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“Le changement climatique, de même que
l’extinction des espèces ou l’augmentation des
déchets plastiques, que l’on qualifie de problèmes,
sont en fait des symptômes. La limitation du
changement climatique est utile, mais revient à
donner une aspirine à quelqu’un atteint d’un can-
cer. Cela l’aidera seulement à se sentir mieux
temporairement. [...]”
(Dennis Meadows)
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Avant-propos

Ces trois années de thèse furent à la fois longues de par les longs moments de creux,
et courtes avec l’impression d’avoir commencé hier. Elles clôturent mes années
d’études et à ce titre je me permets ici une petite digression.

Ne mentons pas, seul quelqu’un étant déjà passé par l’expérience de la thèse
peut comprendre cette expérience unique. Des moments de déprime car rien ne
fonctionne aux moments d’euphorie, c’est un véritable ascenseur avec une alter-
nance qui semble ne jamais prendre fin. Malgré les déboires, cette expérience
reste positive et je ne saurais trop recommander à des étudiants curieux voulant
améliorer leur rigueur et leurs compétences scientifiques de se lancer dans cette
épreuve. L’expérience sera longue, pavée de difficultés mais une fois au bout, la
satisfaction est grande.

La recherche offre un cadre pour comprendre les choses, sans l’impératif d’avoir
à développer un produit ou un service. Cependant à ressources finies et qui a priori
vont décroître au cours du temps, il y a fort à parier que les moyens de la recherche
nécessitent à l’avenir de prioriser les thématiques et de se concentrer sur de la
recherche permettant de répondre aux impératifs de l’époque. Un véritable enjeu
s’impose alors aux chercheurs en maths: les mathématiques sont utiles partout
mais c’est souvent un combat pour en convaincre les décideurs, et surtout le grand
public. J’espère que le lecteur profane aux mathématiques prendra autant de plaisir
à parcourir ce manuscrit que j’en ai eu pour l’écrire, et que ces pages, à leur modeste
échelle, lui permettront de trouver quelques éléments de réponse sur à quoi bon les
maths peuvent bien servir.

Remerciements

Aux personnes qui font que cette thèse voit le jour

Tout d’abord je tiens à adresser mes sincères remerciements aux rapporteurs de
cette thèse, Peter Ochs et Nicolas Papadakis, pour leurs relectures et retours ayant
permis d’améliorer ce manuscrit de thèse. Je suis aussi reconnaissant envers les
examinateurs, Marie Chabert, Laurent Condat et Julie Delon, d’avoir accepté de
consacrer du temps à ma soutenance.

Cette thèse n’aurait bien entendu pas vu le jour sans le duo de choc que for-
ment mes deux directeurs de thèse. Vous m’avez formé et appris tant de choses
en recherche. Loin de vouloir énumérer toutes les leçons tirées, je vous remercie
d’avoir toujours placé la rigueur scientifique au coeur de nos travaux, quitte à re-
pousser une publication de plusieurs mois pour améliorer ou mieux comprendre des
résultats. Merci Pierre pour ta clairvoyance dans les travaux de recherche et ton
leadership, toujours apprécié que ce soit en recherche ou pour organiser des activ-
ités à l’extérieur du travail. Tu n’es pas le genre de directeur de thèse à laisser
dépérir ses doctorants dans un coin et ta présence a été précieuse pendant ces trois
années de thèse. Je te remercie aussi de t’être démené pour l’achat de machines de
calcul qui nous permettent de mener à bien nos recherches. Fred, ton dynamisme
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m’inspire et j’aime ton état d’esprit, toujours enclin à rigoler. Malgré tes apparences
bordéliques, tu es probablement l’une des personnes les plus intègres que j’ai eu la
chance de rencontrer. J’ai beaucoup appris de tes intuitions et de ta capacité à
voir géométriquement les choses, avant en tant qu’étudiant de Master et ensuite
pendant cette thèse. Pour conclure ce paragraphe, je rappelle une de tes citations
et te remercie de m’avoir permis de relever ce défi: “Tu ne soutiendras pas ta thèse
avant que j’ai soutenu mon HDR.” (Frédéric de Gournay, 23/02/2020).

Aux collègues

Mes remerciements vont aussi aux autres matelots-doctorants du navire GMM, qui
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dans l’enseignement supérieur et la recherche. Merci aussi à Jessica pour tes pré-
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choses qui te plaisent. Je remercie aussi tous les amis du bureau 120 pour leur
soutien pendant le covid ainsi que pour les raclettes illégales dans le bureau en péri-
ode de confinement ! Merci aussi à Morgane et Franck, et je vous souhaite bonne
chance pour la suite. Evgeniia merci pour les discussions que nous avons eues et ton
apport précieux par ta connaissance de la Russie, ce qui permet de mieux déchiffrer
le monde. Les temps ne sont pas faciles et je te souhaite tout le meilleur pour la
suite.
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Introduction

Introduction in english

The progresses made in imaging since the second half of the XXth century are
impressive. They are the result of advances in various fields, including the design of
hardware equipment, the increase in computing capacity, theoretical advances with
the modelling of inverse problems, information theory and optimization. Today,
all these developments are combined in imaging tools such as Magnetic Resonance
Imaging (MRI), ultrasound imaging, tomography imaging and microscopy. The use
of all these methods falls within the framework of computational imaging.

Image processing and especially image reconstruction has a long history, and the
first work on reconstruction for inverse problems dates back to the 1970s. Through-
out the second half of the XXth century, the methods developed were limited by
computational power. A simple model evaluation was expensive and could take
up to several minutes. The methods were therefore based on a few model evalu-
ations such as the so-called back projection methods. These reconstructions used
simple approximations of the inverse, computable affordable, as the adjoint of the
acquisition model. These inversion models were eventually corrected by taking into
account the physics if available. The methods of filtered back-projection in computed
tomography are a perfect example [Ramachandran 1971]. It has also been used in
MRI for uniform sampling [Lauterbur 1973].

These methods were then replaced by more efficient reconstructions, based on
variational formulations and solved with iterative algorithms. These variational for-
mulations involve a regularization term. The most common regularization, which
has been widely used in the field of image processing for decades, is that of Tikhonov,
which consists of penalizing the data attachment term by a term of the form
R(x) = ‖Lx‖22 with L a linear operator. This regularization has been the sub-
ject of numerous studies.

The development of variational formulations has been made possible by advances
in algorithmic theory, making it possible to compute operations with a O(N2)
complexity in O(N log(N)) through divide and conquer algorithms and factorization
methods among others. The most famous example is that of the FFT (Fast Fourier
Transform) which is used in many problems such as Fourier sampling, tomography
or deblurring.

At the end of the XXth century, engineers have realized that the number of
measurements could be drastically reduced, allowing significant gains in acquisition
time, while maintaining good reconstruction quality through the use of non-linear
methods. These reconstructors also raised theoretical questions from a mathemati-
cal point of view. The formal framework then appeared with compressed acquisition
at the beginning of the XXIth century giving theoretical guarantees on the recon-
struction of the signals. In parallel, advances in convex optimization allowed the
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development of efficient algorithms, making the use of these non-linear formula-
tions possible in practice thanks to FISTA [Beck 2009] and splitting methods such
as ADMM [Fortin 2000, Boyd 2011] or Douglas-Rachford [Eckstein 1992].

In parallel to these works, learning has developed significantly. Initially derived
from neuroscience, the field has been enriched by other communities, such as theo-
retical computer science with automatic differentiation, information theory, optimal
transport and stochastic optimization. This field now represents an important part
of the research with 3.9% of the articles in 2019 [Zhang 2021a].

Imaging has also been influenced and it has been benefiting for the last ten
years from the revolutions offered by learning, by first tackling the question of
image reconstruction. The approaches have attempted an appealing task in terms
of modelling: get free from the physical models, which are sometimes imperfect,
and learn them from a set of data [Zhu 2018]. This approach has recently shown
instability problems. Hybrid approaches that focus the use of learned models on
specific tasks were developed in parallel. They use learned methods on problems for
which physics-driven methods perform poorly: removing noise, removing artefacts
related to an operator or removing the residue from a numerical solver. These
approaches are now state-of-the-art and they have led to significant gains in image
quality. Among these methods that combine physics and learned models, several
approaches stand out, some of which can be cited: unrolled networks, Plug & Play
approaches or PINNs (Physics-Informed Neural Networks).

After improving image reconstruction, learning has been extended to all the
elements involved in an imaging device. It is now applied to the design of acquisi-
tion models which parameters are optimized to reduce acquisition times or improve
image quality. Optimized jointly with the reconstruction method, this is called
co-design. This disruption opens up challenging aspects: some of the theories pre-
viously established in the XXth and early XXIst centuries for classical reconstruction
methods are no longer valid for learned algorithms and this opens the way to a new
field of mathematics. This contribution of learning has of course also been made
possible by the democratization of massively parallel architectures, which costs have
decreased and which power has continued to increase.

The success of these learned models is also due to advances in stochastic op-
timization. The large number of parameters involved in the models has made it
necessary to develop optimizers that can handle very high dimensional models. A
step back of fifty years shows the vertiginous progress made both from a theoretical
and hardware point of views with the computing architectures. Indeed, the high
dimension used to qualify spaces with a dimension of the order of a hundred; to-
day the very high dimensional models go up to a hundred billion parameters. The
works in this field have led to the development of optimizers that work more or
less well in practice and with varying theoretical guarantees. Most of them involve
hyperparameters which values must be adjusted to train the models correctly, but
above all, from a practical point of view, to obtain the highest possible performance.
The increasing use of learning in imaging alone and the deployment of increasingly
numerically heavy models raise the issue of reducing the numerical cost of these
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trainings.

What are the current challenges in computational imaging?

Several areas of improvement are at the heart of the next technical challenges in
computational imaging:

Stability Currently the learned methods are very dependent on the training set-
ting. Improving the stability of the reconstructors is a major challenge to allow
the methods to move from the academic setting to concrete and certifiable medi-
cal applications. The improvement of co-design methods is also a challenge to use
improve imaging techniques in specific applications.

Automate The hyperparameters involved in the training of the models have a
major impact on the performance of the methods. These hyperparameters often
require manual adjustment, which is a bottleneck both in terms of resources used
and in terms of human time spent on unrewarding tasks. This point is not specific
to computational imaging and it affects learning in general. Automating training
methods is of importance for future researchs.

Reducing the numerical cost of training and the dependence to large
training datasets Training models in computational imaging can take days to
several weeks. In practice, this makes the application to real problems prohibitive
when the model has to be trained again for each different case of application. Re-
ducing the numerical cost of training is a crucial issue to allow improvements in
computational imaging to be applied in industry. The large size of the models
can also be a problem, as a large volume of data is needed to train them. For
many applications, particularly in the biomedical field, datasets are limited and
computational imaging will require a reduced reliance on this large volume of data.

Contributions

Guided by the above issues, I have dealt in this thesis with some aspects of compu-
tational imaging with a focus on the methodology. The objective is to propose im-
provements in the field of co-design, in image reconstruction and in the optimization
of learned models with recent tools of learning and parallel computing. Through-
out this manuscript, several application cases are studied: computed tomography
(CT), deblurring and a particular attention is given to MRI. The contributions are
summarized below.

Co-design

Recently several works have been proposed for off-the-grid optimization of Fourier
schemes for optimal sampling in MRI. From a practical point of view, the iterates
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produced require many iterations to converge and are highly dependent on the
initialization.

Contributions

• An analysis of the spurious minimizers in optimal and non-uniform
Fourier sampling schemes is given (Chapter 2).

• Motivated by existing works in sampling theory and using Bayesian
optimization, a method to globalize the convergence for MRI sampling
schemes is proposed (Chapter 3).

Reconstruction using neural networks

The unrolled networks are trained for specific applications and show experience
severe instabilities as soon as the forward operator of the data attachment term is
changed.

Contributions

• We show that not only does the network gain in stability, but for well-
constructed reconstructors there is no significant loss in training a re-
construction method on a set of operators.

• Training on a family of operators allows solving several blind inverse
problems using unrolled neural networks.

Neural networks optimization

Some of the recent works in stochastic optimization consists in applying a cor-
rective term on the step size of optimization methods for deep networks. These
methods either require a step given by the user to the algorithm, or compute a step
automatically but only at each pass over the data set.

Contributions

• An algorithm to compute the curvature of a composition of functions
at a lower cost than existing methods is proposed.

• A physical interpretation of the step of this algorithm is given.

• This allows introducing a method that performs an automatic rescaling
of the step at each iteration.

Outline of this manuscript

This manuscript is divided into 5 chapters. The first chapter is an introduction
to computational imaging and it illustrates through the case of MRI the devel-
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opments that have guided this field. It also contains a pedagogical introduction
to inverse problems and the associated reconstruction methods. This introduction
traces the early linear reconstruction methods, the emergence of non-linear meth-
ods and recent advances in reconstruction methods that are learned with neural
networks. The following chapters are based on different publications or preprints
and, although links are made between the different chapters, they can be read in-
dependently of each other. The second chapter deals with spurious minimizers in
the optimization of non-uniform Fourier sampling schemes. The motivation is the
optimization of MRI sampling schemes for a chosen reconstruction method and for
a specific image database. This chapter shows that this type of problem has a
combinatorial number of minimizers that can disappear with the large number of
images but that classical MRI databases do not contain enough images to expect
this phenomenon to appear. The third chapter proposes a method to globalize the
convergence for the optimization of Fourier sampling schemes. This drastically re-
duces the numerical cost of the optimization while maintaining a significant gain in
the image quality. The fourth chapter deals with the training of neural networks
that are adaptive to changes in the physics of the acquisition. This formalism al-
lows to solve several blind inverse problems. Finally, the fifth chapter tackles the
optimization of neural networks. It proposes a method to scale the learning rate
and this opens the way to automate the choice of the hyperparameters during the
training phase.
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Introduction en français

Les progrès réalisés en imagerie depuis la seconde moitié du XXème siècle sont im-
pressionnants. Ils relèvent de progrès dans des domaines variés, allant de la concep-
tion matérielle des appareils, de l’augmentation des capacités de calcul aux avancées
théoriques avec la modélisation des problèmes inverses, la théorie de l’information
et l’optimisation. Aujourd’hui, toutes ces évolutions se rejoignent et sont combinées
sur des outils d’imagerie comme en Imagerie par Résonance Magnétique (IRM ou
MRI en anglais), en imagerie à ultrasons, en imagerie par tomographie ou bien
en microscopie. L’ensemble de ces méthodes rentre dans le cadre de l’imagerie
computationnelle.

Le traitement d’images et plus particulièrement la reconstruction ont une longue
histoire, et les premiers travaux sur la reconstruction d’images dans le cadre de
problèmes inverses datent des années 1970. Durant toute la seconde moitié du
XXème siècle, les méthodes développées étaient limitées par la puissance de cal-
cul, une simple évaluation du modèle étant coûteuse et pouvant prendre jusqu’à
plusieurs minutes. Les méthodes reposaient donc sur quelques évaluations du mod-
èle comme les méthodes dites de rétroprojection. Ces reconstructions utilisaient
des approximations simples de l’inverse, facilement calculables, comme l’adjoint
du modèle d’acquisition. Ces modèles d’inversion étaient éventuellement corrigés
en prenant en compte les éléments de physique à disposition. Les méthodes
de filtered back-projection en computed tomography en sont un parfait exemple
[Ramachandran 1971]. Cela a aussi été utilisé en IRM pour de l’échantillonnage
uniforme [Lauterbur 1973].

Ces méthodes ont ensuite été remplacées par des reconstructions plus perfor-
mantes, reposant sur des formulations variationnelles et résolues avec des algo-
rithmes itératifs. Ces formulations variationnelles font intervenir un terme de régu-
larisation. La régularisation la plus courante et qui a largement été utilisée en
traitement d’image pendant des décennies est celle de Tikhonov, qui consiste à pé-
naliser le terme d’attache aux données par un terme de la forme R(x) = ‖Lx‖22 avec
L un opérateur linéaire. Le choix de cette régularisation a fait l’objet de nombreuses
études.

Le développement de ces formulations variationnelles a été permis grâce aux pro-
grès en algorithmique, permettant de calculer des opérations de complexité O(N2)
en O(N log(N)) à travers des méthodes de diviser pour régner et de factorisation
entre autres. L’exemple le plus parlant est celui de la FFT (Fast Fourier Transform)
qui est utilisé dans de nombreux problèmes comme l’échantillonnage de Fourier, la
tomographie ou le défloutage.

A la fin du XXème siècle, les ingénieurs se sont aperçus que le nombre de mesures
pouvait être drastiquement réduit, permettant des gains importants sur les temps
d’acquisition, et tout en conservant une bonne qualité de reconstruction grâce à
l’utilisation de méthodes non linéaires. Cette utilisation a aussi suscité des questions
théoriques d’un point de vue mathématique. L’acquisition comprimée a ensuite
fourni un cadre théorique au début du XXIème avec des garanties sur la reconstruc-
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tion des signaux. En parallèle, les avancées en optimisation convexe ont permis le
développement d’algorithmes efficaces, rendant l’utilisation de ces formulations non
linéaires possible en pratique grâce à FISTA [Beck 2009] et les méthodes de splitting
comme l’ADMM [Fortin 2000, Boyd 2011] ou Douglas-Rachford [Eckstein 1992].

En parallèle de ces travaux en optimisation, l’apprentissage s’est développé de
façon importante. Au départ dérivé des neurosciences, le domaine s’est enrichi
grâce à d’autres communautés, comme l’informatique théorique avec la différentia-
tion automatique, la théorie de l’information, le transport optimal et l’optimisation
stochastique. Ce domaine représente aujourd’hui une part importante de la
recherche avec 3.9% des articles qui y sont dédiés en 2019 [Zhang 2021a].

L’imagerie n’a pas été épargnée par cette vague et bénéficie depuis une dizaine
d’années des révolutions offertes par l’apprentissage, en attaquant d’abord la ques-
tion de la reconstruction des images. Les approches ont notamment essayé une tâche
attrayante en terme de modélisation : s’affranchir des modèles physiques, parfois
imparfaits, et les apprendre à partir d’un ensemble de données [Zhu 2018]. Cette
approche a récemment montré des problèmes de stabilité. Des approches hybrides
qui concentrent l’utilisation de modèles appris sur des tâches spécifiques ont en
parallèle été développées. Elles utilisent des méthodes apprises sur des problèmes
pour lesquels les méthodes guidées par la physique ont de moindres performances :
retirer le bruit, retirer des artefacts liés à un opérateur ou à une méthode de ré-
solution imparfaite. Ces approches représentent maintenant l’état de l’art et ont
permis des gains significatifs sur la qualité des images traitées. Parmi ces méthodes
mélangeant la physique et les modèles appris, plusieurs approches se distinguent,
dont quelques-unes peuvent être citées : les réseaux unrolled, les approches Plug &
Play ou encore les PINNs (Physics-Informed Neural Networks).

Après avoir permis d’améliorer l’étape de reconstruction de l’image,
l’apprentissage s’est étendu à l’ensemble des éléments qui interviennent dans un
appareil d’imagerie. Désormais, il est appliqué jusqu’à la conception de modèles
d’acquisition dont les paramètres sont optimisés pour réduire les temps d’acquisition
ou améliorer la qualité des images. Optimisés conjointement avec la méthode de
reconstruction, cela s’appelle le co-design. Cette évolution pose des questions stim-
ulantes : une partie des théories précédemment établies au XXème et début du
XXIème siècles pour des méthodes de reconstruction classiques ne sont plus valides
pour des algorithmes appris et cela ouvre la voie à un nouveau champ des mathé-
matiques. Cette vague de l’apprentissage a bien entendu aussi été rendue possible
grâce à la démocratisation des architectures massivement parallèles dont les coûts
n’ont cessé de diminuer et la puissance n’a cessé d’augmenter.

Le succès de ces modèles appris est aussi dû aux avancées en optimisation
stochastique. Le grand nombre de paramètres qui interviennent dans les modèles a
nécessité de développer des optimiseurs capables de gérer la très grande dimension
[Tieleman 2012, Kingma 2015]. Un recul d’une cinquantaine d’années montre le
vertigineux progrès fait tant d’un point de vue théorique, que matériel avec les ar-
chitectures de calcul, la grande dimension qualifiait autrefois des espaces de dimen-
sion de l’ordre de la centaine; aujourd’hui les modèles en très grande dimension vont
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jusqu’à la centaine de milliards de paramètres. Les travaux ont mené au développe-
ment d’optimiseurs marchant plus ou moins bien en pratique avec des garanties
théoriques variables. Le plupart d’entre eux font intervenir des hyperparamètres
dont les valeurs doivent être ajustées pour entraîner correctement les modèles, mais
surtout, d’un point de vue pratique, pour obtenir des performances les plus élevées
possibles. L’utilisation croissante de l’apprentissage rien que dans l’imagerie et le
déploiement de modèles de plus en plus lourds numériquement posent la question
de réduire le coût numérique de ces entraînements.

Quels sont les enjeux actuels en imagerie computationnelle ?

Plusieurs axes d’amélioration sont au coeur des prochains défis techniques à relever
en imagerie computationnelle :

Stabilité Actuellement les méthodes apprises pour des cas d’application spéci-
fique sont très dépendantes du cadre d’entraînement. Améliorer la stabilité des re-
constructeurs est un enjeu majeur pour permettre aux méthodes de passer du cadre
universitaire à des applications médicales concrètes et certifiables. L’amélioration
des méthodes de co-design est aussi un enjeu pour mettre en place des techniques
d’imagerie spécifiques aux cas d’application étudiés.

Automatisation Les hyperparamètres entrant en jeu lors de l’entraînement des
modèles impactent grandement la performance des méthodes. Ces hyperparamètres
demandent souvent un ajustement manuel, ce qui est un point bloquant à la fois
en terme de ressources utilisées, qu’en terme de temps humain passé sur des tâches
peu gratifiantes. Ce point touche des domaines beaucoup plus larges que l’imagerie
computationnelle et automatiser les méthodes d’entraînement sera au coeur des
recherches futures.

Réduction du temps d’entraînement et du volume de données
L’entraînement de modèles en imagerie computationnelle peut prendre de plusieurs
jours à plusieurs semaines. En pratique, cela rend l’application à des problèmes
réels prohibitif quand le modèle doit être réentraîné pour chaque cas d’application.
Réduire les temps d’entraînement est un enjeu crucial pour permettre l’application
dans l’industrie des méthodes développées. La grande dimension des modèles peut
aussi poser problème puisque pour les entraîner, il est nécessaire d’avoir à disposition
un grand volume de données. Pour bon nombre d’applications, et particulièrement
dans le domaine biomédical, les jeux de données sont limités et l’imagerie computa-
tionnelle nécessitera de réduire la dépendance à ce grand volume de données pour
l’entraînement des modèles.
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Contributions

Guidé par les enjeux précédemment exposés, j’ai traité dans cette thèse quelques as-
pects de l’imagerie computationnelle avec un accent sur la méthodologie. L’objectif
est de proposer des améliorations dans le domaine du co-design, de la reconstruction
et de l’optimisation de modèles appris avec des outils récents de l’apprentissage et
du calcul parallèle. Tout au long de ce manuscrit, plusieurs cas d’application sont
étudiés : la tomographie computationnelle (computed tomography, CT en anglais),
le défloutage et une attention particulière est portée à l’IRM. Les contributions sont
résumées ci-après.

Co-design

Récemment plusieurs travaux ont été proposés pour l’optimisation hors grille de
points dans l’espace de Fourier pour de l’échantillonnage optimal en IRM. D’un
point de vue pratique, les itérées produites demandent beaucoup d’itérations pour
converger et sont très dépendantes de l’initialisation.

Contributions

• Une analyse des minimiseurs dans le cadre de l’échantillonnage optimal
non-uniforme de Fourier (Chapitre 2).

• Motivé par les travaux existants reposant sur la théorie de
l’échantillonnage, et à l’aide de l’optimisation bayésienne, une méthode
de globalisation de l’optimisation de schémas pour l’IRM est proposée
(Chapitre 3).

Reconstruction par réseaux de neurones

Les réseaux unrolled sont entraînés pour des cas d’application spécifique et montrent
une forte instabilité dès lors que l’opérateur du terme d’attache aux données est
changé.

Contributions

• Nous montrons que non seulement le réseau gagne en stabilité, mais
que pour des reconstructeurs bien construits, il n’y a pas de perte sig-
nificative à entraîner une méthode de reconstruction sur un ensemble
d’opérateurs.

• L’entraînement sur une famille d’opérateurs permet de résoudre
plusieurs problèmes inverses aveugles avec des reconstructeurs unrolled.
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Optimisation de réseaux de neurones

Une partie des travaux récents en optimisation stochastique consiste à appliquer un
terme correctif sur le pas de méthodes d’optimisation pour des réseaux profonds.
Ces méthodes nécessitent un pas donné par l’utilisateur à l’algorithme, ou calcu-
lent un pas automatiquement mais seulement à chaque passage sur l’ensemble des
données.

Contributions

• Un algorithme permettant de calculer la courbure d’une composition de
fonctions en un coût plus faible que les méthodes existantes est proposé.

• Dans le cadre de cet algorithme, un paramètre de pas intervient dont
une interprétation physique est donnée.

• Cela permet d’introduire une méthode réalisant une mise à l’échelle
automatique du pas à chaque itération.

Plan du manuscrit

Ce manuscrit est divisé en 5 chapitres. Le premier chapitre est une introduction
à l’imagerie computationnelle et illustre à travers le cas de l’IRM les évolutions
ayant guidé ce domaine. Il contient aussi une introduction pédagogique aux prob-
lèmes inverses et aux méthodes de reconstruction associées. Cette introduction
retrace les premières méthodes de reconstruction linéaires, l’apparition de méth-
odes non linéaires et les méthodes récentes de reconstruction apprises à l’aide de
réseaux de neurones. Les chapitres suivants reposent sur différentes publications ou
prépublications et, bien que des liens soient faits dans ces chapitres entre eux, ils
peuvent se lire indépendamment les uns des autres. Le second chapitre traite des
minimiseurs parasites dans l’optimisation de schémas d’échantillonnage de Fourier
dont la motivation est l’optimisation de schémas d’échantillonnage pour l’IRM pour
une méthode de reconstruction choisie et pour une base de données d’images spé-
cifique. Ce chapitre montre que ce type de problème a un nombre combinatoire
de minimiseurs qui peuvent disparaître avec le grand nombre d’images mais que
les bases de données classiques d’IRM ne contiennent pas assez d’images pour es-
pérer voir apparaître ce phénomène. Le troisième chapitre propose une méthode
de globalisation de la convergence pour l’optimisation de schémas de Fourier. Cela
permet de grandement réduire le coût numérique de l’optimisation tout en con-
servant un gain dans l’amélioration des images. Le quatrième chapitre traite de
l’entraînement de réseaux de neurones unrolled adaptatifs à des changements dans
la physique de l’acquisition. Ce formalisme permet de résoudre plusieurs problèmes
inverses aveugles. Enfin, le cinquième chapitre traite des méthodes d’optimisation
pour des réseaux de neurones de manière générale. Il propose une méthode per-
mettant d’introduire une mise à l’échelle du pas pour l’optimisation de réseaux de
neurones. Cela ouvre la voie à une automatisation du choix des hyperparamètres
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lors de l’entraînement.
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Chapter 1

General introduction

Résumé Ce chapitre introduit les principaux outils intervenant dans les problèmes
inverses à travers l’exemple de l’imagerie par résonance magnétique (IRM). La pre-
mière partie traite du fonctionnement d’un scanner IRM, elle donne une description
de l’histoire des scanners IRM, un modèle simplifié et les défis computationnels pour
la reconstruction d’images IRM ainsi que pour les problèmes de co-design. La sec-
onde partie est une introduction pédagogique aux problèmes inverses et aux méth-
odes de reconstruction qui y sont associées avec des illustrations numériques et des
liens renvoyant vers les codes Python. Elle explique les principales tendances dans
le choix de bons a priori pour régulariser les problèmes inverses, leurs avantages
et inconvénients. Les algorithmes d’optimisation utilisés pour entraîner les réseaux
de neurones profonds sont aussi présentés et quelques enjeux autour du choix des
hyperparamètres. Des questions ouvertes sont posées, dont certaines sont traitées
dans les chapitres suivants.

Abstract This chapter gives the main tools involved in inverse problems for
imaging through the example of Magnetic Resonance Imaging (MRI). The first
part deals with the operation of an MRI scanner, it gives an history overview, a
simplified model and the computational challenges in MR reconstruction as well as
in co-design problems. The second part is a pedagogical introduction to inverse
problems and their associated reconstruction methods with numerical illustrations
and links to Python code. It explains the main trends in the choice of good priors to
regularize inverse problems, their pros and cons. It also introduces the optimization
algorithms used to train deep neural networks and some of the issues with the choice
of their hyperparameters. Open questions are stated and some of them are tackled
in the following chapters.
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1.1 Introduction to Magnetic Resonance Imaging

This first part gives the operation of an MRI scanner, a simplified model and the
computational challenges. The two first sub-sections are self-contained and the
hurried reader can skip it.

1.1.1 History overview

Over the past four decades, MRI scanners have become a crucial tool in the diagnosis
of many diseases and in cognitive research. Due to their non-invasive and harmless
nature, they have enabled many scientific advances by allowing to image the interior
of a body without the need for surgery. The MRI scanners used in medical imaging
today are the culmination of a huge amount of works, the theoretical foundations of
which came from discoveries in Nuclear Magnetic Resonance (NMR) in the first half
of the 20th century. The first works to tackle the issue of imaging biological tissue
were published in the 1970s. Raymond Vahan Damadian was the first to propose to
improve cancer diagnosis by using a device to characterize healthy tissue from tu-
mor tissue. This method was based on the different magnetic response of cancerous
tissue from that of healthy tissue. Subsequently, other works addressed the prob-
lem of observing an image of the human body [Lauterbur 1973, Mansfield 1977]. It
was for these works, which made it possible to localize information in space, that
Paul Lauterbur and Peter Mansfield were awarded the 2003 Nobel Prize in Physi-
ology or Medicine. From 1975 onwards, the technology used in contemporary MRI
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scanners was introduced by Richard Ernst. It is based on the frequency and the
phase encoding. This technology, which is described in the Section 1.1.2, makes it
possible to construct acquisition sequences locating information in 3D. Finally, the
following decade saw the commercialization of the first scanners. For research which
foundations are complex, the industrial-scale application of scanners is remarkable,
with only 10 years separating the founding work from its application in commercial
scanners.

Figure 1.1: Raymond Vahan Damadian presenting his invention at a press confer-
ence in 1977. Credit: Copyright Bettmann/Corbis /AP Images (http://cen.acs.org)

(a) A conventional 1.5T MRI scan-
ner (Philips scanner). Credit:
Jan Ainali, (CC BY 3.0),
https://commons.wikimedia.org/wiki/
File:MRI-Philips.JPG

(b) A new generation of MRI scan-
ner that fits on wheels and use a low
power magnetic field of 64mT (Hyper-
fine Swoop scanner). Credit: Hyperfine
https://hyperfine.io/

Figure 1.2: Two types of contemporary MRI scanners.
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1.1.2 The physics behind the acquisition

The operation of MRI scanners is based on subtle concepts of Nuclear Magnetic
Resonance. Although there are many ways of performing the acquisition, the sim-
plest way of doing it is outlined below. Some details are omitted, the aim being
to introduce the simplified mathematical framework. For more information, the
excellent website “Questions and Answers in MRI”1 gives all the details and the
physics associated with MRI. A good explanation of the exploitation of the reso-
nance phenomenon in MRI is also given in [Idy-Peretti 2009].

Before describing how an MRI scanner works, let us recall some basic principles
of Nuclear Magnetic Resonance. Nuclei have a spin, an electromagnetic property
that describes the orientation of their polarization. This spin is represented as
a vector in 3D and its strength has different states which, at the scale of these
particles, are all discrete. When a magnetic field is applied to nuclei, the spins
align themselves along the direction of the magnetic field. It is this effect that is
widely exploited by MRI scanners to measure the response of a sample to magnetic
field stresses.

MRI scanners use the magnetization of hydrogen atoms (single proton) because
they are present in large numbers in living tissue, and their proportion varies accord-
ing to the nature of the tissue. Once the density of these atoms can be measured,
it is possible to characterize the tissues making up an image. The whole purpose of
an MRI scan is to find the density of the protons which are excited. These protons
are excited with magnetic fields and it is the response over the whole, or part of
the volume, that is measured. Of course, the response of the entire volume is of no
use since it is not possible to spatially localize the information. This is where all
the engineering and complexity of MRI scanners enters the game to allow the im-
age associated with the imaged volume to be recovered from the measured signals.
The remainder of this sub-section is dedicated to explaining the main components
involved in the physical phenomenon exploited by MRI scanners, and to give a
schematic explanation of how the signals are measured.

1.1.2.1 Main components of an MRI scanner

In a simplified form, an MRI scanner has 4 main components: a main magnetic
field, gradient coils, radiofrequency (RF) coils and receiving antennas.

Primary magnetic field A main magnetic field, denoted B0, is applied to the
whole scanned volume and it is aligned in the ez direction. This uniform magnetic
field aligns the spins in the ez direction. Its typical strength is of the order of 1T
on conventional scanners and on a new generation of scanners it is decreased to
∼ 60mT (see Figure 1.2).

1https://www.mriquestions.com/

https://www.mriquestions.com/
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Gradient coils There are several groups of gradient coils – in a simplified form
three, each corresponding to an axis. The magnetic fields induced by each of these
groups of coils is aligned with the corresponding axis and the strength varies along
each axis (typically 15 to 45mT/m on conventional scanners). The z gradient
coils create an additional magnetic field aligned with B0 and with an amplitude
increasing linearly along the z axis. The superposition of these two fields gives a
total field with an intensity that varies according to the z axis. The next section
explains how this varying magnetic field allows selecting a slice to excite. This is
called frequency encoding. The other gradient coils on the x and y axes allow the
phase to be modified. These coils are involved in the phase encoding, as opposed to
the frequency encoding performed by the z gradient coils.

Radiofrequency coils The RF coils generate an oscillating magnetic field B1
which is orthogonal to the B0 magnetic field. These radiofrequency coils emit
signals for a short period of time to change the orientation of the protons spin. The
field B1 oscillates at a frequency ωRF . The strength of such field is of the order of
∼ 10mT.

Receiving antennas Traditionally, RF coils also acted as receivers to measure
the response. They are now tending to be replaced by coils dedicated to receiving
the signal and are placed all around the volume to be scanned.

1.1.2.2 Acquisition

Now that the various elements involved in the signal acquisition of an MRI scanner
have been introduced, we describe how the acquisition is performed. Figure 1.3
gives schematically the main elements of an MRI scanner and an example of a
phase shift profile in the (x, y) plane.

Slice selection First an MRI scanner selects a slice to image. It takes advantage
of a phenomenon called precession which occurs when the spins are oscillating and
that they are subject to a constant magnetic field. This precessional movement is
similar to a spinning top that spins fast but which axis of rotation varies over time,
describing circles. The frequency of this motion is called the Larmor frequency. It
is proportional to the strength of the magnetic field through the relation:

ωL = γB (1.1)

with ωL the Larmor frequency [Hz], γ the gyromagnetic ratio [Hz/T] which depends
on the type of nuclei that is excited and B the magnetic field strength [T]. As the
intensity of the magnetic field B varies along the z axis, the Larmor frequency
ωL also varies. When the RF coils generate the B1 magnetic field, only the spins
that have a Larmor frequency ωL close to ωRF are excited and align with B1.
This allows performing a slice selection and measuring the response only in a (x, y)
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B0

z gradient field

slice selectionphase shift

x gradient coils

y gradient coils
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z

Figure 1.3: Main components of an MRI scanner. The primary field B0 is uniform
(brown), and the space varying field is generated using the gradient coils in z (blue).
This allows selecting a slice which protons inside are precessing at a given frequency
ωL. The x and y gradient coils create a phase shift in this plane (green and red).

plane. Depending on the z gradient field that is generated, the selected slice can be
displaced along the z axis.

Relaxation Once the spins are aligned in the (x, y) plane, the signal of the RF
coils stops. The spin of the protons then perform the precessional movement. This
movement generates a magnetic field that is measured by the receiving antennas
located around the scanner. Note that in practice, during the excitation and re-
laxation, it is never all the spins that align with the magnetic field but only a tiny
portion. As in the absence of a magnetic field, the spins are disordered and as it is
the average over the whole volume that is measured, the contributions of the spins
that do not align with the magnetic field are on average null.

Phase encoding During the relaxation, the x and y gradient coils are used to
change the phase shift of the spins inside the slice. As the magnetic field generated
by the x and y gradient coils varies in space, it allows changing the strength of the
total magnetic field with respect to the position in the (x, y) plane. This change of
the strength of B makes the Larmor frequency change with respect to the position in
the (x, y) plane. The spins are not precessing at the same frequency and it induces
a phase shift between the spins in the plane. Once the x and y gradient fields are
stopped, the spins recover their initial precessing frequency and the phase shifts no
longer change. This allows measuring the response of the slice for a given phase
shift. This process is repeated between each measure during the relaxation in order
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to change the phase shift over time. It provides different informations which are
then used for the reconstruction. In the next section we explain that this phase shift
corresponds exactly to the term of a Fourier transform and that varying this phase
over time corresponds to varying the frequency measured by the Fourier transform.

Shot The process of excitation followed by relaxation is called one shot. During
an MRI scan, this procedure is repeated several times to get enough samples to
reconstruct the image. It is also repeated for the different slices in order to image
a 3D volume with a set of 2D images.

1.1.3 A simplified model

The objective of this part is, from the previously introduced physical representation,
to give the relations between the signals measured by each antenna around the
scanner and the image to be recovered, i.e. the density of the protons over space.
Effects such as the power decrease over time of the received signal [Fessler 2010] are
deliberately left aside.

Continuous model If we let φ(x, y, t) ∈ C denote the phase shift at time t with
respect to the position in space (x, y), and if we index by 1 ≤ i ≤ I the antennas,
the i-th antenna receives the signal

yi(t)
def=
∫

R2
f(x, y)σi(x, y)φ(x, y, t)dxdy (1.2)

with f the unknown image and yi(t) the signal measured at time t. The term σi(x, y)
is called a sensitivity map and it expresses the sensitivity of the i-th receiving coil
over space. Each antenna receives more or less signal associated with a position
(x, y), depending on the distance at which the coil is placed. This map is typically a
very regular function with a modulus decreasing with the distance to the antennas.
As the sensitivity of the antennas decreases with the distance, and as scanners are
often equipped with a Faraday cage preventing external signals from penetrating
inside, the integration domain can be reduced to a rectangle around the measured
volume Ω ⊂ R2.

We recall that the phase shift φ(x, y, t) is generated by the x and y gradient
coils. It takes the form of a complex exponential and it is therefore written

φ(x, y, t) = e−i(xξ(x)(t)+yξ(y)(t)) (1.3)

with ξ(x)(t) and ξ(y)(t) the frequencies with respect to the axes x and y at time
t. The functions ξ(x) and ξ(y) describe the trajectories in the Fourier domain.
These trajectories satisfy constraints related to the physics of the scanner which
are detailed in Chapter 3.
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Discrete model In practice the signal yi(t) is integrated by the scanner and it is
discretized over time in such a way thatM measurements are available (yi[m])m≤M .
By discretizing (1.2) at the different time steps, the model is then written

yi[m] =
∫

Ω
f(x, y)σi(x, y)e

−i
(
xξ

(x)
m +yξ(y)

m

)
dxdy. (1.4)

The frequencies (ξ(x)
m , ξ

(y)
m ) correspond to the discretization of the trajectory t 7→

(ξ(x)(t), ξ(y)(t)). An analysis of the effects of the discretization and the integration
is given in [Lazarus 2020a].

For the moment the quantities f and σi are continuous. However, from a nu-
merical point of view, they are represented by matrices of size Nx × Ny denoted
respectively u and si. We therefore choose to model them using an interpolation
function ψ : R2 → R and the relationship between the continuous and discrete
version reads

f =
(

N∑
n=1

δpnu[n]
)
? ψ (1.5)

σi =
(

N∑
n=1

δpnsi[n]
)
? ψ (1.6)

where N = Nx × Ny and u ∈ CN (resp. si ∈ CN ) is the discrete representation
of f (resp. σi). The vector pn corresponds to the positions on the 2D grid, i.e.
pn ∈

q
−Nx

2 ,
Nx
2 − 1

y
×

r
−Ny

2 ,
Ny
2 − 1

z
and the pixels of u and si are aligned on this

grid.
By replacing the continuous terms by their discrete version in (1.4) and letting

ξm = (ξ(x)
m , ξ

(y)
m ) denote the m-th sampling point, we get

yi[m] = κ(ξm)
N∑
n=1

u[n]s[n]e−i〈pn,ξm〉. (1.7)

The function κ is the Fourier transform of ψ. In practice the constant interpolating
function is chosen in this manuscript. It aligns the points pn on the bottom-left of
each pixel:

ψ(x, y) def= 10≤x≤1 × 10≤y≤1 (1.8)

which yields

κ(x, y) = κ̃(x)κ̃(y) with κ̃(x) def= −e−ix/2sinc(x/2). (1.9)

To generate phase shifts with a wavelength of the order of a pixel (distance
between the adjacent points pn) in the image space, we can see in (1.7) that the
magnitude of the frequencies must go up to π. The frequencies being included in
[−π, π]2, the term κ does not vary much, but above all it can be easily corrected
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on the measured signals so as to eliminate it in the equations. Henceforth we will
ignore it as it does not drastically change the model. By removing this dependence,
we identify in the forward model (1.7) a Non-Uniform Fourier Transform (NUFT)
and the equation can be written in matrix form as

yi = A(ξ)Siu (1.10)

where Si is a diagonal matrix associated to the ith sensitivity map Si =
diag(si[n])1≤n≤N and A(ξ) : CN → CM is the non-uniform Fourier transform at
frequencies ξ ∈

(
[−π, π]2

)M ⊂ R2M with

ξ
def= (ξm)1≤m≤M . (1.11)

1.1.4 Different issues

From a mathematical point of view, the problem of acquiring an image from an
MRI scanner can be broken down into two main parts:

• The choice of the frequencies (ξm)m≤M , also called k-space sampling.

• The reconstruction of the image ũ ∈ CN from the measurements y ∈ CM .

These two problems are briefly described below from a historical perspective
before being detailed later in this manuscript. Chapter 3 contains explanations on
how existing methods [Lazarus 2019] generate sampling schemes for MRI scanners
while taking into account the constraints of the scanner physics. This method is then
used as a reference for comparisons in Chapter 3. The issue of image reconstruction
is addressed in Section 1.2 from a more general perspective of inverse problems and
several applications are given.

1.1.4.1 Computation of the forward model

Depending on the application, the computation of the matrix-vector product A(ξ)
may be expensive. Advances in algorithmic theory as well as hardware technologi-
cal progress have allowed the development of computational imaging by processing
more and more resolved images. The Fast Fourier Transform (FFT) is a perfect
example of this. The Cooley and Tukey’s algorithm made it possible to calculate ap-
plications that took O(N2) operations in only O(N log(N)) thanks to a divide and
conquer algorithm and an optimized implementation [Cooley 1965]. Subsequently,
its variants have allowed computational imaging to expand its fields of application,
for example by handling the case of non-uniform Fourier samples with a complexity
approaching that of the FFT. In the case of MRI, these advances make it possible
to develop trajectories that take full advantage of the potential offered by the scan-
ner by using off-the-grid trajectories. In this subsection, we compare some of the
existing libraries for performing Non-Uniform Fourier Transforms (NUFT).
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Figure 1.4: Computing time of a NUFT using different librairies on 320 × 320
images with 10% undersampling (∼ 104 points) and different batch sizes. This
benchmark is performed on a workstation that has 28 Intel Xeon W-2275 CPU @
3.30GHz and an Nvidia Quadro RTX 5000 GPU. The NFFT [Keiner 2009] runs
on CPU and the cuFINUFFT [Shih 2021], kbnufft [Muckley 2020b] and PyKeOps
[Charlier 2021b] based NUFT run on GPU. The bindings are available at https:
//github.com/albangossard/Bindings-NUFFT-pytorch.

Several implementations of the NUFT exist. The first effective implementa-
tions date back to the work of [Fessler 2003] and [Greengard 2004]. Subsequently
[Keiner 2009] proposed another implementation which was officialized through a
library widely distributed on computer systems. This work was based on CPU
computation, limiting the application to a limited number of images. Afterwards,
GPUs opened the way to parallelization and GPU implementations of [Fessler 2003]
were proposed in [Lin 2018, Muckley 2020b]. Another implementation with a dif-
ferent interpolation was also proposed in [Shih 2021].

All these implementations rely on careful choices of interpolants and propose
an approximation of the NUFT to a precision chosen by the user. The democ-
ratization of GPUs has been followed by an intensive development of libraries
allowing to develop GPU codes on high-level languages [Okuta 2017, Lam 2015].
Recently, [Charlier 2021b] has proposed a high-level library allowing GPU com-
putation through symbolic operations. This library takes advantage of reduction
operations to exploit the full potential of GPUs. In practice, this allows the im-
plementation of a wide range of operations with an O(N2) complexity, but which,
thanks to massively parallel computing, run at a speed that is slightly worse than
other libraries using more complex strategies. More importantly, this makes it pos-
sible to implement complex operations very easily and it also supports automatic
differentiation. Figure 1.4 gives a comparison of the computing time of different
existing libraries [Keiner 2009, Shih 2021, Muckley 2020b] and of this naive imple-
mentation.

https://github.com/albangossard/Bindings-NUFFT-pytorch
https://github.com/albangossard/Bindings-NUFFT-pytorch
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1.1.4.2 Image reconstruction

The first algorithms used to reconstruct images were inspired by CT-scan (computed
tomography) and used back-projection A(ξ)∗ to map signals in the Fourier domain
to the image space [Lauterbur 1973].

This back-projection makes sense when the frequencies are located on a grid
(see Section 1.2.1.2) and therefore the columns of A(ξ) are orthogonal. As soon as
this property is no longer verified, the performance of this reconstruction method
collapses and it is then necessary to consider variational approaches [Fessler 2010].
The latter consist in minimizing the sum of a data fidelity term and a regularization
term given by the prior on the image to be reconstructed. Non-linear reconstructors
such as the ones promoting sparsity fall into this category. They are detailed in
Section 1.2.1.

From the second half of the 2010s onwards, another class of reconstructors has
emerged: learned reconstructors. These are reconstruction methods that use a
neural network to denoise the image or remove reconstruction artefacts. Perhaps the
most advertised of these in MRI is AUTOMAP [Zhu 2018] which builds a mapping
from the sensor data to the reconstructed image. Other approaches consisting in
using a coarse inversion of the operator followed by a denoising neural network also
exist. These types of approaches were then supplanted in terms of performance by
other methods inspired by classical variational methods called unrolled networks.
They consist in replacing the denoising term, usually built from a prior on the image,
by a neural network which weights are optimized [Diamond 2017, Adler 2017]. This
approach is detailed in Section 1.2.4.4.

Through this manuscript we will consider reconstruction algorithms. We define
them in the following definition.

Definition 1 (Reconstructor). Let R(y,A(ξ), θ) denote a reconstruction algorithm
which inputs are

1. the vector of measurements y,
2. the forward operator A(ξ),
3. the parameters θ of this reconstructor.

The output is the reconstructed image x̃ = R(y,A(ξ), θ).

This framework applies both to classical non-learned priors and to learned re-
constructors that involve neural networks (see Section 1.2).

1.1.4.3 The choice of the k-space sampling

As for each slice of a 3D image, a scanner measures the Fourier transform of a
2D image for a set of M frequencies (ξm)m≤M , the question of choosing these
frequencies can be tackled using information theory. For integer frequencies
(i.e. frequencies located on a grid), Shannon’s theory guarantees that a sig-
nal can be recovered as soon as it is sampled at twice its maximum frequency
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Figure 1.5: Main trends in sampling theory since the 1940s: it started with the
Shannon-Nyquist theorem at the end of the 1940s, compressed sensing has emerged
in the 2000s and nowadays learning challenges the existing theories.

[Kotelnikov 1933, Shannon 1949, Shannon 1948]. This theory was developed at the
end of the 1940s and the main trends in sampling theory are summarized in Fig-
ure 1.5. It has motivated the development of acquisition sequences that allow the
generation of phase shifts with spatial frequencies that are aligned on a grid, such
as the Echo Planar Imaging (EPI) sequence [Schmitt 2012]. From a theoretical
point of view, progress has been made on non-uniform sampling [Feichtinger 1994]
and generalizations of Shannon’s theorem have been obtained [Marvasti 2012]. This
theory is now mature and it gives theoretical results on how to choose an optimal
sampling scheme for bandlimited signals2 and linear reconstructors.

One of the major challenge in MRI is to reduce acquisition times without de-
grading the quality of the reconstructed image. As the total scan time is related
to the number of spin excitation cycles, the aim is to reduce the number of fre-
quencies measured for each slice. From the 1980s onwards, it was observed that
acquisition times could be decreased by reducing the number of acquisition points
without compromising too much the reconstruction. In the early 2000s, the field of
compressed sensing provided a theoretical framework for these observations, giving
a major boost to research in this area [Candès 2006, Lustig 2005]. The seminal
works were based on the restricted isometry property (RIP) or on the incoherence
between the measurements. However it soon became evident that these concepts
were not suited to the practice of MRI and that the important gains were actu-
ally based on the local coherence principle [Adcock 2017, Boyer 2019]. The main
conclusion of these works is that a good sampling scheme should satisfy a certain
density that varies with the position in the k-space. In particular, low frequencies
must be sampled densely enough to meet the Shannon criterion at the center and

2A bandlimited signal is defined as a signal with a Fourier transform that has bounded support.
With a slight abuse of language, in MRI it is the Fourier transform of the signal that is bandlimited.
This hypothesis is respected as long as the scanner receivers are not exposed to responses outside
the scanned volume.
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the density is allowed to decrease in the high frequencies.
These theories have led to the development of methods that generate sampling

schemes by minimizing the distance between two probability measures: the first is
a target density ρ and the second is a sum of Dirac masses at the sampling positions
ξm. Mathematically this reads

inf
ξ∈Ξ⊂([−π,π]D)M

dist
(
ρ,

1
M

M∑
m=1

δξm

)
(1.12)

where D is the dimension, here D = 2. The set Ξ is the constraints set associated
with the positions of the points along the trajectories. These constraints are detailed
in Chapter 3.

This formalism has led to several works [Boyer 2016, Chauffert 2017,
Teuber 2011] and has been developed up to the implementation on MRI scan-
ners [Lazarus 2019, Lazarus 2020b]. Note that other authors also proposed
a similar approach to optimize the distance between measures on manifolds
[Teuber 2011, Gräf 2012] and this formalism is also known in image processing as
electrostatic halftoning [Schmaltz 2010, Gwosdek 2014]. In (1.12), the Wasserstein
distance could also be used and in this case the problem fits into the class of opti-
mal transport problems [Lebrat 2019]. The choice of the density ρ is motivated by
theoretical considerations such as the respect of the Shannon criterion in the low
frequencies.

A new trend consists in changing the distance in (1.12) by a metric governed by
the data. The acquisition points are no longer optimized to meet a certain density
but directly learned from the output of the reconstruction algorithm. The problem
(1.12) is replaced by

inf
ξ∈Ξ⊂([−π,π]D)M

E [η (x,R(A(ξ)x,A(ξ), θ))] (1.13)

where η is an image quality metric and x is a random variable representing the
reference images that comes from an image database. We recall that the vector θ
represents the parameters of the image reconstruction mapping.

This approach has been at the heart of many works since the mid-2010s. They
can be broken down into three main categories: methods based on subset selections,
mask optimization and gradient based methods that optimize the position of the
sampling locations continuously. The first approaches were based on the selection
of subsets from a set of fixed patterns. The combination of trajectories leading to
the best reconstruction is selected by a greedy algorithm that builds the k-space
iteratively [Baldassarre 2016, Gözcü 2018]. This type of algorithm has the huge
drawback of having a bad scaling with the dimension. Other works were then
proposed to improve the scalability using stochastic optimization [Sanchez 2020],
`1 penalization and bi-level programming [Sherry 2020] as well as bias-accelerated
subset selection [Zibetti 2021]. The first work to then extend the optimization of
sampling schemes to joint optimization with the reconstruction method is [Jin 2019].
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Paper Scaling Off-
the-
grid

Points Lines `1

recon.
Deep
recon.

Linear
recon.

Joint
optim.

Self-Supervised Deep
Active Accelerated MRI
[Jin 2019]

∼ 7 7 3 ◦ 3 ◦ 3

Greedy approaches
[Baldassarre 2016,
Gözcü 2018]

7 7 3 3 3 3 3 7

Fast greedy approaches
[Sanchez 2020,
Zibetti 2021]

3 7 3 3 3 7 3 7

Bilevel MRI [Sherry 2020] ∼ 7 3 3 3 7 ◦ 7

J-MoDL [Aggarwal 2020] ∼ 7 3 3 ◦ 3 ◦ 3

LOUPE [Bahadir 2020] 7 7 3 3 ◦ 3 ◦ 3

PILOT [Weiss 2021] 7 3 3 3 ◦ 3 ◦ 3

BJORK [Wang 2022a] 7 3 3 3 ◦ 3 ◦ 3

Table 1.1: Comparison of different data-driven sampling schemes optimization. The
symbol ∼ means questionnable. The symbol ◦ indicates that no results were re-
ported with this approach, but that it can be easily incorporated within the frame-
work.

This consists in modifying the problem (1.13) to also minimize with respect to the
parameters θ involved in the reconstruction algorithm R. In a similar spirit to
[Sherry 2020], [Bahadir 2020] proposes to learn a sampling pattern by optimizing a
mask allowing the selection of the frequencies in the Fourier domain but in addition
to existing works, they use a neural network in the reconstruction method.

Another class of methods is based on the optimization of the position of the
points by making them evolve off-the-grid. The first paper to propose this ap-
proach is [Aggarwal 2020] where the constraints are handled by fixing patterns
on a specific structure (aligned on lines for example). Other works then in-
vestigated the optimization of the points position by letting them evolve freely
[Weiss 2021, Wang 2022a]. The constraints are satisfied by solving a travelling
salesman problem for [Weiss 2021] and by using a penalty in the cost function for
[Wang 2022a]. A summary of the different existing works and their comparison is
given in Table 1.1.

What is important to remember is that in most recent works, the authors pro-
pose to learn the sampling scheme jointly with the weights of a neural network that
makes up the reconstructor R. Although the formulation seems simple, solving this
problem is a real computational challenge. Indeed, if a gradient-based optimization
method is used, the reconstruction method R has to differentiated w.r.t. ξ and all
the intermediate variables that depend on A(ξ) have to be stored. Even if these
computational problems are solved with modern computing capabilities, such for-
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mulation may be impossible to solve due to a combinatorial number of minimizers,
which is the subject of Chapter 2. Chapter 3 proposes a method that drastically
reduces the numerical cost of the resolution of (1.13).

Open questions

• Are there issues in off-the-grid data-driven optimization of Fourier sam-
pling schemes?

• How to globalize the convergence in Fourier sampling optimization?

1.2 Image reconstruction for linear inverse problems

This section is a gentle introduction to inverse problems for imaging and the existing
reconstruction methods. It starts from the very beginning of image reconstruction
and goes to the recent advances that combine knowledge of physics and learned
priors. First, we recall the definition of an inverse problem and we give three
application cases: deblurring, reconstruction of MR images and CT scans. Then
we explain how to recover the unknown quantity from the observations with classical
approaches that involve hand-crafted priors. In a third part, we explain how to train
deep neural networks and we give some of the main stochastic optimizers with open
questions on the choice of the hyperparameters. This section ends with learned
priors: operator and parameters learning through bilevel programming, plug&play
(P&P) approaches, approximation inverse, unrolled networks and generative priors.

1.2.1 Introduction to inverse problems for imaging

Inverse problems consist in finding a quantity x from a vector of measurements
y. This quantity and its associated measurement are related through an operator
which in many applications is linear. This type of problem appears in many different
domains, of course in medical imaging (microscopy, MRI, CT scans), but also in
geology (seismic wave measurement) and in space observation (measurement of a
quantity on the ground from satellite observations). Throughout this thesis, we
focus on applications for biomedical imaging where x represents a 2D image and
where the forward operator that maps the quantity x to the measurement y is linear.

1.2.1.1 Inverse problem

Many image acquisition systems can be modelled by a linear operator:

y = A(ξ)x+ ε (1.14)

where x is the image or volume to be measured and ε is a random variable modelling
the noise. The operator A is parameterized by a vector ξ which corresponds to
the physical characteristics of the acquisition system. It can be for example the
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frequencies acquired in the Fourier domain for MRI or the angles in CT-scan. The
question then arises of recovering x from y which is an inverse problem.

Definition 2 (Inverse problem).

Given the observation y ∈ CM , we seek to find x̃ ∈ CN such that y = A(ξ)x̃.
(1.15)

In general, the quantity to recover x̃ ∈ CN lives in a space of much greater
dimension than the observation vector y ∈ CM . The noise can also be outside of
the range of A(ξ). This leads to an under-determined system and the solution, if it
exists, is not unique. This problem is difficult, especially as the measurements are
often contaminated by noise.

Definition 3 (Well-posed problem). An inverse problem is said to be well-posed if
it verifies the three following conditions:

• Existence: there exists a solution to problem (1.15).

• Uniqueness: the solution of the problem (1.15) is unique.

• Stability to small perturbations: a small perturbation of y induces a small per-
turbation of x̃.

In practice the problem (1.15) is seldom well-posed, due to either the dimen-
sionality issue M 6= N , or the conditioning of A(ξ) (stability). These issues can
be solved by regularizing the problem. The problem of recovering x from y can
be formalized as a minimization problem, and regularizing consists in adding a pe-
nalization term R : CN → R ∪ {+∞} to the function which is minimized. This
regularization can be equal to +∞ to enforce constraints on the solution x̃.

x̃
def= arg min

x∈CN
F (x) +R(x) with F (x) def= 1

2‖A(ξ)x− y‖22. (1.16)

The function F is the data fidelity term. The regularization term R is called a prior
since, depending on the term chosen, it influences the image obtained when solving
(1.16). The minimization of the data fidelity term alone enforces the existence and
a good choice of regularizer ensures the uniqueness. The choice of the regularization
term has been the subject of an impressive amount of works over the last 30 years.
Before giving common regularizations, we introduce hereafter examples that drive
this section.

1.2.1.2 Examples of forward operator

Throughout this chapter we introduce three different inverse problems: deblurring,
MR image reconstruction and computed tomography (CT).



1.2. IMAGE RECONSTRUCTION FOR LINEAR INVERSE PROBLEMS 29

Deblurring We first recall the definition of the convolution in the continuous
setting.

Definition 4 (Convolution). For t ∈ R, the convolution product between two func-
tions ξ and x is defined by

y(t) =
∫

R
ξ(u)x(t− u) du. (1.17)

In the discrete setting, the non-periodic convolution for a kernel ξ of size J
writes

y[i] =
J∑
j=1

ξ[j]x̄[i− j]

with x̄ the signal which is equal to x on the interval where x is defined, and which
is eventually padded with zeros to handle the boundaries. Letting % denote the
division remainder, the periodic convolution for a kernel of size J is defined as

y[i] =
J∑
j=1

ξ[j]x[(i− j)%N ]. (1.18)

Proposition 1. If F denotes the Fast Fourier Transform (FFT) on vectors, the
periodic convolution can be computed using 3 FFT:

y = v ? u = F−1(F(v)F(u))

This is of great importance in deblurring. Indeed, there are different kinds of
blur depending on the physical system that is modelled (for example fixed blur or
space varying blur [Sawchuk 1972]). In the simplest case of a fixed blur, the forward
model consists in convolving the image x with a kernel ξ:

y = A(ξ)x = ξ ? x

which can be efficiently computed in the discrete case using the FFT.

MRI We have seen in Section 1.1.3 that an MRI scanner allows measuring the
Fourier transform of an image along trajectories in the Fourier domain. In the
particular case where the frequencies are aligned on a grid, the application of A(ξ)
to an image can be computed using the FFT. The scanner measures a set of M
frequencies on a grid defined by ξ among the N possible frequencies of the standard
FFT:

A(ξ) = M(ξ)F

where M(ξ) is a diagonal matrix which plays the role of a mask and with diagonal
element i equals to 1 if the i-th frequency lies in ξ and 0 otherwise.

In practice, on most MR technologies the constraints on the trajectories in the
Fourier domain prevents the measured frequencies to be aligned on a grid. We
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Figure 1.6: Example of trajectories for MRI with 10% undersampling (in comparison
to the fully sampled scheme on the Shannon grid). On the left the scheme in the
Fourier domain and on the right a zoom. The grid represents the fully sampled
Shannon grid (on-the-grid frequencies).

say that the frequencies are off-the-grid. We refer the reader to Section 1.1.4.1 for
details concerning the computation of A(ξ) in this case. In Figure 1.6 an example
of trajectories in the Fourier domain are given: the measured frequencies are far
away from being defined on a grid.

Computed Tomography (CT) A CT scanner works as follows: rays are sent
through tissues which internal compositions are to be measured and the intensities
of the rays on the other side of the scanned volume are measured by a sensor array.
There are several technologies for tomography and two of them stand out:

• Parallel-beam: the rays are emitted in a parallel way and the intensity of the
received signal is measured by a line of sensors in a plane.

• Fan-beam: the rays are emitted by a point source and propagate in a radial
way, the intensity is measured on the other side of the volume by a line of
sensors which can be in a plane or distributed on an arc of circle and which
center is the origin of the source.

In these two cases, the received signal corresponds to what is called a sinogram: it
is an image in which one of the axes corresponds to the position along the line of
sensor and the other corresponds to the angle formed by the source and the sensors.
Figure 1.7 gives an illustration of these two technologies.

For a given ray of index m, angle θm and distance to the zero point sm, the
relation between the measured signal ym and the image to measure is modelled as

ym =
∫
ux cos θm+uy sin θm=sm

x(ux, uy) duxduy (1.19)
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Figure 1.7: Illustration of two configurations for CT imaging: on the left parallel-
beam and on the right fan-beam. Credit: [Wang 2019]

where ux and uy are the space variables.

1.2.2 Hand-crafted priors

1.2.2.1 Tikhonov regularization

Tikhonov regularizers have the form R(x) = λ
2‖Lx‖

2
2 with L a matrix and λ ∈ R+.

In this section we focus on the most simple Tikhonov regularisation: R(x) = λ
2‖x‖

2
2.

This regularization has the appealing advantage of making problem (1.16) easy to
solve since minimizing this problem boils down to solve the symmetric definite
positive linear system

x = [A(ξ)∗A(ξ) + λId]−1A(ξ)∗y. (1.20)

This problem can thus be solved with a conjugate gradient algorithm, and depending
on the spectrum of the forward operator A(ξ), a relatively small number of iterations
may be enough to approximate the solution of the variational problem faithfully
[Tyrtyshnikov 1997].

When adding a regularization, the minimum is a trade-off between the minimiza-
tion of the data fidelity term and the minimization of the regularization. Hence the
reconstructed image can be biased. In the case of the Tikhonov regularization, this
impact is well studied with the mathematical properties of problem (1.16). It uses
the singular value decomposition (SVD) which we define below.

Singular value decomposition Singular value decomposition is the generaliza-
tion of the eigenvalue decomposition for non-square complex matrices.

Definition 5. If A is a real (resp. complex) matrix of size M×N , then there exists
a decomposition:

A = UΣV ∗ (1.21)

with Σ a matrix of size M × N with extra-diagonal elements are 0 and diagonal
coefficients are non-negative. The matrices U and V are unitary with real (resp.
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complex) coefficients of size M ×M for U and N ×N for V .

Remark 1. The decomposition is not unique and only Σ is unique if we assume
that its coefficients are ordered.

Definition 6 (Pseudo-inverse of a matrix). The pseudo-inverse A† of a matrix
A ∈ CM×N is the unique matrix defined by the following equalities:

(i) AA†A = A

(ii) A†AA† = A†

(iii)
(
AA†

)∗
= AA†

(iv)
(
A†A

)∗
= A†A

Proposition 2. The pseudo-inverse is the limit when λ → 0 of the matrix in the
right hand side term of (1.20):

A† = lim
λ→0

(A∗A+ λId)−1A∗ (1.22)

This means that when λ tends towards zero, the reconstructed signal using the
Tikhonov regularization is exactly the one obtained using the pseudo-inverse.

Proposition 3. The pseudo-inverse of a matrix A ∈ CM×N can be computed using
its SVD:

A† = V Σ†U∗ (1.23)

with Σ† a matrix with extra-diagonal elements equal to 0 and

(
Σ†
)
i,i

=


1

Σi,i
if Σi,i > 0

0 otherwise
∀i ≤ min(M,N). (1.24)

Proposition 4. If a signal x is decomposed into an eigenvectors basis (vi)i that
form the matrix V and that are associated to the eigenvalues (µi)i of A(ξ)∗A(ξ),

x =
N∑
i=1

uivi with ui ∈ C, vi ∈ CN ,

then, the solution associated to the Tikhonov reconstructor (1.20) can be written in
the basis of eigenvectors:

x̃ =
N∑
i=1

µi
µi + λ

uivi (1.25)

Proposition 4 means that the reconstructed signal x̃ is the original signal x
but with an amplitude in the eigenvectors basis that is modulated by µi

µi+λ . The
components associated to large eigenvalues are less impacted by the regularization
term than the components associated to smaller eigenvalues which can be highly
diminished. As for the components associated with the zero eigenvalues, they are
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of course also zero. Note that when λ tends to 0, the reconstructed signal can be
expressed as

x̃ =
N∑
i=1

1µi=0uivi. (1.26)

This corresponds exactly to project the signal onto the family of eigenvectors with
non-zero eigenvalues or to use the pseudo-inverse.

Proposition 5. In the noiseless setting, the reconstructor associated to the pseudo-
inverse corresponds to project onto the range of A(ξ)∗:

x̃ = ΠIm(A(ξ)∗)(x). (1.27)

Summary of the Tikhonov regularization
Numerical illustration Code: https://github.com/albangossard/Course-inverse-problems-and-
unrolled-networks/blob/main/scripts/mri_tikhonov.py

(a) Ground truth (b) Reconstruction
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Figure 1.8: Tikhonov reconstruction using 10% undersampling. After a few itera-
tions the reconstruction is almost the same as when the algorithm has converged.

Pros

• Theoretical properties well studied

https://github.com/albangossard/Course-inverse-problems-and-unrolled-networks/blob/main/scripts/mri_tikhonov.py
https://github.com/albangossard/Course-inverse-problems-and-unrolled-networks/blob/main/scripts/mri_tikhonov.py
https://github.com/albangossard/Course-inverse-problems-and-unrolled-networks/blob/main/scripts/mri_tikhonov.py
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Cons

• Poor reconstruction performance for images with discontinuous edges

• Outperformed by learned priors on natural images (see Section 1.2.4)

1.2.2.2 Beyond Tikhonov regularization

The Tikhonov regularization introduced before yields linear reconstructor. These
reconstructors have poor reconstruction performance with images that have discon-
tinuous edges. In this section we describe some of the main non-linear reconstructors
used in inverse problems for imaging.

Sparsity in a dictionary An image can be sparsely represented within a family
of well chosen vectors. It is thus tempting to design a regularization that promotes
sparsity. Given a dictionary D ∈ CN×P , one possible parametrization is to synthe-
size an image x̃ = Dz and to minimize a function that balances between the data
fidelity term and a sparse penalization of z:

z = arg min
z∈RP

1
2‖A(ξ)Dz − y‖22 + λ‖z‖1 (1.28)

with λ ∈ R+. The matrix D can be a dictionary of wavelets for example (see
[Frazier 2006] for an introduction) and z is the sparse representation of the image
in the synthesis family.

Total variation A common regularization term in (1.16) is the total variation
(TV) regularization [Rudin 1992]. It has been the state-of-the-art for years in
biomedical imaging and its use is now declining with the advent of neural net-
works. Most of the observed images in CT and MRI are piecewise constant. It is
therefore natural to look for a solution that has a low number of jumps and large
constant parts. If we let ∇ : CN → CD×N denote the discrete gradient for signals in
dimension D, the regularization term R(x) = λ‖∇x‖1 promotes piecewise constant
images. The `1 norm promotes sparsity of the term ∇x which corresponds to having
a few jumps for a well chosen value of λ. This kind of problem can be solved using
a proximal gradient descent or splitting methods.

1.2.2.3 Reconstruction algorithms

When the regularization term is non differentiable, as for the regularization terms
introduced in the previous section, one can resort to proximal gradient descent or
splitting algorithms like Douglas-Rachford [Eckstein 1992] or its dual version the
Alternating Direction Method of Multipliers (ADMM) [Parikh 2014, Boyd 2011].
All these algorithms use the proximal mapping of the regularization term.
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Definition 7 (Proximal mapping). Given a function g : CN → R ∪ {+∞} that is
lower semi-continuous and convex, the proximal mapping is defined implicitly by a
minimization problem:

proxg(x) def= arg min
y∈CN

g(y) + 1
2‖y − x‖

2
2. (1.29)

For specific functions, this proximal mapping can be computed in closed form.
Otherwise, we have to resort to an iterative algorithm to compute one evaluation.

Proximal gradient descent A proximal gradient descent can be applied to solve
the variational formulation associated with the sparse dictionary and with TV reg-
ularization. The sequence of iterates are then

x(k+1) = proxγR
(
x(k) − γA(ξ)∗

(
A(ξ)x(k) − y

))
(1.30)

Choosing a value for the step γ small enough, this sequence converges towards a
solution of the problem (1.16) [Facchinei 2003]. The value of γ depends on the
spectral norm of A(ξ), more precisely we should have γ ≤ 2

‖A(ξ)‖2
2→2

.
However, for the TV regularization, the proximal mapping has no closed form

and we resort to use the ADMM in the following paragraph.

Alternating Direction Method of Multipliers (ADMM) This method relies
on a splitting with respect to the different terms in the function that has to be
minimized. We introduce the method in the case of a two variables splitting. The
function to minimize is

min
x∈CN

f(Ax) + g(Lx) (1.31)

with f a function related to the data fidelity term, A and L are linear operators
and g is the function in the regularization term.

Using a splitting, the problem (1.31) is equivalent to

min
x,z1,z2
γ1Ax=z1
γ2Lx=z2

f

(
z1
γ1

)
+ g

(
z2
γ2

)
. (1.32)

Letting z =
(
z1
z2

)
, µ =

(
µ1
µ2

)
, B =

(
γ1A

γ2L

)
and γ1, γ2 some positive constants, the

augmented Lagrangian [Bertsekas 2014] is defined as

L(x, z1, z2, µ1, µ2) def= f

(
z1
γ1

)
+ g

(
z2
γ2

)
+ β

2 ‖Bx− z‖
2
2 + 〈µ,Bx− z〉. (1.33)

The ADMM consists in alternatively minimizing the augmented Lagrangian
with respect to the different splitted variables and then to update the Lagrange
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multipliers: 
x(k+1) = min

x
L(x, z(k), µ(k))

z(k+1) = min
z
L(x(k+1), z, µ(k))

µ(k+1) = µ(k) + β
(
Bx(k+1) − z(k+1)

) (1.34)

In the case of the TV reconstructor, we have f = 1
2‖ · −y‖

2
2, A = A(ξ), L = ∇

and g : v ∈ CD×N 7→ λ‖v‖1 and the minimization steps are the following.

Minimization w.r.t. x: The optimality equations boil down to solving

B∗Bx(k+1) = B∗
(
y − µ(k)

β

)
(1.35)

which can be done using a conjugate gradient algorithm [Tyrtyshnikov 1997].

Minimization w.r.t. z1: This operation is done element-wise

z
(k+1)
1 = 1

β + 1
γ2

1

(
y

γ1
+ βγ1A(ξ)x(k) + µ

(k)
1

)
. (1.36)

Minimization w.r.t. z2: As the `1 norm is separable, this operation is also
performed element-wise

z
(k+1)
2 = prox λ

γ2β
‖·‖1

(
γ2∇x(k) + µ

(k)
2
β

)
. (1.37)

The interested reader can refer to [Parikh 2014, Combettes 2011, Boyd 2011]
for more informations on splitting algorithms.

Summary of the non-linear reconstructors
Pros

• Theoretical properties well studied
• Good reconstruction performance

Cons

• Outperformed by learned priors
• Potential high computational cost depending on the problem
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Numerical illustration Code: https://github.com/albangossard/Course-inverse-problems-and-
unrolled-networks/blob/main/scripts/admm_tv.py

(a) Ground truth (b) Reconstruction
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Figure 1.9: TV reconstruction using the ADMM algorithm with 10% under-
sampling.

1.2.2.4 Interpretations of the regularizer

In this section several interpretations of the regularizer are given to motivate the
learned priors presented in Section 1.2.4.

Proximal operator as a denoiser Let us consider problem (1.28) with P = N

and D = Id
min
x∈RN

1
2‖A(ξ)x− y‖22 + λ‖x‖1 (1.38)

and solve this problem with a proximal gradient descent:

x(k+1) = proxγλ‖·‖1

(
x(k) − γA(ξ)∗

(
A(ξ)x(k) − y

))
. (1.39)

The proximal operator associated with the `1 norm is the soft thresholding and
it writes: (

proxα‖·‖1 (x)
)
i

= sign(xi) max(|xi| − α, 0) (1.40)

Figure 1.10 gives an illustration of the soft thresholding, with the value α = 1.

https://github.com/albangossard/Course-inverse-problems-and-unrolled-networks/blob/main/scripts/admm_tv.py
https://github.com/albangossard/Course-inverse-problems-and-unrolled-networks/blob/main/scripts/admm_tv.py
https://github.com/albangossard/Course-inverse-problems-and-unrolled-networks/blob/main/scripts/admm_tv.py
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Figure 1.10: Illustration of the soft thresholding which is the proximal mapping of
the `1 norm ((1.40) with α = 1). This thresholding acts as a denoiser on synthesis
problems (1.28).

This operator can be seen as a denoiser since it shrinks the small values to 0 and
the value of α sets the noise threshold that we wish to remove.

Bayesian interpretation of the regularizer The solution of (1.16) can be
interpreted as a Maximum A Posteriori (MAP) estimate [Ji 2008]. Indeed, assume
that the noise is a Gaussian random variable ε ∼ N

(
0, σ2Id

)
of variance σ2. Then,

the we have y|x ∼ N
(
A(ξ)x, σ2Id

)
and the probability of observing y given x writes

p(y|x) = 1
(2πσ2)M/2 exp

( −1
2σ2 ‖A(ξ)x− y‖22

)
.

Then we write the reconstructed image as a MAP estimation:

x̃ = arg max
x

p(x|y). (1.41)

Using the Bayes’ rule
p(x|y) = p(y|x)p(x)

p(y) ,

we obtain that

x̃ = arg min
x

− log(p(y|x))− log(p(x))

= arg min
x

1
2σ2 ‖A(ξ)x− y‖22 − log(p(x)).

The term − log(p(x)) can be identified as the regularizerR(x) ∝ − log(p(x)). Hence
the regularizer encodes the prior on the image x.

These two interpretations advocate two main ingredients that are at the core of
recent data-driven learned methods:

• Replace the proximal mapping by a more general denoiser in the aforemen-
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tioned iterative algorithms. In this case there is no reason that the denoiser
is the proximal mapping of a well-defined function.

• Learn priors that perform well for specific tasks using data.

These motivations led to different approaches that are detailed in the follow-
ing sections. More precisely, Plug&Play (P&P) consists in replacing the proximal
mapping by an existing denoiser. This denoiser can be hand-crafted or trained to
perform a specific task without prior knowledge of the iterative algorithm it will be
used in. The unrolled networks consists in training a deep denoiser inside an itera-
tive algorithm that is known during the training phase in opposition to plug&play.
These two approaches are discussed in Section 1.2.4.

1.2.3 Training deep networks

In Section 1.2.4, we aim at optimizing the parameters θ of a reconstructor in such
a way that the ouput of the reconstructor x̃ = R(y,A(ξ), θ) is as close as possible
to the ground truth image x. The purpose of this section is twofold:

• We describe the main aspects of optimizing deep networks for image recon-
struction. This provides the technical tools for the following section where an
overview of learned priors is given.

• We address some of the aspects of choosing the learning rate and we give an
outline of the literature on this subject. This introduction motivates Chap-
ter 5.

Training deep networks for image reconstruction If x is a random vector,
minimizing in expectation is formalized as

inf
θ

E
(
‖R(A(ξ)x+ ε, A(ξ), θ)− x‖22

)
(1.42)

where the expectation is taken w.r.t. x and to ε. In the above formulation (1.42), the
noise term is critical. It is drawn randomly at each iteration and its role is to ensure
that the network is stable to small perturbations including adversarial perturbations
[Genzel 2022b]. In practice, the density of x is not available and it is replaced by
an empirical distribution over a set of images. This empirical expectation requires
computing the gradient over the entire dataset, which is often not possible due to the
large number of images. Hence we resort to stochastic optimization. A few images
are selected for which the value of the cost function and its gradient are calculated,
and the parameters are then updated using this information and, eventually, that
of the previous iterations. The data is therefore changed at each iteration until the
entire dataset has been processed. This corresponds to do one epoch.

Optimizers The design of efficient stochastic optimization procedures has been
the subject of intensive works over the last decade. The performance obtained are
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impressive and they allow training high dimensional models. There is a multitude
of stochastic solvers available, some of them are quite robust in practice and given a
problem involving stochastic optimization like (1.42), a set of restricted optimizers
can be considered. The most common are SGD, RMSProp [Tieleman 2012], Ada-
grad [Duchi 2011], Adadelta [Zeiler 2012] and Adam [Kingma 2015] (generalization
of RMSProp with momentum). These optimizers often rely on hyperparameters
such as the step size or the momentum. For each optimizer, these parameters should
be tuned with care to obtain the best convergence results. The interested reader
can refer to [Kochenderfer 2019] for a complete book on optimization including the
stochastic optimizers.

The learning rate The choice of the learning rate is of high importance to
provide satisfactory performance. This choice can be time consuming since a good
learning rate is task dependent. The convergence of stochastic optimization is
ensured using Robbins-Monro algorithm [Robbins 1951]. While Robbins-Monro
conditions guarantee convergence for an interval of values of the hyperparameters,
in practice the best performance is achieved using fine tuning of the learning rate
decay. Some methods have been proposed to provide a step that is adapted at each
epoch.

In deterministic optimization the scaling of the step can be infered either
from second order information, or by using numerical approximation such as the
Barzilai-Borwein (BB) method [Barzilai 1988, Raydan 1997, Dai 2002, Xiao 2010,
Biglari 2013, Li 2019a]. This method approximates the curvature of a function with
numerical differences using past gradient evaluations. In the stochastic convex set-
ting, the BB method was introduced in [Tan 2016] and it has been extended in
[Ma 2018] to non-convex problems and in [Liang 2019] for deep neural networks.
Due to the variance of the gradient and possibly to a poor estimation of the curva-
ture by numerical differences, these methods allow prescribing a new step at each
epoch only. In [Yang 2018, Castera 2022], the step is prescribed at each iteration
at the cost of computing two mini-batch gradients per iteration. Moreover, in
[Yang 2018] the gradient over all the data needs to be computed at the beginning
of each epoch whereas [Castera 2022] maintains an exponential moving average to
avoid this extra computation. The downside of [Castera 2022] is that they still need
to tune the learning rate and its decay factor. From all these works, there is still a
lack of understanding of how to properly scale the gradient.

The other option is to compute second order information using automatic dif-
ferentiation. The theory that allows computing the matrix-vector product of the
Hessian with a certain direction is well-studied [Walther 2008, Christianson 1992,
Griewank 2008, Pearlmutter 1994].

Open questions

• Is it possible to reduce the numerical cost of computing second order
information?
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• Is it possible to find a good scaling of the learning rate?

• How does the convergence and exploration regimes behave with respect
to the learning rate?

1.2.4 Learned priors

At the beginning of the development of neural networks for inverse problems, nu-
merous networks architectures that learn to invert A(ξ) were proposed, including
the famous AUTOMAP [Zhu 2018]. This class of network takes the vector y as an
input and returns the reconstructed image x. They have the advantage of being very
quick to evaluate once the training is done. However, on problems like MR image re-
construction where the signal y is in a different space than the one of x, the network
has to learn the physics that maps the two spaces and it can experience instabilities
[Antun 2020]. Moreover, the physics is known and it should be used to invert the
forward operator. For a few years now, alternative approaches that combine knowl-
edge of the physics of the acquisition system and neural networks have been pro-
posed [Gregor 2010, Sun 2016, Diamond 2017, Adler 2017, Zhang 2018, Dong 2018,
Adler 2018, Gilton 2019, Hammernik 2019]. We describe below the main trends.

1.2.4.1 Learning parameters and operators in hand-crafted priors

Before the advent of neural networks, priors were primarily based on weighting of
different regularization terms. The choice of the values for the regularization weights
is crucial and for more than two variables it becomes intractable. In the 2010s, works
started considering the optimization of these parameters in variational formulations
like (1.16). This falls into the class of bilevel programming [Kunisch 2013] and it
involves implicit differentiation of the solution yielded by the minimization of (1.16).
Subsequent works then considered the differentiation of the iterates of an algorithm
[Ochs 2015, Ochs 2016]. In [Ochs 2015] the authors propose to differentiate the
iterates of a primal-dual algorithm. This idea is at the core of many recent learning
based reconstruction approaches and it was extended to the learning of operators
and specific operations like denoising. This latter point is discussed in the following
parts of this section.

The TV regularization introduced in [Rudin 1992] (see Section 1.2.2.2) has the
drawback of being anisotropic. Indeed, it misbehaves for the reconstruction of
circular arcs [Chen 2013, Condat 2017, Chambolle 2021a, Chambolle 2021b]. There
have been extensive work on the design of discrete isotropic regularizations including
but not limited to [Condat 2017, Chambolle 2021a]. Recently, [Chambolle 2021b]
proposed to learn consistent discretization for the TV regularization. It formalizes
the learning problem as minimizing the reconstruction error of the result given by
a primal-dual algorithm. The TV discretization is learned by deriving the gradient
of the solution with respect to the weights of the TV discretization.
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Summary
Pros

• Allows tuning hyperparameters of variational models

Cons

• Outperformed by neural networks

1.2.4.2 Plug & Play priors

Plug & Play (P&P) methods were first motivated by hand-crafted priors and
empirical validation that have shown good results. The idea was introduced in
[Venkatakrishnan 2013] as P&P-ADMM where the proximal mapping inside an
ADMM algorithm was replaced by an off-the-shelf image denoiser. It corresponds
to replace the proximal mapping in Section 1.2.2.3 by this denoiser. It was then ex-
tended to a FISTA algorithm in [Gu 2014] with denoisers like BM3D [Dabov 2007]
or WNNM [Gu 2014]. This latter formulation has the appealing advantage of not
requiring to invert the data fidelity term at each iteration.

Different works then started considering learned priors by using pre-trained neu-
ral networks as plug&play priors among which we can cite [Ryu 2019, Zhang 2021b].
Motivated by the MAP estimation of Section 1.2.2.4, the goal of plug&play is to de-
couple the development of the data updates from the denoising part in an algorithm.
In particular, with the advances of learning, one wishes to build a denoiser that
does not require training every time the forward model A(ξ) is changed. Recently,
driven by the performance of learned plug&play denoisers, several works investi-
gated the theory behind plug&play algorithms in order to build stable and conver-
gent schemes. This question of convergence was first addressed by [Chan 2016] with
a boundedness assumption. A work on equilibrium [Buzzard 2018] then provided
an interpretation of plug&play methods as the balance between multiple operators
rather than the solution of a minimization problem. The convergence was then
tackled by [Ryu 2019] where the authors require a Lipschitz condition on the net-
work that is used. This condition is critical as, to comply with such constraint,
it requires to change the network by normalizing each layer [Miyato 2018] or use
a penalization [Yoshida 2017]. In parallel, an alternative formulation called Regu-
larization by Denoising (RED) was proposed in [Romano 2017] and it introduces
a penalization term of the function in (1.16) that relies on the output of a de-
noiser. Such a formulation comes with interesting properties under assumptions
on the denoising mapping. Indeed, the idea was to derive traditional optimization
algorithms to minimize the function while keeping a proximal mapping that is well-
defined through a regularization term. This keeps the interpretation of the denoiser
as a prior on the image. However, [Reehorst 2018] has revealed that a fixed point
interpretation is more appropriate for the RED formulation on most practical de-
noisers. Then, [Liu 2021] filled the gap between plug&play and RED by providing
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conditions under which these methods yield the same converging sequence. More
recently, [Hurault 2022a] proposed a plug&play approach where the denoising step
is expressed as the gradient of the quadratic residual of a neural network. This
allows obtaining convergence of the algorithm to a stationary point of an explicit
function. The authors then show in [Hurault 2022b] that the proposed denoising
step derives from the proximal operator of a scalar function. Note the interest-
ing theoretical analysis of plug&play priors in the setting of MAP estimation in
[Laumont 2022].

A major drawback of plug&play approaches is the need for manual tuning at
evaluation. Indeed, parameters such as the noise level, the number of iterations or
the stopping criteria should be tuned to obtain high quality results. Illustrations of
the effect of the hyperparameters on the image quality can be found in [Wei 2022].
There have been several works to determine hyperparameters that yield good recon-
struction. Amongst them, [Wei 2020, Wei 2022] propose to learn a policy network
that determines the hyperparameters of the algorithm where the plug&play denoiser
is used. The interested reader can refer to [Kamilov 2022] for a complete review of
plug&play methods.

Summary
Pros

• Interpretability of the denoising mapping
• Good study of the convergence properties
• Prior that once trained can be used for a wide range of applications

Cons

• Outperformed by unrolled networks trained for a specific task
• Manual tuning of the hyperparameters at evaluation

1.2.4.3 Approximate inversion

In particular cases (such as MRI for well-spread sampling schemes), the matrix
A(ξ) can be unitary, or a submatrix of a matrix that is almost unitary in the sense
that its singular values are either equal to 0 or close to 1 [Aubel 2019]. In this case,
the adjoint matrix is close to its pseudo-inverse A(ξ)∗ ' A(ξ)†. A natural way to
get a rough reconstruction is to consider x̃ = A(ξ)∗y. It will then be contaminated
by structured noise which is specific to the measurement operator A(ξ). In CT
imaging, this was a common practice and these artifacts were removed using the
so-called filtered back-projection [Jin 2017]. However, the noise is still present in
the image, and an option to remove it is to simply add a neural network at the
output of this reconstructor.
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Definition 8 (Image to image neural network). Let Dθ : CN 7→ CN denote a neural
network that takes as an input an image in CN and returns another image of the
same size. The parameters of this network are concatenated in the vector θ.

This network is placed after the inversion and its role is to remove the artifacts
present on this image and to denoise it:

x̃ = Dθ(A(ξ)∗y). (1.43)

Attention must be paid to the normalization of the operator when using the
adjoint reconstructor. Indeed in the case of a neural network, this aspect is all
the more important as the performance of a neural network highly depends on the
normalization of the input data.

A more natural way to recover the image and denoise it is to perform an inversion
of the forward operator A(ξ) and to use a neural network to denoise the resulting
image by using the following reconstruction:

x̃ = Dθ
(
(A(ξ)∗A(ξ) + λId)−1A(ξ)∗y

)
. (1.44)

This formulation has the advantage of providing a natural inversion of the forward
model. The precision can be chosen by the user through the number of iterations
in the conjugate gradient algorithm. It also pushes away the need to automatically
differentiate the solver of the data fidelity term to train the neural network Dθ
w.r.t. θ. However, as the inversion problem is not solved exactly or as the inverse
problem is ill-posed, the image before the denoiser can present artifacts. These are
compensated by Dθ and this makes the learned denoiser highly dependent on the
forward operator A(ξ).

Summary of the approximate inverse
Pros

• Computationally affordable

Cons

• The denoiser is operator dependent (requires training for each applica-
tion)

1.2.4.4 Unrolled networks

A natural approach in deep learning would be to learn a regularizer from a collection
of training images. Of course, deriving a proximal mapping from a regularization
based on neural networks is far from being trivial and unrolled networks only draw
their inspiration from classical iterative algorithm. Instead of choosing a regular-
izer and computing its proximal operator to perform the optimization, the prox-
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imal operator is directly replaced by a neural network [Sun 2016, Diamond 2017,
Adler 2017, Zhang 2018, Dong 2018, Adler 2018, Hammernik 2019, Li 2019b]. It
has been empirically proven that convolutional neural networks (CNNs) are excel-
lent denoisers. As we want this network to be invariant to shifts in the image,
it is natural to take a CNN. The structure of the network as well as the learned
parameters and the optimizer used give the prior for the type of images recovered
(see implicit regularization [Neyshabur 2015, Soudry 2018]). Note that there are
approaches that learn the regularization term with specific structure and derive a
proximal operator that is used in the unrolled network (see RED in Section 1.2.4.2).

In this section, we consider a list of ordered mappings that can be neural net-
works. We let (Dkθ (x))k≤K denote this list of K networks.

The unrolled methods consist in unrolling a classical optimization algorithm
with K iterations into K successions of operations. These operations depend on
the parameters θ and all these operations can therefore be seen as layers of a neural
network. Figure 1.11 gives an illustration of a proximal gradient descent algorithm
as K steps of an iterative algorithm parameterized by θ where the number of it-
erations K is fixed once for all. In the classical framework where the proximal
mapping is the soft thresholding, the parameter θ corresponds to the weight of the
`1 regularization. This algorithm takes as inputs:

• the vector of measurements y, which is involved in the expression of the gra-
dient of F ;

• the forward operator A(ξ);
• the parameters θ;
• eventually an initialization of the unrolled algorithm x(0).

This algorithm returns the reconstructed image x(K) which corresponds to the K-th
iterate.

We give below two widely used unrolled algorithms although many variants
of unrolled networks could be considered: the unrolled proximal gradient descent
and the unrolled ADMM [Sun 2016, Dong 2018]. This section ends with a recent
extension of unrolled networks to deep equilibrium networks.

Unrolled proximal gradient descent By replacing the proximal mapping, the
iterative scheme of the unrolled proximal gradient descent is

x(k+1) = Dkθ
(
x(k) − γ∇F (x(k))

)
(1.45)

where we recall that F (x) = 1
2 ‖A(ξ)x− y‖22 and ∇F (x) = A(ξ)∗ (A(ξ)x− y).

Depending on the operator A(ξ), a good step size γ can be set either manually
by the user, computed analytically, or using numerical computations with the power
iteration method to compute ‖A(ξ)‖2→2:

γ = 1
‖A(ξ)‖2→2

.
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Figure 1.11: Illustration of an unrolled proximal gradient descent. The k-th proxi-
mal mapping is replaced by a denoiser Dkθ .

There are also alternatives that consider the accelerated version of the proximal gra-
dient descent, namely FISTA [Beck 2009], and unrolled FISTA has been proposed
in [Xiang 2021].

The disadvantage of this method is that a proximal gradient descent can have
a slow convergence speed and it can therefore require a large number of iterations
to get a good solution. For classical approaches where the denoiser is not learned,
this is only an issue in terms of computing time. When the denoiser is learned its
gradient has to be computed during the training phase, which requires storing all
the intermediate variables of each iteration. This bottleneck makes it impossible
to use the unrolled proximal gradient descent with a large number of iterations in
practice. On images of a few hundreds pixels and on a modern GPU, memory issues
start to appear after a few dozens of iterations.

Unrolled ADMM

In order to introduce the unrolled ADMM, we first derive the classical ADMM
algorithm in a general case. Once the proximal mapping that acts as a denoiser is
identified, it is replaced by a neural network. We emphasize that once the proximal
operator is replaced by another arbitrary mapping, the variational formulation falls
appart. The problem we aim to solve is

min
x

1
2‖A(ξ)x− y‖22 +Rθ(x).



1.2. IMAGE RECONSTRUCTION FOR LINEAR INVERSE PROBLEMS 47

Introducing the splitting x = z, this formulation is equivalent to

min
x,z
x=z

1
2‖A(ξ)x− y‖22 +Rθ(z). (1.46)

In order to minimize (1.46), we use the augmented Lagrangian as in Section 1.2.2.2:

L(x, z, µ) = 1
2 ‖A(ξ)x− y‖22 +Rθ(z) + β

2 ‖x− z‖
2
2 + 〈µ, x− z〉. (1.47)

By repeating the same machinery of (1.34), the minimization steps yield an optimal-
ity equation that corresponds to the data fidelity term, and the proximal mapping
of Rθ:

z(k+1) = arg min
z∈CN

Rθ(z) + β

2

∥∥∥∥∥x(k+1) + µ(k)

β
− z

∥∥∥∥∥
2

2

By replacing this proximal operator by a denoiser Dkθ , we derive the unrolled
ADMM: 

x(k+1) = [A(ξ)∗A(ξ) + βId]−1
(
A(ξ)∗y + βz(k) − µ(k)

)
z(k+1) = Dkθ

(
x(k+1) + µ(k)

β

)
µ(k+1) = µ(k) + β

(
x(k+1) − z(k+1)

) (1.48)

and the reconstructed image is x̃ = z(K).
As the whole algorithm is automatically differentiated with respect to the pa-

rameters of the networks θ, it is important that the number of iterations in the
conjugate gradient solving the first step of (1.48) remains fixed. Otherwise, it
would be equivalent to changing the model at each call of the unrolled ADMM.

Notice that in the unrolled ADMM, each update w.r.t. x can be as costly as
solving an entire Tikhonov formulation. In practice, if the parameter β is well cho-
sen, the ADMM provides satisfactory results after only a few iterations provided
that the problem w.r.t. x is solved with a good accuracy. This parameter β can
vary with respect to the iterations to have a fast convergence. See [Zhang 2021b]
for practical considerations and [Chan 2016] for theoretical convergence under as-
sumptions on the denoiser Dkθ .

Practical limitations From the construction of unrolled networks, the mappings
used at each iteration are supposed to only act as denoisers and they do not invert
the operator since all the information about A(ξ) is included in the steps where the
data fidelity term is minimized. However, after one inversion of the data fidelity
term, the noise term ε results in structured noise in the recovered image. Hence
when training unrolled networks, the denoisers learn to remove these operator spe-
cific artifacts. The main difference with plug&play priors is that, from the MAP
estimation of Section 1.2.2.4, the denoisers of plug&play only encodes the image
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prior while the denoisers of unrolled networks learn to remove structured noise.
Numerical experiments reveal that when the operator A(ξ) is perturbed between
training and evaluation in unrolled networks, the performance collapses. This per-
formance drop is illustrated in Chapter 4.

From a practical point of view, it is important to bear in mind that the phys-
ical system is never perfectly modelled and that when real data y are taken, the
reconstruction may not work well because the training was not done with the real
measurement operator. This effect is called an inverse crime [Colton 1998]. Finally,
if the physical acquisition system changes, so does the operator and the training
must be performed again. On most practical problems, this training can take several
weeks which is a bottleneck for many applications.

Summary of the unrolled networks
Pros

• State-of-the-art results

Cons

• Computationally intensive
• Memory bottleneck
• The denoiser is operator dependent because of the structured noise

(requires training for each application)

Open questions

• How to make unrolled networks robust to changes in the forward oper-
ator A(ξ)?

• How does taking into account these changes impact the performance of
these networks?

• If the mappings become robust to changes in A(ξ):

– How does this behave in comparison to P&P priors?
– Is it possible to easily solve blind inverse problems (i.e. ξ is un-

known and has to be retrieved)?

These questions are investigated in Chapter 4. In particular, we propose to
train unrolled networks on a family of operators to make this network adaptive on
different applications.

Deep equilibrium networks A major burden in unrolled networks is the mem-
ory requirement that constrains the number of iterations to be below a few dozens.
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Inspired by works on plug&play methods, [Gilton 2021a] propose to view the solu-
tion given by an unrolled network as the solution of a fixed point scheme. The idea
is to leverage the memory bottleneck by solving exactly the fixed point equation
and using implicit differentiation to compute the gradient w.r.t. the parameters of
the network. Mathematically, we seek to find the fixed point of an iterative scheme:

v(k+1) = g(v(k+1), y, θ, ξ, θ) (1.49)

with θ the parameters of the denoiser. These schemes can be for example an unrolled
ADMM or an unrolled proximal gradient descent. In the case of the deep equilibrium
ADMM, the update vector is

v(k) =

x
(k)

z(k)

µ(k)

 (1.50)

and the iterative scheme is the one of (1.48). Once an approximate solution ṽ of the
true solution v(∞) is found, the output can be plug into any differentiable function
to compute the loss function. In order to optimize the parameters θ, one needs the
Jacobian of the solution ṽ w.r.t. θ. This can be computed analytically without
using automatic differentiation through all the iterates v(k). For that purpose, we
differentiate the equation v(∞) = g(v(∞), y, θ, ξ) using ṽ ' v(∞):

∂ṽ

∂θ
(ṽ, y, θ, ξ) ' ∂g

∂v
(ṽ, y, θ, ξ)∂ṽ

∂θ
(ṽ, y, θ, ξ) + ∂g

∂θ
(ṽ, y, θ, ξ), (1.51)

and then factorizing yields

∂ṽ

∂θ
(ṽ, y, θ, ξ) '

[
Id− ∂g

∂v
(ṽ, y, θ, ξ)

]−1 ∂g

∂θ
(ṽ, y, θ, ξ). (1.52)

Using Neumann series, the above term can computed by truncating the following
infinite sum: [

Id− ∂g

∂v
(ṽ, y, θ, ξ)

]−1
=
∞∑
n=0

(
∂g

∂v
(ṽ, y, θ, ξ)

)n
.

Once ∂ṽ
∂θ (ṽ, y, θ, ξ) is approximated, computing the gradient of the loss function

w.r.t. θ is straightforward.
In [Gilton 2021a] the authors also propose to accelerate the fixed point scheme

using Anderson acceleration. We refer the reader to their paper for these explana-
tions.

This formulation allows using different number of iterations between the training
and the evaluation modes which is not possible with unrolled networks without a
performance drop. This formalism also looks similar to bilevel programming where
the solution of a lower level problem is differentiated using implicit differentiation
[Kunisch 2013] (see Section 1.2.4.1). One major drawback is that the implicit dif-
ferentiation involves the true solution v(∞) of the fixed point scheme. If this fixed
point equation is not solved with sufficient accuracy, it induces a bias in the gradient
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estimation (1.52).

Summary of the deep equilibrium networks
Pros

• Solves the memory bottleneck of unrolled networks
• Allows varying the number of iterations between training and evalua-

tion

Cons

• Computationally intensive
• Potential misbehavior of the gradient if the solution is not computed

with sufficient accuracy
• Recent approach and lack of insight on this model

1.2.4.5 Generative models

We have seen that inspired by classical variational problems, it is possible to regu-
larize and unroll a network using a denoiser as a proximal mapping. The structure
of this regularization is essential for the performance of the unrolled network. If
the optimization and the dataset are crucial, the architecture is even more so in
the sense that it encodes the prior. A recent approach consists in using a neu-
ral network as a prior for an image reconstructor without learning this network
beforehand: the Deep Image Prior (DIP) [Ulyanov 2018]. It is the convolutional
architecture of the network that enforces the image to have a particular structure.
The reconstruction consists in optimizing the weights of the network so that the
output image corresponds to the observations through the measurement operator
A(ξ):

min
θ

1
2 ‖A(ξ)Dθ(z)− y‖22 (1.53)

with z a vector in small dimension generated randomly once and for all. This
allows solving a large class of problems including denoising, inpainting and super-
resolution. Although giving impressive results, this method has three main disad-
vantages:

• Each reconstruction requires optimizing the weights of a neural network over
several hundreds to thousands of iterations.

• The architecture of the network encodes the type of image that can be re-
constructed and for each application, the structure of the network must be
adapted. This requires an important optimization step of the hyperparam-
eters that define the structure. If the network behaves well for one image,
there is no guarantee that it will also work for a slightly modified image.
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• The idea at the core of DIP is that when optimizing the weights, the structure
of the image is fitted before the noise. If the number of iterations is not
chosen with care and it the optimization is ran for too long, on applications
like denoising the reconstructed image can have artifacts that increase with
the number of iterations. This requires using early stopping.

These three disadvantages make this reconstruction method difficult to apply in
practice. It advocates to construct a model that reduces the size of the parameter
space to avoid the early stopping issue. This model should be also adapted to a
particular application and encode the image prior by restricting the set of admis-
sible images. If the type of image to be reconstructed is known (e.g. brain images
in MRI) and the diversity of images is relatively low, there is a low-dimensional
manifold on which the images live. It is therefore possible to train an image gener-
ator to map a low dimensional vector to realistic images. This approach is at the
core of the Generative Adversarial Networks (GANs) which was first introduced in
[Goodfellow 2014]. In this setting there are two networks in competition with each
other. The first, called the the generative network, generates images from a random
vector. These images are then given to another network which role is to discrim-
inate the true images in the training database from the fake images generated by
the first network.

Once trained, the generative network generates images corresponding to the
training database. For each reconstruction, the input vector of the network is
optimized so as to generate an image which transformation through A(ξ) matches
the observations:

min
z

1
2 ‖A(ξ)Dθ(z)− y‖22 (1.54)

This method was first proposed in [Bora 2017]. It has been investigated both
with learned generative priors Dθ [Asim 2020a] and untrained priors [Asim 2020b].
This formalism allows solving blind inverse problems [Asim 2020b]. A major draw-
back of this method is that learned priors generate images that are highly dependent
on the training dataset. It is therefore difficult to apply this type of method in con-
crete applications, particularly in the biomedical field where only limited datasets
are accessible and where the images of main interest such as tumours are poorly
represented in the datasets. Finally, the images are often outside of the span of Dθ.
In practice this issue is resolved by using a splitting between the image and the prior
Dθ(z) and regularization terms such as Total Variation are added [Asim 2020b]. In
the end, this introduces a hand-crafted prior.

Summary of the generative models
Pros

• State-of-the-art results for specific tasks
• Allows to solve blind inverse problems
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Cons

• Potential heavy computations at evaluation
• For learned generative priors, highly dependent on the training dataset
• For learned generative priors, difficult to train

1.3 Introduction à l’IRM en français

Cette partie est une traduction en français du début de la Section 1.1 et présente
le fonctionnement d’un scanner IRM et un modèle simplifié.

1.3.1 Historique

Au cours des quatre dernières décennies, les scanners IRM sont devenus un outil
crucial pour le diagnostic de nombreuses maladies et pour la recherche cogni-
tive. Grâce à leur caractère non invasif et inoffensif, ils ont permis de nombreuses
avancées scientifiques en permettant d’imager l’intérieur d’un corps sans avoir re-
cours à la chirurgie. Les scanners IRM utilisés aujourd’hui en imagerie médicale sont
l’aboutissement d’un très grand nombre de travaux dont les fondements théoriques
sont issus des découvertes en Résonance Magnétique Nucléaire (RMN) dans la pre-
mière moitié du 20ème siècle. Les premiers travaux abordant la question d’imager
des tissus biologiques ont été publiés dans les années 1970. Raymond Vahan Dama-
dian a été le premier à proposer d’améliorer le diagnostic du cancer en utilisant un
dispositif permettant de caractériser le tissu sain du tissu tumoral. Cette méth-
ode était basée sur la réponse magnétique différente du tissu cancéreux par rap-
port à celle du tissu sain. Par la suite, d’autres travaux ont abordé le problème de
l’observation d’une image du corps humain [Lauterbur 1973, Mansfield 1977]. C’est
pour ces travaux, qui ont permis de localiser l’information dans l’espace, que Paul
Lauterbur et Peter Mansfield ont reçu le prix Nobel de physiologie ou médecine
2003. A partir de 1975, la technologie utilisée dans les IRM contemporains a été
introduite par Richard Ernst. Elle est basée sur le codage par la fréquence et par
la phase. Cette technologie, décrite dans la Section 1.3.2, permet de construire
des séquences d’acquisition localisant l’information en 3D. Enfin, la décennie suiv-
ante voit la commercialisation des premiers scanners. Pour une recherche dont
les fondements sont complexes, l’application à l’échelle industrielle des scanners
est remarquable, puisque seulement 10 ans séparent les travaux fondateurs de leur
application dans les scanners commerciaux.

1.3.2 La physique derrière l’acquisition

Le fonctionnement des scanners IRM est basé sur les concepts subtils de Réso-
nance Magnétique Nucléaire. Bien qu’il existe de nombreuses façons d’effectuer
l’acquisition, la manière la plus simple de procéder est décrite ci-dessous. Certains



1.3. INTRODUCTION À L’IRM EN FRANÇAIS 53

Figure 1.12: Raymond Vahan Damadian présentant son invention lors d’une con-
férence de presse en 1977. Credit: Copyright Bettmann/Corbis /AP Images
(http://cen.acs.org)

détails sont omis, le but étant d’introduire le cadre mathématique simplifié. Pour
plus d’informations, l’excellent site “Questions et réponses en IRM”3 donne tous les
détails et la physique associée à l’IRM. Une bonne explication de l’exploitation du
phénomène de résonance en IRM est également donnée dans [Idy-Peretti 2009].

Avant de décrire le fonctionnement d’un scanner IRM, nous rappelons quelques
principes de base de la Résonance Magnétique Nucléaire. Les noyaux possèdent un
spin, une propriété électromagnétique qui décrit l’orientation de leur polarisation.
Ce spin est représenté comme un vecteur en 3D et sa force possède différents états
qui, à l’échelle de ces particules, sont tous discrets. Lorsqu’un champ magnétique est
appliqué aux noyaux, les spins s’alignent dans la direction du champ magnétique.
C’est cet effet qui est largement exploité par les scanners IRM pour mesurer la
réponse d’un échantillon aux contraintes du champ magnétique.

Les scanners IRM utilisent la magnétisation des atomes d’hydrogène (proton
seul) car ils sont présents en grand nombre dans les tissus vivants et leur proportion
varie selon la nature du tissu. Dès lors que l’on peut mesurer la densité de ces
atomes, il est possible de caractériser les tissus qui composent une image. L’objectif
d’une IRM est de trouver la densité des protons qui sont excités. Ces protons
sont excités par des champs magnétiques et c’est la réponse sur tout ou partie du
volume qui est mesurée. Bien entendu, la réponse de l’ensemble du volume n’est
d’aucune utilité puisqu’il n’est pas possible de localiser spatialement l’information.
C’est là que toute l’ingénierie et la complexité des scanners IRM entrent en jeu
pour permettre de récupérer l’image associée au volume imagé à partir des signaux
mesurés. Le reste de cette sous-section est consacré à l’explication des principaux
composants impliqués dans le phénomène physique exploité par les scanners IRM,
et à l’explication schématique de la façon dont les signaux sont mesurés.

3https://www.mriquestions.com/

https://www.mriquestions.com/
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(a) Un scanner IRM conventionnel d’une
puissance de 1.5T (Philips scanner).
Credit: Jan Ainali, (CC BY 3.0),
https://commons.wikimedia.org/wiki/
File:MRI-Philips.JPG

(b) Une nouvelle génération de scan-
ner IRM sur roues et qui utilise un
faible champ magnétique d’une puissance
de 64mT (Hyperfine Swoop scanner).
Credit: Hyperfine https://hyperfine.io/

Figure 1.13: Deux types de scanners IRM contemporains.

1.3.2.1 Principaux composants d’un scanner MRI

De manière simplifiée, un scanner IRM comporte 4 composants principaux : un
champ magnétique principal, des bobines de gradient, des bobines de radiofréquence
(RF) et des antennes de réception.

Champ magnétique principal Un champ magnétique principal, noté B0, est
appliqué à l’ensemble du volume scanné et il est aligné dans la direction ez. Ce
champ magnétique uniforme aligne les spins dans la direction ez. Son intensité est
de l’ordre de 1T sur les scanners conventionnels et sur une nouvelle génération de
scanners elle est diminuée à ∼ 60mT (voir Figure 1.13).

Bobines de gradient Il y a plusieurs groupes de bobines de gradient – sous une
forme simplifiée trois, chacun correspondant à un axe. Les champs magnétiques in-
duits par chacun de ces groupes de bobines sont alignés avec l’axe correspondant et
l’intensité varie le long de chaque axe (typiquement 15 à 45mT/m sur les scanners
conventionnels). Les bobines de gradient en z créent un champ magnétique supplé-
mentaire aligné sur B0 et dont l’amplitude augmente linéairement le long de l’axe
z. La superposition de ces deux champs donne un champ total dont l’intensité varie
en fonction de l’axe z. La section suivante explique comment ce champ magnétique
variable permet de sélectionner une coupe à exciter. C’est ce qu’on appelle le codage
par la fréquence. Les autres bobines de gradient sur les axes x et y permettent de
modifier la phase. Ces bobines sont impliquées dans le codage par la phase, par
opposition au codage par la fréquence effectué par les bobines de gradient z.

Bobines de radiofréquence Les bobines RF génèrent un champ magnétique
oscillant B1 qui est orthogonal au champ magnétique B0. Ces bobines de ra-
diofréquence émettent des signaux pendant une courte période de temps pour
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Figure 1.14: Principaux composants d’un scanner IRM. Le champ primaire B0 est
uniforme (marron), et le champ variable dans l’espace est généré par les bobines
de gradient en z (bleu). Cela permet de sélectionner une coupe dont les protons
à l’intérieur font un mouvement de précession à une fréquence ωL. Les bobines de
gradient x et y créent un déphasage dans ce plan (vert et rouge).

changer l’orientation du spin des protons. Le champ B1 oscille à une fréquence
ωRF et l’intensité d’un tel champ est de l’ordre de ∼ 10mT.

Antennes de réception Traditionnellement, les bobines RF faisaient également
office de récepteurs pour mesurer la réponse. Elles tendent maintenant à être rem-
placées par des bobines dédiées à la réception du signal et sont placées tout autour
du volume à scanner.

1.3.2.2 Acquisition

Maintenant que les différents éléments impliqués dans l’acquisition du signal d’un
scanner IRM ont été présentés, nous décrivons comment l’acquisition est réalisée. La
Figure 1.14 présente de manière schématique les principaux éléments d’un scanner
IRM et un exemple de profil de déphasage dans le plan (x, y).

Sélection de coupe Tout d’abord, un scanner IRM sélectionne une coupe à im-
ager. Il tire parti d’un phénomène appelé précession qui se produit lorsque les spins
oscillent et qu’ils sont soumis à un champ magnétique constant. Ce mouvement
de précession est similaire à une toupie qui tourne vite mais dont l’axe de rotation
varie dans le temps, décrivant des cercles. La fréquence de ce mouvement s’appelle
la fréquence de Larmor. Elle est proportionnelle à l’intensité du champ magnétique
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à travers la relation :
ωL = γB (1.55)

avec ωL la fréquence de Larmor [Hz], γ le rapport gyromagnétique [Hz/T] qui
dépend du type de noyau qui est excité et B l’intensité du champ magnétique [T].
Comme l’intensité du champ magnétique B varie le long de l’axe z, la fréquence de
Larmor ωL varie également. Lorsque les bobines RF génèrent le champ magnétique
B1, seuls les spins dont la fréquence de Larmor ωL est proche de ωRF sont excités
et s’alignent sur B1. Cela permet d’effectuer une sélection de coupe et de mesurer
la réponse uniquement dans un plan (x, y). Selon le champ de gradient en z qui est
généré, la tranche sélectionnée peut être déplacée le long de l’axe z.

Relaxation Une fois que les spins sont alignés dans le plan (x, y), le signal des
bobines RF s’arrête. Les spins des protons effectuent alors le mouvement de préces-
sion. Ce mouvement génère un champ magnétique qui est mesuré par les antennes
réceptrices situées autour du scanner. Notons qu’en pratique, lors de l’excitation
et de la relaxation, ce ne sont jamais tous les spins qui s’alignent avec le champ
magnétique mais seulement une infime partie. Comme en l’absence de champ mag-
nétique, les spins sont désordonnés et comme c’est la moyenne sur tout le volume
qui est mesurée, les contributions des spins qui ne s’alignent pas avec le champ
magnétique sont en moyenne nulles.

Codage par la phase Pendant la relaxation, les bobines de gradient en x et y
sont utilisées pour modifier le phase des spins à l’intérieur de la coupe. Comme le
champ magnétique généré par les bobines de gradient en x et y varie dans l’espace, il
permet de modifier l’intensité du champ magnétique total par rapport à la position
dans le plan (x, y). Cette modification de l’intensité de B fait varier la fréquence
de Larmor par rapport à la position dans le plan (x, y). Les spins n’entrent pas
en précession à la même fréquence et cela induit un décalage de phase entre les
spins dans le plan. Une fois que les champs de gradient en x et y sont arrêtés, les
spins retrouvent leur fréquence de précession initiale et les décalages de phase ne
changent plus. Cela permet de mesurer la réponse de la coupe pour un déphasage
donné. Ce processus est répété entre chaque mesure pendant la relaxation afin de
faire évoluer le déphasage dans le temps. Il fournit différentes informations qui sont
ensuite utilisées pour la reconstruction. Dans la section suivante, nous expliquons
que ce déphasage correspond exactement au terme d’une transformée de Fourier
et que faire varier cette phase dans le temps correspond à faire varier la fréquence
mesurée par la transformée de Fourier.

Shot Le processus d’excitation suivi de la relaxation est appelé un shot. Au
cours d’un examen IRM, cette procédure est répétée plusieurs fois afin d’obtenir
suffisamment d’échantillons pour reconstruire l’image. Elle est également répétée
pour les différentes coupes afin d’imager un volume 3D avec un ensemble d’images
2D.
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1.3.3 Un modèle simplifié

L’objectif de cette partie est, à partir de la représentation physique introduite
précédemment, de donner les relations entre les signaux mesurés par chaque an-
tenne autour du scanner et l’image à retrouver, c’est-à-dire la densité des protons
dans l’espace. Les effets tels que la diminution au cours du temps de la puissance
du signal reçu [Fessler 2010] sont volontairement laissés de côté.

Modèle continu Si on note φ(x, y, t) ∈ C le décalage de phase à l’instant t par
rapport à la position (x, y) dans l’espace, et si on indice par 1 ≤ i ≤ I les antennes,
la i-ème antenne reçoit le signal

yi(t)
def=
∫

R2
f(x, y)σi(x, y)φ(x, y, t)dxdy (1.56)

avec f l’image inconnue et yi(t) le signal mesuré à l’instant t. Le terme σi(x, y) est
appelé carte de sensibilité et il exprime la sensibilité de la i-ème bobine de réception
dans l’espace. Chaque antenne reçoit plus ou moins de signal associé à une position
(x, y), en fonction de la distance à laquelle la bobine est placée. Cette carte est
typiquement une fonction très régulière dont le module décroît avec la distance aux
antennes. Comme la sensibilité des antennes diminue avec la distance, et comme
les scanners sont souvent équipés d’une cage de Faraday empêchant les signaux
extérieurs de pénétrer à l’intérieur, le domaine d’intégration peut être réduit à un
rectangle autour du volume mesuré que l’on note Ω ⊂ R2.

Nous rappelons que le décalage de phase φ(x, y, t) est généré par les bobines de
gradient en x et y. Il prend la forme d’une exponentielle complexe et s’écrit donc

φ(x, y, t) = e−i(xξ(x)(t)+yξ(y)(t)) (1.57)

avec ξ(x)(t) et ξ(y)(t) les fréquences par rapport aux axes x et y à l’instant t. Les
fonctions ξ(x) et ξ(y) décrivent les trajectoires dans le domaine de Fourier. Ces
trajectoires satisfont des contraintes liées à la physique du scanner qui sont détaillées
dans le Chapitre 3.

Modèle discret En pratique, le signal yi(t) est intégré par le scanner et il est
discrétisé dans le temps de telle sorte que M mesures sont disponibles (yi[m])m≤M .
En discrétisant (1.56) aux différents pas de temps, le modèle s’écrit alors

yi[m] =
∫

Ω
f(x, y)σi(x, y)e

−i
(
xξ

(x)
m +yξ(y)

m

)
dxdy. (1.58)

Les fréquences (ξ(x)
m , ξ

(y)
m ) correspondent à la discrétisation de la trajectoire t 7→

(ξ(x)(t), ξ(y)(t)). Une analyse des effets de la discrétisation et de l’intégration est
donnée dans [Lazarus 2020a].

Pour l’instant, les quantités f et σi sont continues. Cependant, d’un point de
vue numérique, elles sont représentées par des matrices de taille Nx × Ny notées
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respectivement u et si. Nous choisissons donc de les modéliser à l’aide d’une fonction
d’interpolation ψ : R2 → R et la relation entre la version continue et discrète est la
suivante

f =
(

N∑
n=1

δpnu[n]
)
? ψ (1.59)

σi =
(

N∑
n=1

δpnsi[n]
)
? ψ (1.60)

avec N = Nx × Ny et u ∈ CN (resp. si ∈ CN ) est la représentation discrète de
f (resp. σi). Le vecteur pn correspond aux positions sur la grille 2D, i.e. pn ∈q
−Nx

2 ,
Nx
2 − 1

y
×

r
−Ny

2 ,
Ny
2 − 1

z
et les pixels de u et si sont alignés sur cette grille.

En remplaçant les termes continus par leur version discrète dans (1.58) et en
posant ξm = (ξ(x)

m , ξ
(y)
m ) le m-ème point d’échantillonnage, on obtient

yi[m] = κ(ξm)
N∑
n=1

u[n]s[n]e−i〈pn,ξm〉. (1.61)

La fonction κ est la transformée de Fourier de ψ. En pratique, la fonction
d’interpolation constante est choisie dans ce manuscrit. Elle aligne les points pn
en bas à gauche de chaque pixel :

ψ(x, y) def= 10≤x≤1 × 10≤y≤1 (1.62)

ce qui donne

κ(x, y) = κ̃(x)κ̃(y) with κ̃(x) def= −e−ix/2sinc(x/2). (1.63)

Pour générer des décalages de phase d’une longueur d’onde de l’ordre du pixel
(distance entre les points adjacents de pn) dans l’espace image, on voit dans (1.61)
que l’amplitude des fréquences doit aller jusqu’à π. Les fréquences étant comprises
dans [−π, π]2, le terme κ ne varie donc pas beaucoup, mais surtout il peut être
facilement corrigé sur les signaux mesurés de façon à l’éliminer dans les équations.
Par la suite, nous l’ignorerons car il ne modifie pas grandement le modèle. En supp-
rimant cette dépendance, nous identifions dans le modèle (1.61) une Transformée de
Fourier Non-Uniforme (NUFT) et l’équation peut être écrite sous forme de matrice
comme suit

yi = A(ξ)Siu (1.64)

où Si est une matrice diagonale associée à la i-ème carte de sensibilité Si =
diag(si[n])1≤n≤N et A(ξ) : CN → CM est la transformée de Fourier non-uniforme
aux fréquences ξ ∈

(
[−π, π]2

)M ⊂ R2M avec

ξ
def= (ξm)1≤m≤M . (1.65)



Chapter 2

Spurious minimizers in
non-uniform Fourier sampling

optimization

Résumé Une tendance récente en traitement du signal et des images est
l’optimisation des schémas d’échantillonnage de Fourier pour des ensembles spé-
cifiques de signaux. Dans ce chapitre, nous expliquons pourquoi le choix optimal
de schémas d’échantillonnage de Fourier non cartésiens est un problème non con-
vexe difficile en révélant deux problèmes d’optimisation. Le premier est l’existence
d’un nombre combinatoire de minimisateurs parasites pour une classe générique de
signaux. Le second est un effet de gradient évanescent pour les hautes fréquences.
Nous concluons ce chapitre en montrant comment l’utilisation de grands ensembles
de signaux peut atténuer le premier effet et nous illustrons expérimentalement les
avantages de l’utilisation d’algorithmes de gradient stochastique avec une métrique
variable.

Abstract A recent trend in the signal and image processing literature is the
optimization of Fourier sampling schemes for specific datasets of signals. In this
chapter, we explain why choosing optimal non Cartesian Fourier sampling patterns
is a difficult nonconvex problem by bringing to light two optimization issues. The
first one is the existence of a combinatorial number of spurious minimizers for a
generic class of signals. The second one is a vanishing gradient effect for the high
frequencies. We conclude this chapter by showing how using large datasets can
mitigate the first effect and illustrate experimentally the benefits of using stochastic
gradient algorithms with a variable metric.

This chapter is based on the publication [Gossard 2022b]:
Gossard, A., de Gournay, F. & Weiss, P. (2022). Spurious minimizers
in non uniform Fourier sampling optimization. Inverse Problems, 38(2022),
105003.



60 CHAPTER 2. SPURIOUS MINIMIZERS IN FOURIER OPTIMIZATION

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3.1 The setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.2 Elementary observations . . . . . . . . . . . . . . . . . . . . . 64

2.4 Theoretical issues . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.4.1 Spurious minimizers . . . . . . . . . . . . . . . . . . . . . . . 65
2.4.2 Numerical illustration of Theorem 1 . . . . . . . . . . . . . . 68
2.4.3 Flatness for high frequencies . . . . . . . . . . . . . . . . . . 70

2.5 Escaping the minimizers . . . . . . . . . . . . . . . . . . . . . 71
2.5.1 The effect of using a large dataset . . . . . . . . . . . . . . . 71
2.5.2 Stochastic gradient descent . . . . . . . . . . . . . . . . . . . 73
2.5.3 Variable metric . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.5.4 Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . 73

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.7.1 Proof of Proposition 11 . . . . . . . . . . . . . . . . . . . . . 77
2.7.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . 78
2.7.3 Proof of Proposition 12 . . . . . . . . . . . . . . . . . . . . . 79
2.7.4 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . 80

2.1 Introduction

Finding efficient Fourier sampling schemes is a critical issue in communications
and imaging. This led to various theories including the celebrated Shannon-
Nyquist theorems for bandlimited signals and compressed sensing for sparse sig-
nals. Unfortunately - in most practical cases - the signals to reconstruct are
quite loosely described by these generic classes. For instance, magnetic reso-
nance images of brains or knees have a rich structure due to the underlying
object. It is therefore tempting to optimize a sampling scheme directly for a
given dataset rather than relying on a rough mathematical model. The re-
cent progresses in Graphical Processing Units (GPU) programming, automatic
differentiation and machine learning make this idea even more tantalizing. In
the sole field of Magnetic Resonance Imaging (MRI), the following list of refer-
ences [Gözcü 2018, Jin 2019, Sherry 2020, Bahadir 2019, Zibetti 2021, Wang 2022a,
Weiss 2021, Gossard 2012, Loktyushin 2021, Peng 2022, Aggarwal 2020] illustrates
this novel trend.
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Figure 2.1: A typical sampling optimization trajectory. Starting from the sampling
configuration on the left (uniform point process), we obtain the sampling scheme on
the right after 107 iterations. The trajectory in the center corresponds to the 107

iterations of a gradient descent with fixed step size. Notice that the points clusters
have disappeared, but that the scheme is still essentially uniform, while we would
expect the low frequencies to be sampled more densely.

Unfortunately, most of the above works report (more or less explicitly) optimiza-
tion issues. Fig. 2.1 illustrates one of them. In this example, we tried to optimize
a sampling scheme for a single image from the fastMRI challenge [Zbontar 2018].
To this end, we minimize the `2 reconstruction error using a simple back-projection
reconstructor with a subsampling factor of 2. The trajectory of a gradient descent is
displayed in Fig. 2.1b. As can be seen, the final sampling set covers approximately
uniformly the Fourier domain, while we would expect the low frequencies to be
sampled more densely. This likely highlights the presence of a spurious minimizer.

The aim of this paper is to explain this phenomenon from a mathematical per-
spective and to bring some solutions to mitigate the difficulties. We focus on linear
reconstruction methods, which simplifies the analysis and we highlight the critical
role of the non-uniform Fourier transform as an oscillation generator. We expect
that some of the arguments can be reused for more complex nonlinear reconstruc-
tion methods, which suffer from the same experimental issues. We also focus on
optimization schemes that continuously optimize the positions of some sampling
locations. These techniques have the advantage of not relying on a grid, which is
an essential feature for various applications such as magnetic resonance imaging
or radio-interferometry. In addition, they spark the hope of avoiding the curse of
dimensionality encountered in combinatorial problems. We show that this dream is
not realistic, but that the situation improves by considering large signals datasets
and specific variable metric techniques. We conclude the paper by illustrating our
findings on 1D experiments.
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2.2 Notation

In this paper, we will focus on discrete 1D signals, for the ease of exposition. How-
ever, the main arguments apply to arbitrary dimensions and continuous signals as
well.

We consider a signal u as a vector of CN with N ∈ 2N. We let N =q
−N

2 ,
N
2 − 1

y
. An alternative way to represent a signal u ∈ CN is to use a dis-

crete measure µ of the form:
µ =

∑
n∈N

unδ n
N
. (2.1)

Given a location ξ ∈ R, we define:

û(ξ) def= 1√
N

∑
n∈N

une
−2ιπ〈ξ, nN 〉, (2.2)

which can be seen as the continuous Fourier transform of the measure µ. We
consider Ξ = [ξ1, . . . , ξM ] ∈ RM a set of M locations. The Fourier transform
û(Ξ) ∈ CM at the locations Ξ can be written as a matrix-vector product of the
form û(Ξ) = A(Ξ)∗u with the normalized Vandermonde matrix A(Ξ) ∈ CN×M

defined by
A(Ξ)n,m

def= 1√
N
e2ιπ〈ξm, nN 〉.

In what follows, we let a(ξ) ∈ CN denote the vector defined for all n ∈ N by

a(ξ)[n] def= 1√
N
e2ιπ〈ξ, nN 〉,

so that
A(Ξ) = [a(ξ1), . . . , a(ξM )].

The matrix A(Ξ)∗ can be seen as the nonuniform Fourier transform
[Oppenheim 1971] from the grid to the set of sampling locations Ξ. We let (A(Ξ)∗)†
denote the pseudo-inverse of A(Ξ)∗.

2.3 Preliminaries

Below, we first describe the precise mathematical setting and then turn to some
preliminary results.

2.3.1 The setting

Let u ∈ CN denote a signal. We assume that a sampling device allows picking M
frequencies ξ1, . . . , ξM in R, yielding the set of measurements y = A(Ξ)∗u+w with
w ∼ N (0, σ2Id) a white Gaussian noise. A vast amount of reconstruction techniques
have been designed in the literature to reconstruct u from y. A generic reconstructor
can be defined as a mapping R : (CM × RM ) → CN that takes as an input a
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measurement y ∈ CM and a sampling scheme Ξ ∈ RM and outputs a reconstructed
signal R(y,Ξ). Given a collection of signals u1, . . . , uP and a reconstructor R, a
natural framework to find the best sampling scheme Ξ is to solve the following
optimization problem:

inf
Ξ∈RM

1
2P

P∑
p=1

Ew(‖R(A(Ξ)∗up + w,Ξ)− up‖22). (2.3)

This problem can be attacked with first order methods that continuously optimize
the sampling locations ξm, see for instance [Weiss 2021, Gossard 2012, Wang 2022a].
In this work, we will concentrate on three simple linear reconstruction methods of
the form R(y,Ξ) = R(Ξ)y:

The back-projection method which consists in defining the reconstructor as
R1(Ξ) = A(Ξ) or

R1(y,Ξ) def= A(Ξ)y. (2.4)

The pseudo-inverse method where the reconstructor is defined with R2(Ξ) =
(A(Ξ)∗)† or

R2(y,Ξ) def= (A(Ξ)∗)† y. (2.5)

The Tikhonov method (or regularized inverse) which consists in solving the
following quadratic problem:

R3(y,Ξ) def= (1 + λ) arg min
f∈CN

1
2‖A(Ξ)∗f − y‖22 + λ

2 ‖f‖
2
2 (2.6)

for λ > 0. Hence

R3(Ξ) = (1 + λ) (A(Ξ)A(Ξ)∗ + λId)−1A(Ξ). (2.7)

The multiplication by (1 + λ) is there to compensate the bias introduced by the
regularization and will later simplify the expressions. A similar analysis can be
carried out for the more standard solver R3(Ξ) = (A(Ξ)A(Ξ)∗ + λId)−1A(Ξ), but
it leads to significantly more complicated formulas, which we prefer avoiding for the
sake of readability.

These techniques are quite popular in the actual practice. We restrict our
analysis to linear reconstructors of the type (2.4), (2.5) and (2.6) for simplicity
reasons. Note that (2.5) corresponds to the limit case of (2.6) when λ tends to zero.
Numerical experiments reveal that the optimization issues raised in Theorems 1 and
2 also apply to nonlinear reconstructors such as sparsity promoting convex penalties.
However, the techniques used in the proofs do not directly extend to this framework.

We first analyze the problem with a single image u in the dataset, i.e. P = 1.
Let us define three cost functions J1, J2 and J3 which respectively correspond to
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the back-projection, the pseudo-inverse and the regularized inverse.

Definition 9 (Cost function). Given a signal u, a sampling scheme Ξ and a re-
construction method R(Ξ), the cost function reads

J(Ξ) def= Ew

(1
2 ‖R(Ξ)(A(Ξ)∗u+ w)− u‖22

)
(2.8)

where w ∼ N
(
0, σ2Id

)
is white Gaussian noise.

2.3.2 Elementary observations

We will make use of the following definitions.

Definition 10 (The min distance). Given a set of sampling points Ξ, the min
distance md(Ξ) is defined by

md(Ξ) def= min
m6=m′

dist(ξm, ξm′)

where dist is the distance on the torus defined for (ξ1, ξ2) ∈ R2 as

dist(ξ1, ξ2) def= inf
k∈Z
‖ξ1 − ξ2 − kN‖∞. (2.9)

Definition 11 (Subgrid). Throughout the paper, we say that Ξ ∈ [−N/2, N/2[M is
a subgrid if ξm − ξm′ ∈ Z∗ for all m 6= m′.

Proposition 6 (J is N -periodic). We have

J(Ξ mod N) = J(Ξ). (2.10)

Proof. Let n = kN with k ∈ N. The proof simply stems from the fact that a(ξ+n) =
a(ξ).

The previous proposition shows that we can restrict our attention to frequencies
ξ belonging to the set [−N/2, N/2[.

Proposition 7 (Existence of minimizers). For any M ∈ N and any u ∈ CN , there
exists at least one minimizer of J on [−N/2, N/2[M .

Proof. We start by noticing that J is a C∞ function since it is defined as a compo-
sition of C∞ functions. Hence it is also continuous on [−N/2, N/2]M . This yields
the existence of at least one minimizer.

Now we proceed to a reformulation of the problem by rearranging the terms
involved in the definition of J .

Proposition 8. The reconstructors associated to J1, J2 and J3 defined in (2.8) can
be expressed as

R(Ξ) = A(Ξ)Q(Ξ) (2.11)
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(i.e. the solution lives in ran(A)) with:

• Q1(Ξ) = Id

• Q2(Ξ) = (A(Ξ)∗A(Ξ))†

• Q3(Ξ) = (1 + λ)(A(Ξ)∗A(Ξ) + λId)−1.

Proof. For Q1, there is nothing to prove. For Q2, we use one of the standard
properties of the pseudo-inverse. For Q3, we use the equality A (A∗A+ λId) =
(AA∗ + λId)A and then left multiply by (AA∗ + λId)−1 and right multiply by
(A∗A+ λId)−1.

Proposition 9. Letting û(Ξ) = A(Ξ)∗u, we have

J(Ξ) = 1
2‖u‖

2
2 − 〈Q(Ξ)û(Ξ), û(Ξ)〉 (2.12)

+ 1
2‖R(Ξ)û(Ξ)‖22 + 1

2Ew
(
‖R(Ξ)w‖22

)
Proof. We drop the dependency in Ξ to simplify the notation.

2J = ‖u‖22 + ‖RA∗u‖22 + Ew
(
‖Rw‖22

)
+ 2Ew (Re〈RA∗u− u,Rw〉)− 2Re〈RA∗u, u〉

= ‖u‖22 + ‖RA∗u‖22 + Ew
(
‖Rw‖22

)
− 2〈Qû, û〉

where we used Q(Ξ)∗ = Q(Ξ) and Ew(w) = 0.

Equation (2.12) greatly simplifies when Ξ is a subgrid. Let us define the following
function

J̃(Ξ) def= 1
2‖u‖

2
2 −

1
2‖û(Ξ)‖22 + σ2M

2 . (2.13)

Proposition 10. When Ξ is a subgrid, J(Ξ) = J̃(Ξ).

Proof. When Ξ is a subgrid, we have A(Ξ)∗A(Ξ) = Id by the orthogonality of the
basis associated with the FFT. We use the decomposition of Proposition 9 with
Q(Ξ) = Id, R(Ξ)∗R(Ξ) = Id.

2.4 Theoretical issues

In this section, we give the main theoretical results of the paper.

2.4.1 Spurious minimizers

The aim of this section is to illustrate a common situation where the function J

possesses a combinatorial number of minimizers. We construct examples where the
function J̃ defined in (2.13) is very oscillatory, while J − J̃ is of small amplitude.
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The function J is close to J̃ not only for subgrids as in Proposition 10 but also for
well-spread schemes. Following the proof of Proposition 10, and the decomposition
of Proposition 9, it is sufficient to control how close Q(Ξ) and R(Ξ)∗R(Ξ) are to Id.
This is the aim of the following proposition.

Proposition 11 (Bound on Q and R∗R). Consider a sampling pattern Ξ such that
md(Ξ) > 1 and set ε = 1/md(Ξ). Then

−aiId 4 Qi − Id 4 aiId (2.14)
−biId 4 R∗iRi − Id 4 biId, (2.15)

with

a1 = 0, a2 = ε

1− ε , a3 = ε

1− ε
b1 = ε, b2 = ε

1− ε , b3 = 4ε
(1− ε)2

The proof is postponed to Section 2.7.1.

Theorem 1 (A combinatorial number of minimizers ). Set a number of samples
M ∈ N and consider a vector u ∈ CN such that the following properties are verified

i) The modulus |û|2 possesses a subset of K ≥ M local maximizers Z =
{ζ1, . . . , ζK} separated by a distance at least δ = md(Z) with δ > 1 + 2r for
some r > 0.

ii) The modulus |û|2 is locally strictly concave for each ζk:

|û|2(ζk + h) ≤ |û|2(ζk)−
c

2h
2,∀h ∈ [−r, r]

for some c > 0.

iii) For any subset Ξ̄ of M distinct points in Z, we have

cr2

2 > (b+ 2a) ‖û(Ξ̄)‖22 + bMσ2 (2.16)

where a and b are given in Proposition 11 with ε = 1
δ−2r .

Then, the function J possesses at least
(K
M

)
·M ! local minimizers.

The proof of Theorem 1 is postponed to Section 2.7.2. The conditions in Theo-
rem 1 may look cryptic at first sight. We first show a simple example of a function
u that verifies the hypotheses and leads to a huge number of critical points.

Corollary 1. Assume that N ∈ 4N and define u ∈ CN as follows

u[n] =


√
N/2 if n = ±N/4,

0 otherwise.
(2.17)
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Let M = bη
√
Nc with η = π2√2

256·(20+16σ2) then all the functions Ji possess a

number of minimizers larger than M ! ·
(

1
2η

)η√N
.

For σ ≤ 1, the bound holds for η = 3 · 10−3. For σ = 0 and J1 the bound can be
increased to η = 1.09 · 10−1.

Proof. The choice of u in (2.17) leads to the oscillatory function û(ξ) = cos
(
π
2 ξ
)
.

The modulus |û| is maximal at every point ξ ∈ 2N. Let ξ0 ∈ 2N and set r = 1
4 . For

any ξ ∈ [ξ0 − r, ξ0 + r], we have

(|û|2)′′(ξ) = π2

2

(
sin2

(
π

2 ξ
)
− cos2

(
π

2 ξ
))

≤ − π2

2
√

2
.

Let p ∈ N. The conditions i) and ii) of Theorem 1 are satisfied with Z =
2pN ∩ [−N/2, N/2[, K = bN/(2p)c, r = 1/4, c = π2√2

8 , δ = 2p. Further notice that
for every set Ξ̄ ∈ ZM , ‖û(Ξ̄)‖22 = M .

For this example, the condition (2.16) therefore reads

M <
π2√2
256 ·

( 1
b+ 2a+ bσ2

)
. (2.18)

As long as this condition is satisfied, Theorem 1 allows concluding on the existence
of
(bN/2pc

M

)
·M ! maximizers.

Now, if δ − 2r ≥ 2, we can coarsely simplify the bounds in Proposition 11 as

a ≤ 2
δ − 2r and b ≤ 16

δ − 2r .

Hence, a combinatorial number of minimizers is granted given that

M <
π2√2
256 ·

(
δ − 2r

20 + 16σ2

)
. (2.19)

Now, take p = b
√
Nc and M = bη ·

√
Nc with η = π2√2

128·(20+16σ2) . Then Theorem

1 yields a number of minimizers larger than
(b√N/2c
bη·
√
Nc
)
· M !. Using the standard

bound (
n

k

)
≥
(
n

k

)k
(2.20)

yields a number of minimizers larger than
(

1
2η

)η√N
.

In particular for σ < 1 this yields η = 0.003. The bound can be increased to
η = 0.109 for σ = 0 and J1.
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2.4.2 Numerical illustration of Theorem 1

In this section we illustrate Theorem 1 through numerical examples in Fig. 2.2. We
first consider the noiseless settings σ = 0 and illustrate the existence of spurious
minimizers for the back-projection and the pseudo-inverse methods.

We introduce the following function

F (Ξ) def= 1
2

M∑
m=1
|û(ξm)|2 = 1

2‖û(Ξ)‖22, (2.21)

which somehow measures the energy captured within a sampling scheme Ξ. We
also introduce the functions G1 and G2 such that J1 = 1

2‖u‖
2
2 − F + G1 and J2 =

1
2‖u‖

2
2 − F +G2. Using Proposition 9, we have

G1(Ξ) = 1
2 〈(A(Ξ)∗A(Ξ)− Id) û(Ξ), û(Ξ)〉 , (2.22)

and
G2(Ξ) = 1

2
〈(

Id− (A(Ξ)∗A(Ξ))†
)
û(Ξ), û(Ξ)

〉
. (2.23)

From the left to the right, we used three different 1D signals: a high frequency
cosine, a low frequency sine and a Gaussian. We plot the different energy land-
scapes, for M = 2 measurements at locations Ξ = {ξ1, ξ2} and N = 16. From the
top to the bottom, we display the functions J1, J2, G1, G2, −F and the modulus of
the Fourier transform ξ 7→ |û(ξ)|. In order to understand the effect of the signal’s
structure, the local minima of J1, J2, G1, G2 and −F are represented with red dots.

First notice that the cost functions are symmetric with respect to the diagonal.
This simply reflects the fact that permutation of points lead to the same energy,
and this illustrates the factor M ! in Theorem 1.

As can be seen in all cases, the functions G1 and G2 vanish far away from the
diagonal (see Proposition 11). These point configurations correspond to well-spread
sampling schemes. On the contrary, the function −F can have a large amplitude
even outside the diagonal. These two properties are the main ingredients to prove
Theorem 1.

The left column (high frequency cosine), corresponds to the example in Corol-
lary 1. We see a number of minimizers that seems quadratic in N for M = 2. The
center column (low frequency sine) shows that the number of minimizers decreases
with a higher regularity of the signal, by reducing the oscillations in F . On the
right (Gaussian function), we illustrate a case where F has only one local maxi-
mum. Even in this case, the function J still has valleys with shallow local minima.
The same phenomenon appears in the center (low frequency sine). Notice that this
phenomenon is not captured by Theorem 1, which only relies on local maximizers
of F . In these two examples, the oscillations are induced by the function G, which
we do not explore in this paper.

In Fig. 2.3, the energy profile of J3 is displayed with the low frequency signal (see
Fig. 2.2 center column) for M = 2 and for various noise levels σ and regularization
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Figure 2.2: The energy profile for M = 2 and three different signals û: a high
frequency cosine, a low frequency sine and a Gaussian (from left to right). From
top to bottom, we represent J1, J2, G1, G2, F and |û|. The red dots represent local
minima.
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parameters λ.
Neither the noise, nor the regularization parameter λ are able to remove the

local minimizers of J3 which are displayed by red dots. The last column is a critical
case where the noise prevails over the signal and the reconstruction error is high
(typically ∼ 0.18 in the noiseless setting and ∼ 0.5 with σ = 5× 10−1).
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Figure 2.3: The energy profile of J3 for M = 2 with the low frequency signal (see
center column of Fig. 2.2) for different noise levels σ and regularization λ. The red
dots represent local minima.

2.4.3 Flatness for high frequencies

In this paragraph we show that the partial derivatives of the cost function may
vanish, for indexes corresponding to high frequencies. This explains another prac-
tical difficulty in Fourier sampling optimization: without using variable metric
techniques, the sampling points located in the high frequencies move very slowly.
Though our proof only applies to the function J1, this effect also seems to occurs
for J2. See for instance the four corners of Fig. 2.2, right.
Proposition 12. Letting r denote the residual error function

r(Ξ) = A(Ξ)A(Ξ)∗u− u, (2.24)
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the gradient of the cost function J1 reads:

∇J1(Ξ) = Re
(
∇
(
û(Ξ)� r̂(Ξ)

))
, (2.25)

where ∇ in the right-hand-side denotes the usual derivative in 1D or the gradient
in higher dimension and where � is the coordinate-wise (Hadamard) product.

The proof of Proposition 12 is postponed to Section 2.7.3.

Theorem 2 (Vanishing gradients for high frequencies). Consider a signal u ∈ CN

and a point configuration Ξ ∈ RM . Under the decay assumptions

|û(ξ)| . 1
|ξ|α

and |û′(ξ)| . 1
|ξ|α

, (2.26)

with α > 0, we have ∣∣∣∣∂J1(Ξ)
∂ξm

∣∣∣∣ . ‖û(Ξ)‖1
md(Ξ)|ξm|α

. (2.27)

The decay assumption appears naturally in the continuous setting, when con-
sidering signals u from Sobolev spaces Hk with k derivatives in L2.

2.5 Escaping the minimizers

In this section we propose some solutions to mitigate the issues raised in Section 2.4
and we illustrate them numerically.

2.5.1 The effect of using a large dataset

In Theorem 1, we proved existence of many local minimizers in the case P = 1,
which corresponds to a unique signal. Let us now assume that we have access to
P signals u1, . . . , uP in CN . The analysis carried out to prove Theorem 1 can be
replicated verbatim. The only difference being that every occurence of |û|2 must be
replaced by ρP

def= 1
P

∑P
p=1 |ûp|2. The function ρP can be understood as the average

power spectral density of the family u1, . . . , uP . As highlighted in Theorem 1, two
important factors that can create spurious minimizers are i) the number K of strict
maximizers of ρP and ii) the curvature c at these maximizers.

As P increases, we typically expect the density ρP to become smoother. This
effect is illustrated for a simple family of shifted and dilated rectangular functions
in Fig. 2.4. As can be seen, both the number of maxima and the curvature c of ρP
in Theorem 1 decay with P . For N = 128, we display the average power spectral
density for P ranging from 1 to 103. Each signal is defined by

u[n] =
∫ n+ 1

2

n− 1
2

1[a,b](x) dx, (2.28)

where a and b are drawn uniformly in the range [−N/2 + 1, N/2− 1]. The discrete
signals are then renormalized so that ‖u‖2 = 1.



72 CHAPTER 2. SPURIOUS MINIMIZERS IN FOURIER OPTIMIZATION

The same experiment can be reproduced in a more relevant framework from
a practical viewpoint. The average power spectral density for 2D knee images of
the fastMRI database [Zbontar 2018] are represented in Fig. 2.5. The image are
of size 320 × 320. The local maximizers are computed and displayed with red
dots in Fig. 2.5. In that case, increasing the family size P reduces the number of
maximizers at a slow rate. Indeed they slightly increase from 13k points in the case
P = 1 to 14k in the case P = 100 and then start to decrease to 11k for P = 10000.
However, the curvature c decays much faster. As a conclusion, we see that using
large families of signals can reduce asymptotically the number and the size of the
basins of attraction of some spurious minimizers.
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Figure 2.4: Average power spectral density ρP for families of rectangular functions
with different sizes P . The dots represent local maxima of ρP for different values
of P .

(a) P = 100 – 13746 maxima (b) P = 102 – 14888 maxima (c) P = 104 – 11592 maxima

Figure 2.5: Average power spectral density ρP for a subset of images from the knee
dataset of fastMRI. The image size is N = 320 and the red dots represent local
maximizers.
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2.5.2 Stochastic gradient descent

When using a large family of signals, the cost function (2.3) naturally lends itself
to the use of stochastic gradient descents (SGD), see [Wang 2022a, Weiss 2021]
that address large MRI datasets. Contrarily to a deterministic gradient descent,
which is known to converge to critical points under mild regularity conditions, the
stochastic gradient with a fixed step size does not converge. The method is known
to end up frolicking in the neighborhood of local critical points [Bottou 2010]. The
radius of the neighborhood depends on the stochastic gradient variance and on the
step-size. Intuitively, using stochastic gradients algorithms should therefore allow
escaping local minimizers. We will showcase this effect in the forthcoming numerical
experiments.

2.5.3 Variable metric

In Section 2.4.3, Theorem 2 states that the gradient of J1 might vanish in the
high frequency domain. Using second order information is a well known remedy to
mitigate this effect. In this work, we propose a simple method which corresponds
to a variable diagonal metric with well-chosen coefficients.

As shown in Theorem 2, the gradient vanishes with a rate depending on the
Fourier transform magnitude |û|. For a dataset, this decay is somewhat captured
by the average power spectral density ρP (ξ) def= 1

P

∑P
p=1 |ûp(ξ)|2. Hence, we propose

to compute ρP once and for all on a fine grid (20 ×N discretization points in our
example). The function ρP is then linearly interpolated in between the grid points
during the gradient descent. At each gradient iteration we replace ∂J1(Ξ)

∂ξm
by

1
ρP (ξm)β

∂J1(Ξ)
∂ξm

, (2.29)

where β is a constant that has to be set empirically. From numerical experiments
β ∈ [1, 2] shows good performance. In all the experiments presented hereafter
we use β = 1. We will see later in the numerical experiments, that this variable
metric significantly accelerates the convergence for sampling points located in high
frequencies.

2.5.4 Numerical illustrations

In this section, we aim at illustrating numerically the different results established
previously. We aim at reconstructing 1D signals of size N = 128 fromM = 64 mea-
surements in the Fourier domain. We suppose that P rectangular signals generated
using (2.28) are given. We illustrate our findings with the back-projection recon-
structor associated to the cost function J1, but similar results have been obtained
with the pseudo-inverse. As we are working in 1D with small dimensions N and
M , at each iteration, the whole matrix A(Ξ)∗ is evaluated and the gradient ∇J1
is computed directly from the analytic expression (2.25). We first use a fixed step
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gradient descent algorithm in order to showcase the convergence dynamics of the
algorithm. The initialization of Ξ is a subgrid with a constant spacing of 2. The
following experiments are conducted:

Effect of the dataset size P We first vary the number of signals by taking
P = 1 and P = 1000. The evolution of Ξ is displayed in Fig. 2.6, respectively
top-left and top-center. The history of the cost function is given in Fig. 2.7. For
this experiment, we expect that a good sampling scheme consists of low frequencies
sampled at the Shannon-Nyquist rate. In this regard, the sampling scheme obtained
in Fig. 2.6 for P = 1000 is more satisfactory than the one obtained for P = 1. In
the case P = 1000, the displacement of Ξ is more important, suggesting that some
local minima have been discarded.

Variable metric We then study, for P = 1000 the effect of a variable metric
gradient descent as described in Section 2.5.3. We also compare this approach to
an L-BFGS algorithm [Goldfarb 1970] with a line search and with a Hessian esti-
mated using the last 8 gradients. In Fig. 2.6, the usual gradient algorithm is at
the top-center, the variable metric gradient descent is at the bottom-center and the
L-BFGS algorithm is at the bottom-left. The cost function evolution is displayed in
Fig. 2.7. Using a variable metric results in a huge speed-up of the algorithm. This
is particularly visible for points ξ located at high frequencies, which is another illus-
tration of Theorem 2. For this example, the L-BFGS algorithm converges slightly
faster than the variable metric gradient descent in the early iterations. However,
its per-iteration cost is much higher since it uses a line search and a non diagonal
metric. Since the L-BFGS algorithm can be seen as a state-of-the-art quasi-Newton
method, the proposed empirical metric (2.29) seems remarkably efficient.

Stochastic gradient descent Finally in Fig. 2.6 right column, we investigate
the use of a fixed-step stochastic gradient descent algorithm with a batch size of 1.
In that experiment, a new random signal is generated at every iteration using the
model (2.28) and the stochastic gradient is computed with respect to that signal
only. The trajectory of the vanilla SGD is comparable with the one obtained using
a deterministic gradient descent for P = 1000 in Fig. 2.6 top-center. The variable
metric trick significantly improves the convergence speed and more importantly, the
final points configuration. As a conclusion, the variable metric SGD algorithm seems
to be able to escape spurious minimizers and to take advantage of the averaging
effect of the large dataset without the struggle of computing the gradient over a
large dataset.

Comparison of the sampling schemes The final sampling schemes are not
directly comparable in terms of cost function because the objective function is
computed over different datasets. In Table 2.1, we therefore report the cost function
computed on a specific set of signals. This set contains the P = 1000 signals that are
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used in the numerical illustrations of Fig. 2.6 center column. When tested against a
large dataset, the final configuration obtained for P = 1 seems highly sub-optimal.
This effect is most likely due to a convergence to a local minimizer and also to the
fact that the sampling scheme is not adapted to a whole family but only to a single
signal. The remarkable observation that can be made from Table 2.1 is that the
optimal configuration obtained with the variable metric SGD performs better on
the dataset of P = 1000 signals than the experiment conducted in Fig. 2.6 which
is taylored for this dataset. This shows that the the usual deterministic algorithms
are stuck in local minima even with large datasets. On the contrary, the variable
metric SGD algorithm seems effective.

These numerical results highlight the effectiveness of the different tricks sug-
gested in this section: the use of a variable metric to handle high frequencies and a
stochastic optimization to avoid local minima.
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(f) variable metric SGD

Figure 2.6: Trajectories of Ξ the back-projection reconstructor J1 and a fixed-
step gradient descent. The iterations are represented on the vertical axis, and the
horizontal axis corresponds to ξ and is periodic. The initialization is a uniform
subgrid and is seen on the axis y = 0 of the top and middle figures. Left and center:
trajectories of Ξ for different sizes of signals families. The objective function is
given in Fig. 2.7. The right column represents trajectories of Ξ using a stochastic
gradient descent with one signal in the batch that is different at each iteration. The
trajectories in the stochastic case have been averaged over the last 10000 iterations.

2.6 Conclusion

We highlighted two obstacles to the convergence of gradient based algorithms for
Fourier sampling schemes optimization. The first one is a high number of local
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100 101 102 103 104 105 106 107

10 1

P=1 
P=1000 
P=1000 with var. metric
P=1000 L-BFGS

Figure 2.7: Objective function J1 (back-projection) for the different experiments in
Fig. 2.6 in the deterministic case.

Test
case

P = 1 P = 1000 P = 1000
with var.
metric

L-BFGS SGD SGD with
var. met-
ric

Eff. 9.07×10−2 2.68×10−2 2.38×10−2 2.41×10−2 6.63×10−2 1.00×10−2

Table 2.1: Effectiveness of the sampling schemes obtained with different strategies
on a dataset of 1000 signals. The table contains the average reconstruction error
J1 over the dataset. This dataset is the one used in the case P = 1000, see Fig. 2.6
center column.

minimizers and the second one is a vanishing gradient phenomenon for high fre-
quencies. As far as we know, this is the first theoretical study explaining why
optimizing sampling patterns with modern automatic differentiation tools might
result in algorithms being stucked at unsatisfactory locations. We also proposed
three approaches to mitigate these effects. First, the number of spurious minimizers,
the width and the depth of their basins of attraction can be reduced by considering
large databases of signals. This acts as a regularization by averaging. Second, the
vanishing gradient effect can be attacked with variable metric gradient descents. Fi-
nally, the use of a stochastic gradient instead of a deterministic gradient approach
seems to allow escaping the narrow basins in a simplified 1D setting. These re-
marks may help explaining why the recent approaches in the literature based on
the Adam optimizer manage to slightly improve the sampling pattern efficiency.
Our work suggests that increasing the database sizes may help further easing the
numerical resolution of the sampling pattern optimization by further smoothing the
energy profiles. Many state-of-the-art reconstructors are based on a quadratic data
fidelity term and we expect that some of the techniques used in this paper in the
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linear case can be reused even in a nonlinear setting. This is left for future research.

2.7 Proofs

2.7.1 Proof of Proposition 11

Significant progress have been made lately in the control of the extreme eigenvalues
of Vandermonde matrices, which play a pivotal role in algebraic number theory
[Bombieri 1984, Moitra 2015, Batenkov 2020, Aubel 2019]. The tightest results for
well separated schemes was recently obtained in [Aubel 2019]. Rewriting their result
in our formalism, we obtain the following inequality.

Proposition 13 (Conditioning of Vandermonde matrices [Aubel 2019] ). Let Ξ =
(ξ1, . . . , ξM ) denote a set of distinct sampling points. The following inequalities hold(

1− 1
md(Ξ)

)
Id 4 A(Ξ)∗A(Ξ) 4

(
1 + 1

md(Ξ)

)
Id (2.30)

Proof. Relation (2.30) is a direct consequence of [Aubel 2019, eq. (31)] up to renor-
malizations.

Proof. For i = 1, recall that Q1 = Id and R∗1R1 − Id = A∗A. Then (2.14) is trivial
and (2.15) follows from Proposition 13.

Let τm denote the eigenvalues ofA(Ξ)∗A(Ξ). By Proposition 13, |τm−1| ≤ ε < 1.
For i = 2, R∗2R2 = Q∗2A

∗AQ2 = (A∗A)†, Q2 = (A∗A)†. With ε < 1, A(Ξ)∗A(Ξ)
is invertible and we have

1
1 + ε

Id 4 (A(Ξ)∗A(Ξ))−1 4
1

1− ε Id. (2.31)

And we finally get

−ε
1 + ε

Id 4 (A(Ξ)∗A(Ξ))−1 − Id 4
ε

1− ε Id. (2.32)

For i = 3, Q3 = (1 + λ) (A∗A+ λId)−1, so that

1 + λ

1 + λ+ ε
Id 4 Q3 4

1 + λ

1 + λ− ε
Id.

This gives
−ε

1 + λ+ ε
Id 4 Q3 − Id 4

ε

1 + λ− ε
Id

and using that ε > 0 and λ ≥ 0 allows concluding.
In order to prove (2.15), Proposition 13 yields 1− ε ≤ τm ≤ 1 + ε. In addition,

R∗3R3 = (1 + λ)2(A∗A+ λId)−1A∗A(A∗A+ λId)−1
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can be diagonalized and its eigenvalues are therefore of the form

(1 + λ)2 τm
(τm + λ)2 .

By taking the upper-bound on the numerator and the lower-bound on the denomi-
nator, we obtain the following bound:

R∗3R3 4 (1 + λ)2 1 + ε

(1− ε+ λ)2 Id.

We can continue as follows:

(1 + λ)2 1 + ε

(1− ε+ λ)2 = (1 + λ)2 1 + ε

(1 + λ)2(1− ε/(1 + λ))2

≤ 1 + ε

(1− ε)2 .

By a similar reasoning with respect to the smallest eigenvalue of R∗3R3, we get:

1− ε
(1 + ε)2 Id 4 R∗3R3 4

1 + ε

(1− ε)2 Id.

Substracting the identity on both sides and using the fact that ε2 < ε since ε < 1
yields

− 4ε
(1− ε)2 Id 4 R∗3R3 − Id 4

4ε
(1− ε)2 Id.

2.7.2 Proof of Theorem 1

Under the hypotheses of Theorem 1, first notice that any set Ξ ∈ ZM is a local
maximizer of Ξ 7→ ‖û(Ξ)‖22. Indeed any perturbation of the individual sampling
locations ξm results in a decay of the captured energy.

There are
(K
M

)
possible sampling configurations when all the points belong to

Z. Let Ξ̄ = {ξ̄1, . . . , ξ̄M} denote one of them. The idea of the proof is to show
that there is a local minimizer of J in the following neighborhood B = [ξ̄1 − r, ξ̄1 +
r] × . . . × [ξ̄M − r, ξ̄M + r]. A sufficient condition for the set B to contain a local
minimizer of J is that J(Ξ̄) < J(Ξ) for all Ξ ∈ ∂B (the boundary of B) since J is
continuous. Throughout this proof, we use ε = 1

δ−2r since we always have for all Ξ
under consideration, md(Ξ) ≥ δ − 2r.

Using Proposition 9, the expression of (2.13) and the bounds of Proposition 11,
we obtain ∣∣∣J(Ξ)− J̃(Ξ)

∣∣∣ ≤ ( b2 + a

)
‖û(Ξ)‖22 + b

2σ
2M. (2.33)

For all Ξ ∈ ∂B, at least one index m must verify ξ̄m − ξm = r and we have by
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strict concavity of |û| around ξ̄m

‖û(Ξ̄)‖22 − ‖û(Ξ)‖22 ≥
cr2

2 (2.34)

‖û(Ξ̄)‖22 + ‖û(Ξ)‖22 ≤ 2‖û(Ξ̄)‖22. (2.35)

Hence for Ξ ∈ ∂B, using (2.34) yields

J̃(Ξ)− J̃(Ξ̄) ≥ cr2

2 . (2.36)

Combining the previous inequalities yields

J(Ξ)− J(Ξ̄) = J(Ξ)− J̃(Ξ) + J̃(Ξ)− J̃(Ξ̄) + J̃(Ξ̄)− J(Ξ̄)
(2.36)
≥ cr2

2 + J(Ξ)− J̃(Ξ) + J̃(Ξ̄)− J(Ξ̄)
(2.33)
≥ cr2

2 −
[(
b

2 + a

)(
‖û(Ξ)‖22 + ‖û(Ξ̄)‖22

)
+ bMσ2

]
(2.35)
≥ cr2

2 −
[
(b+ 2a) ‖û(Ξ̄)‖22 + bMσ2

]
.

Therefore, the condition

cr2

2 > (b+ 2a) ‖û(Ξ̄)‖22 + bMσ2 (2.37)

suffices to conclude on the existence of a minimizer of J in the interior of B. The
multiplicative factor M ! is related to the fact that for a given minimizer, all the
possible permutations of indices give rise to different minimizers.

2.7.3 Proof of Proposition 12

Proof. Let us consider a point configuration Ξ ∈ RM and a perturbation ε ∈ RM .

Given a vector of measurements û(Ξ) ∈ CM , we let ∇û(Ξ) =


û′(ξ1)

...
û′(ξM )

 denote the

vector of derivatives at the sampling locations. We recall that û(Ξ) = A(Ξ)∗u and
we define r̂(Ξ) = A(Ξ)∗r. Elementary calculus leads to the following identities for
every ε direction of variation:

(JacA(Ξ)ε)∗ = JacA∗(Ξ)ε
∇û(Ξ)� ε = JacA∗(Ξ)ε · u.
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Then, we apply standard calculus of variations:

J1(Ξ + ε) =J1(Ξ) + Re〈JacA(Ξ)ε · û(Ξ), r(Ξ)〉
+ Re〈A(Ξ)JacA∗(Ξ)ε · u, r(Ξ)〉+ o(‖ε‖22)

=J1(Ξ) + Re〈û(Ξ), (JacA(Ξ)ε)∗ r(Ξ)〉+ Re〈∇û(Ξ)� ε, r̂(Ξ)〉+ o(‖ε‖22)
=J1(Ξ) + Re〈û(Ξ),∇r̂(Ξ)� ε〉+ Re〈ε,∇û(Ξ)� r̂(Ξ)〉+ o(‖ε‖22)
=J1(Ξ) + Re〈∇r̂(Ξ)� û(Ξ), ε〉+ Re〈ε,∇û(Ξ)� r̂(Ξ)〉+ o(‖ε‖22).

Hence, by identification

∇J1(Ξ) = Re
(
∇r̂(Ξ)� û(Ξ) +∇û(Ξ)� r̂(Ξ)

)
= Re

(
∇
(
û(Ξ)� r̂(Ξ)

))
.

2.7.4 Proof of Theorem 2

In order to simplify the notation, let L(Ξ) def= A(Ξ)∗A(Ξ). By Proposition 12, we
have ∣∣∣∣∂J1(Ξ)

∂ξm

∣∣∣∣ ≤ |û′(ξm)| · |r̂(ξm)|+ |û(ξm)| · |r̂′(ξm)|.

By definition, we have r̂(Ξ) = (L(Ξ)− Id)û(Ξ), hence

|r̂(ξm)| ≤ ‖r̂(Ξ)‖2 ≤
‖û(Ξ)‖2
md(Ξ) , (2.38)

where we used Proposition 13 to obtain the last inequality. Now, we also wish to
control |r̂′(ξm)|. To this end, first notice that

r̂′(ξm) =
M∑

m′=1

(
∂L(Ξ)m,m′

∂ξm
û(ξm′)

+ L(Ξ)m,m′ û′(ξm′)1m=m′

)
− û′(ξm)

=
M∑

m′=1

∂L(Ξ)m,m′
∂ξm

û(ξm′).

We start with an analytical expression of the matrix L(Ξ).

Proposition 14 (The expression of A∗A). Let L(Ξ) def= A(Ξ)∗A(Ξ). We have

[L(Ξ)]m,m′ =


1 if m = m′,

1
N

exp
(
ιπ(ξm − ξm′)

N

)
× sin(π(ξm − ξm′))

sin
(
π(ξm−ξm′ )

N

) otherwise. (2.39)
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Proof. We have:

[L(Ξ)]m,m′ = 1
N

∑
n

e2ι π
N
〈ξm′−ξm,n〉

= 1
N
e−ιπ(ξm′−ξm) 1− e2ιπ(ξm′−ξm)

1− e2ι π
N

(ξm′−ξm)

= 1
N
e−ιπ(ξm′−ξm) e

ιπ(ξm′−ξm)

eι
π
N

(ξm′−ξm) ×
e−ιπ(ξm′−ξm) − eιπ(ξm′−ξm)

e−ι
π
N

(ξm′−ξm) − eι
π
N

(ξm′−ξm)

= 1
N
e−ι

π
N

(ξm′−ξm) sin(π(ξm′ − ξm))
sin
(
π
N (ξm′ − ξm)

) .

Now, we will use the following lemma.

Lemma 1. The following bound holds:∣∣∣∣∂L(Ξ)m,m′
∂ξm

∣∣∣∣ ≤ π

N
+ 4

dist(ξm′ , ξm) ≤
π

N
+ 4

md(Ξ) .

Proof. Letting δ = ξm − ξm′ , we have

∂L(Ξ)m,m′
∂ξm

= π

N2 ×
ιeι

π
N
δ sin(πδ)

sin
(
π
N δ
) + π

N
× e−ι

π
N
δ

sin
(
π
N δ
) (cos(πδ)− sin(πδ)

N
×

cos
(
π
N δ
)

sin
(
π
N δ
)) .

Without loss of generality we consider the case 0 ≤ δ ≤ N/2. Using
∣∣∣∣ sin(πδ)
N sin( πN δ)

∣∣∣∣ ≤
1 let us remark that∣∣∣∣∂L(Ξ)m,m′

∂ξm

∣∣∣∣ ≤ π

N
+ π

N

∣∣∣∣∣ 1
sin
(
π
N δ
) (sin(πδ) cos

(
π
N δ
)

N sin
(
π
N δ
) − cos(πδ)

)∣∣∣∣∣ .
Using the inequality

∣∣∣∣ sin(πδ)
N sin( πN δ)

∣∣∣∣ ≤ 1 again, we obtain

∣∣∣∣∣sin(πδ) cos
(
π
N δ
)

N sin
(
π
N δ
) − cos(πδ)

∣∣∣∣∣ ≤
∣∣∣∣cos

(
π

N
δ

)∣∣∣∣+ 1 ≤ 2.

Finally, using the inequality sin(x) ≥ x/2 for x ∈ (0, π/2), we get
∣∣∣∣∂L(Ξ)m′,m

∂ξm′

∣∣∣∣ ≤
π
N + 4

δ .

Lemma 1 and a Cauchy-Schwarz inequality provides the following bound:

|r̂′(ξm)| ≤
(
π

N
+ 4

md(Ξ)

)
‖û(Ξ)‖1.
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Combining everything finally yields:∣∣∣∣∂J1(Ξ)
∂ξm

∣∣∣∣ ≤|û′(ξm)| · ‖û(Ξ)‖2
md(Ξ) + |û(ξm)| · ‖û(Ξ)‖1 ·

(
π

N
+ 4

md(Ξ)

)
.

Under the decay assumptions of Theorem 2, we obtain∣∣∣∣∂J1(Ξ)
∂ξm

∣∣∣∣ . ‖û(Ξ)‖1
md(Ξ)|ξm|α

.



Chapter 3

Bayesian Optimization of
Sampling Densities in MRI

Résumé L’optimisation des schémas d’échantillonnage en IRM en utilisant une
métrique guidée par les données a récemment fait l’objet d’une attention partic-
ulière. Suite aux observations du Chapitre 2 sur le nombre combinatoire de min-
imiseurs dans l’optimisation hors grille de schémas de Fourier, nous proposons
un cadre pour optimiser globalement les densités d’échantillonnage en utilisant
l’Optimisation Bayésienne. En utilisant une technique de réduction de dimension,
nous optimisons les trajectoires d’échantillonnage plus de 20 fois plus rapidement
que les méthodes conventionnelles hors grille, avec un nombre restreint d’images
d’entraînement. Cette méthode – entre autres avantages – permet de s’affranchir
de la nécessité d’utiliser de la différentiation automatique. Ses performances sont
légèrement inférieures à celles des trajectoires apprises de l’état de l’art, car elle
réduit l’espace des trajectoires admissibles, mais elle présente des avantages consid-
érables en terme de temps de calcul. Les autres contributions comprennent : i) une
évaluation précise de l’influence de la distance dans la formulation variationnelle
pour générer des trajectoires ; ii) une méthode d’apprentissage spécifique sur des
familles d’opérateurs pour les réseaux unrolled ; et iii) une méthode de gradient
projeté pour l’optimisation des trajectoires.

Abstract Data-driven optimization of sampling patterns in MRI has recently
received a significant attention. Following the observations of Chapter 2 on the com-
binatorial number of minimizers in off-the-grid optimization, we propose a frame-
work to globally optimize the sampling densities using Bayesian optimization. Using
a dimension reduction technique, we optimize the sampling trajectories more than
20 times faster than conventional off-the-grid methods, with a restricted number
of training samples. This method – among other benefits – discards the need of
automatic differentiation. Its performance is slightly worse than state-of-the-art
learned trajectories since it reduces the space of admissible trajectories, but comes
with significant computational advantages. Other contributions include: i) a careful
evaluation of the distance in probability space to generate trajectories ii) a specific
training procedure on families of operators for unrolled reconstruction networks and
iii) a gradient projection based scheme for trajectory optimization.

This chapter is based on the preprint [Gossard 2022a]:
Gossard, A., de Gournay, F., & Weiss, P. (2022). Bayesian Optimization
of Sampling Densities in MRI.
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3.1 Introduction

The quest for efficient acquisition and reconstruction mechanisms in Magnetic Res-
onance Imaging (MRI) has been ongoing since its invention in the 1970’s. This
led to a few major breakthrough, which comprise the design of efficient pulse se-
quences [Bernstein 2004], the use of parallel imaging [Roemer 1990, Blaimer 2004],
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the theory and application of compressed sensing [Lustig 2008] and its recent im-
provements thanks to the progresses in learning and GPU computing [Knoll 2020].
While the first attempts to use neural networks in this field were primarily focused
on the efficient design of reconstruction algorithms [Jacob 2020], some recent works
began investigating the design of efficient sampling schemes or joint sampling/re-
construction schemes. The aim of this paper is to make progress in the numerical
analysis of this nascent and challenging field.

3.1.1 Some sampling theory

In a simplified way, an MRI scanner measures values of the Fourier transform of the
image to reconstruct at different locations (ξm)1≤m≤M in the so-called k-space. The
locations (ξm) are obtained by sampling a continuous trajectory defined through
a gradient sequence. The problem we tackle in this paper is: how to choose the
points (ξm) or the underlying trajectories in an efficient or optimal way?

Shannon-Nyquist This question was first addressed using Shannon-Nyquist the-
orem, which certifies that sampling the k-space on a sufficiently fine Euclidean
grid provides exact reconstructions using linear reconstructors. This motivated
the design of many trajectories, such as the ones in echo-planar imaging (EPI)
[Schmitt 2012]. Progresses on non-uniform sampling theory [Feichtinger 1994] then
provided guidelines to produce efficient sampling/reconstruction schemes for linear
reconstructors. This theory is now mature for the reconstruction of bandlimited
functions. In a nutshell, it advocates the use of a sampling set which covers the
k-space sufficiently densely with well spread samples.

Compressed sensing theory Shannon-Nyquist theory requires sampling the k-
space densely, resulting in long scanning times. It was observed in the 1980’s that
subsampling the high frequencies using variable density radial patterns did not com-
promise the image quality too much [Ahn 1986, Jackson 1992]. The first theoretical
elements justifying this evidence were provided by the theory of compressed sens-
ing, when using nonlinear reconstructors. This seminal theory is based on concepts
such as the restricted isometry property (RIP) or the incoherence between the mea-
surements [Candès 2006, Lustig 2005]. However it soon became evident that these
concepts were not suited to the practice of MRI and a refined theory based on local
coherence appeared in [Adcock 2017, Boyer 2019]. The main teaching is that a good
sampling scheme for `1-based reconstruction methods must have a variable density
that depends on the sparsity basis and on the sparsity pattern of the images. To
the best of our knowledge, this theory is currently the one that provides the best
explanation of the success of sub-sampling. In particular, analytical expressions of
the optimal densities [Adcock 2020] can be derived and fit relatively well with the
best empirical ones.
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The main teachings To date, there is still a significant discrepancy between
the theory and practice of sampling in MRI. A mix between theory and common
sense however provides the following main insights. A good sampling scheme should
[Boyer 2016]:

• have a variable density, decaying with the distance to the center of the k-space,

• have a sufficiently high density in the center to comply with the Shannon-
Nyquist criterion, and sufficiently low to avoid dense clusters which would
not bring additional information,

• have a locally uniform coverage of the k-space. In particular, nearby samples
are detrimental to the reconstruction since they are highly correlated and
increase the condition number of partial Fourier matrices.

These considerations are all satisfied when using Poisson disk sampling with an
adequate density [Vasanawala 2011] for pointwise sampling. They also led to the
development of the SPARKLING trajectories [Chauffert 2017, Lazarus 2019], which
incorporate additional trajectory constraints in the design.

What can still be optimized? Given the previous remarks, an important ques-
tion remains open: how to choose the sampling density? An axiomatic approach
leads to choosing radial densities with a plateau (constant value) at the center. The
radial character ensures rotation invariance, which seems natural to image organs in
arbitrary orientations. The plateau enforces Nyquist rate at the center. However,
it may still be possible to improve the results for specific datasets.

3.1.2 Data-driven sampling schemes

The first attempts to learn a sampling density [Knoll 2011, Zhang 2014] were
based on the average energy of the k-space coefficients on a collection of ref-
erence images. While this principle is valid for linear reconstructions, it is not
supported by a theoretical background when using nonlinear reconstructors. Mo-
tivated by the recent breakthroughs of learning and deep learning, many au-
thors recently proposed to learn either the reconstructor [Hammernik 2018], the
sampling pattern [Baldassarre 2016, Gözcü 2018, Zibetti 2021, Sherry 2020], or
both [Jin 2019, Bahadir 2020, Weiss 2021, Aggarwal 2020, Wang 2022a]. Data-
driven optimization has emerged as a promising approach to tailor the sam-
pling schemes with respect to the reconstructor and to the image structure. In
[Baldassarre 2016, Gözcü 2018, Sherry 2020, Sanchez 2020, Zibetti 2021], the au-
thors look for an optimal subset of a fixed set of k-space positions. The initial al-
gorithms are based on simple greedy approaches that generated a sampling pattern
by iteratively selecting a discrete horizontal line that minimizes the residual error of
the reconstructed image. This approach is limited to low dimensional sets of parallel
lines. Some efforts have been spent on finding better and more scalable solutions to
this hard combinatorial problem using stochastic greedy algorithms [Sanchez 2020],
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`1-relaxation and bi-level programming [Sherry 2020] or bias-accelerated subset se-
lection [Zibetti 2021]. This method is reported to provide results over 3D images
and seems to have solved some of the scalability issues.

To the best of our knowledge, the first work investigating the joint optimization
of a sampling pattern and a reconstruction algorithm was proposed in [Jin 2019].
In this work, the authors use a Monte Carlo Tree Search which allows them to
optimize a policy that determines the positions to sample. This sampling relies on
lines and the reconstruction process is an image to image domain with an inverse
Fourier transform performed on the data before the denoising step. In the same
spirit, [Bahadir 2020] proposes to learn MRI trajectories by optimizing a binary
mask over a Cartesian grid with some sparsity constraint. The reconstruction is
decomposed into two steps: a regridding using an inverse Fourier transform and a
U-NET for de-aliasing. Finally, a new class of reconstruction methods called algo-
rithm unrolling, mimicking classical variational approaches have emerged. These
approaches improve the interpretability of deep learning based methods. Optimiz-
ing the weights of a CNN that plays the role of a denoiser in a conjugate gradient
descent has been investigated in [Aggarwal 2020]. The authors jointly optimize the
sampling pattern and a denoising network based on an unrolled conjugate gradient
scheme. The sampling scheme is expressed as the tensor product of 1D sampling
patterns which significantly restricts the possible sampling schemes.

Overall, the previous works suffer from some limitations: the sampling points
are required to live on a Cartesian grid, which may be non physical and lead to
combinatorial problems; the methods cannot incorporate advanced constraints on
the sampling trajectory and therefore focus on “rigid” constraints such as selecting
a subset of horizontal lines.

To address these issues, some recent works propose to optimize points that
can move freely in a continuous domain [Weiss 2021, Wang 2022a]. This approach
allows handling real kinematic constraints. In [Weiss 2021], the authors propose
to reconstruct an image using a rough inversion of the partial Fourier transform,
followed by a U-NET to eliminate the residual artifacts. They optimize jointly
the weights of the U-NET together with the k-space positions using a stochastic
gradient method. The physical kinematic constraints are handled using two different
ingredients. First, the k-space points are regularly ordered by solving a traveling
salesman problem, ensuring a low distance between consecutive points. Second, the
constraints are promoted using a penalization function. This re-ordering step was
then abandoned in [Wang 2022a], where the authors use a B-spline parameterization
of the trajectories with a penalization over the constraints in the cost function.
Instead of using a rough inversion with a U-NET, the authors opted for an unrolled
ADMM reconstructor where the proximal operator is replaced by a DIDN CNN
[Yu 2019]. The k-space locations and the CNN weights are optimized jointly. In
both works, long computation times and memory requirements are reported. We
also observed significant convergence issues related to the existence of spurious
minimizers [Gossard 2022b].
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3.1.3 Our contribution

The purpose of this work is to improve the process of optimizing sampling schemes
from a methodological perspective. We propose a framework that optimizes the
sampling density using Bayesian Optimization (BO). Our method has a few advan-
tages compared to recent learning based approaches: i) it globalizes the convergence
by reducing the dimensionality of the optimization problem, ii) it reduces the com-
puting times drastically, iii) it requires only a small number of reference images
and iv) it works off-the-grid and handles arbitrary physical constraints. The first
three features are essential to make sampling scheme optimization tractable in a
wide range a different MRI scanners. The last one allows more versatility in the
sampling patterns that can take advantage of all the degrees of freedom offered by
an MRI scanner.

3.2 The proposed approach

In this section, we describe the main ideas of this work after having introduced the
notation.

3.2.1 Preliminaries

Images Let X denote the set of K training images X = {x1, . . . , xK}. A D-
dimensional image is a vector of CN , where N = N1 . . . ND and Nd ∈ 2N denotes
the number of pixels in the d-th direction. In this work, each index n ∈ J1, NK, is
associated to a position pn ∈

q
−N1

2 ,
N1
2 − 1

y
× . . .×

r
−ND

2 , ND2 − 1
z
on Euclidean

grid. It describes the location of the n-th pixel in the k-space. With a slight abuse
of notation, we associate to each discrete image xk ∈ CN , a function still denoted
xk, defined by

xk =
(

N∑
n=1

xk[n]δpn

)
? ψ,

where ? denotes the convolution-product and where ψ is an interpolation function.
For instance, we can set ψ as the indicator of a grid element to generate piece-wise
constant images.

Image quality To measure the reconstruction quality, we consider an image qual-
ity metric η : RN × RN → R+. The experiments in this work are conducted using
the squared `2 distance η(x̃, x) = 1

2‖x̃−x‖
2
2. Any other metric could be used instead

with the proposed approach.

The Non-Uniform Fourier Transform Throughout the paper, we let ξ =
(ξ1, . . . , ξM ) ∈ (RD)M denote a set of locations in the k-space (or Fourier domain).
Let A(ξ) ∈ CM×N denote the forward non-uniform Fourier transform defined for
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all m ∈ J1,MK and x ∈ CN by

[A(ξ)(x)]m =
∫
t∈RD

exp(−i〈t, ξm〉)x(t) dt

= Ψ(ξm) ·
N∑
n=1

x[n] exp(−i〈pn, ξm〉), (3.1)

where Ψ is the Fourier transform of the interpolation function ψ.

Image reconstruction We let R : CM × (RD)M × RJ → CN denote an image
reconstruction mapping. For a measurement vector y ∈ CM , a sampling scheme
ξ ∈ (RD)M , and a parameter λ ∈ RJ , we let x̃ = R(ξ, y, λ) denote the reconstructed
image. In this paper, we will consider two different reconstructors:

• A Total Variation (TV) reconstructor [Lustig 2008], which is a standard base-
line:

R1(ξ, y, λ) = arg min
x∈CN

1
2‖A(ξ)x− y‖22 + λ‖∇x‖1, (3.2)

where λ ≥ 0 is a regularization parameter. The approximate solution of this
problem is obtained with an iterative algorithm run for a fixed number of
iterations. We refer the reader to Section 3.5.1 for the algorithmic details.
This allows us to use the automatic differentiation of PyTorch as described in
[Ochs 2015].

• An unrolled neural network R2(ξ, y, λ), where λ denotes the weights of the
neural network. There is now a multitude of such reconstructors available
in the literature [Muckley 2020a]. They draw their inspiration from classical
model-based reconstructors with hand-crafted priors. The details are provided
in Section 3.5.2.

Constraints on the sampling scheme As mentioned in the introduction, the
sampling positions ξ = (ξ1, . . . , ξM ) correspond to the discretization of a k-space
trajectory subject to kinematic constraints. Throughout the paper, we let Ξ ⊂
(RD)M denote the constraint set for ξ. A sampling set consists ofNs ∈ N trajectories
(shots) with P measurements per shot. We consider realistic kinematic constraints
on these trajectories. Let α denote the maximal speed of a discrete trajectory and
β denote its maximal acceleration (the slew rate). We let

Qα,βP =
{
ξ ∈ ([−π, π]D)P , ‖ξ̇‖∞ ≤ α, ‖ξ̈‖∞ ≤ β,Cξ = b

}
, (3.3)

where

‖ξ̇‖∞ = max
1≤p≤P−1

‖ξp+1 − ξp‖2

‖ξ̈‖∞ = max
2≤p≤P−1

‖ξp+1 + ξp−1 − 2ξp‖2,
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where b is a vector and C a matrix encoding some position constraints. For in-
stance, we enforce the first point of each trajectory to start at the origin. Since the
sampling schemes consists of Ns trajectories, the constraint set on the sampling is
Ξ = (Qα,βP )Ns . The total number of measurements M equal to M = Ns · P . We
refer the reader to [Chauffert 2016] for more details on these constraints.

3.2.2 The challenges of sampling scheme optimization

In this paper, we consider the optimization of a sampling scheme for a fixed recon-
struction mapping R. A good sampling scheme should reconstruct the images in
the training set X efficiently in average. Hence, a natural optimization criterion is

min
ξ∈Ξ

E

(
1
K

K∑
k=1

η (R(ξ, A(ξ)xk + n, λ), xk))
)
. (3.4)

The term A(ξ)xk corresponds to the measurements of the image xk associated to
the sampling scheme ξ. The expectation is taken with respect to the term n ∈ CN

which models noise on the measurements. More elaborate forward models can be
designed to account for sensibility matrices in multi-coil imaging or for trajectory
errors. We will not consider these extensions in this paper. Their integration is
straightforward – at least at an abstract level.

Even if problem (3.4) is simple to state (and very similar to [Weiss 2021,
Wang 2022a]), the practical optimization looks extremely challenging for the fol-
lowing reasons:

• The computation of the cost function is very costly.

• Computing the derivative of the cost function using backward differentiation
requires differentiating a Non-uniform Fast Fourier Transform (NFFT). It also
requires a consequent quantity of memory that limits the complexity of the
reconstruction mapping.

• The energetic landscape of the functional is usually full of spurious minimizers
[Gossard 2022b].

• The minimization of an expectation calls for the use of stochastic gradient
descent, but the additional presence of a constraint set Ξ reduces the number
of solvers available.

Hence, the design of efficient computational solutions is a major issue. It will be the
main focus of this paper. The following sections are dedicated to the simplification
of (3.4) and to the design of a lightweight solver. We also propose a home-made
solver that attacks (3.4) directly. Since similar ideas were proposed in [Wang 2022a],
we describe the main ideas and differences in Section 3.5.5.1 only.
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Figure 3.1: The globalization issue: optimizing a scheme with an advanced multi-
scale approach yields different average PSNR when starting from different point
configurations. In this experiment, we used a total variation reconstruction algo-
rithm and 10% undersampling.

3.2.3 Regularization and dimensionality reduction

The non-convexity of (3.4) is a major hurdle inducing spurious minimizers
[Gossard 2022b]. We discuss the existing solutions to mitigate this problem and
give our solution of choice.

3.2.3.1 Existing strategies and their limitation

In [Weiss 2021, Wang 2022a], the authors propose to avoid local minima by using
a multi-scale optimization approach starting from a trajectory described through
a small number of control points and progressively getting more complex through
the iterations. The use of the stochastic Adam optimizer can also allow escaping
from narrow basins of attraction. In addition, Adam optimizer can be seen as a
preconditioning technique, which can accelerate the convergence, especially for the
high frequencies [Gossard 2022b]. This optimizer together with a multi-scale ap-
proach can yield sampling schemes with improved reconstruction quality at the cost
of a long training process. However, despite heuristic approaches to globalize the
convergence, we experienced significant difficulties in getting reproducible results.

To illustrate this fact, we conducted a simple experiment in Fig. 3.1. Starting
from two similar initial sampling trajectories, we let a multi-scale solver run for 14
epochs and 85 hours on the fastMRI knee database. We then evaluate the average
reconstruction peak signal-to-noise ratio (PSNR) on the validation set. As can be
seen, the final point configuration and the average performance varies significantly.

3.2.3.2 Optimizing a sampling density

The key idea in this paper is to regularize the problem by optimizing a sampling
density rather than the point positions directly. To formalize this principle we need
to introduce two additional ingredients:

1. A probability density generator ρ : RL → P, where P is the set of probability
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distributions on RD. In this paper, ρ will be defined as a simple affine map-
ping, but we could also consider more advanced generators such as Generative
Adversarial Networks.

2. A trajectory sampler SM : P → (RD)M , which maps a density ρ to a point
configuration SM (ρ) ∈ (RD)M . Various possibilities could be considered such
as Poisson point sampling, Poisson disk sampling. In this paper, we will use
discrepancy based methods [Boyer 2016].

Instead of minimizing (3.4), we propose to work directly with the density. Let-
ting ξ : RL → (RD)M denote the mapping defined by

ξ(z) def= SM (ρ(z)), (3.5)

we propose to minimize:

F (z) def= min
z∈C⊂RL

1
K

K∑
k=1

E (η [R(ξ(z), A(ξ(z))xk + n, λ), xk]) , (3.6)

where the expectation is taken with respect to the noise term n. A schematic
illustration of this approach is proposed in Fig. 3.2.

3.2.3.3 The density generator

Various approaches could be used to define a density generator ρ. In this work, we
simply define ρ(z) as an affine mapping, i.e.

ρ(z) def= µ0 +
L∑
l=1

zlµl, (3.7)

where z belongs to a properly defined convex set C. We describe hereafter how the
eigen-elements (µl)l and the set C are constructed.

A candidate space of densities The general idea of our construction is to define
a family of elementary densities and to enrich it by taking convex combinations of
its elements.

Let θ ∈ [0, π[ denote a rotation angle, σx, σy denote lengths, r > 0 denote a
density at the center and γ > 0 a decay rate. For (x, y) ∈ R2, let xθ = x cos(θ) +
y sin(θ), yθ = − sin(θ)x+ cos(θ)y. We define

g(x, y;σx, σy, θ, r, γ) = 1
c

min

r, 1((
xθ
σx

)2
+
(
yθ
σy

)2
+ ε

)γ
 , (3.8)

where c is a normalizing constant such that
∫

R2 g = 1. We then smooth the function
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Figure 3.2: A schematic illustration of the proposed algorithm. We generate a sam-
pling density ρ(z) through an affine combination of eigen-elements (µl). The density
is then used in a sampling pattern generator SM which yields a sampling trajectory
ξ(z). A set of training images are then reconstructed using this scheme. This al-
lows computation of the (batch) average error. A zero-th, or first order (automatic
differentiation) optimization routine optimizes the sampling density iteratively.
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(a) Examples of πi (b) Examples of ρ(z)

(c) µl for 0 ≤ l ≤ 9

Figure 3.3: Examples of densities using the proposed parameterization.

g by convolving it with a Gaussian function Gκ of standard deviation κ > 0:

π = Gκ ? g. (3.9)

The elements in this family are good candidates for sampling densities: i) they
are nearly constant and approximately equal to r at the center of the k-space, ii) they
can be anisotropic to accommodate for specific image orientations and iii) they have
various decay rates, allowing sampling the high frequencies more or less densely.
Some examples of such densities are displayed in Fig. 3.3a. However, the family of
densities generated by this procedure is quite poor. For instance, it is impossible
to sample densely both the x and y axes simultaneously. In order to enrich it, we
propose to consider the set of convex combinations of these elementary densities.
This allows us to construct more general multi-modal densities, see Fig. 3.3b for
examples of such convex combinations.

Dimensionality reduction In order to construct the family (µ0, . . . , µL), we first
draw a large family of I � L densities (πi)1≤i≤I . They are generated at random by
uniform draws of the parameters (σx, σy, θ, t, γ) inside a box. We then perform a
principal component analysis (PCA) on this family to generate some eigen-elements
(νl)0≤l≤L. We set µ0 = ν0/〈ν0,1〉. Since probability densities must sum to 1, we
orthogonalize the family (νl) with respect to the vector µ0. Thereby, we obtain a
second family (µl)0≤l≤L that satisfies 〈µ0,1〉 = 1 and 〈µl,1〉 = 0 for all 1 ≤ l ≤ L.
This procedure discards one dimension. The resulting PCA basis is illustrated in
Fig. 3.3c.

Let E denote the intersection of the span of (µl)l≤L with the probability densities
and ΠE the orthogonal projection on E . The space of densities is the convex hull of
the family (πi)i projected on E :

C def= Conv (ΠE (πi) , 1 ≤ i ≤ I) . (3.10)

As illustrated in Fig. 3.3b, this process overall provides a rather rich and natural
family with a low dimensionality (here L = 20).
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3.2.3.4 The sampler

The sampler SM : P → (RD)M is based on discrepancy minimization
[Schmaltz 2010, Gräf 2012, Chauffert 2017]. It is defined as an approximate so-
lution of

SM (ρ) = arg min
ξ∈Ξ

dist
(

1
n

M∑
m=1

δξ[m], ρ

)
, (3.11)

where Ξ ⊂ (RD)M takes into account the trajectory constraints and dist is a dis-
crepancy defined by

dist(µ, ν) =
√
〈h ? (µ− ν), (µ− ν)〉L2(RD),

where h is a positive definite kernel (i.e. a function with a real positive Fourier
transform). Other metrics on the set of probability distributions could be used such
as the transportation distance [Lebrat 2019]. The formulation (3.11) has already
been proposed in [Chauffert 2017] and it is at the core of the Sparkling scheme
generation [Lazarus 2019]. We will discuss the choice of the kernel h in the numerical
experiments: it turns out to play a critical role.

In practice (3.11) is not solved exactly: an iterative solver [Chauffert 2016] is
ran for a fixed number of iterations. This allows the use of automatic differentia-
tion in order to compute the Jacobian of ξ w.r.t. z. Technical details about the
implementation of this sampler are provided in Section 3.5.5.

3.2.3.5 The pros and cons of this strategy

The optimization problem (3.6) presents significant advantages compared to the
original one (3.4):

• The number of optimization variables is considerably reduced: instead of
working with D ·M variables, we now only work with L � D ·M variables
defining a continuous density. In this paper we set L = 20 which is consid-
erably smaller in comparison to the M = 25801 2D sampling points for the
formulation of (3.4) with 25% undersampling on 320 × 320 images. This al-
lows resorting to global optimization routines. Hereafter, we will describe a
Bayesian optimization approach.

• The point configurations generated by this algorithm are always locally uni-
form since they correspond to the minimizers of a discrepancy. Clusters are
therefore naturally discarded, which can be seen as a natural regularization
scheme.

• As discussed in the numerical experiments, the regularization effect allows
optimizing the sampling density with a small dataset with a similar perfor-
mance. Optimizing the function with as little as 32 reference images yields a
near optimal density. This aspect might be critical for small databases.
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On the negative side, notice that we considerably constrained the family of
achievable trajectories, thereby reducing the maximal achievable gain. We will
show later that the trajectories obtained by minimizing (3.6) are indeed slightly
less efficient than those obtained with (3.4). This price might be affordable if we
compare it to the advantages of having a significantly faster and more robust solver
requiring only a fraction of the data needed for solving (3.4).

3.2.4 The optimization routine

In this section, we describe an algorithmic approach to attack the problem (3.6).

3.2.4.1 The non informativeness of the gradient

A natural approach to solve (3.6) is to optimize the coefficients z ∈ RL using a gra-
dient based algorithm. Unfortunately, the reparameterization of the cost function
with a density still makes the energy profile full of spurious minimizers. The pres-
ence of these oscillations would trap a gradient based algorithm in local minimizers.
Fig. 3.4 illustrates this fact. In the “Shift” row, we display the energy profile when
shifting the sampling pattern on the top-left by 4 pixels in the horizontal and ver-
tical direction. In the “Density” row, we display the energy profile with a family of
L = 2 eigen-elements (µ1, µ2). The 3×3 red dots on the energy profiles corresponds
to the 3× 3 sampling densities on the top-right.

Overall, this experiment shows that the gradient direction is not meaningful: it
oscillates in an erratic way. This advocates for the use of 0th order optimization
methods. A significant advantage of this observation is that it allows discarding the
memory and time issues related to automatic differentiation.

3.2.4.2 Bayesian optimization

As can be seen from the energy profiles in Fig. 3.4, the cost function seems to
be decomposable as a smooth function plus an oscillatory one of low amplitude.
This calls for the use of algorithms that i) sample the function at a few scattered
points, ii) construct a smooth surrogate approximation, iii) find a minimizer of the
surrogate and add it to the explored samples, iv) go back to ii).

Bayesian Optimization (BO) [Frazier 2018b] is a principled approach that fol-
lows these steps. It seems particularly adequate since it models uncertainty on the
function evaluations and comes with advanced solvers [Balandat 2020]. Its appli-
cation is nonetheless nontrivial and requires some care in our setting. We describe
some technical details hereafter.

Consider an objective function of the form

inf
z∈C

E (F (z, V )) ,

where V is a random vector. In our setting, V models both the noise n and the
input images xk. We consider V to be a random vector taken uniformly inside a
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Figure 3.4: Illustration of the spurious minimizers. Here, we consider a total vari-
ation reconstructor and 25% under-sampling. Second row: cost function when the
sampling scheme on the top-left is shifted along the x and y axes (grid size = 1
pixel). Last row: energy profiles when sampling using interpolation of the densities
on the top-right. The 3 × 3 red dots correspond to the densities on the top-right.
Observe that the oscillation amplitude decays with the number of images, but spu-
rious minimizers are present whatever the number of images.



98 CHAPTER 3. BAYESIAN OPTIMIZATION SAMPLING DENSITIES

database. In that setting, Bayesian optimization requires the following ingredients:

1. An initial sampling set.

2. A black-box evaluation routine of F (z, V ).

3. A family of interpolation functions together with a regression routine.

4. A solver that minimizes the regression function.

Hereafter, each choice made in this work is described.

The initial sampling set To initialize the algorithm, we need the convex set
C to be covered as uniformly as possible in order to achieve a good uniform ap-
proximation of the energy profile. In this work, we used a maximin space covering
design [Pronzato 2017]. The idea is to construct a discrete set Z = {z1, . . . , zP }
that solves approximately

max
Z∈CP

min
p′ 6=p
‖xp − xp′‖2. (3.12)

In words, we want the minimal distance between pairs of points in Z to be as large
as possible. This problem is known to be hard. In this work we used the recent
solver proposed in [Debarnot 2022] together with the Faiss library [Johnson 2019].

The evaluation routine Evaluating the cost function (3.6) is not an easy task.
For just one realization of the noise n and image xk, we need a fast reconstruction
method and a fast way to evaluate the non-uniform Fourier transform. The technical
details are provided in the appendix 3.5. Second, K might be very large. For
instance, the fastMRI knee training database contains more than 30 000 slices of
size 320 × 320. Hence, it is impossible to compute the complete function and it is
necessary to either pick a random, but otherwise fixed subset of the images, or to
consider random batches that would vary from one iteration to the next. A similar
comment holds for the noise term n.

While Bayesian optimization allows the use of random functions, it requires
evaluating integrals with Monte-Carlo methods, which is computationally costly.
Hence, in all the forthcoming experiments, we will fix a subset of K images. In
practice, we observed that using random batches increases the computational load
without offering perceptible advantages.

The interpolation process In Bayesian optimization, a Gaussian process is used
to model the underlying unknown function. This random process models both the
function and the uncertainty associated with each prediction. This uncertainty is
related to the fact that the function F is evaluated only at a finite number of points
hence leading to an unknown behavior when getting distant from the samples. It is
also related to the fact that the function evaluations might be noisy. Every sampled
point has a zero variance when using a fixed realization or a low variance when using
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random noise and batches. The variance increases with the distance between the
sampled points.

In our experiments, the Gaussian process is constructed using a Matern kernel
of parameter 5/2, which is a popular choice for dimensions in the range [5, 20]. It
is defined as

Φ(z1, z2) =
(

1 +
√

5‖z1 − z2‖2
ν

+ 5‖z1 − z2‖22
3ν2

)
exp

(
−
√

5‖z1 − z2‖2
ν

)
,

where ν is a scaling parameter that controls the smoothness of the interpolant and
its point-wise variance. In practice, the value of ν is a parameter that is optimized
at each iteration when fitting the Gaussian process to the sampled data.

The interpolant mean and its variance are then constructed by solving a linear
system constructed using the kernel Φ and the sampled points z1, . . . , zP . We refer
to [Frazier 2018b] for more details.

Sampling new points Bayesian optimization works by iteratively sampling new
points. The point in the sampling set with lowest function value, is an approxima-
tion of the minimizer. To choose a new point, there is a trade-off between finding a
better minimizer in the neighborhood of this point and space exploration. Indeed,
big gaps in between the samples could hide a better minimizer. This trade-off is
managed through a so-called utility function. In this work, we chose the expected
improvement [Frazier 2018b], resulting in a new function L(z). The new sampled
point is found by solving a constrained non-convex problem:

inf
z∈C
L(z)

Since the function L is non-convex, we use a multi-start strategy. We first sample
1000 points evenly in C using a maximin design. Then, we launch many projected
gradient descents on L in parallel, starting from those points. The best critical
point is chosen and added as a new sample.

This process requires projecting z on C defined in (3.10). To this end, we
designed an efficient first order solver.

3.3 Numerical experiments and results

3.3.1 The experimental setting

Database and computing power Throughout this section, we used the
fastMRI database [Zbontar 2018]. It contains MRI images of size 320 × 320. We
focused on the single coil and fully sampled knee images. The training set is com-
posed of 973 3D volumes, which represents a total of 34 742 slices. The validation
set has 199 volumes and 7135 slices.

Some images in the dataset have a significant amount of noise. This presents
two significant drawbacks: i) the signal-to-noise-ratio of the reconstructed images is
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increased artificially and ii) we have shown that noise can dramatically impact the
convergence of off-the-grid Fourier sampling optimization [Gossard 2022b]. To mit-
igate these effects, we pre-processed all the slices using a non-local mean denoising
algorithm [Buades 2011].

The experiments are conducted on the Jean-Zay HPC facility. For each task we
use 10 cores and an Nvidia Tesla V100 with 16GB of memory.

Sampling The bounds of the constraint sets in (3.3) are given by:

α = ∆tγ Gmax
Kmax

and β = ∆t2γ Smax
Kmax

, (3.13)

where ∆t is the sampling step of the scanner. Following [Chaithya 2022], we used
the following realistic hardware constraints: Gmax = 40mT/m, Smax = 180T/m/s,
Kmax = 2π and γ = 42.57MHz/T. The value of ∆t is fixed to ensure that at
maximal speed, the distance between two consecutive points equals the Shannon-
Nyquist rate [Lazarus 2020a].

We consider two different scenarii: 25% and 10% undersampling. Each shot
consists of 646 acquisition points and we use Ns = 40 shots and Ns = 16 shots
respectively for the 25% and the 10% undersampling. Each shot is constrained to
start at the center of the k-space. The first few points of each trajectory are fixed
to be radial, see Section 3.5.5.4 for the technical details.

The family of densities is generated using the process described in Section 3.2.3.3
with 104 densities generated at random.

Sampling baseline All the optimized schemes are compared to a state-of-the-
art handcrafted baseline: the SPARKLING method described in [Lazarus 2019].
There, the attraction-repulsion problem (3.11) is solved with a radial density ρ. Its
value at the center has been optimized to yield the best possible signal-to-noise ratio
on the validation set in a way similar to [Chaithya 2021]. The corresponding point
configuration is given in Fig. 3.6a and Fig. 3.6b for the 25% and 10% undersampling
rates respectively. It provides a 7dB improvement compared to the usual radial lines
commonly found in the literature (see the first two rows of Table 3.2).

Image reconstruction The experiments are conducted with two reconstruction
models:

• a total varation reconstruction method with 120 iterations of Algorithm 1 in
Section 3.5.1 and with a regularization parameter λ = 102 and,

• an unrolled network (NN) with 6 iterations of ADMM and a DruNet as the
denoising step [Zhang 2021b], 30 iterations of the CG algorithm that initializes
the ADMM and 10 iterations of CG to solve the data-consistency equations
at each iteration.
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(d) h(x) =
√
‖x‖2 — 35.32±3.78dB

d(ξ) = 0.69

Figure 3.5: On the importance of the discrepancy’s kernel h(x). The same density
is sampled with different kernels. The average PSNR of the reconstructed images
on the validation set is displayed with its standard deviation. The average distance
between contiguous points on the trajectories is displayed as d(ξ).

3.3.2 Choosing a kernel for the discrepancy

In all the previous “SPARKLING” papers [Lazarus 2019, Chauffert 2017], the ker-
nel function h(x) = ‖x‖2 was used. This choice seems like the most natural alter-
native since it is the only one which is scale invariant in the unconstrained setting.
This means that if Ξ = (RD)M and if a density ρ is dilated by a certain factor, then
so is the optimal sampling scheme. However, this property is not true anymore
when constraints are added. In that case, the choice of kernel turns out to be of
importance.

To illustrate this fact, we considered the three different radial kernels h(x) =
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‖x‖2, h(x) =
√
‖x‖2 and h(x) = log(‖x‖2). As can be seen on Fig. 3.5, performance

variations of more than 0.2dB are obtained depending on the kernel. The reason
is that contiguous points on the trajectories are spaced more or less depending on
this choice. For instance, observe that the points on the zoom of Fig. 3.5a are
more packed along the trajectories that on Fig. 3.5c. To compensate for this higher
longitudinal density, the sampler then increases the distance between adjacent tra-
jectories, thereby creating holes in the sampling set. This is detrimental, since low
frequency information is lost in the process. This effect can be quantified by eval-
uating the distances between contiguous points in the k-space center. As can be
seen, it goes from 0.52 for the usual kernel h(x) = ‖x‖2 to a significantly higher
value 0.72 for the logarithmic kernel. The latter kernel creates a higher repulsion
for neighboring points.

3.3.3 Bayesian optimization: database size and numerical com-
plexity

In this section, we aim at evaluating the computational complexity of the Bayesian
optimization routine. To this end, we study the impact of the number of images
K in the dataset, the size of the initial sampling set and the number of iterations,
which are governing the algorithm’s complexity. Table 3.1 summarizes our main
findings for the total variation reconstruction and unrolled neural network.

There, we see that the number of imagesK in the dataset has nearly no influence
on the quality of the final sampling density. Taking K = 32 or K = 512 images
yields an identical PSNR on the validation set. This holds both for the 25% and
10% undersampling rates. As can be seen in the Tables, reconstructing as little as
200 × 32 images is enough to reach the best possible density in the family. The
same conclusion holds for the 10% undersampling rate. This represents 18% of a
single epoch.

We also see that the initial sampling set of the convex C plays a marginal role on
the quality of the final result. In addition, taking a small number of initial points
allows to reduce the overall complexity of the algorithm to reach a given PSNR.

3.3.4 Comparing optimization routines for the total variation re-
constructor

In what follows, we aim at comparing two different sampling optimization ap-
proaches:

Trajectory optimization The minimization of (3.4) in the space of trajectories.
We use a modified version of the multi-scale approach in [Wang 2022a], see
Section 3.5.5.1.

BO density The Bayesian approach to minimize (3.6) globally.

To compare these approaches, we conduct various experiments. The corresponding
results are shown in Table 3.3, Table 3.2 and Fig 3.6. Below, we summarize our
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(f) Trajectory optimization 10%

Figure 3.6: Optimized sampling schemes with various optimization approaches. A
total variation reconstruction algorithm is used.



104 CHAPTER 3. BAYESIAN OPTIMIZATION SAMPLING DENSITIES

Method # init. points # eval. K = 32 imgs. K = 128 imgs. K = 512 imgs.
TV 20 200 35.64± 3.82 35.65± 3.82 35.65± 3.82
TV 100 300 35.63± 3.81 35.66± 3.82 35.66± 3.82
TV 200 300 35.65± 3.81 35.66± 3.82 35.66± 3.82
NN 20 200 38.14± 4.77 38.10± 4.75 38.09± 4.76
NN 100 300 38.17± 4.79 38.05± 4.73 38.08± 4.75
NN 200 300 38.20± 4.80 38.08± 4.75 38.10± 4.76

Table 3.1: Bayesian optimization on a convex set C of dimension L = 20 using
a total variation reconstruction algorithm and an unrolled network for 25% un-
dersampling. The PSNR is evaluated for the optimized density on the validation
dataset containing 7135 images. The total number of cost function evaluations is
given in the second column.

main findings.

Qualitative comparison of the sampling schemes In this paragraph, we
compare our method with existing works [Wang 2022a, Weiss 2021]. The optimized
sampling schemes are shown in Fig. 3.6 for the TV reconstructor. In Fig. 3.6, we
see the results of the different optimization routines.

The two optimization methods yield anisotropic sampling schemes with a higher
density along the vertical axis. However the trajectories present significant differ-
ences.

The Bayesian optimization yields a sampling scheme which covers the space
more uniformly. The trajectories have a significantly higher curvature at the k-space
center. These features are somehow hard-coded within the sampling generator SM
described in Section 3.2.3.4.

The trajectory optimization yields trajectories which are locally linear and
aligned at a distance of about a pixel. This suggests that the trajectory optimization
favors Shannon’s sampling rate at the center of the k-space. A potential explanation
is as follows. When the sampling points are close to a subgrid [Gossard 2022b], the
adjoint of the forward operator A(ξ)∗ is roughly the pseudo-inverse. Using a points
configuration close to a subgrid therefore helps iterative reconstruction algorithms
to converge.

Finally, at the bottom-left of the zoomed region on the 25% undersampling rate,
it seems that Bayesian optimization (Fig. 3.6c) yields a density slightly higher than
trajectory optimization (Fig. 3.6e). This density is critical for the reconstruction
quality and might explain a part of the quantitative differences observed in the next
section.

Performance comparison Table 3.2 reveals that the trajectory optimization
yields better performance than the Bayesian optimization approach both for the
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Method 25% 10%

Radial scheme 27.87± 2.75dB
0.66± 0.12

24.28± 2.67dB
0.57± 0.12

Sparkling radial
(baseline)

35.35± 3.78dB
0.85± 0.11

32.94± 3.20dB
0.79± 0.14

Bayesian optim.
K = 32

35.66± 3.82dB (+0.31dB)
0.86± 0.11

33.41± 3.26dB (+0.47dB)
0.80± 0.14

Trajectory optim.
K = 34742

35.92± 3.89dB (+0.57dB)
0.87± 0.11

33.48± 3.31dB (+0.54dB)
0.80± 0.14

Trajectory optim.
K = 32

35.67± 3.88dB (+0.32dB)
0.86± 0.11

32.84± 3.19dB (−0.10dB)
0.79± 0.14

Trajectory optim.
K = 128

35.67± 3.85dB (+0.32dB)
0.86± 0.11

32.89± 3.17dB (−0.05dB)
0.79± 0.14

Table 3.2: Comparison of different optimization procedures for the TV reconstructor
with different numbers of images K in the training set. For each test case, the first
line is the PSNR and the second line is the SSIM. The number after ± indicates
the standard deviation.

25% (+0.26dB) and 10% (+0.07dB) undersampling rates. This was to be expected
since the density optimization is much more constrained. The difference is however
mild.

We also report some of the best (resp. worst) PSNR increase (resp. decrease)
in Fig. 3.7. For each case, we selected 3 images that are representative among the
top 10 best (resp. worst) images of the test dataset. For both the trajectory opti-
mization and the Bayesian optimization method, the images that have the largest
PSNR increase have large vertical structures. This increase might be due to the
anisotropy of the optimized schemes that are more adapted to the center slices of
the 3D knee images. On the contrary, the images having the largest PSNR decrease
are outliers that are not prevalent in the dataset such as extreme slices. Notice that
images that have the best (resp. worst) PSNR increase (resp. decrease) are the
same for the Bayesian optimization and for the trajectory optimization.

Computing times Table 3.3 gives the computation times for each method with
the total variation reconstruction method. The proposed approach has the signif-
icant advantage of giving an optimized sampling scheme with guarantees on the
underlying density with a reduced computational budget and with a reduced num-
ber of images. As can be seen, our approach requires only 32 images and 3 hours.
This has to be compared to the 85 hours (3 days and a half) needed by the trajectory
optimization routine.

This feature is a significant advantage of our approach. It could be key element
when targeting high resolution images or 3D data.
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Method Computational time

Trajectory optimization 85h
Bayesian optimization

Optimization K = 32 3h
Optimization K = 128 4h

Table 3.3: Computational cost of the different optimization procedures (25% un-
dersampling and TV reconstructor) with an NVIDIA Quadro RTX 5000 GPU.

Size of the training set As advertised, the Bayesian optimization approach
works even for small datasets. The trajectory optimization routine also provides
competitive results with only 32 images in the training set. However, the perfor-
mance collapses for the 10% undersampling rate. Increasing the size of the training
set to K = 128 does not improve the situation. This feature is in strong favor of
our approach, when having access to a limited dataset.

3.3.5 Comparing optimization routines for a neural network re-
constructor

The aim of this section, is to compare three different sampling optimizers:

• The Bayesian density optimization solver proposed in this paper.

• The trajectory optimization solver with a fixed unrolled neural network
trained on a family of sampling schemes, see Section 3.5.3. This is a nov-
elty of this paper.

• An optimization routine minimizing the trajectories and the unrolled network
weights simultaneously, as proposed in [Wang 2022a, Weiss 2021].

Qualitative comparisons The differences between the density optimization and
the trajectory optimization can be observed on Fig. 3.8. They are much more pro-
nounced that for the total variation reconstructor. Surprisingly, the trajectory
optimized sampling schemes leave large portions of the low frequencies unexplored.
Hence, it seems that the unrolled network is able to infer low frequency information
better than the traditional total variation prior. This suggests that the existing
compressed sampling theories designed for the Fourier-Wavelet system have to be
revised significantly to account for the progress in neural network reconstructions.
The optimization of a trajectory for a fixed sampling scheme or the joint optimiza-
tion yield qualitatively similar trajectories, with perhaps larger unexplored parts of
the k-space for the fixed reconstruction method.

Quantitative comparisons Table 3.4 allows comparing the different methods
quantitatively. BO yields a PSNR increase almost twice lower than the multi-scale
optimization (+0.94dB VS +1.83dB for 25% and +0.64dB VS +1.16dB for 10%).
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Figure 3.7: Sample of images that have the largest increase (resp. decrease) of the
PSNR for the different optimization methods with the TV reconstructor and 25%
undersampling. The numbers below the images are the PSNR using the baseline
sampling scheme and the PSNR using optimized trajectories.
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Method 25% 10%

Baseline with unrolled net 37.26± 4.57dB
0.89± 0.09

34.49± 3.71dB
0.83± 0.13

BO scheme K = 128 with
unrolled net

38.20± 4.80dB (+0.94dB)
0.91± 0.08

35.13± 3.92dB (+0.64dB)
0.86± 0.13

Traj. optim. with fixed
unrolled net

39.09± 5.06dB (+1.83dB)
0.92± 0.07

35.65± 4.18dB (+1.16dB)
0.85± 0.12

Joint optim. multi-scale 39.03± 4.87dB (+1.77dB)
0.92± 0.07

35.53± 4.05dB (+1.04dB)
0.85± 0.12

Table 3.4: Comparison of different optimization procedures for the unrolled ADMM
reconstructor. For each test case, the first line is the PSNR and the second line is
the SSIM. The increase compared to the baseline scheme is shown in parentheses.

This can likely be explained by the fact that the chosen family of densities (di-
mension 20) is unable to reproduce the complexity of the optimized trajectories. It
is possible that richer sampling densities could reduce the gap between both ap-
proaches. However, Bayesian optimization is known to work only in small dimension
and it is currently unclear how to extend the method to this setting.

Interestingly, the trajectory optimized with a fixed unrolled neural network
trained on a family provides slightly better results (≈ +0.1dB) than the joint
optimization. This suggests that the joint optimization gets trapped in a local
minimizer since it can only be better if optimized jointly with the reconstructor.

3.4 Conclusion

In this work, we designed efficient optimization algorithms that either optimize
trajectories directly or learn a sampling density and an associated sampling pattern
in MRI. Overall, the main highlights of this work are:

• The compressed sensing theories designed for the Fourier-Wavelet system with
`1 reconstruction (e.g. [Adcock 2021]) seem nearly optimal from an experi-
mental point of view. Sampling schemes can be designed based on a density
that is close to Shannon’s rate at the k-space center and that decays towards
the high frequencies. The precise shape of the density depends on the images
structure.

• In that context, the Bayesian optimization of densities is an attractive method
to design sampling schemes. It works with small datasets, ensures the con-
vergence to a global minimizer. Its performance is close to much heavier
trajectory optimizers and is from one to two orders of magnitude faster.

• In the case of unrolled neural network reconstructions, the proposed Bayesian
optimization framework is still interesting with gains of up to 1dB in average
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(f) Traj. optim. with fixed net 10%

Figure 3.8: Optimized sampling schemes with the various optimization approaches
for a neural network reconstruction.
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on the fastMRI knee validation set. However, the gain can be nearly doubled
with a direct optimization of the trajectories. A possible explanation for this
fact is that the family of densities is too poor to describe the best convoluted
trajectories.

• We also improved the Sparkling trajectories [Lazarus 2019], by changing the
discrepancies.

• We also provided various improvements to the direct optimization of trajec-
tories by using the Extra-Adam algorithm to handle hard constraints and by
training reconstruction networks on families of operators.

3.5 Implementation details

3.5.1 TV reconstruction algorithm

In this part we detail the TV iterative reconstruction algorithm that is used in this
paper. We consider a regularized version of the total variation of the form

TVε(x) =
N∑
n=1

√
‖(∇x)[n]‖22 + ε2.

Given y ∈ CM , the solver of problem (3.2) is given in Algorithm 1. The parameter
α drives the acceleration and D is the dimension, here D = 2. It corresponds to a
Nesterov accelerated gradient descent [Nesterov 1983] with a regularized version of
the `1 norm. A critical point is the choice of the step τ in Algorithm 1. This step is

Algorithm 1 A TV minimization algorithm
Require: Number of iterations Q.

Set z(0) = x(0) = 0, τ = 1
‖A(ξ)‖2

2→2+4Dλ/ε .
for all q = 0 to Q− 1 do

r(q) = A(ξ)∗(A(ξ)z(q) − y)
x(q+1) = z(q) − τ

[
r(q) + λ∇TVε(z(q))

]
z(q+1) = x(q+1) + α(x(q+1) − x(q))

end for
return x(Q).

computed using the spectral norm of the data fidelity term which can be computed
using a power iteration method for each point configuration ξ. The resulting step is
taken into account in the computation of the gradient with respect to the locations
ξ of the cost function in (3.4).

3.5.2 The unrolled neural network

The neural network based reconstruction is an unrolled network. The one used
in this work is based on the ADMM (Alternative Descent Method of Multipliers)
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[Ng 2010]. It consists in alternating a regularized inverse followed by a denoising
step with a neural network. If Dλ(p) denotes the denoiser used at iteration p, the
unrolled ADMM can be expressed through the sequence:

x(p+1) = (A(ξ)∗A(ξ) + βId)−1
(
A(ξ)∗y + βz(p) − µ(p)

)
z(p+1) = Dλ(p)

(
x(p+1) + µ(p)

β

)
µ(p+1) = µ(p) + β

(
x(p+1) − z(p+1)

)
with a pseudo-inverse initialization z(0) = A(ξ)†y.

In this work, we use the DruNet network [Zhang 2021b] to define the denoising
mappings Dλ(p) . We choose an ADMM algorithm for the following reasons:

1. for well-spread sampling schemes, the matrix A(ξ)∗A(ξ) has a good condition-
ing and the linear system that has to be inverted can be solved in less than a
dozen iterations,

2. it has demonstrated great performance to solve linear inverse problems in
imaging, including image reconstruction from Fourier samples [Wang 2022a].

We opted for a different network at each iteration instead of a network that
shares its weights accross all iterations. This leads to slightly higher performance
at the price of a slightly harder to interpret architecture (see e.g. [Genzel 2022a]
for a similar discussion in CT reconstruction).

3.5.3 Training the reconstruction network for a family of operators

Following [Gossard 2022c], we trained our network in a non usual way. Instead of
training the denoising networks Dλ(p) for a single operator A(ξ0), we actually trained
it for a whole family of operators A = {A(ξ), ξ ∈ F}, where F is a large family of
sampling schemes. We showed in [Gossard 2022c], that this simple approach yields
a much more robust network, which is adaptive to the forward operator.

In our experiments, the network is trained on a family of 103 sampling schemes
that are generated using the attraction-repulsion minimization problem (3.11).
These schemes are parameterized by densities that are within C. This pretraining
step consists of 32 epochs with a batch of 8 images using the Adam optimizer with
default parameters (β1 = 0.9 and β2 = 0.999). The step for the CNN weights is set
to 10−4 with a multiplicative update of 0.95 after each epoch. The measurements
are perturbed by an additive white noise (see n in (3.4)).

3.5.4 Joint optimization

Instead of optimizing the sampling scheme for a fixed network, we can also optimize
jointly the sampling locations together with the network weights. This approach
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was proposed in [Wang 2022a, Weiss 2021]. Due to memory requirements, we set
the batch size to 7 for the unrolled network in our training procedure. The step size
for the CNN weights in this experiment is also set to 10−4 with the default Adam
parameters.

3.5.5 Computational details

In this paragraph, we describe the main technical tools used to optimize the recon-
struction process.

3.5.5.1 Solving the particle problem (3.4)

Problem (3.4) is a highly non-trivial problem. Two different computational solutions
were proposed in [Weiss 2021, Wang 2022a]. In this work, we re-implemented a
solver with some differences outlined below.

First, the optimization problem (3.4) involves a nontrivial constraint set Ξ.
While the mentioned works use a penalization over the constraints, we enforce
the constraints by using a projection at each iteration. Handling constraints
in stochastic optimization was first dealt with stochastic mirror-prox algorithms
[Juditsky 2011]. This approach turned out to be inefficient in practice. We there-
fore resorted to an extension of Adam in the constrained case called Extra-Adam
[Gidel 2019]. The step size was set to 10−3 and the default Adam parameters
β1 = 0.9 and β2 = 0.999. We observed no significant difference by tuning these last
two parameters. We also use a step decay of 0.9 each fourth of epoch and batch
size of 13, which is the largest achievable by our GPU.

Similarly to [Weiss 2021, Wang 2022a], we use a multi-scale strategy. The tra-
jectories are defined through a small number of control points, that progressively
increases across iterations. We simply use a piecewise linear discretization (con-
trarily to higher order splines in [Wang 2022a]). The initial decimation factor is 27

and is divided by two every two epochs. This results in a total number of epochs
equal to 14 and takes about 86 hours for a total variation solver. In comparison
[Wang 2022a], reports a total of 40 epochs.

3.5.5.2 Implementing the Non-uniform Fourier Transform (NUFT)

Various fast implementations of the Non-uniform Fourier Transform (3.1) are now
available [Keiner 2009, Fessler 2003, Shih 2021, Muckley 2020b]. In this work, we
need a pyTorch library capable of backward differentiation. Evaluating the gradient
of the cost function in (3.4) or in (3.6) indeed requires computing the differential
of the forward operator A(ξ) with respect to ξ. This can be done by computing
D non-uniform Fourier transforms (see [Wang 2022a, Gossard 2022b, Wang 2021]).
Different packages were tested and we finally opted for the cuFINUFFT imple-
mentation [Shih 2021]. The bindings for different kind of NUFT are available at
https://github.com/albangossard/Bindings-NUFFT-pytorch/.

https://github.com/albangossard/Bindings-NUFFT-pytorch/
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3.5.5.3 Minimizing the discrepancy

The minimization of the discrepancy (3.11) is achieved with a gradient descent, as
was proposed in the original paper [Schmaltz 2010], see Algorithm 2. The input
parameters are the initial sampling set ξini, the target density ρ and a step-size
τ > 0. The step size needs to be carefully chosen to ensure a fast convergence.
The optimal choice can be shown to be related to the minimal distance between
adjacent points. In our experiments, it was tuned by hand and fixed respectively
to 2× 104 and 5× 103 for the 25% and 10% undersampling schemes.

The expression (3.11) can be splitted in two terms: an attraction term and a
repulsion term (see [Chauffert 2017]). The attraction term is a convolution and
an approximation can be computed efficiently using the FFT. Computing the re-
pulsion term is more challenging numerically. In fact, the repulsion term involves
pairwise interactions between the set of points which can have up to hundred thou-
sands of points. A naive method have a quadratic complexity which would be a
bottleneck on CPU. This term often appears in electrostatic halftoning and the
design of efficient procedures to compute such terms has drawn a lot of attention.
This term can be computed using the Fast Multiple Method (FMM) which relies
on approximations to group the interactions of points that are close to each other
and compute an approximation of the repulsion term efficiently. It can also be
computed using a NUFT [Potts 2003] and there are now mature implementations
with O(N log(N)) complexity. However, with the recent advances in GPU comput-
ing, operations with O(N2) complexity which were a bottleneck in the past, are
now becoming more and more feasible with reasonable number of particles (a few
dozens of thousands) and they achieve similar results as more intricated algorithms
(see Section 1.1.4.1). For this kind of application, the bottleneck is the bandwidth
usage of the GPU and some libraries are starting to propose efficient and easy to
use tools to implement reduction operations that take advantage of the massive
parallel structure of GPUs [Charlier 2021a]. Computing the gradient requires to
compute pairwise interactions between all particles: in our codes, it is achieved
using PyKeOps [Charlier 2021a]. This approach presents the advantages of being
fast, adapting to arbitrary kernels h and to natively allow backward differentiation
within PyTorch. For a number of particles M above 106, fast multipole methods
might become preferable [Chaithya 2022].

Algorithm 2 Gradient descent to minimize (3.11).
Set ζ(0) = ξini

for j = 1 . . . J do
ζ(j) = ΠΞ

(
ζ(j−1) − τ∇1dist(ζ(j−1), ρ)

)
end for
Set ξ(n) = ζ(J)

https://www.kernel-operations.io/
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3.5.5.4 Handling the mass at 0

An important issue is related to the fact that all trajectories start at the k-space
origin. This creates a large mass for the sampling scheme at 0. When minimizing a
discrepancy between the sampling scheme and a target density, the sampling points
are therefore repulsed from the origin, creating large holes at the center. To avoid
this detrimental effect, we fix rectilinear radial trajectories at the origin at maximal
acceleration until a distance of 0.5 pixel between adjacent trajectories samples is
reached. This creates a fixed pattern in the k-space center, which can easily be seen
in the zoom of Fig. 3.6a and Fig. 3.6b. We compute the discrepancy only at the
exterior of a disk centered at the origin containing this fixed pattern.

3.5.5.5 Projection onto the constraint set

The projector onto the constraint set is used twice in this work. First the Extra-
Adam algorithm requires a Euclidean projector on the constraint set Ξ to solve
(3.4). This projector is also needed to compute one evaluation of the sampler in
(3.11). In this project, we used the dual approach proposed in [Chauffert 2016],
implemented on a GPU. This algorithm can be implemented in PyTorch, and can
be differentiated. This allows computing the gradient of the overall function in
(3.6).

3.6 Sampling density and Shannon’s condition

In this section, we aim at illustrating the claims in Section 3.1.1 for a total variation
reconstructor.

3.6.1 How to control the sampling density?

Let ω denote a pixel in the Fourier domain and ρ : RD → R denote a sampling
density. If the sampling points could be placed arbitrarily in space, satisfying
Shannon-Nyquist rate would be met by imposingM

∫
x∈ω ρ(x) dx = 1. This equation

indeed means that the pixel ω should contain in average one point. Unfortunately,
the existence of trajectory constraints makes the condition more intricate. Indeed,
they impose a maximal distance between adjacent samples. Hence the condition
above would result in distances smaller than Nyquist rate along trajectories, and
distances larger along distant pieces of trajectories to compensate for the closeness
of adjacent samples.

A simple solution to remedy this problem is to increase the sampling density
in the center of the k-space. This is actually what was done in [Lazarus 2019,
Chaithya 2022, Chaithya 2021], perhaps without a clear justification.

In order to evaluate whether Shannon-Nyquist rate is satisfied at the k-space
center, we can measure the average distance between adjacent points in the sampling
scheme. To this end, let Cm = {x ∈ RD, ‖x− ξm‖2 ≤ ‖x− ξm′‖2,∀m′ 6= m} denote
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the Voronoi cell associated to ξm. We define the radius of the m-th Voronoi cell as

rm =
√

2 max
x∈Cm

‖x− ξm‖2. (3.14)

If the radius is larger than 1, it means that Shannon’s condition is not met. In the
forthcoming experiments, we will analyze the distribution of the Voronoi radii for
all sampling points ξm that are within a disk S centered in the Fourier domain.

3.6.2 Performance variance for a fixed sampling density

In this experiment, we aim at showing that the sampling efficiency does not vary
significantly, under the assumption that the k-space center is sampled at Shan-
non’s rate. The experiments are conducted with a total variation reconstruction
algorithm.

The conclusions are as follows:

1. For a fixed sampling density, the standard deviation of the PSNR w.r.t. the
sampling schemes increases gradually as the radii rm increases.

2. In addition, this standard deviation is negligible when the radii are not above
1, justifying our claim.

Table 3.5 gives the average PSNR computed on 512 images for different sampling
densities. For each density, 10 different sampling schemes are generated by using
different random initializations (see [Boyer 2016]). For each sampling scheme, we
compute the average PSNR and the standard deviation σ̂ of the average PSNR
w.r.t. to the sampling schemes. The density at the center is controlled by the
scalar r in equation (3.8). The repartition of the Voronoi cells radii is shown in
Fig. 3.9.

Table 3.5 shows that for values of r below 1.1, the variance increases significantly.
This means that below this value, the actual samples position matter. When r >
1.1, its influence seems negligible. The positions of the points from 2 different
sampling schemes with fixed density can be different, as shown on the third row of
Table 3.5.

3.7 Resampling from estimated density

In this section, we investigate the choice of the density parametrization. We propose
to resample the density by solving (3.11) with a density that has been estimated
from the trajectory optimization.

3.7.1 Density estimation

First we validate a method to estimate the density given a sampling scheme. Start-
ing from the generated trajectories from (3.11), the density is estimated using a
kernel density estimation. We then compare this estimation to the ground truth.
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Figure 3.9: Empirical probability density function of the Voronoi cells radii rm for
different densities at the k-space center.
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Figure 3.10: Illustration of the estimation of the density using a kernel density esti-
mation with an exponential kernel. The colors are in log-scale for ease of comparison
in the center of the k-space.

This estimation involves a kernel and it appears from numerical experiments that
the kernel that yields the best estimation is the exponential. Its bandwidth param-
eter has been optimized manually as to recover the initial radial density. It is set
to twice the size of one pixel in the Fourier domain, i.e. w = 4π

Nx
.

In Fig. 3.10 are given the initial density, the estimated density using the sampling
points and the relative error between both. In the center of the k-space, the error
made by the estimation is below 1% and on the borders of the plateau at the center
it is below 6%. From this experiment, we validate this density estimation and it
can be used to recover the density from a sampling scheme.

3.7.2 Resampling

We now use the density estimation to get a density from the optimized scheme from
the trajectory optimization. Given this estimated density, a new sampling scheme
is generated by solving (3.11) with a multi-scale approach and with the logarithmic
kernel. Finally, the average PSNR is computed on the fastMRI validation dataset
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Figure 3.11: Sampling schemes resampled from a density estimated using the opti-
mized trajectories.

with the TV reconstructor. The results are summurized in Fig. 3.11. The drop be-
tween the scheme of trajectory optimization (35.92dB) and the scheme resampled
from the estimated density (35.70dB) is of only −0.22dB. We recall that the BO
scheme yields an average PSNR of 35.66dB (−0.26dB in comparison to trajectory
optimization). This shows that the proposed parametrization is expressive enough
to allow generating densities that are as close to the density of trajectory optimiza-
tion in terms of performance. However, it seems that the −0.22dB drop is due to
the fact that the density parametrization cannot generate as complex trajectories
as when optimizing the points position directly.



Chapter 4

Training Adaptive
Reconstruction Networks for

Blind Inverse Problems

Résumé Les réseaux de neurones ont récemment permis de résoudre de nombreux
problèmes inverses mal posés avec des performances sans précédent. Les approches
basées sur la physique remplacent déjà progressivement les algorithmes de recon-
struction non appris dans les applications pratiques. Cependant, ces réseaux souf-
frent d’un défaut majeur : lorsqu’ils sont entraînés sur un opérateur donné, ils ne se
généralisent pas bien à un opérateur différent. L’objectif de ce chapitre est double.
Premièrement, nous montrons à travers diverses applications que l’entraînement de
réseaux avec une famille d’opérateurs permet de résoudre le problème d’adaptabilité
sans compromettre de manière significative la qualité de la reconstruction. Deux-
ièmement, nous montrons que cette procédure d’entraînement permet de s’attaquer
à des problèmes inverses aveugles difficiles. Nos expériences incluent des prob-
lèmes d’échantillonnage de Fourier survenant en imagerie par résonance magnétique
(IRM), en imagerie par tomographie (CT) et en défloutage d’images.

Abstract Neural networks have recently allowed solving many ill-posed inverse
problems with unprecedented performance. Physics informed approaches already
progressively replace carefully hand-crafted reconstruction algorithms in real ap-
plications. However, these networks suffer from a major defect: when trained on
a given forward operator, they do not generalize well to a different one. The aim
of this work is twofold. First, we show through various applications that train-
ing the network with a family of forward operators allows solving the adaptivity
problem without compromising the reconstruction quality significantly. Second,
we illustrate that this training procedure allows tackling challenging blind inverse
problems. Our experiments include partial Fourier sampling problems arising in
magnetic resonance imaging (MRI), computerized tomography (CT) and image de-
blurring.

This chapter is based on the preprint [Gossard 2022c]:
Gossard, A., & Weiss, P. (2022). Training Adaptive Reconstruction Net-
works for Blind Inverse Problems.
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4.1 Introduction

The primary contribution of this paper is the design of model-based neural net-
works to solve families of blind linear inverse problems. Many sensing devices like
cameras, magnetic resonance imaging (MRI) or computerized tomography (CT)
systems measure a signal x ∈ CN through a linear operator A(θ) ∈ CM×N . The
parameter θ ∈ RP characterizes the sensing operator. For instance, it can encode
the point spread function in image deblurring, the projection angles in CT or the
Fourier sampling locations in MRI. This leads to measurements of the form:

y = P(A(θ)x), (4.1)

where P : CM → CM is a perturbation (e.g. additive Gaussian noise, quantization).
A model based inverse problem consists in recovering an estimate x̂ of x from y and
A(θ). If the parameter θ is unknown, then we speak of a blind inverse problem.

In this paper, we focus on neural network based reconstruction. We consider
mappings of the form:

N : RD × RP × CM → RN

(w,θ,y) 7→ N [w,θ,y]. (4.2)

Given a weight w ∈ RD, a forward operator parametrization θ and a measurement
vector y, the network N outputs an estimate x̂ = N [w,θ,y]. Given a forward
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operator A(θ0), the traditional procedure to optimize the weights w, is to minimize
the following empirical risk:

inf
w∈RD

1
2I

I∑
i=1
‖N [w,θ0,yi]− xi‖22, (4.3)

where (xi)1≤i≤I is a collection of training images and (yi) is the corresponding col-
lection of measurements generated using (4.1). That is, we wish the reconstruction
mapping to output images close in average to the true underlying signals. In this
paper, we explore a seemingly minor variation of this principle by solving:

inf
w∈RD

E(w) def= E

[
1
2I

I∑
i=1
‖N [w,θ,yi]− xi‖22

]
, (4.4)

where the expectation is taken with respect to the parameter θ considered as a
random variable. That is, we train our reconstruction mapping on a family of
operators. The main motivation for this modification is twofold. First, we want to
address a lack of adaptivity for the standard training procedure. Second, we want
to use the resulting reconstruction mapping to solve blind inverse problems. Let us
discuss these two points in more depth.

The adaptivity issue While model-based reconstruction networks provide state-
of-the art results in a large panel of applications, it is now well established that
they suffer from a lack of adaptivity. This means that a network trained for a
specific operator A(θ0) may have a significant performance drop if used for another
operator A(θ1). This drop can be evaluated as follows. Let θ0 6= θ1 denote two
different operator parametrizations. Let y0 = P(A(θ0)x) and y1 = P(A(θ1)x).
Assume that w?

0 and w?
1 are the weights of a reconstruction network optimized

for A(θ0) and A(θ1) respectively. We compare the quality of N (w?
1,θ0,y0) and

N (w?
0,θ0,y0) in the second and third rows of Fig. 4.1. Observe the significant

performance difference.
To avoid this pitfall, we propose to train the network by minimizing (4.4). We

will carefully evaluate the performance of the resulting networks in Section 4.6 for
MR image reconstruction from under-sampled data, CT imaging with limited angles
and image deblurring. We conclude that this learning approach yields a reconstruc-
tion network which is significantly more stable to variations of the forward operator.
In addition, the performance of an unrolled network trained on a restricted family is
only marginally worse than that of a network that would be trained and used for a
single operator. It therefore provides a satisfactory answer to the adaptivity issue.
We also address several questions raised by our methodology. Can the unrolled
network trained on a family extrapolate to unseen operators? How to sample the
space of admissible operators A? What is the gain of our approach in comparison
to more “universal approaches” such as plug&play priors?



122 CHAPTER 4. ADAPTIVE RECON. NETWORKS BLIND INV. PB.

10 0 10 20 30 40
10

0

10

20

30

40
1

0

Trajectories in k-space

1

0

Angles of the shots

θ0 θ1

Kernel blurs

A(θ0)†y0
31.32dB

A(θ0)†y0
23.70dB

Blurry image y0 with θ0
19.13dB

No mismatch
N a(w∗0, θ0,y0)

34.40dB 35.96dB 30.14dB

Training mismatch
N a(w∗0, θ1,y1)

30.63dB 32.40dB 15.62dB

Model mismatch
N a(w∗0, θ0,y1)

15.17dB 24.15dB 14.54dB

Test case MRI CT Deblurring

Figure 4.1: Examples of the issues addressed in this paper. 1st row: description
of the forward operators parameterized by θ0 and θ1. 2nd row: pseudo-inverse
reconstruction of y0 = A(θ0)x. 3rd row: reconstruction with no model or training
mismatch. 4th row: reconstruction with a training mismatch. Last row: recon-
struction with a model mismatch (blind). All the models are an unrolled ADMM
trained on A(θ0). The reconstruction PSNR is provided below each image.
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Blind inverse problems Assume that we observe y1 = P(A(θ1)x). Unfortu-
nately, we only have access to an approximate knowledge A(θ0) of the forward
model. This can be due to an imprecise calibration of the sensing device or to
the motion of a patient in a scanner for instance. A problem solved with a model
mismatch (i.e. with the operator A(θ0) in place of A(θ1)), can lead to catastrophic
reconstruction results, as illustrated in the last row of Fig. 4.1.

The second contribution of this work is to propose a systematic approach to
recover an estimate θ̂1 of θ1 from the observation y1. We show that unrolled
networks trained on a family of forward models provide a powerful tool to solve
several blind inverse problems. The idea is simply to minimize the data consistency
error

θ̂ ∈ arg min
θ∈Θ

1
2‖A(θ)N [w,θ,y]− y‖22. (4.5)

The reconstructed image x̂ def= N
[
w, θ̂,y

]
is defined as the output of the unrolled

neural network.
This consistency principle is spread massively in the literature of blind inverse

problems. The main contribution here is to plug it with a specific training procedure
on a family of forward operators.

4.2 Related works

Let us contextualize this work.

Regularization theory From a historical perspective, the first inverse prob-
lem solvers were based on simple inverses or approximate inverses of A(θ). This
approach provides low quality results when the matrix A(θ) has a non trivial
kernel or when the conditioning number of A∗(θ) is high. In those cases, it is
critical to use regularization terms. For long (∼ 1960-2000), simple quadratic
terms (Tikhonov) dominated the scientific landscape. Around 1990, a second re-
search trend appeared with convex, nonlinear regularizers such as total variation
[Rudin 1992]. This area culminated with the development of the compressed sens-
ing theory [Candès 2006, Lustig 2005]. Starting from 2015, impressive performance
gains have occurred with the advent of neural networks. They seem to be likely to
replace the initial methods in a growing number of technologies [Wang 2018].

Learned reconstruction There are two main approaches to attack reconstruc-
tion problems using machine learning [Arridge 2019]. A first solution is end-to-end
networks where the neural network is agnostic to the operator A(θ). It gets trained
through pairs (yi,xi) generated with the model (4.1). A popular example is AU-
TOMAP [Zhu 2018]. In this technology, the network needs to infer the forward
model from the training data. This usually requires a huge amount of training data
for large M and N .
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The other possibility is model-based reconstruction networks that are defined as
mappings of the form (4.2). They are often praised for the fact that they require less
training data and benefit from a higher interpretability. Two popular approaches
among this class are:

• Denoising nets: There, the reconstruction network performs a rough inversion
followed by a denoising network such as a U-Net, to remove the remaining
artifacts, see e.g. [Jin 2017].

• Unrolled nets: Many efficient iterative methods have been developed to solve
convex optimization problems (proximal gradient descent, Douglas-Rachford,
ADMM, Primal-Dual, ...) [Combettes 2011]. They have the general form:

xk+1 = proxR (M(A(θ),y,xk)) , (4.6)

for k = 1 toK ∈ N. The mappingM is linear and can be interpreted as a crude
way to invert the operator, in the sense that A(θ)M(A(θ),y,xk) ' y. The
term proxR can be interpreted as a way to regularize (denoise) the remaining
artifacts. The so-called plug&play priors [Venkatakrishnan 2013] fit in this
category.
The unrolled networks draw their inspiration from (4.6). They consist in
replacing the handcrafted or learned proximal operator proxR by a sequence
of neural networks (Nk[wk])1≤k≤K promoting an output xK similar to the
training images. The difference with the plug&play priors is that the weights
wk are trained specifically for a given operator A. Examples of approaches
in this category include [Sun 2016, Diamond 2017, Adler 2017, Zhang 2018,
Dong 2018, Adler 2018, Aggarwal 2018, Hammernik 2019, Li 2019b]. These
algorithms are currently among the most efficient for MRI reconstruction
[Muckley 2021].

For completeness, let us mention that a popular alternative consists in synthesizing
the images x with generative models [Bora 2017, Asim 2020b]. Compared to the
approaches mentioned above, it typically suffers from a higher computational cost.
Indeed, a gradient descent in the latent space needs to be performed. Hence, we
will not consider this approach further in this work.

Adaptivity Neural network reconstructions can suffer from severe instabilities.
This issue was notably discussed in [Antun 2020], where it was shown that well cho-
sen additive noise (an adversarial attack) or modifications of the forward operator
could lead to disastrous hallucinations for some specific architectures. This prob-
lem was studied with care in [Genzel 2022b]. There, the authors have shown that
careful training procedures could fix this issue and yield robust and state-of-the-art
reconstruction results.

A paper closely related to our work is [Gilton 2021b]. The authors study the
same robustness issue to model mismatches. The authors propose two distinct
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algorithmic approaches to attack it. The first one is called parametrize & perturb
by the authors. It suffers from an important drawback, which is the need to re-
optimize the network weights for every new operator. It can therefore be slow at
runtime and we do not compare it in this paper. The other approach is called Reuse
& Regularize (R&R). It consists in training a network for a given operator A(θ0),
and then use this network for another operator A(θ1). This is done in an iterative
procedure, accounting for the data consistency term ‖A(θ1)x−y‖22. The approach
we propose in this paper is significantly lighter at run-time, since we just train the
network with a family of operators.

An older and popular alternative consists in replacing the proximal operator
in (4.6) by a denoiser. This approach is often called a plug&play (P&P) prior
[Venkatakrishnan 2013]. It was first used with hand-crafted priors [Gu 2014] and
a significant performance boost occurred with the use of pre-trained neural net-
works among which we can cite [Ryu 2019, Zhang 2021b]. This approach has the
huge asset of adapting painlessly to arbitrary inverse problems. We propose some
comparisons and discuss the pros and cons of each approach in Section 4.6.

Blind inverse problems Blind inverse problems are spread massively in appli-
cations and it is impossible to provide a comprehensive overview of the existing
works. The review papers [Kundur 1996, Campisi 2017] provide a good idea of the
wealth of results for the sole field of blind deconvolution and super-resolution.

A possibility is to design a two-step method. First an estimate of the forward
operator is built. Second, this estimate is used in conjunction with the methods
from the previous section. In some cases, it is possible to exploit some redundancy
in the data to estimate the operator parameters. This is the case in parallel Mag-
netic Resonance Imaging (MRI), where the coil sensitivity maps can be estimated
using only the low frequencies [Sodickson 1997, Pruessmann 1999, Griswold 2002].
When no redundancy is available, estimating the operator can be achieved by
minimizing the discrepancy between the statistics of the acquired measurement
and the statistics of the measurements generated by applying an operator to a
“natural” signal. A good example in blind deblurring is the Goldstein-Fattal
approach [Goldstein 2012], which analyzes the power spectrum of the blurry
image. Recently, a few authors proposed to build an identification network
that learns to identify the blur kernel [Schuler 2015] or a blur parametrization
[Sun 2015, Yan 2016, Chakrabarti 2016, Debarnot 2022] from the blurry-noisy im-
age. While this approach is cheap computationally, it requires an application spe-
cific design and we will not consider it further in this work.

One of the most popular alternatives consists in minimizing a combination
of a data fidelity term and a regularizing prior. This can be addressed through
an alternate minimization between the image and the operator parametriza-
tion. Most of the literature suggests the use of hand-crafted priors on the un-
known operator or on the image to recover (see e.g. [Chan 1998, Fergus 2006,
Krishnan 2009, Krishnan 2011, Xu 2013, Ahmed 2013, Pan 2014, Michaeli 2014,
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Pan 2016, Ren 2016, Bai 2018, Ljubenović 2019, Chen 2019, Zhang 2022] for blind
deblurring, or [Riis 2021, Wang 2022b] in CT imaging).

While these approaches can provide excellent results, they are likely to be
outperformed by neural network based approaches in a near future. Indeed, im-
pressive performance has already been reached recently thanks to neural network
based regularizers. Different strategies have been suggested, going from untrained
networks (see [Bostan 2020] for an application in optics), generative models (see
[Asim 2020b] for an application in blind deblurring), or unrolled networks (see
[Lecouat 2022, Lecouat 2021] for an application to super-resolution from an image
sequence).

The method advocated in our paper is close in spirit to the works in this latest
category. It differs in the way the training is performed. Here, we first train an
unrolled network on a family of forward operators, which allows fixing the weights
once for all. We then minimize (4.5) in the space of parameters of the forward
model. This methodology has various advantages:

• Compared to untrained networks [Bostan 2020], the method does not opti-
mize the network weights to solve the problem, which is typically quite heavy
computationally. It is therefore faster at runtime. In addition, it is adapted
to a clearly defined image dataset.

• Methods based on generative models [Bora 2017, Asim 2020b] may suffer from
a significant drawback: the produced images necessary live in the range of the
generator. To avoid this issue, a possibility is to add hand-crafted regulariza-
tion terms such as total variation that allow extending the span of possible
images [Asim 2020b].

• In [Lecouat 2022, Lecouat 2021], the neural network weights are trained di-
rectly to solve the blind inverse problem. This significantly limit the number
of weights and iterations within the iterative procedure. In this paper, we
propose to train the network beforehand, allowing to use arbitrary solvers
and as many iterations as desired to find the parameter θ.

4.3 Preliminaries

In this paper, we consider forward models

y = A(θ)x + b (4.7)

where A(θ) ∈ KM×N is a linear mapping either real (K = R) or complex (K = C).
In our experiments, we consider additive white Gaussian noise (complex for MRI)
b ∼ N (0, σ2Id). The dependency of A with respect to its parameter θ can be
linear or nonlinear. We let N ∈ N denote the number of pixels of the image x with
N = Nx ×Ny for 2D images and M is the number of measurements.
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4.3.1 The forward models

To illustrate our problem, we consider three important biomedical applications:
parallel magnetic resonance imaging, computerized tomography and microscopy-
/astronomy. Let us describe these applications more precisely.

Parallel Magnetic Resonance Imaging Our aim here is to reconstruct images
from under-sampled Fourier samples with unknown sensitivity maps associated to
J ∈ N reception coils, and with inaccurate trajectories. The parameter θ can be
decomposed as θ = (τ ,ω), where τ is the parameter describing the sensitivity
maps and ω describes a perturbation of the sampling locations. To the best of our
knowledge, these two problems have not been treated jointly in the literature yet.

Let F(ξ) denote the non-uniform Fourier transform (NUFT) [Potts 2001] at
frequencies ξ, defined by

[F(ξ)]m,n = e−i〈pn,ξm〉

where (pn)1≤n≤N is a set of 2D positions on a grid. We construct a family of forward
operators A = {A(ξ,θ), ξ ∈ Ξ,θ ∈ Θ}, where Ξ ⊂ R2×M is a set of 2D sampling
schemes with M sampling points. The parameter space Θ = T × Ω describes the
set of admissible parameters for the sensitivity maps T and for the perturbation
Ω. The measured signal y = (y(1), . . . ,y(J)) is acquired through J coils. The m-th
measurement acquired by the j-th coil is defined by

y(j)
m = [A(ξ,θ)x]m,j + bm,j =

[
F(h(ω) ? ξ)

(
x� s(τ (j))

)]
m

+ bm,j . (4.8)

The mapping s : τ (j) ∈ RT 7→ s(τ (j)) ∈ CN parametrizes the coil sensitivity maps.
Since the sensitivity maps are smooth, we use a parametrization based on thin
plate splines (TPS) [Duchon 1977]. The total number of parameters that encode
the sensitivity map is T = 104. It consists of the TPS coefficients using 7 × 7
regularly spaced control points plus the coefficients of a first degree polynomial.
This has to be multiplied by two for the real and imaginary parts.

Following [Vannesjo 2016, Dietrich 2016], we assume that the trajectory ξ is
perturbed by a convolution with an impulse response h(ω). The symbol ? in (4.8)
corresponds to a discrete convolution. Evaluating the convolution filter h(ω) is
known as a challenging problem that can be addressed with (expensive) field cam-
eras [Dietrich 2016]. Here, in the spirit of [Vannesjo 2016], we will rather treat it
as a blind inverse problem. We parametrize h as a linear combination of the form
h(ω) = ∑O

o=1 ωoho, where (ho)1≤o≤O is an orthogonal basis. In practice, we simply
use compactly supported filters of size O = 32 and (ho)1≤o≤O corresponds to the
first 32 elements of the canonical basis.

Computerized Tomography Our aim is to reconstruct images from parallel
beam computerized tomography. The parameter θ describes the projection angles
(or the patient motion).
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We assume that the CT scan uses parallel beams and that it performs J acqui-
sitions with a receptor that has M sensors, resulting in J ×M measurements. In
this application, the parameter θ = (α, s) represents the angles α ∈ RJ and the
shifts at the origin s ∈ RJ that describe the beams trajectories. If m corresponds
to the m-th pixel of the receptor and if we index the acquisitions by 1 ≤ j ≤ J , we
get

y(j)
m =

∫∫
Ω

x(ux, uy) δux cos(αj)+uy sin(αj)=pm+sj duxduy + b(j)m , (4.9)

with Ω = [−Nx/2, Nx/2] × [−Ny/2, Ny/2] and p = J−M/2, . . . ,M/2 − 1K. A per-
fect model would correspond to α being equispaced angles and s = 0. The for-
ward model can be computed using the Fourier slice theorem. This corresponds
to performing a 2D NUFT and we resort to the same library used as for MRI (see
https://github.com/albangossard/Bindings-NUFFT-pytorch).

Deblurring in optics In this application, we wish to solve problems appearing
in optics, especially microscopy or astronomy. The parameter θ describes the point
spread function through the theory of diffraction. The acquisition model in this
application simply reads

y = h ? x + b, (4.10)

where h is the kernel blur. We consider blurs generated by Fresnel diffraction
theory [Goodman 1996]. The kernel blur is parametrized by a vector θ ∈ R7 and
the convolution kernel is expressed as

h(θ) = c

∣∣∣∣∣
∫
‖w‖2≤fc

exp
(

2iπ
[
K∑
k=1

θkZk + 〈u,w〉
])

dwb

∣∣∣∣∣
2

. (4.11)

In this expression, fc is a cutoff frequency and c is a scaling parameter such that
‖h‖1 = 1. The expansion ∑K

k=1 θkZk describes the pupil function of an objective.
The functions Zk are Zernike polynomials and the vector θ therefore parametrizes
the pupil function.

4.3.2 The model-based reconstruction networks

We consider three convolutional neural networks all based on a fixed convolutional
neural network architecture D which is a DruNet network [Zhang 2021b]. This
network is the current state-of-the-art when used within plug&play algorithms.
One of its important assets is its ability to accommodate for different noise levels.
The idea is to set one of the input channels as a constant image with a value equal
to the standard deviation of the noise.

https://github.com/albangossard/Bindings-NUFFT-pytorch
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4.3.2.1 Denoising network

The denoising network is denoted N d. It is of the form

N d[w,θ,y] = D[w,A(θ)†(y)].

4.3.2.2 Unrolled proximal gradient network

Letting F (x) = 1
2‖A(θ)x − y‖22, the unrolled proximal gradient descent takes the

sequential form:

x0 = A(θ)†y
xk+1 = D[wk,xk − γ∇F (xk)].

where γ = 1
‖A(θ)‖2

2→2
is a step-size. The reconstruction network runs forK iterations

and is denoted N p : (w,θ,y) 7→ xK .

4.3.2.3 Unrolled ADMM

It takes the form (see e.g. [Sun 2016]):

x0 = A(θ)†y and µ0 = 0
zk+1 = [A(θ)∗A(θ) + βId]−1 (A(θ)∗y + βxk − µk)

xk+1 = D
[
wk, zk+1 + µk

β

]
µk+1 = µk + β (zk+1 − xk+1) .

This sequence runs for K iterations and the result is denoted N a : (w,θ,y) 7→ xK .
The parameter β is a penalty parameter, which is fixed in our experiments.

In the two unrolled algorithms, the weights w to be trained are w =
[w0, . . . ,wK−1] and they are not shared across iterations.

4.4 Training on a family of operators

Traditionally, networks are trained by minimizing the empirical risk for a given for-
ward model θ0. Our first contribution is to train end-to-end networks by minimizing
the risk over a set of forward operators:

inf
w∈RD

1
2E‖N [w,θ,y]− x‖22, (4.12)

where the expectation is taken with respect to the noise b, to the images x and to
the forward models θ.
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4.4.1 What is different?

Let us provide a rough theoretical explanation of the difference between a training
on a single operator and an operators family. To this end, we focus on the simplest
denoising network. The pseudo-inverse A(θ)† applied to y = A(θ) + b yields a
vector x̂ of the form

x̂ = x + k + n, (4.13)

where k ∈ ker(A(θ)) and n is a correlated Gaussian noise living in ran(A(θ)).
Hence the denoising network D serves two purposes: 1) recover the missing data k
in the kernel of A(θ) and 2) remove the correlated noise n. Each of these two tasks
is clearly highly dependent on θ. If trained with a single scheme, the network may
get specialized very well for these specific statistical patterns and not extrapolate
to other ones. We will explore in the numerical section 4.6.2, whether a training
with a larger variety of operators mitigates the performance drop.

4.4.2 Choosing distributions of operators

In this section, we focus on designing distributions for θ, for the different applica-
tions listed above.

4.4.2.1 Magnetic Resonance Imaging

In this modality, the family of forward operators is constructed by considering
different sampling schemes, sensitivity maps and trajectory perturbations.

Sampling schemes We propose to generate random sampling schemes ξ follow-
ing the ideas from [Boyer 2016, Chauffert 2017, Lazarus 2019]. The principle it to
design a scheme that fits a target probability measure ρ : R2 → R+. To this end,
we define

ξ(ρ) def= arg min
ξ∈Ξ

dist
(

1
M

M∑
m=1

δξm , ρ

)
, (4.14)

where dist is a discrepancy between probability measures and Ξ ⊆ R2×M is a set
that describes the admissible trajectories from the scanner.

Following [Gossard 2022a], we generate random target densities ρ as anisotropic
power decaying distributions. They are parametrized by a random vector λ that
encodes the density at origin, the anisotropy and the power decay law. To avoid
solving (4.14) at training time, we have pre-computed 1000 sampling patterns. The
corresponding vectors λ have been generated by using a max-min sampling (see
[Pronzato 2017, Debarnot 2022]) of a set of an admissible set of parameters Λ.
We refer to [Gossard 2022a] for more details. Examples of densities and sampling
patterns ξ(ρ(λ)) are displayed in Fig. 4.2a-4.2e.

Sensitivity maps As for the sensitivity maps, we used real estimates generated
using the fastMRI database [Zbontar 2018]. We first estimate them using a stan-
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(a) © (b) − (c) | (d) (e) (f) + (g) ×

Figure 4.2: Densities (top) and corresponding sampling schemes (bottom).
Fig. 4.2a, 4.2b, 4.2c, 4.2d and 4.2e belong to the family A. Fig. 4.2f and 4.2g
(crosses) do not. Notice that the sampling patterns are diverse with significant
differences from one to the other.

dard approach [Griswold 2002] and then project the estimates onto the span of
the proposed parametrization with thin plate splines. At training time, they are
associated to the corresponding training pairs.

Trajectories filtering We did not include the trajectory perturbation effect (con-
volution with h(ω)) at training time.

4.4.2.2 Computerized tomography

In this modality, we assume that the distribution of projection angles follows
a uniform distribution centered on a vector of regularly spaced angles α0 =
(−π/4,−π/4 + π/J, . . . , π/4) (see the red lines in first row of Fig. 4.1) and shift
at origin s0 = 0. We only sample the angles in the range [−π/4, π/4] to account for
the missing cone in computerized tomography.

Hence, we have α = α0 + αδ with αδ ∼ U
(
[−1.37◦, 1.37◦]J

)
and the random

shifts are s ∼ U
(
[−2, 2]J

)
. These perturbations may reflect movements of the

patient inside the scanner during the scan.

4.4.2.3 Deblurring

In this application, we vary the blur kernel by changing only the 4-th to the 10-th
Zernike polynomials. We set θ1 = θ2 = θ3 = 0 in (4.11) and we let the coefficients
θ4 to θ10 follow a uniform distribution in [−0.15, 0.15].

4.5 Solving blind inverse problems

After the training procedure on a family of operators, we get a reconstruction
mapping N [w?,θ,y]. Now, if y = P(A(θ̄)x), with an unknown parameter θ̄,
we propose to solve the optimization problem (4.5). As the function in (4.5) is
deterministic over a small to moderate dimension, we can opt for basically any
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standard optimization routine. The use of automatic differentiation techniques
available in PyTorch or Tensorflow allows us to compute the Jacobian ofN [w?,θ,y]
with respect to the parameter θ. Possible optimization routines include:

• The L-BFGS optimizer [Liu 1989]. This quasi-Newton method estimates the
Hessian of the function using first order information only and is known to
converge rapidly when initialized close to a (local) minimizer. It therefore
seems particularly adapted when the user has a good knowledge of the true
parameter θ̄.

• The RMSProp or ADAM optimizers [Tieleman 2012, Kingma 2015]. For the
computerized tomography and blind deblurring problems, we observed signif-
icant issues with a convergence to bad local minimizers only. To avoid this
phenomenon, a possibility is to resort to inertial methods, which are known to
escape narrow basins of attraction. In our experiments, we used the RMSProp
optimizer with a parameter β = 0.9 (Adam with β1 = 0).

• Global optimization. If it turns out that the cost function is too chaotic, the
gradient of the objective function does not provide a meaningful information
on the location of the global minimizer. We can then resort to 0-th order
methods such as Bayesian optimization [Frazier 2018a].

As is, the prior on the forward model is encoded by the physics of the acquisition
system through the mapping A(·). Hence, we add no regularization term on θ. It
would also be possible to add one to promote specific solutions. This is the standard
approach in Bayesian estimation. We did not explore this idea in this paper.

4.6 Numerical experiments

The numerical experiments are divided in two sections. In the first section 4.6.2
we compare the benefits and drawbacks of training model-based networks on a
family of operators. We consider the training of a denoising network and of an
unrolled proximal gradient network for MR image reconstruction. The experiments
are conducted in a simplified framework where the constraints and the sensitivity
maps are not taken into account.

In the second section 4.6.3, we illustrate that training model-based networks on
a family of operators allows solving blind inverse problems. The experiments are
carefully conducted on the three applications: MRI, CT and image deblurring with
an unrolled ADMM [Sun 2016] with K = 5 iterations. The MRI experiments in
this part take into account both the constraints and the sensitivity maps.

4.6.1 The setting

All the models were trained using the Adam optimizer in PyTorch with the default
parameters except the learning rate which was tuned for each experiment.
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Magnetic Resonance Imaging The training database is the fastMRI knee
training dataset [Zbontar 2018]. It contains 34, 742 images of size 320 × 320. All
evaluations were performed on the validation set of the fastMRI knee database con-
taining 7, 135 2D slices. We used the efficient cuFINUFFT transform [Shih 2021],
which is the fastest available library in our experiments (see https://github.
com/albangossard/Bindings-NUFFT-pytorch for comparisons).

For the experiments illustrating the advantages of training on a family of oper-
ators, we set M = N/4, i.e. a 4x downsampling rate. We used a single reception
coil (J = 1) with a known sensitivity map s = 1. The denoising network N d was
trained on 30 epochs with a learning rate of 10−3 and an exponential step decay of
0.95 after each epoch. The unrolled network N p uses K = 10 iterations and it was
trained on 14 epochs with a learning rate of 10−4 and an exponential step decay of
0.95 after each epoch. Both trainings took about 24h on an Nvidia V100, resulting
in a total energy of ∼ 70kWh.

The blind reconstruction experiments are conducted with M = N/10 measure-
ments and J = 15 reception coils. The networks are trained for 8 epochs with a
learning rate of 10−4 and with an exponential step decay of 0.95 after each epoch.

Computerized Tomography The dataset used is the Lung Image Database
Consortium [Armato III 2011] which has a total of 244, 527 slices. We divided this
dataset into a training and a validation dataset (80% and 20% respectively). As the
blind inverse problem (4.5) requires differentiating the operator A(θ) with respect
to its parameters θ, we cannot use standard GPU-based libraries to compute the
Radon transform [Ronchetti 2020]. We thus resorted to an homemade implemen-
tation that relies on a NUFT through the Fourier slice theorem. In order to reduce
the important numerical cost and energy consumption of the experiments with CT
reconstruction, we downsized the images to 256× 256.

Deblurring The image deblurring experiments use the MS COCO dataset
[Lin 2014] (118, 287/5, 000 images for training/validation). During training we ran-
domly cropped patches of size 400× 400 to accelerate the computation.

4.6.2 The benefits of training on a family in MRI

In this section, we show the advantages and drawbacks of training a reconstruction
network on a family of operators. In this version of the work, we only display the
results related to MRI with a single coil. We plan to conduct similar experiments
for all imaging modalities for the final version of this work.

4.6.2.1 Training on fixed sampling schemes

In this section, we trained the two reconstruction networks (the denoising network
N d and the unrolled proximal gradient descent N p) on 5 different schemes: a radial
one (©, Fig. 4.2a), an horizontal one (−, Fig. 4.2b) and a vertical one (|, Fig. 4.2c).

https://github.com/albangossard/Bindings-NUFFT-pytorch
https://github.com/albangossard/Bindings-NUFFT-pytorch


134 CHAPTER 4. ADAPTIVE RECON. NETWORKS BLIND INV. PB.

In addition, we used two crosses, which do not belong to the training family A. The
first one is aligned with the axes (+, Fig. 4.2f) and the other one with the diagonals
(×, Fig. 4.2g). In Table 4.1, we report the average peak signal-to-noise ratio, on
the validation set for the two architectures. Table 4.1 illustrates various facts listed
below.

Lack of adaptivity Without surprise, the values on the diagonal are higher
than the off-diagonal terms. This means that the best way to reconstruct images
for a given scheme is to train the network for this specific scheme. The drop of
peak signal-to-noise ratio (PSNR) when using a network trained with the wrong
operator can be as high as 9dB for the denoising net and 5dB for the unrolled net
(see the pairs − and |). This is a striking illustration of the strong dependency of
a reconstruction net to the operator used at the training stage. The corresponding
images are shown in Fig. 4.3.

The superiority of unrolled nets The unrolled network provides better recon-
struction results than the denoising net. The overall gain on the diagonal varies
between 1.4dB and 1.7dB for this particular application, which is significant. This
is in accordance with recent comparisons of both strategies [Muckley 2021].

Partial adaptivity While the training on the vertical scheme | provides catas-
trophic results when used on the horizontal scheme −, the networks trained on the
radial © scheme provide rather good results uniformly on the 4 other sampling
schemes. Indeed, we see that the performance drop when used on a distinct scheme
raises up to 3.6dB for the denoising net and 2.7dB for the unrolled network. Over-
all, the unrolled network provides a significantly better alternative when it comes
to adaptivity.

Optimal sampling scheme Some sampling schemes make the reconstruction
easier than others, which is in accordance with the compressed sensing theory.
The knee images have large vertical and horizontal edges. This seems to favor
the + sampling scheme, which was already observed in other works [Wang 2022a,
Weiss 2021, Gossard 2022a].

4.6.2.2 Training on an operator family

In this section, we trained the reconstruction networks by varying the forward
operators, as in (4.12). In what follows, we let ID and IU denote the “ideal”
denoising network and the “ideal” unrolled network respectively. By ideal, we mean
that the networks have been trained and tested with the same operator. They
serve as a benchmark that cannot be outperformed. We let FD and FU denote the
“family” denoising and unrolled networks, which have been trained over a complete
family. We also tested the plug&play approach. We used an unrolled proximal
gradient for K = 10 iterations with a DruNet network as an embedded denoiser. It
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Table 4.1: Average PSNR and its standard deviation evaluated on the fastMRI
validation dataset for the two architectures.
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Table 4.2: Average PSNR and standard deviation (in dB) of various reconstruction
approaches applied to various operators.

was trained specifically to denoise the images with various levels of white Gaussian
noise. Finally, we implemented the regularize&reuse network (R&R) [Gilton 2021b]
composed of K = 10 iterations. The embedded inversion network consists of a
pseudo-inverse, followed by a DruNet network trained for the © sampling scheme.
The hyperparameters in the method (see [Gilton 2021b]) were tuned to produce the
best results. Table 4.2 shows the performance of the different architectures. The
following conclusions can be drawn.

Denoising network The denoising network trained on the whole family drops
by less than 0.4dB compared to ID, when tested with schemes that belong to the
training family.

However, the performance is altered (1dB) for the two schemes outside the
training family. This suggests that a proper training of a denoising net should
cover a sufficiently vast family of operators.

Unrolled networks The unrolled networks trained with a family shows a per-
formance drop of at most 0.12dB compared to IU for schemes inside and outside
the family. This is a remarkable feature: the scheme is able to extrapolates out-



136 CHAPTER 4. ADAPTIVE RECON. NETWORKS BLIND INV. PB.

side the training set to some extent. This illustrates one of the take home message
of our paper: training unrolled networks on a family does not degrade much the
performance while providing adaptivity of the networks.

In addition, the price of adaptivity seems affordable for most applications since
a 0.12dB loss is marginal.

Plug & Play (P&P) When comparing Table 4.1 and 4.2, we see that the
plug&play approach performs better uniformly than models trained on a single op-
erator. However, its performance drops by 1−1.5dB compared to ID and 2.5−3.1dB
compared to IU.

It is also significantly less accurate than FU for an identical computational cost.
This suggests that for a given reconstruction architecture, it is beneficial to train
the proximal networks for a specific task rather than using a universal denoiser, as
is the case in plug&play.

Notice however, that FU does not extrapolate well to problems completely dif-
ferent from the ones it was trained for. Indeed, we trained FU for an MRI recon-
struction problem and tested it for a deblurring application. There, the plug&play
approach was considerably more consistent. In a sense, we can see the proposed
training as an intermediate step between the plug&play approach (adaptable to all
inverse problems) and the traditional training of reconstruction networks (perfectly
adapted to a single operator).

Reuse & Regularize (R&R) Finally, the R&R approach does improve the
results by up to 1.5dB compared to a model trained on a single operator. However,
it seems that our simpler training approach provides significantly better results.
Notice that R&R has a wider scope since it also deals with unknown perturbations
of the forward operator (i.e. blind inverse problems), while we only consider the
non blind case in this section.

4.6.3 Blind inverse problems

In this section, we illustrate how training on a family of operators allows us to
solve different blind inverse problems by minimizing (4.5). Fig. 4.4, 4.6 and 4.5
illustrate some of the results for MRI, deblurring and CT imaging respectively. In
these experiments, we assume that

y = A(θ1)x + b, (4.15)

for some unknown parameter θ1 describing the forward model. Starting from an
initial guess θ0, we then solve (4.5) with a first order method, resulting in an
estimate θ̂1 of θ1. Fig. 4.4, 4.5, 4.6 show the performance of the solver for various
applications. Let us analyze these results.
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(a) Original image (b) Tr.| Ev.|, 38.9dB

(c) Tr.| Ev.−, 33.7dB (d) FU Ev.−, 38.0dB

Figure 4.3: Examples of reconstructions using the unrolled network. We trained it
on | (4.3b, 4.3c) and on a family (4.3d). We tested it on | (4.3b) and − (4.3c, 4.3d).

4.6.3.1 Magnetic Resonance Imaging

This application provides the most impressive results for various reasons:

• To the best of our knowledge, no one yet attempted to estimate the sensitivity
maps and trajectory errors jointly. Estimating divergence in trajectories might
look hopeless at first sight, which may explain this fact. Indeed, looking at the
differences between ξ1 and ξ0 (see top-right and the zoom on the right-most
column of Fig. 4.4) we see that the frequency shifts are huge (up to 5 pixels).

• The total number of parameters to estimate is really large. Indeed, it con-
sists in the 104 × 15 parameters describing the sensitivity maps and the 32
parameters describing the convolution kernel that perturbs the trajectories,
i.e. 1592 parameters.

If solved without any correction, the reconstruction results are disastrous (see
the 2nd column). Solving the consistency problem (4.5) provides near perfect esti-
mates of θ̂ for all reconstruction mappings. For instance, the green ξ̂1 and orange
ξ1 trajectories cannot be distinguished on the right column. This may come as a
surprise, and seems to suggest that this particular blind inverse problem is not as
hard as may seem at first sight. This might be due to multiple redundancies in the
data: the 15 reception coils associated to a slight oversampling of the k-space center
(all the trajectories start exactly from the center) seem to ensure the identifiability
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of the problem. A nice research perspective is to explain this phenomenon from a
theoretical viewpoint.

The reconstruction result obtained with the neural network trained on a family
is significantly better than the two other ones (more than +1.3dB compared to the
one trained on θ0 and to the plug&play approach). In particular, the bone texture
is reconstructed with the proposed approach, while it is not for the two others.

4.6.3.2 Computerized tomography

In this application, recall that the angle differences might be due to the motion of a
patient in the scanner. As can be seen on the 2nd column, not accounting for this
results in severe artifacts including some details loss and blur. This can be easily
seen through the PSNR drop of more than 10dB from the 1st to the 2nd column.

A second observation is that the plug&play approach does not work for this
application. The reason is likely the missing cone problem. The unrolled network
is able to “learn” the invisible [Bubba 2019], that is to recover the kernel part k in
(4.13). In contrast, a neural network that would be trained only to remove additive
Gaussian noise seems unable to do so. We see a clear advantage of the unrolled
networks for this particular application.

The unrolled networks trained on the single operator θ0 seems unable to recover
the angles tilts: the average error only goes from 0.12◦ to 0.09◦. On its side,
the unrolled network trained on a family provides promising results, reducing the
average tilts error to 0.024◦. Recall that this training family consists of operators
with random perturbations of the angles and positions. Both network correctly
recover the shifts s1, by reducing their size by a factor larger than 10. The gain
in performance by training on a family is significant with a difference of more than
2.3dB for the proposed approach.

4.6.3.3 Blind deblurring

This application is one of the most studied in the literature, especially in computer
vision. It has an important peculiarity: the basic block of the convolutional neural
network is identical to the forward operator. Hence, when an unrolled network is
trained, we can expect the networks D[wk, ·] to not only act as “denoisers”, but
also as deconvolution mappings.

Known operator This fact might explain the second row of Fig. 4.6, where the
unrolled network actually degrades the image quality compared to the observation.
We indeed go from 21.05dB to 15.62dB with a known operator! This also confirms
the conclusions of the introductory example in Fig. 4.1.

The behavior of the unrolled network trained on a family is significantly more
appealing with a gain of 5.6dB compared to the observation when knowing the true
operator. The plug&play provides a significant increase of 2.6dB, which is not on
par with the performance of the proposed approach.
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Unknown operator When the operator is unknown, only the proposed approach
is able to recover an approximate version of the blur kernel (12dB compared to
less than 4.5dB for the other approaches). The estimate is not perfect, but it is
still sufficient to significantly improve the image resolution (21dB to 25.2dB), with
clearly enhanced details (see e.g. the railway).

4.6.3.4 Additional experiments

Finally, to show that the approach is robust and versatile, we provide a few extra
experiments in Fig. 4.7, 4.8 and 4.9.

4.7 Conclusion

In this work we studied the stability of model-based reconstruction networks to
variations of the acquisition operator. We first illustrated significant performance
drops when training the models on a single forward model. We then demonstrated
on a realistic MRI reconstruction problem that a simple solution to mitigate this
effect and ensure a good adaptivity is to train the model on a family of operators.
It opens new interesting perspectives for computational imaging. A recent trend
consists in optimizing the forward model and the reconstruction algorithm jointly
(see e.g. [Weiss 2021, Gossard 2022b, Wang 2022a] for examples in MRI). With a
reconstruction method capable of adapting to a vast family of operators, it becomes
possible to restrict the attention to the optimization of the forward model only
[Gossard 2022a].

We also showed that the design of networks being able to adapt to different
forward models, allows solving a variety of blind inverse problems in a convincing
way. This aspect is critical in most applications: the forward model is usually
known at best approximately, and can even be completely unknown. The benefits
of handling this issue are huge in terms of resolution and signal-to-noise-ratio gains.

This promising work opens many perspectives. First, our experiments were
conducted with simulated measurements which can lead to both an inverse crime
[Colton 1998] and a data crime [Shimron 2022]. Extensive validation should be
carried out on real imaging devices. Another question that is not addressed in this
paper is how the proposed blind inverse solver behaves if the true operator is not
in the range of the admissible operators θ 7→ A(θ)? This question is left for future
work as well. Another interesting perspective would be to add motion correction
for MRI. A motion in the image domain translates to a phase modulation in the
Fourier domain. This is a critical issue in practice. The disconcerting ease with
which we solved the estimation of trajectory shifts and sensitivity maps, sparks
good hopes to solve this long resisting problem. Finally, a current weakness of the
proposed approach, is a rather high computational complexity. Indeed, the model
needs to be differentiated from 10 to 1000 times with respect to the parameter θ.
In practice, this took from 10 minutes to 1 hour in the experiments carried out in



140 CHAPTER 4. ADAPTIVE RECON. NETWORKS BLIND INV. PB.

this paper. This might be incompatible with real large scale applications. Hence,
better optimization strategies should be developed.
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Figure 4.4: Self-calibrated MRI. 1st column: reconstruction with a perfect knowl-
edge of the forward model θ1. 2nd column: reconstruction assuming the wrong
forward model θ0. 3rd column: reconstruction using the estimated forward model
θ̂1. 4th column: estimate of the operator. We display the maximal distance be-
tween sampling points ‖ξ1− ξ̂1‖∞ as well as the PSNR of the estimated sensitivity
maps ŝ1. From top to bottom: different training strategies are compared. 2nd
row: trained on θ0. 3rd row: trained on a family of operators. 4th row: using a
plug&play prior. The PSNR is indicated below each image. The noise level given
to the P&P denoiser has been tuned as to yield the best PSNR on the non-blind
problem. Other models do not require tuning at evaluation.
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Figure 4.5: Self-calibrated computerized tomography. 1st column: reconstruction
with a perfect knowledge of the forward model θ1. 2nd column: reconstruction
assuming the wrong forward model θ0. 3rd column: reconstruction using the esti-
mated forward model θ̂1. 4th column: true θ1 (blue) and estimated θ̂1 parameters
(red) of the forward model. We display the average angle error and the average
shift error. 2nd row: trained on θ0. 3rd row: trained on a family of operators. 4th
row: using a plug&play prior. The PSNR of the reconstructed image are indicated
below each image. The noise level given to the P&P denoiser has been tuned as
to yield the best PSNR on the non-blind problem. Other models do not require
tuning at evaluation.
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Figure 4.6: Blind deblurring. 1st column: reconstruction with a perfect knowledge
of the forward model θ1. 2nd column: reconstruction assuming a wrong forward
model θ(i). 3rd column: reconstruction using the estimated forward model θ̂1. From
top to bottom: different training strategies are compared. 2nd row: trained on θ0.
3rd row: trained on a family of operators. 4th row: using a plug&play prior. The
PSNR of the reconstructed image and the SNR of the reconstructed blur kernel are
indicated below each image. The noise level given to the P&P denoiser has been
tuned as to yield the best PSNR on the non-blind problem. Other models do not
require tuning at evaluation. The measured signal is y = A(θ1)x + b and the blur
of the experiments in the 3rd column is initialized with the blur given in the first
row θ(i).
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Figure 4.7: Additional experiments for self-calibrated MRI with different images.
1st column: ground truth. 2nd column: reconstruction assuming the wrong forward
model θ0. 3rd column: reconstruction using the estimated forward model θ̂1. From
top to bottom for each image: different training strategies are compared. 1st row:
trained on θ0. 2nd row: trained on a family of operators. The PSNR is indicated
below each image.
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Figure 4.8: Additional experiments for blind deblurring with different images. 1st col-
umn: ground truth. 2nd column: observation y and the true blur θ1. 3rd column:
reconstruction using the estimated forward model θ̂1 with the network trained on θ0.
4th column: reconstruction using the estimated forward model θ̂1 with the network
trained on a family of operators. The PSNR of the reconstructed image and the SNR of
the reconstructed blur kernel are indicated below each image.
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Figure 4.9: Additional experiments for self-calibrated CT with different images.
1st column: reconstruction assuming the wrong forward model θ0. 2nd column:
reconstruction using the estimated forward model θ̂1. 3rd column: true θ1 (blue)
and estimated θ̂1 parameters (red) of the forward model. We display the average
angle error and the average shift error. 4th column: ground truth. From top to
bottom for each image: different training strategies are compared. 1st row: trained
on θ0. 2nd row: trained on a family of operators. The PSNR of the reconstructed
image are indicated below each image.



Chapter 5

Adaptive scaling of the learning
rate by second order automatic

differentiation

Résumé Dans le contexte de l’optimisation des réseaux de neurones profonds, nous
proposons une nouvelle méthode de différenciation automatique qui permet de met-
tre à l’échelle le pas de méthodes d’optimisation. Cette technique repose sur le calcul
de la courbure, une information de second ordre dont la complexité de calcul se situe
entre le calcul du gradient et celui du produit matrice-vecteur avec la hessienne. Si
(1C, 1M) représente respectivement le temps de calcul et l’empreinte mémoire de la
méthode du gradient, la technique proposée augmente le coût total à (1.5C, 2M) ou
(2C, 1M). Cette remise à l’échelle a l’avantage d’avoir une interprétation naturelle,
elle permet à l’utilisateur de choisir entre l’exploration du jeu de paramètres et la
convergence de l’algorithme. La remise à l’échelle est adaptative, elle dépend des
données et de la direction de la descente. Les expériences numériques mettent en
évidence les différents régimes d’exploration et de convergence.

Abstract In the context of the optimization of Deep Neural Networks, we pro-
pose to rescale the learning rate using a new technique of automatic differentiation.
This technique relies on the computation of the curvature, a second order informa-
tion whose computational complexity is in between the computation of the gradient
and the one of the Hessian-vector product. If (1C, 1M) represents respectively the
computational time and memory footprint of the gradient method, the new tech-
nique increase the overall cost to either (1.5C, 2M) or (2C, 1M). This rescaling has
the appealing characteristic of having a natural interpretation, it allows the practi-
tioner to choose between exploration of the parameters set and convergence of the
algorithm. The rescaling is adaptive, it depends on the data and on the direction of
descent. The numerical experiments highlight the different exploration/convergence
regimes.

This chapter is based on the preprint [de Gournay 2022]:
de Gournay, F., & Gossard, A. (2022). Adaptive scaling of the learning
rate by second order automatic differentiation.
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5.1 Introduction

The optimization of Deep Neural Networks (DNNs) has received tremendous at-
tention over the past years. Training DNNs amounts minimizing the expectation
of non-convex random functions in a high dimensional space Rd. If J : Rd → R
denotes this expectation, the problem reads

min
Θ∈Rd

J (Θ), (5.1)
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with Θ the parameters. Optimization algorithms compute iteratively Θk, an ap-
proximation of a minimizer of (5.1) at iteration k, by the update rule

Θk+1 = Θk − τkΘ̇k, (5.2)

where τk is the learning-rate and Θ̇k is the update direction. The choice of Θ̇k

encodes the type of algorithm used. This work focuses on the choice of the learning
rate τk.

There is a trade-off in the choice of this learning rate. Indeed high values of
τk allows exploration of the parameters space and slowly decaying step size ensures
convergence in accordance to the famous Robbins-Monro algorithm [Robbins 1951].
This decaying condition may be met by defining the step as τk = τ0k

−α with τ0
being the initial step size and 1

2 < α < 1 a constant. The choice of the initial
learning rate and its decay are left to practitioners and these hyperparameters have
to be tuned manually in order to obtain the best rate of convergence. For instance,
they can be optimized using a grid-search or by using more intricated strategies
[Smith 2018], but in all generality tuning the learning rate and its decay factor is
difficult and time consuming. The main issue is that the learning rate has no natural
scaling. The goal of this work is to propose an algorithm that, given a direction Θ̇k

finds automatically a scaling of the learning rate. This rescaling has the following
advantages:

• The scaling is adaptive, it depends on the data and of the choice of direction
Θ̇k.

• The scaling expresses the convergence vs. exploration trade-off. Multiplying
the rescaled learning rate by 1/2 enforces convergence whereas multiplying it
by 1 allows for exploration of the space of parameters.

This rescaling comes at a cost and it has the following disadvantages:

• The computational costs and memory footprint of the algorithm goes from
(1C, 1M) to (1.5C, 2M) or (2C, 1M).

• The rescaling method is only available to algorithms that yield directions
of descent, it excludes momentum method and notably Adam-flavored algo-
rithm.

• Rescaling is theoretically limited to functions whose second order derivative
exists and does not vanish. This non-vanishing condition can be compensated
by L2-regularization.

5.1.1 Foreword

First recall that second order methods for the minimization of a deterministic C2

function Θ 7→ J (Θ), with a Hessian that we denote ∇2J , are based on the second
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order Taylor expansion at iteration k:

J (Θk − τkΘ̇k) ' J (Θk)− τk〈Θ̇k,∇J (Θk)〉+ τ2
k

2 〈∇
2J (Θk)Θ̇k, Θ̇k〉. (5.3)

If the Hessian of J is positive definite, the minimization of the right-hand side leads
to the choice

Θ̇k = P−1
k ∇J (Θk) with Pk ' ∇2J (Θk). (5.4)

Once a direction Θ̇k is chosen, another minimization in τk gives

τk = 〈Θ̇k,∇J (Θk)〉
‖Θ̇k‖2c(Θk, Θ̇k)

, (5.5)

where c is the curvature of the function, and is defined as

c(Θk, Θ̇k)
def= 〈∇

2J (Θk)Θ̇k, Θ̇k〉
‖Θ̇k‖2

. (5.6)

A second-order driven algorithm can be decomposed in two steps: i) the choice of
Pk in (5.4), and if this choice leads to an update which is a direction of ascent, that
is 〈Θ̇k,∇J (Θk)〉 > 0, ii) a choice of τk by an heuristic inspired from (5.6) and (5.5).

In the stochastic setting, we denote as s 7→ Js the mapping of the random
function. At iteration k, only information on (Js)s∈Bk can be computed where
(Bk)k is a sequence of mini-batches which are indepently drawn. If Es∈Bk is the
empirical average over the mini-batch, we define JBk = Es∈Bk [Js]. Given Θ, the
quantity J (Θ) is deterministic, and J is the expectation of Js w.r.t. s.

5.1.2 Related works

Choice of Pk: The choice Pk = ∇2JBk(Θk) in (5.4), leads to a choice τk = 1
and to the so-called Newton method. It is possible in theory to compute the
Hessian by automatic differentiation if it is sparse [Walther 2008], but to our
knowledge it has not been implemented yet. In [Martens 2010], the authors
solve Θ̇k =

[
∇2JBk(Θk)

]−1∇JBk(Θk) by a conjugate gradient method which re-
quires only matrix-vector product which is affordable by automatic differentiation
[Christianson 1992, Pearlmutter 1994]. This point of view, as well as some variants
[Vinyals 2012, Krishnan 2018], suffer from high computational cost per batch and
go through less data in a comparable amount of time, leading to slower convergence
at the beginning of the optimization.

Another choice is to set Pk ' ∇2JBk(Θk) in (5.4) which is coined as the “Quasi-
Newton” approach. These methods directly invert a diagonal, block-diagonal
or low rank approximation of the Hessian [Becker 1988, Schaul 2013, Roux 2007,
Ollivier 2015, Martens 2015, Yao 2021]. In most of these works, the Hessian is ap-
proximated by E[∇Js(θk)∇Js(θk)T ], the so-called Fisher-Information matrix, which
leads to the natural gradient method [Amari 1998]. Note also the use of a low-rank
approximation of the true Hessian for variance reduction in [Gower 2018].
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Finally, there is an interpretation of adaptive methods as Quasi-Newton meth-
ods. Amongst the adaptive methods, let us cite RMSProp [Tieleman 2012],
Adam [Kingma 2015], Adagrad [Duchi 2011] and Adadelta [Zeiler 2012]. For all
these methods, Pk is as a diagonal preconditioner that reduces the variability of the
step size across the different layers. This class of methods can be written

Θ̇k = P−1
k mk, mk ' ∇J (Θk) and Pk ' ∇2J (Θk). (5.7)

For instance, RMSProp and Adagrad usemk = ∇JBk(Θk) whereas Adam maintains
in mk an exponential moving averaging from the past evaluations of the gradient.
The RMSProp, Adam and Adagrad optimizers build Pk such that P 2

k is a diagonal
matrix whose elements are exponential moving average of the square of the past
gradients (see [Reddi 2018] for example). It is an estimator of the diagonal part of
the Fisher-Information matrix.

All these methods can be incorporated in our framework as we consider the
choice of Pk as a preconditioning technique whose step is yet to be found. In a
nutshell, if Pk approximates the Hessian up to an unknown multiplicative factor,
our method is able to find this multiplicative factor.

Barzilai-Borwein: The Barzilai-Borwein (BB) class of methods [Barzilai 1988,
Raydan 1997, Dai 2002, Xiao 2010, Biglari 2013, Li 2019a] may be interpreted as
methods which aim at estimating the curvature in (5.6) by numerical differences
using past gradient computations. In the stochastic convex setting, the BB method
was introduced in [Tan 2016] for the choice Θ̇k = ∇J (Θk) with variance-reducing
methods [Johnson 2013]. It has been extended in [Ma 2018] to non-convex problems
and in [Liang 2019] to DNNs. Due to the variance of the gradient and possibly to
a poor estimation of the curvature by numerical differences, these methods allow
prescribing a new step at each epoch only. In [Yang 2018, Castera 2022], the step
is prescribed at each iteration at the cost of computing two mini-batch gradients
per iteration. Moreover, in [Yang 2018] the gradient over all the data needs to
be computed at the beginning of each epoch whereas [Castera 2022] maintains an
exponential moving average to avoid this extra computation. The downside of
[Castera 2022] is that they still need to tune the learning rate and its decay factor
and that their method has not been tried on other choices than Pk = Id.

Our belief is that approximating by numerical differences in a stochastic setting
suffers too much from variance from the data and from the approximation error.
Hence we advocate in this study for exact computations of the curvature (5.6).

Automatic differentiation: The theory that allows to compute the matrix-
vector product of the Hessian with a certain direction is well-studied [Walther 2008,
Christianson 1992, Griewank 2008, Pearlmutter 1994] and costs 4 passes (2 forward
and backward passes) and 3 memory footprint, when the computation of the gra-
dient costs 2 passes (1 forward and backward pass) and 1 memory footprint. We
study the cost of computing the curvature defined in (5.6), which to the best of
our knowledge, has never been studied. Our method has a numerical cost that is
always lower than the best BB method [Castera 2022].
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5.1.3 Our contributions

We propose a change of point of view. While most of the methods presented above
use first order information to develop second order algorithms, we use second order
information to tune a first order method. The curvature (5.6) is computed using
automatic differentiation in order to estimate the local Lipschitz constant of the
gradient and to choose a step accordingly. Our contribution is threefold:

• We propose a method that automatically rescales the learning rate using cur-
vature information in Section 5.2.1 and we discuss the heuristics of this method
in Section 5.2.2. The rescaling allows the practitioner to choose between three
different physical regimes coined as : hyperexploration, exploration/conver-
gence trade-off and hyperconvergence.

• We study the automatic differentiation of the curvature in Section 5.3 and its
computational costs.

• Numerical tests are provided in Section 5.4 with a discussion on the three
different physical regimes introduced in Section 5.2.1.

5.2 Rescaling the learning rate

5.2.1 Presentation and guideline for rescaling

The second order analysis of Section 5.1 relies on the Taylor expansion

J (Θk − τkΘ̇k) ' J (Θk)− τk〈Θ̇k,∇J (Θk)〉+ τ2
k

2 c(Θk, Θ̇k)‖Θ̇k‖2,

with c(Θk, Θ̇k) given by (5.6). This Taylor expansion yields the following algorithm:
given Θk and an update direction Θ̇k, compute c(Θk, Θ̇k) by (5.6), the step τk
by (5.5) and finally update the parameters Θk by (5.2). The first order analysis is
slightly different. Starting with the second order exact Taylor expansion in integral
form:

J (Θk − τkΘ̇k) = J (Θk) + τk〈Θ̇k,∇J (Θk)〉+
∫ τk

t=0
(τk − t)c(Θk − tΘ̇k, Θ̇k)‖Θ̇k‖2dt,

we introduce the local directional Lipschitz constant of the gradient

Lk = max
t∈[0,τk]

|c(Θk − tΘ̇k, Θ̇k)|, (5.8)

in order to bound the right-hand side of the Taylor expansion. One obtains

J (Θk − τkΘ̇k) ≤ J (Θk)− τk〈Θ̇k,∇J (Θk)〉+ τ2
k

2 Lk‖Θ̇k‖2. (5.9)
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Introducing the rescaling rk

rk = 〈Θ̇k,∇J (Θk)〉
‖Θ̇k‖2Lk

(5.10)

and writing τk = rk`, Equation (5.9) turns into

J (Θk − `rkΘ̇k) ≤ J (Θk) +
(
`2 − `

) Lk
2 ‖rkΘ̇k‖2 ∀`. (5.11)

Any choice of ` in ]0, 1[ leads to a decrease of J in (5.11). The choice ` = 1
2 allows

faster decrease of the right-hand side of (5.11). We coin the choice ` = 1 in (5.11)
as the exploration choice and the choice ` = 1

2 as the convergence choice. The
only difficulty in computing (5.10) lies in the computation of Lk. Indeed, Lk is a
maximum over an unknown interval and, in the stochastic setting, we only estimate
the function J and its derivative on a batch Bk.

We propose to build L̃k an estimator of Lk by using the following rules.

• Replace the maximum over the unknown interval [0, τk] in (5.8) by the value
at t = 0. This is reminiscent of the Newton’s method.

• Perform an exponential moving average on the past computations of rk in
order to average over the data previously seen.

• Use the maximum of this latter exponential moving average and the current
estimate in order to stablize L̃k.

The algorithm reads as follows:

Algorithm 3 Rescaling of the learning rate
1: Hyperparameters β3 = 0.9 (exponential moving average).
2: Initialization ĉ0 = 0
3: Input (at each iteration k): a batch Bk, gk = Es∈Bk [∇Js(Θk)] and Θ̇k a

direction that verifies 〈gk, Θ̇k〉 > 0.
4: ck = Es∈Bk

[∣∣∣〈∇2Js(Θk)Θ̇k, Θ̇k〉
∣∣∣] /‖Θ̇k‖2 . local curvature

5: ĉk = β3ĉk−1 + (1− β3)ck and c̃k = ĉk/(1− βk3 ) . moving average
6: L̃k = max(c̃k, ck) . stabilization
7: rk = 〈Θ̇k, gk〉/

(
2‖Θ̇k‖2L̃k

)
. rescaling factor

8: Output (at each iteration k): rk a rescaling of the direction Θ̇k.
9: Usage of rescaling: The practitioner should use the update rule Θk+1 =

Θk − `rkΘ̇k, where ` follows the Rescaling guidelines (see below).

Note that the curvature ck is computed with the same batch that the one used
to compute gk and Θ̇k.
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Rescaling guidelines Given a descent direction Θ̇k, the update rule is given by

Θk+1 = Θk − `rkΘ̇k,

where ` is the learning-rate that has to be chosen by the practitioner and rk is
the rescaling computed by Algorithm 3. In the deterministic case, ` has a physical
interpretation:

• 1 ≥ ` ≥ 1
2 (Convergence/exploration trade-off). The choice ` = 1 (exploration)

is the largest step that keeps the loss function non increasing. The choice
` = 1/2 (convergence) ensures the fastest convergence to the closest local
minimum. It is advised to start from ` = 1 and decrease to ` = 1/2 (see
Section 5.4.1).

• ` > 1 (Hyperexploration). The expected behavior is a loss function increase
and large variations of the parameters. This mode can be used to escape local
basin of attraction in annealing methods (see Section 5.4.2).

• 0 < ` < 1/2 (Hyperconvergence). This mode slows down the convergence. In
the stochastic setting, if the practitioner has to resort to setting ` < 1/2 in
order to obtain convergence, then some stochastic effects are of importance
in the optimization procedure (see Section 5.4.3).

5.2.2 Analysis of the rescaling

Several remarks are necessary to understand the limitations and applications of
rescaling.

The algorithm does not converge in the deterministic setting. Note that
in the deterministic one dimensional case, when J is convex (i.e. the curvature is
positive), β3 = 0 and ` = 1/2, the algorithm boils down to the Newton method.
It is known that the Newton method may fail to converge, even for strictly convex
smooth functions. For example if we choose

J (Θ) =
√

1 + Θ2,

the iterates of the Newton method are given by Θk+1 = −Θ3
k, which diverges as soon

as |Θ0| > 1. This problem comes from the fact that the curvature c(Θk − tΘ̇k, Θ̇k)
has to be computed for each t ∈ [0, τk] in order to estimate Lk in (5.8) but this
maximum is estimated by its value at t = 0. In this example, c(Θk, Θ̇k) is a bad
estimator for Lk as it is too small and the resulting step is too large.

Another issue in DNN is the massive use of piecewise linear activation functions
which can make the Hessian vanish and in this case, the rescaled algorithm may
diverge. For example if the loss function is locally linear, then ck = 0 in line 4 and
if we choose β3 = 0 then rk = +∞ in line 7.
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The algorithm does not converge in the stochastic setting. Let X be a
vector-valued random variable and J is the function

J (Θ) = 1
2E
[
‖Θ−X‖2

]
,

then for any value of β3 and for the choice ` = 1
2 , the rescaled algorithm yields

the update Θk = EBk [X], when the optimal value is Θ? = E[X]. The algorithm
oscillates around Θ?, with oscillations depending on the variance of the gradient.
This oscillating stochastic effect is well known and is the basic analysis of SGD.
Since the proposed rescaling analysis is performed in a deterministic setting, it is
not designed to offer any solution to this problem.

Enforcing convergence by Robbins-Monro conditions In order to enforce
convergence, we can use the results of [Robbins 1951]. It is then sufficient to sow
instructions like

α ≤ `rkkδ ≤ β, (5.12)

with fixed α, β > 0 and δ ∈]1/2, 1[. This is the choice followed by [Castera 2022]
for instance. Note that convergence analysis for curvature-dependent step is, to our
knowledge, studied only in [Alvarez 2004], for the non-stochastic time-continuous
setting.

Fostering convergence with L2 regularization In the deterministic case, the
non-convergence of the algorithm is caused by vanishing eigenvalues of the Hessian.
This issue can be fixed by adding a term λ

2‖Θ‖2 to the function Θ 7→ J (Θ), with
λ > 0. This method is coined as L2 regularization with parameter λ. This method
shifts the eigenvalues of the Hessian of J by the parameter λ. Close to the minimum,
every eigenvalue of the Hessian is then positive. Although L2 regularization does
not guarantee convergence, it promotes it.

Gradient preconditioning In case of gradient preconditioning Θ̇k = P−1
k gk

with Pk ' ∇2J (Θk), the advantage of rescaling is that the practitioner is allowed
to approximate the Hessian up to a multiplicative factor. Indeed suppose that
instead of providing a good estimate of the Hessian, the practitioner multiplies it at
each iteration by an arbitrary factor αk ∈ R. In this case, Θ̇k is multiplied by α−1

k

but the curvature ck does not change in Line 5 of Algorithm 3. This means that ĉk
is independent of the previous (αs)s≤k. Finally, the rescaling rk is multiplied by αk
in Line 7. Hence the output of the algorithm rkΘ̇k is independent of the sequence
(αs)s≤k. Therefore, the practitioner does not need to worry about finding the right
multiplicative factor, it is accounted for by the rescaling method.

Negativeness of the curvature (line 4) The main difference beween a first-
order analysis (5.8) and a second-order (5.5) lies in handling the case when the
curvature is negative. The first-order analysis, which we choose, relies on using
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absolute value of the curvature, when second-order analysis relies on more intricated
methods, see [Allen-Zhu 2018, Carmon 2017, Liu 2017, Curtis 2019]. Note that the
absolute value is taken inside the batch average in line 4 and not outside. Otherwise
data in the batch where 〈∇J 2(Θk)Θ̇k, Θ̇k〉 is negative could compensate the data
where it is positive, leading to a bad estimation of the curvature.

Heuristics in the estimation of Lk (lines 5 and 6) The estimator of Lk must
comply with two antagonist requirements. The first one is to average the curvature
over the different batches to effectively compute the true curvature of J . The
second one is to use the local curvature at point Θk and in the direction Θ̇k which
requires to forget old iterations. This advocates the use of an exponential moving
average in line 5 with the parameter β3. The maximum in line 6 is reminiscent
of the construction of AMSGrad [Reddi 2018] from Adam [Kingma 2015], and it
stabilizes batches where ck � c̃k. In order to be consistent with the remark in
Gradient preconditioning, the averaged quantity is the one which does not depend
on the unknown multiplicative factor αk.

5.3 Computing the curvature

In this section, we focus on the computation of c(Θ, Θ̇) by automatic differentiation
and its cost.

5.3.1 Main results

A Neural Network N is a directed acyclic graph and at each node of the graph, the
data are transformed and fed to the rest of the graph. The data at the output xn are
then compared to y. Since there is no cycle in the graph, there is no mathematical
restriction to turn such graph into a list. The set of parameters for layer s is denoted
as θs, and we denote Θ = (θs)s=0..n the set of parameters of N . The action of N is
expressed by the recurrence:

xs+1(Θ) = Fs(xs(Θ), θs), 0 ≤ s ≤ n− 1 (5.13)

where Fs is the action of the sth layer of N . The output xn is then compared to a
target via a loss function Fn and we denote xn+1 ∈ R the result of this loss function.

Let X(Θ) = (xs(Θ))s=0..n+1 denote the set of data as it is transformed through
the neural network. The intermediate data xs(Θ) (resp. parameter θs) are supposed
to belong to an Hilbert space Hs (resp. Gs). We then have for each 0 ≤ s ≤ n

Fs : Hs × Gs → Hs+1 and Hn+1 = R.

The gradient of J with respect to Θ is computed using automatic differentiation.
This requires to define the differentials of Fs with respect to its variables. Let
∂xFs : Hs → Hs+1, resp. ∂θFs : Gs → Hs+1, be the differential of F at the point
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(xs(Θ), θs) w.r.t. x, resp. θ. Denote (∂xFs)∗ : Hs+1 → Hs and (∂θFs)∗ : Hs+1 → Gs
the adjoints of the differentials of Fs. These adjoints are defined for all φ ∈ Hs+1
as the unique linear mapping that verifies:

〈∂xF∗sφ, ψ〉Hs =〈φ, ∂xFsψ〉Hs+1 ∀ψ ∈ Hs
〈∂θF∗sφ, ψ〉Gs =〈φ, ∂θFsψ〉Hs+1 ∀ψ ∈ Gs.

Denote by ∇2Fs the second order derivative tensor of Fs at the point (xs, θs). The
backward of the data X̂ = (x̂s)s=1..n+1 and the backward-gradient Θ̂ = (Θ̂s)s=0..n
are defined by: x̂s = (∂xFs)∗x̂s+1 with x̂n+1 = 1

θ̂s = (∂θFs)∗x̂s+1.
(5.14)

In Algorithm 4, the standard backpropagation algorithm is given as well as the
modifications needed to compute the curvature. The proof of this algorithm is given
in Section 5.3.2.

Algorithm 4 Backpropagation with curvature computation
1: Compute and store the data X = (xs)s with a forward pass (5.13).
2: Compute and store the backward X̂ = (x̂s)s and Θ̂ = (θ̂s)s using (5.14).
3: Then ∇J (Θ) = Θ̂.
4: Choose any direction of update Θ̇ = (θ̇s)s.
5: Compute the tangent Ẋ = (ẋs)s with the following forward pass:

ẋs+1 = (∂xFs)ẋs + (∂θFs)θ̇s, ẋ0 = 0. (5.15)

6: Then 〈∇2J (Θ)Θ̇, Θ̇〉 = ∑
s〈x̂s+1,∇2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s)〉Hs+1 .

By Algorithm 4, the computation of the curvature c(θ, θ̇) requires 3 passes in
total and the storage of X and X̂ whereas the computation of the gradient requires
2 passes and the storage of X. Hence the memory footprint is multiplied by 2 and
the computation time by 1.5. We show in Section 5.3.3 how to design a divide-and-
conquer algorithm that changes this cost to (2C, 1M).

Theorem 3. If (1C, 1M) represents respectively the computational time and mem-
ory footprint of the standard backpropagation method, Algorithm 4 costs either
(1.5C, 2M) or (2C, 1M).

This result is of importance since it states that computing the exact curvature
is at least as cheap as using numerical differences of the gradient [Castera 2022].

5.3.2 Proof of Algorithm 4

The goal of this section is to analyse the complexity of computing the curvature
term and to prove Algorithm 4.
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Forward pass We recall that the forward pass is computed through the recur-
rence

xs+1(Θ) = Fs(xs(Θ), θs), 0 ≤ s ≤ n.

Moreover the objective function is defined as J (Θ) = xn+1(Θ). The computation
of X through the recurrence (5.13) is denoted as the forward pass.

Tangent pass Given Θ, a set of data X(Θ), and an arbitrary direction Θ̇ =
(θ̇s)s=0..n, the tangent Ẋ = (ẋs)s=0..n is defined as

ẋs = lim
τ→0

xs(Θ + τΘ̇)− xs(Θ)
τ

.

For each layer s, recall that ∂xFs (resp. ∂θFs) is the differential of Fs with respect to
the parameter x (resp. θ) at the point (xs(Θ), θs). From now, we omit the notation
of the point at which the differential is taken in order to simplify the notations. By
the chain rule theorem, we have that if ẋs exists, then the forward recurrence (5.13)
yields

ẋs+1 = (∂xFs)ẋs + (∂θFs)θ̇s, ẋ0 = 0. (5.16)

A recurrence on s allows obtaining existence of Ẋ and the scaling

X(Θ + τΘ̇) = X(Θ) + τẊ +O(τ2).

Hence, if X(Θ) is computed and Θ̇ is chosen, then Ẋ – the tangent in direction Θ̇
– can be computed via the forward recurrence (5.16) and we have

〈∇J (Θ), Θ̇〉 = ẋn+1. (5.17)

The recurrence (5.16) which allows the computation of Ẋ is coined as the tangent
pass.

Adjoint/backward pass In order to compute the gradient, one resorts to the
backpropagation algorithm which allows reversing the recurrence (5.16) that defines
the tangent and computing directly Θ̂ = (θ̂s)s=0..n such that

〈∇J (Θ), Θ̇〉 = ẋn+1 =
∑
s

〈θ̇s, θ̂s〉Gs .

The vector Θ̂ is then equal to ∇J (Θ), provided that one uses the scalar product
induced by the sum of the scalar products of all Gs. To compute Θ̂, we use ∂xF∗s :
Hs+1 → Hs and ∂θF∗s : Hs+1 → Gs the adjoints of the differentials of Fs. The
backward of the data X̂ = (x̂s)s=1..n+1 and the backward-gradient Θ̂ = (Θ̂s)s=0..n
are defined by the reversed recurrence:x̂s = (∂xFs)∗x̂s+1 with x̂n+1 = 1

θ̂s = (∂θFs)∗x̂s+1.
(5.18)
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The definition of the adjoint and the formula of the tangent (5.16) give the following
equality:

〈ẋs+1, x̂s+1〉Hs+1 = 〈(∂xFs)ẋs + (∂θFs)θ̇s, x̂s+1〉Hs+1

= 〈ẋs, (∂xFs)∗x̂s+1〉Hs+1 + 〈θ̇s, (∂θFs)∗x̂s+1〉Hs+1

= 〈ẋs, x̂s〉Hs + 〈θ̇s, θ̂s〉Gs . (5.19)

Summing up the above equations for every s, we obtain:

ẋn+1 = 〈ẋn+1, x̂n+1〉Hn+1 = 〈ẋ0, x̂0〉Hn+1 +
∑
s

〈θ̇s, θ̂s〉Gs =
∑
s

〈θ̇s, θ̂s〉Gs ,

where we use ẋ0 = 0 and x̂n+1 = 1. We then obtain the celebrated backward
propagation formula

∇J (Θ) = Θ̂.

The complexity analysis of the computation of the gradient by the backward
formula shows that it requires the computation and the storage of the forward pass
in order to be able to evaluate (∂xFs)∗ and (∂θFs)∗ at the point (xs(Θ), θs).

Computing the curvature Equation (5.17) is the implicit definition of ∇J ,
where Ẋ is defined by the recurrence (5.16). The trick of automatic differentiation
is to use the the backward X̂ defined in recurrence (5.18) to reverse (5.16). This
inversion is performed in (5.19) and it allows not computing the tangent Ẋ. We
show in this paragraph that the backward X̂ also reverses the recurrence defining
the second order term Ẍ defined in (5.20) below. Once the direction Θ̇ is chosen,
the curvature term can be computed by only a forward pass. To this end, for any
direction Θ̇, introduce Ẍ = (ẍs)s=0..n+1 as:

ẍs = lim
τ→0

xs(Θ + τΘ̇)− xs(Θ)− τ ẋs
τ2 , (5.20)

where ẋs is the tangent defined in (5.16). Recall that ∇2Fs : Hs × Gs → Hs+1 is
the bilinear symmetric mapping that represents the second order differentiation of
Fs at point (xs(Θ), θs). It is defined as the only bilinear symmetric mapping that
verifies for every (hx, hθ) the relation

Fs(xs(Θ) + hx, θs + hθ) =Fs(xs(Θ), θs) + ∂xFshx + ∂θFshθ

+ 1
2∇

2Fs(hx, hθ)⊗ (hx, hθ) + o(‖hx‖2 + ‖hθ‖2).

It is easy to prove that ẍs exists and verifies:

ẍs+1 = (∂xFs)ẍs + 1
2∇

2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s), with ẍ0 = 0. (5.21)
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Indeed, denote ξs = xs(Θ + τΘ̇)− xs(Θ)− τ ẋs so that

ẍs = lim
τ→0

ξs
τ2 ,

we have

ξs+1 = Fs(xs(Θ + τΘ̇), θs + τ θ̇s)−Fs(xs(Θ), θs)− τ(∂xFs)ẋs − τ(∂θFs)θ̇s
= Fs(ξs + xs(Θ) + τ ẋs, θs + τ θ̇s)−Fs(xs(Θ), θs)− τ(∂xFs)ẋs − τ(∂θFs)θ̇s

= (∂xFs)ξs + τ2

2 ∇
2Fs

(
ξs
τ

+ ẋs, θ̇s

)
⊗
(
ξs
τ

+ ẋs, θ̇s

)
+ o(τ2 + ‖ξs‖2). (5.22)

By a forward recurrence on (5.22), starting with ξ0 = 0, we have that ξs = O(τ2)
so that ẍs exists. Dividing (5.22) by τ2 and taking the limit yields (5.21).

Upon replacing Ẋ by Ẍ, the trick used in (5.19) can be applied and translates
into:

〈ẍs+1, x̂s+1〉Hs+1 = 〈(∂xFs)ẍs + 1
2∇

2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s), x̂s+1〉Hs+1

= 〈ẍs, (∂xFs)∗x̂s+1〉Hs+1 + 1
2〈∇

2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s), x̂s+1〉Hs+1

= 〈ẍs, x̂s〉Hs + 1
2〈∇

2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s), x̂s+1〉Hs+1

Summing up these equations in s and using ẍ0 = 0 and x̂n+1 = 1, we obtain

ẍn+1 = 〈ẍn+1, x̂n+1〉Hn+1

= 〈ẍ0, x̂0〉Hn+1 +
∑
s

1
2〈∇

2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s), x̂s+1〉Hs+1

=
∑
s

1
2〈∇

2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s), x̂s+1〉Hs+1 .

In order to conclude and prove Algorithm 4, it is sufficient to remark that J (Θ) =
xn+1(Θ) so that 1

2〈∇
2J (Θ)Θ̇, Θ̇〉 = ẍn+1.

More on automatic differentiation In Section 5.6.1, the reader will find a
method to compute the matrix-vector product with the Hessian. This method is not
new and is known as the Pearlmutter’s trick [Christianson 1992, Pearlmutter 1994].
We prove this trick in our setting in order to link our computations with other
automatic-differentiation techniques. Moreover, we also give some of the expression
of ∇2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s) for standard layers in Section 5.6.2 to settle the notations.

5.3.3 Proof of Theorem 3

Recall that (1C, 1M) is the complexity of a gradient computation, we show how to
change the overall cost of computing the curvature from (1.5C, 2M) to (2C, 1M)
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by a divide-and-conquer algorithm. In order to simplify the analysis, several sim-
plifications are made.

• There are three kind of passes, the forward pass in (5.13) that computes X,
the backward pass in (5.18) that computes X̂ and Θ̂ and the tangent-curvature
pass described in Algorithm 4 that computes the curvature. We suppose that
each of these passes have roughly the same computational cost C/2. This
assumption is subject to discussion. In one hand the backward and tangent
passes require each twice as much matrix multiplication as the forward pass.
On the other hand, soft activation functions are harder to compute in the
forward pass.

• We assume that storing X or X̂ has the same memory footprint 1M . Notably,
we suppose that the cost of storing the parameters Θ or the gradient Θ̂ is
negligeable with respect to the storage of the data through the network. This
assumption can only be made for optimization with large enough batches Bk.

• We suppose that we can divide the neural network in two pieces that each
costs half the memory and half the computational time. This means that we
are able to find L, such that the storage of (xs)s≤L and the storage of (xs)s≥L
have same memory footprint M/2. Moreover we suppose that performing a
pass for s ≥ L or for s ≤ L costs C/4 computational time. This assumption
is reasonable and simplifies the analysis but it is of course possible to exhibit
pathological networks that won’t comply with this assumption.

• We suppose that the only cost in data transfer comes from the initialization
of the parameters Θ, the initial data x0 and the direction of descent Θ̇. Note
that the computation of Θ̇ requires the computation of the gradient Θ̂.

We now describe how to compute the curvature with (2C, 1M) and no extra
data transfer. We display the current memory load and the elapsed computational
time at the end of each phase. A visual illustration of this algorithm is proposed in
Figure 5.1.

0. Transfer the data x0 and Θ.

1. Compute X = (xs)s and store it. For s ≥ L, compute the backward via (5.14)
without storing it. Cost is (3

4C, 1M)

2. Flush from memory (xs)s≥L. Cost is (3
4C,

1
2M)

3. For s ≤ L, compute the backward via (5.14) and store it. Cost is (1C, 1M)

4. Choose the descent direction and transfer the data Θ̇. Compute the tangent
via (5.16) for s ≥ L. Cost is (5

4C,M)

5. Flush from memory (x̂s)s and (xs)s<L. Cost is (5
4C, 0M)

6. For s ≥ L, compute the forward, the backward and store them. Compute the
tangent for s ≥ L. Cost is (2C, 1M)
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Step 1.

F B T

Step 2.

F B T

Step 3.

F B T

Step 4.

F B T

Step 5.

F B T

Step 6.

F B T

Figure 5.1: Illustration of the divide-and-conquer algorithm that changes the cost
of computating the curvature from (1.5C, 2M) to (2C, 1M). The rectangles above
the letters F, B, T represent the three different passes (in order: forward, backward
and tangent). The memory usage is represented by color-filling in the rectangles,
the computations are represented by arrows on the right of the passes. In total, the
filled area never exceeds 1 rectangle, hence memory usage is 1M . The total length
of the arrows is 4 times the length of a rectangle, this represents 4 passes. The
computational time is then twice the computational time of the standard backward
algorithm.
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5.4 Numerical experiments

5.4.1 Convergence/exploration trade off

5.4.1.1 The RED algorithm

In order to test the convergence/exploration trade-off, we reproduce the bench-
mark of [Castera 2022]. We set ourselves in the case where the initial parameters
are randomly chosen, so that the practitioner wants a smooth transition from ex-
ploration (` = 1) to convergence (` = 1

2). We choose in Algorithm 5 a simple, per
epoch, exponential decay rule of the learning rate ` from 1 to 1/2. This algorithm
is coined as RED (Rescaled with Exponential Decay). We purposely unplug any
other tricks of the trade, notably Robbins-Monro convergence conditions. Indeed, a
Robbins-Monro decay rule would interfere with our analysis. Algorithm RED is not
a production algorithm, it serves at testing the “natural” convergence properties of
rescaling. In Section 5.8.4, we provide a comparison of RED with a standard SGD
that has Robbins-Monro decaying conditions. Due to the remark in Section 5.2.2,
we make clear that L2-regularization is used. If Θ 7→ Ls(Θ) is the original loss
function, then the function Js is defined as Js(Θ) def= Ls(Θ) + λ

2‖Θ‖2.

Algorithm 5 RED (rescaled-exponential-decay) for SGD or RMSProp precondi-
tioning and no convergence guaranty
1: Input parameters β2 = 0.999 (RMSProp parameter), RMSProp (boolean),
λ > 0 (L2-regularization), N (total number of epochs), ε = 10−8 (numerical
stabilization).

2: Initialization v̂0 = 0, Θ0 random, ` = 1 initial learning rate and η = 1/2 the
step multiplicative factor between the first and the last iterations.

3: for k = 1, 2, .. do
4: gk = Es∈Bk [∇Js(Θk)] . gradient
5: if RMSProp then . RMSProp preconditioning
6: v̂k = β2v̂k−1+(1−β2)g2

k and ṽk = v̂k/(1−βk2 ) and Pk = diag(
√
ṽk+ε)

7: else
8: Pk = Id
9: end if

10: Θ̇k = P−1
k gk . direction of update

11: Use Algorithm 3 and compute rk . rescaling
12: Θk+1 = Θk − `rkΘ̇k . parameters update
13: At the end of each epoch `← η

1
N `

14: end for

The numerical experiments are done on the benchmark of [Castera 2022].
It consists of four test cases, a MNIST classifier [LeCun 2010], a CIFAR-10
classifier [Krizhevsky 2009] with VGG11 [Simonyan 2015] architecture, a CIFAR-
100 classifier with VGG19 and the classical autoencoder of MNIST described in
[Hinton 2006]. The ReLU units are replaced by smooth versions (C2 functions) in
order to compute the curvature term, and L2 regularization is added to each test.
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The models are trained with a batch size of 256 and the number of epochs is set to
200 for MNIST classification and 500 for the others. The precise set of parameters
that allows reproducibility is described in Section 5.7. We also give indications of
the computational time on an NVIDIA Quadro RTX 5000. Each experiment is
run 3 times with different random seeds and we display the average of the tests
with a bold line, the limits of the shadow area are given by the maximum and the
minimum over the runs. When displaying the training loss or the step histories,
an exponential moving average with a factor 0.99 is applied in order to smooth the
curves and gain in visibility. Note that the training and testing loss functions are
displayed with the L2 regularization term. On all figures the x-axis is the number
of epochs. Remember however that the computational cost is not the same for the
different optimizers, see Theorem 3.

5.4.1.2 Interpretation of the RED experiments

In this first set of experiments, we compare the RED method given in Algorithm 5
with standard SGD and RMSProp. In order to recover these two latter algorithms,
set rk = 1 in line 11 of Algorithm 5. The hyperparameters, namely the initial
learning rate ` and its decay factor η, are optimized on the training loss with a
grid search over the 20% first epochs, these algorithms are coined as “standard
algorithms”. The results are displayed in Figure 5.2 for the standard algorithms
(orange for SGD, blue for RMSProp) and their RED version (red for SGD, green
for RMSProp).

Training loss The analysis of the training loss shows that RED is competitive to
the standard SGD and RMSProp methods. Note however that the hyperparameters
of the standard methods have been chosen as to optimize the behavior of the training
loss, hence we cannot expect the RED method to outperform the manually-tuned
methods.

Step We always observe an increase in the step for the first few epochs (50 for
MNIST, 10 for CIFAR). This step increase coincides with the important decrease
of the training and testing loss functions. We interpret this behavior as a search for
a basin of attraction of a local minimum. It should be noted that the step of the
standard algorithms on CIFAR100 and on the autoencoder is an order of magnitude
smaller than their RED counterpart. Indeed larger steps on these methods cause
the algorithm to diverge. This seems to indicate that the stage of the first 10
epochs where the step is small is of importance and is well captured by the RED
algorithm. Note that this behavior is the one that is implemented when using warm-
up techniques [Loshchilov 2017]. The analysis of the step seems to showcase the
power of adaptive rescaling and indicates that warm-up techniques can be handled
by the rescaling. This potential is investigated in Section 5.4.2.
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Figure 5.2: Training loss, step size, testing loss and test accuracy for the RED
and manually-tuned SGD and RMSProp optimizers. Each column gives the dif-
ferent test cases (resp. MNIST, CIFAR10, CIFAR100 and autoencoder). The
RED method which has no tuning gives competitive results in comparison with the
manually-tuned SGD and RMSProp optimizers.
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Testing loss and accuracy The rescaling aims at minimizing quickly the train-
ing loss, no conclusions can be drawn from the analysis of the test dataset. Nev-
ertheless, on the CIFAR experiments, an overfitting phenomenon starts from the
25th epoch approximatively. The overfitting is clearer and more pronounced on the
RED method. This is in accordance with the analysis of the step size: the rescaled
method seems to have converged to the maximum of the expressivity of the net-
work at the 50th epoch. Concerning the accuracy, it is well known that adaptive
methods have poor generalization performances in the overparameterized setting in
comparison to SGD [Wilson 2017]. Indeed the standard RMSProp achieves lower
performance on the test dataset of CIFAR100. Surprisingly, the RED-RMSProp
algorithm does not have this property.

As a conclusion of these tests, RED, which is a naive implementation of con-
vergence/exploration trade-off works surprisingly well on this benchmark. We pur-
posely disconnected Robbins-Monro decay rule and let the algorithm run way past
overfitting. It still exhibits good convergence properties.

5.4.1.3 Other numerical tests

In Section 5.8.1 we investigate the use of momentum with SGD and Adam on the
CIFAR100 classifier. The proposed method is only available to deal with direction
of descent and the directions of update given by momentum based algorithms are
not necessarily direction of descent, yielding poor convergence results.

In Section 5.8.2, we perform tests with smaller batches and we exhibit patho-
logical cases where the rescaled method is highly impacted by stochasticity. The
main conclusion is that the performance of the method collapses when the batch
is too small compared to the number of classes. This problem in the curvature
computation arises at the last layer of the neural network (linear classifier).

In Section 5.8.3 we study the effect of the L2 regularization on the CIFAR10
classifier, showing numerically that the potential theoretical issues raised in Sec-
tion 5.2.2 do not impede convergence.

Finally, in Section 5.8.4 we perform some comparisons with an existing BB
method [Castera 2022] and with a SGD with Robbins-Monro decay condition.

5.4.2 Hyperexploration mode

In order to showcase hyperexploration, we propose a vanilla annealing method.
We replace in Algorithm 5 (RED) the line 13 (update of the parameter `) by
setting periodically ` = 1 for 5 epochs, ` = 1

2 for 13 epochs and ` = 2 for 2
epochs. These three phases are coined respectively as exploration, convergence
and hyperexploration. We favor sharp changes when letting ` oscillate in order to
easily interpret the results. This simple annealing method is coined RAn (Rescaled
Annealing). We display in Figure 5.3 the results for CIFAR10 and CIFAR100. On
Figure 5.3 the shift between the choice ` = 1

2 and ` = 2 is represented by a vertical
gray line. We also display the results for the RED algorithm for comparaison. Of
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Figure 5.3: Annealing (RAn) vs Exponential decay (RED) method. The annealing
method increases the loss functions during the hyperexploration (` = 2) phase (after
the vertical gray lines). This empirically proves that the factor ` = 1 is the limiting
factor that allows exploration without increasing the loss function. The basin of
attraction of the RAn method is different of the one of RED, except possibly for
CIFAR10 with RMSProp.

importance in Figure 5.3 is the behavior of the loss function. The latter increases at
each hyperexploration phase, and converges during the exploration and convergence
phase. A similar effect is also present but less pronounced on the testing loss and
accuracy. The increase of the training loss function for ` = 2 is in accordance
with the theory, and is at the core of annealing methods that aim at escaping
local minima. These tests validate the fact that ` = 1 is an upper-bound for the
exploration choice.

5.4.3 Hyperconvergence mode

In this example, we wish to study a more realistic dataset for which stochastic issues
are of essence. To that end, we use the ImageNet 1K database and load a state-
of-the-art pretrained ResNet-50. This network achieves a 80.858% top-1 accuracy
and a 95.434% top-5 accuracy. From the study of Section 5.8.2, summarized in
Section 5.4.1.3, we know that important stochastic problems will occur in the last
layer (Linear Classifier or LC) of the DNN. Hence, we erase the parameters of the
linear classifier and aim at re-training it while freezing the weights of the feature
extractor (upstream section of the network). This setting is reminiscent of a toy
transfer learning problem and aims at training a simple neural network with a
state-of-the-art dataset.

From the coupon collector’s problem with 1000 classes, we know that the ex-
pectation of T , the smallest batch size that obtains at least one element in each
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class, is approximatively 7.3K when classes are drawn independently and uniformly.
We expect stochastic issues to appear when batches are of size smaller than 7.3K.
The batch size used to pretrain the network is 1K, hence we test the rescaling for
batch of size 1K, 2K, 4K, 8K and 16K. Since stochastic effects should be seriously
mitigated for the 8K and 16K cases, these two cases represent a baseline for the
training.

We first discard every trick and test the rescaling for the different batch size.
We adopt a fixed rescaled learning rate strategy of ` = 1

2 in order to converge as fast
as possible. The result is given in Figure 5.4 top line and referred as plain training.
Of importance in the top line of Figure 5.4 are the oscillations in the training loss,
which are less pronounced as the batch size increases. Note also the stability of the
top-1 and top-5 accuracies around a value that depends on the batch size. For the
16K experiment, the linear classifier achieves the top-1 and top-5 accuracies of the
pre-trained weigths.

We then implement several tricks of the trade, namely repeated augmentation
(RA) [Hoffer 2019] and label smoothing (LS) [Szegedy 2016]. The result are dis-
played in Figure 5.4, middle line. These two tricks do not seem to have any effect
on the training of the linear classifier.

In the bottom line of Figure 5.4, we implement a decrease of the learning rate
with a Cosine annealing (Cos) technique, in addition to (RA) and (LS). The (Cos)
technique reduces the learning rate and enforces the hyperconvergence mode. As far
as the accuracies are concerned, reducing the learning rate allows the algorithm to
converge when the batches are small and is useless when the batch size is greater
than 8K. This test corroborates the findings of [Smith 2018] and the tests of Sec-
tion 5.8.2.

In this benchmark, one of the important advantages of rescaling is to be able
to perform several tests (batch reduction, repeated augmentation, label smoothing)
without having to set the learning rate for each test.

5.4.4 Influence of the averaging factor of the curvature

This section is dedicated to the study of the impact of the averaging factor of the
curvature β3 on the algorithm. A low value β3 ' 0 yields an estimation of the
curvature that is less dependent of the past iterations at the expense of having a
higher variance. A value close to 1 results in a low variance estimation but that
has a bias due to old iterations. In Figure 5.5, the CIFAR10 classifier is optimized
using RED-SGD with values of β3 ∈ {0, 0.5, 0.9, 0.99}. Interestingly, the parameter
that gives the fastest increase of the test accuracy is β3 = 0 at the cost of more
instabilities. Although higher values of β3 lead to an underestimation of the step
size, the difference of performance on the training loss is insignificant. Overall, a
value β3 ∈ [0.5, 0.99] has little impact on the convergence rate of the algorithm and
a default value of β3 = 0.9 can be considered.
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Figure 5.4: Training a linear classifier on ImageNet 1K with a ResNet-50 feature
extractor and with different batch size for SGD.
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Figure 5.5: Training loss, step size, testing loss and test accuracy on the CIFAR10
classifier with RED-SGD. The tests are conducted with different values of the cur-
vature averaging parameter β3. A value β3 = 0 yields instability and β3 ∈ [0.5, 0.99]
has little impact on the convergence rate.
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5.5 Conclusion and discussion

We developed a framework that allows automatic rescaling of the learning rate
of a descent method with the use of the curvature, which is an easily affordable
second order information computed by automatic differentiation. This rescaling
yields a data and direction adapted learning rate with a physical meaning. The
practitioner can choose the behavior of the algorithm by setting the value of this
rescaled learning rate. A value between 1/2 and 1 results in convergence, a value
above 1 yields hyperexploration of the space of parameters and a value below 1/2
enforces convergence when stochasticity is of importance.

In the numerical examples of Section 5.4.1 a choice of exponential decrease is
competitive to simple manual tuning of the learning rate in the case of SGD and
RMSProp preconditioning. In Section 5.4.2, we show that the choice ` > 1 allows
escaping basin of attraction of local minima. The more intricated benchmark of
Section 5.4.3 show that rescaling doesn’t save us from reducing the learning rate
but that it allows to control the environment and compare different experiments.

The main limitation of this method is that it does not allow use of momentum.
Indeed momentum methods do not necessarily yield directions of descent and do rely
on per-iteration minimization of Lyapunov functions [Polyak 2017]. Implementing
momentum methods with curvature computation is a challenge reserved for future
works. Another drawback is the need to use C2 activation functions, notably exclud-
ing ReLU. Finally, the curvature computation, also affordable in theory, requires
additional implementations on top of ready-to-use machine learning librairies, which
restricts, for now, our method to rather simple networks.

5.6 Second order computation

5.6.1 Hessian-vector dot product

In this section, we turn our attention to showing how to compute ∇2J (Θ)Θ̇ in
our setting. The results are known as the Pearlmutter’s trick [Christianson 1992,
Pearlmutter 1994]. We emphasize that the computation of the curvature is sim-
plier than the Hessian-vector product. In our setting, the trick that allows the
computation of the Hessian-vector product is based on the following ideas

• The mapping Θ̇ 7→ 1
2〈∇

2J (Θ)Θ̇, Θ̇〉 is bilinear. If we differentiate with auto-
matic differentiation this mapping with respect to Θ̇, we retrieve ∇2J (Θ)Θ̇.

• Because X(Θ) is fixed, the aforementioned mapping is defined by a single
forward recurrence. Hence, only one additional backward recurrence should
be sufficient to compute ∇2J (Θ)Θ̇.

In order to make explicit this backward recurrence, we need to introduce two
vectors As ∈ Hs and Bs ∈ Gs that are defined by the implicit equation:

〈As, a〉Hs + 〈Bs, b〉Gs = 〈∇2Fs(ẋs, θ̇s)⊗ (a, b), x̂s+1〉Hs+1 ∀(a, b) ∈ Hs × Gs.
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The existence and uniqueness of (As, Bs) is just Riesz theorem applied to the linear
form on Hs × Gs:

(a, b) 7→ 〈∇2Fs(ẋs, θ̇s)⊗ (a, b), x̂s+1〉Hs+1 .

Construct X̃ = (x̃s)s and Θ̃ = (θ̃s)s by a backward recurrence usingx̃s = (∂xF)∗x̃s+1 +As with x̃n+1 = 0
θ̃s = (∂θF)∗x̃s+1 +Bs.

(5.23)

Then we have
∇2J (Θ)Θ̇ = Θ̃. (5.24)

In order to prove (5.24), we show that for any other direction Θ̇′, we have

〈∇2J (Θ)Θ̇, Θ̇′〉 = 〈Θ̃, Θ̇′〉.

First consider Ẋ ′ the tangent associated with direction Θ̇′. We have by bilinearity
of ∇2Fs and by Algorithm 4 that

〈∇2J (Θ)Θ̇, Θ̇′〉 =
∑
s

〈∇2Fs(ẋs, θ̇s)⊗ (ẋ′s, θ̇′s), x̂s+1〉Hs+1 =
∑
s

〈As, ẋ′s〉+ 〈Bs, θ̇′s〉

(5.25)
By definition of X̃ and Θ̃ in (5.23) and by formula (5.16) for the tangent Ẋ ′, the
following equality holds:

〈x̃s, ẋ′s〉+ 〈θ̃s, θ̇′s〉 − 〈As, ẋ′s〉 − 〈Bs, θ̇′s〉
= 〈(∂xF)∗x̃s+1, ẋ

′
s〉+ 〈(∂θF)∗x̃s+1, θ̇

′
s〉 = 〈x̃s+1, ẋ

′
s+1〉

Summing up the above equation for every s, using x̃n+1 = 0, ẋ′0 = 0 and (5.25)
yields (5.24)

5.6.2 Structure of the layers

In this section, we explain how to compute the curvature for some of the standard
layers used in DNNs. First, we make clear the different kind of layers we use:

• Loss layers are parameter-free layers from Hn to R, they are denoted by L

Fn(x, θ) = L(x).

• Smooth activation layers do not have parameters and are such thatHs+1 =
Hs. They are defined coordinate-wise through a smooth function Φs : R→ R
with

Fs(x, θ)[i] = Φs(x[i]) ∀i.
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• Linear layers or convolutional layers. The set of parameters are the
weights (or kernel) denoted θ. We suppose that these layers have no bias.
They are abstractly defined as

Fs(x, θ)[i] =
∑
k,j

θ[k]x[j]1ijk

where i (resp j, k) denotes the sets of indices of the outputs (resp. the input,
the weights). The function (i, j, k) 7→ 1ijk represents the assignment of the
multi-index (k, j) to i. This affectation is either equal to 1 or 0, that is
(1ijk)2 = 1ijk.

• Bias layers are layers where Hs = Hs+1 and are defined by

Fs(x, θ)[i] = xs[i] +
∑
k

1ikθ[k].

They are often concatenated with linear or convolutional layers. There is no
restriction to split a biased linear layer into the composition of a linear layer
and a bias layer.

• Batch normalization layers. We split a batch normalization layer into the
composition of four different layers, the centering layer, the normalizing layer,
a linear layer with diagonal weight matrix and a bias layer. For each output
index i, the centering and normalizing layers are defined by an expectation
over the batch and some input indices. This expectation is denoted as Ei.
The centering layer can be written as

Fs(x, θ)[i] = xs[i]− Ei(xs).

The normalizing layer is defined as

Fs(x, θ)[i] = x[i]√
Ei(x2) + ε

.

For the different layers, we give the formula for the different recurrences in
Table 5.1. We begin with the classic backward computations, they are mainly
given here to settle the notations.

5.7 Description of the numerical experiments

All the experiments were conducted and timed using Python 3.8.11 and PyTorch
1.9 on an Intel(R) Xeon(R) W-2275 CPU @ 3.30GHz with an NVIDIA Quadro
RTX 5000 GPU. We also used the Jean-Zay HPC facility for additional runs.

The models are trained with a batch size of 256 so that one epoch corresponds
to 235 iterations for MNIST and 196 for CIFAR. The number of epochs is set to
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Name xs+1[i] x̂s[j] θ̂s[k]
Activation Φ(xs[i]) Φ′(xs[j])x̂s+1[j] N.A.
Linear

∑
k,j θ[k]xs[j]1ijk

∑
k,i θ[k]x̂s+1[i]1ijk

∑
j,i x̂s+1[j]xs[i]1ijk

Bias xs[i] +
∑

k 1ikθ[k] x̂s+1[j]
∑

i 1ikx̂s+1[i]
Centering xs[i]− Ei(xs) x̂s+1[j]− Ej(x̂s+1) N.A.

Normalizing
{
γ = (Ei(x2

s) + ε)−1/2

xs+1[i] = γxs[i]
γx̂s+1[j]− xsEj [γ3xsx̂s+1] N.A.

Name ẋs+1[i] rs = 1
2 〈∇

2Fs(ẋs, θ̇s)⊗ (ẋs, θ̇s), x̂s+1〉Hs+1

Activation Φ′(xs[i])ẋs[i] 1
2
∑

i Φ′′(xs[i])ẋ2
s[i]x̂s+1[i]

Linear
∑

k,j

(
θ[k]ẋs[j] + θ̇[k]xs[j]

)
1ijk

∑
k,j,i θ̇[k]ẋs[i]x̂s+1[j]1ijk

Bias ẋs[i] +
∑

k 1ikθ̇[k] 0
Centering ẋs[i]− Ei(ẋs) 0

Normalizing
{
γ̇ = −Ei[ẋsxs]γ3

ẋs+1[i] = γẋs[i] + γ̇xs[i]

{
γ̈ = −Ei(ẋ2

s)γ3 + 3Ei(ẋsxs)γ5

rs =
∑

i
1
2 (γ̇ẋs[i] + γ̈xs[i]) x̂s+1[i]

Table 5.1: Quantities needed in the forward, backward and second order passes for
standard layers.

200 for the MNIST classification and 500 for the others. Table 5.2 summarizes the
characteristics of the datasets used.

Concerning the tuning of the standard methods, the step size and its decay
factor were searched on a grid for the SGD and RMSProp methods. The learning
rate is constant per epoch and its value at the nth epoch is given by

τn = τ0d
n.

We searched amongst the values τ0 ∈ {1 × 10n, 5 × 10n}−5≤n≤1 for the step size
and d ∈ {0.97, 0.98, 0.99, 1} for the step decay on MNIST classification and d ∈
{0.99, 0.995, 1} for the others. After 20% of the total number of epochs, the couple
(τ0, d) that achieves the best training loss decrease is chosen.

For the CIFAR experiments we used data augmentation with a random crop
and an horizontal flip. In the CIFAR100 training we added a random rotation of
at most ±15°.

For reproducibility, the values used in the experiments are summarized in Ta-
ble 5.3. Unless explicitely stated, these are the default values used in the exper-
iments of this work. The computing time per epoch is reported in Table 5.3 for
each method. The codes of RED are not optimized, especially for the convolution
layers where the backward with respect to the parameters is implemented by an
additional run of the forward. This explains why RED is twice slower than the
standard methods on the CIFAR classifiers which make intensive use of convolution
layers.
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Dataset MNIST CIFAR10 CIFAR100
License CC BY-SA 3.0 MIT License Unknown
Size of the training set 60000 50000 50000
Size of the testing set 10000 10000 10000
Number of channels 1 3 3
Size of the images 28× 28 32× 32 32× 32
Number of classes 10 10 100

Table 5.2: Summary of the datasets used.

Type of problem MNIST
classification

CIFAR10
classification

CIFAR100
classification

MNIST
autoencoder

Type of network LeNet
Dense

VGG11
Convolutional

VGG19
Convolutional Dense

Activation functions Tanh SoftPlus β = 5 SoftPlus β = 5 ELU

L2 regularization λ = 10−7 λ = 10−7 λ = 10−7 λ = 10−7

Loss function Cross entropy Cross entropy Cross entropy MSE

Number of epoch 200 500 500 500

Batch size 256 256 256 256
Number of epoch
for tuning 40 100 100 100

Iteration per epoch 196 235 235 196
Computing time per
epoch with the stan-
dard SGD / RM-
SProp

5.3s / 5.4s 16.4s / 16.8s 36.3s / 36.9s 5.1s / 5.3s

Computing time
per epoch with
RED-SGD / RED-
RMSProp

7.6s / 7.7s 30.1s / 30.5s 65s / 65s 5.7s / 5.9s

Table 5.3: Summary of the experiment parameters.
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5.8 Additional numerical experiments

5.8.1 Dealing with momentum

In Section 5.4.1, only stochastic optimizers without momentum are presented. In
this section, we discuss the extension of our algorithm to momentum based up-
date directions, notably momentum with RMSProp preconditioning which is the
celebrated Adam algorithm [Kingma 2015].

Incorporating momentum consists in replacing the gradient by an exponential
moving average of the past iterates of the gradients with a parameter β1 ∈ [0, 1[.
In our setting, it amounts replacing line 10 of Algorithm 5 by lines 4 and 5 of
Algorithm 6.

Algorithm 6 Adding momentum to RED
1: Initialization ĝ0 = 0.
2: for k = 1.. do
3: · · ·
4: ĝk = β1ĝk−1 + (1− β1)gk and g̃k = ĝk/(1− βk1 )
5: Θ̇k = P−1

k g̃k
6: · · ·
7: end for

Momentum was introduced by Polyak [Polyak 1964] in the convex non-stochastic
setting. It can be interpreted as an adaptation of a convex method to a non-convex
stochastic problem. We coin this explanation as the heavy-ball analysis. Another
point of view, which we denote as variance reduction, is that the exponential moving
average g̃k is a better estimator of ∇J (Θk) than gk. Indeed all the previous batches
(Bm)m≤k are taken into account in the computation of g̃k. The downside is that
the averaged quantity is ∇JBm(Θm) and not ∇JBm(Θk), this introduces a bias in
the estimation of ∇J (Θk). With this interpretation in mind, the parameter β1
which drives the capacity of the exponential moving average to forget the previous
iterations has to be tuned between the mini-batches gradient variance (high variance
leads to high β1) and the convergence (high values of ‖Θk−Θk−1‖ lead to low choice
of β1). In [Kingma 2015], the authors propose to solve this dilemna by taking
decaying values of β1, although in practice, the parameter β1 is constant.

Momentum: heavy ball or variance reduction? When momentum is under-
stood as an heavy-ball method, at iteration k there are no reasons for −Θ̇k to be a
direction of descent. Because our algorithm relies on the assumption that −Θ̇k is
a direction of descent to choose a step, our analysis falls apart and RED should be
used with care. On the other hand, if momentum is a variance reduction technique,
the step has to be taken small enough in order not to bias the gradient estimation.
With this latter assumption, RED can be applied.

In order to determine if, in our case, momentum acts as an heavy ball method or
as a variance reduction technique, we study numerically when the standard Adam
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and SGD with momentum optimizers yield a direction of descent. In Figure 5.6 first
row, the test of CIFAR100 in Section 5.4.1.2 is performed with a momentum β1 =
0.9 and the hyperparameters were tuned using the same policy (see Section 5.7).
We display in the last column of Figure 5.6 first row, the percentage of direction of
descent per epoch with respect to the current batch Bk. If n is the epoch number
and Kn the set of the iterations that are in epoch n, this percentage is given by:

qn = 1
|Kn|

∑
k∈Kn

1〈gk,Θ̇k〉≥0 (5.26)

We observe that on classification problems, SGD with momentum and more
particularly Adam yield directions of update that are not direction of descent for
JBk .

Step choice The RED algorithm needs a rule to deal with update directions
which are not directions of descent. One possibility is to allow negative steps, which
we discard since this would annihilate the heavy-ball effect. Another possibility,
which we retain, is to take the absolute value of τ?k in line 12. In a nutshell,
compute the step for the opposite direction (which is a direction of descent) and
use this step in the current direction. This choice is arbitrary and to properly
tackle the momentum case, interpretations using Lyapunov functions should be
considered. The choice of such functions is not clear and we defer such an analysis
to future work.

In Figure 5.6 first row the results of the optimization using RED on CIFAR100
with momentum are displayed. The parameters for the initial learning rate and
its decay factor are the default ones ` = 1 and η = 1/2. The RED algorithm has
difficulties to converge both on the training and testing losses. We observed that the
steps chosen by RED are several orders of magnitude higher than the ones obtained
by manual tuning. On classification problems, RED follows directions of update
that are not direction of descent.

Learning rate multiplication The impediment to using RED with momentum
is that directions of update are not directions of descent. This can be solved by
reducing the initial learning rate ` to take smaller steps τk so that ‖Θk − Θk−1‖
remains small.

We propose to diminish the initial learning rate by using ` = 1−β1. This choice
may seem arbitrary but it is inspired by the proofs of convergence of [Défossez 2022]
that have bounds which scale as 1 − β1. The experiments of Figure 5.6 last row
are performed with the same set of parameters except for the initial learning rate
which is set to ` = 0.1. With this smaller learning rate, the algorithm is stable and
converges. Of importance, RED always yield direction of descent as seen from the
bottom-right of Figure 5.6. As ` was decreased, the exploration is lost, explaining
these poor convergence results.
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Figure 5.6: Tests with momentum (β1 = 0.9) with and without the learning rate
stabilization (` = 1 or ` = 0.1) for RED on CIFAR100. Manually-tuned algorithms
(orange for SGD, blue for Adam) and their RED version (red for SGD, green for
Adam) are given. Lower learning rate in RED ensures that momentum yields di-
rection of descent at the expense of loosing the exploration of the set of parameters.

Conclusion When using momentum, decreasing the learning rate makes the ex-
periments fit in the framework the algorithm was proposed for. As a consequence,
this causes the loss of the exploration which is critical to speed-up the convergence.
The correct way of dealing with momentum would be to identify the Lyapunov
function that has to be minimized, which is left for future work.

5.8.2 Batch reduction on CIFAR

In this section, we study batch dependence on the RED method for the CIFAR
datasets. Reducing the batch size mimicks harder stochastic problems while keeping
the experiment in a controlled environment. In Figure 5.7 (column 1 and 3), we
provide the results obtained for different batch size and the evolution of the training
and testing loss functions per epoch. The RED parameters are an initial learning
rate ` = 1 and a target learning rate ` = 1

2 after 100 epochs. A striking phenomenon
in Figure 5.7 (column 1 and 3) is the loss of performance of the algorithm when the
batch size is smaller than the number of classes.

Because of the relationship between the batch size and the number of classes,
we wish to study if the last layer – the Linear Classifier (LC) – is the layer the
most impacted by the batch size reduction. The LC optimizes the parameters of
hyperplanes (one per class) which separate the information given by the remaining
of the network, the Feature Extractor (FE). When the batch size is too small, some
classes are not represented in the batch. The corresponding hyperplanes receive
update information which is oblivious to the data of their class. We believe that
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this effect explains the loss of performance of the LC and a lack of precision in the
computation of the curvature.

In order to verify our assumption, we implement a memory layer, which is set
between the FE and the LC. This memory layer stores the last 256 data given by
the FE. We coin this trick a memory-DNN. Because the LC is fed with this memory,
it should behave as if the batch size was 256, although the memory suffers from
a slight delay, due to the fact that it is not updated for the current parameters
of the FE. The memory footprint and computational load of the memory-DNN is
increased by a small factor, since the FE is fed with small batches and is responsible
for most of the computational load and memory footprint. In Figure 5.7 (column 2
and 4), we collect the results of memory-DNN. Of striking importance is a better
behavior of memory-DNN compared to the standard DNN when the batch size is
smaller than the number of classes.

In this test, we provide a simple remedy to avoid stochasticity issues in the
training of the LC in a classification problem. More important than the memory
trick is the fact that rescaling the learning rate allows us to provide a unified
environment to test the method. The learning rate does not have to be adapted for
each experiment, which would eventually prevent us from drawing any conclusions.

5.8.3 Effect of the L2 regularization

According to the paragraph on the L2 regularization in Section 5.2.2, a regulariza-
tion is introduced in our algorithm to counteract the effect of a potentially vanishing
Hessian in the direction of update. This is a theoretical limitation and we study
in this section the influence of this regularization on the performance of RED. We
conduct the experiments of Section 5.4.1.2 for the CIFAR10 dataset with different
values of the regularization λ ∈ {10−7, 10−4}. The hyperparameters of the stan-
dard SGD and RMSProp optimizers are tuned for each value of λ. We report in
Figure 5.8 the different results, including the ones that are shown in Section 5.4.1.2.
The grid search on the training loss that led to the choice of parameters for RM-
SProp and λ = 10−4 yielded large step size at the cost of instabilities in the test
metrics. On all test cases, we observe that a value of regularization close to zero
(λ = 10−7) gives good convergence results. In the considered tests, the need of a
regularization seems to be more of a theoretical limitation than a practical one.

5.8.4 Comparison with BB and Robbins-Monro

In this section we compare our algorithm with the closest existing approach
[Castera 2022], named step-tuned, where the authors approximate the curvature
with a BB method. We also compare it with a Robbins-Monro decay rule of the
learning rate for SGD. We did not compare with the BB method of [Yang 2018]
as this method requires the computation of the gradient over the whole dataset at
each epoch.
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Figure 5.7: Batch reduction on the CIFAR10 and CIFAR100 datasets. The columns
1 and 3 are the vanilla RED-algorithm and the column 2 and 4 are the patches that
(partially) solve the problem when the batch size is smaller than the number of
classes.
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Figure 5.8: Influence of the L2 regularization λ. Manually-tuned algorithms (or-
ange for SGD, blue for RMSProp) and their RED version (red for SGD, green for
RMSProp) are given. For these tests, the smaller the regularization, the best the
convergence of RED.

The step-tuned optimizer has several hyperparameters and we use the default
ones except the learning rate as advised in [Castera 2022]. The initial learning
rate of [Castera 2022] is searched on the same grid than the standard SGD (see
Section 5.7).

In Figure 5.9, the results of the optimization on the CIFAR10 classifier and on
the autoencoder are given for two values of the L2 regularization λ ∈ {10−7, 10−4}.
RED algorithm is outperformed by step-tuned only on the training loss but the
learning rate of step-tuned has been optimized for the training loss and we cannot
expect better performance than step-tuned on this criterion. Finally, RED is more
stable on every test metrics and has better generalization than step-tuned. Step-
tuned [Castera 2022] requires the optimization of the learning rate and because RED
does not need any hyperparameter adjustment, our method is competitive with
this existing work. Note also that step-tuned is not available with the RMSProp
preconditioner, when RED handles any kind of preconditioning technique.
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Figure 5.9: Comparison with step-tuned [Castera 2022] method on the CIFAR10
classifier. RED (blue), step-tuned (orange) and standard SGD (green) with
Robbins-Monro conditions are given. RED is competitive with step-tuned on the
accuracy but not on the training loss of the CIFAR10 classifier for which step-tuned
is optimized.





Conclusion

Conclusion in english

The works presented in this manuscript address different issues of learning for com-
putational MRI. They are articulated around adaptive image reconstruction net-
works, the optimization of Fourier sampling and the choice of hyperparameters for
neural networks training.

Problems in Fourier sampling optimization that seem simple to resolve using
deep learning tools turn out to be infeasible to solve using gradient based ap-
proaches. We resort to use a reparametrization in the density space to reduce the
dimensionality of the problem. This allows using 0-th order optimization proce-
dures to globalize the convergence. It both significantly reduces the computational
cost of the training and let us use very limited datasets.

The training of neural networks for inverse problems in imaging is long and often
application specific. This is a bottleneck for a large scale use in the industry. We
have shown in this manuscript that training neural networks on a family of operators
is not detrimental to the reconstruction in comparison to end-to-end training with
a fixed operator. It appears that the unrolled networks are more robust to changes
than approximate inversion networks. Having an unrolled network that is robust to
changes in the forward model also allows solving different blind inverse problems.

The manual tuning of the learning rate when training deep neural networks is
time consuming. We presented a new algorithm that allows computing second order
information with a reduced computational cost in comparison to existing methods.
This second order information is used in a rescaling of the learning rate that exhibits
a natural interpretation between exploration and convergence.

In the works presented in this manuscript, although real dataset were used,
the measurements were all simulated. This can lead to both an inverse crime
[Colton 1998] and a data crime [Shimron 2022] for Chapters 3 and 4. A more
complete benchmark of the proposed methods with experiments on real scanners
should be conducted to move towards practical use.

Three years is both long and the end comes quickly. We ran out of time to
explore several directions of research that deserve more studies. In particular, using
the second order information of Chapter 5 to train neural networks for imaging
should be investigated in the future.
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Conclusion en français

Les travaux présentés dans ce manuscrit abordent différentes problématiques
d’apprentissage pour l’IRM computationnelle. Ils s’articulent autour des réseaux
de neurones adaptatifs pour la reconstruction d’images, de l’optimisation de
l’échantillonnage de Fourier et du choix des hyperparamètres pour l’entraînement
des réseaux de neurones.

Les problèmes d’optimisation de schémas de Fourier qui semblent simples à
résoudre à l’aide d’outils d’apprentissage profond s’avèrent être impossibles à ré-
soudre à l’aide de méthodes de descente de gradient. Nous avons eu recours à
une reparamétrisation dans l’espace de densité pour réduire la dimensionnalité du
problème. Cela permet d’utiliser des procédures d’optimisation d’ordre 0 pour
globaliser la convergence. Cela réduit aussi considérablement le coût de calcul de
l’apprentissage et nous permet d’utiliser des jeux de données très limités.

L’apprentissage des réseaux de neurones pour les problèmes inverses en imagerie
est long et souvent spécifique à l’application considérée. C’est un point critique pour
une utilisation à grande échelle dans l’industrie de ces méthodes. Nous avons mon-
tré dans ce manuscrit que l’entraînement des réseaux neuronaux sur une famille
d’opérateurs ne nuit pas à la reconstruction par rapport à l’entraînement pour un
opérateur fixe. Il semble que les réseaux unrolled soient plus robustes aux change-
ments dans la physique de l’acquisition que les réseaux reposant sur une inversion
approximative de l’opérateur. Le fait de disposer d’un réseau unrolled robuste aux
changements de modèle permet également de résoudre différents problèmes inverses
aveugles.

Le choix manuel du pas dans l’entraînement de réseaux de neurones profonds
prend beaucoup de temps. Nous avons présenté un nouvel algorithme qui permet de
calculer l’information à l’ordre deux avec un coût de calcul réduit par rapport aux
méthodes existantes. Cette information de second ordre est utilisée pour mettre
à l’échelle le pas à travers un facteur multiplicatif qui présente une interprétation
naturelle entre l’exploration et la convergence.

Dans les travaux présentés dans ce manuscrit, bien que des jeux de données
réels aient été utilisés, les mesures ont toutes été simulées. Cela peut conduire à un
inverse crime [Colton 1998] et à un data crime [Shimron 2022] pour les Chapitres 3
et 4. Une comparaison plus complète des méthodes proposées, avec des expériences
sur des scanners réels, devrait être réalisée pour permettre de passer à une utilisation
en pratique.

Trois ans sont à la fois longs et la fin approche vite. Nous avons manqué de
temps pour explorer plusieurs directions de recherche qui méritent d’être davantage
étudiées. En particulier, l’utilisation de l’information de second ordre du Chapitre 5
pour entraîner des réseaux de neurones pour les problèmes inverses en imagerie est
une piste à explorer.
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créé un cours/TP de 6h sur les réseaux unrolled dans le cadre du cours de
5ème année d’image. 5 heures 1 année.





Appendix A

Résumé en Français

Nous fournissons ici un résumé en langue française des travaux présentés dans ce
manuscrit de thèse.

Résumé :
Cette thèse traite d’aspects liés à l’apprentissage pour l’Imagerie par Résonance

Magnétique computationnelle. Le premier chapitre est une introduction à l’imagerie
computationnelle et illustre à travers le cas de l’IRM les évolutions ayant guidé ce
domaine. Il contient aussi une introduction pédagogique aux problèmes inverses
et les méthodes de reconstruction associées. Cette introduction retrace les pre-
mières méthodes de reconstruction linéaires, l’apparition de méthodes non linéaires
et les méthodes récentes de reconstruction apprises à l’aide de réseaux de neu-
rones. Le second chapitre traite des minimiseurs parasites dans l’optimisation de
schémas d’échantillonnage de Fourier dont la motivation est l’optimisation de sché-
mas d’échantillonnage pour l’IRM pour une méthode de reconstruction choisie et
pour une base de données d’images spécifique. Ce chapitre montre que ce type
de problème a un nombre combinatoire de minimiseurs qui peuvent disparaître
avec le grand nombre d’images dans la base de données mais que les bases de
données classiques d’IRM ne contiennent pas assez d’images pour espérer voir ap-
paraître ce phénomène. Le troisième chapitre propose une méthode de globalisa-
tion de la convergence pour l’optimisation de schémas de Fourier. Cela permet
de grandement réduire le coût numérique de l’optimisation tout en conservant un
gain dans l’amélioration des images. Le quatrième chapitre traite de l’entraînement
de réseaux de neurones “unrolled” adaptatifs à des changements dans la physique
de l’acquisition. Ce formalisme permet de résoudre plusieurs problèmes inverses
aveugles. Enfin, le cinquième chapitre traite des méthodes d’optimisation pour
des réseaux de neurones de manière générale. Il propose une méthode permettant
d’introduire une mise à l’échelle du pas pour l’optimisation de réseaux de neu-
rones. Cela ouvre la voie à une automatisation du choix des hyperparamètres lors
de l’entraînement.

Résumé pour le grand public :
Les scanners IRM tout comme les autres appareils d’imagerie médicale permet-

tent d’obtenir des images de l’intérieur d’un corps. Ils nécessitent de lourds calculs
numériques et des modèles poussés, à la fois à cause du bruit présent dans les
mesures et du caractère complexe de retrouver l’image. Depuis quelques années,
pour retrouver l’image de l’intérieur d’un patient, des méthodes apprises font leur
apparition. Le principe est d’apprendre à retrouver l’image à partir d’un grand
volume de données. Elles ont permis à la fois de réduire les temps d’acquisition des
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IRM, de grandement améliorer la qualité des images, et de construire des séquences
d’acquisition adaptées à l’image scannée (genou ou cerveau par exemple). Cette
thèse propose des méthodes permettant de diminuer les temps d’entraînement et de
réduire la dépendance au grand volume de données. L’adaptabilité des méthodes
apprises et l’automatisation du choix des paramètres permettant l’entraînement y
sont aussi traités.



Bibliography

[Adcock 2017] Ben Adcock, Anders C Hansen, Clarice Poon and Bogdan Roman. Breaking
the coherence barrier: A new theory for compressed sensing. In Forum of Math-
ematics, Sigma, volume 5. Cambridge University Press, 2017. (Cited in pages 24
and 85.)

[Adcock 2020] Ben Adcock, Claire Boyer and Simone Brugiapaglia. On oracle-type local
recovery guarantees in compressed sensing. Information and Inference: A Journal
of the IMA, 2020. (Cited in page 85.)

[Adcock 2021] Ben Adcock and Anders C Hansen. Compressive imaging: Structure, sam-
pling, learning. Cambridge University Press, 2021. (Cited in page 108.)

[Adler 2017] Jonas Adler and Ozan Öktem. Solving ill-posed inverse problems using iter-
ative deep neural networks. Inverse Problems, vol. 33, no. 12, page 124007, 2017.
(Cited in pages 23, 41, 45, and 124.)

[Adler 2018] Jonas Adler and Ozan Öktem. Learned primal-dual reconstruction. IEEE
transactions on medical imaging, vol. 37, no. 6, pages 1322–1332, 2018. (Cited in
pages 41, 45, and 124.)

[Aggarwal 2018] Hemant K Aggarwal, Merry P Mani and Mathews Jacob. MoDL: Model-
based deep learning architecture for inverse problems. IEEE transactions on medical
imaging, vol. 38, no. 2, pages 394–405, 2018. (Cited in page 124.)

[Aggarwal 2020] Hemant Kumar Aggarwal and Mathews Jacob. J-MoDL: Joint model-
based deep learning for optimized sampling and reconstruction. IEEE journal of
selected topics in signal processing, vol. 14, no. 6, pages 1151–1162, 2020. (Cited in
pages 26, 60, 86, and 87.)

[Ahmed 2013] Ali Ahmed, Benjamin Recht and Justin Romberg. Blind deconvolution using
convex programming. IEEE Transactions on Information Theory, vol. 60, no. 3, pages
1711–1732, 2013. (Cited in page 126.)

[Ahn 1986] CB Ahn, JH Kim and ZH Cho. High-speed spiral-scan echo planar NMR
imaging-I. IEEE Transactions on Medical Imaging, vol. 5, no. 1, pages 2–7, 1986.
(Cited in page 85.)

[Allen-Zhu 2018] Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than
sgd. Advances in neural information processing systems, vol. 31, 2018. (Cited
in page 156.)

[Alvarez 2004] F Alvarez and A Cabot. Steepest descent with curvature dynamical system.
Journal of optimization theory and applications, vol. 120, no. 2, pages 247–273,
2004. (Cited in page 155.)

[Amari 1998] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural com-
putation, vol. 10, no. 2, pages 251–276, 1998. (Cited in page 150.)

[Antun 2020] Vegard Antun, Francesco Renna, Clarice Poon, Ben Adcock and Anders C
Hansen. On instabilities of deep learning in image reconstruction and the potential
costs of AI. Proceedings of the National Academy of Sciences, vol. 117, no. 48, pages
30088–30095, 2020. (Cited in pages 41 and 124.)



190 BIBLIOGRAPHY

[Armato III 2011] Samuel G Armato III, Geoffrey McLennan, Luc Bidaut, Michael F
McNitt-Gray, Charles R Meyer, Anthony P Reeves, Binsheng Zhao, Denise R
Aberle, Claudia I Henschke, Eric A Hoffmanet al. The lung image database consor-
tium (LIDC) and image database resource initiative (IDRI): a completed reference
database of lung nodules on CT scans. Medical physics, vol. 38, no. 2, pages 915–931,
2011. (Cited in page 133.)

[Arridge 2019] Simon Arridge, Peter Maass, Ozan Öktem and Carola-Bibiane Schönlieb.
Solving inverse problems using data-driven models. Acta Numerica, vol. 28, pages
1–174, 2019. (Cited in page 123.)

[Asim 2020a] Muhammad Asim, Max Daniels, Oscar Leong, Ali Ahmed and Paul Hand.
Invertible generative models for inverse problems: mitigating representation error
and dataset bias. In International Conference on Machine Learning, pages 399–409.
PMLR, 2020. (Cited in page 51.)

[Asim 2020b] Muhammad Asim, Fahad Shamshad and Ali Ahmed. Blind image deconvo-
lution using deep generative priors. IEEE Transactions on Computational Imaging,
vol. 6, pages 1493–1506, 2020. (Cited in pages 51, 124, and 126.)

[Aubel 2019] Céline Aubel and Helmut Bölcskei. Vandermonde matrices with nodes in
the unit disk and the large sieve. Applied and Computational Harmonic Analysis,
vol. 47, no. 1, pages 53–86, 2019. (Cited in pages 43 and 77.)

[Bahadir 2019] Cagla Deniz Bahadir, Adrian V Dalca and Mert R Sabuncu. Learning-based
optimization of the under-sampling pattern in MRI. In International Conference on
Information Processing in Medical Imaging, pages 780–792. Springer, 2019. (Cited
in page 60.)

[Bahadir 2020] Cagla Bahadir, Alan Wang, Adrian Dalca and Mert R Sabuncu. Deep-
learning-based Optimization of the Under-sampling Pattern in MRI. IEEE Trans-
actions on Computational Imaging, 2020. (Cited in pages 26, 86, and 87.)

[Bai 2018] Yuanchao Bai, Gene Cheung, Xianming Liu and Wen Gao. Graph-based blind
image deblurring from a single photograph. IEEE transactions on image processing,
vol. 28, no. 3, pages 1404–1418, 2018. (Cited in page 126.)

[Balandat 2020] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton,
Benjamin Letham, Andrew Gordon Wilson and Eytan Bakshy. BoTorch: A Frame-
work for Efficient Monte-Carlo Bayesian Optimization. In Advances in Neural In-
formation Processing Systems 33, 2020. (Cited in page 96.)

[Baldassarre 2016] Luca Baldassarre, Yen-Huan Li, Jonathan Scarlett, Baran Gözcü, Ilija
Bogunovic and Volkan Cevher. Learning-based compressive subsampling. IEEE
Journal of Selected Topics in Signal Processing, vol. 10, no. 4, pages 809–822, 2016.
(Cited in pages 25, 26, and 86.)

[Barzilai 1988] Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient
methods. IMA journal of numerical analysis, vol. 8, no. 1, pages 141–148, 1988.
(Cited in pages 40 and 151.)

[Batenkov 2020] Dmitry Batenkov, Laurent Demanet, Gil Goldman and Yosef Yomdin.
Conditioning of partial nonuniform Fourier matrices with clustered nodes. SIAM
Journal on Matrix Analysis and Applications, vol. 41, no. 1, pages 199–220, 2020.
(Cited in page 77.)



BIBLIOGRAPHY 191

[Beck 2009] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems. SIAM journal on imaging sciences, vol. 2, no. 1,
pages 183–202, 2009. (Cited in pages 2, 7, and 46.)

[Becker 1988] Sue Becker and Yann Le Cun. Improving the Convergence of Back-
Propagation Learning with Second Order Methods. Technical Report CRG-TR-88-5,
Department of Computer Science, University of Toronto, 1988. (Cited in page 150.)

[Bernstein 2004] Matt A Bernstein, Kevin F King and Xiaohong Joe Zhou. Handbook of
mri pulse sequences. Elsevier, 2004. (Cited in page 84.)

[Bertsekas 2014] Dimitri P Bertsekas. Constrained optimization and lagrange multiplier
methods. Academic press, 2014. (Cited in page 35.)

[Biglari 2013] Fahimeh Biglari and Maghsud Solimanpur. Scaling on the spectral gradient
method. Journal of Optimization Theory and Applications, vol. 158, no. 2, pages
626–635, 2013. (Cited in pages 40 and 151.)

[Blaimer 2004] Martin Blaimer, Felix Breuer, Matthias Mueller, Robin M Heidemann,
Mark A Griswold and Peter M Jakob. SMASH, SENSE, PILS, GRAPPA: how
to choose the optimal method. Topics in Magnetic Resonance Imaging, vol. 15,
no. 4, pages 223–236, 2004. (Cited in page 84.)

[Bombieri 1984] Enrico Bombieri. On the large sieve. In Goldbach Conjecture, pages 227–
252. World Scientific, 1984. (Cited in page 77.)

[Bora 2017] Ashish Bora, Ajil Jalal, Eric Price and Alexandros G Dimakis. Compressed
sensing using generative models. In International Conference on Machine Learning,
pages 537–546. PMLR, 2017. (Cited in pages 51, 124, and 126.)

[Bostan 2020] Emrah Bostan, Reinhard Heckel, Michael Chen, Michael Kellman and Laura
Waller. Deep phase decoder: self-calibrating phase microscopy with an untrained deep
neural network. Optica, vol. 7, no. 6, pages 559–562, Jun 2020. (Cited in page 126.)

[Bottou 2010] Léon Bottou. Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010. (Cited in
page 73.)

[Boyd 2011] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Ecksteinet al.
Distributed optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends® in Machine learning, vol. 3, no. 1, pages
1–122, 2011. (Cited in pages 2, 7, 34, and 36.)

[Boyer 2016] Claire Boyer, Nicolas Chauffert, Philippe Ciuciu, Jonas Kahn and Pierre
Weiss. On the generation of sampling schemes for magnetic resonance imaging.
SIAM Journal on Imaging Sciences, vol. 9, no. 4, pages 2039–2072, 2016. (Cited in
pages 25, 86, 92, 115, and 130.)

[Boyer 2019] Claire Boyer, Jérémie Bigot and Pierre Weiss. Compressed sensing with struc-
tured sparsity and structured acquisition. Applied and Computational Harmonic
Analysis, vol. 46, no. 2, pages 312–350, 2019. (Cited in pages 24 and 85.)

[Buades 2011] Antoni Buades, Bartomeu Coll and Jean-Michel Morel. Non-local means de-
noising. Image Processing On Line, vol. 1, pages 208–212, 2011. (Cited in page 100.)



192 BIBLIOGRAPHY

[Bubba 2019] Tatiana A Bubba, Gitta Kutyniok, Matti Lassas, Maximilian März, Wojciech
Samek, Samuli Siltanen and Vignesh Srinivasan. Learning the invisible: a hybrid
deep learning-shearlet framework for limited angle computed tomography. Inverse
Problems, vol. 35, no. 6, page 064002, 2019. (Cited in page 138.)

[Buzzard 2018] Gregery T Buzzard, Stanley H Chan, Suhas Sreehari and Charles A
Bouman. Plug-and-play unplugged: Optimization-free reconstruction using consen-
sus equilibrium. SIAM Journal on Imaging Sciences, vol. 11, no. 3, pages 2001–2020,
2018. (Cited in page 42.)

[Campisi 2017] Patrizio Campisi and Karen Egiazarian. Blind image deconvolution: theory
and applications. CRC press, 2017. (Cited in page 125.)

[Candès 2006] Emmanuel J Candès, Justin Romberg and Terence Tao. Robust uncertainty
principles: Exact signal reconstruction from highly incomplete frequency informa-
tion. IEEE Transactions on information theory, vol. 52, no. 2, pages 489–509, 2006.
(Cited in pages 24, 85, and 123.)

[Carmon 2017] Yair Carmon, John C Duchi, Oliver Hinder and Aaron Sidford. “Convex
Until Proven Guilty”: Dimension-Free Acceleration of Gradient Descent on Non-
Convex Functions. In International Conference on Machine Learning, pages 654–663.
PMLR, 2017. (Cited in page 156.)

[Castera 2022] Camille Castera, Jérôme Bolte, Cédric Févotte and Edouard Pauwels.
Second-order step-size tuning of SGD for non-convex optimization. Neural Pro-
cessing Letters, pages 1–26, 2022. (Cited in pages 40, 151, 155, 157, 163, 166, 178,
180, and 181.)

[Chaithya 2021] GR Chaithya, Zaccharie Ramzi and Philippe Ciuciu. Learning the sam-
pling density in 2D SPARKLING MRI acquisition for optimized image reconstruc-
tion. In 2021 29th European Signal Processing Conference (EUSIPCO), pages 960–
964. IEEE, 2021. (Cited in pages 100 and 114.)

[Chaithya 2022] GR Chaithya, Pierre Weiss, Guillaume Daval-Frérot, Aurélien Massire,
Alexandre Vignaud and Philippe Ciuciu. Optimizing full 3D SPARKLING trajecto-
ries for high-resolution Magnetic Resonance Imaging. IEEE Transactions on Medical
Imaging, 2022. (Cited in pages 100, 113, and 114.)

[Chakrabarti 2016] Ayan Chakrabarti. A neural approach to blind motion deblurring. In
European conference on computer vision, pages 221–235. Springer, 2016. (Cited in
page 125.)

[Chambolle 2021a] Antonin Chambolle and Thomas Pock. Approximating the total varia-
tion with finite differences or finite elements. In Handbook of Numerical Analysis,
volume 22, pages 383–417. Elsevier, 2021. (Cited in page 41.)

[Chambolle 2021b] Antonin Chambolle and Thomas Pock. Learning consistent discretiza-
tions of the total variation. SIAM Journal on Imaging Sciences, vol. 14, no. 2, pages
778–813, 2021. (Cited in page 41.)

[Chan 1998] Tony F Chan and Chiu-Kwong Wong. Total variation blind deconvolution.
IEEE transactions on Image Processing, vol. 7, no. 3, pages 370–375, 1998. (Cited
in page 126.)

[Chan 2016] Stanley H Chan, Xiran Wang and Omar A Elgendy. Plug-and-play ADMM for
image restoration: Fixed-point convergence and applications. IEEE Transactions on
Computational Imaging, vol. 3, no. 1, pages 84–98, 2016. (Cited in pages 42 and 47.)



BIBLIOGRAPHY 193

[Charlier 2021a] Benjamin Charlier, Jean Feydy, Joan Alexis Glaunes, François-David
Collin and Ghislain Durif. Kernel Operations on the GPU, with Autodiff, with-
out Memory Overflows. J. Mach. Learn. Res., vol. 22, no. 74, pages 1–6, 2021.
(Cited in page 113.)

[Charlier 2021b] Benjamin Charlier, Jean Feydy, Joan Alexis Glaunès, François-David
Collin and Ghislain Durif. Kernel Operations on the GPU, with Autodiff, with-
out Memory Overflows. Journal of Machine Learning Research, vol. 22, no. 74,
pages 1–6, 2021. (Cited in page 22.)

[Chauffert 2016] Nicolas Chauffert, Pierre Weiss, Jonas Kahn and Philippe Ciuciu. A pro-
jection algorithm for gradient waveforms design in Magnetic Resonance Imaging.
IEEE transactions on medical imaging, vol. 35, no. 9, pages 2026–2039, 2016. (Cited
in pages 90, 95, and 114.)

[Chauffert 2017] Nicolas Chauffert, Philippe Ciuciu, Jonas Kahn and Pierre Weiss. A pro-
jection method on measures sets. Constructive Approximation, vol. 45, no. 1, pages
83–111, 2017. (Cited in pages 25, 86, 95, 101, 113, and 130.)

[Chen 2013] Zhiqiang Chen, Xin Jin, Liang Li and Ge Wang. A limited-angle CT recon-
struction method based on anisotropic TV minimization. Physics in Medicine &
Biology, vol. 58, no. 7, page 2119, 2013. (Cited in page 41.)

[Chen 2019] Liang Chen, Faming Fang, Tingting Wang and Guixu Zhang. Blind image
deblurring with local maximum gradient prior. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1742–1750, 2019.
(Cited in page 126.)

[Christianson 1992] Bruce Christianson. Automatic Hessians by reverse accumulation. IMA
Journal of Numerical Analysis, vol. 12, no. 2, pages 135–150, 1992. (Cited in
pages 40, 150, 151, 160, and 170.)

[Colton 1998] David L Colton, Rainer Kress and Rainer Kress. Inverse acoustic and elec-
tromagnetic scattering theory, volume 93. Springer, 1998. (Cited in pages 48, 139,
183, and 184.)

[Combettes 2011] Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting
methods in signal processing. In Fixed-point algorithms for inverse problems in
science and engineering, pages 185–212. Springer, 2011. (Cited in pages 36 and 124.)

[Condat 2017] Laurent Condat. Discrete total variation: New definition and minimization.
SIAM Journal on Imaging Sciences, vol. 10, no. 3, pages 1258–1290, 2017. (Cited
in page 41.)

[Cooley 1965] James W Cooley and John W Tukey. An algorithm for the machine calcula-
tion of complex Fourier series. Mathematics of computation, vol. 19, no. 90, pages
297–301, 1965. (Cited in page 21.)

[Curtis 2019] Frank E Curtis and Daniel P Robinson. Exploiting negative curvature in
deterministic and stochastic optimization. Mathematical Programming, vol. 176,
no. 1, pages 69–94, 2019. (Cited in page 156.)

[Dabov 2007] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik and Karen Egiazar-
ian. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE
Transactions on image processing, vol. 16, no. 8, pages 2080–2095, 2007. (Cited in
page 42.)



194 BIBLIOGRAPHY

[Dai 2002] Yuhong Dai, Jinyun Yuan and Ya-Xiang Yuan. Modified two-point stepsize
gradient methods for unconstrained optimization. Computational Optimization and
Applications, vol. 22, no. 1, pages 103–109, 2002. (Cited in pages 40 and 151.)

[de Gournay 2022] Frédéric de Gournay and Alban Gossard. Adaptive scaling of the learn-
ing rate by second order automatic differentiation. 2022. (Cited in page 147.)

[Debarnot 2022] Valentin Debarnot and Pierre Weiss. Deep-Blur: Blind Identification and
Deblurring with Convolutional Neural Networks. 2022. (Cited in pages 98, 125,
and 130.)

[Défossez 2022] Alexandre Défossez, Léon Bottou, Francis Bach and Nicolas Usunier. A
simple convergence proof of adam and adagrad. Transactions on Machine Learning
Research, 2022. (Cited in page 176.)

[Diamond 2017] Steven Diamond, Vincent Sitzmann, Felix Heide and Gordon Wetzstein.
Unrolled optimization with deep priors. arXiv preprint arXiv:1705.08041, 2017.
(Cited in pages 23, 41, 45, and 124.)

[Dietrich 2016] Benjamin E Dietrich, David O Brunner, Bertram J Wilm, Christoph
Barmet, Simon Gross, Lars Kasper, Maximilian Haeberlin, Thomas Schmid, S Jo-
hanna Vannesjo and Klaas P Pruessmann. A field camera for MR sequence moni-
toring and system analysis. Magnetic resonance in medicine, vol. 75, no. 4, pages
1831–1840, 2016. (Cited in page 127.)

[Dong 2018] Weisheng Dong, Peiyao Wang, Wotao Yin, Guangming Shi, Fangfang Wu and
Xiaotong Lu. Denoising prior driven deep neural network for image restoration.
IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 10,
pages 2305–2318, 2018. (Cited in pages 41, 45, and 124.)

[Duchi 2011] John Duchi, Elad Hazan and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine learning research,
vol. 12, no. 7, 2011. (Cited in pages 40 and 151.)

[Duchon 1977] Jean Duchon. Splines minimizing rotation-invariant semi-norms in Sobolev
spaces. In Constructive theory of functions of several variables, pages 85–100.
Springer, 1977. (Cited in page 127.)

[Eckstein 1992] Jonathan Eckstein and Dimitri P Bertsekas. On the Douglas—Rachford
splitting method and the proximal point algorithm for maximal monotone operators.
Mathematical Programming, vol. 55, no. 1, pages 293–318, 1992. (Cited in pages 2,
7, and 34.)

[Facchinei 2003] Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational
inequalities and complementarity problems. Springer, 2003. (Cited in page 35.)

[Feichtinger 1994] Hans G Feichtinger and Karlheinz Gröchenig. Theory and practice of
irregular sampling. Wavelets: mathematics and applications, vol. 1994, pages 305–
363, 1994. (Cited in pages 24 and 85.)

[Fergus 2006] Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T Roweis and William T
Freeman. Removing camera shake from a single photograph. In Acm Siggraph 2006
Papers, pages 787–794. 2006. (Cited in page 126.)

[Fessler 2003] Jeffrey A Fessler and Bradley P Sutton. Nonuniform fast Fourier transforms
using min-max interpolation. IEEE transactions on signal processing, vol. 51, no. 2,
pages 560–574, 2003. (Cited in pages 22 and 112.)



BIBLIOGRAPHY 195

[Fessler 2010] Jeffrey A Fessler. Model-based image reconstruction for MRI. IEEE signal
processing magazine, vol. 27, no. 4, pages 81–89, 2010. (Cited in pages 19, 23,
and 57.)

[Fortin 2000] Michel Fortin and Roland Glowinski. Augmented lagrangian methods: ap-
plications to the numerical solution of boundary-value problems. Elsevier, 2000.
(Cited in pages 2 and 7.)

[Frazier 2006] Michael W Frazier. An introduction to wavelets through linear algebra.
Springer Science & Business Media, 2006. (Cited in page 34.)

[Frazier 2018a] Peter I Frazier. Bayesian optimization. In Recent advances in optimization
and modeling of contemporary problems, pages 255–278. Informs, 2018. (Cited in
page 132.)

[Frazier 2018b] Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint
arXiv:1807.02811, 2018. (Cited in pages 96 and 99.)

[Genzel 2022a] Martin Genzel, Ingo Gühring, Jan Macdonald and Maximilian März. Near-
Exact Recovery for Tomographic Inverse Problems via Deep Learning. In Interna-
tional Conference on Machine Learning, pages 7368–7381. PMLR, 2022. (Cited in
page 111.)

[Genzel 2022b] Martin Genzel, Jan Macdonald and Maximilian Marz. Solving inverse prob-
lems with deep neural networks-robustness included. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022. (Cited in pages 39 and 124.)

[Gidel 2019] Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent and Simon
Lacoste-Julien. A variational inequality perspective on generative adversarial net-
works. In International Conference on Learning Representations, 2019. (Cited in
page 112.)

[Gilton 2019] Davis Gilton, Greg Ongie and Rebecca Willett. Neumann networks for linear
inverse problems in imaging. IEEE Transactions on Computational Imaging, vol. 6,
pages 328–343, 2019. (Cited in page 41.)

[Gilton 2021a] Davis Gilton, Gregory Ongie and Rebecca Willett. Deep equilibrium ar-
chitectures for inverse problems in imaging. IEEE Transactions on Computational
Imaging, vol. 7, pages 1123–1133, 2021. (Cited in page 49.)

[Gilton 2021b] Davis Gilton, Gregory Ongie and Rebecca Willett. Model adaptation for
inverse problems in imaging. IEEE Transactions on Computational Imaging, vol. 7,
pages 661–674, 2021. (Cited in pages 124 and 135.)

[Goldfarb 1970] Donald Goldfarb. A family of variable-metric methods derived by varia-
tional means. Mathematics of computation, vol. 24, no. 109, pages 23–26, 1970.
(Cited in page 74.)

[Goldstein 2012] Amit Goldstein and Raanan Fattal. Blur-kernel estimation from spec-
tral irregularities. In European Conference on Computer Vision, pages 622–635.
Springer, 2012. (Cited in page 125.)

[Goodfellow 2014] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville and Yoshua Bengio. Generative ad-
versarial nets. Advances in neural information processing systems, vol. 27, 2014.
(Cited in page 51.)



196 BIBLIOGRAPHY

[Goodman 1996] J.W. Goodman. Introduction to fourier optics. Electrical Engineering
Series. McGraw-Hill, 1996. (Cited in page 128.)

[Gossard 2012] Alban Gossard, Frédéric de Gournay and Pierre Weiss. Off-the-grid data-
driven optimization of sampling schemes in MRI. In international Traveling Work-
shop on Interactions between low-complexity data models and Sensing Techniques
(iTWIST) 2020, 2012. (Cited in pages 60 and 63.)

[Gossard 2022a] Alban Gossard, Frédéric de Gournay and Pierre Weiss. Bayesian Opti-
mization of Sampling Densities in MRI. arXiv preprint arXiv:2209.07170, 2022.
(Cited in pages 83, 130, 134, and 139.)

[Gossard 2022b] Alban Gossard, Frédéric de Gournay and Pierre Weiss. Spurious minimiz-
ers in non uniform Fourier sampling optimization. Inverse Problems, 2022. (Cited
in pages 59, 87, 90, 91, 100, 104, 112, and 139.)

[Gossard 2022c] Alban Gossard and Pierre Weiss. Training Adaptive Reconstruction Net-
works for Blind Inverse Problems. arXiv preprint arXiv:2202.11342, 2022. (Cited
in pages 111 and 119.)

[Gower 2018] Robert Gower, Nicolas Le Roux and Francis Bach. Tracking the gradients
using the hessian: A new look at variance reducing stochastic methods. In Inter-
national Conference on Artificial Intelligence and Statistics, pages 707–715. PMLR,
2018. (Cited in page 150.)

[Gözcü 2018] Baran Gözcü, Rabeeh Karimi Mahabadi, Yen-Huan Li, Efe Ilıcak, Tolga
Cukur, Jonathan Scarlett and Volkan Cevher. Learning-based compressive MRI.
IEEE transactions on medical imaging, vol. 37, no. 6, pages 1394–1406, 2018. (Cited
in pages 25, 26, 60, and 86.)

[Gräf 2012] Manuel Gräf, Daniel Potts and Gabriele Steidl. Quadrature errors, discrepan-
cies, and their relations to halftoning on the torus and the sphere. SIAM Journal on
Scientific Computing, vol. 34, no. 5, pages A2760–A2791, 2012. (Cited in pages 25
and 95.)

[Greengard 2004] Leslie Greengard and June-Yub Lee. Accelerating the nonuniform fast
Fourier transform. SIAM review, vol. 46, no. 3, pages 443–454, 2004. (Cited in
page 22.)

[Gregor 2010] Karol Gregor and Yann LeCun. Learning fast approximations of sparse cod-
ing. In Proceedings of the 27th international conference on machine learning, pages
399–406, 2010. (Cited in page 41.)

[Griewank 2008] Andreas Griewank and Andrea Walther. Evaluating derivatives: princi-
ples and techniques of algorithmic differentiation. SIAM, 2008. (Cited in pages 40
and 151.)

[Griswold 2002] Mark A Griswold, Peter M Jakob, Robin M Heidemann, Mathias Nit-
tka, Vladimir Jellus, Jianmin Wang, Berthold Kiefer and Axel Haase. Generalized
autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in
Medicine: An Official Journal of the International Society for Magnetic Resonance
in Medicine, vol. 47, no. 6, pages 1202–1210, 2002. (Cited in pages 125 and 131.)

[Gu 2014] Shuhang Gu, Lei Zhang, Wangmeng Zuo and Xiangchu Feng. Weighted nu-
clear norm minimization with application to image denoising. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2862–2869,
2014. (Cited in pages 42 and 125.)



BIBLIOGRAPHY 197

[Gwosdek 2014] Pascal Gwosdek, Christian Schmaltz, Joachim Weickert and Tanja Teuber.
Fast electrostatic halftoning. Journal of real-time image processing, vol. 9, no. 2,
pages 379–392, 2014. (Cited in page 25.)

[Hammernik 2018] Kerstin Hammernik, Teresa Klatzer, Erich Kobler, Michael P Recht,
Daniel K Sodickson, Thomas Pock and Florian Knoll. Learning a variational network
for reconstruction of accelerated MRI data. Magnetic resonance in medicine, vol. 79,
no. 6, pages 3055–3071, 2018. (Cited in page 86.)

[Hammernik 2019] Kerstin Hammernik, Jo Schlemper, Chen Qin, Jinming Duan, Ronald M
Summers and Daniel Rueckert. Σ-net: Systematic Evaluation of Iterative Deep
Neural Networks for Fast Parallel MR Image Reconstruction. arXiv preprint
arXiv:1912.09278, 2019. (Cited in pages 41, 45, and 124.)

[Hinton 2006] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality
of data with neural networks. science, vol. 313, no. 5786, pages 504–507, 2006. (Cited
in page 163.)

[Hoffer 2019] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler and
Daniel Soudry. Augment your batch: better training with larger batches. arXiv
preprint arXiv:1901.09335, 2019. (Cited in page 168.)

[Hurault 2022a] Samuel Hurault, Arthur Leclaire and Nicolas Papadakis. Gradient step
denoiser for convergent plug-and-play. In International Conference on Learning
Representations, 2022. (Cited in page 43.)

[Hurault 2022b] Samuel Hurault, Arthur Leclaire and Nicolas Papadakis. Proximal de-
noiser for convergent plug-and-play optimization with nonconvex regularization.
arXiv preprint arXiv:2201.13256, 2022. (Cited in page 43.)

[Idy-Peretti 2009] I Idy-Peretti. Évolution de l’imagerie par résonance magnétique. IRBM,
vol. 30, no. 2, pages 53–59, 2009. (Cited in pages 16 and 53.)

[Jackson 1992] John I Jackson, Dwight G Nishimura and Albert Macovski. Twisting ra-
dial lines with application to robust magnetic resonance imaging of irregular flow.
Magnetic Resonance in Medicine, vol. 25, no. 1, pages 128–139, 1992. (Cited in
page 85.)

[Jacob 2020] Mathews Jacob, Jong Chul Ye, Leslie Ying and Mariya Doneva. Compu-
tational MRI: Compressive Sensing and Beyond [From the Guest Editors]. IEEE
Signal Processing Magazine, vol. 37, no. 1, pages 21–23, 2020. (Cited in page 85.)

[Ji 2008] Shihao Ji, Ya Xue and Lawrence Carin. Bayesian compressive sensing. IEEE
Transactions on signal processing, vol. 56, no. 6, pages 2346–2356, 2008. (Cited in
page 38.)

[Jin 2017] Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey and Michael Unser.
Deep convolutional neural network for inverse problems in imaging. IEEE Transac-
tions on Image Processing, vol. 26, no. 9, pages 4509–4522, 2017. (Cited in pages 43
and 124.)

[Jin 2019] Kyong Hwan Jin, Michael Unser and Kwang Moo Yi. Self-supervised deep active
accelerated MRI. arXiv preprint arXiv:1901.04547, 2019. (Cited in pages 25, 26, 60,
86, and 87.)



198 BIBLIOGRAPHY

[Johnson 2013] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using
predictive variance reduction. Advances in neural information processing systems,
vol. 26, 2013. (Cited in page 151.)

[Johnson 2019] Jeff Johnson, Matthijs Douze and Hervé Jégou. Billion-scale similarity
search with gpus. IEEE Transactions on Big Data, vol. 7, no. 3, pages 535–547,
2019. (Cited in page 98.)

[Juditsky 2011] Anatoli Juditsky, Arkadi Nemirovski and Claire Tauvel. Solving variational
inequalities with stochastic mirror-prox algorithm. Stochastic Systems, vol. 1, no. 1,
pages 17–58, 2011. (Cited in page 112.)

[Kamilov 2022] Ulugbek S Kamilov, Charles A Bouman, Gregery T Buzzard and Brendt
Wohlberg. Plug-and-play methods for integrating physical and learned models in
computational imaging. arXiv preprint arXiv:2203.17061, 2022. (Cited in page 43.)

[Keiner 2009] Jens Keiner, Stefan Kunis and Daniel Potts. Using NFFT 3—a software
library for various nonequispaced fast Fourier transforms. ACM Transactions on
Mathematical Software (TOMS), vol. 36, no. 4, pages 1–30, 2009. (Cited in pages 22
and 112.)

[Kingma 2015] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. In Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2015. (Cited in pages 7, 40, 132, 151, 156, and 175.)

[Knoll 2011] Florian Knoll, Christian Clason, Clemens Diwoky and Rudolf Stollberger.
Adapted random sampling patterns for accelerated MRI. Magnetic resonance mate-
rials in physics, biology and medicine, vol. 24, no. 1, pages 43–50, 2011. (Cited in
page 86.)

[Knoll 2020] Florian Knoll, Tullie Murrell, Anuroop Sriram, Nafissa Yakubova, Jure Zbon-
tar, Michael Rabbat, Aaron Defazio, Matthew J Muckley, Daniel K Sodickson,
C Lawrence Zitnicket al. Advancing machine learning for MR image reconstruc-
tion with an open competition: Overview of the 2019 fastMRI challenge. Magnetic
Resonance in Medicine, 2020. (Cited in page 85.)

[Kochenderfer 2019] Mykel J Kochenderfer and Tim A Wheeler. Algorithms for optimiza-
tion. Mit Press, 2019. (Cited in page 40.)

[Kotelnikov 1933] Vladimir A Kotelnikov. On the carrying capacity of the" either" and wire
in telecommunications. In Material for the First All-Union Conference on Questions
of Communication (Russian), Izd. Red. Upr. Svyzai RKKA, Moscow, 1933, 1933.
(Cited in page 24.)

[Krishnan 2009] Dilip Krishnan and Rob Fergus. Fast image deconvolution using hyper-
Laplacian priors. Advances in neural information processing systems, vol. 22, 2009.
(Cited in page 126.)

[Krishnan 2011] Dilip Krishnan, Terence Tay and Rob Fergus. Blind deconvolution using
a normalized sparsity measure. In CVPR 2011, pages 233–240. IEEE, 2011. (Cited
in page 126.)

[Krishnan 2018] Shankar Krishnan, Ying Xiao and Rif A Saurous. Neumann optimizer:
A practical optimization algorithm for deep neural networks. In Proceedings of
the International Conference on Learning Representations (ICLR), 2018. (Cited in
page 150.)



BIBLIOGRAPHY 199

[Krizhevsky 2009] Alex Krizhevsky, Geoffrey Hintonet al. Learning multiple layers of fea-
tures from tiny images. Technical Report, Pennsylvania State University, 2009.
(Cited in page 163.)

[Kundur 1996] Deepa Kundur and Dimitrios Hatzinakos. Blind image deconvolution. IEEE
signal processing magazine, vol. 13, no. 3, pages 43–64, 1996. (Cited in page 125.)

[Kunisch 2013] Karl Kunisch and Thomas Pock. A bilevel optimization approach for pa-
rameter learning in variational models. SIAM Journal on Imaging Sciences, vol. 6,
no. 2, pages 938–983, 2013. (Cited in pages 41 and 49.)

[Lam 2015] Siu Kwan Lam, Antoine Pitrou and Stanley Seibert. Numba: A llvm-based
python jit compiler. In Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, pages 1–6, 2015. (Cited in page 22.)

[Laumont 2022] Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain
Durmus and Marcelo Pereyra. On Maximum-a-Posteriori estimation with Plug &
Play priors and stochastic gradient descent. Journal of Mathematical Imaging and
Vision, 2022. (Cited in page 43.)

[Lauterbur 1973] Paul C Lauterbur. Image formation by induced local interactions: ex-
amples employing nuclear magnetic resonance. nature, vol. 242, no. 5394, pages
190–191, 1973. (Cited in pages 1, 6, 14, 23, and 52.)

[Lazarus 2019] Carole Lazarus, Pierre Weiss, Nicolas Chauffert, Franck Mauconduit,
Loubna El Gueddari, Christophe Destrieux, Ilyess Zemmoura, Alexandre Vignaud
and Philippe Ciuciu. SPARKLING: variable-density k-space filling curves for ac-
celerated T2*-weighted MRI. Magnetic resonance in medicine, vol. 81, no. 6, pages
3643–3661, 2019. (Cited in pages 21, 25, 86, 95, 100, 101, 110, 114, and 130.)

[Lazarus 2020a] Carole Lazarus, Maximilian März and Pierre Weiss. Correcting the side ef-
fects of ADC filtering in MR image reconstruction. Journal of Mathematical Imaging
and Vision, vol. 62, no. 6, pages 1034–1047, 2020. (Cited in pages 20, 57, and 100.)

[Lazarus 2020b] Carole Lazarus, Pierre Weiss, Loubna El Gueddari, Franck Mauconduit,
Aurélien Massire, Mathilde Ripart, Alexandre Vignaud and Philippe Ciuciu. 3D
variable-density SPARKLING trajectories for high-resolution T2*-weighted mag-
netic resonance imaging. NMR in Biomedicine, vol. 33, no. 9, page e4349, 2020.
(Cited in page 25.)

[Lebrat 2019] Léo Lebrat, Frédéric de Gournay, Jonas Kahn and Pierre Weiss. Optimal
transport approximation of 2-dimensional measures. SIAM Journal on Imaging Sci-
ences, vol. 12, no. 2, pages 762–787, 2019. (Cited in pages 25 and 95.)

[Lecouat 2021] Bruno Lecouat, Jean Ponce and Julien Mairal. Lucas-Kanade Reloaded:
End-to-End Super-Resolution from Raw Image Bursts. In 2021 IEEE/CVF Interna-
tional Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October
10-17, 2021, pages 2350–2359. IEEE, 2021. (Cited in page 126.)

[Lecouat 2022] Bruno Lecouat, Thomas Eboli, Jean Ponce and Julien Mairal. High Dy-
namic Range and Super-Resolution from Raw Image Bursts. ACM Trans. Graph.,
vol. 41, no. 4, jul 2022. (Cited in page 126.)

[LeCun 2010] Yann LeCun, Corinna Cortes and CJ Burges. Mnist handwritten digit
database. AT&T Labs, 2010. (Cited in page 163.)



200 BIBLIOGRAPHY

[Li 2019a] Ting Li and Zhong Wan. New adaptive barzilai–borwein step size and its appli-
cation in solving large-scale optimization problems. The ANZIAM Journal, vol. 61,
no. 1, pages 76–98, 2019. (Cited in pages 40 and 151.)

[Li 2019b] Yuelong Li, Mohammad Tofighi, Vishal Monga and Yonina C Eldar. An al-
gorithm unrolling approach to deep image deblurring. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 7675–7679. IEEE, 2019. (Cited in pages 45 and 124.)

[Liang 2019] Jinxiu Liang, Yong Xu, Chenglong Bao, Yuhui Quan and Hui Ji. Barzilai–
Borwein-based adaptive learning rate for deep learning. Pattern Recognition Letters,
vol. 128, pages 197–203, 2019. (Cited in pages 40 and 151.)

[Lin 2014] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár and C Lawrence Zitnick. Microsoft coco: Common objects
in context. In European conference on computer vision, pages 740–755. Springer,
2014. (Cited in page 133.)

[Lin 2018] Jyh-Miin Lin. Python non-uniform fast Fourier transform (PyNUFFT): An
accelerated non-Cartesian MRI package on a heterogeneous platform (CPU/GPU).
Journal of Imaging, vol. 4, no. 3, page 51, 2018. (Cited in page 22.)

[Liu 1989] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large
scale optimization. Mathematical programming, vol. 45, no. 1, pages 503–528, 1989.
(Cited in page 132.)

[Liu 2017] Mingrui Liu and Tianbao Yang. On noisy negative curvature descent: Com-
peting with gradient descent for faster non-convex optimization. arXiv preprint
arXiv:1709.08571, 2017. (Cited in page 156.)

[Liu 2021] Jiaming Liu, Salman Asif, Brendt Wohlberg and Ulugbek Kamilov. Recovery
analysis for plug-and-play priors using the restricted eigenvalue condition. Advances
in Neural Information Processing Systems, vol. 34, pages 5921–5933, 2021. (Cited
in page 42.)

[Ljubenović 2019] Marina Ljubenović and Mário A. T. Figueiredo. Plug-and-play approach
to class-adapted blind image deblurring. International Journal on Document Analysis
and Recognition (IJDAR), vol. 22, no. 2, pages 79–97, March 2019. (Cited in
page 126.)

[Loktyushin 2021] Alexander Loktyushin, Kai Herz, Nam Dang, Felix Glang, Anagha Desh-
mane, Simon Weinmüller, Arnd Doerfler, Bernhard Schölkopf, Klaus Scheffler and
Moritz Zaiss. MRzero-Automated discovery of MRI sequences using supervised learn-
ing. Magnetic Resonance in Medicine, vol. 86, no. 2, pages 709–724, 2021. (Cited
in page 60.)

[Loshchilov 2017] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent
with warm restarts. In International Conference on Learning Representations, 2017.
(Cited in page 164.)

[Lustig 2005] Michael Lustig, Jin Hyung Lee, David L Donoho and John M Pauly. Faster
imaging with randomly perturbed, under-sampled spirals and `1 reconstruction. In
Proceedings of the 13th annual meeting of ISMRM, page 685, Miami Beach, FL,
USA, 2005. (Cited in pages 24, 85, and 123.)



BIBLIOGRAPHY 201

[Lustig 2008] Michael Lustig, David L Donoho, Juan M Santos and John M Pauly. Com-
pressed sensing MRI. IEEE signal processing magazine, vol. 25, no. 2, pages 72–82,
2008. (Cited in pages 85 and 89.)

[Ma 2018] Ke Ma, Jinshan Zeng, Jiechao Xiong, Qianqian Xu, Xiaochun Cao, Wei Liu
and Yuan Yao. Stochastic non-convex ordinal embedding with stabilized barzilai-
borwein step size. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018. (Cited in pages 40 and 151.)

[Mansfield 1977] Peter Mansfield. Multi-planar image formation using NMR spin echoes.
Journal of Physics C: Solid State Physics, vol. 10, no. 3, page L55, 1977. (Cited in
pages 14 and 52.)

[Martens 2010] James Martenset al. Deep learning via hessian-free optimization. In Inter-
national conference on machine learning (ICML), volume 27, pages 735–742, 2010.
(Cited in page 150.)

[Martens 2015] James Martens and Roger Grosse. Optimizing neural networks with
kronecker-factored approximate curvature. In International conference on machine
learning, pages 2408–2417. PMLR, 2015. (Cited in page 150.)

[Marvasti 2012] Farokh Marvasti. Nonuniform sampling: theory and practice. Springer
Science & Business Media, 2012. (Cited in page 24.)

[Michaeli 2014] Tomer Michaeli and Michal Irani. Blind deblurring using internal patch
recurrence. In European conference on computer vision, pages 783–798. Springer,
2014. (Cited in page 126.)

[Miyato 2018] Takeru Miyato, Toshiki Kataoka, Masanori Koyama and Yuichi Yoshida.
Spectral normalization for generative adversarial networks. arXiv preprint
arXiv:1802.05957, 2018. (Cited in page 42.)

[Moitra 2015] Ankur Moitra. Super-resolution, extremal functions and the condition num-
ber of Vandermonde matrices. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pages 821–830, 2015. (Cited in page 77.)

[Muckley 2020a] Matthew J Muckley, Bruno Riemenschneider, Alireza Radmanesh, Sun-
woo Kim, Geunu Jeong, Jingyu Ko, Yohan Jun, Hyungseob Shin, Dosik Hwang,
Mahmoud Mostaphaet al. State-of-the-art Machine Learning MRI reconstruction in
2020: Results of the second fastMRI challenge. arXiv preprint arXiv:2012.06318,
2020. (Cited in page 89.)

[Muckley 2020b] Matthew J Muckley, Ruben Stern, Tullie Murrell and Florian Knoll.
TorchKbNufft: a high-level, hardware-agnostic non-uniform fast Fourier transform.
In ISMRM Workshop on Data Sampling & Image Reconstruction, 2020. (Cited in
pages 22 and 112.)

[Muckley 2021] Matthew J Muckley, Bruno Riemenschneider, Alireza Radmanesh, Sunwoo
Kim, Geunu Jeong, Jingyu Ko, Yohan Jun, Hyungseob Shin, Dosik Hwang, Mah-
moud Mostaphaet al. Results of the 2020 fastmri challenge for machine learning mr
image reconstruction. IEEE transactions on medical imaging, vol. 40, no. 9, pages
2306–2317, 2021. (Cited in pages 124 and 134.)

[Nesterov 1983] Yurii E Nesterov. A method for solving the convex programming problem
with convergence rate O (1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269, pages
543–547, 1983. (Cited in page 110.)



202 BIBLIOGRAPHY

[Neyshabur 2015] Behnam Neyshabur, Ryota Tomioka and Nathan Srebro. In search of
the real inductive bias: On the role of implicit regularization in deep learning. In-
ternational Conference on Learning Representations, 2015. (Cited in page 45.)

[Ng 2010] Michael K Ng, Pierre Weiss and Xiaoming Yuan. Solving constrained total-
variation image restoration and reconstruction problems via alternating direction
methods. SIAM journal on Scientific Computing, vol. 32, no. 5, pages 2710–2736,
2010. (Cited in page 111.)

[Ochs 2015] Peter Ochs, René Ranftl, Thomas Brox and Thomas Pock. Bilevel optimization
with nonsmooth lower level problems. In International Conference on Scale Space
and Variational Methods in Computer Vision, pages 654–665. Springer, 2015. (Cited
in pages 41 and 89.)

[Ochs 2016] Peter Ochs, René Ranftl, Thomas Brox and Thomas Pock. Techniques for
gradient-based bilevel optimization with non-smooth lower level problems. Journal
of Mathematical Imaging and Vision, vol. 56, no. 2, pages 175–194, 2016. (Cited in
page 41.)

[Okuta 2017] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido and Crissman
Loomis. CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations.
In Proceedings of Workshop on Machine Learning Systems (LearningSys) in The
Thirty-first Annual Conference on Neural Information Processing Systems (NIPS),
2017. (Cited in page 22.)

[Ollivier 2015] Yann Ollivier. Riemannian metrics for neural networks I: feedforward net-
works. Information and Inference: A Journal of the IMA, vol. 4, no. 2, pages
108–153, 2015. (Cited in page 150.)

[Oppenheim 1971] Alan Oppenheim, Don Johnson and Kenneth Steiglitz. Computation of
spectra with unequal resolution using the fast Fourier transform. Proceedings of the
IEEE, vol. 59, no. 2, pages 299–301, 1971. (Cited in page 62.)

[Pan 2014] Jinshan Pan, Zhe Hu, Zhixun Su and Ming-Hsuan Yang. Deblurring text im-
ages via L0-regularized intensity and gradient prior. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2901–2908, 2014.
(Cited in page 126.)

[Pan 2016] Jinshan Pan, Deqing Sun, Hanspeter Pfister and Ming-Hsuan Yang. Blind
image deblurring using dark channel prior. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 1628–1636, 2016. (Cited in
page 126.)

[Parikh 2014] Neal Parikh, Stephen Boydet al. Proximal algorithms. Foundations and
trends® in Optimization, vol. 1, no. 3, pages 127–239, 2014. (Cited in pages 34
and 36.)

[Pearlmutter 1994] Barak A Pearlmutter. Fast exact multiplication by the Hessian. Neural
computation, vol. 6, no. 1, pages 147–160, 1994. (Cited in pages 40, 150, 151, 160,
and 170.)

[Peng 2022] Wei Peng, Li Feng, Guoying Zhao and Fang Liu. Learning Optimal K-space
Acquisition and Reconstruction using Physics-Informed Neural Networks. CVPR,
2022. (Cited in page 60.)



BIBLIOGRAPHY 203

[Polyak 1964] Boris T Polyak. Some methods of speeding up the convergence of iteration
methods. Ussr computational mathematics and mathematical physics, vol. 4, no. 5,
pages 1–17, 1964. (Cited in page 175.)

[Polyak 2017] Boris Polyak and Pavel Shcherbakov. Lyapunov functions: An optimiza-
tion theory perspective. IFAC-PapersOnLine, vol. 50, no. 1, pages 7456–7461, 2017.
(Cited in page 170.)

[Potts 2001] Daniel Potts, Gabriele Steidl and Manfred Tasche. Fast Fourier transforms
for nonequispaced data: A tutorial. Modern sampling theory, pages 247–270, 2001.
(Cited in page 127.)

[Potts 2003] Daniel Potts and Gabriele Steidl. Fast summation at nonequispaced knots by
NFFT. SIAM Journal on Scientific Computing, vol. 24, no. 6, pages 2013–2037,
2003. (Cited in page 113.)

[Pronzato 2017] Luc Pronzato. Minimax and maximin space-filling designs: some proper-
ties and methods for construction. Journal de la Société Française de Statistique,
vol. 158, no. 1, pages 7–36, 2017. (Cited in pages 98 and 130.)

[Pruessmann 1999] Klaas P Pruessmann, Markus Weiger, Markus B Scheidegger and Pe-
ter Boesiger. SENSE: sensitivity encoding for fast MRI. Magnetic Resonance in
Medicine: An Official Journal of the International Society for Magnetic Resonance
in Medicine, vol. 42, no. 5, pages 952–962, 1999. (Cited in page 125.)

[Ramachandran 1971] GN Ramachandran and AV Lakshminarayanan. Three-dimensional
reconstruction from radiographs and electron micrographs: application of convolu-
tions instead of Fourier transforms. Proceedings of the National Academy of Sci-
ences, vol. 68, no. 9, pages 2236–2240, 1971. (Cited in pages 1 and 6.)

[Raydan 1997] Marcos Raydan. The Barzilai and Borwein gradient method for the large
scale unconstrained minimization problem. SIAM Journal on Optimization, vol. 7,
no. 1, pages 26–33, 1997. (Cited in pages 40 and 151.)

[Reddi 2018] Sashank J Reddi, Satyen Kale and Sanjiv Kumar. On the convergence of
adam and beyond. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018. (Cited in pages 151 and 156.)

[Reehorst 2018] Edward T Reehorst and Philip Schniter. Regularization by denoising: Clar-
ifications and new interpretations. IEEE transactions on computational imaging,
vol. 5, no. 1, pages 52–67, 2018. (Cited in page 42.)

[Ren 2016] Wenqi Ren, Xiaochun Cao, Jinshan Pan, Xiaojie Guo, Wangmeng Zuo and
Ming-Hsuan Yang. Image deblurring via enhanced low-rank prior. IEEE Transac-
tions on Image Processing, vol. 25, no. 7, pages 3426–3437, 2016. (Cited in page 126.)

[Riis 2021] Nicolai André Brogaard Riis, Yiqiu Dong and Per Christian Hansen. Computed
tomography reconstruction with uncertain view angles by iteratively updated model
discrepancy. Journal of Mathematical Imaging and Vision, vol. 63, no. 2, pages
133–143, 2021. (Cited in page 126.)

[Robbins 1951] Herbert Robbins and Sutton Monro. A stochastic approximation method.
The annals of mathematical statistics, pages 400–407, 1951. (Cited in pages 40, 149,
and 155.)



204 BIBLIOGRAPHY

[Roemer 1990] Peter B Roemer, William A Edelstein, Cecil E Hayes, Steven P Souza and
Otward MMueller. The NMR phased array. Magnetic resonance in medicine, vol. 16,
no. 2, pages 192–225, 1990. (Cited in page 84.)

[Romano 2017] Yaniv Romano, Michael Elad and Peyman Milanfar. The little engine that
could: Regularization by denoising (RED). SIAM Journal on Imaging Sciences,
vol. 10, no. 4, pages 1804–1844, 2017. (Cited in page 42.)

[Ronchetti 2020] Matteo Ronchetti. Torchradon: Fast differentiable routines for computed
tomography. arXiv preprint arXiv:2009.14788, 2020. (Cited in page 133.)

[Roux 2007] Nicolas Roux, Pierre-Antoine Manzagol and Yoshua Bengio. Topmoumoute
online natural gradient algorithm. Advances in neural information processing sys-
tems, vol. 20, 2007. (Cited in page 150.)

[Rudin 1992] Leonid I Rudin, Stanley Osher and Emad Fatemi. Nonlinear total variation
based noise removal algorithms. Physica D: nonlinear phenomena, vol. 60, no. 1-4,
pages 259–268, 1992. (Cited in pages 34, 41, and 123.)

[Ryu 2019] Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang and
Wotao Yin. Plug-and-play methods provably converge with properly trained denois-
ers. In International Conference on Machine Learning, pages 5546–5557. PMLR,
2019. (Cited in pages 42 and 125.)

[Sanchez 2020] Thomas Sanchez, Baran Gözcü, Ruud B van Heeswijk, Armin Eftekhari,
Efe Ilıcak, Tolga Çukur and Volkan Cevher. Scalable learning-based sampling opti-
mization for compressive dynamic MRI. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8584–8588.
IEEE, 2020. (Cited in pages 25, 26, and 86.)

[Sawchuk 1972] Alexander A Sawchuk. Space-variant image motion degradation and
restoration. Proceedings of the IEEE, vol. 60, no. 7, pages 854–861, 1972. (Cited in
page 29.)

[Schaul 2013] Tom Schaul, Sixin Zhang and Yann LeCun. No more pesky learning rates. In
International conference on machine learning (ICML), pages 343–351. PMLR, 2013.
(Cited in page 150.)

[Schmaltz 2010] Christian Schmaltz, Pascal Gwosdek, Andrés Bruhn and Joachim We-
ickert. Electrostatic halftoning. In Computer Graphics Forum, volume 29, pages
2313–2327. Wiley Online Library, 2010. (Cited in pages 25, 95, and 113.)

[Schmitt 2012] Franz Schmitt, Michael K Stehling and Robert Turner. Echo-planar imag-
ing: theory, technique and application. Springer Science & Business Media, 2012.
(Cited in pages 24 and 85.)

[Schuler 2015] Christian J Schuler, Michael Hirsch, Stefan Harmeling and Bernhard
Schölkopf. Learning to deblur. IEEE transactions on pattern analysis and machine
intelligence, vol. 38, no. 7, pages 1439–1451, 2015. (Cited in page 125.)

[Shannon 1948] Claude Elwood Shannon. A mathematical theory of communication. The
Bell system technical journal, vol. 27, no. 3, pages 379–423, 1948. (Cited in page 24.)

[Shannon 1949] Claude E Shannon. Communication in the presence of noise. Proceedings
of the IRE, vol. 37, no. 1, pages 10–21, 1949. (Cited in page 24.)



BIBLIOGRAPHY 205

[Sherry 2020] Ferdia Sherry, Martin Benning, Juan Carlos De los Reyes, Martin J
Graves, Georg Maierhofer, Guy Williams, Carola-Bibiane Schönlieb and Matthias J
Ehrhardt. Learning the sampling pattern for MRI. IEEE Transactions on Medical
Imaging, vol. 39, no. 12, pages 4310–4321, 2020. (Cited in pages 25, 26, 60, 86,
and 87.)

[Shih 2021] Yu-hsuan Shih, Garrett Wright, Joakim Andén, Johannes Blaschke and Alex H
Barnett. cuFINUFFT: a load-balanced GPU library for general-purpose nonuniform
FFTs. In 2021 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pages 688–697. IEEE, 2021. (Cited in pages 22, 112,
and 133.)

[Shimron 2022] Efrat Shimron, Jonathan I Tamir, Ke Wang and Michael Lustig. Implicit
data crimes: Machine learning bias arising from misuse of public data. Proceedings
of the National Academy of Sciences, vol. 119, no. 13, page e2117203119, 2022.
(Cited in pages 139, 183, and 184.)

[Simonyan 2015] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. In Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2015. (Cited in page 163.)

[Smith 2018] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying and Quoc V Le. Don’t
decay the learning rate, increase the batch size. In International Conference on
Learning Representations, 2018. (Cited in pages 149 and 168.)

[Sodickson 1997] Daniel K Sodickson and Warren J Manning. Simultaneous acquisition of
spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magnetic
resonance in medicine, vol. 38, no. 4, pages 591–603, 1997. (Cited in page 125.)

[Soudry 2018] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar and
Nathan Srebro. The implicit bias of gradient descent on separable data. The Journal
of Machine Learning Research, vol. 19, no. 1, pages 2822–2878, 2018. (Cited in
page 45.)

[Sun 2015] Jian Sun, Wenfei Cao, Zongben Xu and Jean Ponce. Learning a convolutional
neural network for non-uniform motion blur removal. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 769–777, 2015. (Cited
in page 125.)

[Sun 2016] Jian Sun, Huibin Li, Zongben Xuet al. Deep ADMM-Net for compressive sens-
ing MRI. Advances in neural information processing systems, vol. 29, 2016. (Cited
in pages 41, 45, 124, 129, and 132.)

[Szegedy 2016] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages
2818–2826, 2016. (Cited in page 168.)

[Tan 2016] Conghui Tan, Shiqian Ma, Yu-Hong Dai and Yuqiu Qian. Barzilai-borwein
step size for stochastic gradient descent. Advances in neural information processing
systems, vol. 29, 2016. (Cited in pages 40 and 151.)

[Teuber 2011] Tanja Teuber, Gabriele Steidl, Pascal Gwosdek, Christian Schmaltz and
Joachim Weickert. Dithering by differences of convex functions. SIAM Journal
on Imaging Sciences, vol. 4, no. 1, pages 79–108, 2011. (Cited in page 25.)



206 BIBLIOGRAPHY

[Tieleman 2012] Tijmen Tieleman and G Hinton. Divide the gradient by a running average
of its recent magnitude. COURSERA Neural Networks for Machine Learning. Mach.
Learn, vol. 6, pages 26–31, 2012. (Cited in pages 7, 40, 132, and 151.)
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Abstract:
This thesis addresses different aspects of learning for computational Magnetic

Resonance Imaging. The first chapter is an introduction to computational imag-
ing and it illustrates through the case of MRI the developments that have guided
this field. It also contains a pedagogical introduction to inverse problems and the
associated reconstruction methods. This introduction traces the early linear recon-
struction methods, the emergence of non-linear methods and recent advances in
reconstruction methods that are learned with neural networks. The following chap-
ters are based on different publications or preprints and, although links are made
between the different chapters, they can be read independently of each other. The
second chapter deals with spurious minimizers in the optimization of non-uniform
Fourier sampling schemes. The motivation is the optimization of MRI sampling
schemes for a chosen reconstruction method and for a specific image database. This
chapter shows that this type of problem has a combinatorial number of minimizers
that can disappear with the large number of images in the training database but that
classical MRI databases do not contain enough images to expect this phenomenon
to appear. The third chapter proposes a method to globalize the convergence for the
optimization of Fourier sampling schemes. This drastically reduces the numerical
cost of the optimization while maintaining a significant gain in the image quality.
The fourth chapter deals with the training of neural networks that are adaptive to
changes in the physics of the acquisition. This formalism allows to solve several
blind inverse problems. Finally, the fifth chapter tackles the optimization of neural
networks. It proposes a method to scale the learning rate and this opens the way
to automate the choice of the hyperparameters during the training phase.

Abstract for general audience:
MRI scanners, like other medical imaging devices, allow imaging the interior

of a body. They require intensive numerical computations and complex models,
both because of the noise in the measurements and the complexity of retrieving the
image. In recent years, learning methods have emerged for recovering the image
of the interior of a patient. The principle is to learn to reconstruct the image
from a large volume of data. They have allowed to reduce MRI acquisition times,
to greatly improve image quality, and to build acquisition sequences adapted to
the scanned image (knee or brain for example). This thesis proposes methods to
reduce training times and to reduce the dependence on the large volume of data
needed. The adaptability of the learning methods and the automation of the choice
of training parameters are also addressed.

Keywords: optimization, learning, inverse problems, MRI, neural networks



Résumé :
Cette thèse traite d’aspects liés à l’apprentissage pour l’Imagerie par Résonance

Magnétique computationnelle. Le premier chapitre est une introduction à l’imagerie
computationnelle et illustre à travers le cas de l’IRM les évolutions ayant guidé ce
domaine. Il contient aussi une introduction pédagogique aux problèmes inverses
et les méthodes de reconstruction associées. Cette introduction retrace les pre-
mières méthodes de reconstruction linéaires, l’apparition de méthodes non linéaires
et les méthodes récentes de reconstruction apprises à l’aide de réseaux de neu-
rones. Le second chapitre traite des minimiseurs parasites dans l’optimisation de
schémas d’échantillonnage de Fourier dont la motivation est l’optimisation de sché-
mas d’échantillonnage pour l’IRM pour une méthode de reconstruction choisie et
pour une base de données d’images spécifique. Ce chapitre montre que ce type
de problème a un nombre combinatoire de minimiseurs qui peuvent disparaître
avec le grand nombre d’images dans la base de données mais que les bases de
données classiques d’IRM ne contiennent pas assez d’images pour espérer voir ap-
paraître ce phénomène. Le troisième chapitre propose une méthode de globalisa-
tion de la convergence pour l’optimisation de schémas de Fourier. Cela permet
de grandement réduire le coût numérique de l’optimisation tout en conservant un
gain dans l’amélioration des images. Le quatrième chapitre traite de l’entraînement
de réseaux de neurones “unrolled” adaptatifs à des changements dans la physique
de l’acquisition. Ce formalisme permet de résoudre plusieurs problèmes inverses
aveugles. Enfin, le cinquième chapitre traite des méthodes d’optimisation pour
des réseaux de neurones de manière générale. Il propose une méthode permettant
d’introduire une mise à l’échelle du pas pour l’optimisation de réseaux de neu-
rones. Cela ouvre la voie à une automatisation du choix des hyperparamètres lors
de l’entraînement.

Mot clés : optimisation, apprentissage, problèmes inverses, IRM, réseaux de
neurones
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