
HAL Id: tel-03966012
https://hal.science/tel-03966012v1

Submitted on 9 Jan 2023 (v1), last revised 31 Jan 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning-Enabled Network Traffic Analysis
Ons Aouedi

To cite this version:
Ons Aouedi. Machine Learning-Enabled Network Traffic Analysis. Computer Science [cs]. Nantes
Université, 2022. English. �NNT : �. �tel-03966012v1�

https://hal.science/tel-03966012v1
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

NANTES UNIVERSITÉ

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Ons AOUEDI
Machine Learning-Enabled Network Traffic Analysis

Thèse présentée et soutenue à Nantes, le 02 Décembre 2022
Unité de recherche : Laboratoire des Sciences de Numérique de Nantes (LS2N), UMR 6004

Rapporteurs avant soutenance :

Adlen KSENTINI Professeur, Eurecom, Sophia Antipolis, France
Sonia BEN MOKHTAR Directrice de Recherche CNRS/INSA LYON, France

Composition du Jury :

Président : Yassine HADJADJ-AOUL Professeur, Université de Rennes I, France
Examinateurs: Adlen KSENTINI Professeur, Eurecom, Sophia Antipolis, France

Sonia BEN MOKHTAR Directrice de Recherche CNRS/INSA LYON, France
Yusheng JI Professeure, National Institute of Informatics, Japon

Dir. de thèse : Benoît PARREIN Maître de Conférences HDR, Nantes Université
Co-encadrant. de thèse : Kandaraj PIAMRAT Maître de Conférences, Nantes Université





”Who fears climbing the mountains lives forever among the pits”.

— Abou el Kacem Chebbi



Acknowledgments

This has been an enriching and tough journey, full of ups and down, full of joy and challenges,
and especially full of wealthy lessons. I thank God, who gave me the positive energy and
opportunity to carry out this work. Also, I was surrounded by many supportive peoples who
have given me the strength to go through difficult times. So, it was a great pleasure to thank
them all for their positive impact.

My initial gratitude goes to my supervisors Kandaraj PIAMRAT and Benôıt PARREIN
for giving me the chance to work on an interesting subject. I am grateful for their trust,
technical, and emotional support during these three years. Their advice at the scientific
and personal level has resulted in the production of this work. I would thank them again
for having shown my weaknesses, and strengths, as well as for giving me the freedom to
collaborate with other researchers around the world. I am really indebted to them.

I would also like to express my gratitude to the jury members of my defense. Many
thanks to Adlen KSENTINI and Sonia BEN MOKHTAR who agreed to read and review my
thesis. I want to thank Yassine HADJADJ-AOUL and Yusheng JI for agreeing to participate
in the jury.

I am grateful to my colleague Alexis Bitaillou for all the technical discussion, the good
mood in the team, his help, and for proofreading the abstract in French.

A special and deepest gratitude goes to my parents, my father Khmais, and my mother
Faouzia. My parents have given me everything through their endless sacrifices for my success.
My love and sincere thanks to my brothers Neder, Seifedine, and Aymen with his wife Maria,
as well as my sister Arwa and her husband Ahmed for their love and support in the good
and the bad times. Also, I cannot finish without expressing my thanks to my little nieces
Awess and Alma for bringing joy to my soul even though we are far away.

Last but not least, I am thankful to Nantes University for awarding me the PhD research
scholarship, and to all the people from the administration team who helped me many times.

Finally, I am grateful to all my loved ones, all everyone who helped me during the PhD
and to whom I was able to meet during this trip.

4



Abstract

Recent development in network communication along with the drastic increase in the

number of smart devices leads to an explosion in data generation. To this end, intelligent

network traffic analysis can help to understand the behavior of connected smart devices and

applications as well as provides defense against cyber-attacks. In this line, Machine Learn-

ing (ML) and Deep Learning (DL) models have the ability to model and uncover hidden

patterns using training data or environment. Despite their benefits, major challenges need

to be addressed such as model generalization (due to model overfitting), lack of label (due

to the difficulty to label all the data), and privacy (due to recent regulations). In this thesis,

new ML/DL-based models are proposed for tackling these challenges. The first contribu-

tion focuses on improving the generalization and classification performance by proposing an

ensemble blending model. The simulation results show that the accuracy of the proposed

ensemble model is 10%, better than some state-of-the-art models. Second, a semi-supervised

model has been proposed and the experiment results show that unlabeled data boost the

classification accuracy by 11% in comparison to its supervised version. Finally, a Feder-

ated Learning (FL) based Intrusion Detection System (IDS) has been proposed. It allowed

the clients to learn an efficient intrusion detection model without the need to label their

local data as well as to achieve high classification performance and improvement in terms of

communication overhead (reduction by almost 75% in comparison to a centralized model).



Résumé

L’Internet des Objets entrâınent par son nombre de terminaux une explosion du trafic

de données. Pour augmenter la qualité globale de réseau, il est possible d’analyser intel-

ligemment le trafic réseau afin de détecter d’éventuel comportement suspect ou malveil-

lant. Les modèles d’apprentissage automatique et d’apprentissage profond permettent de

traiter ce très grand volume de données. Néanmoins, il existe certaines limites dans la

littérature, notamment la confidentialité des données, le surapprentissage (manques de di-

versité dans les données) ou tout simplement le manque de jeu de données labélisées. Dans

cette thèse, nous proposons de nouveaux modèles s’appuyant sur l’apprentissage automatique

et l’apprentissage profond afin de traiter une grande quantité de données tout en préservant

la confidentialité. Notre première approche utilise un modèle d’ensemble. Les résultats mon-

trent une diminution du surapprentissage, tout en augmentant de 10% la précision comparé à

des modèles de l’état de l’art. Notre seconde contribution s’attache aux problèmes de disponi-

bilité des données labélisées. Nous proposons un modèle d’apprentissage semi-supervisé ca-

pable d’améliorer la précision de 11% par rapport à un modèle supervisé équivalent. Enfin,

nous proposons un système de détection d’attaque s’appuyant sur l’apprentissage fédéré.

Nommé FLUIDS, il permet de réduire la surcharge réseau de 75% (comparé à son équivalent

centralisé) tout en préservant de très haute performance et la confidentialité.





Contents

List of Figures 12

List of Tables 14

List of Abbreviations 16

General Introduction 19

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.1 Journal Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.2 Conference and Workshop Papers . . . . . . . . . . . . . . . . . . . . 23

I Background & State of the Art 26

2 Machine Learning Introduction 27

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 What Machine learning is? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1.2 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . 30

2.1.1.3 Semi-supervised learning . . . . . . . . . . . . . . . . . . . . 31

2.1.1.4 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . 31

2.1.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.2.2 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.2.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Shallow models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8



CONTENTS 9

2.2.1 DT (Decision Tree) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 SVM (Support Vector Machine) . . . . . . . . . . . . . . . . . . . . . 35

2.2.3 KNN (K-Nearest Neighbour) . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.4 K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.5 Ensemble learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.5.1 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.5.2 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.5.3 Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Types of DL-based models . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.1 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.1.1 Wrapper Methods . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.1.2 Filter Methods . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.2.1 PCA (Principal Component Analysis) . . . . . . . . . . . . 51

2.4.2.2 AE (AutoEncoder) . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 ML/DL models limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5.1 Over or underfitting issue . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5.2 Data training collection . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6 Federated Learning (FL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 ML-enabled traffic analysis: Literature review 59

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1 Application traffic classification . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.1 Traditional techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.2 ML for application classification: Literature review . . . . . . . . . . 61

3.1.2.1 DL-based approaches . . . . . . . . . . . . . . . . . . . . . . 62

3.1.2.2 Ensemble learning-based approaches . . . . . . . . . . . . . 62

3.1.2.3 Semi-supervised learning-based approaches . . . . . . . . . . 65

3.1.2.4 Traffic classification in SDN . . . . . . . . . . . . . . . . . . 66

3.1.2.5 FL-based approaches . . . . . . . . . . . . . . . . . . . . . . 67

3.1.3 Shortcomings and Research Gaps . . . . . . . . . . . . . . . . . . . . 67

3.2 ML-based Intrusion Detection Systems: Literature review . . . . . . . . . . . 69

3.2.1 Conventional ML/DL related work . . . . . . . . . . . . . . . . . . . 71

3.2.2 FL related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



CONTENTS 10

3.2.3 DDoS attack detection or classification . . . . . . . . . . . . . . . . . 74

3.2.4 Shortcomings and Research Gaps . . . . . . . . . . . . . . . . . . . . 74

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

II Contributions 82

4 Ensemble-based Deep Learning model for network traffic classification 83

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Proposed Ensemble Learning Model . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.2 Models hyper-parameters tuning . . . . . . . . . . . . . . . . . . . . . 87

4.1.3 Blending ensemble model . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Experimental study and results analysis . . . . . . . . . . . . . . . . . . . . 88

4.2.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.2 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.3 Modeling hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.4 Performance evaluation of the proposed blending model . . . . . . . . 90

4.2.4.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.4.2 Base classifiers selection . . . . . . . . . . . . . . . . . . . . 92

4.2.4.3 Proposed Ensemble classifier . . . . . . . . . . . . . . . . . . 93

4.2.5 Experiments on the second dataset (VPN-nonVPN dataset) . . . . . 99

4.2.6 Performance against state-of-the-art models . . . . . . . . . . . . . . 101

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Handling partially labeled network data: a semi-supervised approach

using stacked sparse autoencoder 105

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 SAE-based semi-supervised model . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.1 SAE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.2 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Experimental study and results analysis . . . . . . . . . . . . . . . . . . . . 109

5.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.2 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.3 SAE-based semi-supervised architecture and hyperparameters . . . . 111

5.2.3.1 Trade-off between performance and unlabeled ratio . . . . . 111

5.2.3.2 Impact of the sparse hyper-parameter . . . . . . . . . . . . 112

5.2.3.3 Impact of dropout and denoising hyper-parameters . . . . . 112

5.2.4 Comparison Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



CONTENTS 11

5.2.4.1 Comparison with semi-supervised learning models . . . . . . 114

5.2.4.2 Comparison with the commonly-used supervised classifica-

tion models (100% labeled data) . . . . . . . . . . . . . . . 116

5.2.4.3 Comparison with supervised SSAE* models (using only the

labeled ratio) . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.4.4 Confusion matrix (CM) comparison . . . . . . . . . . . . . . 117

5.2.4.5 Cost in terms of training and testing times . . . . . . . . . . 118

5.2.5 Experiments on the VPN-nonVPN dataset . . . . . . . . . . . . . . . 118

5.2.6 Performance against state-of-the-art models . . . . . . . . . . . . . . 121

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 FLUIDS: Federated Learning with semi-supervised approach for Intru-

sion Detection System 124

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1 FLUIDS methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Experiment and performance evaluations . . . . . . . . . . . . . . . . . . . . 128

6.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2.2 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.3 Performance under different factors . . . . . . . . . . . . . . . . . . . 131

6.2.3.1 Impact of communication rounds . . . . . . . . . . . . . . . 131

6.2.3.2 Impact of the unlabeled data available on the clients: . . . . 132

6.2.3.3 Communication overhead . . . . . . . . . . . . . . . . . . . 132

6.2.3.4 Performance against other models . . . . . . . . . . . . . . . 133

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Conclusion and Future Directions 141

References 145



List of Figures

2.1 Traditional programming vs Machine Learning, inspired by [21] . . . . . . . 30

2.2 Training process of supervised learning algorithm . . . . . . . . . . . . . . . 31

2.3 Training process of unsupervised learning algorithm . . . . . . . . . . . . . . 31

2.4 Training process of semi-supervised learning algorithm . . . . . . . . . . . . 32

2.5 Conceptual diagram for RL system . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Blending ensemble process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Difference between traditional Machine Learning and Deep Learning . . . . . 41

2.8 Google Trend showing more attention toward DL in recent years . . . . . . . 41

2.9 Structure of shallow Neural Network and its neuron . . . . . . . . . . . . . . 42

2.10 MLP (MultiLayer Perceptron) . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.11 General AutoEncoder (AE) process . . . . . . . . . . . . . . . . . . . . . . . 44

2.12 CNN (Convolution Neural Networks) . . . . . . . . . . . . . . . . . . . . . . 45

2.13 RNN (Recurrent Neural Networks) . . . . . . . . . . . . . . . . . . . . . . . 45

2.14 LSTM (Long Short-Term Memory) . . . . . . . . . . . . . . . . . . . . . . . 46

2.15 GRU (Gated Recurrent Unit) . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.16 General Stacked AE process . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.17 Training process of individual denoising autoencoders . . . . . . . . . . . . . 53

2.18 Dropout technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.19 Typical FL workflows in comparison to traditional learning based on a central-

ized data manager. (a) Centralized FL and (b) Peer to Peer FL formulations

allow private data to remain local to clients. (c) A general non-FL training

workflow where the clients send their data to a central entity for model training. 57

3.1 Flowchart for the proposed ensemble classifier in a two-tier architecture [99]. 63

3.2 Training process of CARD-B [104] . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Training process of the semi-supervised model [29] . . . . . . . . . . . . . . . 65

3.4 Overview of the SDN-HGW framework [113]. . . . . . . . . . . . . . . . . . . 67

3.5 Training process of the hybrid anomaly detection method [126] . . . . . . . . 71

3.6 FLIDS architecture [139] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Flowchart for the proposed blending ensemble model . . . . . . . . . . . . . 86

12



LIST OF FIGURES 13

4.2 Effect of hold-out validation set ratio on the proposed blending model. . . . 95

4.3 Results of the different combinations of the base classifier experiments and

their impact on the proposed blending model. . . . . . . . . . . . . . . . . . 96

4.4 Comprehensive comparison of well-known classifiers against the proposed blend-

ing model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Our model vs. linear blending. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Our model vs. linear blending . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Structure of the semi-supervised network traffic classification model . . . . . 108

5.2 General Stacked Autoencoder process . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Performance of model with different unlabeled ratios. . . . . . . . . . . . . . 112

5.4 Accuracy and training time of different sparse parameter . . . . . . . . . . . 113

5.5 Effect of dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6 Effect of denoising coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7 Accuracy of our model without and with enforcement (dropout and denoising) 114

5.8 Classification process with AE model . . . . . . . . . . . . . . . . . . . . . . 115

5.9 A confusion matrix of the proposed model against AE and XGBoost under

the most popular applications. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.10 Training time comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.11 Classification time comparison per sample . . . . . . . . . . . . . . . . . . . 120

6.1 The network architecture and communication process of FLUIDS. . . . . . . 127

6.2 Effect of communication rounds on FLUIDS performance . . . . . . . . . . . . 131

6.3 F1-score with various unlabeled ratio (Ru). . . . . . . . . . . . . . . . . . . . 132

6.4 Comparison in terms of communication overhead for two datasets . . . . . . 133

6.5 The performance of identifying normal and attack flows of FLUIDS against

supervised models using the UNSW-NB15 dataset. . . . . . . . . . . . . . . 135

6.6 Comparison in terms of communication overhead. . . . . . . . . . . . . . . . 138



List of Tables

2.1 Comparison of ML categories . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Comparison of Shallow ML models . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 The different commonly used activation functions . . . . . . . . . . . . . . . 43

2.4 Summary of different deep-learning models [58] [59] . . . . . . . . . . . . . . 47

2.5 Comparison of dimensionality reduction techniques [62] [63]. . . . . . . . . . 48

2.6 Summary of the advantages and drawbacks of Centralized ML (CML). . . . 56

3.1 Summary of investigated solutions to design ML-based traffic classification . 68

3.2 Summary of investigated methods to design ML-based IDS . . . . . . . . . . 75

4.1 List of notations used in the ensemble learning algorithm. . . . . . . . . . . . 89

4.2 Dataset description [153]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Hyper-parameters values of the different classifiers . . . . . . . . . . . . . . . 91

4.4 Classification accuracy (%) with RFE and IG on different features set . . . 92

4.5 The accuracy, precision, and recall (%) of the entire data and selected data

analyzed by DT and RF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Comparison of different methods . . . . . . . . . . . . . . . . . . . . . . . . 93

4.7 Statistical measures of the base classifiers and the proposed blending model

using training and test sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.8 Linear blending vs. our ensemble for application classification . . . . . . . . 98

4.9 Training and classification time comparison . . . . . . . . . . . . . . . . . . . 99

4.10 VPN-nonVPN dataset description. . . . . . . . . . . . . . . . . . . . . . . . 99

4.11 Scenario description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.12 The classification accuracy (%) of baseline and ensemble methods on VPN-

nonVPN Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.13 Linear blending vs. our model using VPN-nonVPN dataset . . . . . . . . . . 102

4.14 The classification accuracy (%) of baseline and ensemble methods on VPN-

nonVPN Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 The numerical information of dataset. . . . . . . . . . . . . . . . . . . . . . . 111

14



LIST OF TABLES 15

5.2 Comparison of SSAE against different semi-supervised models on the test

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Comparison of SSAE against some supervised models. . . . . . . . . . . . . . 117

5.4 Comparison with supervised SSAE*. . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Comparison with supervised models on Sc A (using 100% labeled data). . . . 120

5.6 Comparison with supervised models on Sc D (using 100% labeled data). . . . 121

5.7 The classification accuracy (%) of baseline and ensemble methods on VPN-

nonVPN Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1 List of notations used in our model. . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Gas pipeline SCADA system dataset description. . . . . . . . . . . . . . . . 130

6.3 Performance of the proposed model against the non-FL model. . . . . . . . . 134

6.4 Comparison with supervised models using UNSW-NB15 dataset. . . . . . . . 134

6.5 F1-score comparison of our model vs. supervised models for the identification

of normal vs. attack traffic using gas pipeline dataset. . . . . . . . . . . . . . 136

6.6 Overall performance analysis of the proposed model with existing schemes. . 137

6.7 Water tank system dataset description. . . . . . . . . . . . . . . . . . . . . . 137

6.8 Performance of the proposed model against the non-FL model. . . . . . . . . 138

6.9 FLUIDS vs equivalent model in non-FL setting vs Supervised models. . . . . 139



List of Abbreviations

AE AutoEncoder

AI Artificial Intelligence

ANN Artificial Neural Networks

Bi-LSTM Bidirectional-LSTM

CFS Correlation-based Feature Selection

CM Confusion Matrix

CML Centralized ML

CNN Convolution Neural Networks

CPS Cyber physical Systems

DDoS Distributed Denial of Service

DL Deep Learning

DoS Denial of Service

DPI Deep Packet Inspection

DT Decision Tree

EFB Exclusive Feature Bundling

FedAvg Federated Averaging

FL Federated Learning

GBDT Gradient Boosting Decision Tree

GDPR General Data Protection Regulation

16



List of Abbreviations 17

GOSS Gradient-based On Side Sampling

GRU Gated Recurrent Unit

HIDS Host-based IDS

IDS Intrusion Detection Systems

IG Information Gain

IIoT Industrial IoT

IoT Internet of Things

ISP Internet Service Providers

JAP Joint Announcement Protocol

KNN K-Nearset Neighbour

LSTM Long Short-Term Memory

ML Machine Learning

MLP Multi-Layer Perceptron

NB Naive Bayes

NIDS Deep Packet Inspection

PC Principal Component

PCA Principal Component Analysis

QoS Quality of Service

ReLU Rectified Linear Unit

RF Random Forest

RFE Recursive Feature Elimination

RL Reinforcement Learning

RNN Recurrent Neural Networks

SAE Stacked AutoEncoder

SDN Software Defined Networking



List of Abbreviations 18

SSAE Stacked Sparse AutoEncoder

SVM Support Vector Machine

XAI eXplainable AI



General Introduction

1.1 Motivation

Recent development in network communication along with the drastic increase in the num-

ber of smart devices as well as the Internet of Things (IoT) leads to an explosion in data

generation and heterogeneity. For example, by 2023, 5G will generate nearly 3× more traffic

than 4G. Also, according to the latest Cisco forecast, by 2030 the number of connected IoT

devices will surpass 500 million [1]. Meanwhile, mobile data traffic will be 77 Exabytes per

month, which is 7 times that in 2017 [2]. At the same time, the heterogeneous traffic coming

from smart vehicular, mobile, and Industrial IoT (IIoT) requires efficient network resources

and architecture in order to maintain the Quality of Service (QoS) to the end-user. These

made the network architecture highly resource-hungry, calling for ultra-efficient, fast, and

autonomous network traffic analysis approaches. In addition, security and privacy concerns

are becoming more stringent for 5G and beyond networks.

In this context, accurate traffic analysis helps to understand the behavior of connected

smart devices and applications as well as provides defense against security attacks. In partic-

ular, major problems in traffic analysis can be broadly divided into two categories, which are

(i) traffic classification based on flow and packet-based features (attribute), and (ii) traffic

prediction using time series data [3]. The purpose of traffic classification is to understand the

type of traffic carried on the Internet [4] [5]. It aims to identify the application (YouTube,

Netflix, Twitter, etc.) or detect network attacks. On the other hand, traffic prediction

aims to forecast the status of network links or the total amount of traffic expected based on

historical data [6]. It is often faced as a time-series forecasting problem [7].

Indeed, network traffic classification poses significant challenges in computation time,

complexity, and data privacy. Combined with the increasing and heterogeneous traffic, Ma-

chine Learning (ML) based approaches are opening the ways to model, learn, and recognize

the complex patterns within the network traffic behavior using training data or environ-

ment [8]. Besides, key technological advances in networking, such as Software-Defined Net-

working (SDN), promote the use of ML in networking. Recent research has demonstrated the

benefits of ML with traffic classification and intrusion detection systems (IDS). It presents

a key advantage in managing network traffic and in turn, makes the network self-managed,

19



General Introduction 20

and self-adaptive. Also, it provides the network operators with more intelligence, autonomy,

and less human intervention as maximum as possible. In the same direction, ML can be a

promising solution for data processing in a (near)-real-time manner. Despite these benefits,

there are some major challenges that need to be addressed such as model generalization,

partially labeled data, privacy preservation of the user data, etc.

1.2 Research questions

To formulate the scope of this thesis, we pose several research questions as follows:

• What are the most suitable ML-based models for network traffic classification?

First, we need to study the performance of different ML models for network traffic

classification. Among such models applied to network traffic classification so far, no

model outperforms all the others. More specifically, each model has its advantages and

weaknesses, thus it is a risky and difficult task to find the best model.

• How to deal with unlabeled data?

Second, as new applications and attacks emerge every day, it is not possible to have all

the flow labeled in a real-time manner. At the same time, labeling all the traffic requires

a huge effort from human annotators sometimes with a specific domain of expertise.

In this context, the authors in [9] indicate that labeling all the traffic is a hard task

and thus one of the most obvious obstacles to progress on traffic classification. On the

other hand, since the unlabeled data provide informative characteristics, we can use

them to improve the performance of the ML-based models.

• How to build an ML model under the privacy concerns?

Finally, despite the profitable use of ML models, these data-driven methods are facing

issues such as the scarcity and privacy of user data. For example, strict laws such

as the General Data Protection Regulation (GDPR) in European Union 1 completely

redefined the data management policy. Also, the increase in the amount of network

traffic could decrease the scalability of the model, bottleneck the whole network, and

cause an extra computational cost for both storage and processing. Altogether, this re-

search question corresponds to the network traffic processing under privacy constraints

as well as reducing the communication overhead.

1.3 Thesis Contributions

The purpose of this thesis is to answer the above research questions. In particular, this thesis

aims to investigate the application of ML/DL-based models for intelligent traffic analysis

1https://gdpr-info.eu/issues/data-protection-officer/



General Introduction 21

including traffic classification and IDS. The proposed solutions demonstrate the ability of

these models to improve performance in terms of accuracy, complexity, the communication

overhead. It is important to note that since the contributions of this thesis focus on ML/Deep

Learning (DL)-based models, the conventional and traditional techniques applied to network

traffic analysis will not be considered. The following items highlight our contributions to

applying ML for network traffic analysis.

• Improving the generalization of traffic classification: Despite the performance

of ML and DL models for network traffic classification, they experience overfitting and

low-bias problems. In particular, such models perform well on the training set, whereas

this is not the case with the unseen data (i.e. test data). A straightforward solution

to this issue is to propose a blending ensemble through the combination of different

DL and tree-based models. The tree-based models are used as base classifiers and

DL has been used as a meta-classifier in order to correct the errors that occur during

the learning process of the base classifiers as well as learn the non-linear relationship

among the base classifiers. We show that the proposed ensemble prevents overfitting

and reduces bias simultaneously to some extent, in addition, to achieve good results

on both non-encrypted and encrypted network traffic.

• Enhancing model performance with unlabeled data: As new types of traffic

emerge every day and are generally partially labeled, this opens the question of how

to accurately classify traffic using a limited amount of labeled data or partially labeled

data. Based on these reasons, we reformulate traffic classification into semi-supervised

learning where both supervised learning (using labeled data) and unsupervised learn-

ing (unlabeled data) are combined. The main motivations of this approach are: (i)

unlabeled data is often abundantly and easily available; (ii) classification performance

of the whole model can be greatly improved when a large amount of unlabeled traffic

is included in the training process; (iii) there is a limit to how much human effort can

be thrown at the labeling problem. In particular, we study how unlabeled data can

impact the performance of the whole model. The proposed approach shows the advan-

tage of the unlabeled data helps to extract high-level feature representations through

the pre-trained strategy and in turn, boosts the traffic classification.

• Providing traffic privacy: Network traffic can contain private data and sending

them to a central entity may affect user privacy. Also, IDS requires fast analysis while

centralized processing is time-consuming. To cope with the above limitations, a semi-

supervised, Federated-Learning (FL), based IDS has been proposed, called FLUIDS.

More specifically, the clients train an unsupervised model using unlabeled data and

the FL server is not only used for the model aggregation task, but also for supervised

learning using a few amounts of labeled data. The experimental results demonstrate



General Introduction 22

that FLUIDS with limited labeled data can achieve competitive results as well as de-

crease the communication overhead.

1.4 Thesis Structure

The remainder of this thesis is organized as follows.

The first part of our thesis focuses on the background and state-of-the-art. Chapter 2

provides background on ML/DL models as well as FL concepts. In this chapter, we detail

the reasons behind the use of each model as well as their strengths and weaknesses. In

Chapter 3, we review the application of ML-based solutions for network traffic analysis.

In particular, we study the application of ML and DL models for traffic classification and

intrusion detection systems. Then, we outline the shortcomings of the proposed solutions

such as generalization capability, lack of labeled data, as well as privacy preservation of the

end-user data.

Then, in the second part of this thesis, we present our contributions. More specifically,

in Chapter 4, we present a blending-based model in order to improve the generalization

capability on the training set. However, before proposing the new ensemble, we evaluate

the performance of different decision tree-based models. Finally, we demonstrate the effec-

tiveness of the blending ensemble on both non-encrypted and encrypted traffic as well as its

performance against state-of-the-art models.

Chapter 5 is devoted to the semi-supervised model for traffic classification. We demon-

strate the importance of unlabeled data during the model training. Also, we study the

proposed model complexity and classification performance compared to different machine

learning models as well as state-of-art schemes.

In Chapter 6, we concentrate our focus on the intrusion detection systems, and we present

an FL-based semi-supervised model, called FLUIDS. This model tries to take advantage of the

unlabeled and labeled data for intrusion detection and attack classification while preserving

privacy.

Finally, a summary of this thesis and some future directions are presented in Conclusion

and Future Work 6.3.

1.5 Publications

The fruit of my Ph.D. and the research collaboration resulted in several international pub-

lications, which are listed below.



General Introduction 23

1.5.1 Journal Papers

1. Ons Aouedi, Kandaraj Piamrat, Benôıt Parrein. ”Ensemble-based Deep Learning

model for network traffic classification”, IEEE Transactions on Network and Service

Management (TNSM), 2022 [10].

2. Ons Aouedi, Kandaraj Piamrat, Guillaume Muller, Kamal Singh. ”Federated Semi-

Supervised Learning for Attack Detection in Industrial Internet of Things”, IEEE

Transactions on Industrial Informatics, 2022 [11].

3. Ons Aouedi, Kandaraj Piamrat, Benôıt Parrein. ”Intelligent Traffic Management in

Next-Generation Networks”, MDPI Future Internet, 2022 [8].

4. Shaashwat Agrawal, Sagnik Sarkar, Ons Aouedi, Gokul Yenduri, Kandaraj Piamrat,

Sweta Bhattacharya, Praveen Kumar Reddy Maddikunta, Thippa Reddy Gadekallu.

”Federated learning for intrusion detection system: Concepts, challenges and future

directions”, Elsevier Computer Communications, 2022 [12].

5. Ons Aouedi, Kandaraj Piamrat, Dhruvjyoti bagadthey. ”Handling partially labeled

network data: a semi-supervised approach using stacked sparse autoencoder”, Elsevier

Computer Networks, 2021 [13].

1.5.2 Conference and Workshop Papers

1. Ons Aouedi, Kandaraj Piamrat, Guillaume Muller, Kamal Singh. ”Intrusion detec-

tion for Softwarized Networks with Semi-supervised Federated Learning”, 2022, IEEE

International Conference on Communications (ICC) May 2022, Seoul, South Korea -

Best Paper Award [14].

2. Ons Aouedi, Kandaraj Piamrat, Benôıt Parrein. ”Decision tree-based blending

method using deep-learning for network management”, 2022, IEEE/IFIP Network Op-

erations and Management Symposium (NOMS) April 2022, Budapest, Hungary [15].

3. Ons Aouedi, Kandaraj Piamrat, Benôıt Parrein. ”Performance evaluation of feature

selection and tree-based algorithms for traffic classification”, 2021 IEEE International

Conference on Communications Workshops (ICC Workshops), - June 2021, Montreal,

Canada [16].

4. Ons Aouedi, Kandaraj Piamrat, Dhruvjyoti Bagadthey. ”A semi-supervised stacked

autoencoder approach for network traffic classification”, 2020 IEEE 28th Interna-

tional Conference on Network Protocols (ICNP Workshops) October 2020, Madrid,

Spain [17].





Part I

Background & State of the Art

25



Part I consists of two main chapters in order to help understand the proposed contribu-

tions. The first Chapter will introduce the background and basic concepts. These concepts

are shallow Machine Learning (ML) models, Deep Learning (DL), Federated Learning (FL),

as well as dimensionality reduction techniques. Besides, a summary of several shallow ML

and DL models’ strengths and weaknesses has been presented. Since research in ML for

network traffic analysis has been extensively studied in recent years and many schemes have

been proposed, a survey of representative approaches will be given in the second Chapter of

Part I. In this Chapter, a literature review on the application of such models for network traf-

fic analysis will be given along with the motivation behind such applications. In particular,

we will study ML/DL-based approaches for traffic classification and intrusion detection sys-

tems. Besides, we will highlight the research gaps encountered in such proposed approaches.

Therefore, the reader will be introduced to the motivation behind our contributions.



Chapter 2

Machine Learning Introduction

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 What Machine learning is? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1.2 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . 30

2.1.1.3 Semi-supervised learning . . . . . . . . . . . . . . . . . . . . 31

2.1.1.4 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . 31

2.1.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.2.2 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.2.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Shallow models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 DT (Decision Tree) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 SVM (Support Vector Machine) . . . . . . . . . . . . . . . . . . . . . 35

2.2.3 KNN (K-Nearest Neighbour) . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.4 K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.5 Ensemble learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.5.1 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.5.2 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.5.3 Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Types of DL-based models . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.1 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

27



2.4.1.1 Wrapper Methods . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.1.2 Filter Methods . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.2.1 PCA (Principal Component Analysis) . . . . . . . . . . . . 51

2.4.2.2 AE (AutoEncoder) . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 ML/DL models limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5.1 Over or underfitting issue . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5.2 Data training collection . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6 Federated Learning (FL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



Machine Learning Introduction 29

Introduction

As discussed in the General Introduction, our objective is to propose a new ML/DL-based

solution for network traffic analysis. Traffic analysis aims to understand the traffic carried

on the Internet. Consequently, it has significance in a variety of network-related activities,

from security monitoring (e.g. detecting malicious traffic) and QoS provisioning. It provides

the operators with useful forecasts for long-term traffic management. Before beginning

with a detailed presentation of our contribution this chapter will introduce the theoretical

background of the basic concepts, which are useful to understand our contributions.

This chapter is divided into five main sections: Section 2.1 treats the concept of ML

including its different types, supervised, unsupervised, semi-supervised, and reinforcement

learning. Section 2.2 presents different shallow ML models. Then, Section 2.3 presents an

overview of DL architecture and algorithms. section 2.4 deals with the motivation behind

dimensionality reduction, and we will present a wide variety of feature selection and feature

extraction methods. Next, section 2.5 presents the drawbacks and vulnerabilities of the

conventional models training followed by a brief presentation of the main concept of FL in

section 2.6.

2.1 What Machine learning is?

ML is a branch of Artificial Intelligence (AI) that attracts the attention of academia and

industry like Google, Apple, Facebook, Netflix, and Amazon [18]. The effectiveness of ML

has been validated in different application scenarios i.e. healthcare, autonomous driving,

recommendation systems, network resources management, and network traffic analysis. The

huge amount of data generated by IoT devices is behind the success of ML. It addresses the

question of how to build a computer system that improves automatically through experience

and data [19]. In particular, ML generally proceeds in two phases: (i) in the training phase,

a collection of data, called training data, is used to build or improve a model by learning from

the inherent structure and relationships within the data and (ii) this model is then applied

to unseen data, called test data, to predict certain properties of these data. Based on these,

ML can be defined as the technique that generalizes beyond the examples in the training

set/environment and can be thought of as “programming by example”. In other words, it is

an intelligent technique used to automatically improve their performance through experience.

Mitchell in [20] defined ML as ”A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its performance of tasks in

T, as measured by P, improves with experience E”. For example, in a learning system for

playing a chess game, we will have: T : play chess, P : percentage of games won/lost, and

E : Playing with itself/others. This learning aspect demonstrates the difference between ML



Machine Learning Introduction 30

and conventional programming (Figure 2.1): ML schemes, find some “rules” from training

data in order to be applied to unseen data and generate the desired output. The important

product of this process is not the output, but the model (rules) that can be used to predict

the output of new data (input). Unlike conventional programming where the programmer

manually writes instructions (the rules) to generate the desired output from a given set of

input variables according to this rules [21].

Figure 2.1: Traditional programming vs Machine Learning, inspired by [21]

ML-based models can be classified into four paradigms: Supervised learning, unsuper-

vised learning, semi-supervised learning, and Reinforcement Learning (RL). These paradigms

differ in the manner the algorithm is being trained.

2.1.1 Paradigms

2.1.1.1 Supervised learning

This type of learning process is the most commonly used. The supervised models operate

when an observation needs to be assigned to a predefined class based on a number of observed

features related to that observation [22]. As shown in Figure 2.2, the supervised learning

models use the observations (x) and their labels (y) during the training process. They try to

find model parameters that best predict the data based on a loss function L(y, ŷ). Here, y

is the output variable, and ŷ represents the output of the model obtained by feeding a data

point x (input data) to the function that represents the model.

2.1.1.2 Unsupervised learning

With the rapid increases in the size and complexity of data, unsupervised learning will be

the trend in the future. It tries to find the relationships between the inputs without having

any prior knowledge of the outputs (Figure 2.3). In other words, the aim of unsupervised

learning is to categorize the input data into distinctive clusters (i.e. groups) by examining

the similarity between them. Each observation within the same cluster is having greater



Machine Learning Introduction 31

Figure 2.2: Training process of supervised learning algorithm

similarity as compared to the observation in other clusters [23]. K-means is one of the most

used unsupervised learning methods.

Figure 2.3: Training process of unsupervised learning algorithm

2.1.1.3 Semi-supervised learning

As the name implies, semi-supervised learning combines both supervised and unsupervised

learning to get benefits from both approaches. It attempts to use unlabeled data as well

as labeled data to train the model (Figure 2.4), contrary to supervised learning (data all

labeled) and unsupervised learning (data all unlabeled). The labeled instances are difficult,

require human effort, and are time-consuming to obtain especially for traffic classification.

Semi-supervised learning tries to minimize these problems as it uses a few labeled examples

with a large collection of unlabeled data [24]. It is an appropriate method when large amounts

of unlabeled data are available as in the network traffic. That is why in the last few years

there has been a growing interest in semi-supervised learning in the scientific community,

especially for traffic classification.

2.1.1.4 Reinforcement learning

The main idea of RL was inspired by biological learning systems. It is different from super-

vised and unsupervised learning where instead of trying to find a pattern or learning from



Machine Learning Introduction 32

Figure 2.4: Training process of semi-supervised learning algorithm

a training set of labeled data, the only source of data for the RL is the feedback of the soft-

ware agent received from its environment [25]. That is why it is considered as a fourth ML

category, alongside supervised, unsupervised, and semi-supervised learning. In addition, the

RL is defined by the provision of the training data by the environment. In other words, it is

a technique that permits an agent to learn its behavior by interacting with its environment

(Figure 2.5). There are three important elements that construct this learning approach,

namely observations, reward, and action. Therefore, the software agent makes observations

and executes actions within an environment, and in return it receives rewards. The agent’s

job is to maximize cumulative reward. The most known RL algorithm is Q-learning [26]

and is widely used for network traffic routing [27]. Moreover, DL has been used to improve

the performance of RL algorithms (i.e. allows the RL to be applied to larger problems).

Therefore, the combination of DL and RL gives the so-called DRL. DRL began in 2013 with

Google Deep Mind [28]. A good survey that presents RL and DRL approaches are available

at [28].

Figure 2.5: Conceptual diagram for RL system

2.1.2 Tasks

ML tasks are being made depending on the use case or the problem. Some of the well-known

tasks, classification, regression, and clustering, are described below.



Machine Learning Introduction 33

Table 2.1: Comparison of ML categories

Method Strengths Weaknesses

Supervised learning Low computational

cost, fast, scalable

Requires data labeling

and data training

Unsupervised learning Requires only the data

samples, can detect

unknown patterns,

generates labeling

data

Cannot give precise

information

Semi-supervised learning Learns from both la-

beled and unlabelled

data

May lead to worse

performance when we

choose the wrong rate

of unlabeled data

Reinforcement learning Can be used to solve

complex problems, ef-

ficient when the only

way to collect infor-

mation about the en-

vironment is to inter-

act with it

Slow in terms of con-

vergence

2.1.2.1 Classification

Classification is one of the most used tasks. It is based on supervised models and is used

when the outputs take discrete values. Binary, multi-class, and multi-labeled are the three

approaches of classification [5]. In binary classification, only two possible classes, for example,

classify the traffic as ”attack” or ”normal”. While multi-class classification implies that the

input can be classified into only one class within a pool of classes such as classifying the traffic

as ”Chat”, ”Streaming”, and ”game”. Multi-labeled classification allows the classification of

an input sample into more than one class in the pool of classes like classifying the traffic as

”Skype” and the traffic type as ”Video”.

2.1.2.2 Regression

Regression is also based on the supervised model that tries to map the data into a real-value

variable (the outputs are continuous values). Regression can be used for example to forecast

future load traffic based on historical data.



Machine Learning Introduction 34

2.1.2.3 Clustering

It is an unsupervised ML task used to categorize the input data into distinctive groups

through observable features. For example, clustering can be used to assign labels for unla-

beled data that has similar behavior [29].

2.1.3 Evaluation metrics

After a model is trained, it must be tested to verify its performance. Therefore, the main

purpose of the evaluation is to quantify the model performance and compare it against others.

Thus, to evaluate the performances of the ML/DL models, various statistical measures are

used. The standard evaluation metric is the accuracy. The accuracy is defined by

Accuracy =
Nc

Nt

. (2.1)

where Nc denotes the amount of test data correctly assigned to the groups to which they

belong, and Nt is the total amount of test data. However, accuracy is not enough metric when

we have imbalanced data [30] as the accuracy is biased to the majority class, regardless of

the minority class (with lower samples), which obtained poor performance [31] [22]. Further,

for extremely skewed class distributions, the recall of the minority class is often 0, which

means that there are no classification rules generated for the minority class [32]. For this

reason, the evaluation of the classifications’ performance must be carried out using specific

metrics to calculate each class separately and yield a deeper understanding of the classifier’s

performance than a simple accuracy metric. The most used metrics are recall, precision,

and F1-score [32]. To calculate these metrics, there are four important terms:

• TP (True Positive): Predicted to be positive and the actual value is positive.

• FP (False Positive): Predicted to be positive, but the actual value is negative.

• TN (True Negative): Predicted to be negative and the actual value is negative.

• FN (False Negative): Predicted to be negative but the actual value is positive.

Details of the metric calculation are given below.

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

F1 − score or F-measure is the harmonic mean of precision and recall which is used to

integrate these two metrics into a single metric. Thus, if its value is high, the performance

of classification is better.



Machine Learning Introduction 35

F1 − score =
2 × Precision×Recall

Precision + Recall
(2.4)

These metrics are widely used for model evaluation whether DL or shallow ML models.

The term shallow model indicates any models different from the DL. The success of the

shallow ML models generally depends on the features to which they are applied.

2.2 Shallow models

Here we present the most used shallow models such as Decision Tree (DT), Support Vector

Machine (SVM), K-means, and ensemble-based models.

2.2.1 DT (Decision Tree)

The decision tree is a tree-like structure, where every leaf (terminal) corresponds to a class

label and each internal node corresponds to an attribute. The node at the top of the tree is

called the root node. Tree splitting uses Gini Index or Information Gain methods [33].

2.2.2 SVM (Support Vector Machine)

SVM is a powerful classification algorithm, which can be used for both regression and classifi-

cation problems. But, it is mostly used as a classification technique, it was initially developed

for binary classification, but it could be extended for multiclass problems. It can be a linear

and non-linear classifier by creating a splitting hyperplane in the original input space to sep-

arate the data points. Kernel functions are used for non-linear mapping of training samples

to high dimensional space such as polynomial, Gaussian, and sigmöıd.

2.2.3 KNN (K-Nearest Neighbour)

KNN is a supervised model reason with the underlying principle ”tell me who are your

friends, I will tell you who are you” [34]. It classifies new instances using the information

provided by the k nearest neighbors so that the assigned class will be the most common

among them (majority vote). It stores the entire training data using distance function [35]

and the most used one is the Euclidean distance. Also, as it does not build a model, thus it

is considered a lazy approach.

2.2.4 K-means

K-means is the oldest and most popular partitioning method. It aims to partition the data

into K clusters based on a similarity measure. In other words, the examples belonging to the



Machine Learning Introduction 36

same cluster have high similarity as compared to those of other clusters [36]. Each cluster

has a category center µk and the Euclidean metric is selected as the criterion of similarity.

The sum of squares of the distance between the points in each cluster to the center of the

cluster µk is calculated to minimize the sum of squares within each cluster. The objective

function is written as:

V =
K∑
i=1

N∑
n=1

||xi − µk||2

where x is the sample to be clustered, N is the number of samples and K is the number

of clusters. K points are randomly selected from the datasets as the initial clustering center.

The Euclidean distance from each sample to the cluster center is calculated. The sample is

returned to the nearest cluster center. The new clustering center is obtained by calculating

the average value of the newly formed data objects of each cluster. If there is no change

in two successive iterations, it shows that the sample adjustment is over and the clustering

criterion function has been converged.

2.2.5 Ensemble learning

Recently, ensemble learning considered one of the promising directions due to its superiority

in ML. It combines the output of several models (by weighted or unweighted voting). En-

semble methodology imitates our nature to seek several opinions before making any decision

where we combine a weighed various individual opinions to find a final decision [37]. The

main objective of ensemble learning is to combine heterogeneous or homogeneous models

(commonly classifiers) in order to obtain a model that overcomes the single/simple model

limitations (e.g. over/underfitting) [38]. Independently of the ensemble learning training

process, a recent analysis demonstrates that the ensemble models can outperform the sim-

ple model and reliable decisions. The performance of the ensemble models comes from the

diversity of the classifiers’ strengths [39]. Consequently, there exist several techniques for

ensemble model construction where bagging, boosting, and blending are the most popular

ones. Similar to single models, there are no best ensemble methods. However, some methods

work better than others in certain conditions (e.g. data, features).

2.2.5.1 Bagging

Bagging called bootstrap aggregating is one of the earliest ensemble techniques [40]. It is a

parallel ensemble that tries to decrease the variance (i.e. overfitting). The Bagging process

consists of three steps (i) sub-sampling the training set in a random way to obtain the sub-

training sets, (ii) using these sub-training sets, it trains several weak models independently,

and (iii) combining the outcome of these models by voting technique. Voting is generally

used for classification problems. It can be weighted or not. In non-weighted voting, all the

classifiers have equal weight and the predicted class is the one that has the majority vote. In



Machine Learning Introduction 37

the weighted cases, different weights can be assigned to the used classifiers. Random Forest

(RF) is one of the most popular bagging-based models developed by Breiman nearly 20 years

ago [41]. It is an ensemble of independent decision trees in which the base trees train not just

on a randomly chosen subset of the data, but also on a randomly chosen subset of the input

features. Then, the outputs of the base classifiers are combined with the majority voting

technique. The main advantage of the RF algorithm, compared to the gradient boosting

algorithms, is that it requires fewer hyper-parameter tuning [42].

2.2.5.2 Boosting

Boosting is a sequential ensemble used to improve the performance of the decision tree [43]. It

combines the models in a sequential manner and each model reduces the error of the previous

ones. AdaBoost is the first boosting algorithm developed by Freund and Schapire [43]. It

does not randomly select training samples like RF but focuses on the samples that do not

have accurate predictions (misclassified samples). In other words, after training the model,

AdaBoost increases the weight of the misclassified samples. Therefore, AdaBoost obtains

different training sets by focusing on the instances that are misclassified by the previously

trained classifiers.

XGBoost is one of the most efficient implementations of gradient-boosted decision trees

and it is developed by Chen and Guestrin in 2014 [20]. It has been selected as one of the best

ML algorithms used in Kaggle competitions due to its advantages such as easy parallelism

and use as well as its high prediction accuracy. This algorithm learns from the error of prior

trees to improve the accuracy in subsequent iterations. Instead of increasing the instance

weights at every iteration as AdaBoost does, XGBoost tries to fit the new model according

to residual errors made by the previous model.

Due to the success of the boosting-based models, other models have been proposed like

CatBoost and LightGBM. CatBoost is a gradient-boosting algorithm that was developed by

the Russian tech company Yandex in mid-2017 [44]. It is the best solution for heterogeneous

data (i.e. categorical and numerical data). Other ML models require pre-processing steps to

convert categorical data into numerical data, whereas CatBoost requires only the indices of

categorical features. Thus, it performs one-hot encoding to transform the categorical data

into numerical data. On the other hand, LightGBM is one of the most recent boosting

models. Since conventional implementations of Gradient-Boosting Decision Tree (GBDT)

may be inefficient when the number of instances is large or the dimension of the feature

is high. For this reason, it is a highly efficient gradient-boosting decision tree proposed

by Microsoft in 2017 [45]. It uses gradient-based one-side sampling (GOSS) and exclusive

feature bundling (EFB) algorithms in order to reduce the number of examples and the

number of features. In fact, EFB uses a histogram algorithm to bucket continuous feature

values into discrete bins, which fastens the training procedure and results in lower memory



Machine Learning Introduction 38

usage. On the other hand, GOSS helps the model to retain instances (i.e. examples) with

large gradients (i.e. under-training) while performing random sampling on instances with

small gradients (i.e. small training errors).

2.2.5.3 Blending

Blending ensemble is very close to stacking, which is originally introduced in the Netflix

competition [46]. But, unlike stacking, blending uses only a holdout (validation set) set from

the train set to make predictions. It is simpler and works better than stacking ensemble [47].

It consists of two levels, which are base-classifiers used in level-1 and meta-classifier used in

level-2. The base classifiers are used to provide base predictions as new features. Then the

meta-classifier is trained on these new features to give the final decision. Thus, the blending

can collectively estimate the errors of all base classifiers through basic learning steps and

use a meta-classifier to reduce the prediction residuals. All of this made the blending leads

to greater awareness and familiarity with a dataset [48]. A general overview of the training

and testing process is shown in Figure 2.6. For more details, the blending ensemble is based

on several steps as follows:

1. uses a hold-out method to divide the training set into a new training set and validation

set;

2. trains the base classifiers through the new training dataset, and the prediction of the

base classifiers on the validation set forms the meta-training dataset (level-1);

3. joins the prediction on the validation set of the base classifiers to form the meta-training

dataset (Figure 2.6a);

4. trains the meta-classifier using the meta-training dataset (level-2);

5. uses the meta-classifier to make the final prediction through the test set (Figure 2.6b).

2.2.6 Summary

In summary, as shown in Table 2.1 the use of learning categories, i.e. supervised semi-

supervised, unsupervised, and reinforcement learning is depending on the context and the

available data. Also, based on those categories several shallow models have been proposed

and most of the well-known shallow ML models are DT, RF, SVM, KNN, Boosting-based

models, and K-means. It can be seen from Table 2.2, that each model has its weakness

and strengths, as well as the majority of the model, yielded performances that are quite

competitive with each other. It is hence left to the user to adopt an appropriate algorithm

to their requirement and environment.



Machine Learning Introduction 39

P
re

d
ic

ti
o

n
 b

y 
M

_2

Training set

Validation set 
(T_val)

Train the 
base_classifier 

  (M_1) 

Train the 
base_classifier 

  (M_2)

Train the 

base_classifie

r  (M_3)

Prediction Prediction Prediction

L
ab

el
 o

f 
th

e 
(T

_v
al

)

Training data for the meta-classifier

Training
Meta-classifier

P
re

d
ic

ti
o

n
 b

y 
M

_1

P
re

d
ic

ti
o

n
 b

y 
M

_3

Level 1

Level 2

1

1

2

3

4

(a) Training process

Testing 
data

Prediction

Prediction

Prediction

Base_classifier (M_1) 

Base_classifier (M_2) 

Base_classifier (M_3) 

P
re

d
ic

ti
o

n
 b

y 
M

_2

P
re

d
ic

ti
o

n
 b

y 
M

_1

P
re

d
ic

ti
o

n
 b

y 
M

_3

Testing data for the meta-classifier

Meta-classifier
Prediction 
for testing 

data

5

(b) Test process

Figure 2.6: Blending ensemble process

Although the performance of the shallow ML models, they are highly dependent on the

amount and the quality of features. Furthermore, extracting a large number of features from

the coming flow can be time-consuming and in turn, decrease the QoS of the system [49].

To tackle these issues, dimensionality reduction, including feature selection and feature ex-

traction has been used as a pre-processing task for the shallow ML models.

2.3 Deep Learning

DL is a branch of ML that evolved from Neural Networks (NNs), which benefits from training

data augmentation. It has achieved great success in many applications in comparison to

shallow ML models, simply because computers acquire the computational power to build

complex models that can actually process and learn from big data. The major benefits of DL

over shallow ML models are its superior performance for large datasets and the integration of

feature learning and model training in one architecture [50]. In particular, building models

using traditional ML is bottlenecked by the amount of features engineering required since

there are limits to how much human effort can be thrown at the problem. In contrast, DL

algorithms hierarchically extract knowledge from the training data through multiple layers of

nonlinear processing, in order to make them flexible in modeling complex relationships [22].

On the other hand, it helps to avoid human intervention and time-wasting as maximum as

possible as illustrated in Figure 2.7.

DL has revolutionized various domains, such as IoT, transportation systems, and health-

care due to its ability to exceed human accuracy as well as shallow ML models. Figure 2.8

presents the search trend of four popular shallow ML models and DL from all the countries



Machine Learning Introduction 40

Table 2.2: Comparison of Shallow ML models

Method Strengths Weaknesses

Decision

Tree (DT)

Simple to understand and inter-

pret, requires little data prepara-

tion, handles many types of data

(numeric, categorical), processes

easily data with high dimension

Generates complex trees with nu-

meric data, requires large storage

Random

Forest

(RF)

Efficient against under-fitting Requires large training dataset, im-

practical for real-time application

Support

Vector

Machine

(SVM)

Scalable, handles complex data Computationally expensive, there is

no theorem to select the right kernel

function

K-Nearest

Neighbour

(KNN)

Easy to implement, has good per-

formance with a simple problem,

non-expert users can use it effi-

ciently

Requires large storage space, Deter-

mining the optimal value of K is

time-consuming, K values vary de-

pending on the dataset, testing is

slow, When the training dataset is

large, the computation is very time-

consuming, it is not suitable for real-

time classification

Boosting

algorithms

High accuracy, efficient against

under-fitting

Computationally expensive, hard to

find the optimal hyper-parameters

K-Means Fast, simple and less complex Requires the number of clusters in

advance, can not handle the outliers

between 01/01/2008 and 16/04/2021. It represents Google search statistics based on queries

that people entered into the Google search engine. We can observe a drastic increase in

interest in DL.

As DL is based on artificial neural networks (ANNs), we will start by looking at the

structure of a neural network. ANNs are a computing system, inspired by the structure

of the brain, which is based on a set of interconnected neurons as shown in Figure 2.9.

ANNs contain very few hidden layers (i.e. with one hidden layer) while DL contains many

more layers (deep). Each hidden layer comprises a set of learning units called neurons.

These neurons are organized in successive layers and every layer takes as input the output

produced by the previous layer, except for the first layer, which consumes the input. Besides,



Machine Learning Introduction 41

Figure 2.7: Difference between traditional Machine Learning and Deep Learning

Figure 2.8: Google Trend showing more attention toward DL in recent years

the neurons of a hidden layer fully connect with those of the previous layer. There are three

kinds of layers in all ANNs:

• Input layer stores the input data, each neuron stores a xi component of the observing

x.

• Hidden layers are placed between input and output layers. It has the ability to process

the data obtained by the input layer and transfer it to the output layer. The hidden

layer can be more than one layer.

• Output layer is the last layer in the network. The output of this layer is the output of

the model and the prediction is generated based on the input.



Machine Learning Introduction 42

In addition, the neuron receives a vector x as input and uses it to compute an output

signal, which is transferred to other neurons. It is parameterized through {W , b} where W

is a weight vector, b is the bias, and f is referred to as an activation function as shown in

Figure 2.9. The output of each neuron can be described as

f

 n∑
i=0

xi · wi + b



Figure 2.9: Structure of shallow Neural Network and its neuron

In other words, it aims to add the non-linearity into the model as well as keep the

output of the neuron restricted to a certain limit and hence normalize the output. The

non-linearity enables them to learn complex patterns and avoid the constraints associated

with linear functions. Moreover, the choice of activation function can affect network training

time [51]. The most frequently used activation functions are the ReLU (Rectified Linear

Unit), sigmöıd, and hyperbolic tangent functions (TanH). The functional graph of the three

non-linear activation functions is presented in Table 2.3. In fact, networks with ReLU show

better convergence performance than sigmöıd and TanH [51].

The growing popularity of DL inspired several companies and open-source initiatives

to develop powerful DL open-source libraries and frameworks that can be used to avoid

building models from scratch [52]. The availability of such libraries and frameworks causes

rapid diffusion within the research community and in our daily life.

2.3.1 Types of DL-based models

Due to the success of DL, several models have been proposed. In this subsection, we introduce

the key principles underpinning these models and discuss their strengths and weaknesses.



Machine Learning Introduction 43

Table 2.3: The different commonly used activation functions

Activation

func-

tion

Functional

Graph

Values in

the range

Mathematical

Background

ReLU 0 5
0
2
4

(0,∞)

f(x) = max(0, x)

Tanh −5 0 5

0

1

(-1,1)

f(x) =
ex − e−x

ex + e−x

Sigmöıd −5 0 5

0.5

1

(0,1)

f(x) =
1

1 + e−x

• MLP (Multilayer perceptron)

MLP is a class of feedforward ANN, which consists of three or more layers [53]. The first

layer is for input data. One or more hidden layers extract features from the input. The last

layer outputs the classification result. Each hidden layer is composed of multiple neurons

that use a nonlinear activation function. MLP is mostly used as a baseline.

• AE (AutoEncoder)

AE is one of the several ANNs-based architectures with a symmetrical structure. It

is an unsupervised feature learning neural network that can extract features from

unlabeled data automatically [54]. During the process, the AE tries to minimize the



Machine Learning Introduction 44

Figure 2.10: MLP (MultiLayer Perceptron)

reconstruction error, and the corresponding code is the learned feature. AE consists of

two core segments placed back-to-back that have the same number of layers as shown

in Figure 2.11.

1. Encoder: takes input data and maps it to hidden representation (code), this

hidden layer has less dimension than the input data, and the encoder reduces

initial data;

2. Decoder: uses the hidden representation (code) to reconstruct the input.

Figure 2.11: General AutoEncoder (AE) process

• CNN (Convolution Neural Networks)

As shown in Figure 2.12, CNN is one of the Neural Networks types, which consists

of a number of convolution and pooling (subsampling) layers followed by fully connected

layers [55]. Pooling and convolution layers are used to reduce the dimensions of features

and find useful patterns. Next, fully connected layers are used for classification. CNN-based

models achieve remarkable performance in Computer Vision and Image Processing related

fields.



Machine Learning Introduction 45

Figure 2.12: CNN (Convolution Neural Networks)

• RNN (Recurrent Neural Network)

RNN is a neural network that has one or more connections between neurons that form

cycles (Figure 2.13). These cycles are responsible for storing and passing the feedback of one

neuron to another, creating an internal memory that facilitates the learning of sequential

data (X0, X1, ..., Xt) and their hidden state (h0, h1, ..., ht). In other words, in RNN the

decision made at time t− 1 affects the decision at time t.

Figure 2.13: RNN (Recurrent Neural Networks)

• LSTM (Long Short-Term Memory)

LSTM model is an extension of RNNs, it was created as the solution to short-term

memory [56]. As shown in Figure 2.14, the model has internal mechanisms called gates (forget

gate, input gate, and output gate) that can learn which data in a sequence is important to

keep or to throw away. The purpose of the gates is as follows:

• input gate: controls whether the input is passed on to the memory cell or ignored;

• output gate: controls whether the current activation vector of the memory cell is passed

on to the output layer or not;



Machine Learning Introduction 46

• forgets gate: controls whether the activation vector of the memory cell is reset to zero

or maintained.

Consequently, the LSTM helps to choose which information is relevant to remember or

forget during sequence processing.

Figure 2.14: LSTM (Long Short-Term Memory)

• GRU (Gated Recurrent Unit)

The GRU was proposed in 2014 and is similar to LSTM but has fewer parameters. It

works well with sequential data as does LSTM. But, unlike LSTM, GRU has two gates

(Figure 2.15), which are the update gate and reset gate, and hence it is less complex [57].

The reset gate is similar to forget gates of LSTM, whereas the update gate is similar to the

combination of an input gate and an output gate of the LSTM model.

Figure 2.15: GRU (Gated Recurrent Unit)



Machine Learning Introduction 47

2.3.2 Summary

DL refers to the idea of deep structured learning, hierarchical learning, and successive layers

of representation. It has shown exemplary performance in several academic and industry

domains, due to its unique nature for solving complex problems. Thus, different archi-

tectures have been proposed and used over the past few years. Table 2.4 summarizes the

strengths/weaknesses of the well-known DL-based architectures.

Table 2.4: Summary of different deep-learning models [58] [59]

.
Models Strengths Weaknesses

MLP Easy to implement. Modest performance, slow con-

vergence, occupies a large amount

of memory.

AutoEncoder Works with big and unlabeled

datasets, suitable for feature ex-

traction and used instead of man-

ually engineered extraction.

The quality of features depends

on the model architecture and its

hyper-parameters, it is hard to

find the code layer size.

CNN Weights sharing, extracts rele-

vant features and provides highly

competitive performance.

High computational cost, requires

a large training dataset and a

high number of hyper-parameters

tuning to achieve optimal fea-

tures.

RNN Simple to implement, faster than

LSTM and GRU, ability to cap-

ture temporal behaviors.

When modeling long sequences,

its ability to remember what was

learned before many time steps

may decline.

LSTM Good for sequential information

and works well with long se-

quences.

High model complexity, high

computational cost.

GRU Computationally more efficient

than LSTM.

Less efficient in accuracy than

LSTM.

2.4 Dimensionality reduction

As the amount of high-dimensional data has increased in recent years, data-driven methods

become significantly harder. The network dataset may contain irrelevant (a feature that

provides no useful information) or redundant (a feature whose predictive ability is covered



Machine Learning Introduction 48

by another) features, which increase search space and decrease the model performance [24].

With the increase in the dimensionality (i.e. features) of data, the predictive ability of a

model decreases as well as causes an extra computational cost for both storage and process-

ing [60]. These challenges are referred to as curse of dimensionality, which is one of the

most challenging in shallow ML models, first introduced by Bellman in 1961 to indicate that

such models can work fine in low dimensions and become intractable with high-dimensional

data [18].

Shallow ML-based models are only as good as the given features. Also, the learning

ability of the model depends not only on the quality of collected features but also on the

number of features considered. The model will perform poorly if the amount of the features

is larger than the number of observations (over-fitting) [61]. In this situation, the model can

easily separate the training data, but it fails on the unseen data (test data). All these made

dimensionality reductions a critical task not only because of the higher size of the input

dataset but because it needs to meet two challenges, which are: (i) the maximization of the

learning capacity and (ii) the reduction of the number of features. Therefore, in a dataset

with a high number of features, the data reduction process is a must in order to produce

accurate models at a reasonable time [16].

Dimensionality reduction can be divided into feature selection (i.e. feature elimination)

and feature extraction. The main difference is that feature selection methods select a subset

from the original features while feature extraction methods create new features set from the

original features. Table 4.5 presents the advantages and disadvantages of each approach.

Table 2.5: Comparison of dimensionality reduction techniques [62] [63].

Method Advantages Disadvantages

Filter Low computational

cost, fast, scalable

Ignores the interaction

with the classifier

Wrapper Competitive clas-

sification accuracy,

interaction with the

classifier

Slow, expensive for

large feature space

Feature

Extraction

Reduces dimension

without loss of infor-

mation

No information about

the original features

2.4.1 Feature selection

Feature selection methods have become an indispensable component of the shallow ML

models (e.g. SVM, RF, etc) [64] and one of the simplest ways to reduce data size. They



Machine Learning Introduction 49

try to pick a subset of features that “optimally” characterize the target variable. Feature

selection is the process of selecting the best features in a given initial set of features that

yield a better classification performance [65], regression as well as finding clusters efficiencies.

It helps to identify the relevant features (contribute to the identification of the output) and

discard the irrelevant ones from the dataset, for the purpose of performing a more focused

and faster analysis. The feature selection process consists of four basic steps as follows:

1. subset generation: is a search procedure that generates candidate feature subsets for

evaluation based on a search strategy (i.e. start with no feature or with all features).

2. evaluation of subset: tries to measure the discriminating ability of a feature or a subset

to distinguish the target variables.

3. stopping criteria: determines when the feature selection process should stop (i.e. ad-

dition or deletion of any feature does not produce a better subset).

4. result validation: tries to test the validity of the selected features.

Feature selection methods can be distinguished into two broad categories, which are filters

and wrappers.

2.4.1.1 Wrapper Methods

Wrapper Methods require a learning algorithm to use its performance as the evaluation

criterion (i.g. classifier accuracy). It calculates the estimated accuracy of a single learning

algorithm through a search procedure in the space of possible features, in order to find

the best ones. The search can be done with various strategies like forwarding direction

(the search begins with an empty set and successively add the most relevant features) and

backward direction (starting with the full set and successively deleting less relevant features)

also known as Recursive Feature Elimination (RFE). Starting from all the feature sets, RFE

recursively removes features in order to maximize accuracy. Then it ranks the features based

on the order of their elimination. Wrapper methods are also more computationally expensive

than filter methods and feature extraction methods, but they produce feature subsets with

very competitive classification accuracy [35].

2.4.1.2 Filter Methods

Filter Methods find the best features set by using some independent criteria (i.e. Information

measures) before applying any classification algorithm. Due to the computational efficiency,

the filter methods are used to select features from high-dimensional data sets. Also, it is

categorized as a binary or continuous feature selection method depending on the data type.

For example, Information Gain (IG) [66] can handle both binary and nominal data, but the

Pearson correlation coefficient can handle only continuous data.



Machine Learning Introduction 50

• IG (Information Gain)

IG [66] is one of the most used univariate feature selection methods [67]. The main

concept of this approach is to rank subsets of attributes by calculating the IG entropy for

each attribute in decreasing order. Each attribute gains a score from 1 (most relevant) to 0

(least relevant). The entropy of Y (target variable) is:

H(Y ) = −
∑
y∈Y

p(y) log2(p(y)) (2.5)

Then, IG measures the mutual information provided by X on Y.

IG = H(Y ) −H(Y/X) = H(X) −H(X/Y ) (2.6)

• CFS (Correlation-based Feature Selection)

CFS is a multivariate filter algorithm. A correlation measure is applied to evaluate

the goodness of feature subsets based on the hypothesis that ”Good feature subset contains

feature highly correlated with the class, yet uncorrelated with each other” [68]. Therefore, the

correlation coefficients are used to estimate the correlation between different features and

the output variables and the inter-correlations between the features. In fact, CFS is usually

used to remove the redundant features and hence reduce the over-fitting of the classifiers and

decrease the complexity of computation. It uses the correlation coefficient that indicates the

linear correlation between two random features (i.e. variables) f and t. The correlation

coefficient can be summarized as:

cor =

∑N
i=1(fi − µf )(ti − µt)√∑N

i=1(fi − µf )2
∑N

i=1(ti − µt)2
(2.7)

Where N is the total values of each feature, and µf , µt is the mean for features f and t,

respectively. The values of correlation cor obtained according to formula (2.7); range from

−1 to 1. Usually, if |cor| > 0.5, this means that the two features have a strong correlation;

if |cor| is close to 0, means that there is no linear correlation between the features.

2.4.2 Feature extraction

Feature extraction performs a transformation of the original variables to generate other

features using the mapping function F that preserves most of the relevant information. This

transformation can be achieved by a linear or non-linear combination of original features.

For example, for n features f1, f2, f3, ..., fn we extract new features set f ′
1, f

′
2, f

′
3, ..., f

′
m where

m < n and f ′
i = F (f1, f2, f3, ..., fn). With the features extraction technique, the feature space

can often be decreased without losing a lot of information on the original attribute space.



Machine Learning Introduction 51

However, one of its limits is that the information about how the initial features contribute

is often lost [69]. Moreover, it is difficult to find a relation between the original features and

the new features. Therefore, the analysis of the new features is almost impossible since no

physical meaning of the transformed features is obtained from feature extraction techniques.

We discuss some of the most frequently used feature extraction methods such as Principal

Component Analysis (PCA) and AutoEncoder (AE).

2.4.2.1 PCA (Principal Component Analysis)

PCA is the oldest technique of multivariate analysis and was introduced by Karl Pearson in

1901. It is an unsupervised (it does not take into account the target variable) that reduces

the dimensionality of data from f to p < f , by transforming the initial features space into a

smaller space. The purpose of PCA is to extract new features called principal components

(PCs) (less or equal to the initial features,) which are the linear combinations of the original

attributes, orthogonal to each other, and capture the maximum amount of variation in the

data. In other words, it tries to compress the initial features by identifying the strongest

patterns in the data. Therefore, PCA can achieve dimensionality reduction with minimum

noise than the original features. According to [70], the main idea of PCA is each pair of PCs

has co-variance 0 (which means no redundant features), the PCs are ordered descendingly

according to their variance, the first PCs capture as much of the variance of the data as

possible (PC1 has the highest variance, and PCp has the lowest variance). However, PCA

has some limitations below:

• We do not know how many PCs should be retained (the optimal number of PCs).

• It does not consider the correlation between target outputs and input features [71].

2.4.2.2 AE (AutoEncoder)

It is frequently used for the purpose of learning discriminative features of original data.

Hence, AE is potentially important for feature extraction and many researchers use it to

generate reduced feature sets (code). AE consists of two core segments placed back to back

that have the same number of layers as shown in Figure 2.11.

This structure is formulated as below where equation 2.8 presents the encoder and 2.9

the decoder respectively:

Z = f(W1X + b1) (2.8)

X ′ = f(W2Z + b2) (2.9)



Machine Learning Introduction 52

where X = (x1, x2, ..., xn) is the input vector, and Z = (z1, z2, ..., zm) is the vector

extracted from the input X, known as code, X ′ = (x′
1, x

′
2, ..., x

′
n) is the output reconstruction

of the input X, where n is the dimension of the input vector and m is the number of code

units. W1 and b1 are the weight matrix and bias between the input layer and the second

layer (i.e. code). W2 and b2 are the weight matrix and bias between the second and the

output layer; the function f(.) is the activation function.

The difference between X and X ′ is usually called the reconstruction error (RE), which is

represented in the form of a cost function that the model tries to reduce during the training

process. The cost function of the AE is computed using Equation 2.10, where the parameter

set is denoted by θ = {W1, b1,W2, b2}.

J(θ) =
n∑

i=1

RE(xi, x
′
i) (2.10)

In many cases, Deep AE outperforms conventional feature extraction methods like PCA [72,

73] since it consists of several layers with nonlinear activation functions to extract features

intelligently. On the other hand, AE has different variants and its structures are depen-

dent on the number of layers [74]. The simple AE model has just one hidden layer, which

is not able to get the discriminative features. Thus, to obtain a better performance and

learn more complex and abstract features than classical AE, a more complex architecture

and training procedure, known as Stacked AE (SAE) [75], has been proposed. With SAE,

several AE layers are stacked together and form an unsupervised pre-training stage where

the encoder layer computed by an AE will be used as the input to its next AE layer. Each

layer in this stage is trained like an AE by minimizing its reconstructing error. When all

the layers are pre-trained, the network goes into the supervised fine-tuning stage. At the

supervised fine-tuning stage, a Softmax layer can be added to the encoding layer of the un-

supervised pre-training stage for the classification task and discarding the decoding layers of

SAE (Figure 5.2).

• Denoising AE

To further improve the robustness of feature representation extracted by the SAE, de-

noising hyper-parameters have been used [76]. Denoising AE is trained to reconstruct a

clean input from a corrupted version of it (Figure 2.17). Therefore, similar to the conven-

tional AE network, Denoising AE is trained in order to learn a hidden representation and

to reconstruct its input. However, the main difference with denoising AE is that the model

should reconstruct the original input from a corrupted version in order to force even very

large hidden layers to extract more relevant features. This corruption of the data is done by

first corrupting the initial input X to get a partially destroyed version X ′. The input can be

corrupted in many ways. In our contribution, we set a certain percentage of random units of

each sparse AE (neurons) to zero (i.e. a fraction of the input is deleted randomly). To train



Machine Learning Introduction 53

Figure 2.16: General Stacked AE process

a stacked denoising AE, each denoising AE is pre-trained independently. By doing so, the

definition of good representation is changed into the following: ”a good representation is one

that can be obtained robustly from a corrupted input and that will be useful for recovering the

corresponding clean input” [76].

Figure 2.17: Training process of individual denoising autoencoders

2.5 ML/DL models limitations

Although DL/ML models have shown remarkable performance, they are associated with

drawbacks and vulnerabilities such as over-fitting, privacy, and lack of training data.



Machine Learning Introduction 54

2.5.1 Over or underfitting issue

To judge the performance of the models, the generalization capability is one of the most used

evaluation metrics. To generalize well the model needs to prevent the problem of variance

and bias. Variance defines the consistency of a learner’s ability to predict random things

(over-fitting), and bias describes the ability of a learner to learn the wrong thing (under-

fitting) [18].

A model with the lowest bias, however, is not necessarily the optimal solution, because

the ability to generalize from training data is also assessed by a second parameter termed

variance. A major challenge for ML/DL models is to optimize the trade-off between bias

and variance. To tackle this issue, ensemble learning might be used as well as adding or fine-

tuning some hyper-parameters [13, 15]. For example, to improve the robustness of extracted

features and prevent the over-fitting problem during the training process of DL models,

dropout and/or denoising and/or sparse hyper-parameter can be introduced into the model.

• Dropout

Dropout is a technique applied in the training phase to reduce over-fitting effects and

hence help the neural network model to learn more robust features and reduces the interde-

pendent learning among the neurons [77]. The term ”dropout” refers to dropping out units

in a neural network (as shown in Figure 2.18). Technically, the ”dropout” can be realized by

setting the output a = f(WX + b) of some hidden neurons to zero so that these neurons will

not be involved in the forward propagation training process. By dropping a unit (i.e. neu-

ron) out, we mean temporarily removing it from the network, along with all its incoming and

outgoing connections, and the choice of which units to drop is random. Consequently, ran-

dom dropout makes it possible to train a huge number of different networks in a reasonable

time [78].

Figure 2.18: Dropout technique



Machine Learning Introduction 55

• Sparse hyper-paramters

Imposing a sparse constraint on the hidden layers can capture high-level representations

of the data. The sparsity penalty term is included in the loss function to prevent identity

mapping by keeping only a selected set of neurons ”active” at any instance. In practice, if

the output of a neuron is close to 1, the neuron is considered to be ”active”, otherwise, it is

”inactive”. To achieve this, the sparse term is added to the objective function that penalizes

ρ̂j (the average activation of the hidden unit j) if it deviates significantly from ρ (the sparsity

parameter). These terms are expressed as:

ρ̂j =
1

n

n∑
i=1

[fj(x(i)] (2.11)

ρpenalty =
S∑

j=1

KL(ρ||ρ̂j) (2.12)

Where S is the number of neurons in the hidden layer. KL(.) is the Kullback–Leibler

divergence (KL divergence), which is defined as:

KL(ρ||ρ̂j) = ρ log
ρ

ρ̂j
+ (1 − ρ) log

1 − ρ

1 − ρ̂j
(2.13)

Here the goal is that ρ̂j approaches a constant ρ, which is close to zero. Adding the

sparse penalty term to the cost function, it can be modified as:

Jsparse(θ) = J(θ) + β
S∑

j=1

KL(ρ||ρ̂j) (2.14)

2.5.2 Data training collection

In particular, with the classical DL/ML training process, the users need to upload their own

private data to a central entity (e.g. cloud) for training. Collecting the data to a central

entity could lead to significant storage requirements and communication overhead as well as

raise privacy concerns [79]. The strengths and weaknesses of the centralized model learning

(CML) process are summarized in Table 2.6. These weaknesses are serious obstacles to using

CML for traffic analysis as well as catering to the high scalability of 5G and beyond networks.

2.6 Federated Learning (FL)

Recently, strict laws such as the General Data Protection Regulation (GDPR) in European

Union 1 completely redefined the data management policy. As a result, FL has been used as

1https://gdpr-info.eu/issues/data-protection-officer/



Machine Learning Introduction 56

Table 2.6: Summary of the advantages and drawbacks of Centralized ML (CML).

Strengths Weaknesses

• Ability to find a globally optimal ML model

• Easy implementation

• Can be used by non-expert

• Design simplicity

• Requires large storage and computation resources

• Requires huge quantities of data training to learn

• Has the main server to handle collecting data and

training models

• Impractical for ultra-low latency environment

• Lack of scalability and flexibility

• Important overhead and overload for data collection

• Private data must be collected in a central entity

an alternative solution to CML. The recent developments in technologies like the exponential

increase in data generated by different IoT devices, end devices, computing power, and the

particular cloud and edge computing enable the emergence of FL. Edge computing is one of

the promising solutions to reduce network congestion and latency that occurs with the cloud.

Furthermore, cloud computing offers significant computing and storage resources. With FL,

the users do not need to upload their own private data to the cloud for training the central

model. It allows many devices to collaboratively train a model while keeping the training

data, decentralized in order to preserve data privacy.

In other words, FL is a specific category of distributed ML, where the model is trained on

the data located at the decentralized devices [80]. It was first proposed by Google in 2016 [81]

in order to preserve data privacy, alleviate the computational burden on the central entity

(e.g. cloud), and reduce the latency as well as the communication cost. It attempts to

answer the main question: ”Can we train the model without needing to transfer data over

to a central location?” [82]. As shown in Figure 2.19, the main idea of FL is to build a

model based on data sets that are distributed across several devices without exchanging the

end-user data with the central entity and in turn prevent data leakage. It is an iterative

process, wherein each communication round the model can be improved.

In particular, the training process of FL can occur in two different ways: centralized and

decentralized. The centralized FL process is characterized by the presence of the aggregation

server (Figure 2.19a). In this scenario, the aggregation server or FL server sends the global

model to the selected clients/devices and sends them the initialized model. Then, each client

trains this model locally using its own data. Once all the updates are received, the FL server

aggregates the model’s parameters. This process is repeated in various rounds until the

desired performance is achieved. Conversely, the decentralized scenario known as serverless



Machine Learning Introduction 57

 Training Node

Central Server

Local Training Model Aggregation

a) FL with Aggregation Server

1. Train with
Local Data

2. Send Local
Models to Server

3. Aggregate
Local Models

4. Distribute
Global Model

b) Peer to Peer FL 

1. Train with
Local Data

2. Exchange
Local Models

3. Aggregate
Local Models

1. Synchronize
Initial Models

Repeat Until Convergence Repeat Until Convergence

c) Traditional Centralized Training

1. Data Pooling
2.

Central Model 
Training

Model
Exchange  Data Exchange

Time Evolution

Legend

Central training

Figure 2.19: Typical FL workflows in comparison to traditional learning based on a central-

ized data manager. (a) Centralized FL and (b) Peer to Peer FL formulations allow private

data to remain local to clients. (c) A general non-FL training workflow where the clients

send their data to a central entity for model training.

or peer-to-peer FL does not require an FL server, where each client communicates its trained

model with some or all the clients for self-aggregation (Figure 2.19b). As can be seen, the

FL process consists of two main phases: local training and model aggregation. The local

training is dependent on the designed model while the aggregation mechanism is the heart of

FL and aims to share knowledge and hence improve the generalization of the model. Several

aggregation mechanisms have been proposed for FL, and Federated-Averaging (FedAvg)

is the most widely used algorithm, given its simplicity, efficacy, and robustness [81]. The

FedAvg is calculated as follows:

• Definition: Global Model Aggregation

θt+1 =
K∑
k=1

Dk

D
θkt+1 (2.15)

Given a client’s model update, the equation 2.15 performs the global aggregation at each

communication round. θt+1 corresponds to the model parameters at iteration t+ 1, D is the

amount of data from all the K clients, Dk is the amount of the data of the client k.

Moreover, there exist three types of FL due to the diversity within the data, namely

horizontal federated learning, vertical federated learning, and federated transfer learning [80].

Horizontal FL is applicable to cases where two datasets share the same feature space, but

are different in sampling space. On the other hand, vertical FL is introduced when the two

datasets share the same sampling space but differ in feature space. Transfer FL applies when

the two datasets differ in sampling and feature space.



Machine Learning Introduction 58

Conclusion

In this chapter, the main concept of ML was discussed. In this way, the different categories

of ML including supervised, unsupervised, semi-supervised, and reinforcement learning as

well as several shallow ML models were presented. Then, the basic concept of DL and how

it can outperform shallow ML models for learning features are also discussed. Next, this

chapter sheds light on the motivation behind federated learning to protect privacy-sensitive

data. This chapter proves that ML can be a promising candidate to solve network complex

problems in order to achieve fully automated and intelligent traffic analysis, which is our

objective in this thesis.

In the next chapter, we will provide a review of some related works. Specifically, we will

focus on the literature proposals dealing with the application of ML/DL/FL for intelligent

traffic classification, and intrusion detection systems. Besides, the aim of the next chapter is

to highlight the research gap and to clearly position our contributions compared to related

works.

*****



Chapter 3

ML-enabled traffic analysis:

Literature review

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1 Application traffic classification . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.1 Traditional techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.2 ML for application classification: Literature review . . . . . . . . . . 61

3.1.2.1 DL-based approaches . . . . . . . . . . . . . . . . . . . . . . 62

3.1.2.2 Ensemble learning-based approaches . . . . . . . . . . . . . 62

3.1.2.3 Semi-supervised learning-based approaches . . . . . . . . . . 65

3.1.2.4 Traffic classification in SDN . . . . . . . . . . . . . . . . . . 66

3.1.2.5 FL-based approaches . . . . . . . . . . . . . . . . . . . . . . 67

3.1.3 Shortcomings and Research Gaps . . . . . . . . . . . . . . . . . . . . 67

3.2 ML-based Intrusion Detection Systems: Literature review . . . . . . . . . . . 69

3.2.1 Conventional ML/DL related work . . . . . . . . . . . . . . . . . . . 71

3.2.2 FL related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.3 DDoS attack detection or classification . . . . . . . . . . . . . . . . . 74

3.2.4 Shortcomings and Research Gaps . . . . . . . . . . . . . . . . . . . . 74

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



ML-enabled traffic analysis: Literature review 60

Introduction

Efficient traffic analysis and identification form the foundation of intelligent network manage-

ment. The benefits of traffic analysis range from the optimization of resource utilization to

QoS provisioning and security. For example, using the historical data, ML/DL-based models

can understand the traffic patterns and the resources automatically allocated according to

the traffic patterns identified [83].

According to the paper of Boutaba et al. [7], traffic classification is one of the main

components of network traffic analysis. Traffic classification is based on flow or packet-based

features (attribute). It aims to understand the type of traffic carried on the Internet [4] [5].

For example, it aims to identify the application (YouTube, Netflix, Twitter, etc.) or detect

network intrusion.

The purpose of this thesis is to study the application of ML and DL models for network

traffic analysis. Therefore, in this chapter, we will focus on traffic analysis, including traffic

classification and intrusion detection systems. Thus, this chapter is divided into two main

sections: First, we will review the key works from the state-of-the-art of application clas-

sification. Then, in the second section, we will deal with the existing studies of ML-based

IDS. This literature review is chosen because they are relevant to the contributions to traffic

classification and IDS, explaining their contribution as well as their limitation, which drives

the need for proposing novel solutions. Finally, we conclude this chapter.

3.1 Application traffic classification

Due to the importance of traffic classification, several approaches have been developed over

the years to accommodate the diverse and changing needs of different application scenarios.

There are three major approaches to achieving application identification and classification,

which are port-based, Deep Packet Inspection (DPI), and ML-based approaches [9].

3.1.1 Traditional techniques

The port-based technique is the simplest and most scalable technique for traffic classification

since an analysis of the header packets is used to identify only the port number and its

matching with the well-known port numbers. The well-known ports for the protocols are

assigned by the IANA [84]. It is also highly robust since a single packet is sufficient to make

an application identification. However, over time some limitations of this approach became

evident. To avoid detection by this method, P2P applications use dynamic port numbers [85],

and also such applications can use ports associated with other protocols for masquerading

purposes. Therefore, port-based classification loses its effectiveness in identifying such types



ML-enabled traffic analysis: Literature review 61

of applications and several research studies confirm that this technique becomes inaccurate

e.g. less than 70% accuracy [86] [87].

Thus, to avoid total reliance on the port numbers, the payload-based technique known as

Deep Packet Inspection (DPI) has been used. It is based on the packet payloads matching

with a well-known signature [9]. A signature is the unique traffic pattern of an application

that distinguished it from other applications. DPI checks all the data of a packet, which

consumes a lot of CPU resources. As the network speed increases the performance of payload-

based traffic classification will inevitably drop [88]. Also, it fails to provide fine-grained traffic

classification due to encrypted packets and privacy issues [89] [4]. Moreover, DPI requires

manual effort to build the application signature and for new protocols, it needs to update the

signatures in the signature database [90], which makes it not scalable with the large enormous

of mobile applications [91]. All these made the payload-based classification techniques no

longer useful as mobile applications become more dynamic, diverse, and complex.

3.1.2 ML for application classification: Literature review

Due to the drawback of the port-based and DPI techniques, ML has been used as an alterna-

tive solution. The advent and rapid growth of such models have brought many improvements

in traffic classification. As a result, many research works have already used ML for traffic

classification. Here, we review key works from the state-of-the-art application traffic classifi-

cation. For instance, Cherif et al. [92] used XGBoost for traffic classification for the first time

in 2019. Using captured traffic dataset, the authors evaluate the performance of XGBoost

network traffic classification. Comparison results demonstrate that the XGBoost algorithm

outperforms Naive Bayes (NB), KNN, and DT models. However, the model was evaluated

using a private dataset.

Perera et al. [93] compared different popular supervised learning algorithms (MLP, NB,

RF, and DT). The evaluations were carried out together with two different feature selection

techniques. The experiment results show that RF and DT models perform well with the

highest accuracy and the short model building time. However, the generalization capability

of the models was not discussed.

Alzoman et al. [94] evaluated the performance of the port-based method as well as four

supervised ML algorithms, namely, SVM, RF, KNN, and DT. The evaluation results demon-

strate that ML models, in particular, DT-based models perform the best. In contrast, the

KNN and SVM provided the lowest average accuracy, especially with the multi-classification

scenarios. Although the work compared several models, the authors did not explore the

recent ones.

To improve also the classification performance, some researchers started to use DL-based

models in order to take advantage of the benefits of the deep features extracted through DL.



ML-enabled traffic analysis: Literature review 62

3.1.2.1 DL-based approaches

As DL helps to eliminate the manual features engineering task and has shown success in

network traffic classifications [3], Zhang et al. [95] proposed a DL-based model in order to

classify the traffic into one of several classes (Bulk, Database, Interactive, Mail, Services,

WWW, P2P, Attack, Games, Multimedia). It consists of the Stacked AutoEncoder (SAE)

and Softmax classifier. SAE was used for feature extraction and Softmax was used as a

supervised classifier. The experimental results show that the proposed model outperforms

the SVM model. However, only labeled data have been used during the training process.

Lotfollahi et al. [96] proposed a DL-based approach, called DeepPacket, which integrates

both feature extraction and classification phases into one framework. The authors compared

two models (i.e. SAE and CNN) in order to classify network traffic. The experiment results

show that DeepPacket achieved a good accuracy for the traffic categorization tasks. However,

to evaluate the framework performance the authors used one dataset, as well as only labeled

data, have been used during the training process.

Lyu et al. [97] applied DL models to the classification of four types of traffic. Using

traffic data collected from the real network environment, the experiment results show that

the MLP model outperforms CNN in terms of accuracy, training, and classification times.

3.1.2.2 Ensemble learning-based approaches

As each shallow ML or DL model has its own strengths and weaknesses, the researchers

started to use the combination of several models in order to overcome their individual short-

comings and in turn improve the classification performance. One of the main advantages of

ensemble learning is its ability to allow the production of better predictive performance com-

pared to a single model. In such context, Gomez et al. [98] proposed an ensemble algorithm

based on DT and then compared its performance with seven ensemble algorithms. The ex-

periment results demonstrate that the ensemble model overcomes the single model in terms

of accuracy. However, the proposed approach was evaluated on small-scale experiments as

well as on private data.

In the same direction, Yang et al. [99] proposed a novel stacking ensemble classifier.

This ensemble combines seven models in a two-tier architecture (Figure 3.1). Specifically,

on the first-tier, KNN, SVM, RF, AdaBoost, Extra-Tree, and Gradient Boosting models

are trained independently on the same training set. Then, on the second tier, XGboost

uses the prediction of the first-tier classifiers in order to improve the final prediction results.

The comparative analysis against the individual single classifier and voting ensemble demon-

strates the effectiveness of the proposed ensemble. However, one dataset with five classes has

been used to evaluate the performance of the proposed ensemble. Also, the generalization

capability and the impact of ensemble hyper-parameters on the classification performance

were not discussed.



ML-enabled traffic analysis: Literature review 63

Figure 3.1: Flowchart for the proposed ensemble classifier in a two-tier architecture [99].

Furthermore, as DT-based ensemble models have advanced considerably and are widely

used for traffic classification, Eom et al. [100] compared five DT-based models, LightGBM,

XGBoost, GBM, RF, and DT. The comparison results indicate that the ensemble model

generally outperforms the single DT model. In particular, the LightGBM model achieved the

best results and exhibits faster training than the other ensemble models. However, this work

classified only the network traffic into different classes according to the QoS requirements

(e.g. Streaming, Web Browsing, Chat, etc.) and not by application (the exact application

generating the traffic). Thus, this could not prove the performance of the proposed model.

In addition, the App-Net scheme was proposed by Wang et al. [101]. The App-Net

scheme combined bi-LSTM and CNN in a parallel way for mobile traffic classification. Then,

the feature extracted from such models is fed to a softmax layer to produce a probability

distribution for the multi-classification task. The results show that combined different DL

models can extract more relevant features and thus achieve a relatively good performance

and outperform the single models. However, the training cost of the proposed scheme was

not discussed and the experiment was carried out on a private dataset.

In a similar way, Lin et al. [102] proposed an end-to-end traffic classification DL-based

approach, called TSCRNN. TSCRNN is an ensemble DL model that combines CNN and Bi-LSTM

in a sequential way. Using two popular datasets, two scenarios of classification tasks (binary

and multi-classification) were proposed in the experiments. The results demonstrate that

TSCRNN outperforms other classification methods based on the DL. However, only labeled

data was considered for the experiment.

To further improve the classification performance, some researchers started to combine

DL-based models and shallow ML models. More specifically, they take advantage of the



ML-enabled traffic analysis: Literature review 64

benefits of the deep features extracted through DL to train shallow models and make the

final decision. For example, Obasi et al. [103] proposed a blending model by combining

different shallow ML and DL models for the classification of encrypted network traffic. In

this work, the authors have used the output of the base model (DL models) as input to the

XGBoost classifier for the training process. The evaluation tasks of the proposed scheme

were done on the ISCX VPN-nonVPN dataset. The results demonstrate the potential of the

XGBoost to boost the performance of the base models. However, the authors did not study

the generalization capability of the proposed ensemble.

Based on the findings in their earlier paper [103], Obasi et al. [104] proposed a novel

ensemble learning technique that is based on different shallow ML models, DL models, and

stacking techniques, called CARD-B. As shown in Figure 3.2, CARD-B consists of the outputs

from the different base classification models including Capsule Neural Networks+XGBoost,

ANN+XGBoost, DT+AdaBoost, RF+XGBoost, and DT+XGBoost models that are merged

and fed into a new classification model, RF model, in the second stage for training and

classification tasks. The proposed ensemble was evaluated using the ISCX VPN-nonVPN

dataset and the results demonstrate that the combination of several models can improve the

classification performance. However, the experiment was carried out on a partial dataset

(one scenario) and the generalization capability of the models as well as the training cost of

the proposed model was not discussed.

Figure 3.2: Training process of CARD-B [104]

In summary, all the works discussed above require fully labeled data. However, as new

types of traffic emerge every day (and they are generally not labeled), this opens a new

challenge to be handled. In fact, labeling data needs to be done in a continuous way, and



ML-enabled traffic analysis: Literature review 65

thus, it is a difficult and time-consuming task [105].

3.1.2.3 Semi-supervised learning-based approaches

To address this issue, the researchers started to reformulate traffic classification into semi-

supervised where both labeled and unlabeled data are used at the same time.

For instance, a clustering labeling method has been proposed. Such a method facilitates

traffic flow classification independent of known traffic classes [106]. In this context, Perera et

al. [29] used the K-means model in order to assign the group based on similar types of traffic

(Figure 3.3). Then, the new labeled data was used in an individual way by five supervised

learning, which are SVM, DT, RF, and KNN, for the training and evaluation. However,

using a clustering mechanism for data labeling can increase the model complexity, as well as

the used features during the training, were selected manually.

Figure 3.3: Training process of the semi-supervised model [29]

Rezaei et al. [107] proposed a semi-supervised approach for traffic classification. In par-

ticular, the proposed approach is based on transfer learning where the CNN model was

pre-trained on a large unlabeled dataset and then the learned model is transferred to be re-

trained on a small labeled dataset. The experiment results demonstrate that the pre-trained

model can boost classification accuracy. However, the proposed approach was trained and

evaluated on a limited number of applications (i.e. five Google applications).

Another semi-supervised approach has been proposed by Wang et al. [108]. Specifically,

DPI has been used to label a part of traffic flows of known applications and each labeled

application is categorized into four QoS classes (Voice/Video Conference, Interactive Data,

Streaming, Bulk Data Transfer). Then, this data is used by semi-supervised learning algo-

rithms (Laplacian SVM) to classify the traffic flows of unknown applications. However, the

evaluation is performed using a private dataset, and using a shallow learning classification

makes the model cannot scale very well.



ML-enabled traffic analysis: Literature review 66

3.1.2.4 Traffic classification in SDN

In recent years, innovation has driven scale-up traffic analysis capabilities. The intersection

between Software Defined Networking (SDN) paradigm and ML brings new chances to pro-

vide intelligence inside the networks and further overcome their challenges (e.g. complexity).

SDN separates the data plane from the control plane in order to dynamically program the

network. The centralized SDN controller has a global network view, which facilitates traffic

analysis. Several researchers argue that with the introduction of SDN, there is a high poten-

tial for collecting data from forwarding devices, which need to be handled by the ML due to

their complexity [109] [110].

In this context, Raikar et al. [111] proposed a traffic classification using supervised learn-

ing models in the SDN environment. Specifically, a brief comparative analysis of SVM, NB,

and KNN has been done, where the accuracy of traffic classification is greater than 90% in

all three supervised learning models. However, the authors used only three applications (i.e.

SMTP, VLC, HTTP) for the model evaluation, which is therefore not enough to verify the

scalable performance of the models.

In the same line, Amaral et al. [112] introduced a traffic classification architecture based

on an SDN environment deployed in an enterprise network using shallow ML models. In

this architecture, the controller collected the flow statistics from the switches, and then

the preprocessing step is used followed by several classifiers individually, which are RF,

GBM, and XGBoost. The accuracy of each application is used as an evaluation metric.

However, this study lacks other performance metrics such as F-score and model generalization

capability.

Moreover, Uddin et al. [91] introduced a traffic classification framework, called Traffic

Vision that identifies the applications and their corresponding flow type in real-time. Traffic

Vision is deployed on the SDN controller, and one of the kernel modules of Traffic Vision

is named TV engine, which has three major tasks: (i) collecting, storing, and extracting flow

statistics and ground-truth training data from end devices, (ii) building the classifiers from

the training data, (iii) and applying these classifiers to identify the application and flow-

types in real-time and providing this information to the upper layer application. As a proof

concept, the authors developed two prototypes of ”network management” services using the

Traffic Vision framework. The classification task of the TV engine has two modules,

which are application detection using DT and flow-type detection using KNN with K = 3.

Both of these classifiers show more than 90% of accuracy. The shortcoming of this work is

the classification of the popular applications and the ignorance of other applications which

can cause problems in enterprise or university networks.

Furthermore, Wang et al. [113] proposed an SDN home gateway (HGW) framework for

encrypted traffic classification, called DataNet. As shown in Figure 3.4 this framework

is embedded in the HGW. This classification was achieved through the use of several DL



ML-enabled traffic analysis: Literature review 67

models, which are MLP, SAE, and CNN. They used the ”ISCX VPN-nonVPN” encrypted

traffic dataset [114], which consists of 15 encrypted applications (i.e. Facebook, Skype,

Hangout, etc.). The performance evaluation shows that MLP consumes the least computing

resources among the three models. Also, it shows that both SAE and CNN models have

better performance in classifying online chatting applications, whereas MLP classifies very

well Netflix and Email applications. However, only labeled data have been used during the

training process.

Figure 3.4: Overview of the SDN-HGW framework [113].

3.1.2.5 FL-based approaches

Last but not least, as the traffic data has increased, FL can be a promising solution for

traffic classification. The FL helps the model to classify the traffic without communicat-

ing data to a central entity [12]. It keeps the traffic where it was generated (chapter 2,

section 2.6). Recently, FL has started to attract the attention of researchers for traffic

classification [115] [116] [117]. Although the privacy preservation offered by FL during the

classification task, the proposed models lacked application type identification, and the gen-

eralization metric to verify their effectiveness, as well as they did not take advantage of the

abundance of unlabeled data.

3.1.3 Shortcomings and Research Gaps

Table 3.1 summarises the related work papers with their key contributions/findings and

limitations. The main research gaps that may shape the motivation of the present work are

summarized as follows:



ML-enabled traffic analysis: Literature review 68

Table 3.1: Summary of investigated solutions to design ML-based traffic classification

Ref. Models Datasets Contribution Limitations

[92] XGBoost N/A Performance evaluation of the XGBoost al-

gorithm for traffic classification

Private dataset was used

[93] MLP, NB, RF, DT Waikato Internet

Traffic

A comparative analysis of several supervised

machine learning classifiers has been pre-

sented.

The generalization capa-

bility was not discussed.

[94] SVM, RF, DT,

KNN

Moore dataset A comparative analysis of ML-based and

port-based method has been proposed.

Other models were not

considered.

[98] DT-based ensemble N/A DT-based ensemble model has been pro-

posed.

Small scale experiment.

[99] KNN, SVM, RF,

AdaBoost, Extra-

Tree, XGBoost

QUIC dataset Combine several models in a two-tier archi-

tecture.

Small scale experiment.

[100] LightGBM, XG-

Boost, GBM, RF,

DT

ISCX dataset Compare five DT-based models in terms

of classification performance, training, and

classification time.

Classified only the net-

work traffic into different

classes according to the

QoS requirements.

[111] SVM, NB, KNN N/A A comparative analysis of several models has

been done.

Only three applications

were used during the

classification

[112] RF, GBM, XG-

Boost

N/A A comparative analysis of DT-based models

in an SDN environment deployed in an en-

terprise network.

Lacks other performance

metrics (e.g. F − score

and model generaliza-

tion).

[91] DT, KNN N/A A traffic classification framework, called

TrafficVision that identifies the applica-

tions and their corresponding flow-type in

real-time has been proposed.

Classify only the popular

applications.

[95] SAE Moore dataset A DL-based model in the SDN-based envi-

ronment

Only labeled data have

been used.

[113] CNN, SAE, MLP ISCX VPN-

nonVPN

An encrypted data classification framework

called DataNet, which is embedded in the

SDN home gateway, has been proposed.

Only labeled data have

been used.

[96] CNN, SAE ISCX VPN-

nonVPN

An integration of both feature extraction and

classification phases into one framework.

One dataset has been

used to evaluate the pro-

posed framework perfor-

mance.

[97] CNN, MLP N/A A comparative analysis of two DL models in

term of accuracy, training and classification

times.

Small scale experiment.

[101] Bi-LSTM, CNN N/A A combination of DL-based models in a par-

allel way for mobile traffic classification.

The complexity approach

was not discussed.

[102] Bi-LSTM, CNN ISCXTor2016,

ISCX VPN-

nonVPN

A combination of DL-based models in a se-

quential way for mobile traffic classification.

Only labeled data was

considered for the exper-

iment.

[103] [104] XGBoost, ANN,

CNN, LSTM

ISCX VPN-

nonVPN

A combination of different shallow ML and

DL models for classification of encrypted net-

work traffic.

The generalization capa-

bility was not discussed.

[29] K-means, RF, DT,

KNN

IP Network Traffic

Flows Labeled with

75 Apps

K-means application for traffic labeling. The computation cost

was not discussed.

[107] CNN QUIC, Unlabeled

Waikato, and Ariel

A transfer Learning have been used in order

to train a model with large quantities of un-

labeled data and a few labeled observations.

The proposed scheme

classifies only five Google

applications.

[108] SVM N/A A method using a semi-supervised learning

algorithm, which is Laplacian SVM to clas-

sify the traffic flows of unknown applications.

the evaluation is per-

formed using a private

dataset.



ML-enabled traffic analysis: Literature review 69

• The homogeneous ensemble models (e.g., bagging and boosting) are widely used for

traffic classification. However, despite the performance of the heterogeneous ensemble

and the combination of shallow models and DL, is still rarely used in traffic classifica-

tion.

• Despite tree-based models being widely used for traffic classification tasks, their gen-

eralization capability was not evaluated.

• Most of the existing solutions try to improve the classification performance of the used

model. Despite the performance of the proposed ensemble models, their generalization

capability was not evaluated and improved.

• Most of the previous solutions missed extensive comparison against some recent models.

They used only a few models like SVM, RF, and MLP as baselines.

• A lot of datasets are partially labeled [105] due to many reasons and unlabeled portions

of the data, which can also provide informative characteristics, are ignored during the

model training with the existing solutions.

• Most of the studies evaluated with private data or not mentioned the source of the

benchmark datasets. This drawback can limit the re-use and the comparison with

those works.

3.2 ML-based Intrusion Detection Systems: Literature

review

Due to the increase in network complexity, the network systems are subjected to several

security vulnerabilities including intrusions. Data security and privacy issues are closely re-

lated to users’ information, and in turn, protecting data security and privacy is a crucial task

for network operators. According to Base and Mell [118], intrusions are defined as ”Attempts

to compromise the confidentiality, integrity, or availability of a computer or network, or to

bypass the security mechanisms of a computer or network”. Thus, regarding the increasing

diversity of cybersecurity attacks, providing an efficient and accurate technique to mitigate

different types of attacks is one of the needs of the hour.

Intrusion Detection System (IDS) is a well-known software system for monitoring and

detecting malicious traffic [119]. It can be defined as ”A combination of software and hard-

ware which monitors network or systems to identify malicious activities and gives immediate

alerts” [120].



ML-enabled traffic analysis: Literature review 70

1. IDS based deployment: Depending on where the detection takes place, IDS can be

divided into two broad categories, which are host-based IDS (HIDS) and network-based

IDS (NIDS) [121] [122].

• Host-based IDS (HIDS): HIDS is a software component, e.g. anti-virus,

installed on a host device to monitor and analyze the activities of an individual

host. However, HIDS suffers from severe disadvantages such as it only monitors

the host as well as it requires the collection and management of the sensitive

datasets [123].

• Network-based IDS (NIDS): NIDS continuously monitors and analyzes the

traffic in the network to detect possible network attacks. It has attracted numer-

ous researchers’ attention from both industrial and academic institutes in response

to the increasing cyber-attacks [120].

2. IDS based methodology: The detection of malicious traffic can be carried out

through the IDS. Depending on the analysis technique, there are two major approaches

for IDS, which are signature-based IDS and anomaly-based IDS.

• Signature-based IDS: A signature-based IDS approach uses a predefined signa-

ture database of different attacks in order to detect the matching traffic. Although

signature-based detection is accurate for detecting known attacks, it became less

efficient and scalable because it cannot identify the unknown or novel attacks (as

it does not have the signature of novel attacks in its signature database) [124].

Besides, the computational cost is usually high and takes time, and in turn, it

becomes a critical issue for real-time attack detection.

• Anomaly-based IDS: In contrast to signature-based IDS, anomaly-based IDS

approaches attempt to learn the normal behaviors and classify every deviation

from the normal behaviors as an anomaly or intrusion [125]. In other words,

anomaly-based IDS made the detection of never-before-seen attacks possible.

In general, intrusion detection can be considered as a particular case of traffic classi-

fication task by classifying the incoming traffic into normal or attack. As a result, some

advances such as ML including shallow models, DL, and FL have greatly improved intru-

sion detection or attack classification tasks without extensive human-based intervention as

maximum as possible. These models can automatically diagnose and detect attacks using

flow and packet-based features. The models use these features to find useful patterns to

detect attacks that did not take place in the past. The integration of ML/DL/FL and IDS

leads to the appearance of several works which are summarized in the following. Thus, our

main focus in this thesis is on network intrusion detection systems (NIDS) and particularly

anomaly-based IDS using ML-based models.



ML-enabled traffic analysis: Literature review 71

3.2.1 Conventional ML/DL related work

Using the shallow ML and DL models, many solutions have been proposed for network

traffic classification. For example, Dutta et al. [126] proposed a hybrid anomaly detection

method that combines the AE with DNN. It can be seen from Figure 3.5 that this method

takes advantage of both AE and DNN in order to extract the relevant features through the

AE model and reduce the error rate of classification, respectively. The experimental results

demonstrate that the proposed method outperforms some baseline algorithms such as DNN

and RF models. However, the model uses only labeled data and the authors did not evaluate

the model on attack type identification (i.e. multi-classification scenario).

Figure 3.5: Training process of the hybrid anomaly detection method [126]

Similar to the applications, new types of attacks emerge every day and thus it brings

new challenges for labeling data. Therefore, the researchers started to use a semi-supervised

learning model for IDS. In such context, Soheily et al. [127] proposed a hybrid intrusion

detection method, called kM-RF. kM-RF is a semi-supervised model that used K-means clus-

tering and RF algorithms. In particular, K-means clustering pre-processing results have

been used as input data for RF classifier model construction and then intrusions detection.

The experiment results show that the proposed model outperforms the other state-of-the-art

methods. However, it has used the ISCX dataset 2012 which contains outdated attacks.

In the same direction, Verma et al. [128] proposed a semi-supervised IDS by combining

K-means and boosting-based models (i.e. XGBoost, AdaBoost). Further, to verify the

classification performance, the proposed IDS was compared with different existing works.

In terms of performance, the proposed scheme achieved an accuracy of 84.25% using the

NSL-KDD dataset. The proposed scheme was also evaluated on an outdated dataset.

Wagh et al. [129] proposed a semi-supervised model for IDS using boosting-based models.

The labeled data were used for model training, whereas the unlabeled data were used for

the testing. Then, the unlabeled data with high confidence with their predicted labels will



ML-enabled traffic analysis: Literature review 72

be added to the labeled set. All experiments were carried out for attack classification using

KDD99 dataset, which is an old dataset.

Hara et al. [105] proposed an IDS system using a semi-supervised learning model. They

used the AE model in order to extract the relevant features. The experimental results

demonstrate that the proposed model can achieve high accuracy with a minimal amount

of labeled data as compared to DNN. To evaluate the performance of their solution, the

authors used NSL-KDD dataset, which is quite an old dataset and can miss modern network

behaviors.

3.2.2 FL related work

Recently, FL for DL was also investigated and implemented for IDS. Nguyen et al. [130]

introduced an FL system for detecting compromised IoT devices, called DÏoT. This is the

first system that deployed FL for IDS. It consists of two components, which are security

gateways and IoT security services. The security gateways use the local data to train the

local models (GRU) and the IoT security service aggregates the local models into a global

model.

Moreover, to improve the system performance and to increase the weights of important

update parameters, Chen et al. [131] introduced an attention mechanism. More specifically,

the authors proposed an IDS for wireless edge networks based on the FL-based Attention

GRU scheme, called FedAGRU. The FedAGRU system uses the attention mechanism on the FL

server in order to assign different weights to the model parameters of different clients. The

attention mechanism is a mechanism used with neural network models that can mimic the

visual attention mechanism in humans. It becomes popular for natural language processing

tasks [132] [133]. It has the characteristics of information filtering used to calculate the

intermediate output weight of the neural network model and to discard some of the irrelevant

information [134]. The experiment results show that FedAGRU provided an improvement of

detection accuracy by approximately 8%. However, only the labeled data have been used to

train the proposed model.

Zhao et al. [135] proposed an intelligent intrusion detection model, called FL-LSTM. In

particular, the proposed model uses LSTM in FL architecture to effectively detect the in-

trusion. The simulation results on the SEA dataset (i.e. produced by the AT&T Shannon

Lab) demonstrate that the FL-LSTM model can accurately detect the intrusion. Although

FL-LSTM improved the classification accuracy it lacked attack-type identification.

Mothukuri et al. [136] proposed an ensemble FL-based attack detection and classification

in IoT networks. The authors combine RF and GRUs models to construct their ensemble.

In other words, they used RF in order to combine the predictions from the GRUs model

to further improve the classification performance of the FL approach. The experimental

results demonstrate a minimized error rate in predicting attacks and a reduced number of



ML-enabled traffic analysis: Literature review 73

false alarms in comparison to the centralized ML approaches. However, the proposed scheme

lacked attack-type identification.

Similarly, Attota et al. [137] proposed an ensemble FL-based intrusion detection, called

MV-FLID. Specifically, the authors have developed three FNN models for three views (i.e.

Biflow View, Packet View, and Uniflow View), and the outcomes of these models are sent

to an ensembler model (RF), which combines the predictions of these models and classifies

the instances. The results show that the FL approach can outperform the Non-FL one.

Rahman et al. [138] proposed an FL-based IDS scheme for IoT networks. The results

showed that FL outperforms self-learning (i.e. without device collaboration) and achieved

competitive accuracy in comparison to centralized learning. However, the proposed scheme

was carried out using an outdated dataset (NSL-KDD dataset).

Friha et al. [139] proposed federated DL-based IDS for the cybersecurity of agricultural-

IoT networks (Figure 3.6), called FLIDS. FLIDS uses three DL-based models, namely, DNN,

CNN, and RNN and the experimental results show that it achieved a competitive perfor-

mance to the centralized model. However, the proposed system assumes that both data and

labels are initially available on the devices.

Figure 3.6: FLIDS architecture [139]

To detect the types of attacks against industrial cyber-physical systems (CPS), Li et

al. [140] proposed a federated DL scheme, called DeepFed. A combination of CNN and

GRUs has been used for intrusion detection. The experimental results with a real industrial

dataset, released by the Mississippi State University in 2014 [141], demonstrate the high

accuracy of DeepFed as compared to some other FL approaches. However, the proposed

scheme did not benefit from the unlabeled data abundance.

Since FL is trained on sensitive user data, it may suffer from reverse engineering data.

Thus, to preserve better the privacy of end-users, Al-Marri et al. [142] proposed a federated



ML-enabled traffic analysis: Literature review 74

mimic learning by combining FL and mimic learning. Using the NSL-KDD dataset, the

results show that the federated mimic learning-based method can achieve 98.11% detection

accuracy which is close to the centralized DL performance while improving the privacy

preservation of the user data significantly. However, the NSL-KDD dataset is obsolete and can

lack modern IoT-based attacks.

3.2.3 DDoS attack detection or classification

A Distributed DoS (DDoS) attack is a complex form of a Denial-of-Service attack (DoS). It

aims to exhaust the target networks with malicious traffic. Consequently, the detection and

mitigation of DDoS attacks in real-time is a critical task. As a result, in recent years, several

ML/DL models are used for DDoS attack detection. For instance, Niyaz et al. [143] proposed

a DL-based system for DDoS attack detection in an SDN environment. Specifically, SAE has

been used for feature reduction in an unsupervised manner. Then, the traffic classification

was performed with the softmax layer in the scenario of 2-class (DDoS/benign traffic) and

the 8-class scenario including normal and seven kinds of DDoS attacks. The experimental

results show that the SAE model achieved higher performance compared to the MLP model.

Also, Aamir et al. [144] proposed a semi-supervised model for DDoS attack detection. In

the first step, PCA was used for data reduction and feature extraction. In the second step,

a clustering algorithm was used to label the data based on their cluster. Finally, after label

assignment, several supervised models are applied for training and attack detection. The

experimental results show that the RF model is more accurate than KNN and SVM.

Although, the DL-based models are efficient for DDoS attack detection or classification,

combining deep and shallow models can take advantage of both techniques and hence improve

the performance of the security system. Krishnan et al. [145] proposed a hybrid model

by combining DL and shallow ML models, called VARMAN. AE was used to generate a new

reduced 50 features from the CICIDS-2017 dataset as well as to optimize the computation and

memory usage. Then, RF acts as the main DDoS classifier. The experiments demonstrate

that VARMAN outperforms other DL-based models and this is attributed to the fact of the

combination of different models.

FL also has been used for DDoS detection. In this context, Li et al. [146] proposed a

federated DDoS attack detection, called FIDS. Using the CICDDoS-2019 dataset the results

show that FIDS improves the performance of classification and stability compared with

baselines. However, FIDS uses only labeled data during the training process.

3.2.4 Shortcomings and Research Gaps

Table 3.2 highlights the key points of different ML-based IDS schemes proposed in the litera-

ture. Despite the performance of the proposed solutions, they suffer from several drawbacks



ML-enabled traffic analysis: Literature review 75

Table 3.2: Summary of investigated methods to design ML-based IDS

Ref. Models Datasets Semi-supervised

Learning

Attack Type

Detection

Federated

Environ-

ment

[126] AE, DNN UNSW-NB15 x x x

[127] K-means,

RF

ISCX 2012 ✓ x x

[128] K-means,

XGBoost,

AdaBoost

NSL-KDD ✓ x x

[129] N/A KDD99 ✓ ✓ x

[105] AE NSL-KDD ✓ x x

[130] GRU N/A x ✓ ✓

[135] LSTM SEA dataset

(produced by

the AT&T

Shannon

Lab)

x x ✓

[136] GRU, RF Modbus

dataset

x x ✓

[137] ANN, RF MQTT x x ✓

[139] DNN,

CNN,

RNN

CSE-CIC-

IDS2018,

MQTTset,

InSDN

x ✓ ✓

[146] GRU CICDDoS-

2019

x ✓ ✓

[138] DNN NSL-KDD x ✓ ✓

[143] SAE, ANN N/A ✓ ✓ x

[131] GRU,

Attention

mechanism

KDD99,

CICIDS-

2017, WSN-

DS

x ✓ ✓

[145] AE, RF CICIDS-2017 x ✓ x

[142] MLP NSL-KDD x ✓ ✓

[140] CNN,

GRU

Gas dataset x ✓ ✓



ML-enabled traffic analysis: Literature review 76

and challenges that should be considered when designing and evaluating the FL-based ap-

proaches. The main research gaps that may shape the motivation of the present work are

summarized as follows:

• Most of the existing solutions proposed for IDS are evaluated on outdated datasets

(e.g., KDD99, NSL-KDD) as well as in one scenario either binary classification (be-

nign/attack) or multi-classification (attack type identification) and not both scenarios.

• Most of the existing solutions assume that both data and label data are available.

For labels, this assumption seems unrealistic, as this would mean that a human would

have already tagged all the network traffic. This is difficult in practice (i) due to the

resource constraints on the devices/clients as well as some edge nodes and (ii) due

to the difficulty of manually labeling data on such devices which are far from human

reach.

Conclusion

In this chapter, we have reviewed some related ML-based solutions for network traffic analy-

sis, including traffic classification and IDS. According to the literature review, it appears how

ML-based solutions are improving traffic classification by providing network operators with

better diagnostic tools, helping find useful patterns, and hence can optimize the resources in

a complex environment. However, the outlined shortcomings of the proposed solutions have

not answered all the technical questions. In particular, the current literature shows that

it is promising to classify network applications using ML-based approaches, but there still

exist issues related to the performance and generalization capability of the proposed models

as well as the exploration of unlabeled data. For example, strategies such as bagging and

boosting are widely used to build ensemble models. Despite the tree-based models being

widely used for traffic classification, the generalization capability was not discussed. Also,

our literature review shows that despite the heterogeneous ensemble learning performance,

it is still rarely used in traffic classification as well as its generalization capability was not

evaluated.

Furthermore, as presented previously, the majority of the existing traffic classification

solutions use supervised learning algorithms and have focused only on the labeled data

where the unknown flows were not considered. Even a few semi-supervised models have

been proposed; they did not study the impact of the unlabeled ratio on the performance

of the final model, nor the generalization performance of the final model. Consequently,

an ensemble learning model and semi-supervised model for traffic classification (Chapter 4

and 5) are proposed to address the aforementioned challenges.



ML-enabled traffic analysis: Literature review 77

On the other hand, although the effectiveness of FL for IDS maintains the privacy of the

client’s data as well as reduces transmission latency and communication overhead by sending

model parameters instead of raw data, unfortunately, most of the existing solutions focus

on supervised modes. In fact, the clients are far from human reach, which made accessing

them to label their data a difficult and impractical task. Thus, to be more realistic, a novel

semi-supervised approach, based on FL, called FLUIDS, is designed in Chapter 6.

As such, in the following chapters, we will present our contributions in order to tackle the

limitations that appeared during the literature review by proposing ML/DL-based models.

*****



Part I

Conclusion

78



This part consists of two chapters, which are (i) background and (ii) literature review.

The objective of the background chapter is to provide a theoretical background of the basic

concepts, which are useful to understand the state-of-the-art approaches as well as our con-

tributions. On the other hand, the literature review chapter detailed the related work papers

with their key contributions and limitations. Based on these two chapters, we have noticed

that while ML models, and especially DL, are becoming the de-facto knowledge discovery ap-

proach in traffic analysis, it appeared new challenges that require new and efficient solutions.

In particular, this part outlined the state-of-the-art approaches and models’ backgrounds as-

sociated with them. Although the shallow ML/DL/FL-based approaches have demonstrated

benefits for traffic analysis, the current setting of such approaches has not answered all the

technical questions and problems. Consequently, there is a need to consider further improve-

ments to address the research gap raised in the literature review. Therefore, the next part

will present deeper investigations on ML/DL-based models for traffic classification in order

to provide better network service with less frustration for the end-user.





Part II

Contributions

81



We have seen in Part I the huge use of ML for traffic analysis and its importance to

uncover the complex pattern within traffic behavior. As we can see that intelligent traffic

analysis nowadays raises many challenges for network operators. In Part II, deeper inves-

tigations on the challenges of intelligent traffic analysis that need to be addressed will be

conducted in the following chapters. These challenges come mainly from models’ overfit-

ting and their generalization capabilities on the training data. Also, the network datasets

are generally partially labeled due to many reasons making it more complicated to analyze

the traffic, hence efficient mechanism based on both unlabeled and labeled traffic is indis-

pensable. In addition, enhancing the performance of the models is not enough for intrusion

detection, especially with the recent privacy concerns of user data wherein collecting data

can cause some damage to the central entity if the traffic contains some attacks. Also, col-

lecting the data in a central entity during model training is expensive in terms of storage

resources. Thus, proposing a new solution with further privacy and security improvement is

needed. As a result, in this part, three solutions for application classification and intrusion

detection will be discussed. For each solution, at least two datasets and different scenarios

will be used for the performance evaluation.



Chapter 4

Ensemble-based Deep Learning model

for network traffic classification

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Proposed Ensemble Learning Model . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.2 Models hyper-parameters tuning . . . . . . . . . . . . . . . . . . . . . 87

4.1.3 Blending ensemble model . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Experimental study and results analysis . . . . . . . . . . . . . . . . . . . . 88

4.2.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.2 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.3 Modeling hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.4 Performance evaluation of the proposed blending model . . . . . . . . 90

4.2.4.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.4.2 Base classifiers selection . . . . . . . . . . . . . . . . . . . . 92

4.2.4.3 Proposed Ensemble classifier . . . . . . . . . . . . . . . . . . 93

4.2.5 Experiments on the second dataset (VPN-nonVPN dataset) . . . . . 99

4.2.6 Performance against state-of-the-art models . . . . . . . . . . . . . . 101

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



Ensemble-based DL for traffic classification 84

Introduction

Traffic classification is a subgroup of traffic analysis strategies that aims to classify traffic

into predefined categories. It is a basic requirement for providing a good QoS in network

management and can help Internet Services Providers (ISPs) manage efficiently their in-

frastructures. In this context, several techniques such as port-based classification and Deep

Packet Inspection (DPI) have been proposed. However, as mentioned in the previous chapter,

such techniques are becoming less efficient to handle and classify because the applications

can use dynamic port numbers or ports associated with other protocols to hide from network

security tools. Also, DPI checks all packet data, which consumes a lot of CPU resources and

can cause a scalability problem. To avoid these issues and to efficiently classify the traffic,

more intelligence needs to be deployed. With the progress of high-performance computing,

ML has been used as an alternative approach in recent years. Using ML for traffic classifica-

tion can achieve an acceptable trade-off between computation complexity and accuracy [90].

Consequently, several models have been used for traffic classification. Among these models,

DT-based models are one of the most used models for traffic classification [112]. This may

be attributed to the fact that DT models are simple and can be easily understood by human

experts [147]. In particular, as shown in the literature review (Table 3.1) RF and boosting

models, which are based on DT, are widely used for classification tasks.

In fact, RF and boosting models are ensemble models that have been proposed in order

to break through the limitations of a single model. Ensemble models are widely used in

several applications due to their remarkable generalized performance [47] [148]. Since the

ensemble models are based on the combination of several models, the difficulty of choos-

ing the appropriate model can be avoided to some extent. The ensemble models can be

homogeneous in bagging and boosting and heterogeneous in blending and majority voting

ensemble. Although the performance of RF and boosting models, are based only on the

DT model and hence can suffer from overfitting issues. In contrast to the homogeneous

ensemble models, the heterogeneous ensemble takes advantage of different models. The ma-

jority voting algorithm uses a voting method to combine the output of the models. On the

other hand, a blending ensemble consists of two levels: base classifier and meta-classifier.

Indeed, through the use of a meta-classifier, that combines the base classifier, blending out-

performs the majority voting-based ensemble as well as the homogeneous ensemble [47]. The

meta-classifier tries to correct the errors that occur during the learning process of the base

classifiers. Using a non-linear meta-classifier (e.g. DL models) can explore the non-linear

relationship among the base-classifiers and in turn, gives promising results as well as out-

performs the linear meta-classifier [48]. Although the effectiveness of the blending ensemble

in several application [149] [150] [148] [47], to the best of our knowledge, its potential in

network traffic classification is not fully studied. Consequently, our approach leverages its

successful experiences and creates a new model to perform a better classification.



Ensemble-based DL for traffic classification 85

Key Contributions

Based on the aforementioned motivation, in this chapter, we focus on developing an en-

semble model using DT-based models and DL for traffic classification. Our model deploys

a blending ensemble learning method to combine tree-based classifiers in order to improve

the classification performance as well as maximize the generalization accuracy. In brief, the

main contributions of our research are the following:

• performance investigation of seven DT-based models with respect to their algorithms

(e.g. gradient boosting or bagging);

• improved the generalization performance by combining decisions from several classifiers

using the ensemble method;

• boosted the performance of traffic classification with a blending model of DT-based

models and the use of the DL model as a meta-classifier;

• performance evaluation of the proposed ensemble using both non-encrypted and en-

crypted network traffic;

• comparison of the results against, neural networks, ensemble, linear blending, and

simple models, as well as some state-of-the-art approaches;

The rest of this chapter is organized as follows. Section 4.1 presents the architecture and

the main components of the proposed ensemble model. In Section 4.2 experimental results

and performance evaluation of the proposed model are presented. Discussion and analysis

of the results are provided in Section 4.3. Finally, the conclusion is given in Section 4.3.

4.1 Proposed Ensemble Learning Model

This section introduces a blending ensemble learning model for network traffic classification.

In particular, the architecture of the proposed ensemble model and its design principles are

presented. Figure 4.1 summarizes the methodology of this model. For the used data, a

data pre-processing step is performed. After extensive experiments, we decide to deploy a

blending ensemble learning to improve the performance and the generalization capability for

network traffic classification.

4.1.1 Data pre-processing

As the dataset has different features containing different data types, data pre-processing

is an important step for model construction. In other words, data pre-processing aims to



Ensemble-based DL for traffic classification 86

Level 2

P4

Feature Selection

AdaBoost 
Model

Random Forest

Validation 
Dataset

Decision Tree

XGBoost

Level 1

P1

Data cleaning

Random 
Forest Model

XGBoost 
Model

P3

Data cleaning

Training Dataset

Deep Learning

Testing Dataset

AdaBoost

Data cleaning

Ensemble 
ModelP2

Decision 
Tree Model

Figure 4.1: Flowchart for the proposed blending ensemble model

transform the data and make it suitable for other processing use. It is a preliminary step that

can be done with several techniques among which are data cleaning and feature selection.

• Data cleaning: Traffic features can have different types of data, including numer-

ical and categorical values. However, some ML models can only work with numeric

values, thus it is necessary to convert the categorical features into numerical ones.

Consequently, in this work, we have converted the initial values of some features to

numerical values. Also, as the dataset consists of different features with values on

different scales, it needs to be scaled. This can be done by Min-Max normalization

to perform feature scaling. It is a technique that scales every feature of our dataset

between 0 and 1 (Equation 4.1). The Min-Max normalization technique is helpful for

the ML model, as it removes any bias from the incoming traffic.

X ′ =
X −Xmin

Xmax −Xmin

(4.1)

where X is the feature to be scaled down, Xmax is the maximum value, and Xmin is

the minimum value of this feature.

• Feature selection: Feature selection tries to identify the optimal feature subset and

discards the irrelevant and redundant ones. It has various benefits such as i) defying

the curse of dimensionality to improve the performance of learning algorithms either



Ensemble-based DL for traffic classification 87

in terms of learning speed and generalization capacity, and ii) reducing the storage re-

quirement. In the proposed model, correlation filtering has been used in order to delete

redundant features and reduce the training data complexity. Then to find the optimal

features subset a comparative analysis of Information Gain Attribute Evaluation (IG)

and Recursive Features Elimination (RFE) has been conducted. We have chosen these

methods because they are widely used and perform well in the literature review. Since

RFE is a wrapper method, we have used the classification and regression tree (CART)

model. Note that these methods are presented in Section 2.6, Chapter 2.

4.1.2 Models hyper-parameters tuning

Data pre-processing and the combination of several classifiers of the ensemble model is not

enough, finding the right configuration of the models for both the base and meta classifiers by

tuning its hyper-parameters is an important task. These hyper-parameters are the parame-

ters that are not directly set during the training phase because they should not be learned

from the training set [151]. The main steps of hyper-parameters tuning are summarized in

Algorithm 1. In particular, to find the optimal hyper-parameters, the training of the models

using different combinations of the hyper-parameters followed by the performance evaluation

of the models on the validation set has been done. This process is repeated until the models

achieved a satisfactory performance.

Algorithm 1: Hyper-parameters and parameters tuning

while Accuracy on the validation set not satisfactory do

Choose a set of hyper-parameters;

Given the chosen hyper-parameters train the model and optimize its parameters

using the training set;

Evaluate the model performance on the validation set;

end

4.1.3 Blending ensemble model

The proposed ensemble framework is presented in Figure 4.1. It can be seen that the proposed

model mainly consists of two levels, which are base-classifiers using the DT models (level 1)

and meta-classifiers using DL (level 2). Level 1 aims to construct the base classifier models

through the training set and to produce the meta-data using the validation set. Then, the

meta-classifier uses the meta-data (i.e. DL in our case) for the training task and to make

the final classification on the test set. More specifically, as presented in Section 2.2.5.3,

Chapter 2, the hold-out method is used with the blending model in order to divide the



Ensemble-based DL for traffic classification 88

training set into a new training set and validation set. Next, the base classifiers are trained

through the new training set, and their predictions on the validation set are used as meta-

data for the meta-classifier. Finally, the meta-classifier uses the meta-data for the training

process to make the final decision using the test set.

As presented in the Introduction, DT-based models are one of the most used models

for traffic classification as well as since the base classifiers (level 1) need to be accurate,

diverse, and complementary as possible in order to provide highly discriminative meta-data

for classification [152], a comparative analysis has been done on seven DT-based models with

respect to the algorithm on which it is based (e.g. gradient boosting or bagging). In contrast

to level 1, level 2 is based on the DL model (i.e. ANN) as a meta-classifier. DL combines the

prediction output of the base classifiers, explores the non-linear relationship among them,

and hence gets a non-linear blending model. This step is known as the combination phase

where the full connected layers are trained on the meta-data generated by the base classifiers.

It is important to note that since DL acts as a combination method and its inputs are the

prediction of the base classifiers, known as meta-data, we use a simple Neural Network

architecture (i.e. three hidden layers).

For more details, Algorithm 2 describes the steps involved in designing a blending-based

ensemble model, and Table 4.1 presents the notations used in Algorithm 2.

Algorithm 2: Learning step of the proposed blending algorithm

1: Input: Training Dataset DT = {xi, yi} (i = 1, 2, ..., n, xi ∈ X, yi ∈ Y );

2: Output: Prediction of Ensemble Algorithm H(X);

3: Use Hold-out validation to divide the training set D train set & D val;

/* --- Train the base classifiers used in the level 1 --- */

4: for j=1 to 4 do in parallel

5: Train Mj from D train;

6: end for

/* --- Construct new dataset of prediction --- */

7: D′={P, Y }, where P=M1(D val),. . . , M4(D val);

/* --- Train the meta-classifier MC --- */

8: Train MC based on meta-data D′ (level 2);

9: return H(X) = MC(M1(X), . . . ,M4(X))

4.2 Experimental study and results analysis

In this section, we evaluate the performance of the proposed blending model by performing

extensive experiments. Then, the results are analyzed and discussed.



Ensemble-based DL for traffic classification 89

Table 4.1: List of notations used in the ensemble learning algorithm.

List of notations Meaning

X Set of features

Y Class label set

Mj Base classifier

H Ensemble classifier

n Number of training samples

D train training set of the base classifier (level-1)

D val Validation set

P Base classifier prediction using D val

D′ meta-data used to train the meta-classifier (level-2)

4.2.1 Dataset description

We evaluate the different classifiers on a real-world traffic dataset1. It is a public dataset and

has been presented in a research project and collected in a network section from Universidad

Del Cauca, Popayán, Colombia [153]. It has been constructed by performing packet captures

at different hours, during the morning and afternoon over six days in 2017. We chose this

dataset because it can be useful to find many traffic behaviors as it is a real dataset and rich

enough in diversity and quantity. It consists of 87 features (attributes), 3,577,296 instances,

and 78 classes (Facebook, Google, YouTube, Yahoo, Dropbox, etc.). The distribution of the

well-known application is presented in Table 4.2. In this experiment, we have separated the

dataset into 80% for training, 10% for validation, and 10% for testing.

It is important to note that this dataset consists of flow and packet-based features for net-

work traffic classification tasks (e.g. flow duration, packet length, port number, etc.). A flow

is a set of network packets with the same source/destination IP addresses, source/destination

port numbers, and protocol [3].

4.2.2 Experiment setup

Python 3.7 is used as a programming language and Scikit-learn 0.23 is used to de-

velop the shallow ML models and Keras 2.4 framework is used for the DL meta-classifier.

XGBoost, LightGBM , and Catboost libraries were used for those models. All experiments

were run using a four-core Intel® Core™ i7-6700 CPU@3.40GHz processor, and 32.00 GB of

RAM. For reliable evaluation, the reported results are averaged from ten runs of each model.

1https://www.kaggle.com/jsrojas/ip-network-traffic-flows-labeled-with-87-apps



Ensemble-based DL for traffic classification 90

Table 4.2: Dataset description [153].

Label # Total observations

Google 959,110

HTTP 683,734

Amazon 86,875

Microsoft 54,710

Skype 30,657

Facebook 29,033

Dropbox 25,102

Yahoo 21,268

Twitter 18,259

Apple 7,615

Whatsapp 4,593

Instagram 2,415

Wikipedia 2,025

Netflix 1,560

Spotify 1,269

TeamViewer 527

Telegram 33

4.2.3 Modeling hyper-parameters

The selection of hyper-parameters (also called parameter tuning) is a crucial step in the

construction of ML models and the final classification results. These hyper-parameters were

set to reach the right trade-off between latency and accuracy. All the hyper-parameters

descriptions and settings of the base classifiers/meta-classifier are presented in Table 4.3.

4.2.4 Performance evaluation of the proposed blending model

To evaluate the performance of the proposed model, we will deal with all the following

objectives:

• find the appropriate feature set for the proposed model;

• evaluate the classification performance of the DT-based models;

• propose an ensemble model using DL and several DT-based models;

• evaluate the proposed model against the base classifiers;

• evaluate the impact of the hold-out validation set on the ensemble performance;



Ensemble-based DL for traffic classification 91

Table 4.3: Hyper-parameters values of the different classifiers

Model Hyper-parameters Values

Decision Tree max depth 40

min samples split 40

Random Forest max depth 50

n estimators 50

AdaBoost max depth 35

n estimators 50

learning rate 0.4

XGBoost max depth 35

learning rate 0.2

n estimators 100

CatBoost max depth 8

n estimators 1000

LightGBM max depth 35

boosting type goss

learning rate 0.2

num leaves 1000

top rate 0.6

other rate 0.4

n estimators 250

NN model hidden layer 3

activation function ReLu

Learning rate 0.001

Optimizer Nadam

• evaluate the impact of different combinations of base classifiers on the final ensemble;

• evaluate the proposed model against well-known classifiers including boosting, bagging,

simple, neural network-based models, linear blending, and state-of-the-art proposed

models;

• evaluate the proposed model in terms of training and classification time;

• evaluate the performance of the ensemble using encrypted traffic.

4.2.4.1 Feature Selection

As RF and DT models are the simplest classifiers, they are used to study the impact of the

feature selection methods. The obtained results are presented in Table 4.4 and in Table 4.5.

First of all, correlation filtering is used in order to delete the redundant features and in turn

reduce the processing time for the IG and RFE methods. The reason behind the choice of



Ensemble-based DL for traffic classification 92

this technique is that it is one of the most used methods during the pre-processing step and

it is not computationally costly.

Using correlation filtering we have deleted just the redundant features. In other words,

we deleted every one of two features that have a correlation |cor| = 1, which means that they

are totally redundant. This is because, features are usually designed with their unique con-

tributions, and removing any of them may affect the training accuracy to some degrees [45].

Then, an evaluation of RF and DT on different reduced versions of the data selected by IG

and RFE methods in an individual way has been done. The selected feature subsets contain

10, 15, and 25 features. As shown in Table 4.4, DT and RF models perform better with

the 15 features selected through RFE with 82.24% and 85.28% accuracy. Also, it can be

seen that the performance started to decrease with more features (e.g. 25 features) and this

demonstrates that the performance does not always increase with more features.

Table 4.4: Classification accuracy (%) with RFE and IG on different features set

Classifiers
10 15 25

IG RFE IG RFE IG RFE

DT 81.38 80.18 81.93 82.24 81.58 82.19

RF 85.04 84.69 84.88 85.28 84.27 84.91

On the other hand, Table 4.5 indicates that these models can perform better with the

reduced features set than with the entire dataset in terms of accuracy, precision, and recall.

This may be attributed to the fact that not all features in the dataset can help to separate

classes during the classification task. Moreover, this is due to the combination of the wrapper

(i.e. RFE) and filter methods (i.e. correlation filtering) that help to find the relevant features.

Table 4.5: The accuracy, precision, and recall (%) of the entire data and selected data

analyzed by DT and RF

Data size Accuracy Precision Recall

Entire dataset + DT 82.16 81.94 82.16

Reduced dataset (RFE) + DT 82.24 82.06 82.24

Entire dataset + RF 82.52 83.13 82.50

Reduced dataset (RFE) + RF 85.28 85.57 85.28

4.2.4.2 Base classifiers selection

As a start, we first randomly partitioned the data into a ratio of 80% for training, 10% for

validation, and 10% for testing. It can be seen from Table 4.6 that RF has the best accuracy



Ensemble-based DL for traffic classification 93

as a Bagging method with 85.28% accuracy whereas the accuracy of Extra-Trees is 84.87%.

Also, it is more efficient in terms of training and classification time compared to Extra-Trees.

On the other hand, the AdaBoost and XGBoost outperform the LightGMB and CatBoost

in terms of accuracy. They also outperform LightGBM in terms of classification time (test

time) and CatBoost in terms of training time.

Table 4.6: Comparison of different methods

Methods Models Accuracy

(%)

Training time (s) Test time (s)

Single clas-

sifier

Decision Tree 82.24 110.21 0.24

Bagging
Random Forest 85.28 193.67 9.63

Extra Tree 84.87 205.874 150.544

Boosting

AdaBoost 88.51 7921.74 53.44

XGBoost 88.70 52423.84 197.07

CatBoost 77.79 231064.01 15.54

LightGBM 84.57 6292.55 987.50

Based on these results, DT, RF, XGBoost, and AdaBoost are used as base classifiers

(i.e. level-1 of the blending). Although these models are based on DT, they work in a

different way (e.g. their training process does not use the same training set) and hence

guarantee the diversity of level 1 of the blending model. In particular, DT is a simple and

classical model, RF is a bagging model that improves the classification performance and

builds different versions of the training set by using sampling with replacement technique.

Moreover, XGBoost and AdaBoost as boosting models can help to avoid the problem of

underfitting (bias). We have chosen XGboost and Adaboost as they perform better than

the other boosting models (i.e. LightGBM, CatBoost) and their boosting process is different

as explained in Section 2.2.5.2, Chapter 2. Therefore, these make DT, RF, AdaBoost, and

XGBoost appropriate models to build our ensemble.

4.2.4.3 Proposed Ensemble classifier

To build the blending models, DT, RF, AdaBoost, and XGBoost are used as base classifiers.

Then, DL is used as a meta-classifier to make the final decision. In order to evaluate the

performance and the generalization capability of our ensemble against the base classifiers

(i.e. without using a meta-classifier), the classification performance using training and test

set is measured. As it can be observed in Table 4.7, using the training set AdaBoost gives

the best results, followed by RF and XGBoost, our model, and DT.

The accuracy achieved by DT, RF, AdaBoost, and XGBoost on the training set is 87.56%,



Ensemble-based DL for traffic classification 94

94.68%, 97.13%, and 92.59%, respectively. Whereas, the classification performance of these

models using the test set is different. Indeed, their accuracy are 82.24%, 85.28%, 88.51%,

and 88.70%, respectively. It is important to note here that the models need to perform

very well on the test set (i.e. unseen data during the training). In contrast to DT, RF,

AdaBoost, and XGBoost, the difference between classification results using the training and

test set of the proposed ensemble model is almost negligible (Table 4.7), where the training

and test accuracy are 91.57% and 91.51%. This demonstrates that the blending ensemble

does not have an overfitting problem. This may be attributed to the generalization ability

of the blending ensemble. Furthermore, the classification accuracy is 2.81%, 3%, 6.23%,

9.27% better than XGBoost, AdaBoost, RF, and DT, respectively. Similarly, in terms of

F1-score, the proposed model also outperforms its base classifiers. This is due to that taking

advantage of several classifiers, the proposed blending model is shown to be accurate and

efficient for traffic classification tasks.

Table 4.7: Statistical measures of the base classifiers and the proposed blending model using

training and test sets.

Dataset Model Accuracy F1-score

Training set

DT 87.56 87.36

RF 94.68 94.59

AdaBoost 97.13 97.11

XGBoost 92.59 92.43

Proposed model 91.57 91.70

Test set

DT 82.24 81.99

RF 85.28 84.71

AdaBoost 88.51 88.16

XGBoost 88.70 88.47

Proposed model 91.51 91.64

• Impact of the hold-out validation set

Here the impact of the hold-out validation set on the performance of the blending method

as well as the base classifiers are presented. The hold-out method is a technique used to divide

the training set into a new training set and a validation set. To study the impact of the hold-

out validation set, various ratios of the validation set are used. The ratio of the validation set

varied between 10% and 40% with a step size of 10% (we stopped because the performance

started to decrease). It can be seen from Figure 4.2 that the blending method maintained a

better prediction performance than the base classifiers. In particular, when the ratio of the

hold-out validation set is 10%, the blending method can obtain the best results. Also, we



Ensemble-based DL for traffic classification 95

can notice that the performance of the base classifiers decreases with more validation sets

(i.e. fewer training sets), and this makes the performance of the blending method decreases.

It is important to note here that we have used the same test with the different ratios of the

hold-out validation set as well as for the rest of the experiment.

Figure 4.2: Effect of hold-out validation set ratio on the proposed blending model.

• Impact of the base classifiers

Additionally, to find the base classifier that can optimize the performance of the proposed

ensemble model, some experiments have been conducted. To do so, the performance of

the proposed ensemble model with different combinations of base classifiers is presented.

Figure 4.3 shows the accuracy of different combinations of three base classifiers and the one

with all the base classifiers (proposed model). It is important to note here that with all the

cases we used DL as a meta-classifier.

As shown in this Figure, the proposed model that integrates all the base classifiers has a

better result than the three base classifiers. This means that no model negatively impacts the

performance of the proposed ensemble. Moreover, as still shown in this figure, by dropping

out one of the boosting models (AdaBoost and XGBoost) the accuracy of our ensemble

decreases. Specifically, XGBoost plays the most critical role in achieving good performance.

The accuracy of the blending decreases notably without XGBoost, which means that this

model is an important component of the blending model.



Ensemble-based DL for traffic classification 96

Figure 4.3: Results of the different combinations of the base classifier experiments and their

impact on the proposed blending model.

• Comparative analysis over various ML algorithms

In order to further validate the efficiency of the proposed ensemble, which demonstrated

the best performance against the base classifiers, we compared this framework with other

models. The optimal hyper-parameters of these models have been used. These models

include (i) simple models such as SVM and KNN, (ii) ensemble models such as Extra-

Trees, LightBGM, and CatBoost, (iii) neural network model, which is Multi-layer Per-

ceptron (MLP) classifier. We select these classifiers as our baselines because Extra-Trees

and KNN are easy to train, SVM is widely used and proved to be useful in several applica-

tions [154], and MLP is a neural network model as well as CatBoost and LightBGM because

they are recent models for the classification task.

Figure 4.4 shows the accuracy of the proposed ensemble against other models. In this

case, a clear hierarchy of models emerges from best to worst. As can be observed from the

results that the proposed model performs well when compared with the other models. Its

accuracy is 6.64%, 6.94%, 13.72%, 16.03%, 17.85%, 44.75% better than Extra-Trees,

LightBGM, CatBoost, MLP, KNN, and SVM, respectively. This may be attributed to the

fact that the combination of DT-based models and DL helps the proposed ensemble to yield

far superior results compared to several models.

• Comparative analysis over linear blending

In this section, a comparison of the proposed model with a linear blending model is

presented. For the linear blending, a logistic regression model is used as a meta-classifier

instead of a DL model. Put another way, the linear blending uses the same base classifiers



Ensemble-based DL for traffic classification 97

Proposed model Extra Tree LightGBM CatBoost KNN MLP SVM
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Figure 4.4: Comprehensive comparison of well-known classifiers against the proposed blend-

ing model.

as our ensemble and changed only the meta-classifier. The objective of this comparison is

to study the impact of DL on the proposed ensemble. Figure 4.5 shows that our ensemble

(non-linear blending) outperforms the linear blending by 2.25%, 2.59% in terms of accuracy

and F1-score, respectively.

Accuracy Precision Recall F1-score50

60

70

80

90

100

(%
)

Our model
Linear blending

Figure 4.5: Our model vs. linear blending.

Also, Table 4.8 presents the achieved performance of both linear and our ensemble (i.e.

non-linear blending) for the application identification task. It can be seen that the precision

of the Linear blending is high which is not the case with the recall. This means that the

false positive is few and the false negative is high. On the other hand, the F1-score of our



Ensemble-based DL for traffic classification 98

ensemble outperforms that of linear blending for all the applications. This is attributed to

the fact that the harmonic mean of precision and the recall is better than the linear blending.

Moreover, we can notice that the linear blending could not detect the minor class like the

Telegram application, whereas our ensemble achieved a 100% F1-score. This is may be

attributed to the use of DL as a meta-classifier in our ensemble model.

Table 4.8: Linear blending vs. our ensemble for application classification

Class Name

Linear Blending Our ensemble

Precision (%) Recall (%) F1-score (%) Precision (%) Recall (%) F1-score (%)

Google 85.3 93.43 89.18 95.11 86.93 90.83

HTTP 93.65 93.26 93.45 94.45 94.83 94.64

Amazon 98.52 93.11 95.74 94.94 98.84 96.85

Microsoft 90.24 81.93 85.88 89.82 93.35 91.55

Skype 91.49 80.36 85.57 92.55 92.15 92.35

Facebook 97.89 91.26 94.46 94.27 98.52 96.35

Dropbox 98.61 92.62 95.52 96.84 98.1 97.47

Yahoo 90.87 77.46 83.63 86.79 93.59 90.06

Twitter 94.24 73.86 82.81 84.81 94.81 89.53

Apple 93.80 82.45 87.76 94.11 95.65 94.87

Whatsapp 94.57 74.2 83.15 94.5 94.7 94.6

Instagram 94.76 79.74 86.6 93.24 97.78 95.46

Wikipedia 99.32 71.71 83.29 90.41 98.01 94.06

Netflix 98.99 69.01 81.33 82.91 97.76 89.72

Spotify 96.3 80 87.39 88.63 96.69 92.49

TeamViewer 100 87.3 93.22 96.82 100 98.38

Telegram 0 0 0 100 100 100

• Computational costs of the proposed model

Moreover, we have compared the computational efficiency of the proposed model against

other models. As shown in Table 4.9, we have compared the classification time (CT) per

sample and the training time (TT) taken by the respective models.

As explained in Section 4.1.3, our model consists of two main phases (level 1, and level 2

process). Thus, this can explain its high training time. Even though it has a high training

time, there is a slight difference with XGBoost this is because one of the advantages of

our model is that the base classifiers: DT, RF, AdaBoost, and XGBoost can be trained in

parallel. Consequently, since boosting models take a long time to train (Table 4.7), thus

they can impact the training time of the proposed model more than RF and DT. However,

we assume that the training time can be proceeded offline and thus does not impact the

real-time utilization of the classification process.



Ensemble-based DL for traffic classification 99

Table 4.9: Training and classification time comparison

Metric XGBoost AdaBoost Linear blending Our model

TT (s) 52423 7921 52523 53100

CT per sample

(µs)

550.89 149.38 552.67 582.7

4.2.5 Experiments on the second dataset (VPN-nonVPN dataset)

To validate the effectiveness of the proposed ensemble, we also simulated experiments based

on another public dataset, which includes encrypted data, called VPN-nonVPN dataset [114].

This is one of the most popular encrypted traffic classification datasets. It contains only time-

related features (flow duration, flow inter-arrival time, etc.) and 14 classes. These classes

are Browsing, Chat, Email, FTP, P2P, Streaming, VoIP, vpnBrowsing, vpnChat, vpnEmail,

vpnFTP, vpnP2P, vpnStreaming, and vpnVoIP (Table 4.10).

Table 4.10: VPN-nonVPN dataset description.

Label # Total observations

VoIP 2,826

Browsing 2,500

File Transfer (FT) 1,018

P2P 1,000

Chat 890

Streaming 482

Mail 249

VPN-VoIP 2,271

VPN-Browsing 2,500

VPN-FT 1,932

VPN-P2P 928

VPN-Chat 1,196

VPN-Streaming 475

VPN-Mail 491

In order to evaluate the performance of the proposed ensemble, we used two scenarios:

Scenario A and Scenario D. As shown in Table 4.11, Scenario A, (Sc A), is a binary clas-

sification to indicate whether the traffic flow is VPN or not. Both scenario B, (Sc B), and

scenario C, (Sc C), are 7-classification tasks. Scenario B is to distinguish between seven

non-VPN traffic services like audio, browsing, etc. Scenario C is similar to Scenario B, while

its target labels are seven traffic services of the VPN version Scenario D, (Sc D), mixes all

fourteen applications to perform the 14-classification task. To find the most relevant features

in the two scenarios, we have used RFE also as a feature selection method in order to find

the optimal subset. Then, using those features, we have compared the performance of our



Ensemble-based DL for traffic classification 100

model against several ML-based classifiers as well as against the linear-blending model in

the (Sc A) and (Sc D).

Table 4.11: Scenario description.

Scenario Description

Sc A VPN and Non-VPN traffic identification (2-class)

Sc B Regular non-VPN traffic classification 7-class

Sc C VPN traffic classification 7-class

Sc D All traffic classification 14-class

It can be seen from Table 4.12 that our ensemble achieves the best results with the VPN-

nonVPN dataset in the two scenarios. This demonstrates that our model can achieve high

performance using only time-related features. Specifically, for example, in Scenario A, the ac-

curacy of our model is 9.69%, 14.67%, 36.22%, 28.21%, 7.12%, 6.85%, 5.89%, 5.28%,

6.88%, 5.02% better than DT, KNN, SVM, MLP, Extra-Tree, RF, CatBoost, LightGBM,

AdaBoost, XGBoost, respectively. Also, in scenario D, the accuracy of our model is 18.02%,

24.14%, 52.66%, 42.22%, 12.73%, 12.66%, 11.65%, 9.95%, 13.21%, 10.15%, better

than DT, KNN, SVM, MLP, Extra-Tree, RF, CatBoost, LightGBM, AdaBoost, XGBoost,

respectively. These results illustrate the high performance of our model with both binary

and multi-classification scenarios.

Table 4.12: The classification accuracy (%) of baseline and ensemble methods on VPN-

nonVPN Dataset.

Model Sc A Sc D

DT 87.85 78.83

KNN 82.87 72.71

SVM 61.32 44.19

MLP 69.33 54.63

Extra-Tree 90.42 84.12

RF 90.69 84.19

CatBoost 91.65 85.20

LightGBM 92.26 86.90

AdaBoost 90.66 83.64

XGBoost 92.52 86.70

Linear blending 95.48 93.88

Proposed model 97.54 96.85

Similar to the first dataset, we compared the proposed ensemble with the linear blending

model using the VPN-nonVPN dataset. Figure 4.6 shows that our model outperforms the

linear blending on all metrics, similar to the first dataset.



Ensemble-based DL for traffic classification 101

Accuracy Precision Recall F1-score70

75

80

85

90

95

100

(%
)

Our model
Linear blending

Figure 4.6: Our model vs. linear blending

Also, to better evaluate the performance of our model, the fourteen classification tasks of

the VPN-nonVPN dataset are reported in Table 4.13. From this Table, it can be seen that

our model, achieves the F1-score up to 91% with almost all the classes. Also, our model

has a better F1-score than linear blending in 11 out of 14 cases. Consequently, from those

results, we can conclude that our model is a promising model and can better differentiate

the applications for encrypted traffic.

4.2.6 Performance against state-of-the-art models

Finally, using VPN-nonVPN dataset we compared our ensemble with some state-of-art ap-

proaches including [114], [155], and [102] to validate the performance of our ensemble model.

[114] is the original dataset paper, where the authors used a Decision Tree and KNN clas-

sifiers in order to characterize network traffic. However, since the Decision Tree performed

a little better, we use its result for the comparison task. In contrast, the authors in [155]

and [102] proposed DL-based ensemble approaches. More specifically, Yao et al. [155] used

the Attention Based LSTM model in order to improve the classification performance. Then,

Lin et al. [102] combined CNN and LSTM models to extract the features and realize the

traffic classification.

From the simulation results in Table 4.14, we can observe that the blending scheme

(linear/non-linear) achieves competitive accuracy in comparison to the state-of-art methods.

In particular, we can see that our model outperforms the proposed approach in [114] for

both scenarios (Sc A and Sc D), however, it is not the case with [155] (Attention-LSTM)

and [102] (CNN-LSTM) for the Sc A (binary classification). For Sc D (multi-classification)

we can see that the blending scheme and especially our ensemble (non-linear blending)



Ensemble-based DL for traffic classification 102

Table 4.13: Linear blending vs. our model using VPN-nonVPN dataset

Class Name

Linear Blending Our model

Precision (%) Recall (%) F1-score (%) Precision (%) Recall (%) F1-score (%)

Browsing 92.73 98.08 95.33 98.91 97.15 98.02

Chat 95.24 90.91 93.02 97.50 95.12 96.29

FT 95.45 87.50 91.30 85.71 98.82 91.80

Mail 100 100 100 92.30 100 96.00

P2P 93.75 100 96.77 100 95.91 97.91

Streaming 100 75.00 85.71 87.17 97.14 91.89

VOIP 100 98.48 99.24 99.62 100 99.81

VPN-Browsing 91.67 89.19 90.41 97.39 97.39 97.39

VPN-Chat 83.33 86.96 85.11 90.32 97.39 93.72

VPN-FT 90.70 90.70 90.70 96.27 99.04 97.64

VPN-Mail 100 83.33 90.91 100 93.33 96.55

VPN-P2P 80.95 94.44 87.18 95.32 80.31 87.17

VPN-Streaming 100 100 100 97.82 100 98.90

VPN-VOIP 97.73 100 98.85 100 99.54 99.77

outperforms the [114], [155], [102] by 15.08% (12.11%), 5.65% (2.68%), and 5.15%

(2.18%), respectively. This demonstrates that with a more complicated classification task

(multi-classification) our model performs well. This is because the use of a meta-classifier

corrects the errors that occur during the learning process of the base classifiers.

Table 4.14: The classification accuracy (%) of baseline and ensemble methods on VPN-

nonVPN Dataset.

Schemes Sc A Sc D

DT [114] 89.7 81.77

Attention-LSTM [155] 99.7 91.2

CNN-LSTM [102] 99.7 91.7

Linear blending (ours) 95.48 93.88

Non-linear blending (ours) 97.51 96.85

4.3 Discussion

In this chapter, a novel classifier model is proposed to explore the potential of ensemble

learning and improve the performance of the DT-based models. Using two datasets and dif-

ferent scenarios, the results demonstrate that by taking advantage of several classifiers, our



Ensemble-based DL for traffic classification 103

ensemble model is shown to be accurate and efficient for traffic classification tasks. Specif-

ically, the use of a meta-classifier corrects the errors that occur during the learning process

of the base classifiers. Moreover, it prevents overfitting and reduces bias simultaneously to

some extent (Table 4.7). The presented results also confirm that the neural network layers

help to discover the nonlinear relationships with very little hand engineering and increase

the learning ability of the whole ensemble model.

To evaluate the effectiveness of the proposed model, we have conducted experiments on

different ensemble hyper-parameters (e.g. validation set, base classifiers) and comparative

analysis with the base classifiers and other well-known classifiers. Several evaluation met-

rics are used to evaluate the performance of the proposed ensemble in terms of accuracy,

F1-score, and computation cost. Based on the extensive study of our blending model, we

have shown that the boosting models, XGBoost and AdaBoost, obtained higher prediction

accuracy than those of the bagging methods (e.g. RF and Extra-Trees) as well as the single

classifier (e.g. DT, KNN). Also, we have noticed that using the data generated by the base

classifiers, the meta-classifier outperforms the MLP model that learns from the initial data.

This is because the data generated by the base classifiers help the meta-classifier to converge

quickly and very well. In addition, the performance of the ensemble is depending on the base

classifiers and hence the choice of the base classifiers is a crucial task. Finally, our study

demonstrates that no model negatively impacts the performance of the proposed ensemble.

Pros and cons of proposed ensemble

Our proposed model has several advantages:

+ achieves higher classification and generalization performance than its base classifiers;

+ supports parallel training since the base classifiers are independent of each other;

+ supports the application-aware training where the base classifiers can be used or trained

according to the specific needs;

+ works very well with different situations, including binary and multi-classification tasks

as well as encrypted and non-encrypted traffic.

The shortcoming of the proposed model is that:

− takes more training time than the base classifiers;

− is still difficult to decide which classifiers should be used in level-1 of the ensemble.



Ensemble-based DL for traffic classification 104

Conclusion

In this chapter, we presented a novel ensemble model based on the DL and DT-based models

for traffic classification. The proposed model is based on three main steps. The first, data pre-

processing, includes feature selection using two feature selection methods and data cleaning.

In order to find the optimal features subset, we have used correlation filtering to pick up and

delete the redundant features and in turn, reduce the processing time. Then, a comparative

analysis of two well-used feature selection methods, IG and RFE, has been presented. The

results demonstrate that selecting almost 18% of the dataset through a features selection

method (RFE) improves the classification performance of the DT and RF by 0.15% and

2.97%, respectively. Also, it reduces the training data size by finding useful subset features.

In the second step, to select the base classifiers, we conducted an empirical analysis of seven

DT-based models in terms of accuracy, generalization capability, training, and classification

time. Next, in the third and final step, an ensemble model that incorporates four DT-based

models and DL is applied to improve overall classification accuracy. By using DL as a

meta-classifier, the relationships among the base classifiers are learned automatically, thus

enabling the ensemble method to achieve better classification performance.

Using two datasets, the simulation results show that the proposed ensemble model out-

performs other shallow ML models (DT, SVM, KNN) and ensemble learning models (e.g.

RF, MLP), the linear blending model (logistic regression as a meta-classifier) as well as

some existing state-of-the-art approaches. Moreover, we have studied the impact of the base

classifiers and the hold-out validation set ratio on the performance of the whole model.

For future work, we will investigate further the performance of the proposed ensemble

model in another context (e.g. intrusion detection). Although, the performance of our

ensemble, finding totally labeled data is almost impossible. Thus, to be more realistic, in

the next chapter, we will use a semi-supervised learning model in order to take advantage of

a few labeled traffic and the abundance of unlabeled data.

*****



Chapter 5

Handling partially labeled network

data: a semi-supervised approach

using stacked sparse autoencoder

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 SAE-based semi-supervised model . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.1 SAE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.2 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Experimental study and results analysis . . . . . . . . . . . . . . . . . . . . 109

5.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.2 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.3 SAE-based semi-supervised architecture and hyperparameters . . . . 111

5.2.3.1 Trade-off between performance and unlabeled ratio . . . . . 111

5.2.3.2 Impact of the sparse hyper-parameter . . . . . . . . . . . . 112

5.2.3.3 Impact of dropout and denoising hyper-parameters . . . . . 112

5.2.4 Comparison Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.4.1 Comparison with semi-supervised learning models . . . . . . 114

5.2.4.2 Comparison with the commonly-used supervised classifica-

tion models (100% labeled data) . . . . . . . . . . . . . . . 116

5.2.4.3 Comparison with supervised SSAE* models (using only the

labeled ratio) . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.4.4 Confusion matrix (CM) comparison . . . . . . . . . . . . . . 117

5.2.4.5 Cost in terms of training and testing times . . . . . . . . . . 118

5.2.5 Experiments on the VPN-nonVPN dataset . . . . . . . . . . . . . . . 118

5.2.6 Performance against state-of-the-art models . . . . . . . . . . . . . . 121

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



Semi-supervised model for traffic classification 106

Introduction

Machine Learning (ML) is opening the ways to develop network traffic classifiers, which

achieve an acceptable trade-off between computation complexity and accuracy [90]. Most of

the classifiers are based on supervised learning where only labeled data are used as well as

their learning process requires a large volume of labeled data. However, under the explosion

of new traffic and applications, it is very difficult if not impossible to collect sufficient la-

beled samples for all existing applications. At the same time, labeling all the traffic requires

a huge effort of human annotators sometimes with a specific domain of expertise. On the

other hand, since the unlabeled data provide informative characteristics, they could improve

the performance of the supervised learning algorithms [24]. Therefore, semi-supervised learn-

ing that uses a large amount of unlabeled data together with a limited amount of labeled

data is a promising solution and has attracted more and more attention in network traffic

classification [108].

Apart from the previous issue, building models using shallow models is also bottlenecked

by the amount of features engineering effort required since there are limits to how much

human effort can be thrown at the problem as well [50]. In this regard, DL has gained pop-

ularity in the machine learning community because of its unique nature for solving complex

problems, and it outperforms the other shallow ML models in several fields such as health-

care, computer vision, and network resource management, and has shown success in network

traffic classification [5]. DL provides a variety of algorithms that allow exploiting unlabeled

data to learn useful patterns in an unsupervised manner; for example, an AutoEncoder

(AE) is one of the most popular and most widely used models for feature extraction [156].

Specifically, AE has different variations and its structures are dependent on the number of

layers [74]. The simple model has just one hidden layer, which is not able to get the discrim-

inative features. Thus, to obtain a better performance and learn more complex and abstract

features than classical AE, more complex architecture and training procedures have been

proposed. This model is known as Stacked AE (SAE) [75] (Chapter 2, Section 2.4.2.2). In

fact, SAE has many advantages such as conducting learning based on unlabeled data and

benefiting from its abundance. Also, learning the features from unlabeled data automatically

in advance, which is called pre-training, is much better than learning them from hand-crafted

features [157] [158].

Motivations and key challenges

Applying semi-supervised learning and DL for traffic classification is a promising solution,

but it is accompanied by key challenges, which are listed below:

• extracted features for the traffic classification should distinguish applications from each

other as much as possible;



Semi-supervised model for traffic classification 107

• finding the representative features using only a limited amount of labeled data (with

the help of numerous unlabeled data) should be done automatically;

• finding DL hyper-parameters that should learn robust features and classify new network

traffic very well.

Key contributions

Facing the above challenges, in this chapter, we present a semi-supervised model with a

deeper investigation into the variable ratios of unlabeled data as well as their impact on

accuracy. As presented in Chapter 3, section 3.1.3, even a few semi-supervised models and

SAE-based models have been used in traffic classification; they did not study the impact of

the unlabeled ratio on the performance of the final model, nor the effect of hyper-parameters

(e.g. dropout) on the generalization performance of the SAE model nor a comparative

analysis with several shallow ML and DL models, which have been provided in this study.

In particular, during this contribution, extensive experiments have been conducted to obtain

a robust model, which is then compared against representative models using supervised

approaches as well as DL-based approaches. In brief, the contribution of this chapter can be

summarized as follows:

• a robust SAE model based on both unlabeled and labeled traffic has been proposed;

• an introduction of the sparse, dropout, and denoising coding hyper-parameters are

injected into the model to avoid the over-fitting problem and extract robust features;

• a performance evaluation and comparison against semi-supervised learning (e.g. AE

model), as well as supervised learning (well-known supervised models), have been con-

ducted;

• a performance evaluation of the proposed model using both non-encrypted and en-

crypted network traffic.

The rest of this chapter is organized as follows. Section 5.1 presents the architecture

and the main components of the proposed semi-supervised model. In Section 5.2 experi-

mental results and performance evaluation of the proposed model are presented. Discussion

and analysis of the results are provided in Section 5.3. Finally, the conclusion is given in

Section 5.3.

5.1 SAE-based semi-supervised model

In this section, we describe our proposed methodology: an SAE-based semi-supervised

method for traffic classification. Figure 5.1 presents the structure of the proposed model. It



Semi-supervised model for traffic classification 108

can be seen that the proposed model consists of an unsupervised feature extraction task and

a supervised learning task. We present the methodology in the following section.

Figure 5.1: Structure of the semi-supervised network traffic classification model

5.1.1 SAE model

By taking advantage of unlabeled and labeled data, a semi-supervised classification model

has been proposed as illustrated in Figure 5.1. The proposed semi-supervised classification

model consists of (i) the unsupervised feature extraction stage using unlabeled data, and

(ii) the supervised learning using labeled data. To obtain a better performance and learn

more complex and abstract features than the classical AE model, we deploy a more complex

architecture and training procedure, known as Stacked AutoEncoder (SAE). As presented in

Section 2.4.2.2 and as shown in Figures 5.2, with SAE, several AE layers are stacked together

and form an unsupervised pre-training stage where the encoder layer computed by an AE

will be used as the input to its next AE layer. Each layer in this stage is trained like an

AE by minimizing its reconstructing error. When all the layers are pre-trained, the network

goes into the supervised fine-tuning stage.

In particular, using the unlabeled data, the unsupervised learning algorithm is pre-trained

in a bottom-up way. Then, the decoder layers of the SAE model have been ignored and then

we directly linked the last hidden layer (i.e. code) to a neural network classifier (i.e. Softmax

layer); hence, we get a new deep-learning model. Next, using the few labeled data, a fine-

tuning process was done in a top-down fashion by training the pre-trained layers as a single

model. Finally, the backpropagation algorithm is employed to get the gradient to update

the parameters of the whole model. This learning process makes the proposed model takes

advantage of both labeled and unlabeled data. In fact, the pre-training helps the deep

neural network models to yield much better results with local initialization than random



Semi-supervised model for traffic classification 109

initialization. Also, the global fine-tuning process optimizes the parameters of the entire

model, which greatly improves the classification task. Moreover, in order to extract more

robust features and prevent the over-fitting problem during the training process, we injected

other hyper-parameters such as denoising coding, sparse, and dropout (Chapter 2).

Figure 5.2: General Stacked Autoencoder process

5.1.2 Data pre-processing

Network datasets can have different types of data, including numerical and categorical values.

Therefore, it is important to pre-process this traffic in order to build the proposed model.

Moreover, when the dataset consists of different features with values on different scales, it

needs to be scaled. As with the previous chapter, data cleaning and feature normalization

have been done. Then, we separated the data into unlabeled and labeled sets, where the

labeled set is split into training (80%), validation (10%), and testing (10%). It is important

to note that during this experiment, we fix the amount of labeled data and vary only the

amount of unlabeled data.

5.2 Experimental study and results analysis

In this section, we evaluate the performance of the proposed SAE model by performing

extensive experiments. Then, the results are analyzed and discussed. Python 3.7 is used

as a programming language and Scikit-learn 0.23 is used to develop the shallow ML

models and Keras 2.4 framework is used for the DL-based models. For reliable evaluation,

the reported results are averaged from only five runs of each model (because SAE is expansive

in terms of training time).



Semi-supervised model for traffic classification 110

5.2.1 Objectives

To evaluate the performance of the proposed model, we will deal with all the following

objectives:

1. Study the impact of some hyperparameters on the proposed model:

• evaluate the performance of the SAE under different ratios of unlabeled data;

• evaluate the impact of the sparse parameter on the SAE performance;

• evaluate the impact of dropout and corruption noise hyper-parameters on the

SAE performance.

2. Compare the proposed model against other well-known models:

• evaluate the impact of features extracted by the SAE on the performance of other

learning models;

• evaluate SAE against well-known models including simple AE (deep-learning) and

supervised models that use 100% labeled data;

• evaluate SAE against supervised SAE using the same architecture and hyper-

parameters;

• evaluate the classification performance on the well-known applications through a

confusion matrix;

• evaluate the proposed model in terms of training and classification time;

• evaluate and position our approach in the literature using one of the most popular

traffic datasets, called (ISCX VPN-nonVPN 2016).

5.2.2 Dataset description

To evaluate the performance of the proposed semi-supervised models, we have used the first

dataset of the previous contribution1. However, for facilitating computation, we have used

only the traffic collected from one day, which is 09/05/2017. Therefore, our sub-dataset

consists of 504,731 instances and 54 applications. The simulation of a partially-labeled

dataset has been done through the random selection of a portion of the known applications

and removing the application labels of their instances. Table 5.1 presents the statistical

information (unlabeled/labeled observations along with train/validation/test split) used in

this work.

1https://www.kaggle.com/jsrojas/ip-network-traffic-flows-labeled-with-87-apps



Semi-supervised model for traffic classification 111

Table 5.1: The numerical information of dataset.

Unlabeled

(#samples)

Labeled

Train Validation Test

384,366 96,293 12,036 12,036

364,155 96,293 12,036 12,036

283,217 96,293 12,036 12,036

202,322 96,293 12,036 12,036

161,868 96,293 12,036 12,036

40,484 96,293 12,036 12,036

20,259 96,293 12,036 12,036

5.2.3 SAE-based semi-supervised architecture and hyperparame-

ters

Here, we study the impact of several hyper-parameters on the performance of the whole

model. In the beginning, since in a deep neural network, there is no clear mathematical

proof to interpret its architecture. Therefore, to find the optimal model, we tested different

architectures as well as hyper-parameters that maximize the accuracy of the classification.

The configuration, with 4 hidden layers [100, 200, 400, 50] is selected for further experi-

ments since it provides the best results. Also, it is important to note that, after extensive

simulations, we have selected a learning rate equal to 0.0001. Besides, the selected activa-

tion of hidden layers is ReLU (rectified linear unit) because it provides better convergence

performance than sigmoid and tanh [51].

5.2.3.1 Trade-off between performance and unlabeled ratio

One of the important concerns in this contribution is to study the impact of the unlabeled

data ratio on the performance of the proposed model. Therefore, in this section, we explore

in-depth the trade-off between the performance of the proposed model and the amount of

unlabeled data. To do so, we trained our system using different ratios of unlabeled samples

called Ru, which is expressed below.

Ru =
nb unlabeled data

nb labeled data
(5.1)

The accuracy of the model while varying Ru is presented in Figure 5.3. It can be seen that

increasing the amount of unlabeled data (increasing Ru) boosts the classification performance

of the model. This can be explained by the fact that increasing the amount of unlabeled data



Semi-supervised model for traffic classification 112

provides more informative characteristics and SAE can benefit from this data in the pre-

training process and in turn, improves the classification performance for unseen observations.

As a result, the Ru=3.2 has been used for the rest of the experiments.

Figure 5.3: Performance of model with different unlabeled ratios.

5.2.3.2 Impact of the sparse hyper-parameter

Since the number of neurons in hidden layers is large (i.e. [100, 200, 400, 50]), using a sparse

constraint can allow discovering better the complex structure behind the data. However, like

all the hyper-parameters, it is crucial to select an optimal sparsity parameter (Chapter 2,

Section 2.5) for better traffic classification. As presented in Figure 5.4, we have tested the

effect of the sparse parameter on the performance of our model. Here, the rate varied between

0.01 and 0.07 (we stopped when the performance started to decrease). It can be seen that

when the value of the sparse parameter is 0.06, the SAE model gives the best accuracy

(94.40%) and training time. Larger than this value, the training time of the model begins

to increase. Using the sparse hyper-parameters, the SAE is converted into Stacked Sparse

AutoEncoder (SSAE).

5.2.3.3 Impact of dropout and denoising hyper-parameters

Although SSAE performs well, we can further improve its generalization performance through

other hyper-parameters. Using the dropout (Chapter 2, Section 2.5) and denoising (Chap-

ter 2, Section 2.4.2.2) hyper-parameters can improve the performance of the classification.

As presented in Figure 5.5 and Figure 5.6, we have tested the impact of dropout and cor-

ruption noise on the accuracy of our model. Here, the rate varied between 0 and 0.05 (we

stopped when the performance started to decrease). The results show that the best clas-

sification performance was obtained at a dropout rate and corruption both equal to 0.02.

Based on the results shown in these figures, it can be seen that the SSAE has the ability to



Semi-supervised model for traffic classification 113

Figure 5.4: Accuracy and training time of different sparse parameter

restore a good reconstruction from a corrupted input version even with a high corruption

level (Figure 5.6). Moreover, we can interpret that too much a dropout rate can decrease

the classification performance.

Figure 5.5: Effect of dropout Figure 5.6: Effect of denoising coding

Furthermore, to verify the impact of these hyper-parameters on the generalization per-

formance of the proposed model, we compare the combined solution against a simple SSAE

(without enhancement). The results are shown in Figure 5.7. It can be seen that the SSAE

with dropout and denoising code combined has shown a better performance (i.e. test accu-

racy) with 95.03% accuracy. In addition, the generalization capability of the model has been

improved (i.e. the difference between the training and testing accuracy has been reduced).

This can be explained by the fact that the denoising rate can help to extract robust features

and the dropout prevents the co-adaptation between the hidden neurons and hence avoids

over-fitting.



Semi-supervised model for traffic classification 114

Figure 5.7: Accuracy of our model without and with enforcement (dropout and denoising)

5.2.4 Comparison Analysis

To evaluate the performance of the proposed model, we perform a comparative analysis

against other shallow ML and DL models including the following two categories: semi-

supervised and supervised models.

5.2.4.1 Comparison with semi-supervised learning models

To verify the classification efficiency of the proposed model labeled as SSAE* (i.e. SSAE

with denoising and dropout), we compared it to four reference ML classification algorithms,

namely DT, RF, SVM, XGBoost as well as simple SSAE (without dropout+denoising). To

create the semi-supervised models (SSAE+DT, SSAE+RF, SSAE+SVM, SSAE+XGBoost),

these algorithms are built on top of the unsupervised part of our proposed model (feature

extraction part) instead of Softmax layer. They try to benefit from the automatic feature

extraction of the pre-trained part of the model. In fact, the labeled data is passed through the

pre-trained of the SSAE that is trained by the unlabeled data and obtains X ′, the transformed

data. The last layer of our model (the encoding vector) has only 50 neurons, which is a smaller

dimension than X (i.e. 87 features). Finally, these features are used with the aforementioned

classifiers.

Moreover, we also used the AE model for comparison as it has a deep-learning architecture

similar to SSAE. After learning of the AE (i.e. unsupervised learning), the decoder is removed

and a Softmax layer is attached and the whole model is fine-tuned for the classification task

(i.e. supervised learning). As shown in Figure 5.8, the AE here reconstructs the input and



Semi-supervised model for traffic classification 115

then classifies it through the encoder part. It should be noted that the used AE has the

same network structures as SSAE except that there is no sparse constraint as well as no noise

and dropout hyper-parameters.

Figure 5.8: Classification process with AE model

Table 5.2 summarizes the experimental results of the five semi-supervised models (pre-

viously described), SSAE, and SSAE*. It can be seen that our proposed model outperforms

each of them. In fact, DT, RF, XGBoost, and SVM cannot fine-tune the features extracted

by the SSAE and this may explain their lower performance. Also, using the test dataset,

it can be seen that DL-based models (i.e. SSAE and AE) perform better than the shal-

low models (i.e. RF, DT, XGBoost, and SVM). For example, the accuracy of our model

is 2.45%, 3.33%, 4.96%, 38.84%, 6.14% better than AE, SSAE+XGBoost, SSAE+RF,

SSAE+SVM, SSAE+DT, respectively. Furthermore, the results clearly demonstrate that

the SSAE models with/without denoising and dropout hyper-parameters are more accurate

than AE. Moreover, it performs better in terms of precision, recall, and the trade-off between

them (i.e. F1-score). These results are attributed to the pre-training process of the stacked

AEs layers (Figure 5.2) and the sparse constraint used with the SSAE models.



Semi-supervised model for traffic classification 116

Table 5.2: Comparison of SSAE against different semi-supervised models on the test dataset.

Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1-score

(%)

SSAE+DT 88.89 90.02 89.02 87.42

SSAE+SVM 56.19 63.65 55.09 57.11

SSAE+RF 90.07 90.91 89.68 88.11

SSAE+XGBoost 91.70 93.01 91.11 92.21

AE 92.58 93.11 92.84 92.65

SSAE 94.40 94.78 93.10 93.31

SSAE* 95.03 96.40 94.01 94.40

5.2.4.2 Comparison with the commonly-used supervised classification models

(100% labeled data)

Also, to verify the efficiency of our model for traffic classification, we compared it with five

references supervised classification models including (i) simple classifiers, which are DT and

SVM, (ii) ensemble learning such as XGBoost and RF, (iii) neural network classifier, which

is MLP classifier. We select these classifiers as our baselines because RF and DT are easy

to train [16], SVM is widely used and proved to be useful in several applications [154], and

MLP is a neural network model as well as XGBoost because it is an effective model for the

classification task. In contrast to the above section, these classifiers use all the labeled data

during the learning process and use all the original features X.

Table 5.3 presents the results achieved by our proposed model compared with the su-

pervised classifiers. It is very clear that our model outperforms the ensemble models (i.e.

XGBoost and RF), simple DL model (i.e. MLP) as well as simple classifiers (SVM and DT).

Specifically, although the competitive results of XGBoost with 100% labeled data, our model

gets the best results with the least amount of labeled data. It means that the proposed model

with limited labeled data can get competitive accuracy compared with the well-known super-

vised models. In particular, the accuracy of our model is 2.47%, 1.88%, 0.15%, 62.65%,

5.75% better than DT, RF, XGBoost, SVM, MLP, respectively. This may be attributed

to the fact that our proposed model-based generates deeply learned features that yield far

superior results compared to the initial statistical features. Moreover, it uses a pre-trained

process that can boost the accuracy instead of the supervised models that are trained from

scratch using all labeled data. From these results, we can conclude that our model is a robust

model, extracts relevant features as well as can differentiate the applications very well.



Semi-supervised model for traffic classification 117

Table 5.3: Comparison of SSAE against some supervised models.

Model Accuracy

(%)

recision

(%)

Recall

(%)

F1-score

(%)

DT 92.56 93.36 93.00 93.16

RF 93.15 93.79 93.62 93.67

XGBoost 94.88 95.43 94.12 94.39

SVM 32.38 55.20 30.38 38.87

MLP 89.28 91.04 89.08 89.51

SSAE* 95.03 96.40 94.01 94.40

5.2.4.3 Comparison with supervised SSAE* models (using only the labeled ra-

tio)

In order to further study the impact of the unlabeled data on the efficiency of our proposed

model, we compared it with its supervised version. In other words, we evaluated the perfor-

mance of our model (SSAE*) using only the labeled portion of data for its learning process

without taking advantage of the unlabeled data. Table 5.4 illustrates the comparison of

our model with and without the unlabeled data. It can be seen that our model in a super-

vised manner performs worse than the one using unlabeled data. In particular, the results

show that unlabeled data boost the accuracy of the traffic classification by 11.29%. This

is because unlabeled data can provide informative characteristics and hence can boost the

performance of traffic classification. This advantage might become even more significant in

the case of larger training data.

Table 5.4: Comparison with supervised SSAE*.

Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1-score

(%)

Supervised

SSAE*

83.74 84.54 84.98 83.86

SSAE* 95.03 96.40 94.01 94.40

5.2.4.4 Confusion matrix (CM) comparison

Now we analyze a subset of results limited to some well-known applications using a

confusion matrix (CM). CM compared the efficiency of the proposed model against two



Semi-supervised model for traffic classification 118

methods (one based on non-DL and another based on the DL). According to the above

results, we selected XGBoost as a supervised (non-deep learning) classifier because it gives

the best results and we select AE (deep learning) as a semi-supervised model.

Figure 5.9 shows the classification results of these 3 models using CM where columns

correspond to the actual class, rows refer to the predicted class. The CM provides information

about the classes that are correctly or incorrectly classified and the type of misclassification.

As shown in Figure 5.9 (c), with XGBoost, many Youtube and Gmail flows, are incorrectly

classified as Google, and vice versa. Moreover, we can see some interesting confusion between

Google and Youtube, Gmail and Google, and Facebook and Gmail with AE (Figure 5.9 (b)).

Finally, our proposed model incorrectly classifies Google as Youtube, but not the opposite

(Figure 5.9 (a)). As a result, we can conclude that the proposed model provides slightly

better classification results comparable to AE. It also performs slightly better than XGBoost

but without the need to label all the data as with XGBoost.

5.2.4.5 Cost in terms of training and testing times

As a continuation of the previous subsection, we also compared the computational efficiency

of the proposed model against XGBoost and AE. This comparison has been done in terms

of training and classification time. Experiments are performed on a PC with, 8.00 GB of

RAM and two cores of Intel® Core™ i5-7200U CPU@2.50GHz processor.

As shown in Figure 5.10 and Figure 5.11 that in terms of training time, the DL-based

models (our model and the simple AE) need longer training time compared to the boosting

model (i.e. XGBoost). However, once these models were trained, they were actually more

efficient compared to the XGBoost in terms of classification time. In fact, as explained in

Section 5.1.1, our model consists of two main phases (pre-training, and fine-tuning process)

and this may explain its high training time. In contrast to the training, it is very fast for

the classification task. We assume that the training time can be proceeded offline and thus

does not impact the real-time utilization of the classification process.

5.2.5 Experiments on the VPN-nonVPN dataset

To validate the effectiveness of the proposed model, we also conduct experiments based on

another dataset, which includes encrypted data (VPN and non-VPN data).

As with our previous contribution, from this dataset, we have selected two representative

scenarios: (i) scenario A (Sc A), which is a binary classification to indicate whether the traffic

flow is VPN or not, and (ii) scenario D (Sc D) that mixes all the applications to perform the

multi-classification task (e.g. Chat, Streaming, VNP-chat, etc.). Note that all flows in the

dataset are labeled. However, to evaluate our model, we only use a small portion of class

labels during the training process. Specifically, we split the data into 80% for training, 10%

for validation, and 10% for the test. Then, we distribute the training set into half labeled



Semi-supervised model for traffic classification 119

(a) Confusion matrix for the proposed model

(b) Confusion matrix for Autoencoder

(c) Confusion matrix for XGBoost

Figure 5.9: A confusion matrix of the proposed model against AE and XGBoost under the

most popular applications.



Semi-supervised model for traffic classification 120

Figure 5.10: Training time comparison Figure 5.11: Classification time comparison

per sample

and half-unlabeled. In addition, with our encoder layer, we have reduced the features from

23 to 15 features.

It can be seen from Table 5.5 and Table 5.6 that with half amount of labeled observations

the accuracy of our model can achieve over 88%, 84% for Sc A and Sc D, respectively. Also,

it can be seen that with few labeled observations as well as with the least amount of features,

our model performs better than the simple classifiers like SVM and MLP. However, with this

dataset, ensemble-based models (XGBoost) using totally labeled data, give better accuracy.

Table 5.5: Comparison with supervised models on Sc A (using 100% labeled data).

Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1-score

(%)

RF 90.30 90.35 90.18 90.24

XGBoost 93.02 93.18 92.85 92.97

SVM 60.98 61.71 59.77 58.69

MLP 73.72 73.63 73.68 73.65

SSAE* 88.04 88.05 88.02 88.03



Semi-supervised model for traffic classification 121

Table 5.6: Comparison with supervised models on Sc D (using 100% labeled data).

Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1-score

(%)

RF 82.84 82.31 79.36 80.49

XGBoost 87.10 85.27 83.51 84.17

SVM 43.44 50.28 27.24 26.89

MLP 58.90 51.35 52.48 50.34

SSAE* 84.13 80.70 79.55 79.93

5.2.6 Performance against state-of-the-art models

In order to further validate the efficiency of the proposed model, a comparison with some

state-of-the-art approaches has been done. The experimental results are presented in Ta-

ble 5.7. It can be seen that the DL-based supervised model such as [102] and [155] out-

performs all the approaches and specifically our model because they are more complex and

use totally labeled data. However, this is not the case with the DT-based approach [114],

where our model gives better results. This is may be attributed to the deep architecture used

in our case. Also, our model outperforms the DL-based semi-supervised learning proposed

by [159], and this is because of the pre-training process of the stacked AEs layer as well as

the introduction of some hyper-parameters such as denoising and dropout rate.

Table 5.7: The classification accuracy (%) of baseline and ensemble methods on VPN-

nonVPN Dataset.

Type Ref. Model Sc A Sc D

Supervised

[114] DT 89.7 81.77

[102] CNN-LSTM 99.7 91.7

[155] Attention Based

LSTM

99.7 91.2

Semi-supervised

[159] Multi-task model

based CNN

N/A 80.67

SSAE* SSAE+NN 88.04 84.31



Semi-supervised model for traffic classification 122

5.3 Discussion

In this study, we proposed a complete and robust traffic classification system that makes use

of both unlabeled and labeled data. We have analyzed the impact of the unlabeled data ratio

on the performance of the proposed model. The evaluation demonstrates that this model

needs a limited number of labels to get an accuracy over 95%. Next, hyper-parameter tuning

has been done in order to improve performance. These hyper-parameters are specified to

make the trained model lie on the balance point, which is neither under-fitting nor over-

fitting.

Specifically, the proposed model has proved to classify the unknown applications very

well and demonstrates the usefulness of the sparsity, denoising, and dropout for model gen-

eralization. Moreover, the performance of the proposed model may be attributed to the use

of all the data contained in the dataset as well as the pre-training stage where each single AE

is trained to exploit the relationship between high-level features and helps the deep neural

network models to yield much better results with local initialization than random initial-

ization. Then, the global fine-tuning process optimizes the parameters of the entire model,

which greatly improves the classification task.

Pros and cons of the proposed semi-supervised classifier based on deep-learning

+ The proposed model has several advantages. First, it is simple and easy to imple-

ment. Second, it automatically provides feature extraction without human interven-

tion and avoids time-wasting as maximum as possible. Third, tuning the model hyper-

parameters helps to improve the performance of the final model. Finally, its perfor-

mance continually improves when it is trained with more unlabeled data. Therefore,

these ensure that the model is suitable for a real network environment containing a

huge amount of unlabeled data.

− One of the disadvantages of this system is choosing the appropriate architecture and

hyper-parameters. Furthermore, it requires an important time for the training task

as well as needs some pre-processing like feature transformation and normalization.

However, these are the normal procedures for any ML/DL model.

Conclusion

In this chapter, a semi-supervised network traffic classification system based on Stacked

Sparse Autoencoder (SSAE) using two real network datasets has been proposed. It extracts

features from unlabeled data and trains the classification model with a limited amount of

labeled data. To do this, the SSAE model captured high-level feature representations in



Semi-supervised model for traffic classification 123

an unsupervised manner through the pre-trained strategy and without human intervention.

Then, a supervised neural network classifier is linked to the SSAE for the fine-tuning process

and the classification task. Furthermore, different unlabeled data ratios have been investi-

gated in order to obtain optimal performance based on the accuracy of the whole model.

Next, sparse, dropout, and denoising code hyper-parameters have been injected to improve

the generalization performance of the SSAE.

The simulation results show that the enhanced model SSAE* performs better than SSAE

(i.e. without denoising and dropout hyper-parameters), simple AE (i.e. without stacked

AEs pre-training and sparsity parameter), shallow ML models (DT, SVM), ensemble learning

models (RF and XGBoost), as well as the supervised version of SSAE* (using only the labeled

ratio). Moreover, we have evaluated the computational efficiency of the proposed model and

the experimental results show that it outperforms XGBoost in terms of the classification

time. In addition, the performance of the proposed model has also been evaluated against

baseline approaches using a well-known dataset with different use cases and scenarios (binary

classification and multi-classification).

Although the performance of the model, cannot be an efficient solution for intrusion

detection. This is because collecting the data in a central entity for model training is a

crucial step. Also, our model can cause some damage to the central entity if the traffic

contains some attacks. Thus, to solve these issues in the next chapter, we will propose a

Federated semi-supervised model for attack detection in order to keep the data where it was

generated.

*****



Chapter 6

FLUIDS: Federated Learning with

semi-supervised approach for

Intrusion Detection System

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1 FLUIDS methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Experiment and performance evaluations . . . . . . . . . . . . . . . . . . . . 128

6.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2.2 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.3 Performance under different factors . . . . . . . . . . . . . . . . . . . 131

6.2.3.1 Impact of communication rounds . . . . . . . . . . . . . . . 131

6.2.3.2 Impact of the unlabeled data available on the clients: . . . . 132

6.2.3.3 Communication overhead . . . . . . . . . . . . . . . . . . . 132

6.2.3.4 Performance against other models . . . . . . . . . . . . . . . 133

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



FL-based semi-supervised model for IDS 125

Introduction

A large number of smart devices and sensors act in the background to collect the environment

and user data. However, these devices are vulnerable to several cyber-attacks [160] where the

attackers can intercept and analyze some sensitive data. These create significant challenges

for the network operator, especially, for the security of the end-users. Consequently, to im-

prove network security, some ultra-efficient, fast, and intelligent traffic analysis approaches

are crucial. In general, intrusion detection can be considered as a classification problem

by classifying the incoming traffic into normal or attack. Therefore, attack detection can

take place via network traffic classification using models, especially DL-based models [161].

Besides the application classification, traffic classification has significance in security moni-

toring through attack classification or detection. DL models can automatically diagnose and

detect attacks using flow and packet-based features.

In fact, building a conventional DL model consists of three steps: (i) data capture and

labeling, (ii) data pre-processing, and (iii) model training. The first step requires that data

are manually labeled after being captured, which is a highly expensive and time-consuming

process. The second and third steps require the data owners to send their private data to a

central entity for data pre-processing and model training. However, intrusion detection re-

quires fast analysis, whereas sending user data to some central server is time-consuming [12].

Sending the data to the cloud/central entity over limited-bandwidth causes network con-

gestion and in turn, unacceptable latency for applications in which real-time decisions have

to be made. Furthermore, the conventional model training process raises privacy issues as

confidential data might need to be shared in the process. Due to privacy concerns, send-

ing the traffic for model training can cause some damage to the central entity if the traffic

contains some attacks. In addition, the user may not be willing to share their data with

a central entity [162]. Consequently, these render the conventional model training process

out of intrusion detection application, and thus a decentralized computationally scalable

methodology is very much in need.

To cope with these issues and leverage the value of existing network datasets while

protecting privacy-sensitive users’ data, Federated Learning (FL) appeared as a promising

solution. It does not need to move the data to a central entity (Section 2.6, Chapter 2).

With FL, a global model is trained collaboratively by each agent of the system (e.g. gateway)

over the decentralized network. This is done via local updates, without exchanging private

data [81]. Despite FL can be promising, one of the strong assumptions behind current FL-

based solutions for IDS is that all the data is labeled (Section 3.2, Chapter 3). For labels,

this assumption seems unrealistic, as this would mean that a human would have already

tagged all the network traffic. This is difficult in practice (i) due to the resource constraints

on the devices as well as some edge nodes and (ii) due to the difficulty of manually labeling

data on such devices, which are far from human reach. To address these limitations, the



FL-based semi-supervised model for IDS 126

integration of FL and semi-supervised learning for the attack detection task is a promising

direction.

Key contributions

Thus, we propose an FL-based semi-supervised model, called FLUIDS, which combines FL and

semi-supervised learning for Intrusion Detection Systems (IDS). FLUIDS ensures privacy and

takes advantage of the unlabeled and labeled data for intrusion detection. More specifically,

we train a model using only a small amount of labeled data combined with more abundant

unlabeled data. The contribution of this chapter can be summarized as follows:

• a semi-supervised FL, combining the use of unsupervised learning at the client and

supervised learning at the server. The unsupervised and supervised models are then

concatenated to obtain a unified representation learning and classification solution for

intrusion detection and attack classification;

• enabling the edge nodes to learn an efficient intrusion detection model without the

need to label their local data;

• decreasing the burden of transmitting and labeling all the traffic at the server: by

using FL, we add the edge nodes into the pipeline of the learning process and employ

unsupervised learning at the edge;

• an extensive simulation using different datasets for binary classification (intrusion de-

tection) and multi-classification (attack classification) has been done, as well as a

comparison of FLUIDS against some state-of-the-art approaches, is presented.

The rest of this chapter is organized as follows. Section 6.1 presents the architecture

and the main components of the proposed model. In Section 6.2 experimental results and

performance evaluation of the proposed model are presented. Discussion and analysis of the

results are provided in Section 6.3. Finally, the conclusion is given in Section 6.3.

6.1 FLUIDS methodology

The objective of this chapter is to train a semi-supervised model using only a small amount

of labeled data while preserving data privacy for IDS. Thus, the proposed model (FLUIDS)

takes advantage of both labeled and unlabeled data in a decentralized way and minimizes

data exchange.

Specifically, as shown in Figure 6.1, FLUIDS consists of two parts: the client’s side and

the server’s side. The clients perform the model pre-training using their unlabeled data and

the server fine-tunes the global parameters using its limited labeled data (Figure 6.1 (a)).



FL-based semi-supervised model for IDS 127

Local 
unlabeled data

Local 
unlabeled data

Local 
computation

Local 
computation

Industrial 
machines Industrial 

Robots

Local 
AutoEncoder

Local 
AutoEncoder

Server

FL aggregation & 
Supervised 

Learning

Labeled data

Global 
aggregation

Supervised 
Learning

Supervised 
model

Supervised 
model

Clients Clients

…

AutoEncoder 
Update

Global 
AutoEncoder

Supervised 
model

(a) Federated semi-supervised architecture

IIoT edge devices FL server

Client selection step

Local AutoEncoder

Update using 

unlabeled data

AutoEncoder 
aggregation


(FedAvg)

Global 
AutoEncoder

Supervised 
Learning

Traffic 
classification

Local 
AutoEncoder


Update

1

2

Upload AutoEncoder update

3
4

Split 
AutoEncoder 

& adding a 

Neural Network 
layer


Send global AutoEncoder

5

6

7

7

Iterative process

Send Supervised model

(b) Communication process

Figure 6.1: The network architecture and communication process of FLUIDS.

In step 1 in Figure 6.1 (b), the server selects a random subset of clients, n ≤ K, that

will participate in the learning process and send them the initial AutoEncoder (AE) model.

Then, on the client’s side (edge devices), the AE model is trained for a selected number of

epochs using the clients’ unlabeled data with the objective of reducing the reconstruction

error (step 2). Here, the total unlabeled data are randomly distributed across the clients.

Generally, the clients are often far from human reach, thus accessing them to label their

data is a difficult and impractical task. Thus, to be more realistic, in this work we consider

that the client data is fully unlabeled. Also, since the client generally has limited resources

compared to the cloud node, we used AE instead of the SAE model (less complex).

Once the local training is finished, the clients send their local models to the cloud server

for global aggregation (step 3). On the server side, the AE is aggregated (step 4), then the

decoder is removed and a Fully Connected Network (FCN) layer is attached to the encoder

layers in order to fine-tune the model parameters for the supervised learning using a limited

labeled data located on the server (step 5 and 6). Specifically, the server uses its limited

labeled data for supervised learning, and thus unlike the classical FL, in our case, the server

is not only used for model aggregation but also for supervised learning. Finally, the server

sends back the global AE to the clients for a further update as well as the trained supervised

model for inference (classification of the attacks) on the network data of the devices (step 7).

It is important to note that (i) no raw data is exchanged between the clients and the central



FL-based semi-supervised model for IDS 128

server, and (ii) the supervised model is trained through domain-specific public datasets or

laboratory data located on the server without privacy concerns. Algorithm 3 describes the

steps involved in designing a blending-based ensemble design, and Table 6.1 presents the

notations used in Algorithm 3.

Algorithm 3: Learning procedure.

1: Input: Public labeled Dataset Dl = {xi, yi} (i = 1, 2, . . . , n; xi ∈ X; yi ∈ Y ); Private

unlabeled dataset Du
k = {xi} (k = 1, 2, . . . , K; xi ∈ Xk), R, Ec, Es, K, rk

/* --- Server side --- */

2: Send initial global model θ = θ0 to clients

3: for i = 1 to R do

4: n= rk * K

5: for j = 1 to n do in parallel

/* --- Client side --- */

6: for ec = 1 to Ec do

7: Update local AE parameters θj using Du
j

8: end for

9: Send updated θj to the Server

10: end for

/* --- Server side --- */

11: Aggregate {θ}j=1...n with FedAvg into θ

12: Extract encoder

13: Concatenate encoder and FCNLayer into H

14: for es = 1 to Es do

15: Train H using Dl

16: end for

17: Send models θ and H to the clients

18: end for

6.2 Experiment and performance evaluations

In this section, we evaluate the performance of FLUIDS through extensive experiments and

discuss the results.

6.2.1 Experimental Setup

In this study, we split the dataset into two subsets: train (80%) and test (20%). We used

Python 3.7 as a programming language and Scikit-learn 0.23 for the shallow models



FL-based semi-supervised model for IDS 129

Table 6.1: List of notations used in our model.

Notation Meaning

K Total number of clients

rk a fraction of the clients randomly selected from

K

n The number of clients selected at each round

Ec Local clients epochs

Es Local server epochs

R Total number of rounds

H Supervised model

θ0 Initial AE parameters

and PyTorch 1.12 for DL models. All experiments are run on a four-core Intel® Core™
i7-6700 CPU@3.40GHz processor, and 32GB of RAM. Table 5.7 summarizes the model

parameters and their selected settings in our simulations. As done in the previous chapter,

the simulation of a partially-labeled dataset from this fully labeled data has been done by

randomly selecting rows from the training set and removing their labels. It is important to

note that during this experiment, we fixed the amount of labeled data and vary only the

amount of unlabeled data. In addition, in our experiments, we computed the average of the

evaluation metric from five runs.

6.2.2 Dataset description

To validate the effectiveness of our proposition, we used different datasets three datasets,

which are UNSW-NB15 dataset1 [163], gas pipeline SCADA system dataset, and water stor-

age tank control system dataset. The UNSW-NB15 dataset is recent and referenced in many

existing papers. The simulation period of data was 16 hours on Jan 22, 2015, and 15 hours

on Feb 17, 2015. The training set contains 175,341 and the testing set contains 82,332 total

observations. Each observation is labeled either 0 if it is normal or 1 if it is an attack. Thus,

this dataset has been used for intrusion detection tasks (binary classification).

Moreover, to validate the effectiveness of FLUIDS for attack classification or multi-classification

tasks, we used a gas pipeline SCADA system dataset, which is a benchmark dataset for se-

curity research [141]. It was released by Mississippi State University in 2014. This dataset

consists of 26 features and 1 label, the label contains eight possible values, ’benign’ and seven

different types of attacks. The possible values for the label are presented in Table 6.2.

The description of these attacks are as follows:

1https://research.unsw.edu.au/projects/unsw-nb15-data-set



FL-based semi-supervised model for IDS 130

Table 6.2: Gas pipeline SCADA system dataset description.

Label Description # Total observations

Benign Normal traffic 61,156

NMRI Naive malicious response injection 2,763

CMRI Complex malicious response injection 15,466

MSCI Malicious state command injection 782

MPCI Malicious parameter command injection 7,637

MFCI Malicious function command injection 573

DoS Denial of service 1,837

Rec Reconnaissance 6,805

• DoS: DoS attacks are the most common attacks over a network. It tries to weaken the

network and the server by overwhelming traffic. It forces the victim to process these

attack-generated requests or causes the machine to crash, thus making the provided

service unavailable.

• NMRI: NMRI is a kind of response injection attack. These attacks leverage the ability

to inject or alter response packets in a network; however, they lack the ability to obtain

information about the underlying process being monitored and controlled.

• CMRI: CMRI is a kind of response injection attack. They are more sophisticated than

NMRI attacks because they require an in-depth understanding of the targeted system.

As such, CMRI attacks are designed to appear like normal process functionality. These

attacks can be used to mask alterations to the process state perpetrated by malicious

command injection attacks.

• MSCI: MSCI is a kind of command injection attack. These attacks change the state

of the process control system to drive the system from a safe state to a critical state

by sending malicious commands to remote field devices. In the case of the gas pipeline

system, this attack includes command injections that turn the compressor on or off,

and those that open or close the relief valve.

• MPCI: MPCI is a kind of command injection attack. They try to change the high

and low set points for the water storage tank while disabling the liquid level alarms or

changing the proportional integral derivative (attempts to maintain the air pressure in

the pipeline) parameters used in the gas pipeline system.

• Rec: Rec is a kind of attack in which the gather information system and identify

victim characteristics before launching an actual attack.

In addition, as this dataset consists of different features with values on different scales,

the data were normalized in order to optimize the training process’ performance.



FL-based semi-supervised model for IDS 131

6.2.3 Performance under different factors

In this section, we study the performance of FLUIDS under different factors such as model

architecture, communication rounds, the ratio of unlabeled data, and communication over-

head. Also, we compare our model with its non-FL version (using the same model, and

amount of labeled/unlabeled data). Since in real-time situations, the probability of client

failures is significant [12] we use the Joint-Announcement Protocol (JAP) to avoid the prob-

lem of client failure and communication overhead. Given the ratio of clients (rk), JAP selects

randomly the clients that participate in the ith training round [164].

6.2.3.1 Impact of communication rounds

In this subsection, we study the relationship between the performance of FLUIDS and the

communication rounds. Since the edge nodes generally have limited resources compared to

the cloud node, with the UNSW-NB15 dataset we set the number of epochs to 5 for the

AE model training on the edges (i.e. client) and to 20 epochs for the supervised training

located in the cloud. Similarly, with the Gas pipeline dataset, we set the number of epochs

to 20 for AE model training and 100 epochs for supervised training. For each communication

round (between FL server and clients), we present the performance of the proposed model

(Figure 6.2) while keeping the remaining parameters fixed.

It can be seen from this result that with the UNSW-NB15 dataset the aAccuracy goes

from 82.82% in the second round to 84.32% in round 6. Also, it can be seen using the

gas pipeline dataset, FLUIDS can converge quickly and its accuracy starts to be stable after

2 rounds. These may be attributed to the fact that the AE trained on the clients provide

some pre-trained layers, which capture relevant features. However, increasing the number of

rounds does not always lead to better performance. This is because the model can overfit

with large communication rounds.

	80

	81

	82

	83

	84

	85

	86

	87

	2 	3 	4 	5 	6 	7 	8 	9 	10

pe
rc
en
ta
ge

Communication	rounds

Accuracy
F1-score
Precision
Recall

(a) UNSW-NB15 dataset (b) Gas pipeline dataset

Figure 6.2: Effect of communication rounds on FLUIDS performance



FL-based semi-supervised model for IDS 132

6.2.3.2 Impact of the unlabeled data available on the clients:

To investigate the impact of unlabeled data, we train our system using different ratios of

unlabeled samples Ru while keeping the amount of labeled data fixed.

As shown in Figure 6.3, increasing the size of unlabeled data improves the performance

of the whole model. These results are attributed to the fact that accessing more (diverse)

unlabeled data provides informative characteristics to find a more discriminatory latent space

(i.e. features) and, in turn, our model benefits from these data and boosts its performance

to classify unseen observations.

(a) UNSW-NB15 dataset (b) Gas pipeline dataset

Figure 6.3: F1-score with various unlabeled ratio (Ru).

6.2.3.3 Communication overhead

By only exchanging the local model updates between the FL server and the clients, FL

can help to reduce the communication overhead. Therefore, to minimize the communica-

tion overhead, two key aspects need to be considered: (i) reducing the local’s model update

frequency, and (ii) reducing the size of data communicated between the FL server and the

clients [165]. We have taken into consideration these two aspects by considering two scenar-

ios. The first scenario is with centralized learning and the second one is with FL. For the

FL, we also considered two other scenarios by changing AE frequency updates, in the first

one (our model with an update every 5 epochs), the edge nodes update their local model

(e.g. AE model) after 5 epochs, while in the second one (20-epochs), the local models are

updated after 20 epochs.

We can observe from Figure 6.4 that the local models’ update frequency can impact the

communication overhead. Moreover, in comparison to the centralized scenario, FLUIDS sig-

nificantly reduces the size of the message. This advantage will become even more significant

in the case of larger training data. This is mainly due to the fact that FL avoids transferring



FL-based semi-supervised model for IDS 133

raw data samples to the central entity and sends only model parameters. Also, through the

use of the AE model, the FL clients compress their local data and hence reduce the size of

the parameters communicated with the FL server.

(a) UNSW-NB15 dataset (b) Gas pipeline dataset

Figure 6.4: Comparison in terms of communication overhead for two datasets

6.2.3.4 Performance against other models

In order to further validate the effectiveness of our model, we compare its performance against

the non-FL semi-supervised model, different supervised models as well as some state-of-the-

art models.

• Comparison with non-FL mode

Evaluation results of our proposed model in comparison to the non-FL model are pre-

sented in Table 6.3. With the non-FL model, the clients need to send their data to a central

server in order to train the AE and the supervised models. The below formulas give the

training process of our model and the non-FL model where R is the total communication

rounds, Ec is client AE epochs and Es is supervised learning epochs on the cloud. TFL (resp.

TnFL) is the training process of our FL model (resp. the equivalent non-FL version of our

model).

TFL = R× (Ec + Es) (6.1)

TnFL = Ec + Es (6.2)

In comparison with the non-FL model, FLUIDS has the best results in terms of accuracy

and F1-score. This is because the communication rounds help to improve the AE model



FL-based semi-supervised model for IDS 134

and in turn extract more relevant features that have been used during the supervised model

training.

Table 6.3: Performance of the proposed model against the non-FL model.

Dataset Metric

(%)

FLUIDS non-FL model

UNSW-NB15 dataset
Accuracy 84.32 81.40

F1-score 83.63 80.39

Gas pipeline dataset
Accuracy 95.84 95.40

F1-score 88.14 86.70

• Comparison with supervised models

In order to evaluate the effectiveness of FLUIDS, we compare its performance with several

supervised models. It is important to note here, that we tested the performance of these

models on the same test set used with FLUIDS.

Table 6.4 and Figure 6.5 illustrate the comparison of FLUIDS with those models using the

UNSW-NB15 dataset. It is worth noting that our semi-supervised FL model outperforms the

shallow supervised models in terms of all the evaluation metrics. For example, the F1-score

is increased by 3.68%, 5.46%, 6.21%, 7.55% for MLP, RF, SVM, and DT, respectively.

Table 6.4: Comparison with supervised models using UNSW-NB15 dataset.

Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1-score

(%)

DT 76.48 76.36 75.94 76.08

SVM 79.46 85.94 77.21 77.42

RF 80.13 86.70 77.90 78.17

MLP 81.11 84.16 79.49 79.95

FLUIDS 84.32 86.19 83.10 83.63

To verify the efficiency of our model for traffic classification, we also compared it with

different DT-based models including DT, RF, EXTree, AdaBoost, and LightGBM. To note

here, since the gas pipeline dataset was used for the multi-classification task which is a more

complex task than binary classification, we tried to use different ensemble models as baseline

models. Also, we used the DT model because it is one of the most used models for attack

classification.



FL-based semi-supervised model for IDS 135

Figure 6.5: The performance of identifying normal and attack flows of FLUIDS against

supervised models using the UNSW-NB15 dataset.

It can be seen from Table 6.5 that using the gas pipeline dataset, FLUIDS has a good per-

formance in detecting benign network traffic and the different attacks. This is thanks to the

use of deep architecture, which covers benign and attack patterns. Specifically, the benign

traffic identification by FLUIDS is 6%, 20%, 21%, 21%, 27% better than AdaBoost, Light-

GBM, EXTree, RF, and DT, respectively. This demonstrates that FLUIDS is more practical

in the Industrial IoT network as it will trigger fewer false alarms. Moreover, although the

competitive results of LightGBM and RF for MSCI, MPCI, and MFCI attack classifica-

tion, FLUIDS get the best results. On the other hand, it achieves a greater F1-score for the

classification of the attack, except for the DoS and especially with NMRI attack. This is

because the observation amount of this attack is relatively low (25%) in the labeled set.

These results may be attributed to the fact that the use of unlabeled data in the training

process boosts the performance of FLUIDS. In addition, the proposed model outperforms

these classifiers because, with the help of the clients’ private data, the AE models generate

deeply learned features that yield superior results compared to the initial statistical features.

• Performance against state-of-the-art models

To further validate the effectiveness of FLUIDS, we also compare its performance against

some state-of-the-art schemes using the Gas pipeline dataset. The experimental results of

these schemes are presented in Table 6.6 and they include a simple model with fully labeled

data [166], a DL-based ensemble model using fully labeled data [167], a semi-supervised



FL-based semi-supervised model for IDS 136

Table 6.5: F1-score comparison of our model vs. supervised models for the identification of

normal vs. attack traffic using gas pipeline dataset.

Model Benign NMRI CMRI MSCI MPCI MFCI DoS Rec

DT 0.70 0.32 0.94 0.94 0.97 0.98 0.98 1

RF 0.76 0.38 0.96 0.95 0.97 0.98 0.98 1

EXTree 0.76 0.49 0.92 0.95 0.95 0.97 0.87 1

AdaBoost 0.91 0.89 0.92 0.93 0.95 0.97 0.96 1

LightGBM 0.77 0.50 0.96 0.96 0.97 0.99 0.95 1

FLUIDS 0.97 0.20 0.96 0.97 0.98 0.99 0.97 1

model without FL [168], and a supervised ensemble FL scheme [140]. Note that we have

selected these works because of their variety. Anton et al. [166] used SVM for intrusion

detection. Huda et al. [167] proposed an ensemble Deep Belief Network (DBN) model for

attack classification. In particular, different structures of DBNs are combined to construct an

ensemble of DBNs and the final classification is decided based on a majority voting scheme.

Also, Chang et al. [168] proposed an ensemble semi-supervised model using the K-means and

convolutional autoencoder (CAE) methods. Using this ensemble, the test data is predicted

as normal only if the predicted outputs of k-means and CAE methods are normal. Recently,

Li et al. [140] proposed a novel FL model, called DeepFed. DeepFed is an ensemble model

that trains CNN and GRU in a federated way to detect the attacks.

As shown in Table 6.6, the model based on FL including FLUIDS and DeepFed scheme [140]

incurs the best results. This is due to the communication round can improve the performance

of traffic classification to some extent. More specifically, although FLUIDS uses a few amounts

(only 25%) of labeled data during the training task, it still achieves a competitive accuracy

as compared with DeepFed. Moreover, with FLUIDS, the clients only train the AE model,

which in turn is a less complex model as compared to the CNN-GRU models used with

the DeepFed scheme. Note that a fair comparison for FLUIDS will be to compare it with

only semi-supervised schemes. Nonetheless, we include some fully supervised schemes in our

comparison for reference.



FL-based semi-supervised model for IDS 137

Table 6.6: Overall performance analysis of the proposed model with existing schemes.

Type Ref. FL Accuracy (%) Precision (%) Recall (%)

Supervised

[166] 92.50 78.20 93.60

[167] 95.60 85.36 85.53

[140] ✓ 99.20 98.85 97.45

Semi-supervised
[168] 95.53 95.43 83.52

FLUIDS ✓ 95.84 97.89 87.15

• Experiments on third dataset

Using another dataset, we have also tested FLUIDS against its non-FL version. This

dataset is also an open dataset and has been released by Mississippi State University’s lab in

2014 [141]. The traffic in this dataset corresponds to the water storage tank control system.

It consists of 23 features and 236,179 observations. The label contains eight possible values,

benign and seven different types of attacks, the same as the gas pipeline dataset. The possible

values for the label are presented in Table 6.7. The aim of this section is to further verify

the performance of FLUIDS for attack classification (i.e. multi-classification tasks).

Table 6.7: Water tank system dataset description.

Label Description # Total observations

Benign Normal traffic 172,415

NMRI Naive malicious response injection 9,187

CMRI Complex malicious response injection 12,460

MSCI Malicious state command injection 1,833

MPCI Malicious parameter command injection 3,725

MFCI Malicious function command injection 1,320

DoS Denial of service 1,237

Rec Reconnaissance 34,002

From the simulation results presented in Table 6.8 and Figure 6.6, we can see that FLUIDS

performs slightly better than the non-FL model in terms of accuracy, F1-score as well as

communication overhead.

Specifically, the improvement in terms of communication overhead becomes more signif-

icant with this dataset (reduced by almost 75%), as it contains more traffic than the gas

pipeline system and hence sending row data to the central entity becomes more expansive.

This shows that our model is suitable for a real scenario because industrial machines and

robots can generate tremendous amounts of traffic.



FL-based semi-supervised model for IDS 138

Table 6.8: Performance of the proposed model against the non-FL model.

Metric non-FL model FLUIDS

Accuracy 90.41% 90.73%

F1-score 85.99% 86.41%

Figure 6.6: Comparison in terms of communication overhead.

6.3 Discussion

In this chapter, a semi-supervised FL model is proposed for attack and intrusion detection,

called FLUIDS. This model uses both unlabeled and labeled data during the training process

without privacy concerns. We have analyzed the impact of the different parameters on the

performance of the proposed model. First, the evaluation demonstrates that this model

performs well even with a limited amount of labels. It automatically provides feature ex-

traction without human intervention and avoids time-wasting for labeling data as maximum

as possible. Second, communication overhead, and storage requirements have been reduced

thanks to the use of FL. Also, we have demonstrated that the local epochs play a critical role

in communication overhead improvement. The experiment results demonstrate that the fre-

quency model update has an impact directly on the communication overhead. Third, using

a joint announcement protocol addresses the problem of communication overhead and the

failure of some clients as well as alleviates the out-of-sync issue. In addition, by taking the

advantage of FL our model solves the dilemma of data sharing. Last but not least, to show

the features of FLUIDS, we have compared it against its non-FL setting, some state-of-the-art

models including, simple, ensemble, semi-supervised, and FL models. Also, we applied our

model to the different scenarios (i.e. binary and multi-classification tasks) and evaluated its

performance in terms of accuracy, F1-score, and communication overhead.

From the above results and as can be seen from Table 6.9 that FLUIDS reduces the

communication overhead and the storage requirement without breaching privacy. This is



FL-based semi-supervised model for IDS 139

because, with FL, the clients send only the model parameters. Also, in contrast to the non-

FL supervised models, FLUIDS takes advantage of both unlabeled and labeled data, which

makes them more efficient. Therefore, from this study, we show that FLUIDS can achieve

higher classification with less communication overhead as well as without privacy concerns.

Table 6.9: FLUIDS vs equivalent model in non-FL setting vs Supervised models.

non-FL Semi-

supervised model

non-FL Supervised

models

FLUIDS

Data aggregation ✓ ✓ x

Parameters aggregation x x ✓

Communication overhead High High Low

Data privacy x x ✓

Latency High High Low

Storage requirement High High Low

Data labeling Low High Low

Labeled data ✓ ✓ ✓

Unlabeled data ✓ x ✓

Limitations of FLUIDS

Although FLUIDS uses the joint-announcement protocol, the random client selection can

increase the training time and communication cost due to the clients who become stragglers.

To handle these issues, more intelligent client selection algorithms are needed. One idea could

be to use reinforcement learning, which can be a promising solution, to learn client selection

based on the learning performance. Also, as FLUIDS still needs labels, in future research, we

will investigate the fully unsupervised FL model by looking at the AE reconstruction error.

Conclusion

In this chapter, a federated semi-supervised learning model, called FLUIDS, has been pro-

posed. This model uses a limited amount of labeled data and a huge amount of unlabeled

data without privacy concerns. Also, unlike the classical FL model, with FLUIDS, the server is

not only used for the model aggregation task, but also for supervised learning. The proposed

model has been evaluated in terms of its ability to identify network intrusion and different

attacks. The chapter presents the performance analysis of FLUIDS while varying different

factors. Using different scenarios and datasets, the experimental results demonstrate that

the support of unlabeled data for the training process can enhance the performance of the



FL-based semi-supervised model for IDS 140

learned model as well as decrease communication overhead. Also, the numerical simulations

showed that FLUIDS with a limited amount of labeled data can achieve competitive results,

compared to some state-of-the-art schemes.

*****



Conclusion and Future Directions

In this last chapter, the major findings of this thesis are summarised, and perspectives are

provided for possible future research.

General conclusions

In this thesis, we focus on three important challenges in network analysis: (i) improving the

classification performance and the model generalization on the training data, (ii), training a

model using a limited amount of labeled data, and (iii) detecting attacks without the need

to label the data on the edge nodes and preserve the data privacy at the same time. To deal

with these complex challenges, and be motivated by the success of ML algorithms in solving

complex tasks in several domains, extensive studies have been conducted, and solutions have

been proposed. In particular, first, we provided a brief review of some related ML-based

solutions for network traffic analysis, including traffic classification and IDS, as well as lastly

we addressed their limitations. Then, to handle those limitations, we used machine, deep

and federated learning technologies extensively to improve the network traffic classification

task. In brief, the contributions of this thesis can be summarized as follows:

• In Chapter 4, we proposed a blending-based model to improve the classification and

generalization capability of the model. In the blending design, a data pre-processing

step includes feature selection using two feature selection methods and data cleaning

has been conducted. In order to find the optimal features subset, we have used cor-

relation filtering to pick up and delete the redundant features and in turn, reduce the

processing time. Next, four tree-based models, i.e., DT, RF, AdaBoost, and XGBoost,

are used as base classifiers, and then DL has been used as a meta-classifier in order to

combine the output and correct the errors that occur during the learning process of the

base classifiers. The experiment results show that the proposed model prevents over-

fitting and reduces bias simultaneously to some extent. In addition, we achieve good

results on both non-encrypted, encrypted, binary, and multi-classification scenarios.

• In Chapter 5, a new semi-supervised model called SSAE has been proposed, to take

advantage of both labeled and unlabeled data during the training process. Stacked

141



Conclusion and Future Directions 142

AutoEncoder (SAE) was used in order to better learn more complex and abstract

features. In particular, several AutoEncoder (AE) layers are stacked together and

form an unsupervised pre-training stage where the encoder layer computed by an AE

will be used as the input to its next AE layer. Each layer in this stage is trained like

an AE by minimizing its reconstructing error. When all the layers are pre-trained, the

network goes into the supervised fine-tuning stage. Then, to further avoid the over-

fitting problem, improve the classification performance SSAE model, and extract robust

features some hyper-parameters including the sparse, dropout, and denoising coding,

are injected into the model. Finally, a performance evaluation on both non-encrypted,

encrypted, binary, and multi-classification scenarios. Also, a comparison against semi-

supervised (e.g., AE model), and supervised models (well-known supervised models)

have been conducted.

• In Chapter 6, an FL-based solution has been developed to enhance the security and

privacy of the network data, called FLUIDS. A semi-supervised model as proposed in

Chapter 5 was employed, which allows the edge nodes to participate in the training

process without the need to label and share their local data. In particular, the nodes

perform the model pre-training and AE model through their unlabeled data and then

not only generate the global AE model by also fine-tuning the global parameters using

its limited labeled data and during the supervised learning process. Using different

scenarios and datasets, the experimental results demonstrate that the support of unla-

beled data and FL can enhance the performance of the learned model and decrease the

communication overhead, respectively. Also, the numerical simulations showed that

FLUIDS outperforms its non-FL setting as well as with a limited amount of labeled

data can achieve competitive results, compared to some state-of-the-art schemes.

Future directions

Based on the contributions proposed in this thesis and the limitations mentioned in each

chapter, in this section, we will summarize some possible future directions of our contribu-

tions.

• Future work on data privacy: Despite the FL approach, exchanging the model pa-

rameters instead of the row data, the recent attacks demonstrate that such an approach

does not provide sufficient privacy guarantee [169]. This is because the FL training

process is based on the communication between the clients and the FL server that can

expose the model and in turn be a target for several security threats, such as member-

ship inference attack [170] [171]. Therefore, the proposed FLUIDS model requires a new

solution with further security and privacy improvement. As a next step, we can use



Conclusion and Future Directions 143

a meta-model to securely aggregate the models’ parameters [142]. In particular, the

federated meta-model will be trained on the meta-data instead of user-sensitive data

and in turn to further enhance privacy.

• Future work on robust FLUIDS with constrained devices: The clients with

FLUIDS were simulated with the same computational resources which is not the case

in a real environment. Some clients may take much longer to train the model than

other nodes, and these nodes are often referred to as stragglers. These devices, even

though are not limited in size, they come with limitations in resources. Their limited

power and computational resources make the participation of such straggler clients in

the FL process almost impossible. To mitigate the impact of stragglers clients, we can

explore some techniques like Federated Dropout to reduce the computation load of local

training [172]. Another option is to explore the client selection based on their resource

conditions in order to maximize the efficiency of model training. In particular, instead

of selecting random clients, we can apply FedCS [173].

• Deep Learning in Network Traffic Prediction: Prediction of network traffic plays

a vital role in other networking-related challenges such as resource allocation. It aims

to forecast the total amount of traffic expected [174] in order to avoid future congestion

and maintain high network quality. Traffic prediction enables the network operator to

present resource-allocation strategies, hence optimizing the network at various hours

during the day. As this field grows, more and more models have been proposed, and

choosing the appropriate model is a daunting task. Thus, there is a requirement for an

extensive comparative analysis in terms of performance and training/test time needed

for the different models and techniques used for traffic prediction.

• Future work on explainability of the proposed models: Although our proposed

models are efficient, using them to make decisions (i.e., classify the traffic) is crucial

to gain insights into the decision-making process of the models. The black-box nature

of models raises a lack of trust an explanation solution is required for ML-based sys-

tems [175]. An eXplainable AI (XAI) has drawn significant attention from academia

as it is essential and aims at explaining the outcomes of ML models. In other words, it

enables the operators to understand why and why not a model makes such a decision,

when it can fail and when can succeed [176]. XAI is defined by Gunning et al. [176]

as ”XAI will create a suite of machine learning techniques that enables human users

to understand, appropriately trust, and effectively manage the emerging generation of

artificially intelligent partners.” An explanation is a way to generate better results,

make confidence in the final decision, and consequently, make the network operators

more comfortable with applying ML-based models. Moreover, in the case of the models

yielding poor performance, it helps to understand the source and the reason for the



Conclusion and Future Directions 144

underlying problem [12]. In this context, we need to extend our proposed models by

adding an explainability module. For example, we can explore the attention mecha-

nism [177] to highlight the most important features that were mainly considered by

the model when calculating the final class.

• ML enabled green networking technology: As DL-based models require massive

computations to achieve acceptable performance, green deep learning becomes an in-

creasingly hot research field. Recently, big attention is given to energy consumption

during model training and inference [178]. Green learning, a term first proposed by

Schwartz et al. [179], aims to use the ML/DL-based models without increasing compu-

tational cost rather, than ideally reducing it. In this context, to reduce the computation

cost of our proposed models, we can explore several mechanisms such as model com-

pression, transfer learning, and using fewer data to train our model while keeping the

model performance. In particular, some effective pre-processing mechanisms can be

applied to filter out the unrelated/noisy data that can reduce the dimensionality of

the data [180]. Since the model size is an essential factor in the training and inference

computation, using lightweight ML/DL models or model compression mechanisms is

helpful to get faster prediction as well as to achieve the trade-off between the energy

consumption of certain IoT devices and the final model performance. Moreover, to

avoid the redundant computations required for training a new model, learning from

scratch as well as solving the problem of insufficient training data, transfer learning

can be a promising solution [181].

Alongside all these future directions, an important direction that can be explored further

is network resources management. Indeed, using our proposed models and some of the

future directions can provide efficient, automated, and fast convergence in network resource

management in large-scale systems.



References

[1] Cisco edge-to-enterprise IoT analytics for electric utilities solution overview, 2020.

https : / / www . cisco . com / c / en / us / solutions / collateral / data - center -

virtualization/big-data/solution-overview-c22-740248.html.

[2] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022

White Paper, Cisco, 2019. https : / / www . cisco . com / c / en / us / solutions /

collateral/executive-perspectives/annual-internet-report/white-paper-

c11-741490.html.

[3] Mahmoud Abbasi, Amin Shahraki, and Amir Taherkordi. “Deep learning for network

traffic monitoring and analysis (NTMA): a survey”. In: Computer Communications

170 (2021), pp. 19–41.

[4] Min Zhang et al. “State of the art in traffic classification: A research review”. In:

PAM Student Workshop. 2009, pp. 3–4.

[5] Fannia Pacheco et al. “Towards the deployment of machine learning solutions in net-

work traffic classification: A systematic survey”. In: IEEE Communications Surveys

& Tutorials 21.2 (2018), pp. 1988–2014.

[6] Alessandro D’Alconzo et al. “A survey on big data for network traffic monitoring and

analysis”. In: IEEE Transactions on Network and Service Management 16.3 (2019),

pp. 800–813.

[7] Raouf Boutaba et al. “A comprehensive survey on machine learning for networking:

evolution, applications and research opportunities”. In: Journal of Internet Services

and Applications 9.1 (2018), pp. 1–99.

[8] Ons Aouedi, Kandaraj Piamrat, and Benôıt Parrein. “Intelligent Traffic Management

in Next-Generation Networks”. In: Future internet 14.2 (2022), p. 44.

145

https: //www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/big-data/solution-overview-c22-740248.html
https: //www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/big-data/solution-overview-c22-740248.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html


References 146

[9] Alberto Dainotti, Antonio Pescape, and Kimberly C Claffy. “Issues and future direc-

tions in traffic classification”. In: IEEE network 26.1 (2012), pp. 35–40.

[10] Ons Aouedi, Kandaraj Piamrat, and Benôıt Parrein. “Ensemble-based Deep Learn-

ing model for network traffic classification”. In: IEEE Transactions on Network and

Service Management (July 2022). url: https://hal.archives-ouvertes.fr/hal-

03736603.

[11] Ons Aouedi et al. “Federated Semi-Supervised Learning for Attack Detection in In-

dustrial Internet of Things”. In: IEEE Transactions on Industrial Informatics (2022).

[12] Shaashwat Agrawal et al. “Federated learning for intrusion detection system: Con-

cepts, challenges and future directions”. In: arXiv preprint arXiv:2106.09527 (2021).

[13] Ons Aouedi, Kandaraj Piamrat, and Dhruvjyoti Bagadthey. “Handling partially la-

beled network data: a semi-supervised approach using stacked sparse autoencoder”.

In: Computer Networks (2022).

[14] Ons Aouedi et al. “Intrusion detection for Softwarized Networks with Semi-supervised

Federated Learning”. In: ICC 2022-IEEE International Conference on Communica-

tions. IEEE. 2022, pp. 1–6.

[15] Ons Aouedi, Kandaraj Piamrat, and Benôıt Parrein. “Decision tree-based blending

method using deep-learning for network management”. In: IEEE/IFIP Network Op-

erations and Management Symposium. 2021.

[16] Ons Aouedi, Kandaraj Piamrat, and Benôıt Parrein. “Performance evaluation of fea-

ture selection and tree-based algorithms for traffic classification”. In: 2021 IEEE Inter-

national Conference on Communications Workshops (ICC Workshops). IEEE. 2021,

pp. 1–6.

[17] Ons Aouedi, Kandaraj Piamrat, and Dhruvjyoti Bagadthey. “A semi-supervised stacked

autoencoder approach for network traffic classification”. In: 2020 IEEE 28th Interna-

tional Conference on Network Protocols (ICNP). IEEE. 2020, pp. 1–6.

[18] Pedro Domingos. “A few useful things to know about machine learning”. In: Com-

munications of the ACM 55.10 (2012), pp. 78–87.

https://hal.archives-ouvertes.fr/hal-03736603
https://hal.archives-ouvertes.fr/hal-03736603


References 147

[19] Michael I Jordan and Tom M Mitchell. “Machine learning: Trends, perspectives, and

prospects”. In: Science 349.6245 (2015), pp. 255–260.

[20] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997. isbn: 978-0-07-042807-2.

[21] Chollet Francois. Deep learning with Python. 2017.

[22] Guoqiang Peter Zhang. “Neural networks for classification: a survey”. In: IEEE Trans-

actions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 30.4

(2000), pp. 451–462.

[23] Ons Aouedi et al. “Network Traffic Analysis using Machine Learning: an unsupervised

approach to understand and slice your network”. In: Annals of Telecommunications

(2021), pp. 1–13.

[24] Xiaojin Jerry Zhu. “Semi-supervised learning literature survey”. In: (2005).

[25] Richard S Sutton, Andrew G Barto, et al. “Introduction to reinforcement learning”.

In: (1998).

[26] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning 8.3

(1992), pp. 279–292.

[27] Alexis Bitaillou, Benôıt Parrein, and Guillaume Andrieux. “Q-routing: from the al-

gorithm to the routing protocol”. In: International Conference on Machine Learning

for Networking. Springer. 2019, pp. 58–69.

[28] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv

preprint arXiv:1312.5602 (2013).

[29] Menuka Perera Jayasuriya Kuranage, Kandaraj Piamrat, and Salima Hamma. “Net-

work traffic classification using machine learning for software defined networks”.

In: International Conference on Machine Learning for Networking. Springer. 2019,

pp. 28–39.

[30] Mikel Galar et al. “A review on ensembles for the class imbalance problem: bagging-,

boosting-, and hybrid-based approaches”. In: IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews) 42.4 (2011), pp. 463–484.



References 148

[31] Vicente Garćıa, José Salvador Sánchez, and Ramón Alberto Mollineda. “On the ef-

fectiveness of preprocessing methods when dealing with different levels of class im-

balance”. In: Knowledge-Based Systems 25.1 (2012), pp. 13–21.

[32] Xinjian Guo et al. “On the class imbalance problem”. In: 2008 Fourth international

conference on natural computation. Vol. 4. IEEE. 2008, pp. 192–201.

[33] Yoav Freund and Llew Mason. “The alternating decision tree learning algorithm”. In:

icml. Vol. 99. Citeseer. 1999, pp. 124–133.

[34] Tasnim Abar, Asma Ben Letaifa, and Sadok El Asmi. “Machine learning based QoE

prediction in SDN networks”. In: 2017 13th International Wireless Communications

and Mobile Computing Conference (IWCMC). IEEE. 2017, pp. 1395–1400.

[35] Pascal Soucy and Guy W Mineau. “A simple KNN algorithm for text categorization”.

In: Proceedings 2001 IEEE international conference on data mining. IEEE. 2001,

pp. 647–648.

[36] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. “Data clustering: a review”.

In: ACM computing surveys (CSUR) 31.3 (1999), pp. 264–323.

[37] Robi Polikar. “Ensemble based systems in decision making”. In: IEEE Circuits and

systems magazine 6.3 (2006), pp. 21–45.

[38] Micha l Woźniak, Manuel Grana, and Emilio Corchado. “A survey of multiple classifier

systems as hybrid systems”. In: Information Fusion 16 (2014), pp. 3–17.

[39] Sergey Tulyakov et al. “Review of classifier combination methods”. In: Machine learn-

ing in document analysis and recognition (2008), pp. 361–386.

[40] Leo Breiman. “Bagging predictors”. In: Machine learning 24.2 (1996), pp. 123–140.

[41] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[42] Candice Bentéjac, Anna Csörgő, and Gonzalo Mart́ınez-Muñoz. “A comparative anal-

ysis of gradient boosting algorithms”. In: Artificial Intelligence Review 54.3 (2021),

pp. 1937–1967.



References 149

[43] Yoav Freund, Robert Schapire, and Naoki Abe. “A short introduction to boosting”.

In: Journal-Japanese Society For Artificial Intelligence 14.771-780 (1999), p. 1612.

[44] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. “CatBoost: gradient

boosting with categorical features support”. In: arXiv preprint arXiv:1810.11363

(2018).

[45] Guolin Ke et al. “Lightgbm: A highly efficient gradient boosting decision tree”. In:

Advances in neural information processing systems 30 (2017).

[46] Andreas Töscher, Michael Jahrer, and Robert M Bell. “The bigchaos solution to the

netflix grand prize”. In: Netflix prize documentation (2009), pp. 1–52.

[47] Zhice Fang et al. “A comparative study of heterogeneous ensemble-learning techniques

for landslide susceptibility mapping”. In: International Journal of Geographical In-

formation Science 35.2 (2021), pp. 321–347.

[48] Chia-Hsiu Chen et al. “Comparison and improvement of the predictability and in-

terpretability with ensemble learning models in QSPR applications”. In: Journal of

cheminformatics 12.1 (2020), pp. 1–16.

[49] Tuan A Tang et al. “”Deep learning approach for network intrusion detection in Soft-

ware Defined Networking””. In: 2016 international conference on wireless networks

and mobile communications (WINCOM). IEEE. 2016, pp. 258–263.

[50] Qingchen Zhang et al. “A survey on deep learning for big data”. In: Information

Fusion 42 (2018), pp. 146–157.

[51] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with

deep convolutional neural networks”. In: Advances in neural information processing

systems 25 (2012).

[52] Ruben Mayer and Hans-Arno Jacobsen. “Scalable deep learning on distributed infras-

tructures: Challenges, techniques, and tools”. In: ACM Computing Surveys (CSUR)

53.1 (2020), pp. 1–37.

[53] Ronan Collobert and Samy Bengio. “Links between perceptrons, MLPs and SVMs”.

In: Proceedings of the twenty-first international conference on Machine learning. 2004,

p. 23.



References 150

[54] Yanming Guo et al. “Deep learning for visual understanding: A review”. In: Neuro-

computing 187 (2016), pp. 27–48.

[55] Asifullah Khan et al. “A survey of the recent architectures of deep convolutional

neural networks”. In: Artificial intelligence review 53.8 (2020), pp. 5455–5516.

[56] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural

computation 9.8 (1997), pp. 1735–1780.

[57] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder

for statistical machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

[58] Chuanting Zhang et al. “Deep transfer learning for intelligent cellular traffic prediction

based on cross-domain big data”. In: IEEE Journal on Selected Areas in Communi-

cations 37.6 (2019), pp. 1389–1401.

[59] Samira Pouyanfar et al. “A survey on deep learning: Algorithms, techniques, and

applications”. In: ACM Computing Surveys (CSUR) 51.5 (2018), pp. 1–36.

[60] Alexandra L’heureux et al. “Machine learning with big data: Challenges and ap-

proaches”. In: Ieee Access 5 (2017), pp. 7776–7797.

[61] Isabelle Guyon et al. “Gene selection for cancer classification using support vector

machines”. In: Machine learning 46.1 (2002), pp. 389–422.

[62] Mahesh Pal and Giles M Foody. “Feature selection for classification of hyperspec-

tral data by SVM”. In: IEEE Transactions on Geoscience and Remote Sensing 48.5

(2010), pp. 2297–2307.

[63] Huan Liu and Lei Yu. “Toward integrating feature selection algorithms for classifica-

tion and clustering”. In: IEEE Transactions on knowledge and data engineering 17.4

(2005), pp. 491–502.

[64] Alexandros Kalousis, Julien Prados, and Melanie Hilario. “Stability of feature selec-

tion algorithms: a study on high-dimensional spaces”. In: Knowledge and information

systems 12.1 (2007), pp. 95–116.

[65] Manoranjan Dash and Huan Liu. “Feature selection for classification”. In: Intelligent

data analysis 1.3 (1997), pp. 131–156.



References 151

[66] Jasmina Novakovic. “Using information gain attribute evaluation to classify sonar

targets”. In: 17th Telecommunications forum TELFOR. Citeseer. 2009, pp. 1351–

1354.

[67] Fadi Salo, Ali Bou Nassif, and Aleksander Essex. “Dimensionality reduction with IG-

PCA and ensemble classifier for network intrusion detection”. In: Computer Networks

148 (2019), pp. 164–175.

[68] Mark Andrew Hall et al. “Correlation-based feature selection for machine learning”.

In: (1999).

[69] Andreas Janecek et al. “On the relationship between feature selection and classifica-

tion accuracy”. In: New challenges for feature selection in data mining and knowledge

discovery. PMLR. 2008, pp. 90–105.

[70] Ian T Jolliffe. “Principal components in regression analysis”. In: Principal component

analysis. Springer, 1986, pp. 129–155.

[71] Guoqiang Peter Zhang. “Neural networks for classification: a survey”. In: IEEE Trans-

actions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 30.4

(2000), pp. 451–462.

[72] Ons Aouedi, Mohamed Anis Bach Tobji, and Ajith Abraham. “An ensemble of deep

auto-encoders for healthcare monitoring”. In: International Conference on Hybrid

Intelligent Systems. Springer. 2018, pp. 96–105.

[73] Francisco J Pulgar et al. “AEkNN: An AutoEncoder kNN-based classifier with built-in

dimensionality reduction”. In: arXiv preprint arXiv:1802.08465 (2018).

[74] David Charte et al. “A practical tutorial on autoencoders for nonlinear feature fu-

sion: Taxonomy, models, software and guidelines”. In: Information Fusion 44 (2018),

pp. 78–96.

[75] Pascal Vincent et al. “Extracting and composing robust features with denoising au-

toencoders”. In: Proceedings of the 25th international conference on Machine learning.

2008, pp. 1096–1103.



References 152

[76] Pascal Vincent et al. “Stacked denoising autoencoders: Learning useful representa-

tions in a deep network with a local denoising criterion.” In: Journal of machine

learning research 11.12 (2010).

[77] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from

overfitting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[78] Geoffrey E Hinton et al. “Improving neural networks by preventing co-adaptation of

feature detectors”. In: arXiv preprint arXiv:1207.0580 (2012).

[79] Sawsan AbdulRahman et al. “A survey on federated learning: The journey from

centralized to distributed on-site learning and beyond”. In: IEEE Internet of Things

Journal 8.7 (2020), pp. 5476–5497.

[80] Qiang Yang et al. “Federated machine learning: Concept and applications”. In: ACM

Transactions on Intelligent Systems and Technology (TIST) 10.2 (2019), pp. 1–19.

[81] Brendan McMahan et al. “Communication-efficient learning of deep networks from

decentralized data”. In: Artificial intelligence and statistics. PMLR. 2017, pp. 1273–

1282.

[82] Stacey Truex et al. “A hybrid approach to privacy-preserving federated learning”. In:

Proceedings of the 12th ACM workshop on artificial intelligence and security. 2019,

pp. 1–11.

[83] Teodora Sandra Buda et al. “Can machine learning aid in delivering new use cases

and scenarios in 5G?” In: NOMS 2016-2016 IEEE/IFIP Network Operations and

Management Symposium. IEEE. 2016, pp. 1279–1284.

[84] (2020, February) IANA, Port Numbers. [Online]. Available:

http://www.iana.org/assignments/port-numbers.

[85] Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang. “Accurate, scalable in-

network identification of p2p traffic using application signatures”. In: Proceedings

of the 13th international conference on World Wide Web. 2004, pp. 512–521.

[86] Andrew W Moore and Konstantina Papagiannaki. “Toward the accurate identification

of network applications”. In: International workshop on passive and active network

measurement. Springer. 2005, pp. 41–54.



References 153

[87] Alok Madhukar and Carey Williamson. “A longitudinal study of P2P traffic classifica-

tion”. In: 14th IEEE international symposium on modeling, analysis, and simulation.

IEEE. 2006, pp. 179–188.

[88] Matthew Hayes et al. “Scalable architecture for SDN traffic classification”. In: IEEE

Systems Journal 12.4 (2017), pp. 3203–3214.

[89] Zafar Ayyub Qazi et al. “Application-awareness in SDN”. In: Proceedings of the ACM

SIGCOMM 2013 conference on SIGCOMM. 2013, pp. 487–488.

[90] Yunchun Li and Jingxuan Li. “MultiClassifier: A combination of DPI and ML for

application-layer classification in SDN”. In: The 2014 2nd International Conference

on Systems and Informatics (ICSAI 2014). IEEE. 2014, pp. 682–686.

[91] Mostafa Uddin and Tamer Nadeem. “TrafficVision: A case for pushing software de-

fined networks to wireless edges”. In: 2016 IEEE 13th International Conference on

Mobile Ad Hoc and Sensor Systems (MASS). IEEE. 2016, pp. 37–46.

[92] Iyad Lahsen Cherif and Abdesselem Kortebi. “On using extreme gradient boosting

(XGBoost) machine learning algorithm for home network traffic classification”. In:

2019 Wireless Days (WD). IEEE. 2019, pp. 1–6.

[93] Pramitha Perera et al. “A comparison of supervised machine learning algorithms

for classification of communications network traffic”. In: International Conference on

Neural Information Processing. Springer. 2017, pp. 445–454.

[94] Razan M AlZoman and Mohammed JF Alenazi. “A comparative study of traffic

classification techniques for smart city networks”. In: Sensors 21.14 (2021), p. 4677.

[95] Chuangchuang Zhang et al. “Deep learning–based network application classifica-

tion for SDN”. In: Transactions on Emerging Telecommunications Technologies 29.5

(2018), e3302.

[96] Mohammad Lotfollahi et al. “Deep packet: A novel approach for encrypted traffic

classification using deep learning”. In: Soft Computing 24.3 (2020), pp. 1999–2012.

[97] Qing Lyu and Xingjian Lu. “Effective media traffic classification using deep learn-

ing”. In: Proceedings of the 2019 3rd International Conference on Compute and Data

Analysis. 2019, pp. 139–146.



References 154

[98] Santiago Egea Gómez et al. “Ensemble network traffic classification: Algorithm com-

parison and novel ensemble scheme proposal”. In: Computer Networks 127 (2017),

pp. 68–80.

[99] Ting Yang et al. “Achieving Robust Performance for Traffic Classification Using En-

semble Learning in SDN Networks”. In: ICC 2021-IEEE International Conference on

Communications. IEEE. 2021, pp. 1–6.

[100] Won-Ju Eom et al. “Network traffic classification using ensemble learning in software-

defined networks”. In: 2021 International Conference on Artificial Intelligence in In-

formation and Communication (ICAIIC). IEEE. 2021, pp. 089–092.

[101] Xin Wang, Shuhui Chen, and Jinshu Su. “App-Net: a hybrid neural network for en-

crypted mobile traffic classification”. In: IEEE INFOCOM 2020-IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS). IEEE. 2020, pp. 424–

429.

[102] Kunda Lin, Xiaolong Xu, and Honghao Gao. “TSCRNN: A novel classification scheme

of encrypted traffic based on flow spatiotemporal features for efficient management

of IIoT”. In: Computer Networks 190 (2021), p. 107974.

[103] ThankGod Obasi and M Omair Shafiq. “An experimental study of different machine

and deep learning techniques for classification of encrypted network traffic”. In: 2020

IEEE International Conference on Big Data (Big Data). IEEE. 2020, pp. 4690–4699.

[104] ThankGod Obasi and M Omair Shafiq. “CARD-B: A stacked ensemble learning tech-

nique for classification of encrypted network traffic”. In: Computer Communications

(2022).

[105] Kazuki Hara and Kohei Shiomoto. “Intrusion detection system using semi-supervised

learning with adversarial auto-encoder”. In: NOMS 2020-2020 IEEE/IFIP Network

Operations and Management Symposium. IEEE. 2020, pp. 1–8.

[106] Jonas Höchst et al. “Unsupervised traffic flow classification using a neural autoen-

coder”. In: 2017 IEEE 42Nd Conference on local computer networks (LCN). IEEE.

2017, pp. 523–526.



References 155

[107] Shahbaz Rezaei and Xin Liu. “How to achieve high classification accuracy with just

a few labels: A semi-supervised approach using sampled packets”. In: arXiv preprint

arXiv:1812.09761 (2018).

[108] Pu Wang, Shih-Chun Lin, and Min Luo. “A framework for QoS-aware traffic classifi-

cation using semi-supervised machine learning in SDNs”. In: 2016 IEEE international

conference on services computing (SCC). IEEE. 2016, pp. 760–765.

[109] Sara Ayoubi et al. “Machine learning for cognitive network management”. In: IEEE

Communications Magazine 56.1 (2018), pp. 158–165.

[110] Albert Mestres et al. “Knowledge-defined networking”. In: ACM SIGCOMM Com-

puter Communication Review 47.3 (2017), pp. 2–10.

[111] Meenaxi M Raikar et al. “”Data traffic classification in Software Defined Networks

(SDN) using supervised-learning””. In: Procedia Computer Science 171 (2020), pp. 2750–

2759.

[112] Pedro Amaral et al. “Machine learning in software defined networks: Data collection

and traffic classification”. In: 2016 IEEE 24th International conference on network

protocols (ICNP). IEEE. 2016, pp. 1–5.

[113] Pan Wang et al. “Datanet: Deep learning based encrypted network traffic classification

in sdn home gateway”. In: IEEE Access 6 (2018), pp. 55380–55391.

[114] Gerard Draper-Gil et al. “Characterization of encrypted and vpn traffic using time-

related”. In: Proceedings of the 2nd international conference on information systems

security and privacy (ICISSP). sn. 2016, pp. 407–414.

[115] Umer Majeed, Latif U Khan, and Choong Seon Hong. “Cross-silo horizontal fed-

erated learning for flow-based time-related-features oriented traffic classification”.

In: 2020 21st Asia-Pacific Network Operations and Management Symposium (AP-

NOMS). IEEE. 2020, pp. 389–392.

[116] Hyunsu Mun and Youngseok Lee. “Internet traffic classification with federated learn-

ing”. In: Electronics 10.1 (2020), p. 27.

[117] Umer Majeed, Sheikh Salman Hassan, and Choong Seon Hong. “Cross-silo model-

based secure federated transfer learning for flow-based traffic classification”. In: 2021



References 156

International Conference on Information Networking (ICOIN). IEEE. 2021, pp. 588–

593.

[118] R Base and P Mell. “Special publication on intrusion detection systems”. In: NIST In-

fidel, Inc., National Institute of Standards and Technology, Scotts Valley, CA (2001).

[119] Nasrin Sultana et al. “Survey on SDN based network intrusion detection system

using machine learning approaches”. In: Peer-to-Peer Networking and Applications

12.2 (2019), pp. 493–501.

[120] Nadia Chaabouni et al. “Network intrusion detection for IoT security based on learn-

ing techniques”. In: IEEE Communications Surveys & Tutorials 21.3 (2019), pp. 2671–

2701.

[121] Sang-Woong Lee et al. “Towards secure intrusion detection systems using deep learn-

ing techniques: Comprehensive analysis and review”. In: Journal of Network and

Computer Applications 187 (2021), p. 103111.

[122] Robert A Bridges et al. “A survey of intrusion detection systems leveraging host

data”. In: ACM Computing Surveys (CSUR) 52.6 (2019), pp. 1–35.

[123] Elike Hodo et al. “Shallow and deep networks intrusion detection system: A taxonomy

and survey”. In: arXiv preprint arXiv:1701.02145 (2017).

[124] Arwa Aldweesh, Abdelouahid Derhab, and Ahmed Z Emam. “Deep learning ap-

proaches for anomaly-based intrusion detection systems: A survey, taxonomy, and

open issues”. In: Knowledge-Based Systems 189 (2020), p. 105124.

[125] Syeda Manjia Tahsien, Hadis Karimipour, and Petros Spachos. “Machine learning

based solutions for security of Internet of Things (IoT): A survey”. In: Journal of

Network and Computer Applications 161 (2020), p. 102630.

[126] Vibekananda Dutta et al. “Hybrid model for improving the classification effective-

ness of network intrusion detection”. In: Computational Intelligence in Security for

Information Systems Conference. Springer. 2019, pp. 405–414.

[127] Saeid Soheily-Khah, Pierre-François Marteau, and Nicolas Béchet. “Intrusion detec-

tion in network systems through hybrid supervised and unsupervised machine learning



References 157

process: A case study on the iscx dataset”. In: 2018 1st International Conference on

Data Intelligence and Security (ICDIS). IEEE. 2018, pp. 219–226.

[128] Parag Verma et al. “Network intrusion detection using clustering and gradient boost-

ing”. In: 2018 9th International conference on computing, communication and net-

working technologies (ICCCNT). IEEE. 2018, pp. 1–7.

[129] Sharmila Kishor Wagh and Satish R Kolhe. “Effective intrusion detection system

using semi-supervised learning”. In: 2014 International Conference on Data Mining

and Intelligent Computing (ICDMIC). IEEE. 2014, pp. 1–5.

[130] Thien Duc Nguyen et al. “DÏoT: A federated self-learning anomaly detection sys-

tem for IoT”. In: 2019 IEEE 39th International conference on distributed computing

systems (ICDCS). IEEE. 2019, pp. 756–767.

[131] Zhuo Chen et al. “Intrusion detection for wireless edge networks based on federated

learning”. In: IEEE Access 8 (2020), pp. 217463–217472.

[132] Kyunghyun Cho, Aaron Courville, and Yoshua Bengio. “Describing multimedia con-

tent using attention-based encoder-decoder networks”. In: IEEE Transactions on Mul-

timedia 17.11 (2015), pp. 1875–1886.

[133] Ekta Sood et al. “Interpreting attention models with human visual attention in ma-

chine reading comprehension”. In: arXiv preprint arXiv:2010.06396 (2020).

[134] Ming Li et al. “A deep learning method based on an attention mechanism for wireless

network traffic prediction”. In: Ad Hoc Networks 107 (2020), p. 102258.

[135] Ruijie Zhao et al. “Intelligent intrusion detection based on federated learning aided

long short-term memory”. In: Physical Communication 42 (2020), p. 101157.

[136] Viraaji Mothukuri et al. “Federated learning-based anomaly detection for IoT security

attacks”. In: IEEE Internet of Things Journal (2021).

[137] Dinesh Chowdary Attota et al. “An Ensemble Multi-View Federated Learning Intru-

sion Detection for IoT”. In: IEEE Access (2021).

[138] Sawsan Abdul Rahman et al. “Internet of things intrusion detection: Centralized,

on-device, or federated learning?” In: IEEE Network 34.6 (2020), pp. 310–317.



References 158

[139] Othmane Friha et al. “FELIDS: Federated learning-based intrusion detection system

for agricultural Internet of Things”. In: Journal of Parallel and Distributed Computing

165 (2022), pp. 17–31.

[140] Beibei Li et al. “DeepFed: Federated Deep Learning for Intrusion Detection in Indus-

trial Cyber–Physical Systems”. In: IEEE Transactions on Industrial Informatics 17.8

(2020), pp. 5615–5624.

[141] Thomas Morris and Wei Gao. “Industrial control system traffic data sets for in-

trusion detection research”. In: International Conference on Critical Infrastructure

Protection. Springer. 2014, pp. 65–78.

[142] Noor Ali Al-Athba Al-Marri, Bekir S Ciftler, and Mohamed M Abdallah. “Federated

mimic learning for privacy preserving intrusion detection”. In: 2020 IEEE Interna-

tional Black Sea Conference on Communications and Networking (BlackSeaCom).

IEEE. 2020, pp. 1–6.

[143] Quamar Niyaz, Weiqing Sun, and Ahmad Y Javaid. “”A deep learning based DDoS de-

tection system in software-defined networking (SDN)””. In: arXiv preprint arXiv:1611.07400

(2016).

[144] Muhammad Aamir and Syed Mustafa Ali Zaidi. “Clustering based Semi-Supervised

Machine Learning for DDoS attack classification”. In: Journal of King Saud University-

Computer and Information Sciences (2019).

[145] Prabhakar Krishnan, Subhasri Duttagupta, and Krishnashree Achuthan. “”VAR-

MAN: Multi-plane security framework for software defined networks””. In: Computer

Communications 148 (2019), pp. 215–239.

[146] Jingyi Li et al. “FIDS: Detecting DDoS Through Federated Learning Based Method”.

In: 2021 IEEE 20th International Conference on Trust, Security and Privacy in Com-

puting and Communications (TrustCom). IEEE. 2021, pp. 856–862.

[147] Thuy TT Nguyen and Grenville Armitage. “A survey of techniques for internet traffic

classification using machine learning”. In: IEEE communications surveys & tutorials

10.4 (2008), pp. 56–76.

[148] Yawen Xiao et al. “A deep learning-based multi-model ensemble method for cancer

prediction”. In: Computer methods and programs in biomedicine 153 (2018), pp. 1–9.



References 159

[149] Isadora P Possebon et al. “Improved network traffic classification using ensemble

learning”. In: 2019 IEEE Symposium on Computers and Communications (ISCC).

IEEE. 2019, pp. 1–6.

[150] Prabhat Kumar, Govind P Gupta, and Rakesh Tripathi. “An ensemble learning and

fog-cloud architecture-driven cyber-attack detection framework for IoMT networks”.

In: Computer Communications 166 (2021), pp. 110–124.

[151] Alessio Zappone, Marco Di Renzo, and Mérouane Debbah. “Wireless networks design

in the era of deep learning: Model-based, AI-based, or both?” In: IEEE Transactions

on Communications 67.10 (2019), pp. 7331–7376.

[152] M Paz Sesmero, Agapito I Ledezma, and Araceli Sanchis. “Generating ensembles

of heterogeneous classifiers using stacked generalization”. In: Wiley interdisciplinary

reviews: data mining and knowledge discovery 5.1 (2015), pp. 21–34.

[153] Juan Sebastián Rojas, Álvaro Rendón Gallón, and Juan Carlos Corrales. “Person-

alized service degradation policies on OTT applications based on the consumption

behavior of users”. In: International Conference on Computational Science and Its

Applications. Springer. 2018, pp. 543–557.

[154] Ilhan Firat Kilincer, Fatih Ertam, and Abdulkadir Sengur. “Machine learning meth-

ods for cyber security intrusion detection: Datasets and comparative study”. In: Com-

puter Networks 188 (2021), p. 107840.

[155] Haipeng Yao et al. “Identification of encrypted traffic through attention mechanism

based long short term memory”. In: IEEE Transactions on Big Data (2019).

[156] Miguel Camelo et al. “A semi-supervised learning approach towards automatic wire-

less technology recognition”. In: 2019 IEEE international symposium on dynamic

Spectrum access networks (DySPAN). IEEE. 2019, pp. 1–10.

[157] Dumitru Erhan et al. “Why does unsupervised pre-training help deep learning?” In:

Proceedings of the thirteenth international conference on artificial intelligence and

statistics. JMLR Workshop and Conference Proceedings. 2010, pp. 201–208.

[158] Alaa Sagheer and Mostafa Kotb. “Unsupervised pre-training of a deep LSTM-based

stacked autoencoder for multivariate time series forecasting problems”. In: Scientific

reports 9.1 (2019), pp. 1–16.



References 160

[159] Shahbaz Rezaei and Xin Liu. “Multitask learning for network traffic classification”.

In: 2020 29th International Conference on Computer Communications and Networks

(ICCCN). IEEE. 2020, pp. 1–9.

[160] Nivedita Mishra and Sharnil Pandya. “Internet of things applications, security chal-

lenges, attacks, intrusion detection, and future visions: A systematic review”. In:

IEEE Access (2021).

[161] Djallel Hamouda et al. “Intrusion Detection Systems for Industrial Internet of Things:

A Survey”. In: 2021 International Conference on Theoretical and Applicative Aspects

of Computer Science (ICTAACS). IEEE. 2021, pp. 1–8.

[162] Mohamed Amine Ferrag et al. “Federated deep learning for cyber security in the in-

ternet of things: Concepts, applications, and experimental analysis”. In: IEEE Access

9 (2021), pp. 138509–138542.

[163] Nour Moustafa and Jill Slay. “UNSW-NB15: a comprehensive data set for network

intrusion detection systems (UNSW-NB15 network data set)”. In: 2015 military com-

munications and information systems conference (MilCIS). IEEE. 2015, pp. 1–6.

[164] Yi Liu et al. “Privacy-preserving traffic flow prediction: A federated learning ap-

proach”. In: IEEE Internet of Things Journal 7.8 (2020), pp. 7751–7763.

[165] Tian Li et al. “Federated learning: Challenges, methods, and future directions”. In:

IEEE Signal Processing Magazine 37.3 (2020), pp. 50–60.

[166] Simon D Duque Anton, Sapna Sinha, and Hans Dieter Schotten. “Anomaly-based

Intrusion Detection in industrial data with SVM and Random Forests”. In: 2019 In-

ternational conference on software, telecommunications and computer networks (Soft-

COM). IEEE. 2019, pp. 1–6.

[167] Shamsul Huda et al. “Securing the operations in SCADA-IoT platform based in-

dustrial control system using ensemble of Deep Belief Networks”. In: Applied soft

computing 71 (2018), pp. 66–77.

[168] Chun-Pi Chang, Wen-Chiao Hsu, and I-En Liao. “Anomaly Detection for industrial

control systems using k-means and Convolutional AutoEncoder”. In: 2019 Interna-

tional Conference on Software, Telecommunications and Computer Networks (Soft-

COM). IEEE. 2019, pp. 1–6.



References 161

[169] Viraaji Mothukuri et al. “A survey on security and privacy of federated learning”. In:

Future Generation Computer Systems 115 (2021), pp. 619–640.

[170] Hongsheng Hu et al. “Membership inference attacks on machine learning: A survey”.

In: ACM Computing Surveys (CSUR) (2021).

[171] Milad Nasr, Reza Shokri, and Amir Houmansadr. “Comprehensive privacy analysis of

deep learning”. In: Proceedings of the 2019 IEEE Symposium on Security and Privacy

(SP). 2018, pp. 1–15.

[172] Sebastian Caldas et al. “Expanding the reach of federated learning by reducing client

resource requirements”. In: arXiv preprint arXiv:1812.07210 (2018).

[173] Takayuki Nishio and Ryo Yonetani. “Client selection for federated learning with het-

erogeneous resources in mobile edge”. In: ICC 2019-2019 IEEE international confer-

ence on communications (ICC). IEEE. 2019, pp. 1–7.

[174] Iraj Lohrasbinasab et al. “From statistical-to machine learning-based network traf-

fic prediction”. In: Transactions on Emerging Telecommunications Technologies 33.4

(2022), e4394.

[175] Arun Das and Paul Rad. “Opportunities and challenges in explainable artificial in-

telligence (xai): A survey”. In: arXiv preprint arXiv:2006.11371 (2020).

[176] David Gunning. “Explainable artificial intelligence (xai)”. In: Defense advanced re-

search projects agency (DARPA), nd Web 2.2 (2017), p. 1.

[177] Djamila Beddiar, Mourad Oussalah, and Seppänen Tapio. “Explainability for Medical

Image Captioning”. In: 2022 Eleventh International Conference on Image Processing

Theory, Tools and Applications (IPTA). IEEE. 2022, pp. 1–6.

[178] Jingjing Xu et al. “A survey on green deep learning”. In: arXiv preprint arXiv:2111.05193

(2021).

[179] Roy Schwartz et al. “Green ai”. In: Communications of the ACM 63.12 (2020), pp. 54–

63.

[180] G Thippa Reddy et al. “Analysis of dimensionality reduction techniques on big data”.

In: IEEE Access 8 (2020), pp. 54776–54788.



References 162

[181] Aditya Khamparia et al. “Internet of health things-driven deep learning system for

detection and classification of cervical cells using transfer learning”. In: The Journal

of Supercomputing 76.11 (2020), pp. 8590–8608.





Titre : Analyse du trafic réseau basée sur l’apprentissage automatique

Mot clés : Apprentissage automatique, Apprentissage fédéré, analyse du trafic

Résumé : L’Internet des Objets entraînent
par son nombre de terminaux une explo-
sion du trafic de données. Pour augmenter
la qualité globale de réseau, il est possible
d’analyser intelligemment le trafic réseau afin
de détecter d’éventuel comportement sus-
pect ou malveillant. Les modèles d’appren-
tissage automatique et d’apprentissage pro-
fond permettent de traiter ce très grand vo-
lume de données. Néanmoins, il existe cer-
taines limites dans la littérature, notamment
la confidentialité des données, le surappren-
tissage (manques de diversité dans les don-
nées) ou tout simplement le manque de jeu de
données labélisées. Dans cette thèse, nous
proposons de nouveaux modèles s’appuyant
sur l’apprentissage automatique et l’apprentis-
sage profond afin de traiter une grande quan-

tité de données tout en préservant la confi-
dentialité. Notre première approche utilise un
modèle d’ensemble. Les résultats montrent
une diminution du surapprentissage, tout en
augmentant de 10% la précision comparé
à des modèles de l’état de l’art. Notre se-
conde contribution s’attache aux problèmes
de disponibilité des données labélisées. Nous
proposons un modèle d’apprentissage semi-
supervisé capable d’améliorer la précision de
11% par rapport à un modèle supervisé équi-
valent. Enfin, nous proposons un système de
détection d’attaque s’appuyant sur l’apprentis-
sage fédéré. Nommé FLUIDS, il permet de ré-
duire la surcharge réseau de 75% tout en pré-
servant de très haute performance et la confi-
dentialité.

Title: Machine Learning-Enabled Network Traffic Analysis

Keywords: Machine Learning, Federated Learning, traffic analysis

Abstract: Recent development in network
communication along with the drastic increase
in the number of smart devices leads to an ex-
plosion in data generation. To this end, intel-
ligent network traffic analysis can help to un-
derstand the behavior of connected smart de-
vices and applications as well as provides de-
fense against cyber-attacks. In this line, Ma-
chine Learning (ML) and Deep Learning (DL)
models have the ability to model and uncover
hidden patterns using training data or environ-
ment. Despite their benefits, major challenges
need to be addressed such as model gener-
alization (due to model overfitting), lack of la-
bel (due to the difficulty to label all the data),
and privacy (due to recent regulations). In
this thesis, new ML/DL-based models are pro-
posed for tackling these challenges. The first

contribution focuses on improving the gen-
eralization and classification performance by
proposing an ensemble blending model. The
simulation results show that the accuracy of
the proposed ensemble model is 10%, better
than some state-of-the-art models. Second,
a semi-supervised model has been proposed
and the experiment results show that unla-
beled data boost the classification accuracy by
11% in comparison to its supervised version.
Finally, a Federated Learning (FL) based In-
trusion Detection System (IDS) has been pro-
posed. It allowed the clients to learn an ef-
ficient intrusion detection model without the
need to label their local data as well as to
achieve high classification performance and
improvement in terms of communication over-
head (reduction by almost 75%).



References 165


	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	General Introduction
	Motivation
	Research questions
	Thesis Contributions
	Thesis Structure
	Publications
	Journal Papers
	Conference and Workshop Papers


	I Background & State of the Art
	Machine Learning Introduction
	Introduction
	What Machine learning is?
	Paradigms
	Supervised learning
	Unsupervised learning
	Semi-supervised learning
	Reinforcement learning

	Tasks
	Classification
	Regression
	Clustering

	Evaluation metrics

	Shallow models
	DT (Decision Tree)
	SVM (Support Vector Machine)
	KNN (K-Nearest Neighbour)
	K-means
	Ensemble learning
	Bagging
	Boosting
	Blending

	Summary

	Deep Learning
	Types of DL-based models
	Summary

	Dimensionality reduction
	Feature selection
	Wrapper Methods
	Filter Methods

	Feature extraction
	PCA (Principal Component Analysis)
	AE (AutoEncoder)


	ML/DL models limitations
	Over or underfitting issue
	Data training collection

	Federated Learning (FL)
	Conclusion

	ML-enabled traffic analysis: Literature review
	Introduction
	Application traffic classification
	Traditional techniques
	ML for application classification: Literature review
	DL-based approaches
	Ensemble learning-based approaches
	Semi-supervised learning-based approaches
	Traffic classification in SDN
	FL-based approaches

	Shortcomings and Research Gaps

	ML-based Intrusion Detection Systems: Literature review
	Conventional ML/DL related work
	FL related work
	DDoS attack detection or classification
	Shortcomings and Research Gaps

	Conclusion

	II Contributions
	Ensemble-based Deep Learning model for network traffic classification
	Introduction
	Proposed Ensemble Learning Model
	Data pre-processing
	Models hyper-parameters tuning
	Blending ensemble model

	Experimental study and results analysis
	Dataset description
	Experiment setup
	Modeling hyper-parameters
	Performance evaluation of the proposed blending model
	Feature Selection
	Base classifiers selection
	Proposed Ensemble classifier

	Experiments on the second dataset (VPN-nonVPN dataset)
	Performance against state-of-the-art models

	Discussion
	Conclusion

	Handling partially labeled network data: a semi-supervised approach using stacked sparse autoencoder
	Introduction
	SAE-based semi-supervised model
	SAE model
	Data pre-processing

	Experimental study and results analysis
	Objectives
	Dataset description
	SAE-based semi-supervised architecture and hyperparameters
	Trade-off between performance and unlabeled ratio
	Impact of the sparse hyper-parameter
	Impact of dropout and denoising hyper-parameters

	Comparison Analysis
	Comparison with semi-supervised learning models
	Comparison with the commonly-used supervised classification models (100% labeled data)
	Comparison with supervised SSAE* models (using only the labeled ratio)
	Confusion matrix (CM) comparison
	Cost in terms of training and testing times

	Experiments on the VPN-nonVPN dataset
	Performance against state-of-the-art models

	Discussion
	Conclusion

	FLUIDS: Federated Learning with semi-supervised approach for Intrusion Detection System
	Introduction
	FLUIDS methodology
	Experiment and performance evaluations
	Experimental Setup
	Dataset description
	Performance under different factors
	Impact of communication rounds
	Impact of the unlabeled data available on the clients:
	Communication overhead
	Performance against other models


	Discussion
	Conclusion

	Conclusion and Future Directions
	References

