
HAL Id: tel-03968622
https://hal.science/tel-03968622v2

Submitted on 28 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Surface Reconstruction from Point Clouds in
the Wild

Raphael Sulzer

To cite this version:
Raphael Sulzer. Learning Surface Reconstruction from Point Clouds in the Wild. Machine Learning
[cs.LG]. Université Gustave Eiffel, 2022. English. �NNT : 2022UEFL2042�. �tel-03968622v2�

https://hal.science/tel-03968622v2
https://hal.archives-ouvertes.fr

Learning Surface Reconstruction
from Point Clouds in the Wild

Thèse de doctorat de l’Université Gustave Eiffel
École doctorale n° 532, Mathématiques, Science, et Technologie de l’Information et de la Communication (MSTIC)
Spécialité de doctorat : Signal, Image, et Automatique
Unité de recherche : Laboratoire des Sciences et Technologies de l’Information Geographique (LASTIG), IGN.

Thèse présentée et soutenue à l’Université Gustave Eiffel,
le 17/10/2022, par

Raphael SULZER

Composition du Jury

Pierre ALLIEZ Président, RapporteurDirecteur de recherche, TITANE, INRIA, France
Julie DIGNE RapportriceChargée de recherche, LIRIS, CNRS, France
Michael WIMMER ExaminateurProfesseur, Faculty of Informatics, TU WIEN, Autriche
Renaud MARLET Co-Directeur de thèseDirecteur de recherche, LIGM, Ecole des Ponts, France
Bruno VALLET Directeur de thèseDirecteur de recherche, LASTIG, IGN-ENSG, France
Löıc LANDRIEU EncadrantChargé de recherche, LASTIG, IGN-ENSG, France

©2022 – Raphael Sulzer
all rights reserved.
www.raphaelsulzer.de

www.raphaelsulzer.de

Learning Surface Reconstruction
from Point Clouds in the Wild

Abstract

Modern 3D acquisition technology unlocks the possibility to represent the world under
the form of 3D point clouds. However, point clouds are usually not sufficient to model
complex physical processes. Instead, a variety of applications in science and engineering
require a representation of objects or scenes under the form of a continuous surface.

In this thesis, we consider the problem of surface reconstruction from point clouds
using supervised deep learning techniques. In particular, we are interested in point
clouds in the wild, i.e. generated from measurements outside of the laboratory, either
directly with 3D scanners or indirectly through multi-view stereo. Such point clouds
often depict large scenes with multiple different objects and clutter, and include defects
such as noise, outliers, non-uniform sampling or missing data. These characteristics
complicate the reconstruction of a topologically and geometrically accurate surface from
point clouds in the wild.

After having been successfully deployed on many related computer vision tasks, su-
pervised deep learning has recently been used to address the surface reconstruction
problem. Deep surface reconstruction (DSR) can learn point cloud defects or surface
patterns from a given training set, and use the learned knowledge during reconstruction.
However, current DSR methods exhibit two main limitations. First, supervised deep
learning often requires a lot of data to train. However, point clouds in the wild typi-
cally depict complex objects or scenes, making it costly, ambiguous, or intractable to
gather true surfaces. Second, existing DSR algorithms are often too computation- and
memory-intensive to process millions of points. In this thesis, we address both issues by
introducing novel supervised deep learning methods to handle large-scale point clouds
with real-world characteristics while only training on small synthetic datasets.

The thesis includes three main contributions. First, we survey and benchmark several
surface reconstruction methods, including learning and traditional approaches proposed
over the last three decades. To make the problem tractable and produce geometrically
and topologically accurate results even under challenging conditions, non-learning meth-
ods often rely on priors on the input point cloud or output surface. In contrast, DSR
algorithms learn these priors directly from the training set of point clouds and corre-
sponding true surfaces. We benchmark different methods on the task of reconstructing

iii

objects from synthetically scanned defect-laden point clouds. Our findings show that
DSR methods are able to reconstruct accurate and complete surfaces from point clouds
with moderate defects, given that similar defects are also present during training. How-
ever, the reconstruction quality from point clouds with unseen defect type is often worse
compared to non-learning methods. Traditional methods, on the other hand, show a
high robustness to defects, even with constant parametrization for different inputs.

Another shortcoming of most learning based methods is the fact that they ignore
sensor poses and only operate on point locations. Sensor visibility holds meaningful
information regarding space occupancy and surface orientation. We present two sim-
ple strategies to augment point clouds with visibility information, which can directly
be integrated with various DSR architectures with minimal adaptation. Our proposed
modifications consistently improve the accuracy of generated surfaces, as well as the
capability of the networks to generalize to unseen domains. We also release syntheti-
cally scanned versions of popular shape datasets to encourage the development of DSR
algorithms capable of using visibility information.

Lastly, we introduce Delaunay-Graph Neural Networks (DGNNs), a novel learning-
based visibility-aware surface reconstruction method for large-scale point clouds in the
wild. DGNN relies on a 3D Delaunay tetrahedralisation of the input point cloud, whose
cells are classified as inside or outside the surface by a graph neural network and an
energy model solvable with a graph cut. The graph neural network makes use of both
local geometric attributes and line-of-sight visibility information to learn a visibility
model from a small amount of synthetic training data while generalizing to real-life
acquisitions.

iv

Reconstruction de Surfaces à partir de Nuages de Points
par Apprentissage Profond

Résumé

Les technologies d’acquisition 3D récentes permettent de représenter le monde sous
la forme de nuages de points 3D. Cependant, ces nuages de points ne sont généralement
pas suffisants pour modéliser des processus physiques complexes. Au contraire, de
nombreuses applications en sciences et en ingénierie nécessitent une représentation sous
la forme d’une surface continue.

Dans cette thèse, nous considérons le problème de reconstruction de surface à partir
de nuages de points par apprentissage profond supervisé. En particulier, nous nous
intéressons à la reconstruction de surface à partir de nuages de points réels, c’est-à-dire
générés à partir de mesures effectuées sur le terrain: soit directement avec des scan-
ners 3D, soit indirectement par photogrammetrie. Ces nuages représentent souvent de
grandes scènes contenant de multiples objets de formes diverses. Ces nuages peuvent
aussi inclure des défauts tels que du bruit d’acquisition, des valeurs aberrantes, un
échantillonnage non uniforme ou des données manquantes, ce qui complique la recon-
struction d’une surface topologiquement et géométriquement précise.

Après avoir été utilisé avec succès pour de nombreuses tâches de vision par ordi-
nateur, l’app-rentissage profond supervisé a récemment été appliqué au problème de
reconstruction de surface. Cependant, les méthodes courantes souffrent encore de deux
principales limitations. Tout d’abord, l’apprentissage profond supervisé nécessite sou-
vent un grand nombre de données annotées. Les nuages de points réels décrivent des
objets ou des scènes complexes, ce qui rend la collecte de surfaces réelles coûteuse, am-
biguë ou mathématiquement difficile. Deuxièmement, les algorithmes d’apprentissage
existants sont souvent trop gourmands en calcul et en mémoire pour traiter des millions
de points simultanément. Nous abordons ces deux problèmes en introduisant de nou-
velles méthodes d’apprentissage profond supervisé pour traiter des nuages de points à
grande échelle avec des caractéristiques du monde réel tout en étant entrâınées sur de
petits ensembles de données synthétiques.

Cette thèse comprend trois contributions principales. Tout d’abord, nous passons en
revue et évaluons plusieurs méthodes de reconstruction de surface à partir de nuages de
points. En plus des méthodes d’apprentissage, nous évaluons certaines des approches
traditionelles proposées au cours des trois dernières décennies. Pour rendre le problème

iii

tractable et produire des résultats géométriquement et topologiquement précis même
dans des conditions difficiles, les méthodes sans apprentissage reposent souvent sur des
hypothèses sur la structure des nuages de points en entrées ou des surfaces reconstruites.
En revanche, les algorithmes de reconstruction de surfaces par apprentissage profond
(DSR) apprennent ces hypothèses directement à partir d’un ensemble d’entrâınement de
nuages de points et des surfaces réelles leur correspondant. Nous évaluons les méthodes
d’apprentissage et traditionnellles pour la tâche de reconstruction d’objets à partir de
nuages de points avec défauts scannés synthétiquement. Nos résultats montrent que
les méthodes DSR sont capables de reconstruire des surfaces précises et complètes à
partir de nuages de points présentant un degré modéré de défauts atténués, à condition
que ces défauts soient présents pendant l’entrâınement. Cependant, la qualité de la
reconstruction pour les nuages de points avec défauts non presents dans l’ensemble
d’entrâınement est souvent moins bonne que celle des méthodes sans apprentissage. Les
méthodes sans apprentissage, en revanche, sont d’une grande robustesse aux défauts,
même avec une paramétrisation constante pour différentes entrées.

Un autre défaut de la plupart des méthodes DSR est le fait qu’elles ignorent la pose
des capteurs et n’opèrent que sur la position des points. La visibilité des capteurs con-
tient pourtant des informations importantes sur l’occupation de l’espace et l’orientation
de la surface. Nous présentons deux façons simples d’enrichir les nuages de points avec
des informations de visibilité, qui peuvent être directement exploitées par des réseaux de
reconstruction de surface en ne nécéssitant qu’une adaptation minimale. Nous montrons
que les modifications proposées améliorent systématiquement la précision des surfaces
générées ainsi que la capacité des réseaux à généraliser à des nouveaux domaines. Nous
publions également les versions scannées synthétiquement de base de données de formes
3D largement utilisées, afin d’encourager le développement d’algorithmes DSR capables
d’utiliser les informations de visibilité. Enfin, nous présentons une nouvelle méthode
de reconstruction de surface basée sur l’apprentissage et tenant compte de la visibilité
pour les nuages de points réels à grande échelle. Notre méthode repose sur une tri-
angulation 3D de Delaunay (3DT) dont les cellules sont classées comme intérieur ou
extérieur de la surface recherchée par un réseau de convolution sur graphe (GNN) et
un modèle énergétique résolvable avec une coupe de graphe. Le GNN utilise à la fois
des attributs géométriques locaux et des informations de visibilité pour apprendre un
modèle de visibilité à partir d’une petite quantité de données de formes synthétiques
tout en généralisant aux acquisitions réelles.

iv

Contents

1 Introduction 1
1.1 Surface reconstruction from 3D point clouds in the wild 5
1.2 Problem statement and objectives . 10
1.3 Reading guide and contributions . 11

2 A Survey and Benchmark of Automatic Surface Reconstruc-
tion from Point Clouds 14
2.1 Introduction . 15
2.2 Related work . 16
2.3 Surface definition, representations, properties and reconstruction 17
2.4 Survey . 21
2.5 Benchmark setup . 29
2.6 Experiments . 41
2.7 Conclusion . 51

3 Deep Surface Reconstruction from Point Clouds with Visi-
bility Information 53
3.1 Introduction . 54
3.2 Related work . 54
3.3 Method . 56
3.4 Experiments . 58
3.5 Limitations and perspectives . 74
3.6 Conclusion . 74

4 Scalable Surface Reconstruction with Delaunay-Graph Neu-
ral Networks 75
4.1 Introduction . 76
4.2 Related work . 76
4.3 Method . 79
4.4 Experiments . 86
4.5 Limitations and perspectives . 97

v

4.6 Conclusion . 98

5 Conclusion 108
5.1 Summary and conclusion . 109
5.2 Outlook and future work . 110

References 123

vi

List of Figures

1.1 3D urban analysis pipeline . 2
1.2 Difficulties in surface reconstruction from point clouds 3
1.3 Point clouds in the wild and reconstructed surfaces 4
1.4 Point cloud defects . 5
1.5 Point clouds with visibility information 8
1.6 Learning and non-learning based surface reconstruction 9

2.1 Approximating and interpolating surfaces from point clouds 18
2.2 Synthetic and real point clouds . 31
2.3 Synthetic scanning procedure . 32
2.4 Ground truth shapes of the benchmark datasets 33
2.5 Learning-based reconstructions . 43
2.6 Optimization-based experiments . 46
2.7 Learning- and optimization-based reconstructions 48
2.8 Learning- and optimization-based reconstructions of real-world point

clouds . 49

3.1 Surface reconstruction with visibility information 55
3.2 Visibility-augmented point cloud . 57
3.3 Object-level reconstruction on ModelNet10 I 63
3.4 Object-level reconstruction on ModelNet10 II 64
3.5 Scene-level reconstruction on Synthetic Rooms 66
3.6 Out-of-domain object-level reconstruction on ShapeNet 68
3.7 Cut of out-of-domain object-level reconstruction on ShapeNet 69
3.8 Out-of-domain object-level reconstruction from real-world scans 71
3.9 Cut of out-of-domain object reconstruction of Ignatius 72
3.10 Out-of-domain scene-level reconstruction on SceneNet and ScanNet . . 73

4.1 Scene-level reconstruction on ETH3D 77
4.2 DGNN pipeline . 79
4.3 DGNN visibility features . 80

vii

4.4 Graph neural network scheme . 84
4.5 Qualitative results on Berger et al.’s anchor 91
4.6 Qualitative results on Berger et al.’s daratech 92
4.7 Qualitative results on Berger et al.’s dancing children 99
4.8 Qualitative results on Berger et al.’s gargoyle 100
4.9 Qualitative results on Berger et al.’s lord quasimoto 101
4.10 Comparison of DGNN and ConvONet on ETH3D reconstruction 102
4.11 Numerical results on ETH3D . 103
4.12 Comparison of DGNN and Jancosek et al. on ETH3D reconstruction . 104
4.13 Failure case on ETH3D . 105
4.14 Indoor ETH3D reconstruction . 106
4.15 Outdoor ETH3D reconstruction . 107

viii

List of Tables

2.1 Overview of surface- and volume-based surface reconstruction methods 22
2.2 Scanning configurations for Berger et al. benchmark 30
2.3 Benchmark setup . 35
2.4 Detailed benchmark setup . 36
2.5 Numerical results for learning-based reconstructions 42
2.6 Numerical results for optimization-based surface reconstruction 45
2.7 Numerical results for learning- and optimization-based reconstructions . 47
2.8 Runtimes for learning-based reconstruction 50
2.9 Summary of benchmark results . 51

3.1 Ablation study . 61
3.2 Numerical results for object-level reconstruction 62
3.3 Numerical results for scene-level reconstruction 65
3.4 Numerical results for out-of-domain object-level reconstruction 67
3.5 Runtimes for object-level reconstruction with visibility information . . . 70

4.1 DGNN Ablation study . 89
4.2 Numerical results for Berger et al. benchmark 93
4.3 Numerical results for ETH3D reconstructions 94
4.4 Numerical results for ETH3D reconstruction per scene 95
4.5 Runtimes and memory footprint . 97

ix

Glossary

2D two-dimensional . 20

3D three-dimensional . 1

3DT 3D Delaunay tetrahedralisation . 21

PSR Poisson Surface Reconstruction . 25

SPSR Screened Poisson Surface Reconstruction 26

IER intrinsic-extrinsic ratio . 23

IGR Implicit Geometric Regularisation . 29

LIG Local Implicit Grids . 27

P2M Point2Mesh . 24

SAP Shape As Points . 27

P2S Points2Surf . 28

ONet Occupancy Networks . 26

ConvONet Convolutional Occupancy Networks 27

DGNN Delaunay-Graph Neural Network . 25

POCO Point Convolution for Surface Reconstruction 28

IoU intersection over Union . 39

CD Chamfer distance . 39

NC normal consistency . 39

PCA principal component analysis . 25

MLP multilayer perceptron . 23

BCE binary cross entropy . 26

MSE mean square error . 28

CNN convolutional neural network . 24

GNN graph neural network . 25

x

MVS multi-view stereo . 1

SfM structure from motion . 7

LiDAR Light Detection and Ranging . 1

NeRF neural radiance field . 10

SDF signed distance function . 19

OF occupancy function . 19

FCN fully connected network . 10

DSR deep surface reconstruction . 9

TFT triangle-from-tetrahedra . 20

xi

Acknowledgments

I thank my supervisors Löıc, Bruno and Renaud. They provided a great amount of
inspiration and experience during my PhD and were good team mates :). Thank you!

I thank the whole LaSTIG lab for welcoming me with open arms: Alexandre, Ali,
Amin, Anatol, Arno, Clément, Damien, Evelyn, Ewelina, Lâmân, Laurent, Mathieu,
Mehdi, Mohamed, Nathan, Oussama, Paul, Qasem, Stéphane, Teng, Romain, Yanis,
Yilin and especially Vivien and other great friends I met in the past 3,5 years in Paris:
Danijela, Adrien, Solène, Diwan, Maëlle, Malo, Iris, Mathilde, Negin, Juliette and Sasha.

Special thanks also go to Arkose Montreuil, la Forêt de Fontainebleau et le Bois de
Vincennes for being excellent places to climb and relax.

xii

1
Introduction

Modern three-dimensional (3D) acquisition technology, such as Light Detection and
Ranging (LiDAR) or multi-view stereo (MVS) brought the ability to record the world
under the form of 3D point clouds. However, point clouds are usually not sufficient
to model complex physical processes. Instead, a variety of applications in science and
engineering require a representation of objects or scenes under the form of a continu-
ous surface. For example, in medicine, the continuous surface of an organ allows for
diagnosing and monitoring malformations [111]. In robotics, the surface of a robots en-
vironment enables path planning and collision detection [24]. In architecture, building
and civil engineering, the surface of a city permits the computation of light, heat or noise
propagation [14]; and in environmental engineering, a continuous surface of a terrain
permits to model wind or floods [73] (see Figure 1.1). Digitally and continuously mod-
eling an existing surface involves converting physical measurements into mathematical
and digital models [1]. This process includes surface reconstruction from point clouds,
one of the key scientific challenges in digital geometry processing.

Surface reconstruction from point clouds addresses the problem of producing a con-
tinuous representation of a surface of which discrete point samples have been acquired.
However, discrete point samples usually do not cover the entire surface geometry and
do not contain topological information about the recorded surface (cf. Figure 1.2a and
1.2b). Theoretically, there are infinitely many surfaces that can pass through, or near
the point samples. This means there is no unique solution to surface reconstruction
from point clouds, making it an ill-posed problem. If no prior information is given, a
reconstruction algorithm can only approximate the real surface between sampled points.

1

(a) Data acquisition

(b) Surface reconstruction (c) Analysis

Figure 1.1: 3D urban analysis pipeline: 3D point clouds of urban environments are often
acquired by aerial laser scanning or aerial imagery (a). The acquired point cloud can be
used to generate a digital surface model using a surface reconstruction algorithm (b) —
the central topic of this thesis. The surface model can then be used for advanced urban
analysis, such as a numerical wind simulation (c). Here, this pipeline is exemplified on a
part of the city of Strasbourg, France around the Musée zoologique.

2

(a) Unknown Topology (b) Unknown Geometry (c) Acquisition Defects

Figure 1.2: Difficulties in surface reconstruction from point clouds: In each plot, we
show the real surface , point samples , and possible reconstructions . The correct
topology and geometry of the real surface are not known from the point samples (a,b). The
point samples may also include acquisition defects such as noise (c). The goal of any surface
reconstruction algorithm is finding a good approximation of the real surface, in terms of its
geometry and topology. Learning based surface reconstruction can learn shape patterns or
sampling errors such as the one exemplified here, and use the learned knowledge during
reconstruction for a better approximation.

Therefore, the goal of surface reconstruction from point clouds is to find a good approx-
imation of the real surface, in terms of its geometry and topology.

Another challenge in surface reconstruction from point clouds lies in the fact that the
sampling of a real surface is often not error free (cf. Figure 1.2c). Low quality sensors
or difficult acquisition conditions can result in point cloud defects, which complicate the
reconstruction of a good surface approximation. For these reasons, surface reconstruc-
tion from point clouds has been a long standing problem in digital geometry processing.
In this thesis, we revisit the problem of surface reconstruction from point clouds with
modern learning-based techniques. We aim to develop deep learning architectures that
can learn point cloud defects or surface patterns from a given training set, and use
the learned knowledge during reconstruction for a better surface approximation. We
thereby focus on surface reconstruction from point clouds in the wild. Point clouds in
the wild are recorded in an uncontrolled environment outside of the laboratory. They
can depict dynamic environments with multi-scale surfaces, ranging from single objects
to entire countries and include defects such as noise, outliers, nonuniform sampling or
missing data.

In this first chapter, we briefly introduce the problem of surface reconstruction from
3D point clouds in the wild, the concept of visibility information, and existing deep
learning architectures for surface reconstruction. We then discuss the objectives and
limitations of this work, as well as its contributions. Finally, we provide a reading guide
for the rest of this document.

3

(a) Aerial LiDAR Point Cloud (b) Terrestrial MVS Point Cloud

(c) Aerial LiDAR Surface Reconstruction (d) Terrestrial MVS Surface Reconstruction

Figure 1.3: Point clouds in the wild and reconstructed surfaces: Real world point
clouds acquired under challenging conditions often have defects such as noise, outliers, non-
uniform sampling or missing data (a, b). Surfaces reconstructed from this data often inherit
some of these defects (c, d). In (a), we show an aerial LiDAR point cloud. Due to the
angle of incident rays there are very few points on the façades of the buildings. As a result,
the inferred surface in (c) is missing details such as windows on the façades. In (b) we
show an MVS point cloud from terrestrial images. The complex shapes and low textured
surfaces lead to noise, outliers and missing data in the point cloud, which, in turn, leads to
erroneous and noisy surface parts in (d). The input point clouds are from Strasbourg3D1

(a) and ETH3D [99] (b). The reconstructions are generated with the traditional Screened
Poisson Surface Reconstruction [65] (c) and the method proposed in Vu et al. [114] (d).

1https://3d.strasbourg.eu/

4

https://3d.strasbourg.eu/

(a) Shape (b) No Defect (c) Nonuniform (d) Noise (e) Outliers (f) Missing Data (g) Misaligned

(h) No Defect (i) Nonuniform (j) Noise (k) Outliers (l) Missing Data (m) Misaligned

Figure 1.4: Point cloud defects [9]: We show a 2D shape and samples . The
samplings include different forms of defects which affect the reconstructed surface .

1.1 Surface reconstruction from 3D point clouds in the wild

The most commonly used methods for acquiring point clouds outside of the laboratory
are active LiDAR and passive MVS (cf. Figure 1.3). LiDAR sensors or cameras for
an MVS acquisition are used stationary or mounted on moving platforms such as cars,
airplanes or satellites. The sensors itself range from low quality sensors, e.g. built into
smartphones, to high quality sensors, mounted on dedicated surveying platforms. The
diverse set of acquisition subjects and techniques leads to a variety of different properties
and imperfections for point clouds in the wild. Most traditional approaches for surface
reconstruction rely on handcrafted or data driven priors on the input point cloud or
output surface to overcome acquisition defects. This approach allows to reconstruct
surfaces sufficient for visualisation and a variety of other applications. However, when
input point clouds include heavy defects, or when highly accurate surfaces are required,
current surface reconstruction methods may not suffice [13].

5

1.1.1 Point cloud properties and imperfections

Throughout this document we consider P ∈ R3×P a 3D point cloud defined by the
absolute point positions in space, where P is the number of points p in the cloud.

Point cloud defects can be classified into the five different groups illustrated in Fig-
ure 1.4. We briefly discuss the five groups here and refer the reader to the survey of
Berger et al. [9] for a more complete discussion.

Deficient and nonuniform sampling density. An important relation for surface
reconstruction from point clouds can be established between the local feature size of a
surface S ⊂ R3 and the density of P. The local feature size LFS(x) is defined as the
minimal distance between a point x ∈ S and the medial axis of S [2]. A point cloud
with point samples p ∈ P is called an ε-sampling of S, if every point x has a point
p in Euclidean distance at most εLFS(x) [28]. Some traditional surface reconstruction
algorithms guarantee topological validity and geometric convergence between the recon-
struction and S, given that the input point cloud is noise free and has a small ε-value
[2, 15, 28]. However, the local feature size can in general not be computed without hav-
ing access to S. Thus, an ε-sampling can not be guaranteed for point clouds in the wild.
Uniformly sampling the surface with a high density leads to large redundant amounts of
data, while uniformly sampling with a low density can lead to loss of information. One
option for point cloud acquisition can thus be to define the minimal feature size that
should be recovered and drive the acquisition process accordingly [1]. However, point
clouds in the wild often non-uniformly sample the underlying surface, e.g. as a result
of varying distance and orientation between surface and sensor [9]. Such a nonuniform
sampling can pose problems for certain surface reconstruction methods, e.g. for defining
fixed distances to determine local neighborhoods [9], or for partitioning the point cloud
with regular grids.

Noise. LiDAR points can include noise in the form of offsets from the real surface,
distributed along the ray coming from the sensor [96]. Points that are randomly dis-
tributed near the surface are common noise for MVS acquisitions. The noise is a result
of mismatches during dense point cloud reconstruction or erroneous approximations of
the camera position and orientation. This happens in particular for low texture sur-
faces, or in highly variable outdoor environments which include vegetation and clutter.
The level of noise can also vary within one MVS point cloud. Estimating a model rep-
resenting such kind of noise is often not possible [114]. Noisy MVS point clouds are
thus challenging for surface reconstruction algorithms, especially if the level of noise is
close to the local feature size. The challenge for surface reconstruction algorithms is to
preserve small features in the surface while discarding or smoothing noise.

6

Outliers. Outliers are points randomly distributed in the acquisition space, not close
to the surface. In MVS point clouds, single outlier points or groups of outliers are often
the result of large mismatches or erroneous orientation between images. Furthermore,
they occur in LiDAR acquisitions due to reflecting objects and glass [99]. Structured
outliers pose a significant problem for surface reconstruction algorithms, as they are
hard to filter and can produce ghost structures in the surface (see Figure 1.4k).

Missing data. The main reason for missing data in point clouds are (self-)occlusions.
This happens when an object or surface part lies between subject and sensor, i.e. the
subject is occluded. Even for surfaces with little complexity this is very common.
Missing data is one of the main challenges for surface reconstruction algorithms, because
it requires to reconstruct entire surface parts without local input information.

Misaligned scans. Large-scale scenes often require to split the acquisition into sev-
eral smaller parts, e.g. for changing the sensor position during multiple stationary acqui-
sitions. Subsequently, the scans have to be aligned to produce one point cloud depicting
the entire scene. If the position and orientation between the scans is unknown, it has
to be inferred using an alignment technique called registration [57]. This process may
however not be error free and lead to misaligned scans.

In general, LiDAR points clouds are accurate but their density varies with the acqui-
sition distance and angle. Furthermore, occlusions are more common for some LiDAR
sensors, due to a limited field of view. MVS point clouds, acquired in the wild, are
usually less accurate, but provide denser information, with less missing data. One way
to overcome some of the sensor limitations is to combine different acquisitions [25].
However, this can be more costly and time consuming.

1.1.2 Visibility information

Both LiDAR and image-based point cloud acquisitions allow to directly measure or
recover the position of the sensors relative to P. We consider C ∈ R3×C the positions
of a set of sensors, where C is the number of sensors c. C can very from a few (for
stationary acquisitions) to hundreds of different positions (for moving sensors).

Given a point p and its corresponding sensor position c, we call the half open segment
between a point and its sensor the line-of-sight cp (cf. Figure 1.5). It is half open,
because it includes c but not p. Up to uncertainties in the acquisition, cp must lie
outside the scanned subject, because it is the path of reflected light from surface point
to sensor. We call this additional information visibility information.

While visibility information is key for point cloud reconstruction techniques such as
structure from motion (SfM) and MVS, it is only explored by a small subset of surface

7

(a) LiDAR Point Cloud (b) Image Point Cloud

(c) LiDAR Point Cloud With Visibility (d) Image Point Cloud With Visibility

Figure 1.5: Point clouds with visibility information: Terrestrial point clouds (a, b) from
the terrace scene of ETH3D [99]. We visualize some of the sensor positions and lines-
of-sight (c, d). This so-called visibility information can help surface reconstruction
algorithms in identifying free space and in correctly orienting the surface towards the sensor.

8

(a) Point Cloud (b) SPSR [65] (c) Labatut et al. [71]

(d) Ground Truth Surface (e) SAP [91] (f) DGNN [109]

Figure 1.6: Learning and non-learning based surface reconstruction: We show a
(synthetic) point cloud (a), its corresponding ground truth surface (d) and corresponding
non-learning (b,c) and learning based (e,f) surface reconstructions. The learning based
methods are related to the non-learning methods, however, they have the ability to incor-
porate learned knowledge from a training set during reconstruction. In this case, the two
learning methods were trained on a large shape database including similar (airplane) models
as the one shown here. The training point clouds had the same density and level of noise
as the one shown here, which makes the learning methods more robust to these defects.

reconstruction algorithms. However, as shown by one of the most widely used surface
reconstruction algorithms [71], incorporating visibility information into the surface re-
construction problem can be beneficial by providing a prior that lowers the solution
space, and helps in correctly orienting the surface.

1.1.3 Deep Learning for Surface Reconstruction

In recent years the deep learning community started to address the surface reconstruc-
tion problem [49, 79, 82]. Most deep surface reconstruction (DSR) approaches use su-

9

pervised learning to learn point cloud characteristics or shape patterns directly from a
training set. However, supervised deep learning often requires large amounts of training
data. To this end, DSR methods train on large synthetic shape dataset with continuous
true surfaces, sampled to generate point clouds. For mimicking point cloud defects, e.g.
noise is added to the point clouds following a simple Gaussian noise model. However,
such trained models may not be useful to reconstruct unseen shapes from point clouds in
the wild [86]. On the other hand, directly training DSR methods with point clouds in the
wild is often not feasible, as gathering and modeling true surfaces for such point clouds
is either too complex, costly or mathematically intractable. Furthermore, a variety of
methods work on regular 3D grids, i.e. voxels, which are processed with large fully
connected network (FCN) architectures. As a result, existing architectures are often
too compute- and memory-intensive to process large-scale point clouds. Lastly, existing
learning-based DSR algorithms only operate on point locations and ignore visibility in-
formation. Neural radiance fields (NeRFs) and other differentiable volumetric rendering
techniques [84, 86, 87] use visibility information to reconstruct a surface directly from
images. However, they often require a slow optimization process and leverage little or
no shape priors.

1.2 Problem statement and objectives

In this thesis, we aim to overcome some of the main limitations of existing traditional
and learning based surface reconstruction methods, namely:

• Traditional methods can not incorporate learned priors, e.g. to fill large parts of
missing data or to filter and smoothen defects sufficiently

• Learning methods do not scale to large point clouds and their generalization
capability to unseen point cloud defects and shapes has not yet been studied
systematically

• Learning methods do not yet incorporate visibility information

We investigate the requirements of deep learning based architectures for surface re-
construction from point clouds in the wild. We aim to develop supervised deep learning
architectures that can handle large-scale point clouds, while being trained on small syn-
thetic datasets. The methods should be robust to common defects for point clouds in
the wild and produce topologically valid and geometrically accurate surfaces. We con-
sider point clouds with visibility information and aim to develop algorithms that can
benefit by using this additional information.

10

1.2.1 Scope and limitations

A major advantage of deep learning methods is that they can be trained end-to-end for
a specific task without the necessity of intermediate representations. For this reason
we focus on surface reconstruction methods that take a defect-laden point cloud as
input and export a continuous surface. We neither discuss pre-processing algorithms,
such as point cleaning [96] or resampling methods [80], nor post-processing algorithms,
such as mesh repair, surface smoothing, or sharp feature recovery. Ideally, we would
like to directly export surfaces which can be visualised and are valid input for surface
analysis algorithms. To this end, we focus on the reconstruction of a watertight, non-
self intersecting surface, a useful requirement for a variety of downstream engineering
applications. This entails that the discussed and developed algorithms aim to fill all
wholes in the point set and provide a watertight reconstruction, even if there is no
guarantee.

LiDAR and image based sensors are the two main sensors for acquiring point clouds in
the wild. We study both, unprocessed LiDAR and MVS point clouds. However, albeit
the end-to-end paradigm, we do not investigate methods that can directly use images
in an end-to-end fashion to reconstruct surfaces. We rely on dedicated pipelines for this
step. This has the benefit that our developed architectures can handle both LiDAR and
image based point clouds without modification, and can even input a combination of
both.

During the course of this thesis, a variety of surface reconstruction methods based
on deep neural networks have emerged. We call all of these methods deep surface
reconstruction. However, not all deep surface reconstruction methods incorporate shape
priors learned from a training set. While we also discuss such non-learning (optimization
based) methods in Chapter 2, they are not the main focus of our work.

Recent research also suggest to use end-to-end learning for directly performing surface
analysis, such as fluid dynamics from scanned point clouds. This approach removes the
need to explicitly compute a continuous surface as an intermediate representation. While
an interesting field of research, it can lead to more computation. Each new analysis
requires a new optimization from a raw point cloud instead of a richer information
surface. Additionally, such methods do not allow surface visualisation. We do not cover
these approaches.

1.3 Reading guide and contributions

We assume that the reader of this thesis is familiar with sensors and methods to acquire
3D point clouds such as LiDAR and MVS [72] and with basic principles of polygon
mesh processing [18], computer vision [105] and deep learning [47]. In the digital PDF
version of this document all abbreviations and acronyms are linked to the Glossary. In

11

turn, the Glossary links to the first occurrence of the abbreviation or acronym, where
it is spelled out, explained and, if applicable, a citation is given.

In Chapter 2, we formally introduce the problem of surface reconstruction from point
clouds. This chapter can been seen as an introduction for readers unfamiliar with
the problem of surface reconstruction from point clouds and popular methods that
address it. We summarise traditional test-of-time as well as recent learning-based surface
reconstruction methods. We benchmark all methods on the same datasets to assess the
influence of learning in surface reconstruction.

In Chapter 3, we augment existing deep surface reconstruction methods to enable
the processing of point clouds with visibility information. We show that visibility in-
formation consistently improves the accuracy of generated surfaces as well as the gen-
eralization capability of the networks to unseen domains. The chapter is published in
Sulzer et al. [108].

In Chapter 4, we present a novel deep surface reconstruction method that can pro-
cess large-scale point clouds in the wild, and reconstruct surfaces including objects not
present during training. The chapter is published in Sulzer et al. [109].

In Chapter 5, we summarise and conclude the thesis and provide an outlook into
future work.

1.3.1 Open Source Software and Datasets

Several open source software packages published on GitHub are also a result of this
thesis and provide means for reproducing the presented results.

mesh-tools

mesh-tools1 is a collection of tools for reconstructing and processing meshes. The pro-
grams are mainly written using CGAL2 and are based on several scientific publications.
Included is, e.g. our implementation of the surface reconstruction algorithm published
by Labatut et al. [71], which is extensively used in this thesis; and methods for surface
normal estimation and orientation.

dsr-benchmark

dsr-benchmark3 includes a collection of datasets and an evaluation pipeline for surface
reconstruction algorithms introduced in Chapter 2.

1https://github.com/raphaelsulzer/mesh-tools
2https://www.cgal.org/
3https://github.com/raphaelsulzer/dsr-benchmark

12

https://github.com/raphaelsulzer/mesh-tools
https://www.cgal.org/
https://github.com/raphaelsulzer/dsr-benchmark

dsrv-data

dsrv-data4 is a collection of several deep surface reconstruction algorithms modified to
be able to process point clouds with visibility information, as introduced in Chapter 3.

dgnn

dgnn5 is a surface mesh reconstruction algorithm presented in Chapter 4 mainly written
using pytorch6 and pytorch-geometric7.

4https://github.com/raphaelsulzer/dsrv-data
5https://github.com/raphaelsulzer/dgnn
6https://pytorch.org/
7https://pytorch-geometric.readthedocs.io/en/latest/

13

https://github.com/raphaelsulzer/dsrv-data
https://github.com/raphaelsulzer/dgnn
https://pytorch.org/
https://pytorch-geometric.readthedocs.io/en/latest/

2
A Survey and Benchmark of

Automatic Surface Reconstruction
from Point Clouds

We survey and benchmark traditional and novel learning-based algorithms that address
the problem of surface reconstruction from point clouds. Surface reconstruction from
point clouds is particularly challenging when applied to real-world acquisitions, due to
noise, outliers, non-uniform sampling and missing data. Traditionally, different hand-
crafted priors of the input points or the output surface have been proposed to make the
problem more tractable. However, hyperparameter tuning for adjusting priors to differ-
ent acquisition defects can be a tedious task. To this end, the deep learning community
has recently addressed the surface reconstruction problem. In contrast to traditional
approaches, deep surface reconstruction methods can learn priors directly from a train-
ing set of point clouds and corresponding true surfaces. In our survey, we detail how
different handcrafted and learned priors affect the robustness of methods to defect-laden
input and their capability to generate geometric and topologically accurate reconstruc-
tions. In our benchmark, we evaluate the reconstructions of several traditional and
learning-based methods on the same grounds. We show that learning-based methods
can generalize to unseen shape categories, but their training and test sets must share
the same point cloud characteristics. We also provide the code and data to compete in
our benchmark and to further stimulate learning-based surface reconstruction.

14

2.1 Introduction

Surface reconstruction from point clouds is a key step between acquisition and analysis
of surface models and is a long-standing problem in digital geometry processing. In this
chapter, we survey and benchmark several traditional and learning-based methods that
address the problem of surface reconstruction from point clouds.

Traditionally, surface reconstruction methods made the problem more tractable by
using handcrafted priors, imposed on the input, such as point density, level of noise or
outliers, and on the output, such as smoothness, topological properties or the shape
category. In contrast, recent methods introduced by the deep learning community can
learn point cloud defects or shape patterns directly from training data and therefore
promise to reconstruct more accurate surfaces without the need for manual parameter
tuning. However, so far DSR methods have mostly been applied on datasets with a small
number of different object categories. Such datasets are not representative for real-world
applications, where algorithms have to reconstruct surfaces containing a large variety
of shapes unseen during training.

Furthermore, DSR methods are often applied on uniformly sampled point clouds.
Likewise, such point clouds are not representative for real-world acquisitions, as they do
not model non-uniformity or missing data stemming e.g. from occlusions, or transparent
and low texture areas. The ability to reconstruct shapes, either from unseen shape
classes or from point clouds with unseen defects is rarely studied in a systematic manner
for DSR methods.

To this end, we propose several experiments to benchmark algorithms for surface
reconstruction from point clouds. We make use of a variety of publicly available shape
datasets with object surfaces of different complexities. The objects are represented by
a true surface S, which is a boundary-free 2-manifold, i.e. each point on the surface
has a neighborhood that is homeomorphic to an open subset of the Euclidean plane.
We synthetically scan the objects to produce point clouds with real characteristics.
Having access to the true surfaces allows us to measure the geometric and topological
reconstruction quality of the benchmarked methods. We also verify our findings on
real-world point clouds.

We compare novel learning-based algorithms to traditional test-of-time methods to
specifically study the influence of learned priors incorporated into the surface recon-
struction process. We thereby pay special attention to the generalization capability of
methods to unseen domains. Our main contributions are as follows:

• We review methods for surface reconstruction from point clouds from over three
decades up to recent learning-based methods. We contrast popular test-of-time
with novel DSR methods.

• We benchmark traditional and learning-based methods on the same ground across

15

several experiments, using openly available shape datasets and point clouds gen-
erated with synthetic and real scanning.

2.2 Related work

2.2.1 Surveys

There exists only few works that survey the broad field of surface reconstruction from
point clouds [9, 17, 28, 120], most of them predating the advance of learning-based
surface reconstruction [9, 17, 28]. Surface reconstruction methods are often grouped
into interpolating or approximating methods [18]. Interpolating methods “connect” all
points of the input point cloud, or a subset thereof, usually by linearly interpolating
between pairs of points. Approximating methods often define one or several smooth
functions approximating the point cloud globally or locally. See Figure 2.1 for an il-
lustration. Berger et al. [9] and Cazals & Giesen [28] provide detailed reviews for
approximating and interpolating surface reconstruction methods, respectively.

To the best of our knowledge, only one survey includes learning-based methods [120].
However, this survey predates important developments for learning-based methods, such
as the incorporation of local information [21, 31, 45, 62, 92, 95, 109]. In this work,
we review both interpolating and approximating methods and focus on novel ideas
in learning-based surface reconstruction. While many reconstruction methods can be
distinguished by the prior assumptions they impose [9], we argue that a variety of
successful methods combine different priors. This makes grouping by priors difficult.
We thus organize methods into two groups: surface-based and volume-based approaches.
This breakdown closely relates to the two main classes of mathematical representations
of a surface: parametric and implicit.

2.2.2 Benchmarks

To date, benchmarks for surface reconstruction from point clouds are rare. Many
methods use custom datasets to evaluate their approach, usually generated by uni-
formly sampling point clouds from ground truth shapes of existing shape collections
[21, 31, 62, 89, 92, 95]. However, the characteristics of the sampled point clouds often
differ across publications, which hampers the ability to fairly compare the results of
different works. Furthermore, the point clouds often lack common defects of real ac-
quisitions, such as missing data or outliers. One notable exception is the benchmark
of Berger et al. [8]. The authors develop a synthetic range scanning procedure to pro-
duce scans with realistic artifacts, such as noise, non-uniformity and misaligned scans
and create point clouds from shapes with non-trivial topology and details of various
feature sizes. While providing interesting results, the benchmark predates learning-
based surface reconstruction and only considers traditional approximating methods. In

16

the benchmarks proposed in this paper, we reuse their synthetic range scanning pro-
cedure and their five test shapes, as they provide realistic and challenging input for
both learning-based and traditional algorithms. We also implement our own synthetic
scanning procedure for MVS-like point clouds. We use the synthetic scanning to scan
existing large shape datasets to create training datasets with true surfaces and point
clouds with realistic characteristics.

A problem related to surface reconstruction is the generation of point clouds from
2D information such as overlapping images. There exists a variety of benchmarks us-
ing data captured in a laboratory environment [61, 100] or in the wild [68, 99, 107].
These benchmarks often use a low quality image acquisitions as reconstruction input.
Simultaneously, a higher quality acquisition, e.g. from LiDAR scans, serves as reference.

One problem with this approach is that, even for high quality acquisition techniques,
it is difficult to produce complete ground truth point clouds. This issue is sometimes
addressed by decreasing the ground truth domain to specific evaluation areas, in which
reliable information is available either from recorded points or sightlines between points
and sensors [61, 99]. However, in contrast to true surfaces, reference point clouds, do not
allow to calculate topologic metrics such as the number of components or differential
metrics such as surface normals. Furthermore, most learning-based methods require
closed reference surfaces instead of reference point clouds for training.

2.3 Surface definition, representations, properties and reconstruc-
tion

In this section, we first provide a definition of a surface and its mathematical and digital
representations. We then discuss important surface properties. Finally, we establish the
connection between mathematical surface representations, and the grouping of surface
reconstruction algorithms used in our survey.

2.3.1 Definition

A surface can be defined as an orientable, continuous 2-manifold in R3, with or without
boundaries [18, 54, 88]. These properties are important for surface visualisation and
processing, and we will discuss them further down. Mathematically, there are two main
classes of surface representations: parametric and implicit.

2.3.2 Representations

Parametric surfaces are defined by a function f : Ω 7→ S that maps a parameter domain
Ω ∈ R2 to the surface S = f(Ω) ∈ R3. However, for complex surfaces it is not feasible to
find a single function that can parameterise S. Therefore, the parameter domain Ω is
usually split into sub-regions for which an individual function is defined [18]. The most

17

(a) Open Interpolating (b) Open Interpolating (c) Closed Interpolating (d) Closed Interpolating

(e) Open Approximating (f) Open Approximating (g) Closed Approximating (h) Closed Approximating

Figure 2.1: Approximating and interpolating surfaces from point clouds: A surface
generated from point samples can either interpolate (top row) or approximate (bottom row)
the samples. Theoretically, there exist an infinite number of surfaces with different geometry
and topology that can pass through, or near, the samples. We show eight different surfaces

reconstructed from the same point cloud in (a) - (h). The point cloud can be
seen as a sampling of a part of a real surface. All reconstructed surfaces are watertight,
as they are either closed and boundary-free, or their only boundary is the intersection with
the domain boundary . The surface in (d) is non-manifold in the center-vertex. All other
surfaces are manifold. Except for (h), all surfaces are comprised of only one component.
In contrast to the point cloud depicted here, in our benchmark, we mainly consider point
clouds sampled from closed surfaces.

18

common way is to segment Ω into triangles, which are planar by definition. A set of
triangles approximating S can be efficiently stored and processed as a triangle surface
mesh M = (V, E ,F), with triangle facets F , edges E and vertices V.

Implicit surfaces are defined by the level-set c of a scalar valued function F : R3 7→ R:

Sc = {x ∈ R3 | F (x) = c}. (2.1)

The most common choice of the implicit function F is either a signed distance or an
occupancy function. A signed distance function (SDF) gives the distance from a 3D
point x in space to the surface; with points in the interior signed a negative value, and
points on the exterior signed a positive value. An indicator or occupancy function (OF)
usually has a value of 1 inside the surface and 0 outside. The c-level-set of F then yields
the surface S, where c = 0 in the case of a signed distance function and c = 0.5 in the
case of an occupancy function. Similar to the parametric case, the implicit function
domain is often split into sub-regions, such as voxels, octree-nodes or tetrahedra, and
constant functions are defined in each sub-region.

2.3.3 Properties

The reconstructed surface Sr should be close in terms of geometry and topology to the
real surface S from which the point cloud P is sampled. To facilitate subsequent geomet-
ric operations on Sr, such as sampling or deforming the surface, a mesh reconstruction
M is also desirable. Sr and M, respectively, should have the following properties (see
Figure 2.1 for illustrations):

• Watertight: A geometric surface is closed if it is boundary-free. A mesh M is
closed—or boundary-free—if no edge is incident to exactly one facet. However,
a reconstructed surface of a real scene necessarily has a border defined e.g. by
the limit of the scan coverage. One may still reconstruct a closed surface by
intersecting it with the boundary of the domain in which f or F is defined: e.g.
the convex hull or bounding box of P. However, this procedure may not be
desirable, as it can hinder simple geometric analysis such as the calculation of
surface area. Instead, we define a surface as watertight if it is boundary free,
except for a possible intersection with the domain boundary.

• Manifold: We consider real and geometric surfaces to be 2-manifolds, i.e. each
point on the surface has a neighborhood that is homeomorphic to an open subset
of the Euclidean plane. A meshM is manifold if it is edge- and vertex-manifold,
and intersection-free.

– Edge-manifold: For each edge E , the set of facets F sharing this edge form
a topological (half-)disk. This means that no edge can be incident to more
than two facets.

19

– Vertex-manifold: For each vertex V, the set of facets sharing this vertex form
a topological (half-)disk. This means that facets with a common vertex form
an open or closed fan, i.e. there are no dangling facets.

• Intersection-free: M is intersection free if all pairs of facets not sharing an edge
or vertex do not intersect.

• Orientable: M is orientable if one can define a consistent continuous orientation
of each facet. This means that the order of the vertices of all facets is either
clockwise or counter-clockwise and a common edge of two adjacent facets has
opposite orders on the two sides.

The watertight property is useful for simulations such as fluid dynamics. Manifold-
ness and orientability are often required for mesh storing and processing, in particular
because they are a prerequisite for the widely-used half-edge data structure [66, 78].
Furthermore, intersection-free and orientable surfaces lead to a well-defined notion of
inside and outside, which is important for mesh visualization and a variety of geometric
opertations.

2.3.4 Reconstruction

Surface reconstruction from point clouds is the process of constructing a continuous
surface of which discrete point samples have been acquired. In our survey, we group
methods for surface reconstruction from point clouds into two groups: surface- and
volume-based. Surface-based reconstruction methods consists in finding (a set of) pa-
rameterised surfaces Sr that approximate the point cloud P, either in the form of
triangles or larger two-dimensional (2D) patches, or by deforming parameterised enclos-
ing envelops such as meshed spheres. The main challenge for surface-based methods
using a single function f is that the topology of Ω has to be equivalent to the topology
of S, which is usually unknown. The main challenge for surface-based methods with
individual functions for sub-regions of S, on the other hand, is to guarantee a consis-
tent transition between each region. Hence, these methods often struggle to produce an
intersection-free, manifold and watertight surface.

Volume-based methods, on the other hand, segment a subset of R3 into interior (in-
side) and exterior (outside) subspaces. The surface is implicitly defined as the interface
between the two subspaces. Most, but not all algorithms in this class formulate the
problem as finding an implicit function. Surfaces from volume-based methods are guar-
anteed to be watertight and intersection-free, but not necessarily manifold [28].

While surface-based methods can directly yield a mesh, e.g. by triangulating Ω,
volume-based methods usually require an additional processing step. If the implicit
field is discretized with tetrahedra, one can simply use a process which is sometimes
called triangle-from-tetrahedra (TFT). TFT builds a triangle mesh from all triangles

20

that are adjacent to one inside- and one outside-tetrahedra. Another option is the algo-
rithm of Boissonnat and Oudot [16] that iteratively samples F along lines from inside to
outside to find points that lie on S and builds a triangle mesh from these points. One of
the most popular methods for mesh extraction from an implicit field is Marching Cubes
[76], which (i) discretizes the implicit function into voxels, (ii) constructs triangles in-
side each voxel that have at least one inside and one outside vertex and (iii) extracts
a triangulation as the union of all triangles. Recently, mesh extraction has also been
addressed by the deep learning community. Neural meshing [113] specifically addresses
the case where an implicit function is represented by a neural network, and aims to
extract meshes with fewer triangles compared to Marching Cubes from such a function.

In both, surface- and volume-based groups, there are methods that come with theo-
retical guarantees about the topology and geometry of the reconstruction in the absence
of noise and when the point sampling is dense enough [28]. However, in this paper, we
are mostly interested in the robustness of methods to defect-laden input point clouds
from 3D scanning.

2.4 Survey

In this section, we review important surface- and volume-based surface reconstruction
methods and discuss their robustness against different point cloud defects. We also
show that learning-based approaches are often related to more traditional methods.

2.4.1 Surface-based reconstruction

Interpolating approaches

Advancing-front techniques. Most traditional surface-based approaches linearly
interpolate between the point samples P, or a subset thereof. This can be done efficiently
by triangulating triplets of points which respect the empty ball property i.e. no other
point lies within their circumsphere. Triangulating all triplets of P that have this
property leads to the 3D Delaunay tetrahedralisation (3DT) of P. The Ball Pivoting
algorithm [11] is a greedy approach to find local triplets of points that form a triangle
which is part of the surface. The first step is to (i) define a ball with constant radius,
related to the density of P and to (ii) select a seed triplet of points. The ball must
touch all three points and have no other point in its interior. The points then form the
first surface triangle. Then, (iii) the ball pivots around an edge of the triangle until it
touches a new point, forming a new surface triangle. Once all possible edges have been
processed the algorithm starts with a (iv) new seed triangle until all points of P have
been considered. The algorithm has later been refined to be more robust to non-uniform
sampling [44, 93]. The Ball Pivoting algorithm and its related variations are often called

21

Table 2.1: Overview of surface- and volume-based surface reconstruction methods:
We show an overview of surface- and volume-based surface reconstruction methods, both
non-learning and learning-based, together with their input requirements (normals, sensor
pose) and output type (triangle mesh or implicit field). Attributes denoted in brackets are
optional. Methods with a local receptive field divide the point cloud into smaller sub-regions
and define individual functions or surface patches for each sub-region. Methods with a global
receptive field consider the entire point cloud at once. Methods denoted with both combine
local and global receptive fields. We test methods in bold in our benchmark.

Method lea
rn

in
g

no
rm

al
s

se
ns

or
po

se

re
ce

pt
iv
e
fie

ld

ou
tp

ut

Surface-based

BPA [11] local triangle mesh
Sharf et al. [101] both triangle mesh
AtlasNet [49] X local triangle mesh
IER [74] X both triangle mesh
PointTriNet [102] X local triangle mesh
DSE [95] X local triangle mesh
P2M [52] both triangle mesh

Volume-based

SPSR [65] X both implicit field
Labatut et al. [71] X global triangle mesh
ONet [79] X global implicit field
DeepSDF [89] X global implicit field
IM-Net [35] X global implicit field
ConvONet [92] X both implicit field
IGR [48] (X) (X) global implicit field
LIG [62] X X local implicit field
DGNN [109] X X both triangle mesh
SAP [91] X both implicit field
P2S [45] X both implicit field
SAP [91] (X) both implicit field
POCO [21] X (X) local implicit field

22

advancing-front techniques. Their main drawback is that they are not robust to point
cloud defects such as noise or point clouds with large missing parts.

Selection-based Similar to advancing-front techniques, the idea to iteratively build
the triangulation from initial candidate triangles has also been explored in learning-
based methods [74, 102]. PointTriNet [102] (i) starts with an initial set of seed triangles
from a k-nearest neighbor graph of P. Then, (ii) a first network takes in neighboring
points and triangles of each seed triangle, and estimates its probability to be part of
the surface. (iii) Triangles with high probability are selected to be part of the final
surface and (iv) a second network proposes new candidate triangles constructed from
two points of already selected surface triangles and neighboring points. The proposed
new candidates are, again, processed by the first network and the algorithm continues for
n user-defined iterations. The loss function is based on Chamfer distance between input
points and the reconstructed surface, which allows the method to be trained without the
need for ground truth meshes. IER-meshing [74] also (i) starts with a large set of seed
triangles from a k-nearest neighbor graph. It then defines a so-called intrinsic-extrinsic
ratio (IER), as the quotient of geodesic and Euclidean distance between points of a
triangle. (ii) This ratio is estimated by an multilayer perceptron (MLP) from learned
point features per triangle and supervised with IER’s from a ground truth mesh. (iii)
Only triangles with an IER close to 1 (i.e. Euclidean distance ≈ geodesic distance) are
considered to be part of the surface and (iv) selected based on handcrafted heuristics.
Both aforementioned methods have shown to be robust against small amounts of noise
in the input point cloud. However, their reconstructed surfaces are neither manifold nor
watertight.

Tangent plane and other projection methods Another class of surface-based
interpolating approaches are tangent plane methods. This class includes the algorithm
of Boissonnat [15], which is according to Cazals and Giesen [28] probably the first
algorithm to address the surface reconstruction problem. The basic idea is to (i) find a
tangent plane for each sample point, (ii) project the points local neighborhood on the
tangent plane, (iii) construct 2D Delaunay triangulations of the projected points and
(iv) merge the local reconstructions. A shortcoming of such an approach is that tangent
planes are difficult to use in areas with high curvature or thin structures [95]. To this
end, the idea of using local 2D Delaunay triangulations of projected points has been
refined in a recent learning-based approach [95]. Instead of tangent planes, DSE-meshing
[95] uses logarithmic maps, local surface parametrizations around a point p, based on
geodesics emanating from p. This method (i) classifies geodesic neighbors of each point
in P from a set of k-nearest neighbors. Then, (ii) an MLP approximates a logarithmic
map parametrization to gain a 2D embedding of the geodesic neighbors. Lastly, (iii)
neighboring logarithmic maps are mutually aligned and triangulated. This step allows

23

the method to reconstruct surfaces with fewer non-manifold edges, compared to methods
that process triangles independently. However, the surface is still not watertight and
the method has not been tested for reconstruction from noisy point clouds.

Patch-fitting

Patch-fitting methods are related to tangent plane approaches. Instead of interpolating
the initial point set, a new triangulation patch is formed. AtlasNet [49] is based on this
idea and was one of the first learning-based surface reconstruction methods. Small 2D
triangulated patches are transformed to fit P based on transformations predicted by
an MLP. Similar to interpolating approaches, this method cannot guarantee to fill all
gaps between patches, which results in a non-watertight and potentially self-intersecting
surface.

Surface deformation

One of the only classes of surface-based approaches that can guarantee a watertight
surface are deformation-based methods. Sharf et al. [101] introduced a method that (i)
iteratively expands an intial mesh contained within the input point cloud along the face
normal directions, and (ii) moves the mesh vertices to fit the input point cloud using
moving least squares. The method is shown to be robust against missing data, but
requires careful parameter tuning to be robust against noise or outliers. Point2Mesh
(P2M) [52] is also based on the aforementioned idea, but avoids the need for tuning
parameters by hand. The method takes as input a convex hull or a low resolution
Poisson reconstruction [65] of P, and shrink-wraps this initial surface to best fit the point
cloud. The process is guided by multiple local convolutional neural networks (CNNs)
that share weights. The idea is that the weight sharing between the CNNs acts as a prior
that identifies symmetric features in the shape while being able to ignore unsystematic,
random defects in the point cloud. One problem with this approach is that the topology
of the initial surface stays constant during reconstruction. If the correct topology of the
surface is not known, it cannot be recovered. For example, if the sought surface has
holes, they cannot be reconstructed from a convex hull initialisation. This poses a
limitation for reconstructing arbitrary objects in the wild.

2.4.2 Volume-based reconstruction

Interpolating approaches

Volume-based interpolating approaches commonly start by constructing a 3DT of P.
In R3 a Delaunay triangulation (or tetrahedralization) subdivides the convex hull of P
with tetrahedra. The 3DT is created in such a way that no point of P is contained in the

24

circumspheres of any tetrahedra. For well distributed point clouds it can be constructed
in O(n log n) [3]. The Delaunay triangulation does not directly generate the surface, as
it connects points in any direction. However, if the sampling P of S is dense enough a
subcomplex of the 3DT is guaranteed to include a surface Sr closely approximating the
geometry and topology of S [28]. One of the simplest ways to recover this subcomplex
from a 3DT is to (i) prune all tetrahedra with circumspheres larger than a user specified
constant radius α and then (ii) keeping only the boundary triangles. This leads to a
so-called α-shape [10]. Similar to the Ball Pivoting algorithm the radius of the ball
(here α) depends on the point density. For error free and dense samplings, alpha-shapes
and some other interpolation methods [2, 15, 28] provide provable guarantees that the
reconstructed surface is topologically correct [28]. Another way to recover a surface
from a 3DT is inside-outside labelling [26, 53, 59, 60, 69, 71, 85, 104, 109, 109, 114, 122].
Here, all tetrahedra of a 3DT of P are (i) labelled as either inside or outside with
respect to Sr, and (ii) the surface is defined as the interface between tetrahedra with
different labels. This guarantees to produce intersecting-free and watertight surfaces.
The inside-outside labelling is usually implemented through a global energy minimized
with graph-cuts. Inside-outside potentials are computed using visibility information and
spatial regularization is achieved through surface smoothness or low area priors in the
energy. This approach has been shown to be robust against most kinds of acquisition
defects of moderate levels [59, 71, 114] and is capable of reconstructing (very) large
scale scenes [85]. Delaunay-Graph Neural Network (DGNN) [109] is a learning-based
method that replaces the handcrafted potentials in the aforementioned energy with a
graph neural network (GNN). The GNN takes local geometric attributes and visibility
information as input and operates locally on small subgraphs of the 3DT. The locality
makes the method scale to large scenes. The method of Luo et al. [77] proceeds similarly,
but without the use of visibility information and a global energy formulation. Instead,
the GNN processes the 3DT of entire objects at once, which can hamper scalability.

Implicit functions

Arguably the largest class of surface reconstruction algorithms represent the surface
with an implicit function (cf. Equation 2.1). One of the first methods that used implicit
functions for surface reconstruction was presented in Hoppe et al. [54]. Hoppe et al. (i)
calculate tangent planes at each input point of P, using principal component analysis
(PCA) of the local neighborhood. They then (ii) approximate an SDF by mapping
an arbitrary point x ∈ R3 to its signed distance to the closest tangent plane. (iii) The
surface is defined as the 0-level-set of the SDF. The local tangent plane estimation makes
the process sensitive to low density sampling and noise, and computationally expensive.

Poisson surface reconstruction. The most popular approach for surface recon-
struction based on implicit functions is Poisson Surface Reconstruction (PSR) [63]. The

25

idea is that the Laplacian of an indicator function χ, whose c-level-set approximates the
unknown surface S, should equate the divergence of a vector field ~N associated with P:

∆χ = ∇ · ~N . (2.2)

The vector field ~N is defined by the oriented normals of P. To define χ the algorithm
(i) builds an octree on P and (ii) sets up a system of hierarchical functions, locally
supported in each octree node, and (iii) globally solved by using a sparse linear system,
which makes the method time and memory efficient. Dirichlet conditions can be imposed
on the bounding box of the surface with χ = 0 to ensure that the surface is closed.
The approach is known to inherently produce smooth surfaces, but also over-smooth
the surface in parts. The later introduced Screened Poisson Surface Reconstruction
(SPSR) [65] can reconstruct much sharper surfaces by constraining Equation 2.2 to
pass through P. Additionally, it introduces the choice of Neumann boundary conditions
which allows the surface to intersect the boundary of the domain in which F is defined.
This is useful for open scene reconstruction. Recently the method has been revisited
again, to impose Dirichlet constraints on a tight envelope around P, enabling better
reconstructions in areas of missing data [64]. Poisson surface reconstruction produces
watertight meshes and has shown to be robust against almost all kinds of acquisition
defects of moderate levels. However, all Poisson-based approaches require well oriented
normals as input, which can pose a significant limitation in practice.

Neural implicit functions The most common approach to surface reconstruction
with deep networks is to model F in Equation 2.1 with a neural network. This was
first done in the pioneering works of Mescheder et al. [79], Park et al. [89], and Chen &
Zhang [35].

In the case of Occupancy Networks (ONet) [79], F is modelled with a simple FCN
architecture. The network takes as input a point cloud P and one or several test points x
and outputs the occupancy of the test points in relation to the surface from which P was
sampled. The conditioning on the input point cloud slightly changes the formulation of
Equation 2.1 to:

S = {x ∈ R3 | Fθ(x,P) = c} . (2.3)

To estimate the network weights θ, the network is trained with batches B of K objects
using a simple binary cross entropy (BCE) loss:

LB (θ) =
1

|B|

|B|∑
i=1

K∑
j=1

BCE (Fθ (xij ,Pi) , oij) , (2.4)

26

where oij is the ground truth occupancy of test point xij . To compute the ground
truth occupancy oij , the training objects have to be available in the form of watertight
surfaces. A common approach is to use large shape collections, such as ShapeNet [32]
for training. Similar ideas have been introduced in IM-Net [35] and DeepSDF [89] to
model an occupancy or signed distance function with a neural network. Instead of
an encoder-decoder architecture as in ONet, the authors of DeepSDF [89] introduce an
auto-decoder which is trained to find a shape code z that best explains an objects shape.
This slightly changes Equation 2.3 and Equation 2.4, where the point cloud input P
is replaced by a shape code z in the form of a 256-dimensional vector. The DeepSDF
architecture then allows to reconstruct a complete signed distance field (and thus the
shape), given a shape code z. However, to find the shape code for a specific shape during
inference, at least a few ground truth signed distance values are necessary. This can
be a significant limitation in practice. A common downside of the first DSR networks
based on neural implicit fields is their simple fully connected network architecture. This
architecture does not allow the incorporation of local point cloud information [92] and
often leads to oversmoothing or inaccuracies of the inferred surface.

To this end, occupancy networks have later been refined by prepending 2D or 3D
U-Nets [39, 97] before the fully connected occupancy network, to better incorporate
local information. The idea is to (i) extract point features from local neighborhoods
and (ii) aggregate these features in 2D or 3D grid cells. The U-Nets are then used
to (iii) integrate local and global information using multiple down- and upsamplings.
(iv) Finally, the fully connected ONet is used to compute test point occupancies. The
approach is called Convolutional Occupancy Networks (ConvONet) [92]. Just as for
the fully connected architectures, the network can be trained with test points x with
known occupancy values o. In the same work, the authors also introduce an overlapping
sliding-window approach in which a single trained ConvONet can be used to reconstruct
entire indoor scenes. However, this approach requires to carefully scale the scene, such
that the sliding window captures parts of the scene with comparable surface features
during training and inference. Furthermore, for large-scale scenes, a sliding-window
approach can be very time-consuming.

Local Implicit Grids (LIG) and DeepLS [31] also split input point clouds into over-
lapping subregions, and treat each subregion separately. The methods infer local shape
codes z for parts of objects or scenes. These local shape codes have the additional ben-
efit that they can represent parts from several different object classes. For example, a
flat part-surface may belong to a table top or to a TV screen. This makes the methods
less prone to overfit on specific shape categories used during training. However, the
methods are largely based on IM-Net and DeepSDF. This means they also require a
sort of ground truth test point during inference to optimize for the shape codes. Addi-
tionally, similar to the sliding window method of ConvONet, the region size (i.e. part
size) has to be tuned.

Using the same encoder architecture as ConvONet, Shape As Points (SAP) [91] intro-

27

duces the combination of neural implicit fields with a differentiable Poisson solver. The
method estimates (i) oriented normals as well as k point offsets for each input point, to
correct and densify the point cloud P. (ii) The resulting point cloud of size k|P| is fed
to a differentiable Poisson solver [65] that computes an indicator grid, i.e. χ̂ evaluated
on all nodes of a regular voxel grid. (iii) This indicator grid is supervised with a ground
truth indicator grid χ. The ground truth indicator grid is created prior to training, from
a Poisson reconstruction of a dense and error free point cloud, sampled from a ground
truth mesh. A simple mean square error (MSE) loss is used for training the network:

L = |χ̂− χ|2 (2.5)

The entire pipeline is differentiable which allows to update point offsets, oriented
normals and the network parameters during training (with batches of shapes). During
inference, the computed indicator grid can simply be converted to a mesh using march-
ing cubes. In contrast to the original Poisson Surface Reconstruction, SAP allows to
incorporate learned priors and does not need P to be equipped with oriented normals.

In general, all of the methods based on voxel grids in this paragraph require the
size of the initial voxels to be constant during training, because the resolution of the
convolution layers depends on the voxel grid. This poses problems for training on point
clouds with different densities. A dense voxel grid can be memory intensive and long to
train, while a coarse voxel grid can oversmooth the input and lead to loss of information.

Another way to combine local and global information, that avoids the use of grids
was introduced in Points2Surf (P2S). P2S uses both a local test point neighborhood
sampling, and a global point cloud sampling which are both processed using MLPs and
combined to predicted a signed distance for the test point. The k-nearest neighbor
sampling makes this method less sensitive to point density, at the cost of increasing
computational complexity, since the local neighborhood sampling has to be performed
for each test point during inference.

Point Convolution for Surface Reconstruction (POCO) only relies on local neighbor-
hoods and computes a latent vector per point using a point convolution backbone. The
occupancy of a test point x is then predicted using attention-based weighing of neigh-
boring latent vectors. This approach can focus the parameters of the learned implicit
function to be used close to the surface. However, it also requires neighborhood sam-
pling during inference. Similar to most other DSR methods, POCO is trained on object
point clouds with a fixed number of points for easy mini-batching. However, to make the
method more robust to point clouds with higher density during inference, the authors
use a procedure called test-time augmentation. During inference, the latent vectors of
each input point p are computed several times, from different local subsamples and then
averaged.

Another approach to use neural implicit surface representations is to ”train” (or op-
timize) the weights of a deep neural network per shape [48, 91]. The idea is to leverage

28

inherent symmetries of deep neural networks to act as priors in the reconstruction pro-
cess, similar to the surface deformation based Point2Mesh discussed above. To this end,
Gropp et al. [48] designed a simple fully connected network representing a signed dis-
tance function. To encourage the reconstruction of a smooth 0-level-set, given an input
point cloud P, they design a loss function which (i) should vanish on P and (ii) which
gradients ∆PF should be of unit 2-norm and similar to the normals of P. The method
is called Implicit Geometric Regularisation (IGR). SAP also has an optimization-based
variant where (i) the indicator grid, computed with the differential Poisson solver from
the input point cloud P is used to compute a mesh. (ii) The mesh is then sampled,
which allows to calculate a Chamfer loss between the sampled and input point cloud
and, again, update the network weights, point offsets and oriented normals. (iii) This
process is repeated until a user defined stopping criterion. The optimization-based vari-
ants of SAP and IGR can be trained per shape, without the need for ground truth
meshes for supervision. However, in this optimization-based setting, they cannot learn
and incorporate shape priors from a training set.

An upside of all DSR methods based on neural implicit representations is that they
can store an implicit function, potentially conditioned on a point cloud, in the weights
of a neural network. Especially DSR architectures that are entirely grid-less can directly
relate their degrees of freedom to represent the surface. This can be more flexible com-
pared to voxel, octree, or tetrahedral representations. Being a relatively new discovery,
the full potential of neural network-based surface representations has probably yet to
be explored.

2.5 Benchmark setup

In this section, we describe our set up of a series of experiments for benchmarking several
surface reconstruction algorithms discussed in the previous section. We first describe
how we generate realistic point clouds by using synthetic range and MVS scanning
procedures. We then describe the datasets we used and several experiments to evaluate
the performance of reconstruction methods. Finally, we provide an overview of the
competing methods.

Synthetic scanning for point cloud generation In an ideal setting, we would
evaluate methods on real point cloud acquisitions together with their true surfaces.
However, generating true surfaces of real objects requires error free and dense input
point clouds or substantial manual intervention. Therefore, such a dataset is difficult to
produce. MVS benchmarks [61, 68, 99, 100, 107] commonly use image acquisitions for
the reconstruction input and a highly complete and precise acquisition, e.g. from multi-
ple stationary LiDAR scans as reference. We make use of such datasets for evaluation.
Using such a dataset for training surface reconstruction networks requires reconstructing

29

Table 2.2: Scanning configurations for Berger et al. benchmark: We show the five
different scanner configurations used in our modified version of the Berger et al.’s scanning
procedure. We use the resulting scans to evaluate object-level reconstruction with varying
point-cloud defects and for training data generation. For the low resolution (LR) scans the
scanning process results in 1000 to 3000 points per shape, and for the high resolution (HR),
the scanning process yields around 10 000 to 30 000 points.

Low res. (LR) High res. (HR) HR + noise (HRN) HR + outliers (HRO) HR + noise + outliers (HRNO)

Camera resolution x, y 50, 50 100, 100 100, 100 100, 100 100, 100
Scanner positions 5 10 10 10 10
Min/max range 70/300 70/300 70/300 70/300 70/300
Additive noise 0 0 0.5 0 0.5
Outliers (%) 0 0 0 0.1 0.1

a watertight surface from the high-quality acquisition. However, even with high-quality
acquisitions, parts of the object or scene may be missing due to occlusions, for example.
These issues ultimately lead to inconsistencies in the ground truth and make this source
of data unreliable to train DSR networks. Additionally, existing datasets of point cloud
acquisitions and reliable ground truth surface information only consist of a handful of
objects or scenes. Instead, training and evaluation of learning-based surface reconstruc-
tion is often done on point clouds sampled from synthetic surfaces stemming from large
shape collections. However, such point clouds are not representative for real-world ac-
quisitions, as they do not model non-uniformity or missing data stemming e.g. from
occlusions, or transparent and low texture areas. To this end, we resort to synthetic
scanning to produce point clouds from synthetic surfaces in our benchmark. In contrast
to directly sampling the surfaces, synthetic scanning can produce point clouds with re-
alistic defects, such as anisotropy and missing data from (self-)occlusion, see Figure 2.2.
At the same time, the synthetic surfaces provide reliable information for training and
evaluation.

Synthetic range scanning We use the range scanning procedure from the surface
reconstruction benchmark of Berger et al. [8]. To this end, we modified their provided
code to export the camera positions of the scanning process along with the point cloud.
We also add outliers to the produced point clouds by uniformly sampling the bounding
box of the object. The scanning procedure produces uniform, evenly spaced point
clouds. We choose five different scanner settings to scan each test shape: (i) a low
resolution setting replicates point clouds obtained from long range scanning and (ii) a
high resolution setting produces point clouds with close to no defects. Three further
settings produce high resolution point clouds with challenging defects such as (iii) noise,
(iv) outliers or (v) noise and outlier defects combined. See Table 2.2 for details. Because
Berger et al.’s provided code pipeline is too time and memory extensive, we cannot
generate a dataset sufficiently large for training DSR methods. Thus, we only use this
dataset for testing. We refer the reader to the original benchmark paper [8] for further

30

(a) High Quality Mesh (b) MVS (c) Range scan

(d) Uniform sampling (e) Synthetic MVS (f) Synthetic range scan

Figure 2.2: Synthetic and real point clouds: Surface reconstruction methods are often
tested on uniform surface samplings (d). Instead, we test methods on synthetic MVS (e)
and synthetic range scans (f). In contrast to uniform surface sampling, synthetic scanning
can produce realistic point cloud defects, such as missing data from occlusion, often present
in real scans (b,c).

31

(a) Synthetic scanning setup (b) Synthetic MVS (c) Synthetic range scanning

Figure 2.3: Synthetic scanning procedure: We randomly place sensors on bounding
spheres with multiple radii around the object (a). To produce MVS like point clouds, we
consider rays aiming at uniformly sampled points on the circumsphere of the object (b).
This produces non-uniform point clouds with missing data similar to real MVS point clouds.
For synthetic range scanning, we use Berger et al.’s [8] pipeline, which considers ray targets
arranged on a uniform grid aiming at the object (c). This produces uniform point clouds
with missing data similar to real range scanning point clouds.

details about the scanning pipeline.

Synthetic MVS To mimic MVS acquisitions, we synthetically scan objects by plac-
ing virtual sensors on two bounding spheres around an object and shooting rays to
the circumsphere of the object. Sensor positions (ray origin) and ray target points are
uniformly sampled on the surface of the spheres. A 3D point is then given as the inter-
section of the ray and the objects surface. Our goal is not to mimic an MVS pipeline
but rather produce point clouds with similar characteristics. We depict our scanning
procedure in Figure 2.3. We produce two different scans with our approach: (i) sparse
point clouds with 3, 000 points per object and Gaussian noise on the point position
with zero mean and standard deviation 0.005 as in [92], and (ii) dense point clouds with
10, 000 points per object of which 10% are outliers and Gaussian noise on the point
position with zero mean and standard deviation 0.005. For both versions we scan from
10 different sensor positions.

2.5.1 Datasets

We consider a variety of datasets to evaluate the versatility and precision of different
reconstruction methods. We use closed surfaces from ShapeNet, ModelNet and Berger
et al., as they are widely available. ShapeNet and ModelNet are sufficiently big to
train surface reconstruction networks. Most learning-based methods require reliable

32

(a) Berger et al.

(b) ShapeNet

(c) ModelNet

Figure 2.4: Ground truth shapes of the benchmark datasets: We show an example
shape of each class of ModelNet in (c) and of ShapeNet in (b) and the five shapes of Berger
et al. in (a).

33

inside/outside querying of the models for training. To this end, we make the models
watertight using ManifoldPlus [56]. Note that we also use the train sets to tune the
parameters of learning-free methods. The watertight surfaces of the test sets allow for
a reliable quantitative evaluation of the reconstructions. For qualitative evaluation, we
also test on real scans [61, 68, 100] which further allows us to evaluate the reconstruction
of open surfaces. All surfaces are scaled to be contained inside the unit cube. In
the following we give additional details for each dataset used in our benchmark. See
Figure 2.4 for example shapes.

ShapeNet As is common practice in related studies, we use Choy et al.’s [38] 13 class
subset of ShapeNet as well as its train/val/test split. We generate point clouds with
3, 000 and 10, 000 points using our synthetic MVS-like scanning.

ModelNet10 We use ModelNet10 shapes as a second object shape dataset. Its
shapes are less complex than ShapeNet’s, with more flat surfaces and fewer details.
Additionally, the number of training shapes is smaller (4k vs 30k objects). We use the
full train set and the test sets for the 6 out of 10 classes which are not represented in
ShapeNet. We generate point clouds with 3, 000 points with our synthetic MVS-like
scanning.

Berger et al. We select five shapes from the benchmark of Berger et al.. These
shapes include challenging characteristics such as details of various sizes or a non-trivial
topology, which makes them more difficult to reconstruct than ModelNet shapes. We
generate point clouds between 3, 000 and 10, 000 points using our synthetic MVS and
range scanning procedures.

Real MVS and range scans We select a range scan from Tanks and Temples [68],
and two MVS point clouds from DTU [61] and from Middlebury [100]. We subsample
these point clouds to 50, 000 points.

2.5.2 Experimental Setup

We show a summary of our experimental setup on Table 2.3 and Table 2.4. In the
following, we provide details for each experiment.

In-distribution (E1) First, we train and evaluate methods on ShapeNet using all
13 categories and sparse point clouds with 3, 000 points and Gaussian noise with zero
mean and standard deviation 0.005. With this experiment, we evaluate the capacity of
learning methods to complete missing data of sparse point clouds and eliminate noise.

34

Table 2.3: Benchmark setup: In E1 to E4, we train surface reconstruction methods on
noisy point clouds of ShapeNet objects. In E1, we test on ShapeNet. In E2, we test on
ShapeNet, but with denser point clouds and 10% outliers. In E3, we test on the simpler
ModelNet objects. In E4, we test on the Berger et al. shapes. In E5, we train the methods
on the simpler ModelNet dataset and test on ShapeNet. In E6, we test optimization-based
methods on synthetic range scans of the Berger et al. dataset. In E7 and E8, we directly
compare learning- and optimization-based methods on synthetic and real point clouds.

Experiment Training set Test set

1
In-distribution

ShapeNet (synthetic MVS) ShapeNet (synthetic MVS)

2
Out-of-distribution

unseen point cloud characteristics

ShapeNet (synthetic MVS) ShapeNet (synthetic MVS)

3
Out-of-distribution

unseen shape categories,

less complex

ShapeNet (synthetic MVS) ModelNet (synthetic MVS)

4
Out-of-distribution

unseen shape categories,

similar complexity

ShapeNet (synthetic MVS) Berger et al. (synthetic MVS)

5
Out-of-distribution

unseen shape categories,

more complex

ModelNet (synthetic MVS) ShapeNet (synthetic MVS)

6
Optimization

– –

Berger et al. (synthetic range scan)

7
Out-of-distribution vs. optimization

unseen shape categories vs. optimization

ShapeNet (synthetic MVS) Berger et al. (synthetic MVS)

8
Out-of-distribution vs. optimization
unseen point cloud characteristics and

shape categories vs. optimization

–

ShapeNet (synthetic MVS) Real MVS & range scan

35

Table 2.4: Detailed benchmark setup: We present the four different experiments of
our benchmark for surface reconstruction algorithms. For E1 to E4, we train methods to
reconstruct ShapeNet objects from noisy point clouds. In E1, we test on the ShapeNet test
set. In E2, we test on ShapeNet, but reconstruct from denser point clouds with noise and
outliers. In E3, we test on ModelNet with the same sampling as in E1. In E4, we test on five
Berger et al. shapes with the same sampling as in E1. Finally, in E5, we train the methods
on ModelNet and test on ShapeNet, with the same sampling as in E1.

Training set Test set
Experiment Name # shapes complexity # points σ noise % outliers Name # shapes complexity # points σ noise % outliers

1 ShapeNet 30, 661 ?? 3, 000 0.005 0 ShapeNet 1, 300 ?? 3, 000 0.005 0
2 ShapeNet 30, 661 ?? 3, 000 0.005 0 ShapeNet 1, 300 ?? 10k 0.005 10
3 ShapeNet 30, 661 ?? 3, 000 0.005 0 ModelNet 506 ? 3, 000 0.005 0
4 ShapeNet 30, 661 ?? 3, 000 0.005 0 Berger et al. 5 ?? 3, 000 0.005 0
5 ModelNet 3, 979 ? 3, 000 0.005 0 ShapeNet 1, 300 ?? 3, 000 0.005 0

6 – Berger et al. 5 ?? see Table 2.2

7 see Section 2.5.2 Berger et al. 5 ?? 3, 000 0.005 0
8 ShapeNet 30, 661 ?? 3, 000 0.005 0 Real 3 ? ? ? 10, 000 variable variable

Out-of-distribution (unseen point cloud characteristics) (E2) We evaluate
the models trained in E1 on test shapes scanned with a different setting than the train
shapes. We use dense point clouds with 10, 000 points of which 10% are outliers. We
add the same noise as in E1. Here, we investigate whether learning methods are able
to generalize to different point cloud characteristics.

Out-of-distribution (unseen shape categories, less complex) (E3) We eval-
uate the models trained in E1 on shapes from unseen categories but with the same point
cloud characteristics. We use six categories of ModelNet which are not present in the
ShapeNet training set. In this experiment, we investigate whether learning methods
generalize to unseen categories.

Out-of-distribution (unseen shape categories, similar complexity) (E4)
This experiment is similar to E3, but the test set is comprised of five shapes from Berger
et al. which do not correspond to ShapeNet’s categories, but have similar complexity.

Out-of-distribution (unseen shape categories, more complex (E5) This
experiment is similar to E3 and E4, but we retrain all methods on the simpler shapes
from ModelNet10. Here, we assess whether learning methods can generalize from simple
shapes to more complex ones, a difficult out-of-distribution setting.

Optimization (E6) We evaluate several recently developed optimization-based meth-
ods, and two traditional test-of-time optimization-based methods. We use the Berger
et al. dataset for this experiment.

36

Out-of-category vs. optimization (E7) We compare learning- and optimization-
based methods on the same dataset. For this we run optimization-based methods on
MVS scans of the Berger et al. shapes and compare the results to experiment E4.

Out-of-distribution vs. optimization (E8) Finally, we compare learning- and
optimization-based methods on real MVS and range scanning point clouds. For learning-
based methods we use the models from E1.

2.5.3 Surface reconstruction methods

We briefly describe the optimization- and learning-based methods that we will bench-
mark below. For a more complete description of these methods and their related con-
cepts we refer the reader to our survey in Section 2.4. Note that while some of the
optimization-based methods are based on deep networks, and we call them DSR meth-
ods, they do not learn shape priors from a training set. Instead, the networks are
“trained” (or optimized) for each new point cloud to reconstruct a surface and rely on
novel regularization techniques to increase their robustness to noise, outliers and miss-
ing data. Conversely, while some traditional methods are not based on a deep network
architecture, we tune their (hyper)parameters on the training set by using a grid search
over different parameter combinations. When we need to extract a surface from an
implicit field, we use marching cubes [76] with a resolution of 1283.

Optimization-based methods

IGR [48] Implicit Geometric Regularisation (IGR) is a DSR method, operating di-
rectly on the point cloud using a simple fully connected network architecture that esti-
mates an indicator function from point positions and normals. We optimize the network
weights for 100, 000 iterations for each scan/shape.

LIG [62] Local Implicit Grids (LIG) trains an autoencoder to encode crops of a signed
distance function gained from ground truth shapes. For inference, only the decoder
part of the autoencoder is retained. Then, crops of the input point cloud with oriented
normals are augmented with 10 new points along each normal, representing ground
truth signed distance information. An initial latent vector is then decoded to produce
an SDF and iteratively optimized so that the augmented point cloud crop best matches
the SDF. A post-processing removes falsely-enclosed volumes. As code for training is
unavailable, we only use the optimization part, with a pretrained model on ShapeNet
(without noise). We use the sensor position to orient jet-estimated normals [29].

37

P2M [52] Point2Mesh (P2M) is an optimization-based method which iteratively moves
vertices of an initial mesh to fit a point cloud.

SAP [91] Shape As Points (SAP) has a supervised learning- and an optimization-
based variant. In the learning variant, the method estimates the oriented normals as
well as k point offsets for each input point, to adjust and densify the point cloud. The
resulting point cloud of size k | P | is then used by a differentiable Poisson solver
[65] to compute an indicator grid, which is supervised with a ground truth indicator
grid computed prior to training. The entire pipeline is differentiable which allows for
updating point offsets, oriented normals and the network parameters.

SPSR [65] Screened Poisson Surface Reconstruction (SPSR) is a classic non learning-
based method which approximates the surface as a level-set of an implicit function
estimated from point positions and normal information. We use the sensor position to
orient jet-estimated normals [29]. We chose an octree of depth 10 and Dirichlet boundary
condition. We also use the provided surface trimming tool for post-processing, but could
not find parameters that consistently improve the reconstructed surface.

Labatut et al. [71] Labatut et al. is a graph-cut-based method for range scans that
makes use of visibility information. Because there is no official implementation of the
algorithm, we reimplemented it ourselves. To compare with optimization-based meth-
ods, we use the parametrization suggested by the authors: point weights αvis = 32 and
σ = 0.01; regularization strength λ = 5.

Learning-based methods

ConvONet [92] Convolutional Occupancy Networks (ConvONet) is a DSR method
that first extracts point features and averages them on cells of three 2D grids, or one
3D grid (variant). 2D or 3D grid convolutions then create features capturing the local
geometry. Last, the occupancy of a query-point is estimated with a fully connected
network from interpolated features stored on each node of the 2D or 3D grid.

SAP [91] In the optimization variant, the method starts as the learning-based variant
described above. Then, the estimated indicator grid is used to compute a mesh and
points are sampled on the mesh to calculate a Chamfer loss between the mesh and input
point cloud.

DGNN [109] This method uses a graph neural network to estimate the occupancy
of Delaunay cells in a point cloud tetrahedralization from cell geometry and visibility
features. A graph-cut-based optimization then reinforces global consistency.

38

POCO [21] Point Convolution for Surface Reconstruction (POCO) extracts point
features using point cloud convolution [19], then estimates the occupancy of a query
point with a learning-based interpolation from nearest neighbors.

SPRS [65] See method description above. For the learning-based experiments, we
perform a grid search over octree depth d = {6, 8, 10, 12} and boundary conditions b =
{dirichlet, neumann, free}. We use the parametrization with the best mean volumetric
IoU for reconstructions of the training set.

Labatut et al. [71] See method description above. For the learning-based experi-
ments, we perform a grid search over regularization strength λ = {1.5, 2.5, 5, 10}, and
point weights α = {16, 32, 48} and σ = {0.001, 0.01, 0.1, 1}. We use the parametrization
with the best mean volumetric IoU for reconstructions of the training set.

2.5.4 Evaluation metrics

We want the reconstructed surface Sr to be as close as possible to the real (or ground
truth) surface S in terms of geometry and topology. To measure this “closeness” we use
several metrics.

Geometric metrics

We evaluate the geometric quality of reconstructions with the volumetric intersection
over Union (IoU), symmetric Chamfer distance (CD) and normal consistency (NC).

Volumetric IoU In the following, let Sg and Sr be the set of all points that are
inside or on the ground truth and reconstructed surface, respectively. The volumetric
IoU is defined as:

IoU (Sg,Sr) =
|Sg ∩ Sr|
|Sg ∪ Sr|

.

We approximate volumetric IoU by randomly sampling 100, 000 points in the union of
the bounding boxes of Sg and Sr.

Chamfer distance To compute the Chamfer distance and normal consistency, we
sample a set of points Pg and Pr on the facets of the ground truth mesh and the
reconstructed mesh, respectively, with |Pg| = |Pr| = 100, 000. We approximate the

39

symmetric Chamfer distance between Sg and Sr as follows:

CD(Sg,Sr) =
1

2|Pg|
∑
x∈Pg

min
y∈Pr

||x− y||2

+
1

2|Pr|
∑
y∈Pr

min
x∈Pg

||y − x||2 .

Normal consistency Let n(x) be the unit normal of a point x. We set this normal
to be the normal of the facet from which x was sampled. Let 〈·,·〉 the Euclidean scalar
product in R3. Normal consistency is defined as:

NC(Sg,Sr) =
1

2|Pg|
∑
x∈Pg

〈
n(x), n

(
argmin
y∈Pr

||x− y||2

)〉

+
1

2|Pr|
∑
y∈Pr

〈
n(y), n

(
argmin
x∈Pg

||y − x||2
)〉

.

Topological metrics

We evaluate the topological quality of reconstructions through the number of compo-
nents, the number of non-manifold edges and the number of boundary edges.

Number of components If not stated otherwise, the ground truth surfaces of our
datasets have exactly one component. In consequence, the reconstructed surfaces should
also have one component.

Number of boundary edges The surfaces of all ground truth objects in our datasets
are closed. We verify this by measuring the number of boundary edges of the recon-
structed meshed surface which should be zero. Note that if boundary edges only appear
on the intersection of the reconstruction with its bounding box we still classify the
reconstruction as watertight, according to the definition in Section 2.3.3.

Number of non-manifold edges The surfaces of all ground truth objects in our
datasets are 2-manifolds. We verify this by measuring the number of non-manifold edges
of the reconstructed meshed surface which should be zero.

Runtimes

To evaluate the scalability of methods, we measure the average time it takes to recon-
struct a surface of ShapeNet from 3,000 points.

40

2.6 Experiments

2.6.1 Learning-based surface reconstruction from synthetic MVS
point clouds (E1 - E5)

We examine the precision and versatility of novel supervised-learning methods and two
traditional methods for which training sets were used for tuning parameters. All eval-
uated methods perform well when reconstructing shapes from known categories and
known point cloud characteristics (E1). The learning-based methods show a signifi-
cantly superior performance of at least 5% over SPSR and Labatut et al. (see Table 2.5).
The methods based on neural implicit fields (POCO, SAP and ConvONet) produce vi-
sually and quantitatively the best reconstructions (see Figure 2.5, first column). DGNN
does not perform as well as most other learning methods in this experiment. The sparse
point clouds used in this experiment do not contain point samples on all details. How-
ever, due to the interpolating nature of DGNN surface details cannot be reconstructed
without input points.

In E2, domain shifts results in worse performance, both quantitatively and qualita-
tively for all methods except SPSR. SPSR shows robustness against outliers and benefits
from the higher point density. Most learning methods do not produce satisfying results
(see Figure 2.5, second column). The reconstruction of SAP is too smooth and lacks de-
tails, but does not show as severe defects as the reconstructions of other learning-based
methods. Labatut et al. suffers from the low regularization weight tuned for the out-
lier free point clouds and could benefit from higher regularization to remove erroneous
floating components from outliers.

When reconstructing out-of-category ModelNet shapes (E3), the neural implicit field
methods exhibit visually the best reconstructions. SAP and POCO produce quanti-
tatively the best reconstructions (see Table 2.5). The interpolating method DGNN
performs better than ConvONet.

In E4, we reconstruct shapes from Berger et al. which have similar complexity than
the shapes from ShapeNet used for training. The only learning methods able to leverage
information from the common point cloud characteristics to improve the test results are
DGNN and POCO.

In E5, most methods overfit the simpler ModelNet shapes when retrained and used
to reconstruct the more complex ShapeNet shapes. Even SPSR slightly suffers from
tuning parameters on ModelNet. The best reconstructions on ModelNet are achieved
with an octree depth of d = 8 (instead of d = 10 on ShapeNet) leading to worse results
on ShapeNet: 77.1 vIoU in E1 vs. 74.6 vIoU in E5. The parameter tuning of Labatut
et al. stays unchanged. DGNN is the only method that does not overfit on ModelNet
and yields the best results, both quantitatively and qualitatively. In fact, it performs
as well as when trained on ShapeNet directly.

ConvONet is only able to outperform traditional methods when the training and

41

Table 2.5: Numerical results for learning-based reconstructions (E1 to E5): SPSR
[65] is the only method that reconstructs surfaces with a high volumetric intersection over
Union (IoU) and a low Chamfer distance (CD) in each experiment. Therefore, its recon-
structions have the highest mean volumetric IoU and the lowest mean CD. However, SPSR
also reconstructs the least compact surfaces on average (i.e. surfaces with the highest num-
ber of components). Labatut et al. [71] reconstructs the most compact surfaces. The
reconstructions of DGNN [109] have the highest mean volumetric IoU of the tested learning
methods. The reconstructions of SAP [91] have the lowest mean CD of the tested learning
methods and the highest normal consistency. ConvONet and SPSR are the only methods
that reconstruct surfaces without boundary and non-manifold edges.

Volumetric IoU (%) [↑] Normal consistency (%) [↑]
Method E1 E2 E3 E4 E5 Mean E1 E2 E3 E4 E5 Mean

ConvONet2D [92] 85 47.3 79.3 65.1 68.3 69 92.7 76.4 90 78 87.8 85
ConvONet3D [92] 84.8 15.1 83.6 76.4 51 62.2 93 71.8 93.1 87.2 82.5 85.5
SAP [91] 88.7 59.8 89.2 78.3 54.9 74.2 93.5 86.7 94.1 89 87.1 90.1
DGNN [109] 84.5 38.1 87 82.9 84.4 75.4 85.4 68.8 88.5 85.2 85.5 82.7
POCO [21] 89.5 8.74 90.6 83.9 40.9 62.7 93.6 75.6 94.2 89.5 82.9 87.1
SPSR [65] 77.1 80.7 80.7 77.6 74.6 78.1 87.7 83.2 89.1 86.3 88 86.9
Labatut et al. [71] 80.3 60.4 83.9 79.4 80.3 76.9 81 73 84.6 80.8 81 80.1

Chamfer distance (per-point ave. %) [↓] Number of components [↓]
Method E1 E2 E3 E4 E5 Mean E1 E2 E3 E4 E5 Mean

ConvONet2D [92] 0.553 7.51 0.997 1.43 0.979 2.29 1.6 34.8 2.55 3.6 3.2 9.16
ConvONet3D [92] 0.546 10.9 0.76 0.887 2.44 3.1 1.37 13.6 1.6 2.6 1.5 4.13
SAP [91] 0.437 2.09 0.547 0.734 0.924 0.946 2.71 86 3.45 5.6 10.5 21.7
DGNN [109] 0.549 2.54 0.635 0.586 0.55 0.973 1.31 16.1 1.13 1 1.31 4.16
POCO [21] 0.416 10.5 0.516 0.579 1.32 2.67 2.32 178 2.82 2 16.3 40.2
SPSR [65] 0.801 0.659 0.873 0.786 0.886 0.801 9.26 185 11.1 8 3.24 43.3
Labatut et al. [71] 0.665 6.97 0.747 0.671 0.665 1.94 1.22 9.02 1.05 1 1.22 2.7

Number of boundary edges [↓] Number of non-manifold edges [↓]
Method E1 E2 E3 E4 E5 Mean E1 E2 E3 E4 E5 Mean

ConvONet2D [92] 0 0 0 0 0 0 0 0 0 0 0 0
ConvONet3D [92] 0 0 0 0 0 0 0 0 0 0 0 0
SAP [91] 0 0.00923 0 0 8.44 1.69 0 0 0 0 0 0
DGNN [109] 0 0 0 0 0 0 1.35 2.24 0.646 0.4 1.69 1.26
POCO [21] 0 121 0 0 41.7 32.5 0 0.00154 0 0 0 0.000308
SPSR [65] 0 0 0 0 0 0 0 0 0 0 0 0
Labatut et al. [71] 0 0 0 0 0 0 9.35 28.5 8.47 9.6 9.35 13.1

42

In
p
u
t

C
O
N
et
2
D

[9
2
]

C
O
N
et
3
D

[9
2
]

S
A
P

[9
1
]

D
G
N
N

[1
0
9
]

P
O
C
O

[2
1
]

S
P
S
R

[6
5
]

L
a
b
a
tu

t
et

a
l.
[7
1
]

G
ro
u
n
d
tr
u
th

In-distribution (E1)Out-of-distribution (E2)Out-of-category (E3)Out-of-category (E4)Out-of-category (E5)

Figure 2.5: Learning-based reconstructions (E1 to E5): DGNN [109], SAP [91] and
SPSR [65] provide visually the best reconstructions without prevalent defects.

43

test sets share the same point cloud characteristics and shape categories. SAP pro-
duces much better reconstructions and is the learning-based method with the highest
robustness against outliers. It is also the only method explicitly predicting normals. As
a result SAP reconstructs surfaces with the highest mean normal consistency over all
experiments. The local learning and global regularisation approach of DGNN produces
competitive results in all experiments, except for the outlier setting of E2. DGNN is the
learning-based method producing surfaces with highest mean IoU over all experiments.
The local attention-based learning mechanism of POCO leads to the best results when
the task does not involve reconstruction from unseen domains. It provides the most
faithful reconstructions in three experiments in which point cloud characteristics are
identical in train and test set (E1, E3, E4). However, POCO is heavily affected by
outliers (E2), which can be explained by its purely local approach. POCO also tends
to overfit on simple training shapes (E5). The reconstructions of POCO, as well as the
ones of SAP contain boundary edges only in areas where the reconstructions intersect
the bounding box i.e. they are still watertight. SPSR proves robust to various defects
and shape characteristics, providing fair results, with the highest mean IoU and Cham-
fer distance across the board. However, its reconstructions are the least compact, i.e.
they have the highest number of components. Labatut et al.’s parametrization proves
slightly less robust, as the method is affected by outliers. Its mean IoU is higher than
that of any learning method, and its reconstructions are the most compact surfaces
with an average number of components of 2.7. However, it is also the only method that
produces a significant amount of non-manifold edges.

2.6.2 Optimization-based surface reconstruction from synthetic
range scanning point clouds (E6)

This experiment evaluates the precision and versatility of non-learning methods. The
benchmarked approaches consist in neural network based methods optimizing a function
to fit an input point cloud and rely on novel regularization techniques to increase their
robustness to noise, outliers and missing data. Furthermore, we benchmark the two
traditional methods SPSR and Labatut et al. with standard parameter settings. We
reconstruct surfaces of Berger et al. from synthetic range scanning point clouds with
various different defects. We show numerical results in Table 2.6 and visualisations in
Figure 2.6. Almost all reconstructions provided by the two traditional methods are
much more truthful than the DSR methods, with a mean volumetric IoU almost 10
points higher across all point cloud defects. IGR does visually not provide a good result
on the exemplary shape, especially on thin surface parts. Quantitatively, the method
provides the best reconstruction for the neural networks based methods in the absence
of outliers, and even the best overall reconstruction for the noisy high resolution scans.
LIG does not provide good reconstructions for any of the settings. This can be explained
by its pretrained model on defect-free uniform high density point clouds. Furthermore,

44

Table 2.6: Numerical results for optimization-based surface reconstruction (E6):
Optimization-based reconstruction of the Berger et al. shapes from synthetic range scans.
LR is a low resolution scan, HR a high resolution scan, HRN a high resolution scan with
noise, HRO a high resolution scan with outliers, and HRNO a high resolution scan with noise
and outliers. The methods are optimized per shape and per scan using standard settings as
mentioned in the corresponding publications.

Volumetric IoU (%) [↑] Normal consistency (%) [↑]
Method LR HR HRN HRO HRNO Mean LR HR HRN HRO HRNO Mean

IGR [48] 80.8 92.5 83.6 63.7 62.7 76.7 88 96.3 83.9 77.8 71.5 83.5
LIG [62] 46.9 50.3 63.9 66 63.8 58.2 88.7 92.2 89 77 75.2 84.4
P2M [52] 75.2 83.3 75.5 71.3 67.8 74.6 86.3 92.2 88.1 84.5 82.1 86.6
SAP [91] 75.6 89.1 72.4 55.3 34.9 65.4 83.4 94.8 61.6 74.5 55.3 73.9
SPSR [65] 77.7 90.2 82.8 90.3 82.1 84.6 88.1 96 88.1 96.2 85.8 90.9
Labatut et al. [71] 81.3 93.4 80.1 93.4 79.1 85.5 87.6 96 66.3 94.9 66.5 82.3

Chamfer distance (per-point ave. %) [↓] Number of components [↓]
Method LR HR HRN HRO HRNO Mean LR HR HRN HRO HRNO Mean

IGR [48] 0.674 0.322 0.554 7.96 7.72 3.45 6.8 1.2 35.2 44 97.4 36.9
LIG [62] 0.745 0.581 0.781 7.89 7.8 3.56 1 1 1 1.6 1 1.12
P2M [52] 0.817 0.473 0.729 1.53 2.13 1.13 1.2 1 1.2 1.4 1.6 1.28
SAP [91] 0.852 0.32 0.701 3.99 3.93 1.96 73.2 85.6 937 1.8e+03 1.96e+03 971
SPSR [65] 0.794 0.369 0.572 0.362 0.607 0.541 1.2 1.6 3.6 3.8 20.2 6.08
Labatut et al. [71] 0.635 0.314 0.608 0.339 0.641 0.507 1 1 1.2 1.2 1 1.08

Number of boundary edges [↓] Number of non-manifold edges [↓]
Method LR HR HRN HRO HRNO Mean LR HR HRN HRO HRNO Mean

IGR [48] 0 0 0 0 0 0 0 0.8 0.8 5.2 4.2 2.2
LIG [62] 69 42.8 17.2 0 0 25.8 0 0 0 0 0 0
P2M [52] 0 0 0 0 0 0 0 0 0 0 0 0
SAP [91] 0 0 0 0 449 89.8 0 0 0 0 0 0
SPSR [65] 0 0 0 0 0 0 0 0 0 0 0 0
Labatut et al. [71] 0 0 0 0 0 0 1 5.8 24.4 3.8 22 11.4

45

In
p
u
t

IG
R

L
IG

P
2
M

S
A
P

S
P
S
R

L
a
b
a
tu

t
et

a
l.

G
ro
u
n
d
tr
u
th

LR HR HRN HRO HRNO

Figure 2.6: Optimization-based experiments: In each column we show the results of
different methods of one of the five learning-based experiments.

46

Table 2.7: Numerical results for learning- and optimization-based reconstructions
(E7): Learning- and optimization-based reconstruction of the Berger et al. test shapes from
synthetic MVS scans. The learning methods were trained on synthetic MVS scans from
ShapeNet. Optimization-based methods are optimized per scan using standard settings.
BE stands for boundary edges and NME for non-manifold edges. Only the learning-based
methods POCO and DGNN reconstruct surfaces with a higher mean volumetric intersection
over Union and lower Chamfer distance than all optimization-based methods.

Method Vol. IoU [↑] Normal consist. [↑] Chamfer dist. [↓] Components [↓] BE [↓] NME [↓]

Learning

ConvONet2D [92] 65.1 78 1.43 3.6 0 0
ConvONet3D [92] 76.4 87.2 0.887 2.6 0 0
SAP [91] 78.3 89 0.734 5.6 0 0
DGNN [109] 82.9 85.2 0.586 1 0 0.4
POCO [21] 83.9 89.5 0.579 2 0 0

Optimization

IGR [48] 78.3 83.8 0.775 15.4 0 0.4
LIG [62] 45.7 86.6 0.831 1 65.6 0
P2M [52] 74.5 85 0.768 2 0 0
SAP [91] 71.9 77 0.811 133 0 0
SPSR [65] 77.6 86.4 0.785 8 0 0
Labatut et al. [71] 79.4 80.8 0.671 1 0 9.6

its post-processing makes the reconstructions non-watertight. P2M provides geometri-
cally fair reconstructions and the topologically best reconstructions with a low number of
components, and watertight and manifold surfaces for all reconstructions. SAP provides
fair reconstructions in the absence of outliers. None of the neural network based meth-
ods is robust against outliers. As in the learning-based experiments, SPSR generates
high quality reconstructions for all input defects, and achieves the best mean normal
consistency. Labatut et al. achieves the best mean IoU and mean Chamfer distance
while providing the reconstructions with the lowest number of components. However,
the reconstructions of Labatut et al. are the only ones with a significant number of
non-manifold edges.

2.6.3 Learning- and optimization-based surface reconstruction from
synthetic MVS point clouds (E7)

To directly compare learning- and optimization-based reconstructions on the same
dataset, we also reconstruct the Berger et al. shapes from synthetic MVS scans (cf.
E4) with the optimization-based methods. Thus, for learning-based methods, we use
the models trained on synthetic MVS scans from ShapeNet (cf. E4) and we optimize
non-learning methods per shape using standard settings. We show the numerical results
in Table 2.7 and visualisations in Figure 2.6. The learning-based methods DGNN and
POCO benefit from the training on point clouds with the same characteristics as in the

47

L
ea

rn
in

g

(a) CONet2D (b) CONet3D (c) SAP (d) DGNN (e) POCO (f) Input

O
p
ti

m
iz

at
io

n

(g) IGR (h) LIG (i) P2M (j) SAP (k) SPSR (l) Lab. et al. (m) GT

Figure 2.7: Learning- and optimization-based reconstructions: We show reconstruc-
tions of dancing children from Berger et al. from a low resolution input point cloud with
noise (f) and the ground truth shape (m). The methods used in the first row (a - e) were
trained on ShapeNet, on point clouds with the same sampling as the one used here. In
the second row (g - k) we show the reconstructions for the same shape (from the same
sampling) from optimization-based methods.

test set and reconstruct more truthful surfaces than the optimization-based methods.
Similar to E6, Labatut et al. produces the best results among the optimization-based

methods.

2.6.4 Learning- and optimization-based surface reconstruction from
real point clouds (E8)

Finally, we reconstruct surfaces from real MVS and range scanning point clouds. Again,
for learning-based methods, we use the models trained on synthetic MVS scans from
ShapeNet (cf. E4) and we optimize non-learning methods per point cloud. We show
the reconstructions in Figure 2.8. The MVS point cloud from Middlebury (Figure 2.8a)
is contaminated with a large amount of varying noise. SAP is the only learning method
which reconstructs a smooth surface without missing details (Figure 2.8d). However, it
suffers from small amounts of topological noise in the form of holes. The optimization-
based method P2M provides a visually good reconstruction with few defects (Fig-
ure 2.8i). In Figures 2.8m and 2.8y, optimization-based methods handle the additional
domain shift to an open scene better compared to learning-based methods. The two
traditional methods SPSR and Labatut et al. provide the visually best results on aver-
age.

This experiment also shows that our findings on synthetic point clouds coincide with
those on real-world point clouds, validating our experimental setup.

48

L
ea

rn
in
g

(a) Input (b) CONet2D (c) CONet3D (d) SAP (e) POCO (f) DGNN

O
p
ti
m
iz
a
ti
o
n

(g) IGR (h) LIG (i) P2M (j) SAP (k) SPSR (l)
Labatut et al.

L
ea

rn
in
g

(m) Input (n) CONet2D (o) CONet3D (p) SAP (q) POCO (r) DGNN

O
p
ti
m
iz
a
ti
o
n

(s) IGR (t) LIG (u) P2M (v) SAP (w) SPSR (x)
Labatut et al.

L
ea

rn
in
g

(y) Input (z) CONet2D (aa) CONet3D (ab) SAP (ac) POCO (ad) DGNN

O
p
ti
m
iz
a
ti
o
n

(ae) IGR (af) LIG (ag) P2M (ah) SAP (ai) SPSR (aj)
Labatut et al.

Figure 2.8: Learning- and optimization-based reconstructions of real-world point
clouds (E8): Learning methods are trained on synthetic MVS scans from ShapeNet.
Optimization-based methods are optimized per shape using standard settings. The tra-
ditional methods SPSR [65] and Labatut et al. [71] provide visually the best reconstructions
with noticeable defects only the noisy Temple Ring MVS point cloud ((k) and (l)).

49

Table 2.8: Runtimes for learning-based reconstruction: Times (in seconds) for recon-
structing one object from a point cloud of 3,000 points averaged over the ShapeNet test
set. GC stand for Graph-cut; SE stands for surface extraction, such as marching cubes or
triangle-from-tetrahedron. Note that different variants and implementations of marching
cubes are used by different methods, which also influences the runtimes.

Model Feature extraction Decoding/GC SE Total

ConvONet2D [92] 0.016 0.32 0.17 0.51
ConvONet3D [92] 0.008 0.21 0.17 0.40
SAP [91] 0.022 0.017 0.047 0.088
DGNN [109] 0.11 0.28 0.01 0.39
POCO [21] 0.088 13.72 0.33 15.74
P2S [45] 69.06 11.51 80.57
SPSR [65] 1.25
Labatut et al. [71] 0.1 0.07 0.01 0.18

2.6.5 Runtimes

On Table 2.8, we report detailed runtimes for the methods tested in the learning-based
experiments. SAP is the fastest of all reconstruction methods. DGNN also shows fast
runtimes, while POCO is slow, due to its extensive use of neighborhood sampling. We
also compare runtimes of P2S. We were not able to include this method in experiments
E1 to E5 due to its long runtime for training and inference.

2.6.6 Summary and analysis

In the right circumstances, learning-based methods can produce highly detailed surfaces
while remaining robust to noise and missing data. However, this requires training on
large sets (30k shapes in our experiments) of sufficiently complex surfaces and associ-
ated point clouds. Even if the tested learning methods can generalize to unseen shape
categories to some extent, the training and test sets must share the same point cloud
characteristics. This suggests that these methods mainly learn priors related to the
acquisition characteristics of the input point clouds, and less on the shapes themselves.
However, learning-based methods do not produce satisfying results when the training
shapes are too simple, or when the point clouds include unknown defects, such as outliers
(seeTable 2.9). Mixing traditional and learning-based methods, as in SAP or DGNN,
results in higher robustness to domain shifts and leads to short reconstruction times.
Except for IGR, the tested novel optimization-based methods are not robust to acqui-
sition defects and they rarely provide better results compared to the two traditional
methods SPSR and Labatut et al..

50

Table 2.9: Summary of benchmark results: Each method is rated with one to three stars
per attribute, determined by the qualitative and quantitative results of our benchmark.

Robustness to out-of-distribution Mesh quality Runtime

Learning noise outliers density category watertightness manifoldness compactness w/o training

ConvONet2D [92] * * * * *** *** * ***
ConvONet3D [92] * * * * *** *** *** ***
SAP [91] ** ** ** ** *** *** * ***
DGNN [109] * * * *** *** ** *** ***
POCO [21] ** * * ** *** *** * **

Robustness to Mesh quality Runtime

Optimization noise outliers low density category watertightness manifoldness compactness w/ training

IGR [48] *** ** ** *** *** ** * *
LIG [62] * * * *** ** *** *** *
P2M [52] * ** * *** *** *** *** *
SAP [91] * * * *** *** *** * *
SPSR [65] *** *** *** *** *** *** * ***
Labatut et al. [71] *** *** *** *** *** * *** ***

2.7 Conclusion

Surface reconstruction from point clouds is a well studied subject in the field of digital
geometry processing. However, constant developments in acquisition techniques and
novel ideas for surface reconstruction and analysis bring forward new challenges. In this
paper, we survey the field of surface reconstruction from point clouds and benchmark
several related methods. We revisit traditional test-of-time approaches for surface re-
construction and detail how they inspired novel approaches. We evaluate traditional and
novel optimization and learning-based methods on various tasks and datasets. We show
that novel optimization-based methods are not as robust against defects as traditional
methods. For in-distribution point clouds with characteristics similar to the ones of the
training set, learning methods provide more accurate reconstructions than traditional
approaches. However, real-world scenes often include a multitude of different and highly
complex objects, and their acquisitions may contain a variety of defects. Most learning
methods require shapes of similar complexity in training and test sets and they are not
robust to out-of-distribution acquisition defects. These limitations of learning-based
methods hinder the reconstruction of point clouds in the wild. Generating or finding
adequate training data that includes a large variety of complex shapes scanned with
realistic defects is a difficult task. Future work in learning-based surface reconstruction
should focus on training on point clouds with realistic acquisition defects, e.g. from
common sensors and acquisition settings, or on increasing the methods’ robustness to
unseen defects.

We will address the limited generalization capability of current DSR methods in the
next chapter, where we show that training learning-based methods on point clouds with
visibility information substantially increases their generalization capability to unseen

51

domains. We show that the added visibility information allows to reconstruct complex
objects and scenes from real-world scans even when the methods are trained on simple
training shapes.

In Chapter 4, we also show how DGNN can be trained on point clouds with multiple
defects and densities at the same time. This allows to produce superior results compared
to traditional test-of-time methods, even when reconstructing complex outdoor scenes
from highly defect-laden MVS point clouds.

52

“What you see is what you get!”

Geraldine Jones

3
Deep Surface Reconstruction from Point

Clouds with Visibility Information

Most current neural networks for reconstructing surfaces from point clouds ignore sensor
poses and only operate on point locations. Sensor visibility, however, holds meaningful
information regarding space occupancy and surface orientation. In this chapter, we
present two simple ways to augment raw point clouds with visibility information, so it
can directly be leveraged by surface reconstruction networks with minimal adaptation.
Our proposed modifications consistently improve the accuracy of generated surfaces as
well as the generalization capability of the networks to unseen domains.

53

3.1 Introduction

The problem of reconstructing a watertight surface from a point cloud has recently
been addressed by a variety of deep learning based methods. Compared to traditional
approaches, deep surface reconstruction (DSR) can learn shape priors [79, 89] and lever-
age shape similarities [52] to complete missing parts [41], filter outliers, or smoothen
noise in defect-laden point clouds. DSR methods, however, often derive priors from
training datasets with few shape classes, generalizing poorly to unseen categories or
datasets. Learning more local priors improves consistency across different objects or
scenes [62, 109] but may result in higher sensitivity to noise or other defects. Besides,
lack of global context complicates surface orientation.

For real world point clouds, usually acquired via active or passive methods such as
LiDAR scanning or MVS, the sensor position can be known and used to relate each
observed point with a line-of-sight. Such visibility information can then help to orient
surface normals [98] or predict occupancy [59, 71, 114]. While visibility is key for MVS,
it has largely been ignored by DSR methods. In fact, sensor positions are usually not
given in reconstruction benchmarks from point clouds.

To remedy this, (i) we consider real data containing visibility information and, (ii)
for synthetic shape benchmarks, we use a virtual scanning procedure to pair 3D points
with the position of their sensor. We then, show that many DSR methods can easily be
adapted to benefit from visibility information (cf. Figure 3.1). Our main contributions
are as follows:

• We propose two simple ways to add visibility information to 3D point clouds, and
we detail how to adapt DSR methods to utilize them, with very little changes.

• Using synthetic and real data, at object and scene level, we show for a wide
range of state-of-the-art DSR methods that models leveraging visibility recon-
struct higher-quality surfaces and are more robust to domain shifts.

3.2 Related work

Many traditional surface reconstruction methods use visibility information [25, 26, 59,
60, 71, 114, 122]. They are usually based on a 3DT, which is intersected with lines-of-
sight to attribute visibility features to Delaunay cells. While such methods can scale to
billions of points [27] and are robust to moderate levels of noise and outliers, they do
not incorporate learned shape priors.

In contrast, recent DSR methods have shown to produce more accurate surfaces than
traditional approaches for shape categories and point cloud defects encountered during
training. Many DSR methods use an implicit surface representation, either based on
occupancy [79], or on the distance to the surface, whether it is signed [31, 35, 48, 83, 89]

54

(a) Reconstruction using only the points position.

(b) Reconstruction with visibility augmented point cloud.

Figure 3.1: Surface reconstruction with visibility information: We augment each 3D
point with a sightline unit vector pointing towards the sensor observing it. Additionally,
two auxiliary points are placed before and after the observed point along the sightline.
This allows DSR networks, with very little modification, to reconstruct a significantly more
accurate surface.

55

or unsigned [4, 5, 36, 121]. To integrate local information, different forms of convolutions
are used, either on regular grids [37, 41, 62, 92, 110], directly on points [21, 112] or via
an MLP instead [45]. Other methods rather use an explicit surface representation such
as a mesh, which is deformed [52] or whose elements are classified [102, 109].

A key issue is to get a sense of surface point orientation, to choose between recon-
structing a thin volume (two main opposite orientations) or a thicker one (one main
orientation at void-matter interface). Some methods dismiss the orientation issue by
requiring oriented normals as input [62, 65, 112, 117], albeit producing such normals is
a challenging task in itself [70, 81, 98]. We show that oriented normals can be advanta-
geously replaced by visibility information.

Only few deep-learning methods make use of visibility information, typically from
multiple views with camera pose information. RayNet [90] aggregates features from
pixels of different views that intersect in the same voxel, but it outputs a dense point
cloud, not a watertight surface mesh. Neural radiance fields [84, 86, 87] somehow also
model the free space between a point and its sensor. However, they often require a slow
optimization process and leverage little or no shape priors. We argue that DGNN [109]
(Chapter 4), that classifies Delaunay cells with a graph neural network, currently is
the only general DSR method from point clouds with visibility. However, DGNN relies
on handcrafted visibility features, while in this chapter, we propose to augment the
input point clouds without crafting explicit priors. For point clouds for which visibility
information is not available, Vis2Mesh [106] shows that rendering virtual views can
significantly improve the reconstruction quality of a traditional method.

3.3 Method

We consider a 3D point cloud P where each point p∈P has some coordinates xp ∈R3

and knows the position cp ∈ R3 of a sensor observing it. Instead of only using the raw
point coordinates (xp)p∈P as the input (Ip)p∈P of a DSR network, we propose two simple
ways to augment point cloud P with visibility information, and adapt DSR methods
accordingly.

3.3.1 Sightline Vector (SV)

For each p ∈ P, we define a unit vector vp pointing from the observation xp to the
sensor cp:

vp = (cp−xp)/‖cp−xp‖. (3.1)

This contains useful information for surface orientation. We normalize the vector as the
distance to the sensor is not as relevant as the viewing angle.

56

real point

before-point

after-point

line-of-sight
vector
sensor
position

real surface

Figure 3.2: Visibility-augmented point cloud: Each observed point is associated to a
sightline unit vector pointing towards its sensor. Two new points before and after each point
are added. They help to disambiguate occupancy.

3.3.2 Auxiliary Points (AP)

To help the network predict empty and full space immediately in front of and behind
the observed surface, we consider two auxiliary points to each point p: a before-point
pb and an after-point pa, located along the sightline on each side of p:

xpb = xp + dvp, (3.2)

xpa = xp − dvp, (3.3)

where d is a characteristic distance in the point cloud P, e.g., the average distance
from a point to its nearest neighbor. By construction, pb is likely outside the scanned
object or scene (modulo sensing noise and outliers), and pa, likely inside (modulo object
thickness too).

3.3.3 Visibility-Augmented Point Cloud

We use sightline vectors and auxiliary points to add visibility information to an input
point cloud, separately or together.

(SV) To use sightline information only, we simply concatenate the sightline vector chan-
nelwise to the point coordinates to form the network input: Ip = (xp ⊕ vp) ∈ R6.

(AP) To use auxiliary points only, we add before-points pb and after-points pa to P,
with tags t ∈ R2 concatenated to point coordinates to identify the point type, i.e.,

57

Iq = (xq ⊕ tq) ∈ R5 with q ∈ {p, pb, pa}, where tp = [0 0] (observed point), tpb = [1 0]
(before-point), or tpa = [0 1] (after-point).

(SV+AP) When combining both kinds of visibility information, before-points pb and
after-points pa are given the same sightline vector as their reference point, i.e., vpb =
vpa = vp, and we take as input Ip = (xp ⊕ vp ⊕ tp) ∈ R8.

While holding a similar kind of information, no augmentation can be reduced to the
other one. SVs alone are not enough to place APs without knowing d, and APs alone,
as they are not associated to their observed point in P, cannot determine SVs (cf.
Figure 3.2). This is also confirmed empirically in Section 3.4.4.

3.3.4 Modifying an Existing Architecture

We can adapt most DSR networks to handle visibility-augmented point clouds with only
few modifications:

• We change the input size (number of channels) of the first layer of the network
(generally an encoder), increasing it by 2, 3 or 5, depending on the augmentation
respectively (AP, SV, SV+AP).

• We directly add auxiliary points to the point cloud, thus tripling the number of
input points. For methods based on neighboring point sampling, we add auxiliary
points after sampling for more efficiency.

The batch size may need to be adjusted to fit a larger point cloud in memory, but the
rest of the network stays unchanged. Its size is mostly unaltered (e.g., +0.005% for
ConvONet [92]).

3.4 Experiments

To assess our proposal, we first describe how we generate synthetic point clouds with
visibility information, and the real-world datasets we use. Then, we detail our simple
adaptation of six different DSR baseline networks to leverage our visibility information,
compare the quality of the reconstructed surfaces and analyze the generalization capa-
bility of the networks trained on point clouds with and without visibility information.

3.4.1 Datasets

We consider a variety of object and scene datasets, both synthetic and real, to show the
versatility of our approach. For generating point clouds from artificial shapes we use
our synthetic MVS scanning procedure described in Section 2.5.

58

ModelNet10. We use the official train/test splits of all 10 object classes of Mod-
elNet10 [118] and hold out 10% of the train set for validation. We make the models
watertight using ManifoldPlus [56]. We then scan the models from 10 different sensor
positions to produce 3, 000 points per object and add Gaussian noise with zero mean
and standard deviation 0.005 as in [92].

ShapeNet. We study the generalizability of models trained on ModelNet10 by testing
on 1000 shapes per class from the ShapeNet [32] test set of Choy et al. [38] (9 out of 13
classes are not represented in ModelNet10). We use the watertight models provided by
the authors of Occupancy Networks [79] and scan the models using the same scanning
procedure as for ModelNet10. We apply a transformation to the models (and scans)
to match their orientation to the orientation of the ModelNet10 objects (except for
networks marked with † in Table IV, which were trained with the original orientation).

Synthetic Room. We use the train/val/test splits of Synthetic Rooms and the pro-
vided watertight scenes [92]. For scanning, we only place sensors in the upper hemi-
spheres. We scan 10 000 points and add Gaussian noise with zero mean and standard
deviation 0.005 as in [92].

SceneNet. We test on a few synthetic scenes of SceneNet [51] using the given virtual
scans, voxel-decimated to 1 cm.

ScanNet. We test on a few real scenes of ScanNet [40] using the provided real RGB-D
scans, voxel-decimated to 2 cm.

Tanks and Temples. We use the real LiDAR point cloud of the Ignatius statue from
the Tanks and Temples dataset [68] downsampled to 10, 000 points.

Middlebury. We use an MVS point cloud of the TempleRing from Middlebury [100],
made with OpenMVS [30] and downsampled to 10, 000 points.

DTU. We use an MVS point cloud of scan1 from DTU [61], made with OpenMVS
[30] and downsampled to 10, 000 points.

3.4.2 Evaluation Metrics

We use the geometric evaluation metrics presented in Section 2.5.4: volumetric inter-
section over union (IoU), mean Chamfer distance ×100 (CD) and normal consistency
(NC).

59

3.4.3 DSR Baselines

ConvONet [92]. This method first extracts point features and projects them on
three 2D grids, or one 3D grid (variant). 2D or 3D grid convolutions then create
features capturing local occupancy. Last, the occupancy of a query-point is estimated
after interpolating grid features. We consider the 3× 642 2D-plane encoder and the 643

3D-volume variant. To adapt them, we change the input size of the point encoder’s first
layer.

Points2Surf [45]. This method predicts both the occupancy of a query point and its
unsigned distance to the surface. It uses both a local query-point neighborhood sampling
and a global point-cloud sampling. We use the best-performing variant (uniform global
sampling, no spatial transformer). To adapt it, we increase the input size of the first
layer of both the local and global encoders, and when a point is sampled, locally or
globally, we add its two auxiliary points on the fly.

Shape As Points [91]. For each input point, the method estimates its normal as well
as k point offsets that are used to correct and densify the point cloud. The resulting
point cloud of size k|P| is then fed to a differentiable Poisson solver [65]. To adapt the
method, we change the input size of the first layer of the encoder, and of the normal
and offset decoders as they also input the point cloud. We directly add auxiliary points
as input, whose normal and offsets will thus be computed too.

Local Implicit Grids (LIG) [62]. This method trains an auto-encoder from dense
point cloud patches. For inference, a given sparse patch with oriented normals is first
augmented, close to our idea, with 10 new points along each normal; then reconstruction
uses latent vectors minimizing a decoder-based training loss, and a post-processing
removes falsely-enclosed volumes. As training code is unavailable, we use the model
pretrained on ShapeNet (without noise). For oriented normals, we use Jets [29] oriented
with a minimum spanning tree [98], as in [121]. To exploit visibility, we replace normals
with sightline vectors; we do not add (more) auxiliary points.

POCO [21]. This method extracts point features using point cloud convolution [19],
then estimates the occupancy of a query point with a learning-based interpolation on
nearest neighbors. To adapt it, we increase the input size of the first layer and add
auxiliary points on the fly only in the first layer.

Delaunay-Graph Neural Network (DGNN) [109]. This method, introduced in
Chapter 4, uses a graph neural network to estimate the occupancy of Delaunay cells in
a point cloud tetrahedralization. A graph-cut-based optimization then reinforces global

60

Table 3.1: Ablation study: The vanilla model of ConvONet [92] trained and tested on
ModelNet10 with different ways to add visibility or normal information.

Model SV AP IoU ↑

ConvONet-2D (3× 642) [92] 0.853
+ sightline vectors (SV) only X 0.871
+ auxiliairy points (AP) only X 0.881
+ both SV and AP X X 0.889

+ sensor position cp 0.870
+ unnormalized SV cp − xp 0.870

+ estim. normals / estim. orientation Jets [29] / MST [98] 0.853
+ estim. normals / sensor orientation Jets [29] / sensor-base [98] 0.868
+ true normals GT normals 0.879

consistency. The method, which already uses visibility, outperforms other traditional
reconstruction methods that use visibility information. As it already exploits visibility,
we do not alter it, but use it as baseline for comparison.

Hyperparameters. For all methods, unless otherwise stated, training and evaluation
are unchanged; we keep the value of the hyperparameters used in the original papers.
When marching cubes [76] are needed for surface extraction, we use a grid resolution of
1283.

3.4.4 Ablation Study

To validate our design, we compare in Table 3.1 various ways to add visibility informa-
tion to the vanilla model of ConvONet.

Independently, SVs and APs significantly improve performance (+1.8 and +2.8 IoU
pts). A reason why APs are more profitable could be that the network is tailored for
points, not points with sightline features. While SVs and APs capture a similar kind of
information, they are, however, complementary: combining them is even more beneficial
(+3.5 IoU pts). Our general interpretation is that SVs help to decide whether a locally
“thin” point cloud is to be considered as a noisy scan of a single surface, or as a (less
noisy) scan on both sides of a thin surface. They thus have an impact on local shape
topology, which can bring a notable gain. Auxiliary points convey similar information,
but also contribute more directly to refine the surface position. Replacing SVs by the
sensor position or by the unnormalized point-sensor vector gives essentially the same
performance than our unit vector. This can be explained by the fact that our scanning
procedure does not introduce significant variation in terms of distance to the sensor.

61

Table 3.2: Object-Level Reconstruction: DSR methods trained and tested on Mod-
elNet10, with and without sightline vectors (SV) or auxiliary points (AP). † Trained on
ShapeNet.

Model SV AP IoU ↑ CD ↓ NC ↑

ConvONet-2D [92] 0.853 0.618 0.934
ConvONet-2D [92] X 0.871 0.557 0.936
ConvONet-2D [92] X X 0.889 0.508 0.944

ConvONet-3D [92] 0.885 0.493 0.949
ConvONet-3D [92] X 0.911 0.424 0.956
ConvONet-3D [92] X X 0.923 0.393 0.959

Points2Surf [45] 0.842 0.590 0.890
Points2Surf [45] X 0.859 0.544 0.896
Points2Surf [45] X X 0.856 0.548 0.897

Shape As Points [91] 0.903 0.438 0.948
Shape As Points [91] X 0.907 0.430 0.950
Shape As Points [91] X X 0.914 0.410 0.954

POCO [21] 0.907 0.422 0.945
POCO [21] X 0.915 0.408 0.950
POCO [21] X X 0.917 0.406 0.950

† LIG [62] – 0.974 0.849
† LIG [62] X – 0.880 0.882

DGNN [109] X 0.866 0.543 0.884

Yet, for real world acquistions, with a larger range of sensor distances, normalizing the
SV ensures more stability.

Adding SVs outperforms estimated normals [29] with estimated orientation [98], and
even estimated normals with sensor-based orientation. While using ground-truth nor-
mals is slightly more beneficial than SVs, combining SV+AP yields the best overall
performance, which highlights the richness of our visibility information.

We also experiment with adding more than two auxiliary points: (i) at distance 0.5d
or 2d, (ii) at the midpoint between sensor and point, or (iii) as grazing points, estimated
by densely sampling the sightlines with auxiliary points and keeping the ones close to
an input point. None of these strategies brought significant improvements over simply
adding two points at distance d on both sides of the observed point.

62

B
a
re

A
u
g
m
en

te
d

B
a
re

A
u
g
m
en

te
d

B
a
re

A
u
g
m
en

te
d

B
a
re

A
u
g
m
en

te
d

Input ConvONet-2D [92] Points2Surf [45] ShapeAsPoints [91] POCO [21] Ground Truth

Figure 3.3: Object-level reconstruction on ModelNet10 I: Reconstructed shapes from
the ModelNet10 test set using four different DSR methods trained on ModelNet10. Top
rows of each object use the bare point cloud as input, and bottom rows use the point cloud
augmented with visibility information.

63

B
a
re

A
u
g
m
en

te
d

B
a
re

A
u
g
m
en

te
d

B
a
re

A
u
g
m
en

te
d

B
a
re

A
u
g
m
en

te
d

Input ConvONet-2D [92] Points2Surf [45] ShapeAsPoints [91] POCO [21] Ground Truth

Figure 3.4: Object-level reconstruction on ModelNet10 II: Reconstructed shapes from
the ModelNet10 test set using four different DSR methods trained on ModelNet10. Top
rows of each object use the bare point cloud as input, and bottom rows use the point cloud
augmented with visibility information.

64

Table 3.3: Numerical results for scene-level reconstruction: ConvONet trained and
tested in sliding-window mode on Synthetic Rooms.

Model SV AP IoU ↑ CD ↓ NC ↑

ConvONet-3D [92] 0.805 0.598 0.906
ConvONet-3D [92] X X 0.832 0.569 0.911

3.4.5 Object-Level Reconstruction

Table 3.2 reports the performance on ModelNet10 of various models, with and without
sightline vectors or auxiliary points.

ConvONet, both planar and volumetric variants, gain about +3 IoU pts with visibility
information. The resulting surface is more accurate, especially in concave parts, as
illustrated in Figure 3.3 and Figure 3.4.

Points2Surf improves with sightline vectors, but auxiliary points do not improve fur-
ther: the sensor vectors are enough to resolve ambiguities for the occupancy estimation,
but distance estimation does not further benefit from auxiliary points.

Shape As Points benefits from sightline vectors, although not as much as other meth-
ods, probably because the model also estimates normals which provide a similar infor-
mation as visibility. Still, adding auxiliary points further gains +0.6 IoU pts, yielding
more complete and smoother surfaces.

POCO similarly benefits +1 IoU pts from sightline vectors but not much from the
further addition of auxiliary points. While sightline vectors help for surface orientation,
POCO is already accurate enough for APs to bring little refinement.

LIG produces poor results, likely because the only available model is trained on
ShapeNet, with uniform sampling, little or no noise, and because oriented normals are
only estimated. We cannot report IoU because LIG’s post-processing creates holes in
some objects. Yet, replacing the estimated normals by sightline vectors improves the
predicted surface.

DGNN, which already exploits visibility and outperforms ConvONet-2D and Points2-
Surf, is outdistanced on this dataset by methods that use our augmented point clouds.

3.4.6 Scene-Level Reconstruction

To study the impact of visibility information at scene level, we train and test ConvONet
on Synthetic Rooms, in sliding-window mode [92]. We report quantitative results in
Table 3.3 and qualitative results in Figure 3.5. The model gains almost +3 IoU pts with
visibility information, showing that benefits scale to scenes, not just to objects.

65

B
a
re

A
u
g
m
en

te
d

C
o
n
v
O
N
et

[9
2
]

C
o
n
v
O
N
et

[9
2
]
(+

S
V
+
A
P
)

G
ro
u
n
d
T
ru

th

Figure 3.5: Scene-Level Reconstruction on Synthetic Rooms: Reconstructed scenes
of the Synthetic Rooms dataset using ConvONet [92] in sliding-window mode, with and
without visibility information.

66

Table 3.4: Out-of-Domain Object-Level Reconstruction: DSR methods trained on
ModelNet10 and tested on ShapeNet, with and without sightline vectors (SV) or auxiliary
points (AP). † Trained on ShapeNet.

Model SV AP IoU ↑ CD ↓ NC ↑
† ConvONet-2D [92] 0.852 0.560 0.929

ConvONet-2D [92] 0.685 0.979 0.878
ConvONet-2D [92] X 0.667 1.042 0.833
ConvONet-2D [92] X X 0.780 0.847 0.883

ConvONet-3D [92] 0.628 0.972 0.885
ConvONet-3D [92] X 0.759 0.724 0.905
ConvONet-3D [92] X X 0.823 0.685 0.912

Points2Surf [45] 0.807 0.561 0.876
Points2Surf [45] X 0.836 0.516 0.886
Points2Surf [45] X X 0.833 0.522 0.887

† Shape As Points [91] 0.838 0.577 0.923

Shape As Points [91] 0.556 0.923 0.870
Shape As Points [91] X 0.749 0.843 0.881
Shape As Points [91] X X 0.809 0.641 0.915

POCO [21] 0.391 1.119 0.839
POCO [21] X 0.832 0.618 0.901
POCO [21] X X 0.815 0.635 0.887

DGNN [109] X 0.844 0.549 0.854

3.4.7 Generalization to New Domains

ShapeNet. To evaluate the impact of added visibility on the generalization capability
of DSR methods, we train on ModelNet10 and test on ShapeNet (Table 3.4).

We observe that ConvONet, Shape As Points and POCO trained with visibility in-
formation generalize much better on the new objects and classes, with a gain up to
+44 IoU pts. For comparison, we also show the scores of official models trained on
ShapeNet, although trained on uniformly sampled points rather than virtual scans,
which explains the drop of performance compared to the numbers in the papers [91, 92].
Points2Surf also improves by up to +3 IoU pts with added sightline vectors, but not
further with APs.

We show the results of object-level reconstruction on ShapeNet in Figure 3.6 and
Figure 3.7. All methods also visually benefit from added visibility information. In par-
ticular, ConvONet produces very accurate and complete surfaces of the unseen shape
classes. The reason for the largely improved volumetric IoU when using visibility infor-

67

B
a
re

A
u
g
m
en

te
d

B
a
re

A
u
g
m
en

te
d

B
a
re

A
u
g
m
en

te
d

Input ConvONet-3D [92] Points2Surf [45] ShapeAsPoints [91] POCO [21] Ground Truth

Figure 3.6: Out-of-domain object-level reconstruction on ShapeNet: Reconstructed
shapes from the ShapeNet test set using four different DSR methods trained on ModelNet10.
Top rows of each object use the bare point cloud as input, and bottom rows use the
point cloud augmented with visibility information. The last two rows show a cut of the
reconstructions that are shown on the two other rows immediately above.

68

B
a
re

A
u
g
m
en

te
d

B
a
re

A
u
g
m
en

te
d

Input ConvONet-3D [92] Points2Surf [45] ShapeAsPoints [91] POCO [21] Ground Truth

Figure 3.7: Cut of out-of-domain object-level reconstruction on ShapeNet: Recon-
structed shapes from the ShapeNet test set using four different DSR methods trained on
ModelNet10. Top rows of each object use the bare point cloud as input, and bottom rows
use the point cloud augmented with visibility information. The last two rows show a cut of
the reconstructions that are shown on the two other rows immediately above.

69

Table 3.5: Runtimes for object-level reconstruction with visibility information: Aver-
age times (in seconds) for reconstructing one object from a point cloud of 3 000 points with
and without sightline vectors (SV) or auxiliary points (AP). MC is marching cubes. Times
are averaged over the ModelNet10 test set.

Model SV AP Encoding Decoding MC Total

ConvONet-2D [92] 0.016 0.32 0.17 0.51
ConvONet-2D [92] X 0.016 0.34 0.17 0.54
ConvONet-2D [92] X X 0.016 0.33 0.17 0.52

Points2Surf [45] 69.06 11.51 80.57
Points2Surf [45] X 71.92 11.35 83.27
Points2Surf [45] X X 173.2 11.41 184.7

Shape As Points [91] 0.022 0.017 0.047 0.088
Shape As Points [91] X 0.023 0.017 0.046 0.086
Shape As Points [91] X X 0.024 0.041 0.047 0.114

POCO [21] 0.088 13.72 0.33 15.74
POCO [21] X 0.091 13.68 0.33 15.66
POCO [21] X X 0.093 13.70 0.33 15.67

mation is illustrated in Figure 3.7 and Figure 3.9. For out-of-domain reconstructions,
the baseline methods often predict hollow shapes, i.e., empty space enclosed inside an
object. This leads to backfaces behind the real surface and a poor volumetric IoU. On
the contrary, our models, trained on visibility-augmented point clouds, learn to distin-
guish between empty and full space more reliably and do not produce such artifacts.

Real-World Data. The increased generalization capability of the models is also
validated when reconstructing surfaces from real-world scans obtained with LiDAR or
MVS. In Figures 3.10 and 3.8, we show that networks using visibility information can
reconstruct more accurate and more complete surfaces. The results in Figure 3.10
and in the last row of Figure 3.8 represent open scenes, while all methods used for
reconstruction were only trained on the closed ModelNet10 objects. Methods using our
augmented point clouds with visibility information cope much better with this additional
domain shift.

3.4.8 Runtimes

On Table 3.5, we report detailed runtimes for the tested methods, with and without
visibility information.

Adding sightline vectors does not significantly increase the runtime for any of the
tested methods. The effect of auxiliary points depends on the method. For ConvONet,

70

B
a
re

A
u
g
m
en

te
d

B
a
re

A
u
g
m
en

te
d

B
a
re

A
u
g
m
en

te
d

Input ConvONet-3D [92] Points2Surf [45] ShapeAsPoints [91] POCO [21] HD Scan

Figure 3.8: Out-of-domain object-level reconstruction from real-world scans: Recon-
structed shapes from a LiDAR point cloud (top, Ignatius from Tanks And Temples [68]) and
MVS point clouds (middle, TempleRing from Middlebury [100], bottom scan1 from DTU
[61]) using four different DSR methods trained on ModelNet10. Top rows of each object
use the bare point cloud as input, and bottom rows use the point cloud augmented with
visibility information. HD Scan is a high-density point cloud.

71

ConvONet-3D [92] Points2Surf [45] ShapeAsPoints [91] POCO [21]

B
a
re

A
u
g
m
en

te
d

Figure 3.9: Cut of out-of-domain object reconstruction of Ignatius: A cut (along
the green curve) of the reconstructed surface of Ignatius. The reconstructions from the
bare point cloud (top row) include empty space enclosed inside the object with backfaces,
leading to a poor volumetric IoU. The reconstructions from the point cloud augmented with
visibility information (bottom row) include only one surface, close to the input points.

72

SceneNet ScanNet
In

p
u

t
B

ar
e

A
u

gm
en

te
d

Figure 3.10: Out-of-domain scene-Level reconstruction on SceneNet and ScanNet:
POCO [21] trained on ModelNet10, with and without visibility information, is run on scenes
from SceneNet (synthetic RGB-D scan) and ScanNet (real RGB-D scan).

most of the processing time is spent computing grid features. The encoding of 3d points
is performed by a small PointNet network [94], whose runtime is only a small fraction
of the total time. As a consequence, adding APs does not incur significant changes
in computation time (<+2%). In contrast, Points2Surf uses a large point encoding
network and is 2.2 times slower with APs. Shape As Points is 1.3 times slower due to
the fact that we decode 3 times as many points as the baseline method. POCO is also
essentially unaffected (<+2%) by the addition of auxiliary points as they only impact
the first (small) layer of the point-convolution backbone.

73

3.5 Limitations and perspectives

The position of auxiliary points depends on parameter d, which is the average distance,
across the whole scene, from a point to its nearest neighbor. To better handle point
density variations, it could be set locally rather than globally. Besides, as this posi-
tioning is also sensitive to sampling noise, d could also be directly adjusted after noise
estimation.

Our current approach only associates each point with a single sensor, while MVS
points typically have several. A more efficient and versatile approach than simply du-
plicating sightlines is still an open issue.

Last, we resort to virtual scans because current 3D reconstruction benchmarks do
not provide sensor positions. While we show that using our augmented point clouds
allows common architectures to successfully generalize from virtual to real scenes, our
training set may fail to replicate some challenging configurations encountered using
actual sensors.

3.6 Conclusion

The sensor poses are often ignored in point cloud processing, even though available
with most acquisition technologies. For acquisitions with stationary sensors, only 3C
4 byte floats and P 2 byte unsigned integers are necessary to store sensor poses. For
mobile acquisitions, where the sensor position varies for each point p, 3P floats are
necessary. Image-based pipelines usually already contain sensor poses within the image
orientation. We present two straightforward ways to exploit sensor positions in order to
augment point clouds with visibility information. Our experiments show that various
DSR methods can be adapted with minimal effort to exploit these visibility-augmented
point clouds, resulting in improved accuracy and completeness of reconstructed surfaces,
as well as a substantial increase in generalization capability.

74

“Bigger is always better!”

Adam Savage

4
Scalable Surface Reconstruction with

Delaunay-Graph Neural Networks

In this chapter, we introduce a novel learning-based, visibility-aware, surface recon-
struction method for large-scale, defect-laden point clouds. Our approach can cope
with the scale and variety of point cloud defects encountered in real-life Multi-View
Stereo (MVS) acquisitions. Our method relies on a 3D Delaunay tetrahedralisation
whose cells are classified as inside or outside the surface by a graph neural network and
an energy model solvable with a graph cut. We name this approach Delaunay-Graph
Neural Network (DGNN). Our model, making use of both local geometric attributes
and line-of-sight visibility information, is able to learn a visibility model from a small
amount of synthetic training data and generalizes to real-life acquisitions.

75

4.1 Introduction

One of the most successful approaches for surface reconstruction from large point clouds
in the wild is to (i) tessellate the convex hull of the point cloud using a 3DT, (ii) label the
resulting cells as inside or outside, and (iii) extract the surface as the interface between
cells with different labels [59, 71, 114]. This guarantees to produce non-self-intersecting
and watertight surfaces, a useful requirement for downstream engineering applications.
A remaining problem is that the methods typically rely on an energy formulation with
handcrafted unary and binary potentials. Tuning the balance between data fidelity and
regularity in these methods tends to be difficult due to the high variability in nature
and amplitude of the defects of real-life point clouds.

In the following chapter, we present a novel method for reconstructing watertight
surfaces from large point clouds based on a 3DT whose cells are associated with a graph-
adjacency structure, local geometric attributes, and visibility information derived from
camera positions (see Figure 4.2). We then train a GNN to associate each cell with a
probability of being inside or outside the reconstructed surface. In order to obtain a
spatially regular cell labelling, these probabilities are incorporated into a global energy
model that can be solved with a graph cut. This scheme directly predicts a spatially
regular labeling, which leads to a smoother surface. Furthermore, graph-cut solving
algorithms can easily scale to large point clouds, as opposed to other learning-based
surface reconstruction methods, which tend to be limited to objects, or operate with
sliding windows, as remarked by [92].

To the best of our knowledge, our method is the first deep learning-based mesh re-
construction algorithm able to take visibility information into account. This property
is valuable, especially in areas lacking sufficiently dense input points. It is also the
first deep learning surface reconstruction method using a memory-efficient GNN im-
plementation built on a 3DT. We argue that combining the scalability of traditional
computational geometry algorithms with the adaptability of modern deep learning ap-
proaches paves the way to learning-based large-scale 3D information processing. We
validate our approach by showing that, even when trained on a small synthetic dataset,
our method is able to generalize to large-scale, real-life, and complex 3D scenes and reach
state-of-the-art performance on an open-access MVS dataset [99] (see Figure 4.1).

4.2 Related work

4.2.1 Graph Cut-Based Surface Reconstruction

Surface reconstruction based on inside-outside labelling and volumetric segmentation is
traditionally formulated as a graph-cut optimization problem [25, 26, 59, 60, 114, 122].
The 3D space is discretized into the cells of a 3DT of captured points [71] or the cells of
an arrangement of detected planes [33]. A graph (T , E) is formed for which the vertices

76

(a) Image from courtyard (b) Input MVS point cloud (c) Our reconstruction

(d) Screened Poisson [65] (e) Vu et al. [114]

(f) Jancosek et al. [60] (g) Ours

Figure 4.1: Scene-level reconstruction on ETH3D: Reconstruction of the courtyard
scene of the ETH3D benchmark [99]. Top: a set of images, among which (a), is transformed
into a dense MVS point cloud pictured in (b), from which our method reconstructs a mesh,
displayed in (c) after texturation [115]. Bottom: untextured mesh reconstructions obtained
by SPSR in (d), the algorithms of Vu et al. [114] in (e) and Jancosek et al. [60] in (f),
and our proposed reconstruction in (g). Our method provides at the same time a higher
accuracy (e.g., wall pattern in the background, that is reconstructed more truthfully) and a
higher completeness (e.g., the back rest of the front chair).

77

are the cells T of the complex, and the edges in E connect cells with a common facet.
Each cell t ∈ T is to be assigned with an occupancy label lt in {0, 1}, where 0 means
outside and 1 means inside. For this, each cell t is attributed a unary potential Ut
expressing a likelihood of being inside or outside the scanned object. Additionally, each
facet interfacing two adjacent cells s and t is attributed a binary potential Bs,t, which
takes low values when the facet is likely to be part of a regular reconstructed surface
and higher values otherwise. The label assignment of cells is performed by minimizing
an energy in the following form:

E(l) =
∑
t∈T

Ut(lt) + λ
∑

(s,t)∈E

Bs,t(ls, lt) , (4.1)

where λ ≥ 0 is the regularization strength. This energy E is globally minimized by
computing a minimum cut in an appropriate flow graph or using a linear programming
approach [20].

The unary potentials commonly depend on visibility criteria, such as: (i) cells with
sensors are always outside, (ii) cells traversed by lines of sight (virtual lines between a
sensor and an observed point) are likely outside, or (iii) cells behind a point are likely
inside. These visibility models are not robust to the acquisition noise and outliers of
real-life point clouds, so the unary potentials can be adjusted to the local point density
[59, 60, 114, 122], or by using other modalities [25].

Binary potentials are used to force neighbouring cells crossed by the same line of
sight to have the same labeling. Additionally, they can incorporate low-area [25, 26] or
other shape-based priors [59, 71, 114]. Instead of hand-tuning the visibility model, we
propose to learn it by training a neural network to produce unary potentials from local
visibility and local geometric information.

4.2.2 Deep Learning-Based Surface Reconstruction

Recently, deep learning-based models have been proposed for reconstructing surfaces
from point clouds or other modalities, operating on a discrete mesh or with continuous
functions. We briefly discuss these approaches below, and refer the reader to the survey
in Section 2.4 for a more recent and complete discussion of related works.

Surface-based approaches rely on transforming a discretized 2D surface, such as 2D
patches or spheres [49, 74, 102, 119], meshes [42, 46, 52], charts [116], or learned prim-
itives [43], in order to best fit an input point cloud. While such methods can lead
to impressive visual results, they either cannot guarantee that the output mesh is wa-
tertight and intersection-free, or are limited to simple topologies and low resolution.
Additionally, they are typically memory intensive, which prevents them from scaling to
large scenes.

Volume-based approaches learn a continuous mapping from the input space R3 either
to R, defining the signed distance to the surface [4, 5, 31, 48, 89], or directly to an

78

(a) Delaunay trian-
gulation and ray cast-
ing.

(b) Local and con-
textual learning with
gnn.

(c) Global optimiza-
tion with graph cuts.

(d) Surface recon-
struction.

Figure 4.2: DGNN pipeline: (a) The input point cloud is triangulated, and visibility
information is derived from lines of sight and from camera positions . (b) A graph
neural network uses this local and contextual visibility information to predict an occupancy
score for each tetrahedron. (c) A global energy derived from the network’s output finds a
minimal cut in an adapted flow graph. (d) The reconstructed surface is defined as
the interface between cells with different (inside and outside) labels.

occupancy value {0, 1} [79, 82, 92]. The network training can be either unsupervised
[75], aided by geometric regularization [48], or supervised by ground-truth surface in-
formation [79, 82, 92]. Some continuous methods [79, 89, 92] predict the occupancy or
signed distance conditionally to a latent shape representation, and thus learn a dataset-
specific shape distribution. This can lead to difficulty in generalizing to shapes from
unseen classes. Even though volume-based approaches define a surface in continuous
space with implicit functions, they often rely on a discretization of 3D space to learn
these functions [79, 82, 92]. Recent works propose to scale these methods to larger
scenes using an octree structure [82] or a sliding window strategy [92].

While our method also relies on a discretization of space, our 3DT is directly com-
puted from the input point cloud and is thus adaptive to the local resolution. Our
method guarantees to produce watertight surfaces, can operate at large scale, and gen-
eralizes to unseen shapes and scenes.

4.3 Method

We explain here how to construct a 3DT augmented with expressive but lightweight
visibility features that are leveraged by a memory-efficient GNN and used in a global
energy formulation to extract the target surface.

79

t3t2

t1t0

t4

t5

pc

len(cp, t1)

len(cp, t0) cp→
cp

cp ∈ Lf
t0

cp ∈ Lv
t1

real
cp→ ∈ Rv

t2
cp→ ∈ Rf

t3
surface

Figure 4.3: DGNN visibility features: A line-of-sight cp between a camera c and a visible
3D point p also defines a ray cp→. The line-of-sight cp traverses the two outside tetrahedra
t0 and t1, while the ray cp→ traverses the two inside tetrahedra t2 and t3. Neither cp, nor
cp→ traverse t4 or t5; they thus do not contribute to their visibility information.

4.3.1 Visibility-Augmented 3D Tetrahedralization

We consider P ∈ R3×P a 3D point cloud defined by the absolute point positions in space,
where P is the number of points p in the cloud. Furthermore, we consider C ∈ R3×C

the absolute positions of a set of sensors used to capture these points, where C is the
number of sensors c. We first construct a 3DT tessellating the convex hull of P into
a finite set of tetrahedra T . Each tetrahedron t is characterized by its four vertices
Vt ∈ R3×4 and four facets Ft ∈ N3×4. At the boundary of the convex hull, each facet
is incident to an infinite cell whose fourth vertex is at infinity. This ensures that each
facet of the 3DT is incident to exactly two tetrahedra.

Let L ⊂ C ×P be the lines-of-sight from cameras c of C to points p of P seen from c. A
line-of-sight cp ∈ L is an oriented segment from c to p. These definitions are illustrated
in Figure 4.3. In the case of MVS point clouds, a single point can be seen from multiple
cameras. Similarly, we call cp→ ∈ R ⊂ C ×P the ray extending line-of-sight cp from
the seen point p to infinity. To simplify the computation of visibility information, we
truncate the ray traversal after the second tetrahedron. For instance, in Figure 4.3,
cp→ does not go beyond t3.

80

4.3.2 Feature Extraction

The occupancy, or insideness, of a tetrahedron w.r.t. the target surface can be inferred
by combining geometrical and visibility information. Indeed, a tetrahedron t traversed
by a line-of-sight cp is see-through, and most likely lies outside the surface. Conversely,
if a tetrahedron is traversed by a ray cp→ and no line-of-sight, it may lie inside the
surface, especially if close to p.

However, visibility-based information is not sufficient to retrieve a perfect labelling
of tetrahedra. First, there is no connection between the discretization of the space by
the 3DT and the distribution of lines-of-sight. There may be a significant number of
tetrahedra not traversed by any line-of-sight nor any ray, depending on the geometry
of the acquisition. Second, noise and outliers — stemming from MVS for example —
can result in inaccurate and unreliable visibility information. Thus, we propose to use a
GNN to propagate and smooth visibility-based information, as well as other contextual
information, to all tetrahedra in the 3DT of an object or a scene.

Tetrahedron features. While one could argue for directly learning features from
tetrahedra and camera positions in an end-to-end fashion, this resulted in our exper-
iments in a significant computational overhead and a very difficult geometric task for
a neural network to learn. Instead, we propose to derive computationally light, yet
expressive, handcrafted features encoding the local geometry and visibility information
of tetrahedra.

For a tetrahedron t ∈ T , we denote by Lvt the set of lines-of-sight that traverse t and
that end at one of its vertices v ∈ Vt, and by Lft the set of lines-of-sight that intersect t
through its facets and do not end at one of its vertices:

Lvt = {(c, p)∈L | (cp) ∩ t 6= ∅, p ∈ Vt} (4.2)

Lft = {(c, p)∈L | (cp) ∩ t 6= ∅, p /∈ Vt}. (4.3)

Likewise, we denote Rv
t and Rf

t the equivalent sets for rays in R.
These sets are informative for determining the occupancy of a tetrahedron. Indeed,

a tetrahedron t for which Rv
t is nonempty indicates that it is directly behind an element

of the surface, hinting at a higher probability of insideness. A nonempty Rf
t indicates

that t was hidden by a surface, hinting at a possible insideness. Indeed, since the hit
occurred before t, this carries less confidence as it could be due to an occlusion or a thin
structure.

Conversely, a tetrahedron t with nonempty Lft indicates that it is traversed by a
line-of-sight, indicating a high probability of outsideness. A nonempty Lvt also indicates
that t is traversed by a line-of-sight, but since the hit is on one of the corners of the
tetrahedron, this prediction is likely to be affected by acquisition noise, and hence has
a lower confidence.

81

To characterize the influence of lines-of-sights and rays with respect to a given tetra-
hedron t, we define two measures: count(t) and dist(t). count(t) ∈ N4 corresponds to
the number of each type of lines or rays intersecting with t:

count(t) =
[
|Lvt |, |Lft|, |Rv

t |, |Rf
t|
]
. (4.4)

Then, to measure the proximity between t and the impact point p of a traversing
line-of-sight cp, we define len(cp, t) as the distance between p and the exit point of cp
in t seen as from p. As represented in Figure 4.3, this corresponds to the length of the
longest segment between p and the portion of cp intersecting t:

len(cp, t) = max
y∈(cp)∩t

‖p− y‖ . (4.5)

When (cp) ∩ t is empty, len(cp, t) is set to zero. We define len(cp→, t) in the same
manner for rays. Finally, dist(t) characterizes the proximity of tetrahedron t with the
observed points p of its intersecting lines-of-sight and rays:

dist(t) =

[
min
cp∈Lvt

len(cp, t), min
cp∈Lft

len(cp, t),

min
cp→∈Rv

t

len(cp→, t), min
cp→∈Rv

t

len(cp→, t)
]
. (4.6)

We complement the 8 visibility features defined by count(t) and dist(t) with 4 mor-
phological features: the volume of t, the length of its shortest and longest edges, and
the radius of its circumsphere. This leads to a set of 12 handcrafted features ft for
each tetrahedron t ∈ T , that we normalize (zero mean and unit standard deviation)
independently.

It is important to note that none of the aforementioned features can be computed in
a meaningful way for infinite cells of the 3DT. We simply set all feature values to zero,
which can be interpreted as a padding strategy.

4.3.3 Contextual Learning

We learn contextual information with a GNN using the propagation scheme GraphSAGE
of Hamilton et al. [50] with a depth of K (see Figure 4.4). This scheme can be performed
independently for each tetrahedron, allowing us to perform inference on large graphs
with limited memory requirements.

We denote by G = (T , E) the undirected graph whose edges E ⊂ T 2 link cells that are
adjacent, i.e., share a facet. We consider one tetrahedron t in T , and compute hop(t,K)
its K-hop neighborhood in G, i.e., the set of nodes s of T which can be linked to t using

82

at most K edges.We leverage the local context of a tetrahedron t with a message-passing
scheme over its local neighborhood in G. We first initialize the features of all nodes s in
the subgraph hop(t,K) with the handcrafted features defined in Section 4.3.2: x0s = fs.
We then apply the following update rule in two nested loops over k = 0, . . . ,K − 1 and
for all s ∈ hop(t,K − 1):

xk+1
s = σ

(
norm

(
W (k)

[
xks

∣∣∣∣∣∣∣∣ mean
u∈N (s)

(
xku

)]))
, (4.7)

with N (s) the one-hop neighborhood of node s, σ an activation layer, norm a normal-
ization layer, and [· || ·] the concatenation operator. {W (k)}K−1k=0 is a set of K learned
matrices, each operating only at the k-th iteration. After K iterations, a multilayer
perceptron (MLP) maps the embedding xKt to a vector of dimension 2 representing the
inside/outside scores for tetrahedron t:

(it, ot) = MLP(xKt) . (4.8)

The main advantage of this simple scheme is that it can be performed node-wise from
the K-hop neighborhood of each node and run the update scheme locally. Memory
requirements only depend on K, i.e., subgraph extraction, and not on the size of the
full graph G. This allows us to scale inference to large graphs. Likewise, training can
be done by sampling subgraphs of depth at least K, and does not require to load large
graphs in memory.

4.3.4 Loss Function

For defect-laden point clouds affected by noise, the ground-truth surface is generally not
exactly aligned with the faces of the 3DT created from the input points. Consequently,
tetrahedra intersecting the true surface can be only partially inside or outside, and
cannot be attributed a pure 0 or 1 occupancy label. Instead, we define the ground-
truth insideness/outsideness ig ∈ [0, 1]|T | as the proportion of each cell’s volume lying
inside of a ground-truth closed object; ig can take any value between 0 and 1.

We convert the tetrahedra’s predicted inside/outside scores to an occupancy using
the sotfmax fonction:

ı̂t =
exp(it)

exp(it) + exp(ot)
(4.9)

We define the fidelity loss for each t as the Kullback-Leibler divergence of the true
occupancy igt and the softmaxed predicted occupancy ı̂t:

KLt (̂ıt) = igt log (̂ıt) + (1− igt) log (1− ı̂t) + q , (4.10)

83

i/o

12 128 128 2

Figure 4.4: Graph neural network scheme: Illustration of our GNN update for tetrahe-
dron . Information is pooled at different hops k (here K = 2) into an increasingly rich
descriptor. A linear layer based on the last cell embedding assigns an inside/outside score
to the central tetrahedron. Note that each prediction can be performed independently for
each tetrahedron by considering only the K-hop subgraph.

84

with q a quantity that does not depend on ı̂t, and can thus be ignored while training
the network. We define the total loss as the average of all tetrahedra’s fidelity weighted
by their volume Vt:

L (̂ı) =
1∑
t∈T Vt

∑
t∈T

Vt KLt (̂ıt) . (4.11)

4.3.5 Global Formulation

Defining the target surface directly from the inside/outside scores predicted by the
network can result in a jagged surface due to non-consistent labelling of neighboring
tetrahedra. To achieve a smooth label assignment, even in areas with heavy noise, we
use the inside/outside scores it, ot to define the unary potentials in the formulation of
Equation 4.1:

U(lt) = it [lt = 0] + ot [lt = 1] , (4.12)

with [x = y] the Iverson bracket, equal to 1 if x = y and 0 otherwise. We also add a
constant factor αvis to ot for tetrahedra containing a camera, indicating that they must
lie outside the surface.

We define the binary potentials introduced in Equation 4.1 with a surface quality
term that allows us to reconstruct a smooth surface and to efficiently remove isolated
or non-manifold components in the final surface mesh. We use the same surface quality
term

Bs,t(is, it) = 1(is 6= it)βs,t (4.13)

as Labatut et al. [71] for a facet interfacing the tetrahedra s and t. Considering the
intersection of the circumspheres of s and t with the facet, with angles φ and ψ, then
βs,t is defined as:

βs,t = 1−min{cos(φ), cos(ψ)} . (4.14)

The energy E(l) in Equation 4.1 with unary and binary potentials as defined above
can be minimized efficiently by constructing a flow graph and using a min-cut solver
[22].

4.3.6 Surface Extraction and Cleaning

We can define the target surface by considering the labeling of T obtained by minimizing
E(l). The reconstructed surface is composed of all triangles whose adjacent tetrahedra
have different labels. Triangles are oriented towards the outside tetrahedra. For open

85

scene reconstruction, we optionally apply a standard mesh cleaning procedure, imple-
mented in OpenMVS [30], by removing spurious and spike faces (whose edges are too
long). This is especially useful for outdoor scenes containing areas with very little input
data, such as far-away background or sky, and for which outliers can result in isolated
components with low-quality surfaces. In our experiments, all competing methods, at
least visually, benefit from this classic postprocessing for open scene reconstruction.

4.4 Experiments

In this section, we present the results of two sets of numerical experiments to show
the performance of our reconstruction method for both objects and large-scale scenes.
In both settings, our method is only trained on a small synthetic dataset, and yet
outperforms state-of-the-art learning and non learning-based methods, highlighting its
high generalization capability. A third experiment, where we trained DGNN on large
object shape databases was presented in Section 2.6.

4.4.1 Evaluation Setting

Training Set. We train our network on a small subset of 10 shapes for each of the 13
classes of the ShapeNet subset from [38]. We found this small number to be sufficient for
our network to learn diverse local shape configurations. We produce watertight meshes
of these models using the method of Huang et al. [55]. We then synthetically scan the
models with different degrees of outliers and noise and build corresponding 3DTs.

To obtain the ground-truth occupancy, we sample 100 points in each tetrahedron
and determine the percentage of these sampled points lying inside their corresponding
ground-truth models. In total, we train our network on around 10M tetrahedra.

Hyper-Parameters. We train our model by extracting batches of 128 subgraphs
of depth K = 4 centered around random tetrahedra of our training set. We param-
eterize our model with K = 4 linear layers of width 64, 128, 256 and 256 for each
hop respectively. After each linear layer, we apply batch normalization [58] and ReLU
non-linearities. The final cell embeddings are mapped to inside/outside scores using an
MLP 256→ 64→ 2. We train the network with the Adam optimizer [67] with an initial
learning rate of 10−4 which we decrease by a factor of 10 every 10 epochs. For the
graph-cut optimization, we set the camera bias term αvis to 100 and the regularization
strength to λ = 1.

We use the same hyper-parameters for all dataset variants, in particular for all set-
tings of the scanning procedure of Berger et al.’s benchmark [8]. While we could choose
parameters that better fit specific noise and outlier levels, we argue that a single real-life

86

scene can present multiple defect configurations simultaneously. Consequently, recon-
struction algorithms should be versatile enough to handle different noise and outlier
ratios with a single parameterization.

Competing Methods. We compare our model with other mesh reconstruction meth-
ods that have available (or re-implementable) code, and the ability to scale to large
scenes with several million points:

• ConvONet [92] is a deep model, like ours, but that does not take visibility into
account. We use the model (with multi-plane decoder) pretrained on the en-
tirety of ShapeNet for the object-level reconstruction. Among all the available
pretrained models, this one gave the best performance. We use the volume de-
coder model pretrained on the synthetic indoor scene dataset [92] for scene-level
reconstruction, where we set the voxel size to 4 cm.

• IGR [48] is a deep model which we optimize for 30, 000 iterations on each object
using the official implementation.

• SPSR [65] is a classic non-learning-based method which approximates the sur-
face as a level-set of an implicit function estimated from normal and point in-
formation. We chose an octree of depth 10 and Dirichlet boundary condition for
object-level reconstruction and 15 and Neumann boundary condition for scene-
level reconstruction. We also experimented with post-processing the Screened
Poisson reconstruction with the included surface trimming tool, but could not
find consistent trimming parameters that improve the mean values of Poisson
presented in Table 4.2 and Table 4.3.

• Labatut et al. [71] is a graph-cut-based method for range scans that makes use
of visibility information. We use our own implementation of the algorithm and
use the parametrization suggested by the authors (αvis = 32 and λ = 5) and with
σ set according to an estimation of the scan noise.

• Vu et al. [114] is an extension of Labatut et al. [71] to MVS data. We use its
OpenMVS [30] implementation with min-point-distance = 0.0, free-space-support
= 0 and default parameters for all other settings.

• Jancosek et al. [60] also exploits visibility in a graph-cut formulation, with
special attention to weakly-supported surfaces. We use the OpenMVS [30] im-
plementation with min-point-distance = 0.0, free-space-support = 1 and default
parameters for all other settings.

For scene reconstruction, we compare all methods without mesh cleaning and with
default clean (Section 4.3.6) options in OpenMVS.

87

https://github.com/autonomousvision/convolutional_occupancy_networks
https://github.com/amosgropp/igr

Evaluation Metrics. We use the evaluation metrics presented in Section 2.5.4 for
object-level reconstruction.

For scene-level reconstruction, we measure intrinsic mesh properties, such as the
number of components and the surface area. We also extrinsicly evaluate the mesh
reconstruction methods at a given precision τ . To this end, we uniformly sample random
points from the reconstructed meshes. We then evaluate (i) accuracy, (ii) completeness,
and (iii) F1-score of the reconstructions. Accuracy is defined as the fraction of sampled
points on the reconstructed mesh within distance τ to any point in the ground truth.
Completeness is defined as the fraction of ground-truth points for which there exists a
point sampled on the reconstructed mesh within a distance τ . The harmonic mean of
accuracy (precision) P (τ) and completeness (recall) R(τ) is the F1-Score F (τ) defined
as:

F (τ) =
2P (τ)R(τ)

P (τ) +R(τ)
. (4.15)

We use the ETH3D Evaluation Program [99] to compute these values from the ground-
truth LiDAR scans and samplings of the meshed surfaces. In the original benchmark, the
authors evaluate MVS reconstructions with threshold τ as low as 1 cm. Generating such
mesh samplings implies sampling over 300 million points for some scenes. To accelerate
this procedure, we only sample 900 points per m2 on the reconstructed meshes. This
allows us to compute accuracy and completeness with a threshold of 5 cm and up.
The protocol accounts for incomplete ground truth by segmenting the evaluation space
into occupied, free and unobserved regions and sampled (reconstruction) points in the
unobserved space are later ignored.

4.4.2 Design Choices and Ablation Study

In this section, we evaluate the effect of several of our design choices on the performance
of our algorithm.

Direct Prediction. We assessed the impact of the graph cut step by evaluating
the quality of the surface obtained using only the unary terms: tetrahedrons with an
insideness over 0.5 are predicted as inside, and the others outside. This leads to very
fragmented reconstructed surfaces (over 10 times more components), especially in the
background of the scenes. Given that our objective is to produce compact watertight
surfaces, we chose to use a regularization, here with a global energy minimization.

Learning Binary Weights. We designed an GNN able to predict binary weights
in the energy model along the unaries. However, this lead to more fragmented surfaces
and overall lower performance. The difficulties of learning the potentials of an energy

88

Table 4.1: Ablation Study. Mean IoU of different design choices of our method. We train
all models on a subset consisting of 1100 shapes of ModelNet10 and test on ModelNet10
and ShapeNet.

Model ModelNet10 ShapeNet

Vanilla model 86.1 84.1

Feature ablation

No geometric -1.4 -1.3
No visibility -4.5 -6.4
No vertex -0.2 -0.2
No facet -0.3 -0.4

Model ablation

No edge convolution -0.3 -0.5
No volume weighting +0.4 0.0
No graph-cut +0.1 -0.3

Receptive field

3-hop -0.3 -0.3
4-hop 0.0 0.0
5-hop +0.1 +0.1

model with a neural network are expected, as neural networks operate locally and in
continuous space, while graph cuts operate globally and in discrete space. In fact, we
can interpret our GNN prediction as the marginal posterior inside/outside probability
of each tetrahedron, while the graph cut provides an inside/outside labeling of maxi-
mum posterior likelihood (MAP) in a fitting Potts model [23]. These two tasks being
conceptually different, we were not able to successfully learn our surface reconstruction
in an end-to-end fashion and leave this endeavor for future work.

Using Facet Features With Edge Conditioned Convolutions. We tried re-
placing our GNN scheme with the Dynamic Edge Conditioned Convolution of Simonovsky
et al. [103] for its ability to leverage facet features derived from both ray and tetrahe-
drons. This resulted in a marginal increase in performance (under 1% decrease of the
Chamfer distance) at the cost of an increase in computational and memory requirements.
For the sake of simplicity and with scalability in mind we keep the simple GraphSAGE
scheme.

Relevance of Geometric Features. We tried training a model using only visi-
bility features and no tetrahedron-level geometric features. In doing this ablation, we
lose between 10% of F1-Score on ETH3D. This demonstrates that visibility informa-

89

tion should be combined with geometric information, which is not typically done in
traditional approaches.

4.4.3 Object-Level Reconstruction

Experimental Setting. To evaluate the adaptability of our method to a wide range
of acquisition settings, we use the surface reconstruction benchmark of Berger et al. [8].
It includes five different shapes with challenging characteristics such as a non-trivial
topology or details of various feature sizes. The provided benchmark software allows to
model a variety of range scanning settings to produce shape acquisitions with different
defect configurations. We apply to each shape different settings such as varying resolu-
tion, noise level, and outlier ratio, meant to reproduce the variety of defects encountered
in real-life scans. See Section 2.5 for details about the scanning procedure.

Results. The results are presented in Table 4.2 and illustrated Figures 4.5 to 4.9.
We observe that the competing learning-based methods have a hard time with this
dataset. ConvONet [92] does not generalize well from the simple models of ShapeNet
to the more challenging objects evaluated here. As for IGR [48], it works well in the
absence of noise and outliers but produces heavy artifacts on defect-laden point clouds.
In contrast, our method is able to generalize to the new unseen shapes and significantly
outperforms ConvONet and IGR. Our method also outperforms the state-of-the-art
and highly specialized algorithm of Labatut et al. [71], showing that the graph neural
network is able to learn a powerful visibility model with a higher accuracy than methods
based only on handcrafted features.

4.4.4 Large-Scale Scene Reconstruction

Experimental Setting. To evaluate the ability of our method to scale to entire
scenes, we experiment with the high-resolution MVS benchmark ETH3D [99]. This
benchmark is originally designed to evaluate MVS algorithms (point cloud reconstruc-
tion) under challenging real-life conditions. Ground-truth point clouds and camera poses
are openly available for a training set including 7 indoor and 6 outdoor scenes. The
ground truth consists of LiDAR scans post-processed to only contain reliable points.

While we cannot train our network on this dataset due to the lack of closed surfaces
in the ground truth, we can evaluate the quality of the output of our algorithm after
sampling points on the reconstructed surface. To this end, we generate dense point
clouds from downsampled images (3100 × 2050 pixels) of the 13 training scenes using
a patch-based MVS algorithm [6] implemented in OpenMVS [30]. The point clouds
and associated camera poses are used as inputs for all mesh reconstruction methods
evaluated in Section 4.4.1. Additionally, as input for the Screened Poisson and IGR

90

Figure 4.5: Qualitative results on Berger et al.’s anchor: We show the input point
clouds in column 1. ConvONet [92] (column 2) does not generalize well to the unseen new
shape. IGR [48] (column 3) works well at high resolution but fails in the other cases. The
Screened Poisson [65] algorithm (column 4) does not reconstruct the sharp features well,
but is robust against outliers, even close to the surface. The reconstructions of Labatut
et al. [71] (column 5) and ours (column 6) are visually similar for the easier high resolution
case. Our method performs slightly better on the low resolution, and noise cases.

91

Figure 4.6: Qualitative results on Berger et al.’s daratech: We show the input point
clouds in column 1. ConvONet [92] (column 2) does not generalize well to the unseen new
shape. As with other shapes, IGR [48] (column 3) works well at high resolution but generates
artefacts or fails in other settings. The Screened Poisson [65] algorithm (column 4) does not
reconstruct the sharp features well, but is robust against outliers, even close to the surface.
In the low resolution setting, our algorithm is incomplete where Labatut creates unwanted
surface parts.

92

Table 4.2: Numerical results for Berger et al. benchmark: Object-level reconstruction
with various point cloud settings: low resolution (LR), high resolution (HR), high resolution
with added noise (HRN), high resolution with added outliers (HRO), high resolution with
noise and outliers (HRNO). We measure the symmetric Chamfer distance to the ground truth
(per-point average for objects of size 75 as done in Berger et al.’s benchmark [8]), volumetric
IoU (%), number of components (ground-truth meshes all have only one component) and
number of non-manifold edges (none in the ground truth). All metrics are averaged over the
5 shapes of the benchmark dataset. We compare IGR [48] “optimized” for 30, 000 iterations
on each of the 5 variants (LR, HR, HRN, HRO, HRNO) of the 5 shapes, screened Poisson
reconstruction [65] with an octree of depth 10, Labatut et al. [71] with αvis = 32, λ = 5
and σ set according to an estimation of the scan noise, and ConvONet [92] and our method
trained on the ShapeNet subset from [38].

Chamfer distance (per-point ave. %) [↓] Volumetric IoU (%) [↑]
Method LR HR HRN HRO HRNO Mean LR HR HRN HRO HRNO Mean

ConvONet [92] 1.90 1.80 2.31 2.91 3.73 2.53 67.8 71.3 62.9 61.4 57.3 64.1
IGR [48] 1.03 0.44 0.80 11.87 11.50 5.13 80.4 93.0 84.2 27.5 27.8 62.6
Poisson [65] 1.09 0.48 0.80 0.46 0.86 0.74 79.1 91.9 84.3 91.9 83.3 86.1
Labatut et al. [71] 0.89 0.42 0.89 0.46 0.95 0.72 81.9 94.5 80.9 94.3 80.6 86.4
Ours 0.88 0.41 0.77 0.41 0.78 0.65 82.0 95.6 84.7 95.3 84.7 88.5

Number of components [↓] Number of non-manifold edges [↓]
Method LR HR HRN HRO HRNO Mean LR HR HRN HRO HRNO Mean

ConvONet [92] 3.2 2.0 6.0 12.8 14.0 7.6 0.0 0.0 0.0 0.0 0.0 0.0
IGR [48] 2.2 2.2 43.0 43.0 101.2 38.3 0.0 0.0 0.0 0.0 0.0 0.0
Poisson [65] 1.4 1.2 5.2 3.0 28.0 7.8 0.0 0.0 0.0 0.0 0.0 0.0
Labatut et al. [71] 1.0 1.0 2.6 1.2 4.0 2.0 0.8 0.6 18.4 0.4 14.4 6.9
Ours 1.2 1.0 1.0 1.0 1.2 1.1 0.0 2.0 0.2 1.2 0.0 0.7

93

Table 4.3: Numerical results for ETH3D reconstructions: We report the following
extrinsic and intrinsic metrics on the ETH3D dataset: F1-Score at 5 cm (F1), number of
connected components (CC), and surface area of the mesh in square meters ×10−2 (Area).
Numbers in parentheses are from the meshes before the cleaning step. Note that the F1-
Score is calculated from the mean values of accuracy and completeness over all scenes, in
contrast to Table 4.4 where it is the mean F1-Score over all scenes.

Method F1 CC Area
Poisson [65] 66.8 (67.2) 83 (23131) 82 (116)
Vu et al. [114] 70.6 (70.8) 17 (560) 17 (125)
Jan. et al. [60] 70.0 (67.7) 14 (667) 14 (78)
Ours 73.1 (72.1) 23 (253) 11 (24)

algorithm, we estimate surface normals using Jets [29] and consistently orient them
towards the sensor.

We also assess the scalability and generalization capability of ConvONet on real world
outdoor scenes. We use the volume decoder model pretrained on the synthetic indoor
scene dataset [92] operating on a sliding window. To avoid prohibitively expensive
computations caused by far away outliers, we manually crop most of the scenes to
limit the bounding volume. It is important to note that our method requires no such
preprocessing. However, even in this prepared setting, the resulting surfaces were of
significantly lower quality than all other methods. This can be explained by the fact
that, even if the ConvONet model was trained on collections of ShapeNet models, the
distribution of objects in this training set is very different from the real-life scenes of
ETH3D. Our model being purely local, does not suffer from this lack of generalizability
(see Figure 4.10 for a qualitative comparision of ConvONet and our method). A time
and memory comparison between ConvONet, Vu et al. and our method is given in
Table 4.5. As for IGR, the size of its network prevents us from reconstructing ETH3D
scenes. Consequently, in the following, we exclude ConvONet and IGR from evaluations
on ETH3D.

Results. In Figure 4.11, we present the accuracy-completeness curve for τ = 5, 10, 20 and 50 cm,
illustrating the varying trade-offs between completeness and accuracy for the different
methods. For instance, at τ = 50 cm, all methods have an F1-score of around 95%. In
comparison, our method provides a lower completeness but a higher accuracy; neverthe-
less, it results in a better overall F-score. The higher accuracy provided by our method
is illustrated in Figure 3.1 and Figure 4.12, where fine details that are hard to recon-
struct are better preserved. In Table 4.3, we report intrinsic mesh quality measures at
τ = 5 cm for different methods. We improve the F-score by 2.5 points, while producing
a surface up to 35% more compact.

In Table 4.4, we show the F1-Score at τ = 5 cm of all 13 scenes of the ETH3D dataset

94

Table 4.4: Numerical results for ETH3D reconstruction per scene: Per scene and
mean F1-Score of all scenes of the train dataset of ETH3D [99] for uncleaned and cleaned
mesh reconstructions at distance τ = 5 cm. The best (highest) values per scene are in
bold. We perform better than all competing methods on 8 scenes out of 13. On average,
our method performs between 2 and 5% better than the competing methods, and improve
the F1-score for 8 out of 13 scenes. The mesh cleaning only improves the F1-score of the
reconstruction of Jancosek et al. [60].

F1-score - uncleaned mesh F1-score - cleaned mesh

scene Poisson Vu et al. Jan. et al. Ours Poisson Vu et al. Jan. et al. Ours

kicker 0.75 0.79 0.75 0.76 0.75 0.81 0.78 0.78
pipes 0.77 0.79 0.77 0.76 0.77 0.78 0.77 0.75
delivery area 0.69 0.70 0.66 0.71 0.69 0.70 0.68 0.71
meadow 0.45 0.52 0.51 0.58 0.40 0.50 0.50 0.60
office 0.60 0.65 0.59 0.59 0.60 0.64 0.62 0.58
playground 0.61 0.70 0.63 0.70 0.60 0.69 0.66 0.73
terrains 0.73 0.78 0.76 0.75 0.74 0.78 0.77 0.76
terrace 0.79 0.76 0.74 0.83 0.79 0.79 0.78 0.85
relief 0.72 0.67 0.64 0.80 0.73 0.69 0.67 0.80
relief 2 0.70 0.68 0.67 0.79 0.71 0.70 0.70 0.78
electro 0.65 0.64 0.60 0.68 0.65 0.65 0.64 0.69
courtyard 0.76 0.75 0.72 0.77 0.75 0.75 0.74 0.77
facade 0.50 0.52 0.50 0.53 0.51 0.55 0.54 0.50

mean 0.67 0.69 0.66 0.71 0.67 0.69 0.68 0.71

95

for both uncleaned and cleaned mesh reconstructions. Our method produces the best
reconstruction scores for 9 out of 13 scenes. Mesh cleaning did not significantly alter
the scores as it resulted in less complete but more accurate reconstructions.

It is important to note that the ETH3D stereo benchmark is typically used to evaluate
the quality of point clouds produced by dense MVS methods. In contrast, the approaches
we evaluate concern the reconstruction of compact and watertight meshes. It is a much
harder task. Watertightness in particular, requires special attention regarding holes
and close parallel surfaces, while algorithms producing point clouds may ignore such
considerations. Consequently, the comparison of the methods we evaluate with other
entries of the ETH3D benchmark is not valid.

We would like to stress that, while our model is learning-based, its training set [32]
is very different from the one used to evaluate the performance [99]: we train our
method on few artificial, simple and closed objects, while we evaluate on complex real-
life scenes. Furthermore, our network does not optimize towards the main evaluation
metrics. Instead, we optimize towards a high volumetric IoU of outside and inside cells.
This implies that our model, while being simple, can learn a relevant visibility model
that is able to generalize to data of unseen nature.

4.4.5 Speed and memory.

In Table 4.5, we report the speed and GPU memory requirements of the different com-
peting methods for reconstructing the meadow scene from ETH3D. Our approach com-
pares favorably to ConvONet for all space-time trade-offs, on top of improved recon-
struction metrics. Note that this is mainly due to the adaptability of our method to
the highly varying point cloud density of the scene. Our method only has to process a
small number of large tetrahedron in empty space, while the sliding window approach of
ConvONet still has to perform time-consuming decoding in such regions (cf. Table 2.8).
While the added GNN inference step of our method results in a slower overall predic-
tion compared to Vu et al. [114], we argue that the added accuracy justifies the extra
processing time. Our method can process the entirety of the ETH benchmark in under
25 minutes.

Besides, thanks to our efficient modified GraphSAGE scheme, the unary potentials
can be computed purely locally; global prediction agreement is achieved by the graph
cut. We can control precisely the memory usage by choosing the number of tetrahedra
to process at a time, each one using around 10 MB of memory. This memory usage
can be further improved with a memory-sharing scheme between nodes, allowing us
to process up to 400, 000 tetrahedra simultaneously with 8 GB of VRAM, which is the
same amount of memory necessary for ConvONet to process a single sliding window.

96

Table 4.5: Runtimes and memory footprint: We report, for the reconstruction of the
meadow scene (ETH3D), the computation time for point/tetrahedron features (Feat), tetra-
hedralization (3DT), network inference (Inference), graph cut (GC), and marching cubes
(MC). Batch size is given in number of subgraphs / sliding windows. Our model alone fills
470 MB of VRAM, while ConvONet fills 540 MB.

Batch size Feat. 3DT Inference GC/MC Total

Vu et al. [114] - 13 s 4 s - - 14 s 31 s
Ours 400k 14 s 4 s 24 s 7.9 GB 16 s 58 s
Ours 1 14 s 4 s 75 s 0.5 GB 16 s 109 s
ConvONet [92] 1 5 s - 145 s 7.9 GB 14 s 164 s

4.5 Limitations and perspectives

While neural implicit fields can also be used in conjunction with image encoders, al-
lowing for a direct end-to-end image-to-surface reconstruction, our approach only works
with point clouds as input.

Besides, as common in Delaunay-based methods, our reconstructed surface is bound
to go through the triangles of the Delaunay tetrahedralization. This can limit precision
when the acquisition is noisy, and prevent us from reconstructing details below the sam-
pling resolution. Future work could address this issue by incorporating mesh refinement
strategies such as vertex displacement into the learning architecture.

As for learning-based methods in general, our approach requires the training and test
datasets to have comparable distributions. However, since the inference is purely local,
we do not need both datasets to contain similar objects. Yet the characteristics of the
acquisition must be similar in terms of accuracy and density.

We also do not fully exploit the potential of deep learning by providing the network
with handcrafted features in the first GNN layer. One way to replace the handcrafted
visibility features would be to directly introduce lines-of-sight as nodes in the graph,
and connect these nodes to the cells which are traversed by the lines-of-sight. The
handcrafted geometric features could be replaced by PointNet features, similar to the
approach of ConvONet [92].

Initial experiments also show that DGNN can be used without subsequent graph-
cut optimization by using a regularization loss at subgraph level. Depending on the
acquisition defects, we achieve results comparable to the ones with subsequent graph-
cut.

Our current architecture relies on local subgraphs with a small receptive field. While
this enables fast runtimes for training and inference, it limits the feature size our learning
algorithm can capture. Possible research directions involve using bigger receptive fields
and incorporating pooling and up-sampling operations into the graph neural network.
This could help the learning algorithm to better process information at different scales

97

and make the triangulation more adaptive to different features sizes.

4.6 Conclusion

We propose a scalable surface reconstruction algorithm based on graph neural networks
and graph-cut optimization. Our method, trained from a small artificial dataset, is able
to rival with state-of-the-art methods for large-scale reconstruction on real-life scans.
Thanks to the locality of the prediction of the unary potentials associated with tetra-
hedra, our method can perform inference on large clouds with millions of tetrahedra.
Our approach demonstrates that it is possible to integrate deep-learning with computa-
tional geometry techniques to successfully tackle the hard problem of watertight surface
reconstruction at large scale.

98

Figure 4.7: Qualitative results on Berger et al.’s dancing children: We show the input
point clouds with different levels of noise and outliers to emulate challenging MVS settings
in column 1. Note that in contrast to ConvONet [92], our method generalizes much better
to unseen objects, is highly resilient to outliers, and does not produce the floating artifacts
of the IGR [48] and Labatut [71] algorithms. The Screened Poisson reconstruction [65] is
visually similar to ours, but occasionally produces unwanted surface parts.

99

Figure 4.8: Qualitative results on Berger et al.’s gargoyle: We show the input point
clouds in column 1. ConvONet [92] (column 2) does not generalize well to the unseen
new shape. IGR [48] (column 3) generates many surface components from outliers. The
Screened Poisson [65] algorithm (column 4) does not reconstruct the sharp features well,
but is robust against outliers, even close to the surface. The reconstructions of Labatut
et al. [71] (column 5) and ours (column 6) are visually similar for the easier high resolution
case. While both methods are very robust against outliers, our method performs slightly
better on the low resolution, outlier and noise cases.

100

Figure 4.9: Qualitative results on Berger et al.’s lord quasimoto: We show the input
point clouds in column 1. ConvONet [92] (column 2) does not generalize well to the
unseen new shape. IGR [48] (column 3) is not able to filter outliers in the scan. The
Screened Poisson [65] algorithm (column 4) does not reconstruct the sharp features well.
The reconstructions of Labatut et al. [71] (column 5) and ours (column 6) are visually similar
for the defect-free cases. Both methods produce small artifacts in the high resolution case:
between the book and nose for Labatut et al. [71] and between the book and left foot for
ours. Both methods are very robust against outliers.

101

(a) Dense MVS input. (b) Ours. (c) ConvONet [92].

Figure 4.10: Comparison of DGNN and ConvONet on ETH3D reconstruction: Re-
construction of the pipes scene of the ETH3D benchmark [99]. We show the dense MVS
point cloud in (a), the mesh reconstructions obtained by ConvONet [92] in (c) and our
proposed reconstruction in (b). Similar to object-level reconstruction, ConvONet does not
generalize well to the unseen new shapes in this scene. Our learning algorithm, operating
purely locally, is able to reconstruct the pipes and fill all holes in the point cloud acquistion.

102

65 70 80 90 100
55

60

70

80

90

100

5cm

50cm

Completeness

A
cc
u
ra
cy

Ours

Vu et al.

Jancosek et al.

Poisson

cleaned surface

Figure 4.11: Numerical results on ETH3D: Each point corresponds to the accuracy and
completeness at a given error threshold, respectively at 5, 10, 20 and 50 cm. Dashed lines
represent the performance of meshes cleaned by post-processing. Our method produces
meshes with a higher accuracy but a lower completeness.

103

(a) Dense MVS input. (b) Our textured mesh.

(c) Details Image. (d) Jancosek et al. [60]. (e) Ours.

Figure 4.12: Comparison of DGNN and Jancosek et al. on ETH3D reconstruction:
Our mesh reconstruction method takes as input a dense MVS point cloud (a) and produces a
mesh (b), simultaneously preserving fine details and completing missing parts (here textured
with [115]). We represent: in (c), a cropped image of a detail from the terrace scene of
the ETH3D benchmark [99]; in (d), the reconstruction by Jancosek and et al. [60]; and in
(e), our reconstruction. Notice the missing staircase and spurious vertical pattern on the
concrete wall in (d). In contrast, our method (e) reconstructs part of the staircase as well
as the fine-grained wall textures.

104

Figure 4.13: Failure case on ETH3D: Reconstruction of the delivery area scene of the
ETH3D benchmark [99]. We show the ground truth that is used for evaluation in (a). A
set of images, such as the one represented in (b), is transformed into a dense MVS point
cloud (c), from which a mesh can be reconstructed and textured [115], as shown in (d) with
our proposed mesh reconstruction. We show the untextured mesh reconstructions obtained
by the screened Poisson algorithm in (e,i), the algorithms of Vu et al. [114] in (f,j) and of
Jancosek et al. [60] in (g,k), and finally our proposed reconstruction in (h,l). Our method
does not close the wall on the right, but performs slightly better on reconstructing the no-
parking sign. Yet, considering the whole scene, the holes we create do not cover a larger
area than other methods.

105

Figure 4.14: Indoor ETH3D reconstruction: Reconstruction of the kicker scene of the
ETH3D benchmark [99]. We show the ground truth that is used for evaluation in (a). A
set of images, such as the one represented in (b), is transformed into a dense MVS point
cloud (c), from which a mesh can be reconstructed and textured [115], as shown in (d) with
our proposed mesh reconstruction. We show the untextured mesh reconstructions obtained
by the screened Poisson algorithm in (e,i), the algorithms of Vu et al. [114] in (f,j) and of
Jancosek et al. [60] in (g,k), and finally our proposed reconstruction in (h,l). All methods
struggle to reconstruct the table and the chairs, that have little data support.

106

Figure 4.15: Outdoor ETH3D reconstruction: Reconstruction of the meadow scene of
the ETH3D benchmark [99]. We show the ground truth that is used for evaluation in (a).
A set of images, such as the one represented in (b), is transformed into a dense MVS point
cloud (c), from which a mesh can be reconstructed and textured [115], as shown in (d) with
our proposed mesh reconstruction. We show the untextured mesh reconstructions obtained
by the screened Poisson algorithm in (e,i), the algorithms of Vu et al. [114] in (f,j) and
of Jancosek et al. [60] in (g,k), and finally our proposed reconstruction in (h,l). Trees and
outliers in the sky lead to a large number of isolated components in all mesh reconstructions.
Most of these small components can be removed with the heurestic mesh cleaning step that
we apply as post-processing.

107

“There is no real ending. It’s just the place where
you stop the story.”

Frank Herbert

5
Conclusion

In this last chapter, we summarise the main findings of this thesis and give an outlook
on future work.

108

5.1 Summary and conclusion

Learning-based surface reconstruction. In this thesis, we revisited the prob-
lem of surface reconstruction from point clouds with modern learning-based techniques.
We focused on watertight surface reconstruction from defect-laden point clouds. We
showed that learning-based methods are well suited for learning point cloud character-
istics and defects from a training set of point clouds and corresponding true surfaces.
This allows for reconstructing more accurate surfaces compared to traditional meth-
ods, provided that the input point clouds exhibit similar defects in train and test sets.
However, we also showed that most learning based methods do not generalize to point
clouds with unseen defect types. We thus advocate the use of learning-based surface re-
construction when the nature and characteristics of the defects are consistent between
train and test set. Methods that mostly rely on local information do not need both
datasets to contain similar objects, but the training dataset has to be sufficiently large
and include diverse shapes. We further advice the use of DGNN, when the training set
is small, and when short runtimes during training and inference are important. If no
adequate training data is available, traditional methods are still a good choice, as they
are robust to different densities and acquisition defects.

Visibility information. We introduced an easy to implement, yet powerful method
to incorporate visibility information into deep surface reconstruction networks. This
method consistently improves the accuracy of reconstructed surfaces and the capabil-
ity of DSR networks to generalize to unseen domains. Visibility information helps to
correctly orient the reconstructed surface and provides valuable information for space
occupancy. Most sensors for point cloud acquisition can provide visibility information
in the form of sensor poses. Sensor poses can be stored with little memory cost. We
believe that the benefits of visibility information are worth this additional cost and
visibility information should further be used for deep surface reconstruction.

Combining local learning with global optimization. We also showed that the
combination of locally learned occupancy priors in combination with a global optimiza-
tion can outperform traditional methods for the task of large-scale surface reconstruction
from point clouds in the wild. The locality of our learning algorithm has several bene-
fits. First, we require only a small amount of training data, which is a useful property
for methods that require expensive 3D supervision. This is due to the fact that local
shape patterns can be shared across different shape classes. Second, local learning al-
lows to better control the memory requirements of the learning algorithm, as it removes
the need to embed a global representation of the surface. Global optimization, imple-
mented in our DGNN architecture with a graph-cut, helps to filter artifacts resulting
from heavy noise and outliers.

109

3D Delaunay tetrahedralisation. We also showed that a 3DT can be used in
combination with graph convolutions. The 3DT provides a data structure which is easy
to construct and well suited for discretising the domain of non-uniform point clouds.
The 3DT makes DGNN adaptive to the density of the input point clouds. This allows for
training on point clouds with different densities, and for using all input points during
inference. At the same time, the 3DT removes the need for expensive neighborhood
searches by using the inherent graph structure to define local neighborhoods.

Point clouds in the wild. As our reconstruction of complex real-world scenes
show, surfaces reconstructed from point clouds in the wild still exhibit a variety of
defects. One key issue which we consider unresolved is the size of the receptive field of
the learning algorithm. Point clouds in the wild include defects and shapes in a large
variety of scales. This requires providing shape priors in a variety of scales, e.g. for
closing holes in large regions of missing data, while reconstructing fine details in noisy
regions at the same time. More complex approaches with graphs of several scales or
graph convolution schemes with pooling and up-sampling operations may be an answer
to this multi-scale issue.

5.2 Outlook and future work

Training on real data. Most surface reconstruction networks can be trained on real
data with the intent to learn acquisition- or sensor-specific point cloud priors. However,
the availability of real-world point clouds with corresponding true surfaces is sparse. We
have experimented with training on real data and ground truth surfaces reconstructed
from high quality acquisitions, but could so far not achieve good results. This area needs
further investigation. Possible research directions involve learning without a ground
truth surface, or simulating or measuring data for sufficiently large training sets for
certain types of acquisitions and sensors.

Surface generalization. Surface reconstruction networks could also be trained
with simplified ground truth surfaces, such as polygon meshes with large planar facets
[7]. Most deep surface reconstruction networks, including DGNN, could be trained with
such surfaces without any modification. Large datasets of point clouds and simplified
models are for example available through city wide LiDAR or MVS aquisitions and hand-
engineered 3D city models. This could allow for directly learning simplified models from
point clouds end-to-end. A similar approach has already been implemented by using
neural implicit fields to segment precomputed polyhedral volumes [34].

Visibility information. Given the high impact of visibility information in our ex-
periments, we also suggest to explore the potential outside of surface reconstruction, for

110

other task involving point clouds such as semantic segmentation. Recent developments
around NeRFs and differentiable volumetric rendering also heavily rely on visibility in-
formation. They use a similar strategy to ours for incorporating visibility information
with sampled points along an extended ray [87]. However, their optimization process
is currently slow due to dense evaluation of the neural implicit field along the ray [91].
Future work could involve incorporating 3D priors with such methods or combining
them with LiDAR point clouds in a joint optimization.

Joint reconstruction and semantisation. Incorporating semantic information
directly in the reconstruction process could be beneficial. A semantic aware reconstruc-
tion algorithm could (i) identify regions with known object categories, (ii) use strong
shape priors in such regions, and (iii) rely on geometric priors in semantically unknown
regions.

Surface requirement for real-world applications. Future investigations should
also focus on assessing the impact of geometric and topological surface errors on certain
types of analysis and applications. This has e.g. be done for 3D city models [12]. In
this way, surface reconstruction algorithms could focus on the most important surface
properties for a given task at hand, such as sharp feature recovery or outlier removal.

Furthermore, the quality of the triangulation itself may also be important. For ex-
ample, applying finite element methods directly to a mesh output, requires a mesh with
well-constructed triangles without small angles. While DGNN already provides a good
triangulation by relying on a 3DT, one could directly optimize for a mesh output with
such qualities.

Deep surface analysis. Recent research also suggests to use end-to-end learning
for directly performing surface analysis, such as fluid dynamics from scanned point
clouds. This approach removes the need to explicitly compute a continuous surface as
an intermediate representation. While an interesting field of research, it can lead to
more computation. Each new analysis requires a new optimization from a raw point
cloud instead of a richer information surface. Additionally, such methods do not allow
surface visualisation.

Delaunay triangulations and graph neural networks. We advice to do fur-
ther research on the combination of graph neural networks and Delaunay triangulations.
Graph neural networks are a powerful class of learning algorithms. Delaunay triangula-
tions contain rich adjacency information while being fast to compute. They are adaptive
to the data at hand and applicable to a variety of geometric problems. The combination
of GNNs and Delaunay triangualtions could be useful for a variety of different appli-

111

cations in geometry processing such as mesh refinement or simplification, or even for
tasks such as semantic segmentation.

112

Bibliography

[1] Alliez, P. (2017). Surface Reconstruction. Symposium on Geometry Process-
ing 2017 Graduate School Lecture. http://school.geometryprocessing.org/

summerschool-2017/slides/Alliez_SurfaceReconstruction_SGP.pdf. 1, 6

[2] Amenta, N., Bern, M., & Eppstein, D. (1998). The crust and the β-skeleton: Com-
binatorial curve reconstruction. Graphical models and image processing, 60(2),
125–135. 6, 25

[3] Attali, D., Boissonnat, J.-D., & Lieutier, A. (2003). Complexity of the delau-
nay triangulation of points on surfaces the smooth case. In Proceedings of the
nineteenth annual symposium on Computational Geometry (pp. 201–210). 25

[4] Atzmon, M. & Lipman, Y. (2020). SAL: Sign agnostic learning of shapes from
raw data. In Conference on Computer Vision and Pattern Recognition (CVPR).
56, 78

[5] Atzmon, M. & Lipman, Y. (2021). SALD: sign agnostic learning with derivatives.
In International Conference on Learning Representations (ICLR). 56, 78

[6] Barnes, C., Shechtman, E., Finkelstein, A., & Goldman, D. B. (2009). Patch-
Match: A randomized correspondence algorithm for structural image editing.
ACM Transactions on Graphics. 90

[7] Bauchet, J.-P. & Lafarge, F. (2020). Kinetic shape reconstruction. ACM Trans-
actions on Graphics (TOG), 39(5), 1–14. 110

[8] Berger, M., Levine, J. A., Nonato, L. G., Taubin, G., & Silva, C. T. (2013). A
benchmark for surface reconstruction. ACM Transaction on Graphics. 16, 30, 32,
86, 90, 93

[9] Berger, M., Tagliasacchi, A., Seversky, L., Alliez, P., Guennebaud, G., Levine,
J., Sharf, A., & Silva, C. (2016). A survey of surface reconstruction from point
clouds. Computer Graphics Forum. 5, 6, 16

113

http://school.geometryprocessing.org/summerschool-2017/slides/Alliez_SurfaceReconstruction_SGP.pdf
http://school.geometryprocessing.org/summerschool-2017/slides/Alliez_SurfaceReconstruction_SGP.pdf

[10] Bernardini, F. & Bajaj, C. L. (1997). Sampling and reconstructing manifolds
using alpha-shapes. Proc. 9th Canad. Conf. Comput. Geom. 25

[11] Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., & Taubin, G. (1999).
The ball-pivoting algorithm for surface reconstruction. IEEE transactions on
visualization and computer graphics, 5(4), 349–359. 21, 22

[12] Biljecki, F., Heuvelink, G., Ledoux, H., & Stoter, J. (2018). The effect of acquisi-
tion error and level of detail on the accuracy of spatial analyses. Cartography and
Geographic Information Science, 45(2), 156–176. 111

[13] Biljecki, F., Ledoux, H., Du, X., Stoter, J., Soon, K. H., & Khoo, V. (2016). The
most common geometric and semantic errors in citygml datasets. ISPRS Annals
of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4. 5

[14] Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A. (2015). Appli-
cations of 3d city models: State of the art review. ISPRS International Journal
of Geo-Information, 4(4), 2842–2889. 1

[15] Boissonnat, J.-D. (1984). Geometric structures for 3d shape representation. ACM
Transactions on Graphics, 3(4). 6, 23, 25

[16] Boissonnat, J.-D. & Oudot, S. (2005). Provably good sampling and meshing of
surfaces. Graphical Models, 67(5), 405–451. 21

[17] Bolle, R. M. & Vemuri, B. C. (1991). On three-dimensional surface reconstruction
methods. IEEE Transactions on Pattern Analysis & Machine Intelligence, 13(01),
1–13. 16

[18] Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., & Lévy, B. (2010). Polygon mesh
processing. CRC press. 11, 16, 17

[19] Boulch, A. (2020). Convpoint: Continuous convolutions for point cloud process-
ing. Computers & Graphics. 39, 60

[20] Boulch, A., de La Gorce, M., & Marlet, R. (2014). Piecewise-planar 3D recon-
struction with edge and corner regularization. Computer Graphic Forum. 78

[21] Boulch, A. & Marlet, R. (2022). Poco: Point convolution for surface reconstruc-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (pp. 6302–6314). 16, 22, 39, 42, 43, 47, 50, 51, 56, 60, 62, 63, 64,
67, 68, 69, 70, 71, 72, 73

[22] Boykov, Y. & Kolmogorov, V. (2004). An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. PAMI. 85

114

[23] Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimiza-
tion via graph cuts. PAMI. 89

[24] Breitenmoser, A. & Siegwart, R. (2012). Surface reconstruction and path plan-
ning for industrial inspection with a climbing robot. In 2012 2nd International
Conference on Applied Robotics for the Power Industry (CARPI) (pp. 22–27).:
IEEE. 1

[25] Bódis-Szomorú, A., Riemenschneider, H., & Van Gool, L. (2016). Efficient volu-
metric fusion of airborne and street-side data for urban reconstruction. In Inter-
national Conference on Pattern Recognition (ICPR). 7, 54, 76, 78

[26] Caraffa, L., Brédif, M., & Vallet, B. (2017). 3D watertight mesh generation with
uncertainties from ubiquitous data. In Asian Conference on Computer Vision
(ACCV). 25, 54, 76, 78

[27] Caraffa, L., Marchand, Y., Brédif, M., & Vallet, B. (2021). Efficiently distributed
watertight surface reconstruction. In 3DV. 54

[28] Cazals, F. & Giesen, J. (2006). Delaunay triangulation based surface reconstruc-
tion. In Effective computational geometry for curves and surfaces (pp. 231–276).
Springer. 6, 16, 20, 21, 23, 25

[29] Cazals, F. & Pouget, M. (2005). Estimating differential quantities using polyno-
mial fitting of osculating jets. Computer Aided Geometric Design. 37, 38, 60, 61,
62, 94

[30] Cernea, D. (2020). OpenMVS: Multi-view stereo reconstruction library. 59, 86,
87, 90

[31] Chabra, R., Lenssen, J. E., Ilg, E., Schmidt, T., Straub, J., Lovegrove, S., &
Newcombe, R. (2020). Deep local shapes: Learning local SDF priors for detailed
3D reconstruction. In European Conference on Computer Vision (ECCV). 16, 27,
54, 78

[32] Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., & Yu, F. (2015).
ShapeNet: An Information-Rich 3D Model Repository. Technical report, Stanford
University, Princeton University, Toyota Technological Institute at Chicago. 27,
59, 96

[33] Chauve, A.-L., Labatut, P., & Pons, J.-P. (2010). Robust piecewise-planar 3D
reconstruction and completion from large-scale unstructured point data. In Con-
ference on Computer Vision and Pattern Recognition (CVPR). 76

115

[34] Chen, Z., Khademi, S., Ledoux, H., & Nan, L. (2021). Reconstructing com-
pact building models from point clouds using deep implicit fields. arXiv preprint
arXiv:2112.13142. 110

[35] Chen, Z. & Zhang, H. (2019). Learning implicit fields for generative shape mod-
eling. In Conference on Computer Vision and Pattern Recognition (CVPR). 22,
26, 27, 54

[36] Chibane, J., Alldieck, T., & Pons-Moll, G. (2020a). Implicit functions in feature
space for 3D shape reconstruction and completion. In Conference on Computer
Vision and Pattern Recognition (CVPR). 56

[37] Chibane, J., Mir, A., & Pons-Moll, G. (2020b). Neural unsigned distance fields
for implicit function learning. In Conference on Neural Information Processing
Systems (NeurIPS). 56

[38] Choy, C. B., Xu, D., Gwak, J., Chen, K., & Savarese, S. (2016). 3D-R2N2: A
unified approach for single and multi-view 3D object reconstruction. In European
Conference on Computer Vision (ECCV). 34, 59, 86, 93

[39] Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016).
3d u-net: learning dense volumetric segmentation from sparse annotation. In
International conference on medical image computing and computer-assisted in-
tervention (pp. 424–432).: Springer. 27

[40] Dai, A., Chang, A., Savva, M., Halber, M., Funkhouser, T., & Nießner, M. (2017).
ScanNet: Richly-annotated 3D reconstructions of indoor scenes. In Conference
on Computer Vision and Pattern Recognition (CVPR). 59

[41] Dai, A., Diller, C., & Nießner, M. (2020). SG-NN: Sparse generative neural
networks for self-supervised scene completion of RGB-D scans. In Conference on
Computer Vision and Pattern Recognition (CVPR). 54, 56

[42] Dai, A. & Nießner, M. (2019). Scan2Mesh: From unstructured range scans to 3D
meshes. In Conference on Computer Vision and Pattern Recognition (CVPR). 78

[43] Deprelle, T., Groueix, T., Fisher, M., Kim, V., Russell, B., & Aubry, M. (2019).
Learning elementary structures for 3D shape generation and matching. In Con-
ference on Neural Information Processing Systems (NeurIPS). 78

[44] Digne, J. (2014). An analysis and implementation of a parallel ball pivoting
algorithm. Image Processing On Line, 4, 149–168. 21

[45] Erler, P., Ohrhallinger, S., Mitra, N., & Wimmer, M. (2020). Points2Surf: Learn-
ing implicit surfaces from point clouds. In European Conference on Computer
Vision (ECCV). 16, 22, 50, 56, 60, 62, 63, 64, 67, 68, 69, 70, 71, 72

116

[46] Gkioxari, G., Johnson, J., & Malik, J. (2019). Mesh R-CNN. In Conference on
Computer Vision and Pattern Recognition (CVPR). 78

[47] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org. 11

[48] Gropp, A., Yariv, L., Haim, N., Atzmon, M., & Lipman, Y. (2020). Implicit geo-
metric regularization for learning shapes. In International Conference on Machine
Learning (ICML). 22, 28, 29, 37, 45, 47, 51, 54, 78, 79, 87, 90, 91, 92, 93, 99, 100,
101

[49] Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., & Aubry, M. (2018). AtlasNet:
A papier-mâché approach to learning 3D surface generation. In Conference on
Computer Vision and Pattern Recognition (CVPR). 9, 22, 24, 78

[50] Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive representation learn-
ing on large graphs. In Conference on Neural Information Processing Systems
(NeurIPS). 82

[51] Handa, A., Patraucean, V., Stent, S., & Cipolla, R. (2016). SceneNet: An anno-
tated model generator for indoor scene understanding. In International Conference
on Robotics and Automation (ICRA). 59

[52] Hanocka, R., Metzer, G., Giryes, R., & Cohen-Or, D. (2020). Point2Mesh: A
self-prior for deformable meshes. ACM Transaction on Graphics. 22, 24, 38, 45,
47, 51, 54, 56, 78

[53] Hiep, V. H., Keriven, R., Labatut, P., & Pons, J.-P. (2009). Towards high-
resolution large-scale multi-view stereo. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition (pp. 1430–1437).: IEEE. 25

[54] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1992).
Surface reconstruction from unorganized points. In Proceedings of the 19th annual
conference on computer graphics and interactive techniques (pp. 71–78). 17, 25

[55] Huang, J., Su, H., & Guibas, L. (2018). Robust watertight manifold surface
generation method for ShapeNet models. arXiv preprint arXiv:1802.01698. 86

[56] Huang, J., Zhou, Y., & Guibas, L. (2020). Manifoldplus: A robust and scalable
watertight manifold surface generation method for triangle soups. arXiv preprint
arXiv:2005.11621. 34, 59

[57] Huang, X., Mei, G., Zhang, J., & Abbas, R. (2021). A comprehensive survey on
point cloud registration. arXiv preprint arXiv:2103.02690. 7

117

http://www.deeplearningbook.org

[58] Ioffe, S. & Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In ICML. 86

[59] Jancosek, M. & Pajdla, T. (2011). Multi-view reconstruction preserving weakly-
supported surfaces. In Conference on Computer Vision and Pattern Recognition
(CVPR). 25, 54, 76, 78

[60] Jancosek, M. & Pajdla, T. (2014). Exploiting visibility information in surface
reconstruction to preserve weakly supported surfaces. International Scholarly
Research Notices. 25, 54, 76, 77, 78, 87, 94, 95, 104, 105, 106, 107

[61] Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., & Aanæs, H. (2014). Large scale
multi-view stereopsis evaluation. In Conference on Computer Vision and Pattern
Recognition (CVPR). 17, 29, 34, 59, 71

[62] Jiang, C. M., Sud, A., Makadia, A., Huang, J., Nießner, M., & Funkhouser,
T. (2020). Local implicit grid representations for 3D scenes. In Conference on
Computer Vision and Pattern Recognition (CVPR). 16, 22, 37, 45, 47, 51, 54, 56,
60, 62

[63] Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction.
In Proceedings of the fourth Eurographics symposium on Geometry processing (pp.
61–70).: Eurographics Association. 25

[64] Kazhdan, M., Chuang, M., Rusinkiewicz, S., & Hoppe, H. (2020). Poisson Surface
Reconstruction with Envelope Constraints. Computer Graphics Forum, 39(5),
173–182. 26

[65] Kazhdan, M. & Hoppe, H. (2013). Screened Poisson surface reconstruction. ACM
Transaction on Graphics. 4, 9, 22, 24, 26, 28, 38, 39, 42, 43, 45, 47, 49, 50, 51,
56, 60, 77, 87, 91, 92, 93, 94, 99, 100, 101

[66] Kettner, L. (1999). Using generic programming for designing a data structure for
polyhedral surfaces. Computational Geometry, 13(1), 65–90. 20

[67] Kingma, D. P. & Ba, J. (2015). ADAM: A method for stochastic optimization.
In International Conference on Learning Representations (ICLR). 86

[68] Knapitsch, A., Park, J., Zhou, Q.-Y., & Koltun, V. (2017). Tanks and Temples.
ACM Transactions on Graphics (TOG). 17, 29, 34, 59, 71

[69] Kolluri, R., Shewchuk, J. R., & O’Brien, J. F. (2004). Spectral surface recon-
struction from noisy point clouds. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing (pp. 11–21). 25

118

[70] König, S. & Gumhold, S. (2009). Consistent propagation of normal orientations in
point clouds. In International Workshop on Vision, Modeling, and Visualization
(VMV). 56

[71] Labatut, P., Pons, J. P., & Keriven, R. (2009). Robust and efficient surface
reconstruction from range data. Computer Graphics Forum (CGF). 9, 12, 22, 25,
38, 39, 42, 43, 45, 47, 49, 50, 51, 54, 76, 78, 85, 87, 90, 91, 93, 99, 100, 101

[72] Lemmens, M. (2020). An Introduction to Pointcloudmetry: Point Clouds from
Laser Scanning and Photogrammetry. Whittles. 11

[73] Li, Z., Zhu, C., & Gold, C. (2004). Digital terrain modeling: principles and
methodology. CRC press. 1

[74] Liu, M., Zhang, X., & Su, H. (2020). Meshing point clouds with predicted intrinsic-
extrinsic ratio guidance. In European Conference on Computer Vision (pp. 68–
84).: Springer. 22, 23, 78

[75] Liu, S., Saito, S., Chen, W., & Li, H. (2019). Learning to infer implicit surfaces
without 3D supervision. In Conference on Neural Information Processing Systems
(NeurIPS). 79

[76] Lorensen, W. E. & Cline, H. E. (1987). Marching cubes: A high resolution 3d
surface construction algorithm. SIGGRAPH Comput. Graph., 21(4), 163–169. 21,
37, 61

[77] Luo, Y., Mi, Z., & Tao, W. (2021). Deepdt: Learning geometry from delaunay
triangulation for surface reconstruction. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35 (pp. 2277–2285). 25

[78] Mäntylä, M. (1987). An introduction to solid modeling. Computer Science Press,
Inc. 20

[79] Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., & Geiger, A. (2019).
Occupancy networks: Learning 3D reconstruction in function space. In Conference
on Computer Vision and Pattern Recognition (CVPR). 9, 22, 26, 54, 59, 79

[80] Metzer, G., Hanocka, R., Giryes, R., & Cohen-Or, D. (2021a). Self-sampling for
neural point cloud consolidation. ACM Transactions on Graphics (TOG), 40(5),
1–14. 11

[81] Metzer, G., Hanocka, R., Zorin, D., Giryes, R., Panozzo, D., & Cohen-Or, D.
(2021b). Orienting point clouds with dipole propagation. ACM Transactions on
Graphics (TOG). 56

119

[82] Mi, Z., Luo, Y., & Tao, W. (2020). SSRNet: Scalable 3D surface reconstruction
network. In Conference on Computer Vision and Pattern Recognition (CVPR).
9, 79

[83] Michalkiewicz, M., Pontes, J., Jack, D., Baktashmotlagh, M., & Eriksson, A.
(2019). Implicit surface representations as layers in neural networks. In Interna-
tional Conference on Computer Vision (ICCV). 54

[84] Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R.,
& Ng, R. (2020). NeRF: Representing scenes as neural radiance fields for view
synthesis. In European Conference on Computer Vision (ECCV). 10, 56

[85] Mostegel, C., Prettenthaler, R., Fraundorfer, F., & Bischof, H. (2017). Scalable
surface reconstruction from point clouds with extreme scale and density diver-
sity. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 904–913). 25

[86] Niemeyer, M., Mescheder, L., Oechsle, M., & Geiger, A. (2020). Differentiable vol-
umetric rendering: Learning implicit 3d representations without 3d supervision.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 3504–3515). 10, 56

[87] Oechsle, M., Peng, S., & Geiger, A. (2021). Unisurf: Unifying neural implicit
surfaces and radiance fields for multi-view reconstruction. In International Con-
ference on Computer Vision (ICCV). 10, 56, 111

[88] O’neill, B. (2006). Elementary differential geometry. Elsevier. 17

[89] Park, J. J., Florence, P., Straub, J., Newcombe, R., & Lovegrove, S. (2019).
DeepSDF: Learning continuous signed distance functions for shape representation.
In Conference on Computer Vision and Pattern Recognition (CVPR). 16, 22, 26,
27, 54, 78, 79

[90] Paschalidou, D., Ulusoy, O., Schmitt, C., Van Gool, L., & Geiger, A. (2018).
Raynet: Learning volumetric 3d reconstruction with ray potentials. In Conference
on Computer Vision and Pattern Recognition (CVPR). 56

[91] Peng, S., Jiang, C. M., Liao, Y., Niemeyer, M., Pollefeys, M., & Geiger, A.
(2021). Shape as points: A differentiable poisson solver. In Conference on Neural
Information Processing Systems (NeurIPS). 9, 22, 27, 28, 38, 42, 43, 45, 47, 50,
51, 60, 62, 63, 64, 67, 68, 69, 70, 71, 72, 111

[92] Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., & Geiger, A. (2020). Con-
volutional occupancy networks. In European Conference on Computer Vision

120

(ECCV). 16, 22, 27, 32, 38, 42, 43, 47, 50, 51, 56, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 76, 79, 87, 90, 91, 92, 93, 94, 97, 99, 100, 101, 102

[93] Petitjean, S. & Boyer, E. (2001). Regular and non-regular point sets: Properties
and reconstruction. Computational Geometry, 19(2-3), 101–126. 21

[94] Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Conference on Computer
Vision and Pattern Recognition (CVPR). 73

[95] Rakotosaona, M.-J., Guerrero, P., Aigerman, N., Mitra, N. J., & Ovsjanikov, M.
(2021). Learning delaunay surface elements for mesh reconstruction. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(pp. 22–31). 16, 22, 23

[96] Rakotosaona, M.-J., La Barbera, V., Guerrero, P., Mitra, N. J., & Ovsjanikov, M.
(2020). Pointcleannet: Learning to denoise and remove outliers from dense point
clouds. In Computer Graphics Forum, volume 39 (pp. 185–203).: Wiley Online
Library. 6, 11

[97] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention (pp. 234–241).: Springer. 27

[98] Schertler, N., Savchynskyy, B., & Gumhold, S. (2017). Towards globally optimal
normal orientations for large point clouds. Computer Graphics Forum (CFG). 54,
56, 60, 61, 62

[99] Schöps, T., Schönberger, J. L., Galliani, S., Sattler, T., Schindler, K., Pollefeys,
M., & Geiger, A. (2017). A multi-view stereo benchmark with high-resolution
images and multi-camera videos. In Conference on Computer Vision and Pattern
Recognition (CVPR). 4, 7, 8, 17, 29, 76, 77, 88, 90, 95, 96, 102, 104, 105, 106, 107

[100] Seitz, S., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A compari-
son and evaluation of multi-view stereo reconstruction algorithms. In Conference
on Computer Vision and Pattern Recognition (CVPR). 17, 29, 34, 59, 71

[101] Sharf, A., Lewiner, T., Shamir, A., Kobbelt, L., & Cohen-Or, D. (2006). Compet-
ing fronts for coarse–to–fine surface reconstruction. In Computer Graphics Forum,
volume 25 (pp. 389–398).: Wiley Online Library. 22, 24

[102] Sharp, N. & Ovsjanikov, M. (2020). ”pointtrinet: Learned triangulation of 3d
point sets”. In European Conference on Computer Vision (ECCV). 22, 23, 56, 78

121

[103] Simonovsky, M. & Komodakis, N. (2017). Dynamic edge-conditioned filters in
convolutional neural networks on graphs. In Conference on Computer Vision and
Pattern Recognition (CVPR). 89

[104] Sinha, S. N., Mordohai, P., & Pollefeys, M. (2007). Multi-view stereo via graph
cuts on the dual of an adaptive tetrahedral mesh. In 2007 IEEE 11th international
conference on computer vision (pp. 1–8).: IEEE. 25

[105] Solem, J. E. (2012). Programming Computer Vision with Python: Tools and
algorithms for analyzing images. ” O’Reilly Media, Inc.”. 11

[106] Song, S., Cui, Z., & Qin, R. (2021). Vis2mesh: Efficient mesh reconstruction from
unstructured point clouds of large scenes with learned virtual view visibility. In
International Conference on Computer Vision (ICCV). 56

[107] Strecha, C., von Hansen, W., Gool, L. V., Fua, P., & Thoennessen, U. (2008).
On benchmarking camera calibration and multi-view stereo for high resolution
imagery. In Conference on Computer Vision and Pattern Recognition (CVPR):
IEEE Computer Society. 17, 29

[108] Sulzer, R., Landrieu, L., Boulch, A., Marlet, R., & Vallet, B. (2022). Deep surface
reconstruction from point clouds with visibility information. In International
Conference on Pattern Recognition (ICPR). 12

[109] Sulzer, R., Landrieu, L., Marlet, R., & Vallet, B. (2021). Scalable surface re-
construction with delaunay-graph neural networks. Computer Graphics Forum,
40(5), 157–167. 9, 12, 16, 22, 25, 38, 42, 43, 47, 50, 51, 54, 56, 60, 62, 67

[110] Tang, J., Lei, J., Xu, D., Ma, F., Jia, K., & Zhang, L. (2021). SA-ConvONet:
Sign-agnostic optimization of convolutional occupancy networks. In International
Conference on Computer Vision (ICCV). 56

[111] Tognola, G., Parazzini, M., Ravazzani, P., Svelto, C., & Grandori, F. (2001).
3d reconstruction of anatomical surfaces from unorganized range data. In 2001
Conference Proceedings of the 23rd Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, volume 3 (pp. 2534–2536).: IEEE.
1

[112] Ummenhofer, B. & Koltun, V. (2021). Adaptive surface reconstruction with mul-
tiscale convolutional kernels. In International Conference on Computer Vision
(ICCV). 56

[113] Vetsch, M., Lombardi, S., Pollefeys, M., & Oswald, M. R. (2022). Neuralmesh-
ing: Differentiable meshing of implicit neural representations. In B. Andres, F.

122

Bernard, D. Cremers, S. Frintrop, B. Goldlücke, & I. Ihrke (Eds.), Pattern Recog-
nition (pp. 317–333). Cham: Springer International Publishing. 21

[114] Vu, H. H., Labatut, P., Pons, J. P., & Keriven, R. (2012). High accuracy and
visibility-consistent dense multiview stereo. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (PAMI). 4, 6, 25, 54, 76, 77, 78, 87, 94, 96, 97, 105,
106, 107

[115] Waechter, M., Moehrle, N., & Goesele, M. (2014). Let there be color! large-scale
texturing of 3D reconstructions. In ECCV. 77, 104, 105, 106, 107

[116] Williams, F., Schneider, T., Silva, C., Zorin, D., Bruna, J., & Panozzo, D. (2018).
Deep geometric prior for surface reconstruction. In Conference on Computer
Vision and Pattern Recognition (CVPR). 78

[117] Williams, F., Trager, M., Bruna, J., & Zorin, D. (2021). Neural splines: Fitting 3d
surfaces with infinitely-wide neural networks. In Conference on Computer Vision
and Pattern Recognition (CVPR). 56

[118] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015).
3d shapenets: A deep representation for volumetric shapes. In Conference on
Computer Vision and Pattern Recognition (CVPR). 59

[119] Yang, Y., Feng, C., Shen, Y., & Tian, D. (2018). FoldingNet: Point cloud auto-
encoder via deep grid deformation. In Conference on Computer Vision and Pat-
tern Recognition (CVPR). 78

[120] You, C. C., Lim, S. P., Lim, S. C., San Tan, J., Lee, C. K., & Khaw, Y. M. J.
(2020). A survey on surface reconstruction techniques for structured and unstruc-
tured data. In 2020 IEEE Conference on Open Systems (ICOS) (pp. 37–42).:
IEEE. 16

[121] Zhao, W., Lei, J., Wen, Y., Zhang, J., & Jia, K. (2021). Sign-agnostic implicit
learning of surface self-similarities for shape modeling and reconstruction from
raw point clouds. In Conference on Computer Vision and Pattern Recognition
(CVPR). 56, 60

[122] Zhou, Y., Shen, S., & Hu, Z. (2019). Detail preserved surface reconstruction from
point cloud. Sensors. 25, 54, 76, 78

123

	Introduction
	Surface reconstruction from 3D point clouds in the wild
	Problem statement and objectives
	Reading guide and contributions

	A Survey and Benchmark of Automatic Surface Reconstruction from Point Clouds
	Introduction
	Related work
	Surface definition, representations, properties and reconstruction
	Survey
	Benchmark setup
	Experiments
	Conclusion

	Deep Surface Reconstruction from Point Clouds with Visibility Information
	Introduction
	Related work
	Method
	Experiments
	Limitations and perspectives
	Conclusion

	Scalable Surface Reconstruction with Delaunay-Graph Neural Networks
	Introduction
	Related work
	Method
	Experiments
	Limitations and perspectives
	Conclusion

	Conclusion
	Summary and conclusion
	Outlook and future work

	References

