
HAL Id: tel-03959992
https://hal.science/tel-03959992

Submitted on 27 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of novel visual representations and tools applied
to plant pangenome visualization

Éloi Durant

To cite this version:
Éloi Durant. Design of novel visual representations and tools applied to plant pangenome visualization.
Genetics. Université de montpellier, 2022. English. �NNT : �. �tel-03959992�

https://hal.science/tel-03959992
https://hal.archives-ouvertes.fr

THÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITÉ DE MONTPELLIER

En Génétique et Génomique

École doctorale GAIA

Unité de recherche DIADE

 Devant le jury composé de

Tobias ISENBERG, Directeur de Recherche, INRIA, Université Paris-Saclay, Orsay, France

Kay NIESELT, Full Professor, IBMI, University of Tübingen, Tübingen, Allemagne

Anne-Françoise ADAM-BLONDON, Directrice de Recherche, INRAE, Versailles, France

Matthieu CONTE, Chef d’équipe, SYNGENTA SEEDS, Saint-Sauveur, France

Mohammad GHONIEM, Directeur de Recherche, LIST, Esch-sur-Alzette, Luxembourg

Eugénie HEBRARD, Directrice de Recherche, IRD, Montpellier, France

Éric RIVALS, Directeur de Recherche, LIRMM, CNRS, Montpellier, France

François SABOT, Directeur de Recherche, IRD, Montpellier, France

Mathieu Rouard, Chef d’équipe, BIOVERSITY INTERNATIONAL, Montpellier, France

Rapporteur

Rapportrice

Examinatrice

Co-encadrant de thèse

Examinateur

Examinatrice, Présidente du jury

Examinateur

Directeur de thèse

Co-encadrant de thèse, Invité

Design of novel v isual representat ions and tools applied to

plant pangenome visual izat ion

Présentée par Éloi DURANT

Le 29 Septembre 2022

Sous la direction de François SABOT

ii

 Résumé en Français
La démocratisation des technologies de séquençage lors des vingt dernières années a entraîné une
explosion du nombre de génomes séquencés. Cette évolution a permis l’apparition de plusieurs
génomes de bonne qualité, multipliant le nombre de génomes de références disponibles au point
d’en avoir plusieurs pour une même espèce.

La diversité des génomes de référence disponible a mis en évidence les biais induits par
l’utilisation d’une unique référence, qui n’est pas suffisante pour donner accès à la diversité au
sein d’une espèce. Des efforts de séquençage de génomes humains d’origine africaine1 ont par
exemple mis en évidence les manques de l’actuel génome de référence GRCh38, principalement
construit à partir d’un seul individu. Ce manque de diversité se traduit par une grande quantité de
fragments d’ADN humain manquant dans la référence, biaisée en faveur de génomes d’origine
européenne. La sous-représentation d’autres populations pose un problème, par exemple pour
l’identification de maladies spécifiques ou la compréhension de la réponse métabolique à
l’administration de différents traitements2.

Chez les plantes, la diversité génétique des espèces cultivées ainsi que la taille des génomes sont
bien plus importantes que chez l’humain. De plus, de nombreux exemples de variations
intraspécifiques ont été recensés, notamment de la variation en présence / absence ou en nombre
de copies de gènes. Ces variations peuvent exercer une forte influence sur le phénotype des
plantes, par exemple chez le riz où la présence d’un gène Sub1A est associée à une tolérance à
l’inondation.

Pour une meilleure intégration de ces variations en génomique, le concept de pangénome s’est
progressivement développé. Un pangénome est un concept qui regroupe l’information de
plusieurs génomes en une seule entité, pour faciliter le stockage d’information, la comparaison
entre individus, ou encore les étapes d’assemblage et d’alignement pour de nouveaux génomes.
Un pangénome peut être construit aussi bien pour recenser des gènes (comme c’est le cas pour
des études sur bactéries) que pour tous types de fragments génomiques (séquences d’ADN ou
protéiques), et est utile pour comparer la répartition de ces éléments entre plusieurs individus.
Plusieurs catégories d’éléments existent selon le taux de présence, les deux principales recensent
les éléments présents chez tous les individus (les éléments ‘core’) et ceux présents seulement
chez certains (les éléments ‘variable’).

Étant un concept encore relativement récent—apparu en 2005, son application aux plantes date
des années 2010—la pangénomique souffre encore d’un manque d’outils, aussi bien pour la
création de pangénomes que pour leur analyse, et d’autant plus leur visualisation. Ce manque est
particulièrement vrai pour les eucaryotes (dont les plantes), aux génomes plus gros et complexes
que les bactéries (premier domaine d’application des pangénomes) et dont les outils ne
supportent facilement pas le passage à l’échelle.

Mes travaux de thèse ont donc porté sur la création de nouvelles représentations visuelles ainsi
que la création d’outils de visualisation utilisables pour la visualisation de pangénomes de plantes,
et d’eucaryotes en général. Ces travaux s’inscrivent dans le cadre de la thèse Cifre n°2018/1475
en collaboration entre trois organismes : Syngenta France (partenaire privé), l’Institut de
Recherche pour le Développement (IRD, un Établissement Public à caractère Scientifique et
Technologique), et l’Alliance Bioversity International-CIAT (organisation internationale de
recherche). Ils font suite à des travaux de Master 2 ayant mis en évidence le manque d’outils
utilisable pour visualiser des pangénomes de plantes. Les codes produits dans le cadre de cette

1 Sherman, R.M., Forman, J., Antonescu, V. et al. Assembly of a pan-genome from deep sequencing of 910
humans of African descent. Nat Genet 51, 30–35 (2019). https://doi.org/10.1038/s41588-018-0273-y
2 Popejoy, A., Fullerton, S. Genomics is failing on diversity. Nature 538, 161–164 (2016).
https://doi.org/10.1038/538161a

https://doi.org/10.1038/s41588-018-0273-y
https://doi.org/10.1038/538161a

iii

thèse Cifre ainsi que les outils en résultant sont disponibles en Open Source sur la plate-forme
GitHub.

Dans ce manuscrit de thèse, je présente l’état de l’art de la pangénomique, introduisant les
différents concepts et formats de données associés. J’y fais la distinction entre la notion de pan-
gene atlas et de pangénome, le premier étant un inventaire de gènes présents ou absents et le
second étant l’ensemble du matériel génomique partagé entre génomes, étendu à tous fragments
de séquence et leurs successions. Ces pangénomes peuvent être représentés par des graphes de
séquences, où chaque nœud est une séquence génomique et les liens sont autant de successions
de séquences observées dans différents génomes. Les graphes de pangénomes contiennent
l’information originelle de la succession des séquences en représentant chaque génome par un
chemin au sein du graphe.

Je développe également une catégorisation des outils de visualisation utilisables en
pangénomique. J’identifie ainsi des outils non spécifiques (génériques, non spécifiques des
pangénomes), qualitatifs (donnant des informations générales sur certaines propriétés des
pangénomes, principalement concentrés sur les pangénomes de gènes), positionnés (utilisant un
système de coordonnées pour positionner le éléments pangénomiques, soit sur un génome
existant soit sur une panréférence), structuraux (mettant l’accent sur la succession des séquences
d’ADN dans les différents génomes), et enfin composites (combinant plusieurs propriétés des
catégories précédemment listées, offrant plusieurs représentations et/ou approches pour
l’analyse). Je mets en évidence le manque d’outils interactifs utilisables pour une analyse poussée
de pangénomes.

J’y présente également quelques principes utilisés en datavisualisation pour les lecteurs qui ne
seraient pas familiers de cette notion. Je reviens principalement sur l’importance de visualiser ses
données et sur les principes de Gestalt qui régissent notre façon instinctive de grouper des
éléments visuels.

Mon premier chapitre recueille dix conseils pour créer un outil de visualisation de données
génomiques, à l’attention de futurs chercheurs et chercheuses en biologie ou bio-informatique qui
s’intéresseraient à la data visualisation. Ces conseils sont issus de mon expérience personnelle
acquise lors de cette thèse partagée et confrontée à celle d’autres chercheurs ayant travaillé sur
la création de logiciels pour l’analyse de données génomiques et avec qui j’ai eu l’opportunité de
collaborer.

Ces « règles », soumises sous la forme d’un article « Ten simple rules for... » en révision au journal
PLOS One, indiquent dix bonnes pratiques à suivre tout au long du développement d’un outil de
visualisation en génomique : du design des représentations visuelles jusqu’à leur implémentation
dans un outil utilisable, incluant également la question du maintien et de la vie sur la durée de tels
outils. Ces dix règles ont été éprouvées à plusieurs reprises lors de ma thèse, et je les utilise comme
prisme pour les conclusions des deux chapitres suivants ainsi que pour la conclusion générale.

Dans mon second chapitre, je décris mon premier outil de visualisation de pangénome, publié
dans le journal Bioinformatics sous le titre « Panache : a Web Browser-Based Viewer for Linearized
Pangenomes ». J’y explique comment j’ai imaginé la représentation visuelle utilisée dans Panache,
jusqu’à la création d’une application web développée en JavaScript permettant l’exploration
dynamique de données pangénomiques.

Panache (Pangenome Analyzer with Chromosomal Exploration) se présente sous la forme d’un
navigateur pour pangénomes, incluant une vue principale affichant une ‘heatmap’ de la présence
/ absence de blocs pangénomiques (en colonnes) entre différents génomes (en ligne). Cette
heatmap est accompagnée de lignes d’information supplémentaires, donnant des détails sur la
position de ces blocs au sein du système de coordonnées linéaires utilisé, leur taille, leur taux de
présence et catégorisation entre core et variable, ou encore la répartition de leur potentielles
autres occurrences au sein du pangénome.

iv

Cet outil dispose de plusieurs fonctionnalités implémentées à la suite de sessions d’échanges avec
des utilisateurs. Il dispose par exemple d’un algorithme permettant de déplacer automatiquement
la vue sur des zones d’absence successive de blocs de pangénome, d’une représentation des
annotations de gènes associées au système linéaire de coordonnées, ou encore de multiples
options de tri des génomes. Ces options de tris ont été implémentées dans l’outil dans le cadre
d’un stage d’IUT que j’ai supervisé, et permettent de réarranger visuellement les lignes de
génomes selon différents critères. Une personne utilisant Panache pourrait ainsi par exemple
choisir d’afficher les génomes selon leur ordre dans une phylogénie préétablie ou encore selon un
algorithme de groupement hiérarchique appliqué à une sous-région.

Panache a été utilisé en interne pour la représentation de données de pangénome du bananier,
disponible sur le Banana Genome Hub de la plateforme de bioinformatique SouthGreen3. Il a aussi
été adopté par d’autres équipes de recherche, donnant lieu à une publication sur le pangénome
du blé (« Wheat Panache : a pangenome graph database representing presence-absence variations
across sixteen breadwheat genomes ») et de futures utilisations pour l’orge.

Le troisième et dernier chapitre détaille le travail de conception d’un outil composite de
visualisation de pangénomes, appelé SaVanache, permettant la navigation entre plusieurs niveaux
d’échelle pangénomique. Cet outil sera divisé en plusieurs vues entre lesquelles un utilisateur ou
une utilisatrice pourra naviguer, correspondant à différents niveaux de zoom entre les différentes
échelles. Quatre vues ont été identifiées : une vue de la diversité globale de génomes assemblés,
illustrant les génomes les plus similaires ou distincts ; une vue des réarrangements
chromosomiques et variations structurales entre plusieurs des génomes d’un pangénomes ; une
vue dédiée à la variation en présence / absence de gènes ou blocs pangénomiques sur une échelle
plus restreinte ; et une dernière vue dédiée au variations nucléotidiques et à l’identification
d’haplotypes.

Mon travail s’est focalisé principalement sur les deux premières vues et la conception des
représentations visuelles associées. La troisième vue correspond au travail déjà réalisé pour
Panache, qui pourrait y être intégré sous couvert de quelques ajustements logistiques. La dernière
vue fut laissée de côté car plusieurs groupes de recherche ont déjà proposé différents outils pour
la visualisation et comparaison de plusieurs génomes à l’échelle des nucléotides, par exemple avec
la représentation d’alignement de séquences multiples.

Je propose une première vue dynamique, représentant les génomes assemblés dans un graphique
en nuage de points et permettant de choisir un pangénome composé d’un sous-ensemble
spécifique de génomes, permettant de réduire la taille des données à manipuler. Deux systèmes
de colorations y coexistent. Le premier permet d’identifier les génomes partageant les mêmes
métadonnées qu’un autre génome (survolé avec la souris). Le deuxième est utilisé pour mettre en
avant les génomes qui seront inclus dans les vues suivantes de l’outil. Ce système proposé permet
de rapidement identifier les génomes, potentiellement d’intérêt, absent d’un pangénome, afin de
choisir au mieux le pangénome à conserver dans le reste de l’analyse. Un encodage coloré
différencie les génomes qui sont absents dans le pangénome survolé de ce qui y sont présents,
avec une surcouche d’information selon si ces génomes sont marqués comme étant important
pour la personne utilisatrice ou si leur statut de présence est différent entre deux pangénomes
disponibles.

La seconde vue est dédiée à la visualisation de variations structurales entre génomes. Je propose
une nouvelle approche pour l’annotation de variations structurelles au sein d’un graphe de
pangénome.

3 https://banana-genome-hub.southgreen.fr/content/panache; comme présenté dans l’article de Droc G,
Martin G, Guignon V, Summo M, Sempere G, Durant E, Breton C, Cenci A, Baurens FC, Shah T, Aury JM, Ge XJ,
Helsop Harrison P, Yahiaoui N, D’Hont A, Rouard M. The Banana Genome Hub: a community database for
genomics in the Musaceae. Soumis à Horticulture research.

https://banana-genome-hub.southgreen.fr/content/panache

v

Je propose d’axer cette vue autour d’un chemin pivot, c’est-à-dire une certaine succession de
nœuds au sein du graphe, servant de système de coordonnées principal pour toutes les
comparaisons. Ces comparaisons d’un-contre-plusieurs génomes peuvent être visualisées dans
une matrice représentant chaque variation structurale par un glyphe, ou une combinaison de
glyphes dédiés. Comme chaque divergence entre deux nœuds d’un graphe de pangénome peut
être caractérisée selon les différences de trajet des chemins la traversant, j’identifie différents
types de variations. En effet, deux chemins au sein d’un graphe de pangénome peuvent différer à
cause de : une insertion ou délétion (l’un des chemins contient des nœuds que l’autre n’a pas), une
inversion ou chaîne d’inversion (l’un des chemins possède le même nœud ou la même succession
de nœud que l’autre, mais dans leur sens complémentaire), un échange (les deux chemins
contiennent des nœuds différents avant de se réunir). En complément, je présente le principe de
cooccurrences d’un nœud, qui sont autant de copies de la séquence associée que nécessaire,
présentes dans le graph selon le nombre de répétitions ou de positions différentes entre les
génomes contenus. Ces cooccurrences, combinées à l’information de présence / absence, peuvent
être catégorisées en translocations ou duplications. Chaque catégorie identifiée peut ainsi être
symbolisée visuellement par un glyphe, variable en forme, position en couleur selon la catégorie.

Ces glyphes peuvent être disposés dans une matrice où chaque ligne est une comparaison du pivot
avec un autre génome, et chaque colonne un nœud du chemin pivot. Une surcouche d’interaction
avec l’interface permet de grouper plusieurs comparaisons en une ligne résumée, ou d’afficher
des diagrammes en barres pour comptabiliser la quantité observée de variations structurales par
ligne de comparaison.

De plus cette représentation visuelle peut être complétée par une visualisation du détail des
variations structurales pour un nœud donné du pivot, illustrant la taille des segments de séquence
impliqués. Une vue générale inspirée des représentations Circos et ‘violin plots’ affichant les
cooccurrences existantes entre tous les chromosomes d’un pangénome est également disponible.
L’interface de cette vue permet de filtrer les variations structurales sur une région donnée, selon
leur type, ou selon leur taille, pour affiner l’affichage en fonction de paramètres entrés par un
l’utilisateur ou utilisatrice.

Cette vue pourrait ensuite rediriger sur une vue dédiée aux variations de présence absence ou de
nombre de copies pour des fragments pangénomique de plus petite échelle.

Je conclue cette thèse en analysant l’apport de ces nouvelles représentations visuelles et les
manques encore à combler pour la visualisation de pangénomes. J’ouvre la discussion sur l’intérêt
d’autres disciplines pour la création d’outils de visualisation plus faciles à prendre en main pour
des biologistes.

vi

 Acknowledgements
I would first like to address my sincere thanks to all the people and colleagues who helped me
during my PhD, either through collaborative work or simple discussion.

Thank you to all the jury members who accepted to read this dissertation for their time and
attention, I am eager to discuss it with them on the day of my defense and on future occasions.

I would like to acknowledge both Theresa Harbig and Simon Heumos for the discussions we had,
speaking to other PhD students about (pangenome) datavisualization was a relief and provided
some fresh air during these times of isolation. I wish we can meet properly someday.

This work would not have been the same without the help of all the developers and contractors
that worked with me: Joffrey Gallais, Romain Basset, Mel Florance, Alexandre Bousquet, Laure
Lebon, Allan Bertide and Chris Simpson. Thank you all for your motivation and patience while
enduring my debut as a manager, and for the fruitful exchanges we had.

Thank you to all my colleagues from Bioversity, Syngenta and IRD, for their presence and naive
points-of-view which often helped me during my work. Thank you to all the team at Bioversity
International for welcoming me during my MSc’s internship, in particular my office-mates Alberto,
Cathy, and Valentin.

Thank you very much to all people at Syngenta Saint-Sauveur for welcoming me the few times I
have been able to come and for carsharing. I will have my license someday, I promise. Thank you
especially to the extended bioinformatics team both in France and in the US: Abdel, Aïcha, Allan,
Andrew, Cécile, Cédric, Charles, Chris, Eric, Guillaume, Josh, Laurence, Steve, Véronique and all
with whom I did not have as many opportunities to discuss. A special thanks to Cécile and Cédric
for giving me insightful headaches and bearing with my trial-and-error progression.

Again, thank you, to everyone who interacted with me in some way at the CIRAD and especially
IRD where I spent most of my time during my PhD, when I was not quarantined at home. Thank
you to all members of Southgreen whom I interacted with, especially Gaëtan, there from the very
beginning of this project and whose help was crucial in deploying Panache to the Genome Hub. I
also am thankful to the teams RICE and DYNADIV (there are too many of you to put all of your
names, but you know who you are) which hosted me through the years, and the people from the
plateau I-Trop (Aurore, Julie, Ndomassi, Valérie & Co.), it was nice to have some geeks around. A
special thought goes to all who shared my office, in particular Emma, Nguyet, Pierre, and Sonia
who bore with me during the final year, it was a pleasure sharing my office with you.

Moreover, I could not thank enough all three of my supervisors who helped me during these three
(four?) years, both as scientists and as people. I am grateful for the time and efforts they spent
with me on this work and all the fruitful discussions that we made happen despite their chaotic
time schedules. I am especially happy that we could work together on the directions taken by this
project despite different objectives and backgrounds. Many thanks for working together with me
for so long without fighting, and for getting me through these years of PhD and COVID.

Matthieu, thank you for including me within your team at Syngenta and for fighting so that the
tools could be Open Source, for funding the developers who worked with me and for making your
best to ensure that this PhD could happen in the best conditions. It was an awesome opportunity
and I have never felt limited on that end. It always is a pleasure to discuss with you, and I will
always be available for some beers after the work hours.

Mathieu, thank you so very much for supporting me from the very beginning, this PhD would not
have been possible without you and the time you take to convince me. I am glad you did it. You
helped me to grow more confident throughout the internship and PhD and was always there when
I needed help. I am grateful for all you did, your patience, your empathy, and many useful advice.
I am genuinely happy to have met you as both my supervisor and a person.

vii

François, you once told me at the beginning of the PhD that we might seriously fight at some point
and that it would be normal, I truly hope that you are not waiting until the defense for this. Thank
you too for embarking me in this adventure, for the time you took to answer my naïve questions,
for the experiences at JOBIM, for reassuring me on my skills, for showing me that research could
be fun, for so many things and for the graphic tablet. A wonderful investment!

I wish to dedicate a special thanks to Christine, Clothilde and Nguyet, my favorite co-minions,
whose communicative craziness helped me to stay sane during these years. I had wonderful times
thanks to you, and it was nice to have some people around to let off steam.

I finally wish to thank all the friends I have made in the meantime and those who supported me
from the beginning.

Faustine, Camille, you made my time at BioComp a bazillion time better. I will hold you
accountable for making a bioinformatician out of me until the end of times. From the ENSAT still,
I wish to thank Camchou, Etienne and Nina for helping me to have a social life in Montpellier.

Thank you to Aliénor, Aurélien, Charlène, Charlotte, Dimitri, Georges, Martin, Maxime, Ninon,
Solène and Soline, who truly welcomed me in Montpellier when I arrived and gave me wonderful
times. Special shoutout to Aurélien, Martin and Maxime, for I never played Ascension.

I wish to acknowledge all people involved in all extra-work activities I had, especially from the
choir Ecume and its after-rehearsal drinks, and the MAO sessions. In particular, thank you to
Antoine D., Antoine H., Claire, Jules, Kévin, Lisa, Louise, Nathalie, Saele, Sébastien D., Sébastien P.,
and all the tenors. A special thanks the crew at the Castors which opened shortly before my PhD,
best boardgame bar ever!

Thank you too, to all IRD youngsters whom I had the pleasure to encounter post-quarantine.
Cécile, Franca, Laura, Marine, Margot, Pablo, Patrick, Rémi, Stella, Thomas, Tran, Vincent et al.:
thanks for the boardgames, bouldering, cakes, coffee, discussions, and karaoke sessions!

Last, but not least: Anaïs, I hope that you are proud of your Singing Meerkat. Camchou, how can
you be so consistently lovable? Daniela: I hope I watered the plants enough. Marc: thanks for being
you and for being there. Ninon: guess who has time for Armello now!

viii

 Table of Contents
RÉSUMÉ EN FRANÇAIS ... II

ACKNOWLEDGEMENTS ... VI

TABLE OF CONTENTS ... VIII

TABLE OF FIGURES.. XII

TABLE OF TABLES ... XV

TABLE OF ABBREVIATIONS .. XVI

INTRODUCTION .. 1

STATE OF THE ART .. 5

I. PANGENOMES .. 6
A. Context, interest & applications .. 6
B. Multiple definitions .. 7

1. Pan-Gene Atlas ... 8
2. (Structural) Pangenome ... 8

C. Significant properties ... 8
D. Challenges specific to plant pangenomes .. 10
E. Desirable features .. 11
F. Status of the pangenomic landscape ... 11

1. Lack of standard approaches… ... 12
a. Different concepts ... 12
b. Different building strategies .. 16

2. …hence a lack of standard tools… .. 16
a. Tools creating pangenomes .. 16
b. Tools using and manipulating pangenomes .. 17

3. …and a lack of standard formats .. 17
a. Generic formats ... 17
b. Specialized formats ... 18
c. Pangenome Graph formats ... 19

II. OVERVIEW OF TOOLS WITH PANGENOME VISUALIZATION .. 20
A. Visual representations, visualization tools .. 20
B. List of tools usable for visualizing pangenomes... 21

1. Unspecific ... 23
a. Cytoscape .. 23
b. Gephi ... 24
c. neo4j ... 24
d. UpSet ... 24

2. Qualifying ... 25
a. anvi'o ... 25
b. Coinfinder .. 26
c. Harvest .. 26
d. Hierarchical Sets .. 26
e. Microreact ... 26
f. PanGeT .. 26
g. Pan-Tetris .. 26
h. PanViz .. 26
i. panX .. 27
j. Phandango .. 27

3. Positioned .. 28
a. Chromatiblock ... 28
b. GCV – Genome Context Viewer ... 29
c. PanACEA .. 29
d. Panache ... 29
e. PGV .. 30
f. TASUKE+ .. 30

4. Structural.. 30

ix

a. Bandage ... 31
b. Crop-Haplotypes .. 32
c. GenomeRing .. 33
d. gfaestus ... 33
e. GfaViz .. 33
f. graphgenomeviewer ... 33
g. IGGE -The Immersive Graph Genome Explorer ... 33
h. ODGI .. 33
i. Panaconda ... 35
j. panGraphViewer ... 35
k. pantograph .. 35
l. plotsr ... 36
m. Sequence Tube Map .. 36
n. vg toolkit .. 37

5. Composite .. 37
a. MoMI-G ... 38
b. PGAP-X .. 39

C. Platforms and (repurposed) genome browsers ... 39
D. Tools not included .. 39

III. INTRODUCTION TO DATA VISUALIZATION .. 40
A. Why do datavis? .. 40
B. One concept, many visual representations .. 41
C. Some principles of data visualization and UI design .. 43

1. Tufte’s data-to-ink ratio and chartjunk .. 43
2. The principles of Gestalt... 43
3. How datavis lies ... 44
4. The principle of least astonishment ... 45
5. Shape distinguishability .. 45

D. What are design studies? .. 46

TEN RULES ON GENOMIC VISUALIZATION TOOL DEVELOPMENT .. 49

I. MOTIVATION ... 50
II. TEN SIMPLE RULES FOR DEVELOPING VISUALIZATION TOOLS IN GENOMICS ... 52

A. Introduction ... 52
B. The Rules .. 53

1. Rule 1: Articulate the need for new visualization tools .. 53
2. Rule 2: Involve others early on ... 53
3. Rule 3: Think about visual scalability and resolution ... 54
4. Rule 4: Be creative, be bold .. 55
5. Rule 5: Make data complexity intelligible .. 55
6. Rule 6: Let your inner nerd shine, when needed ... 56
7. Rule 7: Benchmark with diverse datasets .. 57
8. Rule 8: Stay tuned to the genomic tool ecosystem and promote interoperability .. 57
9. Rule 9: Keep up to date with related work... 58
10. Rule 10: Grow and support your user community .. 58

C. Conclusion .. 59
D. References ... 59
E. Supporting information ... 63

III. AUTHORS’ CONTRIBUTIONS ... 64
IV. ADDENDUM ... 64

PANACHE ... 67

I. WHY CREATE A NEW PANGENOME VISUALIZATION TOOL ... 68
A. Context... 68
B. Tools benchmarked .. 68
C. Identified gaps ... 69

II. DESIGN OF THE VISUAL REPRESENTATION ... 70
A. Panache, a PAV browser .. 70

1. Visual representation of a PAV matrix and tracks of information .. 70
2. View dedicated to conserved blocks .. 72

x

3. Visual representation of gene annotations .. 72
4. Hollow Areas .. 73

B. Identification of desirable features .. 73
1. Face to face discussions ... 73
2. Public survey .. 74

III. DEVELOPMENT OF A WEB-BASED TOOL .. 74
A. Techniques ... 74

1. Data files and formats .. 74
a. PAV matrix ... 74
b. Others .. 75

2. Technical choices ... 75
a. Programming language and libraries ... 75
b. Choosing a JS framework .. 75
c. Deployment ... 75

B. Implementation ... 76
1. File parsing and companion script.. 76
2. Filtering Objects to what can be seen .. 76
3. Conception of the geometric zoom .. 76
4. Canvas and SVG for the miniature ... 76
5. Hollow Area Finder ... 76
6. Sorting options ... 77
7. Performance evaluation ... 77
8. Identified missing functionalities ... 77

IV. PUBLISHED APPLICATION NOTE.. 79
V. DISCUSSION ... 82

A. Outside reach ... 82
B. Envisioned improvements .. 82
C. Application of the Ten rules ... 83

SAVANACHE ... 85

I. STRUCTURAL VARIATIONS AND PANGENOMES ... 86
A. SV nomenclature .. 86
B. SV visual representations ... 86
C. SV within genome graphs .. 88

II. SAVANACHE’S DESIGN ... 89
A. Multiple scales ... 89

1. Overall diversity ... 90
2. Structural variations ... 90
3. Presence Absence .. 90
4. Haplotypes ... 90

B. SaVanache’s UI .. 91
C. View 1 – Overall diversity .. 91

1. From existing PCA representation... ... 91
2. ...to SaVanache’s redesign ... 92

a. Identification of interesting assemblies .. 93
b. Selection of identified assemblies ... 94
c. Choice of a pangenome including the selected assemblies .. 94
d. Matching pangenome barchart ... 96

D. View 2.1 – Visualization of SVs intra pangenome .. 96
1. Division into panchromosomes .. 96
2. PanCircos .. 98
3. One-versus-all tabular representation of a PanCircos ... 99

a. The main panchromosome.. 99
b. The comparative table of panchromosomes ... 100
c. Preliminary implementation and abandon ... 101

E. View 2.2 – Visualization of SVs inter genomes .. 102
1. PanCircos as an optional overview ... 103
2. Selection of a ‘pivot’ genome ... 103
3. Glyphs for representing SVs in pangenome graphs ... 104

a. Proposed SV nomenclature in a pangenome graph .. 104
b. A glyph system for the visual representation of SVs ... 105

xi

c. Implementation of the glyph system .. 107
d. Feedback on the glyphs ... 109

4. Dedicated UI ... 109
5. Alternative representation of glyphs for groups .. 109
6. Summary of SVs within the selected region ... 110
7. Details on SVs from a selected intersection ... 111

III. SAVANACHE’S IMPLEMENTATION ... 112
A. Building a composite visualization tool ... 112

1. Development strategy .. 112
2. Chosen technologies .. 113
3. Overall diversity view ... 113
4. Integration within a SPA and Structural variations view .. 113

a. Special format of pangenome graph file ... 113
b. Annotating SVs from the JSON file .. 114
c. Storage of the SV annotations ... 115
d. Implementation done .. 115

B. Future developments ... 115
IV. DISCUSSION ... 116

A. Design validation and extension .. 116
B. Development of an integrated solution ... 116
C. Feedback and general discussion .. 117
D. Application of the 10 rules ... 118

CONCLUSION .. 119

I. SUMMARY ... 120
II. AN ANSWER ... 120
III. DISCUSSION ... 121
IV. FOOD FOR THOUGHTS .. 122
V. PERSPECTIVES... 122
VI. PERSONAL CONCLUSION ... 123

REFERENCES ... 125

TABLE OF APPENDICES ... 137

APPENDIX ... 141

I. APPENDICES FROM THE STATE OF THE ART ... 142
II. APPENDICES FROM PANACHE’S CHAPTER ... 170
III. APPENDICES FROM SAVANACHE’S CHAPTER ... 229

RÉSUMÉ ... 252

ABSTRACT .. 252

xii

 Table of Figures
Figure 1: "Pangenome" took over "Pan-genome" in early 2022.. 6

Figure 2: Different sets of genomes share different genomic elements .. 9

Figure 3: The more exhaustive a pangenome is, the closer to a "closed" pangenome it becomes 10

Figure 4: Pan-gene atlases can be described as a listing of the presence statuses of genes in
multiple genomes .. 12

Figure 5: With position-dependent twins, categorizing panBlocks can be difficult 13

Figure 6: Graphs are mainly composed of Nodes and Edges .. 14

Figure 7: Directed Acyclic Graphs duplicate the nodes present at multiple positions 15

Figure 8: colored de Bruijn graphs encode the origin of nodes through colors 15

Figure 9: I identified five categories of pangenome visualization tools ... 22

Figure 10: UpSet offers an alternative to Venn diagrams by displaying barcharts and summary
statistics for each set intersection .. 24

Figure 11: panX provides multiple visual representations detailing the core genes 27

Figure 12: PanACEA's pan-chromosome view displays genes positioned on a circular bacterial
coordinate system... 29

Figure 13: Bandage gives details on the GFA’s node succession, their ID, and size in bp 32

Figure 14: odgi viz draws genome graphs with ordered nodes on top and edges below 34

Figure 15: The odgi viz representation of raw graphs can be messy .. 35

Figure 16: pantograph represents all genomes within a pangenome as linear paths through
panBlocks represented as PAV matrices at a nucleotide level ... 36

Figure 17: Sequence Tube Maps represents genomes within a pangenome as successive Sankey
diagrams ... 37

Figure 18: MoMI-G combines multiple views dedicated to structural variations 38

Figure 19: The Datasaurus dozen shows that highly different datasets can share the same
summary statistics .. 41

Figure 20: Depending on the chosen projection, a visual representation can highlight different
properties of a same concept ... 42

Figure 21: The Gestalt principles explain why some visual elements are understood as being
grouped together... 44

Figure 22: The Rainbow color scale does not accurately represent distances from a linear space
 .. 45

Figure 23: Huang proposes that shapes are distinguishable based on the three properties
constituting the SCI space .. 46

Figure 24: Munzner ranked the effectiveness of visual channels depending on the type of data that
should be represented .. 47

Figure 25: The Venn Banana chart, both praised and criticized ... 50

xiii

Figure 26: Panache’s UI is divided between a main view and a menu panel ... 70

Figure 27: panBlocks are built from common fragments found in different genomes 71

Figure 28: The PAV matrix can fit into an encapsulating UI, with interaction available for
navigation ... 71

Figure 29: Annotation Cards display details on a gene annotation ... 73

Figure 30: Structural Variations are labeled based on the differences between a genome and a
reference ... 86

Figure 31: Translocations can be depicted with various layouts .. 87

Figure 32: plotsr represents different types of SVs as colored ribbons between lines of genome
assemblies .. 88

Figure 33: An SV between two genomes will create alternative connections between nodes in a
sequence graph .. 89

Figure 34: The overall diversity view of SaVanache displays an interactive scatterplot of genome
assemblies .. 92

Figure 35: On hovering, dots of assemblies with similar metadata are colored accordingly.......... 93

Figure 36: The pangenomes are ordered depending on the percentage of selected assemblies they
possess ... 94

Figure 37: When hovering a pangenome, dots are colored depending on their presence status
within ... 94

Figure 38: The coloring pattern of a dot for the pangenome-hovering interaction evolves
depending on selection and presence status and the chosen pangenome .. 95

Figure 39: Each observed chromosome sequence can be described as a linear succession of nodes
within a panchromosome .. 97

Figure 40: Representing panchromosome as violin plots can be thought of as putting a graph in a
sock to see its silhouette .. 97

Figure 41: The shape of violin plots for panchromosome can be computed from the connections
spanning successive nodes ... 98

Figure 42: Interactivity on PanCircos would enable dynamic filtering of SVs depending on their
sizes .. 99

Figure 43: The selected region of the main panchromosome is delimited by two dynamic handles
that can be moved left and right .. 100

Figure 44: Showing cooccurrences as connecting ribbons between a source and targets scales
badly .. 100

Figure 45: Encoding the position on the source with color makes it possible to hide the ribbons
completely ... 101

Figure 46: The interface for the visualization of SV is divided into multiple connected subparts
 ... 102

Figure 47: A PanCircos visual representation can be opened by clicking the PanCircos icon within
the interface ... 103

xiv

Figure 48: Each comparison to a pivot path reveals several patterns that can be linked with
common SV types ... 105

Figure 49: Six different glyphs would be enough to encode all identified SV types 105

Figure 50: The glyph system depicts SV from a pangenome graph, built from linear genomes . 107

Figure 51: Five colors were chosen for SaVanache UI with the glyph system on display 107

Figure 52: All glyphs can fit within one comparison unit and still be identifiable 108

Figure 53: Glyphs can be colored as a heatmap to depict the distribution of SV annotations within
a group of assemblies ... 110

Figure 54: A summary panel can show bar charts of the percentage of nodes with a certain SV
glyph within an assembly ... 111

Figure 55: Multiple SVs can be depicted simultaneously in the detail view.. 112

Figure 56: All Nodes from the panSkeleton are described as Steps when included within a path
 ... 114

xv

 Table of Tables
Table 1: PAV matrix is a broad term for various format specifications encoding presence absence
 .. 18

Table 2: Visualization tools for pangenomics are diverse ... 22

Table 3: Unspecific tools are generic tools not dedicated to (pan)genomics ... 23

Table 4: Qualifying tools provide (summary) information on pan-gene atlases without any
coordinate system... 25

Table 5: Positioned tools anchor fragmented pangenomics data on a coordinate system 28

Table 6: Most of the structural tools are based on genome graphs ... 30

Table 7: Composite visualization tools leverage multiple pangenome visual representations and
visualization categories .. 37

Table 8: Out of the four visualization tools tested, none was deemed suitable for our pangenomes
 .. 69

Table 9: Panache PAV matrix can be written with integers or strings alike .. 75

xvi

 Table of Abbreviations

Abbreviation Meaning

BAM Binary Alignment Map

BED Browser Extensible Data

CNV Copy Number Variation

CSV Comma Separated Value

DAG Directed Acyclic Graph

Datavis Data visualization

DNA DesoxyriboNucleic Acid

FASTA FAST-All

fGI Flexible Genomic Island

fGR Flexible Genomic Region

GAM Graph Alignment/Map

GAF Graph Alignment Format

GFA Graphical Fragment Assembly

GFF Generic Feature Format; General Feature Format; Gene Finding Format

GO Gene Ontology

GWAS Genome Wide Association Study

HCI Human Computer Interaction

InDel Insertion Deletion

IP Internet Protocol

JS JavaScript

JSON JavaScript Object Notation

LCB Locally Colinear Block

MAF Multiple Alignment Format; Mutation Annotation Format

MSA Multiple Sequence Alignment

PAV Presence Absence Variation

PCA Principal Component Analysis

pgAtlas Pan-gene Atlas

pggb PanGenome Graph Builder

RDF Resource Description Framework

SCI Segmentability, Compactness, and Spikiness

SNP Single Nucleotide Polymorphism

SPA Single Page Application

SV Structural Variation

xvii

SVG Scalable Vector Graphic

TSV Tab Separated Value

UI User Interface

UX User eXperience

VCF Variant Call Format

VR Virtual Reality

YAML YAML Ain’t Markup Language; or Yet Another Markup Language

xviii

1

 Introduction

2

What if we had access to many genomes?

What if they were merged?

What if someone wanted to see that?

That first question is not far-fetched: the steady improvement of sequencing technologies along
their cost reductions enabled many scientific studies on multiple assembled genomes [1]. The
drastic expansion of large-scale sequencing projects—like the 1000 Genomes Project [2], the
3,000 rice genomes project [3], or the Anopheles gambiae 1000 Genomes Project [4]—is leaving
scientists with enormous amounts of genomic data, with the drawback of being difficult to handle
with the existing analysis workflows. Storing and comparing these genomes has a high
computational cost, and it becomes harder to make sense of all the available information. Besides,
most studies are based on a single high-quality reference genome, from a species of interest or the
closest one evolutionary speaking.

It induced a paradigm shift as it became apparent that one reference genome per species was not
enough to capture its whole diversity [5]. Intra-species variations cannot be captured by a unique
reference genome, while having potentially big effects on phenotypes. As an example, the gene
Sub1A found in Oryza sativa (African rice) is completely absent from some of the individuals of
that species but is positively linked to submergence tolerance [6]. Scientists therefore started to
shift away from single references, towards pangenomes instead.

Pangenomes are the answer, or rather one answer, to the second question above: abstract entities
that hold the genomic content from multiple genomes from a same species, group, or clades.

First described by Tettelin in 2005 for bacteria [7], they reached a broader audience as their scope
was expanded to other organisms, in particular eukaryotes like human or plants. International
collaboration arose in the past years, such as the Human Pangenome project [8] (initiated for
improving the current reference human genome through pangenome approaches) or the
PANGAIA project4 (about novel methods for the creation of pangenomes). Though pangenomes
have multiple shapes and use cases, they could be described as exhaustive inventories of unique
and shared genomic items within a group of related individuals. The genomic items in question can
be genes as in the original study, or simply genomic sequences, depending on the studies.

The advent of pangenomics is still recent as it has not been popularized until the late 2010s5.
Consequently, there is a slowly resorbing lack of tools and standards approaches for its creation,
analysis, and visualization, especially for eukaryotes as they embraced this field of study later.

Data visualization—or simply ‘datavis’—is especially important as it empowers researchers
during analyses, helping them to identify patterns and outliers or to compare data more easily
than by looking directly at the datasets. Datavis tools use visual representations that encode data,
transforming concepts into tangible visible objects that are easier for the human brain to make
sense of. They are useful at different stages, from the exploratory analysis steps to the
communication of results, for publication, for other scientists, or even non specialists.

For pangenomes, visualization tools could help users during their analysis workflows: as the
number of sequenced genomes rapidly increases, there is a pressing need for visual
representations and tools that would handle pangenomic datasets built from hundreds if not
thousands of genomes. Such tools should provide interaction, enabling the exploration of different
parts of the underlying data to answer both low- and high-level questions about the overall
dataset or specific subsections. More specifically, one could be interested in genomic content that
is unique to a plant with a phenotypic trait of agronomical importance, in the comparisons of

4 https://www.pangenome.eu/
5 For example, with a major publication by the Computational Pan-Genomics Consortium 9.
 Computational Pan-Genomics Consortium, Computational pan-genomics: status, promises and
challenges. Brief Bioinform, 2018. 19(1): p. 118-135.

https://www.pangenome.eu/

3

nucleotide sequences for identified gene of interest between multiple individuals, or even in the
identification of stable genomic regions that would be good candidates for a gene introgression.

This leads to the final question out of the three above: what if someone wanted to visualize
pangenomes? Previous work6 highlighted a lack of usable visualization tools and visual
representations for plant pangenomes. Existing pangenome visualization tools were either not
working properly, not scalable to plant (pan)genomes or working specifically on genes without
including intergenic sequences.

My PhD has therefore been focused on the creation of new approaches to both the visual
representation of eukaryote (and especially plant) pangenomes and the design of dedicated
visualization tools. In this dissertation, I propose ten guidelines for the creation of datavis tools in
genomics and introduce two designs of tools (Panache and SaVanache) for the visualization of
plant pangenomes, providing an answer to the question “What would scalable and meaningful
visualization tools for plant pangenomes be like?”.

6 done as part of my Master 2 internship

4

5

 State of the Art

6

Pangenome visualization is at a crossroad between different disciplines: biology, bioinformatics,
software development, data visualization… The following chapter explains the concepts involved
in this thesis and its context—the “pangenomes”, the related visualization tools, and notions of
data visualization design.

I. Pangenomes
Before getting into details, here are some precisions on the terminology used within this PhD
thesis. Due to the relative novelty of pangenomics (mid 2000s) [7], its exact definitions and name
are still unclear, with variations between studies. Some spell it ‘pan-genome’ with a hyphen [10-
13] similarly to its recognized original spelling [7], while others prefer to write it ‘pangenome’, as
a single word [14-20], as showed in Figure 1. Some authors like researchers working with Dr.
David Edwards even changed their spelling from one publication to another [10, 21], with no
apparent pattern.

Figure 1: "Pangenome" took over "Pan-genome" in early 2022; While both spellings have been in use since the first
publications and “Pan-genome” seemed slightly more popular overall, “Pangenome” became more popular in early 2022.
Whether this trend will continue remains to be seen. Results were extracted from PubMed on 3 June 2022, by listing, filtering
and counting all papers whose title contained “pangenom*” vs “pan-genom*” using search criteria as the following:
((("pangenome"[Title]) OR ("pangenomes"[Title])) OR ("pangenomic"[Title])) OR ("pangenomics"[Title]).

In this manuscript I will use the concatenated spelling ‘pangenome’, as it is more consistent with
other spellings of -omics fields (e.g., ‘metagenomics’), has currently more popularity than the
hyphenated version and suits my personal preferences better. Besides, it is worth mentioning that
Dr. Hervé Tettelin edited in 2020 a book titled “The Pangenome” [22], abandoning the hyphenated
version that he coined 15 years earlier.

A. Context, interest & applications

Variations and diversity between individuals are important factors for crop development and led
to many of the fruits and vegetables we know and eat today [23-26]. At a genomic level, these
variations can happen on small locations which is the case of Single Nucleotide Polymorphisms
(SNPs) and Insertions and Deletions (InDels), with known effects on phenotypes [27-30]. There
are also larger genomic variations, within and between chromosomes, known as Structural
Variations (SVs) when they span more than 50bp [31].

7

They could be major chromosomal rearrangements [32-34], or duplication, insertions, deletions,
translocations… of various sizes. Deletions and duplications which have an influence on the
number of occurrences of a given genomic pattern are called Presence Absence Variations (PAVs,
a pattern can be present or absent), or more generally Copy Number Variations (CNVs, a pattern
can be present 0, 1, 2+ times) [35, 36]. These variations can have important effects on (plant)
phenotypes: flowering time modified by CNVs of two genes in Triticum aestivum (wheat) [37];
tolerance to submergence in Oryza sativa (rice) depending on PAV of the Sub1 gene [6]; CNV-
induced resistance to nematodes in soybean [38]… among others [16, 39]. For example, in maize
more than hundreds of PAVs and CNVs have been detected, with potential impact on phenotypes
(disease resistance, coloration…) and heterosis [36]. In Brassica napus, 38% of the genes showed
PAVs, often influencing agronomic traits of interest (resistance to blackleg infection and other
defense responses, acyl lipid metabolism…) [40].

One reference genome is not enough to access all this diversity [5], thus restraining to a single
reference prevents the research of interesting agronomic features from reaching its full potential.
As the latest generations of sequencing technologies along with their price reduction enabled the
production of tremendous amounts of genomic data [1], including multiple genomic references
for a single species [41-43], scientists are not restricted to one reference genome per genus, group
or species anymore.

Pangenomics is an integrative approach which aims at the assessment of every possible genomic
variation within a group of closely related individuals. Although it has already often been applied
to bacteria as it is its first application field [7, 44], its use with eukaryotes, including plants, is still
recent and slowly gets more popular [16, 45], especially with efforts made on human genomes [8,
46, 47]. Therefore, there is still a lot to explore concerning its methods, file formats, related tools,
applications [48]…

Pangenomes could be used for different use cases: diversity characterization, optimized storage
of genome comparisons, mapping on exhaustive references [9, 39]… Diversity characterization is
essential for crop improvement: identifying genomic regions linked to phenotypes of interest or
conserved through selection and domestication could lead to improved quantity of production,
resistance, taste, … through breeding processes [18, 39, 45, 49-51]. Example use cases of
pangenomes have been documented for rice [52, 53], cucumber [54], tomato [55, 56], soybean
[57], melon [58]and a broad range of other crops.

Particularly, characterization of wild versus domesticated crop could bring many benefits, with
the detection of variants (gene, transcripts…) not present within single references and the
introgression of genes from wild relative [9, 52, 59-61].

Besides, this PhD dissertation is plant-oriented but pangenomes are also useful for other
organisms, like human for health purpose or cattle [62, 63]. I focused my work on plant
pangenomes, but it could be broadened to eukaryotes in general.

B. Multiple definitions

There is no proper, single definition of what a pangenome is, but multiple coexisting definitions
instead [18, 45, 49]. These definitions might be split into different names in future work, but as of
2022 they still are called the same while dealing with different concepts. There is no standard yet,
and the definition in use highly depends on the research group and the organisms it is applied to.
Some scientists are more interested in the presence/absence of genes and gene families, which
might be the case of breeders or bacteriologists for instance, while others might have more
interest in SVs related to evolutionary events (duplications, translocations…), therefore focusing
on the structure of the different genomes.

Even though the gene definition is the oldest one, it is still in use nowadays [64, 65] and coexists
with its structural equivalent, which has recently gained popularity [19, 60].

8

For disambiguation, I call ‘pan-gene atlas’ (pgAtlas) the genic definition and keep ‘pangenome’
for the structural one.

1. Pan-Gene Atlas

A pgAtlas only focuses on the functions shared within a group of individuals. It therefore is a
repertoire of genes, gene families, or transcripts that are shared between individuals, or unique.
This definition made sense in the early days of pangenomics, which was then focused on bacteria
and prokaryotic genomes. Since they are mostly made of gene clusters—operons—with about
only 12% of non-coding DeoxyriboNucleic Acid (DNA) (suspected of being promoter regions)
[66], focusing on functions was not leaving much of the sequences out. However, while still in wide
use this definition does not fit well eukaryotes as genes only make a small part of their genomes
(around 8% for plant genomes [67]). Sometimes both the structural and functional definitions are
applied to the study of a eukaryotic organism, in which case the functional approach can be
presented as a ‘pantranscriptome’ [49, 68] (built as the repertoire of all transcripts) or simply
‘functional pangenome’ [60].

I first came across the phrase “Pan-Gene Atlas” while participating in an AgBioData conference
call about pangenomes [69]. Participants were confused by the concept of ‘pangenomes’, trying to
precise every time whether they were talking about a ‘gene pangenome’ or a ‘structural
pangenome’. Pr. Pankaj Jaiswal proposed to distinguish the two by calling the gene pangenomes
“pan-gene atlases” instead, which I became quite fond of. I have chosen to keep this name for I
think that its phrasing is far enough from ‘pangenome’ (compared with ‘genic pangenome’ as
proposed by Sherman and Salzberg [49]) and that it reflects well the definition used.

2. (Structural) Pangenome

A ‘structural pangenome’ or ‘pangenome’ for short is similar to a pgAtlas in that it is created to
embrace the variability within a group of individuals. The difference is that it does so in a more
ambitious fashion as it is supposed to take most (if not all) of the genomic information from the
DNA sequences into account, and not only the genes. For example, Tranchant-Dubreuil et al.
defines it as “the complete set of non-redundant sequences approximately 100 base pairs (bp) in
length or more (except for few SNP , and InDels [...]) within a given group of individuals” [18]. In this
definition, ‘pangenome’ is more faithful to its etymology, as genetics focuses on genes while
genomics embraces a broader understanding of DNA and its study.

Some plant pangenomic studies only use a pgAtlas [17, 68], but integrative studies of shared
elements have now become more popular, and the structure is more often taken into account [9,
10, 60, 62], even for prokaryotes [70].

Even though I worked on both definitions, my PhD focused principally on pangenomes rather than
pgAtlases, as this structural definition makes more sense for plant pangenomics, attracts more
scientists every day and introduces more visualization challenges.

C. Significant properties

Pangenomes and pgAtlases alike have special properties that make them more than just a sum of
genomes.

The main interesting one lies in which elements are shared, and which are not. Pangenomes are
traditionally divided in two parts, originally called the ‘core genome’ and the ‘dispensable
genome’ [7]. Such categorizations are debated since pangenomics has been lacking standard
nomenclature, and both their names and limits have been criticized. While the notion of ‘core
genome’ is usually kept, some may talk about ‘accessory genome’ or ‘variable genome’ instead of
‘dispensable genome’, which they find misleading and easily confusing since it may be interpreted
as ‘useless’. Others use additional categories, with different combinations: ‘core, dispensable &

9

rare” [71], ‘core, softcore, shell & cloud’ [11, 72], ‘core, softcore, dispensable & private’ [10, 60],
‘persistent, softcore, shell & cloud’ [70], ‘core, dispensable & specific’ [42]...

Figure 2: Different sets of genomes share different genomic elements; Genes, or chunks of DNA sequences are not
homogeneously shared between genomes of a given species: some of them may be unique to a single genome while others
may be present in every single genome. Depending on how much shared they are, they can be classified as belonging to
different categories—Cloud, Shell, Soft core, and Core in the case of the study by S. Gordon et al. (2017) [72] on 56
Brachypodium distachyon genomes, which originally featured this Figure.

While using different terminologies, all of those convey a sense of variable frequencies of genomic
items within a group of individuals, as shown in Figure 2. Without taking their names into
consideration, distinctions are often made to qualify items present in:

A) every individual of a considered group
B) most of the individuals of a group—might be useful in case sequencing errors did not detect

an item within one individual for example, or when considering the evolution of a population
C) some individuals only
D) really few individuals or even only one—often labelled as ‘orphan’

In this thesis I refer to core and variable genomes: only two categories for simplicity, and variable
instead of dispensable so that no difference in usefulness can be implied.

Such categorizations of shared genomic content can be useful for pangenome and population
analysis, for example for identifying candidates with rare agronomic traits of interest for
hybridization. Another useful property is the completeness of the pangenome (related to
representativeness), which is interesting during the construction of a pangenome.

A pangenome can either be ‘open’ when the addition of a new individual to the group keeps adding
new genomic material to the pangenome, or ‘closed’ when new material ceases to be added [7, 12,
45], as illustrated in Figure 3 below.

10

Figure 3: The more exhaustive a pangenome is, the closer to a "closed" pangenome it becomes; When the addition of
genomes within a pangenome does not add any new material, the pangenome is considered ‘closed’, as opposed to ‘open’.
Figure from [45].

In order to have a pangenome as representative as possible of the variations within a group, a
closed pangenome should be favored. If new material keeps being added by expanding the
pangenome to other individuals, this means that there are still undiscovered variations that are
not taken into account yet. Including more genomes or doing a better sampling would ways to
come closer to a closed pangenome. Depending on the order of integration of new genomes within
a pangenome this ‘closed’ status can be reached sooner or later.

Moreover, pangenomes are mostly used for groups of closely related genomes but some studies
focus on ‘super-pangenomes’ spanning more diverse genomes [59]. Every vaguely distant genome
will add its own diversity which can create a sudden size gain of the pangenome. That might
happen when adding a genome from a wild species into a pangenome built with domesticated
species, for example [52, 59, 60].

D. Challenges specific to plant pangenomes

Pangenomes can be applied to many organisms, as illustrated by the numerous existing studies
on Bacteria (Escherichia coli, Streptococcus pneumoniae, …), Fungi (Saccharomyces cerevisiae,
Cryptococcus neoformans, …), Protists (Emiliana), Plants (rice, corn, …), and Animals (human,
pig…) [45]. In this work however I focused on eukaryotes, and plants more specifically.
Prokaryotic pangenomes have been studied earlier, and a small, dedicated tool ecosystem already
existed (see State of the Art II.B.2) when I started working on pangenomics in 2018, while there
was nearly no available tool for eukaryotes. Among eukaryotes, my work focused on Plants
(bananas, rice, soybean, wheat…) as they are the main applications for my different affiliated
organisms.

Plant pangenomes, and their visualization, face specific challenges that make them stands out
from the other eukaryotes, and their prokaryotic counterparts [9].

Plant genomes, as all eukaryotes, are divided into multiple chromosomes, which is a first challenge
when it comes to visualization as it is a major difference from prokaryotes, and the related
visualization tools do not scale well. They are of highly diverse sizes (from about 60 Mbp in
Genlisea aurea to more than a hundred Gbp in Paris japonica) [73, 74], complex, often polyploïds,
and might be constituted of multiple subgenomes inherited from ancient hybridization events (e.

11

g. in the case of domesticated species). This happened for example in the genus Brassica (with
species originating in hybridization between three genomes: A, B, and C [75, 76]), and cultivated
bananas Musa spp. (with four identified original genomes: A, B, S, and T [77]). Moreover, they are
subject to multiple structural variations, with repeated elements [78-81] but also large genomic
rearrangements such as chromosomal inversions, often related to traits of interest for the plants
[82]. These genomic specificities result in challenges for visualization: how to manage these large
scales? …compare between different chromosomes or subgenomes? …highlight both small and
large structural variations?

Plant pangenomes are of high interest for breeding programs: for identifying seeds with the best
combination of agronomic traits and therefore choosing the best candidates for crossing; for
narrowing down the genomic regions likely to be related to a given phenotypic character...
Providing an improved access to the intra-clade diversity can enhance the quality of genome
mappings and guide the related genomic analyses better. Tools to make these complex
pangenomes more manipulable and understandable for biologists are greatly needed.

E. Desirable features

To better pave the way toward popularized and widely spread pangenomics, The Computational
Pan-genomics Consortium drew up a list of desirable features for pangenomes and their use in
bioinformatics [9]. These features are mostly of interest for pangenome building tools but can
provide the readers with a better understanding of their (expected) inherent properties.

Completeness

As mentioned earlier, a pangenome used for analyses should be as closed as possible. The more
elements and the more varied they are, the more a pangenome can be useful as a replacement for
reference genomes and for studying a sequence’s distribution within a population, enabling
researchers to think of better hypotheses.

Stability

As reproducibility is an important stake of scientific research, a pangenome should have a layer
of stability, enabling proper comparisons between teams and/or time points. Identification of
similarities and differences between two states are at the heart of scientific analyses and should
therefore be appliable here.

Comprehensibility

As the definitions suggest, pangenomes should be expendable to large amounts of individuals
and/or species, enabling analyses at different genomic resolutions.

Efficiency

Pangenomics data should be organized, with clear and clever specifications as to make further
analyses faster and easier.

Regarding visualization in particular, the design goal of a pangenome data structure is, according
to the consortium, to enable multi-scale visualization with access to all the available information,
including the “visualization of global genome structure, SVs on genome level and local variants on
nucleotide level, but also biological features and other computational layers” [9].

F. Status of the pangenomic landscape

Pangenomics’ popularity increased during the last two decades (as illustrated in Figure 1) but it
still is a young field of study, with lots of opportunities and things to uncover. Due to its novelty

12

however, there is a lack of standards and established procedures, as reflected by its multiplicity
of definitions, as explained in State of the Art I.B.

1. Lack of standard approaches…

The two definitions, pan-gene atlases versus pangenomes, led to highly different approaches for
building pangenomes. Since the two use different concepts, the ensuing building strategies could
not be the same.

a. Different concepts

Pan-gene atlases or pangenomes, function or structure, discrete blocks or connected sequences:
the two pangenomic definitions involve concepts that seem hard to reconcile. The related mental
representations evolved with this dichotomy at their very basis.

● Presence Absence Matrices

As repertoire of genes, pgAtlases can be thought of as sets of elements that can be present or
absent from genomes, as in Figure 4. These presence absence matrices (or ‘PAV matrices’) can
be built from individual gene names, gene clusters, or shared gene families for example, in which
case they do not encode any sequence information per se. However, PAV matrices can be applied
on pangenomes when they are considered as collections of fragments of nucleotide sequences.

In such matrices, multiple copies of items can be listed present or absent as a whole, or the
presence status can be refined and attributed on a case-by-case basis. Which copy should be
marked as present or absent depends on the methods used.

Figure 4: Pan-gene atlases can be described as a listing of the presence statuses of genes in multiple genomes; For each
genome (here the bacteria have one dedicated row each) a presence or absence status can be registered for every item (one
item per column, presence is here encoded with colored discs, one hue per item). Note how here the bottom bacteria has
the “blueberry” item twice but registered it with a single presence status.

● Locally Colinear Blocks and panBlocks

A hybrid approach, taking from both worlds of discrete items and connected sequences, and
inherited from Multiple Sequence Alignments (MSA) considers genomes as successive chunks
of sequences. These chunks can be sorted into blocks of sequences free from internal
rearrangements, called Locally Colinear Blocks (LCBs) [83-85]. Similar chunks of sequence from
two genomes would be gathered into one LCB.

In this PhD manuscript, I use the notion of panBlocks that I define as any sequence unit derived
from the fragmentations of genomes in a pangenomic context. They are conceptually close to LCBs
but with small internal variations possible. This looser object leaves more flexibility regarding

13

how the blocks and level of similarity should be defined exactly. If one sequence is labelled as
being ‘the same’ than one in another genome, they would be part of a same panBlock, no matter
how that similarity is measured. The freedom of choosing any similarity threshold that should
divide chunks between being ‘the same’ or ‘different’ is left to researchers creating their
pangenome.

Moreover, panBlocks can be defined as containing sequences, genes, or any kind of information
whose presence status should be compared between genomes. In the case of genes, panBlocks
could therefore share partially overlapping coordinates, as annotations can overlap. For example,
one panBlock could correspond to the annotation of a gene on the forward strand, overlapping a
panBlock with the annotation of a gene on the backward strand.

They could also be unique or duplicated into multiple copies (or ‘cooccurrences’) instead. A chunk
of sequence present in two different positions (either within a genome or relative to the same
fragment in another genome) could be considered as belonging to a unique panBlock merging
both occurrences, or to one version of a panBlock, position dependent. For example, the green (◼)
block in Figure 5 which appears twice in the genome C could be described by a unique panBlock
merging all possible positions or by two panBlocks, one for each potential position.

The exact definition used for a panBlock (what it contains and whether the copies are merged)
would therefore have an influence on the core / variable genome categorization, as illustrated in
Figure 5.

Figure 5: With position-dependent twins, categorizing panBlocks can be difficult; Genomes A, B, and C have been
segmented into chunks, each belonging to a panBlock depending on their content (encoded by the color and size) and
position. PanBlocks have been laid out on a linear string corresponding to the pan-gene atlas or pangenome coordinate
system. The magenta (◼) chunk is stored within two panBlocks, corresponding to two different possible positions. Should
the rightmost green (◼) panBlock be considered as part of the core genome since all genomes have a green (◼) chunk,
following a functional definition? Or should it belong to the variable genome as only one genome has this chunk in this
position, following a structural definition instead?

14

● Panreferences

Shared fragments of genomes are useful but need to be hosted in a macro-entity to really form a
pangenome. This led to the concept of panreference, which is a certain layout of some or all of
these fragments, involving relative positions and a sort of coordinate system. The Pan-Genomics
Consortium refers to panreferences as pangenomics data structures centralizing read mappings
and used for variant calling [9]. Tranchant-Dubreuil et al. describe panreferences as reference
sequences (implied as linear) extended with additional genomic fragments from multiple
individuals7 [18].

These panreferences can be mosaic linear sequences—built upon an existing reference genome
and extended with external genomic material or completely reference free instead—but they also
accept other shapes like graphs as detailed in State of the Art I.F.3.c. When linear, the additional
material can be anchored on the existent, or packed in abstract regions instead if no suitable place
can be found. Panreferences are therefore highly context dependent, but their common purpose
is to serve as a pangenomic skeleton, which organizes and hosts all the genomic fragments of a
pangenome.

● Genome/sequence/variation/pangenome graphs

The most recent concept used to represent pangenomes is that of pangenome graphs. Graphs are
malleable entities that can be used to store information of connections between different sub-
elements, such as DNA sequences.

As graphs work with a specific vocabulary, I introduce here the main concept that a reader should
before pursuing further without entering the depths of graph theory. Graphs are composed of
different entities (see Figure 6) with specific names that will be used throughout this manuscript.
There primarily are the ‘nodes’ (also called ‘vertices’, ‘vertex’ in its singular form), which are points
corresponding to the entities being connected. The connection, or links between two nodes is
called an ‘edge’, or ‘arc’ when it is directed—that is the case when u → v ≠ v→ u. A succession of
nodes and edges is called a ‘walk’. If no node is repeated within that succession, it can be called
‘path’ instead [86]. For convenience and consistency with other works I use edge whenever I talk
about connections (directed or not) and do not use arc—most of the time the context is enough to
infer which kind of edges are discussed.

Figure 6: Graphs are mainly composed of Nodes and Edges; ‘Arc’ is rarely encountered, it is more common to see ‘directed
edge’ instead. Depending on the researchers, path and walk can at times be used interchangeably too.

Graphs are common entities in bioinformatics as de Bruijn graphs for example are often used for
genome assemblies and alignements [87, 88]. They also have recently been used to represent
genomes in a more compact way than a linear succession of nucleotides, within genome graphs.
This term encompasses all kind of graphs using sequences to represent genomes: directed—

7 See also C. Tranchant-Dubreuil, C. Chenal, M. Blaison, L. Albar, V. Klein, C. Mariac, R. A. Wing , Y. Vigouroux,
F. Sabot, “FrangiPANe, a tool for creating a panreference using left behind reads”, submitted to NAR
Bioinformatics and Genomics, 2022

15

either vertex-labeled as in de Bruijn graphs (where the nodes represent sequences) or edge-
labeled (where the edges represent sequences instead, nodes being intersections)—but especially
bidirected (where sequences are oriented, enabling one item to represent forward and backward
strands depending on how they are traversed) [89]. The genomes used to create these graphs can
be retrieved by walks through the graph, providing the original observed succession of sequences.

A sequence graph is a bidirected vertex-labeled graph, meaning a graph where nodes represent
nucleotide sequences and are oriented as to represent the possible DNA strands. Each orientation
encodes the reverse complement of the opposite one. To this already complex nomenclature,
Garrison et al. added the variation graphs, which are sequence graphs with paths used to
represent the linear sequences of a pangenome: each genome of a pangenome has a related path
within the variation graph, which can be used to anchor a coordinate system for annotations and
others [19, 90, 91].

Finally, pangenome graphs can be described as genome graphs containing sequences from
different genomes. All variation graphs are pangenome graphs, but not all sequence graphs are
pangenome graphs. They have branches whenever two genome sequences differ, creating
“bubbles” of sort. Pangenome graphs can be represented as Directed Acyclic Graphs (DAGs)
which is their most human readable form, with repeated subsequences being duplicated within
the graph instead of being encoded by a unique node (see Figure 7).

Figure 7: Directed Acyclic Graphs duplicate the nodes present at multiple positions instead of creating loops toward the
same node again and again. They are more human readable than cyclic graphs, but also take more space to store. Here, note
how the long beige (◼) sequence is present twice, with an edge skipping it entirely at the second occurrence. In a cyclic graph
this node would have been present once, with an edge looping on it instead. Figure from [9].

Others for example explored the possibilities offered by colored and compacted de Bruijn Graphs
[92-95], with colors embedding the origin of different parts of the graphs as in Figure 8 below.

Figure 8: colored de Bruijn graphs encode the origin of nodes through colors; In this example two de Bruijn graphs (red
and blue) have been merged into one. Nodes are violet as they supposedly appear in both. Figure from [92].

To summarize, genomes can be embedded in graphs by turning bits of their sequences into either
nodes or edges. Connections are then represented by the remaining graph entity (edges or nodes,
respectively). Moreover, such graph could be directed or not, cyclic or acyclic (meaning with or
without possible loops within the graph), with nodes of uniform lengths or not, with or without

16

sequence overlaps… Thus, a great variety of possible graph representations for genomes exist [9,
19, 88, 89, 91], with the main one being sequence graphs.

b. Different building strategies

Multiple concepts involve multiple strategies for building pgAtlases and pangenomes [96]. I do
not detail them here as they are not at the core of my PhD work. However, they can be summarized
into different categories: clustering genes from multiple individuals; having a collection of shared
blocks through MSA; creating a linear panreference by anchoring reads on a reference genome;
building a graph from assembled genomes…

The important property to keep in mind is that some strategies are heavily dependent on the order
of addition of new genomes into a pangenome (when they build sequentially), meaning that there
could be different pangenomes built from the same sequences. It essentially comes down to the
difference between tools with incremental strategies (order dependent) against those with
integrated strategies instead (reference-free).

2. …hence a lack of standard tools…

The diversity of pangenomic approaches is echoed by the diversity of related tools, for both the
creation and analysis of pgAtlases and pangenomes [19, 97, 98].

a. Tools creating pangenomes

Since pangenomes have many shapes, there are multiple tools dedicated to their construction.

First there are tools focused on the creation of clusters (of genes, gene families) for pgAtlases:
BPGA [99], ClustAGE [100], GET_HOMOLOGUES [101], GET_HOMOLOGUES_EST [102], LS-BSR
[103], OrthoMCL [104], PanACoTA [105], PanOct [106], PGAP [107], Roary [108]…

Others focus more on the sequences and the creation of panBlocks instead, through Multiple
Sequence Alignment for example: Harvest [109], Mugsy [110], PanCake [15], progressiveMauve
[84], seq-seq-pan [111], SibeliaZ [85]…

Finally, there is the newest category of tools, those creating (pan)genome graphs: Cactus [112],
minigraph [113], NovoGraph [114], Panaconda [115], PanGraph [116], PanTools [117],
PPanGGOLiN [70], pggb [118], Progressive Cactus [119], seqwish [120], SplitMEM [121], the vg
toolkit [90, 122], svaha2 [123]… the trendiest being minigraph, pggb and the vg toolkit.

minigraph takes multiple genomes as an input and incrementally creates a pangenome graph by
adding new parts as branches on the base graph/genome. The origin of every new branch is
stored, as well as its position on the genome it comes from. It is dedicated to “big enough” SVs and
therefore might not include small variations such as SNPs and those below 50bp.

The pangenome graph builder (pggb) is a pipeline used for the creation of locally directed and
acyclic variation graphs from sequences. It combines three steps—sequence alignment, graph
induction, and graph normalization—and the resulting pangenome graphs can be used with other
tools enabling pangenome graph manipulation (like ODGI [124]).

The vg toolkit contains an extensive set of tools that can be used to either create, update, convert
or merge variation graphs from a variety of conventional formats

These three tools are still under active development (during the first half of 2022, minigraph,
pggb, and the vg toolkit respectively had 4, 2, and 4 releases) and additional features and
improvements are to be expected.

17

b. Tools using and manipulating pangenomes

Creating pgAtlases and pangenomes is only a first step towards pangenomic analysis—including
data filtering or extraction, statistics, comparison, visualization, and many others—which can be
done by downstream tools, quite diverse again.

As an example, for graph pangenomes only (indexing, haplotyping, mapping…) there are BGREAT
[125], BrownieAligner [126], deBGA [127], GBWT [128], GCSA2 [129], GenomeMapper [130],
GraphAligner [131], gfapy [132], gfatools [133], HISAT2 [134], ODGI [124], PLAST [135], the vg
toolkit [90], V-MAP [136]…

Visualization tools, which are of particular interest for this PhD, are detailed later in a dedicated
section, see State of the Art II.

3. …and a lack of standard formats

Unsurprisingly, the landscape of pangenome files formats is as varied as the tools enabling their
creation or using them. Some are well-known file formats, some are a bit more obscure, and others
even are ad hoc combinations of different formats.

a. Generic formats

Among the different formats, some of them are common in bioinformatics, describing genomic
annotations, sequences, variations, or default data structures.

● BED

The Brower Extensible Data (BED) format [137] stores genomic features (i.e. “linear region[s] of
a chromosome with specified properties”) placed on a linear coordinate system, as a table (one row
per feature, columns for details). Normally used within the UCSC Genome Browser, it can be
derived to create PAV matrices of pangenomic items.

● FASTA

Short for “FAST-All”, FASTA is a standard file format used to write nucleotide or amino-acid
sequences from the FASTA program [138]. It is used in pangenomics either to store sequences
from multiple individuals, or as the base for the creation of panreferences and genome graphs, for
example.

● GFF

Generic Feature Format, Gene-Finding Format, or even General Feature Format, GFF is another
format used to describe genomic features. Similar to BED, it also is a table-like format, with
columns describing properties of features, one per row. Its third version, GFF3, has been created
as an attempt to standardize all the ad hoc tab-separated formats used in bioinformatics into one
universal format [139].

● VCF

The Variant Call Format (VCF) [140] is widely used to described observed variations of sequences
compared with a reference genome. In pangenomics it can be used to extend pangenome graphs
with additional nodes and/or edges depending on the variations already stored.

● JSON

The JavaScript Object Notation (JSON) format [141] is a language-independent format used to
describe dictionaries of objects, with their properties and related values. It is a versatile format
that can be used to store all kind of information without taking the order of the entries into
account, useful to transfer data between different tools.

18

b. Specialized formats

● PAV matrices and ad hoc formats

Pan-Gene atlases are most often found as PAV matrices, and it is a format that can be used for
panBlocks too. PAV matrices are tabular files, where pangenomic items (generally on the rows)
are associated with a presence status (count, Boolean, gene name if present…) per genome
(generally on columns) as illustrated in Table 1. Most of the time these PAV matrices are formatted
similarly to BEDs, within tab- or comma-separated files from a variety of sources like gene
clustering algorithms.

Table 1: PAV matrix is a broad term for various format specifications encoding presence absence; The PAV matrices
presented here are examples of how the PAV matrix from Figure 4 could be written in a text file. A) Presence status is
encoded for each combination of item (column) and bacteria (row) by a numeral, for example 0 when there is an absence,
and 1 or 2 depending on the number of copies found. B) Similarly, presence and absence could be respectively encoded by
True and False Booleans instead. C) There could also be no header, but the name(s) of the item(s) found within each
bacterium if any (or an empty field otherwise), each column being a cluster.

A)

Bacter

BacteriA 1 0 1 1 1 0
BacteriB 1 1 1 1 0 1
BacteriC 1 2 0 1 0 1

B)

Bacter

BacteriA True False True True True False
BacteriB True True True True False True
BacteriC True True False True False True

C)

BacteriA Sprin_1 Steel_1 Oran_1 Brick_1
BacteriB Sprin_2 Berry_2 Steel_2 Oran_2 Rasp_2

BacteriC Sprin_3
Berry_3.1
Berry_3.2

 Oran_3 Rasp_3

There is no standard way for writing a PAV matrix, but multiple ad hoc versions instead. Some are
relatively easy to reproduce, for example by adding as a note the names of the genomes owning a
certain feature within a GFF3 file [142]. Others are more obscure like the pan-genome map files
used by Pan-Tetris [143], created by the unpublished in-house software PanGee. These files have
position information of pangenomic items for each row, and multiple columns per strain—id,
start, end, length, strand, gene symbol, gene description—with empty fields for encoding an
absence.

In Panache for example, I chose to use PAV matrices built with BED fields, additional columns, and
one column per genome for storing the presence status as detailed in Panache III.A.1.

● From Multiple Sequence Alignment

MSA is used in tools like seq-seq-pan [111] to create blocks of similar sequences from multiple
sequences. A common format for these alignments is the Multiple Alignment Format (MAF [144],
not to be confused with the Mutation Annotation Format [145]): each block of multiple alignment
is stored with a score, the coordinates, length and strand of the sequences and the detail of the
alignment. An alternative is the eXtended Multi FastA (XMFA) generated by Mauve [83, 146],
which stores the position of a primary sequence, and the FASTA sequences involved in the
corresponding alignment.

19

c. Pangenome Graph formats

Graph formats are currently the trendiest for pangenomes, with similarities between pangenome
graph building tools. Some formats are specific to their tool of origin, especially for the vg toolkit
[91, 122] which uses a combination of index files (the succinct graph index XG [147]) and
coordinates files.

However, there is one format that stands out, with some derivatives: the Graphical Fragment
Assembly (GFA) format [148], designed to be a standard file format for sequence graphs. This
format has two canonical versions with slight differences, mainly associated to the anchors of an
edge on a node (which can be within a node instead of at its endpoint in GFA v2). A subset of GFA
v1 has been proposed by Dr. Heng Li for his own tool minigraph [113] for creating a reference
pangenomic graph, which has been strongly debated in a series of blog posts with Dr. Garrison
[149-151].

While different by nature, GFA v1, GFA v2 and rGFA (Dr. Li’s take on the GFA format) share
common conceptions:

● each record within the file represents one graph object, with a line header precising its

nature (i.e. whether the object is a node, an edge, a path…)

● they encode sequence graphs, therefore nodes represent ‘segments’, sequences of

nucleotides and edges represent succession between two nodes (including the orientation

and strands of the nodes)

● each object may have an ID for further identification and reference

● additional tags similar to SAM optional tags [152] may be added to describe

supplementary information

Based on GFA v1, rGFA (short for ‘reference GFA’) makes use of these additional tags to anchor
stable coordinates keeping track of the origin of new elements whenever they are added to the
graph. GFA v2 changes parts of its terminology compared to GFA v1 and adds new graph objects
(Fragment lines, Ordered vs Unordered groups…). An annotated visual example of such a GFA v2
file is presented in Appendix I.

Somehow GFA v2 is not supported by the current state-of-the-art pangenome tools, minigraph
[113] and ODGI [124], which rest on GFA v1 instead. This led GFA v1 to keep on being upgraded
with a v1.1 adding Walk lines (more detailed versions of GFA v1’s Paths, introduced on February
11, 2022) and v1.2 adding Jump lines (typically used to represent Gaps8 between indirectly
connected segments, introduced on June 3, 2022).

Other formats exist on top of GFA: the Graph Alignment/Map (GAM) [153] format—an equivalent
of the Binary Alignment Map (BAM) [154] format applied to variation graphs—and Graph
Alignment Format (GAF) [155] are both formats storing mappings on GFA files.

Moreover, there are tools enabling conversions between pangenome graphs and more classic files.
For example, hal2maf from the HAL package [156] is used within Progressive Cactus to transform
the graph into MAF files. The same goes for maffer [157], which work on variation graphs. Another
example: PARROT (in preparation), which is a tool dedicated to conversions between pangenomic
formats.

8 Funnily enough Gaps were already present in GFA v2, back in 2018.

20

II. Overview of tools with pangenome
visualization

The lack of standard definitions, tools, and formats in pangenomics prevented the wide
development of related visualization tools. When I started working on pangenomics in 2018, there
were really few dedicated tools, mostly for bacterial pangenomics (anvi’o [158], PanViz [159],
panX [160]…). In this section, I provide an overview of the existing pangenomic visualization tools
I am aware of, categorize them according to the concepts they use and detail the most
representative for each category.

A. Visual representations, visualization tools

A visual representation alone is not a visualization tool; it is a collection of visual encodings (i.e.
the visual channel that will convert information from the data domain to something visually
perceptible, for example: hue, shape, or size of a graphical mark) used to represent something
visually—simply put, it is the way something is showed. A visualization is an applied visual
representation, the result of a chain of information conversion from a set of data. In datavis, it
should moreover be tailored for a communication purpose.

On the other hand, a “tool” implies some usage and manipulation, some level of interaction. I
therefore differentiate the visualization tools (tools that enable the customization, dynamic
exploration and more generally interactivity with visualizations) from the tools with
visualizations (tools lacking a dedicated User Interface (UI) or with little to no emphasize on
visualization or interactivity, for example with static charts created merely for illustration).

For example, out of the 40 pangenomic tools cited by Vernikos in the chapter “A Review of
Pangenome Tools and Recent Studies” [98] of The Pangenome [22], 14 were described as having
visualizations (their descriptive texts contained at least one word matching ‘visualiz(ation)’,
‘representation’, ‘venn’, ‘graph’, ‘plot’, or ‘chart’).

Among these, four rely on other tools for the visualization:

- BGDMdocker [161]: the advertised visualization is made by another tool, panX [160].
BGDMdocker is a pipeline that enables a connection between the building and
visualization tools, but do not do any visualization directly.

- LS-BSR [103]: it creates matrices that can be visualized as heatmaps or clusters through
third party tools, as said in their GitHub manual9. It also provides a script compatible with
PanGP [162] for the visualization of statistics related to the pgAtlases created.

- PANINI [163]: again, the visualization available was not created by PANINI, but by
Microreact [164], PANINI making the connection between the data created and the actual
visualization platform.

- PanTools [117]: said to “supports the construction and visualization of pangenomes
hosting online tools and algorithms” with a “visual representation of the pangenome (…)
based on generalized De Bruijn graphs” [98], it creates pangenome databases as De Bruijn
graphs but the visualization is entirely handled by Neo4j10—a generic graph visualization
tool rather than a (pan)genome graph visualization tool.

Four of the remaining tools correspond to what I call tools with visualizations:

- EDGAR [165]: offers a variety of mostly static charts and plots (pie charts of core and
variable genomes, venn diagrams, synteny plots…) for pre-defined datasets, divided
between multiple sections. The users can select their genomes of interest and create plots

9 https://github.com/jasonsahl/LS-BSR/blob/master/manual.md
10 https://neo4j.com/

https://github.com/jasonsahl/LS-BSR/blob/master/manual.md
https://neo4j.com/

21

on-the-fly that appear after a few seconds of communication with the servers. While
offering a high variety of visual representations, it lacks an integrative and unified UI that
would enable an interactive exploration and/or comparison of these visualizations. It
would therefore be best described as a collection of charts rather than a visualization tool.

- Panaconda [115]: generates ‘pan-synteny’ graphs in a format compatible with Gephi
[166], NetworkX11, and Cytoscape12, generalist network visualization tools. It includes an
in-house visualizer written in JavaScript (JS) and based on Gexf-JS13 which can display the
layout created by Gephi. Compared with Gexf-JS, they added path highlighting within the
graph. The visualization component is therefore mostly based off another tool and
completes the actual main interest of Panaconda which is the creation of the pan-synteny
graphs.

- PanGeT [167]: is a tool suite that computes clusters of genes to distinguish those that
belong to the core genome from those that belong to the variable genome. The tool then
outputs an interactive flower plot, with the core genes placed at the heart and the genes
specific to one accession at the petals. Clickable hyperlinks either redirect to a database or
download subsequent data (core genomes, annotations…). Since there is no UI and the
hyperlinks are the only interactivity present, I therefore categorize it as a tool with
visualization.

- PanWeb [168]: serves as a graphical interface for PGAP, a tool performing pangenome
analyses, and produces static plots (for example, phylogenetic trees and the evolution of
the number of genes within the pangenome for each additional genome). There is a proper
UI, but visualization is only a minimal part of it and has no interaction, which is why I
would not call it a visualization tool.

From this review, only Harvest [109], Pan-Tetris [143], PanViz [159, 169], PanACEA [170],
panX [160] and PGAP-X [171] fit my definition of a visualization tool: having a UI dedicated to
the creation and/or exploration of visualizations.

As all visual representations of pangenomes are of interest for my PhD, I list in the following
sections both visualization tools and tools with visualizations but with a focus on the
visualization tools. This section constitutes the only available review dedicated to pangenome
visualization tools to my knowledge—though the awesome genome visualization list [172] does
have a filter tag for pangenomes—and aims at their better characterization depending on the
representations used (both conceptual and visual).

B. List of tools usable for visualizing pangenomes

During my PhD, I identified five main categories of visualization tools applied to pangenome
datasets, depending on the type of pangenome definitions used and how they visually represent
them: Unspecific, Qualifying, Positioned, Structural, and Composite, as summarized in Figure 9.

11 https://networkx.org/
12 https://cytoscape.org/
13 https://github.com/raphv/gexf-js

https://networkx.org/
https://cytoscape.org/
https://github.com/raphv/gexf-js

22

Figure 9: I identified five categories of pangenome visualization tools; Unspecific—generic and not dedicated to
pangenome datasets. Qualifying—with pangenomic information, but no position. Positioned—anchored information on
(pan)genomic coordinates. Structural—focus on sequences and their continuity. Composite—multiple categories within one
tool.

In this section I list the visualization tools identified during my PhD, as showed in the Table 2
below, and associate each to one of the aforementioned categories depending on the implemented
visual representations. Each category is then detailed with a subsequent comparative table of the
related tools, and representative examples are highlighted. Modified versions of genome browsers
and platforms are detailed in a dedicated complementary section (State of the Art II.C).

Table 2: Visualization tools for pangenomics are diverse; Some tools provide only limited visualization capacities. These
‘tools with visualizations’ are indicated by the * after their name. Tools are listed in alphabetical order, along with their main
author(s) from publication or public GitHub repositories, date, reference, and category: one out of Unspecific (U), Qualifying
(Q), Positioned (P), Structural (S) and Composite (C). Special implementations with genome browsers are detailed in the
subsequent section State of the Art II.C.

Tool name Reference Category

anvi’o Eren et al., 2016 [173] Q
Bandage Wick et al., 2015 [174] S

Chromatiblock
Sullivan & van
Bake

2019 [175] P

Coinfinder * Whelan et al., 2020 [176] Q
Crop-Haplotypes Brinton et al., 2020 [177] S
Cytoscape Shannon et al., 2003 [178] U

GCV Cleary & Farmer 2018 [179] P
GenomeRing Herbig et al., 2012 [180] S
Gephi Bastian et al., 2016 [166] U
gfaestus Fischer 2021 [181] S
GfaViz Gonnella 2018 [182] S
graphgenomeviewer Diesh 2022 [183] S
Harvest Treangen et al., 2014 [109] Q
Hierarchical Sets * Pedersen 2017 [184] Q
IGGE Kusnetsov et al., 2021 [185] S

Microreact Argimón et al., 2016 [164] Q
MoMI-G Yokoyama et al., 2019 [186] C
neo4j -- -- [187] U
ODGI * Guarracino et al., 2022 [124] S
PanACEA Clarke et al., 2018 [170] P
Panache Durant et al., 2021 [188] P
Panaconda * Warren et al., 2017 [115] S
PanGeT * Yuvaraj et al., 2017 [167] Q

23

panGraphViewer Yuan 2021 [189] S

Pan-Tetris Hennig et al., 2015 [143] Q
pantograph Seaman et al., 2020 [190] S
PanViz Pedersen et al., 2017 [159] Q
panX Ding et al., 2018 [160] Q
PGAP-X Zhao et al., 2018 [171] C
PGV Liang & Lonardi 2021 [191] P
Phandango Hadfield et al., 2017 [192] Q

plotsr
Goel &
Schneeberger

2022 [193] S

Sequence Tube Map Beyer et al., 2019 [194] S

TASUKE+ Kumagai et al., 2019 [195] P

UpSet Lex et al., 2014 [196] U
vg toolkit * Garrison et al., 2018 [90] S

1. Unspecific

I define the unspecific visualization tools as tools that are not dedicated to pgAtlases,
pangenomes, or even sometimes genomes in general, and uses generic files or files formats
destined to other use cases. They could be used in a wide range of situations, and often lack access
to biological metadata of interest for pangenomics. Tools creating Venn diagrams or generic
network visualization tools are examples of tools that can fit in this category), as listed in the Table
3.

Table 3: Unspecific tools are generic tools not dedicated to (pan)genomics; Additional information is provided in the
dedicated subsections. (*) highlight that complementary details are available. Visualization tools are marked with a ()
before their name, to better distinguish them from tools with visualization(s). The columns provide a tool’s name, reference,
year of publication, compatible type(s) of datasets, visual representations used, language of development, level of
interactivity. ‘vis.’ stands for ‘visualization’.

V
is

. t
o

o
l

N
a

m
e

Y
e

a
r

p
g

A
tl

a
s

o
r

P
a

n
.

V
is

.

re
p

re
se

n
ta

ti
o

n

L
a

n
g

u
a

g
e

In
te

ra
ct

iv
e

 v
is

.

■ Cytoscape [178] 2003 Pan. Network Java* Yes

■ Gephi [166] 2009 Pan. Network
Java,

OpenGL
Yes

■ neo4j [187] NA Pan. Network Java* Yes

■ UpSet [196] 2014 pgAtlas
Barcharts of set
intersections*

JS* Yes*

a. Cytoscape

Cytoscape [178] is a network visualization library, whose JS version (Cytoscape.js) has been used
within multiple pangenomic tools: metaPGN [197] (see an example in Appendix II), panaconda
[115], Panakeia [198], pangraphviewer [189]…

The JS library is meant to complete other applications and would not constitute a full web
application on its own. Visualizations of network datasets created with the desktop application
Cytoscape can be exported to Cytoscape.js, which can run on all modern web browsers.

24

Automation for integration within Python and R workflows [199] has been developed through the
years and Cytoscape is now a well-known tool for visualizing biological networks.

b. Gephi

Gephi [166] is another tool for visualizing network graphs, which has been used for the
visualization of pangenomes with Coinfinder [176], Panaconda [115], and PPanGGOLiN [70] (as
illustrated in Appendix III). This tool has been built for network manipulation and exploration.

c. neo4j

neo4j [187] has been used by PanTools [117] for the representation of network graph (see
Appendix IV). This tool has drivers that make it compatible with multiple languages, including
Java, JS and Python among others.

d. UpSet

Figure 10: UpSet offers an alternative to Venn diagrams by displaying barcharts and summary statistics for each set
intersection; Screenshot from UpSet v1, with the default “Simpson characters” dataset: http://vcg.github.io/upset/

UpSet is the implementation of an alternative visual representation of sets, compared with Venn
diagrams which are limited in the number of sets they can accurately represent—more than three
or four sets and they become hard to read as well as poorly representative of the number of
elements contained by each set intersection. Instead, it shows barcharts for each set intersection,
with additional derived data as showed in Figure 10, and provides interactivity through filtering,
labelling, and many others. UpSet has been derived with R [200], Python14, and JS15 among other
versions16, and a second implementation (UpSet217 [201]) adds undo/redo actions and the
possibility to download Comma Separated Value (CSV) files from sets of items.

14 https://github.com/ImSoErgodic/py-upset
15 https://upset.js.org/
16 https://upset.app/implementations/
17 https://vdl.sci.utah.edu/upset2/

http://vcg.github.io/upset/
https://github.com/ImSoErgodic/py-upset
https://upset.js.org/
https://upset.app/implementations/
https://vdl.sci.utah.edu/upset2/

25

2. Qualifying

Every visualization tool that serves for the high-level representation of pgAtlases falls into the
qualifying category, listed in Table 4. They are tools that list global properties from a pangenome
or pgAtlas, for example with plots about summary statistics, without providing any information
of position within and between genomes. However, compared with unspecific tools, they do
provide biological information related to the datasets that they display and/or specific to
pangenomics (gene ontology, core and variable genomes, DNA sequence alignments, other
biological metadata…).

Table 4: Qualifying tools provide (summary) information on pan-gene atlases without any coordinate system; As in
Table 3: additional information is provided in the dedicated subsections. (*) highlight that complementary detail are
available. Visualization tools are marked with a () before their name, to better distinguish them from tools with
visualization(s). The columns provide a tool’s name, reference, year of publication, compatible type(s) of datasets, visual
representations used, language of development, level of interactivity. ‘vis.’ stands for ‘visualization’.

V
is

. t
o

o
l

N
a

m
e

Y
e

a
r

p
g

A
tl

a
s

o
r

P
a

n
.

V
is

.

re
p

re
se

n
ta

ti
o

n

L
a

n
g

u
a

g
e

In
te

ra
ct

iv
e

 v
is

.

■ anvi'o [173] 2015 pgAtlas
Circular PAV matrices

& dendrogram
Python,

JS
No*

 Coinfinder [176] 2020 pgAtlas
Gene association
networks, PAV

heatmaps
C++, R No

■
Harvest
(Gingr)

[109] 2014 pgAtlas
Dendrogram,

sequence alignments
C++ Yes

Hierarchical

Sets
[184] 2017 pgAtlas

Dendrogram, icicle
plots

R No

■ Microreact [164] 2016 pgAtlas
Dendrogram,

scatterplot, maps,
swarmplot…

JS Yes

 PanGeT [167] 2017 pgAtlas Flower plot LaTeX No*

■ Pan-Tetris [143] 2015 pgAtlas
Heatmap-like PAV

matrix
Java Yes

■ PanViz [159] 2017 pgAtlas
PCA Scatterplot,

treemap…
JS Yes

■ panX [160] 2018 pgAtlas
Dendrogram, pie
chart, sequence
alignements...

JS Yes

■ Phandango [192] 2017 pgAtlas Dendrogram, heatmap JS Yes

a. anvi'o

anvi’o [173, 202] has a workflow for pangenomics [158], dedicated to gene clusters extendable
with contextual information and aimed at prokaryotes. It has been used for pangenomic and even
metapangenomic studies [203] and displays PAV matrices in a semi-circular heatmap (cf
Appendix V) along with a dendogram for the phylogeny of the genomes involved.

The result visualization is not directly interactive: its interface enables fine tuning and
modifications of the display (group by cluster, customization of the element that should appear…),

26

with plenty of possible options18. It acts as a control panel for zooming, panning, refreshing the
view… with sorting options and others, but the visual representation is not interactive in itself.
Hovering events, while available, do not display tooltips but print values in a ‘mouse tab’ within
the menu instead. It is an actively maintained tool with regular updates so far.

b. Coinfinder

Coinfinder [176] produces static plots of association/dissociation networks (one node being one
gene family, proximity encodes frequency of cooccurrence) with Gephi, and PAV heatmaps (see
Appendix VI. It works on gene clusters and is still maintained.

c. Harvest

Gingr, a dedicated visualization module used by Harvest [109] for the phylogeny of core genes. It
provides a fair number of details on the underlying core pan-genes, with a phylogeny, sequence
alignments and switches between visual representations depending on the zoom level, as
illustrated in Appendix VII. Conceived to work with Parsnp, another Harvest module, it still can
accept standard file formats from other tools (multi-FASTA, xMFA, Newick, and VCF). Written in
C++, it offers interesting visualization functionalities (Fisheye, semantic zoom...) and had its latest
release in October 2016, which may indicate that the tool is not actively maintained.

d. Hierarchical Sets

Hierarchical Sets [184] have been created to bypass the limitations of UpSet [196] regarding big
datasets with numerous sets, which are plenty in pangenomics. Its algorithm computes and then
displays clusters of genes as Dendrograms and Icicle plots (see Appendix VIII) through an R
package. It claims to bypass UpSet’s limitations by showing only intersections between closely
related branches of a family tree, hiding the information about intersection of loosely related sets.

e. Microreact

Microreact [164] has been used to display pangenomes with PANINI [163]. It provides
scatterplot representations of dispensable genes (clustered with t-SNE for example), built with JS.
Contrary to many other qualifying tools, it provides information on variable genes too.
Interactivity is achieved through multiple linked views (Dendrograms, maps, swarmplots… as
illustrated in Appendix IX) within a fast interface. The integration with PANINI seemed
unnecessary and a bit dysfunctional (I could not use the tutorial and the transitions between
PANINI and Microreact were slow).

f. PanGeT

PanGeT [167] is an oddball, as it is written in LaTeX. Its flower plots (simplified Venn diagrams,
as seen in Appendix X) show the distribution of core and unique genes. It has limited interactivity,
through hyperlinks that enable the download of cluster data.

g. Pan-Tetris

Pan-Tetris [143] represents genic PAV matrices, with information on the genes’ strands, meters
for the presence rate, and the possibility to merge complementary cluster lines (see Appendix XI).
Built in Java for an in-house database (the ‘SuperGenome’), it is best suited for pangenome files
from PanGee, an unpublished tool, but can handle generic tab-separated formats too though this
did not bear good results during benchmarks (see more about it in Panache I).

h. PanViz

PanViz [159] is a JavaScript application that displays a scatterplot, dendrogram, table and Circos-
like [204] plots, the latest being swappable with two alternative representations (see Appendix

18 https://merenlab.org/2016/02/27/the-anvio-interactive-interface//#using-the-anvio-interactive-
interface

https://merenlab.org/2016/02/27/the-anvio-interactive-interface/#using-the-anvio-interactive-interface
https://merenlab.org/2016/02/27/the-anvio-interactive-interface/#using-the-anvio-interactive-interface

27

XII). This representation shows explorable clusters of genes, categorized depending on a dynamic
core threshold and Gene Ontology (GO). Data files can be built from a companion R tool called
PanVizGenerator [169]…

i. panX

Figure 11: panX provides multiple visual representations detailing the core genes; In this screenshot taken from the
example instance set for S. pneumoniae by Croucher et al. [205], panX displays a pie chart with a customizable cutoff
between core and variable (‘accessory’) genome, densities of gene count rank and length, a filterable table of the core genes,
sequence alignments, and dendrograms for both the strains and genes. On small computer screens all these visual
representations cannot appear at once, which results in mandatory scrolling interactions and harder comparisons.

panX [160] is an interactive interface buit with JS and dedicated to bacteria. It enables a dynamic
visualization of pgAtlases, with multiple (linked) views and representations (as illustrated in
Figure 11) supporting various tasks. It comes with a clean interface and a high level of interactivity
for fine tuning the visualization as well as a numerous example dataset. This visualization tool
however focuses on core genes but not the variable ones, and its interface cannot fit nicely on a
single screen which can hinder the User eXperience (UX).

j. Phandango

Phandango is a JS interface which can be used for displaying results from Roary [108]. It has been
applied to at least two pangenomic studies, on Salmonella [206] and Streptococcus [205] (as
showed in Appendix XIII). It accepts trees, CSV metadata, or gff3, and displays multiple views, with
a dendrogram and a heatmap of present blocks, whose order depends on precomputed files and
do not reflect actual annotation.

As for interactivity, a user can modify the sizes of the sub-panels, zoom in and out, pan, and access
tooltips and details on certain portion of the visualization but not on the PAV matrix itself.
Moreover, it is mentioned that there is a risk of crash when the files outputted by Roary become
too big. The latest tag has been put on 2016, and there has been no commit since 2018 which may
indicate a lack of maintenance.

28

3. Positioned

Positioned visualization tools, showed in Table 5 below are tools that have a focus on pangenomic
blocks (LCBs, panBlocks…), anchored onto a coordinate system. That coordinate system could be
an existing reference genome or a panreference (either built by anchoring additional material
within a base reference or stacking it at the end, see State of the Art I.F.1.a). Compared with
qualifying tools they have the additional information of position within genome(s). However, they
lack the information on sequence continuity and succession that would be needed within a
structural tool, mainly because of the fragmented nature of pangenome blocks.

Table 5: Positioned tools anchor fragmented pangenomics data on a coordinate system; As in Table 3: additional
information is provided in the dedicated subsections. (*) highlight that complementary details are available. Visualization
tools are marked with a () before their name, to better distinguish them from tools with visualization(s). The columns
provide a tool’s name, reference, year of publication, compatible type(s) of datasets, visual representations used, language
of development, level of interactivity. ‘vis.’ stands for ‘visualization’.

V
is

. t
o

o
l

N
a

m
e

Y
e

a
r

p
g

A
tl

a
s

o
r

P
a

n
.

V
is

.
re

p
re

se
n

ta
ti

o
n

L
a

n
g

u
a

g
e

In
te

ra
ct

iv
e

 v
is

.

■ Chromatiblock [175] 2019 Pan.
Alignment of core
or variable blocks

Python Yes

■ GCV [179] 2018 pgAtlas
‘Beads-on-a-
string’ genes,

Circos, Dotplots
TypeScript Yes

■ PanACEA [170] 2018 pgAtlas

Dendrogram,
circular pan-

chromosome, fGR
view

Perl* Yes*

■ Panache [188] 2021
Pan. &

pgAtlas
PAV heatmap-like

in a browser
JS Yes

■ PGV [191] 2021 Pan.
Dotplot, block

browser
Python, JS No*

■ TASUKE+ [195] 2019 Pan.
SNPs heatmap
and annotation

track

HTML5,
MySQL

Yes

a. Chromatiblock

Chromatiblock [175] compares syntenic haplotype blocks in multiple prokaryote genome
alignments and offers two views (as seen in Appendix XIV), built with Python from MAF files. One
of the views shows core blocks both color-coded and aligned based on their position on the first
genome. Non-core and unique blocks (displayed as patterned rectangle) are then positioned
relatively to these core blocks. The second view focuses on the alignment differences: variable
blocks are displayed in a PAV matrix, one column per block.

It offers options for zooming, panning, and interactive highlighting of common regions across
genomes, as illustrated in their available demo for C. difficile19. Both its latest release and commit
date back to September 2020.

19 https://mjsull.github.io/chromatiblock/C_difficile.html

https://mjsull.github.io/chromatiblock/C_difficile.html

29

b. GCV – Genome Context Viewer

The Genome Context Viewer [179] is a pangenome synteny viewer written in TypeScript which
focuses on the ‘genome contexts’, the relative ordering and orientation of the gene annotations. It
has three different displays: the micro-synteny view represents genes as ‘beads-on-a-string’,
colored depending on gene families and order based on any track; dotplots can show pairwise
comparison of gene loci; the macro-synteny view shows the macro position of synteny blocks in a
circos-like plot (see Appendix XV).

It has multiple interactive options (of navigation, highlight on hovering, linked views…) within a
clean interface, along with a clear documentation and explanations. The latest release was made
in 2021 but the tool is still actively maintained and improved, with new versions incoming.

c. PanACEA

PanACEA [170], built in Perl and outputting JS files, focuses on flexible Genomic Regions (fGRs)
and their smaller flexible Genomic Islands (fGIs). They are inscribed within a bacterial ‘pan-
chromosome’ or ‘pan-scaffold’ built from core genes, hence a circular display as illustrated in the
Figure 12.

Figure 12: PanACEA's pan-chromosome view displays genes positioned on a circular bacterial coordinate system; Only
the bottom half of the pan-chromosome view is showed here; variable regions are showed in dark gray and core in light gray,
with core genes colored by protein functions. The center of this representation has buttons and a table for exploring the
underlying data and clicking on the visualization can redirect to other visual representations, one being dedicated to the
linear comparison of fGIs between genomes. Figure from [170]

It has multiple visual representations available and takes outputs from usual clustering tools (like
PanOct [106]) but limited interactivity: a user can customize the colors, choose which fGI to
display by clicking and use text search and export functions from the central buttons within the
pan-chromosome view. It lacks a demo version and does not have much documentation. The last
commit dates to 2018, without any tagged release, indicating a lack of maintenance.

d. Panache

Panache [188] is the first tool I developed during my PhD, as detailed in Panache’s chapter. Built
in JS, it represents a PAV matrix of positioned panBlocks as a heatmap within a browser-like
interface.

30

e. PGV

The PGV Genome Browser is a tool written in Python and JS which has been created to represent
large eukaryotic genomes and considers both gene and non-coding sequences. Its browser
(showed in Appendix XVI) represents genomic blocks of alignment (built with progressiveMauve
[84]), colored depending on their presence status (core, variable, unique…) in the pangenome
and laid out following a ‘consensus ordering’ which is not based on a single reference.

It has limited interaction: double-clicking can show block names and connections across genomes,
and the genome order can be modified by click-and-drag events.

f. TASUKE+

TASUKE+ [195] is a multi-genome web browser, built primarily for Genome Wide Association
Studies (GWAS) and resequencing data (in FASTA, GFF, VCF…). It has been used in a pangenomic
context with the Brassica napus database BnPIR20 [207], for displaying sequence variation
information.

It represents a heatmap of SNPs density on sequences, along with gene annotations (see Appendix
XVII). The coordinate system is based on one reference. It offers multiple interactive options: data
export and filtering, (semantic) zooming, panning, tooltip on click, navigation via buttons…

4. Structural

Structural pangenome visualization tools emphasize the continuity and successions of sequences
within the pangenome and their structural variations. They do not rely on panreferences as
positioned tools do. Tools displaying genome graphs are good examples of this category, among
others listed in the Table 6 below.

Table 6: Most of the structural tools are based on genome graphs; As in Table 3: additional information is provided in the
dedicated subsections. (*) highlight that complementary detail are available. Visualization tools are marked with a () before
their name, to better distinguish them from tools with visualization(s). The columns provide a tool’s name, reference, year
of publication, compatible type(s) of datasets, visual representations used, language of development, level of interactivity.
‘vis.’ stands for ‘visualization’.

V
is

. t
o

o
l

N
a

m
e

Y
e

a
r

p
g

A
tl

a
s

o
r

P
a

n
.

V
is

.
re

p
re

se
n

ta
ti

o
n

L
a

n
g

u
a

g
e

In
te

ra
ct

iv
e

 v
is

.

■ Bandage [174] 2015 Pan. Genome graph C++ Yes

■ Crop-Haplotypes [177] 2020 Pan.
Shared blocks

within browser
JS Yes

■ GenomeRing [180] 2012 Pan.

Genome as lines
through blocks in

circular rings
display

Java Yes*

■ gfaestus [181] 2021 Pan. Genome graph Rust Yes
■ GfaViz [182] 2018 Pan. Genome graph C++ Yes
■ graphgenomeviewer [183] 2022 Pan. Genome graph JS Yes

■ IGGE [185] 2021 Pan.
3D VR layout of
genome graph

(Unity
Game

Engine)
Yes

20 http://cbi.hzau.edu.cn/bnapus/tasuke-plus_20200305/tasuke_www/

http://cbi.hzau.edu.cn/bnapus/tasuke-plus_20200305/tasuke_www/

31

 ODGI [124] 2022 Pan.

Table-like
genome graphs:

nodes on top,
edges below

C++ No

 Panaconda [115] 2017 Pan. Graph Python Yes*

■ panGraphViewer [189] 2021 Pan.

Genome graph
with

customizable
node shapes

Python,
Perl, JS

Yes

■ pantograph [190] 2020 Pan.
Connected PAV

matrices
JS No*

 plotsr [193] 2022 Pan.

Genomes as
lines, with
strokes in
between

representing SVs

Python No

■ Sequence Tube Map [194] 2019 Pan.
Genomes as lines
through block in

linear display
JS Yes

 vg toolkit [90] 2018 Pan.
Short graph of

sequences
C++ No

a. Bandage

A most famous tool in graph pangenomics is Bandage [19, 174], written in C++, which displays a
raw graph (or multiple subgraphs) from an assembly graph file which can be in different formats:
LastGraph (Velvet [208]), FASTG (SPAdes [209]), Trinity.fasta (Trinity [210]), ASQG (String Graph
Assembler [211]) or GFA. It has been popularized in pangenomics for the visualization of GFA files
[63], as it can provide an overview of the whole genome graph or be used on smaller regions. It
makes for a great first impression of a gfa file but gives no information about the sequences within
each node, and only shows the overall layout of the graph, with no access to the detail (as seen in
Figure 13).

32

Figure 13: Bandage gives details on the GFA’s node succession, their ID, and size in bp; Close-up view of an in-house
Glycine soy pangenome (unpublished) written as a GFAv1 file and visualized with Bandage. The information on node
sequences for example is not available through the interface, which overall lacks pangenome-dedicated features.

Furthermore, it can take a long time when loading graphs with numerous nodes, and it even
sometimes crashes when this number is too high, as it is the case for pangenome graphs. A last
oddity is that said layout might change at every attempt to look at it: nodes colors, absolute
positions and curvatures change whenever the visualization is loaded again, even though no
changes are applied to the graph file. This can be confusing, especially since big graphs can quickly
be tangled, and it makes it harder to find the same interesting location on multiple occasions by
using visual clues only.

The original Bandage reached maintenance stage, and a newer version, Bandage-NG [212], is
being developed and claims to greatly improve the memory usage and drawing speed of Bandage,
with additional features for path visualization with GFAs.

b. Crop-Haplotypes

Crop-Haplotypes21 is a JS interface that has been featured at the ISMB/ECCB 2021 BioVis
conferences22. Built for the 10+ wheat genomes project [177], it displays the haplotype blocks
obtained from 15 chromosome-level to scaffold-level genome assemblies, one chromosome at a
time. Each assembly is represented as a succession of haplotype blocks, ordered according to their
positions in each genome.

Common blocks are encoded with color and can be highlighted across genomes by hovering them,
and the exact equivalent positions on other assemblies are displayed in real time (as showed in

21 http://crop-haplotypes.com/
22 https://www.youtube.com/watch?v=ViihSiAmO_c

http://crop-haplotypes.com/
https://www.youtube.com/watch?v=ViihSiAmO_c

33

Appendix XVIII). Other interactive functions include on click fixation of the coordinates on display,
exploration and filtering options, zooms…

c. GenomeRing

GenomeRing [180], written in Java, offers an interesting visual representation of pangenomes.
Each species is attributed a line which traverses (if present) or avoids (if absent) pangenomic
blocks divided into two ‘rings’, corresponding to the backward and forward strands (as illustrated
in Appendix XIX). It works on in-house pangenomes and is compatible to their other in-house tool
Mayday [213] which can link the visualization to a browser with gene annotation for example.
Interactivity is limited to zooming, rotating, and panning the view.

d. gfaestus

gfaestus [181] is a Rust implementation of a genome graph visualizer, similar to Bandage (see
Appendix XX), and is used by the people that created ODGI [124]. It enables zooming, panning, and
hovering.

e. GfaViz

GfaViz [182] enables the visualization and manipulation of sequence graphs in GFA format, as
illustrated in Appendix XXI. The latest commit was made in February 2019, potentially indicating
a lack of maintenance.

f. graphgenomeviewer

graphgenomeviewer [183] is a project, initiated during the Bioinformatics Community
Conference CoFest 2020, which handles the visualization of GFAv1 and a subset of GFAv2. Its
simple interface (see Appendix XXII) enables some color customization, along with zooming,
panning, and manually moving graph nodes.

g. IGGE -The Immersive Graph Genome Explorer

The Immersive Graph Genome Explorer [185] is set in Virtual Reality (VR) for the 3D
exploration of genome graphs (featured in Appendix XXIII) from successively converted GFA
format. Usable with Oculus, it aims at clearer graph layouts and enables layout transformations
(both single-node and multi-node movements are available), genome sequence data extraction
from nodes, bookmark of regions of interest… An official version is in the works to expand this
proof-of-concept project.

h. ODGI

ODGI [214] is a collection of tools usable on variation graphs. Two of its commands will display
genome graphs: odgi draw can create a static 2D graph layout, and odgi viz creates a special static
representation with nodes on top in a PAV-like display and edges below, as showed in Figure 14.

34

Figure 14: odgi viz draws genome graphs with ordered nodes on top and edges below; Different sets of color codes can
be used: color per genome, light-to-dark gray gradient depending on position, black/red encoding of strand, color encoding
of repeat number (red = one repeat, orange = two repeats). Figure from [124]

It is better suited for small graphs or portions of graphs, for example focusing on a genic region.
When used on whole graphs they can become hard to read depending on the overall linearity of
the graphs, or if no cleaning and ordering step was made, as illustrated in the Figure 15 below.

35

Figure 15: The odgi viz representation of raw graphs can be messy; Here the graph has been built from two Medaka
genomes. Figure taken from Erik Garrison’s Twitter thread, 2019

i. Panaconda

As described in State of the Art II.A, Panaconda displays graphs built with Gexf-JS and graph
layouts from Gephi. Each node is associated with an annotation, and details are available on a left
panel, as showed in Appendix XXIV.

j. panGraphViewer

panGraphViewer [189], written in Python, has been built as an alternative to Bandage and
focuses on subgraphs rather than whole genome graphs. Based on vis.js or Cytoscape.js depending
on the graph’s size, it offers the possibility to attribute different shapes to nodes depending on the
SVs (SNPs, Deletion, Insertion, Inversion, Duplication, Translocation) they depict compare with
‘backbone nodes’, as seen in Appendix XXV.

k. pantograph

pantograph [190, 215] (not to be mistaken with Pantograph [216] which is a method for
metabolic model reconstruction) proposes an alternative representation of pangenome graphs as
connected PAV matrices, where the actual succession of blocks within genomes can be deduced
from arrows connecting the different pangenomic blocks (as seen in the Figure 16). Unfortunately,
the original version built for the virtual BioHackathon 2020 has been abandoned and the related
demo is not available anymore.

36

Figure 16: pantograph represents all genomes within a pangenome as linear paths through panBlocks represented as
PAV matrices at a nucleotide level; Individual paths always stay on one line instead of going up and down as in Sequence
Tube Map [194]. Colored arrows flanking the panBlocks show where rearrangements disrupting the order of block succession
occur. This indicates for a given path whether the following sequence is that of the next block on the right or if it jumps
somewhere else within the visual representation. Image taken from https://graph-genome.github.io/pantograph.html

A new version being developed by Computomics [217] is the successor of this collaborative
project, but it is not widely available yet. A demo of this C++ version, featured in Appendix XXVI is
available on a new dedicated website23. The exact pricing of this newest version is unknown.

waragraph [218] has been described24 as a potential spiritual successor to pantograph, but there
is not enough documentation as of June 2022 to have a good idea of its capacities.

l. plotsr

plotsr [193] is a tool written in Python that enables the creation of static plots representing
pairwise comparisons of the structures of successive genome assemblies. It displays genomes as
lines, and rearrangements (inversions, translocations, duplications) as colored connections
between the lines, linking the equivalent positions (see Figure 32). Multiple plotting options are
available to refine the resulting visualization.

m. Sequence Tube Map

Sequence Tube Maps [194] is a JS tool which aims at showing SVs within variation graphs. Its
display is similar to a Sankey diagram [219], with genomes’ paths being packed together and
flowing through successive sequence boxes (that would be the node of a sequence graph), as
illustrated in Figure 17.

23 https://pantograph.computomics.com/
24 https://github.com/graph-genome/graph-genome.github.io/issues/30#issuecomment-1161680179

https://graph-genome.github.io/pantograph.html
https://pantograph.computomics.com/
https://github.com/graph-genome/graph-genome.github.io/issues/30#issuecomment-1161680179

37

Figure 17: Sequence Tube Maps represents genomes within a pangenome as successive Sankey diagrams; Left is a
schematic version of a Sequence Tube Map, as introduced on its GitHub repository25; right is a simple example of a Sankey
diagram taken from the internet26

This representation can be thought of as a linear version of the visual representation used by
GenomeRing [180], and a simpler version of the connected PAV matrices of pantograph [190].
However, it does not scale well to datasets with numerous paths as they are stacked under each
other (see Appendix XXVII), which can make areas with complex rearrangements hard to read,
possibly creating a hairball effect (see Ten rules Rule 3: Think about visual scalability and
resolution).

This representation supports zooming, panning, hovering, and on-the-fly change of reference
ordering of the blocks.

n. vg toolkit

The variation graph toolkit [90] mainly focuses of the creation of variation graphs but has a wiki
section27 dedicated to visualization and a command for displaying the graph built. This static
representation displays a small region of a graph along the paths going through, as showed in
Appendix XXVIII. It is actively maintained but is a tool with visualization rather than a visualization
tool.

5. Composite

The composite category gathers tools that are harder to categorize as they display multiple visual
representations from two or more of the previous categories—sometimes within the same view.
There are few examples so far, as listed in Table 7.

Table 7: Composite visualization tools leverage multiple pangenome visual representations and visualization
categories; As in Table 3: additional information is provided in the dedicated subsections. (*) highlight that complementary
detail are available. Visualization tools are marked with a () before their name, to better distinguish them from tools with
visualization(s). The columns provide a tool’s name, reference, year of publication, compatible type(s) of datasets, visual
representations used, language of development, level of interactivity. ‘vis.’ stands for ‘visualization’.

25 https://github.com/vgteam/sequenceTubeMap
26 https://www.yworks.com/pages/interactive-sankey-diagram-visualization, accessed 2020
27 https://github.com/vgteam/vg/wiki/Visualization

https://github.com/vgteam/sequenceTubeMap
https://www.yworks.com/pages/interactive-sankey-diagram-visualization
https://github.com/vgteam/vg/wiki/Visualization

38

V
is

. t
o

o
l

N
a

m
e

Y
e

a
r

p
g

A
tl

a
s

o
r

P
a

n
.

V
is

.
re

p
re

se
n

ta
ti

o
n

L
a

n
g

u
a

g
e

In
te

ra
ct

iv
e

 v
is

.

■
MoMI-

G
[186] 2019 Pan.

Circos, Sequence Tube
Maps…

TypeScript,
JS

Yes

■
PGAP-

X
[171] 2018 Pan.

Multi-genome browser,
pangenome profiles

C++, (Qt) Yes*

a. MoMI-G

MoMI-G [186] is an interface that combines multiple view modules, including a Circos for
translocations between chromosomes in a single coordinate system (which could correspond to
a positioned representation), SV card within the ‘Interval Card Deck’, detailing information on the
SV stored, and an implementation of Sequence Tube Maps [194] for detailed view of the nucleotide
sequences (which falls into the structure category). These three view modules are represented in
Figure 18 below.

Figure 18: MoMI-G combines multiple views dedicated to structural variations; Here the Circos, Sequence Tube Map, and
Interval Card Deck are visible, but other modules can be added and moved at will. Figure taken from MoMI-G’s demo28, after
editing the visible modules to display the overall and graph views within the same screen.

It takes files from various formats (genome graph, variation graphs, GAM, GFF, FASTA, VCF…) and
is intended for large genome graphs. The view modules are customizable and can be toggled on
or off, with various interactions available on the different visual representations. As for panX
[160], too many view modules would not fit within one screen, though a navigation pane at the
top enables users to jump directly to the desired view module.

28 http://demo.momig.tokyo/

http://demo.momig.tokyo/

39

b. PGAP-X

PGAP-X [171] is an extension to PGAP [107] dedicated to visualization, built with C++ and Qt, and
implemented within PGAweb [220]. It offers four representations, related to four analyses tasks
(genome alignment, ortholog analysis, variation analyses, pangenome profile) applied to
positioned gene orthologs. It combines mostly qualifying and positioned visualizations, but do
show successions onto different genome coordinate system, like Crop-Haplotypes [177], which
could make it a structural tool too (see Appendix XXIX). It is built for prokaryotes, and PGV claims
that it could not scale to their eukaryote data.

It has a detailed documentation and provides limited interaction: customization of plots through
menus, basic navigation through buttons on top of tracks, choice of genome to display and their
order through the menu too. The plots themselves are static overall, except for a double click
interaction that realigns the visualization.

C. Platforms and (repurposed) genome browsers

Alongside these visualization tools and tools with visualization(s), there are alternative tools that
are either platforms dedicated to some species (with few visualization capacities or depending on
implementations of other tools adapted to their own data) or repurposed genome browsers.

From plant research teams there are for example BrachyPan [72], PepperPan [221], RPan [222],
GBrowse implementation for Brassica genomes [142] and wheat29 [17]; Persephone browser
used for 26 maize accession [223]... In the same manner I have found a case of pgAtlas
visualization for bacteria, where the scientists used an altered version of JBrowse for browsing
flexible Genomic Islands (fGI) based on a reference genome [224].

While interesting, such ad-hoc browsers are mostly one-time attempts at visualizing pgAtlases,
and they cannot be used to visualize information from genomes other than the one they were
specifically built for. Some of them even are not available anymore, the web servers hosting them
being down (that is the case for PepperPan). They are therefore not suitable for the visualization
of general plant pangenomes.

As for other pangenomic platforms I could cite EDGAR [165] (access to a diversity of mostly statis
charts built from pre-computed datasets), Panoptes [225] (multi-view browser that should be
highly customizable but is hard to use), PanWeb [168] (a graphical interface for PGAP, which
produces basic static plots from user-provided data), and the Pan-Genome Explorer30 (like
EDGAR, it integrates various pangenomes with multiple visual representations, but with more
interactivity).

D. Tools not included

Some other tools described as doing pangenome visualization by various papers did not make it
within this review, for a variety of reasons:

- AGB, the Assembly Graph Browser [226]: cited by Eizenga et al. [19], it is dedicated to
assembly graphs and is presented as an alternative to Bandage [174] but struggled to
“show fine details within the graph”, which is edge-labelled rather than node-labelled.

- Augmented Graph Viewer [227]: too little information and no news for some years—not
much since it won the best BioVis poster award in 2017, see Appendix XXX—it has
allegedly evolved into the Sequence Tube Maps and pantograph projects where
computomics was involved.

29 https://appliedbioinformatics.com.au/cgi-bin/gb2/gbrowse/WheatPan/
30 https://panexplorer.southgreen.fr/cgi-bin/home.cgi

https://appliedbioinformatics.com.au/cgi-bin/gb2/gbrowse/WheatPan/
https://panexplorer.southgreen.fr/cgi-bin/home.cgi

40

- CINTENY [228]: creates static plots of pairwise synteny comparisons between species, it
not really is pangenomics but comparative genomics.

- Gobe [229]: a Flash application used for the comparison of orthologous genes between
species.

- gGnomes and gGnomes.js: listed as graph visualization tools by the awesome-genome-
visualization list [172], it seems to work on genome graphs, but I could not explore them
into detail.

- GView [230]: seems to work on single genomes only.
- Linx31: an annotation, interpretation, and visualization tool for SVs, which is part of the

tool suit used by the Hartwig Medical Foundation. It provides complex Circos-like
representations of SVs (see Appendix XXXI) that I could not study in detail but seems
interesting.

- Multiple Experiment Viewer [231]: used by LS-BSR [103], it creates static plots from
generic data; a recent web version called WebMeV [232] exists.

- MetaPGN [197]: similar to PPanGGOLiN [70], it uses Cytoscape to represent bacterial
pgAtlases.

- MSAViewer [233]: Useful for representing MSA, not much for pangenomes on non-
nucleotidic scales.

- Panakeia [198]: uses Cytoscape for its visualization.
- ppsPCP [234]: supposedly enabling the visualization of PAVs according to Danilevicz et

al. [48], though ppsPCP’s paper does not mention visualization at all.
- SGTK [235]: Cited by Eizenga et al. [19], it can be used to visualize assembly graph, for

scaffolding within assembly steps for example. Bandage [174] gained more popularity.
- Corteva’s TagDots and PANDA: static representations (examples showed in Appendix

XXXII) used by a private company
- Shasta [236]: toolkit for long read assembly, uses third party visualizations including a

dotplot viewer

Moreover, it is always possible that some tools were not included simply because I did not notice
them or because they were not already available at the time of writing this review. The tools listed
in this manuscript still represent a good overview of the possible visualizations and visual
representations for pangenomes, which has been valuable for the design phases of both tools
detailed in Panache’s and SaVanache’s chapters.

III. Introduction to data visualization
Data visualization is the art of representing data visually, to give a sense of their underlying
patterns and interactions. Datavis for scientific purposes is aimed at the faithful representation of
these patterns for analysis. Artistic datavis, on the other end, is based on data too but is designed
for beauty and/or feelings, rather than legibility and reasoning. Scientific datavis involves
different principles and concepts; this section serves as an introduction to these.

A. Why do datavis?

Datavis takes a significant space in analysis workflows, as the human mind is used to make sense
of shapes and colors rather than tables of numbers. Plotting data before diving deep into analysis
is a good practice, as it can reveal unexpected outliers or patterns of interest that would be hard
to detect through numbers alone.

A most famous example of the importance of representing data visually is Anscombe’s quartet,
illustrated in Appendix XXXIII, which shows how datasets with the same summary statistics can
contain really different patterns. Researchers further detailed this idea with additional datasets

31 https://github.com/hartwigmedical/hmftools/blob/master/linx/README_VIS.md

https://github.com/hartwigmedical/hmftools/blob/master/linx/README_VIS.md

41

representing recognizable shapes, including the Datasaurus, as illustrated in Figure 19 below.
These additional datasets emphasize the importance of representing data visually, with more
engaging and obvious examples.

Figure 19: The Datasaurus dozen shows that highly different datasets can share the same summary statistics; The
Datasaurus Dozen is a new take on famous Anscombe’s Quartet: obviously different graphs may still produce identical
statistics. This perfectly illustrates how visualization can add an important layer of information in such a way that numbers
alone could never do. Figure is adapted from https://www.autodesk.com/research/publications/same-stats-different-graphs

Moreover, scientific datavis serves different purposes: exploration and analysis of data, but
communication to others too. Researchers might want to use datavis to explore their data, trying
to find patterns of interest when comparing different parts. It could also be used with a specific
research question in mind, for a more targeted approach, for example on a specific subsection of
the dataset. Finally, it is useful too to communicate results to others, and is therefore important in
the transmission of knowledge, between researchers but to broader audiences too.

B. One concept, many visual representations

There is no universal way of visually representing data, or concepts, and there is no purely neutral
way to represent something either. Every visual representation is a projection onto a two-
dimensional (or even three-dimensional) space, and therefore cannot properly convey all internal
interactions and properties. A datavis designer chooses how to visually encode and convey the
information that is considered as important. Multiple visual representations could be made from
a same concept, without one being less truthful than the other32 as illustrated by Matthieu Robert-
Ortis’s work in Figure 20.

32 However, some can be misleading, as discussed in State of the Art III.C.3.

https://www.autodesk.com/research/publications/same-stats-different-graphs

42

Figure 20: Depending on the chosen projection, a visual representation can highlight different properties of a same
concept; Matthieu Robert-Ortis is a French sculptor focusing on anamorphosis. His wire sculptures can represent multiple
distinguishable shapes depending on the direction from which they are observed. Here, his sculpture “L’homme crabe” can
be both seen as a person (shadow) or a crab (front view). None of these projections fully represent all the internal relations
between wires in the three dimensions. Taken from https://cargocollective.com/matthieu-robert-ortis/Ombre-portee

A widespread example of visualization is the writing system used in English. It is easy to take for
granted that words are constituted of letters, separated with spaces, and following a certain

https://cargocollective.com/matthieu-robert-ortis/Ombre-portee

43

order33, but it is the result of a long-matured evolution of visual encodings of language throughout
history!

Ancient Egyptians wrote hieroglyphs, which combined drawings to convey names and sentences.
Boustrophedon (see Appendix XXXIV) is another ancient approach to writing, where each line has
a succession of glyphs (associated with a determined meaning), and every other line is mirrored
upside-down. As another example, Scriptio continua—a way of writing without space or
punctuation for separating letters into words34—has been in use in Ancient Greek and Classical
Latin.

Even nowadays there still are multiple systems coexisting throughout the world, sometimes
within a same language. Japanese for example uses four different writing systems: Kanji where a
glyph or combination of glyphs represent a word; Katakana and Hiragana where each glyph
describes a syllable instead; Romaji which is a roman alphabetization of Japanese words, mostly
in use for foreigners and typing on a computer. We are therefore used to the coexistence of
multiple visual representations, even if we may not be conscious of it.

However, there are ways to visually encode information that are more efficient than others in the
context of scientific datavis, as explained below.

C. Some principles of data visualization and UI
design

There are no formal rules or principles, rather guidelines for good practices, that can be ignored
but not without risks. It is a common point of view among datavis scientists today, though some
share Edward Tufte’s elitist vision that distinguishes good and bad datavis depending on rational
criteria.

1. Tufte’s data-to-ink ratio and chartjunk

Edward Tufte worked on the effective design of visualizations. One of the main takeaways from
his book “The Visual Display of Quantitative Information” (originally published in 1983) [237] is
that datavis designers should tend to a maximal ‘data-to-ink’ ratio. Simply put, he means that
ideally every graphic element displayed should be linked to data, with as little superfluous content
as possible. As an example, he would encourage the removal of background gridlines of bar charts,
as they add nothing to what can already be seen.

He also expressed strong thoughts against ‘chartjunk’, ie the visual decorations that can be found
within graphs for aesthetics or as bits of humor. Again, his idea is that most-if-not-all the visual
elements should convey insights about data.

His extreme minimalist approach has since been nuanced by later studies that showed that even
though the impact of visual embellishments on memorizing the data was questionable, they do
make datavis more likeable and memorable overall [238, 239].

2. The principles of Gestalt

A fundamental concept of datavis and UI/UX design in general is the psychology of Gestalten (the
German word for ‘shapes’), exploring how the human brain processes what is visually one entity

33 “Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod
are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae.” As illustrated by this sentence
widely shared on the internet, even the order of letters might not be that important. Matt Davis from the
University of Cambridge provides an interesting analysis of this claim at https://www.mrc-
cbu.cam.ac.uk/people/matt.davis/cmabridge/
34 Wearenotusedtosuchawayofwritinganymore

https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/
https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/

44

or different. Since it was first explored by Wertheimer and Köhler in the 1920s35, an extensive
amount of literature has studied how shape recognition works and what its main drivers are [240-
242]. The ‘Gestalt principles’ (or sometimes ‘Gestalt Laws’) are nowadays common concepts when
working on visual representations.

Figure 21: The Gestalt principles explain why some visual elements are understood as being grouped together; Taken
from https://www.north-47.com/knowledge-base/gestalt-principles/

Some of these principles are illustrated in Figure 21 above36.

- Proximity: elements that appear visually close are grouped together (here the squares at
each end of the letter ‘G’ are closer to their direct neighbors than to each other).

- Common Fate: elements that experience common changes tend to be grouped.
- Continuity: if two shapes appear as if they could be in the continuity from one another,

we assimilate them to a unique shape split in two parts.
- Similarity: groups are easily made between things that look alike.
- Closure: similarly, to continuity, our mind can abstract visual elements that are not visibly

present (working as an autocompletion).
- Common Region: elements encapsulated within a same area are grouped together.
- Symmetry: symmetrical shapes are likely to be associated.

3. How datavis lies

Datavis uses different visual channels (position, color, shape, orientation, size…) to encode
information, and each channel has its own strength and weakness, and can even mislead if not
used properly, as described by Alberto Cairo in his book “How charts lie” [243].

Especially, color is a difficult channel to manipulate [244]. It encompasses the three different
concepts of hue (whether a color looks more red, green, blue, or other), saturation (if a color is
vivid or rather grey-ish), and luminance (how dark a color appears, ranging from black to white).
However, linear gradients of these values do not end up in linearly perceived difference, as
illustrated for the rainbow color scheme in Figure 22.

35 The notion of Gestalt was already used for perception of musical patterns, but not for visualization yet.
36 Other principles include Parallelism, Synchrony, Element Connectedness and Uniform Connectedness.

https://www.north-47.com/knowledge-base/gestalt-principles/

45

Figure 22: The Rainbow color scale does not accurately represent distances from a linear space; This typical example of
rainbow color map associates a linear gradient of values with color varying in hues. However, for a same interval the
perceived differences are not representative of the underlying data. The difference between the two-colored squares on top
seems smaller (they both look green) than the difference between the two colors at the bottom (one is yellow, the other one
is green), while their distance intervals are in fact the same.

Moreover, people can have various forms of colorblindness, preventing them from accurately
identifying hues. Taking the different types of colorblindness (Protanopia, Deuteranopia,
Tritanopia) into account would make a tool more accessible and user-friendly.

Among other considerations, one should keep in mind that color is understood relatively to its
direct context and neighbors. This effect has been illustrated in many optical illusions, including
Adelson’s checker featured in Appendix XXXV. It plays a role for visual representations like
heatmaps where colors encode numeric values, accurately identifying the exact value would be
made difficult as the signal of every colored square is disturbed by the color of its direct neighbors.

The human brain has its own ways of understanding and translating what it sees. More visual
channels are more powerful for making comparisons, or for making something visually ‘pop out’.
In scientific datavis it is therefore important to pay special attention to the faithfulness of a visual
representation to the underlying data, through careful design.

4. The principle of least astonishment

Also called principle of least surprise, this UI/UX design and software development principle
states that some behaviors are expected from some interactions and should be kept. A tool would
be easier to adopt if these expectations are met rather than avoided. For instance, scrolling down
with a mouse wheel is usually associated with vertical panning. The UX would be hindered if it
suddenly triggered the opening of new tabs within a browser instead!

Simply put, a tool that feels intuitive will offer a better experience to the users, and it will favor
the adoption of the tool. It can be extended to a general principle of reluctance to embrace novelty,
as learning how to use something always comes with a cost as most people have little energy to
invest in it.

5. Shape distinguishability

An important part of datavis for many scientists is the distinguishability of shapes within the plots
they can make on a daily basis (like scatterplots from a PCA or line charts showing an evolution
over time).

Some scientists worked on the identification of factors that help to differentiate two shapes.
Notably, Huang [245] proposed a three-dimensional space based on Segmentability,
Compactness, and Spikiness (SCI), with a set of new shapes (featured in Figure 23) that could be
more distinguishable than the ones currently in use with classic plotting tools (like Microsoft Excel
or Tableau).

46

Figure 23: Huang proposes that shapes are distinguishable based on the three properties constituting the SCI space;
Figure from [245]

D. What are design studies?

For datavis, a design study is the exploration of the possible visual representations that could be
created to tackle a certain problem and their integration within a visualization tool. It also
encompasses the analysis of how well a design performs compared with others for accomplishing
user-defined tasks. They should include a description and discussion of the visual representations
used and their performance with users.

Some researchers (like Tamara Munzner [246-248] or the Visualization Design Lab37), provide
workflows and guidance for successful design studies. These examples and advice are full of
interesting ideas that better explain what can or cannot work when building a visualization tool.

Munzner’s book “Visualization Analysis and Design” [248] was particularly insightful, for example
with her work on the effectiveness of the different visual channels in encoding different types of
data, as showed in Figure 24.

37 https://vdl.sci.utah.edu/

https://vdl.sci.utah.edu/

47

Figure 24: Munzner ranked the effectiveness of visual channels depending on the type of data that should be
represented; Her main takeaway was that position was the most efficient channel for both quantitative and qualitative data.
Figure from [248]

48

49

 Ten rules on
Genomic

Visualization Tool
Development

50

Developing an -omic visualization tool (or any visualization tool, for that matter) is no trivial task,
and implies a harmonious cooperation between biology, bioinformatics, software development
and datavis skills. In this chapter I introduce our article “10 Simple Rules for developing genomic
visualization tools”38 written from hands-on experience and knowledge acquired through my PhD
and previous genomic projects of all contributors. I comment on some of these rules, providing an
addendum to those that had to be shortened in the final paper. These ten rules are referred in the
subsequent chapters of this PhD dissertation.

I. Motivation
When I first worked on pangenomes back in 2018 for my MSc2 internship, I had experience from
my biology background and specialization in bioinformatics (a few months out of my overall
cursus) but knew little about software development and datavis. My supervisors were
knowledgeable in biology, bioinformatics, and software development to an extent (they had built
tools without being from a proper tool development background) but had little to no experience
with datavis. One of them is even to blame (affectionately) for being behind the now infamous
Banana “Vennster”39 chart Figure 25.

Figure 25: The Venn Banana chart, both praised and criticized; taken from [250]. This altered Edwards-Venn diagram
represents sets of shared gene families between six plant species, featuring a distinguishable banana shape for Musa
acuminata (a banana species).

This chart started many discussions between scientists, some praising its inventiveness and
novelty, others criticizing its lack of readability and practicality. It created a heated debate among
datavis practitioners and was one of the motivations for the creation of UpSet [196], a
visualization technique designed for efficiently visualizing set intersections even for large
numbers of sets (i.e., 4 and more).

38 In review at PLOS Computational Biology
39 I.e. the intersection of a Venn diagram and a monster, as coined by McDermott 249. McDermott,
J.E., M. Partridge, and Y. Bromberg, Ten simple rules for drawing scientific comics. PLOS Computational
Biology, 2018. 14(1): p. e1005845.

51

Its main detractors’ argument is that the area dedicated to intersections are not proportionate to
the count of gene families contained in them, making it barely useful as a visualization. While
receiving backlash from a part of the scientific community, it also gathered positive comments
from many biologists who simply enjoyed it, making it a successful graph if we consider only
engagements with the host paper. More broadly, this reflects the opposition of minimalist
researchers banning “chartjunks” (as first coined by Edward Tufte [237], see State of the Art
III.C.1) to those in favor of chart “embellishments”—usefulness versus attractiveness [251-255].

Oddly shaped bananas apart, it illustrates the existing interest (if not the academic skills) we all
shared for datavis before my PhD project even existed. This PhD therefore unfolded with close to
no prior datavis knowledge, which proved difficult at times but proportionally instructive. We
decided to build from these back-and-forths between datavis theory and practice and came up
with ten simple rules for building a genomic visualization tool, written with collaborators who
already faced the same challenges. Our goal with these rules was to offer a “starter pack” of sorts
to other bioinformaticians and biologists eager to build their own visualization tool, with advice
and numerous references to datavis papers as an attempt to limit the number of hasty enthusiasts
diving headfirst in development.

As I discovered during my PhD, datavis is a whole scientific field, linked to research on Human
Computer Interaction (HCI), cognitive and vision sciences with a lot of applications since
visualization can be used for communication as well as scientific exploration and analysis (if we
stick to serious use cases). I personally think that scientists would gain a lot by using even basic
knowledge of datavis in their everyday work. These rules therefore include some of the things
about datavis I wish I had known earlier, in hope that they will be of use to others.

52

II. Ten simple rules for developing visualization tools
in genomics

Eloi Durant1,2,3,4*, Mathieu Rouard3,4, Eric W. Ganko5, Cedric Muller2, Alan M. Cleary6, Andrew D.
Farmer6, Matthieu Conte2, Francois Sabot1,4*

1 DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France

2 Syngenta Seeds SAS, Saint-Sauveur, France

3 Bioversity International, Parc Scientifique Agropolis II, Montpellier, France

4 French Institute of Bioinformatics (IFB)—South Green Bioinformatics Platform, Bioversity,
CIRAD, INRAE, IRD, Montpellier, France

5 Seeds Research, Syngenta Crop Protection, LLC, Research Triangle Park, Durham, North Carolina,
United States of America

6 National Center for Genome Resources, Santa Fe, New Mexico, United States of America

* Corresponding authors

E-mail: eloi.durant@ird.fr (ED); francois.sabot@ird.fr (FS)

A. Introduction

Visualization is key for expanding and communicating knowledge to both specialized and broad
audiences—after all, “a picture is worth a thousand words,” right? That much has become clear
during the SARS-CoV2 outbreak when "Flatten the curve!” [1] turned into a catchier watchword
than the usual "Wash your hands!”, by referring to the related graphics rather than the health
discourses themselves. COVID-19 visualizations, good and bad [2], became omnipresent in the
public debates, with interactive and dynamic visualization platforms like Nextstrain [3] gaining a
lot of popularity.

We are now used to seeing graphs and charts in our everyday lives and creating them for scientific
papers as part of research. Unfortunately, most of the time classic visual representations are
insufficient to effectively communicate data complexity, and as S. O’Donoghue puts it, “often
dedicated communication approaches need to be developed to address specific data challenges,
especially when conveying complex or unfamiliar ideas” [4]. Given the gap between creating static
figures and building a visualization tool from the ground up, it can be easy to get lost in this non-
trivial journey.

Our following ten simple rules are dedicated to biologists and bioinformaticians who, while
already being at the crossroads of many fields, want to venture further into the land of Data
Visualization (“datavis” or “dataviz” for short). They combine tips and advice that we would have
wanted when we first started our own journeys, gathered from our experiences in building
genomic and/or datavis tools, and the time spent with related communities. Additionally, they
address current challenges in computational biology and the needs of the community.

53

We aim these rules at bioinfo-to-datavis novices looking for guidelines, particularly regarding
genomics visualization tools, but experienced practitioners may find it useful to see them gathered
in one place too.

For better reading comfort, we organized the rules chronologically depending on when they
would matter the most during a visualization tool’s life cycle, starting with the design (rules 1 to
5) then development (rules 5 to 8-ish) phases until it is shared with the rest of the world. Please
note however that they are still relevant during the whole gestation and that creating a
visualization tool is rarely a fully linear process—it does not even end after the initial release, as
continued development and support is a cyclic process to be sustained over the years.

B. The Rules

1. Rule 1: Articulate the need for new visualization tools

For the past few decades, most genomics data have been visualized through genome browsers
(Jbrowse [5], Ensembl [6], IGV [7], etc.). With the advent of Next Generation Sequencing
technologies, the number of draft or high-quality assembled reference genomes exploded, and the
need to federate (gen)omic data across assemblies within and between species and to visualize
them has become a major challenge.

All these data types and tools lead to critical questions, such as “What am I trying to visualize?”
and “Why?”.

More specifically: What data do I have? Am I interested in structural variations? in epigenetic
changes? at genome scale or at a defined locus? Are there gene annotations available? Can I get
sequence alignments? Is there already a tool fulfilling all my expectations?...

Such questions must drive your quest for the appropriate datavis tool. A good first step would be
to explore the related bibliography and tool reviews. Some reviews focus on the use cases [8] or
layouts [9] of genomic visualization tools in general, while other reviews are specific to certain
subjects, such as structural variations [10] or Hi-C data [11]. Your data and visualization needs
may already be compatible with an existing tool, or additional development of an existing tool
could bring the feature you need. Getting a feature added to a tool can be done for example with
GitHub by making a feature request or even adding the feature yourself with a pull request—
consulting the dev team beforehand is usually a good idea, to be sure that what you propose is in
line with their vision and community.

If after all these steps nothing matches your needs, it then appears necessary to develop a new
visualization tool. If so, your big challenge will be to clearly identify the scope of your
visualization tool and to keep your end goal in mind.

2. Rule 2: Involve others early on

There are many “others” that you could and often should work with when creating a datavis tool.
Sedlmair et al. [12] identified six non-mutually-exclusive collaborator roles of interest for design
studies of such tools, with one of the main roles being the front-line analysts.

Front-line analysts are your end users, people who will use your tool and need it to complete
certain tasks, and who should therefore be handled with particular care. It is crucial to engage
them in discussion as early as possible since they are the ones who will (hopefully) adopt your
tool. Front-line analysts can help you to properly define the tool tasks (i.e. both high- and low-
level tasks that your tool should achieve) and provide test data as well as valuable feedback during
both the design and development phases. There are many good ways to engage with your end
users, including face-to-face interviews, surveys, design sprints, and even hands-on sessions

54

which can often reveal edge cases and sometimes bugs that would have been hard to find on your
own—beta-testing at its finest.

Moreover, there are fields dedicated to datavis: understanding how they are perceived by the
human brain (visual perception and cognitive vision science), improving how they can be used
with machines (Human Computer Interaction) and growing communities of datavis designers,
full of people who could help build a visualization tool. They can be rather generalist, like the Data
Visualization Society (https://www.datavisualizationsociety.org), or more dedicated to the
visualization of life-sciences data, such as the BioVis community (http://biovis.net). Look around,
there might be someone there willing to give you a hand!

3. Rule 3: Think about visual scalability and resolution

If the history of genomics teaches us one thing, it is that what was once a huge dataset can be
considered a toy set 5 years later [13]. The exponential growth of genomic datasets leaves us no
choice but to consider the scalability of our tools’ design and the efficiency of their visual
encodings (i.e. how well the chosen visual representations reflect the underlying data). Some
designs might be good visual representations for small datasets, but scale poorly for larger
datasets.

For example, Venn diagrams are fine for up to 3 sets, but with more sets they become messy at
best and a nightmare in worst case scenario. UpSet bypasses this issue by focusing on the set
intersections and presenting them in an ordered “table”, but it still suffers a loss of readability
with increasing sets (there is simply too much to see) and is not designed for visualizing hundreds
of sets [14]. Similarly, networks and graphs do not adapt well to big datasets with many nodes
and edges, resulting in the infamous “hairball effect” [15] (Fig. 1). Your data will come with edge
cases that you need to anticipate if you want your design to work properly at scale [16]. Try
varied configurations (good ol’ pen & paper are still useful to quickly draft multiple layouts), get
familiar with your design’s limitations, and offer alternatives if you have the resources for it.

Fig. 1. Your chosen visual encoding’s clarity can depend on the size and complexity of your
datasets, which could also hold unexpected characteristics compared with simulated or
real data of limited scope.

Genomic data has specificities and layers that you need to consider at different resolutions. Your
organism(s) may have multiple chromosomes (linear or circular) to consider, heterozygosity or
even polyploidy, and may present macro structural rearrangements at a chromosome level that
will not interest you at the nucleotide sequence level. Along with the genomic sequences, you may

55

also have access to additional data types, such as Hi-C, epigenomic signatures, or detections of
transcription factor binding sites, all of which can blur the respective message in all-in-one
visualizations. Instead, consider different visual representations for each data type and how they
can complement each other through comparisons and interactions.

4. Rule 4: Be creative, be bold

To develop a successful visualization application, you will have to find the right mix of technology,
usability, and aesthetics.

Regarding technology, you can envision that scientists will soon have access to equipment similar
to what Tom Cruise used in Minority Report, that will interact with virtual screens to perform
multidimensional genomic data analysis. Virtual reality headsets and augmented reality devices
offer a first, more affordable step in this unfamiliar 3D environment for datavis—some have
already been put to use for GWAS [17] and visualization of 3D structure of chromatin [18] or
genome graphs [19]. However, while technically feasible, such technologies are not popularized
yet and that choice would likely reduce the number of end users. There are plenty of technology
options available, and you will need to keep up to date, but make sure that your audience can
effectively and correctly use them!

As for aesthetic and artistic ways to present data, it is partly subjective. Something nice and eye-
pleasing to one person may not be appreciated and understood the same way by another person.
However, there is a good amount of literature providing advice for efficient datavis design [20–
22]. One example is to pay special attention to how you use colors [23]. Make your tool more
accessible by accommodating visually impaired people [24], who make up more than 3% of the
global population [25]. Overall, be creative, do not be afraid to create designs that will not
make it to the final cut, and test different graphical strategies following user experience (UX)
design processes [26]. Finally, even though too much novelty could be a barrier to adoption, a
smart and beautiful design will encourage your users to engage more by offering them visual
clarity of their data.

If art is really your thing, though, you could totally find a place among the “Xenographics”
(https://xeno.graphics) or create your own science-inspired pieces in your free time (check out
Martin Krzywinski’s π-art gallery: http://mkweb.bcgsc.ca/pi/art)!

5. Rule 5: Make data complexity intelligible

A familiar way of making complex data accessible is to compute derived measures and statistics
or to apply dimension reduction techniques. Still, visualization is recommended to detect patterns
(Fig. 2) that would not be found with these means alone, as illustrated in Anscombe’s quartet [27]
and the more recent Datasaurus Dozen [28] (based on Alberto Cairo’s eponymous dataset).
Unfortunately, the human mind cannot make sense of everything that it perceives at once and our
attention is instead focused on fragments of what we see.

56

Fig. 2. A good datavis tool should make the identification of patterns easier (feat. the
Datasaurus)

In practice, our understanding of graphical representations comes in part from the immediate
identification of salient elements that visually “pop out” (i.e. preattentive processing [29]) but it
mainly comes from active exploration [30]. Therefore, a key component of datavis is to make
exploration easier, and to reduce the workload for a user’s brain starting with careful design as to
relieve their working memory [21].

A universally praised rule of thumb to this end is Shneiderman's mantra: “Overview first, zoom
and filter, then details-on-demand” [31]. This approach encourages visualization developers to
make clever use of the main advantage of visualization tools over visual representations:
interactivity. With such a divide and conquer approach it becomes easier to make sense of the
displayed visual information as a user. For example, adding details with dynamic tooltips or
including dedicated linked views enables users to build a deep understanding of the data provided
without hiding the overall patterns.

6. Rule 6: Let your inner nerd shine, when needed

Technology matters, but it is not an end in itself. If you can design and produce an efficient tool
using reliable methods instead of the latest and trendiest ones, there is no reason not to. Using the
latest framework or published method can be interesting when they add significant advantages,
but they may come with stability issues and will not always be the safest option for a robust and
long-term tool (as an example, we can think of the infatuation with Objective-C in the mid-2000s
leading to the creation of the BioCocoa framework (http://bioinformatics.org/biococoa), without
any evolution since 2011). Moreover, accumulating niche technologies and methods would make
it difficult to find someone with the exact skillset needed to maintain or help develop your tool;
consider the consequences of that choice carefully.

On the other hand, it is also important to recognize that software technologies evolve quickly, and
once-common approaches to user interface development may lose favor or become inviable
(consider applets and other rich-client alternatives to browser-based development; or the
genomic visualization tool Gobe [32] which unfortunately came out after the first signs of Adobe
Flash’s downfall. Sometimes a well-conceived and popular tool may need to be completely
overhauled in order to remain relevant and usable. This is what happened with genome browsers
implemented as imagemaps generated server-side which transitioned to later generations
implemented using client-side JavaScript frameworks.

You will need to use relevant technologies for your tool: using LaTeX to produce pangenomics
visualizations is fun but needlessly complicated [33] and there are better, dedicated technologies
out there. Common tools in datavis differ from common tools in bioinformatics in general, and you
will have to try and get accustomed to unfamiliar technologies and concepts. For web-based

57

visualization, you should first familiarize yourself with the differences between Scalable Vector
Graphics (SVG, geometrically defined images) versus HTML5 Canvas (pixel-defined images)
elements. A must-know library for working with visualization is D3.js, which enables the
manipulation of (graphic) elements on a webpage. Finally, if your goal is to display numerous
elements at a time (say thousands or millions), you should consider working with WebGL (an API
using the graphic card for faster display)—check out the Three.js library or the GenomeSpy [34]
or Gosling [35] visualization grammars if interested…

7. Rule 7: Benchmark with diverse datasets

While it is important to have a well-thought-out design, you cannot ignore performance, as a
smooth user experience is key for your tool’s adoption [36] . Benchmarking with different datasets
is critical for your visualization tool, and each type has its own use.

- Small simulated datasets can and should be used during development, as they are better
suited for fast iteration while debugging. Make sure that what you see is faithful to the data
you have. Handcrafted files can be useful to make extra sure that the resulting visuals
match your expectations.

- Big simulated datasets are meant to be used for stress tests, to assess scalability and
performance: how much data can you feed to your tool until it breaks? until the tool starts
slowing down too noticeably? Performance is an important aspect of your tool that should
be determined, at least to let users know what to expect if they want to use their data with
your tool.

- Real data, finally, to make sure that your tool is working properly with real-life data. Look
out for unexpected behaviors and edge cases, related to your design or data format
loopholes that may hinder the user experience.

With the decrease of sequencing costs, it is quite frequent to have huge projects with hundreds if
not thousands of samples: humans, Arabidopsis, mosquitoes, rice, bacteria, viruses and so on. A
modern tool would be expected to manage hundreds of datasets, with as few lags as possible and
no memory crashes. Keep in mind that “hundreds of genomes” may not correspond to the same
size depending on the studied organisms: one thousand HIV genomes represent ~9.2 Mb, which
is less than 0.0014 the size of a single human genome. You should therefore consider performance
through two axes: count capacity (number of genomes or measures that can be added) and size
capacity (efficient and maximum file sizes that can be used).

You may also need to consider characteristics such as the number of chromosomes (or scaffolds)
within a genome as well as the distribution of sizes among these elements (for example, an
abnormally large chromosome in an otherwise “normally-sized” genome could break the
assumptions of your data structures).

8. Rule 8: Stay tuned to the genomic tool ecosystem and
promote interoperability

Your application will likely need to work among an existing ecosystem of databases and tools that
vary by community, even when developed as a stand-alone instance. To lower your tool’s barriers
to adoption, pay special attention to implementation, distribution, documentation and
deployment.

Regarding implementation, your tool should be as light as possible, OS agnostic [37], and if
possible, run client-side. Implementing a standard Genomics API [38] to consume input datasets
will also enable seamless integration and better interoperability with other databases and
applications. Moreover, some users may want to include your visualizations in automated
workflows, so the ability to get output via a command-line and companion scripts can be a nice
additional feature to provide.

58

For distribution, consider multiple options—a Docker or Singularity container can make complex
setups much easier to install, but providing users with the details to install with dependencies on
other systems is also valuable. Web applications (for example, those built with JavaScript) are
great for avoiding multiple setup issues as they can work with any web browser.

When time and resources allow, making a popular tool available on several platforms and
programming languages is a good option for sustainability. JBrowse is a good illustration since it
is available in both web and desktop versions [5], can be embedded in large genome portals as a
Drupal module [39], has an R markdown and R Shiny compliant version (JBrowseR [40]), and
exists as a Jupyter package [41]

Hosting an example of your software on a website can be useful for trial purposes but can be
difficult to maintain over time. Always seek to make it easy for potential users to try your tool on
their systems – include clear instructions and a straightforward way to download and run the tool.
Good trial data helps users understand the tool and is also a good test to make sure the tool is
running properly following installation. Moreover, data formats in bioinformatics can be tricky
[42] so clearly document the formats your tool needs and provide examples.

9. Rule 9: Keep up to date with related work

Genomics has been quickly evolving in the past years and shows no sign of slowing down in the
future. Envisioned future developments and challenges are linked to more diverse and applied -
omics approaches (especially in health), data ethics and security, reference-free studies and
others, all with ever more data and a growing need for integrated solutions [43].

With fast evolving needs and many people working on these subjects, it can be easy to be the
needle in a haystack and be forgotten in favor of another tool: as of May 30, 2022, there are 434
visualization tools listed in the awesome-genome-visualization list [44] and 151 research articles
(already 13 out in 2022 and counting) found via Europe PMC whose listed keywords matched
“visualization” and “genomics”. Make sure you keep up to date with data and technologies in
genomics so that your ideas and tools stay fresh and relevant. Do not let your focus wander off too
much either: a polished and thoroughly executed idea is better than a hybrid monstrosity of
hastily (re)defined goals.

Moreover, you should try to ride the wave rather than fight against it: make your work known
and alive (in conferences, articles, Twitter...) and people will start noticing and using it. After all,
you could very well make the new state-of-the-art tool!

10. Rule 10: Grow and support your user community

Gaining users is the final key to a great visualization tool. To do that you need to communicate
your tool to prospective users as well as those who are actively working with it. Communication
can take time, but it is rewarding—not only to ensure that people are using your tool, but also
to gather ideas for improvements.

User documentation is a simple starting point – make sure you have an up-to-date README or
manual for your software, including multiple examples on how to actually use your software.
GitHub is an easy way to centralize this information and engage with those that have downloaded
your project and are attempting to use it, especially through the “Discussions” and “Issues”
features. Projects with no activity or updates are a warning sign to potential users, whereas those
with activity are more enticing. Plus, you can centralize answers to frequent questions and, if you
have an active user base, GitHub Discussions now supports polls, making it a convenient way to
get input on new ideas. Furthermore, as reproducible research and FAIR-sharing principles are
applicable to software products [45,46] it may encourage users to cite a released version of your
tool by using tools like Zenodo to issue persistent Digital Object Identifiers (DOI) against your
releases.

59

When presenting at a conference try to end with 1-2 questions about new feature requests or
biggest issues, along with contact details. Also consider setting up a google search notifications
around the name of your tool – you might find mentions on Biostars, publications, and other sites
you were not expecting.

Finally, do not forget to use social media to cast a wider net by advertising releases of the tool as
well as occasional examples of its use [47].

C. Conclusion

Our 10 simple rules for developing genomic visualization tools will not replace the experience
gained by trial-and-error but will hopefully make the development process less painful for future
bio-datavis practitioners and other datavis enthusiasts. Moreover, these rules merely cover the
tip of the iceberg, and we strongly encourage our readers to take a look at the references included
in this paper to further improve their understanding. Other interesting matters that did not make
it through the introductory cut include visual design validation [48,49], inclusion and accessibility
matters [50,51], and visual representation of uncertainty [52,53], which are subfields on their
own.

Most of the elements presented here would also be applicable to non-genomic datavis tools; what
may be more specific to genomics here is that the datasets are increasing at fast pace [13], with a
target audience of scientists that have specialized questions covering a wide range of data types
and scales. Depending on your goal (see Rule 1) you may have to create a multi usage tool that
could work for pre-established analysis workflows and exploratory usages as well as for capturing
printable versions of your visual representations at a given state.

These static snapshots could be used for publication, as you should also considering publishing
papers about your tool and the design choices behind it (datavis oriented columns are gaining in
popularity, for example with the datavis section in Frontiers in Bioinformatics).

To wrap up these ten rules, here is a summary of what we deem most important, our take-home
message for those who did not have time to read the article in detail:

- Going blindly into building a visualization tool is a bad idea; take time to learn about
datavis principles first (we highly recommend Nature Methods’ “Points of View” column
[54]) and to carefully consider your tool’s visual representations and interface designs.

- Genomics comes with multiple challenges, due in part to its diversity and scale of data.
Make sure you have correctly identified the tasks your tool should complete and consider
implementing interactions between different visual representations.

- Interact with your community at all times: during the design phase to correctly assess your
end goal; during development to use real data and make sure you are going in the right
direction; and on an ongoing basis once your tool is available for all to enjoy, to prevent it
from ending in the “oubliettes de l’histoire.”

D. References

1. Brian É. “Flatten the Curve!” But Which Curve? Histoire & mesure. 2020;XXXV: 233–246.
doi:10.4000/histoiremesure.13544

2. Helena Klara Jambor. Martin Krzywinski: A pandemic of bad charts. 2022. Available:
https://www.youtube.com/watch?v=_YGmfsKL8N8

3. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-time
tracking of pathogen evolution. Bioinformatics. 2018;34: 4121–4123.
doi:10.1093/bioinformatics/bty407

60

4. O’Donoghue SI. Grand Challenges in Bioinformatics Data Visualization. Frontiers in
Bioinformatics. 2021;1. Available:
https://www.frontiersin.org/article/10.3389/fbinf.2021.669186

5. Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M, Helt G, et al. JBrowse: a dynamic
web platform for genome visualization and analysis. Genome Biol. 2016;17: 66.
doi:10.1186/s13059-016-0924-1

6. Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, et al. Ensembl
2022. Nucleic Acids Research. 2022;50: D988–D995. doi:10.1093/nar/gkab1049

7. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-
performance genomics data visualization and exploration. Brief Bioinform. 2013;14: 178–192.
doi:10.1093/bib/bbs017

8. Pavlopoulos GA, Malliarakis D, Papanikolaou N, Theodosiou T, Enright AJ, Iliopoulos I.
Visualizing genome and systems biology: technologies, tools, implementation techniques and
trends, past, present and future. GigaScience. 2015;4: 38. doi:10.1186/s13742-015-0077-2

9. Nusrat S, Harbig T, Gehlenborg N. Tasks, Techniques, and Tools for Genomic Data
Visualization. Computer Graphics Forum. 2019;38: 781–805. doi:10.1111/cgf.13727

10. Yokoyama TT, Kasahara M. Visualization tools for human structural variations identified
by whole-genome sequencing. J Hum Genet. 2020;65: 49–60. doi:10.1038/s10038-019-0687-0

11. Yardımcı GG, Noble WS. Software tools for visualizing Hi-C data. Genome Biology. 2017;18:
26. doi:10.1186/s13059-017-1161-y

12. Sedlmair M, Meyer M, Munzner T. Design Study Methodology: Reflections from the
Trenches and the Stacks. IEEE Transactions on Visualization and Computer Graphics. 2012;18:
2431–2440. doi:10.1109/TVCG.2012.213

13. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, et al. Big Data: Astronomical
or Genomical? PLOS Biol. 2015;13: e1002195. doi:10.1371/journal.pbio.1002195

14. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: Visualization of Intersecting
Sets. IEEE Trans Vis Comput Graph. 2014;20: 1983–1992. doi:10.1109/TVCG.2014.2346248

15. Kosara R. Graphs Beyond the Hairball. In: eagereyes [Internet]. 2012 [cited 24 May 2022].
Available: https://eagereyes.org/techniques/graphs-hairball

16. Walny J, Frisson C, West M, Kosminsky D, Knudsen S, Carpendale S, et al. Data Changes
Everything: Challenges and Opportunities in Data Visualization Design Handoff. IEEE
Transactions on Visualization and Computer Graphics. 2020;26: 12–22.
doi:10.1109/TVCG.2019.2934538

17. Westreich ST, Nattestad M, Meyer C. BigTop: a three-dimensional virtual reality tool for
GWAS visualization. BMC Bioinformatics. 2020;21: 39. doi:10.1186/s12859-020-3373-5

18. Tang B, Li X, Li G, Tian D, Li F, Zhang Z. Delta.AR: An augmented reality-based visualization
platform for 3D genome. Innovation (N Y). 2021;2: 100149. doi:10.1016/j.xinn.2021.100149

19. Kuznetsov M, Elor A, Kurniawan S, Bosworth C, Rosen Y, Heyer N, et al. The Immersive
Graph Genome Explorer: Navigating Genomics in Immersive Virtual Reality. 2021 IEEE 9th
International Conference on Serious Games and Applications for Health(SeGAH). 2021. pp. 1–8.
doi:10.1109/SEGAH52098.2021.9551857

20. Munzner T. Visualization analysis and design. CRC press; 2014.

61

21. Franconeri SL, Padilla LM, Shah P, Zacks JM, Hullman J. The Science of Visual Data
Communication: What Works. Psychol Sci Public Interest. 2021;22: 110–161.
doi:10.1177/15291006211051956

22. Wilke CO. Fundamentals of Data Visualization. O’Reilly Media. O’Reilly Media; 2019.
Available: https://clauswilke.com/dataviz/index.html

23. Hattab G, Rhyne T-M, Heider D. Ten simple rules to colorize biological data visualization.
PLOS Computational Biology. 2020;16: e1008259. doi:10.1371/journal.pcbi.1008259

24. Kim NW, Joyner SC, Riegelhuth A, Kim Y. Accessible Visualization: Design Space,
Opportunities, and Challenges. Computer Graphics Forum. 2021;40: 173–188.
doi:10.1111/cgf.14298

25. Ackland P, Resnikoff S, Bourne R. World blindness and visual impairment: despite many
successes, the problem is growing. Community Eye Health. 2017;30: 71–73.

26. Babich N. The 15 Rules Every UX Designer Should Know | Adobe XD Ideas. In: Ideas
[Internet]. 21 Feb 2020 [cited 29 May 2022]. Available: https://xd.adobe.com/ideas/career-
tips/15-rules-every-ux-designer-know/

27. Anscombe FJ. Graphs in statistical analysis. The american statistician. 1973;27: 17–21.

28. Matejka J, Fitzmaurice G. Same Stats, Different Graphs: Generating Datasets with Varied
Appearance and Identical Statistics through Simulated Annealing. Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. New York, NY, USA: Association for
Computing Machinery; 2017. pp. 1290–1294. doi:10.1145/3025453.3025912

29. Treisman A. Preattentive processing in vision. Computer Vision, Graphics, and Image
Processing. 1985;31: 156–177. doi:10.1016/S0734-189X(85)80004-9

30. Boger T, Most S, Franconeri S. Jurassic Mark: Inattentional Blindness for a Datasaurus
Reveals that Visualizations are Explored, not Seen. 2021 IEEE Visualization Conference (VIS).
2021. doi:10.1109/VIS49827.2021.9623273

31. Shneiderman B. The eyes have it: a task by data type taxonomy for information
visualizations. Proceedings 1996 IEEE Symposium on Visual Languages. 1996. pp. 336–343.
doi:10.1109/VL.1996.545307

32. Pedersen BS, Tang H, Freeling M. Gobe: an interactive, web-based tool for comparative
genomic visualization. Bioinformatics. 2011;27: 1015–1016. doi:10.1093/bioinformatics/btr056

33. Yuvaraj I, Sridhar J, Michael D, Sekar K. PanGeT: Pan-genomics tool. Gene. 2017;600: 77–
84. doi:10.1016/j.gene.2016.11.025

34. Lavikka K, Oikkonen J, Lehtonen R, Hynninen J, Hietanen S, Hautaniemi S. GenomeSpy:
grammar-based interactive genome visualization. F1000Research. 2020;9.
doi:10.7490/f1000research.1118237.1

35. LYi S, Wang Q, Lekschas F, Gehlenborg N. Gosling: A Grammar-based Toolkit for Scalable
and Interactive Genomics Data Visualization. IEEE Transactions on Visualization and Computer
Graphics. 2022;28: 140–150. doi:10.1109/TVCG.2021.3114876

36. Galletta DF, Henry R, McCoy S, Polak P. Web Site Delays: How Tolerant are Users? Journal
of the Association for Information Systems. 2004;5. doi:10.17705/1jais.00044

37. Mangul S, Mosqueiro T, Abdill RJ, Duong D, Mitchell K, Sarwal V, et al. Challenges and
recommendations to improve the installability and archival stability of omics computational tools.
PLOS Biology. 2019;17: e3000333. doi:10.1371/journal.pbio.3000333

62

38. Swaminathan R, Huang Y, Moosavinasab S, Buckley R, Bartlett CW, Lin SM. A Review on
Genomics APIs. Computational and Structural Biotechnology Journal. 2016;14: 8–15.
doi:10.1016/j.csbj.2015.10.004

39. Staton M, Cannon E, Sanderson L-A, Wegrzyn J, Anderson T, Buehler S, et al. Tripal, a
community update after 10 years of supporting open source, standards-based genetic, genomic
and breeding databases. Briefings in Bioinformatics. 2021 [cited 13 Jul 2021].
doi:10.1093/bib/bbab238

40. Hershberg EA, Stevens G, Diesh C, Xie P, De Jesus Martinez T, Buels R, et al. JBrowseR: an
R interface to the JBrowse 2 genome browser. Bioinformatics. 2021;37: 3914–3915.
doi:10.1093/bioinformatics/btab459

41. Martinez TDJ, Hershberg EA, Guo E, Stevens GJ, Diesh C, Xie P, et al. JBrowse Jupyter: A
Python interface to JBrowse 2. bioRxiv; 2022. p. 2022.05.11.491552.
doi:10.1101/2022.05.11.491552

42. Niu YN, Roberts EG, Denisko D, Hoffman MM. Assessing and assuring interoperability of a
genomics file format. Bioinformatics. 2022; btac327. doi:10.1093/bioinformatics/btac327

43. Cheifet B. Where is genomics going next? Genome Biology. 2019;20: 17.
doi:10.1186/s13059-019-1626-2

44. Diesh C. awesome-genome-visualization. [cited 6 May 2022]. Available:
https://cmdcolin.github.io/awesome-genome-visualization

45. Lamprecht A-L, Garcia L, Kuzak M, Martinez C, Arcila R, Martin Del Pico E, et al. Towards
FAIR principles for research software. Data Science. 2020;3: 37–59.
doi:10.3233/DS-190026

46. Katz DS, Gruenpeter M, Honeyman T. Taking a fresh look at FAIR for research software.
Patterns. 2021;2: 100222. doi:10.1016/j.patter.2021.100222

47. Social media for scientists. Nat Cell Biol. 2018;20: 1329–1329. doi:10.1038/s41556-018-
0253-6

48. Carpendale S. Evaluating Information Visualizations. In: Kerren A, Stasko JT, Fekete J-D,
North C, editors. Information Visualization: Human-Centered Issues and Perspectives. Berlin,
Heidelberg: Springer; 2008. pp. 19–45. doi:10.1007/978-3-540-70956-5_2

49. Meyer M, Sedlmair M, Munzner T. The four-level nested model revisited: blocks and
guidelines. Proceedings of the 2012 BELIV Workshop: Beyond Time and Errors - Novel Evaluation
Methods for Visualization. New York, NY, USA: Association for Computing Machinery; 2012. pp.
1–6. doi:10.1145/2442576.2442587

50. Zong J, Lee C, Lundgard A, Jang J, Hajas D, Satyanarayan A. Rich Screen Reader Experiences
for Accessible Data Visualization. 2022 [cited 29 May 2022]. Available:
http://vis.csail.mit.edu/pubs/rich-screen-reader-vis-experiences/

51. Elavsky F, Bennett C, Moritz D. How accessible is my visualization? Evaluating
visualization accessibility with Chartability. Chartability. Rome, Italy: John Wiley & Sons Ltd; 2022.
Available: https://www.frank.computer/chartability/

52. Kale A, Kay M, Hullman J. Visual Reasoning Strategies for Effect Size Judgments and
Decisions. IEEE Transactions on Visualization and Computer Graphics. 2021;27: 272–282.
doi:10.1109/TVCG.2020.3030335

63

53. Weiskopf D. Uncertainty Visualization: Concepts, Methods, and Applications in Biological
Data Visualization. Frontiers in Bioinformatics. 2022;2. Available:
https://www.frontiersin.org/article/10.3389/fbinf.2022.793819

54. Evanko D. Data visualization: A view of every Points of View column. Protocols & Methods
Community. 2013 [cited 29 May 2022]. Available:
https://protocolsmethods.springernature.com/posts/43650-data-visualization-a-view-of-
every-points-of-view-column

E. Supporting information

S1 File. Extraction processes and data used in rule 9. Text file including the extraction method
and request string used to count tools from the awesome genome visualization list and
publications related to genomic visualization from PMC.

64

III. Authors’ contributions
All the contributors involved (Alan CLEARY, Matthieu CONTE, Éloi DURANT, Andrew FARMER, Eric
GANKO, Cédric MULLER, Mathieu ROUARD and François SABOT) discussed and proposed rules
(content and title) to include. My supervisors M. C., M. R. and F. S. are to be credited for the original
idea leading to this paper.

First drafts for the rules were attributed as follows:

1. Articulate the need for new visualization tools – C. M.
2. Involve others early on – É. D.
3. Think about visual scalability and resolution – É. D.
4. Be creative, be bold – M. C.
5. Make data complexity intelligible – É. D.
6. Let your inner nerd shine, when needed – F. S.
7. Benchmark with diverse datasets – A. C.
8. Stay tuned to the genomic tool ecosystem and promote interoperability – E. G., M. R.
9. Keep up to date with related work – É. D.
10. Grow and support your user community – E. G.

É. D. supervised the writing process, revised and enriched all rules with appropriate references,
set a consistent writing tone and wrote the introduction and conclusion. É. D. and M. R. imagined
the figures, É. D. drew them. É. D., A. F., M. R., and F. S. added supplementary paragraphs to the
drafted rules. A. C., É. D., A. F., and M. R. proofread the manuscript in its entirety. F. S. was the
corresponding author for the article’s submission.

IV. Addendum
The 10 rules evolved on multiple occasions, from their initial definition through the first drafts
and the successive following versions. Some material did not make it to the final cut to avoid
overloading the rules, or to stay within the scope. Below are some of these scrapped ideas, which
further detail the rules presented above.

First, the original scope of this paper was limited to pangenomics, which explains the list of
authors as we were all involved in research on pangenomes, to various extent. The first rule
originally featured a whole paragraph about the interest of pangenomics and the existing
visualization tools, which was removed to expand the scope to genomics in general. Many
principles that applied to the development of tools for the visualization of pangenomes could be
applied to the broader genomics field, and the authors agreed that it would be more of interest for
the readership of the PLOS Computational Biology journal, resulting in higher chances to be
accepted, in particular considering the scope of the ‘Ten Rules’ papers published until now.

Among the rules I worked on, some elements were removed from Rule 2 – Involve others early on
and Rule 5 – Make data complexity intelligible.

The paper by Sedlmair et al. [246] identified more roles than listed in the final Rule 2, and I
originally proposed to add the role of datavis designer explicitly, as a different audience could
read our 10 rules, presumably unfamiliar with the world of datavis. I also included a part
emphasizing the importance of communication at all steps of the design process, to avoid common
pitfalls.

The original text described these additional roles as follows:

Gatekeeper – People with decision-making power who can choose whenever a project
starts or stops and have the last say on the final product. Identifying them early can save a

65

lot of time and trouble by continuously making sure that they agree with the directions
taken rather than during a final rush before production.

The remaining roles are described as useful while not mandatory, but it can help to know
that such roles might exist: Connectors (who can help you contact other useful people
easily); Translators (who can clearly explain and act as links between domain-experts and
a non-specialist audience such as developers); Co-authors (who could help to write about
the tool in a scientific paper); Fellow tool builders (who might have worked on the project
before visualization was considered and have useful information but should not be
mistaken for front-line analysts).

To these we would add the role of the actual Datavis designer, as many people creating
tools do not directly come from the wonderful world of datavisualization and “you” as a
reader might be one of the previously mentioned roles instead.

Particular attention should be given to the communication between these roles, especially
for larger projects where they might be split between different individuals. Walny et al.
[256] highlighted the importance of such communication for faithful data representation,
with concrete examples of how things could go wrong and challenges to overcome:
“adapting to changing data, anticipating edge cases in data, understanding technical
challenges, articulating data-dependent interactions, communicating data mappings, and
preserving the integrity of data mappings across iterations.”

The original Rule 5 included an introductory paragraph providing more omics context,
referencing one of the “Points of View” column, by Shoresh & Wong [257]. This column
emphasized the importance of data visualization for analyzing biological data. This paragraph was
written as follows:

Biological data come in all shapes and sizes and vary with the studied organisms, the types
of analysis, the technologies used...: short reads for de novo sequencing of multiple bacterial
genomes would not produce the same data than long reads for structural variation
characterization in a human genome. Through visual representations, a visualization tool is
used for communication (either for presentation or exploration purposes) of processed
information from this digital primordial soup [257].

On a side note, a special attention has been brought to the titles of the 10 rules, so that they would
all correspond to actions that anyone could do to improve their process of creating a visualization
tool. They all start with a verb and are positive rather than negative. I wanted the rules to highlight
possibilities rather than pitfalls. This proved difficult for the Rule 6, as its core message is about
restricting the development fancies to when it is actually useful. The original phrasing that I found
was “Outnerd yourself, when needed”, with the idea of making use of all of one’s informatic skills—
be even more nerd than you already are. Unfortunately, the meaning of this title was too obscure
to be kept.

66

67

 Panache

68

I. Why create a new pangenome visualization
tool

A. Context

During my Master 2 internship in 2018, prior to my PhD project, I benchmarked different
visualization tools, trying to find one that we could use with plant pgAtlases and pangenomes, and
investigating the different file formats in use. The majority of the available tools at the time was
built for pgAtlases only—as illustrated in Table 2, most tools available then fall into the Unspecific
or Qualifying categories—and provided no information on structure. Moreover, genome graphs
were not as common as they can be today, Bandage [174] was not popularized yet, and the first
versions of Sequence Tube Maps [194] were not suited for many genomes which would be stacked
together, with crossing lines between blocks. We were looking for tools that could scale to plant
pangenomes, both from a hardware and readability points-of-view.

The available pgAtlases tools had limitations: the first was that they were not able to scale up to
plant pangenomes as the number of genes increased. The second was that we could not use it for
pangenomes, while the inter-genic material is of interest within plants. Moreover, we observed
that some of these tools were not functioning properly, often because of a lack of maintenance
[258]. Still, they were useful for figuring out what would be interesting features to have within a
pgAtlas/pangenome visualization tool, as well as possible designs and their limitations.

B. Tools benchmarked

The four tools benchmarked during this internship were, in the order they were tested, UpSet
[196], Pan-Tetris [143], PanViz [159] and Panoptes [225]. Sequence Tube Map [194] was excluded
as it had already been identified as unfit for our goals. I did not have enough time to properly test
panX [160] with our data. GenomeRing [180] and anvi’o [173] among others were not identified
as pangenome visualization tools then. We also excluded existing platforms for pangenomics
which were unpractical at the time and were not easily adaptable to our data.

For testing purposes, the tools were given (when compatible) a PAV matrix of genes from five
banana genomes, grouped with GET_HOMOLOGUES [101] into 71,725 clusters.

Table 8 summarized the results obtained with the four tools tested at the time.

UpSet was the most functional tool out of the four but is limited to the visualization of sets (it
could only work with pgAtlases), and started to get hardly readable with more than a dozen of
sets (i.e. genomes) as the displayed number of intersections grew exponentially. Moreover, being
Unspecific, it did not provide much biological information. In its online version, it uses PAV in Tab
Separated Value (TSV) format and a JSON file for configuration.

Pan-Tetris can use two different kinds of inputs: files from the in-house unpublished tool PanGee
which produces TSVs with multiple columns per genome, or simpler TSV in association with
TIGRFAM codes, linking biological functions to gene identifiers. When tested with our banana data
(only a TSV file, with no TIGRFAM associated) or example files (example output of PanGee
provided on Pan-Tetris’ website), multiple bugs occurred: the genome name were not displayed,
the pan-gene names were not updated when scrolling the PAV matrix, resizing froze the display
(as seen in Appendix XXXVI). Those bugs, associated with the poor support for user-provided data,
disqualified Pan-Tetris from being a visualization tool that we would use with our data.

PanViz uses files created with a companion R tool called PanVizGenerator [169]. It takes PAV
written as CSV files completed with GO terms per row detailing the associated biological functions.
Easy to play with, and with multiple interactive options, its interface proved to be inappropriate

69

for normal-sized screens and lacked documentation both within and outside of the tool. More
importantly, it lost responsiveness and eventually froze with our banana data.

Panoptes was the last tool I tested during my internship, described as a prototype still under
development at the time. It is designed to be highly customizable, with the drawback of being
difficult to set and manage, with many options to manually provide with each file import. For
example, when setting the genome browser representation Panoptes would need a FASTA with
the nucleotide sequence of a reference genome, a GFF3 file for the position of genes, exons, etc,
both linked to a VCF file through multiple configuration files in YAML (YAML Ain’t Markup
Language, formerly Yet Another Markup Language) format. Completed with a difficult installation
and some bugs when the files were not exactly formatted or with minor modifications (an empty
line in the middle for example), it made the tool hard to use correctly. Being based on a reference
genome, it was not properly fit for pangenomes either and was limited by the then-current state
of web technology for plotting millions of data points. We therefore abandoned it because of its
impracticality and complexity.

Table 8: Out of the four visualization tools tested, none was deemed suitable for our pangenomes; Each visualization
tool tested with our data had disadvantages that prevented us from adopting it. UpSet did not provide enough pangenome
specific information. Pan-Tetris was not working properly, especially with user-provided data. PanViz had bugs that
hindered the UX when used with too many data. Panoptes was too difficult to install and expand to the use of our data. Table
recreated from my MSc2 report, made in mid-2018.

 UpSet Pan-Tetris PanViz Panoptes

Year of publication 2015 2015 2015 2015

Last update 2016
2015:

Version 0.9
2017

Actively
maintained

Language
JS, HTML,

CSS
Java

JS, HTML,
CSS, R

JS, HTML,
CSS…

Input formats
PAV +
JSON

PAV +
TIGRFAM

PAV
VCF, GFF,

FASTA,
YAML…

Deployment
Online or

local
Local Local Local

Interactivity ++ - + +

Ease of use ++ - + --

Scalability + + - +

Available details - + ++ ++

Working condition + -- - -

C. Identified gaps

The benchmarked tools were not considered as suitable for plant pangenomics: the visual
representations lacked biological information or would not scale well to dozens of genomes, the
implementations would bug, or would not be user-friendly enough. We therefore chose to design
and develop a new pangenome visualization tool, which is how my PhD project came to be.

70

We wanted a tool that would be light, easy to install (web application preferably, to avoid
problems of compatibility between setups), and usable by various organisms. This meant that the
format had to be standard enough, and that it could work for both pgAtlases and pangenomes. As
positioned and structural visualization tools were underrepresented then, there was a gap to fill
for the visualization of pangenomes. Moreover, the tool had to be scalable to plant genomes, both
in visual design (providing efficient visual representation of large datasets is a complex task) and
computational performances (a tool should be responsive enough to enable interactions and
exploration of its visual representations). Furthermore, the tool should provide an alternative to
Graphs and Circular-based visual representations, already heavily investigated by other groups
and prone to visual clutter.

II. Design of the visual representation

A. Panache, a PAV browser

After exploring different visual representations (as exemplified by Appendix XXXVII and
Appendix XXXVIII), I focused on the visual representation of a PAV matrix, explorable through
navigation similarly to a genome browser, as illustrated in Figure 26.

Figure 26: Panache’s UI is divided between a main view and a menu panel; The menu contains multiple interactive
elements: 1) File loaders; 2) Choice of Panchromosome to display; 3) Core threshold; 4) Geometric zoom level; 5) The Hollow
Area Finder (see Panache II.A.4); …all of which dynamically update the main view composed of: 6) A miniature overview of
the whole PAV matrix; 7) A beeswarm plot of gene annotations; 8) The PAV matrix displayed as panBlocks; 9) Tracks
summarizing panBlocks; 10) Similar panBlocks across panchromosomes, when available.

1. Visual representation of a PAV matrix and tracks of
information

Panache’s main visual representation is based on a binary heatmap representing a PAV matrix of
panBlocks positioned on a linear coordinate system (see Figure 27). These panBlocks could either
be genes or fragments of sequences, or other, depending on what users want to study.

71

Figure 27: panBlocks are built from common fragments found in different genomes; They can then be distributed on a
linear string, following an existing genome’s coordinate system or a linear panreference.

The heatmap represents genomes as lines and panBlocks as columns, each intersection is filled
with a color when that panBlock is present within the genome. Only a part of the full matrix is
displayed at a time, a user can pan through the whole matrix by using a miniature overview
displayed as a histogram (see Appendix XXXIX) at the top of the UI, schematized in Figure 28. Each
panBlock can have a dedicated color for its column, encoding for example a biological function
(e.g. Gene Ontology (GO)) associated with it. If no information of function is available, a pseudo-
rainbow pattern is applied to distinguish each column.

Figure 28: The PAV matrix can fit into an encapsulating UI, with interaction available for navigation; A miniature of the
whole matrix at the top can be used to pan through the whole matrix. A slider enables users to choose the threshold to apply
for the definition of the core genome, along with other options placed in a panel on the left of the UI.

Additional tracks of information are located below the PAV matrix. The tracks encode different
summary information, such as the core or variable status of a panBlock, its position and size
within the linear coordinate system, and the number of repeats found elsewhere in the
pangenome (see Panache II.A.2).

Each track is color encoded. The track for the presence status dynamically encodes the category
of the panBlock in orange (◼) or blue (◼) depending on the value of a threshold set by the user,

72

distinguishing the core and variable categories, respectively. The combination of orange and blue
is colorblind-friendly.

The position track is encoded with an alternative to rainbow maps as a sequential color palette
varying in hue and luminance (see Appendix XL). Hues are chosen as to be easily distinguishable,
enabling users to quickly identify an approximative location for a block.

This main view representing the PAV matrix is integrated within a UI composed of different
elements, schematized through Appendix XLI to Appendix XLVI.

2. View dedicated to conserved blocks

Though the choice of the method for the creation is left to the users, I assumed that cooccurrences
(see State of the Art I.F.1.a) could exist in the files provided to the visualization tool, encoding
multiple possible positions of panBlocks and further refining their PAV status. This track has
evolved from the first drafts which featured circles whose area encoded the number of repetition
(as illustrated in Appendix XLVII). These circles were not kept as the visual channel of areas is
inefficient for comparisons and were distorted when I encoded panBlocks of different widths. I
chose rectangles instead, as their length is more easily compared between lines (as schematized
in Appendix XLVIII).

This track is divided in two parts, one with a heatmap encoding the number of repeats found
within the whole pangenome for a given panBlock, and the detail below of the distribution of these
repetitions within the different (pan)chromosomes.

I drafted additional visual representation to detail the repetitions of specific panBlocks, as
illustrated in Appendix XLIX to Appendix LIII. They have not been implemented within the
developed tool as this information was not available within the files used at the time and it was
not a priority during the development of Panache compared to other features.

3. Visual representation of gene annotations

Following user expectations, gene annotations were added as a beeswarm plot, on top of the PAV
matrix. This plot displays marks at the position of each annotated gene according to the linear
coordinate system used for the PAV matrix, vertically distributed so that no mark overlaps
another one. Users can access the detailed information by hovering on a mark, which will display
an ‘annotation card’ as showed in Figure 29 below.

73

Figure 29: Annotation Cards display details on a gene annotation; From top to bottom: a gene’s ID, its position on the
linear coordinate system, the positions of exons on this coordinate system, along with the strand represented as an arrow
(forward here as the arrow points right), the functional annotation available for this gene. Not shown is the information of
overlapping genes, as this cannot be directly visible within the beeswarm plot as all annotations are attributed a universal
width.

4. Hollow Areas

One of the features that to be included to the original prototype was an automated system
enabling users to ‘jump’ at the locations of consecutive absences to facilitate the automatic
discovery of large PAV along the panchromosomes. The details of the implementation of that
‘Hollow Area Finder’ are available at Panache III.B.5.

These areas are highlighted within the PAV Matrix by a yellow background, with brackets
delimiting the position of every different area (see Appendix LIV). One panBlock can be included
within multiple hollow areas if the consecutive absence patterns from different genomes overlap
in one place.

B. Identification of desirable features

1. Face to face discussions

I discussed with identified target end users from Syngenta, IRD, and Bioversity International to
identify the features that should be included within a pangenome visualization tool. Most
discussions oriented the drafts of visual representations towards multiple directions. One of these
discussion sessions for example (whose notes are available at Appendix LV) highlighted the need
for a representation of the positions of panBlocks within the linear coordinate system. We
envisioned that these blocks could be filtered out and / or reordered, modifying their order of
appearance within the display. Keeping the information of their original positions could highlight
patterns, for example regions most likely to be core.

Among these discussions, I conducted interviews with group project leaders at Syngenta, in order
to gather ideas for a larger survey for the scientific community. These discussions helped me to
identify elements to explain within the survey as well as questions to ask and the first missing
features of interest.

74

2. Public survey

To collect the needs and expectations, I created a survey shared both within my research
organisms and with outside scientists (through Twitter and conference posters). This survey
(whose layout is available in Appendix LVI) was divided in three parts; an introductory part giving
details about pangenomes and asking how knowledgeable the respondents were about
pangenomes (to adapt later questions), a section with hands-on experience of a draft version of
Panache built around a Brassica napus pangenome [142], and a final section asking respondents
to order missing functionalities to their liking.

The results of this survey, available in Appendix LVII to Appendix LXVII, highlighted the missing
functions that had to be prioritized during development, both for the improvement of Panache’s
prototype and general functionalities that should be added into a pangenome visualization tool.

The survey gathered answers from 97 respondents, including 37 who reached the final question.
From this survey, I highlighted that respondents were interested in both pgAtlases and
pangenomes and that Panache’s prototype was missing interactivity (as revealed by the heatmap
of click events within the UI, see Appendix LXVIII). Missing features for Panache’s prototype
included links to gene annotations, reordering the genomes within the PAV matrix and zooming
to see the nucleotides, among others. The first two have been added to Panache since, and the
latter has been addressed with another design (see SaVanache’s chapter).

The identification of needs and expectations continued even after the survey closed, through
discussions during PhD committees, conferences, or through GitHub issues when users identified
features that they wanted to see added within Panache.

III. Development of a web-based tool
We wanted Panache to be lightweight and easy to install, with as little configuration as possible.
We therefore chose to develop it as a web application, available on GitHub40 along with a detailed
documentation41.

A. Techniques

1. Data files and formats

a. PAV matrix

Panache’s main file is a PAV matrix, inspired by various formats. It is a TSV which, as shown in
Table 9, combines BED-like columns for position on the chosen linear coordinate system (0-
based), additional columns of metadata, and one column per genome, encoding the presence or
absence of each panBlock (one row being one panBlock). Each column is named after a header
dedicated to this format.

The PAV matrix can adapt to multiple syntaxes: either binary matrix written with 0 and 1, count
matrix where 0 encodes the absence and any other integer the presence, matrix of gene names
where the name of a gene annotation found within a genome encodes presence, and 0 encodes
absence. In all cases, 0 always encodes the absence of a panBlock, and any other value encodes its
presence.

The additional columns of metadata can contain a nucleotide sequence, information on contained
biological function, or the coordinates of the identified repeats of that panBlock.

40 https://github.com/SouthGreenPlatform/panache
41 https://github.com/SouthGreenPlatform/panache/wiki

https://github.com/SouthGreenPlatform/panache
https://github.com/SouthGreenPlatform/panache/wiki

75

Table 9: Panache PAV matrix can be written with integers or strings alike

C
h

ro
m

o
so

m
e

F
e

a
tu

re
S

ta
rt

F
e

a
tu

re
S

to
p

…

G
e

n
o

1

G
e

n
o

2

G
e

n
o

3

[String] [Integer] [Integer] … [String|Integer]

Chr2 21 230 … 0 1 1

Chr5 454 123 … 73 0 4

ChrUnknown 0 1234 … GeneID_A 0 GeneID_B

b. Others

Panache can also use gff3 files of annotation to display the Annotation Cards (see Panache II.A.3)
or files in Newick format to display genomes sorted according to a phylogenetic tree.

2. Technical choices

a. Programming language and libraries

Panache has been developed in JavaScript for its wide availability and compatibility with multiple
systems. It was also chosen in order to use D3.js, a powerful library widely used in datavis,
enabling the manipulation of elements within a webpage, including Scalable Vector Graphic (SVG)
elements. Its dynamic handling of variable data is useful to make interactive visualization,
including common types of interactions (zooming, panning, brushing-and-linking…) or more
complex transitions.

For Panache, D3 is especially useful for triggering on-click events while capturing the mouse
position at the same time and comes with a useful ‘scale’ system enabling parameterizable
conversions between different coordinate systems, for example from nucleotide coordinates to
pixel positions or to a color palette.

b. Choosing a JS framework

Panache’s first prototype was written in a single JavaScript file with thousands of lines. This
quickly revealed to be a limitation to the addition of new functionalities and dynamic variables as
all relations had to be manually rewritten each time.

I therefore decided to work with the framework Vue.js, with which web applications can be
written as multiple components, one per file. Vue was with React and Angular one of the three
main JavaScript available, which implied that web developers could be familiar with already. I
chose it out of the three as it was advertised as more intuitive than Angular and easier to learn
than React.

With the help of an external web developer, we adapted Panache’s code to the framework Vue,
which made the addition of new features easier.

c. Deployment

For easy installation, Panache comes with two possible deployment methods.

It is available through a Docker container that can be run to create and run a version of Panache
either locally or on any Internet Protocol (IP) address of choice.

76

It is also possible to build the production files and deploy them within a web server, for example
to host pre-formatted instances of Panache.

B. Implementation

In this section, I highlight some of the choices made when building Panache which necessitated
special conception.

1. File parsing and companion script

Panache files are parsed on upload, converting them into JS objects with additional properties like
the presence counter or the distribution of repeats along panchromosomes. These JS objects can
either be obtained by uploading a normal PAV file (see Panache III.A.1) within Panache’s default
docker instance, or by using a companion Python script which enables the conversion of files from
Panache format to JSON used within the web application. Conversions are available for both the
PAV matrix and the gff3 files and can be used to set up pre-loaded instances of Panache where a
user cannot choose the dataset to display.

2. Filtering Objects to what can be seen

In order to improve Panache’s performances, the drawing functions only create SVG elements
when they are visible on the main display. Scripts filter out all the panBlocks not located within
the window encompassing the current region on display. The selection of this region is detailed
in Appendix LXIX and Appendix LXX.

3. Conception of the geometric zoom

The zoom system evolved throughout the different iterations of Panache. Initially divided into two
conversion scales, one providing a global vision and another focusing on less than a hundred
blocks on screen I turned it into a more restrictive version. Visualizing all the panBlocks at once
does not bring any more information than the miniature overview and leads to bad performances
as the web page cannot handle more than some hundreds of SVGs at once.

The current zoom is based on the mean size of blocks and allows users to see between a dozen
and a hundred panBlocks at once.

4. Canvas and SVG for the miniature

Creating high amounts of SVGs within one web application demands a lot of resources and is not
viable for a smooth UX. As the miniature has to represent all panBlocks, I use a combination of
canvas and SVG for the creation of this component. HTML5 canvas enables the creation of static
images within a single web element and therefore takes less memory than multiple SVGs.
However, it does not provide easy interaction within the images drawn.

In Panache, the miniature is drawn on a canvas element, and interactive SVG elements are overlaid
in order to provide the panning system where a user can click on a position within the miniature
to actualize the main view.

5. Hollow Area Finder

The Hollow Area Finder locates areas with consecutive absences. A user can use two parameters
as input: the minimum absence rate across genomes desired and the number of consecutive
blocks that should be absent. Panache can compute the positions of areas matching these
parameters, and stores these areas within a sparse matrix which can be easily parsed to find
matching regions located before or after the region currently on display.

77

As simply identifying consecutive panBlocks with a minimum absence rate would not target areas
where the absences are consecutive within one genome, Panache works on successive PAV
profiles instead. A PAV profile is created for each panBlock whose presence rate matches the input
parameter. If the next n panBlocks (n being the other input parameter) match that rate too, then
Panache checks if the absences are consecutive.

This background computation was initially always on but was using a lot of resources as the
sparse matrices were updated every time the users panned. Later development enabled users to
toggle the Hollow Area Finder on or off at will, the default being off.

6. Sorting options

As sorting the genomes was one of the main missing functionalities asked by users, I designed
multiple sorting options. These sorting options were implemented after Panache’s initial public
release with the help of an intern under my supervision. Detailed within Panache’s
documentation42, these sorting options included:

- Alphabetical and reverse alphabetical order
- Phylogenetic-based order, using a Newick file
- Decreasing order based on a compliance score to certain PAV patterns of genes
- Order following a Hierarchical Clustering Algorithm (HCA) built from local PAV patterns

7. Performance evaluation

Panache is limited by the size of files used for the PAV matrix43. Benchmarking highlighted that
this limitation was due to the overall file size rather than the number of genomes or blocks
involved. These limitations also proved to be machine-dependent during later development
sessions.

To bypass some of these limitations, static stores have been added to Panache to reduce the
number of elements dynamically watched within the store management system used by Vue.

8. Identified missing functionalities

Panache does not include all missing functionalities yet, and new ones have been identified with
additional discussions during conferences or after presentations, or even through GitHub’s issue
system where users can directly contact the developers of a tool44.

These functionalities include:

- Zooming in to see DNA sequences
- Having sorting and filtering options for the panBlocks (instead of the genomes only)
- Customization of the display (color schemes, elements to hide or show…)
- Panning through the PAV matrix when scrolling with the mouse
- Modifying the resolution of panBlocks at will
- Switching between horizontal and vertical display
- Providing a view dedicated to the repeats
- Comparison of groups of genomes
- Adding supplementary categories for the core threshold (not just core and variable)
- Visualizing multiple regions at once
- Export of data and images

42 https://github.com/SouthGreenPlatform/panache/wiki/Sorting-options
43 https://github.com/SouthGreenPlatform/panache/wiki/Performance; not updated with the latest
improvements yet
44 Brett Chapman for instance proposed many improvements:
https://github.com/SouthGreenPlatform/panache/issues/32

https://github.com/SouthGreenPlatform/panache/wiki/Sorting-options
https://github.com/SouthGreenPlatform/panache/wiki/Performance
https://github.com/SouthGreenPlatform/panache/issues/32

78

- …

This missing functionalities spans features useful for exploration and analysis purposes as well as
quality of life improvements.

79

IV. Published Application Note

80

81

82

V. Discussion

A. Outside reach

Panache has already been applied to various datasets: the banana pangenome used within the
publication45 and a Brassica napus used for the survey (see Panache II.B.2), both built around
genes positioned on a panreference [20, 259]; in-house African rice pangenome built from
successive blocks of sequence based on a reference [260]. It has also been proposed as an online
database to facilitate interrogation and comparison of a graph of wheat cultivar genomes [261],
and ongoing discussions could lead to its application on Barley or bacteria. Finally, Panache is
considered as one of the components of the South Green Genome Hubs, as implemented in the
Banana Genome Hub46.

Panache has been presented on multiple occasions during national and international conferences
(see posters in Appendix LXXI to Appendix LXXV), including a talk at ISMB/ECCB 2020 BioVis
sessions47. It also has been cited in 4 publications [124, 261-263] to date since its original
publication in December 2021, gaining attention from the pangenome community and illustrating
the interest for pangenome visualization tools.

B. Envisioned improvements

While Panache is already a published tool, it can be further improved with the addition of other
functionalities, as described in Panache III.B.8.

Among these some are of higher interest, especially the ones requested by users with hands-on
experience. For example, the inclusion of the colors associated with biological functions has not
been made yet as this information was not present in the first files used. The customization of the
categories used with the core threshold and of the associated colors, combined with the
possibility to export high quality screenshots and filtered datasets would also enable users to
make a more personalized use of the tool.

A crucial aspect is the handling of the information on repeated panBlocks and the display of the
PAV status of these repeats. This would need implementation of alternative views dedicated to
repeats, either as detailed in Panache II.A.2 or with other designs or even within another
visualization, either structural or composite (as proposed in SaVanache’s chapter).

Finally, performance could still be improved. The static store system (see Panache III.B.7)
introduced for the PAV matrix could be extended to other parts of the web application to better
handle the biggest files and enable the use of Panache on smaller (therefore more numerous)
panBlocks. Faster display technologies like WebGL could bring great improvement but
correspond to yet-another-technology to include. Similarly, web workers could enable parallel
computation, accelerating the heaviest computing like the Hollow Area Finder or the filter of
panBlocks that should be visible for example.

45 Available within SouthGreen’s Banana Genome Hub: https://banana-genome-
hub.southgreen.fr/content/panache
46 https://banana-genome-hub.southgreen.fr/content/panache; as introduced by Droc G, Martin G,
Guignon V, Summo M, Sempere G, Durant E, Breton C, Cenci A, Baurens FC, Shah T, Aury JM, Ge XJ, Helsop
Harrison P, Yahiaoui N, D’Hont A, Rouard M. The Banana Genome Hub: a community database for genomics
in the Musaceae. Submitted to Horticulture research.
47 https://www.youtube.com/watch?v=IYuMMgQMT9w

https://banana-genome-hub.southgreen.fr/content/panache
https://banana-genome-hub.southgreen.fr/content/panache
https://banana-genome-hub.southgreen.fr/content/panache
https://www.youtube.com/watch?v=IYuMMgQMT9w

83

C. Application of the Ten rules

As a first experience in software development, and especially datavis software development,
Panache was key in the determination of the rules introduced in the ‘Ten rules on Genomic
Visualization Tool Development’ chapter.

The need for a new visualization tool (Rule 1) arose from previous benchmarking during my
Master degree, where no existing tool was deemed suitable for our plant pangenomes.

The community was involved early on (Rule 2) through multiple discussions within different
organisms and a public survey (see Panache II.B.2) in order to identify the needs for this
visualization tool.

From these discussions, I identified that a positioned tool would be best to work on both pgAtlases
and pangenomes, at the scale of panBlocks within a pannable visual representation (Rule 3).

I explored various designs (Rule 4) involving multiple layouts, inspired by genome and outside
visualization tools. Inspiration could come from many places, and I also attended generalist
visualization conferences48 and brought a new eye as I was not used to working with genome
browsers.

In order to help the visual analysis (Rule 5), I included multiple ‘detail-on-demand’ features, as
described in Panache II.A.1 or Panache II.A.3.

The technology used was improved over different iterations (Rule 6), from the use of D3.js to the
implementation of Vue.js as a framework, following advice from experienced developers.

To assess performances (both of the visual representation and its implementation), I tried
Panache on multiple datasets of various sizes and origins (Rule 7): small and big toy datasets,
banana pangenome with 15 genomes, rice pangenome with 83 genomes, Brassica napus with 50
genomes. Additional development has already and still can improve Panache’s performance with
huge files.

To facilitate its deployment (Rule 8), Panache comes with a Docker container and companion
scripts that enables the creation of pre-formatted files for instances on web servers.

I maintained a scientific monitoring of pangenome visualization tools which led to the categories
described in the State of the Art (Rule 9).

Finally, I advertised my tool on repeated occasions through conferences, lab meetings,
publications, or even this PhD dissertation. I also got in touch with the pangenomics community
through Twitter and the GitHub issue sections and keep on doing it (Rule 10)!

48 Notably OpenVisConf 2018

84

85

 SaVanache

86

Panache can be considered as a first step towards an interactive tool for the visualization of
pangenomes but has its limitations, being a positioned tool (see State of the Art II.B.3) that is
neither dedicated to pgAtlases nor pangenomes only. We wanted to extend its capacities to a
broader scale that would enable broader analyses of pangenomes as well as the exploration of the
Structural Variations (SVs) within. Our aim was to build a composite tool, with connected visual
representations and views for various scales, one of them being the panBlock scale proposed by
Panache, which focuses on PAV and supports gene annotations. A user would then be able to
navigate between them, following Shneiderman’s “Overview first, zoom and filter, then details-on-
demand” approach [264].

SaVanache—name given to this project that enables the visualization of SVs to extend Panache—
has been designed as such a composite tool, embedded within an integrative interface thought as
a Single Page Application (SPA). Divided between four views (Overall diversity, Structural
variations, Presence Absence, Haplotypes), it also proposes a novel visual paradigm for the
representation of SVs within a pangenome.

I. Structural Variations and pangenomes
PgAtlases have been built around the notions of PAVs and CNVs (see State of the Art I.A), but more
complex SVs exist, on various scales superior to 50bp.

A. SV nomenclature

Figure 30: Structural Variations are labeled based on the differences between a genome and a reference; Deletions are
an apparent lack of genomic material compared with the reference. Translocations are when a genomic segment is found
elsewhere in the compared genome. Insertions are reciprocal to deletions: segments present in the compared genome are
absent from the reference. Duplications happen when a segment has more occurrences in the compared genome than in
the reference. Inversions are similar fragments that have opposite strand directions between the reference and compared
genome. These simplest SV patterns can be combined, creating nested Structural Variations, harder to characterize and
detect.

SV are observed genomic rearrangements between genomes, and can be categorized into multiple
major categories, as illustrated in Figure 30. These categories are depending on the relationship
between a subject and a query. They are therefore directed, often with the more recently
sequenced genomes being compared to a former one.

An observed translocation does not mean that one genome inherited a fragment from the other
and that it has been positioned in a different location. Rather, it describes variations between the
two without assuming heredity. An insertion observed when comparing genome A to genome B
would therefore be qualified as a deletion when comparing genome B to genome A. The SV names
do not reflect an evolution but a static observation of a certain configuration instead.

B. SV visual representations

SVs, by definition, break the linearity of genome sequences, and are therefore difficult to visualize
in classic genome browsers, especially when both the variant and reference genomes should be
displayed at the same time. As they differ in size and position, showing all types of SVs can be

87

challenging [265]. Multiple visual representations and visualization tools have been proposed
through the years.

Common visual representations (as illustrated in Figure 31) include:

- Linear layout with arcs linking the SVs’ breakpoints (i.e. the boundaries delimiting every
SV) as seen in the newest version of pantograph [217] (see State of the Art II.B.4.k)

- Circular layouts, popularized by Circos [204], highlight links between other chromosomes
and can provide an overview

- View of chromosomes with segment colored by origin (either other chromosomes or
genomes), as proposed by CINTENY [228]

- Comparative dotplots of the variant and reference sequence, as featured in CORGi [266]
- Graph views comparing the paths taken by two or more genomes, as in Sequence Tube

Map [194]
- … and others as categorized by Nielsen & Wong [265] and later Yokoyama & Kasahara

[267]

Figure 31: Translocations can be depicted with various layouts; a) arcs between linear sequences. b) arcs within circular
layouts. c) linear sequences colored by origin. d) scatterplot of sequence alignments. e) graphs of sequences. Figure from
Nielsen & Wong [265].

All these target various scales, from the nucleotide or gene level to the chromosome or even inter-
chromosome levels.

Moreover, many tools used for the visualization of SVs focus on conserved blocks of genomic
sequence. For example, synteny viewers (e.g., SimpleSynteny [268], Synima [269], SynVisio [270])
display blocks and their relative positions between and within genomes; a user can then infer the
positions of SVs by comparing the order (and orientation) of conserved blocks. As the highlight is
on conserved blocks, SVs are rarely depicted specifically encoded but can be imagined wherever
there are differences. Inversions are an exception as they are often represented as twisted
ribbons, creating an hourglass-like shape which can also be color encoded to further reinforce
their difference with normal conservation ribbons.

Tools that encode SVs visually, as entities on their own, are rarest. As examples, I found the
panGraphViewer [189] (discussed in State of the Art II.B.4.j), and plotsr [193].

As described in State of the Art II.B.4.l, plotsr produces static plots of pairwise comparisons
between successive genomes assemblies represented as lines. It encodes three types of SVs with
different colors: inversions (◼), translocations (◼), and duplications (◼), as shown in Figure 32.

88

Normal synteny is represented by greyed out (◼) ribbons between the horizontal lines
representing the assemblies, and additional tracks on top can depict, on a linear axis, densities of
genes and SNPs for example.

Figure 32: plotsr represents different types of SVs as colored ribbons between lines of genome assemblies; Each
assembly is compared to its direct neighbors. Tracks of Genes, SNPs and Centromere position are based on the coordinate
system used by the assembly on top. Figure from Goel & Schneeberger [193].

A limitation of existing visual representations of SVs is that they are mostly built for one-versus-
one pairwise comparison and could not be properly used for one-versus-many visual
representations. A possible technique is to draw multiple pairwise comparisons on screen, with
each time the same genome on one end, but this makes an inefficient use of space, with redundant
information and generally a lot of scrolling involved. In the case of plotsr, multiple pairwise
comparisons are displayed, but the user would have to create another plot to compare an
assembly with any of those that are not currently its direct neighbors.

C. SV within genome graphs

Within genome graphs the notion of variant and reference genomes are blurred: insertions,
deletions, translocations… all create new connections between sequences within the graph. Every
branch (and loop depending on the type of graph) correspond to an SV, but the usual
nomenclature cannot apply properly. Since everything is present, there are no insertions or
deletions within a graph, only segments that are traversed by some paths and not by others. The
usual SV names apply when one genome is compared with another or more, and “visualizing SVs”
within a genome graph can get quickly abstract when the linear nature of DNA sequences is
completely left out, as illustrated in Figure 33.

89

Figure 33: An SV between two genomes will create alternative connections between nodes in a sequence graph; If the
variation is considered as a comparison of the bottom genome (variant) versus the top one (reference), it will be
characterized as a deletion. Reciprocally, if the reference is at the bottom and the variant at the top, it will then be an
insertion. Both scenarios have a unique form as a graph, where there is no deletion and no insertion but only nodes that are
connected successively, or bypassed. It cannot be further characterized without the information of at least two paths to
compare.

Visualizing graphs can be used to show the arrangements of sequences between genomes, but
usually a user would have to follow the paths and compare them mentally to identify SVs.

Tools like the Sequence Tube Maps [194] display a graph directly, showing the actual node
successions, while others like SplitThreader [271] use graphs in the background to display linear
comparisons of sequences, highlighting the links between breakpoints within the genomes (i.e.
the edges connecting nodes from different genomes).

To my knowledge, only the PanGraphViewer [189] tried to visually represent SV annotations
within graphs, by distinguishing backbone nodes from variant nodes: one path is being considered
as the main one, and every variation from it can be annotated. Nodes are then shaped depending
on their status—backbone or variation(s) (as seen in Appendix XXV).

II. SaVanache’s design

A. Multiple scales

The main goal of SaVanache is to encapsulate multiple visual representations of pangenomes into
one comprehensive and easy-to-use visualization tool. All these representations are as many
visualization scales of the pangenome, connected through a sort of semantic zoom: the visual
encodings evolve with the scale of interest for the user. As genomic variations are of various sizes
with each its influence, from mononucleotide SNPs to chromosomal rearrangements,
representing everything at once would be counterproductive for analysis purposes. The goal with
these different views is to access various levels of details dynamically, without overwhelming the
users with an unnecessary abundance of information.

This idea of a composite visualization tool with a common user interface was first drafted in
December 2019. Together with Joffrey Gallais (a UI/UX designer hired by Syngenta) we worked
on the different layers of such a tool, resulting in example wireframes and screenshots of the
different views, as shown in Appendix LXXVI to Appendix LXXX. I was in charge of imagining the
visual representations and filter options for each view, and explaining the concepts to Joffrey, who
then laid them out on static mock-ups with pre-determined interactive area that redirected to the
next one on click.

This draft version evolved later, with modified visual encodings and a renewed interface, with the
goal of being usable by outside research organisms and not just Syngenta. I focused on the

90

redesign of the first views and their integration within a common interface. We identified four
main view scales, detailed as follows.

1. Overall diversity

The first scale would aim at showing an overview of the diversity within a group of assemblies.
In-house visualizations showed that diversity as a scatterplot of Principal Component Analyses
(PCA) built from genomic fragments and their shared occurrences.

We wished to keep this overview to explore an increasing volume of assemblies per species. It
would be used to identify the most similar assemblies, and to easily see which pangenome was
built with which assemblies. We envision that different pangenomes, or pangenome subsets,
might be available: global pangenome for exhaustive comparisons, a pangenome dedicated to
domesticated or wild species, pangenomes per geographic origin, major phenotype… Each
pangenome subset could be built to focus analyses on certain tasks, for example research with
diversity characterization of a species or breeding with the analysis of the genetic diversity of a
given pool of individuals. This view would then be useful to quickly identify both assemblies and
pangenomes of interest for further analysis.

From this view, a user could select assemblies to focus on and choose the appropriate pangenome
for their studies, before proceeding to the rest of the analysis.

2. Structural variations

The second view would focus on large structural rearrangements between genomes, providing an
overview of SV breakpoints and connections. This view would provide a finer level of detail on
what diversity can be present between genomes and can help users to identify regions mostly free
of rearrangements or with multiple variations instead.

Stable regions can be useful as targets for gene introgression with genome editing techniques,
while variable regions can create diversity, maybe explaining phenotype differences between
subgroups. From this view, users could target a region of interest, see SVs that might happen, and
go deeper into details with the next view.

As visual representations of SVs between three genomes or more are rare, I focused on this view
and proposed novel visual representations of SVs within a pangenome context as detailed in
SaVanache II.D and SaVanache II.E.

3. Presence Absence

A third level dedicated to genes and/or panBlocks within a region would enable the exploration
of PAVs and CNVs patterns between genomes, for comparison purposes. This level of visualization
corresponds to the one used by Panache, which could be integrated as is.

Selecting a gene or panBlock could then redirect to the final scale, for the exploration of
haplotypes.

4. Haplotypes

Finally, the most precise scale would focus on variations at a nucleotide level. It would show
variations or groups of variations and how they are distributed between genomes. At this scale
SNPs and smallest InDels would appear.

There are already tools enabling the visual comparisons of nucleotide sequence, like MSA
browsers or graphs at a nucleotide resolution such as Sequence Tube Maps [194]. For this reason,

91

I focused on the (re)design of the first two views, in the interest of time and assuming that we
could integrate or adapt an already existing tool for the fourth view49.

B. SaVanache’s UI

The four views and visualization scales must be integrated into a common UI, enabling the
navigation between these different scales. Navigation between the scales would correspond to
zooming in or out, to explore the genomic diversity at different levels.

I imagined this tool as a Single Page Application (SPA), that is to say a web application built from
one document with dynamic modifications of the displayed content without the need to download
new web pages. Each visualization scale has dedicated visual representations, which fit into a full
screen display with no need to scroll down to access hidden parts.

As visible in Appendix LXXXI, the UI was imagined with a navigation pane on top, indicating which
view is currently on display and enabling navigation between already visited views (one would
first have to unlock views through the rest of the interface, to store display parameters such as
the region targeted). A togglable menu on the left would offer multiple general options (filters,
link to documentation, screenshot or subdata exports… and legends for the visual representations
on display)

C. View 1 – Overall diversity

1. From existing PCA representation...

I redesigned the Overall Diversity view from in-house visualization, which showed assemblies as
dots within a scatterplot, positioned depending on their value on PCA axes. Color could encode
metadata (for example groups of phenotypes), and tooltips would appear on hovering with
information with the assembly encoded by the hovered dot.

We wanted to extend this representation, by displaying pangenomes and how the assemblies
were distributed among them, and by using public algorithms for the creation of the scatterplot,
in order to have a tool that could be used by other organisations rather than Syngenta only.

As for Panache, SaVanache would use pre-computed files, with limited computation within the
visualization tool. This means that users could use their favorite dimension reduction algorithm
(PCA [273, 274], t-SNE [275], UMAP [276]…) for this view as long as the result can be displayed
within a two-dimensional scatterplot.

Moreover, we wanted to include information on the available pangenomes and their relations
with existing assemblies. The original idea with my supervisors was to encode pangenome as
ellipses around group of dots: all dots within would correspond to assemblies contained by the
pangenome, as opposed to outside dots that would correspond to assemblies not included. This
idea was abandoned during the redesign phase as too many pangenomes would create visual
clutter on the scatterplot, and special cases would make the ellipse hard to draw and read (for
example if an assembly displayed in the middle of a group does not belong to a pangenome built
with these other assemblies).

49 272. van den Brandt, A., et al. Visual Exploration of Genetic Sequence Variants in Pangenomes. in EuroVis
2022. 2022. Roma: The Eurographics Association. is a most recent example (June 30 2022!), which won the
Best Poster award at EuroVis 2022 Rome

92

2. ...to SaVanache’s redesign

I propose a division of the overall diversity view into five connected main parts, showed below on
Figure 34.

Figure 34: The overall diversity view of SaVanache displays an interactive scatterplot of genome assemblies; A) The
scatterplot shows genome assemblies positioned with a two-dimensional space thanks to prior dimension reduction
techniques. Canon reference genomes are represented as square shapes with their names always appearing, other genome
assemblies are represented as (colored) dots. This scatterplot would support interactivity through tooltip on hovering or
lasso selection of assemblies for example. B) Table of the genome assemblies showed on the scatterplot, displaying their
related metadata and selection status in a user-defined order. C) List of the pangenomes available with additional
information and a glyph acting as a visual cue to the matching score of pangenomes compared with a selection of
assemblies. D) Input for the chosen pangenome, enabling redirection to the next view. E) Bar chart of the number of
pangenomes matching a selection of assemblies depending on the number of assemblies not captured.

This view is composed of:

- an interactive scatterplot of the genome assemblies, with tooltip displayed on hovering,
and multiple color options

- an ordered table of these assemblies, for better parsing and filtering
- a table with the available pangenomes, showing the datasets available for further analysis
- an input button storing the chosen pangenome for the rest of the exploration within

SaVanache
- an interactive bar chart of how these pangenomes match a selection of assemblies

93

For an overview of the actions possible within this view, I propose the following user flow50.
Interested in assemblies with an agronomic trait of interest, a user wants to identify which
assemblies have this trait, select them, then choose a pangenome with these selected assemblies
for further analyses into subsequent views.

a. Identification of interesting assemblies

To find assemblies of interest, a user could hover the scatterplot. On hovering, dots will be colored
depending on specific categorical metadata either pre-stored within the original file or manually
added with an optional second file. The dots of all assemblies sharing the same value would also
be colored to show related dots. If a hovered dot has more than one value for the metadata used
for coloring, then all dots of assemblies sharing at least one of the values will be colored, with the
color attributed to their primary value.

For example, imagine that the metadata used for coloring is about geographic origin, based on 5
continents associated with one color each: ◼ Africa (red), ◼ America (orange), ◼ Asia (magenta),
◼ Europe (blue), ◼ Oceania (green). Priority is set to the first continent name provided per
assembly; we assume that this order is alphabetical in this example.

If an assembly registered as belonging to both “Africa” and “America” is hovered, then all dots of
assemblies with “Africa” would be colored in ◼ red (including the hovered dots), and within the
remaining dots those labelled with “America” would be colored in ◼ orange. Dots without any of
these two labels would not be colored. All dots with “Africa” and “America” would be colored in ◼
red, as “Africa” has the priority. Examples of this hovering system are showed on Figure 35 below.

Figure 35: On hovering, dots of assemblies with similar metadata are colored accordingly; Left: the hovered assembly
has only one categorical value (red) for the metadata chosen for the coloring system. All assemblies with the same value are
colored in red too. Right: The hovered assembly has two categorical values (red and orange). Assembly with the value for
red are colored in red, those with the value for orange are colored in orange if they have not been colored in red yet (either
because they do not have the right value, or because its priority is lower than that of orange). Moreover, tooltips with details
on the hovered assembly could appear on screen.

Besides, a user could use the table below the scatterplot to filter and order assemblies depending
on various properties, including the metadata used for the coloring system detailed above.

50 A user flow is a series of steps taken by a user within an interface to reach a given goal.

94

b. Selection of identified assemblies

To select assemblies that should appear in the pangenome used within the rest of the analysis, a
user could click on a dot, or do a lasso selection of a group of dots directly within the scatterplot.
Alternatively, they could select the assemblies within the assembly table, either one by one or by
selecting a group having a given value.

On selection, the outline of the corresponding dots turns dark grey (◼), to distinguish them from
unselected dots.

c. Choice of a pangenome including the selected
assemblies

After having selected the assemblies that they are interested in, the user could check which
pangenome is the best fit to their needs. The list of pangenomes would be ordered, with the best
matching pangenomes on top: pangenomes built with all the selected assemblies first, then
pangenomes where some assemblies are not included, and so on. The percentage of compliance
(i.e. how many assemblies a pangenome has out of the total number of selected assemblies) would
be represented by a dedicated glyph, as illustrated below in Figure 36.

Figure 36: The pangenomes are ordered depending on the percentage of selected assemblies they possess; Glyphs
indicating if they have all, most, some, or none of the selected assemblies can be used as visual clues to help a user easily
determine the pangenome that would be the best fit for their analysis. Here only three states are showed: full match, partial
match, and no match. The pangenome names or ID would be extracted from a pre-computed file.

Moreover, by hovering pangenomes within the pangenome list, dots within the scatterplot could
be colored depending on A) their presence status within the hovered pangenome, B) their
selection status (selected, not selected), C) their presence status within the previous pangenome
if one was chosen already, as illustrated in Figure 37.

Figure 37: When hovering a pangenome, dots are colored depending on their presence status within; We can identify
different categories of assemblies: the missing assemblies are selected assemblies absent from the hovered pangenome;
the saved assemblies are selected assemblies that are present instead and will be included in the analysis if that pangenome

95

is chosen; then the unselected assemblies can be trivial, constant, or new, depending on their status in both the already
chosen pangenome and the hovered one.

In my design, selected assemblies are represented with a dark grey (◼) outline. Selected
assemblies that are not in the hovered pangenome—the ‘missing’ assemblies—are showed in
orange (◼). Selected assemblies that are in the hovered pangenome—they will be ‘saved’ if that
pangenome is chosen—are showed in light blue (◼). Unselected assemblies that are absent from
the hovered pangenome—those of ‘trivial’ importance—are showed in light grey (◼). Unselected
assemblies that are present in the hovered pangenome are showed in black (◼) if they were
already in a previously chosen pangenome—they are ‘constant’ between pangenomes that will
be included in further analyses—or in dark blue (◼) if they were not—they are ‘new’ assemblies
going to be included. Once a pangenome has been chosen (by clicking on it within the pangenome
list, or by choosing its name within the dedicated input button), assemblies that are present are
colored in black (◼), and the absent are in light grey (◼) or stay in orange (◼) if they are selected.
This way, the missing assemblies will always be highlighted in orange (◼), encouraging the user
to choose another pangenome that would contain them.

Depending on the succession of chosen and hovered pangenome, a dot can therefore have
different colors, as depicted in Figure 38. Hovering a pangenome will highlight the change that
would be brought to the subsequent analyses if it were to be chosen. Missing assemblies are
always going to be easily visible for the user, even when no pangenome is hovered.

Figure 38: The coloring pattern of a dot for the pangenome-hovering interaction evolves depending on selection and
presence status and the chosen pangenome; Each line corresponds to a successive status of the scatterplot. At first no
genome is selected, only the missing assemblies are highlighted. Hovering a pangenome in the pangenome list highlights
the changes that will be made to the assemblies included into subsequent analyses, as well as the status of selected

96

assemblies. Once a pangenome is selected, the missing assemblies are still highlighted and assemblies that are included are
in black, to make them visually pop-out compared with the trivial assemblies. If a pangenome name is hovered after another
pangenome has been chosen, the colors highlight the missing, saved, constant and new assemblies. This way, it shows how
the set of assemblies included into the subsequent analyses would evolve if that new pangenome were to be chosen instead.

As described, this visual representation uses the visual channel of color on different interactions:
hovering a dot on the scatterplot or hovering a pangenome on the pangenome list. Both color
encodings should not collide with each other, as the color displayed when hovering a dot is a
temporary encoding. If assemblies have been selected, or if a pangenome have been chosen, the
dot-hovering interaction would take over the pangenome-hovering/choice interaction and
impose its coloring to the dots: dots sharing metadata will be colored and the others will stay in
gray, no matter their selection status. Once the dot-hovering interaction is not triggered anymore,
the colors return to normal, following their color pattern prior to the dot-hovering event.

The full proposed user flow is presented in Appendix LXXXII to Appendix XCII as successive mock-
up screenshots. Note that the color patterns there correspond to an older version of the one
presented in this section (constant coloring was applied instead of saved for selected assemblies
already present in the chosen pangenome; ‘lost’ assemblies—unselected and present from the
chosen pangenome but not the hovered one—were displayed as white dots with dark strokes;
missing assemblies were not colored when no pangenome was chosen). This coloring pattern was
replaced because of its additional complexity.

d. Matching pangenome barchart

The view could also display a barchart showing the number of pangenomes for specific matching
intervals, for example the number of pangenomes having 100% of the selected assemblies, 98%
to 100% excluded, 95% to 98%, 90% to 95%, etc. A user could click on a bar from that barchart,
and all pangenomes corresponding to the selected bar would be highlighted within the
pangenome list. This feature has not been developed further as we do not currently have enough
pangenomes to make a good use of it.

D. View 2.1 – Visualization of SVs intra
pangenome

The second view of the composite visualization tool must be focused on SVs. It should give an
overview of the major genomic rearrangements happening throughout the pangenome, enabling
the identification of stable and highly variable regions. For this view, I first worked on visual
representations that could show alternative positions of genomic fragments within a pangenome,
providing information on the pangenome itself rather than the individual genomes.

1. Division into panchromosomes

To provide a first visual representation of the level of stability within a pangenome I proposed to
use the concept of panchromosome.

Within a sequence graph, nodes that have multiple occurrences can be stored only once, with
multiple connections linking to all possible positions found within genomes. In DAGs (see State of
the Art I.F.3.c), such node would be duplicated to avoid the creation of loops within the graph. I
base my conception of panchromosome on such DAGs. A panchromosome would therefore be an
unfolded subgraph of a whole pangenome graph containing all nodes observed within the same
chromosome of various genomes, with nodes present in multiple copies if they appear in different
order or positions between genomes, as illustrated in Figure 39. Each genome could therefore be
retrieved by following a linear path through this panchromosome, without any loop or redirection
to nodes placed before within the graph.

97

Figure 39: Each observed chromosome sequence can be described as a linear succession of nodes within a
panchromosome; On top, a simple, dense sequence graph can be unfolded and turned into a DAG to order nodes linearly.
Nodes with copies within the DAG are schematized with doted links connecting the different cooccurrences. At the bottom,
the three genomes (A, B, and C) used to create the pangenome graph are represented. Each can be displayed as a linear
path through the ‘DAG-ified’ panchromosome, with successions jumping over absent nodes. For example, the genome C
starts with the first occurrence of the violet (◼) node, jumps over the blue (◼) node since it is not presence in its sequence,
connects to the dark green (◼) node, then to the first occurrence of the light green (◼) node. It skips the second occurrence
of the light green (◼) node, which is found only in the genome B, and continues with the beige (◼) node, and finally with the
second occurrence of the violet (◼) node.

From these panchromosomes, an overall profile of variability could be drawn in a shape similar
to a violin plot, with the wider portions representing highly variable segments from the
panchromosome, as schematized in Figure 40.

Figure 40: Representing panchromosome as violin plots can be thought of as putting a graph in a sock to see its
silhouette

The measure of variability along a panchromosome could be based on different properties, I
propose to measure it by counting the number of connections (both successions links and
cooccurrences of nodes) existing between two successive nodes of the panchromosome, as
illustrated in Figure 41. This way, regions with many rearrangements, resulting in numerous
jumps through the panchromosome, would appear wider in the violin visual representation, and
cooccurrences would also be counted as contributing to this variability.

98

Figure 41: The shape of violin plots for panchromosome can be computed from the connections spanning successive
nodes; Left: the variability values are calculated from both the number of edges and connections between cooccurrences
existing in the interval between two successive nodes. Right: the width of the resulting violin plot directly depends on these
measures.

This measure of the variability would need to be refined, as it currently would add too much
weight to distant cooccurrences. For example, a panchromosome with multiple cooccurrences of
a node on both ends would have many cooccurrence connections spanning the whole
panchromosome, artificially increasing the measure of variability in the middle of the
panchromosome. A hybrid approach that would count the succession links between successive
nodes, the number of cooccurrences—both intra- and inter- panchromosomes—of each node, and
that would take into account the possible inversions could bring better results.

2. PanCircos

To represent SVs throughout a whole pangenome, my first idea was to combine a circular Circos-
like layout [204] (see Appendix XCIII) combined with the violin-like visual representation of
panchromosome described above. All panchromosomes would have been displayed, with links
drawn between cooccurrences. For less visual clutter inter-panchromosome cooccurrences could
be drawn inward, taking the available space at the center of the circular layout. Intra-chromosome
cooccurrences could be drawn outward in order to not overlap with the inter-chromosome
cooccurrences.

For better analysis value, interactivity could be used to highlight cooccurrences from a specific
panchromosome or subregion, or to filter out cooccurrences based on their size. A user could
therefore choose to display only the smallest cooccurrences for example, hiding all the visual links
of the wider cooccurrences, as illustrated in Figure 42.

99

Figure 42: Interactivity on PanCircos would enable dynamic filtering of SVs depending on their sizes; Two states of a
same pangenome displayed as a PanCircos, with the selected size range below. The arcs represent panchromosomes, and
the links represent chunks of DNA sequence similar between two positions, i.e. SVs corresponding to duplications and
translocations. Inner links encode inter-panchromosome relationships while outer links encode intra-panchromosome
relationships. Left: all SVs are showed when no size range is selected. Right: Selecting only the small SVs greys out the other
on the visual representation.

3. One-versus-all tabular representation of a PanCircos

Two of my supervisors disliked the idea of Circos-like representation, as they can be fancy but
hard to read and poorly informative in their experience. I personally think that they are good
visual representation for providing on overview of relationships between many elements. Their
lack of informational value could be compensated with interactions, though I do agree that they
are limited in scope as static visual representations. I therefore tried a more tabular display of the
SVs between panchromosomes.

The visual representation would be divided in two parts: the main panchromosome to compare
with others at the bottom, and a table with all the panchromosomes (including the main one) on
top.

a. The main panchromosome

The main panchromosome would be the one compared with every other. Displayed as a violin plot
of the variability along its axis (as detailed in SaVanache II.D.1), a user could select a subregion of
that panchromosome by moving two handles acting as borders for that region. All space within
these borders would be colored with a linear multi-hued colormap51, encoding position, as
illustrated in Figure 43. This color map would be dynamically updated when the handles are
moved, so that the borders are always colored the same.

51 I used the same one as the colormap for the position track of Panache

100

Figure 43: The selected region of the main panchromosome is delimited by two dynamic handles that can be moved
left and right; In this violin-like representation, the selected region is colored with a multi-hued linear gradient, as opposed
to the unselected region that is in grey. The handles are represented by the two black strokes at the left and right borders of
the selected region.

This visual representation would act as a colored legend for the position of genomic segments
found in other panchromosomes.

b. The comparative table of panchromosomes

The top part of the screen would be filled by a table or section of a table containing
panchromosomes and would be used to visually represent the fragments from the main
panchromosome that are found in other panchromosomes as well. This tabular view would
therefore be useful to explore the existing cooccurrences within a pangenome.

I proposed to visually represent these panchromosomes—as profile lines instead of violin plots
to save space—with the cooccurrences from the main panchromosome being drawn as horizontal
lines grouped into swarm plots above and below. Cooccurrences would be accurately positioned
horizontally and separated vertically to stay distinguishable from each other. Moreover, to
provide the information of position of origin on the main panchromosome, colors would be used
following the color pattern of the selected region on the main panchromosome.

I chose to use colors rather than ribbons as usually used within synteny browsers as ribbons can
overlap and hide parts of the visualization, especially in one versus many representations, as
illustrated in Figure 44 and in Appendix XCIV.

Figure 44: Showing cooccurrences as connecting ribbons between a source and targets scales badly; Synteny viewers
usually display common segments with ribbons connecting the equivalent positions, here schematized with the red lines

101

and blue hourglass-like shapes between a Source panchromosome (below) and a target panchromosome (above).
Hourglass-shaped ribbons encode inversions. Left: With one-versus-one use cases this visual representation can work,
depending on the number of ribbons to display. Right: With many targets and/or ribbons it becomes hard to distinguish the
ribbons and identify their origins.

Using color for encoding position makes the visual display of ribbon unnecessary, thus leaving
less visual clutter, as illustrated in Figure 45. Color brightness alone would be enough to infer the
position on the source, hue is a secondary visual channel which improves differentiability
between broad regions. Interaction could make the ribbon visible again, for hovered segments or
regions for example (see Appendix XCVIII).

Figure 45: Encoding the position on the source with color makes it possible to hide the ribbons completely; Left: using
ribbons to connect the similar segments create multiple overlaps that are hard to read. Right: color is enough to infer the
position of origin on the Source and makes the visual representation clearer.

Moreover, I proposed to use the spaces above and below the panchromosome profiles to encode
inversions: segments displayed above the panchromosome profile would be in the same direction
than their cooccurrence in the main panchromosome, while segments below would be inverted.
This distribution was chosen after discussions with colleagues who intuitively thought that the
area above was the forward strand (and by extension similar strand), as opposed to the reverse
strand below (associated with the inverted strand).

Other uses of the visual channels have been explored, for example encoding similar and inverted
strands with hues or double encoding it with both hues and above/below position but I discarded
these as they were not making an efficient use of the visual channels available (colors could not
be used for the position of origin anymore).

c. Preliminary implementation and abandon

During November-December 2022 I had the opportunity to manage a junior developer on the
implementation of this visual representation. I was overseeing the development, controlling
quality, providing data, instructions, and explanation to the developer as well as code examples52.

This visual representation has not been conserved for the final design of SaVanache, as it was not
targeting enough the need of bioinformaticians at Syngenta, focusing to much on the pangenome
structure instead of the variations between genomes. The corresponding project is still available
in a GitHub repository53 for reference, in an unfinished state. Some questions remain unexplored,
as how to best represent the size of cooccurrences—should their glyphs be proportional to the
actual size? Should there be a minimal size for on-screen visibility?—and how to represent

52 An example interactive implementation of the main panchromosome region selection is available at
https://codepen.io/singingmeerkat/pen/OJjaKyY
53 https://github.com/SingingMeerkat/SaVanache

https://codepen.io/singingmeerkat/pen/OJjaKyY
https://github.com/SingingMeerkat/SaVanache

102

cooccurrences spanning multiple non-successive nodes on the profile panchromosomes. A
tentative user flow illustrating the full visual representation and possible interactions is available
in Appendix XCV to Appendix C.

E. View 2.2 – Visualization of SVs inter genomes

The feedback received for the tabular representation of panchromosomes made me redefine the
goal of the visual representation of SVs within a pangenome. Users were mainly interested in
biologically relevant variations between genomes; the goal therefore was not to visualize SVs
within a pangenome but rather to visualize SVs between genomes which were organized within a
pangenome. One question which was confusing for example was: “Where can I see the insertions
and deletions?” I did not understand it at first as, as explained in SaVanache I.A, pangenomes
contain all genomic material from genomes while the notion of deletion and insertion is deeply
rooted in pairwise genome comparisons instead. Multiple discussions with colleagues were
needed to clarify that what was asked was not to “visualize pangenomes” as originally stated, but
to “visualize genomes within a pangenome.” I needed to refocus on the genome paths instead of the
pangenome structure.

However, some were also interested in a global view of that structure. My goal was therefore to
combine both aspects, with an emphasis on the variations between genomes. I therefore worked
on the current design of the Structural variations view of SaVanache, illustrated in Figure 46.

Figure 46: The interface for the visualization of SV is divided into multiple connected subparts; A) Clickable icons and
tabs enable a user to change the active visual representation. The left icon could display a PanCircos view, while the two
other tabs change the visual representation used in the main view. Other tabs could be added if needed. B) SaVanache’s
main visual representation uses a system of glyphs to compare a pivot genome against many other, with a matrix-like

103

display. C) The pivot genome can be directly compared with two other genomes above and below, updating the local visual
representations accordingly. The same color pattern than Panache can be used to identify core and variable segments. D)
The table of assemblies already present in the Overall diversity view is kept into the Structural variations view and can be
used to choose which assemblies should be displayed. E) Input buttons can be used to select the pivot genome, a region of
interest, and the types and sizes of SVs to display. F) A panel in the bottom-right displays detail on a selected part of the
main visual representations, with information of position, sizes, and the possibility to navigate to the Presence Absence view.

1. PanCircos as an optional overview

The concept of PanCircos (see SaVanache II.D.2) was kept as an optional visual representation,
present as a togglable window within SaVanache’s interface. A user could quickly show or hide a
panel displaying the cooccurrences between panchromosomes, showed as violin plots laid out
circularly, as illustrated in Figure 47. This panel could therefore be useful for providing an
overview of the cooccurrences within the pangenome but would not be the main visual
representation used within that view. Again, users could highlight cooccurrences appearing in a
certain panchromosome, or filter out cooccurrences based on their sizes.

Figure 47: A PanCircos visual representation can be opened by clicking the PanCircos icon within the interface; A little
icon representing a circle containing three arcs, as showed in the top-right part of this figure, can be clicked to hide or show
the PanCircos overview of cooccurrences throughout the chosen pangenome. Hovering a panchromosome highlights the
related cooccurrences on the display, by showing the connections as thick black lines as opposed to the light grey lines of
the other cooccurrences.

2. Selection of a ‘pivot’ genome

The main visual representation had to be focused on genomes and their variations. While
redefining the needs for this representation, target users agreed that they were not interested in
all-versus-all visualizations but would be more interested in one-versus-all or one-versus-many
visualizations. One genome (and most often a region of one genome) would be at the center of the
analysis—for example either a widely used reference genome or a genome sequence with a high

104

quality—and would then be compared to others. Comparisons between other genomes could be
of interest too but would not happen at the same time than the comparison with the main genome.

The visual representation could therefore revolve around one main genome, that we call ‘pivot’,
compared with many others. That genome would serve as a reference system for the whole
visualization and would anchor it in an existing biological context. Moreover, that pivot could be
swapped for another at any time to enable comparisons between other pairs of genomes. Users
could therefore choose a region within a known genome, see how it compares with other genomes,
and navigate between comparisons at will. It is important to note that the pivot could be any linear
path through the graph, even paths that have not been observed in linear sequences. For example
it could be a panreference path visiting the most common nodes, or the longest, or even the ones
followed by the most branches.

3. Glyphs for representing SVs in pangenome graphs

I propose a novel visual representation for the visualization of SV between genomes within
pangenome graphs, based on a glyph system. Each type of SV would have a glyph with a dedicated
shape and color, laid out within a rectangle corresponding to a node (or group of nodes) from a
pivot genome within a DAG graph. Using DAGs means that fragments of DNA sequences present in
multiple copies or different positions between genomes would be stored as multiple nodes instead
of being merged into a unique node connected to many others. Those rectangles would be
positioned on a row following the node order from the pivot, creating a table of pairwise
comparisons where each row shows the existing SVs between a genome and the pivot.

a. Proposed SV nomenclature in a pangenome graph

Within a graph, two genomes correspond to two paths following common and different nodes.
These paths are similar if the synteny is preserved but diverge with every variation between the
two. I call these divergences ‘synteny disruptions’ in the context of pangenome graphs, which are
close to the notion of ‘breakpoints’ used by some SV visualization tools (see SaVanache I.B) in
linear contexts.

When using a pivot genome (and by extension a pivot path) the graph can be read as linearized
following the succession order of the nodes within the pivot, recreating the original sequence
succession. Comparing the linear pivot path to another folded path can reveal special patterns
corresponding to usual SVs, as illustrated in Figure 48.

We can identify the same basic SVs than usually described based on the path taken from synteny
disruptions:

- Deletion: a path skips one or many nodes before reconnecting to the pivot.
- Insertion: a path has one or more nodes before continuing the same path as the pivot.
- Inversion: a path has a node but in the opposite direction than the pivot.
- Duplication: a path has multiple copies of a node from the pivot.
- Translocation: a path has one or more copy of a node from the pivot, but not in the same

relative node succession.

To these I add two special types:

- Swap: upon divergence, the compared path and the pivot each have a succession of at least
one different node before reconnecting. Both deletions and insertions are special types of
swaps, where one of the paths has no node before the reconnection.

- Inversion chain: multiple nodes from the pivot are both inverted and traversed in the
opposite order by a path; they would have been described as a single inversion if these
nodes were merged. Also called chained inversion.

105

Figure 48: Each comparison to a pivot path reveals several patterns that can be linked with common SV types; Here a
portion of a pangenome graph is schematized, with a pivot path represented as a linear succession of black nodes and edges,
and a compared path X in magenta, sharing some of its node with the pivot. Doted strokes represent cooccurrences of nodes
through the pangenome graph. From left to right, we can identify: a duplication (a node from the pivot is present twice in
the path X); a deletion (path X skips a node from the pivot); an insertion (path X has an additional node before reconnecting
to the pivot); a ‘swap’ (the pivot and path X have different sequences between two common nodes); an inversion (the path
X has a node inverted compare with the pivot); an inversion chain (or ‘chained inversion’, multiple nodes that, if merged,
would have been labelled as a normal inversion); a translocation (nodes from the pivot are found in path X but in a different
location, either another chromosome or among a different succession of nodes).

The mostly linear nature of DAG would limit the number of special nested variations, but the
existence of complex combinations would depend on the algorithms used to create the
pangenome graphs (and to turn them into DAGs if needed).

b. A glyph system for the visual representation of SVs

I propose to visually represent each of these SV types with a glyph or combination of glyphs as
described in Figure 49, distributed within two square spaces on top of each other symbolizing the
pivot node.

Figure 49: Six different glyphs would be enough to encode all identified SV types; Insertions can be represented as light
green pointed shapes. Swaps are depicted with violet triangles facing each other, with emptiness in the middle. Inversions
and inversion chains are (connected) red triangles. Presence of a node is encoded by a black square, and absence by no
square at all. By elimination, deletions are represented by an absence of square, without any swap glyph either. If a
cooccurrence of a node from the pivot is present within the compared path, it is drawn as a blue square with a rounded
extremity. Therefore, a combination of a presence glyph and cooccurrence glyph encodes a duplication, while an absent
‘presence glyph’ associated with a cooccurrence glyph describes a translocation.

The top part encodes the presence or absence of the pivot node within the compared path. The
bottom part hosts glyphs characterizing the observed type of SV. Multiple SVs can be depicted at
once within the same pair of squares, overlapping if needed. A pairwise comparison of a path and
the pivot can therefore be drawn as two rows, one encoding the PAV of pivot nodes and the other
below detailing the encountered SVs (apart from swap glyphs, that are on the PAV row), as
illustrated in Figure 50.

106

107

Figure 50: The glyph system depicts SV from a pangenome graph, built from linear genomes; This figure is an overview
of the conversion from sequences to graph, then to the glyph system introduced here. a) Three genomes (Aphrodite,
Ganymede and Leonidas) are represented as successions of blocks of abstracted size. Each block has a mark and color used
here to schematize shared and unique blocks between genomes. Two blocks with the same combination of color and mark
represent a similar sequence. Numbered blocks are blocks with cooccurrences, i.e. multiple copies within genomes, or
differently positioned occurrences between genomes. The colors and marks are drawn here only to highlight how the DAG
pangenome graph is related to the three genomes. Arrows depict a block’s orientation, by default blocks with marks on top
are in the forward direction. Moreover, each genome is associated with a color: Aphrodite with blue (◼), Ganymede with
turquoise (◼), and Leonidas with green (◼). b) The three genomes can be represented within a pangenome graph. Each
block is represented with the same color and marks than before, but only cooccurrences are present multiple times. The
original block successions can be retrieved by following the blue, turquoise, or green paths through the graph. Colored
numbers indicate at which index a block occurs within the original genomes. For example, the block at index 5 (i.e. the 6th
block) is F in Aphrodite, G in Ganymede, and H1 in Leonidas. c) The glyph system is used with three different chosen pivots,
Aphrodite first, Ganymede second, and Leonidas third. The pivot’s blocks are depicted as greyed-out blocks with the same
mark as in the visual representations above, they would not be displayed as such within SaVanache’s interface. Each pairwise
comparison is represented with two rows, one with the insertions, inversions and cooccurrences glyphs, and the second with
the presence and swap glyphs. All glyphs are directed toward the pivot, apart from cooccurrence glyphs if they are directly
next to the pivot. Note that inversion and cooccurrence glyphs can overlap, for example on index 5 with Leonidas as a pivot:
a red triangle is over a blue shape. d) The glyph legend, as detailed earlier.

c. Implementation of the glyph system

This idea of a glyph system for representing SV visually came from two main ideas gathered from
discussions with target end users: there was a lack of tools visually encoding SV directly (see
SaVanache I.B); block sizes could be abstracted for an overview of SVs, before zooming in another
scale. Here each SV has a dedicated glyph or combination of glyphs, and sequence segments are
arbitrarily set to the same size visually for readability. A detail view would provide information
on the actual block sizes and coordinates in the genomes.

The colors were chosen to be differentiable even for colorblind people, by selecting combination
of hues and luminosities that would be still readable (see Figure 51), especially when combined
to glyph shapes. Comparisons of the glyph system with four types of colorblindness are displayed
in Appendix CI.

Figure 51: Five colors were chosen for SaVanache UI with the glyph system on display; With varied hues and luminosities,
the five colors are differentiable with any kind of colorblindness. Violet (◼) for Swaps, red (◼) for Inversions, blue (◼) for
Cooccurrences, (◼) green for Insertions. Orange (◼) is the main color used for highlights within the interface. It could be

108

mistaken for green with deuteranopia or red with protanopia, but the different context should be enough to correctly
distinguish them. Colors were selected using the Adobe Color Palette tool54.

The shapes were chosen to fulfill four criteria, in order of importance:

- Easily distinguishable
- Combinable within one pair of squares
- Ease of understanding / intuitiveness
- Solid shapes

A glyph’s shape must encode both the position of an SV compared with the pivot and the nature of
that SV. It should therefore be easily and quickly identifiable, and distinguishable from each
other (for example by occupying different niches within the SCI space identified by Huang [245]
and detailed in State of the Art III.C.5). Cooccurrences are the only rounded shapes and are
therefore highly identifiable, for having low spikiness and high compactness. Presence squares
are differentiable as they are bigger than all other shapes and have no diagonal sides—higher
spikiness than cooccurrences but especially a different orientation than the triangles. Insertions,
inversions, and swap glyphs are all based on triangles, but are differentiable with both their sizes,
positions, and orientations (and colors as detailed above). Insertion glyphs are elongated—high
spikiness—and positioned between two pivot nodes. Inversion glyphs are centered on presence
squares and are directed toward a vertical axis. Swap glyphs on the other hand are on the same
row as presence squares and are directed towards a horizontal axis. These last two triangles do
not differ much in shape, but differ in position, orientation, and color

All glyphs can currently coexist within one pair of squares, as illustrated in Figure 52. This was
needed as combinations of SVs can exist on one node, and a visual representation for groups of
genomes could end with all glyphs in one place, as detailed in SaVanache II.E.5.

Figure 52: All glyphs can fit within one comparison unit and still be identifiable; Most of the glyphs (insertions, inversions,
and cooccurrences) fit below the presence squares. Swaps share the same space as presence squares but cannot be present
at the same time as them unless comparisons are grouped into one line. Even when grouped, all shapes are distinguishable.

54 https://color.adobe.com/create/color-accessibility

https://color.adobe.com/create/color-accessibility

109

Shapes should be easy to interpret, an intuitive design would make them more memorable and
would reduce the cognitive load for the user (see State of the Art III.C.4), reducing the need to
refer to a legend55.

Finally, I needed the shape to be solid (as opposed to hollow) as I wanted to use the color within
for both distinguishability and the visual representation of groups of genomes.

d. Feedback on the glyphs

Feedback was collected from colleagues who had never seen the glyphs proposed. First
discussions showed that insertions were easy to recognize as the triangle is a common shape used
for this SV. Other shapes were harder to associate with a known SV at first, but it became more
intuitive after a dozen of minutes with explanation. The swap glyph could be mistaken for a
deletion, as the two facing triangles seem to directly ‘connect’ to each other.

Proper experiments would be needed to assess the efficiency of the chosen shapes, evaluating
both their intuitiveness and learnability, as explanation seemed to make them more
understandable. Combined with a legend available within the UI and tutorial(s), an unknown
glyph system could quickly become intuitive if it was not already at first sight. Moreover,
alternative visual representations for the swap should be explored, to further differentiate them
from areas with deletions. Ideas include filling the space between swap glyphs, or to change the
shapes to something else that would not give the same sense of connection between the two ends.

Moreover, some colleagues wanted to see comparisons on one row instead of two juxtaposed
squares, to display more assemblies at once. An alternative glyph system could be imagined, it
would be interesting to measure the efficiency of the two, and maybe integrate the possibility to
switch to one or the other. My hypothesis is that it would be harder to find SVs within a mono-row
visual representation, as it is easier to detect a glyph in the middle of a white background than in
the middle of other marks (for example presence squares against an inversion triangle).

4. Dedicated UI

As showed in Figure 46, this glyph system can be displayed in a tabular matrix, where each row is
dedicated to the pairwise comparison of a genome assembly with the pivot, and each column
corresponds to a node from this pivot, ordered following the actual succession of nodes within
that path and with a unified width (the sequence length is abstracted and not represented
visually).

Below, a table lists all assemblies available within the chosen pangenome, as in the previous
Overall diversity view (see SaVanache II.C). A user could choose to hide or show any assembly from
both this table and the matrix above. The matrix only shows a predefined number of columns at a
time, and a slider at its bottom enables users to pan through all the columns that can be associated
with the selected region.

The matrix could also be used to move the assemblies or the pivot up and down, or group rows,
displaying an alternative glyph system, as described in SaVanache II.E.5. It would also have a
togglable side panel providing basic summary statistics, as described in SaVanache II.E.6.

The bottom right part of the display is dedicated to a detail view of SVs, showing realistic
proportions for the nodes along with coordinates of the breakpoints and visual representation of
the different types of SVs, as described in SaVanache II.E.7.

5. Alternative representation of glyphs for groups

To offer the possibility to compare groups of genome assemblies, I propose an alternative to the
glyph system, where the sum of each column from a group of genomes is summarized within one

55 This is loosely related to the principle of least astonishment described in State of the Art III.C.4

110

row. The glyphs are the same, but I propose to use the color intensity of the filling of each shape
as a visual channel for the percentage of genomes within a group that have a certain SV glyph. This
would be a summary of the SV glyphs rather than of the actual SVs they depict. For example,
multiple genomes can have a synteny disruption after the same node, with a swap, but that swap
does not have to be of the same length or to connect back to the same pivot node in both genomes.
The summarized line would only indicate that both genomes have the beginning of a swap at the
same position, but their ends might be at different places.

The contour of a glyph would be drawn for each SV glyph found, and the intensity of its filling
would range from white to the normal color of that glyph depending on how many genomes share
that glyph, as illustrated in Figure 53. Presence square would also be drawn this way, as a pseudo
heatmap of glyphs.

Figure 53: Glyphs can be colored as a heatmap to depict the distribution of SV annotations within a group of assemblies;
This example uses an old design for the insertion glyph (black triangles on top, green triangles at the bottom line). As
examples, the first insertion in the group row comes only from the assembly 3: it is filled with white. As all assemblies have
a presence square for the second column, it is filled with full black in the group row. Then the insertion is present only in the
first rows, but not in the last one. The glyph within the group row is filled at 4/5x100 = 80% of intensity (which would
correspond to the color obtained by putting the normally filled glyph at 80% of opacity on a white background). The group
row therefore acts as a heatmap highlighting where SVs are present, and in what frequency.

6. Summary of SVs within the selected region

The matrix of SV glyphs is completed with a togglable side panel on the right, showing the
distribution of each SV glyph between the displayed assemblies on the current region on display.
Each column displays bar charts of the percentage of nodes with a certain SV glyph for each row,
with a column for the total, as illustrated in Figure 54. This view would enable users to quickly
find the genome assemblies with the most SV detected, and if some assemblies are more subject
to a certain type of SV. Interactions can be included, like sorting the assemblies based on the count
of a certain SV glyph, turning on or off the color of the heatmap for the bar chart, or displaying on
hovering a vertical stroke on all rows within a column, acting as a visual cue for easier comparison
between rows.

111

Figure 54: A summary panel can show bar charts of the percentage of nodes with a certain SV glyph within an assembly;
Once more, the glyph system in use here is not the most recent, with the first column depicting deletions and the second
insertions. This panel comes with sorting options and other interactive options. A whole column’s width corresponds to the
maximum for all bar charts within, meaning that widths are not comparable between columns: one assembly could have the
highest number of insertions and inversions, both bar charts would reach the maximum length, but it does not mean that
there would be as many nodes with insertions as nodes with inversions. To compare values between columns, the user could
click to toggle on the bar chart colormap common to all columns, with 0% being a dark violet and 100% a light beige (as in
the magma color palette). Moreover, written value can be highlighted on hovering if need be.

7. Details on SVs from a selected intersection

Within the glyph matrix, a user could click on the comparison of a given step of the pivot path with
a genome assembly—simply by clicking on any intersection between a row and column—to
display a detail view depicting the sequence segments and SVs involved, as illustrated in Figure
55.

112

Figure 55: Multiple SVs can be depicted simultaneously in the detail view; The left part of the detail view is composed of
togglable tabs, used to highlight one or many type(s) of SVs on the main visual representation on the right. From top to
bottom: insertions, deletions, cooccurrences, inversions. Swaps are missing in this draft version. The right part displays the
identifiers of SV(s) found at that specific pairwise comparison, along with the assembly’s name on top and pivot name at the
bottom. A user could pan through this visual representation, which shows blocks of sequence in their genomic context and
with proportioned widths. Below, the node targeted by the pivot step is drawn, within the two direct neighbor nodes, and
with written coordinates at each breakpoint. On top, nodes from the assembly are drawn too, including cooccurrences
(blocks in blue). Every SV can be depicted in between: deletion as dotted triangles, insertions as solid green triangles with
the inserted segment in green, cooccurrences as strokes connected to a central line, inversions as zigzags between blocks
or connecting to the central line in this case. In the more recent design, a swap would be drawn here instead of a combination
of insertion and deletion.

This view correctly depicts the sizes of nodes involved with SVs at the selected location and
enables users to highlight some of the existing SVs, or even all types at once. Various combinations
can be imagined, as seen in Appendix CII. This view would provide a more detailed view of the SVs
happening between two genomes at a specific location, with their coordinates and relative sizes.
It could also be used to jump to the Presence Absence view, which would be centered on the
selected step.

Preliminary drafts included a visual representation of genes as horizontal lines above the
assembly or below the pivot blocks, with color on the lines spanning a breakpoint or being
included within an SV. After discussions with target users this idea was not kept, for it was deemed
unnecessary at that scale and would overcomplicate the view.

III. SaVanache’s implementation

Unlike Panache, SaVanache has not been turned into a public tool yet and is under development.
Different in scope and scale, we also took a different approach for its development.

A. Building a composite visualization tool

1. Development strategy

Most of the development efforts done on SaVanache were done by web developers, under my
supervision.

The first development efforts were focused on the implementation of the first draft of a one-
versus-many visualization of SVs, as detailed in SaVanache II.D. This work resulted in a prototype
that was later abandoned to better target the users’ needs but was key in defining the next steps.
Another developer later worked on the implementation of the scatterplot for the Overall diversity
view of SaVanache. His work was done in parallel to another web developer, working on the
overall UI of SaVanache and the implementation of the Structural variations view.

113

2. Chosen technologies

As for Panache, we chose to develop a web application, for portability, ease of use, and the great
flexibility offered for the creation of interactive tools.

I kept working with Vue, but version 3 instead of 2 as it came out not too long before development
and related libraries were bound to evolve to this later version too.

As for the visualizations, the tabular prototype used vanilla Vue and SVGs. The scatterplot has
been built using the library JsCharting for Vue56. The implementation of the glyph system and
detail view within the Structural variations view have been created with positioned ‘div’ HTML5
web elements as a proof-of-concepts and will be improved with further developments.

3. Overall diversity view

The files used for the Overall diversity view are straightforward, simple TSVs storing the positions
on the scatterplot along with metadata. An additional TSV is currently used to store the names of
assemblies (columns, in a list) contained by each pangenome (rows). Additional TSVs could be
uploaded by a user to specify a new categorization of the assemblies to use for the coloring system
detailed in SaVanache II.C.2.a.

All basic parts have been created into different Vue components (one for the scatterplot, one for
the assembly table, one for the pangenome list), reusable in another project. Due to the novelty of
Vue version 3, some of the expected functionalities were not implemented yet in the libraries used
for the pre-styled components needed for the UI. A combination of vuetify and vuestic along with
in-house modifications were for example needed to implement the hovering behavior on the
assembly table too.

The developer chose JsCharting among other plotting libraries, to easily add interaction to the
scatterplot representation. Unfortunately, it did not come with the possibility to do a lasso
selection of multiple data points, and this feature is missing. The color system used when the
pangenome list is hovered is only partially in place and needs further improvement. Moreover,
this visualization is overall slow on use, with observed reaction times exceeding two seconds to
update the display on hovering interactions. It is unclear whether this slowness comes from the
charting library itself or its implementation within a Vue component which has dynamic variables.

I suspect that the UX would be improved greatly with a vanilla Vue and SVG implementation, based
on Vue’s dynamic update of the webpages, as it is done within Panache. However, this would mean
that all interactions (hovering, selection on click or lassos selection…) would have to be
hardcoded. Unless another library that would integrate better with Vue components is identified,
I would recommend this solution. The number of assemblies could be a problem for the display
when they are too numerous, as SVG HTML5 elements would be created for each dot. When more
than a thousand assemblies are to be included, alternatives might be needed, preferably WebGL
technologies.

4. Integration within a SPA and Structural variations view

a. Special format of pangenome graph file

I propose a dedicated JSON structure pre-computed from pangenome graph, to be used within the
Structural variations view. The pangenome would be divided into two main objects: a collection
of nodes, and a collection of paths for each assembly, as presented in Appendix CIII.

56 https://jscharting.com/

https://jscharting.com/

114

• The panSkeleton

The panSkeleton is the structure of a pangenome graphs. It stores only the Nodes and the
information of which are related as cooccurrences (i.e.. nodes that are copies of others). The edges
are facultative, as the node successions of interest in our case can be stored in the paths. As the
nucleotide sequence is not useful for the proposed design, it is not written into these files either.

All Node is stored thanks to an ID and has three internal properties:

- The length of the DNA sequence represented by the Node is stored as an integer.
- A dictionary stores the assemblies that traverse the Node, by listing their assemblies

name, name of the sequence or chromosome under consideration, and the index of the
Node within the whole succession.

- An array listing the ID of other Nodes that are cooccurrences.

• The paths

The paths are all the succession of Nodes observed within genome assemblies. Each genome
assembly stores a list for all its sequences / chromosomes. These lists represent the succession of
Nodes taken by that path within the pangenome graph. At each index an object stores the NodeID,
the observed start and end positions of the segment on the linear coordinate system of the
assembly, and the strand (+1 if forward, -1 if reverse).

b. Annotating SVs from the JSON file

The annotation of the SVs used for the glyph system should be done directly within SaVanache.
This way, it would enable on-the-fly modification of the pivot path without processing huge pre-
computed files storing all the possible pairwise comparisons needed. Expecting users to provide
such pre-computed files would be unrealistic, as their creations would take time and consequent
computer space.

I propose a naive approach for this annotation directly from within the pangenome file described
above, detailed in a decision tree presented in Appendix CIV to Appendix CVI. This algorithm is
based on the comparison of Steps taken by the pivot path with Steps taken by other paths—a Step
being the combination of a Node’s and path’s details at a given index within the succession, as
illustrated in Figure 56.

Figure 56: All Nodes from the panSkeleton are described as Steps when included within a path; A Step has the same
information as a Node, but also provides detail on the strand, coordinates within the path, and direct neighbors within the
succession of a path (as it is easy to retrieve the Step n+1 or n-1).

Whenever a synteny disruption (see SaVanache II.E.3.a) is found after the Step n of the pivot,
further exploration of the alternate path is done until reaching a Node in common to both
assemblies. The characterization of the SV then depends on the behaviors of the diverging paths.

115

For a naive implementation, insertions and deletions would be limited to cases where the
reconnection happens at Step n+1 of either the pivot or compared path. An implementation
allowing the user to parametrize the algorithm, allowing some degrees of freedom, would be a
better solution in a finished visualization tool.

c. Storage of the SV annotations

All detected annotations of SVs could then be stored within a sparse matrix, where each index
corresponds to a Step within the pivot, and each row to an assembly. SV annotations would be
stored as objects at the index where they have been detected, with additional properties used
within the visual representation, as described in Appendix CVII to Appendix CIX.

These arrays could be directly converted into the glyph system described above (see SaVanache
II.E.3), as it is based on the positioning of glyph at certain positions along the pivot path. Moreover,
this structure could be easily parsed, which in turn would make an efficient use of computational
resources. The whole comparison could be accessible, and only sub-sections would need to be
extracted for the on-screen display (either because only a region from the pivot is selected, or
because too many nodes would not fit the display and panning would be needed).

d. Implementation done

As of July 2022, SaVanache is under development and has not been made available as a full
visualization tool yet. Both the annotation algorithm and visual displays (glyph system, detail
view) within the webpage proved to be difficult tasks for the developer, as they are far from usual
web development. The panCircos representation will be include in future versions.

Most of the components for the UI are available and functioning, with mock-up visualizations built
from HTML 5 div elements and handcrafted files. The available components from the Overall
diversity view have been integrated within a common interface, with mock-up data for the
transition between views.

B. Future developments

As SaVanache is currently in a proof-of-concept state, additional development efforts are still
needed.

The Overall diversity view should be improved with a new implementation of the scatterplot,
which would be more efficient (without noticeable delays between user input and display
updates) and would fully integrate the coloring schema introduced in SaVanache II.C.2.c. Addition
of interactive selection of multiple assemblies directly within the scatterplot is also expected.

Moreover, as of now the parsing algorithm for the annotation of SVs for the Structural variations
view, mandatory for the display of the glyph system detailed in SaVanache II.E.3, is not available.
Both a mock-up version—useful to check how scalable this approach is and to identify
computational bottlenecks—and final version should be implemented. I envision that a
webworker technology, enabling parallel computation on multiple threads would be highly
beneficial to this algorithm.

Besides, the visual representations still need to be implemented with a scalable technology.
Current implementation is in mock-up status and has not been properly implemented yet. As for
the scatterplot, SVGs (either from vanilla Vue or handled with D3.js) could be used for a proof-of-
concept version, but might not be scalable to highly variable regions, or display of many compared
genome assemblies, as each SV glyph would be represented by one HTML5 SVG element. Faster
technologies could be needed, and WebGL would be a good way to handle millions of graphic
marks seamlessly. Possibly, visualization grammars (Gosling, Vega-lite…) could enable an easy
integration of this technology while offering interactive options, but none of the current
developers (myself included) are familiar with these technologies.

116

Finally, additional developments should address the integration of the last two views within the
tool: Panache, and the view dedicated to sequence-level variations. All views work with their own
set of files and formats; ideally, an inclusive tool would offer transitions between each file and
even internal conversions between formats to limit the need for pre-computed files as inputs.
Some users raised the need to navigate directly to certain ulterior views, without going through
the first views before. The possibility to bypass views should therefore be explored too.

IV. Discussion

In this chapter, I introduced SaVanache as a potential composite visualization tool for
pangenomes. It is based on four views, each dedicated to a certain scale of interest: Overall
diversity, Structural variations, Presence Absence, and Haplotypes. SaVanache would be with
MoMIG [186] the only tool offering multi-scale interactive visualization of pangenomes, from
overview to sequence levels. I propose an interactive coloring of dots within a scatterplot, based
on selected assemblies and chosen pangenomes within the first view. I introduced multiple novel
representations of SVs within a pangenome, including a system of glyphs used to visually
represent SV annotations for one-versus-many comparisons within a pangenome graph. This
representation would enable the visualization of one-versus-many SVs within genomes of
pangenome. I then detail these designs and their effective or envisioned implementation within
an integrative visualization tool.

A. Design validation and extension

While the novel visual representations described have received positive feedback and have been
designed to help biologists and bioinformaticians to explore pangenomic data, it is unclear how
efficient these designs are in practice. Validation steps took place as discussions with colleagues
from different teams (experienced scientists from the bioinformatics teams of both IRD and
Syngenta, biologists from Syngenta, PhD students the IRD…) and would benefit from hands-on
experience of the tool and its visual representations. Moreover, the designs have been created for
novel workflows that are neither in place yet nor improvements on already existing analysis
workflows. This makes comparisons with other approaches difficult.

Possible redesigns of the glyph system could be needed depending on such evaluations.
Alternative glyph shapes and colors could be used to better balance familiarity and novelty, if they
can be both more intuitive and easily readable regarding the constraints described in SaVanache
II.E.3.c. As raised by target end users, narrowing the display of comparisons within one row per
comparison instead of two would also be of interest. Moreover, the learnability of the visual
representations would also need to be evaluated when a tutorial is provided. Do these novel visual
representations become more intuitive after a short time or is there a steep learning curve that
would prevent the adoption?

An additional area worth exploring is the representation of uncertainty, of the quality of the
underlying data. Currently, every assembly is given the same weight visually, no matter how they
have been built; providing representations of metadata (such as the sequencing technology used,
or the percentage of identity of each Step compared with their Node) would help users to better
distinguish highly reliable regions, enabling more nuanced comparisons of data.

B. Development of an integrated solution

One of the many challenges of SaVanache is that all the visual representations must be connected
within a tool, with interactive links between each and a good handling of data states throughout
the whole application.

117

As of now, each view is thought as a separated instance, taking its data from different files and file
formats, as identified in Appendix CX. However, some information is redundant between all these
views and could be better handled, with on-the-fly computations. For example, the information of
the assemblies contained by a pangenome, needed for the Overall diversity view, is already present
within the JSON files used in the Structural variations view, as all paths are listed within. Similarly,
Panache uses TSV files or pre-computed JSON files as input, that are not directly linkable to the
JSON format used within the Structural variations view. Harmonizing the file formats throughout
the tool would save memory space and facilitate their parsing.

Furthermore, the current development efforts do not include any database for all the data that
would be used, and only has vuex as a state management solution. Depending on the use cases,
relying on a server-side database would be a good addition, for example when deploying instances
of a visualization tool for genomes of a specific species, as it has been done with multiple genome
browsers.

Because of the novelty of the glyph system and the related file formats, there is currently no tool
that can convert existing pangenome graph formats into the JSON format needed. Such tools are
in development both at Syngenta (in-house effort to connect to other workflows) and IRD, as
Nguyet DANG worked during her PhD on the creation of PARROT, a tool converting pangenome
graphs into various format. Discussions revealed that the conversion needed for the glyph system
could not be achieved within our respective PhD timeframes but could be added in the future.

C. Feedback and general discussion

Designing visual representations for SaVanache proved difficult, because of ill-defined objectives.
This visualization tool is built for an analysis workflow that is not currently existing, as biologists
and bioinformaticians have not shifted from mono-reference studies to pangenomes yet. This
comes with a lot of freedom, which offers a vast creative space, but also means that there are no
standards to build upon, and not properly defined data to use. I have been told to “imagine the
representation for this idea, and we will figure out the data later”, which was really confusing as the
design studies usually follow a ‘top down’ approach, from the data domain and abstractions to
idioms and algorithms (as explained in Appendix CXI).

Moreover, I had to think of a tool that would be useful for three to four different stakeholders:
Syngenta (with breeding approaches), IRD and Bioversity International (research organisms), and
potentially other public research labs that could use a pangenome visualization tool.

This variety of end users and use cases made the identification of user flows difficult, with at times
incompatible priorities from each. These blurred objectives were what led to the abandonment of
the tabular violin-like design, and multiple discussions with all involved parties were needed to
retarget a common goal.

Design steps aside, overseeing the development of SaVanache instead of actively participating in
the development has been an interesting experience. Having professionals to work on the
development was helpful, and I discovered that a lot of efforts had to be put into regular meetings
to make sure that development is going in the right direction.

The specificities of datavisualization really showed, as the web developers had difficulties to work
on tasks more related to the implementation of a visualization or algorithm. Profusely explaining
the biological, datavis and algorithmic concepts took a lot of time, as well as the creation of step-
by-step user flows, and the results were not always up to expectations. As datavis leverages skills
outside of the usual web developer skillset, it appeared to be a difficult task to work on, especially
in a context where real data are not properly formatted. It still greatly helped for the creation of
the UI and overall architecture of the tool. As discussed with some of the developers, I believe that
specialized developers would be a better fit for the development of the parts related to interactive
visualization and/or handling of complex data.

118

As for SaVanache, some questions still need to be addressed. As the Haplotypes view has not been
within focus during this PhD, neither its exact design nor an existing tool to reuse have been
defined yet. As for nomenclature, I am also unsure of how to call the type of conceptual pangenome
graphs used for the Structural variations view: DAGs are acyclic by definition, but inversion chains
would imply the existence of local loops within a graph.

Besides, even though Panache was thought as the visualization used for the Presence Absence
view, the visualization developed for the Structural variations view enhances its concepts in many
ways. The glyph system also shows PAVs with its presence squares, and the core or variable
status could be encoded directly within the part of the visual representation dedicated to the pivot.
It currently does not have Panache’s sorting options, but it would be fully possible. In a sense, the
glyph visual representation is an extension of the first version of Panache. Linking the glyph
system directly within Panache makes sense as we wish to reuse the existing development, but
the many overlaps between the two views makes their connection appear unnecessary.

One possibility would be to use Panache as an alternative visual representation within the
Structural variations view. Another would be to enhance Panache to be able to work directly on
pangenome graphs, to modify the reference linear coordinate system at will too. This way the
connection from the Structural variations view would not modify the coordinate system and could
correspond to a zoom-in transition. Besides, the questions of a graph’s granularity, or resolution,
would also have its importance here. The Structural variations view, dedicated to bigger
rearrangements, could work on low resolution graphs, further refined into high resolution graphs
when the view scale switches to Panache, implying smaller blocks. Whether these changes in
detail level are to be computed from one exhaustive pangenome graph or extracted from multiple
pangenome graphs built with various degrees of resolution remains to be seen. If possible, on the
fly modification of a graph’s granularity would also be beneficial for the UX.

D. Application of the 10 rules

Working on SaVanache leveraged different skills than Panache, and how the 10 rules from ‘Ten
rules on Genomic Visualization Tool Development’ have been applied changed accordingly. One of
the main differences is that SaVanache is not available as a public tool yet, and all rules related to
tool deployment and community (8 to 10) did not apply during the time of my PhD.

As for design, rules 3 to 5 had a great role in the creation of SaVanache. By nature, it is a composite
visualization tool, which aims at representing multiple genomic scales with different visual
representations, as covered in the Rule 3. Shneederman’s mantra from Rule5 has been applied for
the whole tool’s concept, but also within a view as illustrated by the glyph system and detail panel
from the Structural variations view.

Regarding Rule 6, we did use novel technologies, as Vue is a well-known JS framework and there
is no doubt about its future maintenance and wide adoption. Its novelty however did come with
some problems as not all libraries that we wanted to use had components compatible with Vue 3
yet, and we had to manually combine some of them to achieve our goals.

A rule that took an unexpected turn was the Rule 7. No properly formatted real file was available
at the beginning of development, and I had to provide mock-up files to the developer that had to
work on the SV annotation algorithm. I first provided files made with an ad-hoc python script, but
it quickly became apparent that we could not properly check if the resulting annotations were
correct because of the size of the files. I therefore created a handcrafted small dataset, including
all the expected patterns, along with the cheat sheet from Figure 50 for reference. The creation of
this file was time consuming and included some typos, but it was time well invested as it really
helped all parties to better understand how the algorithm was working (or rather not working,
here). It also helped to identify unnecessary parts from the file format specification, which has
been modified since.

119

 Conclusion

120

I. Summary
In this dissertation, I first detailed the state of the art of pangenome visualization. I highlighted
differences between pan-gene atlases, which focus on genes only, and pangenomes, which also
include intergenic sequences. I presented existing tools usable for the visualization of pgAtlases
and pangenomes and identified five existing categories: unspecific, qualifying, positioned,
structural, and composite tools. Since the beginning of this PhD project, new tools embraced
pangenomes instead of pgAtlases, shifting from qualifying and positioned tools towards structural
tools, along with the advent of graph pangenomes. However, none offers a highly interactive way
of exploring pangenomes for visual exploration and analysis.

During my PhD project I identified key elements for the design and development of genomic
visualization tools. Useful for newcomers discovering the field of datavis, they have been
summarized into ten guidelines, in the shape of a “Ten simple rules to…” publication currently in
review in the PLOS Computational Biology journal. These ‘rules’ cover multiple parts of a
visualization tool’s lifecycle, starting with the design and development phases, finishing with
maintenance and community building matters.

I introduced Panache, a browser-like visualization tool for the exploration of PAV of pangenome
blocks (either from pgAtlases or pangenomes) within a linear coordinate system. Panache is
available as a public tool and has already been applied to public datasets (including banana and
wheat), published, and cited in publications.

I finally introduced SaVanache, a design for a composite tool enabling the deep exploration of
pangenome through multiple visual representations for multiple view scales: Overall diversity,
Structural variations, Presence Absence, and Haplotypes. I detailed the design of novel visual
representations (including a system of glyphs) and approaches for the visualization of structural
variations within a pangenome graph within an integrative UI.

II. An answer
The introduction raised the following question: What would scalable and meaningful visualization
tools for (plant) pangenomes be like?

The work presented in this dissertation provides an answer, first by identifying components of a
good datavis tool for genomics in general, then by highlighting some desirable features of visual
representations of pangenomes through Panache and SaVanache.

Visualization tools for pangenomics face multiple challenges, starting with the size and current
lack of standards for pangenomics data. A pangenomics visualization tool could be created for
pgAtlases, pangenomes, or both, though pangenomes are gaining in popularity since gene
annotations can be integrated to panreferences or pangenome graphs alike.

A datavis tool can be used for various goals, with the most preeminent being for exploratory
analysis, targeted analysis, or visualization for publication and general outreach. The exact goals
should however be thoroughly discussed with all the people involved, from the target users to the
stakeholders to correctly identify the needs and available timeframe for the construction of a tool.
In pangenomics this will also highlight the category of visualization tools that should be built,
depending on the data available and if their positions are of interest. Panache was created as a
positioned visualization tool so that it could work on both pgAtlases and pangenomes, but it would
not yet be usable for exploring SVs in detail. SaVanache has therefore been designed to enable the
deep exploration of multi-scale pangenome data.

A high level of interactivity within the visualization tool would make a tool scalable: following
Shneederman’s mantra (see Ten Rules’ Rule 5: Make data complexity intelligible) and carefully
designing visual representations for dynamic display rather than static infographics would enable

121

a good exploration of the underlying data, providing plenty of details when needed and asked for
by users. Multiple visual representations can be imagined for one concept, and a visualization tool
could include one or more, as done in SaVanache. As pangenomes come in multiple shapes and
sizes, providing multiple visual representations would cover different user needs, making the tool
even more scalable. Moreover, a good visualization tool should be kept in good health: up to date
documentation, maintenance and regular exchange with the target community are essential in
keeping a tool relevant.

Visually representing pangenomes meaningfully could not be done without providing some layers
of summary information, to help users to make sense of these big data and identify patterns.
Particularly, the overall presence / absence status of the genomic items contained is of interest,
especially when position dependent. Composite visualization tools with multiple connected visual
representations for different levels of details, similarly to a semantic zoom, would offer in-depth
analysis capacities.

Besides, pangenomes are abstract concepts, useful for shifting away from the single reference
genome paradigm, but their real interest lies in the genomes that compose them. A linear
coordinate system should still be available, to connect the visualization to existing analyses from
the single reference era and to stay anchored into the biological reality of DNA sequences.
Linearity also has the advantage of being easily readable, enabling comparisons between sub
elements. To take full advantage of pangenomes, systems to change the coordinate system of the
layouts should be available too. I propose SaVanache and its multiple views as the first design of
such a composite visualization tool for pangenomes.

III. Discussion
Multiple visual representations of a same concept can coexist and often offer multiple
complementary viewpoints. Certain visual representations are better fit than others for certain
tasks, but there is no absolute best that could be used for everything and please everyone. This is
especially true for pangenomes, which cover a wide range of definitions, data, formats, and use
cases.

Due to their only recent popularization, pangenomes are not yet well integrated into genomic
analysis workflows, and the pool of experienced target users is therefore limited. Panache
instances deployed by other research teams already proved the interest of this tool to the
scientific community and highlighted missing desirable features to include. Still, more widescale
discussions and validation steps during hands-on sessions are necessary for a better assessment
of the tools’ (Panache and SaVanache alike) strengths and weaknesses for a wider audience.
Validation should focus on both the efficiency of proposed visual representations to accomplish
certain tasks and on the UI in which these visual representations are displayed. Evaluation of the
‘intuitiveness’ of the chosen visual representations is especially challenging. Once they are first
introduced to target users, a learning factor biases the answers, and it is better to survey different
people each time. This proves difficult with pangenomes, as there are few experienced target
users that have the knowledge needed to understand the concepts involved.

Identified improvements to the tools described in this dissertation include the update of Panache
precomputed linear coordinate system towards a dynamically chosen one. Enabling users to
customize the views with colors and PAV categories of their choice, along with the possibility to
extract visualizations in high quality images for publications would also expand the usability of
the tools to additional use cases. Aside from the tools’ designs, efforts should also be made to
optimize the current implementations: a better handling of stored data and faster display
technologies like webGL would bring improvements to the UX, reducing the observed delays
between user interactions and display updates.

122

Moreover, as the adoption of novel visual representations can be difficult, tutorials and legends
should be developed for a smoother transition from single reference workflows. As a tool can
display multiple visual representations, it would also be possible to partly connect novel and
classic visualizations (like usual genome browsers) for an easier adoption.

Besides, as the pangenome visualization tools had to be usable by different research organisms,
with each its own pipeline for generating files, the file formats proposed for both Panache and
SaVanache are ad hoc formats, not directly available from pangenome building tools yet. A better
connection to existing pangenome creation tools, like minigraph [113] or the pangenome graph
builder [118], would enable a wide adoption of the visualization tools.

IV. Food for thoughts
This PhD raised questions related to other fields that would be worth exploring.

Datavis builds upon varied principles but is user-centered in the end. A key marker of a
visualization tool’s success is its adoption by a community, but too much novelty can be a barrier
as the learning process is expensive in both time and energy. Tool intuitiveness could be a good
first way to ease that adoption process but studying the exact drivers of resistance to innovation
/ reluctance towards novelty, especially in the case of datavis, would help building better tools.

Interactions between science and video games are gaining attention, with studies on the effect of
gamification (i.e. the introduction of playful principles within scientific software). Video games
and board games are known for including detailed and accessible interfaces (dynamic or static,
respectively). The application of similar principles to both UI/UX design and processing of highly
detailed images within visualization tools would be of interest.

Moreover, Panache and SaVanache have been designed for computer screens, which are common
tools in science. The popularization of new technologies like Augmented Reality or Virtual Reality
in science would offer a new playground for datavis, offering alternative ways to display and use
visualization tools. Whether they would be more efficient than usual two-dimensional displays
remains to be seen. Possibilities of ‘pocket datavis’, available from smartphones, could also be an
interesting evolution of the way visual analysis is done. One could for example use their
smartphone as a secondary screen to access details from a main visualization available on another
display, as a physical division of Shneederman’s mantra.

Datavis as a scientific field also deserves to be better known and understood by scientists. The
concepts behind visual communication are essential for many aspects of a scientist’s life, from
building a slide deck for an oral presentation to designing posters or even creating figures for
publication within a scientific article. As expecting everyone to be well-versed in datavis seems
preposterous, it would be interesting to see the development of teams of datavis people within
research institutes, able to help others to publish their results and spread their research to an
uninitiated audience.

Finally, pangenomes are not widely in use yet but genomics and bioinformatics in general evolve
fast. The evolution of that field in the coming years might raise new questions and needs worth
investigating, especially regarding the availability of multiple pangenomes instead of a single
pangenome. There are already studies about pgAtlases, pangenomes, and pantranscriptomes;
would pangenomes containing absolutely all the available information be in use or would there
be different pangenomes built for different purposes instead?

V. Perspectives
A matter of crucial importance for pangenomics will be the creation of a harmonized ecosystem
of files, for fast and efficient analysis. Though pangenome graphs are gaining popularity, there is

123

no clear standard yet as the main pangenome graph building tools use different file formats. GFA
for pangenomes is still maturing, with different coexisting versions (GFAv1, GFAv1+, rGFA,
GFAv2) and its current structure is not optimized for efficient parsing. Moreover, it should be
compatible with other usual formats from bioinformatics, to be linkable to previous studies and
analyses without having to rebuild everything. The JSON structure introduced for SaVanache
contains enough information for the associated visual representation of SVs but does not contain
important information like the actual DNA sequences or annotations and could therefore not act
as a universal file format for pangenomes.

With the development of tools for the creation of pangenomes we can envision for the near future
improved data formats and structures, as well as conversion tools. Efforts like the creation of a
Resource Description Framework (RDF) for pangenome graphs57 could pave the way towards
such an integrated solution. Moreover, the development of dedicated databases would also enable
the storage and fast parsing of files for visualization tool, instead of storing everything client-side
as it is currently the case with Panache and SaVanache. More easily available pangenomes would
also mean a better adoption of pangenome-related workflows, enabling the better identification
of missing features and validation of pangenome visualization tools.

The democratization of pangenomes would also lead to the exploration of new approaches, such
as comparisons of pangenomes [277], or even metapangenomics [203], in addition to the already
existing pantranscriptomics approaches [68, 278], opening new visualization challenges.

VI. Personal conclusion
Working on Panache and SaVanache led to the ten rules from Chapter 1, which gathered advice
that I would have wanted to hear when I first started this PhD. Involving others early on and
iterated communication in general is of utmost importance for the construction of a datavis tool.
Being at the frontier of multiple fields and people, it is necessary for datavis designers to
communicate enough, for both understanding others and being understood by others. For
example, identifying the needs for visualizing SVs within pangenomes took multiple discussions
with target users. Explaining to developers what should be developed also took a consequent
amount of time and preparation—especially while working remotely—that was not expected.

Isolation during the COVID crisis was particularly challenging, especially as I had limited direct
contacts with my colleagues and no contact with datavis scientists working on similar subjects. I
would advise future PhD students working on similar subjects and their supervisors to contact
datavis research labs beforehand.

Moreover, all developers did not have the same types of contracts, and I find working with long
term contracts (about 2 months minimum) more comfortable than short-term contracts extended
on a day-to-day basis. Longer contracts leave more time to explain the project in detail and to plan
the distribution of development, with better defined milestones and well-thought steps.

Data play a huge role in scientific datavis, and as such working on pangenomes has proved
difficult. The lack of standard ended in a great freedom for defining the formats and content to
use, which raised questions about how these files could be created by the different organisms
involved in this PhD, and outsiders. I worked on the creation of these data in parallel, but their
lack of wide availability ended in few validation steps for the chosen visual encodings.

This PhD was an opportunity to widen my skillset, as I learned plenty on datavis concepts and
techniques, and even web development. I also supervised a total of seven people with a wide range
of backgrounds (UI/UX specialist, junior and senior web developers, and a web dev intern),
collaborated to online hackathon58, wrote and reviewed papers, and shared my work through

57 https://publikationen.bibliothek.kit.edu/1000127608
58 https://github.com/virtual-biohackathons/covid-19-bh20

https://publikationen.bibliothek.kit.edu/1000127608
https://github.com/virtual-biohackathons/covid-19-bh20

124

posters and oral presentations on multiple occasions, including international conferences—
though most of them were online. Moreover, as part of a CIFRE PhD I had working experience
from three different organisms: Syngenta as a private company, the IRD as a public research
institute, and Bioversity as an international organization, each with its own goals.

125

 References
1. Stephens, Z.D., et al., Big Data: Astronomical or Genomical? PLOS Biology, 2015. 13(7): p.

e1002195.
2. Birney, E. and N. Soranzo, The end of the start for population sequencing. Nature, 2015.

526(7571): p. 52-53.
3. The 3000 rice genomes project, The 3,000 rice genomes project. GigaScience, 2014. 3(1): p.

7.
4. The Anopheles gambiae 1000 Genomes Consortium, Genetic diversity of the African

malaria vector Anopheles gambiae. Nature, 2017. 552(7683): p. 96-100.
5. Yang, X., et al., One reference genome is not enough. Genome Biology, 2019. 20(1).
6. Schatz, M.C., et al., Whole genome de novo assemblies of three divergent strains of rice, Oryza

sativa, document novel gene space of aus and indica. Genome Biology, 2014. 15(11): p. 506.
7. Tettelin, H., et al., Genome analysis of multiple pathogenic isolates of Streptococcus

agalactiae: implications for the microbial "pan-genome". Proceedings of the National
Academy of Sciences of the United States of America, 2005. 102(39): p. 13950-13955.

8. Wang, T., et al., The Human Pangenome Project: a global resource to map genomic diversity.
Nature, 2022. 604(7906): p. 437-446.

9. Computational Pan-Genomics Consortium, Computational pan-genomics: status, promises
and challenges. Brief Bioinform, 2018. 19(1): p. 118-135.

10. Bayer, P.E., et al., Plant pan-genomes are the new reference. Nature Plants, 2020. 6(8): p.
914-920.

11. Bezuidt, O.K., et al., The Geobacillus Pan-Genome: Implications for the Evolution of the Genus.
Frontiers in microbiology, 2016. 7: p. 723-723.

12. Guimarães, L.C., et al., Inside the Pan-genome - Methods and Software Overview. Current
genomics, 2015. 16(4): p. 245-252.

13. Vernikos, G., et al., Ten years of pan-genome analyses. Current Opinion in Microbiology,
2015. 23: p. 148-154.

14. D'Auria, G., et al., Legionella pneumophila pangenome reveals strain-specific virulence
factors. BMC Genomics, 2010. 11(1): p. 181.

15. Ernst, C. and S. Rahmann, PanCake: A Data Structure for Pangenomes, in German
Conference on Bioinformatics 2013, T. Beißbarth, et al., Editors. 2013, Schloss Dagstuhl,
Leibniz-Zentrum fuer Informatik,. p. 35-45.

16. Golicz, A.A., J. Batley, and D. Edwards, Towards plant pangenomics. Plant Biotechnol J,
2016. 14(4): p. 1099-105.

17. Montenegro, J.D., et al., The pangenome of hexaploid bread wheat. the Plant Journal, 2017.
90(5): p. 1007-1013.

18. Tranchant-Dubreuil, C., M. Rouard, and F. Sabot, Plant Pangenome: Impacts on Phenotypes
and Evolution. Annual Plant Reviews online, 2019(2).

19. Eizenga, J.M., et al., Pangenome Graphs. Annual Review of Genomics and Human Genetics,
2020. 21(1): p. 139-162.

20. Rijzaani, H., et al., The pangenome of banana highlights differences between genera and
genomes. The Plant Genome, 2021. n/a(n/a): p. e20100.

21. Golicz, A.A., et al., The pangenome of an agronomically important crop plant Brassica
oleracea. Nature Communications, 2016. 7(1): p. 13390.

22. Tettelin, H. and D. Medini, The Pangenome - Diversity, Dynamics and Evolution of Genomes.
1 ed, ed. H. Tettelin and D. Medini. 2020: Springer Cham. XIV, 307.

23. Mabry, M.E., et al., The Evolutionary History of Wild, Domesticated, and Feral Brassica
oleracea (Brassicaceae). Mol Biol Evol, 2021. 38(10): p. 4419-4434.

24. Cornille, A., et al., New insight into the history of domesticated apple: secondary contribution
of the European wild apple to the genome of cultivated varieties. PLoS Genet, 2012. 8(5): p.
e1002703.

126

25. Groppi, A., et al., Population genomics of apricots unravels domestication history and
adaptive events. Nature Communications, 2021. 12(1): p. 3956.

26. Sun, L., et al., Origin of the Domesticated Horticultural Species and Molecular Bases of Fruit
Shape and Size Changes during the Domestication, Taking Tomato as an Example.
Horticultural Plant Journal, 2017. 3(3): p. 125-132.

27. Shastry, B.S., SNPs: impact on gene function and phenotype. Methods Mol Biol, 2009. 578:
p. 3-22.

28. Montgomery, S.B., et al., The origin, evolution, and functional impact of short insertion-
deletion variants identified in 179 human genomes. Genome Res, 2013. 23(5): p. 749-61.

29. Robert, F. and J. Pelletier, Exploring the Impact of Single-Nucleotide Polymorphisms on
Translation. Frontiers in Genetics, 2018. 9.

30. Lin, M., et al., Effects of short indels on protein structure and function in human genomes. Sci
Rep, 2017. 7(1): p. 9313.

31. Ho, S.S., A.E. Urban, and R.E. Mills, Structural variation in the sequencing era. Nature
reviews. Genetics, 2020. 21(3): p. 171-189.

32. Sankoff, D., Rearrangements and chromosomal evolution. Current Opinion in Genetics &
Development, 2003. 13(6): p. 583-587.

33. Stewart, N.B. and R.L. Rogers, Chromosomal rearrangements as a source of new gene
formation in Drosophila yakuba. PLoS Genet, 2019. 15(9): p. e1008314.

34. Xia, Y., et al., The Origin and Evolution of Chromosomal Reciprocal Translocation in Quasipaa
boulengeri (Anura, Dicroglossidae). Frontiers in Genetics, 2020. 10.

35. Freeman, J.L., et al., Copy number variation: new insights in genome diversity. Genome Res,
2006. 16(8): p. 949-61.

36. Springer, N.M., et al., Maize inbreds exhibit high levels of copy number variation (CNV) and
presence/absence variation (PAV) in genome content. PLoS Genet, 2009. 5(11): p.
e1000734.

37. Díaz, A., et al., Copy number variation affecting the Photoperiod-B1 and Vernalization-A1
genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One,
2012. 7(3): p. e33234.

38. Cook, D.E., et al., Copy number variation of multiple genes at Rhg1 mediates nematode
resistance in soybean. Science, 2012. 338(6111): p. 1206-9.

39. Tao, Y., et al., Exploring and Exploiting Pan-genomics for Crop Improvement. Molecular
Plant, 2019. 12(2): p. 156-169.

40. Hurgobin, B., et al., Homoeologous exchange is a major cause of gene presence/absence
variation in the amphidiploid Brassica napus. Plant Biotechnology Journal, 2018. 16(7): p.
1265-1274.

41. Gan, X., et al., Multiple reference genomes and transcriptomes for Arabidopsis thaliana.
Nature, 2011. 477(7365): p. 419-423.

42. Song, J.-M., et al., Eight high-quality genomes reveal pan-genome architecture and ecotype
differentiation of Brassica napus. Nature Plants, 2020. 6(1): p. 34-45.

43. Monnahan, P.J., et al., Using multiple reference genomes to identify and resolve annotation
inconsistencies. BMC Genomics, 2020. 21(1): p. 281.

44. Rouli, L., et al., The bacterial pangenome as a new tool for analysing pathogenic bacteria.
New Microbes and New Infections, 2015. 7: p. 72-85.

45. Golicz, A.A., et al., Pangenomics Comes of Age: From Bacteria to Plant and Animal
Applications. Trends in Genetics, 2019.

46. Sherman, R.M., et al., Assembly of a pan-genome from deep sequencing of 910 humans of
African descent. Nature Genetics, 2019. 51(1): p. 30-35.

47. Miga, K.H. and T. Wang, The Need for a Human Pangenome Reference Sequence. Annual
Review of Genomics and Human Genetics, 2021. 22(1): p. 81-102.

48. Danilevicz, M.F., et al., Plant pangenomics: approaches, applications and advancements.
Current Opinion in Plant Biology, 2020. 54: p. 18-25.

49. Sherman, R.M. and S.L. Salzberg, Pan-genomics in the human genome era. Nature Reviews
Genetics, 2020. 21(4): p. 243-254.

127

50. Jayakodi, M., et al., Building pan-genome infrastructures for crop plants and their use in
association genetics. DNA Research, 2021. 28(1).

51. Tay Fernandez, C.G., et al., Pangenomes as a Resource to Accelerate Breeding of Under-
Utilised Crop Species. International Journal of Molecular Sciences, 2022. 23(5): p. 2671.

52. Zhao, Q., et al., Pan-genome analysis highlights the extent of genomic variation in cultivated
and wild rice. Nature Genetics, 2018. 50(2): p. 278-284.

53. Monat, C., et al., De Novo Assemblies of Three Oryza glaberrima Accessions Provide First
Insights about Pan-Genome of African Rices. Genome Biol Evol, 2017. 9(1): p. 1-6.

54. Li, H., et al., Graph-based pan-genome reveals structural and sequence variations related to
agronomic traits and domestication in cucumber. Nature Communications, 2022. 13(1): p.
682.

55. Gao, L., et al., The tomato pan-genome uncovers new genes and a rare allele regulating fruit
flavor. Nature Genetics, 2019. 51(6): p. 1044-1051.

56. Zhou, Y., et al., Graph pangenome captures missing heritability and empowers tomato
breeding. Nature, 2022.

57. Li, Y.-h., et al., De novo assembly of soybean wild relatives for pan-genome analysis of
diversity and agronomic traits. Nature Biotechnology, 2014. 32(10): p. 1045-1052.

58. Sun, Y., et al., Pan-Genome Analysis Reveals the Abundant Gene Presence/Absence Variations
Among Different Varieties of Melon and Their Influence on Traits. Frontiers in Plant Science,
2022. 13.

59. Khan, A.W., et al., Super-Pangenome by Integrating the Wild Side of a Species for Accelerated
Crop Improvement. Trends in Plant Science, 2020. 25(2): p. 148-158.

60. Liu, Y., et al., Pan-Genome of Wild and Cultivated Soybeans. Cell, 2020. 182(1): p. 162-
176.e13.

61. Tao, Y., et al., Extensive variation within the pan-genome of cultivated and wild sorghum.
Nature Plants, 2021. 7(6): p. 766-773.

62. Crysnanto, D. and H. Pausch, Bovine breed-specific augmented reference graphs facilitate
accurate sequence read mapping and unbiased variant discovery. Genome Biology, 2020.
21(1): p. 184.

63. Leonard, A.S., et al., Structural variant-based pangenome construction has low sensitivity to
variability of haplotype-resolved bovine assemblies. Nature Communications, 2022. 13(1):
p. 3012.

64. Kim, Y., et al., Current status of pan-genome analysis for pathogenic bacteria. Current
Opinion in Biotechnology, 2020. 63: p. 54-62.

65. Medini, D., et al., The Pangenome: A Data-Driven Discovery in Biology, in The Pangenome:
Diversity, Dynamics and Evolution of Genomes, H. Tettelin and D. Medini, Editors. 2020,
Springer International Publishing: Cham. p. 3-20.

66. Ahnert, S.E., T.M.A. Fink, and A. Zinovyev, How much non-coding DNA do eukaryotes
require? Journal of Theoretical Biology, 2008. 252(4): p. 587-592.

67. Elliott, T.A. and T.R. Gregory, What's in a genome? The C-value enigma and the evolution of
eukaryotic genome content. 2015. 370(1678): p. 20140331.

68. Hirsch, C.N., et al., Insights into the maize pan-genome and pan-transcriptome. The Plant
cell, 2014. 26(1): p. 121-135.

69. AgBioData Consortium. Pan-genome viewers (May 2020). [online video] 2020 [cited 2022
June 16]; Available from: https://www.youtube.com/watch?v=ATPzVIrTW0s.

70. Gautreau, G., et al., PPanGGOLiN: Depicting microbial diversity via a partitioned pangenome
graph. PLOS Computational Biology, 2020. 16(3): p. e1007732.

71. Hübner, S., et al., Sunflower pan-genome analysis shows that hybridization altered gene
content and disease resistance. Nature Plants, 2019. 5(1): p. 54-62.

72. Gordon, S.P., et al., Extensive gene content variation in the Brachypodium distachyon pan-
genome correlates with population structure. Nature Communications, 2017. 8(1): p. 2184.

73. Michael, T.P., Plant genome size variation: bloating and purging DNA. Briefings in
Functional Genomics, 2014. 13(4): p. 308-317.

https://www.youtube.com/watch?v=ATPzVIrTW0s

128

74. Wendel, J.F., et al., Evolution of plant genome architecture. Genome Biology, 2016. 17(1): p.
37.

75. Nagaharu, U., Genome Analysis in Brassica with Special Reference to the Experimental
Formation of B. Napus and Peculiar Mode of Fertilization. Japanese Journal of Botany, 1935.
7: p. 389-452.

76. Xue, J.Y., et al., Maternal Inheritance of U's Triangle and Evolutionary Process of Brassica
Mitochondrial Genomes. Front Plant Sci, 2020. 11: p. 805.

77. D’Hont, A., et al., The interspecific genome structure of cultivated banana, Musa spp. revealed
by genomic DNA in situ hybridization. Theoretical and Applied Genetics, 2000. 100(2): p.
177-183.

78. Mehrotra, S. and V. Goyal, Repetitive sequences in plant nuclear DNA: types, distribution,
evolution and function. Genomics Proteomics Bioinformatics, 2014. 12(4): p. 164-71.

79. Feschotte, C., N. Jiang, and S.R. Wessler, Plant transposable elements: where genetics meets
genomics. Nature Reviews Genetics, 2002. 3(5): p. 329-341.

80. Sahebi, M., et al., Contribution of transposable elements in the plant's genome. Gene, 2018.
665: p. 155-166.

81. Quesneville, H., Twenty years of transposable element analysis in the Arabidopsis thaliana
genome. Mobile DNA, 2020. 11(1): p. 28.

82. Huang, K. and L.H. Rieseberg, Frequency, Origins, and Evolutionary Role of Chromosomal
Inversions in Plants. Frontiers in Plant Science, 2020. 11.

83. Darling, A.C.E., et al., Mauve: Multiple Alignment of Conserved Genomic Sequence With
Rearrangements. Genome Research, 2004. 14(7): p. 1394-1403.

84. Darling, A.E., B. Mau, and N.T. Perna, progressiveMauve: Multiple Genome Alignment with
Gene Gain, Loss and Rearrangement. PLOS ONE, 2010. 5(6): p. e11147.

85. Minkin, I. and P. Medvedev, Scalable multiple whole-genome alignment and locally collinear
block construction with SibeliaZ. Nature Communications, 2020. 11(1): p. 6327.

86. Glen, S., Graph Theory: Definitions for Common Terms, in StatisticsHowTo.com: Elementary
Statistics for the rest of us! 2017.

87. Compeau, P.E., P.A. Pevzner, and G. Tesler, Why are de Bruijn graphs useful for genome
assembly? Nat Biotechnol, 2011. 29(11): p. 987-91.

88. Carletti, V., et al. Graph-Based Representations for Supporting Genome Data Analysis and
Visualization: Opportunities and Challenges. in Graph-Based Representations in Pattern
Recognition. 2019. Cham: Springer International Publishing.

89. Paten, B., et al., Genome graphs and the evolution of genome inference. Genome research,
2017. 27(5): p. 665-676.

90. Garrison, E., et al., Variation graph toolkit improves read mapping by representing genetic
variation in the reference. Nature Biotechnology, 2018. 36(9): p. 875-879.

91. Garrison, E.P., Graphical pangenomics. 2019, University of Cambridge. p. 199.
92. Muggli, M.D., et al., Succinct colored de Bruijn graphs. Bioinformatics, 2017. 33(20): p.

3181-3187.
93. Muggli, M.D., B. Alipanahi, and C. Boucher, Building large updatable colored de Bruijn

graphs via merging. Bioinformatics, 2019. 35(14): p. i51-i60.
94. Holley, G. and P. Melsted, Bifrost: highly parallel construction and indexing of colored and

compacted de Bruijn graphs. Genome Biology, 2020. 21(1): p. 249.
95. Li, H., X. Feng, and C. Chu, The design and construction of reference pangenome graphs. arXiv

e-prints, 2020: p. arXiv:2003.06079.
96. Hu, Z., C. Wei, and Z. Li, Computational Strategies for Eukaryotic Pangenome Analyses, in

The Pangenome: Diversity, Dynamics and Evolution of Genomes, H. Tettelin and D. Medini,
Editors. 2020, Springer International Publishing: Cham. p. 293-307.

97. Xiao, J., et al., A Brief Review of Software Tools for Pangenomics. Genomics, Proteomics &
Bioinformatics, 2015. 13(1): p. 73-76.

98. Vernikos, G.S., A Review of Pangenome Tools and Recent Studies, in The Pangenome:
Diversity, Dynamics and Evolution of Genomes, H. Tettelin and D. Medini, Editors. 2020,
Springer International Publishing: Cham. p. 89-112.

129

99. Chaudhari, N.M., V.K. Gupta, and C. Dutta, BPGA- an ultra-fast pan-genome analysis pipeline.
Scientific Reports, 2016. 6(1): p. 24373.

100. Ozer, E.A., ClustAGE: a tool for clustering and distribution analysis of bacterial accessory
genomic elements. BMC Bioinformatics, 2018. 19(1): p. 150.

101. Contreras-Moreira, B. and P. Vinuesa, GET_HOMOLOGUES, a versatile software package for
scalable and robust microbial pangenome analysis. Appl Environ Microbiol, 2013. 79(24):
p. 7696-701.

102. Contreras-Moreira, B., et al., Analysis of Plant Pan-Genomes and Transcriptomes with
GET_HOMOLOGUES-EST, a Clustering Solution for Sequences of the Same Species. Front
Plant Sci, 2017. 8: p. 184.

103. Sahl, J.W., et al., The large-scale blast score ratio (LS-BSR) pipeline: a method to rapidly
compare genetic content between bacterial genomes. PeerJ, 2014. 2: p. e332.

104. Li, L., C.J. Stoeckert, Jr., and D.S. Roos, OrthoMCL: identification of ortholog groups for
eukaryotic genomes. Genome Res, 2003. 13(9): p. 2178-89.

105. Perrin, A. and E.P.C. Rocha, PanACoTA: a modular tool for massive microbial comparative
genomics. NAR Genom Bioinform, 2021. 3(1): p. lqaa106.

106. Fouts, D.E., et al., PanOCT: automated clustering of orthologs using conserved gene
neighborhood for pan-genomic analysis of bacterial strains and closely related species.
Nucleic acids research, 2012. 40(22): p. e172-e172.

107. Zhao, Y., et al., PGAP: pan-genomes analysis pipeline. Bioinformatics, 2012. 28(3): p. 416-
418.

108. Page, A.J., et al., Roary: rapid large-scale prokaryote pan genome analysis, core vs accessory.
Bioinformatics, 2015. 31(22): p. 3691-3693.

109. Treangen, T.J., et al., The Harvest suite for rapid core-genome alignment and visualization of
thousands of intraspecific microbial genomes. Genome biology, 2014. 15(11): p. 524-524.

110. Angiuoli, S.V. and S.L. Salzberg, Mugsy: fast multiple alignment of closely related whole
genomes. Bioinformatics, 2010. 27(3): p. 334-342.

111. Jandrasits, C., et al., seq-seq-pan: building a computational pan-genome data structure on
whole genome alignment. BMC Genomics, 2018. 19(1).

112. Paten, B., et al., Cactus graphs for genome comparisons. J Comput Biol, 2011. 18(3): p. 469-
81.

113. Li, H., X. Feng, and C. Chu, The design and construction of reference pangenome graphs with
minigraph. Genome Biology, 2020. 21(1): p. 265.

114. Biederstedt, E., et al., NovoGraph: Human genome graph construction from multiple long-
read de novo assemblies. F1000Research, 2018. 7: p. 1391-1391.

115. Warren, A.S., et al., Panaconda: Application of pan-synteny graph models to genome content
analysis. bioRxiv, 2017: p. 215988.

116. Noll, N., M. Molari, and R.A. Neher, PanGraph: scalable bacterial pan-genome graph
construction. bioRxiv, 2022: p. 2022.02.24.481757.

117. Sheikhizadeh, S., et al., PanTools: representation, storage and exploration of pan-genomic
data. Bioinformatics, 2016. 32(17): p. i487-i493.

118. Garrison, E., et al. pggb - the pangenome graph builder. 2020 [cited 2020 September];
Available from: https://github.com/pangenome/pggb.

119. Armstrong, J., et al., Progressive Cactus is a multiple-genome aligner for the thousand-
genome era. Nature, 2020. 587(7833): p. 246-251.

120. Garrison, E. and A. Guarracino, Unbiased pangenome graphs. bioRxiv, 2022: p.
2022.02.14.480413.

121. Marcus, S., H. Lee, and M.C. Schatz, SplitMEM: a graphical algorithm for pan-genome
analysis with suffix skips. Bioinformatics, 2014. 30(24): p. 3476-83.

122. Hickey, G., et al., Genotyping structural variants in pangenome graphs using the vg toolkit.
Genome Biology, 2020. 21(1): p. 35.

123. Dawson, E.T. svaha2: linear time, low-memory construction of variation graphs. 2019 [cited
2019; Available from: https://github.com/edawson/svaha2.

124. Guarracino, A., et al., ODGI: understanding pangenome graphs. Bioinformatics, 2022.

https://github.com/pangenome/pggb
https://github.com/edawson/svaha2

130

125. Limasset, A., et al., Read mapping on de Bruijn graphs. BMC Bioinformatics, 2016. 17(1): p.
237.

126. Heydari, M., et al., BrownieAligner: accurate alignment of Illumina sequencing data to de
Bruijn graphs. BMC Bioinformatics, 2018. 19(1): p. 311.

127. Liu, B., et al., deBGA: read alignment with de Bruijn graph-based seed and extension.
Bioinformatics, 2016. 32(21): p. 3224-3232.

128. Sirén, J., et al., Haplotype-aware graph indexes. Bioinformatics, 2019. 36(2): p. 400-407.
129. Sirén, J., Indexing Variation Graphs. 2017 Proceedings of the Meeting on Algorithm

Engineering and Experiments (ALENEX), 2017: p. 13-27.
130. Schneeberger, K., et al., Simultaneous alignment of short reads against multiple genomes.

Genome Biol, 2009. 10(9): p. R98.
131. Rautiainen, M. and T. Marschall, GraphAligner: rapid and versatile sequence-to-graph

alignment. Genome Biol, 2020. 21(1): p. 253.
132. Gonnella, G. and S. Kurtz, GfaPy: a flexible and extensible software library for handling

sequence graphs in Python. Bioinformatics, 2017. 33(19): p. 3094-3095.
133. Li, H. gfatools. 2020 [cited 2020; Available from: https://github.com/lh3/gfatools.
134. Kim, D., et al., Graph-based genome alignment and genotyping with HISAT2 and HISAT-

genotype. Nat Biotechnol, 2019. 37(8): p. 907-915.
135. Schulz, T., et al., Detecting high-scoring local alignments in pangenome graphs.

Bioinformatics, 2021. 37(16): p. 2266-2274.
136. Vaddadi, K., R. Srinivasan, and N. Sivadasan. Read Mapping on Genome Variation Graphs. in

19th International Workshop on Algorithms in Bioinformatics (WABI 2019). 2019. Dagstuhl,
Germany: Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik.

137. Niu, J., D. Denisko, and M.M. Hoffman. The Browser Extensible Data (BED) format. 2022
[cited 2022 June 6]; Available from: https://github.com/samtools/hts-
specs/blob/master/BEDv1.pdf.

138. Pearson, W.R. and D.J. Lipman, Improved tools for biological sequence comparison.
Proceedings of the National Academy of Sciences, 1988. 85(8): p. 2444-2448.

139. Stein, L. Generic Feature Format Version 3 (GFF3). 2006 [cited 2022 June 6]; Available
from: https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md.

140. Danecek, P., et al., The variant call format and VCFtools. Bioinformatics, 2011. 27(15): p.
2156-8.

141. Crockford, D. Introducing JSON. 2002 [cited 2022 June 6]; Available from:
https://www.json.org/json-en.html.

142. Hurgobin, B., et al. Brassica napus GBrowse Viewers and Search. 2018 [cited 2019;
Available from: http://appliedbioinformatics.com.au/gb2/gbrowse/BnapusPan/.

143. Hennig, A., J. Bernhardt, and K. Nieselt, Pan-Tetris: an interactive visualisation for Pan-
genomes. BMC Bioinformatics, 2015. 16(11): p. S3.

144. Unknown. MAF - (Multiple Alignment Format). 2009 [cited 2022 June 6]; Available from:
http://www.bx.psu.edu/~dcking/man/maf.xhtml.

145. NCI Genomic Data Commons (GDC). GDC MAF Format v.1.0.0. n.d. [cited 2022 June 6];
Available from: https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/.

146. Genome Evolution Laboratory. Mauve Output File Formats. 2009 [cited 2022 June 6];
Available from: https://asap.genetics.wisc.edu/software/mauve/mauve-user-
guide/mauve-output-file-formats.php.

147. vgteam. a handle-graphy reimplementation of the XG succinct graph index. 2019 [cited
2022 June 6]; Available from: https://github.com/vgteam/xg.

148. Jackman, S., et al. GFA: Graphical Fragment Assembly (GFA) Format Specification. 2015
[cited 2019; Available from: https://github.com/GFA-spec/GFA-spec.

149. Li, H., On a reference pan-genome model. 2019.
150. Garrison, E., Untangling graphical pangenomics. 2019.
151. Li, H., On a reference pan-genome model (Part II). 2019.

https://github.com/lh3/gfatools
https://github.com/samtools/hts-specs/blob/master/BEDv1.pdf
https://github.com/samtools/hts-specs/blob/master/BEDv1.pdf
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://www.json.org/json-en.html
http://appliedbioinformatics.com.au/gb2/gbrowse/BnapusPan/
http://www.bx.psu.edu/~dcking/man/maf.xhtml
https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/
https://asap.genetics.wisc.edu/software/mauve/mauve-user-guide/mauve-output-file-formats.php
https://asap.genetics.wisc.edu/software/mauve/mauve-user-guide/mauve-output-file-formats.php
https://github.com/vgteam/xg
https://github.com/GFA-spec/GFA-spec

131

152. The SAM/BAM Format Specification Working Group. Sequence Alignment/Map Optional
Fields Specification. 2009 [cited 2019; Available from: https://samtools.github.io/hts-
specs/SAMtags.pdf.

153. vgteam. File Formats. 2019 [cited 2022; Available from:
https://github.com/vgteam/vg/wiki/File-Formats#gam-graph-alignment--map-vgs-
bam.

154. Group, T.S.B.F.S.W. Sequence Alignment/Map Format Specification. 2009 [cited 2022;
Available from: http://samtools.github.io/hts-specs/SAMv1.pdf.

155. Li, H. The Graph Alignment Format (GAF). 2019 [cited 2019; Available from:
https://github.com/lh3/gfatools/blob/master/doc/rGFA.md#the-graph-alignment-
format-gaf.

156. Hickey, G., et al., HAL: a hierarchical format for storing and analyzing multiple genome
alignments. Bioinformatics, 2013. 29(10): p. 1341-2.

157. Garrison, E. and S. Heumos. maffer. 2019 2019]; Available from:
https://github.com/pangenome/maffer.

158. Eren, A.M., et al. An anvi'o workflow for microbial pangenomics. 2016 [cited 2019;
Available from: http://merenlab.org/2016/11/08/pangenomics-v2/.

159. Pedersen, T.L., et al., PanViz: interactive visualization of the structure of functionally
annotated pangenomes. Bioinformatics, 2017.

160. Ding, W., F. Baumdicker, and R.A. Neher, panX: pan-genome analysis and exploration.
Nucleic Acids Research, 2018. 46(1): p. e5-e5.

161. Cheng, G., et al., BGDMdocker: a Docker workflow for analysis and visualization pan-genome
and biosynthetic gene clusters of bacterial. bioRxiv, 2017: p. 098392.

162. Zhao, Y., et al., PanGP: A tool for quickly analyzing bacterial pan-genome profile.
Bioinformatics, 2014. 30(9): p. 1297-1299.

163. Abudahab, K., et al., PANINI: Pangenome Neighbour Identification for Bacterial Populations.
2019. 5(4).

164. Argimón, S., et al., Microreact: visualizing and sharing data for genomic epidemiology and
phylogeography. Microb Genom, 2016. 2(11): p. e000093.

165. Blom, J., et al., EDGAR 2.0: an enhanced software platform for comparative gene content
analyses. Nucleic Acids Research, 2016. 44(W1): p. W22-W28.

166. Bastian, M., S. Heymann, and M. Jacomy, Gephi: An Open Source Software for Exploring and
Manipulating Networks. 2009. 2009.

167. Yuvaraj, I., et al., PanGeT: Pan-genomics tool. Gene, 2017. 600: p. 77-84.
168. Pantoja, Y., et al., PanWeb: A web interface for pan-genomic analysis. PLOS ONE, 2017.

12(5): p. e0178154.
169. Pedersen, T.L., PanVizGenerator: Generate PanViz visualisations from your pangenome.

2016.
170. Clarke, T.H., et al., PanACEA: a bioinformatics tool for the exploration and visualization of

bacterial pan-chromosomes. BMC Bioinformatics, 2018. 19(1).
171. Zhao, Y., et al., PGAP-X: extension on pan-genome analysis pipeline. BMC genomics, 2018.

19(Suppl 1): p. 36-36.
172. Diesh, C.M. awesome-genome-visualization. 2021 [cited 2022 May 6]; Available from:

https://cmdcolin.github.io/awesome-genome-visualization.
173. Eren, A.M., et al., Anvi’o: an advanced analysis and visualization platform for ‘omics data.

PeerJ, 2015. 3: p. e1319.
174. Wick, R.R., et al., Bandage: interactive visualization of de novo genome assemblies.

Bioinformatics, 2015. 31(20): p. 3350-3352.
175. Sullivan, M.J. and H. van Bakel, Chromatiblock: scalable whole-genome visualization of

structural differences in prokaryotes. 2019: p. 800920.
176. Whelan, F.J., M. Rusilowicz, and J.O. McInerney, Coinfinder: detecting significant

associations and dissociations in pangenomes. Microb Genom, 2020. 6(3).
177. Brinton, J., et al., A haplotype-led approach to increase the precision of wheat breeding.

Communications Biology, 2020. 3(1): p. 712.

https://samtools.github.io/hts-specs/SAMtags.pdf
https://samtools.github.io/hts-specs/SAMtags.pdf
https://github.com/vgteam/vg/wiki/File-Formats#gam-graph-alignment--map-vgs-bam
https://github.com/vgteam/vg/wiki/File-Formats#gam-graph-alignment--map-vgs-bam
http://samtools.github.io/hts-specs/SAMv1.pdf
https://github.com/lh3/gfatools/blob/master/doc/rGFA.md#the-graph-alignment-format-gaf
https://github.com/lh3/gfatools/blob/master/doc/rGFA.md#the-graph-alignment-format-gaf
https://github.com/pangenome/maffer
http://merenlab.org/2016/11/08/pangenomics-v2/
https://cmdcolin.github.io/awesome-genome-visualization

132

178. Shannon, P., et al., Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Res, 2003. 13(11): p. 2498-504.

179. Cleary, A. and A. Farmer, Genome Context Viewer: visual exploration of multiple annotated
genomes using microsynteny. Bioinformatics, 2018. 34(9): p. 1562-1564.

180. Herbig, A., et al., GenomeRing: alignment visualization based on SuperGenome coordinates.
Bioinformatics (Oxford, England), 2012. 28(12): p. i7-i15.

181. Fischer, C. gfaestus - Vulkan-accelerated GFA visualization. 2021 [cited 2022; Available
from: https://github.com/chfi/gfaestus.

182. Gonnella, G., N. Niehus, and S. Kurtz, GfaViz: flexible and interactive visualization of GFA
sequence graphs. Bioinformatics, 2018. 35(16): p. 2853-2855.

183. Diesh, C.M. graphgenomeviewer. 2022 [cited 2022; Available from:
https://github.com/cmdcolin/graphgenomeviewer/.

184. Pedersen, T.L., Hierarchical sets: analyzing pangenome structure through scalable set
visualizations. Bioinformatics, 2017. 33(11): p. 1604-1612.

185. Kuznetsov, M., et al. The Immersive Graph Genome Explorer: Navigating Genomics in
Immersive Virtual Reality. in 2021 IEEE 9th International Conference on Serious Games and
Applications for Health(SeGAH). 2021.

186. Yokoyama, T.T., et al., MoMI-G: modular multi-scale integrated genome graph browser. BMC
Bioinformatics, 2019. 20(1): p. 548.

187. neo4j. neo4j Graph Data Platform. n. d. [cited 2022; Available from: https://neo4j.com/.
188. Durant, É., et al., Panache: a Web Browser-Based Viewer for Linearized Pangenomes. 2021:

p. 2021.04.27.441597.
189. Yuan, Y. PanGraphViewer -- show pangenome graphs in an easy way. 2021 [cited 2021

August]; Available from: https://github.com/TF-Chan-Lab/panGraphViewer.
190. Seaman, J.D. pantograph: pangenome graph browser for SARS-CoV-2. 2020 [cited 2020;

Available from: https://graph-genome.github.io/.
191. Liang, Q. and S. Lonardi, Reference-agnostic representation and visualization of pan-

genomes. BMC Bioinformatics, 2021. 22(1): p. 502.
192. Hadfield, J., et al., Phandango: an interactive viewer for bacterial population genomics.

Bioinformatics, 2017. 34(2): p. 292-293.
193. Goel, M. and K. Schneeberger, plotsr: Visualising structural similarities and rearrangements

between multiple genomes. Bioinformatics, 2022.
194. Beyer, W., et al., Sequence tube maps: making graph genomes intuitive to commuters.

Bioinformatics, 2019.
195. Kumagai, M., et al., TASUKE+: a web-based platform for exploring GWAS results and large-

scale resequencing data. DNA Research, 2019. 26(6): p. 445-452.
196. Lex, A., et al., UpSet: Visualization of Intersecting Sets. IEEE Transactions on Visualization

and Computer Graphics, 2014. 20(12): p. 1983-1992.
197. Peng, Y., et al., MetaPGN: a pipeline for construction and graphical visualization of annotated

pangenome networks. GigaScience, 2018. 7(11).
198. Beier, S. and N.R. Thomson, Panakeia - a universal tool for bacterial pangenome analysis.

BMC Genomics, 2022. 23(1): p. 265.
199. Otasek, D., et al., Cytoscape Automation: empowering workflow-based network analysis.

Genome Biol, 2019. 20(1): p. 185.
200. Conway, J.R., A. Lex, and N. Gehlenborg, UpSetR: an R package for the visualization of

intersecting sets and their properties. Bioinformatics, 2017. 33(18): p. 2938-2940.
201. Gadhave, K., et al. UpSet 2: From Prototype to Tool. in IEEE Information Visualization

Conference – Posters (InfoVis ’19). 2019.
202. Eren, A.M., et al., Community-led, integrated, reproducible multi-omics with anvi’o. Nature

Microbiology, 2021. 6(1): p. 3-6.
203. Delmont, T.O. and A.M. Eren, Linking pangenomes and metagenomes: the Prochlorococcus

metapangenome. PeerJ, 2018. 6: p. e4320.
204. Krzywinski, M., et al., Circos: An information aesthetic for comparative genomics. 2009.

19(9): p. 1639-1645.

https://github.com/chfi/gfaestus
https://github.com/cmdcolin/graphgenomeviewer/
https://neo4j.com/
https://github.com/TF-Chan-Lab/panGraphViewer
https://graph-genome.github.io/

133

205. Croucher, N.J., et al., Population genomic datasets describing the post-vaccine evolutionary
epidemiology of Streptococcus pneumoniae. Scientific Data, 2015. 2(1): p. 150058.

206. Makendi, C., et al., A Phylogenetic and Phenotypic Analysis of Salmonella enterica Serovar
Weltevreden, an Emerging Agent of Diarrheal Disease in Tropical Regions. PLOS Neglected
Tropical Diseases, 2016. 10(2): p. e0004446.

207. Song, J.-M., et al., BnPIR: Brassica napus pan-genome information resource for 1689
accessions. Plant Biotechnology Journal, 2021. 19(3): p. 412-414.

208. Zerbino, D.R. and E. Birney, Velvet: algorithms for de novo short read assembly using de
Bruijn graphs. Genome research, 2008. 18(5): p. 821-829.

209. Bankevich, A., et al., SPAdes: a new genome assembly algorithm and its applications to
single-cell sequencing. Journal of computational biology : a journal of computational
molecular cell biology, 2012. 19(5): p. 455-477.

210. Grabherr, M.G., et al., Full-length transcriptome assembly from RNA-Seq data without a
reference genome. Nature biotechnology, 2011. 29(7): p. 644-652.

211. Simpson, J. ASQG Format. 2014 [cited 2020; Available from:
https://github.com/jts/sga/wiki/ASQG-Format.

212. Wick, R., et al. Bandage-NG. 2022 [cited 2022 June 8]; Available from:
https://github.com/asl/BandageNG.

213. Battke, F., S. Symons, and K. Nieselt, Mayday - integrative analytics for expression data. BMC
Bioinformatics, 2010. 11(1): p. 121.

214. Garrison, E., S. Heumos, and A. Guarracino. odgi: optimized dynamic genome/graph
implementation. 2019 [cited 2020; Available from: https://github.com/vgteam/odgi.

215. ISCB. Pantograph - Scalable Interactive Graph Genome... - Andrea Guarracino - BioVis - ISMB
2020 Posters. [video] 2021 [cited 2022 June]; Available from:
https://www.youtube.com/watch?v=-p9aL_9OGmc.

216. Loira, N., A. Zhukova, and D.J. Sherman, Pantograph: A template-based method for genome-
scale metabolic model reconstruction. Journal of Bioinformatics and Computational
Biology, 2014. 13(02): p. 1550006.

217. Lab Automation Network. 2021 11 11 Webinar "Visual exploration of pangenomes with
Pantograph". 2022 [cited 2022 January]; Available from:
https://www.youtube.com/watch?v=WoGF0EiInpE.

218. Fischer, C. waragraph - a variation graph viewer of sorts. 2022 [cited 2022 June]; Available
from: https://github.com/chfi/waragraph.

219. Riehmann, P., M. Hanfler, and B. Froehlich. Interactive Sankey diagrams. in IEEE Symposium
on Information Visualization, 2005. INFOVIS 2005. 2005.

220. Chen, X., et al., PGAweb: A Web Server for Bacterial Pan-Genome Analysis. Front Microbiol,
2018. 9: p. 1910.

221. Ou, L., et al., Pan-genome of cultivated pepper (Capsicum) and its use in gene presence–
absence variation analyses. New Phytologist, 2018. 220(2): p. 360-363.

222. Sun, C., et al., RPAN: rice pan-genome browser for ∼3000 rice genomes. Nucleic Acids
Research, 2017. 45(2): p. 597-605.

223. Persephone Software, 26 Zea mays NAM lines in the pan-genome browser. 2020.
224. Dongre, N., A. Verma, and I. Singh, PanGenome Visualization with JBrowse. 2015: J. Craig

Venter Institute,.
225. Vauterin, P., et al., Panoptes: web-based exploration of large scale genome variation data.

Bioinformatics, 2017. 33(20): p. 3243-3249.
226. Mikheenko, A. and M. Kolmogorov, Assembly Graph Browser: interactive visualization of

assembly graphs. Bioinformatics, 2019. 35(18): p. 3476-3478.
227. Heumos, S. Interactive Visualization of Genome Variation Graphs. 2017; Available from:

https://gitlab.codenic.de/computomics/AGV.
228. Sinha, A.U. and J. Meller, Cinteny: flexible analysis and visualization of synteny and genome

rearrangements in multiple organisms. BMC Bioinformatics, 2007. 8(1): p. 82.
229. Pedersen, B.S., H. Tang, and M. Freeling, Gobe: an interactive, web-based tool for

comparative genomic visualization. Bioinformatics, 2011. 27(7): p. 1015-1016.

https://github.com/jts/sga/wiki/ASQG-Format
https://github.com/asl/BandageNG
https://github.com/vgteam/odgi
https://www.youtube.com/watch?v=-p9aL_9OGmc
https://www.youtube.com/watch?v=WoGF0EiInpE
https://github.com/chfi/waragraph
https://gitlab.codenic.de/computomics/AGV

134

230. Petkau, A., et al., Interactive microbial genome visualization with GView. Bioinformatics,
2010. 26(24): p. 3125-3126.

231. Saeed, A.I., et al., TM4 microarray software suite. Methods Enzymol, 2006. 411: p. 134-93.
232. Wang, Y.E., et al., WebMeV: A Cloud Platform for Analyzing and Visualizing Cancer Genomic

Data. Cancer Res, 2017. 77(21): p. e11-e14.
233. Yachdav, G., et al., MSAViewer: interactive JavaScript visualization of multiple sequence

alignments. Bioinformatics, 2016. 32(22): p. 3501-3503.
234. Tahir Ul Qamar, M., et al., ppsPCP: a plant presence/absence variants scanner and pan-

genome construction pipeline. Bioinformatics, 2019.
235. Kunyavskaya, O. and A.D. Prjibelski, SGTK: a toolkit for visualization and assessment of

scaffold graphs. Bioinformatics, 2019. 35(13): p. 2303-2305.
236. Shafin, K., et al., Nanopore sequencing and the Shasta toolkit enable efficient de novo

assembly of eleven human genomes. Nature Biotechnology, 2020. 38(9): p. 1044-1053.
237. Tufte, E.R., The visual display of quantitative information. 2001: Second edition. Cheshire,

Conn. : Graphics Press, [2001] ©2001.
238. Inbar, O., N. Tractinsky, and J. Meyer, Minimalism in information visualization: attitudes

towards maximizing the data-ink ratio, in Proceedings of the 14th European conference on
Cognitive ergonomics: invent! explore! 2007, Association for Computing Machinery:
London, United Kingdom. p. 185–188.

239. Franconeri, S.L., et al., The Science of Visual Data Communication: What Works. 2021. 22(3):
p. 110-161.

240. Koffka, K., Principles of Gestalt Psychology. 1935: Harcourt, Brace and Company.
241. Todorovic, D., Gestalt principles. 2008. 3: p. 5345.
242. Wagemans, J., et al., A century of Gestalt psychology in visual perception: I. Perceptual

grouping and figure-ground organization. Psychological bulletin, 2012. 138(6): p. 1172-
1217.

243. Cairo, A., How Charts Lie: Getting Smarter about Visual Information. 2019: W. W. Norton &
Company.

244. Hattab, G., T.-M. Rhyne, and D. Heider, Ten simple rules to colorize biological data
visualization. PLOS Computational Biology, 2020. 16(10): p. e1008259.

245. Huang, L., Space of preattentive shape features. Journal of Vision, 2020. 20(4): p. 10-10.
246. Sedlmair, M., M. Meyer, and T. Munzner, Design Study Methodology: Reflections from the

Trenches and the Stacks. IEEE Transactions on Visualization and Computer Graphics, 2012.
18(12): p. 2431-2440.

247. Meyer, M., M. Sedlmair, and T. Munzner, The four-level nested model revisited: blocks and
guidelines, in Proceedings of the 2012 BELIV Workshop: Beyond Time and Errors - Novel
Evaluation Methods for Visualization. 2012, Association for Computing Machinery: Seattle,
Washington, USA. p. Article 11.

248. Munzner, T., Visualization Analysis and Design. AK Peters Visualization Series. 2015: CRC
Press.

249. McDermott, J.E., M. Partridge, and Y. Bromberg, Ten simple rules for drawing scientific
comics. PLOS Computational Biology, 2018. 14(1): p. e1005845.

250. D’Hont, A., et al., The banana (Musa acuminata) genome and the evolution of
monocotyledonous plants. Nature, 2012. 488(7410): p. 213-217.

251. Andry, T., et al., Interpreting the Effect of Embellishment on Chart Visualizations, in
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. 2021,
Association for Computing Machinery: Yokohama, Japan. p. Article 613.

252. Bateman, S., et al., Useful junk? the effects of visual embellishment on comprehension and
memorability of charts, in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 2010, Association for Computing Machinery: Atlanta, Georgia, USA. p.
2573–2582.

253. Li, H. and N. Moacdieh, Is “chart junk” useful? An extended examination of visual
embellishment. Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, 2014. 58(1): p. 1516-1520.

135

254. Akbaba, D., J. Wilburn, and M. Meyer, Manifesto for Putting "Chartjunk" in the Trash 2021!
. 2021, visualization design lab: visualization design lab.

255. Few, S., The Chartjunk Debate - A Close Examination of Recent Findings. Perceptual Edge -
Visual Business Intelligence Newsletter, 2011(April, May and June).

256. Walny, J., et al., Data Changes Everything: Challenges and Opportunities in Data
Visualization Design Handoff. IEEE Transactions on Visualization and Computer Graphics,
2020. 26(1): p. 12-22.

257. Shoresh, N. and B. Wong, Data exploration. Nature Methods, 2012. 9(1): p. 5-5.
258. Durant, É. Mémoire de Projet de Fin d'Études : Développement d'interfaces graphiques web

pour la gestion de pangénomes. [MSc2 Thesis] 2018; Available from:
https://drive.google.com/file/d/1HpaoQzJWGwU2XnQX8B0wI1ijytaPYk3F/view?usp=s
haring.

259. Dolatabadian, A., et al., Characterization of disease resistance genes in the Brassica napus
pangenome reveals significant structural variation. Plant Biotechnology Journal, 2020.
18(4): p. 969-982.

260. Monat, C., et al., Comparison of two African rice species through a new pan-genomic
approach on massive data. bioRxiv, 2018: p. 245431.

261. Bayer, P.E., et al., Wheat Panache: A pangenome graph database representing presence–
absence variation across sixteen bread wheat genomes. The Plant Genome, 2022. n/a(n/a):
p. e20221.

262. Edwards, D. and J. Batley, Graph pangenomes find missing heritability. Nature Genetics,
2022.

263. Hübner, S., Are we there yet? Driving the road to evolutionary graph-pangenomics. Current
Opinion in Plant Biology, 2022. 66: p. 102195.

264. Shneiderman, B. The eyes have it: a task by data type taxonomy for information
visualizations. in Proceedings 1996 IEEE Symposium on Visual Languages. 1996.

265. Nielsen, C. and B. Wong, Representing genomic structural variation. Nature Methods, 2012.
9(7): p. 631-631.

266. Stephens, Z., et al., Detection and visualization of complex structural variants from long
reads. BMC Bioinformatics, 2018. 19(20): p. 508.

267. Yokoyama, T.T. and M. Kasahara, Visualization tools for human structural variations
identified by whole-genome sequencing. Journal of Human Genetics, 2020. 65(1): p. 49-60.

268. Veltri, D., M.M. Wight, and J.A. Crouch, SimpleSynteny: a web-based tool for visualization of
microsynteny across multiple species. Nucleic Acids Res, 2016. 44(W1): p. W41-5.

269. Farrer, R.A., Synima: a Synteny imaging tool for annotated genome assemblies. BMC
Bioinformatics, 2017. 18(1): p. 507.

270. Venkat, B. and C. Gutwin. Interactive Exploration of Genomic Conservation. in 46th Graphics
Interface Conference on Proceedings of Graphics Interface 2020 (GI’20). 2020. University of
Toronto: Canadian Human-Computer Communications Society / Société canadienne du
dialogue humain-machine,.

271. Nattestad, M., et al., SplitThreader: Exploration and analysis of rearrangements in cancer
genomes. 2016: p. 087981.

272. van den Brandt, A., et al. Visual Exploration of Genetic Sequence Variants in Pangenomes. in
EuroVis 2022. 2022. Roma: The Eurographics Association.

273. Pearson, K., LIII. On lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901. 2(11): p. 559-
572.

274. Jolliffe, I.T. and J. Cadima, Principal component analysis: a review and recent developments.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 2016. 374(2065): p. 20150202.

275. van der Maaten, L. and G. Hinton, Visualizing Data using t-SNE. Journal of Machine Learning
Research, 2008. 9(86): p. 2579-2605.

276. McInnes, L., et al., UMAP: Uniform Manifold Approximation and Projection. Journal of open
source software, 2018. 3(29): p. 861.

https://drive.google.com/file/d/1HpaoQzJWGwU2XnQX8B0wI1ijytaPYk3F/view?usp=sharing
https://drive.google.com/file/d/1HpaoQzJWGwU2XnQX8B0wI1ijytaPYk3F/view?usp=sharing

136

277. Hyun, J.C., J.M. Monk, and B.O. Palsson, Comparative pangenomics: analysis of 12 microbial
pathogen pangenomes reveals conserved global structures of genetic and functional
diversity. BMC Genomics, 2022. 23(1): p. 7.

278. Jin, M., et al., Maize pan-transcriptome provides novel insights into genome complexity and
quantitative trait variation. Scientific Reports, 2016. 6(1): p. 18936.

279. Anscombe, F.J., Graphs in Statistical Analysis. The American Statistician, 1973. 27(1): p. 17-
21.

280. Smith, N.J., et al., matplotlib/viscm v0.9. 2019, Zenodo.

137

 Table of Appendices
Appendix I: GFAv2 stores graph elements labelled as S, E, O, U, G and F lines .. 142

Appendix II: Example of graph generated with Cytoscape for MetaPGN ... 143

Appendix III: Gephi used to represent a pangenome graph built with PPanGGOLiN ... 144

Appendix IV: Example of graph built with neo4j for PanTools .. 145

Appendix V: The final screenshot of anvi'o's pangenomic workflow shows an ordered circular heatmap with
metadata ... 146

Appendix VI: Association network and heatmap representation from Coinfinder are static plots built from gene
clusters... 147

Appendix VII: Gingr can switch its visual representations depending on the zoom level; it does a semantic zoom
 ... 148

Appendix VIII: The icicle plots from Hierarchical Sets show common elements between closely related genomes
only .. 148

Appendix IX: Microreact provides linked views, connectde visual representations of a same dataset 149

Appendix X: PanGeT's flower plots still have interactivity, with clickable hyperlinks for data download 150

Appendix XI: Pan-Tetris can group genes from different clusters when they are complementary 151

Appendix XII: PanViz's circular visual representation can be interactively switched to alternative representations
 ... 152

Appendix XIII: Phandango provides PAV heatmaps with metadata and phylogeny. Figure taken from the online
example of Phandango used with [205]‘s Streptococcus data. .. 153

Appendix XIV: Chromatiblock displays conserved blocks ordered depending on a chosen reference 153

Appendix XV: The Genome Context Viewer’s main visual representation displays syntenic genes as ‘beads-on-a-
string’.. 154

Appendix XVI: PGV’s browser displays genomic blocks of alignment based on a reference-agnostic consensus
ordering ... 154

Appendix XVII: TASUKE+ can be used for the display of SNPs density within a pangenome 155

Appendix XVIII: Crop-Haplotypes displays shared and unique haplotype blocks found in 15 wheat assemblies
 ... 156

Appendix XIX: GenomeRing uses a circular visual representation for displaying shared pangenome blocks
between species ... 157

Appendix XX: gfaestus displays genome graphs quite like Bandage does... 158

Appendix XXI: GfaViz is a genome graph visualization tool dedicated to GFA files ... 158

Appendix XXII: The graphgenomeviewer displays genome graphs in a simple interface .. 159

Appendix XXIII: The IGGE is a VR tool that displays genome graph in a 3D environment ... 160

Appendix XXIV: Panaconda draws its pan-synteny graphs with Gephi .. 160

Appendix XXV: panGraphViewer has an interface for displaying genome graphs with a unusual visual
representation .. 161

138

Appendix XXVI: Computomics’ version of pantograph displays the successions of present and absent pangenomic
blocks within genomes.. 161

Appendix XXVII: Sequence Tube Maps represent sequences as lines going through different pangenomic blocks
 ... 162

Appendix XXVIII: vg view displays portions of a genome graph, with the graph backbone and the aligned paths
 ... 163

Appendix XXIX: PGAP-X views can be customized with different color palettes ... 164

Appendix XXX:The Augmented Graph Viewer’s poster won best BioVis poster award in 2017 165

Appendix XXXI: Linx uses a circular representation with multiple visual encodings detailing SVs 166

Appendix XXXII: Corteva’s TagDots and PANDA are tools creating static visualizations of pangenomes at different
scales .. 167

Appendix XXXIII: Anscombe’s quartet features four visually different datasets that share the same summary
statistics .. 168

Appendix XXXIV: Boustrophedon switches the direction of writing with every line ... 168

Appendix XXXV: Two identical colors can be perceived as different depending on their context 169

Appendix XXXVI: Pan-Tetris has different behaviors depending on the source and format of data 170

Appendix XXXVII: Visual representations of pgAtlases could have included heatmaps of clustered gene families
 ... 171

Appendix XXXVIII: I explored semi-circular representations along the same lines as anvi’o 171

Appendix XXXIX: The PAV matrix is represented as a histogram within the miniature of Panache 172

Appendix XL: The position track uses a alternative color palette to the usual rainbow ... 172

Appendix XLI: The menu panel was thought to display filters option and legends .. 173

Appendix XLII: The color legends for the tracks were supposed to be dynamically updated 174

Appendix XLIII: The geometric zoom level can be modified directly within the menu panel 174

Appendix XLIV: The linearization of the semi-circular display resulted in the PAV heatmap 175

Appendix XLV: The PAV matrix was originally planned to be displayed vertically .. 176

Appendix XLVI:The first version of the horizontal PAV matrix included multiple buttons for customization 177

Appendix XLVII: Cooccurences were originally visualized as a track and circles representing the distribution of
the repetitions within the pangenome ... 178

Appendix XLVIII: The detail of the distribution of cooccurrences within the pangenome is better encoded with
rectangles ... 178

Appendix XLIX: The first draft of a view dedicated to a selected repeat would have appeared on click 179

Appendix L: An alternative visual representation of the repeats showed their position within panchromosomes
 ... 179

Appendix LI: A view dedicated to repeats could show the PAV status of other repeats and their context as
‘windows-with-blinds’ .. 180

Appendix LII: A draft version of a detail view for repeated panBlocks included the visualization of the PAV status
of all occurrences... 181

139

Appendix LIII: Another option for repeats was to show them as togglable tooltip overlapping the main PAV matrix
 ... 182

Appendix LIV: Hollow areas can overlap within the PAV matrix .. 183

Appendix LV: Face to face discussions were critical during the design of the visual representations 184

Appendix LVI: The ‘needs and expectations’ survey had a branching structure .. 185

Appendix LVII: Survey results 1/11 – Profile of the respondents .. 216

Appendix LVIII: Survey results 2/11 – Pangenomics background ... 216

Appendix LIX: Survey results 3/11 – Envisioned application field of pangenomics... 217

Appendix LX: Survey results 4/11 – Feedback on Panache’s prototype .. 217

Appendix LXI: Survey results 5/11 – Most desirable features for lookup .. 218

Appendix LXII: Survey results 6/11 – If ‘Sorting’ or ‘Filtering’ were chosen in the previous question, details were
asked ... 218

Appendix LXIII: Survey results 7/11 – Needed visual aids .. 219

Appendix LXIV: Survey results 8/11 – Data exchanges .. 219

Appendix LXV: Survey results 9/11 – Navigation within the visual representation and UI .. 220

Appendix LXVI: Survey results 10/11 – Customizations .. 220

Appendix LXVII: Survey results 11/11 – Possible formats .. 221

Appendix LXVIII: Respondents clicked on a lot of non-interactive parts of the display.. 221

Appendix LXIX: The panBlocks that should be represented must be within a certain window around the
coordinates on display .. 222

Appendix LXX: The exact limit for the coordinates of panBlocks that should be drawed depends on the maximum
width of blocks ... 223

Appendix LXXI: Panache’s poster at the Plant Genome Evolution conference 2019 .. 224

Appendix LXXII: Panache’s poster at PAG 2020 ... 225

Appendix LXXIII: Panache’s poster at VIZBI 2021... 226

Appendix LXXIV: Panache's poster at JOBIM 2021 ... 227

Appendix LXXV: Panache’s poster at ISMB/ECCB 2021 BioVis session ... 228

Appendix LXXVI: UI design 1/5 – Choice of the species to work on .. 229

Appendix LXXVII: UI design 2/5 – Overall diversity, visual representation of the diversity and available datasets
 ... 229

Appendix LXXVIII: UI design 3/5 – Visual representation and exploration of SVs at the whole genome scale .. 230

Appendix LXXIX: UI design 4/5 – Gene or panBlock PAV, targeted on a region of interest ... 230

Appendix LXXX: UI design 5/5 – Sequence-level comparison, MSA-like representation ... 231

Appendix LXXXI: The planned UI would have a navigation pane on top to change the views.................................... 231

Appendix LXXXII: Scatterplot user flow 1/11 - Welcome page ... 232

Appendix LXXXIII: Scatterplot user flow 2/11 – Hovering an assembly with one clustering value 232

Appendix LXXXIV: Scatterplot user flow 3/11 – Hovering an assembly with two clustering values 233

140

Appendix LXXXV: Scatterplot user flow 4/11 – Assemblies have been selected by lasso selection, matching
pangenomes are listed .. 233

Appendix LXXXVI: Scatterplot user flow 5/11 – The best matching pangenome is hovered 234

Appendix LXXXVII: Scatterplot user flow 6/11 – The best matching pangenome is chosen 234

Appendix LXXXVIII: Scatterplot user flow 7/11 – The second best matching pangenome is hovered 235

Appendix LXXXIX: Scatterplot user flow 8/11 – The second best matching pangenome is chosen 235

Appendix XC: Scatterplot user flow 9/11 – Multiple partially matching pangenomes are highlighted from the bar
chart .. 236

Appendix XCI: Scatterplot user flow 10/11 – A phenotype filter tag is added to the assembly table 236

Appendix XCII: Scatterplot user flow 11/11 – A second phenotype filter tag is added, with the first one still active
 ... 237

Appendix XCIII: Circos layouts could be applied to panchromosomes... 238

Appendix XCIV: The Comparative Genome Viewer visually represents all-versus-all alignments of chromosomes
from two genome assemblies ... 239

Appendix XCV: Tabular panchromosomes user flow 1/6 – Only cooccurrences from a small region are selected
 ... 240

Appendix XCVI: Tabular panchromosomes user flow 2/6 – Moving the handles on the main panchromosome
widens the selected region .. 240

Appendix XCVII: Tabular panchromosomes user flow 3/6 – Profiles could be displayed rather than violin-like
silhouettes .. 241

Appendix XCVIII: Tabular panchromosomes user flow 4/6 – Hovering a region would highlight the related
cooccurrences ... 241

Appendix XCIX: Tabular panchromosomes user flow 5/6 – Hovering a segment could display its ribbon only 242

Appendix C: Tabular panchromosomes user flow 6/6 – Clicking on a panchromosome profile would change the
main panchromosome ... 242

Appendix CI: The glyph system remains understandable under different colorblind visions.................................... 243

Appendix CII: The detail view can display many combinations of SVs surrounding a step from the pivot 244

Appendix CIII: Pangenome graph can be divided into collection of nodes and paths within a JSON file 245

Appendix CIV: SV Annot Decision Tree 1/3 – The algorithm starts by following every Node of a path… 246

Appendix CV: SV Annot Decision Tree 2/3 – …it will then look for Synteny disruptions… ... 246

Appendix CVI: SV Annot Decision Tree 3/3 – …and explore the diverging paths for characterization 247

Appendix CVII: SV Annot Storage 1/3 – All annotations can be stored within a sparse matrix… 247

Appendix CVIII: SV Annot Storage 2/3 – …that would contain SV objects only at specific indices… 248

Appendix CIX: SV Annot Storage 3/3 – …with each their own properties .. 248

Appendix CX: All views within SaVanache would be connecting different files and formats 249

Appendix CXI: Usually design studies follow a top-down approach, going from the data to the abstraction 250

141

 Appendix

142

I. Appendices from the State of the Art

Appendix I: GFAv2 stores graph elements labelled as S, E, O, U, G and F lines; Schema annotated in French. S: Segment; E: Edge; O: Ordered
group; U: Unordered group; G: Gap; F: Fragment

143

Appendix II: Example of graph generated with Cytoscape for MetaPGN; Figure from [197]

144

Appendix III: Gephi used to represent a pangenome graph built with PPanGGOLiN; [70] from 2407 Acinetobacter baumannii strains. Figure
from Guillaume Gautreau.

145

Appendix IV: Example of graph built with neo4j for PanTools Figure from [117]

146

Appendix V: The final screenshot of anvi'o's pangenomic workflow shows an ordered circular heatmap with metadata; Figure from [158]

147

Appendix VI: Association network and heatmap representation from Coinfinder are static plots built from gene clusters; Figure from [176]

148

Appendix VII: Gingr can switch its visual representations depending on the zoom level; it does a semantic zoom; Figure from [109]

Appendix VIII: The icicle plots from Hierarchical Sets show common elements between closely related genomes only; Figure from [184]

149

Appendix IX: Microreact provides linked views, connectde visual representations of a same dataset; Figure from [164]

150

Appendix X: PanGeT's flower plots still have interactivity, with clickable hyperlinks for data download; Figure from [167]

151

Appendix XI: Pan-Tetris can group genes from different clusters when they are complementary; Moreover, gene strands can be double
encoded with both glyph orientation and color. Figure from [143]

152

Appendix XII: PanViz's circular visual representation can be interactively switched to alternative representations; Figure from [159]

153

Appendix XIII: Phandango provides PAV heatmaps with metadata and phylogeny. Figure taken from the online example of Phandango
used with [205]‘s Streptococcus data.

Appendix XIV: Chromatiblock displays conserved blocks ordered depending on a chosen reference; Additional blocks are squeezed in
between. Figure from [175].

154

Appendix XV: The Genome Context Viewer’s main visual representation displays syntenic genes as ‘beads-on-a-string’; It also offers a
Circos-like macro-synteny view. Figure from an online demo built with a set of genes from the tryptophan-tRNA ligase family.

Appendix XVI: PGV’s browser displays genomic blocks of alignment based on a reference-agnostic consensus ordering; Figure from [191]

155

Appendix XVII: TASUKE+ can be used for the display of SNPs density within a pangenome; Example on demo BnPIR data [207]

156

Appendix XVIII: Crop-Haplotypes displays shared and unique haplotype blocks found in 15 wheat assemblies; Screenshot from http://crop-
haplotypes.com/

http://crop-haplotypes.com/
http://crop-haplotypes.com/

157

Appendix XIX: GenomeRing uses a circular visual representation for displaying shared pangenome blocks between species; Figure from
[180]

158

Appendix XX: gfaestus displays genome graphs quite like Bandage does; Figure from the demo video available on GitHub

Appendix XXI: GfaViz is a genome graph visualization tool dedicated to GFA files; Figure made from an example GfaViz dataset.

159

Appendix XXII: The graphgenomeviewer displays genome graphs in a simple interface; Figure made from the interactive demo available at
https://cmdcolin.github.io/graphgenomeviewer/

https://cmdcolin.github.io/graphgenomeviewer/

160

Appendix XXIII: The IGGE is a VR tool that displays genome graph in a 3D environment; Figure from [185]

Appendix XXIV: Panaconda draws its pan-synteny graphs with Gephi; Figure from [115]

161

Appendix XXV: panGraphViewer has an interface for displaying genome graphs with a unusual visual representation; The nodes shape
can be customized depending on the underlying structural variations depicted. Figure from panGraphViewer’s documentation at
https://github.com/TF-Chan-Lab/panGraphViewer/tree/main/doc

Appendix XXVI: Computomics’ version of pantograph displays the successions of present and absent pangenomic blocks within genomes;
Arcs flank these blocks where structural variations are observed. Figure from https://pantograph.computomics.com/

https://github.com/TF-Chan-Lab/panGraphViewer/tree/main/doc
https://pantograph.computomics.com/

162

Appendix XXVII: Sequence Tube Maps represent sequences as lines going through different pangenomic blocks; Here two SNPs are
present. Figure from [194]

163

Appendix XXVIII: vg view displays portions of a genome graph, with the graph backbone and the aligned paths; Figure from
https://github.com/vgteam/vg/wiki/Visualization

https://github.com/vgteam/vg/wiki/Visualization

164

Appendix XXIX: PGAP-X views can be customized with different color palettes; Here the left view distinguishes core (orange), high
conserved variable (green), low conserved variable (cyan), and unique (blue) genes. The right view shows only these unique genes. Figure
adapted from [171]

165

Appendix XXX:The Augmented Graph Viewer’s poster won best BioVis poster award in 2017

166

Appendix XXXI: Linx uses a circular representation with multiple visual encodings detailing SVs

167

Appendix XXXII: Corteva’s TagDots and PANDA are tools creating static visualizations of pangenomes at different scales; Figure from a
talk given by Kevin Fengler in September 2020

168

Appendix XXXIII: Anscombe’s quartet features four visually different datasets that share the same summary statistics; Figure from [279]

Appendix XXXIV: Boustrophedon switches the direction of writing with every line; There are different types of boustrophedon, here the
lines are mirrored horizontally, as used in Ancient Greece. Another type of boustrophedon reversed every other line both vertically and
horizontally. Figure from https://en.wikipedia.org/wiki/Boustrophedon

https://en.wikipedia.org/wiki/Boustrophedon

169

Appendix XXXV: Two identical colors can be perceived as different depending on their context; In this famous example by Adelson, squares
A and B from the checker seem to be of different colors but have in fact the exact same!

170

II. Appendices from Panache’s chapter

Appendix XXXVI: Pan-Tetris has different behaviors depending on the source and format of data; Data built from the unpublished tool
PanGee (top) are displayed with more colors than user provided PAV matrices (bottom). Benchmark with our own data also revealed bugs from
the UI.

171

Appendix XXXVII: Visual representations of pgAtlases could have included heatmaps of clustered gene families; Based on PanViz’s idea
[159] and the original banana dataset, gene families could be clustered by gene families and ordered depending on the number of genomes in
which they would appear. This idea was rejected as it was not space efficient and did not consider position; it would therefore not be applicable
to pangenomes.

Appendix XXXVIII: I explored semi-circular representations along the same lines as anvi’o; A) Each panBlock was originally positioned on a
queried linear coordinate system, originating from the center towards the outer part of the semi-circle. Genomes would have been distributed
on radiuses. B) All genomes could have been added until forming a full circle, with a PAV matrix of the panBlocks for each. C) Alternatively,

172

summarized representations could have showed circular bar charts illustrating the PAV status of panBlocks, with a section dedicated to the
display of observed repeats throughout the pangenome (left). This visual representation has been discarded as the curvature would have been
misleading, showing different areas for equivalent elements. For example, in C the first panBlock (inner ring) almost has the same PAV status
than the last panBlock (outer ring) but has a significantly smaller size, making it less visible.

Appendix XXXIX: The PAV matrix is represented as a histogram within the miniature of Panache; The exact detail of the PAV would not
have been readable at such a small scall, the histogram enables the comparison of lengths to have a quick idea of the PAV rate of a panBlock.

Appendix XL: The position track uses a alternative color palette to the usual rainbow; Varying through around six identifiable hues (brown,
violet, blue, green, yellow, and beige), the proposed sequential color palette linearly in luminance and can be used to identify broad regions of
origin along a linear axis. I used viscm [280] to create this colormap.

173

Appendix XLI: The menu panel was thought to display filters option and legends; From top to bottom: the core threshold for modifying the
minimal presence ratio for panBlocks to be considered as part of the core genome. A phylogenetic tree of the genomes displayed in the PAV.
Static legends for the PAV matrix and the tracks below.

174

Appendix XLII: The color legends for the tracks were supposed to be dynamically updated

Appendix XLIII: The geometric zoom level can be modified directly within the menu panel; It was initially divided between two linear scales
as to offer the possibility to view everything at once and switch to more detailed levels of zoom.

175

Appendix XLIV: The linearization of the semi-circular display resulted in the PAV heatmap; Its first iteration was a linearization of the semi-
circular visual representation described earlier, with the genomes-as-radiuses being turned into genomes-as-columns.

176

Appendix XLV: The PAV matrix was originally planned to be displayed vertically; The first drafts already included sliders for panning, a
phylogenetic tree, and a visual representation of cooccurrences.

177

Appendix XLVI:The first version of the horizontal PAV matrix included multiple buttons for customization

178

Appendix XLVII: Cooccurences were originally visualized as a track and circles representing the distribution of the repetitions within the
pangenome; The layout was still vertical then.

Appendix XLVIII: The detail of the distribution of cooccurrences within the pangenome is better encoded with rectangles

179

Appendix XLIX: The first draft of a view dedicated to a selected repeat would have appeared on click

Appendix L: An alternative visual representation of the repeats showed their position within panchromosomes; This representation
constituted a detail view, which would have been available on click on a repeated panBlock. All green stroked represent the position of a repeat
on the linear coordinate system chosen for the panchromosome.

180

Appendix LI: A view dedicated to repeats could show the PAV status of other repeats and their context as ‘windows-with-blinds’

181

Appendix LII: A draft version of a detail view for repeated panBlocks included the visualization of the PAV status of all occurrences; This
detail view was divided in three parts, from top to bottom: the detail of the nucleotide sequence of the selected panBlock, a Panache-like
representation of the PAV matrix for each repeat, the position of the repeats within the different panchromosomes, as described earlier.
Interactivity would be used to link the PAV matrices and the position of their respective panBlocks within the ‘karyotype’ view.

182

Appendix LIII: Another option for repeats was to show them as togglable tooltip overlapping the main PAV matrix; On click on a repeat,
tooltip would appear showing the position of repeats on the current panchromosome. Contrary to the previous draft, this view could not show
repeats on another panchromosome, and the user would have to actively change the panchromosome on display to further explore the PAV
status of these repeats.

183

Appendix LIV: Hollow areas can overlap within the PAV matrix; The blocks spanned by these two areas are delimited by bracket on top of
the PAV matrix, with different heights so than the no area is hidden.

184

Appendix LV: Face to face discussions were critical during the design of the visual representations; In this discussion, we identified that A)
showing links between every repeat could be abandoned; B) a slider could be used to pan through the whole PAV matrix; C) position of the
panBlocks within the linear coordinate system should be visible; D) Additional visual representation were needed to visualize the presence
status of repeats.

185

Appendix LVI: The ‘needs and expectations’ survey had a branching structure

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

Appendix LVII: Survey results 1/11 – Profile of the respondents

; Out of 587 views, only 87 respondents answered at least one question of the survey. The number of respondents decreased over time, as
illustrated by the icon at the bottom left, updated for each following slides. For questions with one or more possible answers, as in
QCurrentActivity, the counts are displayed in different columns depending on how many answers the respondents provided. For example, here
only one person gave 5 answers at once for that question, detailed in the ‘Chosen out of 5’ column.

Appendix LVIII: Survey results 2/11 – Pangenomics background; Users with previous experience of pangenomes could fill in the visualization
tools they had already used

217

Appendix LIX: Survey results 3/11 – Envisioned application field of pangenomics

Appendix LX: Survey results 4/11 – Feedback on Panache’s prototype

218

Appendix LXI: Survey results 5/11 – Most desirable features for lookup; Functionalities are sorted in decreasing order depending on a score
based on both the number of times an answer has been chosen and in which position this answer appeared in the set of answers given by a
respondent. Funnily enough ‘Filter data’ was both the functionality that has been chosen first most of the time and the functionality that has
been chosen the least.

Appendix LXII: Survey results 6/11 – If ‘Sorting’ or ‘Filtering’ were chosen in the previous question, details were asked

219

Appendix LXIII: Survey results 7/11 – Needed visual aids

Appendix LXIV: Survey results 8/11 – Data exchanges

220

Appendix LXV: Survey results 9/11 – Navigation within the visual representation and UI

Appendix LXVI: Survey results 10/11 – Customizations

221

Appendix LXVII: Survey results 11/11 – Possible formats; I asked or the formats familiar to respondents, depending on their knowledge of
pangenomics. Formats common between the two questions are highlighted with color.

Appendix LXVIII: Respondents clicked on a lot of non-interactive parts of the display; Hotjar is a tool that can track users’ interactions on a
web page. I used it on Panache’s prototype: while many clicked on the dropdown menu to change the panchromosome on display, some also
clicked directly on the PAV matrix and the legend. I suppose they were expecting to access more information on these parts of the visualization.
Few clicked on the core threshold slider or the zoom slider.

222

Appendix LXIX: The panBlocks that should be represented must be within a certain window around the coordinates on display; PanBlocks
are filtered depending on their StartPosition and StopPosition properties. All panBlocks contained within the display window and a margin
before will be represented with SVGs, while others will not create any web element, making navigation within the PAV matrix more responsive.

223

Appendix LXX: The exact limit for the coordinates of panBlocks that should be drawed depends on the maximum width of blocks; A
margin the size of the widest panBlock is added to the main window when looking for panBlocks to draw. This way, even the widest blocks
would still be found and correctly drawn on screen.

224

Appendix LXXI: Panache’s poster at the Plant Genome Evolution conference 2019

225

Appendix LXXII: Panache’s poster at PAG 2020

226

Appendix LXXIII: Panache’s poster at VIZBI 2021

227

Appendix LXXIV: Panache's poster at JOBIM 2021

228

Appendix LXXV: Panache’s poster at ISMB/ECCB 2021 BioVis session

229

III. Appendices from SaVanache’s chapter

Appendix LXXVI: UI design 1/5 – Choice of the species to work on; Credit to Joffrey Gallais.

Appendix LXXVII: UI design 2/5 – Overall diversity, visual representation of the diversity and available datasets; Alternative views were
envisioned, the scatterplot would have been the main one, with alternative phylogenetic tree and table representations to better compare
assemblies. Credit to Joffrey Gallais.

230

Appendix LXXVIII: UI design 3/5 – Visual representation and exploration of SVs at the whole genome scale; Credit to Joffrey Gallais.

Appendix LXXIX: UI design 4/5 – Gene or panBlock PAV, targeted on a region of interest; Credit to Joffrey Gallais.

231

Appendix LXXX: UI design 5/5 – Sequence-level comparison, MSA-like representation; Credit to Joffrey Gallais.

Appendix LXXXI: The planned UI would have a navigation pane on top to change the views; It also features a toggleable menu on the left
for options.

232

Appendix LXXXII: Scatterplot user flow 1/11 - Welcome page

Appendix LXXXIII: Scatterplot user flow 2/11 – Hovering an assembly with one clustering value

233

Appendix LXXXIV: Scatterplot user flow 3/11 – Hovering an assembly with two clustering values

Appendix LXXXV: Scatterplot user flow 4/11 – Assemblies have been selected by lasso selection, matching pangenomes are listed

234

Appendix LXXXVI: Scatterplot user flow 5/11 – The best matching pangenome is hovered

Appendix LXXXVII: Scatterplot user flow 6/11 – The best matching pangenome is chosen

235

Appendix LXXXVIII: Scatterplot user flow 7/11 – The second best matching pangenome is hovered

Appendix LXXXIX: Scatterplot user flow 8/11 – The second best matching pangenome is chosen

236

Appendix XC: Scatterplot user flow 9/11 – Multiple partially matching pangenomes are highlighted from the bar chart

Appendix XCI: Scatterplot user flow 10/11 – A phenotype filter tag is added to the assembly table

237

Appendix XCII: Scatterplot user flow 11/11 – A second phenotype filter tag is added, with the first one still active

238

Appendix XCIII: Circos layouts could be applied to panchromosomes

239

Appendix XCIV: The Comparative Genome Viewer visually represents all-versus-all alignments of chromosomes from two genome
assemblies; The NCBI released a beta version released on July 6, 2022, and it features interaction which enables users to see one-versus-all
alignments instead. One could also click on a connection to access additional information on a block alignment. Its overview remains hard to
read and is representative of the difficulty of representing structural rearrangements within between multiple entities.

240

Appendix XCV: Tabular panchromosomes user flow 1/6 – Only cooccurrences from a small region are selected

Appendix XCVI: Tabular panchromosomes user flow 2/6 – Moving the handles on the main panchromosome widens the selected region

241

Appendix XCVII: Tabular panchromosomes user flow 3/6 – Profiles could be displayed rather than violin-like silhouettes

Appendix XCVIII: Tabular panchromosomes user flow 4/6 – Hovering a region would highlight the related cooccurrences; With this
interaction connecting ribbons specific to the region hovered would be displayed

242

Appendix XCIX: Tabular panchromosomes user flow 5/6 – Hovering a segment could display its ribbon only

Appendix C: Tabular panchromosomes user flow 6/6 – Clicking on a panchromosome profile would change the main panchromosome; It
would therefore update the whole view to show the related SVs

243

Appendix CI: The glyph system remains understandable under different colorblind visions; a) Normal vision. b) Protanopia. c) Deuteranopia.
d) Tritanopia. e) Achromatopsia. Colorblindness simulated with the online tool Coblis – Color Blindness Simulator.

244

Appendix CII: The detail view can display many combinations of SVs surrounding a step from the pivot; a) A simple insertion, highlighted.
b) Two flanking insertions, highlighted. c) A highlighted deletion, with a nonhighlighted cooccurrence. d) A highlighted deletion, with a
nonhighlighted insertion; this conformation would be replaced by the representation of a swap in the most recent design. e) A tandem
duplication, highlighted. f) A translocation, highlighted, with nonhighlighted deletion and inversion. g) An inversion, highlighted. h) A chain
inversion, highlighted.

245

{

 "panSkeleton": {

 // A Node / panBlock, stored by ID, as a Key for a dictionary object

 nodeID: {

 "length": nodeLength,

 "traversals": {

 // We assume a panNode can be traversed only once by a genome assembly

 // Cooccurrences would create new nodes, as in a DAG

 assemblyName: {

 "sequenceOrigin": chromName

 "index": indexOfPosInPathU,

 },

 ... // and possibly more assemblies

 },

 // Every other copies of this node are listed here

 // Empty array if no cooccurrence

 "cooccurrences": [

 nodeID,

 ...

],

 },

 ... // and other Nodes

 },

 "paths": {

 // An assembly

 assemblyName: {

 // Each chromosome or sequence is associated with a list of the Steps...

 // ...taken along the path of that assembly through the pangenome graph

 chromName: [

 // The first node is at index 0

 {

 "panBlock": nodeID,

 "startPosition": startCoordOnThisAssemblyAndChrom,

 "endPosition": endCoordOnThisAssemblyAndChrom,

 "strand": -1 // or +1, depending

 },

 ... // Second node, etc until the end of the path

],

 ... // and paths from other sequences / chromosomes

 },

 ... // and other assemblies

 }

}
Appendix CIII: Pangenome graph can be divided into collection of nodes and paths within a JSON file; Here, the pseudo-JSON shows the
overall structure expected by the Structural Variations view of SaVanache. Variable property names and values (written in white), comments
(written in grey) and ellipses would be replaced in a real file. nodeID: the unique identifier (string) used to store a node of the pangenome graph;
nodeLenth: the length in nucleotides (integer) of the DNA sequence represented by a node; assemblyName: the name (string) of a genome
assembly; chromName: the name (integer) of the sequence of origin of a given path through the graph; indexOfPosInPath: index (integer) of
a Node within the path; startCoordOnThisAssemblyAndChrom: start coordinates (integer) of that node’s sequence in the original linear
coordinate system of the assembly; endCoordOnThisAssemblyAndChrom: end coordinates (integer) of that node’s sequence in the original
linear coordinate system of the assembly.

246

Appendix CIV: SV Annot Decision Tree 1/3 – The algorithm starts by following every Node of a path…

Appendix CV: SV Annot Decision Tree 2/3 – …it will then look for Synteny disruptions…

247

Appendix CVI: SV Annot Decision Tree 3/3 – …and explore the diverging paths for characterization

Appendix CVII: SV Annot Storage 1/3 – All annotations can be stored within a sparse matrix…

248

Appendix CVIII: SV Annot Storage 2/3 – …that would contain SV objects only at specific indices…

Appendix CIX: SV Annot Storage 3/3 – …with each their own properties

249

Appendix CX: All views within SaVanache would be connecting different files and formats

250

Appendix CXI: Usually design studies follow a top-down approach, going from the data to the abstraction; Screenshot of a public
conversation on Discord with Tamara Munzner as part of IEEEVIS 2021, October. Tamara Munzner gave a presentation about design studies
and how to make visualization tools, following a nested workflow described in her book “Visualization Analysis and Design” [248]. Her workflow
starts from domain and data / task abstractions and later focuses on visual idioms and tool implementation. I asked for advice as it was unclear
to me how to handle a scenario where data were not properly defined.

251

252

Résumé
La démocratisation des technologies de séquençage lors des vingt dernières années a entraîné une explosion du nombre de
génomes séquencés. La diversité des génomes de référence ainsi disponible a mis en évidence les biais induits par l’utilisation
d’une unique référence, qui n’est pas suffisante pour donner accès à la diversité au sein d’une espèce. Chez les plantes, de nombreux
exemples de variations intraspécifiques ont été recensés, notamment de la variation en présence / absence ou en nombre de copies
de gènes. Ces variations peuvent exercer une forte influence sur le phénotype des plantes, par exemple chez le riz où la présence
d’un gène Sub1A est associée à une tolérance à l’inondation. Pour une meilleure intégration de ces variations en génomique, le
concept de pangénome s’est progressivement développé. Un pangénome peut être construit aussi bien pour recenser des gènes
que pour tous types de fragments génomiques présents au sein d’un groupe, et est utile pour comparer la répartition de ces
éléments entre plusieurs individus. Plusieurs catégories d’éléments existent selon le taux de présence ; les deux principales
recensent les éléments présents chez tous les individus (les éléments ‘core’) et ceux présents seulement chez certains (les éléments
‘variable’). La pangénomique souffre encore d’un manque d’outils, notamment pour sa visualisation. Ce manque est
particulièrement vrai pour les eucaryotes (dont les plantes), aux génomes plus gros et complexes que les bactéries, premier
domaine d’application des pangénomes et dont les outils existants ne supportent pas facilement le passage à l’échelle vers des
génomes plus volumineux. Mes travaux de thèse ont donc porté sur la création de nouvelles représentations visuelles ainsi que la
création d’outils de visualisation utilisables pour la visualisation de pangénomes de plantes, et d’eucaryotes en général.

Dans ce manuscrit de thèse, je présente l’état de l’art de la pangénomique : j’y fais la distinction entre la notion de pan-gene atlas
et de pangénome, le second étant souvent représenté sous la forme d’un graphe où chaque séquence forme un nœud et chaque
succession observée de séquence forme des liens entre ces nœuds ; j’identifie également des outils de visualisation non spécifiques,
qualitatifs, positionnés, structuraux, et enfin composites. Le premier chapitre recueille dix conseils pour créer un outil de
visualisation de données génomiques, à l’attention de futurs chercheu·r·se·s en biologie ou bio-informatique qui s’intéresseraient
à la data visualisation. Le second chapitre, décrit mon premier outil de visualisation de pangénome, publié dans le journal
Bioinformatics sous le titre « Panache : a Web Browser-Based Viewer for Linearized Pangenomes ». J’y détaille la représentation
visuelle utilisée dans Panache, jusqu’à la création d’une application web développée en JavaScript permettant l’exploration
dynamique de données pangénomiques. Le troisième et dernier chapitre détaille le travail de conception d’un outil composite de
visualisation de pangénomes, appelé SaVanache, permettant la navigation entre plusieurs niveaux d’échelle pangénomique. Quatre
vues ont été identifiées : une vue de la diversité globale ; une vue des variations structurales ; une vue dédiée à la variation en
présence / absence ; et une dernière vue dédiée au variations nucléotidiques. Je propose une nouvelle approche pour l’annotation
et la représentation visuelle de variations structurelles au sein d’un graphe de pangénome, axée autour de la définition d’un chemin
pivot servant de système de coordonnées principal.

 Abstract
The popularization of sequencing technologies in the past twenty years led to a high increase of the number of sequenced
genomes. The diversity of the newly sequenced reference genomes highlighted the biases of using a single reference, which
is not enough to access all the diversity within a species. There are many examples of intraspecific variations within plants,
including presence / absence and copy number variations. These variations can have a strong effect on plant phenotypes, as
exemplified by the African rice in which the presence of the gene Sub1A is linked to drought tolerance. The concept of
pangenome appeared to better integrate these variations within genomics approaches. A pangenome can be built from genes
only or from any genomic fragments found within a group, and is useful to compare their distributions between multiple
individuals. Depending on the presence rate, many categories of elements can be defined; the main ones are the elements
present in all the individuals (part of the ‘core’ genome) and these absent in at least one of them (part of the ‘variable’
genome). Pangenomics still lacks tools, especially for visualization. This is particularly true for eukaryotes (including plants)
which have larger and more complex genomes than bacteria. Pangenomes were first built for bacteria, but their related tools
cannot properly work on bigger genomes. My PhD investigated the creation of novel visual representations and tools for the
visualization of plant pangenomes (and eukaryotes in general).

Within this dissertation, I introduce the state of the art of pangenome visualization: I distinguish pan-gene from pangenomes,
the latter often being represented by pangenome graphs where each sequence is a node and each observed sequence
succession forms an edge; I also identify unspecific, qualifying, positioned, structural and composite visualization tools. The
first chapter introduce ten principles for creating a genomic visualization tool, for future biology or bioinformatics scientists
interested in datavisualization. The second chapter describes my first pangenome visualization, published in the journal
Bioinformatics under the name ‘Panache: a Web Browser-Based Viewer for Linearized Pangenomes’. I detail the visual
representation used within Panache and the creation of the resulting web application built in JavaScript, enabling the
dynamic exploration of pangenomic data. The third and final chapter details the design of a composite visualization tools for
pangenomes, called SaVanache, and enabling the navigation between four view scales. There are four of them: one for global
diversity, one for structural variations, one for the presence / absence variations, and one for nucleotide variations. I propose
a new approach for the annotation and visual representation of structural variations within a pangenome graph, based on a
pivot path within the graph used as a reference coordinate system.

