the previous development, we can characterize the distribution of
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(Yn>9n)" We have

cov (gn,yn) =E [gnys | — E[gn] E [y7]

(2.13)

T T
o) = ((5) (5T e

2.4.2 The identification constraints

As a result, we obtain

The structure of the factor model is characterized by a large number of parameters to
estimate. This characteristic involves identification problems (e.g. an infinity of solutions),
so we need to introduce some constraints on the model.

2.4.2.1 The rotation constraint

For identification purposes, we need to constrain the matrix B. As shown by Geweke and
Zhou (1996), if €2 is an orthogonal matrix, we can rewrite the model as

Yn = M + BTQTan + e,
= Wy + BgQOn + &y,

where the new factors go,, = {2g,, are a rotation of the original factors g,,. The same
moment conditions valid for the old factors are also valid for the rotated ones, that is

E [QOn] = QE[gn] =0
\Y [QOn] = QV[QTJQT = QQT = IJ-

Moreover, parameters are also rotated. The new parameters are linked to the old ones
through BY = BTQT. Because these new parameters and factors lead to the same dis-
tribution for the responses, they cannot be identified from the observed variables unless
further restrictions are imposed.

Since B has rank J, we assume that the first J columns of B are independent. Let
Bj be the J x J sub-matrix composed of the first ./ columns of B and B- be the matrix
composed by the last X' — J columns such that B = [By, By]. By theorem A9.8 of
Muirhead (1982, page 592), there exists a unique orthogonal matrix €2, such that €2, By is
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an upper triangular matrix with positive diagonal elements. Thus, to get a unique solution
for B, for J < K, we impose the form

buu .. by by .. bik
B = o : ], (2.15)

bjy brjqn ... bik

where forallk,j =1,...,J,k < j, by; = 0and b;; > 0. This choice of B is largely used
in the literature, although B may take various forms according to an arbitrary orthogonal
rotation. More examples of matrices with a priori zeros are given by Joreskog (1969).

2.4.2.2 The factor number constraint

Another identification problem is caused by the condition on the variance-covariance ma-
trix ¥ = BT B + ¥. We need to constrain the number of factors. Indeed, the number of
distinct elements of X is equal to K (K + 1)/2, however the number of free parameters
in the model’s variance-covariance matrix is JK elements for B plus K elements for W.
The rotation constraint imposes J(.J — 1)/2 a priori zeroes on B. Finally, the right hand
side has JK + K — J(J — 1)/2 distinct elements. To determine those parameters, the
difference between the number of distinct elements of 3 and BT B 4+ ¥ must be positive

o f K(K+1)/2 < JK+ K — J(J—1)/2, there is more parameters than equations,
so the number of solutions is infinite.

o f K(K+1)/2=JK+ K — J(J — 1)/2, there exists a solution, but the number
of parameters being equal to the number of equations, we have no reduction of the
number of parameters to estimate.

o If K(K+1)/2 > JK+ K — J(J — 1)/2, there exists a unique solution and the
number of parameters is reduced.

In other words, the number of factors should satisfy
J<|(2K+1-VBK +1) /2.

Table 2.1 gives few examples of the maximal number of factors with respect to the number
of variables.

Table 2.1: The maximum number of factors with respect to the number of responses

K 1234|567 |8[9]10
Jmax |00 |1 |12 [3[|3[|4|5]| 6
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2.4.3 The EM algorithm for factor analysis

In order to estimate the parameters, we want to maximize the log-likelihood. Due to the
latent variables G, this log-likelihood has a complex expression which makes it difficult
to maximize directly. We thus use the EM algorithm recalled in Section 2.3.2. We calcu-

late and then maximize the expectation of the complete log-likelihood conditional on the
observed data: E[/(®;Y,G)|Y, 0.

2.4.3.1 The Expectation step

To perform the E step of the algorithm, we need to explicitly calculate the conditional
expectation of the complete log-likelihood

El(©;Y,Q)|Y, 0] E{l(©; Yn, gn)|Yn, O]

byl
byl

Il
NE

3
Il
—

(Gnlyn: ©") In (L(yn, gn; ©)) dgn

HMZ ||M2

I {L(Yn|gn; O)L (gn; ©)} L (gn|Yn; ©’) dgn.

We first need to find the distribution of g,|y,. Since the random vector (yI,g
is Gaussian as shown by Equation (2.14), we have, due to the conditioning rule of
the multivariate Gaussian distribution, g,|y, ~ N (a (Yn — pn) , Ly — aBT) with

T)T

-1
a =B (BTB + \Il) . The conditional moments of this distribution are then given
by

E [gn|yn7 ]
= a(Yn — Hn)
and
R, :=E |gng} |yn; ©)

= V[gn|Yn: Ol + E [gn|Yn; O] E [gn|yn; O
=1I; —aB” +§,gt.
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The conditional expectation of the complete log-likelihood thus becomes
E[l(©;Y,G)|Y,0]

:—Z{K+J ) In(2m) +Zlnak+

k=1

1
E [g,’fgn +2 - (4 = o — g b ‘yn; 9’] }
k=1 %k
1 N
=3 {0tz + 3 (o) + [l ©] +
n=1 k=1

LS|
2 (Yur — ﬂnk)gri:bk) |Yn; @l]}

&=

((ynkz — fnr)” + bY (gng,:f) br—

{(K + J)In(27) + Z In(o;) +E [gggn|yn; @'} +
k=1

I
l\D\lH
™=

3
Il
N

((yn;g — pok)” + b Rybi — 2 Yok — k) ngk)}

T
|

K N
N(K +J)In(2r) + N> In(o}) + >_E [g:‘fgn]yn; @'} +
n=1

k=1

I

|
DO |
—

LS| ~ ~ T
> 2 (le o+ bR 2 (60 gm0 |
k=1 "k

where the rows of the matrix G are the g,,’s and R = 25:1 Rn is the sum of the order

two conditional moments.

2.4.3.2 The Maximization step

The M-step maximizes, with respect to ©, the conditional expectation of the complete log-
likelihood, subject to the constraint on matrix B presented in Section 2.4.2.1. However, the
parameters g, and o} are not concerned by the constraint. Thus, the first order conditions

of the maximization yield
Vi E[(©:Y,G)Y,0]=0
~ \T
& Vo {lye = el =2 (Gbe)” o — ) | =0

& (Y — i) — Gb, =0
& py = yi, — Gby,.
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Besides,
VE[l(®;Y,G)|Y, C-)'] =0
k

1 - N
& V2 {Nln(cr,%) + p (||yk — pi|® + BERby, — 2 (Gbk) (yr — uk)>} =0
2

1 - =~ N\T
GN-- <Hyk — pall® + BT Rby — 2 (Gby)” (g — Mk)) _0
k
1 ~ ~ T
Now, we need to maximize vector b, under the constraint given by Equation (2.15).
Foreachk =1,...,J,letbf = (bf,,,,0") be the regression parameters, where b, , =
(bik, - - -, brx) is a vector of length & to be estimated and 0 is a null vector of length (J — &)

a priori fixed. In this case, we define Rl:k,l:k tlle submatrix of size k x k of R and G 1.,
the matrix composed by the first k£ columns of G. The maximization yields

Vbl:k’kE[l(@;Y, G)|Y.,01=0
T - ~ T
S Vi {blzk,k (Rlzk,lzk) b1k — 2 (Gl:kbl:k,k> (yr — Mk)} =0
~ T ~
& (Gl:k> (Y — pr) — (Rl:k,l:k> b1k =0
- 1, T
& bigr = (R1:k,1:k) (G1:k) (yr — M) -
Likewise, for k = J + 1, ..., K, by is given by

b, = R'G" (ye — i) -

2.4.3.3 The factor model estimation algorithm

As a result of the aforementioned developments, we shall use Algorithm 5 to estimate
factor model parameters.

2.4.4 Extension to GLMs

In this section, we explore approaches allowing to find some factors in the case of multi-
variate abundance data. In the literature, two ways are developed to find the factors. In the
first one, the factor are non-random and then must be estimated as simple parameters. The
second way assumes the multivariate normality of the factors and looks for a method to
maximize the log-likelihood. A multivariate abundance dataset can be defined by a matrix
Y € RY*X where each column is composed by realizations of a GLM.
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Algorithm 5: The EM algorithm applied to factor models

while not convergence do

Expectation step
forn=1,...,Ndo
ot — B® (B(t)TBm 4 q,(t>)*1

GUH = ol (y, — uf)
Rgltﬂ) =1I; — attH BT | §7(1t+1) ~7(lt+1)T
end
Maximization step
fork=1,..., K do
ugﬂ) — g — é(t+1)bl(<:t)

2(t+1)
O =

% (Hyk - u;:ﬂ)H? + (bg))T R(t+1)b§:) _9 (é(t—&-l)b;ct))T (yk B HSH)))

if £ < L then
B = (R (@) (e )

else
‘ bgﬂ) _ (R(t+1)>_1 (G{(t—i—l))T (yk B ,ll'ngl))
end
end
t+—t+1

end

2.4.4.1 Non random factors

In the case of non random factors, the main objective consists in identifying low-
dimensional features in high-dimensional multivariate abundance data (Lee et al., 2013;
Sohn and Li, 2018; Xu et al., 2021). To encourage dimension reduction, we assume that
matrix n = GB € RY*X has a low-rank structure with rank J < min(N, K'), where G
is the factor matrix and B the loading matrix. Thus, the linear predictor associated with
response ¥, is defined as

Tnk = gnlblk + -+ ganJka

where ¢,,; and bj;, are elements of G’ and B respectively. The matrices G and B being
non random, the key of the estimation is to alternate two generalized linear regressions,
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the first one consists in estimating B given G and the second one in obtaining G given
B.

2.4.4.2 Random factors

In a context of latent variables, an approach to the statistical modeling of multivariate
abundances is the Generalized Linear Latent Variable Model (GLLVM, Skrondal and
Rabe-Hesketh, 2004). In a particular case of random factors, the GLLVM extends the
basic GLM by expressing the mean parameter as a linear combination of the covariates
and the factors. The model writes

Nk = T Br. + g by,

where x,, is the vector of covariates, g,, the vector of factors and 3, and by, their regression
parameters. As in standard factor models, g, is supposed drawn from a multivariate Gaus-
sian distribution with zero mean and identity variance-covariance matrix. The marginal
log-likelihood is obtained by integrating over the latent variables g,,

(©;Y) =) In(L(yn; ©))

= Z In </ r_[ L(Ynk|gn; ©)L(gn) dgn> :

where © = {B,by;k = 1,..., K} is the set of parameters. Unfortunately, the previ-
ous log-likelihood derived from GLLVM cannot be expressed analytically. Several works
propose to maximize this log-likelihood, but some of them suffer from a consuming com-
putation time. We may cite for instance the works using the adaptive quadrature (Rabe-
Hesketh et al., 2002), the EM algorithm in conjunction with Monte Carlo integration (Hui
et al., 2015) or the works using Bayesian Markov Chain Monte Carlo (MCMC) (Hui,
2016; Tikhonov et al., 2020). A few methods cut down the computation time by taking
closed form approximations of the log-likelihood. For instance, the approaches employ-
ing a variational approximation (Hui et al., 2017), a Laplace approximation (Niku et al.,
2017, 2019a) or an extended variational approximation (Korhonen et al., 2023) deserve
mentioning.

Alternatively to the previous approaches, Saidane et al. (2013) propose to estimate the
combination of a GLM with a factor model by using the EM algorithm for the factor model
as a step in the IRLS algorithm. Indeed, the main idea is to consider two alternate steps:
(i) Conditional on the factors, the linearized model writes

Wpg = wﬁﬁk + g;";bk + Gurk,

where the expectation of the errors is given by E[(,x] = 0 and the variance by the weight
associated with GLR. The working variables w,, and the variance matrix ¥,, can be es-
timated through the IRLS. (ii) Given w,, and W, the log-likelihood {(®, W), where W
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denotes the set of working variables, is maximized through the EM algorithm presented
in Section 2.4.3.
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Chapter 3. Response mixture models based on supervised components

3.1 Response Mixture SCGLR

In this section, we present the framework and the modeling objectives for which we pro-
pose to combine SCGLR with a Finite Mixture Model (FMM). Section 3.1.1 presents our
mixture model for the responses. Section 3.1.2 introduces the EM algorithm we develop,
of which Sub-sections 3.1.2.1 and 3.1.2.2 detail the expectation and maximization steps
respectively. The explicit EM algorithm is given in Sub-section 3.1.2.3. In Section 3.1.3
the method to calculate successive components is recalled: Sub-section 3.1.3.2 deals with
the first component, and Sub-section 3.1.3.3 explains how to calculate further components.
The overall algorithm is shown in Section 3.1.4. Finally, Section 3.1.5 gives the heuristic
we use to tune the hyper-parameters real values.

3.1.1 The response mixture model

LetY = [y;,...,yx]| € R¥*K be the response matrix. The responses are assumed to
be modeled through a finite mixture of regression models, comprising G groups. The
probability distribution function (pdf) of response ¥y is thus

yka ek Zpg H dk ynk7 ,unkg

g=1 n=1

where the nth observation in the kth response of the gth group has a pdf d;, belonging to the
exponential family, with expectation ji,,;4. €, denotes the vector of parameters, including
the regression parameters 7y, and 04, as defined in Section 2.2.3.1, and p, the gth mixing
probability with p, € [0,1] and Y-, p, = 1. Denoting hy, the kth canonical link function,
we assume, for a single component model

P (pinkg) = (mgug)'ykg + a£5kg>

where u, is the loading vector of the (first) component of group g, and x,, and a,, are the
nth rows of matrices X and A respectively. Thus, the responses in group g are predicted
by component f; = Xu,, together with A. Foreachk =1, ..., K, d;, and hy, are chosen
so as to suit the type of response y (e.g. binary, count, categorical, continuous etc.).

Conditional on the explanatory variables, the response variables are assumed indepen-
dent. The group memberships of the responses being unknown, the model log-likelihood

Zh’l ykaek )

where the set of parameters is ©@ = {04, . .., Ok }, being difficult to maximize directly, we
adopt the EM algorithm to estimate the model parameters.

Let z;, be the latent indicator variable equal to 1 if the response y;, belongs to the gth
group, and 0 otherwise. Let z;, = (2x,; ¢ = 1,. .., G) be the vector of group membership
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indicators of response yg, and let Z = [z ; k = 1,..., K] be their G x K matrix. Condi-
tional on z, = 1, the pdf of response y;, for unit 7 is dj (ynk; ftnkg). The model complete
log-likelihood writes

K G N Zkg
k=1 g=1 n=1
K G N
Z Z kg In (pg H dk(ynlm Mnkzg)) .
k=1

g:l n=1

3.1.2 Adapting the EM algorithm to a response mixture model

Step (i) in Section 2.2.3.4 boils down to maximizing the likelihood of the component-
based model. Owing to the latent variable Z, this step will be performed using the EM
algorithm.

3.1.2.1 The expectation (E) step

With z;, = ¢ meaning that the gth coordinate of the vector z; equals 1, the conditional
expectation of the complete log-likelihood writes

I
M=

E[l(®;Y,Z)|Y;© E [In (L(yk, z&; Or)) |yw; 0%

B
Il
—

I
M=
Mea

P(zr = g|yk; 0;,) In (L(yg, 2z = g; 6k))

e
Il
—

i
—_

I
M=
Ma

P(zr = glyk; 03,) In (P(2 = g; Ok) L(yk| 21 = g; 6k))

e
Il
—

Q
Il
A

I
M=
Ma

N
Qg In (pg T k(s Mnkg)) :

n=1

i
—
Q
Il
—

The posterior group membership probabilities of each response y;, are computed as

L(yw, ze = 9:0k) _ Py TIn=y di(Yuks fonkg)
L(yk7 Ok) Zf:l Pr Hi:le dk (ynk7 ,unkr)

g = Pz = glyr; Or) =

3.1.2.2 The maximization (M) step

The M-step maximizes with respect to © the conditional expectation of the complete log-
likelihood, subject to the constraint ZgG:1 pg = 1. We maximize the corresponding La-
grangian

L(©,))=E[(©;Y,2)|Y;0] — A <§:pg - 1) .
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The maximization with respect to p, yields

K
Ve, L(O,N) =05 ) agy = pgA

k=1
K G G
< Z Z g = A Zpg
k=1g=1 g=1
=1 =1
S K=

So, the solution p, is
3
ﬁg = — Oék;g.
K=
The estimates of the regression parameters 7y, and dy4 are obtained as the solutions of

N
Vi El(®;Y, Z)]Y;0' =0V, > In(di(Yok; fnkg)) =0
n=1

and
N
Vs, E[(©;Y, Z)|Y; Ql=0& Vs, Z In(di(Ynk; tnkg)) = 0.

n=1
These equations characterize the maximum likelihood estimation of the GLM of vy in
each group g. This estimate can be obtained as the fixed point of the FSA.

Assuming the response variable y; belongs to the gth group, the working variable
associated with v, is calculated as

Wnkg = hk (Nnkg) + (ynk - ,unkg) h;g (,unkg) = Tnkg + ang;

where Cukg = (Ynk — tnkg) N, (finkg). In view of the conditional independence assump-
tion, the variance matrix for wy, is

V [wig] = Wy,! = diag (anr(dr) vk (Hng) 1 (nrg)?)

where a,; and v are known functions and ¢y, is the dispersion parameter related to yy.
Thus, to optimize the regression parameters, we perform a generalized least squares step
in the linearized model defined by

n=1,...,.N ’

Wiy = (X Ug) Yrg + Arg + Crg,
with E[Crg] = 0 and V[¢pg] = Wit

3.1.2.3 The response mixture estimation algorithm

As a result of the aforementioned developments, we shall use Algorithm 6 to estimate the
parameters of the response mixture model.
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Algorithm 6: The EM algorithm adapted to the response mixture

= [fgvA]

while not convergence do
Expectation step

fork=1,..., K do
forg=1,...,Gdo

t
ey PP T di(ynk; M;gg)
(D)
! > Y T di(yons 1)

end
end

Maximization step

forg=1,...,Gdo

pgtﬂ =1 Zk e (t+1)

forkzl,...,Kdo

(o) = (Arwiga,) " AT

nktgﬂ fg t+1 ) 4 Aé (t+1)

,ugf,jgl h;t (nnt,jgl),Vnzl,...,N

ws,:,;l) = nff,:;l + R, (ui,jgl)) (ynk - ugf,:gl)), VYn=1,...,N

wisr? = ang (a0 (155 14 ()] )
n=1,...,N

=1,...,

end
end

t+—t+1
end
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3.1.3 Calculating rank 1 components of response groups

When clustering the responses according to their group-specific SCGLR components, we
must ensure that the explanatory subspaces spanned by the components associated to re-
sponse clusters be reasonably separated (otherwise the EM algorithm may fail to con-
verge). To achieve that, when calculating a component explanatory of a response cluster,
we must prevent that it be too close to the explanatory subspaces of other clusters.

3.1.3.1 An additional sub-criterion to better separate explanatory sub-spaces

LetFoy={f1,..., fg—1, fg+1,-- -, fc} be the set of components from which we remove
the component of group g. The space spanned by the component f, may be uniquely
represented by the orthogonal projector on it: wgn[ fol- With this in mind, we propose to

measure the separation of span|f,] from span|f,|’s, for all » # g, through the following
function of u,

1 w w
gpF—g (uQ) =1- G 1 Z <wspan[fg], wspan[f’"]>Frob . (31)
Indeed, if, for all » # g, span[f,] is orthogonal to span|f,| then the Frobenius product
will be zero, so that the criterion will be equal to 1. At the other end, if, for all » # g,
span[ fy] = span[f,], the Frobenius product will be equal to 1, and the criterion to 0.

The new program optimizing the combined criterion we propose for group g is thus

max  sln(d(ug)) +tIn(pr_, (ug)) + (1 — s —t) In(a(uy)), (3.2)

ug,ul M~lug=1

where s,t, (s +t) € [0, 1].

3.1.3.2 Rank 1 components

Let us now address step (ii) of the combined criterion maximization as detailed in Section
2.2.3.4. The GoF measure applied to group ¢ is given by

K

2 W,
Valtg) = 3 any wigllyy, costy,, (Wig, TILES, 4 wig)
k=1

where the weights reflecting the degrees of membership to group g of responses are the
posterior probabilities {a1y, . .., axy}. The functions ¢ and ¢r_, are respectively given
by Equation (2.9) and Equation (3.1). The explicit expression of the criterion is given in
Supplementary Material.
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3.1.3.3 Higher rank components

We shall henceforth calculate the higher rank components. Let fg’} =X u;" be the hth
component of group g, and let F;L = gl, cee f;’}, where i < H,, be the matrix of the
first h components of group g. We adopt the local nesting (LocNes) principle presented
by Bry et al. (2009) and extended by Bry et al. (2012). According to the LocNes principle,
the new component f;“rl must best complement both the existing ones and A, that is
Al .= [F}I', A]. So f}*! has to be calculated using A} as the new set of additional
covariates. Moreover, to avoid linear redundancy of components, we impose that f;“Ll be
orthogonal to F*, i.e. thTWf:‘H =0.

We calculate every new component as the solution of the optimization program
given by Equation (3.2), with the additional constraint: A} = 0, where A} =
X TWF;‘, and loop on g until overall convergence of the component system. Taking
Al = [Fh Aland F_, = {F{", ... ,Fin"’l_l, Fﬁ;"fl, ..., FX¢}, the sub-criteria be-
come

K
h+1 2 2 Wi
Vg (ul) = 3 g v, costy, (wgs TV sy )

k=1
and ]
h+1\ 1 w w
YF_ ('U,g ) B G -1 = <wspan[F:'+1]’ wspan[FrH’”]>Fmb :
For all g = 1,...,G, the rank-1 component of group g is calculated using the same pro-

gram with A) = A and A) = 0.

3.1.3.4 Optimizing the cluster-specific components

In order to identify the groups, one may have to put a heavy weight on the separation
sub-criterion. As a result, the supervised components output by the former maximization
may be artificially too strongly separated between groups. So, this maximization is used
merely to identify groups having specific explanatory dimensions. Posterior to that, we
must optimize the group-specific components for prediction in a second phase, performing
classical SCGLR separately on each group.

3.1.4 The overall algorithm

The method comprising these two phases (clustering, and component optimization), is
named response mixture SCGLR (rmSCGLR). Algorithm 7 consists in alternating the
following steps: (i) Given the current set of components, estimate the response mixture
parameters through the EM algorithm; (ii) Given the current group memberships of re-
sponses, calculate all the components of all the groups. To give our algorithm a good
starting point, namely well separated response clusters and strong initial components, we
use the ClustOfVar @ package (Chavent et al., 2012) to determine G initial response
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groups, and then, the pls @ package (Mevik and Wehrens, 2007) in each group, to find ini-
tial supervised components. In the component optimization phase, SCGLR is performed
on each response group separately, each having specific components. This phase includes
determining the best number of components for prediction by means of cross-validation.

Algorithm 7: The clustering phase algorithm

while not convergence do

Update mixture parameters with the EM algorithm described in
Algorithm 6
Ot = arg max (O™, Y, Z)
e

Update loading vectors with the PING algorithm described in
Supplementary Material

forg=1,...,Gdo
forh=1,...,H,do
s t 1—s—t
uh (nt+1) — arg max ¢ (UZ) PF_g (u?) wAZ_l (u;‘)
up "M~ tul =1

h—1T, h _
Ag ug =0

end
end

n+<n+1
end

At the end, we can classify the responses according to their posterior
probabilities. A response yj is assigned to cluster g if

(nmax)

CYkg > a’(gmax)’vr 7é g.

3.1.5 A hyper-parameter calibration heuristic

The hyper-parameters are calibrated minimizing the Bayesian Information Criterion (BIC,
Schwarz, 1978), defined by

BIC = —2[(©;Y ) + In (/N) x (number of parameters) .

Keribin (2000) shows the reliability of the BIC in a context of mixture model. The hyper-
parameters are many (s,l,t,G, Hy, ..., Hg), so that using the BIC to compare all their
combinations on a cross-product grid is out of the question in practice. We choose instead
to study the effects of varying the hyper-parameters following a heuristic. Even if these
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parameters have different purposes, which can to some extent be dealt with sequentially,
they are not completely independent. For instance: the higher s is, the higher H| is likely
to be. In practice, we propose the following heuristic: first, we perform an optimization
on the hyper-parameters s and [ with standard SCGLR (e.g. without mixture) on a grid
(s,1) € {0.1,0.3,0.5} x {1,2,3,4,5}, calculating only one component. In a second
step, we chose the number of groups by varying G from 1 to 5, keeping s and [ fixed to
their previously optimized values, still calculating a single component. The decision of
distinguishing the groups only through their first component is justified by the simulation
study presented in Section 3.2.2. Next, we implement forward selection to determine a
suitable number of components in each group. We add one component in each group
alternatively, and then choose the combination minimizing the BIC. We repeat that until
the BIC rises. Finally, we vary the hyper-parameter ¢ in {0.1,0.2...,0.9}, subject to
the constraint s + ¢ < 1, in order to better separate the components which might cause
confusion between groups.

3.2 Simulation study

Two simulation studies have been implemented to assess the performance of rmSCGLR.
The first one, presented in Section 3.2.1, focuses on the identification of response groups
in a case of high correlations between latent variables spanning the explanatory spaces. In
this simulation, we first present the component combination found by the previous heuris-
tic for s € {0.1,0.3,0.5}. Then we study the determination of the best value of hyper-
parameter ¢t. In Section 3.2.2, we present a simulation, in which we study the recovering
of the true numbers of components, in a context of low correlation between the latent
variables. In both simulations, we set [ = 4 in order to facilitate the interpretation of
components. For more information on the effects of hyper-parameters s and [, we refer the
reader to Chauvet et al. (2019) and Bry et al. (2020a,b). The @ package rmSCGLR and
the simulation codes are available at https://github.com/julien-gibaud/rmSCGLR.

In the simulation study, we use the Rand Index (RI, Rand, 1971) and the Adjusted
Rand Index (ARI, Hubert and Arabie, 1985) to assess the correctness of the classification
decisions. In addition, to measure the quality of the latent variables recovery, we calculate
the square correlation between the latent variable £ and the components

2
2 _ h
p(§,.) = max p(&.11)
where fgh denotes the ~th component of group g. The RI, ARI, square correlation and BIC
are all given through mean values over a hundred samples.

~ Hl
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3.2.1 Generation of the simulated data

The variables are simulated on N = 100 observations. Two latent variables &; and &5 are
simulated with a correlation p = 0.9, while two others, &35 and &4, are simulated indepen-
dent of any other. The X matrix consists in five blocks: X = [X;, Xo, X3, X4, X5],
where X; € RV*20 X, € RV*20 X3 € RV*10 and X, € RY*10 are bundles of vari-
ables distributed about &7, &3, €3 and &4 respectively. More formally, forall: = 1,... 4,
a variable x,, is simulated as «, = &; + €,, where €, ~ Ny(0,0.1Iy). The X5 block
contains 40 unstructured noise variables constructed as x,, ~ Ny (0, Iy). The response
matrix Y is partitioned into two groups of responses only distinguished by their explana-
tory latent variables. The first group consists of Poisson and Gaussian responses whose
linear predictors are combinations of &; and &3, while the second group gathers Gaus-
sian and binary responses with linear predictors combining &5 and &4. The matrix Y is
generated as

Vk:17"'7207 ykNNN(u:71k£1+’Y2k€37E:IN)7
Vk=21,...,70, yi ~ P (X=-exp[0.25v1x&1 + 0.25v2,E€3]) ,
Vk="71,...,80, yr~Ny(p =182+ 72182, = IN),

Wk =81,...,100, i~ B (p=logit™! [y1r&2 + Yautal) .

where for all k, 1, and o, are uniformly generated, with v, € [—4, 4] and vo5 € [—2, 2].

The purpose of this simulation scheme is to mix different types of response distribu-
tions, modeled through explanatory dimensions specific to response groups which must
be recovered. Explanatory variables are many, and exhibit both bundles of highly redun-
dant variables and isolated variables. Such a data structure is often encountered in practice
when no pre-selection of explanatory variables has been carried out, and causes difficulties
in modeling and estimation, which our method intends to solve.

3.2.1.1 Results and interpretation

Table 3.1 sums up the heuristic performed to find the best component combination for
s € {0.1,0.3,0.5}. We observe that the three values of s lead to detect two groups of
responses. In this simulation, taking a higher value of s is not recommended. Indeed, as s
increases, the components get closer to the principal components (Bry et al., 2020a). Thus,
for s > 0.5, the first component of each group being drawn towards the same first principal
component, they tend to be similar. This similarity hinders the distinction between groups.
Performing a forward selection step and opting for the minimal value of the BIC, we see
that only s = 0.1 and s = 0.3 lead to the right combination of components. However,
s = 0.5 leads to identify the true overall number of directions central to the explanatory
bundles. Thus, in the sequel, the analysis is done with combinations (Hy, Hs) = (2, 2) for
s = 0.1 and s = 0.3, while we set (H,, Hy) = (3,1) for s = 0.5.

~ H2 A
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Table 3.1: Mean values of the BIC over a hundred samples, for a high correlation value
(p = 0.9) between the latent variables &; and &2, for s € {0.1,0.3,0.5} and different
combinations of H; and H,.

s=0.1 s=20.3 s=20.5

H, | Hy BIC H, | Hy BIC H, | Hy BIC

1 1 | 30802.37 1 1 | 31281.99 1 1 | 31862.52
2 1 |29577.02 | 2 1 | 29896.88 || 2 1 | 30416.06
1 2 | 29538.69 1 2 | 29821.90 1 2 | 30431.90
2 2 129091.21 | 2 2 |29549.27 | 3 1 | 29593.27
1 3 | 29513.46 1 3 12956149 | 2 2 | 29811.69
3 2 130030.12 || 3 2 |30296.23 || 4 1 | 30054.50
2 3 | 30108.98 || 2 3 130292.89 || 3 2 | 30450.21

On the last step of the heuristic, summed up in Table 3.2, we can see the impact of the
hyper-parameter ¢. For s = 0.1, the RI and the ARI increase as ¢ goes from O to 0.4, and
then decrease. Our criterion allows to distinguish two sub-spaces close to one another: for
t = 0.4, the RI and the ARI values are respectively equal to 0.883 and 0.764 despite the
high correlation between the first latent variables of the two groups. These observations are
consistent with the BIC which decreases from ¢ = 0 to ¢t = 0.4. When 7 is too high, the RI
and the ARI decrease, while the BIC increases, as observed for ¢ > 0.5. In such cases, the
weight on the separation sub-criterion ¢ is too heavy, and prevents the first components
of the two groups to be close enough, which precludes the correct identification of the
latent variables, hence of the groups. As a result, the square correlations between the
rank-1 components and the corresponding latent variables are lower than 0.9 for ¢ > 0.4.
Moreover, when ¢ > 0.5, the correlations p*(£3,.) and p?(&4, .) are higher than p*(&q,.)
and p?(&2, .). The reason for this is that for such a high value of  as 0.5, €5 and &4 are found
before &; and &, because they provide more separated explanatory spaces. For s = 0.3,
we observe, likewise, that the best values of RI and ARI, corresponding to the minimal
value of the BIC, are reached for ¢ = 0.2 but they are lower than that in the s = 0.1 case.
As noticed by Chauvet et al. (2019), the thinner the bundles, the greater the value of s has
to be, to recover the latent variables correctly. Here, indeed, the error variance being low
(02 =0.1), the square correlations are, on the whole, greater for s = (0.3 than for s = 0.1.
As in the case s = 0.1, p?(&1,.) and p*(€2,.) decrease with ¢. However, contrary to the
case s = 0.1, the increase of the square correlations p?(£3,.) and p?(&4,.) could not be
observed, since ¢ could not exceed 0.6. In the s = 0.5 case, we observe the dramatic effect
of taking too many components in a group. For all values of ¢, the RI and the ARI are
respectively close to 0.5 and 0. This indicates that for s = 0.5 and (Hy, Hy) = (3, 1), the
obtained classification is not better than a random one.

For the sake of visualization, Figure 3.1 shows the correlation scatterplots of plane
(1,2) for each group. We can see that the components f are well aligned with the corre-
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Table 3.2: Mean values of RI, ARI, square correlation and BIC over a hundred samples,
for a high correlation value (p = 0.9) between the latent variables &; and &5, for s €
{0.1,0.3, 0.5}, the optimized combination of components and ¢ ranging from 0 to 0.8.

group 1 group 2

s t RI ARI p2<€17 ) p2(€37 ) P2(€2, ) p2(E47 ) BIC
0 |0.860 | 0.718 | 0.971 0.950 0.963 0.927 | 29095.04
0.1 { 0.861 | 0.721 | 0.970 0.951 0.955 0.907 | 29085.84
0.2 0.865 | 0.729 | 0.966 0.939 0.938 0.888 | 28963.32
0.3 10.870 | 0.738 | 0.931 0.889 0.913 0.878 | 28955.93
0.1]04 | 0883 |0.764  0.899 0.889 0.893 0.874 | 28950.69
0.5 0873 1 0.745 | 0.857 0.878 0.858 0.847 | 29531.91
0.6 | 0.853 | 0.705 | 0.835 0.859 0.856 0.861 | 29705.92
0.7 [ 0.844 | 0.684 | 0.841 0.907 0.853 0.881 | 30302.17
0.8 10.693 | 0.378 | 0.788 0.934 0.865 0.900 | 31805.47
0 |0.799 | 0.595 | 0.958 0.967 0.957 0.927 | 29497.32
0.1 | 0.814 | 0.626 | 0.956 0.967 0.956 0.939 | 29493.86
0.2 | 0.815 | 0.629 | 0.957 0.956 0.965 0.970 | 29489.26
0303|0812 0.623 | 0.957 0.958 0.955 0.959 | 29518.38
0.4 [ 0.796 | 0.591 | 0.951 0.958 0.950 0.951 | 29519.18
0.5]0.794 | 0.589 | 0.919 0.915 0.917 0911 | 29528.79
0.6 0792 ] 0582 | 0.813 0.795 0.814 0.815 | 29532.73
0 |0.560 | 0.039 | 0.948 0.918 0.948 0911 | 29581.08
0.1 [ 0.572 ] 0.054 | 0.945 0.896 0.951 0.897 | 29518.82
0.5]02]0.562|0.044 | 0.943 0.872 0.949 0.883 | 29541.87
0.3 [ 0.556 | 0.033 | 0.945 0.902 0.947 0.902 | 29531.97
0.4 | 0.551 | 0.025 | 0.945 0.938 0.945 0.910 | 29606.57

sponding simulated latent variables &, except for 2, which slightly deviates from £4. Due
to the high correlation between &; and &2, the bundles X; (in red) and X (in blue) are
both well aligned with the first component of each group.

Finally, keeping the response groups obtained with the hyper-parameter values mini-
mizing the BIC (s = 0.1 and t = 0.4), we go through the component optimization phase by
performing SCGLR on each group separately. The square correlations of these final com-
ponents with the latent variables are the following: p?(&1,.) = 0.971, p?(&2,.) = 0.976,
p*(€3,.) = 0.957 and p*(&4,.) = 0.948. As expected, the recovery of the latent variables
is much better.

As reference values for comparison, we calculated the RI and ARI of the partitions

output by, on the one hand, the @® package ClustOfVar, employed to initialize our algo-
rithm, and, on the other hand, the ® package ecomix implementing the approach proposed
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Component plane (1,2) for the first group

SC2 (9.64%)

SC1 (34%)
Component plane (1,2) for the second group

%<

SC2 (9.41%)

SC1 (37.01%)

Figure 3.1: Correlation scatterplot of plane (1,2) for the two groups obtained by the rm-
SCGLR algorithm with s = 0.1 and ¢ = 0.4. The red arrows represent the bundles X,
and X3 which explain the first group. The blue ones represent the bundles X2 and X4
which explain the second group. The percentage of inertia captured by each component is

given in parentheses.
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Chapter 3. Response mixture models based on supervised components

by Dunstan et al. (2011, 2013). The computation time in seconds of the three packages
is also eventually mentioned. However, ecomix not allowing to consider different distri-
bution families for the responses, we restricted the comparison to the case of Gaussian
responses. Thus, with the previous generated data, we have twenty responses in the first
group and ten in the second one. Table 3.3 presents the results. As expected, in a context of
component-based model, the ecomix classification does not outperform the random clas-
sification. The classification output by ClustOfVar is slightly better, but only provides a
good starting point for rmSCGLR, which leads to high values of RI and ARI. We may
note that rmSCGLR offers a greater classification performance than in the case of mixed
distribution families. Even though rmSCGLR gives the best classification decisions, it is
the slowest package, followed by ecomix and ClustOfVar.

Table 3.3: Mean values and standard deviations (in parentheses) of RI, ARI and computa-
tion time, in seconds, over a hundred samples for the ® packages rmSCGLR, ClustOf-
Var and ecomix.

rmSCGLR ClustOfVar ecomix
RI | 0.964 (0.101) RI | 0.538 (0.070) RI | 0.507 (0.037)
ARI | 0.929 (0.195) || ARI | 0.104 (0.121) || ARI | 0.045 (0.061)
Time | 5.110 (2.359) || Time | 0.192 (0.028) || Time | 1.107 (0.197)

3.2.2 Varying the numbers of components

This simulation is devoted to recovering the true numbers of components, in a context of
low correlation between the latent variables spanning the explanatory spaces. We assume
unrealistically that the number of groups is known. s is fixed to 0.1, in order to study the
behavior of the results when we vary the number of components per group and the weight
t of the separation sub-criterion ¢.

Three latent variables &7, €3 and &5 are simulated with a pairwise correlation p = 0.5.
Two more latent variables &5 and &4 are independently simulated. The X matrix consists
in six blocks X = [ X, X2, X3, X4, X5, X¢], where X; € RV*50 X, ¢ RV*10, X3 ¢
RN*30 X, € RV*20 and X5 € RV*19 are bundles aligned with &;, &, €3, €4 and &s,
respectively. The X block contains a set of 50 unstructured noise variables. The response
matrix Y is partitioned into three groups of responses. The first group is composed of
Gaussian responses, the expectations of which are linear combinations of £; and &4. The
second group gathers Poisson responses whose linear predictors are combinations of &2
and &5. The third group is made of binary responses depending only on £3. The matrix

~ 506
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Y is generated as

Vk=1,...,20, yr~Ny(p=21é1 +72:6s, X = In),
Vk = 21, ey 70, Y ~ P ()\ = exXp [025711952 + 02572k£5]) ,

Vk = 7]-7 R 1007 Y ~ B (p = logit_l [71]@53]) )

where for all k, 1 and s, are uniformly simulated such that |yqx| € [2,4] and |y2x| €
1,2).

3.2.2.1 Results and interpretation

The results of rmSCGLR on this simulation are given in Table 3.4. H, denotes the number
of components calculated in group g, and several triplets H = (H,, Hy, H3) are tried. For
none of these do we observe a clear difference of the RI and ARI across values of ¢. This
was expected, since in this simulation, the explanatory subspaces are only weakly redun-
dant. So, the separation sub-criterion ¢ proves almost useless here, and has practically
no impact on the results. For (Hy, Hy, H3) = (1,1, 1), the lowest values of RI and ARI
are respectively 0.980 and 0.958, without the help of rank & > 1 components. The first
component of each group perfectly recovers the latent explanatory variable which has the
largest effect in the linear predictor of its responses. No component is aligned with the
latent variable £4. The latent variable &5 having a correlation of 0.5 with &; and &3, we
find that /p?(&s,.) ~ 0.5 for all values of t. Taking (Hy, Ho, H3) = (2,2,1) does not
improve the RI and ARI. We notice that the latent variable &5 is not as well recovered as
the other latent variables, owing to the small size of the X5 bundle. However, the BIC is
considerably reduced, which illustrates the importance of taking the right number of com-
ponents to correctly predict the responses. The last case, where (H1, Ho, H3) = (1,3, 1)
highlights the importance of getting a truly explanatory and strong first component in each
group, and of not calculating too many components in a group. Like in the former cases,
the third group is perfectly recovered using the true number of explanatory components
H3; = 1. But some confusion arises between the first two groups. Indeed, the extra compo-
nent f3 of the second group is drawn towards the heaviest bundle X ;. Then, the responses
predictable from X tend to be scattered between the first and the second groups instead
of being assigned to the first one, which causes a decrease of RI and ARI. Furthermore,
owing to the correlation between &; and &5, the components of the second group cannot
be properly aligned with these latent variables. When ¢ = 0.8 the weight on the separation
criterion ¢ is heavy enough to recover &7, &2 and &5 in the second group, and &4 in the first
group. To sum up this simulation, we observe that the role played by the first component
in recovering the groups is crucial. Indeed, in the first case, the groups are determined by
the first component only. In the second case, their prediction is completed by further rank
components. However, in the third case, we see that calculating too many components
may lead to impede group recovery.
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Table 3.4: Mean values of RI and square correlations between latent variables and super-
vised components, over a hundred samples, for a weak pairwise correlation value (p = 0.5)
between the latent variables &1, 3 and &5, and for various numbers H, of components per

group.
group 1 group 2 group 3
Ht RI | ARI | p°(&1,) | p*(&a,-) | P*(&2,.) | P°(&s.) | p°(€s,.) | BIC
0 0992|0983 | 0.971 0.030 0.980 0.309 0.976 | 33525
0.1 {0986 | 0.970 | 0.962 0.037 0.978 0.303 0.969 | 33580
0.2 0985|0967 | 0.965 0.033 0.976 0.317 0.972 | 33435
1 10309870972 | 0.968 0.037 0.978 0.314 0.973 | 33577
1 10410991 0980 | 0971 0.032 0.980 0.297 0.975 | 33435
1]05]0980 | 0958 | 0.960 0.036 0.974 0.298 0.961 | 33612
0.6 | 0.992 | 0.983 | 0.960 0.043 0.979 0.295 0974 | 33631
0.7 { 0994 | 0.987 | 0.954 0.046 0.983 0.295 0.975 | 33837
0.8 10.992 | 0983 | 0.944 0.044 0.979 0.298 0.964 | 34304
0 | 0984 | 0.966 | 0.968 0.921 0.975 0.816 0.966 | 29945
0.1 1 0.983 | 0.964 | 0.971 0.938 0.977 0.809 0.971 | 29878
020989 | 0977 | 0974 0.951 0.979 0.835 0.975 | 29838
2 10310994 | 0988 | 0974 0.952 0.981 0.865 0.978 | 29783
2 10410993 | 0984 | 0.968 0.946 0.981 0.876 0.975 | 29936
1]05]0991 | 0981 | 0.957 0.934 0.981 0.856 0.972 | 30150
0.6 | 0.984 | 0.966 | 0.944 0.928 0.976 0.844 0.960 | 30348
0.7 {0997 | 0.993 | 0.932 0.946 0.983 0.864 0.976 | 30733
0.8 10983 | 0965 | 0916 0.925 0.973 0.827 0.971 | 31131
0 | 0.878 | 0.750 | 0.871 0.264 0.945 0.514 0.978 | 30483
0.1 0874 |0.742 | 0.856 0.214 0.956 0.506 0.965 | 30245
0.2]0.859 | 0.712 | 0.858 0.230 0.970 0.555 0.932 | 30020
1]03]0871|0.776 | 0.853 0.242 0.969 0.545 0.946 | 31090
31040868 |0.724 | 0.839 0.370 0.961 0.580 0.980 | 30052
1 1050876 |0.748 | 0.804 0.308 0.977 0.585 0977 | 30322
0.6 | 0.891 | 0.774 | 0.806 0.320 0.976 0.656 0.977 | 30815
0.7 1 0.882 | 0.759 | 0.732 0.353 0.975 0.657 0.974 | 30572
0.8 10.790 | 0.592 | 0.877 0.772 0.956 0.614 0.963 | 33790
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Figure 3.2 shows the correlation scatterplots in the component planes (1, 2) for the first
two groups. As for the first simulation, the components are almost perfectly aligned with
the explanatory bundles. Because of the weak correlation between &1, &3 and &5, the three
bundles X;, X3 and X5 are visible on the same component for each of the two groups.

3.3 Analysis of the floristic ecology data

3.3.1 Data description

We apply rmSCGLR to the CoForTaxa dataset available on demand at http://dx.doi.org/
10.18167/DVN1/UCNCAT. The sample we consider gives the abundances of K = 193
floristic taxa in the Congo basin rainforest over a N = 1571 10x 10-km? grid cells across
central Africa. To predict abundances, we have P = 24 climatic variables and () = 3 non-
climatic additional variables. X consists of all the climatic variables, i.e.: eleven temper-
ature variables coded “C17,...,“C11”, eight precipitation variables coded “C12”,...,“C19”,
three climatic water deficit variables coded “sumCWD”, “maxCWD” and “MCWD” re-
spectively, one climatic water balance coded “meanCWB” and one evapotranspiration
variable coded “meanETO0”. Figure 3.3 shows the correlation plot given by the PCA of the
climatic variables. Since it appears that the explanatory variables exhibit a clear bundle
structure, a methodology such as SCGLR is necessary to regularize the model estimation
and reduce the dimension of the explanatory space. Besides, the non-climatic variables,
i.e. the soil type (Harmonized World Soil Database, “HWSD”) and the human-induced
forest-disturbance intensity index (“Anthr2”), as well as its logarithm (“logAnthr2”) to ac-
count for nonlinear effects, are few and weakly correlated with the variables in X as well
as between themselves, and interesting per se. We shall then consider them as additional
explanatory variables, and gather them in matrix A. The response variables are assumed
to be Poisson random variables, independent conditional on X and A. Moreover, the vari-
able corresponding to the number of plots within each grid cell is taken as the offset of
the Poisson regression. For more information about the CoForTaxa dataset, we refer the
reader to Réjou-Méchain et al. (2021).

3.3.2 Hyper-parameter calibration

We present the results obtained when following the parameter-varying scheme presented
in Section 3.1.5. Asnoticed by Réjou-Méchain et al. (2021), the tuning parameters s = 0.1
and [ = 1 allow to optimize SCGLR on CoForTaxa dataset. Here, thanks to the heuris-
tic, G = 3 groups are retained to carry on with the analysis, using the previously found
values of the tuning parameters. Starting with one component per group, we increment
the number of components by one in each group alternately. Only adding one in the third
group improves the criterion. When Réjou-Méchain et al. (2021) applied the basic SCGLR
(without response mixture) to these data, three relevant components were found. The com-
bination H = (1, 1,2) thus does not seem irrelevant. To get a refined model with this
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Component plane (1,2) for the first group

K

SC2(10.1%)

' SC1(2426%)
Component plane (1,2) for the second group

SC2(9.16 %)

ol

 SC1(18.95%)

Figure 3.2: Correlation scatterplots of plane (1,2) for the first two groups obtained by
rmSCGLR with (H,, Hy, H3) = (2,2, 1). The red arrows represent the bundles X and
X4, explanatory of the first group. The blue ones represent the bundles X, and X,
explanatory of the second group. The green bundle X3 is explanatory of the third group.
The percentage of inertia captured by each component is given in parentheses.
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PCA of the floristic data

PC2 (32.16%)

PC1 (36.49%)

Figure 3.3: Component plane (1,2) of the explanatory climatic variables obtained through
PCA. The percentage of inertia captured by each principal component is given in paren-
theses.

combination of components, the tuning parameter ¢ needs to be raised to 0.5 to allow to
better distinguish the groups, and minimize the BIC.

3.3.3 Results and interpretation

The clustering phase of rmSCGLR led to three groups of taxa. Two of them were asso-
ciated with a single explanatory component, and the last one with two components. The
groups respectively comprise 44, 67 and 82 taxa. The contents of the groups are given in
Table 3.5.

Table 3.5: Here is the list of the taxa used in this study (the family classification follows
Angiosperm Phylogeny Group III).

Group Family Genus Species

1 Huaceae Afrostyrax lepidophyllus
1 Fabaceae Afzelia Spp.

1 Fabaceae Albizia ferruginea

1 Fabaceae Albizia spp-

| Gentianaceae Anthocleista spp-

Continued on next page
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Continued from previous page

Group Family Genus Species

1 Fabaceae Anthonotha spp.

1 Phyllanthaceae Antidesma Spp-

1 Fabaceae Aphanocalyx spp-

1 Fabaceae Aubrevillea kerstingii

1 Zygophyllaceae Balanites wilsoniana
1 Passifloraceae Barteria Spp.

1 Lauraceae Beilschmiedia spp-

1 Malvaceae Bombax spp-

1 Malvaceae Ceiba pentandra

1 Cannabaceae Celtis Spp.

1 Sapotaceae Chrysophyllum Spp.

1 Annonaceae Cleistopholis spp-

| Malvaceae Cola spp-

1 Boraginaceae Cordia Spp-

1 Fabaceae Detarium macrocarpum
1 Fabaceae Dialium Spp.

1 Euphorbiaceae Discoglypremna caloneura

1 Malvaceae Duboscia spp-

1 Arecaceae Elaeis guineensis
1 Malvaceae Eribroma oblongum

1 Hypericaceae Harungana madagascariensis
1 Annonaceae Hexalobus spp-

1 Ulmaceae Holoptelea grandis

1 Meliaceae Khaya spp-

1 Irvingiaceae Klainedoxa Spp.

1 Meliaceae Lovoa trichilioides
1 Malvaceae Mansonia altissima

1 Urticaceae Myrianthus arboreus

| Apocynaceae Picralima nitida

1 Sapotaceae Pouteria Spp.

1 Malvaceae Pterygota spp.

1 Euphorbiaceae Ricinodendron heudelotii

1 Malvaceae Sterculia spp-

| Olacaceae Strombosiopsis Spp-

1 Myrtaceae Syzygium spp-

1 Combretaceae Terminalia superba

1 Fabaceae Tetrapleura tetraptera

1 Malvaceae Triplochiton scleroxylon
1 Lamiaceae Vitex Spp-
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Continued from previous page

Group Family Genus Species

2 Clusiaceae Allanblackia spp.

2 Apocynaceae Alstonia Spp-

2 Fabaceae Angylocalyx spp-

2 Anisophylleaceae  Anisophyllea Spp-

2 Moraceae Antiaris toxicaria

2 Fabaceae Aubrevillea platycarpa
2 Burseraceae Aucoumea klaineana

2 Sapotaceae Autranella congolensis
2 Sapotaceae Baillonella toxisperma
2 Fabaceae Bikinia Spp.

2 Sapindaceae Blighia Spp.

2 Sapotaceae Breviea sericea

2 Burseraceae Canarium schweinfurthii
2 Mpyristicaceae Coelocaryon Spp.

2 Rubiaceae Corynanthe pachyceras
2 Fabaceae Cylicodiscus gabunensis
2 Burseraceae Dacryodes spp-

2 Fabaceae Daniellia spp-

2 Achariaceae Dasylepis seretii

2 Malvaceae Desplatsia Spp.

2 Ebenaceae Diospyros crassiflora
2 Fabaceae Distemonanthus benthamianus
2 Meliaceae Entandrophragma angolense

2 Meliaceae Entandrophragma candollei

2 Meliaceae Entandrophragma cylindricum
2 Meliaceae Entandrophragma utile

2 Vochysiaceae Erismadelphus exsul

2 Bignoniaceae Fernandoa adolfi

2 Moraceae Ficus spp.

2 Fabaceae Gilbertiodendron Spp.

2 Euphorbiaceae Gymnanthes inopinata

2 Irvingiaceae Irvingia grandifolia
2 Lepidobotryaceae Lepidobotrys staudtii

2 Euphorbiaceae Macaranga spp-

2 Rhamnaceae Maesopsis eminii

2 Sapotaceae Manilkara Spp.

2 Phyllanthaceae Margaritaria discoidea

2 Moraceae Milicia excelsa

2 Moraceae Morus mesozygia
2 Urticaceae Musanga cecropioides
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Continued from previous page

Group Family Genus Species

2 Rubiaceae Nauclea Spp.

2 Malvaceae Nesogordonia Spp-

2 Fabaceae Newtonia spp-

2 Picrodendraceae  Oldfieldia africana

2 Salicaceae Oncoba spp.-

2 Chrysobalanaceae Parinari Spp.

2 Fabaceae Pentaclethra eetveldeana
2 Euphorbiaceae Plagiostyles africana

2 Combretaceae Pteleopsis hylodendron
2 Fabaceae Pterocarpus Spp.

2 Violaceae Rinorea Spp.

2 Burseraceae Santiria spp-

2 Oleaceae Schrebera arborea

2 Mpyristicaceae Scyphocephalium mannii

2 Anacardiaceae Sorindeia Spp.

2 Clusiaceae Symphonia globulifera
2 Sapotaceae Synsepalum spp-

2 Ochnaceae Testulea gabonensis
2 Fabaceae Tetraberlinia bifoliolata

2 Euphorbiaceae Tetrorchidium didymostemon
2 Sapotaceae Tieghemella africana

2 Moraceae Treculia spp-

2 Meliaceae Trichilia spp-

2 Anacardiaceae Trichoscypha Spp-

2 Sapotaceae Tridesmostemon omphalocarpoides
2 Moraceae Trilepisium madagascariense
2 Dipterocarpaceae  Trillesanthus excelsus

3 Fabaceae Amphimas Spp-

3 Annonaceae Annickia Spp.

3 Annonaceae Anonidium mannii

3 Rhizophoraceae Anopyxis klaineana

3 Euphorbiaceae Anthostema aubryanum
3 Anacardiaceae Antrocaryon spp-

3 Fabaceae Berlinia spp.

3 Fabaceae Bobgunnia fistuloides

3 Fabaceae Brachystegia Spp.

3 Rubiaceae Brenania brieyi

3 Phyllanthaceae Bridelia spp-

3 Fabaceae Calpocalyx Spp-

Continued on next page



Section 3.3. Analysis of the floristic ecology data

Continued from previous page

Group Family Genus Species

3 Meliaceae Carapa Spp.

3 Sapotaceae Chrysophyllum lacourtianum
3 Fabaceae Copaifera spp-

3 Olacaceae Coula edulis

3 Euphorbiaceae Croton Spp.

3 Fabaceae Cryptosepalum Spp.

3 Olacaceae Diogoa zenkeri

3 Ebenaceae Diospyros spp-

3 Asparagaceae Dracaena Spp.

3 Putranjivaceae Drypetes Spp.

3 Annonaceae Duguetia Spp.

3 Fabaceae Erythrophleum spp-

3 Erythroxylaceae ~ Erythroxylum mannii

3 Fabaceae Eurypetalum Spp.

3 Fabaceae Fillaeopsis discophora
3 Apocynaceae Funtumia Spp.

3 Clusiaceae Garcinia spp-

3 Fabaceae Gilbertiodendron dewevrei

3 Malvaceae Grewia Spp-

3 Salicaceae Homalium Spp.

3 Fabaceae Hylodendron gabunense
3 Fabaceae Hymenostegia spp-

3 Irvingiaceae Irvingia Spp-

3 Fabaceae Julbernardia Spp-

3 Phyllanthaceae Keayodendron bridelioides
3 Meliaceae Leplaea Spp.

3 Sapotaceae Letestua durissima
3 Ochnaceae Lophira alata

3 Calophyllaceae Mammea africana

3 Chrysobalanaceae Maranthes Spp.

3 Bignoniaceae Markhamia Spp.

3 Fabaceae Millettia Spp.-

3 Rubiaceae Morinda lucida

3 Fabaceae Neochevalierodendron stephanii
3 Ochnaceae Ochna Spp.

3 Ixonanthaceae Ochthocosmus Spp.

3 Sapotaceae Omphalocarpum Spp.

3 Olacaceae Ongokea gore

3 Fabaceae Pachyelasma tessmannii
3 Pandaceae Panda oleosa
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Continued from previous page

Group Family Genus Species

3 Rubiaceae Pausinystalia spp.

3 Fabaceae Pentaclethra macrophylla
3 Fabaceae Pericopsis elata

3 Lecythidaceae Petersianthus macrocarpus
3 Fabaceae Piptadeniastrum africanum

3 Annonaceae Polyalthia suaveolens

3 Fabaceae Prioria spp-

3 Anacardiaceae Pseudospondias spp-

3 Myristicaceae Pycnanthus angolensis

3 Simaroubaceae Quassia spp.

3 Apocynaceae Rauvolfia Spp.

3 Rubiaceae Rothmannia spp-

3 Euphorbiaceae Sapium spp-

3 Fabaceae Scorodophloeus zenkeri

3 Achariaceae Scottellia Spp.

3 Lecythidaceae Scytopetalum klaineanum
3 Bignoniaceae Spathodea campanulata
3 Fabaceae Stachyothyrsus staudtii

3 Myristicaceae Staudtia kamerunensis
3 Fabaceae Stemonocoleus micranthus
3 Combretaceae Strephonema Spp.

3 Olacaceae Strombosia spp-

3 Apocynaceae Tabernaemontana spp-

3 Fabaceae Tessmannia Spp-

3 Fabaceae Tetraberlinia polyphylla

3 Phyllanthaceae Uapaca spp-

3 Annonaceae Xylopia aethiopica

3 Annonaceae Xylopia hypolampra
3 Annonaceae Xylopia quintasii

3 Rutaceae Zanthoxylum Spp.

Let us first try to interpret the groups and components output by the clustering phase of
rmSCGLR. We sum up the first two groups in Table 3.6, stating the explanatory variables
most correlated with the components. Table 3.6 does not deal with the third group, as
this one appears in the sequel to be something of a “junk” group with no homogeneous
interpretation.

The component of the first group is highly correlated with the variable “C7” (difference
between the maximum of temperature of the warmest month and the minimum of tempera-
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Table 3.6: Lists of explanatory variables most correlated with the component in each of
the first two groups. Only correlations over 0.8 in absolute value are given.

Groups Explanatory variables Correlation
1 C7, sumCWD, MCWD, maxCWD, | 0.956, 0.955, 0.885, 0.880
2 C2, meanETO, C18, C19 0.930, 0.929, 0.925, 0.862

ture of the coldest month), and with the three climatic water deficit variables: “sumCWD”,
“MCWD” and “maxCWD”. Thus, the abundances of taxa composing the first group would
be linked to a gradient of temperature, and sensitive to a water deficit. The component of
the second group is highly correlated with “C2” (the mean diurnal range), “meanET0” (the
mean monthly evapotranspiration) and with “C18” and “C19” (the precipitations of the
warmest quarter and the coldest quarter, respectively). This component is very similar to
the first component found if we apply SCGLR on all the responses (p = —0.965). Accord-
ing to Réjou-Méchain et al. (2021), this component is highly related to a regional floristic
gradient contrasting areas with a cool and light-deficient dry season (coastal Gabon) and
areas with high evapotranspiration rates (northern limit of the central African forests). The
components of the third group fail to be aligned with any bundle of variables. The corre-
sponding scatterplot is given in Figure 3.4. As mentioned by Réjou-Méchain et al. (2021),
a majority of taxon abundances may relate with climate only by chance. Thus, by contrast
to the first and second group, where the abundances are linked to water deficit or precip-
itation, the taxa composing the third group are not connected with any specific gradient
but with various combinations of climatic variables.

In the optimization phase, SCGLR is performed separately on each group. In the first
group, SCGLR finds a single component, highly correlated (p = 0.960) with f} of the
clustering phase. Three components are calculated by SCGLR to best predict the second
group. However, on Figure 3.5a, we can see that all the linear predictors of the taxa’s
abundances composing the second group are highly correlated with the bundle found by
f3 of the clustering phase. The second and third components only provide a secondary
improvement in predicting the abundances. The correlation between the first SCGLR-
component of the second group and rmSCGLR’s f7 is equal to -0.991. As expected for
the third group of taxa, Figure 3.5b shows no particular correlation pattern between the
linear predictors and any bundle, which highlights the absence of specific climatic gradient
in this group’s explanatory space. The planes spanned by the higher rank components are
respectively given by Figure 3.6 and Figure 3.7.

Let us evaluate the benefits obtained in the prediction by taking into account the clus-
tering found by rmSCGLR. In Réjou-Méchain et al. (2021), the quality of prediction was
given by the mean of ten-fold cross-validation Mean Squared Prediction Errors (MSPE),
and we shall use the same index for comparison. We shall thus compare: (i) the prediction
error we get with SCGLR on all taxa, named MSPE,;, (ii) the prediction error obtained
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Component plane (1,2) for the group 3

SC2 (32.25%)

SC1 (20.94%)

Figure 3.4: Component plane (1,2) for the group 3 output by rmSCGLR on the CoForT-
axa dataset, with optimal hyper-parameter (s,[,t) = (0.1,1,0.5). The plot displays only
variables having cosine greater than 0.75. The percentage of inertia captured by each
component is given in parentheses.

with SCGLR on the three groups separately, named MSPE;, MSPE, and MSPE; respec-
tively, with their weighted mean named MSPE,,..,, and (iii) the mean of the prediction
error on random partitions into three groups of taxa, obtained over a hundred samples,
named MSPE,,,4om- The prediction error of SCGLR on all taxa was calculated by Réjou-
Meéchain et al. (2021), and found to be MSPE,; = 3.23 (1.13). SCGLR, performed sepa-
rately on the first and second groups, gave the following prediction errors: MSPE; = 3.07
(0.87) and MSPE, = 2.94 (1.07) respectively, which indicates an improved quality of pre-
diction. However, the prediction error of the third group rises to MSPE; = 3.41 (0.99),
which indicates that group 3 is composed by taxa the abundances of which are poorly pre-
dictable from the sheer observed climatic variables. Finally, the mean prediction error of
SCGLR accounting for the partition is: MSPE e, = 3.17 (0.99). The mean prediction
error accounting for a random three-group partition is: MSPE, qgom = 3.20 (1.09). This
shows that rmSCGLR was able to, if only slightly, better capture the explanatory structure
of the floristic data. It should be noted that prediction of taxa abundances from merely
such climatic variables is usually poor (Beale et al., 2008).

~ B
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(a) Component plane (1, 2) for the group 2
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SC1 (33.35%)
(b) Component plane (1, 2) for the group 3
Figure 3.5: Correlation scatterplots of plane (1,2) with linear predictors for the second and
third separated groups obtained by the SCGLR algorithm. The black arrows represent the

covariates. The red ones are the linear predictors of the responses. The plot displays only
variables having a cosine over 0.75. The percentage of inertia captured by each component

is given in parentheses.
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SC3 (16.3%)

SC1 (34.57%)

SC3 (16.3%)

SC2 (32.74%)

Figure 3.6: Correlation scatterplots of planes (1,3) and (2,3) with linear predictors ob-
tained by applying SCGLR to the second group separately. The blacks arrows represent
the covariates. The red ones represent the linear predictors. The plot displays only vari-
ables having a cosine greater than 0.75 with the plane. The percentage of inertia captured
by each component is given in parentheses.
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SC3 (21.31%)

SC1 (33.35%)

SC3 (21.31%)

SC2 (29.27%)

Figure 3.7: Correlation scatterplots of planes (1,3) and (2,3) with linear predictors ob-
tained by applying SCGLR to the third group separately. The blacks arrows represent the
covariates. The red ones represent the linear predictors. The plot displays only variables
having a cosine greater than 0.75 with the plane. The percentage of inertia captured by
each component is given in parentheses.
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3.4 Conclusion and discussion

In the context we address, we have multiple responses to be modeled through many covari-
ates. All responses may not depend on the same explanatory dimensions, captured by com-
ponents. Therefore, we both need to model the responses and to cluster them with respect
to their common explanatory components. Unfortunately, no available method jointly per-
forms response clustering and search for explanatory components. Among the methods
searching for common explanatory components, the original SCGLR was designed to reg-
ularize GLM estimation and reduce the explanatory space through components, so as to
decompose the linear predictor in an interpretable way. It allowed to find strong and inter-
pretable supervised components common to response variables, by achieving a trade-off
between Goodness-of-Fit and a Structural Relevance measure. Methods as proposed by
Dunstan et al. (2011, 2013) or Mortier et al. (2015) cluster responses by imposing that
the regression coefficients of the covariates be the same within each cluster, which does
not allow to model responses in a flexible enough manner. Moreover, their modeling is
not based on strong dimensions as components. The response mixture SCGLR extends
SCGLR in two major ways: (i) Through a mixture model on the response variables, it
identifies groups of responses that can be predicted from group-specific components. Do-
ing so, this method improves both the prediction quality of the response groups, and the
interpretation of what explains the responses. In our ecological framework, we detected
communities of taxa sensitive to specific gradients of climate variables. (ii) It extends
the criterion to be maximized by introducing a separation sub-criterion, which allows to
specify sub-spaces which components had better keep away from. In the context of re-
sponse mixture, this sub-criterion helped distinguish the groups by better separating their
explanatory sub-spaces.

In our simulation study, rmSCGLR proved to behave as expected regarding groups.
In a context of very close explanatory sub-spaces, it recovered the original groups, and
provided components aligned with the latent variables. On the floristic ecology dataset, we
found three communities of taxa. The first one is linked to a gradient of temperature, while
the second one is connected to a regional floristic gradient contrasting two main areas.
The last group gathers the taxa related to no specific gradient, but to many combinations
of the observed climatic variables. More predictive climatic components could likely be
generated after removing these taxa.

Our method still has some limitations. Just as the original SCGLR, it does not allow to
deal with a thematic partition of the explanatory variables. To overcome this limitation, we
could extend THEME-SCGLR (Bry et al., 2020b) to a response mixture. For instance, the
temperature and precipitation variables would be seen as pertaining to two distinct themes
and each community of taxa would be predicted by common components in each theme.
Another way of extending our model would be to create sparse components, in the spirit
of Durif et al. (2018), with intent to select relevant climatic variables. Another limitation
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is that the heuristic presented in Section 3.1.5 does not guarantee to find the best values of
the hyper-parameters. Several parameter-varying schemes could be implemented and the
results compared. Hutter et al. (2015) propose a review of works allowing to best optimize
the hyper-parameters.
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4.1 Relaxing the independence hypothesis

This part is dedicated to the relaxation of the independence hypothesis in a component-
based model framework. Section 4.1.1 recalls the method to calculate successive com-
ponents for an extension of SCGLR to multiple explanatory variable subsets: THEME-
SCGLR. The factor model and the THEME-SCGLR are combined in Section 4.1.2. Sec-
tion 4.1.3 presents the estimation process we use: Sub-section 4.1.3.1 linearizes the model,
while Sub-section 4.1.3.2 assumes Gaussian distributions on the pseudo-variables. The
EM algorithm we develop is presented in Section 4.1.4. More particularly, Sub-sections
4.1.4.1 and 4.1.4.2 detail the expectation and maximization steps respectively, while the
explicit EM algorithm is given in Sub-section 4.1.4.3. The overall algorithm is shown in
Section 4.1.5. Finally, Section 4.1.6 gives the posterior clustering steps used to detect the
groups.

4.1.1 Reminder of THEME-SCGLR

We recall that this chapter is developed in the THEME-SCGLR context as defined in
Section 2.2.4. Let f* = X,ul be the rank-h component of theme X,, and let F* =
[fL, ..., f"], where h < H,, be the matrix of the first ~ components for this theme. Ac-
cording to the local nesting principle, the new component f**+1 must best complement

both the existing ones and A, thatis A" := [F{1, . ,F,f”l_l, F" Ff,ffl, .. Fi® Al

,
So 711 has to be calculated using A" as the new set of additional covariates. Moreover,
to avoid linear redundancy of components, we impose that f**! be orthogonal to F",
ie. F"TW fi+l — 0. The sub-criteria ¢ and 14, are respectively given by Equation
(2.9) and Equation (2.10), while the weight o, reflecting the a priori relative importance
of working variable wy, is set to 1 for all k. We calculate every new component as the solu-
tion of the optimization program given by Equation (2.11), with the additional constraint:
ATyt = 0, where A" = XTW E", and loop on r until overall convergence of the
component system. Forall » = 1, ..., R, the rank-1 component of theme X, is calculated
using the same program with F° = () and A? = 0. For the sake of simplicity, in the fol-
lowing, we shall consider the matrix F' = [FlHl, ce FgR} as the new set of explanatory
variables and v, = (Y1, - - -, Yk R)T its vector of regression parameters associated with the
response Y.

4.1.2 THEME-SCGLR in a factor model context

LetY = [yi1,...,yx] € RY*K be the response matrix. For unit n, each response is
assumed to be linearly modeled using the components and additional covariates, plus J
random latent factors g, = (gn1,-- -, gn J)T

Mk = Fr Yk + a0k + g by,

where f,, and a,, are the vectors composed of the nth rows of matrices F' and A respec-
tively, and by, is the vector of regression parameters associated with g,,. The factors are
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assumed drawn from a multivariate normal distribution g,, ~ N;(0, I ;) and independent
across statistical units. This model is designed so that the J factors capture as much as
possible of the covariance between the responses not accounted for by the components and
additional covariates, hence their conditional covariance. Denoting G € RN*7 the matrix
containing all the realizations of factors, the linear predictor associated with the response
Yy, expressed column-wise becomes

Let B = [by,...,bg] € R7*K be the loading matrix. Joreskog (1969) noticed that
the loading matrix B is defined up to an arbitrary orthogonal rotation. To guarantee the
identification of the model, we choose to constrain the J x J sub-matrix of B to be an
upper triangular matrix with positive diagonal elements (Geweke and Zhou, 1996). An
advantage of the factor model is to yield the matrix ¥ = BTB € RX*X_ storing the
conditional covariance of the responses, in a parsimonious manner. Indeed, the number
of factors retained may remain small with respect to the size of the covariance matrix. For
the sake of clarity, Figure 4.1 presents the path diagram of THEME-SCGLR with factors.

Figure 4.1: Path diagram of THEME-SCGLR with latent factors. The observed variables
(OV) are presented in squares while the latent variables (LV) are shown in ovals. The
arrows represent the influence links.

4.1.3 Estimating the parameters of a GLM with factors

Let ©® = {7k, 0k, br; k = 1, ..., K} be the set of parameters. The marginal log-likelihood
of the model is obtained by integrating over latent variables g,,

N

(©;Y) = In(L(yn; ©))

= Z In </ H L(ynk|gn§ @)L(gn) dgn> .
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In a context of non-Gaussian responses, the maximization of this log-likelihood is not
allowed. In the spirit of Saidane et al. (2013), the estimation of the parameters is performed
in two steps: first, we linearize the model; then, we maximize the pseudo-likelihood of the
linearized model under a Gaussian assumption.

4.1.3.1 The linearization step

Temporarily considering the factors given, i.e. conditional on G, the above log-likelihood
is that of a classic multivariate GLM. Let h;, denote the canonical link function associated
with the response yg, h). its first derivative and i, the mean parameter for statistical
unit n. The working variable w,,; associated with y,, is then calculated as the first order
development of Ay, at point (i,

- nnk + Cnlm

where (ox = (Ynk — fnk) P, (o). This development leads to the conditional linearized
model expressed column-wise

’wk:F’)/k—i-Adk—i-Gbk‘i‘Ck,

where E[wy|G] = Fvy, + Ady + Gby, and V[wy |G] = V[¢] = Wi .

4.1.3.2 The estimation step

In this step, we assume that the distribution of the working variables given F', A and G
is Gaussian, and view the factors as latent variables. The model pseudo-log-likelihood
[(®; W), where W denotes the matrix of working variables, being difficult to maximize
directly, we use the EM algorithm to estimate the model parameters. We calculate and
then maximize the expectation of the complete log-likelihood I(®; W, G) of the working
variables. Further details of the EM algorithm are given in Section 4.1.4.

4.1.4 The EM algorithm for a GLM with factors

We are now dealing with the linearized model, where the factors are latent. So, we shall
use the EM algorithm to estimate the parameters. The previous developments lead to the
conditional linearized model

wg = F’7k+A5k+Gbk+Ck,
where E|wy|G] = Fry + Ady, + Gby, and

ViwilG) = V[¢i] = Wit = diag (v,))

—
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with v = @i (dr)vk (k) R (,unk)Q, where a,,, and v, are known functions and ¢y,
is the dispersion parameter related to yi. The linearized model expressed row-wise thus

writes
Wy = FTfn + ATan + BTgn + Cna

where I' = [v1,...,vk]|, A = [01,...,0Kk|, B = [by,...,bk], and where w,,, f,, a,
and g,, are the vectors composed of the nth rows of matrices W, F', A and G respectively.
The expectation and the variance are given by E[w,] = T'Tf, + ATa,, and V[w,| =
BTB + Y1, where

Y, ! = diag (U;kl

7777

Denoting ® = {I', A, B} the set of parameters, the complete log-likelihood writes

l(@; W,G)
In (LW, G;0))

Z wn|gn; )) +1n (L<gn§@))

ENj[ In <(27T)K/2det('r )1/2)

n=1

- ; (wn - FTfn - ATan - BTgn)T Tn (wn - FTfn - ATa'n - BTQn)

—1In ((27T)J/2) -
[Z ( ) +grgn + (K + J)In(27)

1 T
29ng’ﬂ:|

M\H

4= -

+ ) Unk (wnk — frve — al ok — gTbk)zl .

4.1.4.1 The expectation (E) step

We first calculate the expectation of the complete log-likelihood conditional on the data

w
E[l (6; W, G) ’W7 @/] = z_: /ln (L (wn‘gn; @) L (gn; @)) L (gn,wn; @,) dgn.

Thus, we need to first find the law of g,,|w,,. Since the random vector (wX, gT)T is Gaus-

sian, we have
w,, I r’f, + ATa, BTB+7Y;t! BT
gn 0 ’ B Iy ‘
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Thanks to the conditioning rule of the multivariate Gaussian , we get

where o, = B(BTB + Y1

by

and

ol
hWE

Il
—

gn|wn, ~ N (an (wn —-ITyf, — ATan> Iy — anBT) ,

Gn = E[gn"wn;@]
o (w, —TTf — ATqa

R, =F {gng,{]wn; @}
=V [gn|wn; 9] +E [gn|wn§ 9] E [gn|wn; G]T
=1I; — a,B" + g, .

Finally, we have the explicit form of the expectation of the complete log-likelihood

E[l (©;W,.G)|W, 0]

sE{re g

n=1 k=1

Unk (wnkz —Jn Yk — aT5k - Tbk)2| Wn; @,] }

er; '—|
i MN

3
Il
—

{ J)In(27) + Zln( nk) +E [g;‘fgn|wn;@'} +
k=1

<
M=

Unk ((wnk — frve — a£5k)2 + by, (Qngf) br—

Y — aT5k> Zbk) ’ Wy @'”

o
Il

1

[\
//~
g
3
o

|

{<K ) + Y (v5)) + E g w0 +
k=1

EK: Up, {(wnk Fryy — a£6k>2 + b R, by —
Wnk — n’}/k - a'T(Sk;> ~Tbk}}

]
{N (K + J)In(27) —l—ZZln( )+§:E[g§gn!wn;@'}+

n=1 k=1 n=1

??‘

l\D\r—\ O

K

Z [|’U)k — F")/k — A6k||W + bT (Z UnkR > bk—
k=1 n=1

2 (Gbi)" Wi (wy — Py — Aék)] } ,
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where the rows of the matrix G are composed by g,’s.

4.1.4.2 The maximization (M) step

The maximization step maximizes the conditional expectation of the complete log-
likelihood with respect to ®, subject to the upper triangular constraint on matrix B. How-
ever, for all k, the parameters - and & are not concerned by the constraint. Denoting
BF = (vF,8F) and X = [F, A}, the first order conditions of the maximization yield

Vs El(©:W,G)W, e =0

~ T -
@vﬂk{\ —2(Gb,) Wi (wk—Xﬁk)} —0
<~ XTWk (wk — Xﬂk> — XTWkébk =0
<~ XTWkXBk = XTWk (wk — ébk)
= ,Bk = (XTWkX>_1 XTWk ('wk — ébk> .

wy, — X By,

‘2
Wi

If a response is drawn from a Gaussian law y, ~ Ny (X' B, a,ﬁI N), the residual
variance o7 must be estimated. Besides,

Vo2 El(©;W,G)|[W,0'] =0
1 =2 (X
o VW () + - Xl o (S R
—2 (ébk)T (wk — X,Bk,>:|} =0
1 ~ 2 T N ~ T ~
k n=1
o 1 > 2 ok 5 =z \T %
G o= |wi — XBi| +bf (Y R ) b —2(Gby) (wi— XBr) ¢
n=1
Now, we need to estimate the vector by under the upper triangular constraint. For
each k = 1,...,J, let b = (b{,;,07) be the regression parameters, where b{, , =

(bik, - - -, brx) is a vector of length & to be estimated and 0 is a null vector of length (J — k)
a priori fixed. In this case, we define (R,,)1.,1:x as the sub-matrix of size k x k of R,

~ 81



Chapter 4. Generalized linear latent variable model based on supervised components

and G4, as the matrix composed by the first k& columns of G. The maximization yields

Vbl:k,kE[l(G; W, G)’W, 6/] =0

© Vi {b,f:k,k [i Unk (Rn)l:k l_k] bikx — 2 (él:kbl:k,k)T Wy (wk - Xﬂk)} =0
n=1 o

& (Ga) Wi (= X0) =[S v (), baa =0
n=1 o

-1

bui =[S (Ba),, | (60 Wi - X00).
n=1 "

Likewise, for k = J + 1, ..., K, by is given by

-1

bk = [i UnkRn‘| GTWk (wk — X,Bk,> .
n=1

4.1.4.3 The algorithm

As a result of the aforementioned developments, we shall use Algorithm 8 to estimate the
parameters of the factor model.

4.1.5 The overall algorithm

Algorithm 9 consists in alternating the following steps: (i) Given the current set of pa-
rameters, calculate all the components of all the themes through the PING algorithm. (ii)
Given the current components, find the working variables through the maximum likeli-
hood of GLM. (iii) Given the working variables, estimate the factors model parameters
through the EM algorithm. The method thus implemented is named F-SCGLR, for Factor
SCGLR.

4.1.6 The clustering steps

The final aim of this work is to group the responses according to their mutual dependencies,
conditional on the explanatory covariates. In other words, two responses having a high
conditional correlation (positive or negative) should be cast to the same group. To achieve
this, we propose the following strategy:

1. Calculate the conditional covariance matrix ¥ = BT B.

2. Calculate the conditional correlation matrix C' where C;; = 3;;/1/2::%;.
3. Calculate the dissimilarity matrix D where D;; = 2 (1 — CZ) The square con-

ditional correlation is used in order to consider two responses highly positively or
negatively correlated as close.
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Algorithm 8: The EM algorithm applied to factor models with GLM

while not convergence do

end

Expectation step
forn=1,...,Ndo

alth = BO (BOTB® ¢ T;l)‘l
g7(1,t+1) — a”(lt'i‘l) (wn _ F(t)Tfn _ A(t) Tan)

R+D = [, — qt+DBOT 4 gi+)gt+n T

end
Maximization step
fork=1,..., K do

B = (XTWkX)il XTW, (wk - é(t“)bl(ct))

if Gaussian then

7t = { o= XA 607 (S, D) 0

2 (@(m) b,(f))T (wk e Bff”’)}

end
if & < J then
plt+l) _
1:k,k — .
N F(t+1) (AT _ %+l
{anl Unk (Rn )I:k,lzk] <G1:k ) Wi (wk X By, )
else
b’(ct—i-l) _ [EnN=1 UnkRﬁf“)rl GO T, (wk _ XIB’(CH-I))

end

end

t+—t+1
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Algorithm 9: The F-SCGLR algorithm

while not convergence do
Compute the components through the PING algorithm

Vr=1,...,RVh=1,... H, fri+) = X 4h0E+1)
Compute the working variables through the IRLS algorithm
it = FOD~A® 1 As0 1 G

PG = bt () = 1, N

wflt]:-l) — nit,;“) + R (MS&;U) (ynk . MS&;U), VYn=1,...,N

2 —1>
n=1

Compute the model parameter through the EM algorithm
O = argmax [(©®; W)
e

W — atag ([aus(on)on (5 1 ()

-----

Increment

t+—t+1
end

4. Perform Multidimensional Scaling (MDS, Cox and Cox, 2008) on the matrix D to
obtain a euclidean representation of the responses (i.e. a set of coordinates in a eu-
clidean space) with respect to this distance structure. We use the function cmdscale
of the stats @ package (R Core Team, 2021).

5. Perform a K-means algorithm (taking as a starting point the output of a hierarchical
clustering procedure) on the coordinates obtained on the previous step. We use the
factoextra @ package (Kassambara, 2017) where the function hkmeans runs the
K-means and the function fviz-nbclust optimizes the number of clusters using the
silhouette criterion.

4.2 Simulation study

Several simulation studies have been implemented to assess the performance of F-
SCGLR. The first one focuses on the identification of the right combination of com-
ponents and factors. The combination was calibrated across the cross-product grid
(Hy,...,Hg,J) € {1,...,4}% x {0,...,5} by minimizing the Bayesian Information
Criterion (BIC, Schwarz, 1978). As shown by Chauvet et al. (2019), the hyper-parameters
must be chosen to avoid the components to be too close to the principal components
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(s > 0.5) or to be drawn towards too local bundle (! > 10). Thus, the second sim-
ulation aims at studying the influence of the hyper-parameters s € {0.1,0.3,0.5} and
[ € {1,2,3,4,7,10} in a situation of a more or less clearly separated cluster pattern. In
this simulation, we use the Rand Index (RI, Rand, 1971) and the Adjusted Rand Index
(ARI, Hubert and Arabie, 1985) to assess the correctness of the classification steps de-
tailed in Section 4.1.6. In addition, to measure the quality of the latent variables recovery,
we calculate the maximum square correlation between each latent variable £ and the com-
ponents: )
2 h
P& ) =max p (€. 7)

where f? denotes the hth component of theme X,.. Finally, as reference values for com-
parison, we also calculated the RI and ARI of the partitions output by a competing @®@
package in a context of binary data. For each simulation, one hundred samples have been
generated. The @ package FactorSCGLR, the simulation codes and the application to a
real dataset are available at https://github.com/julien-gibaud/FactorSCGLR.

4.2.1 Simulation in a context of mixed distributions
4.2.1.1 Generation of the simulated data

The variables are simulated on N = 100 statistical units. Five latent variables &7, &,
&3, &4 and &5 are simulated independently. The X matrix consists in two themes: X =
[ X1, X]. The first theme X; = [X;, X2, M| is made of three blocks: X'; € RV*%
and X5 € RV*% are bundles of variables distributed about &; and &, respectively, and
M contains fifty unstructured noise variables drawn from a multivariate normal distri-
bution. Likewise, the second theme Xo = [X3, X4, X5, M| is made of four blocks:
Xy e RVXI00  x, ¢ RVX80 and X5 € RY*50 are bundles of variables distributed about
&3, &4 and &5 respectively, and My contains sixty unstructured noise variables drawn
from a multivariate normal distribution. More formally, forallz = 1,...,5, a variable x,,
within a bundle is simulated as x,, = §; + &, where &, ~ Ny(0,0.11x). This generation
yields P = 500 explanatory variables. The N realizations of the J = 3 factors, simulated
through g,, ~ N;(0, I;), are stored in matrix G € RY*/, The matrix B € R7*¥ of
factor loadings is generated so as to exhibit a three-cluster pattern

Vk=1,....5, bx~Ny(pa,05Ls), Vk=6,...,10, bp~N;(—p1,03L,)
Vh=11,...,20, bg~Nj(p2,05Ls), VE=21,...,35, by ~N;(—pa2obl;)
Wk =36,...,50, by~ Ny (ps,051s),

where 0% = 0.1, g = (2,0,0)7, py = (0,—1,0)7 and ps = (0,0,1.5)T. Finally, the
response matrix Y is simulated as a mix of Gaussian, Poisson and Bernoulli distributions,
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with

Vk=1,...,20, yr~Nyn (u = Y1x€1 + Y22 + Gby, X = O'iIN)
Vk =21,...,40, yi ~ P (X =-exp[0.571x€4 + 0.5721€5 + Gby))
Wk =41,...,50, i~ B(p = logit™! [y1€5 + yanéa + Gby)) |

where for all k, 0,3, Yik» Vor and 73y, are uniformly generated, with o7 € [0.1,0.2], 711 €
[—4,4], vor € [—2,2] and 3, € [—0.5,0.5]. In the linear predictors, we rank the latent
variables in the decreasing order of their regression parameter values.

4.2.1.2 Identification of the true model

In this simulation study, the hyper-parameters are first calibrated through the SCGLR @®
package (e.g. without factors) and set to s = 0.3 and [ = 4. Table 4.1 sums up the results
on a cross-product grid. As expected, the combination which minimizes the BIC is given
by the true combination (Hy, Hs, J) = (2,2, 3). However, several points deserve men-
tioning. We observe, for all component combinations, that the values of the BIC decrease
dramatically when factors are involved in the model. This shows that, because mutual de-
pendencies may generally exist, the conditional covariance should be modeled. When the
model involves too many factors (when J = 4 and J = 5), the number of useful compo-
nents is underestimated. Indeed, the variability of the model captured by the factors then
contains a part of the variability otherwise captured by the components. In the opposite
situation, when J = 0 or J = 1, the BIC leads to overestimate the number of components.

4.2.1.3 Varying the hyper-parameters and the variance within the clusters

Henceforth, keeping the true combination found by the BIC, we focus on the influence
which the hyper-parameters s and [ have on the clustering decision and latent variable
recovery. In order to compare the results in a context of more or less distinct cluster pattern,
we vary the variance within the cluster by taking 0% € {0.1,0.2,0.3}. Figure 4.2 shows
the conditional correlation matrices for the three values of 0%.

Table 4.2 gives the results for 0% = 0.1. Inthe s = 0.3 and s = 0.5 cases, the values of
RI and ARI are slightly better than in the s = 0.1 case. Moreover, for s = 0.3 and s = 0.5,
the maximum value for RI and ARI is reached for [ = 4. This is in accordance with the
hyper-parameters calibrated through the SCGLR @ package. Table 4.3 and Table 4.4
sum up the results for respectively 0% = 0.2 and 0% = 0.3. As expected, the higher the
variance within the cluster, the weaker the values of RI and ARI for all the combinations
of s and [. We may also note that the difference between the values of RI and ARI across
the hyper-parameters s and [ tends to fade when ¢% increases. The main result about the
square correlations is that the variance within the cluster does not have a relevant influence
on the quality of the latent variables recovery. Indeed, the search for components is related
to the deterministic part of the model, while U% is involved in the stochastic one. The
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Table 4.1: Mean values of the BIC over a hundred samples for (Hy, Hy) € {1,2,3,4}>
and J ranging from O to 5. The lowest values are in bold font.

J=0 J=1

1 2 3 4

79051 | 74909 | 63621 | 70120 34205 | 54295 | 28680 | 30613

57546 | 55794 | 46597 | 45896 29705 | 30369 | 26841 | 25463

1 1
2 2
3 54710 | 53330 | 43731 | 41406 3 31065 | 26012 | 24542 | 25592
4 44658 | 43938 | 42169 | 39733 4 34943 | 26930 | 24520 | 25369

J: J:

1 21265 | 19833 | 19907 | 21087 1 25655 | 17235 | 17474 | 17673
2 20303 | 18678 | 21227 | 20157 2 19150 | 15915 | 16197 | 16378
3 20601 | 20361 | 22026 | 20565 3 19050 | 16059 | 16341 | 16588
4 20774 | 19022 | 19309 | 19496 4 19329 | 16308 | 16640 | 16808

J =4 J =5
1 2 3 4

1 18356 | 16025 | 16237 | 16556 1 16584 | 16212 | 16462 | 16706
2 16364 | 16058 | 16287 | 16651 2 16647 | 16387 | 16628 | 16911
3 16534 | 16242 | 16484 | 16919 3 16852 | 16661 | 17020 | 17167
4 16835 | 16424 | 16761 | 17103 4 17211 | 16849 | 17279 | 17412

1 2 3 4

square correlations, for s = 0.3 and s = 0.5 with [ > 2, are greater than for s = 0.1. This
observation is consistent with Chauvet et al. (2019) who notice that the thinner the bundles,
the greater the value of s has to be to recover the latent variables correctly. Here, indeed,
the variance within the bundles is equal to 0.1 (thin bundles). However, the particular case
of [ = 1 deserves mentioning. The components calculated with [ = 1 being close to the
principal components, the two components of theme X5 settle between the three bundles
and so, produce low square correlations with the latent variables. The interest of tuning the
locality is shown by the gap between the results obtained for [ = 1 and [ = 2: in the latter
case, the square correlations are dramatically improved. Furthermore, &3 being the less
explanatory latent variable, p*(&3, .) is always lower than the others square correlations.

Figure 4.3 shows the correlation scatterplots in the component planes (1, 2) for the first
two themes. The components are almost perfectly aligned with the explanatory bundles.
However, as observed in Table 4.2, Table 4.3 and Table 4.4, the bundle X' 3 seems slightly
less correlated with the component f2 than the other bundles with their corresponding
components.
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|

0.5 1

I

-1 -0.

(a) Conditional correlation (b) Conditional correlation (c) Conditional correlation
matrix for a% =0.1 matrix for a% =0.2 matrix for JQB =0.3

Figure 4.2: Conditional correlation matrices for different values of 0%

Table 4.2: Mean values of RI, ARI and square correlation over a hundred samples with
0% = 0.1,s€{0.1,0.3,0.5} and | € {1,2,3,4,7,10}.

S ! RI ARI | p*(&1,.) | p*(&2,.) | P°(&s,.) | P°(as )
1 10926 0.839 | 0.938 0.906 0.759 0.838
2 10927 | 0.839 | 0.980 0.959 0.810 0.935
01 3 10920 0.816 | 0.981 0.962 0.805 0.942
1410928 | 0837 | 0.979 0.966 0.816 0.945
7 10926 | 0.830 | 0.966 0.954 0.798 0.946
10 | 0.927 | 0.835 | 0.967 0.955 0.792 0.945
1 10944 | 0.876 | 0.973 0.936 0.735 0.753
2 10944 | 0.877 | 0.993 0.972 0.934 0.950
0.3 3 10946 | 0.881 | 0.987 0.974 0.938 0.965
14 10947 | 0.882 | 0.985 0.974 0.927 0.962
7 10943 | 0.875 | 0.984 0.974 0911 0.964
10 { 0.945 | 0.878 | 0.984 0.974 0911 0.964
1 109420871 | 0974 0.937 0.697 0.659
2 10944 | 0.875 | 0.994 0.972 0.943 0.946
0.5 3 10947 |0.882 | 0.988 0.975 0.948 0.961
] 4 10948 | 0.884 | 0.986 0.975 0.946 0.967
7 10945 | 0.879 | 0.985 0.975 0.917 0.975
10 | 0.944 | 0.877 | 0.985 0.975 0911 0.969
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Table 4.3: Mean values of RI, ARI and square correlation over a hundred samples with
0% =0.2,5€{0.1,0.3,0.5} and [ € {1,2,3,4,7,10}.

S ! RI ARI | p*(&,.) | P*(&2,-) | P*(&s:-) | P°(Eas )
I 0797 | 0.515 | 0.939 0.909 0.770 0.830
2 10788 | 0.494 | 0.986 0.967 0.837 0.934
01 3 10.789 | 0.505 | 0.985 0.969 0.848 0.948
141079 | 0501 | 0.984 0.970 0.842 0.950
7 10.785 | 0493 | 0977 0.969 0.839 0.942
10 | 0.787 | 0.494 | 0.973 0.970 0.825 0.941
I 107950519 | 0973 0.936 0.720 0.738
2 108010527 | 0992 0.972 0.937 0.944
03 3 10801 | 0.528 | 0.988 0.974 0.920 0.964
1 4 10800 |0532| 0985 0.975 0.908 0.966
7 |0.803 | 0.538 | 0.977 0.975 0.904 0.950
10 | 0.806 | 0.538 | 0.977 0.975 0.878 0.956
I 10796 | 0524 | 0974 0.937 0.703 0.657
2 10.804 | 0.535 | 0.993 0.973 0.946 0.943
05 3 10798 | 0.522 | 0.985 0.975 0.938 0.955
T 14107920514 | 0981 0.975 0.919 0.954
7 10.799 | 0.527 | 0.978 0.976 0.919 0.957
10 | 0.796 | 0.520 | 0.978 0.976 0.902 0.952
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Component plane (1,2) for Theme 1

SC2 (27.31%)

SC1 (40.74%)
Component plane (1,2) for Theme 2

<

SC2 (30.7%)

SC1 (25.35%)

Figure 4.3: Correlation scatterplot of plane (1,2) for the two themes obtained by the F-
SCGLR algorithm with s = 0.3 and | = 4. The red arrows represent the bundles X’y and
X 5 which explain the first theme. The blue ones represent the bundles X' 3 and X4 which
explain the second theme. The percentage of inertia captured by each component is given

in parentheses.
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Table 4.4: Mean values of RI, ARI and square correlation over a hundred samples with
0% = 0.3,s€{0.1,0.3,0.5} and [ € {1,2,3,4,7,10}.

S ! RI ARI | p*(&1,.) | p*(&2,.) | P°(&s,.) | P°(as )
1 |0.701 | 0.264 | 0.949 0.921 0.760 0.827
2 10.706 | 0.288 | 0.987 0.970 0.838 0.921
01 3 10.704 | 0.278 | 0.986 0.972 0.824 0.944
14 10704 | 0.274 | 0.982 0.971 0.829 0.946
7 10705 | 0.292 | 0.975 0.964 0.825 0.945
10 | 0.709 | 0.302 | 0.967 0.966 0.817 0.944
I 10.699 | 0280 | 0.974 0.938 0.715 0.726
2 10701 | 0.281 | 0.991 0.972 0.917 0.945
0.3 3 10.698 | 0.289 | 0.988 0.975 0.921 0.965
1 4 10701 | 0.290 | 0.987 0.975 0.904 0.950
7 10.700 | 0.288 | 0.974 0.977 0.886 0.944
10 { 0.697 | 0.291 | 0.970 0.977 0.871 0.944
1 10.699 | 0277 | 0974 0.938 0.706 0.654
2 10706 | 0.287 | 0.992 0.973 0.927 0.941
0.5 3 10.705 | 0.288 | 0.987 0.975 0.920 0.949
| 4 10704 | 0.287 | 0.983 0.975 0913 0.938
7 10703 | 0.294 | 0.973 0.977 0.904 0.956
10 | 0.700 | 0.296 | 0.971 0.977 0.899 0.950

4.2.2 Comparative study

To compare the different GLLVM implementations, we use the @® package gllvm (Niku
et al., 2019b). This package offers three ways to perform GLLVM estimation: using a
variational approximation (VA, Hui et al., 2017), a Laplace approximation (LA, Niku et al.,
2017, 2019a) or an extended variational approximation (EVA, Korhonen et al., 2023).
Due to the excessive computation time of the Bayesian MCMC methods, the @® packages
boral (Hui, 2016) and Hmsc (Tikhonov et al., 2020) are not tested in this article. Their
performances are respectively discussed by Niku et al. (2019b) and Pichler and Hartig
(2021).

4.2.2.1 Generation of the simulated data

The variables are simulated on N € {100, 200,300} statistical units. For the sake of
simplicity, a bundle X of ten variables distributed about the latent variable & is generated.
One categorical variable with three levels is taken as only additional covariate A. In this
simulation, J = 2 factors are simulated to model the conditional covariance of the K €
{10, 30, 50} responses. The regression coefficients of the factors are generated in order to

~ 91



Chapter 4. Generalized linear latent variable model based on supervised components

get a two-cluster design

Yk =1,...,04K, by ~N;((=1)" p1,0.11;)
Vk=04K +1,...,K, by~N; ((—1)’fu2,o.1IJ) :
where gy = (0,2)7 and py = (1.5,0)7. The gllvm @ package not allowing to consider

different distribution families for the responses, we restricted the comparison to binary
outcomes

Vek=1,....K, yp~DB (p = logit™* [1,& + Ady, + Gbk]) ,

where for all k, 7, and d; are uniformly generated, with v, € [—4,4] and & € [—1,1].
Figure 4.4 shows the conditional correlation matrices obtained for the three values of K.

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1

(a) Conditional correlation (b) Conditional correlation (c) Conditional correlation
matrix for K = 10 matrix for K = 30 matrix for K = 50

Figure 4.4: Conditional correlation matrices for different values of K

4.2.2.2 Compared results

In this simulation the @®@ package SCGLR calibrates the hyper-parameters to s = 0.5 and
[ = 1, while the BIC selects H; = 1 and J = 2. Table 4.5 sums up the RI, ARI and
computation time output by, on the one hand, our package FactorSCGLR performing
the F-SCGLR method, and, on the other hand, the package gllvm implementing the VA,
LA and EVA approaches. We observe that, for all combinations of N and K, F-SCGLR
gives the best values of RI and ARI, followed by EVA, VA and then LA. Indeed, the high-
est values obtained of the ARI are respectively: 0.991, 0.625, 0.556 and 0.517. Unlike
our package and LA, which perform better when the number of either statistical units or
responses increase, a higher number of responses may cause a deterioration of the clas-
sification correctness for EVA and VA. Across the simulations, F-SCGLR appears to be
the fastest of the compared methods. The longest computation time (almost 17 seconds)
occurred for N = 300 and K = 50, while EVA, VA and LA ran for 84, 74 and 373 seconds
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respectively in that case. However, contrary to Korhonen et al. (2023), we did not observe
that EVA ran faster than VA: in the K = 10 and (N, K') = (300, 50) cases, the compu-
tation time of VA was lower. The conclusions of our respective works agree nevertheless
that LA is relatively slow.

Table 4.5: Mean values of RI, ARI and computation time over a hundred samples with
N € {100, 200,300} and K € {10, 30,50}.

F-SCGLR gllvm-EVA

N | K| RI ARI | Time | RI ARI | Time
10 | 0.847 | 0.683 | 1.200 | 0.687 | 0.386 | 1.569
100 | 30 | 0.885 | 0.770 | 3.431 | 0.792 | 0.584 | 5.534
50| 0.933 | 0.867 | 8.148 | 0.806 | 0.611 | 11.54
10 | 0.922 | 0.839 | 2.307 | 0.721 | 0.456 | 4.963
200 | 30 | 0.956 | 0.913 | 5.524 | 0.792 | 0.583 | 16.36
50 1 0.980 | 0.961 | 11.43 | 0.762 | 0.518 | 39.96
10 | 0.950 | 0.898 | 2.823 | 0.726 | 0.466 | 8.507
300 | 30 | 0.980 | 0.960 | 7.339 | 0.813 | 0.625 | 34.88
50 1 0.996 | 0.991 | 16.99 | 0.767 | 0.529 | 84.52

gllvm-VA gllvm-LA

N | K| RI ARI | Time | RI ARI | Time
10 | 0.657 | 0.337 | 1.508 | 0.598 | 0.231 | 32.35
100 | 30 | 0.713 | 0.424 | 9.093 | 0.702 | 0.403 | 65.84
50 | 0.716 | 0.426 | 20.74 | 0.709 | 0.414 | 117.3
10 | 0.727 | 0.468 | 4.355 | 0.652 | 0.323 | 43.84
200 | 30 | 0.739 | 0.476 | 3490 | 0.727 | 0.453 | 117.4
50 1 0.719 | 0.432 | 41.76 | 0.733 | 0.460 | 256.3
10 | 0.725 | 0.455 | 8.288 | 0.710 | 0.433 | 50.91
300 | 30 | 0.779 | 0.556 | 35.95 | 0.752 | 0.503 | 172.2
50 1 0.770 | 0.534 | 74.22 | 0.761 | 0.517 | 373.8

4.3 Analysis of an agricultural ecology dataset

4.3.1 Data description

We apply F-SCGLR to the dataset available following the link
https://doi.org/10.15454/AJZUQN. The sample we consider gives the observation
of K = 12 agrobiodiversity variables over N = 54 winter cereal fields in the French
Vallées et Coteaux de Gascogne. The agrobiodiversity is reported through three carabid
beetle variables (two abundances and one Shannon index), three vascular plant variables

~ 93


https://doi.org/10.15454/AJZUQN

Chapter 4. Generalized linear latent variable model based on supervised components

(one richness, one relative cover and one Shannon index) and six axes of correspondence
analyses (CA) performed on presence-absence data of carabid species and plant species
respectively. The three abundance and richness responses are assumed to be samples of
Poisson random variables while the other responses are considered normally distributed.
To model the agrobiodiversity, we have P = 21 variables partitioned into four themes and
( = 1 additional covariable. The first theme X characterizes the pest control through
four variables. Six farming intensity variables make up the second theme X,. The third
and fourth themes X3 and X, gather six and five variables representing the landscape
heterogeneity related to semi-natural covers and to the crop mosaic respectively. The
binary categorical variable coding the observation year (2016 or 2017) is considered as
the additional covariate put into matrix A. For more information about this dataset, we
refer the reader to Duflot et al. (2022).

4.3.2 Results and interpretation

As in Section 4.2, we need to calibrate the hyper-parameters. We first tune s and [ through
the SCGLR @ package, then we find the best combination of number of components and
factors according to the BIC. However, due to the small number of explanatory variables in
each theme, we only allow the number of components to reach /1, = 3. We thus minimize
the BIC on the cross-product grid (Hy, Hy, H3, Hy, J) € {0,...,3}* x {0,...,5} with
the s and [ values previously found.

The SCGLR @ package recommends tuning hyper-parameters to s = 0.5 and [ = 1
for this agricultural ecology dataset. Henceforth, the component combination minimizing
the BIC is (H,, Hy, H3, Hy) = (0, 3,0,0) meaning that only the farming intensity theme
was found relevant for the prediction of the agrobiodiversity. Duflot et al. (2022) make
the assumption that agrobiodiversity is predictable from the farming intensity (theme X5)
and the landscape heterogeneity (themes X3 and X 4). The combination found by the BIC
validates this hypothesis as to the effect of the farming intensity and the non-effect of the
pest control in the prediction of the agrobiodiversity. However the landscape heterogeneity
themes proved here useless to this prediction.

We henceforth try to interpret the components of the second theme. The first com-
ponent f1 is correlated (p = —0.924, p = —0.794 and p = —0.738) with a bundle of
three variables, of which “TFI.total” and “TFLh” represent a treatment frequency index of
herbicides, and “nb.op” is the total number of operations conducted by the farmers. The
second component f2 is correlated (p = 0.779) with the variable “cum.till.depth” measur-
ing the cumulative tillage depth. The quantity of nitrogen denoted “qtyN.kg” is the most
correlated explanatory variable (p = —0.781) with the last component f3. Figure 4.5 and
Figure 4.6 represent the correlation plots of the second theme.

In this agricultural ecology dataset, three factors are recommended, according to the
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Component plane (1,2) for Theme 2

SC2 (22.41%)

SC1 (44.55%)

Figure 4.5: Correlation plot of F-SCGLR plane (1,2) of the second theme (farming inten-
sity). The plot displays only variables having a cosine greater than 0.75 with the plane.
The percentage of inertia captured by each component is given in parentheses.

BIC, to model the conditional variance-covariance matrix. By applying the clustering
steps given in Section 4.1.6, four groups of responses are identified. The first group is
composed by the three measures of the carabids. The second group gathers the first axis
of the CA of the carabids, the plant richness and the plant Shannon diversity index. The
carabids’ second CA axis, the plant cover and the first and third plants’ CA axes make
up the third group. Finally, the fourth group contains the carabids’ third CA axis and the
plants’ second CA axis. Figure 4.7 shows the conditional correlation values.

4.4 Conclusion and discussion

The original SCGLR was designed to regularize GLM estimation and reduce the explana-
tory dimension through components, so as to decompose the linear predictor in an inter-
pretable way. It allowed to find strong and interpretable supervised components common
to response variables, by achieving a trade-off between Goodness-of-Fit and a Structural
Relevance measure. THEME-SCGLR extends SCGLR to a thematic partition of the ex-
planatory variables, allowing to make better use of the complementary between the ex-
planatory themes, both statistically when fitting the model, and conceptually when inter-
preting the components. F-SCGLR refines THEME-SCGLR in a major way: through a
factor model, it models the conditional variance-covariance matrix of the responses using
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Component plane (1,3) for Theme 2
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Component plane (2,3) for Theme 2
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Figure 4.6: Correlation plots of F-SCGLR planes (1,3) and (2,3) of the second theme
(farming intensity). The plot displays only variables having a cosine greater than 0.75 with
the plane. The percentage of inertia captured by each component is given in parentheses.

~ 96



Section 4.4. Conclusion and discussion

\O\'
'é\(\‘ X
*QS\ &\0
(&’0 S ,\o\'
J P &
. Py N
carab.richn.tot 1.00 o'é @
2
o
carab.abund.tot | 1.00 1.00 GQSZ’ @
(¢
o N
carab.shannon.tot 0.99 0.99 1.00 % & N
& é\o
c.axl.coa 1.00 Q\fo é&
&
plants.richn 076 1.00 A& >
< Qo S
TR
plants.shannon 0.94 090 1.00 @ N
&
c.ax2.coa 0.54 1.00 Q\é\ K
[$)
A
plants.abund 0.59 -0.81 1.00 Q{zﬁ' &
O
(b.
p.axl.coa -0.68-0.66-0.62 0.91-0.88 1.00 '53‘ &
N d
p.ax3.coa 0.67 0.64 0.63 -0.97 0.74-0.94 1.00 G{&“ oo?r
(1/.
c.ax3.coa -0.61 0.68 1.00 Q{Z?"
p.ax2.coa -0.69-0.72-0.69-0.75 -0.55 0.81 1.00

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4.7: Conditional correlation matrix for the agricultural ecology dataset. The re-
sponse variables are ordered by group.

a small number of latent factors. This matrix can be used as a basis for clustering, enabling
to identify groups of linked responses.

In our simulation study, F-SCGLR proved to behave as expected regarding response
clusters. Whenever the clusters were reasonably distinct, the original partitions were re-
covered. Whatever the dispersion of the regression coefficients within the clusters, it pro-
vided components aligned with the simulated latent variables. Our @ package outper-
forms the package gllvm in three ways: (i) The thematic model allows to find supervised
components, thus reducing the dimension in a context of possibly numerous explanatory
variables. (ii) Responses with different distribution families are allowed. (iii) The perfor-
mances of our package are better in terms of computation time and of cluster detection. On
the agricultural ecology dataset, we found four groups of responses. Due to very high con-
ditional correlations, the first one gathers the measures of the carabids. The other groups
are composed by a mix between the plant variables and the axes of the correspondence
analyses. Moreover, performing F-SCGLR, we revealed that the treatment by herbicides,
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the operations conducted by the farmers, the tillage depth and the quantity of nitrogen are
the most involved variables in the prediction of the agrobidiversity.

In this research, some limitations have been reached. The use of EM algorithm on each
step of the overall algorithm involves a high number of iterations. Due to the absence of
consensus about the maximization of the log-likelihood, we think that more researches in
this topics need to be effected. As mentioned in Section 3.4, SCGLR and its extensions
suffer of a high number of hyper-parameters involving the use of heuristics to well calibrate
the latter. Only Bernoulli, Binomial, Gaussian and Poisson distributions can currently
be handled in the FactorSCGLR package. The package should be improved by adding
different distributions as Negative Binomial, Zero Inflated Poisson, Tweedie, Gamma, Beta
or Exponential, which are allowed in the gllvm package.
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5.1 SCGLR for statistical ecology

In statistical ecology literature, Carrascal et al. (2009) reveal that the use of supervised
components built by PLS is already widespread. Their paper addresses, among other
things, the analysis of the number of breeding landbird species among the Canary and
Selvagem Islands using a bundle of six highly correlated explanatory variables. The au-
thors highlight the need to perform supervised component-based model by interpreting the
first PLS component as an “island syndrome” affecting bird species richness. However,
as detailed by Chauvet (2019, pages 43—44), in a multiple predictive bundles framework,
PLS fails to detect their presence, entailing a decrease of the interpretative power. We thus
daresay that SCGLR and its extensions could be useful methodologies for modelers. In
this vein, Mortier et al. (2022) propose a tutorial for the statistical ecologists. However,
this tutorial only presenting the former versions of SCGLR, the approaches developed in
this thesis complete these former versions and should prove useful in future applied work.

Some work remains to be done in the wake of ours. We hereafter suggest two possible
directions, which are of course not restrictive.

5.2 Combining the extensions of SCGLR

First, we may integrate the formerly proposed extensions of SCGLR to our group-oriented
version. For instance, Chauvet et al. (2019) propose to extend SCGLR to Generalized Lin-
ear Mixed Models (GLMMs), i.e. GLMs with random effects, in order to model responses
with a repeated measure design. The independence assumption of statistical units is then
no longer valid. The random effect being assumed different across the /K responses, we
have K vectors of random effects supposed independent and drawn from a multivariate
normal distribution
Vk=1,...,K, v~N(0,051),

Y Vi

where J?,k is the variance component and L the number of realizations of the random
effect observed in the data. Denoting U € RY*Z the random effect design matrix, the
linear predictor associated with response yj becomes

Nk = (Xu) v, + Adg + Uy

In order to estimate the model parameters, Chauvet et al. (2019) adapt Schall (1991)’s
algorithm to deal with a component-based model. As in Section 4.1.3, the model is first
linearized, and then, the parameters of the linearized model are estimated under a Gaussian
assumption. Let wy, be the working variable associated with response y;, and W, ' be its
variance matrix, the linearized model is defined by

wi = (Xu) v + Ady, + Uvy, + (i,
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where E[wy|vy] = (Xu) v, + Ay + Uy, and V]wy|vy] = V[Ci|vn] = Wit Given
a component f = Xwu, the regression parameters vy, and d as well as vectors of random
effect vy, are solution of the system proposed by Henderson (1975)

fTka .fTWk:A fTWkU Yk fTWk'wk
ATka ATWkA ATWkU 6k = ATWkwk
UTWk;f UTWkA UTWkU + O'%IL Vg UTWkwk
Yk
Finally, the maximum of pseudo-likelihood for variance components yields
T
o2 — Vi Vi

17
LT [(UTWkU + U;IL) ]

Using these developments, rmSCGLR could be refined to deal with a mixed model. In
a finite response mixture framework, where the groups are defined by specific components,
the linear predictor for response yj writes

Mg = (XUg) Vg + Abrg + Uy

Likewise, in order to relax the independence assumption of both the responses and statisti-
cal units, F-SCGLR could be extended by integrating random effects in the linear predictor
associated with response yy,

We think that the development of these approaches would allow to make a better use of
the information in the data whenever the independence hypothesis of the statistical units
is unrealistic.

5.3 THEME sparse SCGLR

As pointed out in Section 3.4, SCGLR could be improved by constructing sparse load-
ing vectors, whose coordinates are required to be null for covariates that are irrelevant to
explain the response. In the PLS framework, following the Lasso principle (Tibshirani,
1996) where the shrinkage to zero is performed through a /; norm, Durif et al. (2018)
propose to solve the following optimization program

argmin — cov (Xu, w) + A||u|1,
uTu=1

where w is the working variable associated with univariate response y. An equivalent
program could improve the maximization of the specific criterion dedicated to SCGLR

max  sln(g(w) + (1 — s) In(a(w)) — Allulp.

uT M—1y=1
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In the spirit of Yuan and Lin (2006) and Simon et al. (2013), another way of refining
our method would be to select the themes in order to remove the non-explanatory ones.
Besides, as in Liquet et al. (2016), the model could be directed towards solutions that are
sparse at both theme level and component level, with intent to perform variable selection.
In this case, the optimization program should be solved by iteratively maximizing in turn
on every theme X,

vr, max  sIn(d(uy)) + (1 — ) In(Ya, (ur) — ad[u.[ly = (1 = a)Afur2,

uI' M~—1u,=1

where o € [0, 1] is a hyper-parameter used to effect a convex combination of the lasso
(l; norm) and group lasso (I norm) penalties. The themes reported as relevant in the
prediction of the response matrix, by this THEME-sparse-SCGLR should be compared
with the original THEME-SCGLR where the themes kept for the prediction are those with
a non-null number of components.

Note that, the criterion we aim to optimize not being differentiable, we should calculate
the directional derivatives. A coordinate descent step therefore needs to be added in the
PING algorithm.

5.4 The whole picture

In this manuscript we have extended SCGLR to address the possible existence of response
groups in two ways. In a first proposal, the response mixture SCGLR was designed to
identify groups of responses that can be predicted from group-specific supervised com-
ponents. In order to specify sub-spaces which components need to keep away from, a
separation sub-criterion was introduced. In a second work, we introduced random latent
variables into the model to account for a conditional variance-covariance of the responses
in which groups could be searched. Thus, across this manuscript, we have explored two
aspects of the “response group” fuzzy concept. It is important to note that the groups we
have been looking for are only defined through statistical links as common explanatory
dimensions or conditional correlations. Many other accepting of the group concept could
be investigated by integrating ecological or biological dynamics. For instance Favrichon
(1998) clusters tropical forest species according to their growth behavior or Bellwood and
Wainwright (2001) group fishes in the great barrier reef through their morphology.
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Chapter 6. Supplementary Material

6.1 The PING algorithm

The Projected Iterated Normed Gradient (PING) algorithm is an extension of the Power
Iteration algorithm. To find the hth component, we use the PING algorithm which aims at
solving any optimization program of the form

max Jy(u),
s.t

6.1
u'M 'u=1 and Afu=0, ©.1)

where J), is a function of u to maximize and A, an additional constraint matrix. In the
SCGLR context, .J,(u) is the specific criterion and Ay, the orthogonal constraint matrix.
We rewrite this optimization program by posing v = M~/2u, G),(v) = J,(M/?v)

and Eh = Ml/zAh.
max Gh(v), 62)
s.t. T '

v=1 and Efv=0.

6.1.1 The basic iteration
To solve (6.2), we must equate to zero the gradient of the following Lagrangian

L(v,\,n) =GCGL() = AvTv—-1) - nTEfv.
Setting [',(v) = V,Gp(v), we have

VoL(v,\,n) =0 Th(v) —2\v—Epn =0 (6.3)

&= o1 (o)~ Eum). (6.4)
Multiplying (6.3) by EL
2\Efv = EIT)(v) — Ef Eyn < EIT\(v) = E{ Eyn
5

-1
e n=(EfEy) E[Ty(v). (6.5)
Substituting (6.5) in (6.4), we get

v = ;A (Fh(v) ~E, (E[E,) Ef Fh(v)>
_ ;A (I B, (E[E,) E,’f) Tu(v)
= 21AHspan[Eh]J-Fh(,v>7
where IT,,z10 = I — Ep, (E,{Ehyl EF. Finally, the constraint ||v[|? = 1 gives
o s M pangz, 1+ Ln (V) _ I s,y Tn(v)
H%Hspan[Eh]J‘Fh(v)H HHspan[Eh]J-Fh(’U) 7
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which suggests the basic iteration of the PING algorithm
. Hspan[Eh]J' Fh (v(t) )

L) .
T2 T (00)

(6.6)

6.1.2 Direction of ascent

Let us show that the basic iteration of the PING algorithm follows a direction of ascent.
One way to do this is to show that the direction given by the arc (v*), 1) is a direction
of ascent. In other words, show that

<v(t+1) O (v<t))> > 0.

By construction, we know that on every iteration ¢ of the algorithm, v® is orthogonal to
span[Ej]. Thus, since for all £, v =TI, 1,100, we have

(669 = 04 (619)) = (e (4 — %) 3 (o)

t+1 t t
= <v( ) — ), [T, 0, ] h(v())>.
Now, Equation (6.6) implies that

Hspan[Eh]J-Fh<v(t)) = ’v(t+1) HHspan[Eh]J-Fh(v(t))H :

So,
sgn <<v(t+1) _ v(t)’ Iy (v(t))>) = sgn (<v(t+1) _ ,U(t)’ v(t+1)>)
= sgn <Hv(t+1)H2 B <v(t), ,U(t+1)>)
= sgn (1 — oS (v(t)7 v(t+1))) '
Finally,

<v(t+1) O (v(t))> > 0.

6.1.3 Staying close enough to the current starting point

Although iteration (6.6) follows a direction of ascent, it does not guarantee that function
G, actually increases on every step. Indeed, we may go too far in such a direction, and
overshoot the maximum. However, let us consider

t
() I o+ Dn(0)
| ang g2 T (00)
Staying close enough to the current starting point on the arc (v®), k) ensures that func-
tion (G, increases on every iteration. Indeed, let zo be the plane tangent to the unit sphere

on v and let w denote the unit-vector tangent to arc (v, k®) on v, Then, there
exists 7 > 0 such that, w = 71 k", and

<w, n(t)> =T <Hwn(t), n(t)> = 1cos? (k) > 0.
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6.1.4 The generic iteration

However, staying too close to the current starting point can impact the convergence speed
of the algorithm to reach the maximum. We avoid that by using a one dimensional max-
imization function (e.g. Gauss-Newton type) to find the maximum of G) on the arc
(v®, k®), and take it as vV, Therefore, we propose two possible generic iterations
for the PING algorithm, which deal with this problem. Algorithm 10 and Algorithm 11
present these alternatives. The first one should be preferred, but is less easy to program.

Algorithm 10: The PING algorithm

while not convergence do
Hspan[Eh]J-Fh (’U(t))
[T Do (00)

Use a Gauss-Newton unidimensional maximization procedure to find the
maximum of G, (v) on the arc (v, k®) and take it as v(*+1)

Kk

t+—t+1
end

Algorithm 11: The alternative PING algorithm

while not convergence do
Hspan[Eh]J‘ Fh(v(t))

H]'_'[span[Eh]J‘ T (v®) H

while G}, (k) < Gj,(v?) do

v 4+ K
<— -
[o® + k||

K <

K
end

vt g

t—t+1
end
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6.2 Analytical expression of the SCGLR specific criterion

The specific criteria which SCGLR needs to maximize for computing the (h + 1)-th
loading-vector write
1/1
(Z w;i(u TN U ) ,
K

Va, (w) = [Jwgl3y, cosyy, (wk, span[ X u, Ah])
k=1

and
1

ht1) _ 1 w w
PPy ( > =1 G-15 <w9pan[Fh+1]’ *Pa“[Ff”]>Fmb'
79

To facilitate the computation of the loading-vector, we give below an analytical expression
of each sub-criterion and its gradient.

6.2.1 The structural relevance measure

In practice, we take either the variance component or the variable power inertia (VPI). In
the first case, the SR and its gradient are easily given by

o(u) = | Xullly and V,é(u)=2XTW Xu.
The explicit expression of VPI is
1/1
13 2
¢(u) = *Z<Xu7wj>w :

l)jzzl

To calculate the gradient we use the classical rules of derivation
g (12 2\ 1 ]
VU¢(U) = 7 VU 7Z<X'u’7w]>W *Z<X’LL,£U]>W

p j=1 p j=1

111
=3 EZZZXTij <Xu,wj)€€,_1] p(u)'!
7=
2 Ll v T 211
:]—?gzﬁ(u) X WZ(Xu,wj>W x;.
i=1

6.2.2 The goodness of fit measure

We aim at expressing 14, (u) as a function of quadratic forms. To achieve that, we de-
compose the projection on the regression space as follows

span[Xu, Ap] = span[Xju, Ap] with Xy =TI7% . X.

span
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Since span[X}'] is orthogonal to span[Ay],

W, W, Wi W,
Hspzﬁl[Xu Ap] T Hspal:l[xl?u,Ah] - Hspan[Xh ] + HSPak;l[Ah]'

Consequently, by classical Euclidean statistical concepts, we have
cosyy, (wg, span[Xu, Ap))

= cosw,, (wg, span[Xu, Ap]) cosw, (wg, span|Xu, Ap))

W,
HHspan[Xu Ah]wk H Wi <wk’ ngaﬁl[xu Ah]wk>Wk
HwkHWk HwkHWk Hspaﬁl[Xu Ah] ‘Wk
Wi
i (0 T )
_ k
H'wkHWk
? *span[X P u] Wi, <wk’ Span[Ah]wk>Wk
= 5 —+ 5
[welw, [whlw,

The goodness of fit measure 14, (u) then writes more explicitly

K
ban () = O iy, costy, (., spanXu, Ay
k=1
=z W W)
- kgl <<wk’ Hspaﬁl[é\f’,?u]wk>wk - <wk7 HSP';l[Ah]wk>Wk> '
Now,
Wi _
<'UJk, Hspan[X,?u] wk>Wk o WkHspan[Xhu]
-1
= wf Wi Xju (v XWX u)  uT X Wi
_ uT X Wiw,wf Wi X
uT X TW X
Let,
ay, = X IWwwi W XY, by, = XMTW, AT
and

. Wi
Cr = <'wk, HSpan[Ah]wk>Wk .

Finally, we have

and

s (uTbyu)”
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6.2.3 The separation sub-criterion

We want to separate F, of F,. for all » # g. The sub-criterion writes

1 w w
h+1y _ 1 — tov ™w
Pr_g (ug ) =1 G-1 r#g < SPaIl[FZl’X”Z—Fl]’ Span[FT‘I_IT]>Fr0b

w
1 <Hspan[Fh th+1] H::)/;m[FF’"] >
Frob

DRRCI DL S/ S

r#g

1 1
—1_ Tr {11V v }
T e

Since span[F}*, Xu*!] = span[f}, ..., f}*!] and span[F"] = span[f},. .., fH"], we
have

w w _
Tr {Hspan[F;‘,XuZ+1]Hspan[FrHT] } -

Tr{[fl,...,fg”“]([fg,.. W[ f"“D 1[fg,.. g w

g

{7}’“"]0;1@({ ,},...,ffr}TW[ g),,.,ffer‘l{ ?},.,,,fﬁr]TW}.

Now, thanks to the orthogonality between the components, we obtain

w w
Tr {Hspan[Fh th+1]HSPa“[FﬁT] }

A it [ A e
=T , g g e g W
r{[llflllw 15+ e ) LIS w1
1! £ £} e
T, r | W
[Ilflllw ||f,!fr||w] [Hfﬂlw IIff”"le }
Ty B Wl f £
g 1% r
{[Ilflllw I liw l\lﬁllw A le
l f! fit rwl f; it
1w I Dl I Fgllw g lw
=Tr{ATA},

where A;; = mv, with (4,7) € {1,...,H,} x {1,...,h + 1}. This develop-
1 Fillw |52,

ment leads to the explicit expression of pr_,

. N\ 2
Hy htl <Xuz Xu3>
T g W

1
h+1) _ 1 _
or, (uft) =1 G_lém;;nm i [ xwd],
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Let,
drgi =2 (Xul, Xupth) | Xuf™ 3 XTW Xul

€rgi =2 <Xufd7 Xu';+1>W XTWXuZJr:l

o= (e )

w
The gradient of the quotient becomes
. 2
1 h+1
v <Xu7°’ Xug >W _ drgi — €rgi
WU\ x| [ xurttF ) Fea
1 X w3 | Xt g
Then, we compute the gradient of pr_,
h+1 —1 1 Ul drgi — €rgi

Vug+1<PF_g (ug ) ~ a1 72 \/m ; frgi
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Abstract: In this thesis, a response matrix is assumed to depend on a set of explanatory variables, and a set of
additional covariates. Explanatory variables are supposed many and redundant, thus demanding dimension
reduction and regularization. By contrast, additional covariates contain few selected variables which are
forced into the regression model, as they demand no regularization. Originally, the Supervised Component-
based Generalized Linear Regression (SCGLR), a Partial Least Squares-type method, and its extension
to multiple explanatory variable-blocks, THEME-SCGLR, are designed to extract from the explanatory
variables several components jointly supervised by the set of responses. However, this methodology still has
some limitations we aim to overcome in this thesis. The first limitation comes from the assumption that all
the responses are predicted by the same explanatory space. However, in many practical situations, large sets
of responses are not likely to depend exactly on the same explanatory dimensions. As a second limitation,
the previous works involving SCGLR assume the responses independent conditional on the explanatory
variables. Again, this is not very likely in practice, especially in situations like those in ecology, where a
non-negligible part of the explanatory variables could not be measured. To overcome the first limitation,
we assume that the responses are partitioned into several unknown groups. We suppose that the responses
in each group are predictable from an appropriate number of specific orthogonal supervised components
of the explanatory variables. We develop an extension of SCGLR based on a finite mixture model of the
responses. The second work relaxes the conditional independence assumption. As in THEME-SCGLR,
the response matrix is modeled by a thematic partitioning of the explanatory variables, named “themes”.
Thus, regularization is performed searching each theme for an appropriate number of components that both
contribute to predict the response matrix and capture relevant structural information in themes. A set of
few latent factors models the “residual” covariance matrix of the responses conditional on the components.
The approaches presented in this work are tested on many simulation schemes, and then applied on ecology
datasets.

Keywords: EM algorithm; factor model; latent variables; response mixture model; supervised components

Résumé : Dans cette theése, une matrice réponse est supposée dépendre d’un ensemble de variables ex-
plicatives et d’un ensemble de covariables additionnelles. Les variables explicatives sont supposées nom-
breuses et redondantes, demandant ainsi réduction de dimension et régularisation. Au contraire, les co-
variables additionnelles contiennent quelques variables sélectionnées qui sont forcées dans le modele de
régression sans subir de régularisation. A 1’origine, la Régression Linéaire Généralisée sur Composantes
Supervisées (SCGLR) et son extension au multi-tableaux, THEME-SCGLR, sont créés pour extraire dans
les variables explicatives plusieurs composantes conjointement supervisées par I’ensemble des réponses.
Cependant, cette méthodologie a toujours des limitations que nous proposons de surpasser dans cette these.
La premiere limitation vient de 1’hypothese que toutes les réponses sont prédites par le méme espace ex-
plicatif. Cependant, dans de nombreuses situations pratiques, il est peu probable que de grands ensembles
de réponses dépendent exactement des mémes dimensions explicatives. Comme deuxieme limitation, les
précédents travaux impliquant SCGLR supposent que les réponses sont indépendantes conditionnellement
aux variables explicatives. Encore une fois, cela est peu probable dans la pratique, spécialement dans des
situations telles que I’écologie ou une part non-négligeable des variables explicatives ne peuvent pas étre
mesurées. Pour surpasser la premiere limitation, nous supposons que les réponses sont partitionnées en
plusieurs groupes inconnus. Nous supposons que les réponses dans chaque groupe sont prédites par un nom-
bre approprié de composantes supervisées orthogonales spécifiques dans les variables explicatives. Nous
développons une extension de SCGLR basée sur un modele de mélange fini des réponses. Le deuxiéme tra-
vail relache 1’hypothése d’indépendance conditionnelle. Comme pour THEME-SCGLR, la matrice réponse
est modélisée par un partitionnement thématique des variables explicatives, nommés “themes”. Ainsi, la
régularisation est effectuée afin de chercher, dans chacun des thémes, un nombre approprié de composantes
qui contribuent a la fois a la prédiction de la matrice réponse et a la capture d’informations pertinentes des
themes. Un ensemble de quelques facteurs latents modélise la covariance “résiduelle” des réponses con-
ditionnellement aux composantes. Les approches présentées dans ce travail sont testées sur de nombreux
schémas de simulation et ensuite appliquées a des jeux de données issus de 1’écologie.

Mots clefs : algorithme EM ; composantes supervisées ; modele a facteurs ; modele de mélange sur les
réponses ; variables latentes
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