
HAL Id: tel-03965028
https://hal.science/tel-03965028

Submitted on 31 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time and reliable design for safety-critical
embedded systems

Angeliki Kritikakou

To cite this version:
Angeliki Kritikakou. Real-time and reliable design for safety-critical embedded systems. Embedded
Systems. Rennes 1, 2022. �tel-03965028�

https://hal.science/tel-03965028
https://hal.archives-ouvertes.fr

HABILITATION À DIRIGER DES RECHERCHES

(HDR)

UNIVERSITY OF RENNES 1

DOCTORAL SCHOOL NO 601
Mathematics, Science and Technology of
Computer Science and Communication
Domain: Computer Science

By

Angeliki KRITIKAKOU
Real-time and reliable design for safety-critical embedded systems

HDR presented and defended in Rennes, on 28 November 2022
Research center: Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA)

Reviewers:

Alberto BOSIO Professor, École Centrale de Lyon, France
Lirida Alves DE BARROS NAVINER Professor, Telecom ParisTech, France
Jari NURMI Professor, Tampere University, Finland

Examinators:

Smail NIAR Professor, Université Polytechnique Hauts-de-France, France
Olivier SENTIEYS Professor, University of Rennes 1, France
Dimitrios SOUDRIS Professor, National University of Athens, Greece

Abstract

Embedded systems in safety-critical domains, such as avionics, space, automotive, health-care etc.,
require hard real-time and reliable application execution. As applications are becoming more com-
plex, their computational demands scale rapidly. To address these demands, architectures with
multiple processing elements (cores) and application specific hardware accelerators are required.
Multicore architectures are able to concurrently execute a high volume of applications, while hard-
ware accelerators are tailored to the needs of the application. To provide hard real-time guarantees,
the Worst-Case Execution Time (WCET) has to be considered during system analysis and design.
However, WCET are overestimated due to application and hardware complexity. Furthermore, reli-
able execution is under threat due to the increased fault susceptibility of modern electronic systems,
such as manufacturing process variation, aging and soft errors. Typical reliability solutions, that
rely on full hardware or software redundancy, usually entail significant cost, latency and resource
overheads, which are often not suitable for critical embedded systems. To cost-effectively address
these reliability threats, the system must be properly analysed and enhanced with effective fault
tolerance means. Meanwhile, the energy consumption of embedded systems has become crucial
and energy efficient electronic devices should be designed. Platforms have been enhanced with
Dynamic Voltage and Frequency Scaling (DVFS), which scales down the processor supply voltage
and frequency, whenever possible. However, such approaches usually have a negative impact on
execution time and reliability. To provide real-time, reliable and low energy execution over mul-
ticore architectures, efficient analysis and deployment approaches, along with run-time adaptation
capabilities, are required.

In this context, a set of design-time task deployment approaches have been proposed, under
real-time and energy budget constraints. A decomposition-based algorithm has been designed
to provide the optimal solution for independent Imprecise Computation (IC) tasks on symmet-
ric multiprocessors and extended for platforms with DVFS capabilities. We have leveraged our
decomposition-based solution for dependent IC tasks and heterogeneous multicore platforms and
proposed an accelerated, but still optimal, version. Optimal and heuristic approaches have been
proposed, considering task migration on asymmetric multicore platforms. Furthermore, optimal and
heuristic task deployment approaches have been designed, under real-time and reliable constraints
for multicore systems with DVFS. Our fault-tolerant task deployment method jointly optimizes fre-
quency assignment, task allocation, task scheduling, and task duplication for three DVFS schemes,
i.e., task-level, processor-level and system-level, for independent and dependent tasks. Last, we
have taken into account the inter-processor communication and proposed a task deployment pro-
cess for multicore platforms with Network-on-Chip (NoC) and DVFS, where routing path selection
is also taken into account. Moreover, a novel heuristic method is proposed to enhance scalability,
achieving good solutions with low computation time.

To analyse the reliability of complex hardware designs, we proposed a cross-layer reliability

analysis framework, from the semiconductor layer up to the application layer, for transient faults
caused by single radiation particles. We combined statistical analysis with single-cycle gate-level
fault injection and microarchitecture-level fault injection, and explored the impact of faults to
the application execution. Furthermore, run-time hardware mechanisms have been proposed to
deal with faults on heterogeneous Very Large Instruction Word (VLIW) processors and NoC. For
VLIW processors, the proposed mechanism performs instruction triplication considering short-term
transient faults. We leveraged this mechanism for permanent faults, where instruction triplication
and re-scheduling is applied taking into account the status of the Function Units (FUs). To reduce
the performance degradation due to the instruction level fault tolerance, dynamic instruction re-
scheduling is applied based on the status of the faulty FU in a coarse-grained way and a fine-grained
way. For NoC, we proposed a technique for fault mitigation of multiple permanent faults, where
flits at the subflit scale are re-organized in order to move the fault impact on the Low Significant
Bits (LSBs). Furthermore, a redundancy approach is presented to handle critical data. To reduce
hardware overheads, a region-based version is proposed, which protects regions, instead of routers.

Last, a set of run-time approaches have been proposed to reduce the pessimism introduced by the
WCET overestimations. More precisely, when interference-sensitive WCET (isWCET) estimations
are used during system design, they are only valid for the specific schedule solution they have been
computed for. To support a safe adaptation of interference-sensitive schedules, we proposed a run-
time approach that enables parallel execution of the control phases on each core with a fine-grained
protection. Our second contribution comes from the observation that by enforcing the partial order
of tasks, we limit the performance improvement that can be achieved through run-time adaptation.
To further improve performance gains, we leverage our approach with a safe relaxation of the
partial order of tasks. Furthermore, existing approaches are based on WCET estimations obtained
during design-time, and thus, they are not able to take advantage of the actual execution progress
of the tasks. To deal with this limitation, we proposed an approach that computes dynamically
new safe estimations of the WCET during execution, based on the task progress. The updated
WCET estimations are used to derive the available time-slack and postpone mode switch in mixed
critical systems. The proposed approach has been leveraged in order to dynamically decide when
to invoke the controller, reducing the time overhead, further increasing the gains.

As future research directions, we will focus on providing the means to design, in a near-optimal
and efficient way, real-time and reliable embedded systems for safety-critical domains, with un-
reliable components, under multiple reliability threats. Our first direction is the analysis of the
timing impact of transient faults occurring on cores. To achieve that, we will leverage our reliability
analysis framework to incorporate the application timing behaviour and to include the impact of
interference on shared resources. We will enhance WCET estimations with fault awareness and
design low cost fault tolerance techniques to protect the system. Our second direction concerns
the design of real-time and reliable heterogeneous systems and specialized hardware accelerators,
which is the next promising architecture to deal with the increasing demands for high computation
capabilities in timely manner. We will design hardware accelerators for WCET-aware and fault-
aware systems to extend homogeneous multicore systems towards domain specific heterogeneous
multicore architectures. To achieve that, we will adapt reliability and WCET analysis frameworks
and design real-time and fault tolerance techniques for hardware accelerators, such as accelerators
dedicated for Artificial Intelligence (AI). Although soft errors have been considered as the most
important ones, until recently, with the further ongoing reduction of transistors size, system aging
is becoming more and more sensitive to the workload. Different cores are subjected to different
amount of stress as a result of varying workloads, leading to aging imbalance among cores. We

will focus on dedicated cross-layer fault-aware and WCET-aware approaches to efficiently deal with
workload-dependent aging faults for safety-critical systems. Furthermore, the systems are suscep-
tible to multiple types of reliability threats, potentially correlated with each other. Therefore, we
will leverage the proposed approaches to consider multiple sources for reliability threats. Last, but
not least, the continuous decrease of technology size has pushed CMOS devices to their limits, suf-
fering from high static power consumption, reduced reliability, high cost and scaling issues. Future
computing systems will exploit emerging technologies and novel computing paradigms, such as Pro-
cessing In Memory (PIM). In order to be used in safety-critical domains with real-time and reliable
guarantees, we will propose approaches to provide timing and reliability analysis and Design Space
Exploration (DSE) for these emerging technologies and computing paradigms, especially when used
as shared resources.

Contents

1 Introduction and Motivation 1
1.1 Context . 1
1.2 State-of-the-Art (SoA) and positioning of current contributions 3

1.2.1 WCET-Aware (WA) techniques . 4
1.2.2 Fault-Aware (FA) techniques . 7
1.2.3 WCET-aware (WA) and Fault-Aware (FA) techniques 10

1.3 Conclusions . 11

2 WCET-aware task deployment for multicore architectures 13
2.1 Interference-pessimistic design-time mapping for IC tasks 13

2.1.1 Context . 13
2.1.2 State-of-the-Art . 14
2.1.3 Contributions . 15
2.1.4 System model . 15
2.1.5 General problem formulation . 16
2.1.6 Optimal decomposition-based method . 17
2.1.7 Accelerated optimal decomposition-based method 18
2.1.8 Heuristic methods . 19
2.1.9 Evaluation . 19

2.2 Interference-controlled run-time adaptation of isWCET time-triggered task execution 23
2.2.1 Context . 23
2.2.2 State-of-the-Art . 24
2.2.3 Contributions . 25
2.2.4 System model . 26
2.2.5 Enforcing partial order through fine-grained protection mechanism 26
2.2.6 Relaxing partial order mechanism . 28
2.2.7 Evaluation . 29

2.3 Risk-permissive run-time adaptation of task execution in mixed-critical systems . . . 33
2.3.1 Context . 33
2.3.2 State-of-the-Art . 33
2.3.3 Contributions . 35
2.3.4 System model . 36
2.3.5 Design time analysis for high criticality tasks 36
2.3.6 Run-time control mechanism . 38
2.3.7 Evaluation . 42

2.4 Conclusions . 44

i

3 Fault-aware techniques for hardware design 47
3.1 Run-time instruction re-scheduling for VLIW processors 47

3.1.1 Context . 47
3.1.2 State-of-the-Art . 48
3.1.3 Contributions . 49
3.1.4 System model . 50
3.1.5 Fault model . 50
3.1.6 Dynamic instruction replication and scheduling mechanism 51
3.1.7 Cluster-based instruction replication and scheduling mechanism 53
3.1.8 Coarse-grained and fine-grained dynamic instruction scheduling mechanism . 53
3.1.9 Evaluation . 54

3.2 Run-time data shuffling for NoC . 57
3.2.1 Context . 57
3.2.2 State-of-the-art . 57
3.2.3 Contributions . 58
3.2.4 System model . 59
3.2.5 Fault model . 59
3.2.6 Basic Bit-Shuffling method . 60
3.2.7 Region-based Bit-Shuffling method . 60
3.2.8 Evaluation . 61

3.3 Cross-layer reliability analysis for complex hardware designs 63
3.3.1 Context . 63
3.3.2 State-of-the-Art . 64
3.3.3 Contributions . 65
3.3.4 Fault models through Technology and Circuit Analysis 65
3.3.5 Error patterns through Gate-Level Analysis 66
3.3.6 Vulnerability metrics through Microarchitecture-Level Analysis 67
3.3.7 Evaluation . 68

3.4 Conclusions . 71

4 WCET- and fault-aware task deployment for multicore architectures 73
4.1 Design-time mapping under different DVFS schemes 73

4.1.1 Context . 73
4.1.2 State-of-the-Art . 74
4.1.3 Contributions . 75
4.1.4 System model . 75
4.1.5 General problem formulation . 76
4.1.6 Optimal solution . 76
4.1.7 Heuristic methods . 76
4.1.8 Evaluation . 77

4.2 Design-time mapping considering NoC routing . 81
4.2.1 Context . 81
4.2.2 State-of-the-Art . 81
4.2.3 Contributions . 82
4.2.4 System Model . 82
4.2.5 Problem Formulation . 84

ii

4.2.6 Optimal approach . 84
4.2.7 Heuristic method . 84
4.2.8 Evaluation . 85

4.3 Conclusions . 87

5 Perspectives 89
5.1 Impact of hardware faults on timing behavior . 91
5.2 Real-time and reliable AI hardware accelerators . 94
5.3 Workload-dependent aging and multiple reliability threats 98
5.4 Real-time and reliable emerging technologies . 101
5.5 Conclusions . 103

iii

iv

List of Figures

2.1 The structure of optimal decomposition-based approach for dependent tasks and
AMP platforms with DVFS. 18

2.2 The structure of accelerated optimal decomposition-based approach for dependent
tasks over AMP platforms with DVFS. 19

2.3 The structure of heuristic approach for independent tasks and SMP platforms with
DVFS. 20

2.4 The structure of heuristic approach for dependent tasks and AMP platforms. 20
2.5 QoS and computation time gain of B&B, GA, OJTM, and HJTM with M , N and η

varying. 22
2.6 QoS and computation time gain of B&B, GA, JDQT, and AJDQT with M , N and

η varying. 23
2.7 Task execution considering isWCET . 25
2.8 a) Global [244] and b) fine-grained [C18] protection mechanisms to enforce partial

order. 25
2.9 Example of isRA-FG enforcing operation for four tasks on two cores (Curly brackets:

ready vector, parentheses and arrows: notification vector). 27
2.10 Example of isRA-FG relaxion operation for four tasks on two cores (Curly brackets:

ready vector, parentheses and arrows: notification vector). 29
2.11 Average performance gain of isRA-FG and isRA-GLO compared to TT execution,

among all cores and experiments, for all configurations and benchmarks. 31
2.12 Average performance gain of isRA-DYN compared to isRA-FG, among all cores and

experiments, for all configurations, benchmarks and timing variability. 32
2.13 Motivational example. 35
2.14 Schematic representation of grammar rules . 37
2.15 Illustration example where CFG is obtained from C code. 37
2.16 Run-time behavior among the master, high and low criticality tasks. 39
2.17 Comparison of RWCET static and dynamic approaches w.r.t. the gain of the exe-

cution time of the low criticality tasks compared to the isolated execution and the
number of active points. 44

3.1 a) Assembly instructions and register dependencies. Corresponding execution by the
b) compiler and b) DIRS approach [C12, J26] for an 4-issue VLIW. 49

3.2 Execution based on a) compiler, b) DIRS [C12, J26], c) DIRS-CG [C11], d) instruc-
tion re-execution at a new slot [238] and e) DIS [C17, C15]. 50

3.3 Original VLIW processor. 51
3.4 VLIW datapath enhanced with a) DIRS [C12, J26] and b) DIS [C15, C17]. 52
3.5 a) Coarse-grained and b) fine-grained decomposition of FUs. 54

v

3.6 Performance degradation under DIRS-CB and DIRS-CNB. 55
3.7 Performance degradation, compared to fault-free execution, taking into account the

status of FUs in a coarse-grained [C15] and fine-grained [C11] way. 56
3.8 NoC extended with the BiSu method. 58
3.9 Illustration of the R-BiSu technique for different region sizes. 59
3.10 Reliability efficiency and area overhead of BiSu technique and the Hamming code. . 61
3.11 Reliability efficiency and area overhead comparison. 62
3.12 Area and MSE Pareto front. 63
3.13 Flodam cross-layer reliability analysis flow. 66
3.14 RISC-V core with 5-stage pipeline [213]. 68
3.15 SET distribution normalized to cell area and input sizes 69
3.16 Gate-level results of the RISC-V execution stage. 70
3.17 Vulnerability metrics. 70

4.1 Feasibility for all DVFS schemes for optimal solutions. 79
4.2 Energy consumption gain for all DVFS schemes for optimal solutions. 79
4.3 Computation time for all DVFS schemes for optimal approaches. 80
4.4 Feasibility for all DVFS schemes for optimal and heuristic approaches. 80
4.5 Energy consumption gain for all DVFS schemes for optimal and heuristic approaches. 81
4.6 Computation time for all DVFS schemes for optimal and heuristic approaches. . . . 81
4.7 An example of NoC-based multicore system. 83
4.8 The structure of heuristic approach. 85
4.9 Energy consumption of optimal approach compared to a) a single-path approach,

and b) having the objective of minimizing energy consumption. 86
4.10 Comparison of optimal and heuristic approaches: a) feasibility, b) energy consump-

tion, and c) computation time. 87

vi

List of Tables

1.1 Classification of representative SoA approaches . 5

2.1 Classification of representative task deployment approaches 15
2.2 Summary of task deployment problem formulations. 17
2.3 Summary of experimental set-up for task deployment approaches 21
2.4 Comparison of representative isWCET approaches 24
2.5 TMS platform and benchmark characteristics. 30
2.6 Benchmark timing variability . 30
2.7 WCET controller overhead of isRA-GLO, isRA-FG and isRA-DYN approaches (cy-

cles). 33
2.8 Comparison with representative risk-permissive approaches 34
2.9 Risk-permissive run-time adaptation controller time overhead (in cycles) 44

3.1 Comparison with representative SoA fault tolerant VLIW approaches. 48
3.2 Area and critical path delay overhead. 56
3.3 Comparison with representative SoA fault tolerant NoC approaches. 57
3.4 Comparison with representative reliability analysis approaches. 64
3.5 Relative area of RISC-V pipeline stages. 68
3.6 Time of gate-level analysis. 69
3.7 Time of microarchitecture-level analysis. 71

4.1 Representative DVFS task deployment approaches targeting energy minimization. . 74
4.2 Summary of problem formulations. 76
4.3 Summary of experimental set-up for real-time and reliable DVFS task deployment . 78
4.4 Classification of representative task deployment approaches 82
4.5 Summary of problem formulation in [C25]. 84

vii

viii

Chapter 1

Introduction and Motivation

1.1 Context

Industries are specialized in domains that rely 95% on embedded systems [67]: fly-by-wire sys-
tems are used in avionics [193] (Airbus, Thales, ONERA, etc.), navigation systems in space [193]
(ESA, DLR, CNES, etc.), automatic braking systems in automotive [177] (Peugeot, Volkswagen,
Scoda, etc.), insulin pumps in the health-care [157] (Siemens Healthineers, Philips Healthcare, etc.),
embedded vision systems in surveillance [251] (Ivisys, Datalogic, IRIDA-Labs etc). Embedded ap-
plications are complex, imposing constraints to the systems that execute them [B2]. Particularly,
hard real-time and reliable application execution, that delivers results of acceptable quality and
under a maximum energy budget, must be guaranteed [192]. As applications are becoming more
complex, their computational demands scale rapidly. As shown in Figure 1.1a, the code size of au-
tomotive, space and avionics applications has increased significantly within thirty years, e.g. more
than three orders of magnitude in avionics [35], while future automotive and avionic applications
will require higher computing resources [34]. To address these demands, architectures with multiple
processing elements (cores) and application specific hardware accelerators are required. As shown
in Figure 1.1b, a significant increase in the number of logical cores is observed in recent hardware
platforms. Multicore and manycore architectures are able to concurrently execute a high volume
of applications [136], while hardware accelerators are tailored to the needs of the application [110].

(a) Code increase in safety-critical industry [35]. (b) Evolution of platform complexity [223].

1

Hard real-time guarantees are required for critical embedded systems, and thus, the worst case
of the system execution has to be considered during system analysis and design [151]. Overall, the
real Worst Case Execution Time (WCET) of an application is generally unknown, and thus, an
estimation of the WCET must be obtained. Such a WCET estimation has to safely upper bound
the execution time of the application, and thus, it naturally overestimates the real WCET [179].
A main reason for the WCET overestimation is the unpredictable timing behavior of the system,
originated from both application complexity and hardware platform complexity.

Regarding application complexity, the application code can have multiple different execution
paths with different instructions and memory accesses, leading to different execution times, compli-
cating WCET analysis. For instance, the final targets of computed branches, indirect addressing and
dependencies on input parameters cannot be resolved during static timing analysis [179], whereas
no guarantee exists that all executions paths can be tested when measurement-based WCET ap-
proaches are used [4]. Regarding hardware complexity, modern architectures have been enhanced
with dynamic, history-based, hardware components, to improve average performance, e.g., cache
memories and branch predictors [73]. However, such components have variable timing behaviour,
leading to further inflation of the WCET estimations. Furthermore, modern hardware architec-
tures have several cores and share resources among them, e.g. communication networks, memory
hierarchy and controllers. Parallel execution of applications on the same platform may lead to
concurrent accesses to shared resources [224]. These concurrent accesses add timing delays (in-
terference), highly affecting applications’ timing behaviour in a non-deterministic manner. This
behavior introduces additional uncertainties that further increase the WCET overestimation, since
the interference effects in time have to be safely bounded.

Overall, the timing behavior of multiple execution paths, dynamic hardware components and
shared hardware resources has to be upper bounded in order to be safe, leading to overly pessimistic
WCET estimations. For instance, WCETs estimations with interference on shared resources can be
×7 larger than the WCETs estimations without interference [C8, 246]. This WCET overestimation
leads to under-utilisation of the system and to the “one-out-of-m processors” problem [127], where
the additional processing capacity, provided by multicore architectures, is negated by the WCET
pessimism. As a result, sequential execution on a single core may provide better timing guarantees
than any parallel execution, seriously undermining the advantages of using architectures with mul-
tiple cores. To reduce the WCET pessimism, run-time approaches are a promising solution, which
take advantage of the information that becomes available only during the real system execution.

Reliable execution is under threat due to the increased fault susceptibility of modern electronic
systems. Reliability threats, such as manufacturing process variation, aging and soft errors, depend
on transistors size and are expected to significantly increase with transistors shrinking [241]. Nano-
scale transistors are difficult to precisely manufacture, leading to erroneous variation in transistor
physical and electrical parameters. Aging refers to frequency degradation, induced by shifting
transistor threshold voltage [206]. Industrial standards mainly rely on introducing a safe margin
(guard-band margins), in voltage or frequency, to mitigate process variation and aging [206, 43].
Soft errors occur due to environmental conditions, such as high temperature peaks and high-energy
electromagnetic radiation [206] and their mitigation is very challenging due to their random and
transient nature [167]. Due to this unreliable nature of ultra-scaled electronic systems, combined
with the high density of modern architectures, the susceptibility of multicore architectures towards
multiple reliability threats is inevitable [206] and faults will be occurring even under normal oper-
ation [130], which was not the case with the technology used a decade ago [98].

Typical reliability solutions, that rely on full hardware or software redundancy, usually entail

2

significant cost, latency and resource overheads, which are often not suitable for critical embed-
ded systems, which are resource constraint. Hardware redundancy introduces significant overheads
in chip area and energy consumption, whereas software redundancy accounts for notable perfor-
mance degradation and acts agnostically to the underlying hardware [206]. To cost-effectively
address these reliability threats, the system must be properly analysed in order to identify the
most vulnerable software and hardware parts [206], and enhanced with selective fault tolerance and
self-adaptation [43].

Meanwhile, the energy consumption of embedded systems has become a crucial factor. The
amount of electronic devices is increasing day by day. Combined with the increased complexity
of applications and the computation capabilities of modern hardware platforms, the amount of
consumed electricity of electronic devices is significantly increased, negatively impacting the envi-
ronment. To reduce this negative impact, energy efficient electronic devices should be designed and
e-waste should be minimized [13].

Several approaches have been established to maximize system energy efficiency. The platforms
have been enhanced with Dynamic Voltage and Frequency Scaling (DVFS), which is an adaptive
management technique that optimizes energy consumption by simultaneously scaling down the
processor supply voltage and frequency, during execution [274]. Acceptable errors in the application
results are introduced using approximation for computation and communication [7] in domains that
can tolerate approximated results, such as image processing, data mining, machine learning, etc.
However, such approaches usually have a negative impact on execution time and reliability, e.g.,
reducing supply voltage/frequency increases the execution time and the transient fault rate [284].

To provide real-time, reliable and low energy execution over multicore architectures, efficient
analysis and deployment approaches, along with run-time adaptation capabilities, are required.
However, designing real-time, reliable and energy-efficient multicore embedded systems is perplexing
and tedious process, as it consists of several interdependent NP-hard problems [B2] in a large multi-
dimensional design space [124], with constraints and trade-offs among execution time, reliability,
and energy efficiency. In this context, applying exhaustive Design Space Exploration (DSE) is
prohibited. Trial-and-error approaches, based on the designers’ experience, usually require several
design iterations, being time-consuming without any upfront guarantee that the system will satisfy
the application constraints [J6]. DSE methodologies are required with reduced exploration time
leading to near-optimal solutions. Furthermore, as design-time approaches cannot take advantage
of the information created during the system execution, they have to be combined with run-time
approaches in order to provide further improvements.

1.2 State-of-the-Art (SoA) and positioning of current contribu-
tions

In this section we describe representative SoA approaches with respect to real-time, reliable and
energy efficient embedded systems and position our contributions with respect to existing works.
Table 1.1 classifies representative approaches from the SoA under the following categories:

• Regarding the focus of the approaches:

– WCET-Aware (WA): Is the system under study considering the worst-case during design and
execution?

3

– Fault-Aware (FA): Is the system under study susceptible to hardware faults? Hardware faults
can impact the memories, the cores or the interconnections of the target platform. Their im-
pact can be permanent or transient. Such hardware faults can impact the functional behavior
and the timing behavior of the applications. Functional behavior refers to denial of service,
i.e., no outcome is generated because the application is hanged or crashed, and to binary cor-
rectness, i.e., the application outcome is different than expected [212]. Timing behaviour refers
to an application execution time that is different compared to the fault-free execution. Note
that, a denial of service due to application hang is identified when the application execution
time exceeds a, usually high, threshold.

• Regarding the computing platform:

– Single-Core (SC) or Multi-Core (MC): The computing platform under study consists of a
single core (or a standalone hardware accelerator) or multiple cores?

– HW design (SC): Does the work designs any customized hardware component for the com-
puting platform, i.e., Memory (M), Core (C), Hardware Accelerator (A), or it extends a given
computing platform with additional hardware Control Mechanisms (CM)?

• Regarding the approach:

– Design Space Exploration (DSE): Is any DSE adopted to drive the design of the system ?
– Run-time (RT) adaptation: Is any run-time adaptation employed ?
– Design layer : At which design layer the DSE or RT-adaptation is applied, i.e., Application

Layer (AL), Deployment Layer (DL), and Hardware Layer (HL)? Note that, DL can refer
to tasks, data or instructions depending on the approach (e.g., task mapping to cores, data
mapping to registers, memory and buffers, or instruction mapping to function units).

1.2.1 WCET-Aware (WA) techniques

These techniques derive mainly from the real-time community, having the requirement of timing
guarantees based on WCET estimations, and the majority considers considers fault-free computing
architecture. WCET-aware approaches that consider hardware faults are presented in Section 1.2.3.
This section presents some representative WA techniques that: a) guarantee real-time system exe-
cution, and b) estimate WCET, whereas further approaches can be found in surveys [151, 73, 72].

a) Guarantee real-time system execution: These WA approaches can be further classified to
the following main categories: i) Interference-pessimistic, that assume that interference will always
occur at any access to shared resources, ii) Interference-free, that employ upfront spatial-temporal
isolation to prohibit the occurrence of interferences, iii) Interference-controlled, that restrict the
number of allowed interferences, so as to obtain tighter WCET, and iv) Risk-permissive, that allow
design decisions that may lead to timing violations, such us allowing interferences to occur or
using less pessimistic WCET estimations, but watch at run-time for risks that can lead to timing
violations, and take actions in order to mitigate them, if needed.

4

Table 1.1: Classification of representative SoA approaches

Reference Context Platform HW design DSE RT adapt
WA FA SC MC M C A CM AL DL HL AL DL HL

[288] X X X X
[266] X X X X X
[191] X X X X
[22, 41, 24, 68, 185, 250] X X X X
[23, 40, 229, 111, 26, 86] X X X
[152, 209] X X
[214, 215, 245, 264, 285] X X X
[C10, J15, J16, C16] X X X
[J14, W1, C7, C8, C9] X X X
[C18, C21, 179, 282] X X X
[75, 12, 162, 246, 244] X X X X
[281, 180, 142, 25] X X X X
[184] X X X X X X
[261] X X X X X X X
[C13] X X X X X X
[5, 240] X X
[254, 104, 78] X X

[36] X X X
[129, 112] X X X X
[C11, C12, C15, C17, J26, 135, 238] X X X X X
[232, 235, 233, 59, 60, 249, 128, 174] X X X X
[20] X X X
[234] X X X X X X
[194, 120, 77] X X X
[216] X X X X X
[158, 161, 143, 175] X X X
[31] X X X
[154, 8, J23, C24, C22, PP5, 56, 280] X X X X
[88, 63, 125, 83] X X X X X
[82, 166, 173] X X X
[243] X X X X
[C26, C20, 117, 208, 168, 123, 265]

X[269, 47, 93, 236, 262]

[119, 115, 188, 9, 53] X X X X X
[145] X X X X X
[230] X X X X
[C19, C23, J25, J24, PP7, 276, 113, 231] X X X X
[189, 197, 96, 283, 103, 101, 275, 90] X X X X X
[227] X X X X
[48] X X X X X
[105, 248, 52, 50, 51] X X X
[247] X X X
[3, 106] X X X X X

5

i) Interference-pessimistic: These approaches consider the worst-case interference at each ac-
cess to a shared resource. This category also includes approaches that do not explicitly discuss
about interference, but since they imply real-time constraints, the WCET estimation has to be
pessimistic in order these approaches to be able to provide timing guarantees. The majority of
these approaches focus on task scheduling usually using priority-based heuristics and schedulability
analysis. For instance, a work-conserving greedy scheduling method is proposed for dependent
tasks on heterogeneous multicore platforms [264] and a scheduling method using priorities based
on the critical path, the early predecessors and the path length, is proposed for dependent tasks
on homogeneous platforms [285].

The majority of interference-pessimistic approaches focus on task deployment and schedulability
analysis mainly considering precise tasks sets. Few approaches consider imprecise computation tasks
sets and mainly focus on in-time execution under a given architecture configuration. We extend
the SoA by proposing a set of optimal and heuristic design-time task deployment approaches for
imprecise tasks in order to improve the QoS, not only under real-time constraints, but also under
energy budget constraints on multicore architectures with DVFS capabilities [C10, J15, J16, C16],
described in Section 2.1.

ii) Interference-free: These approaches upfront isolate the shared resources among critical tasks
and between critical and less critical tasks. For instance, a scratchpad memory is designed for
critical tasks offering spatial isolation to non-overlapping addresses, a scheduling algorithm is pro-
posed to assign tasks to partitions and a run-time scratchpad partitioning is applied between two
successive critical tasks [266]. FlexPRET [288] processor provides hardware-based isolation to crit-
ical tasks, while a thread scheduler enables the assigning of idle cycles to low criticality tasks in
a round-robin fashion. MERASA [184] is a multicore architecture based on simultaneous multi-
threading cores, providing full isolation within a core and time bounded interaction between critical
tasks of different cores. A bank remapping unit is proposed to support dynamic cache partitioning.
ParMERASA [261] is based on MERASA multicore architecture and aims at WCET-aware appli-
cation parallelization. The PRedictable Execution Model (PREM) [191, 215] executes the tasks in
three phases (read data, execute, write results), and provide contention-free execution by allowing
parallel execution only between communication and computation. A hardware controller buffers
incoming packets from the network [191]. This category is currently not our focus.

iii) Interference-controlled: The knowledge of the mapping solution enables the computation of
a better upper bound on the number of interferences a task can have. As a result, a tigher WCET is
computed, which is, however, interference-sensitive (isWCET), i.e., it is valid only for the given task
mapping solution. For instance, the analysis of [209] estimates tighter WCETs by computing the
interference from tasks running in parallel under a given schedule. Algorithmic optimisations and
task deployment is explored over the invasIC multicore platform and the corresponding isWCETs
are computed through an iterative method in ARGO [C13]. Task deployment and isWCETs are
computed using an ILP method in [214] and a two-step approach in [244, 246, 245]. Tighter WCETs
are derived by exploiting the knowledge of memory budget assignments to the cores [152]. A pre-
liminary analysis of the task resource usages allows off-line partitioning of the resources. A monitor
observes at run-time the real task resource usages, and suspends the task that overtakes its allocated
capacity [180]. The extension of [179] allows dynamic changes in the resource partitioning, when
resources are under-utilized. In [281], the budget of each task with respect to the number of mem-
ory accesses is decided in order to improve schedulability, combined with a controller to prioritize
memory accesses. The extension [282] regulates the best-effort task accesses, when possible.

6

The majority of isWCET approaches are applied at design-time and follow a time-triggerred ex-
ecution. We extend the SoA by proposing a set of run-time approaches to improve the system
performance by allowing an earlier task execution, while preserving the timing guarantees of a
given interference-sensitive mapping solution [C18, C21], described in Section 2.2.

iv) Risk-permissive: These approaches are based on run-time mechanisms to watch for timing
violations during execution. The majority of approaches focuses on timing violations due to under-
estimation of the task WCET. Different WCET static analysis is employed for different levels of
criticality, and, thus, different WCETs exist for a single task. As the criticality level is increased [41],
the WCET has a greater and safer value. Such approaches are usually based on the notion of
temporal isolation among tasks of different criticalities, where tasks of lower criticality should
not adversely affect tasks of higher criticality. Task mapping is performed in order to meet the
real-time requirements at each criticality level. In a two level mixed-criticality scheduling [12]
and its extension to several levels [162] for multicore architectures, the low criticality WCET is
optimistically assigned at each task. At run-time, if the execution of a high criticality task exceeds
its low criticality WCET, a switch occurs to high criticality mode. The low criticality tasks are
usually dropped [142, 22, 23, 41], their priority or execution time requirements are reduced [24],
or their periods are extended [40]. Other strategies explore slack to postpone mode switch [229,
68, 75, 111, 26, 185] and to switch back to low criticality mode [12, 162, 86]. Several global and
partitioned scheduling algorithms of this category are presented in [25]. Similar approaches exist
for single cores, e.g., decreasing computation demands of lower criticality task by increasing their
service intervals, i.e., periods [250] and considering several criticality levels [86].
Existing approaches are based on design-time estimations of the WCET. We extend the SoA by
computing new estimations of the remaining WCET at observation points during execution [J14,
C9, C8, C7, W1], i.e., the WCET required from an observation point until the critical task ends,
without executing low criticality tasks. The system starts execution with high criticality and low
criticality tasks. At run-time, a safe condition uses the remaining WCET to verify whether the
concurrent execution is still allowed to continue or the low criticality tasks should be suspended.
More details are provided in Section 2.3.

a) Estimate WCET: WCET estimation is a key element to provide timing guarantees in the
real-time domain. WCET estimation is performed through safe measurements, based on application
execution, or static analysis of the programs. For instance, a number of static analysis methods
have been proposed, such as [254, 104], focusing on caches, and measurement-based approaches,
such as [240, 78, 5]. A more detailed description of WCET estimation methods and tools is available
in surveys, such as [268, 73]. WCET approaches without faults are currently not our focus.

1.2.2 Fault-Aware (FA) techniques

This section presents some representative FA techniques, whereas surveys exist for error detection
and correction [94, 242, 196] and reliability-aware design [71]. We focus on techniques mainly
introduced by the embedded system design community, with particular interest on approaches
that address reliability issues on the computation on processing elements and communication over
Network-On-Chips (NoC). Therefore, approaches that propose information redundancy to deal with
errors in the memories are not included in this short SoA. Furthermore, we are not interested in
hardening techniques which increase the size of transistors, since this type of techniques reduces the
system frequency, and thus, limits the performance capabilities of the processor [79]. We present
two main categories: a) FA approaches that enhance the system reliability, and b) FA approaches

7

that analyse the system reliability. Note that, the majority of fault tolerant techniques usually focus
on the impact of faults on the functional behavior and do not consider worst-case aspects.
a) Enhance system reliability: These approaches can be further classified depending on whether
they are applied for the processing elements or the data traversing the NoC. Note that, approaches
for memory are not the focus of this research. The first category can be further refined on i)
Instruction-level approaches, applied in a fine-grained manner considering the internal components
of a processor, and ii) Task-level approaches, applied in a coarse-grained manner among processors.
NoC approaches are categorized as iii) Packet-level. Each category can be further refined regarding
the application of the fault tolerant approach, i.e., i) Full, providing fault tolerance to all instruc-
tions, tasks, or packets, and ii) partial, that provide fault tolerance to a subset of instructions, tasks
or packets. We have proposed a detailed classification of fault tolerant approaches in [J21].

i) Instruction-Level Fault Tolerance (ILFT) can be achieved through software, a.k.a., instruction
replication or re-execution, and through hardware, i.e., resources replication.

Instruction replication/re-execution can been full or partial and it can performed by software,
hardware and hybrid approaches. Instruction replication is usually applied over platforms that have
several function units, such as Very Long Instruction Word (VLIW) processors. Full instruction
redundancy replicates all instructions. For instance, the compiler duplicates all instructions and
inserts comparison instructions [36]. A hybrid approach replicates instructions using the compiler
and inserts a hardware mechanism to perform the comparison [238]. A full hardware mechanism
dynamically duplicates the instructions and applies re-execution in case of an error [233]. Partial
instruction redundancy replicates a subset of the instructions. For instance, the compiler does
not replicate control-flow and store instructions [158] and selects which instructions to duplicate
based on the instruction fault masking capability [161]. Hybrid approaches exist, e.g., the com-
piler maximizes the number of duplicated instructions under a bound [112, 129], combined with
hardware-based comparison. The compiler selects the instructions to be duplicated based on tem-
poral and physical vulnerabilities. This selection is encoded in the instructions, which is decoded
by a hardware mechanism that performs the instruction duplication at run-time [135]. Hardware
approaches replicate an instruction when the coupled issue is idle [232] or based on an ILP thresh-
old [235] for coupled VLIWs, and on the size of the additional queues in a configurable VLIW [234].
Software approaches increase the code size and memory requirements, whereas existing hardware
approaches are applicable on homogeneous VLIW processors. We extend the SoA by a set of
hardware mechanisms for heterogeneous VLIW, which fully triplicate instructions and re-schedule
faulty instructions, while performing instruction scheduling at run-time using priority scheduling
algorithms [J26, C11, C12, C15, C17], described in Section 3.1.

Resource replication to support ILFT is performed in hardware inside the processor and it
can be full or partial. Full resource replication replicates all instances of the resource type to be
protected. For instance, function units of a processor are duplicated [174] and two pipelines execute
instructions in lock-step with time diversity [243]. Partial resource replication can be achieved by
selective fault tolerance approaches, e.g., the most radiation-sensitive circuit gates are identified and
replicated [216], reduced duplication is applied based on structural susceptibility analysis, logical
weight of the arithmetic circuit outputs and approximated structure [77].

Note that, hybrid approaches also exist, where instruction replication/re-execution and resource
replication are combined. For instance, when enough resources do not exist to execute twice the
instructions, spare FUs are used [59, 60]. Resource replication and hybrid approaches have not
been up to now our focus.
ii) Task-Level Fault Tolerance (TLFT) can be achieved through software, using task replication or

8

re-execution, and through hardware, i.e., core replication.

Task replication/re-execution can been full or partial, whereas task re-execution can be per-
formed with or without check-pointing. For instance, N instances of the same task are created and
guarded within a fork and a voter task, and the tasks are re-mapped during execution, when faults
occur on a core [154], whereas the number of task instances is decided based on a variation-aware
core and task vulnerability scheme [143]. Other approaches take into account the communication
cost during task replication and mapping [175].

Core replication supports TLFT in hardware by providing additional, either identical or diverse,
cores/hardware designs dedicated for the redundant execution of the tasks. For instance, three cores
are used to execute the same workload and compare their final results [249], two processor units
are fully synchronized executing identical instruction streams [128], and complete hardware design
replication occurs in [120], where an identical copy of a circuit is inserted and the its output is
compared with the original one. Diverse core replication can be achieved through reduced precision
redundancy inserting the same, but lower precision, copies of arithmetic circuits [194], and use of
smaller in-order cores [8].

TLFT approaches that do not take into account real-time aspects are excluded from our focus.

iii) Packet-Level Fault Tolerance (PLFT) can be achieved by reconfiguratian and redundancy.
Through reconfiguration, the routing path is changed to avoid faulty paths or faulty region [88, 63],
spare resources are used to replace the faulty ones [125, 83, 31]. Through redundancy, the circuit
is replicated [82, 166] and extra information is inserted, e.g., additional bits inside messages using
Error-Correcting Codes (ECCs) [56, 280]. Few approaches reduce the impact of faults for Network-
on-Chip (NoC), e.g., by assigning the Most Significant Bits (MSBs) on the borders of the bus [173].

The majority of existing approaches focus on mitigating the impact of faults, while a few approaches
focus on reducing the fault impact when approximations are acceptable. However, existing fault
correction approaches cannot efficiently address several permanent faults on NoC, due to their high
hardware costs, while design-time approaches cannot deal with new occurring faults. We extend
the SoA with a low cost hardware mechanisms that performs shuffling of the bits inside the packet
flits at run-time, in order to reduce the impact of multiple faults [C22, C24, J23, PP5]. Further
details are given in Section 3.2.

b) Analyse system reliability: Reliability analysis can be performed by injecting faults into
the system and observing its behavior. Fault injection can be done by hitting the real system
with a radiation beam and by simulating the impact of injected faults. Approaches for reliability
analysis through simulation either focus on analysing the radiation impact at the lower hardware
design layers, i.e., technology and circuit layers or inject faults at higher hardware and application
layers to characterize the system execution. Radiation analysis at technology and circuit layers
can take into account the circuit layout, the fabrication technology, the radiation and operational
environments [208, 117]. For reliability analysis at higher layers, fault injection is performed at
different abstraction layers. For instance, a fast, but less accurate, fault injection at application
level [168]. Hardware fault injection approaches insert single-bit faults [265, 123] and multiple-bit
flips [269, 93] in sequential logic and in combinational logic [47, 236]. Few works consider both
categories to analyse the radiation impact on the system execution, e.g., considering single-bit
faults in memory components [262]. However, faults in smaller sequential and combinational logic
cannot be neglected and should be included in the reliability analysis.

9

Existing reliability analysis frameworks are based either on low hardware levels to characterize the
impact of radiation to the transistors and cells, without analysing the propagation of faults to
the system execution, or on vulnerability analysis at higher hardware and software layers usually
assuming uniform distribution on fault models. We extend the SoA by proposing a cross-layer
reliability analysis framework for multiple-bit faults in sequential and combinational logic, based
on realistic fault models for radiation, which are propagated at the gate, microarchitecture and
application level [C20, C26], described in Section 3.3.

1.2.3 WCET-aware (WA) and Fault-Aware (FA) techniques

This section presents some representative WAFA techniques, whereas further approaches can be
found in surveys, such as [45]. Existing approaches mainly focus on typical hardware faults, i.e.,
soft errors and permanent faults. We present two main categories: a) WAFA approaches that
enhance the system reliability under real-time constraints, and b) WAFA approaches that estimate
the WCET under hardware faults.

a) Enhance system reliability under real-time constraints: To deal with typical hardware faults,
the majority of real-time approaches focus on task-level fault tolerance taking into account their
overhead in time, implemented through task-replication/re-execution potentially with task migra-
tion, and thought execution using lock-step redundant cores.

Task replication/re-execution is applied fully or partially in WAFA techniques. For instance,
full task replication techniques are combined with typical schedulability analysis [115, 188, 9, 32]
and probabilistic worst-case schedulability analysis for active and passive replicas [189]. A set of
schedules is synthesized off-line, using task re-execution as a fault tolerant method. Based on the
occurrence of faults, the scheduler selects at run-time which schedule to apply [119]. Re-execution
with checkpointing is used in [53]. Task check-pointing and roll-back recovery for transient faults
combined with task migration for permanent faults is achieved through heuristics [230] and tabu
search optimization [231] to maximize the probability of meeting the deadlines of soft tasks under
transient faults. An evolutionary algorithm considers task replication and re-execution creating
static schedules under a maximum amount of transient faults for real-time systems [113].

Partial task replication is achieved through a reliability-aware co-synthesis framework, which
performs allocation and scheduling by selective task duplication based on the task criticality
rank [276]. On top of the real-time constraints, task replication/re-execution approaches exist
that focus on minimizing the energy consumption, e.g., scheduling recovery tasks to be executed
if an error is detected [197, 96, 283], deciding and scheduling the number of task replicas to meet
reliability constraints [103, 101, 275, 90] and taking into account communication cost [48].
Existing WAFA task replication approaches focus on meeting real-time constraints and reliability
constraints. We extend the SoA by performing partial task replication based on the reliability
constraint of tasks, considering transient faults, and explore the impact of different common DVFS
schemes for shared-memory in multicore platforms [C19, C23, J25, J24, PP7] and NoC-based multi-
core platforms [C25], with the goal of minimizing the energy consumption, described in Chapter 4.

Core redundancy with lock-step execution is usually used in WAFA approaches. The replicated
cores can execute the tasks in tight lock-step, where cores execute the same instruction and compare
the outputs cycle by cycle, and loose lock-step, where redundant execution is not synchronised on
the different cores [20]. For instance, tasks are executed at different times on redundant cores and
the progress is compressed into an external state, called fingerprint, and at regular intervals, the
original and redundant fingerprints are compared, providing a bounded error detection latency [145].

10

Core redundancy can be applied also at system level, e.g., redundant multiprocessor system-on-chip
are used and interconnected via a dependable and redundant off-chip net [227]. Currently, we have
not worked on this aspect yet.

b) Estimate WCET under hardware faults: Existing approaches focus on hardware faults in
cache memories, while the rest of the architecture is assumed fault-free [45]. The goal is to estimate
the timing impact to WCET, by accounting for the hardware degradation due to the presence of
faults. For instance, the probability of an SRAM cell to be faulty is used to evaluate the additional
cache misses and taken into account during WCET estimation [105], while a measurement-based
approach provides the WCET impact, when cache lines are disabled due to permanent faults [248].
Approaches extend the aforementioned works to incorporate the timing impact of inserted fault
tolerant techniques to detect, correct or mitigate faults [52, 50, 51, 247]. Other approaches focus
on mitigating the hardware degradation, due to occurring faults, using redundant hardware. As a
result, the timing impact of faults on WCET is mitigated and the timing characteristics of hardware
are maintained, leading to WCET estimations close to fault-free WCET estimations, despite the
presence of faults. For instance, timing analysis is provided considering a reliable victim cache to
replace faulty entries [3], an extra reliable cache way per set and a shared reliable buffer [106].
Although our research up to now has not addressed this category, we will tackle hardware faults in
processing elements, as described in our near-future perspectives in Chapter 5.

1.3 Conclusions

This research focuses on the domain of designing real-time and reliable embedded systems. We
presented the main challenges and presented an overview of the state-of-the-art, regarding WCET-
aware and fault-aware approaches, applied at design-time and at run-time at different abstraction
layers, and positioned our contributions. The next three chapters will describe in more details
our contributions. More precisely, the proposed WA approaches are described in Chapter 2, the
contributions regarding FA approaches in Chapter 3, and the proposed WAFA approaches in Chap-
ter 4. Chapter 5 will present the main limitations of existing works, motivate our future work and
describe the future research directions.

11

12

Chapter 2

WCET-aware task deployment for
multicore architectures

This chapter summarises our contributions focusing on real-time systems on multicore architectures
with hard timing guarantees, and thus, the system execution must guarantee that tasks are com-
pleted before their respective latency requirements (a.k.a. deadlines). More precisely, section 2.1
presents our contributions regarding optimal and heuristic design-time approaches to deploy Impre-
cise Computation (IC) tasks, characterized with pessimistic WCET regarding interferences, over
multicore architectures, under energy supply and hard real-time constraints. These works have
been performed during the Postdoctoral period of Lei Mo. Section 2.2 describes the contributions
regarding run-time approaches to adapt a time-triggered schedule, which has been created consid-
ering WCET that are interference sensitive (isWCET) for hard real-time applications. Section 2.3
presents our contributions regarding run-time approaches that allow interferences to occur and
adapt the task execution if a risk exist, through system mode switch, for mixed-critical systems.
These works have been proposed during my post-doctorate period and tenured-track period in
TARAN. Section 2.4 summarises the aforementioned contributions.

2.1 Interference-pessimistic design-time mapping for IC tasks

2.1.1 Context

In several real-time application domains, less accurate results, computed before the deadline, are
preferable than accurate, but too late, results [17]. This is due to the fact that a real-time applica-
tion has to provide a result before its deadline. When not enough time is available, approximate
results are acceptable, as long as the minimum acceptable Quality-of-Service (QoS) is satisfied and
the results are provided in time [65]. For instance, in audio and video streaming, frames with a
lower quality are better than missing frames. In radar tracking, an estimation of target’s location in
time is better than an accurate location computed too late. In control loops, an approximate result,
produced by a control law, is more preferable as long as the controlled system, e.g., cruise control
system, remains stable. In these domains, a task can be logically decomposed into a mandatory
subtask and an optional subtask [17, 277]. This decomposition is typically modeled by the IC task
model [144]. The mandatory subtask must be completed before the deadline in order to generate
the minimum acceptable quality, i.e., the baseline QoS. The optional subtask refines the obtained
result in order to increase the baseline QoS. For instance, in a real-time video application, at each

13

period, an imperfect, but acceptable, quality image is initially produced from the received data.
Then, this image can be further refined depending on the available resources [17]. Similar applica-
tions can be found in many other areas, e.g., mobile target tracking, real-time heuristic research and
control engineering [277, 171]. In order to compute the increase in QoS that an optional subtask
provides, each task is associated with a QoS function. The most realistic and typical functions
for QoS modeling are the linear [219, 279, 277, 286] and the general concave [278, 66, 218, 16, 17]
functions, since they can adequately capture the behavior features of many application areas.

At the same time, the system energy consumption has become an important concern. To enable
energy efficiency, the platforms have been enhanced with the capability of dynamically scaling their
voltage and frequency during execution to balance system performance and energy savings [274].

In this context, the longer an optional subtask is executed, the higher QoS is achieved. However,
more energy is consumed and more time is required for the optional subtask execution. Furthermore,
executing a task with lower processor voltage and frequency leads to a reduction of the energy
consumption and an increase of the execution time of the task. In order to maximize the quality
of the application results, and at the same time meet the constraints on energy consumption and
real-time execution, proper task deployment approaches are required that can efficiently exploit
both the platform characteristics and the application’s tolerance to approximate results.

2.1.2 State-of-the-Art

The majority of the deployment approaches on multicore processors focuses on precise computa-
tion tasks [139, 54]. Usually these approaches aim at minimizing the energy consumption under
real-time constraints. On the contrary, deployment approaches that focus on tasks that tolerate
approximation, such as IC tasks [144], aim at maximizing the Quality of Service (QoS) under energy
and/or real-time constraints. The way IC tasks are deployed on a multicore platform is decided
mainly by three deployment factors. The first factor is the task mapping, which refers to both
the task allocation (on which core each task is executed) and the task scheduling (when each task
starts execution). The second factor is the decision of the voltage and frequency of the core when it
runs a specific task. The third factor is the adjustment of the optional part of each task. Table 2.1
provides several representative IC task deployment approaches from the literature and positions
our contributions. Overall, task deployment approaches can be classified based on whether: 1) the
tasks are Dependent (Dep.) or Independent (Indep.), 2) the platform is characterised as Symmetric
Multicore Processor (SMP) or Asymmetric Multicore Processor (AMP), 3) whether DVFS, task
allocation to processors (Alloc.) or task migration (Migr.) is under study, 4) whether Real-Time
(RT) or Energy (E) constraints are taken into account, and 5) the solution method is optimal (O)
or heuristic (H). Note that, AMPs provide heterogeneity to deal with application diversity, as they
consist of cores that differ in microarchitectural features, such as pipeline design, issue/fetch width,
and cache hierarchy, and not merely in frequency/voltage, as SMPs [159].

The majority of IC deployment approaches on multicore architectures propose heuristics, while
they do not consider concurrently the three aforementioned deployment factors. Regarding in-
dependent IC tasks, some approaches define upfront the frequency of the processors, and solve
the task allocation and the optional part adjustment, e.g., through a heuristic where the two
problems are solved in sequence for AMP [286, 267] and an optimal approach for SMP [17]. Re-
garding dependent IC tasks, some approaches assume that the task allocation is given upfront,
and thus, address only the task scheduling, frequency assignment and optional part adjustment for
SMP [279] and AMP [277]. Except single objective optimization, other existing approaches have a
bi-objective optimization where the energy consumption is minimized and the QoS is maximized,

14

Table 2.1: Classification of representative task deployment approaches

Reference Task Platform Constraints Solution
Dep. Indep. Alloc. Migr. AMP SMP DVFS RT ES O H

[286, 267] X X X X X X
[17] X X X X X
[171] X X X X X X
[277] X X X X X X
[279] X X X X X X
[156] X X X X X X X

[C10] X X X X X X
[J15] X X X X X X X X
[J16] X X X X X X X
[C16] X X X X X X X X

but without restrictions on the energy supply, e.g., using genetic algorithms and particle swarm
optimization for independent and dependent tasks [156] and heuristic approaches for independent
tasks on SMP [171]. Overall, the QoS-aware task mapping for multicore platforms is still an open
issue, since there is no optimal polynomial-time solution [171].

The aforementioned QoS-aware task mapping methods, except [17], employ heuristics to find
the near-optimal solutions. Although heuristics can provide feasible solutions in a short amount
of time, they do not provide any bounds on solution quality, and are sensitive to changes in the
problem structure and parameters.

2.1.3 Contributions

We propose a decomposition-based approach able to provide the optimal solution, with reduce
solution time than typical optimal solvers, for independent IC tasks executed on a SMP [C10]. To
further improve the energy efficiency, the aforementioned approach has been enhanced with DVFS
capabilities [J15]. Furthermore, a heuristic is proposed to obtain near-optimal results with a negli-
gible solution time and less sensitivity to the problem parameters. As a next step, we have extended
our decomposition-based solution for dependent IC tasks and heterogeneous multicore platforms
and proposed an accelerated, but still optimal, version of our decomposition-based method [J16].
Last, optimal and heuristic approaches considering task migration are proposed in order to take
advantage of AMPs, such as the big.LITTLE platform [C16]. Note that, the extension of the op-
timal deployment methods from dependent to independent tasks and from SMPs to AMPs is not
straightforward, as additional usually non-linear constraints are introduced into the problem.

In the next paragraphs, we summarize the task and platform models considered in our con-
tributions and provide a general description of the proposed problem formulations and solutions.
For the exact mathematical formulations for each problem, please refer to the corresponding arti-
cles [C10, J15, J16, C16].

2.1.4 System model

We consider an interference-pessimistic set of IC tasks T = {τ1, . . . , τi, . . . , τN}. Each task τi is
described by a tuple {oi,Mi, Oi, di}, where Oi is the upper bound on the number of possible optional
cycles, i.e., 0 ≤ oi ≤ Oi. Therefore, the total length of task τi, measured in execution cycles, is
Mi+ oi. As we require to guarantee the deadline of the task, the Mi and Oi are measured in Worst
Case Execution Cycles (WCEC) [278], assuming the worst case for interferences. Each task has

15

a relative deadline di before which both the mandatory and the optional subtasks of τi must be
completed. The relative deadline is defined as the time interval between the start of a task and the
time instance when the deadline occurs [116]. Without loss of generality, we consider that tasks
are released at the time 0. For dependent tasks [J16, C16], the task set is modeled by a Directed
Acyclic Graph (DAG) called G(V,E), where vertexes V denote the set of tasks to be executed, while
edges E describe the data dependencies between the tasks. A task starts its execution when all its
preceding tasks have been completed. Thus, the tuple is extended with tsi , which represents the
start time of task τi. Note that tsi is an unknown variable, which is determined by task deployment
decision. The deployment is performed within a scheduling horizon H. We use the linear function
model, i.e., the system QoS increases uniformly with the optional subtask execution.

We consider a multicore platform with M processors {θ1, . . . , θk, . . . , θM}. Each processor
θk (1 ≤ k ≤ M)(in [C10, C16]) is characterized by a given supply voltage and frequency pair
(vk, fk). Furthermore, for asymmetric platforms in [C16], the M processors are divided into R
clusters {W1, . . . ,WR}. Each cluster Wr consists of a set of symmetric processors, which have the
same frequency characteristics (e.g., minimal, maximal and operating frequencies). When DVFS is
taken into account in [J15, J16], each processor θk has L different Voltage/Frequency (V/F) levels
{(v1, f1), . . . , (vL, fL)}. Task-level DVFS is considered [278, 55], i.e., the frequency of a processor
stays constant for the entire execution of a task, whereas it can be modified among task executions.
When the processors are symmetric [C10, J15], the WCET of task τi, when it is executed at fre-
quency fk on processor θk, is given by Mi+oi

fk
. When the processors are asymmetric [J16, C16], the

parameter λik ∈ (0, 1] [139] is introduced to describe the execution efficiency of processor θk, when
it executes task τi. Therefore, the WCET of task τi with frequency fk on processor θk is Mi+oi

λikfk
.

Processors can operate in two modes: idle and active. A processor is said to be in the active
mode, if the processor currently executes a task. Otherwise, it is in the idle mode. The power
consumption of a processor θk is expressed as P ck = P sk + P dk , 1 ≤ k ≤ M , where P sk = Cskv

ρk
k

is the static power of the processor ready to execute (being either on the active or idle mode),
P dk = Cdkfkv

2
k is the dynamic power of task execution, and Csk, ρk and Cdk are constants depending

on processor type. It is assumed that when a processor has no task to execute, it goes into idle
mode. The transition time and energy overhead is considered very small compared to the time and
energy required to execute a task and are assumed to be incorporated into the execution time and
energy of the task. This power consumption model is widely adopted by existing works [139, 54].

Furthermore, the system is energy-constrained in the sense that it has a fixed energy budget Es
that cannot be replenished during the scheduling horizon H [286]. Taking the available energy Es
into account, the system operation can be divided into three states: 1) Low: the supplied energy
Es is insufficient to execute all the mandatory cycles {M1, . . . ,MN}, 2) High: the supplied energy
Es is sufficient to execute all the mandatory and optional cycles {M1 + O1, . . . ,MN + ON}, and
3) Medium: all the mandatory cycles are ensured to finish, while not all the optional cycles can
complete their executions. We focus on the medium state.

2.1.5 General problem formulation

Given a set T of IC tasks, our goal is to map T on M processors, such that the overall system QoS
is maximized, under task real-time and energy budget constraints. To achieve that, we determine
1) which processor should the tasks be executed on (task-to-processor allocation), and 2) how
many optional cycles should be executed (optional task adjustment). Furthermore, when we study
platforms that support DVFS, we also define 3) what frequency should be used for the tasks
(frequency-to-task assignment). When we study set of dependent tasks, we define 4) when should

16

the task start (task scheduling). Last, when task migration is allowed, the migration of task is
performed among different clusters, as the processors in the same cluster are symmetric. Overall, a
processor is able to execute one task at a time instance (task non-overlapping constraint), the tasks
should finish before their deadline (real-time constraint) and consume no more than the available
budget (energy budget constraint). The above task mapping problems have multiple constraints,
and in order to formulate and solve them we have to combine binary and continuous variables.
Table 2.2 summarizes the constraints and the variables used in each contribution, along with the
type of the proposed problem formulation and the proposed solutions. As Mixed-Integer-Non-Linear
Programming (MINLP) problems are difficult to solve, we equivalently transform them to Mixed-
Integer-Linear Programming (MILP). We adopt the idea of variable replacement [54] to eliminate
the nonlinear items related to the optional cycles and the frequency assignment in [J15, J16] and
the task migration in [C16]. To achieve that we introduced continuous auxiliary variables to replace
the non-linear items. Then, the relevant constraints are modified accordingly. By doing so, the
MINLP is transformed to an equivalent MILP.

2.1.6 Optimal decomposition-based method

We propose an optimal algorithm to solve our problem formulation when binary and continuous
variables are coupled with each other linearly. The key idea comes from Benders decomposition,
which is an effective method for solving MILP with guaranteed global optimality [28, 198]. It
is based on the fact that if binary variables are determined, the problem will reduce to a Linear
Programming (LP) problem, which has a simpler structure, and thus, it is easier to solve. Therefore,
the overall idea is that, instead of considering all the variables and the constraints simultaneously,
we decompose the problem into a Master Problem (MP) and a Slave Problem (SP), which are
solved iteratively through a feedback loop. By doing so, the computational complexity of the
solution is significantly reduced [28], even if the initial problem is non-convex. More precisely,
the MP is an ILP that accounts for all binary variables along with the corresponding part of the
objective function and the relevant constraints. Furthermore, it includes a set of constraints called
Benders cuts, which derive from the SP. The SP is an LP that includes all the continuous variables
and the associated constraints. The SP solution provides additional feasibility and infeasibility
constraints that narrow down the feasible region of MP binary variables and are incorporated in
the MP through the Benders cuts.

Initially, we solve the MP and obtain a lower bound Ql for the optimal of the initial problem

Table 2.2: Summary of task deployment problem formulations.

Constraints Binary Continuous [C10] [J15] [J16] [C16]
Task-to-processor allocation X X X X X
Optional task adjustment X X X X X
Frequency-to-task assignment X X X
Task dependencies X X X X
Task migration X X
Task non-overlapping X X X X X X
Real-time X X X X X X
Energy budget X X X X X X
Type MILP MINLP MINLP MINLP
Solution O O+H O+acc.O O+H

17

objective function Q∗ along with a set of values for the binary variables. Then, we substitute these
values into the SP and solve the dual of the SP (DSP) to obtain an upper bound Qu for optimal
value of the initial problem objective function. Based on the solution of the DSP, a new Benders
cut constraint is generated as follows: if DSP has a bounded (unbounded) solution, a feasibility
(infeasibility) constraint is generated. This new constraint is added into the MP, and a new iteration
is performed to solve the updated MP, and then, the new SP. The iteration process stops when
the gap between the upper and lower bounds is smaller than a predefined threshold. Figure 2.1
schematically describes the optimal algorithm proposed to solve the problem of task deployment
for dependent task over AMP platforms with DVFS in [J16].

Task-to-processor
allocation

Frequency-to-task
assignment

Task scheduling Task adjustment

Master problem (ILP)

Slave problem (LP)

New
constraints

Optimal
binary

solution

MILP

Iteration m

Figure 2.1: The structure of optimal decomposition-based approach for dependent tasks and AMP
platforms with DVFS.

2.1.7 Accelerated optimal decomposition-based method

Although the solution provided by the previous method is optimal, this method cannot be used
to efficiently solve large problem sizes, because the MP is an ILP and at each iteration, a new
feasibility constraint or infeasibility constraint is added into the MP. With an increasing number
of iterations, both the computational complexity and the size of MP increase.

In order to circumvent these difficulties, we propose an accelerated version to reduce the com-
putational complexity of the optimal decomposition-based approach, which is dominated by the
cost of solving the MP at each iteration. To achieve that, we relax the binary variables to be con-
tinuous variables with ranges in [0, 1]. The relaxed MP is an LP problem, since all the variables are
continuous. Note that, if the DSP is solved with the solution of the relaxed MP, the DSP may be
infeasible, since the relaxed MP solution may not be binary. To solve this problem, the solution of
the relaxed MP is rounded to the nearest binary solution that is feasible to the MP. Such a binary
solution can be found by heuristics, e.g., using the feasibility pump method [85]. Based on the
structure of the relaxed MP and the SP, we design a distributed solution based on two-layer sub-
gradient algorithm to solve these problems. Positive Lagrange multipliers are introduced and the
dual function is obtained. Then, a two iteration process is applied, where the inner-layer iteration
updates the variables under the given Lagrange multipliers and the outer-layer iteration updates
Lagrange multipliers under the given variables. With the iterations between the outer-layer and
the inner-layer, the Lagrange multipliers statistically converge to the optimal values when step size
is a small enough value. Figure 2.2 schematically describes the accelerated version for dependent
tasks and DVFS over AMP platforms with DVFS proposed in [J16].

18

Feasibility pump method

Task-to-processor
allocation

Frequency-to-task
assignment

Task scheduling Task adjustment

Master Problem (ILP)

Slave Problem (LP)

New constraints

Feasible binary solution

MILP

Relaxed Master Problem (LP)

Iteration m

Outer-layer iteration (n)
Inner-layer
iteration (k)

Two-layer iteration

Optimal continuous solution

Optimal
continuous

solution

Figure 2.2: The structure of accelerated optimal decomposition-based approach for dependent tasks
over AMP platforms with DVFS.

2.1.8 Heuristic methods

As binary and continuous variables are highly coupled with each other in the problems under
study, it is difficult to design an efficient heuristic. When the problem formulation is changed,
existing heuristics usually have to be redesigned, such as [286, 171]. Inspired by the structure
of the optimal algorithm and its accelerated version, we propose two novel heuristics, where the
complexity is reduced by i) removing the iteration process for SMP [J15], and ii) reducing the
number of iterations for AMP [C16]. Note that, the proposed heuristics are a reduced version of
the optimal approach, and thus, they can be applied to similar MILP problems without redesigning.

The heuristic in [J15] exploits the fact that the most complex steps are task-to-processor and
frequency-to-task decisions. If the value of these binary variables is determined, the problem
reduces to a LP problem. Therefore, the proposed heuristic initially solves the Frequency-to-task
Assignment Problem (FAP) to obtain a feasible solution. Since the mandatory subtasks must be
always executed, we initially consider only the frequency assignment of the mandatory subtasks and
our aim is to minimize the energy consumption. Having determined the frequency-to-task decision,
we obtain the execution time of mandatory subtasks. Then, we find a feasible solution for the Task
Allocation Problem (TAP), with the goal of minimizing the maximum task execution time among
processors. In the final step, based on frequency-to-task assignment decision and task-to-processor
allocation decision, we solve the Optional Task Adjustment Problem (OTAP) under real-time and
the energy budget constraints. The structure of the proposed heuristic is depicted in Figure 2.3 for
independent tasks over SMPs platforms with DVFS.

In [C16], the heuristic (named HDA) has a structure similar to the optimal one, except that
the optimal MP solution is replaced by a feasible MP solution (as in the accelerated version).
Furthermore, the iteration stops when the SP obtains a bounded solution for first time. The
structure of the proposed heuristic is depicted in Figure 2.4 for dependent tasks over AMPs.

2.1.9 Evaluation

This section presents the main results to evaluate the behavior of the proposed approaches, whereas
the complete evaluation can be found in [C10, J15, J16, C16]. We present the QoS and computation

19

Task-to-processor
decision

Frequency-to-task
decision

FAP (ILP)

TAP (ILP)

OTAP (LP)

Task adjustment
decision

Feasibility pump

Relaxed problem (LP)

Figure 2.3: The structure of heuristic approach for independent tasks and SMP platforms with
DVFS.

ODA(ILP)

HDA(LP)

ODA

Master problem
(Task allocation)

MILP

SP is feasible

Iteration stopping criterion

() ()u lk k H) �) d

HDA

ODA(LP)

HDA(LP)

Slave problem
(Task scheduling)

ODA(ILP)

HDA(LP)

ODA

Master problem
(Task allocation)

MILP

SP is feasible

Iteration stopping criterion

() ()u lk k H) �) d

HDA

ODA(LP)

HDA(LP)

Slave problem
(Task scheduling)

ODA(ILP)

HDA(LP)

ODA

Master problem
(Task allocation)

MILP

SP is feasible

Iteration stopping criterion

() ()u lk k H) �) d

HDA

ODA(LP)

HDA(LP)

Slave problem
(Task scheduling)

Figure 2.4: The structure of heuristic approach for dependent tasks and AMP platforms.

time of the proposed optimal approach (named OJTM) and heuristic (named HJTM) for indepen-
dent tasks over SMP and the optimal approach (named JDQT) and accelerated version (named
AJDQT) for dependent tasks oven AMP. Furthermore, we compare with optimal approaches, i.e.
Branch and Bound method (B&B) [39, 183], which is known to provide optimal solution for the
MILP problem, and stochastic approaches, i.e. Genetic Algorithm (GA) [237]. The simulations
are performed on a laptop with quad-core 2.5 GHz Intel i7 processor and 16 GB RAM, and the
algorithms are implemented in Matlab 2016a.

Experimental set-up

Table 2.3 summarizes the set-up. Note that using different values for the set-up will only modify
the parameters, and not the problem structure. Thus, the proposed methods are still applicable.
Platform: The processor model used for the multicore platform in the experiments is based
on 70 nm technology, where the accuracy of the parameters’ values has been verified by SPICE
simulations [55]. The processor operates at five voltage levels in the range of [0.65 V, 0.85 V] with a
step of 50 mV (i.e., L = 5). The power of the processor in the idle state is set to P s0 = 80 µW , while
the corresponding frequency fl, the dynamic power P dl , and the static power P sl under different
voltage levels are shown in Table 2.3. The number of processors (i.e., M) is tuned from 4 to 10
with a step of 2.
Benchmarks: The IC task set is created by randomly generating IC task graphs with a total
number of task N equal to 10 up to 50 tasks. The WCEC of the mandatory part Mi and the
maximum optional part Oi of a task τi are assumed to be within the range [4× 107, 6× 108] [286],
provided from the execution of MiBench and MediaBench benchmark suites [203].
Constraints: Regarding real-time constraints, for independent tasks, the relative deadline for each
task is di = min∀l∈L{Mi+Oi

fl
} and the scheduling horizon H is assumed to be proportional to the

20

average processor workload, H =
⌈
N
M

⌉ ∑N

i=1 di

N . For dependent tasks, the relative deadline of a task
τi is assumed to be in the range [di, di], where di = min∀l∈L{Mi+Oi

fl
} and di = max∀l∈L{Mi+Oi

fl
} are

the minimum time and the maximum time required to execute the cycles for the mandatory part
and the maximum optional part, respectively. The hyper-period of the tasks is H = max∀i∈N {Di},
where Di is the absolute deadline of a task τi, Di = t̂is + di, where t̂is is the temporary start time.
The temporary start time is computed by setting the temporary end time of task τi equal to the
temporary start time of task τj (i.e., t̂ie = t̂is + di = t̂js), if task τi precedes task τj . If τi is the first
task, we set t̂is = 0. Regarding energy supply constraint, since system is in the medium energy state,
the energy supply is set to Es = ηEh, where Eh = MHP s0 +∑N

i=1[min∀l∈L Mi+Oi
fl

(P sl + P dl − P s0)]
is the minimum energy required to execute {M1 +O1, . . . ,MN +ON} cycles. The energy efficiency
factor η is tuned from 0.8 to 0.9 with a step of 0.05.
Objective function: The objective function of the problem under study is given by a linear
function of the QoS tasks, adopted from [286, 267].

Table 2.3: Summary of experimental set-up for task deployment approaches

Processor θk characteristics
vl (V) 0.65 0.7 0.75 0.8 0.85
fl (GHz) 1.01 1.26 1.53 1.81 2.10
P dl (mW) 184.9 266.7 370.4 498.9 655.5
P sl (mW) 246 290.1 340.3 397.6 462.7
P s0 (µW) 80
Task τi characteristics Mi, Oi ∈ [4× 107, 6× 108]

Real-time constraint
Independent tasks Dependent tasks

di = min∀l∈L
{
Mi+Oi

fl

}
di ∈ [min∀l∈L{Mi+Oi

fl
},max∀l∈L{Mi+Oi

fl
}]

H =
⌈
N
M

⌉ ∑N

i=1
di

N H = max∀i∈N {Di}
Energy supply constraint Eh = MHP s0 +

∑N
i=1
[

min∀l∈L Mi+Oi

fl

(
P sl + P dl − P s0

)]
Es = ηEh

Objective function
∑N
i=1 gi(oi) =

∑N
i=1 oi

Independent IC tasks over SMP

Figure 2.5a shows the statistical property of the QoS gain between OJTM and HJTM, B&B and
GA. The QoS gain of an approach i compared to an approach j is given by Qi(M,N,η)−Qj(M,N,η)

Qi(M,N,η) ,
where Qi(M,N, η) is the QoS achieved by approach i and Qj = (M,N, η) is the QoS achieved by
approach j under given M , N and η parameters, respectively. We present the box plot of the QoS
gains obtained under all M and N values for a given η. On each box, the central mark indicates
the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points that are not considered outliers
and the outliers are plotted individually using the ‘+’ symbol. From the obtained results, we
observe that the solutions given by B&B and OJTM are same, and thus, OJTM also finds the
optimal solution. Furthermore, OJTM achieves higher QoS (26.3% in average) than HJTM, and
OJTM achieves higher QoS (7.6% in average) than GA. Although GA solves complex non-linear
programming problem (non-convex), such as MINLP, the solution optimality is hard to guarantee.

Figure 2.5b depicts the computation time gain between OJTM and HJTM, B&B and GA.
Similar as before, we denote Ti(M,N, η) and Tj(M,N, η) as the computation time of an approach i
and j, respectively, under given M , N and η parameters. The computation time gain of an approach

21

0.8 0.85 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Q

oS
 g

ai
n

OJTM vs HJTM

0.8 0.85 0.9
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Q
oS

 g
ai

n

OJTM vs B&B

0.8 0.85 0.9
0

0.05

0.1

0.15

0.2

0.25

Q
oS

 g
ai

n

OJTM vs GA

(a) QoS

0.8 0.85 0.9

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
om

pu
tin

g
tim

e
ga

in

B&B vs OJTM

0.8 0.85 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
om

pu
tin

g
tim

e
ga

in

GA vs OJTM

0.8 0.85 0.9
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
om

pu
tin

g
tim

e
ga

in

OJTM vs HJTM

(b) Computation time

Figure 2.5: QoS and computation time gain of B&B, GA, OJTM, and HJTM with M , N and η
varying.

i compared to an approach j is given by Ti(M,N,η)−Tj(M,N,η)
Ti(M,N,η) . Overall, OJTM takes a shorter

computation time than B&B (22.6% in average) and GA (35.6% in average). The computational
complexity of an optimization problem increases significantly with the number of variables and
constraints. Although B&B can optimally solve MILP problems for large problem sizes, it explores
a large number of nodes to find the optimal solution. Compared with OJTM, the GA structure
is more complex, as in each iteration GA generates new populations, through several procedures,
such as selection, reproduction, mutation and crossover. Transforming MINLP problem to a MILP
simplifies the structure of the problem, and, thus, the optimal solution is easier to find. Furthermore,
solving iteratively smaller problems, i.e., the MP and the SP, is more efficient than solving a single
large problem. This result agrees with the comparison of [204]: the decomposition-based method
is faster than the B&B for lager problem instances. HJTM can find a feasible solution within a
negligible computation time compared with OJTM.

Dependent IC tasks over AMP

Figure 2.6a compares the QoS gain of JDQT with B&B and GA, computed as before. We observe
that JDQT achieves higher QoS (6.8% on average) than GA and it has the same QoS with B&B.
Furthermore, the accelerated version AJQDT has the same QoS with the optimal JDQT.

Figure 2.6b compares the computing time of JDQT, B&B, GA and AJDQT. JDQT takes a
shorter computing time than B&B (27.8% on average) and GA (73.2% on average). AJDQT takes
32.69% on average less time than JDQT. As M and N increased, the computing time of JDQT,
B&B, and GA grows, since more variables and constraints are involved in the problem, and thus,
the problem size is enlarged, compared to AJDQT.

22

0.8 0.85 0.9
0

0.05

0.1

0.15

0.2

0.25
Q

oS
 G

ai
n

JDQT vs GA

0.8 0.85 0.9
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Q
oS

 G
ai

n

B&B vs JDOT

0.8 0.85 0.9
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Q
oS

 G
ai

n

JDQT vs AJDQT

(a) QoS

0.8 0.85 0.9

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

C
om

pu
tin

g
tim

e
ga

in

GA vs JDQT

0.8 0.85 0.9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
om

pu
tin

g
tim

e
ga

in

B&B vs JDQT

0.8 0.85 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

C
om

pu
tin

g
tim

e
ga

in

JDQT vs AJDQT

(b) Computation time

Figure 2.6: QoS and computation time gain of B&B, GA, JDQT, and AJDQT with M , N and η
varying.

2.2 Interference-controlled run-time adaptation of isWCET time-
triggered task execution

2.2.1 Context

In multicore architectures, several resources are shared among the cores, such as memories and
interconnects. The concurrent accesses to these resources must be arbitrated, introducing non-
deterministic variations to the access times. This behavior is called timing interference. The amount
of interference a task may suffer during execution depends on the number of accesses to shared
resources and on which tasks are running in parallel. As shown in Table 2.4, approaches bound the
number of allowed memory access in order to bound the interference. For instance, offline partition
the capacities of shared resources among tasks [180, 152] and cores [281]. A monitor observes at
run-time the task resource usages and suspends the tasks/cores that overtake the allocated capacity.
Extensions of these approaches allow dynamic changes in the resource partitioning, when resources
are underutilized [179, 282]. Parallel tasks are defined by the task scheduling and allocation. During
the WCET estimation of a task either: i) the worst-case interference is used, i.e. all accesses of a
task to a shared resource are assumed to conflict with all other cores, or ii) the task scheduling
and allocation is known and it is used to provide essential information regarding which tasks are
scheduled in parallel, allowing more accurate estimation of interference. The first approach is
valid for any task scheduling and allocation. However, the pessimism introduced in the WCET
estimation (by being unaware of the task scheduling and allocation solution) can potentially negate
the performance benefit coming from the parallel execution of the tasks on multi-cores [127] or even
make the problem infeasible, if the system becomes unschedulable. Such WCETs estimations with
interference can be seven times larger than the corresponding estimations without interference, both
experimentally measured [C7, 153] and analytically computed [246, 245]. The second approach uses
the information obtained by the task scheduling and allocation solution to compute interference-
sensitive WCET (isWCET), which are lower than the pessimistic WCET of the first approach [214,
245, C13, 209], as they account for the interference only of the tasks scheduled in parallel. However,

23

the isWCETs are schedule-dependent, and thus, they are valid only for the schedule solution they
have been estimated for.

In this context, in order to guarantee an execution within the available time, the isWCET
schedule and allocation solution, used to compute the isWCET, has to be maintained during
execution. Otherwise, additional interferences may occur, which have not been accounted for
during task scheduling and allocation.

Table 2.4: Comparison of representative isWCET approaches

Ref. Schedule Interference bounds
TT Static Dynamic Parallel tasks Static bounds Dynamic bounds

[180] X X
[179] X X
[281, 152] X X
[282] X X
[214, 245, 209] X X
[244, 246] X X

[C18] X X
[C21] X X

2.2.2 State-of-the-Art

In order to maintain the isWCET schedule during execution, the majority of existing approaches
use time-triggered execution, where the tasks are executed exactly at their start time assigned in
isWCET schedule. For instance, time-triggered approaches analyse the tasks scheduled in parallel
to obtain isWCET [214, 245, 209]. Figure 2.7a illustrates the time-triggered execution of the task
scheduling and allocation solution for four tasks τ0, τ1, τ2, τ3, which access a shared resource, e.g.,
the main memory. The delays, that each task suffers due to the interference caused by the task
running in parallel, are denoted with light stripped boxes. Although time-triggered execution is
time-safe, it prohibits any improvement on performance, since the tasks can start only at the time
instant that has been defined by the time-triggered schedule at design-time. However, performance
improvement can create slack, which can be used to increase the QoS or execute other best-effort
applications. For example, in cruise control systems, the created slack can be used to further
improve quality of the result produced by the control law, whereas in satellite systems less essential
functions, such as scientific instrument data collection, can be activated [84].

To enable any performance improvement, adaptation is required during execution. This can
be achieved by using information of the task actual execution time, which becomes available as
the execution progresses. However, any adaptation occurring at run-time must be safe, i.e., either
no additional interference should be allowed by the run-time adaptation or any additional allowed
interference must be guaranteed to be safe. Otherwise the system execution becomes unsafe, as
shown in Figure 2.7b. Task τ0 finishes earlier than the time instance given by the isWCET time-
triggered schedule. If run-time adaptation re-schedules τ2 at an earlier start time, it can cause
additional interferences to τ1 (depicted by the striped blue box). These additional interferences
increase the isWCET of τ1, making the isWCET schedule invalid, and τ1 may violate its deadline.

The work in [244, 246] performs run-time adaptation of isWCET time-triggered schedules, by
allowing tasks to be executed earlier-than-originally scheduled, preserving the timing guarantees.
This is achieved by inserting extra scheduling dependencies to the task scheduling and allocation

24

τ2τ0

τ3τ1Core 1

Core 0

timed1

…

…

(a) Time-triggered execution

τ2

τ3τ1Core 1

Core 0

timed1

…

…

τ0

(b) Unsafe re-scheduling

τ2τ0

τ3τ1Core 1

Core 0

timed1

…

…

(c) Enforced partial order

τ2

τ3τ1Core 1

Core 0

timed1

…

…

τ0

(d) Relaxed partial order

Figure 2.7: Task execution considering isWCET

solution, depicted by the arrows in Figure 2.7c, to prohibit any additional task overlapping in
case of run-time re-scheduling. In this way, the partial order of task execution is enforced at run-
time and no increase in the interferences can occur, maintaining the isWCET estimations valid.
The run-time adaptation is achieved through controllers that monitor the task execution on each
core and share information regarding the status of cores. Before executing task τi, the controller
checks if the scheduling dependencies are met, and thus, the task is ready for execution. This
corresponds to the ready phase Ri of the controller of task τi, depicted in Figure 2.8a. When the
task finishes execution, the controller updates a status array and notifies the rest of the controllers
that the task has finished its execution. In Figure 2.8a, this corresponds to the update phase Ui
of the controller of task τi. However, this approach requires a global centralized synchronisation
mechanism to protect the information shared among the cores. Such a centralized mechanism
executes the requests from different cores in sequential order, which inserts waiting time in order
to gain access in the protection mechanism, as depicted by the rectangle W in Figure 2.8a.

d1

WR1

R0 U0R2

U1R3 U3

U2τ2τ0

τ3τ1Core 1

Core 0

time

…

…

(a) Global

R1

R0 U0R2

U1R3 U3

U2τ2τ0

τ3τ1Core 1

Core 0

time

…

…

d1

(b) Fine-grained

Figure 2.8: a) Global [244] and b) fine-grained [C18] protection mechanisms to enforce partial order.

2.2.3 Contributions

Our first contribution [C18] is to remove the limitations of global centralized mechanisms by propos-
ing an interference-sensitive adaptation approach capable of fine-grained protection. The proposed
approach enables parallel execution of the control phases on each core, whenever possible, via
fine-grained protection of the shared variables, eliminating any unnecessary blocking, as shown in
Figure 2.8b. In this way, tighter WCET of the run-time adaptation controller and overall better
run-time execution of tasks are achieved.

25

Our second contribution [C21] comes from the observation that by enforcing the partial order of
tasks, we limit the performance improvement that can be achieved through run-time adaptation. As
depicted in Figure 2.7c, the run-time mechanism with enforced partial order can allow an earlier
execution of successor tasks (τ2 and τ3), only when all their predecessor tasks have finished (τ0
and τ1). Let’s assume that τ0 started earlier-than-originally scheduled and some time slack has
been created at run-time, due to early termination of a task. This time slack can be exploited
to further improve performance. As depicted in Figure 2.7d, if the additional isWCET, due to
the interferences inserted by a new task running in parallel (e.g., by running τ2 in parallel with
τ1), is less than the time slack, then the partial order of tasks can be safely relaxed, and thus,
τ2 can be executed in parallel with τ1. Therefore, we propose an interference-sensitive run-time
adaptation approach that safely relaxes the partial order of tasks. The actual execution time of
tasks across cores is explored to allow concurrent tasks to sustain more interference, than the one
computed during the isWCET schedule, as long as the timing guarantees are preserved. Compared
to existing approaches, the proposed approach is capable of exploiting the run-time variability due
to a shorter task execution compared to the isWCET schedule computed offline. This run-time
variability is created due to i) lower interference occurred during execution than the maximum
possible interference, used to offline compute the isWCET schedule, and ii) the executed path is
different than the worst-case path of the task, used to compute the isWCET schedule. The next
sections describe the main notations of the proposed approaches, while all details, definitions and
mathematical formulations can be found in [C18, C21].

2.2.4 System model

Let T denote the set of tasks of an application to be executed on the set of cores M of the target
platform. The input to the proposed mechanism is a time-triggered schedule that provides the
start and end times of the tasks and their allocation to cores. Such time-triggered schedule can be
constructed by a scheduling algorithm that provides timing guarantees, applied offline using the
isWCET of the task-set T . The tasks of T can be dependent, or independent, and are periodically
executed in a non-preemptive manner. Since the proposed approach acts upon the time-triggered
schedule, any limitation stems from the task model and the scheduling algorithm used offline to
derive the time-triggered schedule. A time-triggered schedule is considered safe, iff it satisfies the
system-defined timing constraints, i.e., each task deadline and/or a global deadline must be met.
Given a safe time-triggered schedule, a set of scheduling dependencies EisRA enforce the partial
order of the tasks in the time-triggered schedule, s.t. a task τ depends on the tasks {τ ′} that
finished immediately before it on all cores M.

2.2.5 Enforcing partial order through fine-grained protection mechanism

To obtain a safe and efficient fine-grained synchronization approach, parallel execution of control
phases of different cores must be allowed, whenever it is possible, without creating any concurrency
issues. To achieve that, we propose a control mechanism that is executed independently on each
core and for each task. The task execution is extended with two control phases, namely ready
and update. To achieve fine-grained synchronisation, each core must have its own status vector (of
size |M|), where each bit of the status vector corresponds to a core. The status vector of a core
represents the notifications received from other cores at any time instance.
Ready phase: During the ready phase, the controller waits for the task to become ready, i.e., all
previous tasks have finished, and thus, its dependencies are met. To implement the ready phase,

26

τ2τ0

τ3τ1Core 1

Core 0

time

{00} {10}

{11}{00}

(11)

(01) (00)

(00)

status1: 00

status0: 00

(a) Initial state of the system

τ2τ0

τ3τ1Core 1

Core 0

time

{00} {10}

{11}{00}

(11)

(01) (00)

(00)

status1: 00

status0: 01

(b) After τ0 finishes, the status of core 0
is updated

τ2τ0

τ3τ1Core 1

Core 0

time

{00} {10}

{11}{00}

(11)

(00)

(00)

status1: 10

status0: 11

(01)

(c) After τ1 finishes, core 1 notifies core
0, which re-schedules τ2

τ2τ0

τ3τ1Core 1

Core 0

time

{00} {10}

{11}{00} (00)

(00)

status1: 00

status0: 00

(11)

(01)

(d) Core 1 re-schedules τ3

Figure 2.9: Example of isRA-FG enforcing operation for four tasks on two cores (Curly brackets:
ready vector, parentheses and arrows: notification vector).

a ready vector (of size |M|) is required for each task τ . Each bit in the ready vector represents
the core k on which the incoming edge of the scheduling dependencies originates from. The ready
vectors are created offline for each task τ , based on the dependency relation EisRA, and they are
not modified during execution. For instance, in Figure 2.9a, the ready vector of task τ2 is {11},
since it is has to wait for i) task τ1 running on core 1 and ii) task τ0 running on core 0, to finish
before being executed. The ready vector of task τ1 is {00}, since no dependency exists from another
task. The controller reads the ready vector of the task τ to be executed next. Then, it has to gain
access to the critical section of the status vector through the protection mechanism related to the
core k. Once it has been granted access to its status vector, it checks if all task dependencies are
already met. If this is true, the task τ can be executed. For instance, tasks τ2 and τ3 in Figure 2.9c
are considered ready, since the corresponding bits of the status vectors of core 0 and core 1 are set
and the status vectors are equal with the ready vectors. Before advancing to the execution phase,
the controller resets the bits indicated by the ready vector of task τ in its status. This is illustrated
in Figure 2.9d, where the corresponding bits in the status vectors are reset and tasks τ2 and τ3
are executed. Then, the protection mechanism is released and the phase finishes. Otherwise, the
process is repeated, until the task becomes ready.
Update phase: During the update phase, the controller notifies all relevant cores that the task
has finished execution. A core k’ is called relevant for any task τ executed on core k, when there
exists an outgoing edge from task τ towards a task τ ’ on core k’. To implement the update phase,
a notification vector (of size |M|) is required for each task τ that describes the relevant cores. The
notification vectors are created offline for each task τ , and they are not modified during execution.
For instance, in Figure 2.9a, the notification vector of task τ1 is (11); when it finishes execution, it
has to notify task τ2 running on core 0 (bit 0) and task τ3 running on core 1 (bit 1). After the task
τ on core k completes its execution, the controller has to update the status of all the relevant cores.
To do so, it initially reads the notification vector of τ . For each core i, it checks whether the core
should be notified, and thus, its status should be updated. For each such core, the controller tries

27

to gain access to the critical section through the core’s protection mechanism. If access is granted,
the controller verifies if the previously occurred update of the core k has been already consumed
by core i. If this is true, the k-th bit in the status of core i is set, indicating that the dependency
from core k has been met. The corresponding bit in the notification vector is cleared to show that
the controller has already updated the core. For instance, in Figure 2.9b the controller of core
0 updates its own bit after task τ0 finishes. In Figure 2.9c, the controller of core 1 updates the
corresponding bit in the status of core 0 after task τ1 finishes.

2.2.6 Relaxing partial order mechanism

To enable a safe partial order relaxation during execution, the previous control mechanism is
extended with the relax phase and the global time-slack computation. When a task is not ready,
the control mechanism tries to relax the partial order of the tasks, when it is safe. To achieve that,
a global slack is computed, which is the minimum time-slack among all cores. The time-slack of a
core is given by the amount by which the execution of its tasks has been sped up. Speed-up occurs
when the actual execution of a task is shorter than its isWCET. The partial order is allowed to be
modified, if the introduced interference by any new task, running in parallel, is less than this global
slack. The interference that a task τ can cause to and sustain from is upper bounded by ιmax(τ).
Relax phase: To achieve partial order relaxation, the controller of core k gains access to its critical
section and clears the k-th bit of the notification vector for each predecessor task τ ′, to indicate that
the dependency has been removed, as illustrated in Figure 2.10a. In order to reflect these changes
to its own status and ready vectors, it stores which dependencies have been removed in a local
variable. A dependency from a predecessor task τ ′ on the same core k is met, i.e., the notification
from core k has already occurred. Hence, the local variable is initialized with all bits set, except
the k-th bit. For the same reason, the k-th bit of that task’s τ ′ notification vector is not reset.
Finally, the controller resets all the bits of its status and ready vector that were modified by the
relaxation process, according to the local variable, and tests if the task is now ready. Figure 2.10b
shows the partial order relaxation between task τ1 and τ2 for the running example (initial steps
are the same as Figure 2.9a and Figure 2.9b). Notice that, data-dependencies are preserved, thus
ensuring proper ordering of data-dependent tasks.
Global slack: The time-slack of a core is the difference between the actual response time R(τ) of
a task τ and its end time ε(τ). As the actual response time R(τ) is not known a-priori, we use a
safe slack approximation, i.e., στ = β(τ) − t with max

τ ′∈pred(τ)
R(τ ′) ≤ t ≤ β(τ), where t is any time

instance between the instance when the task becomes ready, i.e., all its predecessors have finished,
and the time-triggered start time β(τ). This approximation is safe, since the time-slack after the
execution of the task is greater or equal to the slack created before the execution of the task.
This safe approximation enables an efficient computation of the global slack, i.e., the minimum
slack of all cores, at any time instance t, in a distributed manner, without requiring any sort of
synchronisation or explicit exchange of information among cores. This is achieved by subtracting
the current time instance t from the minimum start time of all active tasks. To avoid inter-core
information exchange, a global array is used to store the start time of the active task on each core
and a global variable obtains the minimum value of the array. The start time of an active task is
updated every time a core has to execute a new task. As soon as a new task is active, the controller
of core k stores the old start time in a local variable and updates the start time of its active task
with the new one. If its old start time is equal to the minimum value of the array, it means that this
controller was the owner of the minimum value, and thus, it has to recalculate the new minimum of

28

the global array. Otherwise, it delegates this computation to the controller that is the owner of the
minimum value of the array. Note that, accessing the global variable without protection can result
in missing a write from another core. This means that the controller uses an older value, which is
smaller than the new one. This only results in smaller global slack computation, and thus, only
missed opportunities of relaxation. This is deliberately done so, in favor of run-time performance.

τ2τ0

τ3τ1Core 1

Core 0

time

{00} {10}

{00}{00}

(10)

(00)

(00)

status1: 00

status0: 00

(00)

(a) After τ1 finishes, core 1 notifies core 0,
which re-schedules τ2

τ2τ0

τ3τ1Core 1

Core 0

time

{00} {10}

{00}{00} (00)

(00)

status1: 00

status0: 00

(10)

(00)

(b) Core 1 re-schedules τ3

Figure 2.10: Example of isRA-FG relaxion operation for four tasks on two cores (Curly brackets:
ready vector, parentheses and arrows: notification vector).

2.2.7 Evaluation

This section presents the evaluation of the proposed approaches. We compare the performance
gain and overhead of the approaches that enforce the partial order of the tasks, i.e., the proposed
fine-grained approach (named isRA-FG) and the global centralised approach (named isRA-GLO)
with the time-triggered execution, and the proposed fine-grained approach that relaxes the partial
order of the tasks (named isRA-DYN) compared to isRA-FG. The performance gain is given
by the observed execution time of the tasks allocated on a core (a.k.a. makespan). Hence, to
attribute any observed makespan decrease as a gain for a run-time approach, any system parameter,
that may lead to timing variability at run-time, should be controlled and explored independently,
whenever possible. These parameters are mainly the interferences, the different execution paths
of the benchmarks and the impact of caches. Therefore, we initially explore the timing variability
that each benchmark can have, when executed on the platform. Here we show the results for
three execution configurations, where two, four and eight benchmark instances are running on
two, four and eight cores, respectively. Each experiment has been executed twenty consecutive
iterations. We provide the average performance gain of an approach j compared to an approach i,
i.e., Makespani−Makespanj

Makespani
, for all cores and experiments per configuration. The complete evaluation

can be found in [C18, C21]. Note that, during the experiments, we observed no timing violations
according to the time-triggered solution.

Experimental Setup

Platform & implementation: A real multi-core COTS platform, i.e., the TMS320C6678 chip
(TMS in short) of Texas Instrument [253] is used. The platform characteristics are depicted in
Table 2.5. All mechanisms have been implemented as a bare-metal library, with low-level functions
for the controller phases using TMS hardware semaphores.
Benchmarks: To experimentally evaluate the approach, we have conducted experiments using
three different applications with respect to the number of tasks, WCET, and Worst Case Resource

29

Table 2.5: TMS platform and benchmark characteristics.

DSP Instr/cycle Freq. L1P L1D L2
char/stics 8 1GHz 32KB 32KB 512KB
No. DSPs 8 NoC TeraNet (11 cycles)
Shared L3 4MB SRAM DDR3 512 MB Sem. 32 cycles

No. Seq. WCET No.
tasks (cycles) WCRA

DCT 32 981,120 69,808
MERGE 47 669,026 55,415

FFT 47 275,891 41,981

Table 2.6: Benchmark timing variability

Interference variability
Caches Path DCT MERGE FFT

Disabled Best-Path 32.13% 46.67% 55.03%
Worst-Path 44.80% 43.78% 52.70%

Enabled Best-Path 0.43% 0.91% 3.58%
Worst-Path 0.32% 0.91% 3.29%

Cache variability (No interferences)
Path DCT MERGE FFT

Best-Path 73.83% 69.03% 69.40%
Worst-Path 76.57% 68.60% 69.38%
Path variability (No interferences)
Caches DCT MERGE FFT

Disabled 46.65% 12.84% 0.15%
Enabled 40.51% 14.69% 0.46%

Accesses (WCRA) taken from the StreamIT benchmarks [255]: i) Discrete Cosine Transformation
(DCT), ii) Mergesort (MERGE), and iii) Fast Fourier Transformation (FFT).
WCET and WCRA acquisition: Since no existing static WCET analysis tool supports the
TMS platform, a measurement-based approach has been used to acquire the WCET of each task.
Obtaining safe and context-independent measurements requires to eliminate the sources of timing
variability[78], by disabling data-caches, removing interference (i.e., the task is executed alone on
one core) and providing input data to enforce the worst-case path. To perform our measurements on
the real platform, we used the local timer of the core. To increase the reliability of the measurements,
we have followed the approach of multiple executions. Each task has been executed 50 times, which
has been shown to provide a small standard deviation [164], and maintained the largest observed
value. The application has been compiled with -O0, i.e., no optimizations, in order to obtain the
WCRA of each task by the produced binary. Table 2.5 depicts the overall WCET, WCRA and
number of tasks of each benchmark, used to obtain the time-triggered near-optimal solutions.
Data-placement: The controller data are placed on the on-chip Multicore Shared SRAM Memory
(MSM), while application data are placed in the off-chip main memory (DDR3), ensuring that the
controller does not interfere with the task’s execution.
TT-schedule: The input of all approaches is the offline isWCET schedule generated by [246].

Characterization of timing variability

We tune caches, different execution paths and interference independently in order to characterize its
impact to the timing variability per benchmark. To compute the timing variability, the execution
time of the best observed case and the worst observed case are compared. Table 2.6 shows the
timing variability due to caches and diverse paths (computed without any interference), and the
timing variability due to interferences, when all cores are running the same benchmark. We observe
the impact of caches is quite high for all benchmarks, with 71.14% on average, whereas the impact
of different execution paths depends on the benchmark type. The impact of the interferences is
important (45.85% on average), with disabled caches. With enabled caches, the interference impact
is reduced, since the cache sizes are large enough, and thus, keep the benchmark data locally.

30

Fine-grained compared to global centralised protection mechanisms

From the experiments, we observed that the behavior of isRA-FG is similar, in terms of minimum,
maximum and average makespan, for all cores for all benchmarks, under any timing variability.
Note that, this behavior of isRA-FG is due to the fixed partial task order and motivates the use of
an approach that can explore the variability occurring at run-time, such as isRA-DYN. Therefore,
this section we present the behavior of isRA-FG with 0% timing variability.

Figure 2.11 shows the average performance gain among all cores and experiments, for all config-
urations and benchmarks, for isRA-FG and isRA-GLO approaches compared to the TT schedule.
Overall, the isRA-FG achieves performance improvements compared to the isRA-GLO. The gains
of the isRA-FG compared to isRA-GLO are increased with increasing the number of cores, for all
benchmarks. The minimum gain is observed when only 2 cores are used, i.e., for DCT benchmark
where the proposed approach achieved 47.84% and isRA-GLO 47.07% smaller makespan than TT-
schedule. As the number of cores increases, more tasks are executed in parallel. As a result, the
probability of having requests for accessing the global protection mechanism by more than one
core is increased, increasing the overhead of the global protection mechanism compared to the
fine-grained mechanism. The maximum gains have been observed for FFT with 8 cores, where
isRA-FG achieves 40.46% and isRA-GLO 5.38% smaller makespan than TT-schedule.

Relaxation compared to enforced partial order of tasks

This section presents the behavior of isRA-DYN with respect to the timing variability, due to
interferences, caches, and multiple execution paths of the benchmarks. We have performed exper-
iments, where we insert at each benchmarks a timing variability from 0% up to 40%, on average.
Figure 2.12 depicts the average performance gains of isRA-DYN compared to isRA-FG.

The configuration with 0% timing variability is the worst set-up for isRA-DYN, since the timing
variability of the benchmarks is eliminated as much as possible. To achieve that, the same execution
path is used among executions and caches are disabled. However, it is not possible to eliminate the

0

10

20

30

40

50

60

70

2x2 4x4 8x8 2x2 4x4 8x8 2x2 4x4 8x8

Pe
rf

or
m

an
ce

 G
ai

n
(%

)

isRA-FG isRA-GLO

FFT DCT MERGE

Figure 2.11: Average performance gain of isRA-FG and isRA-GLO compared to TT execution,
among all cores and experiments, for all configurations and benchmarks.

31

0

5

10

15

20

25

2x2 4x4 8x8 2x2 4x4 8x8 2x2 4x4 8x8

Pe
rf

or
m

an
ce

 G
ai

n(
%

)
0% 5%% 10%% 20% 40%

FFT DCT MERGE

Figure 2.12: Average performance gain of isRA-DYN compared to isRA-FG, among all cores and
experiments, for all configurations, benchmarks and timing variability.

interference occurring from the parallel execution of tasks. For all the experiments, we observe that
the behaviour of isRA-DYN improves over the behavior of isRA-FG, in all cores, as the number
of cores increases. For two cores, isRA-DYN provides a small gain (from 0.08% for MERGE up to
0.22% for FFT, with an average of 0.145% among all benchmarks). The low gain of two cores is
due to the low interference occurring during execution in combination with a bit higher run-time
overhead of isRA-DYN, due to the relax phase, compared to isRA-FG. As the number of cores is
increased, the occurring interference is increased, and thus, the gain is higher. As the only source
of timing variability is interference, the gain of isRA-DYN verifies that the proposed approach is
capable of exploring the occurring interference during execution, compared to isRA-FG.

To quantitatively characterize the behavior of the isRA-DYN, when other sources of timing
variability occur on top of the interferences, we insert an average variability of 5%, 10%, 20% and
40% in the WCET of the benchmarks (WCRA remains unchanged). Overall, isRA-FG fails to
take advantage of timing variability during execution, due to its fixed partial order policy. On the
contrary, isRA-DYN provides higher gains as the variability is increased. For two cores, as the
timing variability is increased, the gains also increase. Considering all benchmarks, we observe
an average gains of 0.85%, 2.09%, 4.95%, and 9.33%, for 5%, 10%, 20% and 40% variability,
respectively. The maximum gain for 40% variability is 11.35% observed for core 0 running DCT.
As the number of cores is increased, the gains are also increased. For four cores, the average
gain over all benchmarks is 1.89%, 3.82%, 8.46% and 15.86% for the different variabilities. The
maximum gain for 40% variability is 19.85% observed for core 1 running MERGE. For eight cores,
the gains are even higher, i.e., with an average gain over all benchmarks equal to 3.45%, 7.11%,
14.22% and 23.26% for the different variabilities. The maximum gain for 40% variability is 25.31%
observed for C4 running MERGE.

32

Controller cost

Table 2.7 depicts the corresponding WCET in cycles for the isRA-GLO, isRA-FG and isRA-DYN
approaches when executed over TMS. The time-triggered mechanism cost is 270 cycles, where 70
cycles are required to write a watchdog timer with the start time of the task and at least 200 cycles
for serving an interrupt handling routine, when the timer expires. As the number of cores increases,
the WCET cost for the controller of isRA-FG and isRA-DYN increases almost linearly compared
to the WCET of isRA-GLO. Due to the additional relax phase, the overhead of the isRA-DYN
controller is a bit higher than isRA-FG controller. Despite the increased overhead, isRA-DYN can
provide further performance improvements, as it has been shown in the previous section.

Table 2.7: WCET controller overhead of isRA-GLO, isRA-FG and isRA-DYN approaches (cycles).

Approach WCET per phase Total WCET
Ready Notify Relax |M|=2 |M|=4 |M|=8

isRA-GLO 251*|M|2 344*|M|2 - 2,380 9,520 38,080
isRA-FG 251*|M| + 436 213*|M|2 + 185*|M| + 169 - 2,323 5,745 17,701
isRA-DYN 251*|M| + 436 213*|M|2 + 185*|M| + 169 183 + 201*|M| 2,908 6,732 19,492

2.3 Risk-permissive run-time adaptation of task execution in mixed-
critical systems

2.3.1 Context

Mixed-critical systems consist of applications with different properties and requirements, and thus,
different criticality levels [263]. The criticality level depends partially on the consequences on the
system when an application fails to meet its timing constraints. For instance, in avionics the Design
Assurance Level (DAL) model [220] defines hard real-time applications with high criticality levels
A, B or C and soft real-time applications with low criticality levels D or E. The applications
with high criticality level usually have hard real-time constraints and require guarantees regarding
their execution in time. To ensure these timing guarantees, safe WCET estimations must be used.
However, WCET estimations are pessimistic, leading to over-allocation of the resources to high
criticality applications, and in the worst case, to a system that is considered unschedulable.

In this context, in order to increase the overall system quality, e.g., by a longer execution of low
criticality tasks, or even to obtain schedulable systems, the pessimism introduced during WCET
estimations should be reduced.

2.3.2 State-of-the-Art

As discussed in Chapter 1, three main categories exist to reduce WCET pessimism: i) interference-
free, ii) interference-controlled, and iii) risk-permissive approaches. Interference-free approaches
apply isolation and resources usually cannot be claimed by low criticality tasks. Interference-
controlled approaches bound the allowed interferences by analysing the memory accesses, which
usually require a detailed analysis. Risk-permissive approaches take advantage of the different
criticalities of tasks and follow a more optimistic approach. They allow design decisions, that may
lead to timing violations, watch at run-time for risks, that can lead to timing violations, and take
actions in order to mitigate them, if needed.

33

Table 2.8: Comparison with representative risk-permissive approaches

Ref.
Timing violation Explore slack In HI-mode

Interference WCET Sta. Dyn. Drop Reduce Timing Extend
underest. low priority budget Periods

[41, 22, 23, 142] X X
[12, 162, 86] X X
[229, 68, 75] X X X
[111, 26] X X X X
[185] X X X X
[40] X X X X X
[21] X X

[C8, C7, C9, W1, J14] X X X

The majority of risk-permissive approaches focuses on timing violations due to underestimation
of the WCET. Different confidence levels are used for the WCET estimation. The higher the
criticality level, the larger and safer the WCET estimations are [41]. For instance, in dual criticality
systems, a pessimistic, with high assurance, upper bound (CH), and a less pessimistic, with lower
assurance bound (CL) is used for the WCET estimation of high criticality tasks, while only the less
pessimistic WCET estimation (CL) is used for low criticality tasks. Such a mixed-critical system
has two executions modes: low criticality mode (LO-mode) and high criticality mode (HI-mode).
The system starts execution in LO-mode, where both high criticality and low criticality tasks are
executed. Usually, if a low criticality task exceeds its CL, it is dropped. However, as soon as a high
criticality task exceeds its CL, the system switches from LO-mode to HI-mode to meet the timing
constraints of the high criticality tasks. In HI-mode, all low criticality tasks are usually dropped,
e.g.,[22, 23, 41], degrading the overall system QoS. To improve QoS, existing approaches work on
two directions: i) explore other strategies, than dropping low criticality tasks in HI-mode, and ii)
explore static or dynamic ways to either postpone the mode-switch or to switch back to LO-mode.
Other strategies in HI-mode consist of i) setting the priority of low criticality tasks below the priority
of any high criticality task, ii) reducing the execution time requirements of low criticality tasks in
high criticality mode, and iii) extending the periods of low criticality tasks [40]. For instance, a
high criticality WCET, lower than the low criticality WCET, is used for the low criticality tasks in
order to guarantee that they progress during HI-mode [21]. Static approaches determine the largest
value, to be added to the CL of high criticality tasks, while system remains schedulable. This value
extends the mode switch further than CL. Such methods are inspired by sensitivity analysis [229]
and zero-slack [68, 75]. Static approaches are applied before execution, thus exploring only the
existing slack due to system under-utilisation. On the contrary, dynamic approaches exploit the
slack created during execution. When the actual execution time of a task is lower than its CL,
slack is created, since the task finished earlier than expected in LO-mode. This slack can be used
by the next high criticality tasks and potentially postpone the mode switch, e.g., through single
budget [111], bailout protocol [26] and feedback control mechanisms [185], or at the end, after all
high criticality tasks finished execution, in order to switch back to LO-mode [12, 162, 86].

However, existing approaches are based on several confidence levels for the WCET estimations,
which are static estimations and, in the best case, allow to observe and use the slack, only after a
task has terminated.

34

2.3.3 Contributions

We proposed an approach that computes dynamically new estimations of the WCET during execu-
tion, based on the task progress, to derive the available time-slack and postpone mode switch based
on a safety condition. Assume that due to the WCET pessimism, the system is not schedulable
when both high and low criticality tasks are executed (Full Load - FL - mode), as depicted in
Figure 2.13a. Then, the safe solution is to execute first only the high criticality tasks (Isolation
- ISO - mode), and only when they finish execution, the low criticality tasks are allowed to be
executed, as depicted in Figure 2.13b. The proposed approach mitigates the WCET pessimism by
regularly computing during execution a new value of the WCET, i.e., the remaining WCET, RCISO,
which is the part of the CISO that remains for the rest of the execution from that point till the
end, using information regarding the actual progress of the high criticality task and the occurred
interferences. As shown in Figure 2.13c, the proposed controller, invoked at the time instances
illustrated by the black lines, uses the updated RCISO in order to verify whether there is a risk for
a deadline miss for the high criticality task. If not, the tasks continue their concurrent execution.
Otherwise, the low criticality tasks must stop interfering with the high criticality tasks, and are
suspended (switch decision taken by τC1 in Figure 2.13c). When the high criticality tasks finish, low
criticality tasks can resume their execution. A grammar has been proposed for modelling the high
criticality tasks and for proving the safety of the proposed approach [C8]. We proposed a static
version that invokes the controller at statically predefined points, illustrated by the black lines in
Figure 2.13c [C8, C7, C9, W1]. The proposed approach has been leveraged in order to dynamically
decide when to invoke the controller, reducing the overhead introduced due to the execution of the
controller, further increasing the gains [J14]. The two approaches have been implemented on a real
platform (8-core Texas Instruments TMS320C6678). The remaining sections describe the main ap-
proach, whereas all details and mathematical formulations can be found in [C8, C7, C9, W1, J14].

τC0Core 0

Core 2 τ0

τN-1Core M-1
...

t

τC1Core 1

dtC0dtC1

(a) System is unschedulable in FL-mode.

t

τ0
τN-1

τC0
τC1

dtC0dtC1

Core 0

Core 2

Core M-1
...

Core 1

(b) Execution in ISO-mode.

τ0

t

τN-1

τ0
τN-1

τC0
τC1

dtC0dtC1Switch
decision

Core 0

Core 2

Core M-1
...

Core 1

(c) Execution under RWCET with statically de-
fined points [C8, C7, C9, W1]

Switch
decision

t

τN-1

τC0
τC1

dtC0dtC1

Core 0

Core 2

Core M-1
...

Core 1
τ0
τN-1

(d) Execution under RWCET with dynamically
defined points [J14]

Figure 2.13: Motivational example.

35

2.3.4 System model

The platform target domain is a multi/many processor with M cores and R shared resources,
whereas the application domain is a mixed-critical system consisting of a task set of size N , con-
sisting of high criticality tasks, denoted as τCi , and low criticality tasks, denoted as τi. The system
has two modes of execution: i) Full Load (FL-mode) mode, where both high criticality tasks and
low criticality tasks are executed on the processor, and ii) Isolation (ISO-mode) mode, where only
the high criticality tasks are executed on the processor. Note that, the system modes are similar
to LO-mode and HI-mode, but another notation is used to avoid confusion with the approaches
that use several confidence levels for the WCET. Two WCET estimations are obtained, one WCET
estimation for FL-mode considering the maximum number of interferences due to low and high crit-
icality tasks, denoted as CFL

τCi
, and one WCET estimation for ISO-mode considering interferences

due to only high criticality tasks, denoted as CISO
τCi

. The run-time controller switches between these
two modes of execution to always guarantee in-time execution of the high criticality tasks, and
maximize the execution of low criticality tasks, whenever possible. A static partitioned scheduling
has been applied where high critical tasks and low criticality tasks are executed on different cores.
If several tasks are mapped on the same core, they are executed non-preemptively.

2.3.5 Design time analysis for high criticality tasks

Task model and instrumentation: A grammar is designed to model high criticality tasks [C8].
A high criticality task is described by a set of Control Flow Graph (CFGs), constructed by the
binary code, obtained after compiling the high criticality source code. Each CFG corresponds
to a function F of the high criticality task. Therefore, the high criticality task τCi is a set of
functions S = {F0, F1, ..., Fl}, with F0 the main function. The CFG of a function F is a directed
graph G = (V,E), consisting of a finite set of nodes V composed of 5 disjoint sub-sets V =
N ∪ C ∪ F ∪ {IN} ∪ {OUT} and a finite set of edges E ⊆ V × V representing the control flow
between nodes. N ∈ N represents a block of one or more binary instructions, C ∈ C represents
the block of binary instructions of a condition statement, F ∈ F represents the binary instructions
of the function caller of a function F and links the node of the current function with the CFG
of the function F , IN and OUT are the input and output nodes. In the proposed grammar, a
function F has exactly one input node, one output node, and a non-terminal node B as depicted
in Figure 2.14. The non-terminal node B is derived as an empty node (Figure 2.14b), a single node
N (Figure 2.14c), a sequential component (Figure 2.14d), i.e., the concatenation of non-terminal
nodes, an if-then-else component (Figure 2.14e), i.e., the concatenation of a C conditional node
with two mutually executed paths that end to the same non-terminal node, a loop component
(Figure 2.14f), i.e., the concatenation of a loop condition C with two mutually executed paths, one
with a non-terminal node that exits the loop and one with the non-terminal node for repetition of
the loop kernel, or function call node F (Figure 2.14g).

Figure 2.15 illustrates a simple example on obtaining the CFG of a high criticality task. The
C code (Figure 2.15a) is compiled and the CFG is constructed by the assembly code. L.1 to L.9
(Figure 2.15b) handle the stack and initialise the local variables and correspond toN1 (Figure 2.15c),
L.10 to L.14 describe the exit condition of the loop and correspond to C, L.15 to L.26 describe the
loop kernel and the increase of i (N2) and L.27 to L.32 manage the stack and performs the return
from function (N3).

Instrumentation points pτCi
are inserted in the source code of the high criticality task τCi , in

order to invoke the controller that will compute the remaining WCET at run-time. Instrumentation

36

IN

BFi :=

OUT

(a)

ε

(b)

N

(c)

B

B

(d)

C

B B

B

(e)

B

C B

B

(f)

Fi

(g)

Figure 2.14: Schematic representation of grammar rules

1 i n t main (void) {
2 i n t i ;
3 i n t A[1 0] ;
4 f o r (i =0; i <10; i++){
5 A[i]= i ;
6 }
7 re turn 0 ;
8 }

(a) C code.

1 main:
2 addi sp , sp , -64
3 sw ra , 60(sp)
4 sw s0 , 56(sp)
5 addi s0 , sp , 64
6 li a0 , 0
7 sw a0 , -12(s0)
8 sw a0 , -16(s0)
9 j .LBB0_1

10 .LBB0_1 :
11 lw a1 , -16(s0)
12 li a0 , 9
13 blt a0 , a1 , .LBB0_4
14 j .LBB0_2
15 .LBB0_2 :
16 lw a0 , -16(s0)
17 slli a2 , a0 , 2
18 addi a1 , s0 , -56
19 add a1 , a1 , a2
20 sw a0 , 0(a1)
21 j .LBB0_3
22 .LBB0_3 :
23 lw a0 , -16(s0)
24 addi a0 , a0 , 1
25 sw a0 , -16(s0)
26 j .LBB0_1
27 .LBB0_4 :
28 li a0 , 0
29 lw ra , 60(sp)
30 lw s0 , 56(sp)
31 addi sp , sp , 64
32 ret

(b) Assembly code (RISC-V32).

IN0

N1

C N2

N3

OUT0

F0 ≡

(c) CFG

Figure 2.15: Illustration example where CFG is obtained from C code.

points can be inserted before the execution of the first binary instruction of each node of CFG.
Representing instrumentation points by a lower-case symbol, 5 disjoint sub-sets of instrumentation
points can exist, based on the node type: {n}, {c}, {fi}, in, out. By re-compiling the instrumented
source code of the high criticality task, we reconstruct the set of Extended Control Flow Graphs
(ECFGs), i.e., the CFGs where each node is extended with the instructions of the inserted instru-
mentation point. Note that, the point start refers to the point before execution, i.e., point in of
function F0.
Structure information: After the ECFG construction, we use an ECFG parser in order to extract
information regarding the ECFG structure that will allow to distinguish different visits of the same
instrumentation point during execution (e.g., in loops, function calls). The structure information
of a point pτCi

is:

• The nested level of pτCi
, level[pτCi

], which indicates the nested loop depth of the point and it is
i) set to 0, if pτCi

is the start point, ii) set to 1, if pτCi
is a sequential point between the IN and

37

OUT of an ECFG, or iii) increased by 1, for each loop where pτCi
resides in.

• The ancestor point of pτCi
, head[pτCi

], which indicates the point where a loop entry or a function
call occurred before reaching the point pτCi

. The head[pτCi
] of a point pτCi

is: i) the start point,
if pτCi

is a point with level 1 in the main function F0, ii) the function caller, if pτCi
is a point

with level 1 in the called function, or iii) the condition of the loop, if pτCi
is inside a loop.

• The function call behavior, type[pτCi
], which is: i) F ENTRY , if pτCi

is a function entry (function
caller), ii) F EXIT , if pτCi

is a function exit, i.e., the node where a function returns to, iii)
F ENEX , if pτCi

is both a function entry and a function exit, i.e., the point pτCi
where the

function returns is also a function caller, or iv) −, if pτCi
is not related to function calls.

For Figure 2.15, assuming n1, c, n2 and b3 are the points inserted in the blocks of Figure 2.15c, we
obtain: level[n1]=1, level[c]=1, level[n3]=1 and level[n2]=2, head[n1]=start, head[c]=start, head[n3]=start,
and head[n2]=c, type[n1]=−, type[c]=−, type[n2]=−, and type[n3]=−.
Timing information: The timing information between instrumentation points is provided by
partial WCETs. The partial WCET two instrumentation points xτi and point pτi is given by
CISO
τCi

[xτCi
-pτCi

] = CISO
τCi

[xτCi
] − CISO

τCi
[pτCi

], where CISO
τCi

[xτCi
] (reps. CISO

τCi
[pτCi

]) denotes the WCET
from point xτCi

(resp. pτCi
) until the end of execution. Two types of partial WCET are computed:

1. For all instrumentation points, we compute CISO
τi

[head[pτCi
]-pτCi

], i.e., the CISO
τCi

[xτCi
-pτCi

] be-
tween the head of point pτCi

and the point pτCi
.

2. For points placed in the entry of loops, we compute the CISO
τCi

between any two consecutive
iterations (j − 1 and j) of the loop, i.e., CISO

τi
[pj−1
τCi

-pjτCi
]. If multiple paths exist between these

points (e.g., branches of if-then-else components, function calls from different entry points), the
minimum difference is maintained. Note that, the minimum value is required in order to be
safe, since this value will be subtracted from the overall WCET, during RWCET computation
at run-time, i.e., CISO

τCi
[pj−1
τCi

-pjτCi
] = min(CISO

τCi
[pj−1
τCi

]− CISO
τCi

[pjτCi
]) ∀ j.

Last, but not least, we compute the overhead, CFL
ptp, required to reach the next instrumentation

point, in the worst case, considering task execution in both forward and backward way:

CFL
max,F = max(CFL

τCi
[head[pτCi

]-pτCi
]) ∀ i and ∀ pτCi

(2.1)

CFL
max,B = max(CFL

τCi
[pj−1
τCi

-pjτCi
]) ∀ i,∀ pτCi

∈ {c} and ∀ j (2.2)

CFL
max = max(CFL

max,F , Cmax,B) (2.3)

To illustrate the required timing information using the example of Figure 2.15, the following
partial WCET are computed: CISO

τCi
[start-c], CISO

τCi
[start-n3], CISO

τCi
[c-n2], CISO

τCi
[cj−1-cj] with j =

0 . . . 9, and the maximum of these values.

2.3.6 Run-time control mechanism

Overview: At run-time, each high criticality task executes its own run-time control mechanism,
which monitors the ongoing execution time, dynamically computes the remaining WCET of the
task in isolated execution and checks its safety condition to locally decide if the low criticality tasks
should be suspended. The high criticality tasks are not responsible for the suspension of the low

38

criticality tasks. They send a request to a master, which has a global view and is in charge of
collecting the high criticality tasks requests, suspending and restarting the low criticality tasks.
The master suspends the low criticality tasks when at least one critical task sends a request for
isolated execution, because its safety condition is not satisfied. The master updates the number
of active requests and it restarts the low criticality tasks when all requests have been executed.
Figure 2.16 illustrates the behavior through an example with two critical tasks running in parallel.
The safety condition of τC0 is violated and thus it sends a request for isolated execution to the
master, depicted by the arrow iso. The master upon receiving this request sets the number of
active requests to 1 and suspends the low criticality tasks (arrow stop). Then, the requester (τC0)
informs the master that its execution is finished (arrow end). As the critical task τC1 has not yet
requested isolated execution, no risk exists for its deadline. The master resumes the low criticality
tasks (arrow restart). Later, the critical task τC0 requests isolated execution after the request of
τC1 . The master will restart the low criticality tasks only when both critical tasks have finished.
Note that, the master is not assigned on the same core where a high criticality task is executed, as
this option will increase the WCET of the critical task due to the received requests.

τC0

τ0

Master
requests 1

τC1

0 1 2 1 0
iso

stop

end

restart

Figure 2.16: Run-time behavior among the master, high and low criticality tasks.

Statically defined points

RWCET computation: Due to the instrumentation points inserted to the source code of the
high criticality task τi, the controller is invoked during execution and re-computes in a safe way
the remaining WCET (RWCET), noted as RCISO

τCi
at each point pτCi

, based on the task progress.
Algorithm 1 summarises the computation of RCISO

τCi
at a point pτCi

. The algorithm takes as input
the instrumentation point pτCi

along with its Structure and Timing Information (STIτCi
), which

includes the type, level, head and partial WCETs of the point, pre-computed during the design-
time analysis of the high criticality task. To be able to compute the RC, without unrolling the
code of the high criticality task, the computation is performed per level, with the help of the array
RLτCi

. A local level llτCi
is used to depict the current nested level of point pτCi

, taking into account
function calls and loops. The local level is computed by adding the offsetτCi

and the level of the
point pτCi

(L. 5). Note that, the level[pτCi
] depicts the level of nested loops inside the ECFG of

a function, by definition. The offsetτCi
provides the level that must be added, because of any

occurred function call. Therefore, when a function entry point is observed (C5 is true, L. 14),
i.e., a function call occurs, we increase the offset with the level of the entry point (L. 15). When
an exit point is observed (C1 is true, L. 2), i.e., a function returns, we decrease the offset by the
level of the entry point (L. 3). Then, the observation level o levelτCi

is used to decide if we are
traversing ECFG in a forward (C2 or C4 is true) or backward direction (C3 is true). When the
ECFG is traversed in a forward direction, the remaining WCET in local level llτCi

, RLτCi
[llτCi

], is

39

computed by subtracting the partial WCET of the point τCi
from the remaining WCET computed

on the previous local level (L. 7 and L. 11). By definition, the point in the previous local level is
the head point of pτCi

. When the ECFG is traversed backwards, we are in a loop. Thus, we have
reached the point that corresponds the condition statement of the loop and we subtract the partial
WCET computed between any two iterations, j−1 and j (L. 9). In this way, the remaining WCET
of the head point at local level llτCi

− 1 is updated accordingly, before entering the loop, where
points have a local level equal to llτCi

. Note that, before execution, the initialisation is as follows:
RLτCi

[0] = CISO
τCi

(the overall WCET of τCi), the remaining elements of the array RLτCi
to zero,

offsetτCi
= 0, o levelτCi

= 0, and last pointτCi
[0] = start.

Function Compute static RWCET(pτCi
, STIτCi

)
if (type[pτCi

] ==F EXIT||F ENEX) then /* C1 */
1 offsetτCi

= offsetτCi
− level[pτCi

];
2 o levelτCi

= o levelτCi
− 1;

3 end
4 llτCi

= offsetτCi
+ level[pτCi

];
5 if (o levelτCi

< llτCi
) then /* C2 */

6 RLτCi
[llτCi

] = RLτCi
[llτCi

]− CISO
τCi

[head[pτCi
]-pτCi

];
7 end
8 else if (last pointτCi

[llτCi
] == pτCi

) then /* C3 */
9 RLτCi

[llτCi
] = RLτCi

[llτCi
− 1]− CISO

τCi
[pj−1
τCi

, pjτCi
];

10 end
11 else /* C4 */
12 RLτCi

[llτCi
] = RLτCi

[llτCi
]− CISO

τCi
[head[pτCi

]-pτCi
];

13 end
14 last pointτCi

[llτCi
] = pτCi

;
15 o levelτCi

= llτCi
;

16 if (type[pτCi
] ==F ENTRY||F ENEX) then /* C5 */

17 offsetτCi
= offsetτCi

+ level[pτCi
]

18 end
19 return RLτCi

[llτCi
];

Algorithm 1: Static control mechanism at point pτCi
.

For instance, let’s illustrate how the RWCET is computed for the example of Figure 2.15.
At the first invocation of the controller at point c, llτCi

= 1. Since o levelτCi
= 0, the graph is

traversed in forward direction and the RWCET is given by RLτCi
[1] = RLτi [0] − CISO

τCi
[start-c].

The rest of the variables are updated, i.e., last pointτCi
[1] = c and o levelτCi

= 1. For the first
invocation at point n2, llτCi

= 2. The graph is still traversed in forward direction and the RWCET
is given by RLτCi

[2] = RLτCi
[1] − CISO

τCi
[c-n2], last pointτCi

[2] = n2 and o levelτCi
= 2. When

c is invoked in the second iteration, llτCi
= 1. Since o levelτCi

< llτCi
and the last point in

this level was c, the graph is now traversed in backward direction. The RWCET is updated by
RLτCi

[1] = RLτCi
[1]−CISO

τCi
[cj−1-cj], last pointτCi

[1] = c and o levelτCi
= 1. With this update, the

RWCET will be correctly computed for the points inside the loop. The RWCET in the remaining
points is computed similarly.
Safety condition: Per core that runs a critical task, at each point, the control checks whether the

40

low criticality tasks should be suspended through the safety condition RCISO
τCi

+CFL
max+tcntr ≤ dτCi

−t,
where RCISO

τCi
is the remaining WCET of τCi in isolation mode from this point up to the end of

execution, CFL
max is the WCET in the full load mode until the next observation point, tcntr is the

total WCET of the proposed run-time control mechanism (the overhead to monitor the actual
execution time, the WCET of the run-time controller, the overhead to send the request to the
master and the time to suspend the tasks), and t is the actual execution time.

Dynamically defined points

In contrast to the previous static approach, the proposed control is executed at each core at different
points, which are a priori unknown and decided during the execution of the tasks. Algorithm 2
depicts the functionality of the dynamic control mechanisms. First of all, the controller verifies if
the execution is in full load mode (condition C1), and checks if the current point is active. When
the execution changes from one ECFG to another ECFG, the corresponding point is always active,
in order to keep track of the traversing of ECFGs. This is achieved by updating the variable offset,
similar to the static version (L. 1 and L. 10). Then, the number of visited points (variable counter)
is increased by one (L. 2). The controller checks whether this point is active, i.e., we have reached
the number of inactive points given by variable points or it describes a traversal between ECFGs
(condition C3). If the point is active, the controller: i) computes the RCISO (L. 4), ii) monitors the
real execution time t (L. 5), iii) computes the values of points that can be skipped based on the
existing slack (L. 6), and iv) when no more points can be skipped, it sends a request to the master
for suspending the execution of the low criticality tasks (L. 7). Then, the counter is initialized to
0 (L. 8). Note that, the counter and the offset are initialised to 0 before execution.
RWCET computation: The algorithm for the RWCET computation takes as inputs the STIτCi

,
the instrumented points, the current values of the loop iterators where the point is placed into
(iterators) and the offset. Similar to the static version, the actual local level of the point pτi , ll,
is used to compute the RCISO at that level, R[l l]. The local level ll derives from the addition of
the offset and the level of the point pτi . If points have been skipped (condition C3), the RWCET
of the skipped levels has to be computed. To achieve that, the controller finds the head points
of the levels ll up to the level equal to the offset (L. 13). Then, the R[i] for these head points is
updated using the information of the loop iterators iterator [y], d[y] and w[y] of each head point
y. To compute R[i] for a head point y with local level i, we subtract from the remaining time of
the head point of the previous local level i − 1 (R[i − 1]) the time passed up to now. This time
is derived by multiplying the w[y] of the head point with local level i with the value of the loop
iterator iterator [y] and the d[y] of the head point with local level i (L. 14). Then, the R[l l] of the
active point pτi can be computed in a similar way (L. 16). Before execution, the last head of level[1]
is initialised with the initial point start, and R[0] with the total WCET in isolation.

For instance, in Figure 2.15, the first active point is c before the first loop iteration c0. It has a
level equal to 1 and belongs to the main function, therefore offset = 0 and ll = 1+0 = 1. The RCISO

for point c0 is given by R[1]=R[0]− (0 ∗ CISO[cj−1 − cj])− CISO[start− c]=R[0]− CISO[start− c].
Assuming that the second active point is in the sixth execution of the condition c5, the RCISO of
c5 is computed by R[1]=R[0]− (5 ∗ CISO[cj−1 − cj])− CISO[start− c].
Safety condition: We extend the static safety condition to support the dynamic approach, by
multiplying the variable CFL

max with the number of skipped points points, i.e., t+ RCISO
τCi

+ (points ∗
CFL
max) + tcntrl ≤ DτCi

. Based on this equation, we can compute at run-time the number of points
that can be safely skipped until the run-time control has to be re-executed. When points ≤ 0, the

41

Function Run-time control(pτCi
, STIτCi

, counter, iterator)
if (CRT) then /* C1 */

1 if (type[pτCi
] ==F EXIT||F ENEX) then offset = offset - level[pτCi

] ; /* C2 */
2 counter ++;
3 if (counter==points)||(type[pτCi

] ==F ENTRY||F ENEX) then /* C3 */
4 RCISO=Compute dynamic RWCET(pτCi

, STIτCi
, iterator , offset);

5 t = Monitoring time();
6 points = Next active point(RCISO, t);
7 if (points ≤ 0) then Request suspension() ;
8 counter = 0;
9 end

10 if (type[pτCi
] ==F ENTRY || F ENEX) then offset = offset + level[pτCi

] ; /* C4 */
11 end

Function Compute dynamic RWCET(pτCi
, STIτCi

, iterator, offset)
ll = offset + level[pτCi

];
if (points > 1) then /* C3 */

12 last head[l l − 1] = h[pτCi
];

13 for (i=l l-1;i> offset;i–) do last head[i − 1] = h[last head[i]] ;
14 for (i= offset + 1;i<l l;i++) do R[i] = R[i − 1] - (iterator [last head[i]]) * w[last head[i]] -

d[last head[i]] ;
15 end
16 R[l l] = R[l l − 1] - (iterator [pτCi

]) * w[pτCi
]) - d[pτCi

];

Algorithm 2: Dynamic control mechanism at point pτCi
.

low criticality tasks must be suspended in the current active point, as not enough time slack exist
to safely decide suspension at the next active point.

2.3.7 Evaluation

This section presents the main results for evaluation, while the complete evaluation can be found
in [C7, J14]. We compare the performance gain of the proposed static and dynamic RWCET
approaches compared to the isolated execution based on the observed execution time of the low
criticality tasks tasks allocated on a core, i.e.,Makespaniso−Makespansta

Makespaniso
and Makespaniso−Makespandyn

Makespaniso
.

We provide the number of active instrumentation points and overhead of the static and dynamic
RWCET approaches. Here, we present the experimental results for one low criticality task running
in parallel with the high criticality tasks, which is the hardest case as it provides the smallest slack
between the CISO and CFL. We explore the deadline of the high criticality tasks DτCi

, i.e., from
tight deadlines close to the WCET of the high criticality tasks in isolation up to more relaxed
deadlines, and the granularity of run-time control: i) coarse-grained, with points at the head points
of nested level 1 (HP1), ii) medium-grained, with points at the head points of nested levels 1 and
2 (HP2), and iii) fine-grained, with points at the head points of all three nested levels (HP3).

Experimental set-up

Platform & implementation: We use the TMS multicore platform for the experiments, de-
scribed in Table 2.5. Both static and dynamic approaches have been implemented as a bare-metal
library, with low-level functions for the time monitoring of the on-going execution and for the sus-

42

pension/resuming of the low criticality tasks. A set of timing functions have been developed to read
the current clock by accessing the control registers TCSL and TCSH of the local core clock. The
suspension and the resume of the low criticality tasks is implemented using the event and interrupt
mechanisms of the TMS. A set of event functions have been designed to configure the events and
the interrupts of the TMS, to allow the use of the events by providing software setting, clearing and
monitoring mechanisms for the events, and to keep suspended or resume the low criticality tasks.
Benchmarks: To experimentally evaluate the approach, we have conducted experiments using
gemm as the high criticality task, executed on two cores. The gemm benchmark has been selected
due to the regularity and the symmetry of each structure, which favours the static approach and
under-privileges the dynamic approach. In this way, the experimental results provide a lower
bound on the gains of the dynamic approach. A set of loop and data dominated low criticality
tasks executed on the remaining cores, which consist of infinitive loops that perform read and write
accesses to the memory.
WCET acquisition: Since no existing static WCET analysis tool supports the TMS platform,
a measurement-based approach has been applied using the local timer of the cores that run high
criticality tasks. To acquire the RCISO and the partial RWCETs we run only the high criticality
tasks on the platform. To increase the reliability of the measurements, we have performed 50
times our experiments and maintained the maximum observed value for RCISO and the minimum
observed value for the partial RWCETs. In addition, we increase the maximum observed value and
decrease the minimum observed value by 10%. The same technique has been applied to compute
CFL
max, with the high criticality tasks executed in parallel with low criticality tasks.

Data placement: The memory configuration for all the cores is the following: i) the L1P, L1D, and
L2 are configured as SRAMs for better predictability, and the stack, data and code sections (.stack,
.data, .text . . .) are allocated in the L2 SRAM. The inputs and outputs of the benchmarks are
allocated in the DDR. In this configuration, interference occurs in the shared resources among the
benchmarks executed over the platform.

Performance Gains

Figures 2.17a, 2.17b and 2.17c present the gains in the execution time of the low criticality tasks
achieved with the static and dynamic RWCET approaches, compared to the isolated execution with
the HP1, HP2 and HP3 configurations and different deadlines. Overall, both approaches achieve
significant gains. The static approach achieves a gain of, on average, 197,69% 277,76% and 68,22%
for HP1, HP2 and HP3, respectively, while the dynamic approach 236,11%, 324,20%, and 241,83%
for HP1, HP2 and HP3, compared to isolated execution, respectively.

Comparing the dynamic and static approach, the dynamic controller is called significantly less
times, as depicted in Figures 2.17d, 2.17e and 2.17f. As a result, the overall overhead of the dynamic
controller is reduced, leading to switching decisions that occur later than the static approach. The
more time we execute in parallel high and low criticality tasks, the higher is the gain. Furthermore,
high criticality tasks finish earlier in the dynamic approach, due to the reduced overhead because
of less active points, and thus, more time is left for the execution of the low criticality tasks.

Controller cost

Table 2.9 depicts the maximum time overhead of the proposed approaches and the time-triggered
execution. The dynamic RWCET control has higher overhead due to the re-computation of the
RCISO

τCi
of the head points for the skipped points (full control).

43

0

50

100

150

200

250

300

350

400

450

500

11,2
5
11,7

5
12,2

5
12,7

5
13,2

5
13,7

5
14,2

5
14,7

5
17,2

5
19,7

5
22,2

5
24,7

5
27,2

5
29,7

5

H
P1

 G
ai

n
(%

)

Critical Deadline (ms)

HP1-Static HP1-Dynamic

(a) HP1 gain.

0

100

200

300

400

500

600

700

11,
25
11,
75
12,
25
12,
75
13,
25
13,
75
14,
25
14,
75
17,
25
19,
75
22,
25
24,
75
27,
25
29,
75

H
P2

 G
ai

n
(%

)

Critical Deadline (ms)

HP2-Static HP2-Dynamic

(b) HP2 gain.

0

50

100

150

200

250

300

350

400

11,
25
11,
75
12,
25
12,
75
13,
25
13,
75
14,
25
14,
75
17,
25
19,
75
22,
25
24,
75
27,
25
29,
75

H
P3

 G
ai

n
(%

)

Critical Deadline (ms)

HP3-Static HP3-Dynamic

(c) HP3 gain

1

10

100

11,
25
11,
75
12,
25
12,
75
13,
25
13,
75
14,
25
14,
75
17,
25
19,
75
22,
25
24,
75
27,
25
29,
75

Po
in

ts

Critical Deadline (ms)

HP1-Static HP1-Dynamic

(d) HP1 active points.

1

10

100

1000

10000

11,
25
11,
75
12,
25
12,
75
13,
25
13,
75
14,
25
14,
75
17,
25
19,
75
22,
25
24,
75
27,
25
29,
75

Po
in

ts

Critical Deadline (ms)

HP2-Static HP2-Dynamic

(e) HP2 active points.

1

10

100

1000

10000

100000

11,
25
11,
75
12,
25
12,
75
13,
25
13,
75
14,
25
14,
75
17,
25
19,
75
22,
25
24,
75
27,
25
29,
75

Po
in

ts

Critical Deadline (ms)

HP3-Static HP3-Dynamic

(f) HP3 active points.

Figure 2.17: Comparison of RWCET static and dynamic approaches w.r.t. the gain of the execution
time of the low criticality tasks compared to the isolated execution and the number of active points.

Table 2.9: Risk-permissive run-time adaptation controller time overhead (in cycles)

Read timer Light control Full control Suspend
Static RWCET 70 - 501 200

Dynamic RWCET 70 150 1551 200

2.4 Conclusions

Execution of real-time systems on multicore architectures requires guarantees for meeting deadlines.
At the same time, energy efficient has become also important. To guarantee timely and energy effi-
cient execution, efficient deployment solutions are needed. We propose a set of decomposition-based
approaches. Initially, we design an algorithm to provide the optimal solution for independent IC
tasks executed on a SMP [C10], which has been extended for platforms with DVFS capabilities [J15].
We have leveraged our decomposition-based solution for dependent IC tasks and heterogeneous mul-
ticore platforms and proposed an accelerated, but still optimal, version of our decomposition-based
method [J16]. Last, optimal and heuristic approaches considering task migration are proposed in
order to take advantage of AMPs, such as big.LITTLE platform [C16].

To reduce the WCET pessimism, isWCET estimations have been used, which are only valid for
a specific schedule solutions. To maintain the isWCET solution during execution, time-triggered
execution is usually used, which, however, does not allow any performance improvement when
the tasks finish earlier than their isWCET. To support a safe adaptation of interference-sensitive
schedule solutions, we proposed a run-time approach that enables parallel execution of the control
phases on each core with a fine-grained protection [C18]. Our second contribution [C21] comes from

44

the observation that by enforcing the partial order of tasks, we limit the performance improvement
that can be achieved through run-time adaptation. To further improve performance gains, we
leverage our approach with a safe relaxation of the partial order of tasks.

Existing approaches are based on WCET estimations obtained during design-time, and thus,
they are not able to take advantage of the actual execution progress of the tasks. To deal with this
limitation, we proposed an approach that computes dynamically new safe estimations of the WCET
during execution, based on the task progress. The updated WCET estimations are used to derive
the available time-slack and postpone mode switch [C8, C7, C9, W1]. The proposed approach has
been leveraged in order to dynamically decide when to invoke the controller, reducing the overhead
introduced due to the execution of the controller, further increasing the gains [J14].

45

46

Chapter 3

Fault-aware techniques for hardware
design

This chapter summarises our contributions on system reliability under hardware faults. More
precisely, Section 3.1 presents the proposed hardware mechanisms to perform instruction level
fault tolerance through dynamic re-scheduling in VLIW processors, under short transient, long
transient and permanent faults, conducted during the PhD period of Rafail Psiakis [195]. Section 3.2
describes the proposed hardware mechanisms to perform data level fault tolerance by data shuffling
in order to reduce the impact of permanent faults over NoC on multicore and manycore platforms,
performed during the PhD period of Romain Mercier [155]. Section 3.3 presents our cross-layer
reliability analysis for complex hardware systems against transient faults due to radiation, designed
during FLODAM project. Section 3.4 summarises the aforementioned contributions.

3.1 Run-time instruction re-scheduling for VLIW processors

3.1.1 Context

Instruction Level Fault Tolerance (ILFT) improves the processor reliability and it can be imple-
mented through Hardware (HW) or Software (SW). ILFT can be achieved through HW redundancy,
where additional FUs are inserted to the original processor, in order to execute in parallel the same
instructions and compare the obtained results [128]. Although small performance overhead is nor-
mally observed due to the comparison of the results, the area overhead is significant. Through
SW redundancy, the program is modified by inserting replicated instructions, which will be exe-
cuted on the original processor. Although the area is not increased, the impact on the execution
time can be significant [207]. A better area and performance trade-off for ILFT can be achieved
over processors with several FUs, such as Very Long Instruction Word (VLIW) processors. VLIW
processors have several issues, which can process instructions in parallel. However, the Instruction
Level Parallelism (ILP) of applications is typically limited and variant in time, while the VLIW
issues consist of different types of FUs. As a result, not all VLIW FUs will be used at the same
time during the application execution.

In this context, idle FUs can be used to execute replicated instructions or re-execute faulty
instructions, improving the processor reliability and the performance overhead of fault-tolerant
approaches.

47

Table 3.1: Comparison with representative SoA fault tolerant VLIW approaches.

Ref. Replication Re-execution VLIW
F P SW HW Det. Cor. All Healthy Hom. Het. Coupled

[36] X X X X
[158] X X X X
[161] X X X X X
[112, 129, 135] X X X X X
[233] X X X X X
[232, 235] X X X X X
[234] X X X X X
[59, 60] X X X X X
[238] X X X X X X

[C12, J26] X X X X X
[C11] X X X X X X
[C17, C15] X X

3.1.2 State-of-the-Art

Table 3.1 categorizes representative ILFT approaches on VLIW processors. The instructions can be
Fully (F) or Partially (P) replicated, whereas the replication can be preformed statically, through
software (SW), dynamically, through hardware (HW), or combining both in a hybrid way. Dupli-
cating instructions detects an error (Det.). Correction (Cor.) is performed either by triplicating
instructions or by instruction re-execution, excluding or not the faulty FUs.

Static approaches are usually implemented by the compiler, which replicates the instructions
and inserts instructions for comparison, e.g., full duplication and comparison is done in the compiled
code [36]. Although static approaches can theoretically obtain a, as dense as possible, schedule, the
code and storage size are increased, having a negative impact on system reliability. To partially
reduce the number of additional instructions, approaches duplicate only a part of the instructions
and implement the comparisons in hardware. For instance, the compiler excludes control flow in-
structions from duplication, and distributes error detection overhead across VLIW clusters [158]
and uses the instruction fault masking capability to select which instructions to duplicate [161].
Partial instruction duplication to maximize the number of duplicated instructions, within a perfor-
mance overhead bound, is performed by the compiler, while the comparison is performed by the
hardware [129, 112]. In [135], the compiler encodes information in the instructions and a hardware
mechanism decodes the information to run-time duplicate the instructions. In [238], instruction
duplication is done by the compiler and the comparison of results is done by the hardware. If an
error is detected, the hardware adds a time slot and re-executes the instruction to another FU.

Dynamic approaches eliminate the need for high storage requirements and additional instruc-
tions. They are usually implemented through hardware that replicates and schedules the instruc-
tions during execution. Some hardware mechanisms avoid the need of dynamic scheduling by using
VLIWs that have coupled issues, one for executing the original instructions and one for potentially
executing the duplicated instructions. In this way, the duplicated instructions follow the schedule
given by the compiler. Full instruction duplication is applied and when an instruction bundle has
more instructions than the half of its issue-width, the bundle is divided into two and a time slot is
added [233]. Partial instruction duplication is performed by not duplicating instructions for which
there is no idle coupled issue [232, 235]. However, such approaches require coupled VLIW issues,
being less flexible.

48

The remaining hardware approaches apply dynamic scheduling, assuming homogeneous VLIW,
where all issues include all types of FUs, and thus, can execute any instruction. For instance, when
enough resources do not exist to execute twice the scheduled instructions, the instructions are
partitioned in groups that are executed sequentially, and the use of spare FUs is explored to reduce
performance degradation [59, 60]. However, when the VLIW consists of issues with different type
of FUs, the existing schedulers are not applicable, as they ignore the type of FUs. In such cases, a
heterogeneous VLIW can be transformed to a homogeneous one, by inserting the missing FUs at
each issue, e.g., [234]. With increasing number of VLIW issues and considering complex FUs, e.g.,
floating point FUs, these solutions lead to VLIW processors with significant area overhead.

3.1.3 Contributions

To address these limitations, a hardware mechanism is proposed to perform fault correction through
Dynamic Instruction Replication and Scheduling (DIRS) by exploring at run-time the idle resources,
inside and across consecutive instruction bundles, for heterogeneous VLIW processors [C12]. We
will illustrate the proposed approach through an example. Let’s assume a 4-issue VLIW processor,
as the one depicted in Figure 3.3, with the following configuration: one Arithmetic Logic Unit
(ALU) and one Branch unit (BR) in the first issue, one ALU and one Memory FU (MEM) in
the second issue and one ALU and one Multiplication unit (MUL) in the third and fourth issues,
on top of decode (DC) and Write-Back (WB) FUs. The assembly instructions are depicted in
Figure 3.1a. Figure 3.1b shows the corresponding schedule given by the compiler, with three
instruction bundles, Bi−1, Bi and Bi+1. Figure 3.1c shows the execution obtained by the proposed
DIRS, when instruction triplication is applied and instructions are scheduled based on the type of
FUs in the current and next bundle. The light (dark) blue boxes represent original (replicated)
instructions. The DIRS approach is extended towards a cluster-based design to tackle the issues of
scalability, while maintaining a reasonable area and power overhead [J26].

The proposed approach efficiently deals with short transient faults, i.e., faults with a duration
less than one clock cycle. However, when faults become persistent, applying instruction triplication
without taking into account the FU status, i.e., healthy or faulty, may lead to problems. Such an
example is illustrated in Figure 3.2b, where all replicas ofMUL1 operation are scheduled in the third
issue. In this case, we cannot deal with the persistent error which occurs in the MUL unit of the third

ADD1: ADD r2,r1,r3
MUL1: MUL r4,r1,r3
SUB2: SUB r5,r2,r3
ADD2: ADD r6,r2,r3
OR3: OR r1,r5,r6

(a) Assembly code.

ADD1 MUL1 NOP

ADD2 NOP NOPSUB2

Bi-1

Bi

ALU
BR

ALU
MEM

ALU
MUL

ALU
MUL

NOP NOPNOPOR3 Bi+1

Issue[0] Issue[1] Issue[2] Issue[3]

NOPti-1

ti

ti+1

(b) Compiler.

Bi-1

Bi

ti-1 ADD1 ADD1 ADD1 MUL1

ADD2

ti

ADD2SUB2 SUB2ti+1

OR3 NOPti+2 OR3 Bi+1OR3
3 33

X : applied priority

2 22 3

3 13 1
ADD2 MUL1SUB2 MUL1

3 13 12 2

1 1

ALU
BR

ALU
MEM

ALU
MUL

ALU
MUL

Issue[0] Issue[1] Issue[2] Issue[3]

(c) DIRS.

Figure 3.1: a) Assembly instructions and register dependencies. Corresponding execution by the
b) compiler and b) DIRS approach [C12, J26] for an 4-issue VLIW.

49

Bi-1

Bi

ti-1 SUB1 ADD1 MUL1 ADD2

ti ADD3 NOPSUB2 OR1

ALU
BR

ALU
MEM

ALU
MUL

ALU
MUL

Issue[0] Issue[1] Issue[2] Issue[3]

(a) Compiler.

Bi-1

Bi

ti-1 SUB1 ADD1 MUL1 ADD2

ADD3 NOPSUB2 OR1

Bi-1ti ADD1 ADD2SUB1 MUL1

ti+2

Bi-1ti+1 ADD1 ADD2SUB1 MUL1

ALU
BR

ALU
MEM

ALU
MUL

ALU
MUL

Issue[0] Issue[1] Issue[2] Issue[3]

(b) Triplication without FU status.

Bi-1

Bi

ti-1 SUB1 ADD1 MUL1 ADD2

ADD3 NOPSUB2 OR1

Bi-1ti ADD1 ADD2SUB1 MUL1

ti+2

Bi-1ti+1 ADD1 ADD2SUB1 MUL1

ALU
BR

ALU
MEM

ALU
MUL

ALU
MUL

Issue[0] Issue[1] Issue[2] Issue[3]

(c) Triplication with FU status.

Bi-1

Bi

ti-1 SUB1 ADD1 MUL1 ADD2

ADD3 NOPSUB2 OR1

Bi-1ti NOP MUL1NOP NOP

ti+1

ALU
BR

ALU
MEM

ALU
MUL

ALU
MUL

Issue[0] Issue[1] Issue[2] Issue[3]

(d) Re-execute in a new time slot.

Bi-1ti-1 SUB1 ADD1 MUL1 ADD2

Biti ADD3 MUL1SUB2 OR1

ALU
BR

ALU
MEM

ALU
MUL

ALU
MUL

Issue[0] Issue[1] Issue[2] Issue[3]

(e) Re-execute in next bundle.

Figure 3.2: Execution based on a) compiler, b) DIRS [C12, J26], c) DIRS-CG [C11], d) instruction
re-execution at a new slot [238] and e) DIS [C17, C15].

issue. Therefore, we extend the proposed approach in order to take into account the state of the FUs
in a coarse-grained way (DIRS-CG), considering single and multiple permanent faults [C11]. As
soon as a FU is detected as faulty, it is excluded permanently from the scheduling, and original and
replicated instructions are re-binded to the healthy FUs, as illustrated in Figure 3.2c. Note that,
the ALU of the third issue is still used, and only the MUL FU is excluded. However, instruction
replication inserts significant performance overhead. To decrease the performance overhead and to
support not only permanent, but also single and multiple Long-Duration Transient (LDT) faults,
the hardware mechanism is leveraged with a transistor level fault detector able to detect active
faults. With this information the proposed mechanism performs Dynamic Instruction Scheduling
in a Coarse-Grained way (DIS-CG) by temporally excluding the faulty FUs [C15]. When the fault
faints, the excluded FUs can be reused. The proposed approach is further enhanced in order to
exploit the FUs in a fine-grained way (DIS-FG), i.e., by dividing internally the FU into components
whose status is monitored [C17]. Existing approaches only re-execute the faulty instruction to a
new time slot as depicted in Figure 3.2d, whereas DIS exploits the idle slots in the next bundle.

3.1.4 System model

Our system is a heterogeneous VLIW processor. Figure 3.3 illustrates an example of a 4-issue VLIW
processor having a 3-stage pipeline with Fetch (F), Decode (DC) and Execute/Memory-WriteBack
(EX/M-WB), and the corresponding FUs.

3.1.5 Fault model

As the probability of error occurrence is generally proportional to the area of the circuit, we focus
mainly on faults occurring in the combinational logic of the execution stage, since these are the

50

FtoDC

F

BR
DC

DC

DC

DC

DCtoEx

ALU
MUL

ALU
MUL

ALU

WBALU

WB
MEM

WB

WB

Stage F Stage DC Stage EX/M-WB

PC
IM DM

IM[PC]

Load

Store

RF

R
ea
d

W
rite

Figure 3.3: Original VLIW processor.

components with the higher area in the VLIW datapath. We assume that the register file, pipeline
registers and the memories are protected by Error Correction Codes (ECC). We focus on single bit
transient faults occurring due to radiation in [C12, J26], where instruction triplication is applied.
This approach is extended for single and multiple permanent errors due to radiation and aging
effects by excluding permanently the faulty FUs under instruction duplication and triplication [C11].
The approach in [C15, C17] uses a transistor level fault detection mechanism to detect active faults
and performs instruction re-scheduling by excluding temporary the FU in a coarse-grained way [C17]
and in a fine-grained way [C15].

3.1.6 Dynamic instruction replication and scheduling mechanism

The proposed DIRS approach replicates instructions and dynamically schedules original and repli-
cated instruction on the FUs, within a scheduling window of two instruction bundles. Figure 3.4a
depicts the proposed architecture, where the yellow boxes indicate the DIRS hardware compo-
nents. The processing components are the replication switch, the voting switch, and the voters.
The control components are the information extraction unit, the dependency analyzer, the replica-
tion scheduler, and the voting scheduler. The storage components are the ReplicRes register and
the VotingRes register. The components, that do not necessarily require to be placed inside the
VLIW datapath, are designed to run in parallel and to have a smaller critical path than the VLIW
pipeline stages, in order to not affect the clock frequency. The remaining components, that must
be obligatory added in the VLIW datapath to support the functionality of the proposed approach,
are designed with reduced critical path and are placed in different pipeline stages, so as to reduce
the impact on the overall clock frequency. The next paragraph describe the functionality of DIRS
hardware components.
Information extraction unit: It performs an early decoding in the F stage and provides the
information regarding the bundle, the issue number and the instruction type, to the dependency
analyzer and the replication scheduler.
Dependency analyzer: It identifies dependent instructions between two concurrent bundles, i.e.,
an instruction in bundle Bi−1 that uses, as destination register, a destination or source register
of an instruction in bundle Bi. Parallel execution of the dependent instructions is forbidden.
Independent instructions of Bi−1 can be postponed and scheduled at any idle FUs of the next

51

sel_v

FtoDC
Reg

F

DC
BR

DC

DC

DC

DCtoEx
Reg

ALU
MUL

ALU
MUL

ALU

WB

ReplicRes
Reg

Voting
scheduler

ALU

VotingRes
Reg

Replic.
Switch

Voting
Switch

Voter1

WB
MEM

Voter2

WB
Voter3

WBVoter4

Stage F Stage DC Stage EX/M-WB

Internal
signals

Replication
scheduler

Info extr.
unit

Dep.
analyzer

sel_r

stall

bu
ffe

r

(a) DIRS mechanism. s
e
l
_
s
w
i
t
c
h

FtoDC

F

DC
BR

DC

DC

DC

DCtoEX

FU0

Stage F Stage EX/M-WB

MEM
WB

0

1NOP

FU1
WB

0

1

FU2
WB

0

1

FU3
WB

0

1

Stage DC

DC[0]

DC[1]

DC[2]

DC[3]

s[0]

s
e
l
_
W
B

s[1]

s[2]

NOP

NOP

NOPs[3]

s
t
a
t
u
s

M
iti

ga
tio

n
sw

itc
h

Error mitigator

EX_sched

DC[0]
DC[1]
DC[2]
DC[3]

DC/EX[0]
DC/EX[1]
DC/EX[2]
DC/EX[3]

0

1

DC_unsched

sel_PB

s
t
a
l
l

Error
detector

status

f
e
t
c
h
e
d

(b) DIS mechanism

Figure 3.4: VLIW datapath enhanced with a) DIRS [C12, J26] and b) DIS [C15, C17].

bundle. Using the example presented in Figure 3.1a, MUL1 of bundle Bi−1 is independent, since
none instruction of bundle Bi (SUB1 , ADD2) uses the destination register of MUL1 as destination
or source register. However, SUB2 and ADD2 of bundle Bi both depend on ADD1 , since they read
register r2 , updated by ADD1 . In a similar way, the instruction OR3 of Bi+1 reads registers r5
and r6 , which are used as destination registers by SUB1 and ADD2 of Bi.
Replication switch & scheduler: The replication switch propagates previously decoded in-
structions (stored at the ReplicRes register) and the currently decoded instructions to the pipeline
DCtoEX register, following the dynamic schedule provided by the replication scheduler. The repli-
cation scheduler dynamically reschedules original and replicated instructions, avoiding the insertion
of additional time slots, by postponing the execution of independent instructions to the next bundle.
The scheduler operates according to three priorities, applied in the following order: 1© instructions
of a previous bundle have a higher priority than instructions of the current bundle, 2© the de-
pendent instructions have a higher priority than the independent instructions, and 3© instances of
different instructions of the same bundle have higher priority than the replicated instances of the
same instruction. For instance, the example presented in Figure 3.1c depicts which of the three
priorities the hardware scheduler uses to obtain the schedule. At the time slot ti−1 , the original, the
first replica and the second replica of ADD1 are scheduled, due to priority 2©. Then, the original
MUL1 is scheduled, due to priority 3©. Since the remaining instructions from bundle Bi−1 are inde-
pendent, they are allowed to be scheduled alongside with the instructions of the upcoming bundle
Bi. Due to priority 1©, the first and second replica of the MUL1 of bundle Bi−1 are scheduled at
the time slot ti . Then, each of the original SUB2 and ADD2 are scheduled, due to priorities 2© and
3©. However, the remaining unscheduled instructions of Bi are dependent, and thus, they cannot

be executed with the upcoming bundle Bi+1. Hence, a new time slot has to be added. At this new
time slot ti+1 , the remaining dependent and redundant instructions of Bi are scheduled based on

52

priority 1© and 3©. At ti+2 , no instruction remains from the previous bundle, thus original and
replicated OR3 are scheduled, according to priority 3©.
Voting switch, voting scheduler and voters: The voting switch propagates the results of
replicated and original instructions. If all replicated instructions have been executed, the results
are send to the voters, otherwise to the VotingRes register, to be stored for a later commint.
The voting scheduler is responsible for synchronizing and grouping the original and the replicated
instructions. By upfront grouping the results in adjacent positions of the VotingRes register, the
voting switch connections are significantly simplified, compared to common switch designs. The
scheduler is implemented through a comparison-based sorting algorithm. The voters compare the
results and mask any occurred error.

3.1.7 Cluster-based instruction replication and scheduling mechanism

By analysing the area overhead of the components of the DIRS mechanism, we observe that the most
area costly components are the switches, which can have negative impact on the clock frequency.
It should be stressed that this is true for any approach that performs dynamic re-scheduling of
the instructions, since this type of techniques requires to dynamically dispatch the instructions
to different issues. Although we have carefully designed and positioned DIRS switches, with the
increase of the number of issues, the complexity of the switches is also increased. To reduce this
overhead, we divide a VLIW into several smaller clusters, where the DIRS is internally applied.
Note that, the compiler usually schedules the instructions as dense as possible in order to occupy less
area in the memory. Thus, the compiler schedules the instructions by prioritizing the first clusters,
leading to unbalanced distribution of the instructions to the clusters. To remove this negative
impact, a virtual VLIW configuration is generated by randomly shuffling the FUs position. The
virtual configuration is provided to the compiler and a static de-shuffling takes place according to
the real VLIW cluster configuration at fetch stage.

3.1.8 Coarse-grained and fine-grained dynamic instruction scheduling mecha-
nism

We leverage the aforementioned hardware mechanism to exclude permanently [C11] or temporally
the faulty FUs [C15, C17]. This section presents the proposed architecture, where fault detec-
tion is performed by a transistor-level detector, and the faulty FUs can be temporally excluded.
Figure 3.4b describes the additional hardware components of the proposed architecture: the error
detector to obtain the status of FUs depending on active faults, the error mitigator to perform
dynamic instruction scheduling and two shadow registers, i.e., the DC unsched for the decoded
unscheduled instructions and the EX sched for the executing instructions.
Error detector: It keeps the faulty status of the FU components and identifies new fault occur-
rences. FUs are analyzed in gate-level to identify the individual circuits. We group the individual
circuits based on the instruction opcode into FU components in a coarse-grain way (DIS-CG), as
depicted in Figure 3.5a [C15], and in a fine-grained way (DIS-FG), as depicted in Figure 3.5b [C17].
Each component and the final multiplexer (comp 0), which selects the result of the executed opera-
tion according to the opcode, is assumed to be enhanced with Built-In-Current-Sensors (BICS) [42].
BICS are able to monitor the induced transient currents to detect a fault, and set (reset) bits in
the signal status to inform that a FU component is currently faulty (healthy). A multiplexer exists
in each issue to discard the results that are miscalculated in case of an error. The status is passed
to the error mitigator to perform instruction re-scheduling, accordingly.

53

Comp 1:
ALU operations

FU

In
pu

t R
eg

ist
er

O
pc

De
st

Comp 2:
MUL operations

Re
su

lt
O

pc
De

st

DCtoEX
Reg

MUX

(a) Coarse-grained FU components.

Comp 1: MEM/ADD/ADDSHIFT

FU

In
pu

t R
eg

ist
er

O
pc

De
st

Comp 4: CMP/SUB

Comp 7: SRA

Comp 5: MUL

Comp 6: SRL

Comp 3: OR/NOR/XOR

Comp 2: AND/NAND/ZEROEXT

Comp 8:SLL

Re
su

lt
O

pc
De

st

Comp 0:
MUX

DCtoEX
Reg

(b) Fine-grained FU components.

Figure 3.5: a) Coarse-grained and b) fine-grained decomposition of FUs.

Error mitigator, shadow registers and mitigation switch: The instructions in the FtoDC
register are decoded at cycle k − 1. Based on the status signal, the error mitigator schedules the
instructions to be executed at the next cycle k. The error mitigator uses the information extraction
unit and the dependency analyser, as in DIRS. The error mitigator performs the scheduling similar
to the DIRS approach, but it does not perform instruction replication and takes into account
the status of the FUs. Thus, the instructions to be scheduled can potentially come from three
sources: 1) the currently decoded instructions, 2) the remaining, not yet scheduled, instructions
of the previous cycle, and 3) the potentially faulty executed instructions of the current cycle. The
decoded instructions not scheduled for execution are stored in the DC unsched shadow register. The
instructions executed at the current cycle are backed-up in the EX sched shadow register, in case
a fault occurs during their execution. A switch is required in order to implement the assignment
of the scheduled instructions into issues. To decrease the switch complexity, we divide it into two
parts: i) a multiplexer to select which shadow register will be used as an input to the mitigation
switch, and ii) a mitigation switch, which passes the instructions from the shadow registers and the
decoded instructions to the main pipeline DCtoEX register.

3.1.9 Evaluation

We compared the VLIW processor enhanced with the DIRS approach performing scheduling in
the current and next bundle (DIRS-CNB), the DIRS approach performing scheduling only in the
current bundle (DIRS-CB), the unprotected VLIW and the VLIW where the FUs are triplicated
(3FU). Furthermore, we present the performance overhead of the proposed DIS-CG and DIS-
FG approaches, compared to the unprotected version. Here, we present the results for the 4-
issue configured with 2 MUL, 8 ALU, 1 MEM and 1 BR FUs, whereas all results can be found
in [C12, C11, C17, C15, J26].

Experimental set-up

Platform & implementation: The VEX VLIW processor is used as a case study. All approaches
have been developed in C++ and synthesized using the Catapult High Level Synthesis (HLS) tool
to obtain the RTL design. The gate-level netlist was generated by the Design Compiler of Synopsys
using 28 nm ASIC technology.

54

Benchmarks: We selected Mediabench as a workload to evaluate the behavior of the proposed
approach as it is the one of the popular multimedia benchmark suite. The behavior of the proposed
approach depends on the number of idle issues left by the application and the compiler. We present
the results for ten applications with different characteristics, i.e., applications with low ILP and
several multiple dependencies (adp dec, adp denc), high ILP and different dependencies (bcnt, dct,
fft32x22s, matrix mmul) and low ILP and less multiple dependencies (huff ac dec, motion,fir, crc).
The benchmarks have been compiled with VEX compiler.
Fault injection: We randomly injected multiple faults during the benchmarks’ execution and each
benchmark is tested 0 up to 4 multiple faults, which is the maximum number of concurrent faults
under which the application can still be executed on the 4-issue VLIW. The performance results
are obtained by taking the mean value of 20 simulations running the same benchmark, but the
faults are injected at random cycles for each simulation.

Dynamic Instruction Replication and Scheduling mechanism

Performance: Figure 3.6 depicts the performance overhead in execution cycles compared to the
unprotected execution and 3FU execution. These values provide the impact on execution time,
when all approaches are using the same frequency. The smaller the value, the better is the approach.
The overhead of DIRS-CB is above 100% for almost all benchmarks (except crc benchmark), with
an average of 152.95%. The minimum overhead of DIRS-CNB is 21.34% (huff ac dec benchmark)
and the maximum 139.16% (matrix mul benchmark), with an average of 77.52%. Last, but not
least, the speed-up of DIRS-CNB compared to DIRS-CB is from 13.47% (matrix mul benchmark)
up to 43.68% (huff ac dec benchmark), with an average of 29.93%.
Hardware overhead: Table 3.2 depicts the area of the different proposed mechanisms, imple-
mented with a target frequency of 200MHz and the area overhead compared to the unprotected
original version. The 3FUs approach has the maximum area overhead, i.e., 44.60%. The DIRS-CB
has the lower overhead, with an area increase of 15.56%. The DIRS-CNB, compared to the un-
protected processor, has an area increase of 23.54%. Table 3.2 also provides the critical path and
the overhead compared to the unprotected original processor. The critical path in all approaches is

0

50

100

150

200

250

ad
pc
m_
de
c

ad
pc
m_
en
c

bc
nt dc

t

fft
32
x3
2s

hu
ff_
ac
_d
ec

mo
tio
n fir crc

ma
tri
x_
mu
l

av
er
ag
ePe

rf
or

m
an

ce
 d

eg
ra

da
tio

n
(%

)

DIRS-CB DIRS-CNB

Figure 3.6: Performance degradation under DIRS-CB and DIRS-CNB.

55

Table 3.2: Area and critical path delay overhead.

Approach Cells (µm2) Overhead (%) Delay (nsec) Overhead (%)
Original 50,844 - 2.62 -

3FUs 73,523 44.60 2.89 9.92
DIRS-CB 58,819 15.68 3.22 22.09

DIRS-CNB 62,812 23.54 3.22 22.09
DIS-CG 60,143 18.29 2.65 1.14
DIS-FG 62,314 22.56 2.65 1.14

given by the EX/M-WB stage. The delay impact of the 3FU is 0.27 ns due to the voters inserted
for comparison. The delay impact of DIRS-CB and DIRS-CNB approaches is increased to 0.33 ns
due to the voting switch required to correctly group the results for comparison. The replication
switch placed in the DC stage does not increase the critical path.

Coarse-grained and fine-grained dynamic instruction scheduling mechanism

0
10
20
30
40
50
60
70
80
90

1 2 3 4

Pe
rf

or
m

an
ce

 d
eg

ra
da

tio
n

(%
)

Faults

DIS-CG DIS-FG

Figure 3.7: Performance degradation, compared to fault-free execution, taking into account the
status of FUs in a coarse-grained [C15] and fine-grained [C11] way.

Performance: When no faults occur, both DIS-CG and DIS-FG approaches have the same perfor-
mance, i.e., the original execution cycles. On the contrary, DIRS approaches increase the number of
execution cycles even if no error occurred, due to the execution of replicated instructions, as shown
in Figure 3.6. From Figure 3.7, we observe that DIS-FG inserts significantly lower overhead than
the coarse-grained approach. We have also observed that in several benchmarks our performance
is very close to the original one, i.e., without faults, even for several multiple faults. In contrast to
the coarse-grained approach, the gain of the fine-grained mechanism is achieved because whenever
a fault is detected, the proposed approach is capable of still utilizing the healthy FU components
in the current and the next instruction bundle.
Hardware overhead: As shown in Table 3.2, DIS-CG and DIS-FG have 18.29% and 22.56%
area overhead, respectively. Furthermore, the voting switch and the voters have been replaced by a
multiplexer in DIS, leading to a critical path to 2.65ns reducing the overhead at 1.2%, respectively.

56

3.2 Run-time data shuffling for NoC

3.2.1 Context

Multicore architectures consist of several cores, requiring a high amount of data transfers, which
cannot be handled by conventional communication means. To address this limitation, NoC ap-
peared as a scalable solution for communications. Due to transistor shrinking and core number
increasing in SoC, fault tolerance has become essential. Not only cores and memory, but also NoC
became more sensitive to permanent faults. During system operation, aging defects [132], like elec-
tromigration, Bias Temperature Instability (BTI), Hot Carrier Injection (HCI), Time-Dependent
Dielectric Breakdown (TDDB) and radiations [1] become additional sources of permanent faults.
Faults occurring to NoC of those systems have a significant impact, due to the high amount of data
crossing the NoC for communication.

In this context, fault tolerant techniques are required to remove the impact of permanent faults
on NoC.

3.2.2 State-of-the-art

The majority of existing approaches focus on removing completely the impact of faults through
fault mitigation/correction, while a few approaches focus on reducing the fault impact when the
application accepts approximations. However, existing fault correction approaches cannot efficiently
address several permanent faults on NoC, due to their high hardware costs.

Table 3.3: Comparison with representative SoA fault tolerant NoC approaches.

Ref. Mitigation Correction Reduction
New New Circuit Information
path resources replication redundancy

[88, 63] X
[63] X X
[125, 83] X
[82, 166] X
[56, 280, 147, 228] X
[173] X

[J23, C22, C24] X

Table 3.3 summarises representative SoA approaches to obtain reliable NoCs. Existing tech-
niques perform fault mitigation through i) routing algorithms, and ii) hardware reconfiguration
using spare resources or default backup path, and fault correction through iii) circuit replication
and iv) information redundancy. Routing algorithms are used to avoid faulty paths or faulty re-
gions in NoC, keeping only the healthy resources [88]. Typical techniques are adaptive routing
algorithms [63] including rules to avoid congestion and deadlock during packet transmissions. Re-
configuration replaces a faulty element of the NoC with spare resources at different levels [125].
Other reconfiguration approaches use default-backup paths to avoid data corruptions and packet
re-transmissions [83] with low area and power consumption. Last, NoC can be reconfigured in
degraded mode, using only the remaining healthy resources [63]. Circuit replication, called NMR,
replicates N times, fully or partially, the architecture and votes the replicated outputs. The most
popular approach is TMR [82], where a module is replicated three times. Despite several approaches
which focus on reducing the hardware costs [166], the area and power consumption overhead remains

57

significantly high, e.g., more than three times for TMR. Information redundancy inserts additional
bits inside messages using ECC. The most commonly used coding scheme for NoC is the extended
Hamming code, which can detect two faulty bits and correct only one. Despite the increase of the
bus size of the complete NoC, Hamming code is efficient for correcting single faults [147]. The
number of correctable faulty bits can be increased by encoding the message on two dimensions [56]
and interleaving several ECC [280]. Although the aforementioned approaches are efficient for single
permanent fault, they are less adequate for multiple permanent faults and large NoC, since they
induce high hardware costs while their mitigation capabilities are limited. Spare resources can be
used only once and faults in the same module are masked, leading to approaches with large area
and power overhead that tolerate few faults. Using ECC to correct more than one bit dramatically
increases the hardware costs [228], limiting the use of ECC approaches against multiple faults.

Furthermore, few techniques have as interest to reduce the impact of faults for NoC, leading
to approximated results, targeting applications that can tolerate errors until a certain level, such
as image processing and machine learning [7]. For instance, an approach statically changes the
assignment of lines in datapath busses, by placing the MSB on the borders of the bus, to attenuate
the electromagnetic influences between neighbored lines [173]. As the assignment of lines is static,
it cannot be modified at run-time to deal with new occurring faults during system execution.

3.2.3 Contributions

We propose a Bit-Shuffling (BiSu) approach that reduces the impact of multiple faults by shuffling
at run-time the bits inside a flit transmitted through the NoC, with the goal of placing the faults
on the Low Significant Bit (LSB) [C22, C24]. As depicted by the purple arrow of Figure 3.8-a,
flits are crossing a faulty router from north to south. Flits of size SF bits are divided into NSF

blocks of SSF bits, named SubFlit (SF), e.g., SF = 8, SSF = 2, and NSF = 4 (SF0 to SF3) in
this example. Let’s assume two permanent faults occur in the input buffer, affecting the bits 7
and 6 of all incoming flits. When no shuffling takes place (right part Fig 3.8-b) the errors are
within the range {0,±64,±128,±192}, depending on the initial value of the affected bits. When
bit-shuffling is applied in the input ports of the router, before crossing the faulty path, the subflits

8 bits uchar

016 8 71523

F0F1Header

8 bits uchar

016 8 71523

016 8 71523

SSF

SF0SF1SF2SF3SF0SF1SF2SF3SF0SF1SF2SF3

SF0SF1SF2SF3SF0SF1SF2SF3SF0SF1SF2SF3

SF3SF1SF2SF0SF3SF1SF2SF0SF3SF1SF2SF0

Shuffling

De-Shuffling

Error = 21+20

X XX X XX

X XX X XX

D

S
CTRL

North

Ea
st

Local

South

W
e

st

S
D S

D

ARB

South

S D

CTRL

North Local

ARB

SD

}{

S
S

D

D

S D

SD
S

S
D

D

8 bits uchar

016 8 71523

F0F1Header

8 bits uchar

016 8 71523

SSF

SF0SF1SF2SF3SF0SF1SF2SF3SF0SF1SF2SF3

SF0SF1SF2SF3SF0SF1SF2SF3SF0SF1SF2SF3

Incomming
packets

X XX X XX

Output
packets

016 8 71523
Error = 27+26

X XX X XX

SF0SF1SF2SF3SF0SF1SF2SF3SF0SF1SF2SF3

b) Illustration of the bit-shuffling technique. (Spck = 16, SF = 8, SSF = 2)

With Shuffling Without Shuffling

D

D

a) Original NoC extended
with proposed approach.

Figure 3.8: NoC extended with the BiSu method.

58

are re-organized by swapping LSB and Most Significant Bit (MSB) of data to allocate the MSB at
the non-faulty hardware paths, i.e., SF0 and SF3 are swapped inside each flit. Hence, the impact
of the faults is reduced to the range {0,±1,±2,±3}, depending on the values of the LSB. Before
the flit leaves the router, the subflits are brought to their initial position, and the flit is sent to the
output port.

BiSu protects every router and interconnection, as displayed in Figure 3.9a, providing a fine-
grained protection, which, however, has increased hardware cost. To reduce the hardware cost,
while providing data protection, we propose a Region-based Bit-Shuffling technique (R-BiSu) [J23],
which divides NoC into regions and applies BiSu at the region borders. Figure 3.9b (Figure 3.9c)
depicts a R-BiSu configuration of size 1 (2), i.e., the NoC is divided in regions of 1 × 1 (2 × 2).
Note that, the basic BiSu approach corresponds to a region of size 0. Furthermore, we design a
hardware block that computes the register shuffling values, instead of using the dedicated core IP
of the routers.

D

S

DS

D

S D
SD

D

S

DS

DS

DS

D

S D
SD

D

S

DS

DS

DS

D

S D
SD

D

S

DS

D

S D
SD

D

S

DS

D

S D
SD

S D
SD

D

S

DS

DS

DS

D

S D
SD

S D
SD

D

S

DS

DS

DS

D

S D
SD

S D
SD

D

S

DS

D

S D
SD

S D
SD

D

S

DS

D

S D
SD

S D
SD

D

S

DS

DS

DS

D

S D
SD

S D
SD

D

S

DS

DS

DS

D

S D
SD

S D
SD

D

S

DS

D

S D
SD

S D
SD

D

S

DS

D

S D
SD D

S

DS

DS

DS

D

S D
SD D

S

DS

DS

DS

D

S D
SD D

S

DS

D

S D
SD

EMRouter

EMLocal

EMNorth

(a) Size 0

D

S D
SD

D

S

DS

D
S D

SD

D

S

DS

D

S D
SD

D

S

DS

D

S D
SD

D

S D
SD

D

S

DS

D

S D
SD

D

S

DS

D
S D

SD

D

S

DS

D

S D
SD

D

S D
SD

D

S

DS

D

S D
SD

D

S

DS

D

S D
SD

D

S

DS

D
S D

SD

D D

S

DS

D

D

S

DS

D

D

S

DS

DREM1
0

REM1
5

Reg3Reg2Reg1Reg0

Reg15Reg14Reg13Reg12

Reg11Reg10Reg9Reg8

Reg7Reg6Reg5Reg4

(b) Size 1

D D D

S

DS

D

D

D

S D
SD

D

S D
SD

D

S

DS

D

S D
SD

D

S D
SD

R4

D

R5

D D

S

DS

D

D

R0

D

R1

D D

S

DS

D

D

REM2
0

Reg3Reg2

Reg1Reg0

(c) Size 2

Figure 3.9: Illustration of the R-BiSu technique for different region sizes.

3.2.4 System model

We consider a NoC R × R, with the routers, interconnections and Network Interface (NI). Each
router is connected to an Intellectual Property (IP), e.g., cores, memories, and hardware accel-
erators. The routers are connected together through the interconnections. When an IP sends a
message in the NoC, the associated NI formats the message. Messages are split into smaller fixed-
length Flow controL uniTS (FLITS), where each flit has the same size as the interconnections of the
NoC. The routers transmit the flit through the interconnection to a neighboring router. When the
message reaches the destination, the router forwards the message towards the NI of the destination,
which decodes the message to send it to the associated destination IP.

3.2.5 Fault model

We consider multiple permanent faults [170], expressed as stuck-at, short or bridge faults [70]. As
the buffers and the crossbar are the biggest components of a router [76], they have higher probability
of accumulating faults due to radiation effects, manufacturing defects or other intrinsic failures.
Thus, we consider faults located in i) the interconnections between routers, or ii) the buffers and
the crossbar within each router. We assume that an Error Mask (EM) with the position of faults,

59

which has the same size as the data-bus of the NoC, is provided by methods that can diagnose
faults in interconnections and routers [272], such as BIST techniques [160, 33]. Each bit in EM
gives the state of the datapath bit-line.

3.2.6 Basic Bit-Shuffling method

Shuffling blocks: To achieve BiSu, the NoC routers are extended with Shuffler (S) and De-shuffler
(D) blocks. The S block re-organizes the subflits with the objective of minimizing the impact of
the faults. The D block brings back the initial order of the sublits. To deal with the targeted
faults, BiSu is applied i) between two routers, to mitigate errors on the interconnection bus, and
ii) between the input and output ports, to mitigate errors inside the router. One extra D block
is required for the routing controller (CTRL), which reads the routing information of the shuffled
header and forwards the current packet towards the expected output, as depicted in Figure 3.8-a.
The hardware architecture of the S and D blocks is composed of NSF multiplexers of NSF inputs
of SSF bits to one output of SSF bits, and registers, whose values give the multiplexer selections,
and thus, the bit-shuffling and de-shuffling. The register values are computed using a bubble sort
algorithm [15] that takes as input the EM. It divides EM in equivalent submasks (based on the
SSF value), and orders them, along with the corresponding part of the register, in an decreasing
order to minimize the impact of faults. The algorithm is executed on the IP core of the router.
Critical packets: Faults cannot be tolerated in the header flits, since they contain control infor-
mation. When the header contains several unused bits, the BiSu technique uses them to mitigate
faults. When the header contains few unused bits, the BiSu technique distributes the header infor-
mation into two flits. In this way, the number of unused bits is artificially increased (by duplicating
the header flit) with a small impact on the NoC latency, i.e., adding a single flit in a packet. The
same technique is used for sensible data, e.g., instructions. Notice that, today’s NoC are typically
based on large buses. Hence, the header duplication is a solution that is applied only when BiSu
technique cannot provide full protection using the unused header bits.
Different data and flit sizes: The BiSu technique takes into account differences between both
data and flit sizes, when organizing the flits inside the NI. To achieve this, a merger block and a
de-merger block are added to the NI, and more precisely, to the packetization and de-packetization
blocks always included in classic NoC. These blocks sort the data in the flits at the subflit scale, to
reduce as much as possible the fault impact on the data.

3.2.7 Region-based Bit-Shuffling method

The R-BiSu method relaxes the mitigation efficiency of the BiSu technique, since it splits the NoC
into regions and the BiSu method is applied in the region frontiers. To compute the S and D
registers, we need to consider all faults within a region, which can be accumulated when a packet
crosses the region. This information is given by the Region Error Mask (REM), computed based
on an hierarchical method, where the REM of a region of size X is obtained by an OR operation
among the REM of the related regions of size X − 1. Figure 3.9 shows an example of 4 × 4 NoC
with 8-bit flit size and 2-bit subflit size. The NoC is affected by three faults on i) the bit number 4
of the router R0, ii) the bit number 2 of the router R0 local interconnection, and iii) the bit number
7 of the router R5 north interconnection. The associated error masks indicating faults (highlighted
by red color) for the different region sizes are displayed in Figure 3.9. A hardware block is designed
to compute the values of the S and D registers, reducing the pressure on the core IP of the routers.

60

3.2.8 Evaluation

The BiSu and R-BiSu approaches are implemented considering regular square regions and a header
distribution on two flits, which correspond to the worst case. This section presents a subset of
our evaluation results at the NoC level, while the complete multi-level efficiency evaluation of the
proposed techniques through several experiments made on payloads and headers can be found
in [C22, J23, C24]. We initially compare the reliability efficiency and the area of basic BiSu, an
extended Hamming code and the unprotected NoC, and then, we present the improvements of R-
BiSu compared to the basic BiSu. For the reliability efficiency, we use the MSE metric over 10, 000
fault injection sets.

Experimental Setup

Platform & implementation: We consider a 8× 8 NoC using the using the 5-ports CONNECT
router [186], with a round-robin arbitration and a XY routing algorithm. For the hardware results,
the hardware blocks are synthesized on 28 nm FDSOI technology through HLS tools of Mentor
Graphics, targeting a clock frequency of 1 GHz. All simulations are performed on the Fedora 28
linux distribution with 8-cores Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz.
Benchmark: Packets of 16 flits are injected according to the TORNADO injection model, where
each IP sends a packet at any other IP, considering 64 bit flit size.
Fault injection: The faults are randomly injected in the NoC datapath and modeled using the
stuck-at fault model [70]. We consider that the injected faults have always an impact on the data
by applying a bit-flip on the affected bits. In this way, the masking effect due to data values is
avoided and the fault impact is always visible.

Basic Bit-Shuffling method

1 2 3
Fault density (fault per router)

105

1010

1015

1020

1025

1030

1035

M
ea

n
Sq

ua
re

 E
rro

r (
M

SE
)

Unprotected
Hamming
BiSu
(SSF=32)
BiSu
(SSF=16)
BiSu
(SSF=8)
BiSu
(SSF=4)
BiSu
(SSF=2)

(a) MSE.

1.0

0.8

0.6

0.4

0.2N
or

m
al

iz
ed

 A
re

a
C

os
t

(b) Area overhead.

Figure 3.10: Reliability efficiency and area overhead of BiSu technique and the Hamming code.

Reliability efficiency: Figure 3.10a displays the MSE according to the fault density in terms of
average number of faults per router, i.e., number of faults divided by the number of NoC routers.
Thus, a density of 1.00 fault per router does not mean that each router is impacted by one fault, but
that the fault average per router in the NoC is equal to 1.00. BiSu significantly reduces the MSE
compared to the unprotected case, even under a high fault density. The BiSu efficiency increases
when the subflit size is reduced. The results of extended Hamming code are approximately equal
to the BiSu technique with a subflit size equal to half the size of the flit, i.e., the largest possible

61

size. The BiSu method is more efficient than the extended Hamming code with smaller subflit sizes
and higher fault densities.
Hardware overhead: Figure 3.10b shows the global overheads for the BiSu technique and the
extended Hamming code for different subflit sizes (SSF). Comparing with the Hamming overheads,
BiSu technique can have higher, equal or lower hardware overheads according to the considered
subflit size. For example, considering 64-bit flits with 4-bit subflits, the area overhead of the
BiSu is 43.5% against 29.3% for Hamming. However, when the subflit size is increased to 8 bits,
the overhead is reduced to 27.5%. Note that, the NoC performance are not impacted by the
combinatorial D and S blocks, contrary to the Hamming implementation. For example, considering
64-bit flits with 4-bit subflits, the D and S critical path is 0.55 ns against 0.32, 0.85 and 0.76
required for Hamming encoder, checker and decoder, respectively.

R-BiSu method

1 2 3
Fault Density (Per Router)

105
1010
1015
1020
1025
1030
1035

M
ea

n
Sq

ua
re
 E
rro

r (
M
SE

)

Unprotected
Size 8
Size 4
Size 2
Size 1
Size 0

(a) MSE (SSF = 4)

0x0 1x1 2x2 4x4 8x8
Region Size

0

10

20

30

40

50

Ar
ea

 O
ve
rh
ea

d
(%

) SSF=4
SSF=8
SSF=16
SSF=32

(b) Area overhead

Figure 3.11: Reliability efficiency and area overhead comparison.

Reliability efficiency: Figure 3.11a depicts the MSE fault density, i.e., the number of faults
per router, for different region sizes considering 64-bit flits divided into 4-bit subflits. The MSE
increases with the region size, until it reaches the same results with the unprotected NoC, when
the density of faults is high. However, we observe that the size of the region can be increased from
0 to 1 with only a small impact on the MSE. For example, the MSE is increased from 2.17 × 108

to 3.99× 109, when the region size changes from 0 to 1 for a fault density equal to one.
Hardware overhead: Figure 3.11 presents the hardware costs of the R-BiSu method in terms of
area and power overhead for different region sizes and subflit sizes. We observe that the overhead is
decreased with the subflit size and the region size increase. When the region size increases from 0
to 1, the area overhead is reduced from 48.3% to 31.4%. The dedicated hardware block to compute
the value of the shuffling and de-shuffling registers has a small impact on the global hardware
cost of the method. For example, the area and power overheads are increased by 5.3% and 5.9%,
respectively, for a region of size 1, and by 1.3% and 1.4%, for a region of size 2. The latency to
compute the register values depends on the number of subflits present inside a flit. For example,
if the flit is composed of 16 subflits, then the latency to update the registers is equal to 370 ns.
When the flit is composed of 8 and 4 subflits, the latency is 120 ns and 44 ns, respectively.

62

Pareto front

The hardware costs reduce with the region size increasing, but the reliability of the method is
decreased. To exploit this trade-off, Figure 3.12 plots the Pareto front for different subflit sizes and
region sizes considering 64-bit flits and a fault density equal to one fault per router. Overall, cases
exist where the basic BiSu does not belong to the Pareto front. The region size can be increased
from size 0 to size 2 with a small impact on the efficiency, while the area overhead is reduced from
48% to 33%. Furthermore, an increase of the subflit size, reducing hardware overheads, has a higher
impact on the efficiency. Last, we conclude that increasing the region size is a better way to reduce
the hardware overheads than increasing the subflit size.

1010 1014 1018 1022 1026 1030 1034

Mean Square Error

10

15

20

25

30

35

40

45

50

A
re

a
 O

v
e

rh
e

a
d

 (
%

) Size 0

Size 1

Size 2

Size 4

Size 8

Pareto Front

SSF=4

SSF=4

SSF=4 SSF=8

SSF=8
SSF=16

SSF=16

SSF=8SSF=8

SSF=4

Figure 3.12: Area and MSE Pareto front.

3.3 Cross-layer reliability analysis for complex hardware designs

3.3.1 Context

Due to the increased level of chip integration, the reduced transistor sizes and the lower supply
voltages of modern technologies [118, 80], the hardware designs are becoming more and more
sensitive to environmental sources [206], such as radiation. Radiation-induced faults can be caused
by particles from the atmosphere and their impact on the reliability must be carefully assessed [27].
Ionizing particles can create charges in semiconductor and their density depends on the ion species
and their energy, characterized by the Linear Energy Transfer (LET) [117]. The transferred energy
from particles can (i) corrupt the state of sequential logic, by flipping bits stored in a memory cell or
a flip-flop, and (ii) impact the combinational logic, by creating current-voltage transients, known
as Single-Event-Transient (SET). The SET is propagated in the forward cone of the impacted
combinational cell and it can be eventually latched by sequential logic [239]. As a result, one or
several bits are modified leading to Single-Event-Upset (SEU) or Multiple-Event-Upset (MEU).
Such errors can jeopardize the system execution, since their appearance in hardware can lead to
failures in the application.

In this context, evaluating the reliability of a system under radiation-induced faults is an es-
sential part of the system design process.

63

3.3.2 State-of-the-Art

Reliability analysis can be performed by injecting faults into the system and observing its behavior.
Fault injection can be done by hitting the real system with a radiation beam and by simulating
the impact of injected faults. The first method requires dedicated and costly material, whereas the
system can be destroyed during experiments. The second method does not have these limitations
and allows a more detailed system analysis. Two main trends exist in reliability analysis through
simulation, i.e., the first category characterises the induced faults by analysing the radiation im-
pact at the lower hardware design layers, i.e., Technology and Circuit (T&C) layers, while the
second category is applied at higher hardware and application layers to characterize the system
execution under transient faults (or soft errors). Table 3.4 summarizes representative vulnerability
approaches, and compare them with regard to the layers and fault models they consider.

Table 3.4: Comparison with representative reliability analysis approaches.

Ref. Layer Fault model
T&C Gate RTL Microarch. Application SEU MEU SET

[117, 208] X X X X

[168] X X X
[265, 123] X X X
[269, 93] X X X X
[47] X X X X X
[236] X X X X X X

[C26, C20] X X X X X X X

Radiation analysis at technology and circuit layers can take into account the circuit layout, the
fabrication technology, the radiation and operational environments. For instance, soft errors due
to neutron strikes are characterized through a SPICE simulator [208] and Monte-Carlo simulations
are used to compute neutron, proton, heavy ion and α emitter contamination [117]. Although these
approaches accurately characterize the impact of radiation on the physical circuit, they remain at
low hardware layers and do not analyse the propagation of such faults to the system execution.

For reliability analysis at higher layers, a trade-off exists between the accuracy and the time
for analysing complex hardware designs. Fault injection at the application level is fast, but less
accurate. It is agnostic of the hardware state, fault injection occurs only between instructions
and in application variables [168]. To improve accuracy, the underlying hardware should be taken
into account. Fault injection approaches at the hardware level typically use random fault models
following uniform distributions [93]. The majority of existing approaches focus on single-bit faults in
sequential logic, e.g., the fault model is based on a random single bit-flip in the microarchitectural
state [265] and a bit-flip on the value of one storage element [123]. Some approaches consider
multiple-bit flips in sequential logic, e.g., multiple architectural vulnerability analysis is computed
for faults affecting a number of contiguous bits in SRAMs [269, 93]. Last, approaches consider
faults occurring both in the sequential and the combinational logic. For instance, random single
and multiple faults, occurring to instructions that use arithmetic units, are analysed in [47]. An
instruction-set simulator executes the application and invokes a gate-level simulator to inject and
propagate the fault. A hybrid fault injection framework combines Register Transfer Level (RTL)
and gate-level simulation, injecting an SET of one clock cycle following a uniform probability [236].
Existing approaches characterise the impact of transient faults on the system execution, typically
considering random faults and uniform distributions.

64

Although these two categories are complementary, few works consider their combination in
order to accurately analyse the impact of the radiation from the environment on the hardware
design and application workload under study. A recent cross-layer approach considers technology,
circuit, hardware and application layers based on Bayesian models for single-bit faults in memory
components [262]. However, multiple-bit faults and combinational logic faults cannot be neglected
and should be included in the reliability analysis.

3.3.3 Contributions

We address this limitation by providing a novel cross-layer reliability analysis from the semicon-
ductor layer up to the application layer [C26, C20] in order to quantify the risks of faults under a
given context, taking into account the characteristics of the environmental radiation, the physical
hardware design and the application. The overview of the cross-layer reliability analysis flow is
depicted in Figure 3.13. The first step to obtain an accurate analysis is to use fault models that
reflect the reality of the system’s environment, e.g., actual occurring faults on a given hardware
design during a flight from Paris to Los Angeles due to single energy particles. To achieve that,
we have used models for the radiation-induced faults that take into account both the specific en-
vironmental conditions and the characteristics of the specific hardware. Such models are obtained
by a technology and circuit layer simulation tool that characterises the impact of ionizing parti-
cles, under different scenarios, on the hardware design under study. The tool’s output is a set
of databases that model the distribution of the transient faults at the circuit layer, depending on
the cell type, size, inputs and radiation scenario. Such technology- and circuit-layer analysis is
required once per fabrication technology and radiation scenario. We apply a gate-level analysis,
based on statistical fault injection through a single-cycle simulator, in order to characterise with
significant statistical confidence the propagation of radiation-induced faults, modelled at the circuit
level. This simulation is able to analyse logical masking and latching window masking, since the
hardware design frequency, the area, the delay, the type of cells and the netlist of the hardware
design are taken into account. The output is a set of databases describing single-bit and multi-bit
error patterns that avoided masking and finally latched in the hardware design registers. Such
gate-level analysis is applied once per hardware design. Last, we analyse the impact of single-bit
and multi-bit error patterns, occurring at microarchitecture layer, on the system execution, taking
into account the application workload. This is achieved through fault injection using a fast Cycle-
Accurate-Bit-Accurate (CABA) simulator executing the application. The microarchitecture-level
analysis is applied per application workload.

3.3.4 Fault models through Technology and Circuit Analysis

The cross-layer reliability analysis uses as input the results obtained with MUSCA-SEP3 [117]
and ATMORAD [44] tools from ONERA, which analyse the physical impact of radiation to the
hardware circuit, therefore considering the environment and the physical circuit of the hardware
design. As an output, a set of databases of fault models per technology cell is created, along with
their probability to occur based on the cell type, size and inputs.

The environmental models are based on generating environment databases according to the
considered missions (e.g., aircraft trajectories, ground trajectories, orbits) and space weather con-
ditions (e.g., solar activity, solar flare). The physical models correspond to the device description,
including the circuit layout, fabrication technology, semiconductor active zones, passivation, met-
allization layers and package. The technology and circuit level analysis is based on Monte-Carlo

65

Gate level
Analysis Error Patterns

μ-Arch
Analysis

Workload

Vulnerability
Metrics

C++ Model

HLS

C++ Compilation

.v/.vhdl

Technology &
Circuit Analysis

Environmental
Models

Physical
Models

Transient Fault
Distribution

Figure 3.13: Flodam cross-layer reliability analysis flow.

simulation using a sequential model of the various physical mechanisms occurring when a particle
hits a circuit, and potentially leading to a radiation-induced fault. The model describes (i) the
particle transport in materials (modifications of the particle primary characteristics via the inter-
action with the structure, shielding, package and over layers), (ii) the electron-hole pairs and charge
generation in semiconductor, (iii) the transport and collection of the charges when electron/holes
reach the electrodes, (iv) the transient pulses induced on the different electrodes (drains, sources
and taps), and (v) the final effects at the circuit layer. When the circuit is impacted by a particle i
of energy Ei, the first step is to identify the cells and transistors potentially impacted. Depending
on i, Ei, the size of the transistor and the positioning of the particle with respect to the Drain-
Grid-Source topology, the most relevant induced current is identified. After this analysis, the tools
select a current from an I(t) database, depending on the characteristics of the transistor to be im-
pacted (size, type), the particle and its characteristics, to be injected at the circuit layer. Following
the aforementioned approach, a set of databases is generated with fault models per cell from the
technology library used for the considered design, and for the different particles encountered in
atmospheric and space environments.

3.3.5 Error patterns through Gate-Level Analysis

As exhaustive fault injection is not possible for complex hardware designs, the aim of the gate-level
analysis is to create statistically representative models at this layer for radiation-induced faults
occurring at both combinational and sequential cells of the hardware design. To obtain such fault
models with statistical confidence and within reasonable time, the gate-level analysis is performed
through statistical fault injection per pipeline stage. This is achieved through single-cycle gate-level
simulation using the fault models obtained by the technology and circuit analysis. The number of
faults N to be injected is defined from the required confidence level in the statistical analysis, i.e.,
N = t2×p×(1−p)

e2 , where t is the critical value related to the statistical confidence interval, e the error
margin, and p the percentage of the fault population individuals assumed to lead to errors [260].

In order to be able to inject faults, the netlist of the hardware design is extended with an
injection block inserted at the output of each cell. With these injection blocks, we can insert SEUs,
MEUs and SETs anywhere, at any time and with any duration in the netlist. Note that, in order

66

not to affect the timing characteristics of the hardware design, the propagation delays of all the
injection blocks are set to zero. The inputs of the hardware design are randomly generated, e.g.,
for the execution stage of a processor the inputs are instructions randomly generated from the
Instruction Set Architecture (ISA) using random operands. For each such input, a fault-free cycle
is executed to obtain the golden reference, i.e., the fault-free output. Based on the technology
and circuit layer analysis, the higher the area of a technology cell, the higher its probability to be
affected by radiation. Therefore, the selection of the cell, where the fault is injected, it driven by
the area of the cell. If the selected cell is of sequential type, the fault is injected directly to the
pipeline register. If the selected cell is of combinational type, an SET is inserted into the netlist.
The time offset, when the SET is inserted, is randomly chosen within a clock cycle, since radiation
may affect the hardware at whatever time instance. The SET duration is given from the databases
obtained during the technology and circuit layer analysis. Then, the SET is injected and the output
is latched by register at the output of the design stage. If the result in the register is different than
the golden reference, the injected fault has led to a single-bit or multiple-bit error. The number
and the position of faulty bits are logged, in order to create a set of databases with error patterns.

3.3.6 Vulnerability metrics through Microarchitecture-Level Analysis

The microarchitecture-level analysis is based on fault injection that is able to evaluate the masking
due to the microarchitecture and the application workload. The fault injection is driven by the
error patterns, modelled during the gate-level analysis and describe the single-bit and multiple-bit
faults to be injected at the hardware design registers. Prior to any fault injection, we execute
the application under study, without faults, in order to obtain a set of golden references: (i)
the application output, (ii) the system state (memory and registers), and (iii) the number of cycles
required for the execution of the application. Then, the fault injection tool executes the application
and injects faults to the hardware design registers, while the application runs. The cycle to inject
the faults is chosen randomly between the first cycle and the total number of cycles needed for
the fault-free execution, since radiation may impact the system any time. The location, where the
faults are injected, is driven by the size of the combinational and sequential logic of the overall
hardware design. The larger the area, the higher its probability to be selected. The characteristics
of the fault (i.e., how many and which register bits are affected), to be injected in the register of the
selected hardware pipeline stage, are provided by the gate-level error patterns. The more times a
specific error has appeared, the higher is its probability to be injected, during the microarchitecture
analysis. After the fault injection and upon application termination, the results are compared to
the golden references, categorising the impact of faults as:

• Hang (H): The execution time has exceeded a threshold, and thus, it is assumed that it has
entered an infinite loop.

• Crash (C): The execution of the application has terminated unexpectedly and an exception has
been thrown (e.g., out of bound memory access, misaligned PC, hardware trap, etc.)

• Application Output Mismatch (AOM): The application output is different than the golden ref-
erence.

• Internal State Mismatch (ISM): The system state (memory and registers) are different than the
golden reference.

• Functionally Masked (FM): The application has finished execution, with no AOM and no ISM.

67

Register File

Data Cache

In
st

ru
ct

io
n

 C
a

ch
e

D
e

co
d

e

F
e

tc
h A

LU

M
e

m
o

ry

U
n

it

Branch Unit

Forwarding Unit

opcode

val1

val2

imm

Multi-cycle

operators
stall

Figure 3.14: RISC-V core with 5-stage pipeline [213].

3.3.7 Evaluation

An open-source 32-bit RISC-V processor [213] is used as a case study, consisting of a standard
5-stage pipeline, including a forwarding mechanism, a hardware multiplier in its execution stage, a
register file with 32 registers in the write-back stage, and an instruction and data level one cache
memory. The considered processor is fully specified using C++ and has been synthesized to the
gate-level using Mentor Graphics Catapult High-Level Synthesis and Synopsys Design Compiler
with a target frequency of 500 MHz. The target fabrication technology is 28 nm FDSOI from ST-
Microelectronics using a supply voltage of 1.0 V. The sequential logic of the processor corresponds
to 45.85% of the total area and the combinational logic to 54.15%. Table 3.5 depicts the relative
area of the pipeline stages.

Table 3.5: Relative area of RISC-V pipeline stages.

Pipeline stage Fetch Decode Execute Memory WriteBack
Area 6.01% 11.02% 35.47% 5.10% 42.41%

Technology and Circuit Layer Results

Thanks to our collaboration with ONERA, Toulouse, under FLODAM project, we obtain fault
models for 28nm FDSOI technology cells considering different radiation scenarios, considering sev-
eral flights departing from Paris to New York, Los Angeles, Johannesburg and Sao Paulo, and vice
versa. For each flight plan, the natural radiation environment can be calculated, which describes
the differential energy spectrum of neutron, proton and muon for each point of the flight plan tra-
jectory. Analysis takes place considering different particle types, particle energies and technology
cells. The transistors potentially impacted when a particle i of energy Ei hits a technology cell and
the most relevant induced currents are identified. A current database is created depending on the
transistor size and type, the particle and its characteristics. Then, current injection at the circuit
level takes place leading to a set databases with fault models characterised with distributions of
SET widths in the cell. For instance, Figure 3.15 summarizes the distribution of the width of the
SET pulses created when neutrons hit the 28nm FDSOI cells, normalized to the cell area and input
sizes. In this radiation scenario, we considered an LET equal to 58MeV.cm2.µm−1, a temperature
25◦C and an incidence angle of 90◦. Overall, 212, 000 injections took place on 91 logic gates of the

68

fabrication technology. We observe that the majority of SET widths are below 500 ps (89.457%),
while a minority is larger than 1 ns (0.651%) and than 1.5 ns (0.13%) for our case study.

Figure 3.15: SET distribution normalized to cell area and input sizes

Gate-Level Results

The gate-level analysis provides the error patterns, created due to injected faults at the circuit layer,
that managed to avoid logical and timing window masking and latched at the output register. Con-
sidering a 99.8% confidence interval with 5% error margin for each input set values, we injected 103

for each of the 103 different inputs per pipeline stage (106 total fault injections per stage). The time
required to perform gate-level analysis for the five RISC-V pipeline stages is 1, 039 s, as depicted in
Table 3.6 with Questa Advanced Simulator 10.7b running on a second-generation Intel Xeon CPU.
Figure 3.16 depicts the gate-level analysis results for the RISC-V execution stage, considering an
SET pulse width equal to 400 ps and an operating frequency of 500 MHz. Figure 3.16a shows the
probability of each bit of the output register of the execution stage to be erroneous. Some bits
in the register have higher error probabilities, such as the bits corresponding to the ALU output
(bit 32 up to bit 63) and data resulting from logical operations on values from Control and Status
Registers (CSRs) (bit 94 up to bit 125). Figure 3.16b shows how many bits were faulty due to a
single SET. The higher number of observed erroneous bits for the execution stage is 52 bits, which
is 41.3% of the pipeline register size. Experiments for different pulse widths have shown similar
results. Regarding SET propagation, for pulse widths 100 ps and below, the SETs are not often
propagated within the latching window of the register, and with a pulse width below 50 ps, no
latching of SETs is observed.

Table 3.6: Time of gate-level analysis.

Fetch Decode Execute Memory WriteBack Total
37 sec 392 sec 496 sec 82 sec 32 sec 1,039 sec

Microarchitecture-Level Results

Although the error patterns managed to survive at the microarchitecture-level, they may not nec-
essarily lead to a visible error during the system execution. Using a 99.8% confidence interval

69

(a) Error probability for each register bit (b) Size of error patterns.

Figure 3.16: Gate-level results of the RISC-V execution stage.

and a 1% error margin, we injected 23, 874 faults, using the error patterns obtained from the
gate-level analysis. The microarchitecture layer output is the distribution of vulnerability met-
rics. Figure 3.17 compares the vulnerability results for four benchmarks (matrix multiplication,
qsort, strsearch, blowfish), obtained by the proposed flow and by typical approaches which inject
SEUs in the microarchitecture with a uniform fault occurring probability for all registers. Overall,
with the proposed flow (FLODAM), we observe that less faults are masked, compared to standard
microarchitecture-level analysis.

0

10

20

30

40

50

60

70

Uniform FLODAM Uniform FLODAM Uniform FLODAM Uniform FLODAM Uniform FLODAM

O
cc

ur
en

ce
 (%

)

Masked Crash Hang AOM ISM ISM & AOM

matmul qsort blowfish strsearch average

Figure 3.17: Vulnerability metrics.

The CABA simulator performance is 18.2 million instructions per second on average, using an
8th generation Intel i7 CPU running at 2.40 GHz. The time required to perform the vulnerability
analysis at the microarchitecture-level based on the CABA simulator is shown in Table 3.7. Note
that, performing similar analysis using full gate-level methods would require a prohibited time.

70

Table 3.7: Time of microarchitecture-level analysis.

Bench. matmux qsort blowfish strsearch average
Time 388 min 40 sec 327 min 20 sec 466 min 427 min 20 sec 406 min 32 sec

3.4 Conclusions

Due to the increasing intrinsic failure rate in the electronic field, electronic systems became more
sensitive to faults affecting their correct functionality. Transient faults are challenging because
of their nature, and processors have to the extended with fault tolerant capabilities. We extend
heterogeneous VLIW processors with hardware mechanisms to support reliable benchmark execu-
tion. The proposed approach explores the idle slots in the current and next bundles and prioritizes
dependent instructions. More precisely, the proposed mechanism perform instruction triplication
considering short-term transient faults [C12, J26]. We leveraged this mechanism for permanent
faults, where instruction triplication and re-scheduling is applied taking into account the status
of the FUs [C11]. To reduce the performance degradation due to the instruction level fault tol-
erance, dynamic instruction re-scheduling is applied based on the status of the faulty FUs in a
coarse-grained way [C15] and a fine-grained way [C17].

Permanent faults are critical since there is no recovery, contrary to transient faults. Existing
approaches to deal with multiple permanent faults over NoC often induce high hardware costs in
terms of area and power consumption, while their reliability efficiency is drastically impacted. We
proposed BiSu technique [C24, C22] for fault mitigation in NoC datapath, which re-organizes the
flits at the subflit scale to move the fault impact on the LSBs. A redundancy approach is presented
to handle critical data, such as headers, by distributing critical information on two flits allowing
to artificially increase the number of unused bits to enable the BiSu method. Hardware blocks are
inserted in the NIs to manage the difference between the flit size and the data size. The obtained
results show that BiSu can manage high fault densities contrary to state-of-the-art methods, such as
the extended Hamming code, with small critical path and latency overheads. To reduce hardware
overheads, a region-based version (R-BiSu) [J23] is proposed, which protects regions, instead of
routers. An hierarchical method computes the error mask of a region. R-BiSu trade-offs reliability
efficiency and hardware costs through different subflit sizes and region sizes. Passing from BiSu
to R-BiSu with a region size of 2 reduces the hardware costs with small impact on the reliability
efficiency. A hardware block computes the shuffling values with negligible hardware overheads.

To analyse the reliability of complex hardware designs, we proposed a cross-layer reliability
analysis [C26, C20], from the semiconductor layer up to the application layer. We focused on
transient faults caused by single radiation particles. Particles with different characteristics have
different impacts when hitting sequential and combinational cells of the design, providing different
fault models. From the analysis results, particles impacting combinational logic can lead to SET of
different width pulses. Depending on the characteristics of the particles and the hardware design,
SET can be latched in the registers and alter a significant number of bits, leading to a significant
number of MEUs. Such MEUs can be significantly large in size and they not disturb only adjacent
bits. Performing analysis considering the impact of radiation to combinational logic leads to less
masked faults at the application layer, compared to typical methods using randomly injected faults
based on uniform distribution. Combining statistical analysis with single-cycle gate-level fault
injection and microarchitecture-level fault injection, the reliability analysis is significantly reduced
compared to full gate-level fault injection.

71

72

Chapter 4

WCET- and fault-aware task
deployment for multicore
architectures

This chapter summarises our contributions on desing-time task deployment on multicore architec-
tures with both hard timing guarantees and reliability requirements. More precisely, section 4.1
presents our contributions regarding optimal and heuristic design-time approaches, characterized
with pessimistic WCET regarding interferences, over shared memory multicore architectures, un-
der hard real-time and reliability constraints for different DVFS schemes. These works have been
performed during the PhD period of Minyu Cui. Section 4.2 presents a task deployment approach,
under real-time and energy constraints, considering a multicore architecture with NoC as communi-
cation mean, taking into consideration the energy consumption for communication and the routing
paths. This work is performed during the 3-year internship of Qi Zhou. Section 4.3 summarises
the aforementioned contributions.

4.1 Design-time mapping under different DVFS schemes

4.1.1 Context

Safety-critical applications have not only real-time constraints, but also reliability constraints [175].
However, designing for energy efficiency, real-time and reliable task execution are conflicting ob-
jectives. Enhancing real-time execution and reliability often requires more energy consumption.
To meet real-time constraints, execution with higher frequencies maybe required, increasing en-
ergy consumption. To increase the reliability, high frequencies and task replication is usually
applied [275]. However, task replication has a significant impact both on energy and time; more
tasks are executed, thus, more energy and time is required. Furthermore, DVFS has a negative
impact on task execution and reliability. Lower frequencies lead to longer execution times and
increased transient fault rates [95].

In this context, fault tolerant approaches, such as task duplication, and frequency assignment
should be taken into account during real-time and reliable task deployment [201].

73

4.1.2 State-of-the-Art

Table 4.1 summarises representative task mapping approaches with DVFS with goal of minimizing
energy consumption, under Real-Time (RT), and Reliability (R) constraints. Tasks can be Indepen-
dent (I) or Dependent (D) and the multicore platform Homogeneous (HO) or Heterogeneous (HE).
Based on the problem formulation and solving method, solutions are obtained through Heuristic
(H) or Optimal (O) approaches. Fault tolerance is provided by task Recovery (Rec) or task Replicas
(Rep).

To tackle the negative impacts of DVFS on reliability, existing techniques preserve the original
system reliability for all tasks, i.e., the reliability that can be obtained with the maximum platform
frequency. Then, slack is reserved to execute a recovery task with the maximum frequency. In
the individual-recovery scheme, a recovery task is scheduled for every selected task, while in the
shared-recovery scheme, multiple tasks running on the same processor share a single recovery task,
for independent [197] and dependent tasks [96] on homogeneous platforms. Then, DVFS is used to
scale down tasks. If an error is detected, the recovery task is evoked. Shared-recovery scheme has
also been considered for dependent tasks on heterogeneous systems [283]. However, such approaches
usually require high frequencies to satisfy the original reliability, increasing energy consumption. It
is also possible that reliability constraints cannot be satisfied, even with the maximum frequency,
leading to empty solution space.

Other approaches compute the required number of replicas to always meet reliability constraints.
Due to high complexity, heuristics are typically proposed, e.g., a first-fit decreasing heuristic [103]
and a layered worst-fit decreasing heuristic [101] for independent tasks on homogeneous platforms,
and an iterative heuristic for independent tasks [90] and a list scheduling heuristic for dependent
tasks [275] on heterogeneous platforms. Hybrid approaches use a given number of replicas and
apply task recovery, when an error occurs [225]. However, the increased number of replicas leads
to large energy consumption, combined with a negative impact on execution time. When the real-
time constraints are strict, solutions may not exist. To reduce this negative impact, the number of
replicas is restricted. In [226], a heuristic decides among single execution, task duplication and task
triplication. However, no guarantees are provided on real-time and reliability constraints. In [95],
a heuristic determines which tasks to be duplicated, removing the need of a recovery task, without

Table 4.1: Representative DVFS task deployment approaches targeting energy minimization.

Ref. Task Platform Fault tolerance Constraints Solution
I D HO HE Rec Rep RT R H O

[197] X X X X X X
[96] X X X X X X
[283] X X X X X X
[103, 101] X X X X X X
[90] X X X X X X
[257] X X X X X X X
[225, 226] X X X X X X
[95] X X X X X
[275] X X X X X

[C19, J24] X X X X X X
[C23] X X X X X X
[J25] X X X X X X

74

considering reliability constraints. If an error strikes a task’s execution, this task is re-executed
at maximum frequency. An Integer Linear Programming (ILP) approach [257] maps independent
tasks on a heterogeneous platform to satisfy a given percentage of duplicated tasks, under energy
budget constraint. However, the reliability of tasks is not considered.

4.1.3 Contributions

We extend the State-of-the-Art by proposing a task mapping approach that decides between reliable
single task execution and task duplication, under real-time and reliability constraints, considering
DVFS schemes with different flexibility regarding frequency assignment. Our approach applies
partial task duplication, which duplicates a task when its reliability constraint cannot be satisfied
even with high frequencies or when the energy consumption of original and duplicated tasks is less
than executing only the original task with a high frequency. We leverage our approach for systems
that support DVFS at task, processor and system level. First, we design methodologies for task
mapping on multicore platforms that provide optimal solutions for independent [C19, J24] and
dependent [C23] tasks under different DVFS schemes. Then, to cope with high computation time
required to obtain optimal solutions, we propose a set of heuristics that provide near-optimal solu-
tions with reduced computation time, leading to scalable approaches [J25]. In the next paragraphs,
we summarize the task and platform models considered in our contributions and provide a gen-
eral description of the proposed problem formulations and solutions. For the exact mathematical
formulations for each problem, please refer to [C19, J24, C23, J25].

4.1.4 System model

We consider an interference-pessimistic set of N independent tasks, i.e., {τ1, . . . , τN} in [J24, C19]
and N application frame-based dependent tasks in [C23, J25]. Dependent tasks are represented by
a Directed Acyclic Graph (DAG) G(V,E), where V denotes the set of N tasks and E represents
the partial order, corresponding to the precedence constraints among tasks. A task is ready for
execution when all its predecessors have been completed. Each task τi is described by a tuple
{Wi, R

th
i }, where Wi is the Worst Case Execution Cycles (WCEC) and Rthi is its reliability thresh-

old. Each task has its own reliability constraint, since functions of an application exhibit distinct
significance and/or vulnerabilities, due to variations in the spatial and temporal vulnerabilities of
different instructions [226]. Without loss of generality, the release times of all tasks are considered
at the start of the scheduling period, which provides also the global deadline D.

A multicore platform is considered with M homogeneous processors, i.e., {θ1, . . . , θM}. The
following DVFS schemes are exploited: i) Task-Level DVFS (TL-DVFS), where the frequency
assignment is performed independently per task, such as in [114, 225, 103, 221] and ARM DynamIQ
big.LITTLE platform [199], ii) Processor-Level DVFS (PL-DVFS), where the frequency assignment
is performed independently per processor, such as in Intel-Xeon E5620, and iii) System-Level DVFS
(SL-DVFS), where the same frequency is assigned at the same time to all processors, such as in [138,
140]. For each core, there are L different Voltage/Frequency (V/F) pairs {(v1, f1), . . . , (vL, fL)}.
When task τi is assigned with frequency fk, its execution time is calculated as eti = Wi

fk
. For each

processor θm, the power consumption is modeled as the sum of static power P sk and dynamic power
P dk , i.e., Pk = P sk +P dk . The dynamic power consumption with V/F level (vk, fk) is P dk = Ceffflv

2
k,

which is a common used model when frequency and voltage scaling have a linear relation.
We focus on soft errors that follow a Poisson Distribution with fault rate λ(f) at frequency

f [287], where fault rate is the expected number of faults per time unit [81]. For systems supporting

75

DVFS, the fault rate at frequency fk follows an exponential distribution λ(fk) = λ0×10d
fmax−fk

fmax−fmin ,
where λ0 is the average fault rate at maximum frequency, d is a constant, used to measure the
sensitivity of fault rate to voltage/frequency scaling. fmax and fmin are the maximum and minimal
frequency in the L voltage/frequency levels, respectively. The reliability of a task execution is
the probability of executing the task without any fault, and it varies exponentially as a function
of its execution time as R(fk) = e−λ(fk)×et [81]. If the reliability of original task τi is larger
than its reliability constraint, the execution is considered as reliable, i.e., Ri = Roi . Otherwise,
the task τi is duplicated and executed on a different processor. Then, the reliability of τi is
Ri = 1− [1−Roi][1−Rdi], where Rdi is the reliability of duplicated task.

4.1.5 General problem formulation

Given a set of tasks, our goal is to map them on M processors, such that the overall energy
consumption is minimized, under task real-time and reliability constraints. To achieve that, we
determine 1) which processor should the tasks be executed on (task-to-processor allocation), 2)
which tasks should be duplicated, 3) what frequency should be used for the original and duplicated
tasks (frequency-to-task assignment). When we study set of dependent tasks, we define 4) when
should the task start (task scheduling). Overall, a processor is able to execute one task at a time
instance (task non-overlapping constraint), the tasks should finish before their deadline (real-time
constraint) and meet their reliability threshold (reliability constraint). Table 4.2 summarizes the
constraints and the variables used in each contribution, along with the type of the proposed problem
formulation and the proposed solutions.

Table 4.2: Summary of problem formulations.

Constraints Binary Continuous [C19, J24] [C23] [J25]
Task-to-processor allocation X X X X
Frequency-to-task assignment X X X X
Task-duplication decision X X X X X
Task dependencies X X X
Task non-overlapping X X X X X
Real-time X X X X X
Reliability X X X X X
Type MINLP MINLP MINLP
Solution O O H

4.1.6 Optimal solution

Similar to Chapter 2.1, we use variable replacement to eliminate the non-linear items related to the
task non-overlapping constraints to safely transform the MINLP to an equivalent MILP. Then, the
MILP is solved using optimization solver tools, such as Gurobi.

4.1.7 Heuristic methods

The proposed heuristic consists of two phases:
Phase A obtains, per task, the set of possible configurations that meet the reliability for each
task, a reliability, execution time, energy consumption table is created for each task based on all
possible configurations. A pruning step removes the task configurations that do not satisfy the

76

reliability constraint. The result is the feasible configurations space of the task. The feasible
configurations considering only the original task serve as baseline configurations. The next step
prunes any feasible configuration with duplicated tasks, if both energy consumption and execution
time are larger than any baseline configuration. The result is the possible configurations, which is
ranked based on decreasing energy consumption.
Phase B uses the task configurations obtained from phase A and performs the application mapping,
subject to the real-time constraint. Phase B consists of three steps:

In Step 1, priorities are given to tasks for task allocation based on the largest average execution
time. The average execution time of a task is computed by the average execution time among all
possible configurations. The task priority list is ordered in decreasing execution time.

In Step 2, the initial application mapping is generated to check if the problem is feasible and
time slack is available. For each task, the initial application mapping uses the first configuration
in the task priority list as the selected configuration. For each task, we choose the processor with
least total execution time to obtain the task mapping. The set of all task mappings provides the
initial application mapping and the total execution time is obtained. If the total execution time
of at least one processor exceeds the global deadline D, the studied problem is infeasible, and the
algorithm stops. If the total execution time of all processors is equal to the deadline, the initial
application mapping is the final mapping and the algorithm stops.

Otherwise, time slack exists in the initial task mapping. Step 3 relaxes the mapping leading
to energy savings. Overall, different task configurations and different tasks can be relaxed. The
following process decides which task and with which configuration to be selected for relaxation. The
initial mapping is set as the current mapping. Then, the following process is applied iteratively,
until there is no available time slack for relaxation or all tasks have reached their configuration
with the least energy consumption. Before the relaxation, we compute the Energy Saving (ES)
and execution Time Increase (TI) for each task and each remaining configuration, compared to
the first configuration used in current task and application mapping. First, we search among all
tasks and all their possible configurations to select a new configuration for a task that achieves the
highest value ES

TI . After selecting a task with a new configuration, all task mappings are updated
accordingly. Furthermore, the new application mapping and the total execution time for each
processor are obtained. Last, all configurations that have a higher energy consumption than the
selected configuration for the relaxed task are removed from the task configuration space.

4.1.8 Evaluation

This section presents representative results for the evaluation of the proposed approaches, whereas
the complete evaluation can be found in [C19, J24, C23, J25]. We present the feasibility, energy
consumption, and computation time for dependent tasks (N=10, M=4) obtained by the proposed
optimal approach (O RAFTM), compared with two SoA approaches: i) the optimal Reliability-
Aware Mapping (RAM) (O RAM) approach, similar to [273] and “ESRG” algorithm in [275], and
ii) the Task Duplication Mapping (TDM) (O TDM), approach, always performing task duplication,
similar to [103, 275], when the number of replicas is two, or to [257], with 100% task duplication.
Furthermore, we compare the solutions of the proposed heuristic (H RAFTM) compared to the
optimal ones. The approaches are implemented in Matlab and solved with Gurobi. The experiments
took place on several servers, provided by IRISA-INRIA infrastructure.

77

Experimental set-up

Platform: The processor model used for the multicore platform in the experiments considers 64
nm technology and L = 6 voltage/frequency levels [200], depicted in Table 4.3.
Benchmarks: To obtain realistic inputs for our experiments regarding the WCEC of the tasks, we
count the execution cycles and memory accesses of common benchmarks from MiBench suite [97],
using Comet simulator, which is based on a a high-level C++ model with 32-bit RISC-V ISA and
standard 5-stage pipeline [213]. The sources of timing variability are eliminated to obtain safe and
context-independent measurement [78] without interferences (WCECiso). Then, the WCECinf ,
considering worst case interferences from the other processors, is computed. As our contribution is
not WCET estimation, a trivial pessimistic approach is applied: all processors may conflict during
a memory access. From the obtained results, we randomly generate task graphs, where the WCEC
of a task is within the range [1× 108, 4× 108].

Table 4.3: Summary of experimental set-up for real-time and reliable DVFS task deployment

l f1 f2 f3 f4 f5 f6 W [1× 108,4× 108]
fl (GHz) 0.801 0.8291 0.8553 0.8797 0.9027 1.0 Rth [0.999, 0.9995], [0.999, 0.9999]
vl (V) 0.85 0.90 0.95 1.00 1.05 1.1 λ0 5× 10−5

Ceff 7.3249 8.6126 10.238 12.315 14.998 18.497 d 3

Constraints: The real-time constraint is tuned from strict deadlines to relaxed ones, based onDi =
t̂is+k×di, with a step of 0.1. t̂is is the relative start time of task of task τi, i.e., t̂is=max∀j∈Pre{i}{Dj},
with Pre{i} the predecessors of task τi i and the relative deadline given by di ∈ [Ci

fmax
, Ci
fmin

]. The
reliability thresholdRthi is selected within the range [0.9990, 0.9995], considering a typical magnitude
10−3 for reliability target [103].

Optimal approach

Regarding feasibility, O RAFTM can find solutions in significantly more experiments then O TDM,
because O RAFTM is not obliged to duplicate every task. More precisely, when feasibility has
not reached 100% for both approaches, O RAFTM finds a solution, on average, in 33% more
experiments than O TDM (Figure 4.1a). O TDM cannot find solutions in strict deadlines, only
after D = 1.3 and O RAFTM achieves 100% feasibility in earlier deadlines than O TDM, i.e.,
D = 1.5. Note that, with increasing number of processors, the capability of O TDM to find solutions
improves, as more processors are available to schedule original and duplicated tasks. O RAFTM
has the same feasibility with O RAM, due to the values of reliability thresholds, which can be
achieved by executing only the original task with a high processor frequency. To further explore
the behavior of O RAFTM and O RAM, we extend the range of the task reliability threshold to
[0.999, 0.9999], in order to have few tasks with higher reliability requirements, that cannot be met
even with the highest platform frequency. From the obtained results (Figure 4.1b), O RAFTM is
able to still meet these high reliability requirements, by duplicating tasks with a high frequency.

The minimum, average and maximum gains regarding energy consumption for all DVFS schemes
are depicted in Figure 4.2. Note that, the minimum gain is 0 between O TDM and O RAFTM,
which occurs when the deadlines are relaxed and O RAFTM performs duplication for all tasks,
as O TDM. Compared to O RAM, we observe a minimum gain of 0 for the less flexible frequency
assignments of PL-DVFS and SL-DVFS. In strict deadlines, O RAFTM and O RAM have a similar
behavior: applying a high frequency to meet the timing constraint, thus no duplication is possible.

78

(a) Reliability threshold always met. (b) Reliability threshold not always met.

Figure 4.1: Feasibility for all DVFS schemes for optimal solutions.

We observe a slight decrease in average savings regarding O RAM in TL-DVFS and PL-DVFS
schemes, due to the fact that O RAFTM behaves as O RAM in very strict deadlines. Note that,
when more processors are available, our proposed approach has more freedom to use the available
processors when performing the task mapping, minimizing the total energy consumption. Among
different DVFS schemes, we observed that SL-DVFS has a higher impact on the observed gains
of O RAFTM vs O RAM, compared to the impact it has on the observed gains of O RAFTM
vs O TDM. When the supported DVFS scheme is flexible, O RAM performs a more fine-grained
assignment, achieving a lower energy consumption. However, when SL-DVFS is supported, O RAM
is obliged to select a high frequency in order to meet the highest reliability threshold of the tasks
and executes all tasks with this high frequency, increasing energy consumption. On the other hand,
the proposed O RAFTM can exploit task duplication, applying a lower frequency, and thus, reduces
the energy consumption, when time slack is available for relaxed deadline cases.

The computation time for the optimal approaches is depicted in Figure 4.3, when the deadline
is very strict or very relaxed, O RAFTM needs less time to obtain the solutions. However, with
intermediate deadlines, more time is required as O RAFTM needs to explore the available time
slack to decide which, and how many, tasks to be duplicated, without violating constraints, while
consuming the least energy. O TDM is the most running time expensive approach, because all
tasks need to be duplicated, increasing the number of tasks to be scheduled, and thus, the time to
find the solutions. O RAM is the least running time expensive approach. However, as we have seen

1,2

41,5

60

0

33,6

123,1

0

20

40

60

80

100

120

140

EC
 g

ai
n(

%
)

Min. Avg. Max

O_RAM vs O_RAFTM O_TDM vs O_RAFTM

(a) TL-DVFS

0

37,1

60

0

37,5

140,7

0
20
40
60
80

100
120
140
160

EC
 g

ai
n(

%
)

Min. Avg. Max

O_RAM vs O_RAFTM O_TDM vs O_RAFTM

(b) PL-DVFS

0

58,3

105,7

0

30

130,3

0

20

40

60

80

100

120

140

EC
 g

ai
n(

%
)

Min. Avg. Max

O_RAM vs O_RAFTM O_TDM vs O_RAFTM

(c) SL-DVFS

Figure 4.2: Energy consumption gain for all DVFS schemes for optimal solutions.

79

previously, this approach provides less energy savings compared to O RAFTM. Note that, with
more tasks, more time is required to find a solution, as expected.

(a) TL-DVFS (b) PL-DVFS (c) SL-DVFS

Figure 4.3: Computation time for all DVFS schemes for optimal approaches.

Heuristic method

Regarding feasibility, as shown in Figure 4.4, H RAFTM and O RAFTM achieve the same feasi-
bility. Note that, when the number of cores is reduced, e.g. M = 2, in few cases when the deadline
is strict the optimal approach has 3.3% higher feasibility.

Figure 4.4: Feasibility for all DVFS schemes for optimal and heuristic approaches.

The energy consumption for all DVFS schemes is depicted in Figure 4.5. H RAFTM generally
consumes slightly more energy than O RAFTM, e.g., on average 2.9% for TL-DVFS, 5.6% for
PL-DVFS and 1.3% for SL-DVFS. When deadline is relaxed, H RAFTM and O RAFTM obtain
solutions with the same energy consumption. With the processor number increasing, the energy
consumption of both proposed heuristic and optimal solution flattens at earlier deadlines, since
there are more processors available to perform the task mapping, and thus, more opportunities to
start the tasks earlier.

The computation time is depicted in Figure 4.6. It can be observed that although few tasks
and processors are used, the time to obtain the optimal solution is very long, on average ×104

more than the proposed H RAFTM. Meanwhile, the computation time is largely reduced when the
heuristic is used to solve the problem.

80

(a) TL-DVFS (b) PL-DVFS (c) SL-DVFS

Figure 4.5: Energy consumption gain for all DVFS schemes for optimal and heuristic approaches.

(a) TL-DVFS (b) PL-DVFS (c) SL-DVFS

Figure 4.6: Computation time for all DVFS schemes for optimal and heuristic approaches.

4.2 Design-time mapping considering NoC routing

4.2.1 Context

As shown in the previous section, task deployment plays an important role in the energy con-
sumption, real-time execution and system reliability, especially for cores with DVFS capabilities.
Complex architectures with many cores typically use a NoC for inter-processor communication. In
this case, the communication cost in terms of time and energy is not negligible compared to the
cost of computation [107]. When dependent tasks are allocated on different processors, data must
be transmitted. As multiple routing paths for the data transmission can exist in NoC [31], the
communication cost depends not only on task mapping, but also on the routing path selection.

In this context, inter-processor communication and routing path selection should be also taken
into account the task deployment process in order to balance the overall energy consumption under
real-time and reliability constraints.

4.2.2 State-of-the-Art

Table 4.4 categories representative approaches from the literature, performing task allocation (All.),
scheduling (Sch.), and duplication (Dup.) on multicores with DVFS, considering multi-path routing
(MP), task reliability (Rel.) and communication cost (Com.). The solutions are given by optimal
(O) and heuristic (H) algorithms. Several approaches exist to map independent and dependent tasks
on the multicore platforms under multiple constraints, such as energy, real-time, and reliability [140,

81

J16, 103, 275]. These works consider processors typically connected with a high-speed data bus.
Thus, the communication cost between any two processors is usually ignored, as it’s much smaller
compared to task execution cost. However, for the platforms based on NoC, the communication
cost becomes important. To reduce the communication cost on NoC-based platforms, the common
methods include mapping tasks to processors [237, 107] and adjusting the operating voltage of
the routers [100, 2]. However, reliability is not taken into account, especially when DVFS is
available. Existing approaches to enhance NoC reliability, include spare processors [31] and task
duplication [175, 48]. However, no DVFS is considered in these works.

Table 4.4: Classification of representative task deployment approaches

Ref. Task Multicore platform Solution
All. Sch. Dup. DVFS Rel. Com. MP O H

[140] X X X X
[J16] X X X X X
[275] X X X X X X
[103] X X X X X X
[107] X X X X
[237] X X X X
[100] X X X X X
[2] X X X X X
[31] X X X X X X
[175] X X X X X X X
[48] X X X X X X

[C25] X X X X X X X X X

4.2.3 Contributions

To bridge this gap, a task deployment approach [C25] is proposed to balance the overall system
energy consumption, including both core computation and NoC communication, under reliability
and real-time constraints. More precisely, the task deployment approach simultaneous optimizes the
task allocation and scheduling, frequency assignment, task duplication, and path routing. The task
deployment problem is formulated using MINLP. To find the optimal solution, the original problem
is equivalently transformed to MILP by adding auxiliary variables and constraints, and solved by
state-of-the-art solvers. Furthermore, a decomposition-based heuristic, with low computational
complexity, is proposed to deal with scalability issues. It divides the original problem into three
subproblems, having a simpler structure with less constraints and variables. Finally, extensive
experimental results are performed to demonstrate the advantages of the proposed approaches.

4.2.4 System Model

The task set consists of N periodic tasks {τ1, . . . , τN}, released at time 0, sharing a common
scheduling horizon H. Each task τi is described by a tuple {Ci, DiR

th
i }, where Ci is the Worst

Case Execution Cycle (WCEC), Di is the relative deadline and Rthi its reliability threshold.
The target platform consists of M processors {θ1, . . . θM} and M routers {R1, . . . RM}, con-

nected through a 2D-mesh network, as a 2× 2 example shown in Figure 4.7a, due to its regularity,
high bandwidth and short interconnections [100].

82

The processors are homogeneous and they support task-level DVFS. A processor has L different
Voltage/Frequency (V/F) levels {(v1, f1), . . . , (vL, fL)}. A typical power model [2] is considered: the
processor power with (vk, fk) is Pk = P sk+P dk . The static power is P sk = Lg(vkK1e

K2vkeK3vb +|vb|Ib).
The dynamic power is P dk = Cev

2
kfk. Ce is the average switched capacitance. Lg is the number

of logic gates. K1, K2 and K3 are parameters depending on the processor type. vb and Ib are
the body-bias voltage and body junction leakage current. The computation energy of task τi is
eexei = Pketi, where eti its execution time.

The NoC topology is described by a directed graph G(V, E), where the vertexes represent each
processor θk ∈ V, while the edge lij ∈ E represents a direct communication link between the
routers of processors θi and θj . The goal of the task deployment is energy balance under real-time
and reliability constraints, our approach explores both energy-oriented and time-oriented paths
as available options to transmit data, as shown in Figure 4.7b. Note that, the path with minimal
energy can be different from the path with minimal latency [107]. Based on the NoC communication
model and the Manhattan distance between the source and destination processors, a positive weight
wij is associated with the edge lij . For the energy (time)-oriented path, the weight wij represents
the energy (time) required for transmitting and receiving a unit of data between processors θi and
θj . Hence, the aim of energy (time)-oriented routing is to find the shortest path, e.g., according to
Dijkstra’s algorithm. From the graph G(V, E), we obtain an energy matrix e = [eβγkρ]M×M×M×P
and a time matrix t = [tβγρ]M×M×P , where eβγkρ represents the energy consumed at processor θk,
if a unit of data is routed from θβ to θγ through the ρth path, while tβγρ denotes the time required
to transmit a unit of data from θβ to θγ through the ρth path. When two dependent tasks are
mapped on the same processor, the communication cost is zero [237].

𝜃$(0,0)

R1

𝜃%(0,1)

R2

𝜃&(1,0)

R3

𝜃*(1,1)

R4

(a) Multicore platform

𝜃! 𝜃" 𝜃#

𝜃$ 𝜃% 𝜃&

𝜃' 𝜃' 𝜃(
𝑤)*

Energy-oriented
path

Time-oriented
path

(b) Multi-path routing.

𝝉𝟏

𝝉𝟐

𝝉𝟑

𝝉𝟒

𝝉𝟓

𝝉𝟔

𝑠$%

𝑠*%

𝐿$

𝐿%

𝐿&

(c) Task duplication.

Figure 4.7: An example of NoC-based multicore system.

As in previous section, this work focuses on transient faults and adopts the Poisson fault prob-
ability model [275]. When the reliability of task τi is lower than its threshold Rthi , task τi is
duplicated, considering that it is unlikely to have faults occurring concurrently in both copies [95].
Note that the task duplication affects the task model, and thus, the computation and communi-
cation cost. For instance, tasks τ1, τ2 and τ3 are the original tasks, and tasks τ4, τ5 and τ6 are
their copies in Figure 4.7c. By task duplication, the task dependencies change, e.g., due to the
dependency of τ1 and τ2, τ4 and τ2 become dependent and τ4 generates data to τ2.

83

4.2.5 Problem Formulation

Given a set of tasks, our goal is to map them on M processors taking into account inter-processor
communication, such that the overall energy consumption, both for computation and communica-
tion, is balanced, under task real-time and reliability constraints. To achieve that, we determine
1) which processor should the tasks be executed on (task-to-processor allocation), 2) on which
path the data re transferred (routing path selection), 3) what frequency should be used for the
tasks (frequency-to-task assignment), 4) which task should be duplicated (task duplication), and
5) when should the task start based on dependencies (task dependencies). Overall, a processor
is able to execute one task at a time instance (task non-overlapping constraint), the tasks should
finish before their deadline (real-time constraint) and meet their reliability threshold (reliability
constraint). Table 4.5 summarizes the constraints and variables used, along with the type of the
proposed problem formulation and solutions.

Table 4.5: Summary of problem formulation in [C25].

Constraints Binary Continuous
Task-to-processor allocation X
Routing path selection X
Frequency-to-task assignment X
Task duplication X X
Task dependencies X X
Task non-overlapping X X
Real-time X X
Reliability X X
Type MINLP
Solution O + H

4.2.6 Optimal approach

Similar to the previous Section 4.1, we use variable replacement to eliminate the non-linear items
related to task duplication, task allocation and frequency assignment to safely transform the MINLP
to an equivalent MILP. Then, the MILP is solved using optimization solver tools, such as Gurobi.

4.2.7 Heuristic method

The proposed heuristic method applies three phases, as depicted in Figure 4.8 Since the processors
are homogeneous and have the same V/F levels, the decision regarding the frequency assignment
can be performed independently. If a frequency is assigned to each task, and then, the tasks are
allocated to the processors or different paths are selected for data transmission, the frequency
assignment remains valid. In addition, as task duplication is determined by frequency assignment,
it should be still jointly optimized. Therefore, we first solve the Frequency Assignment and Task
Duplication (FATD) problem, where the maximum energy consumption of each task execution is
minimized. This minimization helps in balancing the energy consumption of the processors during
task allocation occurring in the next step. Since task allocation and path selection are currently
unknown, the communication cost (time and energy) is currently not considered. The problem is an
INLP problem, as the variables regarding frequency assignment and task duplication are coupled
non-linearly. We propose a heuristic based on the Greedy Algorithm [187], where the frequencies

84

{f1, . . . , fL} are assigned iteratively for each task τi in increasing task index order, with the aim to
minimize the increase of energy consumption among the tasks that have already been assigned a
frequency. If the real-time constraint cannot be satisfied with a given frequency, the frequency is
excluded. When the frequency of the original task τi is known, the decision for duplicating the task
can be computed. A similar method is used to assign a frequency to the duplicated tasks taking
into account the reliability constraint.

With the frequency assignment and task duplication decisions, the computation time and energy
of task τi are computed. The next step is to determine the task allocation, task sequence and task
start time. To balance the energy consumption of the processors under the task sequence and the
task non-overlapping constraints, the Task Allocation and Scheduling (TAS) problem is to minimize
the maximum summation of energy consumption for computation and communication. Note that
the communication energy and communication time are influenced by the routing path selection,
which is unknown at the current step. Thus, we set these values to the average communication
time of task τi and average communication energy of processor θk, respectively. Once the path
selection is determined, these values are updated accordingly. The problem is an MINLP and
solved based on the following approach. The in- and out-degrees of all tasks are calculated and
the tasks are divided into layers. Tasks in the same layer are sorted in a descending order based
on their execution cycles. If the tasks in same layer have same execution cycles, they are ordered
randomly. Task allocation is performed following this ordering taking into account task sequence
and task non-overlapping constraints.

The final phase determines the path selection. Note that the path selection does not influence
the computation energy and time, only the communication energy and time. The Routing Path
Selection (RPS) problem also minimizes the maximum summation of computation and communi-
cation energy consumption. To solve this ILP problem, we propose an algorithm that determines
iteratively the routing path for each pair of processors (θβ, θγ). The aim is to find a path for θβ
and θγ , that causes the minimum increase of communication and computation energy among these
processors. During this process, the real-time constraint should be satisfied.

MILP

Frequency-to-task
assignment and
task duplication

FATD (INLP)

Task-to-processor
allocation and

scheduling

TAS (MINLP)

Routing path
selection

RPS (ILP)

Figure 4.8: The structure of heuristic approach.

4.2.8 Evaluation

This section presents the main results to evaluate the behavior of the proposed approach, whereas
the complete evaluation can be found in [C25]. We present the energy consumption for the proposed
optimal approach compared to an optimal approach using single path routing, where the path
selection is fixed. Furthermore, we compare the obtained optimal solutions when the objective of
our approach is to balance the energy consumption (BE) and minimize the energy consumption
(EE). Last, we compare the feasibility, energy consumption, and computation time of the proposed
heuristic compared to the optimal approach. The task deployment problems and algorithms are
implemented in Matlab and the optimal solutions are provided by Gurobi.

85

Experimental set-up

Platform: The evaluation is performed considering a 4 × 4 2D-mesh NoC. The modeling of the
energy consumed by processors and routers is based on [100]. The following parameters are consid-
ered in our experiments: the number of processors (N), the number of the tasks (M), the number
of V/F levels (L).
Benchmarks: The task set is created by randomly generating task graphs with a total number
of task N equal to 5 up to 25 tasks, with a step of 5. The WCEC of a task are assumed to be
within the range [4× 107, 6× 108] [286], provided from the execution of MiBench and MediaBench
benchmark suites [203].
Constraints: The reliability threshold is set to Rthi = 0.9995. The real-time constraint is given by
the sheduling horizon H = α

∑
i∈C(t

comp
i,ave +tcommi,ave), where C is the set of tasks belonging to the critical

path. tcompi,ave = (max∀l{Ci
fl
} + min∀l{Ci

fl
})/2 and tcommi,ave = M1(max∀β,γ,ρ{tβγρ} + min∀β,γ,ρ{tβγρ})/2

are the average computation time and communication time of task τi, respectively. The task relative
deadline i sgiven by Di = tcompi,ave .

Optimal approach

Figure 4.9a compares the energy consumption and the feasibility of the proposed optimal approach
compared to the optimal approach using single-path routing. We set N = 16, M = 20, and L = 6.
With small α, e.g., α = 0.1 or α = 0.2, the problem is infeasible, since the constraints are hard to
satisfy. The problem feasibility increases with α; the larger the value of α, the smaller the energy
consumption. This is because the feasibility region of the problem enlarges with α, and the task
deployment is a minimization problem. Under the same value of α, multi-path routing has a higher
problem feasibility and achieves lower energy consumption than single-path routing, because the
path selection cβγρ is considered in the optimization.

Figure 4.9b compares the energy consumption of the proposed task deployment scheme, with
the goal of Balancing the Energy consumption (BE), and the task deployment scheme with the goal
of minimizing the Energy consumption (EE), i.e., min∑k∈N E

all
k , where Eallk = Ecommk + Ecompk is

the total energy of processor θk. The total energy consumption of EE is lower than BE (average
13.62%). However, the value of φ for BE is smaller than EE. This is because ME allocates the tasks
to the same processors to reduce communication energy. Therefore, some processors will consume
more energy than others. However, BE avoids this trend in order to achieve energy balance.

0.1 0.2 0.3 0.4 0.5 0.6
0

1000

2000

3000

4000

5000

6000

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Single-path routing

Multi-path routing

(a) Routing path comparison.

5 10 15 20 25
Task number (M)

1500

2000

2500

3000

3500

4000

4500

5000

5500

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

m
J
)

BE

EE

(b) Objective comparison.

Figure 4.9: Energy consumption of optimal approach compared to a) a single-path approach, and
b) having the objective of minimizing energy consumption.

86

Heuristic method

Figure 4.10a shows the feasibility in solving the task deployment problem for the optimal and the
heuristic methods. The experiments have been repeated na = 30 times with different task graphs.
The used metric is the problem feasible ratio δ = nf/na, where nf is the number of experiments
with feasible solutions. Figure 4.10a shows that δ increases with α. The constraints are relaxed
with α, thus the feasible region of problem is enlarged. The optimal feasibility is higher than
the heuristic, since it optimizes the variables concurrently, whereas the heuristic optimizes the
variables step by step. Figure 4.10b compares the energy consumption of the solutions achieved
by the proposed heuristic and the optimal solution. We observe that the solution of the heuristic
has a higher, but still acceptable, energy consumption (average 26.05%) than the optimal solution,
since it only provides a feasible solution. Figure 4.10c shows the computation time required for
the optimal and heuristic approaches to find a solution. The algorithm computation time increases
with task number M , as more variables and constraints are involved. On the contrary, the proposed
heuristic has a negligible computation time, since it divides the problem into three subproblems
solved in sequence.

0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

P
ro

b
le

m
 f

e
a

s
ib

ili
ty

 (
%

)

Optimal method

Proposed method

(a) Problem feasibility.

5 10 15 20 25
Task number (M)

1000

2000

3000

4000

5000

6000

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Optimal method

Proposed method

(b) Energy consumption

5 10 15 20 25
Task number (M)

0

2

4

6

8

10

12

14

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

10
5

Optimal method

Proposed method

(c) Computation time.

Figure 4.10: Comparison of optimal and heuristic approaches: a) feasibility, b) energy consumption,
and c) computation time.

4.3 Conclusions

Efficient task deployment approaches are required in order to achieve low energy consumption, reli-
able and real-time execution for multicore systems enhanced with Dynamic Voltage and Frequency
Scaling (DVFS). Overall, the majority of the existing approaches focus on a single DVFS scheme,
which is usually the task level.

We proposed a Reliability-Aware Fault-Tolerant Task Mapping (RAFTM) approach based on
partial duplication technique, which has been enhanced and evaluated for three DVFS schemes,
i.e., task-level, processor-level and system-level, for independent tasks [C19, J25] and dependent
tasks [J24, C23]. The original MINLP problems for the DVFS schemes have been equivalently
translated to MILP, using a variable replacement method, and solved by Curobi optimization
solver. We also proposed heuristic algorithms for each DVFS scheme in order to deal with the
scalability issue of optimal approaches. Experimental results show that the proposed approaches
achieve better energy saving and ability to obtain feasible solutions.

To take into account the inter-processor communication, a task deployment process has been

87

proposed for NoC-based multicore platforms with DVFS [C25], that balances the overall energy
consumption, under reliability and real-time constraints. The deployment process is formulated as
an MINLP problem and equivalently transformed to an MILP problem. Our formulation jointly op-
timizes frequency assignment, task allocation, task scheduling, task duplication and path selection.
Moreover, a novel heuristic method is proposed to enhance scalability, achieving good solutions
with low computation time.

88

Chapter 5

Perspectives

The future directions of this research focus on providing the means to design, in a near-optimal and
efficient way, real-time and reliable embedded systems for safety-critical domains, with unreliable
components, under multiple reliability threats. In this context, we can make the following obser-
vations regarding the limitations of existing works and motivate our future research perspectives:

• A large part of existing WA approaches focus on providing timing guarantees, considering fault-
free architectures. Existing WAFA approaches mainly focus on typical hardware faults, i.e., soft
errors and permanent faults, that have an impact of the functional behavior of the applications,
i.e., failure to execute the application or to erroneous outputs. However, hardware faults can
degrade the hardware components, due to permanent faults, or modify the execution flow, due
to temporary faults, potentially increasing the execution time, and thus, impact the WCET
estimations. Few approaches address the impact of hardware faults to the timing behaviour of
applications, but they target only memories. Furthermore, existing reliability approaches focus
on functional behavior and do not consider interferences.

Nonetheless, with technology size reduction, faults in combinational logic and sequential logic
of cores cannot be considered negligible anymore [150]. Therefore, the impact of such faults to
the functional and timing behavior of applications should be considered. WAFA approaches are
required to analyse the timing impact of hardware faults occurring not only in memories, but
also in the processing elements and the interconnect of the platform. To achieve that, we will
leverage our reliability analysis framework to incorporate not only functional behavior, but also
timing behaviour of these faults. Furthermore, we extend our framework to include the impact
of interference on shared resources during reliability analysis and reliable design, since it affects
the timing vulnerability. Last, but not least, we will enhance WCET estimations with fault
awareness and design low cost fault tolerance techniques to protect the system from these faults.
Further details are provided in Section 5.1.

• The majority of existing WA and WAFA approaches remain at the task-level and core level
considering mainly homogeneous multicore systems and COTS platforms, neglecting custom
hardware designs and accelerators.

89

WA and WAFA approaches have to be leveraged for heterogeneous systems and systems with
specialized hardware accelerators, which is the next promising architecture to deal the increasing
demands for high computation capabilities in timely manner. Therefore, we will design hardware
accelerators for WCET-aware and fault-aware systems to extend homogeneous multicore systems
towards domain specific heterogeneous multicore architectures. To achieve that, we will adapt
functional and timing reliability and WCET analysis frameworks and design real-time and fault
tolerance techniques for hardware accelerators. As a first step, we will focus on modern hardware
accelerators, such as accelerators dedicated for AI, as described in Section 5.2.

• A large majority of existing FA and WAFA approaches focuses on typical hardware faults, such
as soft errors and permanent faults. Furthermore, the majority of FA and WAFA approaches
usually focus to a single type of faults, whereas the system is susceptible to multiple types of
reliability threats, potentially correlated with each other [11]. Last, the majority of approaches
are usually focusing on a single abstraction layer.

Although soft errors have been considered as the most important ones, until recently [206], with
the further ongoing reduction of transistors size (2-3 nm technology [91]), the small bounded
guard-band margins are vanishing and system aging is becoming more and more sensitive to
the workload [98, 130]. Different cores are subjected to different amount of stress as a result of
varying workloads, leading to aging imbalance among cores [206]. Such aging effects increase
electronic waste (e-waste) with significant impact on the environment. We will focus on dedicated
cross-layer FA and WAFA approaches to efficiently deal with workload-dependent aging faults
for safety-critical systems. Last, fault models, FA and WAFA approaches should be leveraged
in order to consider multiple sources for reliability threats. Further details are provided in
Section 5.3.

• Computing architectures of today are mainly based on CMOS technology. However, the con-
tinuous decrease of technology size has pushed CMOS devices to their limits, suffering from
high static power consumption, reduced reliability, high cost and scaling issues. To overcome
the limitations of the computer architectures of today, future computing systems will exploit
emerging technologies, e.g., technology-level solutions for replacing CMOS memory elements,
such as Oxide-based (e.g., RRAMs) [271] and Ferroelectric (e.g., FeRAM) [182] materials, and
novel computation paradigms, such as Processing In Memory (PIM). However, these emerging
technologies have not yet been considered for safety-critical domains, which have strict timing
guarantees and reliability requirements.

Future computing systems will consist of heterogeneous architectures combining traditional com-
puting elements, such as processors, with application specific hardware accelerators, exploiting
both the emerging technologies and novel computing paradigms [110]. In order to be used in
safety-critical domains with real-time and reliable guarantees, novel WA and WAFA approaches
are required to analyse and design architectures with the new emerging technologies and novel
computing paradigms used on shared resources. Further discussion is provided in Section 5.4.

The next sections describe the research challenges that we will tackle in the future and provide
primitive ideas on how we will address them. Section 5.1 and Section 5.2 focus on short- and
medium-term perspectives, while Section 5.3 and Section 5.4 on long-term perspectives.

90

5.1 Impact of hardware faults on timing behavior

Context

As mentioned in Chapter 1, safety-critical applications executed on embedded systems require
guarantees for hard real-time and correct application execution. Nonetheless, the majority of exist-
ing WCET estimation approaches is fault-unaware, since during WCET estimation, the hardware
of the target platform is assumed to be fault-free [45]. As reliability issues become imminent
due to technology scaling, such fault-unaware WCET approaches become unsafe [105]. Real-time,
approaches that provide timing guarantees, apply fault-tolerant techniques to detect, correct or
mitigate hardware faults, and extend the fault-free WCET to include the time overhead of the ap-
plied fault-tolerant techniques [149]. However, the focus is on hardware faults impact the functional
behaviour of applications [46].

In this context, not only the impact of faults on the functional behavior of applications should
be taken into account, but also on the timing behavior.

State-of-the-art

Few approaches address the impact of faults on the timing behaviour of applications, but they target
memory components, usually considering permanent faults into cache memories. Approaches focus
on estimating the timing impact of faults to WCET, by accounting for the hardware degradation due
to the presence of faults. For instance, static analysis probabilistically quantifies the WCET impact
of permanent faults at instruction caches. The probability of an SRAM cell to be faulty is used
to probabilistically evaluate how many additional cache misses may occur and upper bound their
impact on WCET [105]. A measurement-based approach for permanent faults occurring to caches
provides the WCET impact, when cache lines are disabled due to faults [248]. Approaches extend
the aforementioned works to incorporate the timing impact of inserted fault tolerant techniques to
detect, correct or mitigate faults. For instance, the worst-case additional misses, due to defected
cache lines, are computed, and a parity bit is assumed for error detection of permanent and transient
faults [52]. Static probabilistic timing analysis is performed assuming fault detection mechanisms
that periodically checks caches for faults and disable faulty cache blocks, under permanent faults [50]
and also soft errors [51]. The maximum delay, introduced by error detection and correction codes,
is computed in [247], considering permanent and transient faults. Other approaches focus on
mitigating the hardware degradation, due to occurring faults, using redundant hardware. As a
result, the timing impact of faults on WCET is mitigated and the timing characteristics of hardware
are maintained, leading to WCET estimations close to fault-free WCET estimations, despite the
presence of faults. For instance, timing analysis is provided considering a reliable victim cache to
replace faulty entries [6], an extra reliable cache way per set and a shared reliable buffer [106].

Nonetheless, with the technology size reduction, faults in combinational logic and smaller se-
quential logic of the system cannot be considered negligible anymore [150]. Although reliability
approaches, from the embedded system design domain, are currently addressing these faults, they
concentrate on functional behaviour and average performance, without considering WCET aspects.
The majority of existing vulnerability approaches, as the ones presented in Chapter 1, focus on func-
tional behaviour, i.e., checking for functional interruptions and binary correctness of the system
under study [168, 265, 123, 269, 93, 47, 236, 262]. Few recent studies explore the impact of soft
errors on the timing behaviour. They use software fault injection, focusing on average performance,
whereas their application domain is limited to iterative methods, e.g., the performance impact is

91

given by the number of iterations required for iterative solvers to converge [169, 168] and their
execution time [137].

To provide hard real-time and reliable execution, accurate timing vulnerability analysis is re-
quired, where hardware fault injection is performed in sequential and combinational logic, consid-
ering single-bit and multiple-bit faults in the cores and the interconnection. Then, fault impacts
must be analysed and mitigated accordingly.

Future contributions

Our goal is to provide the means to analyse both the functional and timing behaviour of appli-
cations and to design reliable and real-time multicores. To achieve that, we foresee to provide
a functional and timing reliability analysis framework, through fault impact analysis, consider-
ing fault propagation with respect to logic aspects, time aspects, application structure and core
structure, under realistic fault models. As a next step, we will leverage typical WCET estimation
approaches to consider the impact of faults on the timing behaviour of the applications. Last, we
will design mechanisms for time-guaranteed and reliable execution, avoiding over-approximation
whenever is possible. Initially, we will consider a single processor as our short-term goal. Then, the
proposed approaches will be extended to take into account interferences, in order to be applicable
for multicore architectures. This part will be performed during the ANR JCJC FASY project dur-
ing 2022-2025. Our long-term goal is to obtain adapt these approaches for interconnection network
and finally the overall multicore architecture, where we can analyse the occurring interferences in
the shared resources.

Functional and timing reliability analysis framework

We will estimate the reliability of an application executed on a core, when hardware faults occur,
considering not only the functional behaviour, but also the timing behaviour of the application.

Initially, we will extend our current framework (Section 3.3), which addresses only functional
behaviour, to also consider the timing behaviour of the application. To achieve that, we will perform
instruction reliability analysis and application timing behaviour analysis, considering both spatial
and temporal vulnerability of the instructions. This means that the probability of the occurrence
of a fault, during the execution of an instruction, depends on both the area and the duration of
the specific processor components used by the instruction. Therefore, at the gate-level, we will
perform instruction vulnerability analysis for the processor Instruction Set Architecture (ISA). Per
instruction, we will obtain a set of error patterns, describing the output bits that changed due to
a fault, along with two indicators regarding the instruction’s capacity in masking and propagating
faults. At the micro-architectural level, we will perform reliability analysis, taking into account the
application structure and instruction vulnerabilities, including the number of execution cycles and
the execution traces. To reduce the time for this analysis, analytical methods will be explored.

Last, our framework will be leveraged with the notion of interference. Interference, due to shared
resources in multicore architectures, insert timing delays in the execution of memory instructions.
As a result, a memory instruction will be stalled and reside longer in the pipeline of the core.
This delay has to be taken into account in vulnerability analysis; the longer an instruction remains
in the pipeline of a core, the higher is the probability to be affected by faults, i.e., its temporal
vulnerability. Interference affect not only the temporal vulnerability of the memory instructions,
but also the temporal vulnerability of dependent instructions, instructions already residing inside
the pipeline, and the variables temporarily stored in the register file. The vulnerability analysis

92

framework will be enhanced with identification of the instructions, whose vulnerability is affected
directly and indirectly by interference, along with estimation of the instruction vulnerability periods
for the pipeline components and the register file.

Fault-aware WCET estimation

We will provide methodologies to estimate the WCET, considering the impact of soft errors occur-
ring in processors.

Initially, we will chose an appropriate WCET estimation method that fits our goal. Since faults
introduce non-determinism, since fault number and location are unknown a priori [6], we expect that
Probabilistic Timing Analysis (PTA) is an appropriate method [73]. Furthermore, a measurement-
based approach, potentially applied in code-snippet (region of source code) and combined with
control flow information, is an appropriate method. This is because we speculate that faults,
affecting the control flow, will have an impact on execution, and thus, a fine-grained analysis will
be required. As a first step, the selected probabilistic timing analysis technique will be applied on
the processor in order to obtain the distribution of fault-free WCET estimations. To achieve that,
we will identify a set of scenarios, i.e., a sample of input states and initial hardware states that
lead to measurements that expose representative executions of the system [73]. Application inputs
lead to different executions in applications with multiple execution paths. The impact of core
hardware state is expected to be low. Furthermore, the hardware state can be always initialised in
the worst-case, i.e., reset the processor and flush the pipeline. Timing and structural analysis of
the execution traces will identify the execution paths and input data that lead to the executions
with high WCET.

Then, this approach will be combined with the reliability analysis framework, in order to in-
ject faults and exploit their impact in WCET estimation. The probabilistic timing analysis will
be leveraged to include the probabilities of fault occurrences. These probabilities will be derived
from the spatial and temporal vulnerability of the instructions and the fault models, obtained
from the reliability framework. For each input data, a set of error patterns will be injected to
observe the impact on WCET estimations. However, not only random input data and error pat-
terns should be analysed, but also the representative scenarios for WCET estimation. Simulating
the execution with the representative scenarios, we will obtain representative pipeline traces. The
reliability framework will be extended to use representative pipeline traces at the gate-level anal-
ysis. As a result, after gate-level fault injection, we will obtain instruction error patterns, error
masking and error propagation factors, related to the application representative scenarios. At the
microarchitecture-level, we can use the representative scenarios, along with the corresponding error
patterns, to obtain the impact of soft errors on the WCET estimation.

To include the impact of interference in the fault-aware WCET estimations, we will be based on
a graph model of the application as a graph, inspired from our work [C8], where each code snippet is
characterized with fault-aware WCET estimations, without interferences, and Worst-Case Memory
Accesses (WCMA), obtained by profiling code-snippet traces. The use of analytical methods will
be explored in order to estimate the impact of interferences on the fault-aware WCET estimations,
depending on the number of applications executed in parallel and the arbitration policy. We will
focus on policies that provide a deterministic bound to the longest wait time for a request and
support measurement-based probabilistic WCET techniques, such as round-robin and TDMA [45].

93

Mechanisms for time-guaranteed and reliable execution

We will design low-level mechanisms, with low area and low WCET overhead, that will eliminate
faults when they occur, before they are propagated and expressed as functional errors and timing
variations in the application execution.

Initially, we will use the aforementioned reliability analysis framework, combined with the proba-
bilistic WCET estimation approach, to perform fault injection with the goal of identifying hardware
and software sources that are most impacting, when faulty. Instructions use different parts of the
processor for different durations, having different vulnerabilities and probabilities to be impacted
by faults. Application executions have different timing behaviours, depending on the input data,
which define the executed application paths. Depending on the position and duration of faults,
they impact differently the application execution. We will identify the sources that impact the
functional and timing behaviour of the application, when they are faulty. Such sources can be
hardware parts of the processor and software parts of the application. Faults can be masked due to
the core architecture, reducing the impact of some hardware parts. Faults may also be masked due
to the application structure, reducing the impact of some software parts. Hardware and software
parts will be classified as jitterless and jittery sources, based on whether they have an impact on
execution time and WCET estimations. They will be characterized based on how probable a source
is to be faulty, how many times a faulty source has affected the functional and timing behaviour,
and the actual impact and the variations on the application execution time and WCET estimation.

Then, we selectively insert low-level fault-tolerance techniques, without or with negligible over-
head in execution time and WCET, inside the core, in order to eliminate the impact of faults
on the most vulnerable sources. Vulnerable sources are the sources that have high probability to
get affected by faults, to lead to a high impact and to frequent impacts on the application ex-
ecution. Hardware mechanisms are required as they can detect and correct faults that software
approaches cannot. For instance, if the execution is stuck at the same memory address, the pro-
gram counter evolution can be monitored by a hardware mechanism that checks the number of
clock cycles spent on a single instruction [18]. We expect that low-level hybrid techniques will be
effective and provide a high level of tolerance, e.g., low-level software approaches could be efficient
for data-flow errors, while hardware approaches for control-flow errors. Initially, the sources that
lead to functional interruptions will be protected, in order to allow the execution of the application
to continue, improving system dependability. Then, sources that impact the timing behaviour and
WCET estimation will be studied. We expect that the inserted low-level mechanisms will inher-
ently protect the application output. Last, but not least, the remaining vulnerable sources will be
protected. In order to avoid system over-design, run-time low-level mechanisms can be inserted,
with low overhead in execution time and WCET, to deal with faults, if they occur. For instance,
the core pipeline can be enhanced with hardware mechanisms that enable instruction roll-back. A
exercising all possible application paths and fault occurrence is impractical, a hardware mechanism
can monitor the execution cycles spent on a code-snippet to determine whether the code-snippet
exceeded the WCET estimations and trigger a prevention action.

5.2 Real-time and reliable AI hardware accelerators

Context

Deep Neural Networks (DNN) [134] are currently one of the most intensively and widely used pre-
dictive models in the field of machine learning. DNN give very good results for many complex tasks

94

and applications, such as object recognition in images/videos, natural language processing, satel-
lite image recognition, robotics, aerospace, smart healthcare, and autonomous driving. Nowadays,
there is intense activity in designing custom AI hardware accelerators to support the energy-hungry
data movement, speed of computation, and memory resources that DNNs require in order to realize
their full potential [163].

In safety critical systems, there is a need for deterministic behavior and guarantees regarding
the WCET on the target hardware [64]. Furthermore, AI hardware accelerators are subject to hard-
ware faults, which can cause operational failures, potentially leading to important consequences,
especially for safety-critical systems. AI hardware accelerators have some inherent resilience to
faults, due to the learning process that can circumvent faults to a large extent. However, faults
can still occur during the operation of the accelerators after training. Since some neurons are more
critical than others, as they have a higher probability of propagating errors to the final DNN out-
put [141], inference can be significantly affected, leading to DNN prediction failures that are likely
to lead to a detrimental effect on the application [256, 217, 148]. Furthermore, although explaining
AI decisions is highly desirable in order to increase the trust and transparency in AI, the role that
faults can have in AI decisions has been neglected till now. Note that, if the hardware is affected
by faults, leading to faulty decisions, then any attempt for explainability will be either inconclusive
or misleading.

Therefore, ensuring real-time and reliable execution for AI hardware accelerators is crucial,
especially when they are deployed in safety-critical systems.

State-of-the-art

Regarding reliability, common reliability analysis frameworks and standard fault-tolerance tech-
niques used in traditional computing, such as TMR and ECC for memories, are not effective for
AI hardware accelerators in general since they incur prohibitive overheads. Due to the large-sized
DNN architectures and memories required for weight storage, these techniques turn out to be very
inefficient. Furthermore, periodic re-training is impractical at chip-level, since the training set is
too large to be stored on-chip and has to be communicated from the cloud. Besides, performing
the training on-chip requires a large dedicated on-chip infrastructure, which increases prohibitively
design complexity and area overhead.

Approaches to evaluate the DNN reliability are similar to traditional hardware and are typically
based on fault injection. Fault injection at the application-level is the commonly used technique
due to lower cost, fast execution and ease of deployment, while it is independent from the hardware
architecture. For instance, a fault injection environment is built on an open-source DNN framework
implemented in C and CUDA language to inject permanent faults on the weights of the neural
network [37] and extended for reduced bit-width precision [217]. Fault injection frameworks are
built on TensorFlow, where faults can be injected at the TensorFlow graph level by corrupting the
outputs of the most common mathematical operators [30, 61, 62]. However, such approaches lack
information of the underlying hardware platform, and thus, are less accurate. Fault injection at
the hardware-level uses a model of the target hardware architecture running the DNN, being more
accurate and close to the real hardware, but more time consuming. FIdelity framework is built on
TensorFlow [108] and uses information obtained from architectural description to model soft errors
in application level, improving accuracy. The propagation of soft errors is explored with open-source
DNN simulator, where DNN hardware components are associated with simulator code [141]. Fault
injection is performed at the RTL, considering both the application information (the DNN weights,
inputs, and the intermediate values) and architectural information (the specific data representation

95

and the amount of computational resources) [205]. To reduce simulation time, the FI framework
in [217] uses a pipeline mechanism that exploits the sequential execution of DNN layers. Overall, the
majority of approaches use statistical fault injection, since exhaustive approaches are not possible,
while few approaches propose smarter fault injections. Similar to traditional hardware, the timing
impact of faults has not been explored yet.

Regarding real-time execution, there is still a large amount of work and proof needed to show
the capability of computing a WCET for DNNs [74], as the majority of existing approaches focus
on traditional embedded real-time benchmarks. Approaches focus on using measurement-based
WCET, e.g., a probabilistic WCET (pWCET) of DNN based image classification models has been
proposed, considering variation in the input size, using DNN inference time and extreme value
theory [131]. Other approaches use static methods, e.g., a programming framework generates
C code from offline trained DNNs in order to perform statistic WCET estimation [74]. Last,
implementation based approaches remove variations, e.g., a DNN implementation with the same
control flow regardless of the input [64]. However, existing approaches focus on COTS and fault-free
architectures.

Future contributions

Our goal is to design real-time and reliable AI hardware accelerators. As a short-term goal, we focus
on reducing the complexity to analyse and design reliable AI hardware accelerators. To achieve
that, we will leverage our reliability analysis framework towards AI hardware accelerators. Then,
we aim at designing low-cost, customized fault-tolerance strategies for AI hardware accelerators.
This work will be performed in the RE-TRUSTING project (2022-2025). As a next goal, we will
extend the obtained reliability analysis and protection mechanisms to not only take into account the
functional, but also the timing behavior, of hardware accelerators. To achieve that, we will combine
our findings regarding reliable AI hardware accelerators with the findings of timing analysis and
protection of processors, presented in Section 5.1.

Reliability analysis framework for AI hardware accelerators

Fault severity is not considered in traditional computing hardware, since there is no intrinsic fault-
tolerance and any fault is treated as a reliability hazard. However, classifying a fault as malignant
is essential for AI hardware accelerators. To grade fault severity and identify the set of malignant
faults through fault injection simulation poses a great challenge for AI hardware accelerators,
since the number of fault locations explodes; every neuron and synapse is considered as a fault
injection candidate, and each fault injection requires performing inference on the complete testing
set to assess the fault effect, which is intractable from a computation point of view. Thus, a new
paradigm is required that is specifically tailored to AI hardware accelerators.

To manage this complexity, we will leverage our cross-layer reliability analysis to AI hardware
accelerators to enable fast fault exploration and identification of malignant faults. Initially, we will
decompose the hardware architecture into elementary components, where detailed fault simulation
can be performed at gate-level for each component separately. Note that, this is feasible since AI
hardware accelerators have a lot of space redundancy and a repetitive architecture, i.e. replicated
multiply-and-accumulate units, neurons, etc. We will collect and group the observed faulty behav-
iors in order to create fault models per such hardware component. The obtained fault models can
be used at higher abstraction layer, where they will be injected through simulation at a high-level
algorithmic description of the DNN, i.e., PyTorch, TensorFlow, Keras, etc.

96

Our framework will support single and multiple fault injection scenarios, at any point of the
operation, with the goal of determining the set of malignant faults that mostly impact the accuracy
of classification (or other DNN objectives, such as image segmentation) during the inference phase.
However, DNN inference is very complex, especially on large models and for large datasets, and thus,
a large number of faults have to be injected. Since the complexity of fault injection grows linearly
with DNN inference complexity and the number of injected faults, we will leverage statistical and
analytical methods to prune the fault space. We will rely on profiling DNN hyper-parameters, such
as weight values distribution, neuron activation distributions, at the layer and even kernel level. The
profiling will be done one time by running the whole testing dataset. Once the hyper-parameters
distributions are determined, the next step will be to analyze potential correlations among them,
linking the local sensitivity at the layer/kernel levels with the global accuracy. For instance, if
a fault forces a weight value in the first layer to be away from the profiled distribution, but this
local violation does not lead to a DNN inference failure. With the knowledge of such relations,
it will be possible to immediately stop the fault injection process without the need of completing
the full inference, thus saving a significant amount of time and improving high-level fault injection
performance on larger datasets or more complex DNN models.

The fault injection and simulation framework will be further optimized by implementing the
early stop criterion related to performance metrics. In order to further push the performances and
reduce injection time, optimized C/C++ code can be exported and executed on GPU. Finally,
direct execution of the network (or a portion) on the FPGA accelerators can also be used.

Selective fault tolerance

The next step is to develop the error correction and mitigation operation of the fault-tolerance
scheme. The larger the set of target faults is, the higher the cost to implement fault tolerance.
To reduce fault tolerance overheads, based on the fact that many faults will be probably benign,
identifying the malignant faults and targeting only these in a fault tolerance scheme will reduce the
implementation cost, i.e., there will be no over-test and the on-chip mechanisms for self-test and
error correction can be more localized. Moreover, classical approaches for traditional computing
hardware consider one fault at a time. In the case of AI hardware accelerators, this is not necessarily
true since synaptic weights are constant data written only once in the memory. This means that
external perturbations can have cumulative effects, leading to many faults affecting the hardware.
Therefore, we will define fault tolerance strategies under multiple fault scenarios. More specifically,
we will develop low-cost heterogeneous fault tolerance techniques for AI hardware accelerators, by
combining passive and active fault tolerance strategies.

Passive fault tolerance is a proactive mean to deal with several anticipated fault locations and
types. We will explore modern training algorithms, whose primary aim is to reduce over-fitting and
improve the generalization ability of the network, such as removal of unnecessary nodes/weights,
replication of critical neurons, evenly distributing/splitting synaptic weights, noise/fault injection
during training, restricting weights to low values, etc. These techniques equalize the importance of
neurons and synapses and this property will be key for reducing the impact of faulty neurons and
synapses as well, and they have not been thoroughly evaluated yet for DNNs.

Active fault tolerance mechanisms will be used to deal with the rest of the faults. Such an
active approach will be composed of self-test and error-correction mechanisms. Component-level
BIST mechanisms will be explored, aiming at low area and power overhead and at transparency
to the operation of the accelerator. Error correction mechanisms will be designed to deal with
detected faults, such as the re-execution of the task of a faulty component, the dynamic reschedul-

97

ing/mapping of the DNN to the hardware accelerator, bypassing faulty components and replacing
them with spare ones, weight-shifting to fault-free elements when faulty links are detected, selec-
tive low-precision TMR, most-significant bits reinforcement, standby sparing and correcting codes,
etc. Reconfigurable fault tolerance mechanisms that can be tuned with respect to the algorith-
mic constraints (e.g., DNN hyper-parameters such as weights/inputs data representations) and the
occurrence of “burst” faults, due to cumulative fault effects, will be also explored.

5.3 Workload-dependent aging and multiple reliability threats

Context

The accuracy of the hardware may degrade over time due to the aging effects on its components,
due to several aging phenomena, such as TDDB, BTI, HCI, Ionizing-Radiation, etc [29]. These
aging phenomena degrade the transistor’s threshold voltage over the lifetime of the underlying
circuit, resulting in slower transistors [133]. Such transistors can eventually lead to faulty oper-
ations, when the critical paths become longer than the cycle time. If such aging effects remain
unexplored and uncontrolled, the system may have an unacceptable behavior. Furthermore, the
importance of workload-dependent faults to the circuit aging has been recently highlighted in mod-
ern technologies [130]. With the further ongoing reduction of transistors size, system aging is
becoming more and more sensitive to the workload [98, 130, 89, 58]. Different cores are subjected
to different amount of stress as a result of varying workloads, leading to aging imbalance among
cores [206]. Last, devices are susceptible to various fault sources, which occur concurrently and
have inter-dependencies [10, 11].

In this context, dedicated WCET-aware and fault-aware approaches are required to efficiently
deal with workload-dependent aging, not only for processors, but also for dedicated hardware
accelerators and multicore systems.

State-of-the-art

Existing fault-aware approaches analyse the impact of aging sources, such as TDDB, BTI, HCI,
radiation, for traditional hardware components. Typical approaches used for aging detection are
based on monitoring temperature, critical path, clock frequency, workload, circuit state and volt-
age [122]. Aging mitigation techniques are based on dynamic voltage scaling, dynamic frequency
scaling, aging compensation, body-bias adaptive and workload reduction [122]. Few real-time ap-
proaches deal with aging in memories, e.g., considering HCI and BTI for L1 caches [258], and
register files [259].

Few approaches focus on exploring the workload-dependent nature of aging. A run-time mech-
anism re-executes faulty instructions, mitigates performance degradation by configuring the clock
frequency, and performs resource allocation to the applications taking into account the perfor-
mance degradation [211, 289]. A run-time adaptation pro-actively slows down aging when the first
instructions starting to fail, by scheduling in dedicated functional units and balancing pipeline
stages [181]. The critical path delay is monitored at run-time, and when the delay is increased, the
critical path is cut in a way to minimize the accuracy loss [126]. Task graph retiming, ordering,
assignment, and dynamic voltage selection is applied to extend the system lifetime [58]. At each
abstraction layer, a set of fault tolerant mechanisms is selected to cover faults that escaped the
lower layer [109]. Off-line cross-layer fault-tolerant solutions are used at run-time to adapt the fault-
tolerance means [222]. Last, few approaches exist for aging mitigation of CNN accelerators, e.g.,

98

focusing on BTI in on-chip memories storing weights [102] and BTI and HCI in on-chip memories
storing activations [133]. The lifetime of AI hardware accelerators has not been thoroughly inves-
tigated yet [102, 146]. However, existing approaches consider average execution, without focusing
on WCET aspects.

Last, but not least, the majority of existing approaches focus on a single type of reliability
threat. In reality, the system can have multiple degradation effects from different sources with
inter-dependencies [10, 11]. Few works aim to jointly consider multiple reliability threats using
failure-equivalent circuits and applying the sum-of-failure-rates rule, assuming that the considered
degradation effects are independent. However, the causes of degradation effects are of physical
origin, and they are interdependent from a physical point of view [11].

Future contributions

Our overall goal is to provide the means to design real-time and reliable systems considering
workload-dependent aging and multiple reliability threats. Since applications are dynamic in na-
ture, they lead to a dynamic workload affecting differently the stressing of the hardware components.
Different reliability threats can be mitigated more efficiently at different layers, depending on their
characteristics. Therefore, we believe that Cross-Layer Reliability (CLR) methods are required,
since they can exploit application, deployment and hardware layers, opening up new opportunities
for designing application-specific reliable embedded systems. Furthermore, CLR approaches need
to be extended with WCET aspects to be applicable in safety-critical domains. As a first phase,
we will analyse the workload-dependent nature of hardware aging, how WCET estimations can
be adapted at run-time to take into account aging effects, and propose cross-layer approaches to
mitigate workload-dependent aging effects under real-time constraints. Initially, we will focus on
processors, and then, AI hardware accelerators. As a long-term goal, we will explore how fault mod-
els are correlated, when several reliability threats occur concurrently on the system, and propose
analysis and cross-layer CLR methods for multiple reliability threats for real-time systems.

Workload-dependent aging real-time and reliability analysis

As a first step, we will characterize the workload-dependent nature of aging effects on the functional
and timing behavior of a processor.

Toward this goal, we will apply a component-based approach, where we explore the impact
of aging sources (e.g., TDDB, BTI, HCI) on major components of processor (e.g., multipliers,
arithmetic and logic units, decoders) per instruction, under different scenarios through simulation.
As the aged circuit delay depends on the operation conditions over lifetime and the workload,
different scenarios can have different critical paths per aged component. Such scenarios can be
identified based on the range of the operand values per instruction for different application contexts.
Analytical methods will be also exploited to estimate the aging effects and critical paths. Through
a parser, we can obtain the graph of the gate-level netlist and gather timing information of the
cells. Aging fault models will be used to characterise aging for each cell type. The probability of
each net in the design to have a specific logic value will be obtained, following approaches similar
to the power analysis of programs based on the scenarios and/or worst-case analysis. Combining
the probability of input vectors of a cell with its aging model, we can compute the probability of
the cell’s aging. Then, critical paths can be defined based on the forward cones of the component
based on different input scenarios. With this analysis we can obtain aging models to be used in
micro-architecture and application level, taking into account the hardware and software structure.

99

Furthermore, due to distinct path aging rates, which can occur due to local layout configurations
of different gates, the critical paths of a component may change during its lifetime. However,
existing WCET estimation approaches have not yet considered aging impact on the hardware
components, which impacts the critical paths of computing elements. Since aging depends on the
workload, we believe that parametric expressions will be appropriate for WCET estimation. Such
expressions can support context-sensitive hardware and software timing effects and parameters
regarding the application, e.g., parametric loop bounds depending on the input data, and the
hardware, e.g., effects of aging at different components.

Our approaches will be adapted for AI hardware accelerators by performing a component-based
analysis, e.g., on multiply-and-accumulate units and on-/off-chip memory in training and inference
phases, and investigate the impacts of aging on the accuracy loss and timing behavior. Furthermore,
by adapting fault models and combining the different reliability analysis frameworks, we will analyse
the impact of multiple reliability threats on functional and timing behavior of the system.

Real-time cross-layer reliability methodologies

Real-time cross-layer reliability approaches are a promising solution towards workload-dependent
aging and multiple faults, as they combine approaches from the application, deployment and hard-
ware layers. In this context, we will propose design-time and low overhead run-time cross-layer
approaches, so as to meet the real-time constraints under aging and multiple reliability threats.

At the application layer, the same application running with different input data (application
context) does not always require results with the same level of QoS. For instance, aircraft collision
detection systems compute trajectories using radar data. Trajectories for stationary obstacles are
computationally simpler that those of moving obstacles [165]. Furthermore, applications have
critical regions, for which correct execution is required, and forgiving regions, which can tolerate
significant changes [210]. An exploration framework, based on simulation and profiling, will allow us
to estimate the minimum acceptable QoS with respect to the application context and characterize
the tolerance and WCET of the application regions. This information can be used to adapt the
execution at run-time.

At the deployment-level, novel methodologies are required to map near-optimally the tasks onto
the processors, and potentially hardware accelerators, considering different application contexts,
provided by the application layer, aging effects and interference. Furthermore, reliability approaches
at the task-level increase the workload, and thus, aging effects. Tasks running in parallel impact
the interference, and thus, the WCET. Furthermore, the workload running on each core impacts
the aging effects, leading to asymmetric aging of the processors. Such aging should be taken into
account during task deployment both at design-time and at run-time.

At the hardware level, the processor, and potentially hardware accelerator, configurations im-
pact several metrics, such as the execution time, the WCET, the reliability, and energy consump-
tion. For instance, the higher the processor frequency, the lower the execution time, and thus,
the WCET estimation. Furthermore, inserted fault-tolerance at the hardware level and dedicated
function units may increase the components delays. Last, the connection of an accelerator as an ex-
ternal co-processor, connected to the communication network, increases interference which impacts
WCET estimations.

Last, cross-layer run-time adaptation is required to deal with aging and multiple reliability
threats. Mechanism for short-term adaptation are needed in order to deal with correcting workload-
dependent faults and soft-errors. Any available time slack due to the actual execution of the tasks
will be computed at run-time and check whether there is a need for creation of extra slack via

100

hardware adaptations, e.g., frequency increase, deployment adaptation, e.g., cycle stealing, or ap-
plication adaptation, e.g., QoS reduction, in order to provide timing guarantees. Mechanisms for
long-term adaptation are required in order to deal with circuit aging and its impact on system ex-
ecution. The hardware can be configured to hide circuit aging, e.g., via voltage/frequency changes.
This change will impact the WCET, and thus, such an impact needs to be estimated and taken
into account for the timing guarantees of the system. Note that, the new WCET may turn the
current task mapping infeasible. Therefore, an adaptation at the deployment layer, e.g., through a
new mapping, or at the application layer, e.g., by reducing the QoS, is required.

5.4 Real-time and reliable emerging technologies

Context

Today’s computing architectures are mainly based on CMOS technology, facing major limitations,
which makes them unable to meet the growing requirements in performance and energy efficiency:
Power Wall, Memory Wall and Instruction Level Parallelism Wall [190]. Manufacturing issues con-
tinue escalating for the current dominating CMOS technology and its scaling comes to an end,
as feature sizes in the order of a single atom are approached. Due to the aforementioned limita-
tions, alternative emerging technologies are explored in order to provide performance requirements
with affordable costs. Such promising advances are technology-level solutions, developed in order
to replace CMOS elements, and novel computing paradigms, such as PIM. Consequently, future
computing systems will consist of heterogeneous architectures, merging general purpose computing
elements (e.g., CPU/GPGPU) with application specific hardware accelerators, exploiting both the
emerging technologies and novel computing paradigms [110].

In this context, design and analysis methodologies are required in order to incorporate emerging
technologies and novel computing architectures in future computing architectures, especially for
safety-critical systems, requiring real-time and reliable execution.

State-of-the-art

Regarding emerging memory devices, the majority of existing PIM approaches focuses on the de-
sign and modeling of PIM computation units [178]. Both volatile and non-volatile memory devices
have been explored. Volatile memory devices correspond to the CMOS technology, i.e., static
RAM and dynamic RAM. Examples of non-volatile memory devices are Phase Change materials
(e.g., PCRAM) [270], Oxide-based (e.g., RRAMs) [271], Ferro-electric (e.g., FeRAM) [182] or Mag-
netic (e.g., Spin Transfer Torque (STT) - MRAM) [87]. A survey on memory-centric computer
architectures can be found in [92]. Every type of emerging non-volatile memory have unique fea-
tures, with different applications in the memory hierarchy, but also unique failure mechanisms that
cannot be modelled with the traditional faults models [99]. Note that, the memory in memory-
centric computer architectures has two configurations, i.e., storage and computing, which poses
additional requirements in reliability analysis and testing. To be considered as a competent rival
for conventional memories, their reliability characteristics require improvements [57]. Some works
consider emerging devices with applications which are inherently tolerant to faults, such as AI
inference [69, 176, 121].

Furthermore, as far as we know, few recent works focus on the use of emerging devices for
safety-critical systems. They mainly focus on STT memories, e.g., the average system performance

101

and WCET implications are analysed for STT-MRAM [14] and partial WCETs are obtained and
used for data allocation on STT-RAM with variable retention times [38].

Although works exist regarding the computational aspect of memory-centric computer archi-
tectures [92], PIM is a relatively new concept and work is still required in order to be incor-
porated to heterogeneous multicore architectures [178]. The architectural challenges of memory-
centric architectures need to be revisited in order to harness the full potential of emerging memory
technologies [92], whereas further research is required to develop appropriate analysis and design
methodologies that can provide real-time guarantees for safety-critical systems.

Future contributions

Our aim is to support the design of heterogeneous multicore architectures combining emerging
technologies and novel computing paradigms for safety-critical systems. Towards this direction,
the analysis of functional and timing behavior for emerging memory devices and memory-centric
computer architectures, is required. Furthermore, novel DSE approaches are needed to select and
configure memory-centric architectures, determine which part of an application is executed on which
memory computation unit, meeting real-time guarantees and providing reliable execution.

Timing and reliable analysis for emerging memory architectures

Emerging memory devises have different physical characteristics, while several memory-centric com-
puter architectures exist which perform operations in different ways, impacting the timing and
reliable execution of the applications.

As a first step, we will focus on identifying how characteristics of memory-centric computer
architectures can affect the WCET estimations. First of all, the time and nature of possible
operations is different among emerging memory devices [252] and architectures [92], which affects
the execution time, and thus, the WCET estimations. Furthermore, due to the less reliable nature
of emerging technologies, mitigation actions can be inserted with a potential impact on the WCET.
For instance, Phase Change Memory (PCM) require high voltages for correct operation, provided by
charge pumps, which accelerates aging. Discharging the stressed charge pump lowers the aging rate,
but makes the neuromorphic hardware unavailable to perform computations during the discharging
period [19]. Such operation unavailability is expected to impact the WCET estimations.

Emerging memory devises can be used for storing and processing of the data. Therefore,
different timing delays are expected, depending on how data are using the memory. Furthermore,
as applications typically have more complex logic functions than bit-wise operations, code-snippets
will be offloaded on the emerging memory devices for efficient computation. As a result, the WCET
will require to be estimated with models that are able to express parameters, such as the size and
data computation of the offloaded code-snippet and the characteristics of memory-centric computer
architectures. We believe that combining hybrid WCET approaches with parametric expressions
can lead to WCET estimations for code-snippet offloading at emerging memory devises. Such
methods will be required in order to provide timing guarantees during system deployment.

Furthermore, the reliability of emerging technologies is expected to be more dependent on the
workload and the operating conditions, compared to CMOS technology. For instance, STT-RAM
have high current densities that can lead to electromagnetic failures to the signal lines leading to
asymmetric reliability [172] and RRAM variability can be affected by operating conditions, such
as temperature and voltage [49]. We will explore methodologies to incorporate such reliability
characteristics in order to perform timing and functional vulnerability analysis.

102

Last, but not least, sharing emerging memory devices among cores and tasks will open-up
further challenges to be solved regarding timing guarantees, WCET aspects and reliability. For
instance, exploration is needed regarding whether the memory banks can be shared or isolated,
how this can be implemented and what are the impacts on WCET estimations.

Design Space Exploration for future heterogeneous architectures

Efficient DSE approaches will be required to efficiently design and use future heterogeneous ar-
chitectures, consisting of multiple computing elements and different emerging technologies and
architectures, while guaranteeing timing requirements and reliable execution.

Analysing the application in order to determine which part of an application is more efficient to
be executed on a specific PIM architecture unit is not straightforward, due to the variety of tech-
nologies, architectures, different operations, available configurations and code complexity. We will
focus on designing DSE approaches under real-time constraints, taking into account the different
operations supported by different memory-centric computer architectures, the size, operations and
regularity of instructions and code-snippets, the impact on the WCET estimations, and the inter-
ference. As a first step, we will design a methodology to characterise candidate code-snippets for
offloading based on cost functions. Relevant cost functions and appropriate metrics will be defined,
related to operation complexity, operation frequency, potential memory bandwidth savings, WCET
estimation and interference impact. Then, an overall characterisation approach for the offloading
candidates is required, taking into account the different granularities and sizes, regarding the el-
igibility, performance, energy consumption and precision of different memory units that perform
processing. Last, we will design of methodologies to efficiently select the most beneficial offloading
candidates and PIM architectures, taking into account dependencies and real-time constraints.

Furthermore, we will extend the proposed approaches to take into account the reliability as-
pects. The endurance of emerging memory technologies is the number of switching cycles a device
can perform until it breaks down. It is related with data retention, i.e., the capability of retaining
the information stored even when the power has been switched off. Endurance, and thus, retention,
depend on the workload of the emerging memory device. Novel approaches will extended with the
variability of memory-centric computer architectures and model how code-snippet offloading deci-
sions will affect the lifetime of PIM devises. To take advantage of the emerging computing paradigm
of PIM, efficient fault-detection and effective fault-tolerance techniques need to be explored across
different abstraction levels [202].

Last, but not least, by adding computation capabilities in memory, there is a need of an in-
memory scheduler able to deal with sharing of the memory among cores and tasks. Since the
memory becomes a partial computation unit, a PIM scheduler will be required to deal with concur-
rent requests on the device. In this context, exploration is required to decide whether the execution
of a code-snippet on a PIM device can be preempted or not, since such decision will impact the
interference and WCET estimations, and how such preemptive/non-preemptive mechanism can be
implemented.

5.5 Conclusions

The future directions of this research focus on providing the means to design, in a near-optimal and
efficient way, real-time and reliable embedded systems for safety-critical domains, with unreliable
components, under multiple reliability threats.

103

Our first research direction is the analysis of the timing impact of transient faults occurring
on cores by leveraging our reliability analysis framework to incorporate the application timing be-
haviour and to include the impact of interference. WCET estimations will be enhanced with fault
awareness and low cost fault tolerance techniques will be designed to protect the system. Our second
direction is the design hardware accelerators for WCET-aware and fault-aware systems to extend
homogeneous multicore systems towards domain specific heterogeneous multicore architectures. To
achieve that, we will adapt reliability and WCET analysis frameworks and design real-time and
fault tolerance techniques for hardware accelerators, such as accelerators dedicated for AI. With
the further ongoing reduction of transistors size, system aging is becoming more and more sensi-
tive to the workload. Thus, we will focus on dedicated cross-layer fault-aware and WCET-aware
approaches to efficiently deal with workload-dependent aging faults for safety-critical systems. Fur-
thermore, the systems are susceptible to multiple types of reliability threats, potentially correlated
with each other. Therefore, we will leverage the proposed approaches to consider multiple sources
for reliability threats. Last, but not least, we will propose novel approaches to provide timing and
reliability analysis and DSE for new emerging technologies and novel computing paradigms to be
used in safety-critical domains with real-time and reliable guarantees.

104

References

Author publications

[B2] A. Kritikakou, F. Catthoor and C. Goutis, “Scalable and near-optimal design space explo-
ration for embedded systems”, Springer, 2014

[J26] R. Psiakis, A. Kritikakou and O. Sentieys, “Cluster-Based Dynamic Fault-Tolerant VLIW
Processor with Heterogeneous Function Units”, Elsevier Microprocessors and Microsystems
(MICPRO), 2022

[J25] M. Cui, A. Kritikakou, L. Mo, and E. Casseau, “Near-optimal Energy-Efficient Partial-
Duplication Mapping of Real-Time Parallel Applications ”, Elsevier Journal of System Architec-
ture (JSA), 2022 (Minor revision)

[J24] M. Cui, A. Kritikakou, L. Mo, and E. Casseau, “Energy-aware Partial-Duplication Task
Mapping under Real-Time and Reliability Constraints for multiple DVFS schemes”, Springer
International Journal of Parallel Programming (IJPP), 2022

[J23] R. Mercier, C. Killien, A. Kritikakou, Y. Helen, and D. Chillet, “BiSuT: A NoC-Based Bit-
Shuffling Technique for Multiple Permanent Faults Mitigation”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (IEEE TCAD), 2021

[J21] A.Kritikakou, R. Psiakis, F. Catthoor, and O. Sentieys, “Binary Tree Classification of Rigid
Error Detection and Correction Techniques” Journal of ACM Computed Surveys (ACM CS),
2020

[J16] L. Mo, A. Kritikakou and O. Sentieys, “Controllable QoS for Imprecise Computation Tasks on
DVFS Multicores with Time and Energy Constraints”, IEEE Journal on Emerging and Selected
Topics in Circuits and Systems (IEEE JETCAS), 2018

[J15] L. Mo, A. Kritikakou and O. Sentieys, “Energy-Quality-Time Optimized Task Mapping for
DVFS-enabled Real-Time Multicore”, IEEE Transaction on Computer Aided Design (IEEE
TCAD), 2018

[J14] A. Kritikakou, T. Marty and M. Roy, “DYNASCORE: DYNAmic Software COntroller to
Increase REsource Utilization in Mixed-Critical Systems”, ACM Trans. Design Automation of
Electronic Systems (ACM TODAES), Vol. 23, Issue 2, Jan., 2018

105

[J6] A.Kritikakou, F. Catthoor, G.S. Athanasiou, V. Kelefouras and C. Goutis, “Near-optimal
Microprocessor & Accelerators Co-Design with Latency & Throughput Constraints”, ACM Trans.
Architecture and Code Optimization (ACM TACO), Vol.10, No.2, May, 2013

[C26] A. Kritikakou, O. Sentieys, G. Hubert, Y. Helen, J.F. Coulon, and P. Deroux-Dauphin,
“FLODAM: Cross-layer fault-tolerant reliability analysis flow for complex hardware designs”,
submitted in Design, Automation & Test in Europe (DATE), 2022

[C25] L. Mo, Q. Zhou, A. Kritikakou, and J. Liu, “Energy Efficient, Real-time and Reliable Task
Deployment on NoC-based Multicores with DVFS”, Design, Automation & Test in Europe
(DATE), 2022

[C24] R. Mercier, C. Killian, A. Kritikakou, Y. Helen and D. Chillet, “A Region-Based Bit-Shuffling
Approach Trading Hardware Cost and Fault Mitigation Efficiency”, IEEE International Sympo-
sium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2021, Virtual
conference

[C23] M. Cui, A. Kritikakou, L. Mo, and E. Casseau, “Fault-Tolerant Mapping of Real-Time Par-
allel Applications under multiple DVFS schemes”, IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS),18-21 May, 2021, Virtual conference

[C22] R. Mercier, C. Killien, A. Kritikakou, Y. Helen, and D. Chillet, “Multiple Permanent Faults
Mitigation through Bit-Shuffling for Network-on-Chip Architecture”, International Conference
on Computer Design (ICCD), 2020

[C21] S. Skalistis and A. Kritikakou, “Dynamic interference-sensitive run-time adaptation of Time-
Triggered schedules”, Euromicro Conference on Real-Time Systems (ECRTS), 2020

[C20] J. Paturel, A. Kritikakou, and O. Sentieys, “Fast Cross-Layer Vulnerability Analysis of Com-
plex Hardware Designs”, IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 6-8
July, 2020, Limassol, Cyprus

[C19] M. Cui, L. Mo, A. Kritikakou, and E. Casseau, “Energy-aware Partial-Duplication Task
Mapping under Real-Time and Reliability Constraints”, International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation (SAMOS), 5-9 July, 2020, Samos,
Greece

[C18] S. Skalistis and A. Kritikakou, “Timely Fine-grained interference-sensitive run-time adapta-
tion of time-triggered schedules”, IEEE Real-Time Systems Symposium (RTSS), 2019

[C17] R. Psiakis, A. Kritikakou and O. Sentieys, “Fine-grained Hardware Mitigation for Multiple
Long-Duration Transients on VLIW Function Units”, Design, Automation & Test in Europe
(DATE), 25-29 March, 2019, Florence, Italy

[C16] L. Mo, A. Kritikakou and O. Sentieys, “Approximation-aware Task Deployment on Asym-
metric Multicore Processors”, Design, Automation & Test in Europe (DATE), 25-29 March,
2019, Florence, Italy

[C15] R.Psiakis, A. Kritikakou, E. Casseau and O. Sentieys, “Run-Time Coarse-Grained Hardware
Mitigation for Multiple Faults on VLIW Processors”, Conference on Design and Architectures
for Signal and Image Processing (DASIP), 16-18 October, 2019, Montreal, Canada

106

[C13] S. Derrien, I. Puaut, P. Alefragis, M. Bednaraz, H. Bucherx, C. David, Y. Debray, U. Du-
rak,I. Fassi, C. Ferdinand, D. Hardy, A. Kritikakou, G. Rauwerda, S. Reder, M. Sicks, T. Stripf,
K. Sunesen, T. Braak, N. Voros, J. Becker, “WCET-Aware Parallelization of Model-Based Appli-
cations for Multi-Cores: the ARGO Approach”, Design, Automation & Test in Europe (DATE),
27-31 March 2017, Lausanne, Swiss

[C12] R.Psiakis, A. Kritikakou, and O. Sentieys, “NEDA: NOP Exploitation with Dependency
Awareness for Reliable VLIW Processors”, Computer Society Annual Symposium on VLSI
(ISVLSI), July 3-5, 2017, Bochum, Germany

[C11] R.Psiakis, A. Kritikakou, and O. Sentieys, “Run-Time Instruction Replication for Perma-
nent and Soft Error Mitigation in VLIW Processors”, International New Circuits and Systems
Conference (NEWCAS), 25-28 June, 2017 Strasbourg, France

[C10] L. Mo, A. Kritikakou and O. Sentieys, “Decomposed Task Mapping to Maximize QoS
in Energy-Constrained Real-Time Multicores”, International Conference on Computer Design
(ICCD), 5-8 November, 2017, Massachusetts, USA

[C9] A. Kritikakou, T. Marty, C. Pagetti, C. Rochange, Michael Lauer and M. Roy, “Multiplexing
Adaptive with Classic AUTOSAR? Adaptive Software Control to Increase Resource Utilization
in Mixed-Critical Systems”, Critical Automotive applications: Robustness & Safety (CARS),
Sep 2016, Göteborg, Sweden

[C8] A. Kritikakou, O. Baldellon, C. Pagetti, C. Rochange and M. Roy, “Run-time Control to
Increase Task Parallelism in Mixed-Critical Workloads”, Euromicro Conference on Real-Time
Systems (ECRTS), 8-11 July 2014, Madrid, Spain

[C7] A. Kritikakou, C. Pagetti, C. Rochange, M. Roy, Madeleine Faugère, Sylvain Girbal and
Daniel Gracia Pérez, “Distributed run-time WCET controller for concurrent critical tasks in
mixed-critical systems”, International Conference on Real-Time Networks and Systems (RTNS),
8-10 October, 2014, Versailles, France

[W2] A. Kritikakou, and S. Skalistis, “Progress-aware dynamic slack exploitation in mixed-critical
systems”, WiP in Proc. International Conference on Embedded Software (EMSOFT), 20-25 Sep
2020, Virtual Conference

[W1] A. Kritikakou, O. Baldellon, C. Pagetti, C. Rochange, M. Roy, and F. Vargas, “Monitoring
On-line Timing Information to Support Mixed-Critical Workloads”, WiP in Proc. International
Conference Real-Time Systems Symposium (RTSS), 3-6 Dec 2013, Vancouver, Canada

[PP7] M. Cui, A. Kritikakou, L. Mo, and E. Casseau, “Near-optimal Energy-Efficient Partial-
Duplication Mapping of Real-Time Parallel Applications ”, Presentation (2.0 publication model)
in Int. Conf. Reliable Software Technologies (AEiC 2022), 2022, Ghent, Belgium

[PP5] R. Mercier, C. Killian, A. Kritikakou, Y. Helen and D. Chillet, “Tolerating Errors in NoC:
A Lightweight Region-Based Fault-Mitigation Method”, Presentation in Silicon Errors in Logic
– System Effects (SELSE), 2022

107

Other publications

[1] Space Product Assurance: Techniques for Radiation Effects Mitigation in AASIC and FPGAs
Handbook. Technical report, ESA Requirements and Standards Division, Sept. 2016.

[2] S. Abd Ishak, H. Wu, and U. Tariq. Energy-aware task scheduling on heterogeneous NoC-
based MPSoCs. In Int. Conf. Computer Design (ICCD), pages 165–168, 2017.

[3] J. Abella, F. Cazorla, E. Quiñones, et al. Towards improved survivability in safety-critical
systems. In Int. Symp. On-Line Testing and Robust System (IOLTS), pages 240–245, 07
2011.

[4] J. Abella, C. Hernandez, Ed. Quiñones, F.J. Cazorla, P.R. Conmy, M. Azkarate-askasua,
J. Perez, E. Mezzetti, and T. Vardanega. Wcet analysis methods: Pitfalls and challenges on
their trustworthiness. In Int. Symp. Industrial Embedded Systems (SIES), pages 1–10, 2015.

[5] J. Abella, M. Padilla, J. Del Castillo, and F.J. Cazorla. Measurement-based worst-case
execution time estimation using the coefficient of variation. ACM Trans. Design Automation
of Electronic Systems (TODAES), 22, June 2017.

[6] J. Abella, E. Quiñones, F. Cazorla, et al. Rvc: A mechanism for time-analyzable real-time
processors with faulty caches. pages 97–106, 01 2011.

[7] A. B. Ahmed, D. Fujiki, H. Matsutani, M. Koibuchi, and H. Amano. AxNoC: Low-power
Approximate Network-on-chips Using Critical-path Isolation. In Int. Symp. Networks-on-
Chip (NOCS), number 6, pages 1–8. IEEE, Oct. 2018.

[8] S. Ainsworth and T.M. Jones. Parallel error detection using heterogeneous cores. In Int.
Conf. Dependable Systems and Networks (DSN), pages 338–349, 2018.

[9] Z. Al-bayati, J. Caplan, B. H. Meyer, and H. Zeng. A four-mode model for efficient fault-
tolerant mixed-criticality systems. In Design, Automation Test in Europe Conf. Exhibition
(DATE), pages 97–102, 2016.

[10] H. Amrouch, V.M. van Santen, T. Ebi, V. Wenzel, and J.g Henkel. Towards interdependencies
of aging mechanisms. In Int. Conf. Computer-Aided Design (ICCAD), pages 478–485, 2014.

[11] H. Amrouch, V.M. van Santen, and J. Henkel. Interdependencies of degradation effects and
their impact on computing. IEEE Design & Test, 34(3):59–67, 2017.

[12] J. Anderson, S. Baruah, and B. Brandenburg. Multicore Operating-System Support for Mixed
Criticality. In Int. Workshop Mixed Criticality Systems (WMC), April 2009.

[13] Ma. Anwar, S. Furqan Qadri, and A. Sattar. Green computing and energy consumption issues
in the modern age. IOSR Journal of Computer Engineering, 12:91–98, 01 2013.

[14] K. Asifuzzaman, M. Fernandez, P. Radojković, J. Abella, and F.J. Cazorla. Stt-mram for
real-time embedded systems: Performance and wcet implications. In Int. Symp. Memory
Systems (MEMSYS), page 195–205, New York, NY, USA, 2019. Association for Computing
Machinery.

108

[15] O. Astrachan. Bubble Sort: An Archaeological Algorithmic Analysis. In Proc. ACM Tech.
Symp. on Comput. Sci. Educ. (SIGCSE), SIGCSE’03, pages 1–5, New York, NY, USA, 2003.
Association for Computing Machinery.

[16] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Dynamic and aggressive scheduling
techniques for power-aware real-time systems. In Real-Time Systems Symp. (RTSS), pages
95–105, 2001.

[17] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Optimal reward-based scheduling for
periodic real-time tasks. IEEE Trans. Computers (TC), 50(2):111–130, 2001.

[18] J.R. Azambuja, S. Pagliarini, M. Altieri, et al. A fault tolerant approach to detect transient
faults in microprocessors based on a non-intrusive reconfigurable hardware. Trans. on Nuclear
Science (TNS), 59(4):1117–1124, 2012.

[19] A. Balaji, S. Song, A. Das, N. Dutt, J. Krichmar, N. Kandasamy, and F. Catthoor. A
framework to explore workload-specific performance and lifetime trade-offs in neuromorphic
computing. IEEE Computer Architecture Letters, 18(2):149–152, 2019.

[20] M. Baleani, A. Ferrari, L. Mangeruca, M. Peri, and S. Pezzini. Fault-Tolerant Platforms for
Automotive Safety-Critical. In Int. Conf. Compilers, Architecture and Synthesis for Embedded
Systems (CASES), pages 170–177, May 2004.

[21] B. Barrois, K. Parashar, and O. Sentieys. Leveraging power spectral density for scalable
system-level accuracy evaluation. In Design, Automation Test in Europe Conf. Exhibition
(DATE), page 6, Dresden, Germany, March 2016.

[22] S. Baruah, V. Bonifaci, G. D’Angelo, et al. Mixed-criticality scheduling of sporadic task
systems. In Annual European Symposium on Algorithms (ESA), 2011.

[23] S. Baruah, A. Burns, and R. Davis. Response-time analysis for mixed criticality systems. In
Real-Time Systems Symp. (RTSS), 2011.

[24] S. Baruah, A. Burns, and Z. Guo. Scheduling mixed-criticality systems to guarantee some
service under all non-erroneous behaviors. In Euromicro Conf. Real-Time Systems (ECRTS),
pages 131–138, 2016.

[25] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin. Mixed-criticality scheduling on multipro-
cessors. Real-Time Systems (RTS), 50(1):142–177, January 2014.

[26] I. Bate, A. Burns, and R. I. Davis. A bailout protocol for mixed criticality systems. In
Euromicro Conf. Real-Time Systems (ECRTS), pages 259–268, 2015.

[27] R. Baumann. Soft errors in advanced computer systems. IEEE Design Test of Computers,
22(3):258–266, 2005.

[28] J. F. Benders. Partitioning procedures for solving mixed-variables programming problems.
Numer. Math., 4(1):238–252, 1962.

[29] M.K. Bepary, B.M.S.B. Talukder, and M.T. Rahman. Dram retention behavior with accel-
erated aging in commercial chips. Applied Sciences, 12(9), 2022.

109

[30] M.l Beyer, A. Morozov, K. Ding, S. Ding, and K. Janschek. Quantification of the impact of
random hardware faults on safety-critical ai applications: Cnn-based traffic sign recognition
case study. In Int. Symp. Software Reliability Engineering Workshops (ISSREW), pages 118–
119, 2019.

[31] P.V. Bhanu, P.V. Kulkarni, and J. Soumya. Fault-tolerant network-on-chip design with
flexible spare core placement. ACM J. Emerg. Technol. Comput. Syst., 15(1), 2019.

[32] A. Bhat, S.l Samii, and R. Rajkumar. Practical task allocation for software fault-tolerance and
its implementation in embedded automotive systems. In Real-Time and Embedded Technology
and Applications Symp. (RTAS), pages 87–98, 2017.

[33] B. Bhowmik, S. Biswas, J. K. Deka, and B. B. Bhattacharya. A Low-Cost Test Solution for
Reliable Communication in Networks-on-Chip. J. of Electron. Testing, 35(2):215–243, Apr.
2019.

[34] P. Bieber, F. Boniol, M. Boyer, E. Noulard, and C. Pagetti. New challenges for future avionic
architectures. Embedded Systems: Handbook, pages 1–10, January 2012.

[35] J. Bin, S. Girbal, D. Gracia Perez, A. Grasset, and A. Merigot. Studying co-running avionic
real-time applications on multi-core cots architectures. In European Congress Embedded Real-
Time Systems (ERTS), pages 1–10, February 2014.

[36] C. Bolchini. A software methodology for detecting hardware faults in VLIW data paths.
IEEE Trans. Reliability (TR), 52(4):458–468, December 2003.

[37] A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez. A reliability analysis of a deep neural
network. In Latin American Test Symp. (LATS), pages 1–6, 2019.

[38] R. Bouziane, E. Rohou, and A. Gamatié. Energy-Efficient Memory Mappings based on Partial
WCET Analysis and Multi-Retention Time STT-RAM. In RTNS: Real-Time Networks and
Systems, pages 148–158, Poitiers, France, October 2018.

[39] S. Boyd, A. Ghosh, and A. Magnani. Branch and bound methods. Notes for EE364b, Stanford
University, pages 1–11, 2007.

[40] A. Burns and B. Baruah. Towards a more practical model for mixed criticality systems. In
Real-Time Systems Symp. (RTSS), 2013.

[41] A. Burns and S. Baruah. Timing faults and mixed criticality systems. In Dependable and
Historic Computing, LNCS. Springer, 2011.

[42] R.A. Camponogara-Viera, R. Possamai Bastos, J.-M. Dutertre, O. Potin, M.-L. Flottes,
G. Di Natale, and B. Rouzeyre. Validation Of Single BBICS Architecture In Detecting
Multiple Faults. In Asian Test Symposium (ATS), Mumbai, India, November 2015.

[43] F. Catthoor and G. Groeseneken. Will Chips of the Future Learn How to Feel Pain and Cure
Themselves? IEEE Design Test, 34(5):80–87, October 2017.

[44] P. Li Cavoli, G. Hubert, and J. Busto. Study of atmospheric muon interactions in si nanoscale
devices. 12(12):P12021–P12021, dec 2017.

110

[45] F.J. Cazorla, L. Kosmidis, E. Mezzetti, C. Hernandez, J. Abella, and T. Vardanega. Prob-
abilistic worst-case timing analysis: Taxonomy and comprehensive survey. ACM Computing
Surveys (CS)., 52(1), February 2019.

[46] J.P. Cerrolaza, R. Obermaisser, J. Abella, F.J. Cazorla, K. Grüttner, I. Agirre, H. Ahmadian,
and I. Allende. Multi-core devices for safety-critical systems: A survey. ACM Computing
Surveys (CS), 53(4), aug 2020.

[47] C.K. Chang, S. Lym, N. Kelly, et al. Hamartia: A fast and accurate error injection framework.
In Int. Conf. on Dependable Systems and Networks Workshops (DSN-W), pages 101–108,
2018.

[48] N. Chatterjee, S. Paul, and S. Chattopadhyay. Fault-tolerant dynamic task mapping and
scheduling for network-on-chip-based multicore platform. ACM Trans. Embed. Comput. Syst.,
16(4), 2017.

[49] A. Chen and M.-R. Lin. Variability of resistive switching memories and its impact on crossbar
array performance. In Int. Reliability Physics Symposium, pages MY.7.1–MY.7.4, 2011.

[50] C. Chen, J Panerati, I. Hafnaoui, and G. Beltrame. Static probabilistic timing analysis with
a permanent fault detection mechanism. In Int. Symp. Industrial Embedded Systems (SIES),
pages 1–10, 2017.

[51] C. Chen, J. Panerati, M. Li, and G. Beltrame. Probabilistic timing analysis of timed-
randomised caches with fault detection mechanisms. IET Computers and Digital Techniques,
13, 01 2019.

[52] C. Chen, L. Santinelli, J Hugues, and G. Beltrame. Static probabilistic timing analysis in
presence of faults. In Int. Symp. Industrial Embedded Systems (SIES), pages 1–10, 2016.

[53] G. Chen, N. Guan, K. Huang, and W. Yi. Fault-tolerant real-time tasks scheduling with
dynamic fault handling. Journal of Systems Architecture (JSA), 102:101688, 2020.

[54] G. Chen, K. Huang, and Al. Knoll. Energy optimization for real-time multiprocessor system-
on-chip with optimal DVFS and DPM combination. ACM Trans. Embedded Computing
Systems (TECS), 13(3):111:1–111:21, 2014.

[55] T. Chen, Q. Guo, K. Tang, O. Temam, Z. Xu, Z. Zhou, and Y. Chen. ArchRanker: A ranking
approach to design space exploration. In Int. Symp. Computer Architecture (ISCA), pages
85–96, June 2014.

[56] X. Chen, Z. Lu, Y. Lei, Y. Wang, and S. Chen. Multi-Bit Transient Fault Control For NoC
Links Using 2D Fault Coding Method. In Int. Symp. Networks-on-Chip (NOCS), pages 1–8.
IEEE/ACM, Aug. 2016.

[57] Y. Chen, I. Bayram, and E. Eken. Recent technology advances of emerging memories. IEEE
Design & Test, PP:1–1, 03 2017.

[58] Y.-G. Chen, I.-C. Lin, and J.-T. Ke. Road: Improving reliability of multi-core system via
asymmetric aging. In Int. Conf. Computer-Aided Design (ICCAD), pages 1–8, 2019.

111

[59] Y.-Y Chen et al. An integrated fault-tolerant design framework for vliw processors. In Int’l
Symp. Defect and Fault Tolerance in VLSI Systems (DFT), pages 555–562, Nov 2003.

[60] Y.-Y. Chen and K.-L. Leu. Reliable data path design of VLIW processor cores with compre-
hensive error-coverage assessment. Microprocessors and Microsystems: Embedded Hardware
Design, 34(1):49 – 61, 2010.

[61] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben. Binfi: An efficient fault injector for
safety-critical machine learning systems. In Int. Conf. High Performance Computing, Net-
working, Storage and Analysis (SC), New York, NY, USA, 2019. Association for Computing
Machinery.

[62] Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman, and N. DeBardeleben. Tensorfi:
A flexible fault injection framework for tensorflow applications. In Int. Symp. on Software
Reliability Engineering (ISSRE), pages 426–435, 2020.

[63] Z. Chen, Y. Zhang, Z. Peng, and J. Jiang. A Deterministic-Path Routing Algorithm for
Tolerating Many Faults on Wafer-Level NoC. In Des. Automat. Test in Europe Conf. Exhib.
(DATE), pages 1337–1342, Mar. 2019.

[64] S. Chichin, M. Brundler, D. Portes, and V. Jegu. Capability to embed deep neural networks:
Study on cpu processor in avionics context. In Embedded Real-Time Systems (ERTS), 2020.

[65] H. Chishiro and N. Yamasaki. Practical imprecise computation model: Theory and prac-
tice. In Int. Symp. Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC), pages 198–205, 2014.

[66] L. A. Cortes, P. Eles, and Z. Peng. Quasi-static assignment of voltages and optional cycles
in imprecise-computation systems with energy considerations. IEEE Trans. Very Large Scale
Integr. Syst. (TVLSI), 14(10):1117–1129, 2006.

[67] L. Cucu-Grosjean. Probabilistic Approaches for Time Critical Embedded Systems. In Int.
Works. Verification and Evaluation of Computer and Communication Systems (VECoS),
September 2015.

[68] D. d. Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of mixed-criticality real-time
task sets. In Real-Time Systems Symp. (RTSS), 2009.

[69] T. Dalgaty, N. Castellani, D. Querlioz, and E. Vianello. In-situ learning harnessing in-
trinsic resistive memory variability through markov chain monte carlo sampling. CoRR,
abs/2001.11426, 2020.

[70] W.J. Dally and B.P. Towles. Principles and Practices of Interconnection Networks. Elsevier,
Mar. 2004.

[71] A. Das, A. Kumar, and B. Veeravalli. A Survey of Lifetime Reliability-Aware System-Level
Design Techniques for Embedded Multiprocessor Systems, 2014.

[72] R. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor systems.
ACM Computing Surveys (CS), 43(4), oct 2011.

112

[73] R. Davis and L. Cucu-Grosjean. A survey of probabilistic schedulability analysis techniques
for real-time systems. 6:04:1–04:53, 05 2019.

[74] I. De Albuquerque Silva, A. Carle, T.sand Gauffriau, and C. Pagetti. ACETONE: Predictable
Programming Framework for ML Applications in Safety-Critical Systems. In Euromicro Conf.
Real-Time Systems (ECRTS), volume 231 of Leibniz Int. Proceedings in Informatics (LIPIcs),
pages 3:1–3:19, 2022.

[75] D. de Niz and L. T. X. Phan. Partitioned scheduling of multi-modal mixed-criticality real-time
systems on multiprocessor platforms. In Real-time and embedded Technology and Applications
Symp. (RTAS), 2014.

[76] A. DeOrio, D. Fick, V. Bertacco, D. Sylvester, D. Blaauw, J. Hu, and G. Chen. A Reliable
Routing Architecture and Algorithm for NoCs. IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 31(5):726–739, May 2012.

[77] B. Deveautour, A. Virazel, P. Girard, S. Pravossoudovitch, and V. Gherman. Is aproximate
computing suitable for selective hardening of arithmetic circuits? In Int. Conf. Design
Technology of Integrated Systems In Nanoscale Era (DTIS), pages 1–6, 2018.

[78] J.-F. Deverge and I. Puaut. Safe measurement-based WCET estimation. In Reinhard Wil-
helm, editor, Int. Workshop on Worst-Case Execution Time Analysis (WCET), volume 1 of
OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2007. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[79] S. Di Mascio, A. Menicucci, E. Gill, G. Furano, and C. Monteleone. Leveraging the openness
and modularity of risc-v in space. Journal of Aerospace Information Systems, 16(11):454–472,
2019.

[80] A. Dixit and A. Wood. The impact of new technology on soft error rates. In Int. Reliability
Physics Symp. (IRPS), pages 5B.4.1–5B.4.7, April 2011.

[81] E. Dubrova. Fault tolerant design: an introduction. In Springer, 2008.

[82] E. Dubrova. Fault-Tolerant Design. Fault-Tolerant Design. Springer, 2013.

[83] M. Ebrahimi, M. Daneshtalab, J. Plosila, and H. Tenhunen. Minimal-Path Fault-Tolerant Ap-
proach Using Connection-Retaining Structure in Networks-on-Chip. In Int. Symp. Networks-
on-Chip (NOCS), pages 1–8. IEEE/ACM, Apr. 2013.

[84] A. Esper, G. Nelissen, V. Nélis, and E. Tovar. An industrial view on the common academic
understanding of mixed-criticality systems. Real-Time Systems (RTD), 54(3):745–795, 2018.

[85] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Math. Program., 104(1):91–104,
2005.

[86] T. Fleming and A. Burns. Extending mixed criticality scheduling. In Real-Time Systems
Symp. (RTSS), 2013.

[87] X. Fong, Y. Kim, K. Yogendra, D. Fan, A. Sengupta, A. Raghunathan, and K. Roy. Spin-
transfer torque devices for logic and memory applications : Prospects and perspectives. IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems (TCAD), 35:1–1, 01 2015.

113

[88] B. Fu, Y. Han, H. Li, and X. Li. ZoneDefense: A Fault-Tolerant Routing for 2-D Meshes
Without Virtual Channels. IEEE Trans. Very Large Scale Integration (TVLSI) Systems,
22(1):113–126, Jan. 2014.

[89] F. Gabbay and A. Mendelson. Asymmetric aging effect on modern microprocessors. Micro-
electronics Reliability, 119:114090, 2021.

[90] Y. Gao, L. Han, J. Liu, et al. Minimizing energy consumption for real-time tasks on het-
erogeneous platforms under deadline and reliability constraints. Research Report RR-9403,
Inria - Research Centre Grenoble – Rhône-Alpes, 2021.

[91] P. Gargini. Roadmap Past, Present and Future.

[92] A. Gebregiorgis, H.A. Du Nguyen, J. Yu, R. Bishnoi, M. Taouil, F. Catthoor, and S. Ham-
dioui. A survey on memory-centric computer architectures. J. Emerg. Technol. Comput.
Syst., jun 2022. Just Accepted.

[93] N.J. George, C. Elks, B. Johnson, et al. Transient fault models and avf estimation revisited.
In Int. Conf. Dependable Systems and Networks (DSN), pages 477 – 486, 08 2010.

[94] D. Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran, S. K. S. Hari, D. Sorin,
A. Meixner, A. Biswas, and X. Vera. Architectures for online error detection and recovery in
multicore processors. In Design, Automation Test in Europe Conf. Exhibition (DATE), pages
1–6, March 2011.

[95] C. Gou, A. Benoit, M. Chen, et al. Reliability-aware energy optimization for throughput-
constrained applications on MPSoC. In Int. Conf. Parallel and Distributed Systems (IC-
PADS), pages 1–10, 2018.

[96] Y. Guo, D. Zhu, and H. Aydin. Reliability-aware power management for parallel real-time
applications with precedence constraints. In Int. Green Computing Conf. and Workshops
(ICGSET), pages 1–8, 2011.

[97] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R.d Brown. Mibench: A
free, commercially representative embedded benchmark suite. In Int. Workshop on Workload
Characterization (IWWC), pages 3–14, 01 2002.

[98] S. Hamdioui, D. Gizopoulos, G. Guido, M. Nicolaidis, A. Grasset, and P. Bonnot. Reliability
challenges of real-time systems in forthcoming technology nodes. In Design, Automation Test
in Europe Conf. Exhibition (DATE), pages 129–134, March 2013.

[99] S. Hamdioui, P. Pouyan, H. Li, Y. Wang, A. Raychowdhur, and I. Yoon. Test and reliability
of emerging non-volatile memories. In Asian Test Symposium (ATS), pages 175–183, 2017.

[100] J. Han, M. Lin, D. Zhu, and L.T. Yang. Contention-aware energy management scheme for
NoC-based multicore real-time systems. IEEE Trans. Parallel Distrib. Syst., 26(3):691–701,
2015.

[101] L. Han, L. C. Canon, J. Liu, et al. Improved energy-aware strategies for periodic real-time
tasks under reliability constraints. In Real-Time Systems Symp. (RTSS), pages 17–29, 2019.

114

[102] M.A Hanif and M. Shafique. Dnn-life: An energy-efficient aging mitigation framework for
improving the lifetime of on-chip weight memories in deep neural network hardware architec-
tures. In Design, Automation and Test in Europe Conf. Exhibition (DATE), pages 729–734,
2021.

[103] M. A. Haque, H. Aydin, and D. Zhu. On reliability management of energy-aware real-
time systems through task replication. Trans. on Parallel and Distributed Systems (TPDS),
28(3):813–825, 2017.

[104] D. Hardy and I. Puaut. Wcet analysis of multi-level non-inclusive set-associative instruction
caches. In Real-Time Systems Symp. (RTSS), pages 456–466, 2008.

[105] D. Hardy and I. Puaut. Static probabilistic worst case execution time estimation for ar-
chitectures with faulty instruction caches. Real-Time Systems (RTS), 51(2):128–152, March
2015.

[106] D. Hardy, I. Puaut, and Y. Sazeides. Probabilistic WCET estimation in presence of hardware
for mitigating the impact of permanent faults. In Design, Automation Test in Europe Conf.
Exhibition (DATE), pages 91–96, March 2016.

[107] O. He, S. Dong, W. Jang, J. Bian, and D.Z. Pan. UNISM: Unified scheduling and mapping
for general networks on chip. IEEE Trans. Very Large Scale Integr. Syst., 20(8):1496–1509,
2012.

[108] Y. He, P. Balaprakash, and Y. Li. Fidelity: Efficient resilience analysis framework for deep
learning accelerators. In Int. Symp. Microarchitecture (MICRO), pages 270–281. IEEE, 2020.

[109] J. Henkel, L. Bauer, H. Zhang, S. Rehman, and M. Shafique. Multi-layer dependability: From
microarchitecture to application level. In Design Automation Conference (DAC), pages 1–6,
June 2014.

[110] J.L. Hennessy and D.A. Patterson. A new golden age for computer architecture. Commun.
ACM, 62(2):48–60, jan 2019.

[111] B. Hu, K. Huang, P. Huang, et al. On-the-fly fast overrun budgeting for mixed-criticality
systems. In Int. Conf. Embedded Software (EMSOFT), pages 1–10, 10 2016.

[112] J. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. Irwin. Compiler-assisted
Soft Error Detection Under Performance and Energy Constraints in Embedded Systems.
ACM Trans. Embedded Computing Systems (TECS), 8(4):27:1–27:30, July 2009.

[113] J. Huang, J. O. Blech, A. Raabe, C. Buckl, and A. Knoll. Reliability-Aware Design Opti-
mization for Multiprocessor Embedded Systems. In Euromicro Conf. Digital System Design
(DSD), pages 239–246, August 2011.

[114] K. Huang, X. Jiang, X. Zhang, et al. Energy-efficient fault-tolerant mapping and scheduling
on heterogeneous multiprocessor real-time systems. IEEE Access, 6:57614–57630, 2018.

[115] P. Huang, H. Yang, and L. Thiele. On the scheduling of fault-tolerant mixed-criticality
systems. In Design Automation Conference (DAC), pages 1–6, 2014.

115

[116] W. H. Huang and J. J. Chen. Self-suspension real-time tasks under fixed-relative-deadline
fixed-priority scheduling. In Design, Automation & Test in Europe (DATE), pages 1078–1083,
2016.

[117] G. Hubert et al. A generic platform for remote accelerated tests and high altitude SEU
experiments on advanced ICs: Correlation with MUSCA SEP3 calculations. In Int. On-Line
Testing Symposium (IOLTS), pages 180–180, June 2009.

[118] E. Ibe, H. Taniguchi, Y. Yahagi, et al. Impact of Scaling on Neutron-Induced Soft Error in
SRAMs From a 250 nm to a 22 nm Design Rule. IEEE Trans. on Electron Devices (TED),
57(7):1527–1538, 2010.

[119] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Scheduling of Fault-Tolerant Embedded Sys-
tems with Soft and Hard Timing Constraints. In Design, Automation Test in Europe Conf.
Exhibition (DATE), pages 915–920, March 2008.

[120] J. Johnson, W. Howes, M.J. Wirthlin, et al. Using duplication with compare for on-line error
detection in fpga-based designs. EEE Aerospace Conference, pages 1–11, 2008.

[121] V. Joshi, M. Le Gallo, S. Haefeli, et al. Accurate deep neural network inference using com-
putational phase-change memory. Nature Communications, 11(1), may 2020.

[122] L.R. Juracy, M.T. Moreira, A.M. Amory, and F.G. Moraes. A survey of aging monitors and
reconfiguration techniques. arXiv preprint arXiv:2007.07829, 2020.

[123] M. Kaliorakis, S. Tselonis, A. Chatzidimitriou, et al. Differential fault injection on microar-
chitectural simulators. In Int. Symp. Workload Characterization (ISWC), pages 172–182,
2015.

[124] S. Kang, H. Yang, L. Schor, I. Bacivarov, S. Ha, and L. Thiele. Multi-objective mapping
optimization via problem decomposition for many-core systems. In Symposium on Embedded
Systems for Real-time Multimedia (ESTMedia), pages 28–37, October 2012.

[125] K. Khalil, O. Eldash, A. Kumar, and M. Bayoumi. Self-Healing Hardware Systems: A Review.
Microelectronics Journal, 93:104620, Nov. 2019.

[126] J. Kim, H. Kim, H. Amrouch, J. Henkel, A. Gerstlauer, and K. Choi. Aging Gracefully with
Approximation. In Int. Symp. Circuits and Systems (ISCAS), pages 1–5, May 2019.

[127] N. Kim, B. C. Ward, M. Chisholm, C. Fu, J. H. Anderson, and F. D. Smith. Attacking
the One-Out-Of-m Multicore Problem by Combining Hardware Management with Mixed-
Criticality Provisioning. In Real-Time and Embedded Technology and Applications Symp.
(RTAS), pages 1–12, April 2016.

[128] J.S. Klecka, W.F. Bruckert, and R.L. Jardine. Error self-checking and recovery using lock-step
processor pair architecture, 2002. U.S. Patent 6,393,582 B1.

[129] Y. Ko, S. Kim, H. Kim, and K. Lee. Selective code duplication for soft error protection on
vliw architectures. Electronics, 10(15), 2021.

116

[130] D. Kraak, M. Taouil, S. Hamdioui, P. Weckx, F. Catthoor, A. Chatterjee, A. Singh, H. Wun-
derlich, and N. Karimi. Device aging: A reliability and security concern. In European Test
Symp. (ETS), pages 1–10, May 2018.

[131] A. J.R. Kumar. Statistical analysis of wcet estimation on dnns, 2018.

[132] S. Kundu and S. Chattopadhyay. Network-on-Chip: The Next Generation of System-on-Chip
Integration. Taylor & Francis, 2014.

[133] N. Landeros Muñoz, A. Valero, R. Gran Tejero, and D. Zoni. Gated-cnn: Combating nbti and
hci aging effects in on-chip activation memories of convolutional neural network accelerators.
Journal of Systems Architecture, 128:102553, 2022.

[134] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–44, 05 2015.

[135] J. Lee, Y. Ko, K. Lee, J. Youn, and Y. Paek. Dynamic Code Duplication with Vulnerability
Awareness for Soft Error Detection on VLIW Architectures. ACM Trans. Architecture and
Code Optimization (TACO), 9(4):48:1–48:24, January 2013.

[136] F. Lemonnier, P. Millet, G. M. Almeida, M. Hübner, J. Becker, S. Pillement, O. Sentieys,
M. Koedam, S. Sinha, K. Goossens, C. Piguet, M. Morgan, and R. Lemaire. Towards future
adaptive multiprocessor systems-on-chip: An innovative approach for flexible architectures. In
Int. Conf. Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS),
pages 228–235, July 2012.

[137] D. Li, J.S. Vetter, and W. Yu. Classifying soft error vulnerabilities in extreme-scale scien-
tific applications using a binary instrumentation tool. In Int. Conf on High Performance
Computing, Networking, Storage and Analysis (SC), pages 1–11, 2012.

[138] D. Li and J. Wu. Energy-aware scheduling for frame-based tasks on heterogeneous multipro-
cessor platforms. Int. Conf. Parallel Processing (ICPP), 2012.

[139] D. Li and J. Wu. Minimizing energy consumption for frame-based tasks on heterogeneous
multiprocessor platforms. IEEE Trans. Parallel Distrib. Syst. (TPDS), 26(3):810–823, 2015.

[140] D. Li and J. Wu. Minimizing energy consumption for frame-based tasks on heterogeneous mul-
tiprocessor platforms. IEEE Trans. on Parallel and Distributed Systems (TPDS), 26(3):810–
823, 2015.

[141] G. Li, S.K.S. Hari, M.l Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and S.W. Keckler.
Understanding error propagation in deep learning neural network (dnn) accelerators and ap-
plications. In Int. Conf. for High Performance Computing, Networking, Storage and Analysis
(SC), New York, NY, USA, 2017. Association for Computing Machinery.

[142] H. Li and S. Baruah. Global Mixed-Criticality Scheduling on Multiprocessors. In Euromicro
Conf. Real-Time Systems (ECRTS), pages 166–175, July 2012.

[143] H.-T. Li, C.-Y. Chou, Y.-T. Hsieh, W.-C. Chu, and A.-Y. Wu. Variation-aware reliable
many-core system design by exploiting inherent core redundancy. Trans. Very Large Scale
Integration (VLSI) Systems, 25(10):2803–2816, 2017.

117

[144] J. W. S. Liu, W. K. Shih, K. J. Lin, R. Bettati, and J. Y. Chung. Imprecise computations.
Proc. IEEE, 82(1):83–94, 1994.

[145] M. Liu and B.H. Meyer. Bounding error detection latency in safety critical systems with
enhanced execution fingerprinting. In Int. Symp. Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), pages 47–52, 2016.

[146] W. Liu and C.-H. Chang. Analysis of circuit aging on accuracy degradation of deep neural
network accelerator. In Int. Symp. Circuits and Systems (ISCAS), pages 1–5, 2019.

[147] G. Liva, L. Gaudio, T. Ninacs, and T. Jerkovits. Code Design for Short Blocks: A Survey.
Computing Research Repository (CoRR) - arXiv, Oct. 2016.

[148] A. Lotfi, S. Hukerikar, K. Balasubramanian, P. Racunas, N. Saxena, R. Bramley, and
Y. Huang. Resiliency of automotive object detection networks on gpu architectures. In
Int. Test Conf. (ITC), pages 1–9, 2019.

[149] A. Löfwenmark and S. Nadjm-Tehrani. Fault and timing analysis in critical multi-core sys-
tems: A survey with an avionics perspective. Journal of Systems Architecture (JSA), 87:1–11,
2018.

[150] N. N. Mahatme, S. Jagannathan, T. D. Loveless, L. W. Massengill, B. L. Bhuva, S.-J. Wen,
and R. Wong. Comparison of combinational and sequential error rates for a deep submicron
process. IEEE Trans. Nuclear Science (TNS), 58(6):2719–2725, 2011.

[151] C. Maiza, H. Rihani, J. Rivas, J. Goossens, S. Altmeyer, and R. Davis. A Survey of Timing
Verification Techniques for Multi-Core Real-Time Systems. ACM Computing Surveys (CS),
52(3):56:1–56:38, June 2019.

[152] R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo. WCET Derivation under Single
Core Equivalence with Explicit Memory Budget Assignment. In Euromicro Conf. Real-Time
Systems (ECRTS), volume 76, pages 3:1–3:23, 2017.

[153] S. Martinez, D. Hardy, and I. Puaut. Quantifying wcet reduction of parallel applications by
introducing slack time to limit resource contention. In Int. Conf. Real-Time Networks and
Systems (RTNS), pages 188–197. ACM, 2017.

[154] P. Meloni, G. Tuveri, L. Raffo, E. Cannella, T. Stefanov, O. Derin, L. Fiorin, and M. Sami.
System Adaptivity and Fault-Tolerance in NoC-based MPSoCs: The MADNESS Project
Approach. In Euromicro Conf. Digital System Design (DSD), pages 517–524, Sep. 2012.

[155] R. Mercier. Multiple Fault Mitigation in Network-on-Chip Architectures Through A Bit-
Shuffling Method. Theses, Université de Rennes 1, December 2021.

[156] M. Micheletto, R. Santos, and J. Orozco. Using bioinspired meta-heuristics to solve reward-
based energy-aware mandatory/optional real-time tasks scheduling. In Brazilian Symposium
on Computing System Engineering (SBESC), pages 132–135, 2015.

[157] T. Mithun Haridas, V. Ananthanarayanan, R. Naveen, and A. Rajeswari. Reliable and Af-
fordable Embedded System Solution for Continuous Blood Glucose Maintaining System with
Wireless Connectivity to Blood Glucose Measuring System. In Amrita Int. Conf. Women in
Computing (AICWIC), January 2013.

118

[158] K. Mitropoulou, V. Porpodas, and M. Cintra. CASTED: Core-Adaptive Software Transient
Error Detection for Tightly Coupled Cores. In Int. Symp. Parallel and Distributed Processing
(ISPA), pages 513–524, May 2013.

[159] S. Mittal. A survey of techniques for architecting and managing asymmetric multicore pro-
cessors. ACM Computing Surveys (CS)., 48(3):45:1–45:38, 2016.

[160] H. J. Mohammed, W. N. Flayyih, and F. Z. Rokhani. Tolerating Permanent Faults in the In-
put Port of the Network on Chip Router. Journal of Low Power Electronics and Applications,
9(1):1–11, Feb. 2019.

[161] A.h Mokhtarpour, A.M. Monazzah, and H. Farbeh. Pb-ifmc: A selective soft error protection
method based on instruction fault masking capability. pages 1–9, 01 2020.

[162] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos. Mixed-Criticality Real-
Time Scheduling for Multicore Systems. In Int. Conf. Computer and Information Technology
(CIT), pages 1864–1871, 2010.

[163] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst. 5 envision : A 0 . 26-to-10
tops / w subword-parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural
network processor in 28 nm fdsoi. In Int. Solid-State Circuits Conf. (ISSCC), 2017.

[164] C. Moreno and S. Fischmeister. Accurate measurement of small execution times—getting
around measurement errors. IEEE Embedded Systems Letters, 9(1):17–20, March 2017.

[165] A. Moses. RADAR Based Collision Avoidance for Unmanned Aircraft Systems. PhD thesis,
Dep. Engineering, University of Denver, January 2013.

[166] A. Mukherjee and A. S. Dhar. Triple Transistor Based Triple Modular Redundancy With
Embedded Voter Circuit. Microelectronics Journal, 87:101 – 109, May 2019.

[167] S. Mukherjee, J. Emer, and S. Reinhardt. The soft error problem: an architectural per-
spective. In Int. Symp. High-Performance Computer Architecture (HPCA), pages 243–247,
February 2005.

[168] O.B. Mutlu, G.K. Gioiosa, J. Manzano, O. Unsal, S.Chatterjee, and S. Krishnamoorthy.
Characterization of the impact of soft errors on iterative methods. 4 2018.

[169] O.B. Mutlu, G. Kestor, A. Cristal, O. Unsal, and S. Krishnamoorthy. Ground-truth prediction
to accelerate soft-error impact analysis for iterative methods. In Int. Conf. High Performance
Computing, Data, and Analytics (HiPC), pages 333–344, 2019.

[170] L.H. Mutuel. Single Event Effects Mitigation Techniques Report. Federal Aviation Adminis-
tration, 15(62):470, Feb. 2016.

[171] I. Méndez-Dı́az, J. Orozco, R. Santos, and P. Zabala. Energy-aware scheduling mandatory/op-
tional tasks in multicore real-time systems. Int. Trans. Operational Research, 24(1-2):173–198,
2017.

[172] S.M. Nair, M. Mayahinia, M.B. Tahoori, et al. Workload-aware electromigration analysis in
emerging spintronic memory arrays. IEEE Trans. Device and Materials Reliability (TDMR),
21(2):258–266, 2021.

119

[173] A. Najafi, L. Bamberg, A. Najafi, and A. Garcia-Ortiz. Integer-Value Encoding for Approxi-
mate On-Chip Communication. IEEE Access, 7:179220–179234, Dec. 2019.

[174] Y. Nakamura and K. Hiraki. Heterogeneous functional units for high speed fault-tolerant
execution stage. In Pacific Rim Int. Symp. Dependable Computing (PRDC), pages 260–263,
2007.

[175] A. Namazi, M. Abdollahi, S. Safari, and S. Mohammadi. A majority-based reliability-aware
task mapping in high-performance homogenous NoC architectures. ACM Trans. Embedded
Computing Systems (TECS), 17(1), 2017.

[176] S. R. Nandakumar, Ma. Le Gallo, C. Piveteau, et al. Mixed-precision deep learning based on
computational memory. CoRR, abs/2001.11773, 2020.

[177] N. Navet and F. Simonot-Lion. Fault tolerant services for safe in-car embedded systems.
Embedded Systems: Handbook, January 2005.

[178] H. Nguyen, J. Yu, M. Lebdeh, M. Taouil, S. Hamdioui, and F. Catthoor. A classification of
memory-centric computing. J. Emerg. Technol. Comput. Syst., 16(2), jan 2020.

[179] J. Nowotsch and M. Paulitsch. Quality of Service Capabilities for Hard Real-time Applications
on Multi-core Processors. In Int. Conf. Real-Time Networks and Systems (RTNS), pages 151–
160, 2013.

[180] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and M. Schmidt. Multi-core
Interference-Sensitive WCET Analysis Leveraging Runtime Resource Capacity Enforcement.
In Euromicro Conf. Real-Time Systems (ECRTS), pages 109–118, July 2014.

[181] F. Oboril and M. Tahoori. Cross-Layer Approaches for an Aging-Aware Design Space Ex-
ploration for Microprocessors. In Workshop on Early Reliability Modeling for Aging and
Variability in Silicon Systems (ERMAVSS), 2016.

[182] I. O’Connor, M. Cantan, C. Marchand, B. Vilquin, S. Slesazeck, E.T. Breyer, H. Mulaos-
manovic, T. Mikolajick, B. Giraud, J.-P. Noël, A. Ionescu, and I. Stolichnov. Prospects for
energy-efficient edge computing with integrated hfo2-based ferroelectric devices. In Int. Conf.
Very Large Scale Integration (VLSI-SoC), pages 180–183, 2018.

[183] K. Pang, V. Fresse, and S. Yao. Communication-aware branch and bound with cluster-based
latency-constraint mapping technique on network-on-chip. Journal of Supercomputing (JS),
72(6):2283–2309, 2016.

[184] M. Paolieri, J. Mische, S. Metzlaff, M. Gerdes, E. Quiñones, S. Uhrig, T. Ungerer, and
F. Cazorla. A Hard Real-time Capable Multi-core SMT Processor. ACM Trans. Embedded
Computing Systems (TECS), 12(3):79:1–79:26, April 2013.

[185] A. Papadopoulos, E. Bini, S. Baruah, et al. AdaptMC: A Control-Theoretic Approach for
Achieving Resilience in Mixed-Criticality Systems. In Euromicro conf. Real-Time Systems
(ECRTS), pages 14:1–14:22, 2018.

[186] M. K. Papamichael and J. C. Hoe. CONNECT: Re-examining Conventional Wisdom for
Designing Nocs in the Context of FPGAs. In Int. Symp. Field-Programmable Gate Arrays
(FPGA), pages 37–46. ACM/SIGDA, Feb. 2012.

120

[187] A. Pathak and V. K. Prasanna. Energy-efficient task mapping for data-driven sensor network
macroprogramming. IEEE Trans. Comput., 59(7):955–968, 2010.

[188] R. Pathan. Fault-tolerant and real-time scheduling for mixed-criticality systems. Real-Time
Systems (RTS), 50, 07 2014.

[189] R. Pathan. Real-time scheduling algorithm for safety-critical systems on faulty multicore
environments. Real-Time Systems (RTS), 53, 01 2017.

[190] D. A. Patterson. Future of computer architecture, 2008.

[191] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A Predictable
Execution Model for COTS-Based Embedded Systems. In Real-time and embedded Technology
and Applications Symp. (RTAS), pages 269–279, April 2011.

[192] Z. Peng. Building reliable embedded systems with unreliable components. In Int. Conf.
Signals and Electronic Circuits (ICSES), pages 9–13, Sep. 2010.

[193] M. Pignol. Dmt and dt2s: two fault-tolerant architectures developed by cnes for cots-based
spacecraft supercomputer. In Int. On-Line Testing Symp. (IOLTS), pages 10 pp.–, July 2006.

[194] B. Pratt, M. Fuller, and M. Wirthlin. Reduced-precision redundancy on fpgas. Int. Journal
of Reconfigurable Computing (JRC), 24(6):10–20, 2011.

[195] R. Psiakis. Performance Optimization Mechanisms for Fault-Resilient VLIW Processors.
Theses, Université de Rennes 1, December 2018.

[196] G. Psychou, D. Rodopoulos, M. M. Sabry, T. Gemmeke, D. Atienza, T. G. Noll, and
F. Catthoor. Classification of resilience techniques against functional errors at higher ab-
straction layers of digital systems. ACM Computing Surveys (CS), 50(4):50:1–50:38, October
2017.

[197] X. Qi, D. Zhu, and H. Aydin. Global scheduling based reliability-aware power management
for multiprocessor real-time systems. Real Time Systems (RTS), 47(2):109–142, 2011.

[198] L. P. Qian, Y. J. A. Zhang, Y. Wu, and J. Chen. Joint base station association and power con-
trol via Benders’ decomposition. IEEE Trans. Wireless Communications (TWC), 12(4):1651–
1665, 2013.

[199] Y. Qin, G. Zeng, R. Kurachi, Y. Matsubara, and H. Takada. Execution-variance-aware task
allocation for energy minimization on the big. little architecture. Sustainable Computing:
Informatics and Systems (SCIS), 22:155–166, 2019.

[200] G. Quan and V. Chaturvedi. Feasibility analysis for temperature-constraint hard real-time
periodic tasks. IEEE Trans. on Industrial Informatics, 6(3):329–339, 2010.

[201] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch. Methods for fault tolerance in networks-on-
chip. ACM Computing Surveys (CS), 46(1), 2013.

[202] S. Rai, M. Liu, A. Gebregiorgis, D. Bhattacharjee, K. Chakrabarty, S. Hamdioui, A. Chat-
topadhyay, J. Trommer, and A. Kumar. Perspectives on emerging computation-in-memory
paradigms. In Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
1925–1934, 2021.

121

[203] J. Ramkumar and M. Tulika. Temperature aware task sequencing and voltage scaling. In
Int. Conf. Computed Aided Design (ICCAD), pages 618–623, 2008.

[204] C. D. Randazzo and H. P. L. Luna. A comparison of optimal methods for local access
uncapacitated network design. Annals of Op. Res., 106(1):263–286, 2001.

[205] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time
object detection. In Conf. Computer Vision and Pattern Recognition (CVPR), pages 779–788,
2016.

[206] S. Rehman, M. Shafique, and J. Henkel. Reliable Software for Unreliable Hardware: A Cross
Layer Perspective. Springer Publishing, 2016.

[207] G.A. Reis, J. Chang, R. Vachharajani, N.and Rangan, and D.I. August. Swift: Software
implemented fault tolerance. In Int’l Symp. Code Generation and Optimization (ISCGO),
pages 243–254, 2005.

[208] M. Riera, R. Canal, J. Abella, et al. A detailed methodology to compute soft error rates
in advanced technologies. In Design, Automation Test in Europe Conf. Exhibition (DATE),
pages 217–222, 2016.

[209] H. Rihani, M. Moy, C. Maiza, R. Davis, and S. Altmeyer. Response Time Analysis of Syn-
chronous Data Flow Programs on a Many-Core Processor. In Int. Conf. Real-Time Networks
and Systems (RTNS), pages 67–76, 2016.

[210] M. Rinard. Obtaining and Reasoning About Good Enough Software. In Design Automation
Conference (DAC), pages 930–935, 2012.

[211] D. Rodopoulos, S. Corbetta, G. Massari, S. Libutti, F. Catthoor, Y. Sazeides, C. Nicopou-
los, A. Portero, E. Cappe, R. Vavŕık, V. Vondrák, D. Soudris, F. Sassi, A. Fritsch, and
W. Fornaciari. HARPA: Solutions for dependable performance under physically induced per-
formance variability. In Int. Conf. Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS), pages 270–277, July 2015.

[212] D. Rodopoulos, G. Psychou, M.M. Sabry, et al. Classification framework for analysis and
modeling of physically induced reliability violations. ACM Computing Surveys (CS), 47(3),
February 2015.

[213] S. Rokicki, D. Pala, J. Paturel, and O. Sentieys. What you simulate is what you synthesize:
Designing a processor core from c++ specifications. In Int Conf Computer-Aided Design
(ICCAD), pages 1–8, November 2019.

[214] B. Rouxel, S. Derrien, and I. Puaut. Tightening Contention Delays While Scheduling Par-
allel Applications on Multi-core Architectures. ACM Trans. Embedded Computing Systems
(TECS), 16(5s):164:1–164:20, September 2017.

[215] B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut. Hiding Communication Delays in Contention-
Free Execution for SPM-Based Multi-Core Architectures. In Euromicro Conf. on Real-Time
Systems (ECRTS), pages 25:1–25:24, 2019.

122

[216] Y. Rui, C. Qinqin, L. Zengwu, and S. Yanmei. Multi-objective evolutionary design of selective
triple modular redundancy systems against SEUs. Chinese Journal of Aeronautics, 28(3):804
– 813, 2015.

[217] A. Ruospo, A. Bosio, A. Ianne, and E. Sanchez. Evaluating convolutional neural networks
reliability depending on their data representation. In Euromicro Conf. Digital System Design
(DSD), pages 672–679, 2020.

[218] C. Rusu, R.i Melhem, and D. Mossé. Maximizing rewards for real-time applications with
energy constraints. ACM Trans. Embed. Comput. Syst. (TECS), 2(4):537–559, 2003.

[219] C. A. Rusu, R. Melhem, and D. Mosse. Maximizing the system value while satisfying time
and energy constraints. IBM Journal of Research and Development, 47(5/6):689–702, 2003.

[220] SAE. Aerospace recommended practices 4754a - development of civil aircraft and systems,
2010. SAE.

[221] S. Safari, M. Ansari, G. Ershadi, et al. On the scheduling of energy-aware fault-tolerant
mixed-criticality multicore systems with service guarantee exploration. Trans. on Parallel
and Distributed Systems (TPDS), 30(10):2338–2354, 2019.

[222] S. Sahoo, B. Veeravalli, and A. Kumar. A Hybrid Agent-based Design Methodology for
Dynamic Cross-layer Reliability in Heterogeneous Embedded Systems. In Design Automation
Conference (DAC), pages 38:1–38:6, 2019.

[223] S.S. Sahoo, B. Ranjbar, and A. Kumar. Reliability-aware resource management in multi-
/many-core systems: A perspective paper. Journal of Low Power Electronics and Applica-
tions, 11:7, 01 2021.

[224] S. Saidi, R. Ernst, S. Uhrig, H. Theiling, and B. Dinechin. The Shift to Multicores in Real-
Time and Safety-Critical Systems. In Int. Conf. Hardware/Software Codesign and System
Synthesis (CODES+ISSS), October 2015.

[225] M. Salehi, A. Ejlali, and B. M. AI-Hashimi. Two-phase low-energy n-modular redundancy
for hard real-time multi-core systems. Trans. on Parallel and Distributed Systems (TPDS),
27(5):1497–1510, 2016.

[226] M. Salehi, M. K. Tavana, S. Rehman, et al. DRVS: Power-efficient reliability management
through dynamic redundancy and voltage scaling under variations. In Int. Symp. Low Power
Electronics and Design (ISLPED), pages 225–230, 2015.

[227] C. E. Salloum, M. Elshuber, O. Höftberger, H. Isakovic, and A. Wasicek. The ACROSS
MPSoC – A New Generation of Multi-core Processors Designed for Safety-Critical Embedded
Systems. In Euromicro Conf. Digital System Design (DSD), pages 105–113, September 2012.

[228] A. Sánchez-Macián, P. Reviriego, and J. A. Maestro. Hamming SEC-DAED and Extended
Hamming SEC-DED-TAED Codes Through Selective Shortening and Bit Placement. IEEE
Trans. Device and Materials Reliability, 14(1):574–576, Mar. 2014.

[229] F. Santy, L. George, P. Thierry, et al. Relaxing mixed-criticality scheduling strictness for
task sets scheduled with fp. In Euromicro Conf. Real-Time Systems (ECRTS), 2012.

123

[230] P. Saraswat, P. Pop, and J. Madsen. Task Migration for Fault-tolerance in Mixed-criticality
Embedded Systems. SIGBED Rev., 6(3):6:1–6:5, October 2009.

[231] P. K. Saraswat, P. Pop, and J. Madsen. Task Mapping and Bandwidth Reservation for Mixed
Hard/Soft Fault-Tolerant Embedded Systems. In IEEE Real-Time and Embedded Technology
and Applications Symp. (RTAS), pages 89–98, April 2010.

[232] A. Sartor, A. Lorenzon, L. Carro, F. Kastensmidt, S. Wong, and A. Beck. A Novel Phase-
Based Low Overhead Fault Tolerance Approach for VLIW Processors. In IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pages 485–490, July 2015.

[233] A. Sartor, A. Lorenzon, L. Carro, F. Kastensmidt, S. Wong, and A. Beck. Exploiting Idle
Hardware to Provide Low Overhead Fault Tolerance for VLIW Processors. ACM Trans.
Journal on Emerging Technologies in Computing (JETC), 13(2):13:1–13:21, January 2017.

[234] A. Sartor, A. Lorenzon, S. Kundu, I. Koren, and A. Beck. Adaptive and Polymorphic VLIW
Processor to Optimize Fault Tolerance, Energy Consumption, and Performance. In Int. Conf.
Computing Frontiers (CF), 2018.

[235] A. Sartor, S. Wong, and A. Beck. Adaptive ILP control to increase fault tolerance for VLIW
processors. In Int. Conf.Application-specific Systems, Architectures and Processors (ASAP),
pages 9–16, July 2016.

[236] A.L. Sartor, P.H. Becker, and A.C. Beck. A fast and accurate hybrid fault injection platform
for transient and permanent faults. 2018.

[237] M. N. S. M. Sayuti and L. S. Indrusiak. Real-time low-power task mapping in networks-on-
chip. In Proc. IEEE ISVLSI, pages 14–19, 2013.

[238] M. Schözel. HW/SW co-detection of transient and permanent faults with fast recovery in
statically scheduled data paths. In Design, Automation and Test in Europe Conf. Exhibition
(DATE), pages 723–728, March 2010.

[239] N. Seifert, B. Gill, S. Jahinuzzaman, et al. Soft Error Susceptibilities of 22 nm Tri-Gate
Devices. IEEE Trans. Nuclear Science (TNS), 59, 2012.

[240] H. Shah, A. Coombes, A. Raabe, K. Huang, and A.s Knoll. Measurement based wcet analysis
for multi-core architectures. In Int. Conf. Real-Time Networks and Systems (RTNS), RTNS
’14, page 257–266, New York, NY, USA, 2014. Association for Computing Machinery.

[241] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi. Modeling the effect of
technology trends on the soft error rate of combinational logic. In Inte. Conf. Dependable
Systems and Networks (DSN), pages 389–398, June 2002.

[242] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam. Mitigation of Radiation Effects in SRAM-
Based FPGAs for Space Applications. ACM Computing Surveys (CS), 47(2):37:1–37:34,
January 2015.

[243] M.T. Sim and Y. Zhuang. A dual lockstep processor system-on-a-chip for fast error recovery
in safety-critical applications. In Industrial Electronics Society Conf. (IECON), pages 2231–
2238, 2020.

124

[244] S. Skalistis, F. Angiolini, A. Simalatsar, and G. De Micheli. Safe and Efficient Deployment
of Data-Parallelizable Applications on Many-Core Platforms: Theory and Practice. IEEE
Design & Test, 35(4):7–15, 2018.

[245] S. Skalistis and A. Simalatsar. Worst-case execution time analysis for many-core architectures
with NoC. In Int. Conf. Formal Modelling and Analysis of Timed Systems (FORMATS),
August 2016.

[246] S. Skalistis and A. Simalatsar. Near-optimal deployment of dataflow applications on many-
core platforms with real-time guarantees. In Design, Automation Test in Europe Conf. Ex-
hibition (DATE), pages 752–757, March 2017.

[247] M. Slijepcevic, L. Kosmidis, J. Abella, et al. Timing verification of fault-tolerant chips for
safety-critical applications in harsh environments. IEEE Micro, 34:8–19, 11 2014.

[248] M. Slijepcevic, L. Kosmidis, J. Abella, E. Quiñones, and F.J. Cazorla. Dtm: Degraded test
mode for fault-aware probabilistic timing analysis. In Euromicro Conf. Real-Time Systems
(ECRTS), pages 237–248, 2013.

[249] H. Su, T. Lu, C. Feng, and L. Chen. Triple module redundancy reliability framework design
based on heterogeneous multi-core processor. In Int. Conf. Information and Communication
Technology (ICICT), pages 504–511, 2020.

[250] H. Su, D. Zhu, and S. Brandt. An elastic mixed-criticality task model and early-release edf
scheduling algorithms. ACM Trans. Des. Autom. Electron. Syst. (TODAES), 22(2), December
2016.

[251] H. Tabkhi, M. Sabbagh, and G. Schirner. Power-efficient real-time solution for adaptive vision
algorithms. IET Computers Digital Techniques, 9(1):16–26, 2015.

[252] B. Taylor, Q. Zheng, Z. Li, S. Li, and Y. Chen. Processing-in-memory technology for ma-
chine learning: From basic to asic. IEEE Trans. Circuits and Systems II: Express Briefs,
69(6):2598–2603, 2022.

[253] Texas Instruments. TMS320C6678 Multicore fixed and floating-point digital signal processor.
Technical Report SPRS691D, TI, 2013.

[254] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET prediction by separated
cache and path analyses. Real Time Systems (RTS), 18(2/3):157–179, 2000.

[255] W. Thies and S. Amarasinghe. An empirical characterization of stream programs and its
implications for language and compiler design. In Int. Conf. Parallel Architectures and Com-
pilation Techniques (PACT), pages 365–376. ACM, 2010.

[256] C. Torres-Huitzil and B. Girau. Fault and error tolerance in neural networks: A review. IEEE
Access, 5:17322–17341, 2017.

[257] S. Tosun. Energy- and reliability-aware task scheduling onto heterogeneous MPSoC architec-
tures. Journal of Supercomputing (JS), 62(1), 2012.

125

[258] D. Trilla, C. Hernandez, J. Abella, and F.J. Cazorla. Aging assessment and design en-
hancement of randomized cache memories. Trans. Device and Materials Reliability (TDMR),
17(1):32–41, 2017.

[259] I. Tuzov, P. Andreu, L. Medina, T. Picornell, A. Robles, P. Lopez, J. Flich, and C. Hernández.
Improving the robustness of redundant execution with register file randomization. In Int.
Conf. Computer Aided Design (ICCAD), page 1–9. IEEE Press, 2021.

[260] I. Tuzov, D. de Andrés, and J. Ruiz. Accurate Robustness Assessment of HDL Models
Through Iterative Statistical Fault Injection. In European Dependable Computing Conf.
(EDCC), pages 1–8, September 2018.

[261] T. Ungerer, C. Bradatsch, M. Gerdes, F. Kluge, et al. parMERASA – Multi-core Execution
of Parallelised Hard Real-Time Applications Supporting Analysability. In Euromicro Conf.
Digital System Design (DSD), pages 363–370, September 2013.

[262] A. Vallero, A. Savino, A. Chatzidimitriou, et al. Syra: Early system reliability analysis
for cross-layer soft errors resilience in memory arrays of microprocessor systems. Trans.
Computers (TC), 68(5):765–783, 2019.

[263] S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution
time assurance. In Real-Time Systems Symp. (RTSS), 2007.

[264] P. Voudouris, P. Stenström, and R. Pathan. Bounding the execution time of parallel appli-
cations on unrelated multiprocessors. Real-time Systems (RTS), 2021.

[265] N.J. Wang, A. Mahesri, and S.J. Patel. Examining ace analysis reliability estimates using
fault-injection. In Int. Symposium on Computer Architecture (ISCA), page 460–469, 2007.

[266] S. Wasly and R. Pellizzoni. A Dynamic Scratchpad Memory Unit for Predictable Real-Time
Embedded Systems. In Euromicro Conf. Real-Time Systems (ECRTS), pages 183–192, July
2013.

[267] T. Wei, J. Zhou, K. Cao, P. Cong, M. Chen, G. Zhang, X. S. Hu, and J. Yan. Cost-constrained
QoS optimization for approximate computation real-time tasks in heterogeneous MPSoCs.
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst (TCAD)., 37(9):1733–1746, 2018.

[268] R. Wilhelm, J. Engblom, A. Ermedahl, and othersr. The worst-case execution-time problem
- overview of methods and survey of tools. ACM Trans. Embedded Comput. Syst. (TECS),
7, 01 2008.

[269] M. Wilkening, V. Sridharan, S. Li, et al. Calculating architectural vulnerability factors for
spatial multi-bit transient faults. In Int. Symposium on Microarchitecture (MICRO), pages
293–305, 2014.

[270] H.-S. Wong, S. Raoux, S. Kim, J. Liang, J. Reifenberg, B. Rajendran, M. Asheghi, and
K. Goodson. Phase change memory. Proceedings of the IEEE, 98, 12 2010.

[271] P. Wong, H.Y Lee, S. Yu, Y.H. Chen, Y. Wu, P. Chen, B. Lee, F. Chen, and M.-J. Tsai.
Metal–oxide rram. Proceedings of the IEEE, 100:1951, 06 2012.

126

[272] D. Xiang, K. Chakrabarty, and H. Fujiwara. A Unified Test and Fault-Tolerant Multicast
Solution For Network-on-Chip Designs. In IEEE Int. Test Conf. (ITC), pages 1–9, Nov. 2016.

[273] G. Xie, Y. Chen, Y. Liu, et al. Resource consumption cost minimization of reliable parallel
applications on heterogeneous embedded systems. IEEE Trans. on Industrial Informatics
(TII), 13(4):1629–1640, 2017.

[274] G. Xie, Y. Chen, X. Xiao, et al. Energy-efficient fault-tolerant scheduling of reliable paral-
lel applications on heterogeneous distributed embedded systems. IEEE Trans. Sustainable
Computing (TSC), 3(3):167–181, 2018.

[275] G. Xie, Y. Chen, X. Xiao, et al. Energy-efficient fault-tolerant scheduling of reliable parallel
applications on heterogeneous distributed embedded systems. IEEE Trans. on Sustainable
Computing (TSC), 3(3):167–181, 2018.

[276] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Reliability-aware Co-synthesis
for Embedded Systems. Journal of VLSI Signal Processing Systems, 49(1):87–99, October
2007.

[277] H. Yu, Y. Ha, and B. Veeravalli. Quality-driven dynamic scheduling for real-time adaptive
applications on multiprocessor systems. IEEE Trans. Computers (TC), 62(10):2026–2040,
2013.

[278] H. Yu, B. Veeravalli, and Y. Ha. Dynamic scheduling of imprecise-computation tasks in
maximizing qos under energy constraints for embedded systems. In Asia and South Pacific
Design Automation Conf. (ASP-DAC), pages 452–455, 2008.

[279] H. Yu, B. Veeravalli, Y. Ha, and S. Luo. Dynamic scheduling of imprecise-computation
tasks on real-time embedded multiprocessors. In Int. Conf. Computer Science and Education
(ICCSE), pages 770–777, 2013.

[280] Q. Yu and P. Ampadu. Adaptive Error Control for NoC Switch-to-Switch Links in a Variable
Noise Environment. In Int. Symp. Defect and Fault-Tolerance in VLSI Systems (DFT), pages
352–360. IEEE, Oct. 2008.

[281] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory Access Control in Multipro-
cessor for Real-Time Systems with Mixed Criticality. In Euromicro Conf. Real-Time Systems
(ECRTS), pages 299–308, July 2012.

[282] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard: Memory bandwidth
reservation system for efficient performance isolation in multi-core platforms. In Real-Time
and Embedded Technology and Applications Symp. (RTAS), pages 55–64, April 2013.

[283] L. Zhang, K. Li, K. Li, et al. Joint optimization of energy efficiency and system reliability
for precedence constrained tasks in heterogeneous systems. Int. Journal of Electrical Power
&Energy Systems, 78:499–512, 2016.

[284] B. Zhao, H. Aydin, and D. Zhu. On maximizing reliability of real-time embedded applications
under hard energy constraint. IEEE Trans. Industrial Informatics (TII), 6(3):316–328, 2010.

127

[285] S. Zhao, X. Dai, I. Bate, et al. Dag scheduling and analysis on multiprocessor systems:
Exploitation of parallelism and dependency. In Real-Time Systems Symp. (RTSS), pages
128–140, 2020.

[286] J. Zhou, J. Yan, T. Wei, M. Chen, and X. S. Hu. Energy-adaptive scheduling of imprecise
computation tasks for QoS optimization in real-time MPSoC systems. In Design, Automation
& Test in Europe (DATE), pages 1402–1407, 2017.

[287] D. Zhu, R. Melhem, and D. Mosse. The effects of energy management on reliability in real-
time embedded systems. Int. Conf. Computer Aided Design (ICCAD), pages 35–40, 2004.

[288] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee. FlexPRET: A processor platform for
mixed-criticality systems. In Real-Time and Embedded Technology and Applications Symp.
(RTAS), pages 101–110, April 2014.

[289] N. Zompakis, M. Noltsis, L. Ndreu, Z. Hadjilambrou, P. Englezakis, P. Nikolaou, A. Portero,
S. Libutti, G. Massari, F. Sassi, A. Bacchini, C. Nicopoulos, Y. Sazeides, R. Vavrik, M. Go-
lasowski, J. Sevcik, V. Vondrak, F. Catthoor, W. Fornaciari, and D. Soudris. HARPA:
Tackling physically induced performance variability. In Design, Automation Test in Europe
Conf. Exhibition (DATE), pages 97–102, March 2017.

128

	Introduction and Motivation
	Context
	State-of-the-Art (SoA) and positioning of current contributions
	WCET-Aware (WA) techniques
	Fault-Aware (FA) techniques
	WCET-aware (WA) and Fault-Aware (FA) techniques

	Conclusions

	WCET-aware task deployment for multicore architectures
	Interference-pessimistic design-time mapping for IC tasks
	Context
	State-of-the-Art
	Contributions
	System model
	General problem formulation
	Optimal decomposition-based method
	Accelerated optimal decomposition-based method
	Heuristic methods
	Evaluation

	Interference-controlled run-time adaptation of isWCET time-triggered task execution
	Context
	State-of-the-Art
	Contributions
	System model
	Enforcing partial order through fine-grained protection mechanism
	Relaxing partial order mechanism
	Evaluation

	Risk-permissive run-time adaptation of task execution in mixed-critical systems
	Context
	State-of-the-Art
	Contributions
	System model
	Design time analysis for high criticality tasks
	Run-time control mechanism
	Evaluation

	Conclusions

	Fault-aware techniques for hardware design
	Run-time instruction re-scheduling for VLIW processors
	Context
	State-of-the-Art
	Contributions
	System model
	Fault model
	Dynamic instruction replication and scheduling mechanism
	Cluster-based instruction replication and scheduling mechanism
	Coarse-grained and fine-grained dynamic instruction scheduling mechanism
	Evaluation

	Run-time data shuffling for NoC
	Context
	State-of-the-art
	Contributions
	System model
	Fault model
	Basic Bit-Shuffling method
	Region-based Bit-Shuffling method
	Evaluation

	Cross-layer reliability analysis for complex hardware designs
	Context
	State-of-the-Art
	Contributions
	Fault models through Technology and Circuit Analysis
	Error patterns through Gate-Level Analysis
	Vulnerability metrics through Microarchitecture-Level Analysis
	Evaluation

	Conclusions

	WCET- and fault-aware task deployment for multicore architectures
	Design-time mapping under different DVFS schemes
	Context
	State-of-the-Art
	Contributions
	System model
	General problem formulation
	Optimal solution
	Heuristic methods
	Evaluation

	Design-time mapping considering NoC routing
	Context
	State-of-the-Art
	Contributions
	System Model
	Problem Formulation
	Optimal approach
	Heuristic method
	Evaluation

	Conclusions

	Perspectives
	Impact of hardware faults on timing behavior
	Real-time and reliable AI hardware accelerators
	Workload-dependent aging and multiple reliability threats
	Real-time and reliable emerging technologies
	Conclusions

