Πάντα στον νου σου να 'χεις την Ιθάκη. Το φθάσιμον εκεί είν' ο προορισμός σου. Αλλά μη βιάζεις το ταξίδι διόλου. Καλύτερα χρόνια πολλά να διαρκέσει• και γέρος πια ν' αράξεις στο νησί, πλούσιος με όσα κέρδισες στον δρόμο, μη προσδοκώντας πλούτη

"And now whatever way our stories end I know you have rewritten mine by being my friend [...] Who can say if I've been changed for the better? But because I knew you, I have been changed for good."

-Wicked, For Good

They say that a thesis is like a baby, and they say it takes a village to raise a child, so before we start, let me take a moment to thank the village that has made this project possible. As my support system and my own identity are complicated (Am I Spanish? Am I Greek? Am I *gasp* a little bit French?), I will be changing languages several times in this section, some times even mid-sentence. I hope it will be a fun puzzle for my multilingual readers, and not too annoying for the rest.

Premièrement, il faut que je remercie mes directeurs de thèse, Bertrand Toën et Frédéric Déglise. Cette thèse n'aurait pas été possible sans vous, dans le sens le plus stricte du tèrme. Merci pour tout ce que vous avez fait pour moi le long de ces longues années. Bertrand, merci pour ton accueil chalereux et ta disponibilité infinie. Discuter avec toi a clairement été une des plus grandes sources d'apprentissage, et même si ce n'était pas le cas, discuter avec toi au repas du mardi soir du Seigneur des Anneaux, Star Wars et compagnie serait quand même un plaisir. J'espère qu'on pourra être amis maintenant qu'on est plus directeur et étudiante. Frédéric, merci de m'avoir pris sous ton aile quand j'étais une pauvre étudiante de M2, d'avoir organisé ces rencontres pour qu'on puisse discuter même avec la distance entre nous, et d'avoir continué à t'impliquer dans mon travail même quand ça à commencé à s'éloigner de tes centres de recherche. Tes rapports m'ont beaucoup aidé à me remettre des idées au clair, et je ne peux pas te remercier assez de me les avoir demandé. Je ferai de mon mieux pour répondre plus rapidement aux mails, je promets. I want to thank warmly Julia Bergner and Wendy Lowen for graciously accepting to review this manuscript. I was so very honoured by it. I also thank the members of the jury, Michel Vaquié, Joan Bellier-Millès, Bernhard Keller and Clemens Berger. If someone had told 24-year-old me I would have such important figures of the field in my jury, I'm not sure I would have believed it. I'm still pinching myself a little. I also wanted to acknowledge all the women who paved the way for us to be here, and all the women making it easier now. From Hipatia to Sophie Germain and Ada Lovelace being our historical role models, just refusing to let others tell them if they could or couldn't do maths. To the InformL meetings at the department teaching me how it is to live in this world, providing a support group and making me feel less alone in my daily life. To the Women in Topology mailing list, to Emily Riehl, Julia Bergner, Brooke Shipley, Wendy Lowen, Kathryn Hess, Eugenia Cheng, Claire Voisin, and so many others, giving us a goal and a motivation to continue. Now it's my turn to become those things for the next generation.

A special thank you to the organisers of the Talbot Workshop of 2018 (I can't find a list of your names so I'm not going to chance it in case I forget someone, but know I am thinking of you) and its mentors, Emily Riehl and Dominic Verity. Without you this thesis would... well, probably still exist, but it would be in a completely different subject. Thank you for opening my eyes to the beauty of higher categories.

Un petit mot aussi pour le séminaire d'Homotopie et le groupe de travail des mardis. Ce n'est pas évident de faire un groupe de travail amusant en plus d'instructif, mais vous avez réussi. Merci de tous vos retours par rapport à mes slides de soutenance! Je dirais que j'ai passé un bon moment avec vous, mais je n'ai aucune intention d'arrêter d'y aller tant que je sois sur Toulouse, donc je vais dire à la place que je passe toujours un bon moment avec vous.

And to finish the section of research-related acknowledgments, a shoutout to all those workshop and conference friends. We might not be in contact anymore, or less that I would want, but in any case, thank you for all those laughs, those games, those deep conversations at three in the morning. Rok, Nima, Jeff, Tafari, Dougal, Nora, Pelle, Charlotte, Candance, David, Inbar, Michelle, Arne, Julia, I cannot name you all. And of course, a special shoutout to Kévin, mon grand frère de thèse. Tu nous manques, mec. Les confs ne sont plus pareil sans toi et ton Bang et ton envie de nous inviter à la Fête de la Bière à Regensburg. Il faut que je trouve une manière de te contacter maintenant qu'on ne se croise plus en conf.

Je tenais aussi à remercier les BIATSS de l'université, en particulier Céline Rocca, Agnès Requis, Katya Bailey et le service informatique, Ludovic Fabre en particulier. Merci de nous accompagner, gérer nos soucis, répondre à nos questions stupides, et ne jamais perdre votre calme. Aucune université ne pourrait marcher sans vous. Je voulais remercier sincèrement aussi l'École Doctorale de m'avoir donné une deadline ferme qui m'a obligé à arrêter de faire des modifications à mon manuscrit et l'envoyer d'une fois pour toutes.

Merci beaucoup aussi à l'INSA Toulouse et à l'Université de Perpignan de m'avoir offert des ATERs qui m'ont permis de achever ce travail, mais aussi qui m'ont donné l'opportunité de voir d'autres milieux et d'autres façons d'enseigner. L'expérience était inestimable. Et of course, merci à toustes mes étudiant.es. Merci pour ces questions innatendues (mais jamais inintéressantes), pour ces moments de joie quand une notion passait finalement, merci pour ces jolis mots dans les questionnaires de fin d'année; merci pour ces piles de copies à corriger, ces devoirs maison, ces réveils à sept heures du matin. Que vous prennez du temps, mais que c'est satisfaisant.

Et on arrive à la partie la plus longue: les doctorant.es. Mes frères d'armes, mes camarades de rire et de souffrances. Cinq ans. Ça se dit vite. Comment organiser, comment parler de toutes les personnes qui sont passées par le labo et par ma vie sans faire un pavé de texte de deux pages? Bon, heureusement, je suis mathématicienne, et comme telle s'il y a quelque chose que j'aime bien faire, c'est de clasifier des choses.

Commençons par les gens qui ne sont plus là (ielles ne sont pas mortes, ne vous inquiétez pas, ielles ont juste soutenu!). Fabien, mon petit padawan de JdR devenu maître Sith (et oui, j'ai toujours pas vu l'Épisode 6, qu'est-ce que tu vas en faire?). Notre Picard d'adoption, si tu n'avais pas été là pour squatter mon bureau ma thèse serait finie beaucoup plus vite, mais beaucoup moins agréablement. Je promets que ça nous prendra pas trois mois d'organiser la prochaine séance de D&D. Joachim, merci de me garder politisée et de me montrer qu'on peut toujours trouver du temps pour militer, sans sacrifier d'ètre un bon ami à côté. Sans toi mes cheveux auraient été beaucoup moins colorés. Mes co-organisateurs du séminaire Picard, Flo et JM, les mythiques du 104, je suis tellement ravie que vous soyez tous les deux encore à Toulouse. Jean-Marc, je veux être toi quand je serai grande. Tu es une inspiration en comment prendre l'enseignement. Merci d'avoir été là quand j'avais besoin de parler, et merci de m'avoir intégré à l'impro! Je vous souhaite à Eva et à toi tout le bonheur du monde. Florian, félicitations d'avoir fini avant moi (c'était pas compliqué!), merci pour ces soirées Smash où tout le monde pouvait jouer sans être jugée (même si c'était des quiches comme moi). Merci de toujours nous faire rire avec tes anecdotes. Dominic, je sais que vous vous amusez à Bonn, mais j'espère que tu saches aussi que tu nous manques. Le labo n'est pas le même sans toi (est-ce que Léo travaille toujours dans les surfaces Kälheriennes différentiables de rang trois et demi sur un corps complexe? J'ai besoin de savoir). Guillaume, merci pour tous tes stagiaires de troisième, iels étaient adorables. Ludovic, mon petit frère de thèse, je te pardonne toutes les blagues que tu as fait à ce sujet. On n'a pas réussi à vivre dans la même ville pendant ta thèse, mais considérant l'amitié qu'on a eu sans ça, j'espère qu'on pourra serrer notre rélation mainentant que on l'est enfin. Laetitia, notre sage toujours prête à nous donner des informations, on n'a pas commencé à parler pour de vrai que trop tard, j'espère qu'on pourra rémedier ça un jour. Solène, mon collc' par intérim, tu disais dans ton manuscrit "merci de m'avoir supporté", et je voulais que ce soit clair que ça n'a jamais été question de ça. Merci de m'avoir tenu compagnie, merci de m'avoir montré She-Ra et Sandman, merci de toujours tout manger quand je cuisine (même quand j'en fais beaucoup trop), merci de tes câlins, merci de tes regards complices. Je ne peux pas citer tout le monde, mais merci aussi à Damien (notre coach au séminaire Picard), Eva (tu m'as déjà pardonné d'avoir dit que tu faisais des stats?), Jules (ma première expérience en organisant des cadeaux de thèse!), Jade, Julie, Jorge, Massimo, Sarah, Tu, Valentin, et tant et tant d'autres.

Parlons maintenant des gens qui vont soutenir (au moment de l'écriture de ces remerciements) et que j'ai rencontré avant de partir à Perpignan. William, mon collègue de manif, je ne t'ai pas cotoyé autant que j'aurais voulu (merci les scouts), mais ce que j'ai vu vallait la peine de se battre à mort avec eux. Félicitations pour ta soutenance, et même si tu n'es pas venu à la mienne, je te promets d'aller au volley un de ces quatre. Sans rancune. Dimitri, merci de ne pas m'avoir laissé mourir congélée quand mon chauffage m'a lâché en plein Janvier. Ton oreille musicale me fait toujours rêver. Il faudra qu'on trouve un concert pour aller ensemble, eh? Et en parlant de musiciens, Maxence, je suis toujours étonnée de combien de choses tu peux faire à côté de la thèse, je pourrais t'écouter parler de tes hobbies jusqu'à l'année prochaine (ssssh, ne regarde pas le calendrier). J'ai hâte d'apprendre le lindy avec toi. Paul, si tu ne viens pas manger avec nous je te sortirai par les oreilles, ta conversation me manque. Erfan, helping you with your paperwork has been one of the most rewarding "random act of kindness" I've done in a while. Stella, je pense que ta photo de profil m'est plus familière que ta tête, mais ça n'empêche rien: c'était cool de te rencontrer, et merci d'avoir relu l'introduction française de ma thèse! Jordi, tener alguien que habla español no se paga ni en oro.

Finalement, parlons des petits nouveaux, c'est-à-dire les gens qui sont arrivé.es après que je sois partie à Perpignan. Cette partie sera forcément plus courte, parce que je n'ai pas eu le temps de vous cotoyer trop encore, mais j'espère régler ça dans les prochains mois. Benjamin, je te pardonne d'avoir un vélo qui essaye de me tuer. Merci d'avoir pris le relais du séminaire sQuid avec autant d'enthusiasme. Anthony, idem pour le séminaire. C'était un plaisir d'organiser les cadeaux de thèse de William avec toi. Candice, idem pour les cadeaux, et je tenais à dire que tes vêtements sont toujours trop cools. Adrien, gracias por hacer el despacho un poco más hispanohablante cada día, y gracias por la ayuda con LaTex. Joaqi, Victor, good luck with your thesis, I leave Bertrand in good hands. Baalu, tu étais un bon étudiant et tu seras un bon thésard, je le sais. Yanbo, merci de me prêter ton accès à l'imprimante à chaque fois que j'en ai besoin.

Et finissons avec un mot sur les post-docs: la vie ne se finit pas après la thèse, après tout. Niels, je ne savais pas où te mettre, tu as eu tellement de places dans ma vie: ami de master, confidant de conférence, et maintenant post-doc ici à Toulouse. Comment résumer? Merci pour toutes ces crises de fou rire. Merci pour tes petits textos demandant juste "comment tu vas?". Merci de m'avoir prêté ton lit à chaque fois que je venais à Toulouse depuis Perpignan. Merci pour tes câlins surprise. Merci de ne jamais me prendre trop au sérieux. Merci... d'être toujours là. Tasos, thank you de me faire speak ελληνικά μαζί σου. Χάρηκα που σε γνώρισα. Marco, I hope you're still making sushi in Scandinavia. Rubén, on se tient au courant pour cette soirée de dégustation de fromage. Matthieu, je ne m'attendais pas à te re-rencontrer ici, mais je ne peux pas dire que je suis triste.

Mais la vie n'est pas que la thèse, même si des fois on peut avoir cette impression. Parlons maintenant des personnes qui ne font pas des thèses en maths (éh oui, elles existent toujours, incroyable, n'est-ce pas ?). Hoël, ma première année de thèse aurait été beacoup plus calme si je ne t'avais pas rencontré, mais aussi beaucoup moins intéressante. Merci de m'avoir tant appris, surtout par rapport à Linux (sudo sache que je ne te cotoie pas que pour ça!). Il est toujours un bon moment quand je vois un message de ta part sur Discord. PH, j'ai l'impression que je connais mieux tes personnages que toi, mais j'espère qu'on va régler ça dans les mois qui viennent. Merci pour ces soirées à faire n'importe quoi sur un JdR. Bon courage pour la dernière ligne droite de ta propre thèse. Mathieu, il y a des fois où se rapprocher d'un inconnu complet pour lui demander de jouer avec toi se passe très bien, et celle-ci est une d'entre elles. Merci de tes appels réguliers pendant le confinement, ils m'ont empêché de devenir folle. Et évidemment, mes copines de l'Ebranleuse: chanter avec vous a été un grand plaisir. Merci de m'avoir appris à crier que noi siamo stuffe! Huge thank you to my writing buddies, Emily, Mafazah and Riley. Emily, my companion in pettiness and late night brainstorms, I hope there are a lot more live shows in our future. I promise next time you come to visit I will be less busy. Mafazah, thank you for all our discussions, for being my sounding board and my devil's advocate and my mentor. It has been a fun couple of years. Riley, thank you for your reward-doodles, these last few months of work crunch would have been much harder without you. One day we will sell the rights to the Gödely Gang series to a YA publisher and settle for life. And to all three, thank you so much for never failing to remind me that there's creativity to be found outside of research.

Si on remonte dans le temps, on arrive déjà à l'époque de mon master (quand les dinosaures peuplaient la Terre). Il est alors le temps des lyonnais.es. Louis, merci de me prêter ta chambre d'hôtes, et même les clés de chez toi, quand je cherchais un logement l'été dernier. T'avoir sur Toulouse est un plaisir auquel je ne m'attendais pas. Joël, tu étais déjà cool à l'époque, mais j'ai tellement envie de rencontrer proprement la personne que tu es devenue depuis que j'ai quitté la ville. Mon royaumme pour une soirée tranquille avec toi. Lison, ta présence même me met toujours un sourire aux lèvres. Désolée de t'avoir laissé toute seule organiser le pot de thèse de Solène. Lauren, merci de m'avoir accueilli chez vous si chaleureusement, j'ai peur qu'un jour on aie enfin le temps de commencer à discuter et qu'on ne s'arrête jamais. Solène, tu as déjà eu ta partie dans la partie doctorant.es, mais je ne pouvais pas faire une section des lyonnais sans te mentionner encore. Merci de m'avoir donné une communauté. J'espère qu'il y aura beaucoup de Prides dans notre avenir, et que la saison 2 de Heartstopper te fasse auntant plaisir que la première (juste me fais pas la regarder avec toi, s'il te plaît /j). Et finalement, merci au club murder de m'avoir donné certains de mes meilleurs souvenirs à Lyon... et de siphonner tout mon temps libre à chaque fois que je mets un pied dans cette ville.

Un pas de plus en arrière, et on arrive à Montpellier. Amina, tu as été la première d'entre nous à avoir un poste de MCF, et je ne vais pas dire que j'étais surprise, mais je suis quand même fière. Bastien, les deux tiers des jurons dans mon lexique viennent de toi, et je ne sais pas si je devrais te remercier ou t'insulter pour ça. Dans tous les cas, il faut qu'on se retrouve la prochaine fois que je serai à Paris (si on ne se fait pas confiner comme la fois dernière!). Mario, gracias por la acogida que me diste cuando llegué de Erasmus. Camille, j'espère que tu sois très heureuse au Québec, et n'hésites pas à faire un coucou si tu repasses par ici.

Gwen. Encore quelqu'un qui a été plusieures personnes dans ma vie le long des années (assez littéralement, dans ce cas). Comment tout exprimer dans quelques lignes? Merci d'avoir toujours une si bonne écoute. Merci pour nos conversations qui commencent au point A et finissent trois heures plus tard pas au point B, mais J, P ou Y. Merci d'avoir été la première à te rendre compte quand ça n'allait pas et à me dire de demander de l'aide. Merci m'écouter brainstormer mon sujet, même si tu ne comprends pas toujours exactement de quoi je parle. Merci d'être revenue dans ma vie. Merci d'être mon amie. Y por fin, después de casi cuatro páginas, podemos cruzar los Pirineos y hablar de nuevo en mi lengua materna: vamos a ver si todavía soy capaz... María, Raquel, gracias por mantenerme con los pies en la tierra. No os hacéis idea de las ganas que tengo siempre de que llegue el verano y nuestra reunión anual en la piscina de María. Jorge, oírte quejarte de tus profesores de mates es siempre muy raro (llevo ya muchos años del otro lado de la pizarra), pero siempre divertido. Gracias por tus abrazos, por ser tan comprensivo de mis calendarios y estar siempre tan dispuesto tú a verme, aunque sea a base de acompañarme de tiendas o teñirme el pelo. Gracias por entenderme cuando se me cruza el cable y digo n'importe quoi. Ana (Baeza), qué puedo decirte después de veintisiete años de amistad. Gracias por haber hecho el esfuerzo de tirar de mi para quedar cuando se me iban las citas en Valladolid de las manos y no encontraba tiempo. Antonio, gracias por hacer que hablar de matemáticas fuese divertido aún en los momentos en los que me apetecía tirarlo todo por la ventana. Más te vale invitarme a tu defensa, quiero estar en primera fila. Gracias por darnos de comer cada vez que hacemos una quedada. Clara, dices que yo era tu ejemplo a seguir cuando estábamos en el instituto: tú lo eres para mi ahora. Las videollamadas que hacíamos cada mes eran siempre uno de mis momentos favoritos, me los disfrutaba muchísimo. I'm looking forward a cantar algo contigo otra vez. ¿Crees que en algún momento conseguiremos ver Rent? En todo caso, espero que lo estés pasando bien allá donde estás, y que sepas que pienso mucho en ti. Ana (Isa), mi coautora (de vida, no de mates), chérie, gracias por estos diez (¿once?) años de amistad. Gracias por enseñarme a bailar, gracias por hacerme reír, gracias por incluirme siempre en tus grupos de amigos. Eres prablemente la razón por la que Valladolid sigue siendo acogedora (eh, he dicho Valladolid y no el Pinar, no os ofendáis, Bermejos). Eso sí, un día de estos me voy a matar por la carretera volviendo de tu casa a las seis de la mañana, y será todo tu culpa. Pero con amor.

Y llegamos por fin al final tradicional de los agradecimentos: la familia. Y si lo anterior era difícil, esto es poco menos que imposible. ¿Cómo explicar veintinueve años de vida en un par de párrafos? Toda una vida... Así que vamos a pasar olímpicamente de intentarlo: me conformaré con daros un abrazo muy fuerte y daros las gracias. Bárbara, gracias por leerte mi manuscrito (o parte de él) y corregir mi inglés, y gracias por tu entusiasmo. Pablo, siento todas las veces que no te he cogido el teléfono porque estaba trabajando. Hey, ahora que he acabado a lo mejor puedo ir a verte, ¿qué opinas? Στέφο, κανένας δεν πίστεψε σε μένα όσο πίστεψες εσύ. Και δεν μπορώ παρα να σε ευχαριστήσω για αυτό.María, gracias por invitarme a tu casa cuando necesitaba un cambio de aires. Yannis, gracias por ser mi pie en la investigación en casa, por darme un poco de perspectiva cuando se me hacía bola. Merche, gracias por sacar todo el tiempo que puedes de cuidar de Memes y usarlo para cuidarme a mi. ¿Os lo podéis creer? ¡He acabado! ¡He acabado de verdad!!! And to all of you... ...I'm glad you're here with me. Here, at the end of all things.

Chapter 1

Introduction en français

"There are some things that it is better to begin than to refuse, even though the end may be dark."

-J.R.R. Tolkien, The Lord of the Rings L'objectif de cette thèse est de définir et étudier un nouveau modèle pour la théorie homotopique des dg-catégories, qui se comportera mieux que la structure de modèles originale sur les dg-catégories, et qui sera aussi plus proche des modèles établis dans le cadre des ∞-catégories. Avec cela en tête, avant de commencer ce sera utile de faire un petit tour de ce qu'on sait sur les modèles existants dans les ∞-catégories et les dg-catégories.

On a fait de notre mieux pour expliquer les notations à leur apparition, mais la notation des outils principaux sera recueillie dans la Section 1.6 pour être plus facilement accessible.

Modèles des ∞-catégories

Commençons par les catégories supérieures. Intuitivement, on peut dire qu'une ∞-catégorie (ou, pour être exact, une (∞, 1)-catégorie) est une catégorie enrichie sur les ∞-groupoïdes : une catégorie avec un ensemble d'objets et, pour tout couple d'objets, un ∞-groupoïde entre eux. En d'autres termes, au lieu d'avoir simplement des morphismes entre les objets, on demande à avoir des 2-morphismes entre les morphismes, des 3-morphismes entre les 2-morphismes, etc., tout en demandant que tous les n-morphismes avec n ≥ 2 soient inversibles. Cette construction, appelée aussi "une théorie homotopique" dans la littérature, apparaît dans plusieurs situations différentes.

Un exemple classique où les ∞-catégories apparaissent naturellement est celui qui arrive quand on s'intéresse à des structures qui sont classifiées à une notion plus faible que celle des isomorphismes près (les espaces topologiques à équivalence d'homotopie près, les complexes de chaînes à équivalence faible près, entre autres). On voudrait localiser ces catégories pour que cette classe de morphismes soit inversible. Ce problème a déjà été résolu par Quillen dans [START_REF] Daniel | Homotopical algebra[END_REF] avec l'apparition des catégories de modèles ; mais même si elles sont très utiles, le problème avec celles-là est que les catégories de modèles ont une vaste quantité de structure qu'on doit ajouter afin de les faire fonctionner. En plus, leur catégorie homotopique (c'est-à-dire, la localisation) ne se rappelle pas de l'information ajoutée. Pour résoudre ces soucis, Dwyer et Kan ont introduit dans [START_REF] Dwyer | Function complexes in homotopical algebra[END_REF] une localisation simpliciale, qui est une catégorie enrichie sur les objets simpliciaux. À partir de là, un bon nombre de chercheur.es ont travaillé pour trouver un bon modèle pour une catégorie de cette forme. Il y a quatre modèles qui ont été particulièrement importants.

La première option est clairement celle des catégories simpliciales en elles-mêmes. Dwyer et Kan ont développé la théorie des localisations simpliciales dans ce contexte, en tant que catégories enrichies sur les espaces simpliciaux. Comme on en parlera en détail dans la Section 3.3.2, on ne passera pas trop de temps dessus maintenant. On ajoutera uniquement que Bergner a prouvé dans [START_REF] Bergner | A model category structure on the category of simplicial categories[END_REF] que la catégorie des catégories simpliciales a une structure de modèles.

Un deuxième modèle qui a été très fructueux, est celui des quasi-catégories. Définies pour la première fois par Boardman et Vogt dans [START_REF] Boardman | Homotopy invariant algebraic structures on topological spaces[END_REF], cette approche définit les quasi-catégories (aussi appellées "complexes de Kan faibles") comme des ensembles simpliciaux X tels que pour toute corne interne Λ k [n] → X il existe un remplissage ∆[n] → X, pour tous les n ∈ N et 0 < k < n. En pratique, on demande que tout couple de n-morphismes ait un troisième morphisme, la "composition", et un (n + 1)-morphisme reliant les deux. Cette théorie a été étendue plus tard par Joyal dans des articles comme [START_REF]Quasi-categories and Kan complexes[END_REF], et par Lurie dans [START_REF] Lurie | Higher topos theory[END_REF] et [START_REF] Lurie | Higher algebra[END_REF]. Joyal et Tierney ont aussi défini une structure de modèles sur les quasi-catégories dans [START_REF] Joyal | Quasi-categories vs Segal spaces[END_REF].

Notre troisième modèle est celui des catégories de Segal. Celles-ci sont une généralisation naturelle des catégories simpliciales, puisqu'on peut les voir comme des catégories simpliciales avec une composition définie uniquement à homotopie près. Elles ont été définies pour la première fois par Dwyer, Kan et Smith dans [START_REF] Dwyer | Homotopy commutative diagrams and their realizations[END_REF], et elles sont définies comme des espaces simpliciaux X : ∆ op → sSet tels que X 0 est un ensemble simplicial discret et que pour tout k ≥ 1 le morphisme de Segal

ϕ k : X k → k fois X 1 × X0 . . . × X0 X 1
est une équivalence faible. La catégorie des catégories de Segal a une structure de modèles, construite pour les n-catégories de Segal par Hirschowitz et Simpson dans [START_REF] Hirschowitz | Descente pour les n-champs[END_REF] et dans une autre version par Bergner dans [START_REF] Bergner | Three models for the homotopy theory of homotopy theories[END_REF].

Et finalement, le quatrième modèle, et le plus intéressant pour nous, est celui des espaces de Segal. Définis pour la première fois par Rezk dans [START_REF] Rezk | A model for the homotopy theory of homotopy theory[END_REF], un espace de Segal complet est aussi un espace simplicial où le morphisme de Segal ϕ k est une équivalence faible pour tout k ≥ 1, mais au lieu de demander que X 0 soit discret, on demande que le morphisme X 0 → X hoequiv soit une équivalence faible, où X hoequiv est l'espace des équivalences d'homotopie. Dans le même papier, Rezk construit une structure de modèles dans laquelle les espaces de Segal complets sont les objets fibrants.

Cela dit, on a construit quatre modèles, en disant qu'ils étaient tous des modèles de la même chose. Mais cela n'est pas évident en regardant les définitions. Oui, elles ont des choses en commun, mais elles sont aussi assez différentes les unes des autres. C'est la raison pour laquelle on a introduit les structures de modèles : en effet, Bergner a démontré dans [START_REF] Bergner | Three models for the homotopy theory of homotopy theories[END_REF] qu'il existe une équivalence de Quillen (c'est-à-dire, une équivalence de catégories de modèles) entre les espaces de Segal complets et les catégories de Segal, et une autre entre les catégories de Segal et les catégories simpliciales. De leur côté, Joyal et Tierney ont démontré dans [START_REF] Joyal | Quasi-categories vs Segal spaces[END_REF] que les quasi-catégories et les espaces de Segal complets sont aussi Quillen équivalents. Attention : même si on sait que toutes ces catégories sont Quillen équivalentes, les équivalences de Quillen vont dans des directions opposées, ce qui veut dire qu'elles ne peuvent pas être composées pour en faire un seule équivalence de Quillen.

Il y a eu quelques efforts pour proposer une définition axiomatique des ∞-catégories au fil des années, comme par exemple la "théorie des ∞-catégories" de Toën dans [START_REF] Toën | Vers une axiomatisation de la théorie des catégories supérieures[END_REF] et les "∞-topos" de Riehl et Verity dans [START_REF] Riehl | Elements of ∞-category theory[END_REF], mais on n'en parlera pas plus en détail ici.

Modèles des dg-catégories

Maintenant parlons des dg-catégories. Comme les catégories simpliciales, les dg-catégories sont définies comme des catégories enrichies sur quelque chose : dans ce cas, des complexes de cochaînes. Comme on en parlera en détail dans la Section 3.4, on ne se perdra pas dans les détails ici : on dira uniquement que Tabuada a prouvé dans [START_REF] Tabuada | Une structure de catégorie de modèles de Quillen sur la catégorie des dgcatégories[END_REF] qu'il y a une structure de modèles sur dgcat.

Si les ∞-catégories ont une longue histoire, les dg-catégories sont encore plus vieilles : en effet, on les retrouve déjà dans des papiers des années 60, comme l'article de Kelly [START_REF] Kelly | Chain maps inducing zero homology maps[END_REF]. En vue de cela, on ne donnera pas une histoire complète de leur évolution ; ce n'est pas non plus l'objet de cette introduction. Il suffira de dire que même si les catégories et les ∞-catégories sont suffisantes pour travailler en Topologie Algébrique, la Géométrie Algébrique a souvent besoin de travailler avec une notion de linéarité qui ne marche pas toujours bien avec celles-là. En conséquence, les dg-catégories, qui ont déjà un concept de linéarité, se sont retrouvées comme un objet essentiel dans ce domaine. Un bon exemple de leur usage est celui du Programme de Langlands Géométrique, qui a été réécrit par Arinkin et Rozenblyum dans [START_REF] Arinkin | Singular support of coherent sheaves and the geometric Langlands conjecture[END_REF] en termes de dg-catégories. Pour plus de détails sur cela, on pointe le lecteur vers le livre A study in Derived Algebraic Geometry, par Gaitsgory et Rozenblyum (voir [START_REF] Gaitsgory | A study in derived algebraic geometry[END_REF] et [START_REF] Gaitsgory | Deformations, Lie theory and formal geometry[END_REF]).

Mais même si les dg-catégories sont très utiles, elles ne sont pas parfaites. Par exemple, la catégorie des dg-catégories a une structure de modèles, et elle a aussi une structure monoïdale ; mais elles ne sont pas compatibles. Ce problème, parmi d'autres, a poussé des chercheur.es à chercher d'autres modèles pour les dg-catégories, dans le style du travail fait dans les ∞-catégories. On a déjà parlé de notre première comparaison : les dg-catégories sont les catégories simpliciales. Il est intéressant de remarquer, d'ailleurs, qu'une des raisons pour lesquelles la communauté a commencé à chercher d'autres modèles d'∞-catégories est que les catégories simpliciales ont aussi une structure de modèles et une structure monoïdale (dans ce cas, le produit direct) qui ne sont pas compatibles.

Commençons par les quasi-catégories. On a un résultat dû à Cohn dans [START_REF] Cohn | Differential graded categories are k-linear stable ∞-categories[END_REF] qui nous dit qu'il y a une équivalence entre l'∞-catégorie sous-jacente à la catégorie de modèles des dg-catégories localisée par les équivalences de Morita, et l'∞-catégorie des quasi-catégories stables k-linéaires idempotent-complètes. Malheureusement pour nous, les quasi-catégories stables k-linéaires ne sont pas faciles à utiliser : par exemple, si on a un adjoint entre deux quasi-catégories linéaires, il est très difficile de prouver qu'il y a un adjoint linéaire. Aussi, si x est un objet dans une quasi-catégorie k-linéaire, prouver que End(x) peut être représenté par une dg-algèbre est très compliqué dans le monde des quasi-catégories k-linéaires, mais découle presque de la définition dans les dg-catégories.

Plus récemment, il y a eu une autre approche à ce sujet : Mertens a proposé dans [START_REF] Mertens | Templicial objects: Simplicial objects in a monoidal category[END_REF] une définition d'une quasi-catégorie enrichie sur une catégorie monoïdale cocomplète C (voir la Définition 2.2.26 dans [START_REF] Mertens | Linear quasi-categories as templicial modules[END_REF] pour plus de détails) et a construit un foncteur qui relève le dg-nerf classique dgcat → sSet dans un dg-nerf linéaire

dg -cat → S ⊗ Mod(k)
où S ⊗ Mod(k) est la catégorie des modules templiciaux ("tensor simpliciaux" ; voir la Définition 2.4 dans [START_REF] Mertens | Linear quasi-categories as templicial modules[END_REF] pour plus de détails). Dans un exposé à l'Institut Poincaré en Septembre 2022 (voir [START_REF] Lowen | Enriching the nerve construction[END_REF]), Lowen a mentionné que Mertens et elle-même sont en train de travailler sur une équivalence de Quillen pour relier leurs quasi-catégories enrichies sur Mod(k) avec les dg-catégories, mais que c'est encore un travail en cours.

Du côté des catégories de Segal, Bacard a défini dans [START_REF] Hugo | Segal enriched categories and applications[END_REF] une notion de catégorie de Segal enrichie, et en conséquence une notion de dg-catégorie de Segal, en disant que, une fois un ensemble O fixé, une dg-catégorie de Segal est un morphisme W -colaxe de la forme

F : P O → C(k),
où O est un groupoïde appellé "the coarse category associated to O" et P O est la 2-path-category de O (voir Définitions 4.1 et 2.7 dans [START_REF] Hugo | Segal enriched categories and applications[END_REF] pour plus de détails). Dans ce cas, aussi, il paraît que la comparaison entre ces objets et les dg-catégories est un travail en cours : en effet, dans l'introduction de ce papier Bacard dit que le premier objectif une fois les catégories de Segal enrichies bien définies est de développer la théorie homotopique des dg-catégories de Segal et de les comparer avec les dg-catégories classiques.

On a alors une définition de dg-quasi-catégorie, et une définition de dg-catégorie de Segal, mais si on suit le schéma de la section précédente, il nous manque un modèle : on n'a pas encore parlé d'espaces de dg-Segal complets. Et effectivement, c'est à cet endroit que nos résultats vont se trouver. En suivant Rezk, on va construire une version "linéaire" des espaces de Segal complets et on va (à une certaine hypothèse près) prouver qu'il y a une chaîne d'adjonctions de Quillen qui en fait une équivalence de catégories homotopiques. catégories simpliciales dg-catégories quasi-catégories quasi-catégories k-linéaires dg-quasi-catégories catégories de Segal dg-catégories de Segal espaces de Segal complets ??

Espaces de Segal vs espaces de dg-Segal

Dans l'article de Rezk,[START_REF] Rezk | A model for the homotopy theory of homotopy theory[END_REF], on a plusieurs étapes importants pour construire son modèle des ∞-catégories. Premièrement, il définit les espaces de Segal comme vu avant, comme un espace simplicial (c'est-à-dire un foncteur de ∆ op dans sSet) tel que certains morphismes sont des équivalences faibles. Après, il démontre qu'il existe une localisation de Bousfield de la structure projective sur les espaces simpliciaux telle que les espaces de Segal sont les objets fibrants dans celle-là. Mais cette structure n'est pas suffisante pour donner une équivalence avec les ∞-catégories : il y a une certaine classe de morphismes qui devraient être des équivalences mais ne le sont pas encore. Avec cela en tête, il applique une autre localisation de Bousfield à cette structure de modèles, et il trouve une structure de modèles dont les objets fibrants sont les espaces de Segal complets. Finalement, il définit une classe de morphismes dans la catégorie des espaces simpliciaux, appelés des équivalences de Dwyer-Kan, et il prouve que les équivalences faibles pour la structure de catégorie de modèles pour les espaces de Segal complets sont exactement les équivalences de Dwyer-Kan entre des espaces de Segal.

Dans notre cas, on suivra un schéma similaire ; mais le chemin n'est pas si simple. En effet, la structure linéaire des dg-catégories va nous compliquer la tâche à plusieurs reprises. Premièrement, on choisira une catégorie de foncteurs (dans notre cas, la catégorie des foncteurs simpliciaux entre des catégories libres de type fini et les espaces simpliciaux) et on définit les espaces de dg-Segal comme des objets dans cette catégorie tels que certains morphismes soient des équivalences faibles. Déjà, la condition du morphisme de Segal ne sera pas suffisante : on aura besoin d'ajouter une condition en disant qu'on peut ajouter des termes aux complexes de modules dans les morphismes.

Une fois que cela est fait, ce n'est pas compliqué de montrer qu'il y a une localisation de Bousfield telle que les objets locaux sont exactement les espaces de dg-Segal qui sont fibrants pour la structure de modèles projective. Malheureusement, comme dans le cas des espaces de Segal, le foncteur nerf (qu'on appellera ici Sing) ne forme pas une équivalence de Quillen, nous forçant à faire une deuxième localisation de Bousfield.

On n'aura pas besoin de chercher trop loin : on définira tout simplement un foncteur "d'oubli" entre les espaces de dg-Segal et les espaces de Segal classiques et on définira les espaces de dg-Segal complets comme les espaces de dg-Segal qui deviennent complets dans l'image du foncteur oubli.

Mais ici on se heurte encore à la linéarité. En effet, pour prouver que le nerf est une équivalence de Quillen dans cette structure de modèles, on aimerait faire comme Rezk et définir une classe de morphismes, qu'on appelle des DK-équivalences, de façon à que les équivalences faibles dans la structure de modèles des espaces de Segal complets soient exactement les DK-équivalences entre des espaces de dg-Segal. Mais pour faire cela, Rezk utilise le produit direct dans les espaces simpliciaux pour calculer une certaine exponentielle. On n'a pas ce privilège : comme on a mentionné plus tôt, la structure de modèles et la structure monoïdale ne sont pas compatibles dans dgcat. En conséquence, pour prouver notre résultat on devra d'abord définir une structure de modèles dans nos espaces de Segal complets. À cause d'un manque de temps, on n'a pas pu le faire dans ce manuscrit, et on admettra le fait que les équivalences dans la structure des espaces de dg-Segal complets sont les DK-équivalences entre des espaces de dg-Segal comme hypothèse.

En supposant que cette hypothèse est vraie, par contre, on peut montrer qu'il existe une équivalence entre la catégorie homotopique des dg-catégories et la catégorie homotopique des espaces de dg-Segal complets pour la structure de modèles des espaces de dg-Segal complets.

Pourquoi ça nous intéresse ?

Évidemment, si on va investir tout ce temps et tout cet effort pour construire des espaces de dg-Segal complets, on doit justifier nos choix. Pourquoi on veut ces objets ?

La première raison a été déjà mentionnée plusieurs fois : la catégorie des dg-catégories telle qu'on la connaît a une structure de modèles et une structure monoïdale qui ne sont pas compatibles. En effet, l'objet ∆ k (1, 0, 1) (c'est-à-dire la dg-catégorie avec deux objets et k le complexe de morphismes entre les deux) est cofibrant dans la structure de modèles des dg-catégories, mais il est facile de voir que ∆ k (1, 0, 1) ⊗ ∆ k (1, 0, 1) ne l'est pas. Cela dit, la construction même des espaces de dg-Segal complets nous oblige à définir une structure monoïdale sur ceux-là qui sera compatible avec la structure de modèles, résolvant ce souci. Ce serait, en soi, un pas important pour démontrer des versions linéaires des théorèmes classiques de théorie des catégories, comme par exemple le théorème de Barr-Beck, qui non seulement ne peut pas être déduit de sa version non-linéaire, mais ne peut même pas être défini exactement dans le cas linéaire en l'état actuel.

En plus de cela, la construction des dg-catégories comme des espaces de dg-Segal nous donne une catégorie de foncteurs, qui est, citant Dugger dans [START_REF] Dugger | Universal homotopy theories[END_REF], "une espèce de présentation par générateurs et relations". Comme c'est le cas dans ce type de structures, une telle présentation rendrait la construction des morphismes partant des espaces de dg-Segal complets beaucoup plus facile : on aura juste à les définir sur les générateurs et s'assurer que les "relations" sont envoyées sur des équivalences faibles. En particulier, cela nous donnerait une façon plus simple de calculer les automorphismes de dgcat.

Cela n'est pas un nouveau développement : à la fois 

Organisation de ce texte

Cette thèse est divisée en trois parties différentes, chacune marquée par un chapitre différent.

Dans le premier chapitre, "Background notions", on va rappelle au lecteur.e (ou lui présenter) des notions qu'on utilisera par la suite : catégories de modèles et adjonctions de Quillen, spécialement celles des complexes de cochaînes et des diagrammes ; catégories de modèles propres à gauche et à droite ; mapping spaces ; localisations de Bousfield à gauche ; objets simpliciaux, catégories simpliciales ; et dg-catégories. On va faire particulièrement attention à la structure de modèles des dg-catégories. Ce chapitre inclut aussi une section expliquant la construction de la "catégorie de modèles universelle" de Dugger.

Dans le deuxième chapitre, "dg-Segal spaces", on expose le gros de nos résultats. On peut les diviser en trois parties, au niveau du contenu.

Dans une première partie contenant la Section 1, on construit une chaîne d'adjonctions de Quillen entre la catégorie des dg-catégories et Fun S (cL op S , sSet), la catégorie des foncteurs simpliciaux entre les dg-catégories libres de type fini et les ensembles simpliciaux. On donnera une construction explicite de l'adjonction Re : Fun S (cL op S , sSet) ⇌ dgcat : Sing .

Dans une seconde partie, qui contient les Sections 2 et 3, on construira les espaces de dg-Segal. Suivant l'exemple de [START_REF] Rezk | A model for the homotopy theory of homotopy theory[END_REF], on essayera de déterminer l'image du foncteur Sing en donnant une description de ces foncteurs selon s'ils font de certains morphismes des équivalences faibles. En particulier, on dit qu'un foncteur F est un espace de dg-Segal s'il vérifie que

1. Pour tous L, K ∈ cL S , F (L K) → F (L) × F (K) est une équivalence faible.
2. L'image de l'objet initial est un point, ou autrement dit, F (∅) ≃ * .

3. Soit G un graphe dans Gr(C(k)). Pour tout α ∈ Z n (G(x, y)), l'image de la dg-catégorie libre issue de G(< α >) est un pullback homotopique dans sSet de la forme suivante :

F (L(G(< α >))) F (L(G)) F (∆ c k (1, n, 1)) F (∆ k (1, n, 1)).
Après, on construit une adjonction de Quillen entre Fun S (cL op S , sSet) et les espaces simpliciaux, et on montre qu'elle envoie les espaces de dg-Segal sur des espaces de Segal classiques. On utilise cette adjonction pour définir les espaces de dg-Segal complets en disant qu'il s'agit des espaces de dg-Segal qui sont envoyés par l'adjonction sur les espaces de Segal complets. Cela nous donne la définition suivante : F est un espace de dg-Segal complet s'il est un espace de dg-Segal et F (k) → F hoequiv est une équivalence faible. On prouve que l'image de Sing est dans les espaces de dg-Segal complets. On construit ensuite deux structures de modèles pour Fun S (cL op S , sSet) de façon à ce que les espaces de dg-Segal et les espaces de dg-Segal complets, respectivement, soient leurs objets fibrants. Et finalement dans cette section, on définit des morphismes appelés des DK-équivalences et on émet l'hypothèse que les équivalences faibles entre espaces de dg-Segal sont exactement les équivalences faibles dans la structure de modèles des espaces de dg-Segal complets.

Hypothesis 1.5.1 (Hypothèse 4.3.22). Soit f : F → G un morphisme entre deux espaces de dg-Segal. Alors, f est une DK-équivalence si et seulement si f est une équivalence faible dans la structure de modèles des espaces de dg-Segal complets.

Finalement, la troisième partie de ce chapitre, qui inclut les Sections 4, 5 et 6, démontre (à l'hypothèse près) que (Re, Sing) est bien une équivalence de Quillen dans les espaces de dg-Segal complets. Pour cela, on construit dans la Section 4 un certain type d'hyperrecouvrement, d'abord dans une catégorie de modèles générale et après dans les dg-catégories, T * → T , et on montre que la colimite homotopique d'un tel hyperrecouvrement est faiblement équivalente à l'objet d'origine, hocolim T i ≃ T . Après, dans la Section 5 on utilise ces hyperrecouvrements pour montrer que l'adjonction est pleinement fidèle à DK-équivalence près.

Theorem 1.5.2 (Théorème 4.5.6). En supposant que l'Hypothèse 4.3.22 est vraie, pour tout T ∈ dgcat on a Re k (Sing k )(T ) ≃ T et le foncteur Sing est pleinement fidèle.

Dans la dernière section, Section 6, on montre que (en supposant que l'hypothèse est vraie) l'adjonction est essentiellement surjective sur les espaces de dg-Segal. Pour cela, on construit un type spécial d'hyperrecouvrements de foncteurs dans Fun S (cL op S , sSet) de la forme Sing(T * ) → F et on prouve que l'image de la colimite homotopique de T * est DK-équivalente à F .

Theorem 1.5.3 (Théorème 4.6.14). Soit F un espace de dg-Segal. Alors il existe une dg-catégorie T telle qu'il existe une DK-équivalence Sing(T ) → F . En conséquence, si l'Hypothèse 4.3.22 est vraie, l'adjonction Re : dg -Segal ⇌ dgcat : Sing est une équivalence de Quillen.

Dans le troisième chapitre, "Future Work", on explore plusieurs voies dans lesquelles on pourrait étendre le travail de cette thèse. Dans une première section, on parlera de l'hypothèse du chapitre précédent, et on expliquera quelles seraient les méthodes qu'on pourrait utiliser pour le prouver. Dans une deuxième section, on parlera de la catégorie linéaire des simplexes, ∆ k . Cela est construit pour être une sorte de version linéaire de la catégorie des simplexes ∆, et on pense que cela nous donnera une équivalence de Quillen entre Fun S (cL op S , sSet) et Fun S (∆ op k , sSet) qui nous permettrait de définir les espaces de dg-Segal complets comme des foncteurs simpliciaux entre ∆ k et sSet. Finalement, on fait quelques commentaires rapides sur d'autres applications possibles de nos résultats.

Notations

Même si toutes les notations ici seront expliquées dans le chapitre suivant, on les mentionne ici pour un accès plus simple.

• On note une adjonction entre deux catégories par F : M ⇌ N : G, avec l'adjoint à gauche étant toujours la flèche en haut.

• On note la catégorie des ensembles simpliciaux par sSet, la catégorie des complexes de cochaînes par C(k) et la catégorie des dg-catégories par dgcat.

• On note par k un anneau commutatif. On note le produit tensoriel sur k dans C(k) par -⊗ -et le shift dans un complexe de cochaînes A par A[-].

• On note par k[s] le complexe de cochaînes concentré en degré s, où il vaut k, et par k c [s] le complexe concentré en degrés s et s -1, où il vaut k.

• On note par Fun(A, B) la catégorie des foncteurs entre des catégories A et B, et par Fun S (A, B) la catégorie des foncteurs simpliciaux entre deux catégories simpliciales A et B.

• On note par Gr(A) la catégorie des graphes enrichis sur une catégorie A et Gr(C(k)) tf la sous-catégorie pleine des graphes enrichis sur les complexes de type fini.

• On note par L la catégorie des dg-catégories libres, et par cL la sous-catégorie pleine des dg-catégories libres de type fini cofibrantes.

Chapter 2

Introduction

"There are some things that it is better to begin than to refuse, even though the end may be dark." -J.R.R. Tolkien, The Lord of the Rings

The subject of this thesis is to define and study a new model for the homotopy theory of dg-categories, which is better behaved than the original model structure on dg-categories and also closer to the well established models of ∞-categories. As such, before we start, it will be useful to do a quick round of what we know about the existing models in both ∞-categories and dg-categories.

We have done our best to explain the notations as they appear, but all the main notion's notations are gathered in Section 2.6 for easy access.

The models of ∞-categories

Let us start with higher categories. On an intuitive level, we can say that an ∞-category (or, to be precise, an (∞, 1)-category) is a category enriched over ∞-groupoids: a category with a set of objects, and for every two objects, an ∞-groupoid between them. In other words, instead of just having morphisms between objects, we ask to have 2-morphisms between the morphisms, and 3-morphisms between the 2-morphisms, etc, while asking all n-morphisms with n ≥ 2 to be invertible. Such a construction, also called in the literature "a homotopy theory", arises in multiple different situations.

A classic example in which an ∞-category arises from common computations is what happens when we take an interest on structures that are classified up to a notion that is less strong than the one of isomorphism (topological spaces up to homotopy equivalence, chain complexes up to weak equivalence, among others). We would want to localize the category in order to have that class of morphisms be invertible. This problem was successfully tackled by Quillen in [START_REF] Daniel | Homotopical algebra[END_REF] with the introduction of model categories; but as useful as they are, the problem with those is that model categories have a whole array of structure we need to add to make it work. Also, their homotopy category (the localization in question) fails to remember the higher order information that we had constructed. In order to solve those problems, Dwyer and Kan introduced in [DK80a] a simplicial localization, which is a category enriched over simplicial sets. From there, several researchers have worked over the years in order to find a good model for such a category. Four approaches to ∞-categories, in particular, have been the most influential.

The first option, of course, is simplicial categories themselves. Dwyer and Kan develop the theory of simplicial localizations in this setting, as categories enriched on simplicial sets. As this will be expanded upon in Section 3.3.2, we will not spend much time on it here: we will just add that Bergner proved that the category of simplicial categories has a model structure in [START_REF] Bergner | A model category structure on the category of simplicial categories[END_REF].

A second model, and a very successful one at that, would be quasi-categories. First defined by Boardman and Vogt in [START_REF] Boardman | Homotopy invariant algebraic structures on topological spaces[END_REF], this approach defines quasi-categories (also called "weak Kan complexes") to be simplicial sets X such that every inner horn Λ k [n] → X, there exists a filler ∆[n] → X, for all n ∈ N and all 0 < k < n, effectively asking that for every two n-morphisms there be a third "composition" n-morphism and a (n + 1)-morphism linking the two. This theory was developed further by Joyal in papers like [START_REF]Quasi-categories and Kan complexes[END_REF] and, of course, Lurie in [START_REF] Lurie | Higher topos theory[END_REF] and [START_REF] Lurie | Higher algebra[END_REF]. Joyal and Tierney also proved that there is a model structure on it in [START_REF] Joyal | Quasi-categories vs Segal spaces[END_REF].

Our third model will be Segal categories. These are a natural generalization of simplicial categories, as they can be seen as simplicial categories with its composition written only up to homotopy. They are first defined by Dwyer, Kan and Smith in [START_REF] Dwyer | Homotopy commutative diagrams and their realizations[END_REF], and they are defined to be simplicial spaces X : ∆ op → sSet such that X 0 is a discrete simplicial set and for all k ≥ 1 the Segal map

ϕ k : X k → k times X 1 × X0 . . . × X0 X 1
is a weak equivalence. The category of Segal categories has a model structure, constructed for a general Segal n-category by Hirschowitz and Simpson in [START_REF] Hirschowitz | Descente pour les n-champs[END_REF] (text in French) and in an alternative version by Bergner in [START_REF] Bergner | Three models for the homotopy theory of homotopy theories[END_REF].

Lastly, the fourth and (for us) most interesting model for ∞-categories is that of complete Segal spaces. Defined for the first time by Rezk in [Rez01], a complete Segal space is also a simplicial space such that the Segal map ϕ k is a weak equivalence for all k ≥ 1, but instead of asking for the X 0 to be discrete, we ask instead that the morphism X 0 → X hoequiv is a weak equivalence, where X hoequiv is the space of homotopy equivalences. In that same paper, Rezk constructs a model structure in which the complete Segal spaces form the fibrant objects. Now, we have constructed four different models, claiming that they are all models of the same thing, but that is not immediately obvious by looking at the definitions. They have things in common, yes, but they are also pretty different from each other. But that is why we have introduced the model structures on all of them: in fact, Bergner proves in [START_REF] Bergner | Three models for the homotopy theory of homotopy theories[END_REF] that there is a Quillen equivalence (i.e., an equivalence in the theory of model categories) between complete Segal spaces and Segal categories, and another between Segal categories and simplicial categories. On their side, Joyal and Tierney prove in [START_REF] Joyal | Quasi-categories vs Segal spaces[END_REF] that quasi-categories and complete Segal spaces are also Quillen equivalent. Attention, however: even though we know that all those categories are Quillen equivalent, the Quillen adjunctions go in opposite directions, which means that they can't be composed into a single Quillen equivalence.

There have been a few attempts to give an axiomatic definition of ∞-categories over the years, like Toën's "theory of ∞-categories" in [START_REF] Toën | Vers une axiomatisation de la théorie des catégories supérieures[END_REF] (text in French) and Riehl and Verity's "∞-topos" in [START_REF] Riehl | Elements of ∞-category theory[END_REF], but we will not be talking about those in more detail in here.

The models of dg-categories

Let us now talk about dg-categories. Like simplicial categories, dg-categories are defined as being categories enriched over something: in this case, cochain complexes. As we will be discussing them in detail in Section 3.4, we won't go into detail here: we're just going to comment that Tabuada proved in [START_REF] Tabuada | Une structure de catégorie de modèles de Quillen sur la catégorie des dgcatégories[END_REF] (text in French; see [START_REF] Tabuada | Homotopy theory of dg categories via localizing pairs and Drinfeld's dg quotient[END_REF] for a definition in English) that there is a model structure over dgcat. Now, if ∞-categories already have a long and proud history, dg-categories are even older: indeed, we already find them being used on papers from the 1960s, like Kelly's 1965 paper [START_REF] Kelly | Chain maps inducing zero homology maps[END_REF]. In sight of that, we will restrain from procuring a full history of their evolution here: it is also not the point of this introduction. Suffice to say that although categories and ∞-categories are in most cases enough to work with in Algebraic Topology, Algebraic Geometry often has to contend with a notion of linearity that doesn't necessarily gel well with those concepts. In consequence, dg-categories, having an embedded notion of linearity already, have established themselves over the years as a essential tool in the field, up to the present day. A good example of that use is the Geometric Langlands Program, which was rewritten by Arinkin and Gaitsgory in [START_REF] Arinkin | Singular support of coherent sheaves and the geometric Langlands conjecture[END_REF] in terms of dg-categories. For more details on that, we direct the reader towards the book A study in Derived Algebraic Geometry, by Gaitsgory and Rozenblyum, (see [START_REF] Gaitsgory | A study in derived algebraic geometry[END_REF] and [START_REF] Gaitsgory | Deformations, Lie theory and formal geometry[END_REF]).

But as useful as dg-categories are, they aren't perfect. Indeed, for example, the category of dg-categories has a monoidal structure, and it has a model structure; but those two aren't compatible. That, among other things, has pushed researchers in the last few years to try and find different models of dg-categories, following the footsteps of ∞-categories. We have already talked about our first analogy: dg-categories would be the simplicial categories. It is interesting to notice, too, that one of the reasons that pushed people to search for alternative models for ∞-categories outside of simplicial categories is that, like in our case, the simplicial model structure on simplicial categories also isn't compatible with its monoidal structure (the direct product, in that context).

Let us start with quasi-categories. We have one result by Cohn in [START_REF] Cohn | Differential graded categories are k-linear stable ∞-categories[END_REF] saying that there is an equivalence between the underlying ∞-category of the model category of dg-categories localized at the Morita equivalences, and the ∞-category of small idempotent-complete k-linear stable quasi-categories. Unluckily for us, k-linear stable quasi-categories aren't really very user-friendly: for example, if we have an adjoint between two linear quasi-categories, it is very complicated to prove that there exists a linear adjoint. Also, if x is an object in a k-linear quasi-category, proving that End(x) can be represented by a dg-algebra is very complicated in the world of k-linear quasi-categories, but it is an almost direct result of the definition on dg-categories.

More recently, there has been another approach to the subject: Mertens has offered in [START_REF] Mertens | Templicial objects: Simplicial objects in a monoidal category[END_REF] a definition of a C-enriched quasi-category for C a cocomplete monoidal category (see definition 2.2.26 in [START_REF] Mertens | Templicial objects: Simplicial objects in a monoidal category[END_REF] for more details), and has constructed a functor that lifts the classical dg-nerve functor dgcat → sSet into a linear dg-nerve dgcat → S ⊗ Mod(k)

where S ⊗ Mod(k) is the category of templicial (meaning 'tensor simplicial'; their "Mod(k)-enriched" simplicial sets) modules (see definition 2.4 in [START_REF] Mertens | Linear quasi-categories as templicial modules[END_REF] for more details). In a talk at the Institut Poincaré in September 2022 (see [START_REF] Lowen | Enriching the nerve construction[END_REF]) , Lowen mentioned that Mertens and herself are working on a Quillen equivalence to link their Mod(k)-enriched quasi-categories to dg-categories, but that it is still a work in process.

On the Segal category side of things, Bacard has defined in [START_REF] Hugo | Segal enriched categories and applications[END_REF] a notion of enriched Segal category, and consequently a notion of Segal dg-category, by saying that, fixing a set O, a Segal dg-category is a W -colax morphism of the form

F : P O → C(k),
where O is a groupoid called the coarse category associated to O and P O is the 2-path-category of O (see definitions 4.1 and 2.7 in [START_REF] Hugo | Segal enriched categories and applications[END_REF] for more details). In this case, too, it seems like the comparison of these objects to dg-categories is a work in progress: indeed, in the introduction of this paper Bacard says the first task now that the enriched Segal categories are defined will be to develop the homotopy theory of dg-Segal categories and compare it to our original categories.

So we have a definition of a dg-quasi-category, and a definition of a dg-Segal category, but if we are following the same pattern as in the last section, there is one left: we have no definition of a complete dg-Segal space. And that is where our results come in. Following the footsteps of Rezk, we will construct a "linearized version" of the complete Segal spaces and will (up to a certain unproved hypothesis) see that there is a chain of Quillen adjunctions that makes it into an equivalence of the homotopy categories. In our case, we will follow a similar pattern: but it is not a straight and clear road. Indeed, the linear structure that we now have on our categories will come up again and again to complicate things. Firstly, we will choose a certain category of functors (in our case, the slightly more complicated category of functors from free dg-categories of finite type to simplicial sets) and we define dg-Segal spaces to be the an object in that category such that a certain amount of morphisms are weak equivalences. Already, the condition on the Segal morphism won't be enough: we will need to add a condition saying that we can add a term to the complex of modules in the morphisms.

Once that is done, it's not complicated to prove that there is a Bousfield localization such that its local objects are exactly the dg-Segal spaces that are fibrant for the projective structure. Then, as in the case of Segal spaces, the nerve functor (that we will here call Sing) will not be a Quillen equivalence for this model structure, forcing us to do a second Bousfield localization. We won't have to look very far for this: we will simply define a "forgetful" functor between dg-Segal spaces and classical Segal spaces and define complete dg-Segal spaces to be the dg-Segal spaces that become complete by the forgetful functor.

But here we stumble upon our dear linearity again. Indeed, in order to prove that our nerve functor is a Quillen equivalence here, we would like to do as Rezk does and we define a class of morphisms that we will call DK-equivalences, such that the weak equivalences in the complete dg-Segal model structure are the DKequivalences between dg-Segal spaces. But in order to do so, Rezk uses the direct product on simplicial spaces in order to compute a certain exponential. We don't have that privilege: as mentioned before, the monoidal structure and the model structure in dgcat are not compatible. In consequence, in order to prove our main result, we will first have to define a monoidal model structure on our complete dg-Segal spaces. Due to a lack of time, this hasn't been possible to achieve in this manuscript, and we leave the fact that DK-equivalences between dg-Segal spaces are the weak equivalences for the complete dg-Segal model category as a hypothesis.

Assuming that hypothesis to be true, though, we can effectively prove that there exists an equivalence between the homotopy category of dg-categories and the homotopy category of complete dg-Segal spaces for the complete dg-Segal model structure.

Why do we care?

Of course, if we are going to spend all this time and effort constructing these complete dg-Segal spaces, we'll need to justify our choices. Why do we want to construct these objects?

The first reason has already been mentioned: the category of dg-categories as we know them has a monoidal structure, and also a model structure, but those two aren't compatible. Indeed, the object ∆ k (1, 0, 1) (i.e., the dg-category with two objects and k as the complex of morphisms between the two) is cofibrant in the model category of dg-categories, but it is easy to prove that ∆ k (1, 0, 1) ⊗ ∆ k (1, 0, 1) is not. Now, the construction of the complete dg-Segal model structure itself will force us to define a monoidal structure on them that will be compatible with the model structure, solving that issue. That would probably be a big step in order to prove linear versions of classic category theorems, like the Barr-Beck theorem, which at this point in time not only cannot be deduced from its classical version, but can't even be defined properly in the linear case.

Also, the construction of dg-categories as dg-Segal spaces will leave us with a category of functors, which are, to quote Dugger in [START_REF] Dugger | Universal homotopy theories[END_REF], "a kind of presentation by generators and relations". As it is usually the case in those types of structures, having a presentation like that makes constructing functors from the category of complete dg-Segal spaces much easier: we will just have to define it on the "generators" and make sure they take the "relations" to weak equivalences. In particular, that would give us a nicer and easier way to calculate the automorphisms in dgcat.

This is not a new way to go around it, either: both Toën in [START_REF] Toën | Vers une axiomatisation de la théorie des catégories supérieures[END_REF] and Barwick and Schommer-Pries in [START_REF] Barwick | On the unicity of the theory of higher categories[END_REF] have utilized these "presentations by generators and relations" in order to define axiomatizations of (∞, 1)-categories and (∞, n)-categories respectively; and they then go on to use those to prove that the group of automorphisms of (∞, n)-categories is isomorphic to the discrete group (Z/2Z) n . It is not a coincidence that Toën's paper ends by saying that every theory of ∞-categories is equivalent to the category of complete Segal spaces, and not some other model.

Organisation of the main text

This thesis is divided in three different sections, each marked by a different chapter.

In the first chapter, 'Background Notions', we will remind the reader (or introduce them) to the basic notions we will be working with: model categories and Quillen adjunctions, especially those of cochain complexes and of diagrams; left and right proper model categories and homotopy colimits; mapping spaces; left Bousfield localizations; simplicial objects, simplicial categories, and dg-categories. We will pay special attention to the model structure of dg-categories. This chapter also includes a section explaining the construction of Dugger's "universal model category" for a category C.

In the second chapter, 'dg-Segal Spaces', we deal with the bulk of the results. We could divide it into three parts, content-wise.

In the first part, which is exclusively section 1, we will construct a chain of Quillen adjunctions between the category of dg-categories and Fun S (cL op S , sSet), the category of simplicial functors between free dg-categories of finite type and simplicial sets. We will give an explicit construction of that functor, Re : Fun S (cL op S , sSet) ⇌ dgcat : Sing .

In the second part, which encompasses sections 2 and 3, we will discuss and construct dg-Segal spaces and complete dg-Segal spaces. Following the example of [START_REF] Rezk | A model for the homotopy theory of homotopy theory[END_REF], we will try to determine the image of the functor Sing by giving a description of its functors in terms of whether they make certain morphisms into weak equivalences. In particular, we say that a functor F is a dg-Segal space if it satisfies

1. For all L, K ∈ cL S , F (L K) → F (L) × F (K) is a weak equivalence.
2. The image of the initial object is a point, i.e. F (∅) ≃ * .

3. Let G be a graph in Gr(C(k)). For all α ∈ Z n (G(x, y)), the image of the free dg-category issued from G(< α >) is a homotopy pullback in sSet of the following form:

F (L(G(< α >))) F (L(G)) F (∆ c k (1, n, 1)) F (∆ k (1, n, 1)).
Then, we construct a Quillen adjunction between Fun S (cL op S , sSet) and simplicial spaces, and prove that it sends dg-Segal spaces to classical Segal spaces. We then use that adjunction to define complete dg-Segal spaces by saying that they are the dg-Segal spaces whose image through the linearisation functor is a complete Segal space. That gives us the following definition: F is a complete dg-Segal space if

F (k) → F hoequiv
is a weak equivalence. We prove that the image of the Quillen adjunction Sing is included in the complete Segal spaces. We construct two model structures for Fun S (cL op S , sSet) such that dg-Segal spaces and complete dg-Segal spaces, respectively, are their fibrant objects. And lastly in this section, we define a type of morphism called DK-equivalences and we hypothesize that the weak equivalences for the complete dg-Segal model structure are exactly the DK-equivalences.

Hypothesis 2.5.1 (Hypothesis 4.3.22). Let f : F → G be a morphism between two functors satisfying the dg-Segal conditions. Then, f is a DK-equivalence if and only if it is a weak equivalence in the complete dg-Segal model structure.

Lastly, the third part of this chapter, which encompasses sections 4, 5 and 6, deals with proving that (assuming the hypothesis to be true) the (Re, Sing) is actually a Quillen equivalence on the complete dg-Segal spaces. Firstly, in section 4 we will define and construct a certain type of hypercovers, first in a general model category and then on dg-categories, T * → T , and prove that the homotopy colimit of such a hypercover is weak equivalent to the original object, hocolim T i ≃ T . Then, in section 5 we use those hypercovers to prove that the adjunction (Re, Sing) is fully faithful, up to DK-equivalences.

Theorem 2.5.2 (Theorem 4.5.6). Assuming Hypothesis 4.3.22 to be true, for all T ∈ dgcat we have Re k (Sing k )(T ) ≃ T , and the functor Sing k is fully faithful.

And lastly, in section 6 we prove that, assuming the hypothesis to be true, the adjunction is essentially surjective on the dg-Segal spaces. For that, we construct a special type of hypercovers of functors in Fun S (cL op S , sSet) of the form Sing(T * ) → F and we prove that the image of the homotopy colimit of T * is weak equivalent to F . Theorem 2.5.3 (Theorem 4.6.14). Let F be a functor that satisfies the dg-Segal conditions. Then there exists a dg-category T such that the morphism Sing(T ) → F is a DK-equivalence. So if the Hypothesis is true, the adjunction Re : dg -Segal ⇌ dgcat : Sing is a Quillen equivalence.

In the third and last chapter, 'Future Work', we explore several paths in which the work in this thesis can be expanded on. In a first section, we will tackle the Hypothesis from the last chapter, explaining what would be the main methods in which we would prove it. Then, in the second section, we will talk about the linear simplex category ∆ k . This is intended to be some kind of linearized version of the simplex category ∆, and we expect it to give us some kind of Quillen equivalence between Fun S (cL op S , sSet) and Fun S (∆ op k , sSet) that would allow us to define complete dg-Segal spaces directly as simplicial functors from ∆ k to sSet. Lastly, we make some quick comments about other possible applications of our results.

Notation

Although all the following notations will be mentioned and explained in the next chapter, we add them here for easier access.

• We denote an adjunction between two categories by F : M ⇌ N : G, with the left adjoint always being the arrow on top.

• We denote the category of simplicial sets by sSet, the category of cochain complexes by C(k) and the category of dg-categories as dgcat.

• We fix k to be a commutative ring. We denote the tensor product on k in C(k) as -⊗ -, and the shift on a cochain complex A as A[-].

• We denote by k[s] the cochain complex concentrated in degree s, where it is k, and k c [s] to be the complex concentrated in degrees s and s -1, where it is k.

• We denote by Fun(A, B) the category of functors between categories A and B, and Fun S (A, B) the category of simplicial functors between simplicial categories A and B.

• We denote by Gr(A) the category of graphs enriched over a category A, and Gr(C(k)) tf the full subcategory of graphs enriched over complexes of finite type.

• We denote by L the category of free dg-categories, and cL the full subcategory of cofibrant free dgcategories of finite type.
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Chapter 3

Background notions "Let's start at the very beginning, a very good place to start" -The Sound of Music, Do-Re-Mi

Model categories

A central tool in this work is the concept of model categories. In that vein, let us recall some results and definitions about them. As these results are all well known, unless stated otherwise the results in this section will be taken from [START_REF] Hovey | Model categories[END_REF].

Definitions

The results from this section come from [Hov99, Sections 1.1 and 1.3].

Definition 3.1.1. Let M be a category, and f, g morphisms in M . We say that f is a retract of g if there exists a commutative diagram of the form

A B A C D C f Id A g f Id C Definition 3.1.2. Let M be a category. A functorial factorization is an ordered pair (α, β) : Morph(M ) 2 → Morph(M ) 2 of functors such that for all morphisms f in C, we have a factorization f = β(f ) • α(f ).
Definition 3.1.3. Let M be a category and i and p morphisms in M . We say that i has the left lifting property with respect to p, and that p has the right lifting property with respect to i, if for every commutative square

A B C D i p ∃h
there exists h, called "a lift", which makes both triangles also commutative. Definition 3.1.4. Let M be a category. We call a model structure on M the data consisting of three sets of morphisms in M , called weak equivalences, fibrations and cofibrations, and two functorial factorizations, (α, β) and (γ, δ) satisfying the following properties. Let f and g be morphisms in M .

• The 2-out-of-3 property: If we can define the composite of f and g, and two out of f , g and f • g are weak equivalences, the third one is too.

• Closure by retracts: If f is a retract of g and g is a weak equivalence, a fibration or a cofibration, then f is too.

• The lifting property: We define trivial fibrations (trivial cofibrations) to be the morphisms that are at the same time weak equivalences and fibrations (cofibrations). Trivial cofibrations have the left lifting property with respect to fibrations, and cofibrations have the left lifting property with respect to trivial fibrations. In other words, if i is a cofibration and p is a fibration, and at least one of them is a weak equivalence, a lift of

A B C D i p
exists.

• The factorization property: the morphism α(f ) is a cofibration, β(f ) is a trivial fibration, γ(f ) is a trivial cofibration and δ(f ) is a fibration. In other words, when factorizing a morphism using the functorial factorizations, the first term is always a fibration, the second is always a cofibration, and at least one of them is a weak equivalence.

Definition 3.1.5. We call a model category a category which is both complete and cocomplete together with a model structure on it.

Remark 3.1.6. This definition is self-dual, which means that if M is a model category, M op is also a model category, where the fibrations of M are the cofibrations of M op and vice-versa. We leave to the reader to find the functorial factorizations.

As we assume a model category to be complete and cocomplete, it has an initial and a final object, the limit and colimit of the empty diagram. It then gives us the following definitions: Definition 3.1.7. Let M be a model category. We say that an object x ∈ Obj(M ) is fibrant if the map from x to the final object is a fibration. We say that x is cofibrant if the map from the initial object to x is a cofibration.

Using the functorial factorizations from the model structure, we see that for any object x ∈ M in a model category, there exists a factorization of ∅ → x of the form ∅ → Qx → x, where the object Qx is cofibrant and Qx → x is a trivial fibration. Similarly, there exists a factorization of x → * of the form x → Rx → * where the object Rx is fibrant and x → Rx is a trivial cofibration. Definition 3.1.8. We call Qx the cofibrant replacement of x, and Rx the fibrant replacement of x. We have functors Q, R : M → M , and we call them the cofibrant (fibrant) replacement functors.

In reality, we don't need to explicitly define all the components in the model structure. In fact, we have a result that tells us that the axioms are overdetermined.

Proposition 3.1.9. Let M be a model category. Then a map in M is a cofibration (a trivial cofibration) if and only if it has the left lifting property with respect to all trivial fibrations (fibrations). By duality, a map is a fibration if and only if it has the right lifting property with respect to all trivial cofibrations (cofibrations).

As a result of this, we will almost never define both the fibrations and the cofibrations, because just having one of them and the weak equivalences completely determines the other.

Following the tradition for defining things in category theory, now that we have our objects we need to define the morphisms between those objects. What exactly do we consider to be a morphism of model categories? We call those Quillen functors, or, equivalently, Quillen adjunctions. Definition 3.1.10. Let M and N be two model categories.

• We say that a functor F : M → N is a left Quillen functor if F is a left adjoint and preserves cofibrations and trivial cofibrations.

• We say that a functor U : N → M is a right Quillen functor if U is a right adjoint and preserves fibrations and trivial fibrations.

• Let (F, U, ϕ) be an adjunction between M and N . We say that (F, U, ϕ) is a Quillen adjunction or a Quillen functor if F is a left Quillen functor.

Remark 3.1.11. It is important to remember that neither left nor right Quillen adjunctions preserve all weak equivalences, but only the ones that are also cofibrations (left) or fibrations (right). That means that Quillen equivalences, as is, do not preserve the whole structure of a model category. There is one context in which it does work, though: we know that every left Quillen functor preserves weak equivalences between cofibrant objects, and every right Quillen functor preserves weak equivalences between fibrant objects.

Remark 3.1.12. It might sound weird, and lacking symmetry, that we only ask for F to be a left Quillen functor, and not for U to be a right Quillen functor too. In fact, it is easy to prove that if we have a Quillen functor (F, U, ϕ), then the functor U is automatically a right Quillen functor, so we don't need to.

Remark 3.1.13. We can of course compose left Quillen functors to form a new left Quillen functor, and the same goes for right Quillen functors. On the other hand, it isn't surprising to find that composing a left Quillen functor with a right Quillen functor doesn't necessarily give us anything useful. In particular, that means that if we have three model categories M, N, L and two Quillen adjunctions (F, U, ϕ) : M → N and (F ′ , U ′ , ψ) : N → L we have a Quillen adjunction between M and L; but if we have two Quillen adjunctions (F, U, ϕ) : M → N and (F ′ , U ′ , ψ) : L → N there is no reason there should be a Quillen adjunction between M and L.

Remark 3.1.14. In practice we will seldom write a Quillen functor by giving the whole adjunction: we will usually just give one of the functors. This abuse is not of great importance, as we can prove that if (F, U, ϕ) is a Quillen adjunction and we have another adjunction (F, U ′ , ψ), then (F, U ′ , ψ) is also a Quillen adjunction.

Notation 3.1.15. Whenever we write the two functors that form the adjunction, we will denote them by F : M ⇌ N : Q, where the left adjunction is always the arrow on top.

There is also a criterion that will be very useful for us later, as a way to prove something is a Quillen adjunction.

Proposition 3.1.16. [JT07, Proposition 7.15] Let M and N be two model categories, and let F : M ⇌ N : G be an adjunction between them. Then the adjunction is a Quillen adjunction if and only if F preserves cofibrations and G preserves fibrant objects.

Lastly in this part, we will define what we call an equivalence in model categories.

Definition 3.1.17. Let M and N be two model categories and (F, U, ϕ) a Quillen adjunction. We say that (F, U, ϕ) is a Quillen equivalence if for all cofibrant objects X in M and all fibrant objects Y in N , a map

f : F X → Y is a weak equivalence in N if and only if ϕ(f ) : X → U Y is a weak equivalence in M .

The homotopy category

Historically, the main reason for the introduction of model categories was that while we can always localize a category C with respect to a set of morphisms W , the resulting object of the Gabriel-Zisman localization is quite difficult to work with, and the construction forces us to consider higher universes. Luckily, we can prove that, if we can build a model category with the set W as its weak equivalences, the localized category is equivalent to a much better behaved and smaller category. The results from this section come from [Hov99, Section 1.2] unless stated otherwise. Definition 3.1.18. (Gabriel-Zisman localization) Let C be a category and W a set of morphisms in C. We call the localization of C with respect to W a "category" (barring size issues) C W -1 coupled with a functor l : C → C W -1 that sends all morphisms in W to isomorphisms in C W -1 , with the following universal property. Let D be a category coupled with a functor f : C → D such that f sends all morphisms in W to isomorphisms in D; then there is a unique functor And now that we have defined the homotopy category of M a model category, it is time to start building that equivalent version that we promised was so much easier to use. For that, we will start by setting a notation.

f ′ : C W -1 → D such that f ′ • l = f .
Notation 3.1.22. let M be a model category. Then,

• We denote the full subcategory of cofibrant objects by M c .

• We denote the full subcategory of fibrant objects by M f .

• We denote the full subcategory of objects who are both fibrant and cofibrant by M cf .

Proposition 3.1.23. Let M be a model category. Then the inclusion functors induce equivalences of categories Ho(M cf ) → Ho(M c ) → Ho(M ) and Ho(M cf ) → Ho(M f ) → Ho(M ).

So if we find a way to define Ho(M cf ) that is way easier to understand (and also a category in this universe), we will be able to use it as an equivalent category to Ho(M ). Definition 3.1.24. Let M be a model category.

• Let B be an object in M . We call B ′ a cylinder object for B if we have a factorization of the fold map

B B → B into a cofibration i 0 + i 1 : B B → B ′ and a weak equivalence s : B ′ → B.
• Let X be an object in M . We call X ′ a path object for X if we have a factorization of the diagonal map X → X × X into a weak equivalence X → X ′ and fibration (p 0 , p 1 ) : X ′ → X × X.

Remark 3.1.25. It should be evident to see that such a factorization always exists: indeed, we just need to apply the functorial factorizations we defined earlier. In that case, the morphism B ′ → B is also a trivial fibration and X → X ′ is a trivial cofibration.

Definition 3.1.26. Let M be a model category, f, g : B → X two morphisms in M .

• We call a left homotopy from f to g a map H : B ′ → X where B ′ is a cylinder object for B, such that Hi 0 = f and Hi 1 = g. If such a left homotopy exists, then we say that f and g are left homotopic and we denote it by f ∼ l g.

• We call a right homotopy from f to g a map H : B → X ′ where X ′ is a path object for X, such that p 0 H = f and p 1 H = g. If such a right homotopy exists, then we say that f and g are right homotopic and we denote it by f ∼ r g.

Remark 3.1.27. The reader will probably recognize the homotopies used in Algebraic Topology to define homotopy groups, and it is no coincidence: indeed, with the construction of the model category of topological spaces that we will provide later, the definitions of right and left homotopy both coincide with each other and with the classical definition.

Definition 3.1.28. Let M be a model category, f, g : B → X two morphisms in M . We say that f and g are homotopic if they are both left and right homotopic, and we denote it by f ∼ g.

Definition 3.1.29. Let M be a model category, f : B → X a morphism in M . We say that f is a homotopy equivalence if there exists another morphism g :

X → B such that f • g ∼ Id X and g • f ∼ Id B .
If such a homotopy equivalence exists, we say that B and X are homotopy equivalent.

At this stage, people familiar with Algebraic Topology probably know where this is going: we are going to try and make a quotient category by taking the equivalence relation given by the homotopy equivalences. And we wish we could do that directly, but it doesn't work. Indeed, in general we have that left homotopies are compatible with composition, but only on the left; right homotopies are compatible with composition, but only on the right. In the same vein, these relations make equivalence relations only if B is cofibrant (for the left homotopy) or X is fibrant (for the right homotopy). We will have, then, to add a few conditions to our objects so that the relations have the correct properties.

Proposition 3.1.30. Let M be a model category, B a cofibrant object of M and X a fibrant object of M . Then the definitions of left and right homotopy coincide on Hom(B, X) and are equivalence relations there. In particular, the homotopy relation is an equivalence relation on M cf and it's compatible with composition. Hence the quotient category M cf / ∼ exists. This is the category we would like to prove is equivalent to Ho(M ). For now, we know that the functor M → M cf / ∼ sends homotopy equivalences to isomorphisms. Does it also send weak equivalences to isomorphisms? Proposition 3.1.31. Let M be a model category. Then a map in M cf is an homotopy equivalence if and only if it is a weak equivalence.

Corollary 3.1.32. Let M be a model category. Then the category M cf / ∼ coupled with the functor L : M cf → M cf / ∼ satisfies the following universal property. Let D be a category with a functor f : M cf → D such that f sends all weak equivalences in M cf to isomorphisms in D; then there is a unique functor

f ′ : M cf / ∼→ D such that f ′ • L = f .
We have proven, now, that the category M cf / ∼ is a localization of M cf with respect to the weak equivalences. We need, though, to see that M cf / ∼ is actually equivalent to the localization of M . But that is a consequence of Proposition 3.1.23: we have proven that Ho(M cf ) is equivalent to Ho(M ). We summarize the entirety of this in a single theorem. Theorem 3.1.33. Let M be a model category, Ho(M ) the localization of M with respect to the weak equivalences and l : M → Ho(M ) the localization functor. We remind that R is the fibrant replacement functor and Q is the cofibrant replacement functor.

• The inclusion functor i : M cf → M induces an equivalence of categories

(M cf / ∼) ∼ = Ho(M cf ) → Ho(M ).
• There are natural isomorphisms

(Hom M (QRX, QRY )/ ∼) ∼ = Hom Ho M (l(X), l(Y )) ∼ = (Hom M (RQX, RQY )/ ∼).
In particular, Ho(M ) is a category without changing the universe.

• The localization functor l : M → Ho(M ) sends right and left homotopy maps to isomorphisms.

• If f : A → B is a map in M such that l(f ) is an isomorphism in Ho(M ), then f is a weak equivalence.
Lastly, now that we have a useful definition of the homotopy category of a model category M , we can ask the question of how we go from functors between model categories to functors between the induced homotopy categories. • We define the total left derived functor LF : Ho(M ) → Ho(N ) to be the composition

LF = Ho(F ) • Ho(Q) : Ho(M ) → Ho(M c ) → Ho(N ).
• We define the total right derived functor RU : Ho(N ) → Ho(M ) to be the composition

RU = Ho(U ) • Ho(R) : Ho(N ) → Ho(N f ) → Ho(M )
Notation 3.1.35. As functors are almost never left and right Quillen functors for the same model structure, we usually don't specify whether the total derived functor is left or right. We call the act of going from a Quillen functor to a total derived functor to "derive" a functor.

Remark 3.1.36. As we can see, we don't really need F and U to be Quillen functors for the definition to work: any functor that preserves weak equivalences between cofibrant objects can be derived to a total left derived functor, and any functor that preserves weak equivalences between fibrant objects can be derived to a total right derived functor.

On the other hand, we defined alongside the Quillen adjunctions another type of functor: the Quillen equivalences. We would love if two model categories that are Quillen equivalent would be, conceptually, "the same" model category, in the same way that two categories that are equivalent are conceptually "the same". Sadly, they are not, not exactly. It all boils down, again, to the homotopy categories.

Proposition 3.1.37. Let M and N be two model categories, and F : M ⇌ N : U a Quillen adjunction. Then the following are equivalent:

1. (F, U, ϕ) is a Quillen equivalence.
2. For all X cofibrant, the composite X → U F X → U RF X is a weak equivalence, and for all fibrant Y the composite F QU Y → F U Y → Y is also a weak equivalence.

3. The adjunction (LF, RU, Rϕ) is an adjoint equivalence of categories.

So two model categories are Quillen equivalent if and only if their homotopy categories are equivalent.

Constructions on model categories

We now have the main definitions on model categories. But how and for what can we use them? In this section we will construct a few structures that will help us afterwards, either to get model structures for our favourite categories or to work with those favourite model categories.

Cofibrantly generated model categories

Proving that a category admits a model structure is quite hard. To compensate for it, we have a concept that will help us construct model categories in a "easier" way, that of cofibrantly generated model categories.. But before, we will need a few definitions. The results from this part come from [Hov99, Ch. 2, Ch.3], unless stated otherwise.

Definition 3.2.1. Let C be a category with all small colimits, and λ an ordinal. A λ-sequence is a colimit-preserving functor X : λ → C.

As a λ-sequence preserves colimits, we have a isomorphism colim β<γ X β → X γ for all limit ordinals γ < λ. Definition 3.2.2. Let C be a category with all small colimits, λ an ordinal and X : λ → C a λ-sequence. Then we call the map X 0 → colim β<λ X β the transfinite composition of the λ-sequence.

Definition 3.2.3. Let κ be a cardinal. We say that an ordinal α is κ-filtered if it is a limit ordinal and, if A ⊂ α and |A| < κ, then sup A < α. Definition 3.2.4. Let C be a category with all small colimits, I a collection of morphisms of C, A an object of C and κ a cardinal. We say that A is κ-small relative to I if, for all κ-filtered ordinals α and all α-sequences X such that every X β → X β+1 is in I for β + 1 < α, the map

colim β<α Hom C (A, X β ) → Hom C (A, colim β<α X β )
is an isomorphism. We say that A is small relative to I if it is κ-small relative to I for some cardinal κ. Definition 3.2.5. Let C be a category and I a set of maps in C containing all small colimits. Then a relative I-cell complex is a transfinite composition of pushouts of elements in I. We denote the collection of relative I-cell complexes by I-cell. Definition 3.2.6. Let C be a category and I be a set of maps in C.

• A map is I-injective if it has the right lifting property with respect to every map in I. We will denote the set of I-injective maps by I -inj.

• A map is I-projective if it has the left lifting property with respect to every map in I. We will denote the set of I-projective maps by I -proj.

• A map is a I-cofibration if it has the left lifting property with respect to every map in I -inj, i.e. if it is in (I -inj) -proj. We will denote the set of I-cofibrations by I -cof .

• A map is a I-fibration if it has the right lifting property with respect ot every map in I -proj, i.e. if it is in (I -proj) -inj. We will denote the set of I-fibrations by I -f ib.

So we finally have the definitions necessary to give that tool we wanted to use to construct model categories.

Definition 3.2.7. Let M be a model category. We say that M is a cofibrantly generated model category if we have two sets of maps, I and J, such that • The domains of the maps in I are small relative to I-cell.

• The domains of the maps in J are small relative to J-cell.

• The fibrations are the maps that have the right lifting property with respect to every map in J, i.e. the set of fibrations is J -inj.

• The trivial fibrations are the maps that have the right lifting property with respect to every map in I, i.e. the set of trivial cofibrations is I -inj.

We call I the set of generating cofibrations, and J the set of generating trivial cofibrations.

As we can see, cofibrantly generated model categories are, in particular, model categories. In fact, most model categories we work with in "real life" are of this type. As it is, we can give a way of proving something is cofibrantly generated model category without going through the main definition. It isn't easy to prove these conditions either by any measure, but they are less complicated than the other option. Theorem 3.2.8. Let C be a category with all small limits and colimits. Let W , I and J be sets of maps in C. Then there is a cofibrantly generated model structure on C which has W as its weak equivalences, I as its set of generating cofibrations and J as its set of generating trivial cofibrations, if and only if the following conditions are satisfied:

• The set W has the 2-out-of-3 property.

• The set W is closed under retracts.

• The domains of the maps in I are small relative to I-cell.

• The domains of the maps in J are small relative to J-cell.

• We have the inclusion J -cof ⊆ (W ∩ I -cof ).

• We have the inclusion I -inj ⊆ (W ∩ J -inj).

• At least one of these inclusions is an equality.

There are a few examples of model categories that we will be using a lot during this thesis: let us give the description of their model structures now.

Let us start with topological spaces. We will write S n-1 the unit sphere of dimension n and D n the unit disk of dimension n. Definition 3.2.9. Let Top be the category of topological spaces and let f : X → Y be a morphism in Top.

• We say that f is a weak equivalence in Top if for all x ∈ X and all n ∈ N the induced morphism of groups

π n (f ) : π n (X, x) → π n (Y, f (x))
is an isomorphism of groups.

• We define I to be the set of boundary inclusions f : S n-1 → D n for all n ∈ N.

• We define J to be the set of all inclusions f :

D n → D n × [0, 1] such that f (x) = (x, 0) for all x ∈ X and n ∈ N.
Theorem 3.2.10. There is a cofibrantly generated model structure in Top with the weak equivalences as stated above, I the generating cofibrations and J the generating trivial cofibrations. Moreover, every object in Top is fibrant.

Now that we have topological spaces, we can get the next model category, which will be important for what follows: sSet, the category of simplicial sets. For that, though, we are going to need a couple of results first.

Definition 3.2.11. Let n ∈ N be natural number. We define a simplicial set ∆ n : ∆ op → Set to be

∆ n ([k]) = Hom ∆ ([k], [n]) for all [k] ∈ ∆ op .
Proposition 3.2.12. Let C be a category with small colimits. Then the category of functors from ∆ to C, Fun(∆, C), is equivalent to the category of adjunctions sSet ⇌ C.

In particular, this result means that if we want to construct an adjunction between simplicial sets and another category C, it suffices to construct a cosimplicial object in C. We are going to use that in order to construct an adjunction between simplicial spaces and topological spaces. Definition 3.2.13. There exists an adjunction between topological spaces and simplicial sets. We will denote by Re : sSet ⇌ Top : Sing. We call Re the geometric realization and Sing the singular functor.

Sketch of construction.

Fix n ∈ N a natural number. We define Re(∆ n ) to be the convex hull of (e 0 , . . . , e n ) ∈ R n , where e 0 = (0, . . . , 0) and for all 1 ≤ i ≤ n e i is the vector with i-th coordinate 1 and all others 0. In other words,

Re(∆ n ) = {(x 1 , . . . , x n ) ∈ R n / ∀1 ≤ i ≤ n, t i ≥ 0, t i ≤ 1}.
We then have a comsimplicial topological space Re(∆ * ). By Proposition 3.2.12, we have an adjunction Re : sSet ⇌ Top : Sing and we have finished our construction. Q.E.D.

Definition 3.2.14. Let sSet be the category of simplicial sets.

• We say that a morphism f : X → Y of simplicial sets is a weak equivalence if and only if its geometric realization Re(f ) is a weak equivalence for the model structure we have defined on Top.

• We define I to be the inclusions ∂∆ n → ∆ n for all n ∈ N.

• We define J to be the set of horn inclusions Λ r n → ∆ n for all n ∈ N and all 0 ≤ r ≤ n.

Theorem 3.2.15. There is a cofibrantly generated model structure in sSet with the weak equivalences as stated above, I the generating cofibrations and J the generating trivial cofibrations. Moreover, every object in sSet is cofibrant.

Finally, we are going to give the model structure of the category C(k) of cochain complexes over a commutative ring k. We define k [n] to be the cochain complex concentrated in degree n, where it takes value k, and we also define k c [n] to be the complex concentrated in degrees n and n -1, where it takes value k.

Definition 3.2.16. Let C(k) be the category of cochain complexes over k.

• We say that f : X → Y is a weak equivalence in C(k) if for all x ∈ N the induced morphism of cohomology groups

H n (f ) : H n (X) → H n (Y )
is an isomorphism of groups.

• We define I to be the inclusions k

[n -1] → k c [n] for all n ∈ N.
• We define J to be the inclusions 0 → k c [n] for all n ∈ N, where 0 is the complex which is zero everywhere.

Theorem 3.2.17. There is a cofibrantly generated model structure in C(k) with the weak equivalences as stated above, I the generating cofibrations and J the generating trivial cofibrations. Moreover, every object in C(k) is fibrant.

A particularly interesting model category is that of diagrams (or presheafs) over a model category. As it will be instrumental to the main results of this thesis, we're going to give it some attention. From here on, the results from this section are taken from [START_REF] Hirschhorn | Model categories and their localizations[END_REF]Ch. 11]. Definition 3.2.18. Let C and M be two categories. We define the category of C-diagrams in M , and we will denote it by Fun(C, M ), the category with the following data:

• A set of objects consisting on the functors from C to M , i.e. the functors F : C → M .

• For every two objects F, Q : C → M ∈ Obj(Fun(C, M )), a set Hom(F, Q) of the natural transformations between F and Q.

Notation 3.2.19. In the case where we work with the dual of C, we will call Fun(C op , M ) the category of C-presheafs on M . In particular, if we have M = sSet, we'll say the category of simplicial presheafs.

Is it necessary to prove each time that there exists a model structure for every category of diagrams? Thankfully, no. We can prove that if the category M has a cofibrantly generated model structure, then the category of diagrams also has a model structure (in fact, it has two!) Definition 3.2.20. Let C be a category and M be a cocomplete category. Let I be a set of morphisms in M . We will denote by F C I the set of maps in Fun(C, M ) of the form

C(α,•) A = F α A → F α B = C(α,•) B,
where A → B is an element of I and α ∈ Obj(C).

Theorem 3.2.21. Let C be a small category and M a cofibrantly generated model category with I the set of generating cofibrations and J the set of generating trivial cofibrations. Then the category of C-diagrams in M is a cofibrantly generated model category with F C I as its generating cofibrations and F C J as its generating trivial cofibrations. In this model category, we have that

• A morphism f : F → Q is a weak equivalence in Fun(C, M ) if it is objectwise a weak equivalence in M , i.e. if for all α ∈ C the morphism f (α) = F (α) → Q(α) is a weak equivalence in M . • A morphism f : F → Q is a fibration in Fun(C, M ) if it is objectwise a fibration in M , i.e. if for all α ∈ C the morphism f (α) = F (α) → Q(α) is a fibration in M .
We call this model structure the projective model structure on Fun(C, M ).

We have a model structure, and it's pretty easy: we just need to look at the morphisms objectwise. But what about the cofibrations? Are they objectwise too? Yes, but in this case we don't have an equivalence. Proposition 3.2.22. Let C be a small category and M a cofibrantly generated model category. Then a cofibration in the projective model structure on Fun(C, M ) is also objectwise a cofibration in M . Remark 3.2.23. It is important to remember that in the projective model structure all cofibrations are objectwise cofibrations, but the other implication isn't necessarily true: just because a morphism is objectwise a cofibration doesn't mean it is a cofibration in Fun(C, M ). There is another model structure for the category of diagrams, called the injective model structure, which is defined as having objectwise weak equivalences as weak equivalences and objectwise cofibrations as cofibrations, but in that case not all objectwise fibrations are fibrations. The injective model structure is somewhat less commonly used, as the lack of symmetry in the definition of cofibrantly generated model categories means that we need more conditions for it to exist. It does exist in the most common exemples, though. 

Proper model categories and homotopy colimits

Two important tools in category theory are pullbacks and pushouts; we would want to keep using them when we're dealing with model categories. The problem is that, in general, the pushout of a weak equivalence is not a weak equivalence. There is a certain class of model categories where weak equivalences can actually be pushed and pulled without losing their characteristics, though: proper categories. Also, we are working up to homotopy: it would be interesting to define limits and colimits only up to homotopy, and to see the links between those and classical limits and colimits. The results of this section come from [Hir03, Chapter 13] unless stated otherwise. Definition 3.2.25. Let M be a model category, and let A be a commutative square of the form

A B C D g f h k
• We say that M is left proper if every pushout of a weak equivalence along a cofibration is a weak equivalence. In other words, if A is a pushout, g is a cofibration and f is a weak equivalence, then h is also a weak equivalence.

• We say that M is right proper if every pullback of a weak equivalence along a fibration is a weak equivalence. In other words, if A is a pullback, k is a fibration and h is a weak equivalence, then f is also a weak equivalence.

• We say that M is proper if it is both left and right proper.

Remark 3.2.26. As the reader can see from the definition, even if a model category is proper, we still don't have that weak equivalences are preserved by pushouts and pullback along all morphisms: just cofibrations and fibrations. This is enough for our purposes, though.

And how do we know that a model category is left or right proper? Well, in the cases where we know that all objects are fibrant/cofibrant, it is actually quite simple. Proposition 3.2.27. Let M be a model category.

• Every pushout of a weak equivalence between cofibrant objects along a cofibration is a weak equivalence.

• Every pullback of a weak equivalence between fibrant objects along a fibration is a weak equivalence.

Corollary 3.2.28. Let M be a model category.

• If every object in M is cofibrant, the model category M is left proper.

• If every object in M is fibrant, the model category M is right proper.

• If every object in M is both cofibrant and fibrant, the model category M is proper. This is enough to give us that the categories Top and C(k) are right proper, and that sSet is left proper. But we actually have more than that. Proposition 3.2.29. The model categories Top, C(k) and sSet are proper. But that's not all: we can also find conditions for the category of presheaves over a category. Proposition 3.2.30. Let M be a cofibrantly generated model category and C be a small category. Then if M is left or right proper, the functor category Fun(C, M ) is also left or right proper, respectively.

Let us define now the homotopy pullback. We won't define the homotopy pushout, because we won't need it, but the construction is strictly dual. We remind the reader that if M has a model structure, it includes not only fibrations, cofibrations and weak equivalences, but also two functorial factorizations. In particular, a functorial factorization (γ, δ) such that if f is a morphism in M , then γ(f ) is a trivial cofibration and δ(f ) is a fibration. ←--Y ′ , and we denote it by X × h Z Y . Remark 3.2.32. We have defined the homotopy pushout only in the context of right proper model categories, as all categories we will be talking about are proper; but the definition exists even when the category M is not right proper. In that case, we would need to find fibrant replacements for all the objects involved before we dis the construction from the definition.

At first glance, there is no reason why this definition would be invariant by weak equivalences; but it is. Proposition 3.2.33. Let M be a right proper model category and a diagram

A B C A ′ B ′ C ′ g w A w B f w C g ′ f ′
where w A , w B , w C are weak equivalences. Then the induced map between homotopy pullbacks

A × h B C → A ′ × h B ′ C ′ is a weak equivalence.
So we have a description of the homotopy pullback: but calculating the functorial factorizations of morphisms can be hard. Luckily, we have a case where we can skip that step. And lastly, we will define the homotopy fiber of a morphism over a point. We recall that if we have a morphism f and a point z : * → Z, the fiber of f over z is a pullback of f along z. We will now do the same thing with homotopy pullbacks. Definition 3.2.36. Let M be a model category, f : X → Z a morphism in M and z : * → Z a point in M . We call the homotopy fiber of f over z a fibrant object in M which is weakly equivalent to the homotopy pullback of f along z.

Remark 3.2.37. We haven't defined the homotopy fiber directly as the homotopy pullback of f along a point because such an object isn't necessarily fibrant; but as in Top and C(k) all objects are fibrant, in both those categories we could compute the homotopy fiber just as the homotopy pullback.

And we end with a couple of corollaries that are trivial after the results we listed about homotopy pullbacks.

Corollary 3.2.38. Let M be a right proper model category. If f : X → Z is a fibration and z : * → Z is a point in M , then there exists a natural weak equivalence between the fiber of f over z and the homotopy fiber of f over z.

Corollary 3.2.39. Let M be a right proper model category and f : X → Z a morphism in M . If we have two points z : * → Z and z ′ : * → Z that are either left or right homotopic, then the homotopy fiber of f over z is weakly equivalent to the homotopy fiber of f over z ′ . Notation 3.2.40. In particular, this last result means that the homotopy fiber doesn't depend on the choice of the point over which we take it, as long as those points are homotopic. By abuse of notation, we will call them "the homotopy fiber of f ", without specifying the point.

Finally, we have talked about homotopy pullbacks; there is another, related concept we will need to adress. That is the concept of homotopy colimits. The pullbacks we have defined before are actually a particular case of homotopy limits, the dual concept. From here on, all results from this section come from [Lur09, Appendix A.2.8].

Definition 3.2.41. Let M be a model category and let f : C → C ′ be a functor between small categories. Let f ! : Fun(C, M ) ⇌ Fun(C ′ , M ) be the Quillen adjunction defined in Proposition 3.2.24. We call its total left derived functor Lf ! the homotopy left Kan extension of f . Definition 3.2.42. Let M be a model category and f : C → * a functor from a small category C to the terminal object in the category of small categories. Then we call the homotopy left Kan extension of f the homotopy colimit functor,

Lf ! : Ho(Fun(C, M )) → Ho(Fun( * , M )).
Definition 3.2.43. We remind the reader that taking an element in Fun( * , M ) is the same as taking an object in M ; so by this process, we take a functor ϕ : C → M and we get an object in M by applying the homotopy colimit functor. We will call Lf ! (ϕ) the homotopy colimit of ϕ.

(Co)simplicial framings and mapping spaces

In this thesis we will be working with simplicial spaces, and that means we need a way of getting (co)simplicial objects out of the objects in our category. How do we do that? Using (co)simplicial framings. Once again, the results in this section come from [Hov99, Chapter 5] and [Hir03, Chapter 16] unless stated otherwise. Definition 3.2.44. Let ∆ be the simplex category, i.e. the category of finite ordinals and weakly monotone functions. We define ∆ + to be the subcategory of injective order-preserving maps; and ∆ -the subcategory of surjective order-preserving maps. Let [n] be an object in ∆.

• We call the latching category of ∆ in [n] the full subcategory of (∆ + ↓ n) containing all objects except the identity map of n, i.e. the category containing all arrows in ∆ + with codomain [n] except for the identity. We denote it by ∂(∆ + ↓ n).

• We call the matching category of ∆ in [n] the full subcategory of (n ↓ ∆ -) containing all objects except the identity map on n, i.e. the category containing all arrows in ∆ -with domain [n] except for the identity. We denote it by ∂(n ↓ ∆ -).

Notation 3.2.45. We will denote objects in ∆ and ∆ op alternatively by [n] and ∆ n .

Definition 3.2.46. Let M be a model category. We define a cosimplicial object in M to be a diagram of the form F * : ∆ → M , and we denote its terms ∆ n → M by F n . We denote the category of cosimplicial objects in M by cM .

Definition 3.2.47. Let M be a model category. We define a simplicial object in M to be a diagram of the form F * : ∆ op → M , and we denote its terms ∆ n → M by F n . We denote the category of simplicial objects in M by sM .

Definition 3.2.48. Let M be a model category, [n] an object in ∆ and X : ∆ → M a cosimplicial object in M . By an abuse of notation we will also call X the induced diagram X :

∂(∆ + ↓ n) → M defined on objects by X([m] → [n]) = X(m), and the induced diagram X : ∂(n ↓ ∆ -) → M defined on objects by X([n] → [m]) = X(m).
• We define the latching object of X at n by L n X = colim ∂(∆ + ↓n) X, and the latching map of X at n to be the natural map L n X → X n .

• We define the matching object of X at n by M n X = lim ∂(n↓∆ -) X, and the matching map of X at n to be the natural map X n → M n X.

Remark 3.2.49. We have decided here to give the definitions in the most basic way to avoid unnecessary clutter, as they will be the only ones we'll be using. But matching and latching objects can be easily defined for any C Reedy category, not just for ∆. In fact, these last definitions are adapted from [Hir03, Section 15.2], where they are stated for any C Reedy category. In particular, they can be defined for X a simplicial object in M by dualizing. In that case, we'd take (∆ -) op to be our ∆ + and (∆ + ) op to be our ∆ -, and everything else would work in the exact same way.

Definition 3.2.50. Let M be a model category and X an object in M .

• We define a cosimplicial frame on X, denoted by C * (X), to be a cosimplicial object in M , i.e. a functor C * (X) : ∆ → M , such that C 0 (X) is isomorphic to X, and that for all n ∈ N, C n (X) is weak equivalent to X in the model structure of ∆-diagrams in M and the latching map

L n C * (X) → C n (X) is a cofibration in M .
• We define a simplicial frame on X, denoted by C * (X), to be a simplicial object in M , i.e. a functor C * (X) : ∆ op → M , such that C 0 (X) is isomorphic to X, and that for all n ∈ N, C n (X) is weak equivalent to X in the model structure of ∆-diagrams in M and the matching map

C n (X) → M n C * (X) is a fibration in M .
As it is common in all areas of mathematics, we have given a definition of objects, but we haven't worked out whether or not those objects really exist. Luckily for us, they do. Theorem 3.2.51. Let M be a model category. There exists a functorial simplicial frame C * (-) and a functorial cosimplicial frame C * (-).

So now for every object in a model category M we have a (co)simplicial object. We will now use these objects to get actual simplicial sets. For that, we will find an adjunction associated to every (co)simplicial object, in [Hov99, Section 3.1]. Proposition 3.2.52. Let M be a category with all small colimits (in particular, a model category). Then the category of cosimplicial objects in M , Fun(∆, M ), is equivalent to the category of adjunctions Adj(sSet, M ). In particular, if A * is a simplicial object in M then the right adjunction Map(A * , -) : M → sSet is defined to have n-simplices Hom(A n , -) for all n ∈ N. We denote the adjunction associated to a cosimplicial object A * by A * ⊗ -: sSet ⇌ M : M ap(A * , -).

Remark 3.2.53. As usual, we have a simplicial analog of this result. In this case, if we have A * a simplicial object in M , then the right adjunction Map(-, A * ) : M → sSet op is defined to have n-simplices Hom(-, A n ) for all n ∈ N, and we denote the adjunction associated to a simplicial object A * by (Hom(-, A * ), Map(-, A * ), ψ). • Let i : A → B be a cofibration in M . Then the map i * : Map(B, C * (X)) → Map(A, C * (Y )) is a fibration of simplicial sets, which is a trivial fibration if i is a trivial cofibration.

Are those adjunctions Quillen adjunctions? And what is the link between those two right adjoints called Map? Sadly, the adjunctions are not Quillen adjunctions in general, but they do preserve enough structure to be derived; and the total derived functors for Map(C * (A), -) and Map(-, C * (Y )) coincide. If we want to have those conditions for the original adjunctions, though, we will need to impose some more conditions. Proposition 3.2.56. Let M be a model category.

• Let X be a cofibrant object in M . Then the functor C * (X) ⊗ -preserves cofibrations and trivial cofibrations, and its right adjoint Map(C * (X), -) preserves fibrations and trivial fibrations. In particular, if X is a cofibrant object in M , then C * (X) ⊗ -: sSet ⇌ M : Map(C * (X), -) is a Quillen adjunction.

• Proposition 3.2.57. Let M be a model category, X a cofibrant object and Y a fibrant object. Then there are weak equivalences

Map(C * (X), Y ) → diag Map(C * (X), C * (Y )) ← Map(X, C * (Y )).
Remark 3.2.58. We want to attract attention to the fact that this means that Map(C * (X), Y ) and Map(X, C * (Y )) will be isomorphic on the homotopy category, but there isn't a direct weak equivalence between them: we need to go through diag Map(C * (X), C * (Y )).

Remark 3.2.59. On the other hand, we have defined this Quillen adjunction and these weak equivalences only in the case where X is cofibrant and Y is fibrant. That isn't a big issue: we recall that we have the fibrant and cofibrant replacements. So we could alternatively had defined those weak equivalences for all X, Y in M by And, to finish off this part, a theorem summarizing the results in the homotopy category.

Theorem 3.2.62. Let M be a model category. Then the total left derived functors of -⊗-: M ×sSet → M and Hom(-, -) : sSet × M op → M op exist. We denote them by -⊗ Land RHom(-, -) respectively. The total right derived functors of Map(-, -) exist and are naturally isomorphic. We denote them by R Map(-, -). There are natural isomorphisms in Ho(M )

X ⊗ L K, Y ∼ = [K, R Map(X, C * (X), Y )] ∼ = [K, R Map(X, C * (Y ))] ∼ = [X, R Hom(K, Y )] .
so there is an adjunction on two variables Ho(M )×Ho(sSet) → Ho(M ). There is also a natural isomorphism

X ⊗ L ∆ [0] ∼ = X.
Before we pass to the next section, let us add one last result from [START_REF] Hirschhorn | Model categories and their localizations[END_REF], linking mapping spaces and homotopy colimits. 

(X i ), Y ) ≃ holim(Map(X i , Y )).
2. Let X be a cofibrant object in M and Y i be an objectwise fibrant C-diagram in M . Then the mapping space functor Map(X, -) sends homotopy limits to homotopy colimits, i.e. Map(X, holim Y i ) ≃ holim(M ap(X, Y i )).

Bousfield localizations

In this section we will introduce a very important tool in model categories, Bousfield localizations. All results in it come from [Hir03, Ch. 3] unless stated otherwise.

There are a couple of building bricks we will need in order to construct a Bousfield localization. Let us get those out of the way first.

Remark 3.2.64. There isn't just one Bousfield localization: there are two, left and right. In this text we will talk exclusively about left Bousfield localizations, as they are the only ones we will be using afterwards, and as such sometimes we will omit the word "left". The construction of a right Bousfield localization is dual, even if the proof of its existence is not.

Definition 3.2.65. Let M be a model category and C a class of morphisms in M . Let X be an object in M . We say that X is a C-local object if for every morphism

f : A → B in C the induced map Map(f, X) : Map(A, X) → Map(B, X) is a weak equivalence.
Remark 3.2.66. A reader familiar with the conventions set in [START_REF] Hirschhorn | Model categories and their localizations[END_REF] will probably have noticed that this is not exactly the definition there: indeed, Hirschhorn adds the condition of being fibrant. We have preferred this alternative version for clearness' sake. It isn't a stretch, either: this is the definition given in the context of ∞-categories, after all.

Definition 3.2.67. Let M be a model category and C a class of morphisms in M . Let f : A → B be a morphism in M . We say that f is a C-local equivalence if for every C-local object X the induced map Map(f, X) : Map(A, X) → Map(B, X) is a weak equivalence.

Now, when we compute our Bousfield localizations, our goal is to have the C-local equivalences be our new weak equivalences and our C-local objects be our new fibrant objects. For that, we will make sure that they are well defined for that purpose. We now have all we need in order to define our localization. Now, this is a definition: as usual, nothing tells us that such a model structure exists. We just know that if it does exist, we call that a left Bousfield localization. And it does not exist in every context; but luckily for us, it does exist in every context we need it to. 

Simplicial machinery

In this section we will introduce some machinery concerning simplicial objects and simplicial categories, and the construction of a simplicial localization.

Simplicial objects

Unless stated otherwise, all definitions and results in this section come from [START_REF] Dugger | Hypercovers and simplicial presheaves[END_REF] and [START_REF] Toën | Homotopical algebraic geometry. I. Topos theory[END_REF].

Definition 3.3.1. Let C be a category and n an integer. We call an n-truncated simplicial object in C a functor F : ∆ ≤n → C. We denote by sC ≤n the category of n-truncated simplicial objects in C. Definition 3.3.2. Let C be a category. We call an augmented simplicial object in C a functor F : ∆ op + → C, where ∆ + is the category of possibly empty finite totally ordered sets. Equivalently, it is a simplicial object U * of C coupled with a morphism U * → cX where cX is the constant simplicial object that is X in every degree. We denote it by U * → X.

Notation 3.3.3. We denote the category of augmented simplicial objects in C by s + C, and the category of n-truncated augmented objects in C by s + C ≤n .

We have already discussed a model structure that would be available for sC, s + C and sC ≤n if C is a cofibrantly generated model category. Indeed, if C is a cofibrantly generated model category we have the projective model structure which would be available. But in the case of simplicial objects we have another structure: ∆ (and ∆ + and ∆ ≤n as well) is a Reedy category. We will define, then, the Reedy model structure for these categories. For that, we will be using the latching and mapping objects we defined in Definition 3.2.48. We will define this for simplicial objects, but the definitions can be easily adapted to all the other structures we have mentioned earlier. Results from this section come from [Hir03, Section 15.3]. Definition 3.3.4. Let M be a model category and X, Y : ∆ op → M two simplicial objects in M . We say that a map f : X → Y is a Reedy weak equivalence if it is an objectwise weak equivalence, i.e. if for every object ∆ n the induced map X n → Y n is a weak equivalence in M . Definition 3.3.5. Let M be a model category and X, Y : ∆ op → M two simplicial objects in M . We say that a map f : X → Y is a Reedy cofibration if for every object ∆ n the induced map

X n LnX L n Y → Y n is a cofibration in M .
Definition 3.3.6. Let M be a model category and X, Y : ∆ op → M two simplicial objects in M . We say that a map f : X → Y is a Reedy fibration if for every object ∆ n the induced map

X n → Y n MnY M n X is a fibration in M .
Theorem 3.3.7. Let M be a model category. The category sM admits a model structure, which is given by the weak equivalences, fibrations and cofibrations given above. We call this model structure the Reedy model structure on sM . In particular, if the category M is left (right) proper, the category sM with the Reedy model structure is also left (right) proper. But it's not just the fibrations and the cofibrations that can be defined using matching and latching objects. In fact, trivial fibrations and cofibrations can be defined in the exact same way.

Theorem 3.3.8. Let M be a model category, and f : X → Y be a morphism in sM . Then f is a Reedy trivial cofibration if

X n LnX L n Y → Y n is a trivial cofibration in M . Equivalently, f is a Reedy trivial fibration if X n → Y n MnY M n X is a trivial fibration in M .
So, in the case when M is a cofibrantly generated model category, we have defined two different model structures for sM . We see that the weak equivalences are the same, which means that the homotopy categories will be identical: but the model structures are not the same. Indeed, the Reedy model structure has less cofibrations and more fibrations than the projective model structure (every Reedy cofibration is a projective cofibration, but the reverse isn't true). We still have a Quillen equivalence, though.

Theorem 3.3.9. Let M be a cofibrantly generated model category. Then the identity functor in sM is a left Quillen equivalence from the projective model structure to the Reedy model structure, and a right Quillen equivalence in the other direction. Now we can go back to discussing other functors that will be important when talking about simplicial objects. As expected, there is a close link between simplicial objects and truncated simplicial objects. Although the definition of these functors might be easy, they are very useful and as such they deserve to be discussed explicitly. Definition 3.3.10. Let C be a category and n an integer. We call the n-skeleton functor the forgetful functor sk n : s + C → s + C ≤n . We call the n-skeleton of X the image of an augmented simplicial object X by said functor, and we denote it by sk n X.

Proposition 3.3.11. Let C be a category. There exists a right adjoint to the n-skeleton functor, cosk n : s + C ≤n → s + C, which is a right Quillen adjunction for the Reedy model structure. We call it the ncoskeleton functor and for an n-truncated simplicial object X, we call the image by cosk n of X the n-coskeleton of X.

Remark 3.3.12. By construction, it is easy to see that, if we fix an integer n ∈ N and a simplicial object X, we have X i = (cosk n sk n X) i for all i ≤ n.

On top of that adjunction there is another one we will be using in our definitions.

Proposition 3.3.13. Let M be a model category. Then there exists a structure of tensored category over sSet on sM and s + M , defined as follows: let X * ∈ sM (or s + M ) be a simplicial object, and A ∈ sSet, then the external product is given by

(A ⊗ X * ) n = An X n .
There exists a right adjoint to -⊗ -, that we will call the exponential of X by A and we denote by X A * . Definition 3.3.14. We denote by X A * the 0-th level of the simplicial object (RX)

A * , where RX is the fibrant replacement of X for the Reedy model structure. This is explicitly given by the following formula: X A * = End(F ) where F is given by

F : ∆ op × ∆ sM ([n] , [m]) Am (RX) n
Remark 3.3.15. In principle we could have given this definition to be just the 0-th level of the simplicial set X A * . If X is an object in M , we do have an isomorphism on the homotopy categories between X A * and (c(X) RA ) 0 , the 0-th level of the derived exponential over c(X) the constant simplicial object. However, we have to remember that these two constructions are not isomorphic directly, only on the homotopy categories.

We can now give a few computations using this construction. Proposition 3.3.16. Let U * → X be an augmented simplicial object of M a model category. We have then the following isomorphisms:

1. Let ∅ be the initial object in sSet. Then we have the isomorphism U ∅ * ≃ X.

2. For all n ∈ N we have the isomorphism

U ∆ n * ≃ U n .
3. Let A be a simplicial set. We have an isomorphism

U skn A * ≃ (R cosk n U * ) A . In particular, U ∂∆ n * ≃ (R cosk n-1 (sk n-1 U * )) n .

Simplicial categories

Let us continue with the simplicial categories. The results from this part come from [TV05, Section 2] unless stated otherwise. Definition 3.3.17. We define T a simplicial category to be a category enriched over sSet the category of simplicial sets. Equivalently, a simplicial category consists of the following data:

• A set of objects Obj(T ).

• For every pair of objects in T , (x, y) ∈ Obj(T ) 2 , a simplicial set Hom(x, y) ∈ sSet.

• For every triple of objects in T , (x, y, z) ∈ Obj(T ) 3 a composition morphism in sSet µ : Hom(x, y) × Hom(y, z) → Hom(x, z) with the usual associativity condition.

• For every object in T , x ∈ T , a 0-simplex Id x ∈ Hom(x, x) 0 that satisfies the usual unit condition with respect to the composition stated above.

Definition 3.3.18. Let T and T ′ be two simplicial categories. A simplicial functor (also called a morphism of simplicial categories) is a functor f : T → T ′ enriched over the category of simplicial sets. Equivalently, it consists of the following data:

• A map of sets Obj(T ) → Obj(T ′ ).

• For every pair of objects in T , (x, y) ∈ Ob(T ) 2 , a morphism of simplicial sets Hom(x, y) → Hom(f (x), f (y)).

satisfying the usual associativity and unit conditions.

Notation 3.3.19. We denote sCat the category given by simplicial categories and their morphisms.

Example 1. The category of simplicial sets, sSet, is a simplicial category, where for all x, y ∈ sSet we take Hom n (x, y) = Hom(x × ∆ n , y).

Notation 3.3.20. Let T, T ′ be two simplicial categories. We will denote by Fun S (T, T ′ ) the category of simplicial functors between them.

Remark 3.3.21. Using the inclusion functor i : Set → sSet, we can see that there is an obvious inclusion Cat → sCat. Consequently, that means that we can see all categories as simplicial categories, by considering the simplicial category with the same objects and the constant simplicial set as the simplicial set of morphisms. By abuse of notation, we will still call C the simplicial category associated to a category C, unless the difference is important to the result.

For any simplicial category T , we can define an associated category, which we will call the homotopy category of T . Definition 3.3.22. Let T be a simplicial category. We call the homotopy category of T , and we denote by π 0 (T ), a category which has the same objects as T and whose morphisms are given by ∀x, y ∈ Obj(T ), Hom π0(T ) (x, y) = π 0 (Hom T (x, y)), i.e. the set of connected components of the simplicial set of morphisms.

Remark 3.3.23. It is easy to check that the functor π 0 : sCat → Cat is a left adjoint of the inclusion functor.

As it is the case with every category we have defined so far, there exists a model structure for the category of simplicial categories. We can even prove that it is cofibrantly generated. The weak equivalences and fibrations are defined as follows.

Definition 3.3.24. [Ber07a, Introduction (1)] Let f : T → T ′ be a morphism of simplicial categories. We say that f is a weak equivalence if it satisfies the following conditions:

• For all x, y ∈ Obj(T ), the associated morphism Hom(x, y) → Hom(f (x), f (y)) is a weak equivalence of simplicial sets.

• The induced functor of homotopy categories π 0 (f ) : π 0 (T ) → π 0 (T ′ ) is an equivalence of categories.

Definition 3.3.25. [Ber07a, Introduction] Let T be a simplicial category. We say that a morphism in T , f ∈ Hom T (x, y) 0 , is a homotopy equivalence if it becomes an isomorphism π 0 (f ) in π 0 (T ).

Definition 3.3.26. [Ber07a, Introduction (2)] Let f : T → T ′ be a morphism of simplicial categories. We say that f is a fibration if it satisfies the following conditions:

• For all x, y ∈ Obj(T ), the associated morphism Hom(x, y) → Hom(f (x), f (y)) is a fibration of simplicial sets.

• For all x ∈ Obj(T ), y ′ ∈ Obj(T ′ ), and all h : f (x) → y ′ homotopy equivalence in T ′ , there exists an object y ∈ Obj(T ) and a homotopy equivalence g : x → y such that f (g) = h.

Theorem 3.3.27. [Ber07a, Th. 1.1] The category sCat admits a model structure, which is given by the weak equivalences and fibrations defined above. In particular, this model structure is cofibrantly generated.

Proposition 3.3.28. [Ber07a, Prop. 3.5] With the model structure defined above, the model category sCat is right proper.

So the category of simplicial categories is a model category. But we could also ask, what happens when we get a simplicial category which already had a model structure? Can we say something about it? Of course we can. We take the following definition from [Hir03, Def. 9.1.6].

Definition 3.3.29. Let M be a model category which is also a simplicial category. We say that M is a simplicial model category if it satisfies the following conditions:

• For all X, Y ∈ Obj(M ), and for all simplicial set K, there are objects X ⊗ K and Y K in M such that there are isomorphisms of simplicial sets

Hom M (X ⊗ K, Y ) ≃ Hom sSet (K, Hom(X, Y )) ≃ Hom M (X, Y K ).
• If i : A → B is a cofibration in M and p : X → Y is a fibration in M , then the map of simplcial sets Hom(B, X)

i * ×p * ----→ Hom(A, X) × Hom(A,Y ) Hom(B, Y )
is a fibration that is a trivial fibration if either i or p is a weak equivalence.

We have seen that the category of diagrams over a model category is still a model category. So it isn't absurd to wonder whether the category of diagrams over a simplicial model category is still a simplicial model category, and the answer is yes, it is. We take the construction of the simplicial model category from [Hir03, Section 11.7] Proposition 3.3.30. Let M be a simplicial model category and C a small category. Then the category of diagrams Fun(C, M ) is a simplicial category. For all pairs of diagrams X, Y ∈ Fun(C, M ), we define the simplicial set of morphisms between X and Y as follows: the n-simplices of Hom(X, Y ) * are given by the maps X ⊗ ∆ n → Y , where X ⊗ ∆ n is defined for all objects α ∈ Obj(C) as

(X ⊗ ∆ n )(α) = X(α) ⊗ ∆ n and for all morphisms f ∈ C as (X ⊗ ∆ n )(f ) = X(f ) ⊗ Id ∆n .
Theorem 3.3.31. Let M be a simplicial cofibrantly generated model category and C a small category. Then the projective model structure of Fun(C, M ) is compatible with the simplicial enrichment from Proposition 3.3.30, and Fun(C, M ) is a simplicial cofibrantly generated model category.

Theorem 3.3.32. Let M be a simplicial cofibrantly generated model category. Then the Reedy model structure of sM is compatible with the simplicial enrichment from Proposition 3.3.30, and sM is a simplicial model category.

Proposition 3.3.33. Let M be a simplicial cofibrantly generated model category and f : T → T ′ a equivalence of simplicial categories. Then the induced Quillen adjunction

f ! : Fun S (T, M ) ⇌ Fun S (T ′ , M ) : f * is a Quillen equivalence.
And while we're talking about categories of simplicial functors, we will construct a simplicial equivalent of the Yoneda embedding but in the case of simplicial functors. Notation 3.3.34. Let T be a simplicial category. We will denote the natural simplicial enrichment of Fun S (T op , sSet) by Fun S (T op , sSet) s . Notation 3.3.35. Let T be a simplicial category, and x be an object in T . We denote by h x : T op → sSet in Fun S (T op , sSet) s the simplicial functor h x (y) = Hom T (y, x) where we take the simplicial set of morphisms in T . Definition 3.3.36. Let T be a simplicial category. We define a morphism of simplicial categories h : T → Fun S (T op , sSet) s by h(x) = h x . Proposition 3.3.37. Let T be a simplicial category, x an object in T and F a simplical functor F : T → sSet. There exists a canonical isomorphism of simplicial sets F (x) ≃ Hom Fun S (T op ,sSet)s (h x , F ) which is functorial on the pair (F, x). In particular, h is fully faithful as a simplicial functor.

So the functor h induces a functor π 0 (h) : π 0 (T ) → π 0 (Fun S (T op , sSet) s ). But we would want a fully faithful functor that goes to the homotopy category of simplicial presheaves, without the simplicial enrichment. We have an identity functor Fun S (T op , sSet) s → Fun S (T op , sSet) we could use, but does it induce a well-defined functor in the homotopy categories? Remark 3.3.38. We remind the reader that we are here working on two different things that are called homotopy categories: on one side we have a homotopy category as a simplicial category, and on the other a homotopy category as a model category. That means that if we take F, G ∈ Obj(Fun S (T op , sSet) s ) simplicial presheaves, and f, g two morphisms from F to G, on one side we have π 0 (Fun S (T op , sSet) s ), in which f and g are equal if they are on the same connected component (are simplicially homotopic), and on the other side we have Ho(Fun S (T op , sSet)), in which f and g are equal if there exists a homotopy equivalence between them (up to a fibrant/cofibrant replacement).

Are these two localizations indeed compatible? Can the identity functor induce a well-defined functor in the homotopy categories? Yes, it does. We get the necessary result from [Hir03, Lem. 9.5.15]. Lemma 3.3.39. Let M be a simplicial model category and let X, Y be two objects of M . If f, g : X → Y are simplicially homotopic maps, then f and g are the same map in the homotopy category of M as a model category.

Proposition 3.3.40. Let T be a simplicial category. The identity morphism induces a well-defined functor π 0 (Fun S (T op , sSet) s ) → Ho(Fun S (T op , sSet)).

And his gives us finally a homotopy version of the enriched Yoneda embedding.

Proposition 3.3.41. Let T be a simplicial category, x an object in T and F a simplicial functor F : T op → sSet. There exists a canonical isomorphism in Ho(sSet)

F (x) ≃ R Hom Fun S (T op ,sSet) (h x , F )
which is functorial on the pair (F, x). In particular, the functor h : π 0 (T ) → π 0 (Fun S (T op , sSet) s ) → Ho(Fun S (T op , sSet)) is fully faithful.

Simplicial localizations

In the section about the homotopy category of a model category we have already mentioned the Gabriel-Zisman localization. But we can also give the definition of an enhanced localization that, instead of giving us a category, gives us a simplicial category. All results in this section come from [TV05, 2.2 and 2.3] unless stated otherwise. Definition 3.3.42. Let C be a category and W a subset of its morphisms. We call a simplicial localization of C with respect to W a pair (L W C, l) where L W C is a simplicial category and l : C → L W C is a morphism of simplicial categories, called the localization morphism, such that for every simplicial category T , the aforementioned morphism induces a equivalence of simplicial categories

l * : R Fun S (L W C, T ) ≃ R Fun S W (C, T )
where R Fun S (L W , T ) is seen as an object of Ho(sCat), and R Fun S W (C, T ) denotes the full subcategory of R Fun S (C, T ) in Ho(sCat) consisting of all simplicial morphisms that send W to equivalences in T . In other words, the localization morphism is such that, for every simplicial category T , l induces a morphism of simplicial categories l * : R Fun S (L W C, T ) → R Fun S (C, T )

which is fully faithful and whose essential image consists of the functors sending the morphisms in W to equivalences in T .

Remark 3.3.43. Once again, we have given a definition in an abstract way, with no certainty that such a thing exists. It has been proven, though, that a simplicial localization as defined above always exists, and that it is equivalent to the Dwyer-Kan simplicial localization from [START_REF] Dwyer | Simplicial localizations of categories[END_REF].

Remark 3.3.44. A reader familiar with [START_REF] Toën | Homotopical algebraic geometry. I. Topos theory[END_REF] will probably remark that the universal property given here looks much stronger than the one given in that paper; indeed, we have taken it from [Toë14, Localization and model categories]. We can prove, though, that those two universal properties are, in fact, equivalent.

So we now have a localization which is a simplicial category instead of a classical category. It could happen that that simplicial category was always trivial, in which case we would have gained nothing from this endeavour. Luckily, that is not the case: in general the morphism spaces in L W C aren't 0-truncated. There is still a close relationship between the Gabriel-Zisman localization and this one, though. Proposition 3.3.45. Let C be a category, W a subset of its morphisms. We take the simplicial localization of C with respect to W , (L W C, l). The localization morphism induces an equivalence between the Gabriel-Zisman localization C W -1 and the homotopy category of L W C, π 0 (L W C).

In the case where the category C is a model category, we have a useful result on top of this. Once again, we will take the result not from [START_REF] Toën | Homotopical algebraic geometry. I. Topos theory[END_REF], but from [Toë14, Localization and model categories].

Proposition 3.3.46. Let M be a model category, and C a small category. Then there exists a natural equivalence of simplicial categories

L W C (Fun(C, M )) ≃ R Fun S (C, L W M ),
where W are the weak equivalences in M and W C are the weak equivalences on Fun(C, M ) using the projective model structure.

Remark 3.3.47. One consequence of this result is that if M is a model category, L W M has all limits and colimits, and those limits and colimits can be computed using homotopy limits and colimits.

While we are talking about categories of simplicial diagrams from a localization to a model category M , we can ask what happens when we take M = sSet. In that case, we have a Quillen equivalent construction. We take sSet as a simplicial model category using the structure given in Example 1. Definition 3.3.48. Let C be a simplicial category and W a subset of its morphisms. We call the model category of restricted diagrams from (C, W ) to sSet the left Bousfield localization of Fun S (C, sSet) along the set of morphisms of the form h x → h y for all x → y ∈ W , with h x as defined in Notation 3.3.35. We denote it by sSet C,W . Remark 3.3.49. By the general theory of Bousfield localizations, the fibrant objects of sSet C,W are those functors f : C → sSet that satisfy the following conditions:

• The functor f is a fibration for the projective model structure.

• For all x → y morphism in W , the induced morphism f (x) → f (y) is an equivalence in sSet.

Theorem 3.3.50. Let C be a simplicial category, W a subset of its morphisms. Let (F * C, F * W ) be the canonical free resolution of (C, W ) as simplicial categories. There exist two natural functors

(C, W ) p ← -(F * C, F * W ) l - → L F * W F * C = L W C which induce two right Quillen functors sSet C,W p * -→ sSet F * C,F * W l * ← -Fun S (L W C, sSet).
Those Quillen functors p * , l * are Quillen equivalences. In particular, there exists a chain of Quillen equivalences between sSet C,W and Fun S (L W C, sSet).

Remark 3.3.51. We bring to your attention that we have said "there exists a chain of Quillen equivalences" and not "there exists a Quillen equivalence". As we said in Remark 3.1.13, we cannot compose p * and the left Quillen adjoint of l * and get a Quillen adjunction, as they aren't both right adjoints.

Corollary 3.3.52. Let C, D be two simplicial categories, W a subset of morphisms of C and V a subset of morphisms of D. Let f : C → D be a morphism of simplicial categories such that f (W ) ⊂ V . If the induced functor Lf : L W C → L V D is an equivalence of simplicial categories, then the Quillen adjunction

f ! : sSet C,W ⇌ sSet D,V : f * is a Quillen equivalence.
As usual we can construct a Yoneda lemma for this type of localization too. This result comes from [TV05, Theorem 4.2.3]. It is given there for a pseudo-model category.

Theorem 3.3.53. Let C a model category that is also a simplicial category and W the set of weak equivalences, then the functor R Sing(-) : Ho(C) → Ho(sSet C,W ) is fully faithful.

The universal model category

And lastly in this section, we will construct a "universal model category" U C for every category C, in the sense that for all model category M and all functor γ : C → M there exists a factorization of γ by U C which is, in some sense, unique. From here on all results come from [START_REF] Dugger | Universal homotopy theories[END_REF] unless stated otherwise. Definition 3.3.54. Let C be a category, let M and N be two model categories. We fix a functor f : C → M . For all g : C → N , we define a factorization of g through M to be a triple (L, R, η) such that • The functors L : M ⇌ N : R form a Quillen adjunction.

• We have a weak equivalence η : L • f ≃ g. Definition 3.3.55. Let C be a category, let M and N be two model categories. We fix a functor f : C → M , and take g : C → N . If we have (L, R, η) and (L ′ , R ′ , η ′ ) two factorizations of g through M , we define a morphism of factorizations to be a natural transformation F : L → L ′ such that for all x ∈ C the diagram

L • f (x) L ′ • f (x) g(x) F •Id f η η ′ commutes.
Notation 3.3.56. With the above conditions, we denote Fact f (g) the category of factorizations of g through M and morphisms between them. Now that we have the closed model category Fun(C op , Set) and the functor r : C → Fun(C op , sSet), we take a functor γ : C → M to another model category. We are going to give the factorization, but we won't prove that it is in fact one. The easier adjoint to define is Sing. In fact, this is the reason why we have introduced cosimplicial framings and mapping spaces. We define Sing as follows:

Sing(x) = Map(γ(-), x) ∈ Fun(C op , sSet).
The functor Re is just the left adjoint of Sing. In particular, it looks as follows:

Re(F ) = (C * • γ) ⊗ C F = coeq [ a→b (C * • γ)(a) ⊗ F (b) c (C * • γ)(c) ⊗ F (c)]
where the tensor product is the one given in Proposition 3.2.52.

Q.E.D.

Remark 3.3.58. The fact that these functors are called Re and Sing is obviously not a coincidence: indeed, the idea comes from the construction of a cocomplete category from ∆, which gives us the adjoints Re : sSet = Fun(∆, Set) ⇌ Top : Sing, the geometric realization and the singular functor respectively.

Remark 3.3.59. The advantage of this construction is that Fun(C op , sSet) is a particularly well-behaved model category, as it inherits most of sSet's good properties. In particular, Fun(C op , sSet) is simplicial, cofibrantly generated and proper.

Remark 3.3.60. The representable functors rX are always cofibrant, so the images of Re •r are all cofibrant. That is the reason why we have asked for the factorization to be commutative up to a certain weak equivalence: unless the functor γ sent all objects to cofibrant objects in M , the diagram wouldn't commute strictly.

As in the classical case, where we know that every presheaf can be expressed as a colimit of representables, we can now prove that every object in Fun(C op , sSet) is a homotopy colimit of representables. Let us construct the representables needed for it. Definition 3.3.61. Let C be a category, and F an object in Fun(C op , Set), i.e. a classical presheaf. We can define a simplicial presheaf associated to F by using the following formula:

( QF ) n = rXn→...→rX0→F rX n .
Definition 3.3.62. Let C be a category, and F * an object in Fun(C op , sSet), i.e. an arbitrary simplicial presheaf. The construction QF * gives us a bisimplicial presheaf, ( QF * ) n = QF n . We can define the following simplicial presheaf:

QF = diag( QF * ),
the diagonal of the bisimplicial presheaf QF * .

Proposition 3.3.63. Let C be a category and F * an object in Fun(C op , sSet), i.e. an arbitrary simplicial presheaf. Then the associated simplicial presheaf QF is cofibrant, and the natural map QF → F * is a weak equivalence. In particular, every simplicial presheaf is an homotopy colimit of representables.

Differential graded categories

Before we get to the core result of this thesis, we need to recall some basic results and notations concerning the main object we will be talking about, dg-categories.

Definition and model structure

Let us start by defining our terms. What is a differential graded category, and how do we give it a model structure? The results in this section should ring a familiar bell on the reader, as both these and the simplicial categories are common examples of a more general setting, enriched categories. In consequence, the definitions will be pretty similar. Unless stated otherwise, the results from this section are taken from [START_REF] Toën | Lectures on dg-categories[END_REF], but [START_REF] Keller | On differential graded categories[END_REF] is also a very good reference for it.

Definition 3.4.1. We define T a dg-category (differential graded category) to be a category enriched over C(k) the category of cochain complexes. Equivalently, a dg-category consists of the following data:

• A set of objects Obj(T ).

• For every pair of objects in T , (x, y) ∈ Obj(T ) 2 , a cochain complex Hom(x, y) ∈ C(k).

• For every triple of objects in T , (x, y, z) ∈ Obj(T ) 3 a composition morphism in C(k) µ : Hom(x, y) ⊗ Hom(y, z) → Hom(x, z)

with the usual associativity condition.

• For every object in T , x ∈ T , a morphism e x : k → Hom(x, x) that satisfies the usual unit condition with respect to the composition stated above, where k is the dg-category with a single object and k as its complex of morphisms.

Definition 3.4.2. Let T and T ′ be two dg-categories. A dg-functor (also called a morphism of dgcategories) is a functor f : T → T ′ enriched over the category of complexes. Equivalently, it consists of the following data:

• A map of sets Obj(T ) → Obj(T ′ ).

• For every pair of objects in T , (x, y) ∈ Ob(T ) 2 , a morphism of complexes

Hom(x, y) → Hom(f (x), f (y)).
satisfying the usual associativity and unit conditions.

Notation 3.4.3. We denote dgcat the category of dg-categories and dg-functors.

For any dg-category T , we can define an associated category: the homotopy category of T .

Definition 3.4.4. Let T be a dg-category. We call the homotopy category of T , and we denote it by [T ], a category which has the same objects as T and whose morphisms are given by

[T ] (x, y) = H 0 (Hom T (x, y)) ∀(x, y) ∈ Obj(T ) 2 ,
i.e. the cohomology groups of degree 0 of the complex of morphisms.

The composition in this category is given for all (x, y, z) ∈ Obj(T ) 3 by the composition of morphisms H 0 (Hom T (x, y)) ⊗ H 0 (Hom T (y, z)) → H 0 (Hom T (x, y) ⊗ Hom T (y, z)) → H 0 (Hom T (x, z)).

Remark 3.4.5. We have already defined three different things called "the homotopy category of" something.

Although there are certain links between them, it is important to remember that those definitions are not interchangeable: it is for that reason that it is essential to keep in mind what it is that we are taking the homotopy category of. A model category, a simplicial category or a dg-category?

It has been proven that dgcat has a model structure, and even a cofibrantly generated model structure. It is defined as follows: Definition 3.4.6. Let f : T → T ′ be a morphism of dg-categories.

• We say that f is quasi-essentially surjective if the induced morphism of homotopy categories,

[f ] : [T ] → [T ′ ] is essentially surjective.

• We say that f is quasi-fully faithful if for any two objects (x, y) ∈ Obj(T ) 2 the corresponding morphism of complexes T (x, y) → T (f (x), f (y)) is a weak equivalence of complexes.

• We say that f is a quasi-equivalence if it is quasi-essentially surjective and quasi-fully faithful.

Definition 3.4.7. [Tab10, Not. 2.5] Let T be a dg-category. We say that a morphism in T , f ∈ Z 0 (Hom T (x, y)), is a homotopy equivalence if it becomes an isomorphism

H 0 (f ) in [T ].
Definition 3.4.8. [Tab10, Def. 2.12] Let f : T → T ′ be a morphism of dg-categories. We say that f is a fibration if

• for every two objects (x, y) ∈ Obj(T ) 2 , the corresponding morphism of complexes T (x, y) → T ′ (f (x), f (y)) is a fibration of complexes, i.e. is surjective.

• For all x ∈ Obj(T ), y ′ ∈ Obj(T ′ ), and all h : f (x) → y ′ homotopy equivalence in T ′ , there exists an object y ∈ Obj(T ) and a homotopy equivalence g : x → y in T such that f (y) = y ′ and f (g) = h.

Theorem 3.4.9. ([Tab10, Def. 2.14], see [Tab05, Th. 2.1] for a proof in French) The category dgcat admits a model structure with the quasi-equivalences as weak equivalences and the fibrations as defined above.

It is a cofibrantly generated model category, and the generating cofibrations {I, P (s)/ s ∈ Z} are the following:

• The functor I is the unique dg-functor ∅ → k, where ∅ is the initial object in dgcat.

• For all s ∈ Z, let ∆ k (1, s, 1) be the dg-category with two objects, 0 and 1, where Hom(0, 0) = Hom(1, 1) = k, Hom(1, 0) = 0 and Hom(0, 1) = k[s]; and let ∆ c k (1, s, 1) be the dg-category with two objects, 0 and 1, where Hom(0, 0) = Hom(1, 1) = k, Hom(1, 0) = 0 and Hom(0, 1

) = k c [s]. The P (s) : ∆ k (1, s, 1) → ∆ c
k (1, s, 1) are, for all s ∈ Z, the dg-functors that send 0 to 0, 1 to 1, and Before we go on, we will give a different, equivalent way of defining quasi-fully faithful dg-functors in dgcat. For this, we will recall a definition that exists in general in any model category.

Hom ∆ k (1,s,1) (0, 1) to Hom ∆ c k (1,s,1) (0,
Definition 3.4.13. Let M be a model category and let f : X → Y be a morphism in M . We say that f is a homotopy monomorphism if for all Z ∈ M the induced morphism of simplicial sets

f * : Map(Z, X) → Map(Z, Y )
induces an injection on the π 0 and isomorphisms on π i for all i > 0 and for all base points. This definition is equivalent to asking that the morphism X → X × h Y X is an isomorphism in Ho(M ). In the case of dg-categories, we haven't actually defined anything new: we can prove that those dg-functors are exactly the quasi-fully faithful dg-functors. Proposition 3.4.14. [Toë07, Lem. 2.4] Let f : T → T ′ be a dg-functor in dgcat. Then f is a homotopy monomorphism if and only if f is quasi-fully faithful. In particular, if f is a weak equivalence in dgcat, then f is a homotopy monomorphism.

Corollary 3.4.15. [Toë07, Cor. 2.5] Let f : T → T ′ be a quasi-fully faithful morphism in dgcat, and let Y ∈ dgcat be a dg-category. Then the image of the induced injection on π 0 ,

π 0 (Map(Y, T )) = [Y, T ] → π 0 (Map(Y, T ′ )) = [Y, T ′ ] ,
is given by the morphisms such that the induced functor

[Y ] → [T ′ ] can be factored through the essential image of [Y ] → [T ].
And now, to finish this section, we will give a couple of definitions for subcategories who will be useful later.

Definition 3.4.16. There exists a Quillen adjunction L : Gr(C(k)) ⇌ dgcat : U where Gr(C(k)) is the category of graphs over the complexes of modules and U is the forgetful functor. We call a free dg-category T a dg-category such that there exists a T ′ ∈ Gr(C(k)) with T = L(T ′ ). We denote the full subcategory of free dg-categories by L. In particular, if X is a graph on C(k), then we have that L(X) has the same objects as X and that for all objects x, y ∈ Obj(X) = O,

L(X)(x, y) = m∈N x1,...,xm∈O (X(x, x 1 ) ⊗ . . . ⊗ X(x m , y)).
But still, free dg-categories will be too big for our purposes. We will use something slightly smaller: free dg-categories of finite type. As we are working with free dg-categories, we can define these objects as graphs and then send them over with the free functor. Definition 3.4.17. Let G ∈ Gr(C(k)) be a graph over the complexes of modules. We say that G is a graph of finite type if it has a finite number of vertices and the edges between two vertices are always perfect complexes. We denote the full subcategory of graphs of finite type by Gr(C(k)) tf . Definition 3.4.18. Let L = L(G) be a free dg-category. We say that L is a free dg-category of finite type if the underlying graph G is a graph of finite type.

Modules over dg-categories

And as the last section of this chapter, let us talk about modules over dg-categories. Unless stated otherwise, all results in this section come from [Toë07, Sections 3 and 4]. We can define some kind of dg-enhanced Yoneda embedding in this case. For that, though, we will need to introduce one more definition: that of an internal category. Definition 3.4.22. Let T be a dg-category and T -Mod its category of T -modules. We define the internal category of T -Mod to be the sub-dg-category where the objects are the fibrant and cofibrant objects of T -Mod, and we will denote it by Int(T -Mod).

Remark 3.4.23. In [START_REF] Toën | The homotopy theory of dg-categories and derived Morita theory[END_REF] the definition is given for any M C(k)-model category, but as we are only going to use it in this context we have decided to only state it in the case of T -Mod. In fact, this next result is also true for all T -Mod.

As we remember from the section on the homotopy category of a model category M , the homotopy category can be defined as a quotient of the subcategory M cf of fibrant and cofibrant objects; the internal category could be seen as a C(k)-enrichment of T -Mod cf . When we defined the homotopy functor in dgcat that sends dg-categories to classical categories we warned that although they had the same name, the homotopy category of a model category and that of a dg-category are not the same definition; although, we added, there are links between the two. Here is the link. And now we can define the Yoneda embedding. Notation 3.4.25. Let T be a dg-category, and x be an object in T . We denote by h x : T op → C(k) the dg-functor h x (y) = Hom T (y, x) where we take the cochain complex of morphisms in T . Definition 3.4.26. Let T be a dg-category. We define a morphism of dg-categories h : T → T op -Mod by h(x) = h x by using the natural C(k)-enrichment of T op -Mod.

Proposition 3.4.27. Let T be a dg-category. For all x ∈ T , the object h x in T op -M od is fibrant and cofibrant. That defines a dg-functor

h : T → Int(T op -Mod)
and it is quasi-fully faithful.

Definition 3.4.28. Let T be a dg-category, and let F be a T op -module.

• We say that F is representable if there exists an object x ∈ T in T such that F is isomorphic in Int(T op -Mod) to h x .

• We say that F is quasi-representable if there exists an object x ∈ T in T such that F is weak equivalent in Int(T op -Mod) to h x , i.e. if F is isomorphic to h x in Ho(T op -Mod).

Remark 3.4.29. As h x is quasi-fully faithful, this definition means that there exists a weak equivalence in dgcat between T and the subcategory of Int(T op -Mod) consisting of quasi-representable objects.

We know that C(k) has a tensor product, that we have denoted -⊗ -: using that, we can easily define a tensor product over the whole category dgcat. Definition 3.4.30. Let T and T ′ be two dg-categories. We define the tensor product of T and T ′ as a category T ⊗ T ′ such that • The objects in T ⊗ T ′ are the objects in Obj(T ) × Obj(T ′ ).

• For every pair of objects (x, y), (x ′ , y ′ ) in T ⊗ T ′ , a cochain complex of the form

T ′ ⊗ T ′ ((x, y), (x ′ , y ′ )) = T (x, x ′ ) ⊗ T ′ (y, y ′ ).
Proposition 3.4.31. The tensor product defined above gives dgcat a closed symmetric monoidal structure on dgcat. The unit for the monoidal structure is the dg-category with one object and k as its complex of morphisms, and we will denote it by ∆ k (0) or k.

Remark 3.4.32. This symmetric monoidal structure is unfortunately not compatible with the model structure, which means we don't have a symmetric monoidal model category: indeed, the tensor product of two cofibrant objects isn't necessarily cofibrant itself. The tensor product does have enough good properties, though, so that it can be derived. Proposition 3.4.33. The tensor product functor on dgcat can be derived into a functor -⊗ L -: Ho(dg -cat) × Ho(dg -cat) → Ho(dg -cat) as follows: let T and D be two dg-categories. We compute the derived tensor product as

T ⊗ L D = Q(T ) ⊗ D
where Q is a cofibrant replacement that is the identity on the objects. When T is cofibrant there exists a natural quasi-equivalence T ⊗ L D → T ⊗ D.

We can now consider the category of (T ⊗ D op )-modules. For any x ∈ T , there exists a natural dg-functor j x : D op → T ⊗D op that sends an object y ∈ D op to (x, y) ∈ T ⊗D op , and, for every pair of objects y, z ∈ D op , the morphism of complexes D op (y, z) to T (x, x) ⊗ D op (y, z) by k ⊗ Id D op . Definition 3.4.34. Let T, D be two dg-categories. Then for all x ∈ T we define a dg-functor Definition 3.4.37. Let T and D be two dg-categories. We denote by F (Q(T ), D) the (non-full) subcategory of dgcat defined as follows:

i x : D op → Q(T ) ⊗ L D op
• A set of objects given by the Q(T ) ⊗ D op -modules that are right quasi-representable.

• The weak equivalences for the projective model structure of (Q(T ) ⊗ D op ) -Mod between right quasirepresentable modules.

And we can now write the results that we were aiming for:

Theorem 3.4.38. [Toë07, Th. 4.2] Let T and D be two dg-categories. There are weak equivalences in sSet such that

Map(T, D) → diag(N (M (C * (T ), D))) ← N (F (Q(T ), D))
where N stands for the nerve of a category and for all n ∈ N,

M (C n (T ), D) is the subcategory of F (C n (T ), D)
where the objects are T ⊗ D op -modules F that are right quasi-representable and for all x ∈ C n (T ) the D opmodule F (x, -) is cofibrant in D op -Mod.

Corollary 3.4.39. Let T be a dg-category. Then there exists a functorial isomorphism between the set of maps [k, T ] in Ho(dg -cat) and the set of isomorphism classes of the category [T ].

Corollary 3.4.40. Let T be a dg-category, and let x ∈ T be an object in T . Then there are natural isomorphisms of groups

π 1 (Map(k, T ), x) ≃ Aut [T ] (x) π i (Map(k, T ), x) ≃ H 1-i (T (x, x)) ∀i > 1.
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Chapter 4

dg-Segal spaces And now that we have all the background information we needed, we can start defining the objects we will be using for our main results. We fix k a commutative ring.

Constructing the adjunction

Notation 4.1.1. We denote the full subcategory of cofibrant free dg-categories of finite type by cL ⊂ L. As we won't consider any other type in this text, we will most of the time omit the term "cofibrant" from our explanations.

Definition 4.1.2. Let W be the set of weak equivalences on dgcat the category of dg-categories. We construct the simplicial localization L W dgcat of dg-categories with respect to W , the weak equivalences, as in Definition 3.3.42. We define the simplicial cL, and we denote it by cL S , the full simplicial subcategory of L W dgcat whose objects are the ones in cL.

Remark 4.1.3. We must be careful with the definition of cL S . It is tempting to just define it as L W cL, but the two categories L W cL and cL S do not coincide. Theorem 4.1.4. There exists a chain of Quillen adjunctions of the form Re : Fun S (cL op S , sSet) ⇌ . . . ⇌ dgcat : Sing, and it can be derived into a single adjunction Ho(Fun S (cL op S , sSet)) ⇌ Ho(dg -cat). Proof. Let us start from the right. As we have defined cL S to have the simplicial structure induced by the simplicial structure of L W dgcat, there exists a natural simplicial inclusion functor j : cL S → L W dgcat. If we take the projective model structure on the categories of simplicial functors, we have a Quillen adjunction of the form j ! : Fun S (cL op S , sSet) ⇌ Fun S (L W dgcat op , sSet) : j * Now, by definition of the simplicial localization, there exists a functor l : dgcat → L W dgcat that gives us a Quillen adjunction of the form l ! : Fun(dg -cat op , sSet) ⇌ Fun S (L W dgcat op , sSet) : l * And lastly, using Dugger's construction from Proposition 3.3.57, if we take both the category C and the model category M to be dgcat, and the functor γ to be the identity, we have a factorization (Re W , Sing W , η), Re W : Fun(dg -cat op , sSet) ⇌ dgcat : Sing W where we know that the right adjoint is given by Sing W (X) = Map(-, X).

We have constructed a chain of Quillen adjunctions from dgcat to Fun(cL op S , sSet). But, as we have remarked a few times before, we cannot compose right Quillen functors to left Quillen functors and still get a Quillen adjunction. And in this case, the adjunction (l ! , l * ) goes in the "wrong direction". Indeed, if we write the chain of Quillen adjunctions and we write the left Quillen functor always on top, we get the following diagram:

Fun S (cL op S , sSet) Fun S (L W dg -cat op , sSet) Fun(dg -cat op , sSet) dg -cat. j ! j * l * l ! Re W Sing W
At this level there is nothing we can do to fix this: but on the homotopy categories there is. Indeed, in the homotopy categories we can construct a factorization of the functor Sing W , which would bypass the need for the adjoint l ! altogether. In other words, we are going to try and find a functor Sing ′ such that the diagram Ho(Fun S (cL op S , sSet)) Ho(Fun S (L W dgcat op , sSet)) Ho(Fun(dg -cat op , sSet))

Ho(dg -cat). j ! j * l * l ! Re W Sing W Sing ′ commutes.
By definition of the simplicial localization category, if we have a functor F : dgcat → sSet that sends all morphisms in W to weak equivalences in sSet, then it can be factorized through l * on the homotopy categories. But Sing W (X) = Map(-, X) is a right Quillen adjoint, so it sends weak equivalences between fibrant objects to weak equivalences, and all objects in dgcat are fibrant. So for all X ∈ dgcat, the image Sing W (X) can be factorized through L W dgcat. That gives us a functorial factorization of the form

Sing W (X) = l * • Sing ′ (X)
in the homotopy categories. Now we only need to prove that the functors Sing = j * • Sing ′ and Re = Re W •l * • j ! are truly adjoints, i.e. that for all X ∈ Fun S (cL op S , sSet) and for all Y ∈ dgcat there exists an functorial isomorphism of the form

X, j * • Sing ′ (Y ) Fun S (cL op S ,sSet) ≃ [Re W •l * • j ! (X), Y ] dg-cat .
Let us start on the left side and work our way through. We start with X, j * • Sing ′ (Y ) Fun S (cL op S ,sSet) . As the functors j ! and j * are adjoints, we have that

X, j * • Sing ′ (Y ) Fun S (cL op S ,sSet) ≃ j ! (X), Sing ′ (Y ) Fun S (L W dg-cat op ,sSet)
. Because we are working on the homotopy categories, by the definition of simplicial localizations (see Definition 3.3.42) the functor l * is fully faithful. That means, in particular, that we get the following isomorphism:

j ! (X), Sing ′ (Y ) Fun S (L W dg-cat op ,sSet) ≃ [l * • j ! (X), Sing W (Y )] Fun(dg-cat op ,sSet) .
And finally, using the definition of an adjunction again on Re W and Sing W , we get that

[l * • j ! (X), Sing W (Y )] Fun(dg-cat op ,sSet) ≃ [Re W •l * • j ! (X), Y ] dg-cat .
We have the isomorphism [X, Sing(Y )] Fun S (cL op S ,sSet) ≃ [Re(X), Y ] dg-cat and the pair Re : Ho(Fun S (cL op S , sSet)) ⇌ Ho(dg -cat) : Sing is an adjunction on the homotopy categories. We have finished the proof.

Q.E.D.

We have now an adjunction between the categories we wanted to. The next step is proving that this functor is an equivalence. But it is not that easy. In order to do that, we need a few background concepts and constructions.

dg-Segal spaces

As we said in the introduction, we take our inspiration for this section from complete Segal spaces. We remind the reader that the definition of said spaces is the following. Definition 4.2.1. [Rez01, Def. 4.1] Let W be a Reedy fibrant simplicial space. We say that W is a Segal space if the maps

W k → k times W 1 × W0 . . . × W0 W 1 are weak equivalences for all k ≥ 2.
We can put some similar conditions on our functors, but in our case they won't be enough. Indeed, we aren't just working with simplicial sets: we have a linear structure to worry about. Consequently, we need an additional condition on the shift, and for that, we are going to define the action of adding a module to a complex of modules. Definition 4.2.2. Let G ∈ Gr(C(k)) be a graph in the category of complexes, x, y ∈ Obj(G) two objects in G, and α ∈ Z n (G(x, y)) a cycle in G(x, y). We define the graph G(< α >) to be a graph of complexes such that

• The graph G(< α >) has the same objects as G.

• The graph G(< α >) has the same morphisms between x ′ , y

′ ∈ Obj(G) if (x ′ , y ′ ) ̸ = (x, y), i.e. G(< α >)(x ′ , y ′ ) = G(x ′ , y ′ ).
• We define G(< α >)(x, y) to be the complex of morphisms G(x, y) ⊕ k β where dβ = α.

In other words, we have that G(< α >) is a pushout in the graphs over the morphism k

[n] → k c [n],
where k[n] is the graph with two objects, 0, 1, and k[n] as Hom(0, 1) the morphism between the two, and k c [n] is the graph with two objects ,0, 1, and the complex Hom(0, 1) which is always zero except for the degrees n -1 and n, where it is k.

k[n] G k c [n] G(< α >).
α Remark 4.2.3. It isn't hard to see that all we have done here has been adding a term in degree n -1 to the complex of modules G(x, y).

Now that we have this definition, we can apply it to finally define the conditions of our image.

Definition 4.2.4. Let F ∈ Fun S (cL op S , sSet) be a simplicial functor from the cofibrant free dg-categories to the simplicial sets. We say that F satisfies the dg-Segal conditions if:

1. For all L, K ∈ cL S , F (L K) → F (L) × F (K) is a weak equivalence.
2. The image of the initial object is a point, i.e. F (∅) ≃ * .

3. Let G be a graph in Gr(C(k)) and x, y ∈ Obj(G). For all α ∈ Z n (G(x, y)), the image of the free dg-category issued from G(< α >) is a homotopy pullback in sSet of the following form:

F (L(G(< α >))) F (L(G)) F (∆ c k (1, n, 1)) F (∆ k (1, n, 1))
where

∆ c k (1, n, 1) = L(k c [n]) and ∆ k (1, n, 1) = L(k[n]); i.e.
F sends the homotopy pushouts of the previous definition to homotopy pullbacks.

We denote the full subcategory of F ∈ Fun S (cL op S , sSet) that satisfies the dg-Segal conditions by dg -Segal and call its objects dg-Segal spaces.

Our conjecture at this point is that the image of the functor Sing we defined in Section 4.1 is formed up to weak equivalence of the functors that satisfy the dg-Segal conditions. In order to prove that, first we need to prove that every object in the image is of this form. Proposition 4.2.5. Let T ∈ dgcat be a dg-category. Then the functor Sing(T ) satisfies the dg-Segal conditions.

Proof. We have to see that T fulfills the three conditions of the definition.

1. Let L, K ∈ cL S be two cofibrant free dg-categories. As L, K are cofibrant, we have that

Sing(T )(L K) = Map(L K, T ) = Hom(L K, C * (T )).
But by definition of coproduct, the condition 1. holds in this case:

Hom(L K, C * (T )) = Hom(L, C * (T )) × Hom(K, C * (T )) = Map(L, T ) × Map(K, T )
and we're good.

2. This condition is evident: Sing(∅) = Map(-, ∅) = * by definition of final object.

3. We need to prove that the following diagram is a homotopy pullback

Sing(T )(L(G(< α >))) = Map(L(G(< α >)), T ) Sing(T )(L(G)) = Map(L(G), T ) Sing(T )(∆ c k (1, n, 1)) = Map(∆ c k (1, n, 1), T ) Sing(T )(∆ k (1, n, 1)) = Map(∆ k (1, n, 1), T ).
All these objects are in sSet, which is a proper category, which means that if one of these arrows is a fibration, then we have a homotopy pullback. By Theorem 3.4.9, we have that ∆ k (1, s, 1) → ∆ c k (1, s, 1) is a generating cofibration in dgcat, and by Proposition 3.2.55,

Sing(T )(∆ c k (1, s, 1)) → Sing(T )(∆ k (1, s, 1)
) is a fibration. We then have that the previous diagram is a homotopy pullback.

The functor Sing(T ) satisfies the dg-Segal conditions and we have finished our proof.

Q.E.D.

Remark 4.2.6. We draw the attention of our readers to the fact that, even though we haven't asked for dg-Segal spaces to be fibrant, by adjointness every Sing(T ) is actually fibrant.

We have proven that every element in the image of Sing is a dg-Segal space. We ask the reader to keep that in mind for when we have to prove the essential surjectivity.

But for now, let us focus on the model structure we can get for these dg-Segal spaces. In [START_REF] Rezk | A model for the homotopy theory of homotopy theory[END_REF], Rezk takes his model structure over Fun(∆ op , sSet) and does a Bousfield localization that makes the Segal spaces into its fibrant objects; he calls that the Segal space model category structure. Following his footsteps, we get a new model structure for Fun S (cL op S , sSet) where the fibrant objects are the dg-Segal spaces that are fibrant for the projective structure. Even though the results about Segal and complete Segal spaces in this section are due to Rezk, we will take inspiration in Rasekh's lecture notes in [START_REF] Rasekh | Lecture notes on higher categories[END_REF] for their presentation. We call such a model structure the dg-Segal model structure.

Proof. In order to prove this, we are going to utilize the left Bousfield localization. The first thing we need to do is find a class of morphisms C such that the dg-Segal spaces are exactly the C-local objects, i.e. such that for every dg-Segal space F and for every morphism

f : A → B in C, the morphism Map(B, F ) → Map(A, F )
is a weak equivalence. For that, we define three classes of morphisms, one for each condition in the definition of a dg-Segal space.

Our first class of morphisms is

C 1 = {Sing(L) Sing(L ′ ) → Sing(L L ′ )/ L, L ′ ∈ cL S }.
Let us check that the C 1 -local objects are exactly the functors that satisfy the first condition of the definition of dg-Segal spaces. Let F be a functor in Fun S (cL op S , sSet) that is a C 1 -local object. Then, by the Yoneda Lemma, we have that

Map(Sing(L L ′ ), F ) ≃ F (L L ′ ) → Map(Sing(L) Sing(L ′ ), F ) ≃ F (L) × F (L ′ )
is a weak equivalence. By construction, F satisfies the first dg-Segal condition.

2. As the second condition of the definition of dg-Segal space is just one single weak equivalence, the class of morphisms associated to it will also have just one morphism. We consider C 2 = {∅ → Sing(∅}. Let F be a C 2 -local object. Then, also by the Yoneda lemma, we have that

Map(Sing(∅), F ) ≃ F (∅) → Map(∅, F ) ≃ *
is a weak equivalence, and F satisfies the second dg-Segal condition.

3. Lastly, we take the class

C 3 = {Sing(L(G)) Sing(∆ k (1,s,1)) Sing(∆ c k (1, s, 1)) → Sing(L(G(< α >))/ G ∈ Gr(C(k)), s ∈ Z, x, y ∈ Obj(G), α ∈ Z n (x, y)}.
Let F be a C 3 -local object. The, by the Yoneda lemma, we have that the morphism

Map(Sing(L(G(< α >)), F ) ≃ F (L(G(< α >)) → Map(Sing(L(G)) Sing(∆ k (1,n,1)) Sing(∆ c k (1, n, 1)), F ) ≃ F (L(G)) × Sing(∆ k (1,n,1)) F (∆ c k (1, n, 1))
is a weak equivalence. Alternatively, that means that the diagram in condition 3 of the dg-Segal condition is a homotopy pullback and F satisfies the third dg-Segal condition.

We take the class of morphisms C = C 1 ∪ C 2 ∪ C 3 to be our C in the Bousfield localization. If such a localization exists, its fibrant objects will be exactly the dg-Segal spaces which are fibrant for the projective model structure.

We have by Theorem 3.2.71 that if the category where we are making the localization is a left proper cellular model category, then the left Bousfield localization exists. We know from Proposition 3.2.72 that the category of simplicial sets sSet is left proper and cellular, and from Proposition 3.2.73 that the functors on it are also left proper and cellular. So this localization exists and we have finished.

Q.E.D.

Considering how we have followed Rezk's method pretty closely, it won't be surprising to our readers to see that there is a close relationship between our dg-Segal spaces and the classic Segal spaces. Indeed, there is a Quillen adjoint between the model category Fun S (cL op S , sSet) and the model category Fun(∆ op , sSet). Let us construct that. Proposition 4.2.8. There exists a morphism, called the linearisation of ∆, between the categories ∆ and cL S , and it defines a Quillen adjunction between the categories Fun S (cL op S , sSet) and Fun(∆ op , sSet) with their respective projective structures.

Proof. Let [n] ∈ ∆ be an object in ∆. We define j([n]) = [n] × k to be a free category such that j([n]) = 0 1 . . . n. k k k
This is a free dg-category of finite type, and it is also cofibrant (for a detailed proof of the cofibrancy, see Corollary 5.2.6), so this morphism j is well-defined as ∆ → cL S . We construct then the following Quillen adjunction: j ! : Fun(∆ op , sSet) ≃ Fun S (∆ op , sSet) ⇌ Fun S (cL op S , sSet) : j * and we have finished our proof.

Q.E.D.

Notation 4.2.9. We denote the images by j by j([n]) = ∆ k (n, 0, 1).

Definition 4.2.10. We call the morphism j * : Fun S (cL op S , sSet) → Fun S (∆ op , sSet) the delinearlisation moprhism. Now, we have calculated that Quillen adjunction for the projective model structure. But we have two localizations here: let us prove that this stays a Quillen adjunction in the localizations. Let us see that this adjunction sends dg-Segal spaces to classic Segal spaces. Proposition 4.2.11. Let F ∈ dg -Segal be a dg-Segal space. Then its image by the delinearisation morphism j * is a Segal space.

Proof. Let F be a dg-Segal space. Then, in order to prove that its image by j * is Segal space, by definition of a Segal space we need to prove that for all n ≥ 1, the morphism

j * (F ) n → j * (F ) 1 × j * (F )0 . . . × j * (F )0 j * (F ) 1
is a weak equivalence. If we unravel that definition, we have that for every i ∈ N, j * (F

) i = j * (F )([i]) = F (j([i])) = F (∆ k (i, 0, 1)
). So proving that j * (F ) is a Segal space can be rewritten as asking that for all n ≥ 1, Φ n :

F (∆ k (n, 0, 1)) → F (∆ k (1, 0, 1)) × F (∆ k (0,0,1)) . . . × F (∆ k (0,0,1)) F (∆ k (1, 0, 1))
is a weak equivalence of simplicial spaces.

In order to simplify the notation, we will denote ∆ k (i, 0, 1) by ∆ i k . We remark too that F (∆ 0 k ) = F (k).

We will prove the proposition by induction.

• n = 1. This is obvious, since

F (∆ 1 k ) ≃ F (∆ 1 k ).
There is nothing to prove. • n ≥ 2. We assume that the morphism

Φ n-1 : F (∆ n-1 k ) → F (∆ 1 k ) × F (k) . . . × F (k) F (∆ 1 k )
is a weak equivalence. Let us prove that the morphism Φ n is also a weak equivalence.

As usual for inductions, we have to decompose F (∆ n k ) in a way that makes F (∆ n-1 k ) appear. In this case, we will use the properties of a dg-Segal category to do so. We define G 0 to be a graph of the following form:

G 0 = j([n -1]) * = 0 1 . . . n -1 n k k k 0
Then, we can construct ∆ n k as the following pushout:

∆ k (1, -1, 1) ∆ c k (1, -1, 1) L(G 0 ) ∆ n k α
By using the third dg-Segal condition, we can write F (∆ n k ) in the following way:

F (∆ n k ) ≃ F (G 0 ) × F (∆ k (1,-1,1)) F (∆ c k (1, -1, 1)) ≃ F (∆ n-1 k k) × F (∆ k (1,-1,1)) F (k k)).
By the first dg-Segal condition, we can make those coproducts commute with F in the following way:

F (∆ n k ) ≃ F (∆ n-1 k k) × F (∆ k (1,-1,1)) F (k k)) ≃ (F (∆ n-1 k ) × F (k)) × F (∆ k (1,-1,1)) (F (k) × F (k)).
Now, in particular, if we take n = 1, we get the following formula:

F (∆ 1 k ) ≃ (F (∆ 0 k ) × F (k)) × F (∆ k (1,-1,1)) F (k) 2 = F (k) 2 × F (∆ k (1,-1,1)) F (k) 2 .
We are almost there. If we add and subtract one F (k) to the formula of F (∆ n k ) we will be done.

F (∆ n k ) ≃ (F (∆ n-1 k ) × F (k)) × F (∆ k (1,-1,1)) F (k) 2 ≃ F (∆ n-1 k ) × F (k) (F (k) × F (k)) × F (∆ k (1,-1,1)) F (k) 2
and we have that

F (∆ n k ) ≃ F (∆ n-1 k ) × F (k) F (∆ 1 k ).
By the induction hypothesis, we have

F (∆ n k ) ≃ F (∆ 1 k ) × F (∆ 0 k ) . . . × F (∆ 0 k ) F (∆ 1 k ).
The image j * (F ) is a Segal space and we have finished our proof. Q.E.D.

Remark 4.2.12. The reader is probably wondering why we introduced the notation ∆ k (n, 0, 1) only to immediately simplify it. The answer is that those dg-categories are actually a particular case of some dgcategories we will denote ∆ k (n, s, d), where s ∈ Z n and d ∈ N n , which we think might form a full subcategory of cL that would be sufficient for this construction. We will expand on this hypothesis in Section 5.2 in Chapter 5.

Corollary 4.2.13. The adjunction j ! : Fun(∆ op , sSet) ⇌ Fun S (cL op S , sSet) : j * is a Quillen adjunction for the Segal and dg-Segal model structures, respectively.

Proof. This result is a direct consequence of the last proposition. Indeed, by Proposition 3.1.16, we know that if we have an adjunction between two model categories F : M ⇌ N : G and we want to prove it is a Quillen adjunction, then we only need to prove that F preserves cofibrations and G preserves fibrant objects. Now, the left Bousfield localization doesn't change cofibrations, and our adjunction was already a Quillen adjunction on the projective model structure; j ! preserves cofibrations. We only have left to prove that j * preserves fibrant objects. But the fibrant objects in the dg-Segal model structure are the dg-Segal spaces that were fibrant in the projective model structure. By the last proposition, j * sends dg-Segal spaces to Segal spaces, and because it is already a Quillen adjunction in the projective model structure, it preserves fibrant objects in that structure. So it preserves fibrant objects on the dg-Segal model structure.

The adjunction is a Quillen adjunction on the Segal and dg-Segal model structures, respectively, and we have finished our proof.

Q.E.D.

Complete dg-Segal spaces

When trying to characterize ∞-categories using Segal spaces, we realize quickly that the definition of Segal spaces that has been already given is not enough. Indeed, there is a class of morphisms, called Dwyer-Kan morphisms, that should be equivalences but aren't. In [START_REF] Rezk | A model for the homotopy theory of homotopy theory[END_REF], in their quest to invert those, the author gets to the following result:

Definition 4.3.1. We define E(1) to be the discrete space given at level n ∈ N by

E(1) n = {x, y} [n] ,
i.e. by two non-degenerate cells on each level. Those are given by (xy) n/2 and (yx) n/2 if n is odd and (xy) (n-1)/2 and (yx) (n-1)/2 if n is odd.

Proposition 4.3.2. [Rez01, Prop. 7.6], [Ras20, Prop. 4.5] Let f : V → W be a map between two Segal spaces. We assume that the morphism Map(E(1), X) → Map( * , X) is a weak equivalence, with both X = V and W , for a certain morphism * → E(1). Then f is a Dwyer-Kan equivalence if and only if it is a weak equivalence.

But that just means that the Dwyer-Kan equivalences are equivalences if they are between two C-local objects in sSet, where C is a class with one object, * → E(1). So they define a new concept, that of complete Segal spaces, which are just the objects we have just defined. 1. The cofibrations are precisely the monomorphisms.

2. The fibrant objects are precisely the complete Segal spaces.

3. The weak equivalences are precisely the Dwyer-Kan equivalences between complete Segal spaces.

In our case, we will see that, mirroring the classic situation, the dg-Segal spaces we have defined also are not enough to completely characterize our dg-categories. Indeed, we can't prove that the functor Sing is fully faithful; we will be able to do so up to a certain morphism, that we will call a DK-equivalence. As such, we will need to do another left Bousfield localization in order to invert those, and then define its local objects to be our complete dg-Segal spaces.

Instead of doing it in that order, though, we will start with the definition of the complete dg-Segal model structure. For that, we will utilize the linearisation functor that we defined on the last section.

Definition 4.3.5. Let E(1) be as defined above. We define

E k = L(j ! (E(1)))
Remark 4.3.6. We warn our readers of the fact that E k is not the image of a dg-category through our functor Sing; in fact, it isn't even a dg-Segal space! Theorem 4.3.7. There exists a class of morphisms C and a simplicial closed model structure on Fun S (cL op S , sSet) such that 1. The cofibrations are the same as in the projective model structure.

2. The fibrant objects are the dg-Segal spaces which satisfy that F (k) → j * (F ) hoequiv is a weak equivalence of simplicial spaces and are fibrant for the projective model structure.

3. The weak equivalences are the C-local equivalences.

We call such a model structure the complete dg-Segal model structure.

Proof. The proof of this is easy, as we are only just transporting the complete Segal model structure to our new setting via the linearisation functor. Indeed, we can construct this by utilizing a left Bousfield localization on the dg-Segal model structure by the class C = {Φ : E k → Sing(k)} = {Φ : j ! (E(1)) → j ! ( * )}.

We won't write down the details about whether this gives us an actual localization, as they are the exact same as in the construction of the dg-Segal model structure.

The only thing left to do is to see that the C-local objects are really as we have defined them above.

Let F be a C-local object. We have that F is a dg-Segal space that is fibrant for the projective structure, and also that the following morphism

Map(Sing(k), F ) → Map(E k , F )
is a weak equivalence. By the definition of an adjunction, we have that

Map(E k , F ) = Map(j ! ((E(1)), F ) ≃ Map(E(1), j * (F )) and Map(Sing(k), F ) = Map(j ! ( * ), F ) ≃ Map( * , j * (F )).
So the condition is equivalent to asking for Map( * , j * (F )) → Map(E(1), j * (F )) to be a weak equivalence.

And that is exactly the definition of j * (F ) being a complete Segal space. So if F is a C-local object, then F is a dg-Segal space such that j * (F ) 0 = F (k) → j * (F ) hoequiv is a weak equivalence. By Proposition 3.2.76, a fibrant object for the complete dg-Segal model structure is such an F which is also fibrant for the projective model structure.

We have all the conditions we needed and our proof is complete. Q.E.D.

Remark 4.3.8. It is important to remember that j * (F ) hoequiv is the subset of j * (F ) 1 whose 0-simplexes are homotopy equivalences. Considering we've already seen that j * (F ) 1 = F (∆ k (1, 0, 1)), we can rewrite j * (F ) hocolim as the subset of F (∆ k (1, 0, 1)) whose 0-simplexes are homotopy equivalences, with no mentions of the linearisation adjunction.

Notation 4.3.9. Let F be a dg-Segal space. We denote the subset of F (∆ k (1, 0, 1)) whose 0-simplexes are homotopy equivalences by F hoequiv .

Definition 4.3.10. Let F be an object in Fun S (cL op S , sSet). We say that F is a complete dg-Segal space if it is a dg-Segal space and the morphism As we did with the dg-Segal spaces, we see now that every element of Sing is actually a complete dg-Segal space.

F (k) → F hoequiv
Proposition 4.3.12. Let T ∈ dgcat be a dg-category. Then Sing(T ) is a complete dg-Segal space.

Proof. This is a direct consequence of the proof of Corollary 8.7 in [START_REF] Toën | The homotopy theory of dg-categories and derived Morita theory[END_REF]. Indeed, during that proof Toën proves that for all T ∈ dgcat, the morphism Map(k, T ) = Sing(T )(k) → Map(∆ k (1, 0, 1), T ) = Sing(T )(∆ k (1, 0, 1)) induces an injection on π 0 and a bijection on π i for all i > 0, and that its image in the homotopy category are the morphisms of [T ] that are isomorphisms. That means that the morphism is fully faithful, and that its essential image is Sing(T ) hoequiv .

So for all T , the morphism Sing(T )(k) → Sing(T ) hoequiv is a weak equivalence, and Sing(T ) is a complete dg-Segal space.

Q.E.D. Now, we have a nice definition of our C-local objects, but we still have the C-local equivalences defined in an abstract manner. and we said before that we were going to define something called the DK-equivalences that we needed to make into equivalences. Before we do that, though, we need one additional definition.

Notation 4.3.13. We denote the full subcategory of cofibrant complexes of modules by C(k) c ⊂ C(k).

Definition 4.3.14. Let F ∈ dg -Segal be a functor that satisfies the dg-Segal conditions, let x, y ∈ π 0 (F (k)). We define F (x,y) ∈ Fun(C(k) c,op , sSet) to be, for all E ∈ C(k) c cofibrant complexes of modules, the homotopy fiber of F (E x,y ) → F (k) × F (k) where E x,y is the free dg-category given by the graph with two objects, x and y, and E as the complex between x and y,

F (x,y) (E) * F (E x,y ) F (k) × F (k).
We call F (x,y) the dg-mapping space of F at x, y.

This definition is more intuitive than we think. Indeed, these functors are always representable.

Proposition 4.3.15. Let F ∈ dg -Segal be a functor that satisfies the dg-Segal conditions, let x, y ∈ π 0 (F (k)). There exists a unique complex of modules up to weak equivalence F (x, y) ∈ C(k) such that F (x,y) (-) ≃ Map(-, F (x, y)).

where map j * (F ) is the mapping space in the associated Segal space, so we can use the composition law there.

We are now ready to define DK-equivalences.

Definition 4.3.19. Let f : F → G ∈ dg -Segal be a morphism between two functors satisfying the dg-Segal conditions. We say that f is a DK-equivalence if it satisfies the following conditions:

1. The induced morphism [f ] : [F ] → [G] is essentially surjective.

2. For all objects x, y ∈ π 0 (F (k)), the induced morphism on the dg-mapping spaces, F (x,y) → G (f (x),f (y)) , is a quasi-equivalence of functors in Fun(C(k) c,op , sSet).

Remark 4.3.20. Some readers might ask themselves why we have defined DK-equivalences exclusively on dg-Segal spaces, and not on any functor. The reason is that if we do that, DK-equivalences would not satisfy the two-out-of-three condition. Indeed, if we have three morphisms f , g and f • g, and two out of the three are DK-equivalences over any functor, then the third has the second condition of DK-equivalences because of the two-out-of-three condition on quasi-equivalences; but the first condition is not always true. It is only true if we have f, g DK-equivalences or g and f • g DK-equivalences. It is true if the morphism is between two dg-Segal spaces, though.

Remark 4.3.21. If F, G is of the form F = Sing(T ), G = Sing(T ′ ), what we just defined is pretty much exactly a weak equivalence between dg-categories.

Now, the rest of this result hasn't been finished yet. We will discuss it in more detail in the next chapter, but for now, here is it.

Hypothesis 4.3.22. Let f : F → G be a morphism between two functors satisfying the dg-Segal conditions. Then f is a DK-equivalence if and only if it is a weak equivalence in the complete dg-Segal model structure.

We have now everything we need in order to prove that the functor is fully faithful.

Hypercovers and free dg-categories

The next step of our proof is proving that Sing is, in fact, fully faithful. To do that, we will prove that the restriction to cL S injects fully-faithfully, and then go on to prove that we can write every dg-category as a particular colimit of objects in cL S and that Sing W commutes with those colimits. And in order to do that, we will use hypercovers.

Hypercovers are a useful concept, and it has been defined in several different contexts. Some traits remain, though: in all of them, a hypercover of an object A is some kind of augmented object U * → A with a similar set of conditions, and in most of them we have the property that hocolim U n ≃ A. For example, Dugger and Isaksen proved in [START_REF] Dugger | Topological hypercovers and A 1 -realizations[END_REF] that we do have that eak equivalence hocolim U n ≃ A result in Top. In our case, the classic notion of hypercover that we will use more often is that in the category of simplicial sets, sSet. For that, we will give here its definition. Although any reader familiar with Lurie's work will know that the definition there is given in much greater generality, we have decided to translate it here to the language of simplicial objects because it is the only context in which we will use it.

Definition 4.4.1. [Lur09, Definition 6.5.3.2, Corollary 7.2.1.15] Let X ∈ sSet be a simplicial set, and U * → X an augmented simplicial object in sSet. We say that U * is a hypercover of X if for all n ∈ N the functor

U n → U ∂∆ n *
is an effective epimorphism. In other words, U * → X is a hypercover if for all n ∈ N

π 0 (U n ) → π 0 (U ∂∆ n *
) is an epimorphism.

• n ∈ N. By induction hypothesis it exists a n-truncated hypercover of X, named V * → X. We have to construct an (n + 1)-truncated hypercover of X, that we will call U * → X.

We define V ′ * = sk n+1 (cosk n V * ). This simplicial object is (n + 1)-truncated, but the term n + 1 is not necessarily in M 0 . By hypothesis, there exists a morphism U ′ n+1 → V ′ n+1 that is a M 0 -epi and such that U ′ n+1 ∈ M 0 . We define the (n + 1)-truncated M 0 -hypercover U * → X to be U i = V ′ i = V i for all i ≤ n and

U n+1 = U ′ n+1 i≤n V i
for n + 1, where we take the colimit over i ≤ n. As the set of elements i ≤ n is finite and we have assumed that M 0 is closed for finite colimits, we still have that U n+1 ∈ M 0 .

We need to prove that U * → X is an augmented simplicial set, and also that we have the property of the M 0 -hypercover. Let us construct the morphisms

U m → U n+1 and U n+1 → U m for all morphism [n+1] → [m] and [m] → [n + 1], with m ≤ n + 1.
These morphisms are easy: in one sense we just take the composite

U n+1 → U ′ n+1 → V ′ n+1 → V ′ m = U m .
and in the other sense we just take the morphism given by the colimit.

And lastly, we need to prove that for all i ≤ n + 1 the morphism

U i → U ∂∆ i * is a M 0 -epimorphism.
For i ≤ n this is true by induction hypothesis. Indeed, we have defined U * in such a way that U i = V ′ i , and by Remark 3.3.12 we have that V ′ i = (sk n+1 (cosk n V * )) i = V i for all i ≤ n. We need then to prove that

U i = V ′ i = V i → (cosk i-1 sk i-1 U * ) i = (cosk i-1 sk i-1 V * ) i
is an M 0 -epimorphism. Since V * is an n-truncated M 0 -hypercover, this condition is verified. We only need to prove this for n + 1.

We need to prove, then, that the morphism

U n+1 = U ′ n+1 V i → (U * ) ∂∆ n = (cosk n sk n U * ) n+1 = (cosk n V * ) n+1 = V ′ n+1
is an M 0 -epimorphism. Let W ∈ M 0 be an object in M 0 , and we are going to prove that

Map(W, U ′ n+1 V i ) → Map(W, V ′ n+1 )
is surjective on the π 0 . Every object in M is fibrant by hypothesis, which means that we can write

Map(W, U ′ n+1 V i ) as Hom(C * (W ), U ′ n+1 V i )
, and similarly for Map(W, V ′ n+1 ). We are, then, going to prove that

π 0 (Map(W, U ′ n+1 V i )) = Hom(W, U ′ n+1 V i )/ ∼→ π 0 (Map(W, V ′ n+1 )) = Hom(W, V ′ n+1 )/ ∼
is surjective, where ∼ is the homotopy equivalence relation.

We will need an auxiliary morphism for this. By definition of a simplicial set, for all i ≤ n there exists a morphism

V i = V ′ i → V ′ n+1
. Also, by the way we have constructed U * , there exists a morphism u : U ′ n+1 → V ′ n+1 , which is an M 0 -epimorphism. In consequence, by definition of a coproduct, there exists a morphism f :

U ′ n+1 V i → V ′
n+1 , and a factorization g :

U ′ n+1 → U ′ n+1 V i such that f • g = u.
And now let us prove the surjectivity. Let F : W → V ′ n+1 be a morphism. As u : U ′ n+1 → V ′ n+1 is an M 0 -epimorphism, that means that it exists, up to homotopy, a morphism F ′ : W → U ′ n+1 such that u • F ′ = F . But we have said that u factorizes through f . We can then, compute a morphism

g • F ′ : W → U ′ n+1 → U ′ n+1 V i such that f • g • F ′ = u • F ′ = F up to homotopy.
We have that the morphism

π 0 (Map(W, U ′ n+1 V i )) = Hom(W, U ′ n+1 V i )/ ∼→ π 0 (Map(W, V ′ n+1 )) = Hom(W, V ′ n+1 )/ ∼
is an M 0 -epimorphism. The (n + 1)-truncated simplicial set U * → X is an (n + 1)-truncated M 0 -hypercover of X and we have finished the proof. Q.E.D.

As the reader can imagine, we decided to use the finite type free dg-categories expecting them to be wellbehaved enough that we can work with cL S -hypercovers. But even though it would be possible to construct cL S -hypercovers directly, the number of objects in it would explode quite quickly, and we don't want that. So instead of working on the free dg-categories of finite type directly, we will first fix the objects. Once that is done, it will be the moment to make good on our word: let us prove that that is actually true. Proposition 4.4.7. Let X be a dg-category, and let O be its set of objects. Let M be dgcat O the model category of dg-categories with O as a set of objects, and M 0 = cL SO be the full subcategory of free dg-categories of finite type with O as a set of objects. There exists an M 0 -hypercover U * → X such that U i ∈ M 0 for all i ∈ N.

Proof. We just need to prove that the model category M and the subcategory M 0 fulfill the conditions of Theorem 4.4.6, i.e. that all object in M is fibrant, that M 0 is closed for finite coproducts and that for all object X ∈ M there exists an object U ∈ M 0 and a M 0 -epimorphism U → X.

• The first condition is Corollary 3.4.10.

• Let X, Y be two free dg-categories over O. Then, by definition, there exists two graphs X ′ , Y ′ ∈ Gr(C(k)) tf such that L(X ′ ) = X and L(Y ′ ) = Y . But L is a left adjoint, and a finite coproduct is a special case of a colimit: as such, we know that L commutes with finite coproducts. That gives us that X Y = L(X ′ ) L(Y ′ ) = L(X ′ Y ′ ), and we have that X Y is a finite type free category, coming from the coproduct of graphs X ′ Y ′ . We have that cL S is closed for finite coproducts and we have finished.

• Let X be a dg-category. We are going to prove that the morphism LU (X) → X is the M 0 -epimorphism we need. First of all, by definition of a free dg-category, LU (X) has the same objects as X and it is an object in cL SO . Let A be a free dg-category of finite type over O. We need to prove, then, that

Map(A, LU (X)) → Map(A, X)
is surjective on the π 0 . But this morphism is already surjective. Indeed, if we take f : C * (A) → X, we can define a morphism f ′ : C * (A) → LU (X) that gives us the right result. Indeed, X and LU (X) have the same objects, so that won't change. We only need to define the morphisms of complexes.

Let x, y ∈ C * (A). Then we have a morphism ϕ : C * (A)(x, y) → X(f (x), f (y)). Now, we remind the reader that, by definition 3.4.16, the morphisms in L(U (X)) are defined as follows:

L(U (X))(f (x), f (y)) = m∈N x1,...,xm∈O (U (X)(f (x), f (x 1 )) ⊗ . . . ⊗ U (X)(f (x m ), f (y))).
We define the morphism ϕ ′ : C * (A)(x, y) → LU (X)(f (x), f (y)) such that for all g ∈ C * (A)(x, y), the image by ϕ ′ is the direct sum with ϕ(g) in the zero component and zero everywhere else.

We have all three conditions for the existence of an M 0 -hypercover. For all X there exists a cL S -hypercover of X composed of objects in cL S . Q.E.D.

Remark 4.4.8. There are one important thing that we need to highlight from this construction. If we have a cL S -hypercover defined like that, U * → X, then for all x, y ∈ Obj(X) and for all n ∈ N we have that U n (x, y) → U * (x, y) ∂∆ n is a split epimorphism.

This second remark gives us a concept we will need for the next result.

Definition 4.4.9. Let M be a model category category and E * → E a hypercover. We define a split hypercover of E in C(k) to be an augmented simplicial complex E * → E such that for all n ∈ N the morphism

E n → E ∂∆ n * is a split epimorphism.
Once this definition is set, there is also another thing we have to keep in mind. We have now a definition of hypercover on dg-categories. When we described them at first, we gave one important property that those constructions tended to have: their homotopy colimits being quasi-equivalent to the original object. And we would like for it to happen in this context too. Let us work on that. In order to do so, though, we will need an auxiliary result beforehand.

Lemma 4.4.11. Let M = dgcat and M 0 = cL S . Let T be an object in dgcat and T * → T a cL Shypercover constructed using Theorem 4.4.6 and Proposition 4.4.7. Then for all x, y ∈ Obj(T ) we have that hocolim ∆ op (T i (x, y)) ≃ T (x, y) in C(k).

Proof. As we said in the last remark, if T * → T is a cL S -hypercover constructed using the aforementioned theorem, then for all T * (x, y) → T (x, y) is a split epimorphism. We will then prove that if E * → E is a split hypercover of complexes, then hocolim ∆ op E i ≃ E.

We start with the connective case. Let us assume that E * , E ∈ C(k) ≤0 , and E * → E is a split hypercover in C(k) ≤0 . We can use the Dold-Kan equivalence, DK : sSet ⇌ C(k) ≤0 : DK -1 , and DK -1 (E * ) → DK -1 (E) is surjective over π 0 in sSet, i.e. it is a hypercover of simplicial sets. By Proposition 4.4.2 we have that hocolim ∆ op DK -1 (E i ) ≃ DK -1 (E) in sSet. But the Dold-Kan equivalence isn't just an equivalence: it is a model equivalence, meaning that it is an equivalence of categories that also preserves the model structure ([GJ09, Chapter III, Section 2]). In particular, if we apply DK we have that hocolim ∆ op E i ≃ E and we have finished.

We have then that the connective case is true. We will now reduce the general case to the connective case, using the naïve truncation τ :

C(k) → C(k) ≤0 such that if E ∈ C(k), H i (τ (E)) = H i (E)
for all i ≤ 0 and H i (τ (E)) = 0 for all i > 0. But knowing that E * → E is a split hypercover in C(k) doesn't assure us that τ (E * ) → τ (E) will also be a split hypercover in C(k) ≤0 . To prove that, we need the following result.

Sub-lemma 4.4.12. Let E * → E be a split hypercover in C(k) and K a finite simplicial object. Then we have the equivalence

H i (E K * ) ≃ H i (E * ) K .
Proof. We are going to prove this by induction over the dimension of K. Let us prove that for all n ∈ N, if

dim K = n, then H i (E K * ) ≃ H i (E * ) K . • n = 0. This is almost immediate. Indeed, if dim K = 0, then K = p * , and E K * = E p 0 .
And as cohomology commutes with products, we have that H

i (E K * ) ≃ H i (E * ) K . • n ≥ 1. We assume that for every K ′ with dim K ′ < n we have H i (E K ′ * ) ≃ H i (E * ) K ′ .
Let K be a simplicial objet of dimension n. Then we have the following homotopical coproduct

∂∆ n ∆ n K ≤n-1 K ⌟
where K ≤n-1 is the simplicial subobject of K of dimension n -1. In turn, that square gives us the following homotopic products

E K * E K ≤n-1 * E ∆ n * E ∂∆ n * ⌜ H i (E * ) K H i (E * ) K ≤n-1 H i (E * ) ∆ n H i (E * ) ∂∆ n .
⌜ Now, we would like to have that if we take the H i on the first square we still have a homotopic product. That is not true in general. But we know something extra about this square: indeed, as E * → E is a split hypercover, we know that

E ∆ n * → E ∂∆ n *
is a split epimorphism, and in that case we do have that the square

H i (E K * ) H i (E K ≤n-1 * ) H i (E ∆ n * ) H i (E ∂∆ n * ) ⌜ is a homotopic product. By induction, we have H i (E * ) K ≤n-1 ≃ H i (E K ≤n-1 ) * and H i (E * ) ∂∆ n ≃ H i (E ∂∆ n * ) (because dim K ≤n-1 = dim ∂∆ n = n -1); and by definition we have that H i (E * ) ∆ n ≃ H i (E n ) ≃ H i (E ∆ n * ).
We have then the following cubic diagram, where both the front and the back square are homotopic products and three out of four front-to-back arrows are equivalences.

H i (E K * ) H i (E K ≤n-1 * ) H i (E * ) K H i (E * ) K ≤n-1 H i (E ∆ n * ) H i (E ∂∆ n * ) H i (E * ) ∆ n H i (E * ) ∂∆ n ∼ ∼ ∼
We have that the fourth arrow is also an equivalence, H i (E K * ) ≃ H i (E * ) K , and we have finished.

Q.E.D. Now that we have that, we can prove that if E * → E is a split hypercover, then τ (E * ) → τ (E) is too. Indeed, by Sublemma 4.4.12, we have that for all i ≤ 0,

H i (τ (E * ) ∂∆ n ) ≃ H i (τ (E * )) ∂∆ n ≃ H i (E * ) ∂∆ n ≃ H i (τ (E ∂∆ n *
))

and τ (E * ) ∂∆ n ≃ τ (E ∂∆ n *

). We then have that for all n ∈ N,

τ (E) n → τ (E * ) ∂∆ n ≃ τ (E ∂∆ n *
) is a split epimorphism, and τ

(E * ) → τ (E) is a split epimorphism. Now, if E * → E is a split hypercover, we have that for all i ∈ N, E * [-i] → E[-i] is also a split hypercover and τ (E * [-i]) → τ (E[-i]) is too. By the connective case, we have that hocolim τ (E n [-i]) ≃ τ (E[-i]).
As this is true for all i ∈ N, we have that hocolim E n ≃ E.

In conclusion, if T * → T is a hypercover constructed using Theorem 4.4.6, we have that hocolim(T i (x, y)) ≃ T (x, y) for all x, y ∈ Obj(T ) in C(k) and we have finished.

Q.E.D.

We're almost ready to prove that if T * → T is a cL S -hypercover constructed as instructed, then hocolim T i → T is a weak equivalence. We have proven that the complexes of morphisms have that condition. But does it transfer well from complexes to dg-categories and vice-versa? Proof. This is a direct consequence of [Lur17, Lemma 4.1.8.13.], in particular of its proof. Indeed, in that result we say that if we have a combinatorial monoidal model category A and a small category C such that its nerve N (C) is sifted, and we have on one hand that A's monoidal structure is symmetric and satisfies the monoid axiom, and on the other hand that A is left proper and its cofibrations are generated by cofibrations between cofibrant objects; then, the forgetful functor Alg(A) → A commutes with homotopy colimits over C. Now, we take the monoidal structure on the graphs with fixed objects to be as follows

: let G, G ′ ∈ Gr(C(k)) O and x, y ∈ O, we define (G ⊗ G ′ )(x, y) = ⊕ z G(x, z) ⊗ G ′ (z, y).
The category of dg-categories with fixed objects is the category of algebras over Gr(C(k)) O with this monoidal structure, Alg(Gr(C(k)) O ). As the category of graphs with this monoidal structure satisfies the above conditions and N (∆) is sifted, we have that the forgetful functor dgcat O → Gr(C(k)) O commutes with homotopy colimits and we have finished our proof. Q.E.D.

And now we're ready to prove our result.

Proposition 4.4.14. Let T be a dg-category with fixed objects, and T * → T a cL S -hypercover in dgcat O , the category of dg-categories with fixed objects O = Obj(T ). Then we have that hocolim T i ≃ T in dgcat.

Proof. Let ϕ : hocolim T * → T be the morphism from the homotopic colimit to T . We need to prove that this morphism is a weak equivalence in dgcat O . But as we have the same objects, the quasi-essential surjectivity is automatic. We only need to prove that ϕ is quasi-fully faithful. By definition, that means that for all x, y ∈ O, we need to prove that (hocolim T i )(x, y) ≃ T (x, y). But as we know from Lemma 4.4.13 that the forgetful functor commutes with hocolim, that is equivalent to asking that for all x, y ∈ O, we have hocolim(T i (x, y)) ≃ T (x, y). By Lemma 4.4.11, that is true.

We have that ϕ : hocolim For all T ′ ∈ dgcat we then have a morphism of the form

T i ≃ T in dg -cat O . If
Map(Φ(X), T ′ ) → Map( k, T ′ ) ≃ Map(k, T ′ ).
By getting the fiber of this morphism and doing the same with hocolim T i , we get the following diagram:

Map(X, T ′ ) Map(Ξ(X), T ′ ) Map(Φ(X), T ′ ) Map(k, T ′ ) holim Map(T i , T ′ ) holim Map(Ξ(T i ), T ′ ) holim Map(Φ(T i ), T ′ ) Map(k, T ′ ). ∼ f =
If we can prove that f is a weak equivalence, we have finished. For that, we are going to use the far-left square of this diagram. Indeed, if the morphisms Map(Ξ, T ′ ) and holim Map(Ξ, T ′ ) are weak equivalences, by 2-out-of-3 then f will be a weak equivalence too. If we can prove that Ξ is fully faithful, we will have everything we need.

We have an adjunction Ξ : dgcat O ⇌ k/dg -cat : Γ where the right adjoint Γ is such that for all (K, {x α } α∈O , x α ∈ Obj(K)) ∈ k/dg -cat, the objects of Γ(K) are O and for every α, β ∈ O, Γ(K)(α, β) = K(x α , x β ). It is easy to see that ΓΞ = Id dg-cat O . We have then that Ξ is fully faithful and then that Map(Ξ, T ′ ) is a weak equivalence.

As such, we have that

Map(X, T ′ ) Map(Ξ(X), T ′ ) holim Map(T i , T ′ ) holim Map(Ξ(T i ), T ′ ) ∼ ∼ f ∼
and f is a weak equivalence. So Φ commutes with colimits, and since hocolim T i ≃ T in dgcat O , we have hocolim T i ≃ T in dgcat and we have finished this proof. Q.E.D.

We can now try to prove the full faithfullness of our adjoint functor Sing.

The functor Sing is fully faithful

Let us prove that Sing is, in fact, fully faithful. To do that, we will prove that the restriction to cL S injects fully-faithfully, and then go on to prove that we can write every dg-category as a certain colimit of elements in cL S and that Sing commutes with those colimits. The first part is fairly obvious. Proof. For this, we use Theorems 3.3.50 and 3.3.53, taking the model category to be cL S and W to be the weak equivalences in the full subcategory of dgcat of finite type free categories. Indeed, if we go down to the homotopy category, we can factorize Sing c L as Ho(cL) → Ho(sSet cL,W ) → Ho(Fun S (L W cL op S , sSet)) = Ho(Fun S (cL op S , sSet)).

But we know from Theorem 3.3.53 that the first morphism here is fully faithful, and from Theorem 3.3.50 that the second one is an equivalence. So the composition of the two is fully faithful, and we have finished our proof. Q.E.D.

We have finally all the things needed in order to use our free hypercovers. Let us prove that we have the necessary DK-equivalences. Lemma 4.5.2. Let T * → T be a cL S -hypercover of T constructed as in Theorem 4.4.6 and Proposition 4.4.7, with T ∈ dgcat a dg-category. Then the homotopy colimit of its image by Sing k , hocolim(Sing k (T i )), satisfies the dg-Segal conditions.

Proof. In order to prove this result, we need to prove that the homotopy colimit fulfills the three conditions of the definition of dg-Segal space. The first two are easy, and hinge on the fact that the homotopy colimit in this case commutes with finite products and that all images of Sing satisfy the dg-Segal conditions. 1. Let L, K be two free dg-categories of finite type. By the first dg-Segal condition on the image of Sing, hocolim(Sing(T

i ))(K L) = hocolim(Sing(T i )(K L)) ≃ hocolim(Sing(T i )(K) × Sing(T i )(L)).
And as the homotopy colimits over ∆ op commute with finite products,

hocolim(Sing(T i ))(K L) ≃ hocolim(Sing(T i )(K)) × hocolim(Sing(T i )(L))
and we have finished.

2. The second property is even easier. Indeed,

hocolim(Sing(T i ))(∅) ≃ hocolim(Sing(T i )(∅)) ≃ hocolim( * ) ≃ * .
We arrive now to the third condition. For an issue of generality and also in order to lighten our notation, we will do the computations in a slightly larger context, with the help of this sublemma.

Sub-lemma 4.5.3. Let F ∈ Fun S (cL c,op S , sSet) be a functor that satisfies conditions 1 and 2 of the dg-Segal conditions, and also an additional condition as follows:

4. For all L, K ∈ cL c S , F (L k k K) → F (L) × F (k)×F (k) F (K) is a weak equivalence.
In other words, F transforms coproducts into products.

Then we have that F satisfies condition 3 of the dg-Segal conditions. In other words, for all G ∈ Gr(C(k)) a finite type graph, x, y ∈ Obj(G) two objects in G, and α ∈ Z n (G(x, y)) a cycle in G(x, y), the following diagram is a homotopy pullback

F (L(G(< α >))) F (L(G)) F (∆ c k (1, n, 1)) F (∆ k (1, n, 1)).
Proof. In order to make this proof easier, we start with the case where G has two objects and move up from there. Assume G is a free dg-category with two objects. There is a morphism γ :

F (G) → Map(O G , F (k)), where O G = Obj(G) is the set of objects of G and O = π 0 (F (k)). We know that π 0 (Map(O G , O)) is the set of morphisms from O G to O. Then, if we take f : O G → O, the fiber of γ is F (f (x),f (y)) (G).
By conflating the two points on G with the two points on ∆ c k (1, s, 1) and ∆ k (1, s, 1), we can reduce the problem to asking that for all f : O G → O the following diagram is a homotopy pullback

F (f (x),f (y)) (G(< α >)) F (f (x),f (y)) (G) F (f (x),f (y)) (∆ c k (1, n, 1)) F (f (x),f (y)) (∆ k (1, n, 1))
But we already know that for all dg-Segal space F , F (f (x),f (y)) (E x,y ) ≃ Map(E, F (f (x), f (y))), where E x,y is the free category given by two points and E as the morphism of complexes from x to y. So the question ends up being whether Let us tackle now the hypercover result.

Theorem 4.6.8. Let F ∈ dg -Segal be a functor that satisfies the dg-Segal conditions and let O = π 0 (F (k)). Then there exists a simplicial object T * in dgcat O such that F * = Sing(T * ) and a morphism F * → F such that F * → F a dg-Segal hypercover in dg -Segal O .

Proof. Again, this construction is almost identical to that of Theorem 4.4.6, and as such we won't be going into much detail. We will construct our hypercover by induction, by proving that for all n ∈ N there exists a n-truncated dg-Segal hypercover with fixed objects of F where every level is in the image of Sing.

• n = 0 is true by Lemma 4.6.7. There exists a dg-category with fixed objects T such that Sing(T ) → F is a dg-Segal epimorphism, and that creates a 0-truncated dg-Segal hypercover.

• n ∈ N. By induction hypothesis there exists an n-truncated dg-Segal hypercover of F , named Sing(T * ) → F . Let us construct an (n + 1)-truncated hypercover of F , that we will call Sing(T * ) → F too. As the construction doesn't change the first n terms, there is no ambiguity in the notation.

We define V * = sk n+1 (cosk n Sing(T * )). This simplicial set is (n+1)-truncated, but the term n+1 is not necessarily in the image of Sing. By Lemma 4.6.7 again, there exists a free dg-category A with objects O and a morphism Sing(A) → V n+1 that is a dg-Segal epimorphism. We define the (n + 1)-truncated dg-Segal hypercover to be Sing(T i ) for all i ≤ n and

Sing(T n+1 ) = Sing(A) Sing(T i ) = Sing(A T i )
for n + 1. This is possible because Sing commutes with finite coproducts.

With the same morphisms as in Theorem 4.4.6, we have a simplicial object in dg -Segal O . We now just have to prove that for all i ≤ n + 1, Sing(T i ) → Sing(T * ) ∂∆ i is a dg-Segal epimorphism, which by construction gets instantly reduced to proving that

Sing(T n+1 ) = Sing(A) Sing(T i ) → V n+1
is a dg-Segal epimorphism in dg -Segal O , or equivalently, that for all x, y ∈ O, Sing(T n+1 ) (x,y) = Map(-, T n+1 (x, y)) → V n+1(x,y) is a split epimorphism.

We have created F * → F a dg-Segal hypercover with fixed objects such that for all n ∈ N, there exists a free dg-category of finite type T n such that Sing(T n ) = F n . Now, we have proven in Theorem 4.5.6 that Sing is a fully faithful functor. In consequence, every morphism in the simplicial object F * comes from a morphism in dgcat O , and there exists a simplicial object T * ∈ dgcat O such that Sing(T * ) = F * . We have finished our proof. Q.E.D. Now that we have constructed our hypercover F * → F , we are on the final stretch of the proof. Indeed, the last thing we need is to prove that for all F ∈ dg -Segal there exists a dg-category T such that F is DK-equivalent to Sing(T ), and we have our perfect candidate to do so. Notation 4.6.9. Let F ∈ dg -Segal be a functor satisfying the dg-Segal conditions. Let Sing(T * ) = F * → F be a dg-Segal hypercover with fixed objects as constructed in Theorem 4.6.8. We call T the homotopy colimit of the simplicial object T * . In other words, we define T = hocolim(T i ).

We need now to prove that Sing(T ) → F is a DK-equivalence. In order to do that, we will use two DK-equivalences that are easier to prove: hocolim(Sing(T i )) → Sing(hocolim(T i )) = Sing(T ) and hocolim(Sing(T

i )) → F . Map(F, G) Map(Ξ(F ), G) Map(Φ(F ), G) Map(k, G) holim Map(F i , G) holim Map(Ξ(F i ), G) holim Map(Φ(F i ), G) Map(k, G) ∼ f =
If we can prove that f is a weak equivalence equivalence, we have finished. For that, let us prove that Ξ is fully faithful.

We have an adjunction Ξ : Ho(dg -Segal O ) ⇌ Ho( k/dg -Segal) : Γ where the right adjoint Γ is such that for all H ∈ k/dg -Segal and L ∈ cL S , Γ(H)(L) is the following homotopy pullback

Γ(F )(L) F (L) O L F (k) O L O
where O L = Obj(L) is the set of objects of L. It is trivial that with such a construction, ΓΞ = Id dg-Segal O .

We have then that Ξ is fully faithful and in consequence that Map(Ξ, G) is a weak equivalence. By the 2-out-of-3 condition, we have that f is a weak equivalence, and so we have that Φ commutes with colimits. By Proposition 4.6.11, we know that hocolim(F i ) is DK-equivalent to F in dg -Segal O , and that means that we have a DK-equivalence between hocolim(F i ) and F in dg -Segal too. We have finished the proof. Q.E.D.

Let us see now about Sing(T i ) → Sing(T ).

Lemma 4.6.13. Let F * → F be a dg-Segal hypercover as constructed before, let T * be a simplicial object in dgcat O with O = π 0 (F (k)) such that Sing(T * ) = F * and T = hocolim T i . Then the augmented simplicial object T * → T is a cL S -hypercover of dg-categories.

Proof. As we have fixed objects on this, by Lemma 4.4.10 if for all x, y ∈ O, the augmented object T * (x, y) → T (x, y) is a split hypercover of complexes, then T * → T is a hypercover of dg-categories and we have finished.

Let us fix x, y ∈ O. By Lemma 4.6.10, T * (x, y) → F (x, y) is a split hypercover. But as it is a split hypercover, by Lemma 4.4.11 we know that T (x, y) = hocolim(T i (x, y)) ≃ F (x, y). So the augmented object T * (x, y) → T (x, y) is a split hypercover on C(k), and in consequence T * → T is a hypercover on dgcat and we have finished our proof. Q.E.D. Now we just need to put everything together.

Theorem 4.6.14. Let F be a functor that satisfies the dg-Segal conditions. Then there exists a dg-category T such that the morphism Sing(T ) → F is a DK-equivalence.

Proof. Let Sing(T * ) = F * → F be a dg-Segal hypercover constructed following Theorem 4.6.8. We have then a diagram of this form:

Sing(hocolim(T i )) = Sing(T ) T hocolim(Sing(T i )) = hocolim(F i ) ϕ ζ
We have proven that the corresponding augmented object T * → T is a hypercover of dg-categories, and by Lemma 4.5.5, the morphism ϕ is a DK-equivalence. We have also proven that hocolim(F i ) → F is also a DK-equivalence, so by Remark 4.3.20, that means that our morphism Sing(T ) → F is also a DK-equivalence and we have finished.

Q.E.D.

And we are done.

Theorem 4.6.15. Assume Hypothesis 4.3.22 is true. Then, if we take the complete dg-Segal model structure on Fun S (cL op S , sSet), the functor Sing : dgcat → dg -Segal c is essentially surjective. Hence there exists an equivalence of categories of the form Ho(dg -cat) → Ho(dg -Segal c ).

We expect the proof of our hypothesis to be something along these lines. Unfortunately, the construction won't be as smooth-sailing in our case: Rezk uses the direct product to define his exponentials, but if there is one thing that is well known about the monoidal structure of dg-categories, it's that it isn't compatible with its model structure (see [START_REF] Toën | Lectures on dg-categories[END_REF]: the object ∆ k (1, 0, 1) is cofibrant in the model category of dg-categories, but it is easy to prove that ∆ k (1, 0, 1) ⊗ ∆ k (1, 0, 1) is not). We will be obliged to define our own version of the monoidal structure.

But let us start at the beginning. We have seen that we have the linearisation adjunction, j ! : Fun(∆ op , sSet) ⇌ Fun S (cL op S , sSet) : j * , and we have defined E k = j ! (E). That will be our best candidate in order to reproduce our E(m) in this new context.

Remark 5.1.2. Attention! In Rezk's case, we had that E was the nerve of the category with two objects and an isomorphism between them, 0 →1. But its equivalent is not true in our case:

E k ̸ = Sing((0 →1) ⊗ k).
And we should be grateful for that: indeed, Sing((0 →1) ⊗ k) = Sing(k), so E k being equal to it would mean that the complete dg-Segal model structure is in fact exactly the same as the dg-Segal model structure! Definition 5.1.3. For all n ∈ N, we have that

E k (n) = Lj ! (0 →1 → . . . →n).
Following the example of [START_REF] Rezk | A model for the homotopy theory of homotopy theory[END_REF], we would want to define our dg-completion functor as follows: Definition 5.1.4. Let X be a dg-Segal space. We call the completion of X, and we denote by X, a complete dg-Segal space of the form

X = hocolim([i] → X E k (i) ).
Remark 5.1.5. We attract the reader's attention to the fact that, if this is defined correctly, its image by the forgetful functor j * will give us the completion of j * (X) in classical Segal spaces.

The problem here is that we need to define this exponential, which asks from us to define a tensor product. We have that, for all L ∈ cL S X E k (n) (L) ≃ Map(Sing(L) ⊗ E k (n), X).

But what does Sing(L) ⊗ E k (n) mean? Well, even if E k (n) itself is not of the form Sing(T ) for a certain T ∈ dgcat, we can write it as E k (n) = hocolim Sing(L i ) where L i ∈ cL S for all i ∈ N. So we technically could write this tensor product as Sing(L) ⊗ E k (n) = hocolim Sing(L) ⊗ Sing(L i ). Now, our first instinct would be to write this as Sing(L ⊗ L i ); but L ⊗ L i isn't a free dg-category of finite type anymore. Maybe we could reiterate the process by writing L ⊗ L i as a homotopy colimit of another K * ? We will see.

Remark 5.1.6. It is important to notice that, should this method succeed (and we see no reason why it wouldn't), we not only have finished the proof of our theorem, but also defined a monoidal structure on dg -Segal c that is compatible with the model structure, giving in its wake a possible monoidal model structure to the category of dg-categories.

The linear simplex category

The free dg-categories of finite type were, sadly, not our first attempt at a model for dg-categories. Indeed, when we started we expected to have something a little closer to the simplex category we use in our definition of Segal spaces. The methods we wanted to use didn't work with them, though, which is why we opted for the free dg-categories instead; but as we haven't lost hope of being able to bring it back to it, we explain the linear simplex category here.

First constructions

In this text, we have used many different versions of dg-categories that were some version of "a finite number of objects with morphisms between them being k[s]". For example, when we discussed Tabuada's cofibrantly generated model structure for dgcat in [START_REF] Tabuada | Homotopy theory of dg categories via localizing pairs and Drinfeld's dg quotient[END_REF], we constructed a series of objects of the form ∆ k (1, s, 1), for all s ∈ Z, dg-categories with two objects and k[s] the cochain complex that is k in degree s. We have also the linearisation functor, that gives us ∆ k (n, 0, 1), dg-categories with n objects and k the morphism between i and i + 1 for all 0 ≤ i ≤ n -1.

We are now going to expand on those definitions, and make what will be the objects of our new linear simplex category. Definition 5.2.1. Fix n ∈ N a natural and let s ∈ Z n and d ∈ N n . We call ∆ k (n, s, d) a dg-category consisting of the following data:

• A set of n + 1 objects, that we will denote by 0, . . . , n for clearness' sake.

• For all 0 ≤ i -1 < i ≤ n, a complex Hom(i -1, i) concentrated in degree s i , where it is k di i.e. a complex which is zero everywhere except for in degree s i . In other words, for 0 ≤ i < j ≤ n, a complex Hom(i, j) of the form Hom(i, j) = ⊗ i<k≤j Hom(k -1, k).

In other words, a dg-category ∆ k (n, s, d) is as follows:

0 1 . . . n -1 n k d 1 [s1] k k d 2 [s2] k k dn [sn] k k
Notation 5.2.2. We denote by ∆ k (0) or k the dg-category ∆ k (0, s, d) with only one object and k as its complex of endomorphisms. We remind the reader that this dg-category is the unit for the tensor product.

Definition 5.2.3. We call the linear simplex category, and we denote it by ∆ k , the full subcategory of the category of dg-categories dgcat which has the dg-categories ∆ k (n, s, d) as objects for all n ∈ N, s ∈ Z n and d ∈ N n .

One immediate advantage of the objects in ∆ k is that it is way easier to compute the morphism sets in dgcat from ∆ k (n, s, d) to a general dg-category T than it is to compute them from a general dg-category to another. Proposition 5.2.4. Let T be a object in dgcat and ∆ k (n, s, d) in ∆ k . Let ϕ * : Hom(∆ k (n, s, d), T ) → Hom( ∆ k (0), T ) the morphism induced by the inclusion ϕ : n+1 ∆ k (0) → ∆ k (n, s, d) where we send each copy of ∆ k (0) to a different object in ∆ k (n, s, d). Then, we have the following isomorphisms:

• The set of morphisms from ∆ k (0) to T is isomorphic to the objects in T , Hom(∆ k (0), T ) ≃ Obj(T ).

In other words, giving a morphism ∆ k (0) → T is equivalent to fixing a point in T .

• The fiber of ϕ is given by

ϕ -1 * (t) ≃ Hom C(k) (k di [s i ] , T (t i-1 , t i )) ≃ (Z si (Hom T (t i-1 , t i ))) di ,
where Z si (Hom T (t i-1 , t i )) is the set of cocycles of Hom(t i-1 , t i ) in degree s i , i.e. the set of objects a ∈ Hom(t i-1 , t i ) si such that d(a) = 0. In other words, if we fix n + 1 points in T , t 0 , . . . , t n , then describing the set Hom(∆ k (n, s, d), T ) comes down to describing the set of cocycles in degree s i of the cochain complex T (t i-1 , t i ) for all 0 < i ≤ n.

Proof. Let us start with Hom(∆ k (0), T ) ≃ Obj(T ). Let f : ∆ k (0) → T be an object in Hom(∆ k (0), T ).

Giving such a morphism is equivalent to giving an object in T (the image of 0) and a morphism in T (the image of k = Hom(0, 0)). We will define the isomorphism as F : Hom(∆ k (0), T ) → Obj(T )

f → f (0).
The surjectivity is obvious. The only thing that we need to check is that F is, in fact, injective: that if we fix a point t ∈ T in T , there is only one possible morphism Hom(0, 0) = k → Hom(t, t). Let f : ∆ k (0) → T be a dg-functor such that F (f ) = t. As it is a morphism in dgcat, we know that the diagram k Hom(0, 0) = k Hom(t, t) et e0 f commutes. In particular, that means that the image of the identity of Hom(0, 0) = k is fixed, and that fixes the entirety of the morphism f . We have that if we fix an object t ∈ T there is only one possible morphism Hom(0, 0) → Hom(t, t), and the functor F is injective.

The functor F is an isomorphism and ∆ k (0) ≃ Obj(T ). In particular, giving a morphism from ∆ k (0) to T is equivalent to fixing a point in T . Now let us do the fiber, and let us start by the first isomorphism. By definition of ϕ, and by the last part of this proof, looking at the fiber ϕ -1 * is equivalent to fixing n + 1 objects t 0 , . . . , t n in T , and then looking at the morphisms f : ∆ k (n, s, d) → T such that f (i) = t i for all 0 ≤ i ≤ n. ϕ -1 * ≃ {f ∈ Hom(∆ k (n, s, d), T )/ f (i) = t i ∀i ∈ Obj(∆ k (n, s, d))}.

We have fixed the images of all the objects of ∆ k (n, s, d). This set is entirely determined by the morphisms of cochain complexes between the fixed objects. But we know that the morphisms of objects in ∆ k (n, s, d) are entirely determined by the ones between i-1 and i, for all 1 ≤ i ≤ n. So we have the following isomorphisms:

ϕ -1 * ≃ {(f i ) 1≤i≤n / f i : ∆ k (n, s, d)(i -1, i) = k di [s i ] → T (t i-1 , t i )} ≃ Hom C(k) (k di [s i ] , T (t i-1 , t i )).
We have proven the first isomorphism, reducing the computation of the set of morphisms between these dg-categories to a computation of morphisms of complexes. But we can go even simpler. Let us attack the second isomorphism. For legibility's sake, let us take a cochain complex A ∈ C(k), and we'll prove that

Hom C(k) (k di [s i ] , A) ≃ Z si (A) di .
A morphism of complexes from k di [s i ] to A is of the form . . . 0 k di 0 . . .

. . . A si-1

A si A si+1 . . .

fs i
We can easily see that this morphism is determined solely by f si . By definition of a morphism of complexes and of cocycles, we have, then, that

Hom C(k) (k di [s i ] , A) ≃ {f ∈ Hom Mod (k di , A si )/ d • f = 0} ≃ Hom Mod (k di , Z si (A)).
The only thing we have left to do is prove that Hom Mod (k di , Z si (A)) ≃ Z si (A) di . We know that k di is a free k-module with a basis consisting of d i generators, e 1 , . . . , e di . We define a morphism F : Hom Mod (k di , Z si (A)) → Z si (A) di f → (f (e 1 ), . . . , f (e di )).

It is a classical result in Algebra that this is a bijection.

We have constructed the isomorphisms

ϕ -1 * (x) ≃ Hom C(k) (k di [s i ] , T (x i-1 , x i )) ≃ (Z si (Hom T (x i-1 , x i ))) di ,
and we have finished this proof. Q.E.D.

Already we know that every dg-category is fibrant, but the objects in ∆ k are also cofibrant. Let us get a computational lemma out of the way first.

Lemma 5.2.5. Let g : A → B be a trivial fibration in dgcat, let s i ∈ Z and x i-1 , x i ∈ Obj(A) two objects of A. Then the induced morphism of sets Z si (A(x i-1 , x i )) → Z si (B(g(x i-1 ), g(x i ))) is surjective.

Proof. It is just a question of diagram-chasing. Let α ∈ Z si (B(g(x i-1 ), g(x i ))). As g is a fibration, in particular it is surjective on the complex of morphisms, and there exists β ∈ A(x i-1 , x i ), but not necessarily a cocycle. At the same time, we know that g is a weak equivalence, so there is an isomorphism of cohomology groups H si (A(x i-1 , x i )) ≃ H si (B(g(x i-1 ), g(x i ))), which means that there exists a β ′ ∈ Z si (A(x i-1 , x i )) such that g(β ′ ) is in the same equivalence class as α, g(β ′ ) -α = g(β ′ ) -g(β) = g(β ′ -β) ∈ Imd B,i .

There is, then, a γ ∈ B si-1 (g(x i-1 ), g(x i )) such that d(γ) = g(β-β ′ ). On the other hand, using again the surjectivity of g, we have a γ ′ ∈ A si-1 (x i-1 , x i ) such that g(γ ′ ) = γ, and in consequence d(g(γ ′ )) = g(β -β ′ ). By the linearity of g, we have that g(β ′ -d(γ ′ )) = g(β) = α, and so β ′ -d(γ ′ ) is a preimage of α in Z si (A(x i-1 , x i )).

So the morphism is surjective and we have finished.

Q.E.D.

Corollary 5.2.6. All objects in ∆ k are cofibrant in the model structure on dgcat.

Proof. The case of ∆ k (0) is trivial: from Theorem 3.4.9 we know that ∅ → ∆ k (0) is a generating cofibration, so in particular a cofibration. The dg-category ∆ k (0) is cofibrant.

Let n ∈ N, and let s ∈ Z n , d ∈ N n . We want to prove that ∆ k (n, s, d) is cofibrant. For that, we will use the description of a cofibration as a morphism which has the left lifting property with respect to all trivial fibrations. Let g : A → B be a trivial fibration for the model structure for dgcat, and f : ∆ k (n, s, d) → B a dg-morphism. We want to find a lift for this commutative square:

∅ A ∆ k (n, s, d) B g f h
As ∅ is the initial object in dgcat, the existence of this lift is equivalent to the following condition: for every trivial fibration g : A → B and every f : ∆ k (n, s, d) → B there exists a factorization of f through g, i.e. there exists a morphism h : ∆ k (n, s, d) → A such that f = g • h. This is, in turn, equivalent to asking that g * : Hom(∆ k (n, s, d), A) → Hom(∆ k (n, s, d), B) is surjective.

We know that such a morphism is surjective on the objects. As such, we can fix n + 1 objects in A, x 0 , . . . , x n ∈ A. Fixing the objects allows us to use the result in Proposition 5.2.4: we have reduced the problem to proving that xi-1,xi∈A

Z si (A(x i-1 , x i )) di → xi-1,xi∈A
Z si (B(g(x i-1 ), g(x i ))) di is surjective. As we are taking the product and the powers over the same families of indexes, proving that this morphism is surjective is equivalent to asking that the morphism Z si (A(x i-1 , x i )) → Z si (B(g(x i-1 ), g(x i )))

is. But we have already proven that that is the case in Lemma 5.2.5.

The morphism g * : Z si (A(x i-1 , x i )) → Z si (B(g(x i-1 ), g(x i ))) is surjective. The morphism ∅ → ∆ k (n, s, d) is a cofibration, so ∆ k (n, s, d) is cofibrant and we have finished.

Q.E.D.

The computations for the morphism sets are not all we are going to need here. Indeed, we will be using the mapping spaces in the construction of our simplicial presheaf category, so it would be useful to have a similar result to the one in Proposition 5.2.4 but for the mapping spaces. We will, luckily, get one, but before that we will need a couple of preliminary results. Proof. Once again, to prove that ϕ is a cofibration we use the fact that it is a cofibration if and only if ϕ has the left lifting property with respect to all trivial fibrations. This time we don't have the luck to have the initial object as our top corner, but we can still see this property as some kind of surjectivity condition. Indeed, ϕ has the left lifting property if and only if for all g : A → B trivial fibration the morphism Z si (B(x i , x i+1 )) di .

We have reduced the problem to proving that

Obj(A) n+1 Z si (A(x i-1 , x i )) di → Obj(B) n+1
Z si (B(g(x i-1 ), g(x i ))) di

Proof. One implication is trivial. According to Proposition 3.2.56, if Y is a fibrant object then Map(-, Y ) is a right Quillen functor, and in particular it preserves weak equivalences between fibrant objects. But in dgcat every object is fibrant, so if f is a weak equivalence then both Map(∆ k (0), f ) and Map(∆ k (1, s, 1), f ) are weak equivalences. Now let us prove the other implication. Assume that both Map(∆ k (0), f ) and Map(∆ k (1, s, 1), f ) for all s ∈ Z are weak equivalences in sSet, and let us prove that that's enough to get that the original dg-functor f is a weak equivalence. A dg-functor in dgcat is a weak equivalence if it is quasi-essentially surjective and quasi-fully faithful.

A dg-functor f is quasi-essentially surjective if the induced map is not only surjective, but an isomorphism. The dg-functor f is quasi-essentially surjective.

A dg-functor f is quasi-fully faithful if for all x, y ∈ T the induced morphism T (x, y) → T ′ (f (x), f (y)) is weak equivalence in C(k). That is, if we want to prove that f is quasi-fully faithful we need to prove that for all i ∈ Z and for all x, y ∈ T the induced morphism H i (f ) : H i (T (x, y)) → H i (T ′ (f (x), f (y))) is an isomorphism of groups. We have proven in Proposition 5. By definition of a weak equivalence in sSet, the morphisms π i (Map(( . 1, s, 1), f ), x) and π i (Map(k, f ), x) are isomorphisms for all i ∈ Z. We have a morphism of long exact sequences which are isomorphisms in two out of every three. By the Five Lemma, that means that π i (Map k k/dg-cat (∆ k (1, s, 1), f ), x) is also an isomorphism for all i ≥ 1. But we have already computed the simplicial sets Map k k/dg-cat (∆ k (n, s, d), T ) in Proposition 5.2.9; we have that Map k k/dg-cat ((∆ k (1, s, 1), (0, 1)), (T, (x 0 , x 1 ))) ≃ Map C(k) (k [s] , T (x 0 , x 1 )).

We know that for all i ≥ 0, π i (Map C(k) (k [s] , T (x 0 , x 1 )), x) ≃ H -i-s (T (x 0 , x 1 )), So if we put the isomorphisms next to each other, we have, for all s ∈ Z and all i ≥ 1 that H -i-s (T (x 0 , x 1 )) ≃ π i (Map k k/dg-cat (∆ k (1, s, 1), T ), x) . . .

-→ π i (Map k k/dg-cat (∆ k (1, s, 1), T ′ ), f (x)) ≃ H -i-s (T ′ (f (x 0 ), f (x 1 )))

∼ and the morphism f : T → T ′ induces an isomorphism between cohomology groups of the form H -i-s . As we have that isomorphism for every s ∈ Z, by making s vary we have the isomorphism on cohomology groups for every degree. The morphism f is quasi-fully faithful.

The morphism f : T → T ′ is a weak equivalence in dgcat, and we have finished.

Q.E.D.

Expected result

It was at this moment when we realized that we would not be able to use the results in Section 4.4 for ∆ k . Indeed, the conditions on Theorem 4.4.6 are too strong: the linear simplex category is not closed for finite coproducts. But just because it isn't possible to use the hypercover results as we have put them it doesn't mean we cannot do it some other way. Indeed, free dg-categories have already very little relationships between the morphism complexes, so it's not that much of a stretch to consider that we could potentially rewrite complete dg-Segal spaces as some kind of simplicial functors from ∆ k to sSet.

Hypothesis 5.2.11. There exists a full subcategory of Fun S (∆ op k , sSet) that is equivalent to dg -Segal c .

Other possible prospects

Although the last two sections are the most obvious and direct prospects from this work, they are not the only ones. We add here some other possible applications and questions.

Automorphisms of dg-cat

At the end of his paper [START_REF] Toën | Vers une axiomatisation de la théorie des catégories supérieures[END_REF], Toën used his result about complete Segal spaces to compute the group of automorphisms of ∞-categories, which turned out to be just Z/2Z, containing only the dualisation as a non-identity automorphism. We could try to do the same thing for dgcat.

Indeed, it makes sense to attempt to use our construction for this: if we think of it as a kind of "presentation by generators and relations", where the category of free dg-categories cL S (or ∆ k , if we have already proven the hypothesis in the last section) would be the generators and the weak equivalences we described as the conditions on complete dg-categories, it is common practice to define the morphisms from dgcat to another model category C by looking at the morphisms from cL S to C that turn the relations into weak equivalences. This method could work with any category, but in particular we can use it to see the automorphisms of dgcat.

Sadly, in our case the automorphism group of dgcat will not be as simple as the one for ∞-categories.

It will contain Z/2Z, of course, as the duality is still an invertible morphism that turns dg-categories into dg-categories, but it won't be enough. As we are working with k-linear categories, it is not unexpected that the automorphisms of the ring k will be included in the group of automorphisms, and maybe some other groups too.

It would also be interesting to explore what the higher homotopy groups of Aut(dg -cat) would be: we expect the Hochschild homology to appear at some point.

Hypercover definitions

As any invested reader will have noticed, even though the definitions are different, the construction of M 0hypercovers and of dg-Segal hypercovers follow the exact same structure. In the same vein, the definitions might not be the same, but they follow the same pattern: we have a definition of some kind of epimorphism involving the Map functor, and then we ask that for all n ∈ N,

Φ n : A n → A ∂∆ n
is that kind of epimorphism. This is not a particularity of the hypercovers we have defined here. We have already seen something similar in the case of hypercovers in simplicial sets at Definition 4.4.1 and in [START_REF] Lurie | Higher topos theory[END_REF] Lurie defines a hypercover over an ∞-topos to be an augmented simplicial object such that Φ n is an effective epimorphism for all n. With so many similar definitions around, there is a natural question that arises: is it possible to find a general definition that combines all of these? 97

  Remark 3.1.19. We have taken this definition from [Toë11, Section 2.1]. A curious reader is encouraged to go read [Hov99, Def. 1.2.1] for an explicit construction of the aforementioned localization. Notation 3.1.20. We will sometimes denote the morphisms between objects in the homotopy category of M by [X, Y ] M , or just [X, Y ] if the base model category is clear. Notation 3.1.21. If we take C to be a model category and W its set of weak equivalences, then we will denote C W -1 by Ho(C) and call it the homotopy category of C.

  Definition 3.1.34. Let M and N be two model categories, F : M → N a left Quillen functor and U : N → M a right Quillen functor.

  Proposition 3.2.24. Let C, M, N be three model categories and let f : C → M be a functor between C and M . Then we have a Quillen adjunction f ! : Fun(C, N ) ⇌ Fun(M, N ) : f * is a Quillen adjunction, where f * : Fun(M, N ) → Fun(C, N ) is given by precomposing the morphisms M → N by f : C → M .

  Definition 3.2.31. Let M be a right proper model category, and a diagram X f -→ Z g ← -Y . We define the homotopy pullback of the diagram as the pullback of the associated diagram X ′ δ(f ) ---→ Z δ(g)

  Proposition 3.2.34. Let M be a right proper model category and a diagram X f -→ Z g ← -Y . If either f or g is a fibration, then the homotopy pullback X × h Z Y is naturally weakly equivalent to the pullback X × Z Y . Proposition 3.2.35. Let M be a right proper model category, a morphism h : Y → Z and two morphisms f, g : X → Z that are left or right homotopic. Then the homotopy pullback of X f -→ Z ← Y and the one of X g -→ Z ← Y are weak equivalent.

  Corollary 3.2.54. Let M be a model category, and A ∈ M an object of M . Then the functorial cosimplicial frame on A, C * (A), induces adjoint functors (C * (A) ⊗ -, Map(C * (A), ϕ). Dually, the functorial simplicial frame on A, C * (A), induces adjoint functors Hom(-, C * (A)), Map(-, C * (A)), ψ). Proposition 3.2.55. Let M be a model category. Let A, B, X, Y be objects in M . • Let p : X → Y be a fibration in M . Then the map p * : Map(C * (A), X) → Map(C * (A), Y ) is a fibration of simplicial sets, which is a trivial fibration if p is a trivial fibration.

  Let Y be a fibrant object in M . Then the functor Hom(-, C * (Y )) preserves cofibrations and trivial cofibrations, and its right adjoint Map(-, C * (Y )) preserves fibrations and trivial fibrations. In particular, if Y is a fibrant object in M , then (Hom(-, C * (Y )), Map(-, C * (Y )), ψ) is a Quillen adjunction.

  Map(C * (X), R(Y )) → diag Map(C * (X), C * (Y )) ← Map(Q(X), C * (Y )). Notation 3.2.60. By abuse of notation, we will denote Map(X, Y ) both simplicial sets Map(C * (X), RY ) and Map(QX, C * (Y )). Definition 3.2.61. Let M be a model category, and X, Y two objects in M . Then we call the mapping space between X and Y and we denote by Map(X, Y ) the simplicial sets Map(C * (X), R(Y )) and Map(QX, C * (Y )).

  Theorem 3.2.63.[START_REF] Hirschhorn | Model categories and their localizations[END_REF] Th. 19.4.4] Let M be a model category and C a small category.1. Let X i be an objectwise cofibrant C-diagram in M and Y a fibrant object in M . Then the mapping space functor Map(-, Y ) sends homotopy colimits to homotopy limits, i.e. Map(hocolim

  Proposition 3.2.68. Let M be a model category and C be a class of morphisms in M . Let X and Y be two fibrant objects which are weakly equivalent. Then X is C-local if and only if Y is too. Proposition 3.2.69. Let M be a model category and C be a class of morphisms in M . Then the class of C-local equivalences satisfies the two-out-of-three property and is closed under retracts.

  Definition 3.2.70. Let M be a model category and C be a class of maps in M . The left Bousfield localization of M with respect to C is a model category structure L C M on the category M such that 1. the class of weak equivalences of L C M is the class of C-local equivalences. 2. the class of cofibrations of L C M is the same as the class of cofibrations in M .

  Theorem 3.2.71.[START_REF] Hirschhorn | Model categories and their localizations[END_REF] Th. 4.1.1.] Let M be a left proper cellular model category and let C be a class of morphisms in M . Then the left Bousfield localization with respect to C exists and the localization L C M is a left proper cellular model category. On top of this, if M is a simplicial model category (see next section), then the localization is also a simplicial model category with the inherited structure. Now, there are terms in this definition that we haven't talked about. What is a cellular model category? It isn't important for us. We only need to know if the categories we work on are as such. Proposition 3.2.72. [Hir03, Prop. 4.1.4] The category of simplicial sets sSet is a left proper cellular model category. Proposition 3.2.73. [Hir03, Prop. 4.1.5] Let M be a left proper cellular model category and T a small category. Then the diagram category Fun(T, M ) is also a left proper cellular model category. Now that we have this localization and the existence of it in the cases we are interested in, let us state a few results that will be important later. Proposition 3.2.74. Let M be a model category and C a class of morphisms on M . We suppose that the left Bousfield localization of M with respect to C, L C M , exists. Then we have the following properties. 1. Every weak equivalence of M is a weak equivalence of L C M . 2. Every fibration in L C M is a fibration in M . 3. Every trivial cofibration in M is a trivial cofibration in L C M . Proposition 3.2.75. Let M be a left proper model category and C a class of morphisms on M . If it exists, then the left Bousfield localization L C M is also left proper. And lastly, let us give a result about the fibrant objects of such a localization. Proposition 3.2.76. Let M be a left proper model category and C a class of morphisms on M . We suppose that the left Bousfield localization of M with respect to C, L C M , exists. Then an object X is a fibrant object in L C M if and only if it is a fibrant C-local object in M .

  Proposition 3.3.57. [Dug01, Prop. 2.3] Let C be a category and M be a model category. There exists a closed model category U C and a functor r : C → U C such that the following is true: for every functor γ : C → M there exists a factorization of γ through U C, (Re, Sing, Sing and the category of factorizations Fact r (γ) is contractible. Sketch of construction. [Dug01, 9.5 Section 3] The universal model category U C is no other than U C = Fun(C op , sSet), the category of simplicial presheafs over C. The inclusion i : Set → sSet induces an obvious inclusion j : Fun(C op , Set) → Fun(C op , sSet), which composed with the Yoneda embedding gives us the needed functor from C to Fun(C op , sSet), r = j • h : C → Fun(C op , Set) → Fun(C op , sSet).

  Definition 3.4.19. Let T be a dg-category. We call a T -dg-module (or a T -module if it is obvious we are working on dgcat) a dg-functor F of the form F : T → C(k). If we have F, G two T -modules, we define a morphism of T -modules between F and G to be an enriched natural transformation. Notation 3.4.20. Let T be a dg-category. We denote by T -Mod the category of T -modules. Remark 3.4.21. As C(k) is a cofibrantly generated model category, then T -Mod is a model category with the projective structure given in Theorem 3.2.21.

  Proposition 3.4.24. Let T be a dg-category. Then the homotopy category of Int(T -Mod) as a dg-category is naturally isomorphic to the homotopy category of T -Mod as a model category, [Int(T -Mod)] ≃ Ho(T -Mod).

induced by j x

 x Definition 3.4.35. Let T and D be two dg-categories. An objectF ∈ (T ⊗ L D op ) -Mod is called right quasi-representable if for all x ∈ T , i * x (F ) is quasi-representable.Remark 3.4.36. If we have T = k, it is easy to see that an object F ∈ (k ⊗ L D op ) -Mod = D op -Mod is right quasi-representable if and only if it is quasi representable.

  Theorem 4.2.7. There exists a simplicial closed model structure on Fun S (cL op S , sSet) and a set of morphisms C such that 1. The cofibrations are the same as in the projective model structure. 2. The fibrant objects are the dg-Segal spaces which are fibrant in the projective model structure. 3. The weak equivalences are the C-local equivalences with respect to the class C.

  Definition 4.3.3. [Rez01, Def. 4.1, Section 6] [Ras20, Prop. 4.5] Let W be a Reedy fibrant simplicial space. We say that W is a complete Segal space if the mapsW k → k times W 1 × W0 . . . × W0 W 1 and Map(E(1), W ) → Map( * , W )are weak equivalences for all k ≥ 1. Or, equivalently,W k → k times W 1 × W0 . . . × W0 W 1 and W 0 → W hoequivare weak equivalences for all k ≥ 1 and W hoequiv the space of homotopy equivalences.And now Rezk uses the left Bousfield localization with * → E(1) as their C and the complete Segal spaces as their C-local objects in order to have a model category that works for them.

  Theorem 4.3.4.[START_REF] Rezk | A model for the homotopy theory of homotopy theory[END_REF] There exists a simplicial closed model structure on the category of simplicial spaces, with the following properties:

  is a weak equivalence.Definition 4.3.11. We denote the full subcategory of dg -Segal of complete dg-Segal spaces by dg -Segal c .

  Corollary 4.4.10. If we have an augmented simplicial object T * → T in dgcat O such that for all x, y ∈ O the associated augmented simplicial complex T * (x, y) → T (x, y) is a split hypercover in C(k), then T * → T is a hypercover in dgcat O .

  Lemma 4.4.13. The forgetful functor U : dgcat O → Gr(C(k)) O commutes with homotopy colimits over ∆ op .

  Proposition 4.5.1. With the construction from Theorem 4.1.4, the functor Sing cL : Ho(cL) → Ho(Fun S (cL op S , sSet)) is fully faithful.

  Lemma 5.2.7. Let n ∈ N, s ∈ Z n and d ∈ N n . The morphism ϕ : n ∆ k (0) → ∆ k (n, s, d) is a cofibration in the model structure of dgcat.

  g ′ * : Hom(∆ k (n, s, d), A) → Hom( k, A) × Hom( k,B) Hom(∆ k (n, s, d), B)is surjective.We want to use Proposition 5.2.4 to compute those Hom, but we only know how to compute Hom(∆ k (n, s, d), B) with fixed objects. He have, then, to take the coproduct over all possible selections of n + 1 points. Like that, we get the following isomorphisms:Hom( k, A) × Hom( k,B) Hom(∆ k (n, s, d), B) ≃ Obj(A) n+1 × Obj(B) n+1 Obj(B) n+1 Z si (B(x i-1 , x i )) di ≃ Obj(B) n+1

  [f ] : [T ] → [T ′ ] is essentially surjective. That is equivalent to proving that the map ([T ] / ∼ =) →) [T ′ ] / ∼ =)between the isomorphism classes of the homotopy categories is surjective. We have assumed that the map Map(k, f ) : Map(k, T ) → Map(k, T ′ ) is a weak equivalence in sSet. By definition of a weak equivalence in sSet, that means that for all i ∈ N and for all point x ∈ T the induced morphism π i (Map(k, f ), x) is an isomorphism. In particular, it is an isomorphism if i = 0. But we have seen in Corollary 3.4.39 that the set [k, T ] ≃ π 0 (Map(k, T ), x) is isomorphic to the set of classes of isomorphisms in [T ]. We have then that the map([T ] / ∼ =) ≃ π 0 (Map(k, T ), x) → π 0 (Map(k, T ′ ), f (x)) ≃ ([T ′ ] / ∼ =)

  2.8 that we have a fibrationE = Map(∆ k (1, s, 1), T ) → B = Map(k k, T ) which has F = Map k k/dg-cat (∆ k (1,s, 1), T ) as its homotopy fiber. That gives us a long exact sequence of the form. . . π n (F, x) π n (E, x) π n (B, x) π n-1 (F, x) . . . . . . π 1 (E, x) π 1 (B, x) π 0 (F, x)and another one of the same form forE ′ = Map(∆ k (1, s, 1), T ′ ) → B ′ = Map(k k, T ′ ) with the fiber F ′ = Map k k/dg-cat (∆ k (1, s, 1), T ′ ). By using the morphisms Map(∆ k (1, s, 1), f ) and Map(k, f ) we can induce a morphism of complexes of the form. . . π n (F, x) π n (E, x) π n (B, x) π n-1 (F, x) . . . . . . π n (F ′ , x) π n (E ′ , x) π n (B ′ , x) π n-1 (F ′ , x) . . .

  

  , of course, he defines Segal spaces as above, as a simplicial space (i.e., a functor from ∆ op to sSet) such that a certain amount of morphisms are weak equivalences. Then, he proves that there is a Bousfield localization from the projective structure on simplicial spaces such that Segal spaces are exactly its local objects. But that structure is not enough to prove an equivalence with ∞-categories; there is a certain class of morphisms that will have to be inverted still. With that in mind, he applies another Bousfield localization to his model structure, getting a model structure whose local objects will be defined as being the complete Segal spaces. Finally, he defines a class of morphisms in the category of simplicial spaces, called Dwyer-Kan equivalences, and he proves that the weak equivalences for the complete Segal model structure are exactly the Dwyer-Kan equivalences between Segal spaces.
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	2.3 dg-Segal spaces vs Segal spaces
	In Rezk's paper [Rez01], we have several important steps in order to construct his model for ∞-categories:
	first of all	

  1) by the following morphism:

	. . .	0	0	k	0	. . .
	. . .	0	k	k	0	. . .

id

Corollary 3.4.10. With that model structure, all dg-categories are fibrant. Also, if a dg-category T is cofibrant, for all (x, y) ∈ Obj(T ) 2 the complex Hom T (x, y) is cofibrant for the model structure on C(k).

Remark 3.4.11. Both Bergner's model structure on simplicial categories and Tabuada's model structure on dg-categories (among quite a few others) can be seen as particular cases of the canonical model structure on the category of categories enriched over N , N -cat, where N is a right proper, adequate monoidal model category with cofibrant unit and a generating set of N -intervals. A full construction and proof of that can be found in [BM13, Th. 2.5].

Proposition 3.4.12. [BM13, Th. 1.10] With the model structure described above, the model category dgcat is right proper.

  we can prove that the functor Φ : dgcat O → dgcat commutes with homotopic colimits over ∆ op , we have finished the proof. Let X = hocolim ∆ op T i in dgcat O , and let us call the forgetful morphisms Φ : dgcat O → dgcat and Ξ : dgcat O →

O k/dg -cat, where for all X ∈ dgcat O Ξ(X) gives us a morphism from O k to Φ(X).

Acknowledgements

Proof. The uniqueness is just a consequence of the Yoneda lemma. We assume the existence of two complexes of modules, F 1 (x, y) and F 2 (x, y), such that F (x,y) (-) ≃ Map(-, F 1 (x, y)) and also F (x,y) (-) ≃ Map(-, F 2 (x, y)). But the Yoneda lemma tells us that a weak equivalence of representable presheafs must come from a weak equivalence on the representing objects. Which means that we have F 1 (x, y) ≃ F 2 (x, y).

We have the uniqueness.

Let us see the existence next. This is a direct consequence of Proposition 1.9 in [START_REF] Toën | Caractères de Chern, traces équivariantes et géométrie algébrique dérivée[END_REF], in particular of a certain point of the proof of part 1. Indeed, we prove there that if A is an ∞-category, then all functor G ∈ Fun(A op , sSet) that commutes with homotopy colimits is representable. That result has, then, reduced our problem to proving that the functor F (x,y) sends all homotopy colimits to homotopy limits (we remind the reader that F (x,y) is a contravariant functor). In order to make the writing easier, we will ignore the fact that F is contravariant and call this "commuting with homotopy limits". Now, proving that a functor commutes with homotopy limits can be done by proving that it commutes with all filtered homotopy limits, all homotopy pushouts, and all finite sums. As F satisfies the dg-Segal conditions, it already commutes with all filtered limits along perfect objects, which means that F (x,y) commutes with all filtered limits; and by the third dg-Segal condition it already commutes with homotopy pushouts along generating cofibrations. As we can write every homotopy pushout as a filtered homotopy limit over a homotopy pushout along a generating cofibration (in this case, the projective model structure), that means that F (x,y) commutes with all homotopy pushouts. Finally, all finite sums are homotopy pushouts except for the null sum, which means that is all we have left to prove.

Let G be a graph with two objects and the null complex between them. By definition, the free dgcategory associated to G is the coproduct L(G) = k k. By the first dg-Segal condition, that means that F (L(G)) = F (k k) ≃ F (k) × F (k). If we apply now the definition of F (x,y) , we have that F (x,y) (G) is the homotopy fiber of F (L(G)) = F (k) × F (k) → F (k) × F (k). As this is an isomorphism, we have that F (x,y) (G) = * , the null object in sSet, and we are done.

We have proven, then, that F (x,y) sends all homotopy colimits to homotopy limits. We then have that F (x,y) is representable, and by definition of representability there exists a complex of modules F (x, y) such that F (x,y) (-) ≃ Map(-, F (x, y)).

And we have finished this proof.

Q.E.D.

Remark 4.3.16. By the Yoneda lemma again, it is obvious that if the functor F is of the form Sing(T ) with T ∈ dgcat, then we have that for all

And one last definition.

Definition 4.3.17. Let F ∈ dg -Segal be a dg-Segal space. We call the homotopy category of F , and we denote it by [F ], the category whose objects are the 0-simplexes of F (k) and whose morphisms are given for all x, y ∈ π 0 (F (k)) by [F ] (x, y) = H 0 (F (x, y))

i.e. the cohomology groups of degree 0 of the complex of morphisms associated to the dg-mapping space at x and y.

Remark 4.3.18. We point to the reader that we have that if F ∈ dg -Segal, then

Proposition 4.4.2. [Lur09, Theorem 6.5.3.12] Let X ∈ sSet be a simplicial set and U * → X a hypercover of simplicial sets. Then we have that hocolim U n ≃ X.

Unluckily for us, none of the known definitions of hypercover work for the context we want, so we'll be forced to write our own. Definition 4.4.3. Let M be a model category and M 0 be a subcategory of M . Then we define f : T → T ′ a morphism in M to be an M 0 -epimorphism if for all X ∈ M 0 the induced functor

is an effective epimorphism in sSet, i.e. the morphism

Let M be a model category and M 0 be a subcategory of M . Let X ∈ M be an object of M , and U * → X an augmented simplicial object in M . We say that U * is an M 0 -hypercover of X if for all n ∈ N the functor

is an M 0 -epimorphism. In other words, using Proposition 3.3.16,

Now that we have a definition of an M 0 -hypercover, the next step will be proving that for all elements of a category we can construct a hypercover made entirely of objects in M 0 . Of course, this cannot work for a general M 0 : we will need a few extra conditions. As usual in these cases, we will construct our hypercover level by level, so we need a definition of a n-truncated hypercover.

Definition 4.4.5. Let M be a model category and M 0 be a subcategory of M . Let X ∈ M be an object in M . We define an n-truncated M 0 -hypercover of X to be an augmented n-truncated simplicial set X * → X where for all i ≤ n X i → X ∂∆ i * is an M 0 -epimorphism.

And now for the theorem:

Theorem 4.4.6. Let M be a model category where every object is fibrant, and let M 0 be a subcategory of M which is closed for finite coproducts. We assume that for every X ∈ M there exists an object in M 0 , U ∈ M 0 , and a morphism U → X that is a M 0 -epimorphism. Then there exists an M 0 -hypercover of X consisting of objects in M 0 .

Proof. We are going to prove this by induction. Let X ∈ M be an object in M . We will prove that for all n ∈ N there exists a n-truncated hypercover of X.

• n = 0. This is true by hypothesis. We have assumed that there exists an object U 0 ∈ M 0 with a morphism U 0 → X which is M 0 -epi. We then take the 0-truncated simplicial set which is U 0 on degree 0. It is a 0-truncated hypercover by definition.

is a homotopy pullback. But this diagram is in sSet, which is a proper model category, meaning that if one of the morphisms of this diagram is a fibration, we have finished. And indeed, the morphism k

) is a fibration. The diagram is a homotopy pullback and we have finished. If G has two objects, F satisfies the third dg-Segal condition on it.

For the passage from two elements to more, it is a question of noticing that condition 3 is merely a local condition: intuitively, the only change being made in it is in relation to the morphisms between x and y. Outside of that, it changes nothing whether the original free dg-category G had two objects or three thousand. Following that logic, we will decompose G in two sections: one that changes and one that does not.

Let G be a free dg-category of finite type, and let x, y be two objects in G. It is easy to see that we can write it as G = G 0 k k G x,y , where G x,y is a free dg-category with two objects and G(x, y) as the morphism complex between those objects; and G 0 is a free dg-category such that G 0 has the same objects as G and

y is a free dg-category with two objects, we have that F satisfies the third dg-Segal condition on G x,y . We can then construct a tower of homotopy pullbacks of the following form:

and the outside square is a homotopy pullback. By hypothesis, we have that

so we have our condition 3 for all G free dg-categories of finite type and we have finished our proof. Q.E.D.

We now want to apply this sublemma to our homotopy colimit. We have already proven that hocolim(Sing(T i )) satisfies conditions 1 and 2 of the dg-Segal conditions; we just need to prove that it also satisfies condition 4 of the sublemma. Let K, L be two free dg-categories of finite type. In a similar way than the proof of Proposition 4.2.5, we have that

But as long as the base of the finite product has a finite π 0 , we have that the homotopy colimit commutes with it. Which means that

Hence the functor hocolim(Sing(T i )) satisfies the condition 4 of the sublemma, and in consequence it satisfies the third condition of a dg-Segal space.

The functor hocolim(Sing(T i )) satisfies all three dg-Segal conditions, and we have finished our proof.

Q.E.D.

Remark 4.5.4. We have proven here that if we have the first two dg-Segal conditions and also that

we have a dg-Segal space; and also we proved in Proposition 4.2.11 that if we have a dg-Segal space, then at the very least

. This is starting to resemble strongly the definition of a Segal space. Indeed, we think it is probable that we could rewrite the definition of dg-Segal spaces to reflect way more closely that definition. We have decided not to do so because we think this definition emphasizes better the linear structure. In any case, this isn't a minimal construction anyway: see Chapter 3 for more details. Now that we know that hocolim(Sing(T i )) is a dg-Segal space, we can see whether the induced morphism hocolim(Sing(T i )) → Sing(T ) is a DK-equivalence in dg -Segal.

Lemma 4.5.5. Let T * → T be a cL S -hypercover of T constructed as in Theorem 4.4.6 and Proposition 4.4.7. Then the morphism hocolim(Sing(T i )) → Sing(T ) is a DK-equivalence.

Proof. In order to prove this, we need to make sure this morphism satisfies both conditions of the definition. The first is easy: indeed, we have made sure by the construction of our hypercover that all terms of the hypercover have the same elements. So [hocolim(Sing(T i ))] → [Sing(T )] is essentially surjective.

As for the condition on the morphisms, we have done most of the work already. We know that for all (x, y) ∈ π 0 (Sing(T )(k)), Sing(T ) (x,y) (E) = Map(E, T (x, y)). So we can rewrite this condition as being whether hocolim(Map(-, T i (x, y)) ≃ Map(-, T (x, y)).

But we know that T * → T is a cL S -hypercover, which in particular means that for all x, y ∈ T , T n (x, y) → T * (x, y) ∂∆ n is a split epimorphism. In consequence, we have that for all E ∈ C(k),

is an epimorphism. But we have seen that is exactly the definition of a hypercover in sSet. So we have that Map(E, T * (x, y)) is a hypercover of Map(E, T (x, y) in the simplicial sets, and by Proposition 4.4.2 that means that for all E we have hocolim Map(E, T * (x, y)) ≃ Map(E, T (x, y)). That is, by definition, the same as saying that hocolim(Map(-,

is a weak equivalence.

The second condition is fulfilled and the morphism hocolim(Sing

Finally, we have enough information to prove the full faithfullness of our functor Sing.

Theorem 4.5.6. Assuming Hypothesis 4.3.22 to be true, for all T ∈ dgcat we have Re k (Sing k )(T ) ≃ T , and the functor Sing k is fully faithful.

Proof. Let T be a dg-category. We construct, with the aforementioned methods, a cL S -hypercover of T , T i → T . By Lemma 4.5.5, we know that the image by Sing of this morphism is a DK-equivalence. We then have the following diagram Re(hocolim(Sing(T i ))

Re(Sing(T ) hocolim(Re(Sing(T i )))

Assuming Hypothesis 4.3.22 to be true, we know that the morphism hocolim(Sing(T i )) → Sing(T ) is a weak equivalence for the complete dg-Segal model structure. So f is a weak equivalence on the homotopy categories. On the other hand, because Re is a left hand adjoint, we know we can commute with the homotopy colimit, so g is also a weak equivalence. Lastly, we have proven in Proposition 4.5.1 that Sing is fully faithful over free dg-categories, and as all T i are free dg-categories by construction, we have that Re(Sing(T i )) ≃ T i for all T i and morphism ϕ is also a weak equivalence. By the two out of three condition on model categories, that means that morphism ζ is also a weak equivalence.

That gives us the following diagram:

The vertical morphism is a weak equivalence by Proposition 4.4.14, and ζ is a weak equivalence too. By the two out of three condition, we have that Re(Sing(T )) → T is a weak equivalence. The functor Sing is fully faithful and we have finished out proof. Q.E.D.

We finally know the functor is fully faithful! We can now go back to proving it is actually essentially surjective.

The functor Sing is essentially surjective

All that is left for us to do is to prove that every functor that satisfies the dg-Segal conditions is isomorphic to an object of the form Sing(T ). In order to do that, we are going to use hypercovers again: for all functor F that satisfies the dg-Segal conditions, we will construct a hypercover of a dg-category T whose image by the Sing functor is a hypercover of F . So first we need to define what a hypercover of F is. Definition 4.6.1. Let F, G ∈ dg -Segal. We say that a morphism f : F → G is a dg-Segal epimorphism if we have the following two conditions:

1. The morphism f is an isomorphism on the objects, π 0 (F (k)) → π 0 (G(k)).

2. For all x, y, ∈ π 0 (F (k)), the induced morphism F (x,y) → G (x,y) is a split epimorphism. Now that we have our definition of what epimorphism we want, we can define our hypercover. It isn't complicated: we will essentially use the same definition we used last time, utilizing dg-Segal epimorphisms instead of M 0 -epimorphisms. Definition 4.6.2. Let F ∈ dg -Segal a functor that satisfies the dg-Segal conditions, and F * → F an augmented simplicial object in dg -Segal. We say that F * is a dg-Segal-hypercover of F if for all n ∈ N the functor

is an dg-Segal epimorphism. In other words, using Proposition 3.3.16, F * → F is an dg-Segal-hypercover if

is an dg-Segal epimorphism and for all n ≥ 1

is an dg-Segal epimorphism.

Now that we have our definition of hypercover, our objective will be to construct for all F a hypercover made of functors of the form Sing(T i ) with T i a free category. Following exactly the proof of Theorem 4.4.6, this would be the point where we would prove that for every F ∈ dg -Segal, there exists a free dg-category T such that Sing(T ) → F is a dg-Segal epimorphism. Unluckily for us, while that result is undoubtedly true, utilizing it would later make the objects in our hypercover explode, and we don't want that. So we're going to fix the objects first.

Notation 4.6.3. We denote the functor Sing(k) ∈ dg -Segal by k. Definition 4.6.4. Let O be a set. We define the category of dg-Segal spaces with fixed objects to be the full subcategory of O k/dg -Segal of F dg-Segal spaces such that the morphism O → π 0 (F (k)) is an isomorphism, and we denote it by dg -Segal O .

Definition 4.6.5. Let Φ : dg -Segal O → dg -Segal be the forgetful functor. We define a dg-Segal epimorphism on dg -Segal O to be a morphism f in dg -Segal O such that Φ(f ) is a dg-Segal epimorphism.

Remark 4.6.6. It is easy to see that the first condition of the dg-Segal epimorphism is always true in dg -Segal O . Consequently, we won't have to check that condition as long as we are working on fixed objects.

Lemma 4.6.7. Let F ∈ dg -Segal be a functor that satisfies the Segal conditions. We fix a set O = π 0 (F (k)). There exists a dg-category with fixed objects T ∈ dgcat O such that Sing(T ) → F is a dg-Segal epimorphism in dg -Segal O .

Proof. Most of the work for the construction of this dg-category has already been done, and we now only have to put it together. We define a graph G as follows:

• Obj(G) = O.

• For all x, y ∈ O, we have that G(x, y) = F (x, y), the representing object of F (x,y) .

We define then T = L(G) as being the free category constructed from G.

Let us now prove that the morphism Sing(T ) → F is a dg-Segal epimorphism in dg -Segal O , or equivalently, that its projection on dg -Segal is a dg-Segal epimorphism.

By the construction of T = L(G), we have that for all x, y ∈ O,

and in particular, G(x, y) = F (x, y) is a factor in T (x, y). That means that for all E ∈ C(k) there exists an inclusion Map(E, F (x, y)) = F (x,y) (E) → Map(E, T (x, y)). It is easy to see, using the definition of homotopy fiber, that for all dg-category T ′ , Sing(T ′ ) (x,y) = Map(-, T ′ (x, y)). Putting it all together, we have then that the morphism Sing(T ) (x,y) = Map(-, T (x, y)) → F (x,y) = Map(-, F (x, y)) is a split epimorphism and we have proven our result.

The morphism Sing(T ) → F is a dg-Segal epimorphism and we have finished.

Q.E.D.

Lemma 4.6.10. Let F * → F be a dg-Segal hypercover in dg -Segal O with O = π 0 (F (k)) constructed as before. Then, for all x, y ∈ O, the augmented simplicial complex T * (x, y) → F (x, y) is a split hypercover in C(k).

Proof. This follows from the definition of dg-Segal hypercover. Q.E.D.

Proposition 4.6.11. Let F * → F be a dg-Segal hypercover constructed as in Theorem 4.6.8. Then the homotopy colimit of F * is DK-equivalent to F in dg -Segal O .

Proof. The proof of this follows very closely as the one in Lemma 4.5.5. Indeed, in order to prove something is a DK-equivalence, we have two conditions: firstly, that the morphism

is an essentially surjective. But the hypercover has been constructed to have fixed objects π 0 (F (k)), so this condition is verified by construction.

That leaves us with the second condition. We fix x, y ∈ O. Do we have that

is a quasi-equivalence? By definition, F i,(x,y) = Map(-, T i (x, y)) and F (x,y) = Map(-, F (x, y)), so we can rewrite this condition as wondering whether

is a quasi-equivalence. By Lemma 4.6.10, we know that T * (x, y) → F (x, y) is a split hypercover of complexes, so for all n ∈ N, So the morphism hocolim(F i ) → F is a DK-equivalence and we have finished our proof. Q.E.D.

Like in the case of the dg-categories, we have proved that the homotopy colimit is DK-equivalent to F , but only with fixed objects. But if we want to use it, we need to see that it is indeed true in dg -Segal.

Proposition 4.6.12. Let F be a dg-Segal space and F * → F a dg-Segal hypercover constructed as in Theorem 4.6.8. Then the homotopy colimit of F * is DK-equivalent to F in dg -Segal.

Proof. This proof is almost identical to the one in Proposition 4.4.14, and as such we won't spend too much time on its details. As was the case there, we have that the homotopy colimit of the hypercover is DK-equivalent to F , but only with fixed objects. So we're going to prove that the forgetful functor Φ : dg -Segal O → dg -Segal commutes with those homotopy colimits. Let us denote the obvious forgetful functor by Ξ :

For all G ∈ dg -Segal we then have a morphism of the form

By getting the fiber of this morphism and doing the same with hocolim F i , we get the following diagram:
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Now that we have finished talking about the results that are completely solved, it is time to tackle results that are in progress and those who we consider to be interesting prospects in a more general sense.

Complete dg-Segal spaces and DK-equivalences

We saw in the last chapter that the main result of this thesis hinges on one hypothesis. Let us remind the reader of it here.

Hypothesis 5.1.1 (Hypothesis 4.3.22). Let f : F → G be a morphism between two functors satisfying the dg-Segal conditions. Then, f is a DK-equivalence if and only if it is a weak equivalence in the complete dg-Segal model structure. Now, this is not a new or surprising condition to have. Indeed, a very similar situation appears in [Rez01, Theorem 7.7, proof in Section 14]: in the classic case the weak equivalences for the complete Segal model structure are exactly the Dwyer-Kan equivalences between complete Segal spaces. In that paper, this identification between Dwyer-Kan equivalences and complete Segal weak equivalences is done by the means of a completion functor such that for all W Segal space there exists a map i W : W → W with the following properties:

1. The completion W is actually a complete Segal space.

2. The completion map i W is a weak equivalence in the complete Segal model structure.

3. The completion map i W is a Dwyer-Kan equivalence.

Using such a completion map, the author reduces the problem of asking whether a Dwyer-Kan equivalence f : W → W ′ between Segal spaces is a weak equivalence for the complete Segal model structure to whether its completion f is one, and some relatively straightforward arguments prove the if and only if from the theorem.

The main issue with this proof is actually to construct the completion functor mentioned above. Obviously, a simple fibrant replacement would be enough to assuage conditions 1 and 2, but not 3. Instead, the author constructs their complete Segal space by way of defining a certain simplicial space E(m) for all m ∈ N and computing

is surjective. Once again, we can ignore the products and the coproducts in this, and reduce the problem even more by taking those out: the question we end up with whether for all g : A → B trivial cofibrations the induced morphism on cocycles

is surjective. But that is exactly the result of Lemma 5.2.5, so we have our result. The morphism ϕ : n ∆ k (0) → ∆ k (n, s, d) is a cofibration and we have finished.

Q.E.D.

A characterization of Maps

Lemma 5.2.8. Let T be a dg-category. Let n ∈ N, s ∈ Z n and d ∈ N n . There exists a homotopy pullback of simplicial sets of the following form:

where ϕ * is the morphism induced by ϕ : n+1 k → ∆ k (n, s, d) as above, and U ′ is induced by the forgetful functor U : n+1 k/dg -cat → dgcat.

In particular, Map k/dg-cat (∆ k (n, s, d), T ) is the homotopy fiber of ϕ * .

Proof. Let us take C * (T ) a simplicial frame of T in k/dg -cat. As U is a right Quillen adjoint, the image U (C * (T )) is a simplicial frame of U (T ) = T in dgcat. By abuse of notation, we will still denote U (C * (T )) by C * (T ). We have proven that both k = ∆ k (0) and ∆ k (n, s, d) are cofibrant, so we don't need to take cofibrant replacements. With those choices made, the diagram from the lemma could be rewritten by saying that there exists a homotopy pullback of the form

The simplicial set Hom k/dg-cat (∆ k (n, s, d), C * (T )) is literally the fiber of ϕ * . But here we are asking for a homotopy fiber, not just a fiber. For that we will use the properness of sSet. We know by Corollary 3.2.38 that on a right proper model category, if we have a diagram X → Z ← Y where at least one of these two arrows is a fibration, then the pullback is naturally weak equivalent to the homotopy pullback. We have proven in Lemma 5.2.7 that the morphism ϕ • The mapping space from ∆ k (0) to T is weak equivalent to the cartesian product of n + 1 copies of the nerve of F (∆ k (0), T ), the category of quasi-representable T op -modules with only weak equivalences as its morphisms. In other words,

• Let x ∈ Obj(T ) n+1 be an (n + 1)-uple of objects. The mapping space from ∆ k (n, s, d) to (T, x) in k/dg -cat, the category of dg-categories with n + 1 fixed objects, is weak equivalent to the product over 1 ≤ i ≤ n of the mapping spaces from k di [s i ] to T (x i-1 , x i ) in the category of cochain complexes. In other words, Map k/dg-cat ((∆ k (n, s, d)), (T, x))

Proof. The first weak equivalence is a direct consequence of Theorem 3.4.38. Indeed, that result says that if we have two dg-categories, in our case k and T , the simplicial set Map(k, T ) is weak equivalent to the nerve of the category of quasi-representable k ⊗ T op -modules with equivalences as morphisms. But k is the unit for the tensor product, so F (k, T ) is isomorphic to the category of quasi-representable T op -modules with the appropriate morphisms. The Cartesian product is trivial.

For the next part, we will prove it for n = 1. Indeed, the reasoning stays the same, and the writing is easier. In that case, we define a Quillen adjunction

where ∆ k (1, E) denotes the dg-category with two objects, k as the cochain complexes of endomorphisms, and E as the complex of morphisms between the two objects. In particular, ξ(k d [s]) = ∆ k (1, s, d).

Let us take C * (T ) a simplicial frame in k k/dg -cat. As β is a right Quillen functor, the cochain complex β(C * (T )) is still a simplicial frame. We have already proven in Corollary 5. We have the weak equivalence and we have finished.

Q.E.D.

Finally, this last result gives us a way to characterize weak equivalences in dgcat using elements in ∆ k . In fact, we don't even need the entirety of the objects in ∆ k : it suffices with the ones with two objects and no degree.

Theorem 5.2.10. Let T and T ′ be two dg-categories and f : T → T ′ a dg-functor between them. Then f is a weak equivalence in dgcat if and only if the induced morphisms Map(∆ k (0), f ) : Map dg-cat (∆ k (0), T ) → Map dg-cat (∆ k (0), T ′ ) ∀s ∈ Z, Map(∆ k (1, s, 1), f ) : Map dg-cat (∆ k (1, s, 1), T ) → Map dg-cat (∆ k (1, s, 1), T ′ ) are weak equivalences in sSet.