Bounded rational functions
Les fonctions rationnelles bornées
Résumé
This thesis starts the study of the bounded rational functions, which are a natural extension of the regulous functions, and are linked with the normalization process.
They are also linked with the ring of bounded elements (or holomorphy ring) of the rational functions, and they give the easiest examples
of non-continuous multi-variable functions.
We show that they form a non-Noetherian ring, but integrally closed, and its Krull dimension is equal to the geometrical dimension. The
functions are regular after blowups, and the bounded property is a proper birational invariant.
We create a geometry that allows us to obtain a weak Nullstellensatz, but this geometry is not specific to the bounded rational func-
tions, and the obtained closed sets are exactly the blowdowns of Zariski sets. We also show that it can, provided an eventual rise up of the ambient dimension, describe any semi-algebraic set. The good hypothesis to obtain
a Łojasiewicz inequality brings us to a study in the semi-algebraic arc space. We can also give a Nullstellensatz for the finite type ideals,
which are then radically principal. The study of the counterexamples for the not finite type case leads us to study the maximal ideals, and the substitution property. The lack of its uniqueness gives a surprising link between the spectrum of our ring and the real spectrum of the associated polynomial functions.
Ce manuscrit commence l’étude des fonctions rationnelles bornées, qui sont une extension naturelle des fonctions régulues et sont liées à la normalisation. Elles sont aussi liées aux anneaux de fonctions bornées (ou anneau d’holomorphie) et elles fournissent les exemples les plus simples de fonctions non continues à plusieurs variables.
On montre qu’il s’agit d’un anneau non noetherien, intégralement clos, dont la dimension de Krull est la dimension géométrique. Les
fonctions sont régulières après éclatements, le caractère borné est un invariant birationnel propre.
On crée une géométrie qui nous permet d’obtenir un Nullstellensatz faible, mais qui n’a rien de spécifique aux fonctions bornées, et les
fermés y coïncident avec les contractions de fermés de Zariski. On montre de plus qu’elle peut construire tout semi-algébrique quitte à
monter la dimension ambiante. L’étude des bonnes conditions pour une inégalité de Łojasiewicz nous amène à créer une géométrie dans les espaces d’arcs semi-algébriques.
On peut alors donner un Nullstellensatz pour les idéaux de type fini qui sont alors radicalement principaux. L’étude des contres-exemples pour le cas non de type fini nous amène à étudier les idéaux maximaux, et le
défaut d’unicité de la propriété de substitution, ce qui crée un lien surprenant entre le spectre d’anneau de notre anneau et le spectre réel
de l’anneau de polynôme associé.
Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
Licence |