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Optimal mosquito release strategies for vector-borne disease control Résumé

Avec la hausse globale des maladies à vecteurs et l'expansion des habitats des moustiques dues au changement climatique, le contrôle des populations de moustiques est sans doute un des principaux défis pour la santé humaine dans les années à venir. Cette thèse est consacrée à la modélisation, l'analyse et la simulation de stratégies optimales de contrôle des moustiques et des maladies qu'ils transmettent en utilisant des lâchers de spécimens modifiés.

Nous étudions d'abord les stratégies optimales de remplacement de population. Celles-ci consistent à remplacer de manière optimale la population sauvage par une population porteuse de la bactérie endosymbiotique Wolbachia, car il a été démontré que les moustiques porteurs de cette bactérie sont moins susceptibles de transmettre certains arbovirus. En considérant une limite de fécondité élevée, nous réduisons l'étude de la population de moustiques à une seule équation sur la proportion de moustiques infectés par Wolbachia. Nous étudions d'abord des stratégies optimisant une combinaison convexe du coût des lâchers et de la performance de la technique. Nous effectuons une analyse complète de ce problème, en prouvant une propriété de monotonie temporelle sur la proportion de moustiques infectés par Wolbachia et en utilisant une reformulation du problème basée sur un changement de variable approprié. Dans un deuxième temps, nous considérons l'optimisation spatiale des lâchers, en optimisant un seul lâcher instantané à l'instant initial maximisant la proportion finale de moustiques infectés par Wolbachia dans le domaine à un horizon temporel donné. Nous caractérisons complètement les solutions sous certaines hypothèses dans le cas non-diffusif. De plus, des simulations sont effectuées pour le cas avec diffusion. Enfin, nous étendons l'objet de l'étude aux humains. Nous considérons un modèle épidémiologique dans lequel les deux populations sont prises en compte ainsi que la dynamique d'une maladie vectorielle avec une transmission exclusivement homme-moustique et moustique-homme comme la dengue. Dans ce cadre, nous minimisons la quantité d'infections humaines pendant une épidémie en utilisant des lâchers instantanés de spécimens modifiés, représentés par des combinaisons linéaires de mesures de Dirac avec des coefficients positifs déterminant leurs intensités. Les stratégies optimales pour le remplacement de population et la technique de l'insecte stérile sont étudiées numériquement à l'aide d'algorithmes ad hoc, basés sur l'écriture de conditions d'optimalité au premier ordre caractérisant la meilleure combinaison de mesures de Dirac.

In the evolutionary arms race that pathogens 1 and hosts have been running for eons, perhaps one of the most curious ways microorganisms have found to reach our bodies is by hitchhiking inside the bodies of other life forms. Vector-borne diseases are diseases transmitted to humans by means of a necessary non-human animal intermediary, usually arthropods, transmitting the disease through their bite. The intermediary animal is called the vector of the disease. The list of known vector-borne diseases is long and includes some of the biggest human killers of all times. To name a few vector-borne diseases and its vectors: Bubonic Plague, which decimated Europe in the XIVth century, is transmitted by fleas, Lyme disease by ticks, Typhus by lice, the Sleeping sickness by Tsetse flies and Leishmaniasis by sandflies [START_REF]Vector-borne diseases[END_REF]. In this work we will focus on one particular vector and its associated vector-borne diseases: the mosquito.

Mosquitoes are, by far, the vectors responsible of transmitting the wider variety of diseases, and with the biggest toll on human health around the globe. The mosquitoes transmitting human diseases can be divided into two subfamilies: Anophelinae and Culicinae.

The first family includes the mosquitoes of the genus Anopheles. Anopheles mosquitoes are the culprits transmitting Malaria. Malaria is a severe disease caused by protozoa of the genus Plasmodium, it is known since ancient times and it is considered one of the infectious diseases responsible for more human deaths in history. Despite seeing a clearly descending trend in the last 15 years, Malaria remains as the seventh leading cause of death for children under 5 years old, and the fifth for children between 5 and 14 [START_REF] Ritchie | Causes of death[END_REF]. With the African region bearing, by far, the biggest burden in cases and deaths [START_REF] Roser | Malaria[END_REF], as we can see in Figure 1. According to the World Health Organisation (WHO), there were 241 million cases and 627000 deaths by Malaria in 2020 alone. The African region representing 95% of cases and 96% of deaths. Children under 5 accounting for around 80% of all malaria deaths in the region [153].

On the other hand, the subfamily Culicinae includes Aedes and Culex mosquitoes. Several species of mosquitoes belonging to these genus transmit virus causing diseases like dengue fever, Zika, Chikungunya, West Nile fever, Yellow fever or japanese encephalitis amongst others. Amidst these diseases, dengue is the most prevalent one.

Dengue, in over 80% of cases, presents mild to no symptoms. Nevertheless, some cases can develop a direr version of the disease called severe dengue, which can produce intense bleeding and death. In spite of there not being specific treatment for severe dengue, with an early detection and proper medical care, fatality rates can get as low as 1%. Nevertheless, dengue is a cause of major concern in tropical and subtropical areas. Estimations suggest that 100 to 400 million Figure 1 -Share of deaths from malaria by age group in the last three decades (left) and malaria death toll geographic distribution as of 2019 (right). Source of the image: [START_REF] Roser | Malaria[END_REF] infections of dengue occur each year [START_REF]Dengue and severe Dengue[END_REF], with Africa, South America, and especially South East Asia bearing most of them. The last decades have seen a dramatic increase in cases. Having almost doubled in the last thirty years [START_REF]Global Burden of Disease Study 2019 (GBD 2019) Reference Life Table[END_REF] (See Figure 2). Figure 2 -Number of dengue fever infections' evolution in the last three decades (left) and its geographic distribution as of 2019 (right). Source of the data: [START_REF]Global Burden of Disease Study 2019 (GBD 2019) Reference Life Table[END_REF]. Source of the image: [110] No efficient vaccine has been found yet for any of these viruses, although, Valneva and Pfizer have promising vaccine candidates at Phase 3 of clinical trials for Chikungunya and Lyme disease [START_REF] Valneva | Valneva Successfully Completes Pivotal Phase 3 Trial of Single-Shot Chikungunya Vaccine Candidate[END_REF][START_REF] Pfizer | Pfizer and Valneva Initiate Phase 3 Study of Lyme Disease Vaccine Candidate VLA15[END_REF]. The only commercialized vaccine for dengue so far is Dengvaxia ® . After the initial hype, governments and agencies took a step back and it is currently only recommended for children ranging 9 to 16 years old and only if they have been previously infected by one of the strains of dengue (dengue is, in fact, four different closely related virus strains DENV-1 to DENV-4), but is discouraged for other ages and for seronegative people since it has been shown to increase the risk of developing severe dengue in case of an infection [START_REF] Sridhar | Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy[END_REF][START_REF] Tully | Dengvaxia: the world's first vaccine for prevention of secondary dengue[END_REF][START_REF] Thomas | A review of Dengvaxia®: development to deployment[END_REF]. Moreover, treatment for vector-borne diseases usually consists on alleviating the symptoms, since rarely the pathogen can be targeted directly. Therefore, prevention against these diseases relies heavily on controlling the vector.

On top of this, in recent years an expansion of the vector's habitat is taking place. In Europe, for instance, dengue vector Ae. albopictus was first documented in Albania in the 1970s and it has not ceased to expand its distribution ever since, settling with special strength along the mediterranian coast [START_REF] Roche | The Spread of Aedes albopictus in Metropolitan France: Contribution of Environmental Drivers and Human Activities and Predictions for a Near Future[END_REF]. Its current known distribution is depicted in Figure 3. To give two examples, in France, Ae. albopictus entered from Italy in 2004. Its advance has been steady and it has colonized great areas of the south and south-west since then. It has settled even in other areas detached from the main front like the Parisian region, probably following main human transportation routes [START_REF](Aedes albopictus) en France métropolitaine[END_REF]. This invasion process has been well studied and documented and has also sparkled the interest from a mathematical point of view [START_REF] Roques | Dynamics of Aedes albopictus invasion Insights from a spatio-temporal model[END_REF]. Also in 2004, Aedes albopictus arrived in Spain, being firstly detected in the catalan town of San Cugat del Vallès [START_REF] Aranda | First record and establishment of the mosquito Aedes albopictus in Spain[END_REF]. Although initially attributed to the importation of used car tires, the real origin is not clear [START_REF] Roiz | Initial distribution assessment of Aedes albopictus (Diptera: Culicidae) in the Barcelona, Spain, area[END_REF]. It has since expanded to other regions, specially southwards along the mediterranian coast. This, in combination with the presence of the common Culex mosquitoes has lead to West Nile fever outbreaks in the last years in Andalusia [START_REF]Actualización de la situación epidemiológica de la fiebre del Nilo occidental (west Nile fever)[END_REF] and efforts from the government to try to contain their advance [START_REF]Programa de vigilancia fiebre del Nilo occidental[END_REF]. Although the epidemiological situation in Europe is not worrying for the moment, a project for controlling vector population based on the Sterile Insect Technique (see Section II.2) [START_REF] Tur | Sterile Insect Technique in an Integrated Vector Management Program against Tiger Mosquito Aedes albopictus in the Valencia Region (Spain): Operating Procedures and Quality Control Parameters[END_REF], is currently being developed in the Valencia region, where Aedes albopictus has a stronger presence. 

I.2 Mosquito life cycle

Although details vary amongst species [START_REF] Crans | A classification system for mosquito life cycles: life cycle types for mosquitoes of the northeastern United States[END_REF], mosquitoes undergo similar stages during their development. Their life cycle can be split into two clearly distinct phases: an aquatic phase composed of three stages, egg, larval and pupal, and an aerial phase as adults. In the aquatic phase mosquitoes are developing and sexually immature. After undergoing a metamorphose, they reach their aerial phase, where they mate and reproduce. This work does not focus on the modeling of the aquatic phase, which is a whole topic on its own. For the sake of completeness and as a starting point for the kind of models that will be discussed in this thesis, we quickly introduce the following model that can be found in [START_REF] Strugarek | Oscillatory regimes in a mosquito population model with larval feedback on egg hatching[END_REF].

         E ′ = b E A -(h(L) + d E )E, L ′ = h(L)E -(ϕ(L) + τ L + d L )L, P ′ = τ L L -(τ P + d P )P, A ′ = τ P P -d A A.
(1) This model is an example of compartmental modeling, a classical way to approach the modeling of population dynamics of a species. The model consists on a set of quantities or compartments that represent the abundance of, in this case, a certain life stage of the mosquito population, and which evolve according to ordinary differential equations. These equations can depend on the abundance of individuals in the compartment itself or in other compartments, creating a flow of individuals between compartments. All the parameters in system (1) are positive.

In [START_REF] Adams | How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model[END_REF], eggs are considered to be laid by adults at a certain rate b E , and die at rate d E . The eggs are considered to hatch at a rate depending on the amount of larvae present in the environment, h(L), since larval density may stimulate or inhibit the hatching ability of the eggs through more than one mechanism simultaneously [START_REF] Edgerly | To hatch or not to hatch? Egg hatch response to larval densityand to larval contact in a treehole mosquito[END_REF][START_REF] Livdhal | The complex hatching response of Aedes eggs to larval density[END_REF]. After hatching, eggs become larvae. At this stage intra-specific competition for resources between larvae is a well documented fact affecting their development (and even their vector capacity as adults) [START_REF] Alto | Larval Competition Differentially Affects Arbovirus Infection in Aedes Mosquitoes[END_REF][START_REF] Bara | Effect of Larval Competition on Extrinsic Incubation Period and Vectorial Capacity of Aedes albopictus for Dengue Virus[END_REF]. It is represented in this model, [START_REF] Adams | How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model[END_REF], by the term ϕ(L)L. Larvae die at rate d L and progress to the pupal stage at rate τ L . Pupae, analogously die at rate d P and progress to the adult stage at rate τ P . At this stage mosquito reproduce, laying eggs and restarting the cycle.

Although model ( 1) is already fairly general, it is not the only way in which the life cycle of the mosquito can be modeled. Models can take into account disparities in male and female mosquito population, like having a different likelihood of reaching adulthood or having different dynamics, for instance, a different life expectancy. They can also take into consideration the resource availability in the environment by introducing a carrying capacity in the egg or adult stages (see II.2). As for model [START_REF] Adams | How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model[END_REF], more layers of complexity can be added to it. For instance, mosquito population presents a clear seasonality, specially in temperate climates [START_REF] Ewing | Uncovering mechanisms behind mosquito seasonality by integrating mathematical models and daily empirical population data: Culex pipiens in the UK[END_REF][START_REF] Honório | Temporal distribution of Aedes aegypti in different districts of Rio de Janeiro, Brazil, measured by two types of traps[END_REF][START_REF] Lana | Assessment of a trap based Aedes aegypti surveillance program using mathematical modeling[END_REF][START_REF] Tran | A rainfall-and temperature-driven abundance model for Aedes albopictus populations[END_REF]. This is due to its complex dependence on external factors such as: temperature, rainfall and humidity, presence or lack of nutrients, length of the daylight (also known as photoperiod), etc. These factors vary periodically through the year. Incorporating periodicity into the parameters of system (1) can help to reproduce such variations, which can in turn help to predict disease outbreaks, which also present seasonal variations [START_REF] Pliego Pliego | Seasonality on the life cycle of Aedes aegypti mosquito and its statistical relation with dengue outbreaks[END_REF][START_REF] Codeço | Estimating the effective reproduction number of dengue considering temperature-dependent generation intervals[END_REF][START_REF] Mukhtar | Assessing the role of climate factors on malaria transmission dynamics in South Sudan[END_REF][START_REF] Shen | The Impacts of Mosquito Density and Meteorological Factors on Dengue Fever Epidemics in Guangzhou, China, 2006-2014: a Time-series Analysis[END_REF].

Furthermore, some mosquito species present mechanisms to resist adverse conditions, such as desiccation or low temperatures during winters, which are not included in this simple model. These mechanisms include, at the egg stage, quiescence (dormancy responding directly to adverse conditions, ceasing as soon as good conditions return) and diapause (more complex and hormonally regulated, allowing to resist seasonal adverse conditions like winter), but also dormancy in the larval or adult stage [START_REF] Diniz | Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success[END_REF].

I.3 Epidemiology of Vector Borne Diseases

We turn the focus in this section to the adult stage of the mosquito. It is in this last stage that female mosquitoes acquire their blood feeding behaviour. Females use blood to obtain proteins, iron and other important substances for the egg formation [START_REF] Clements | The Biology of Mosquitoes[END_REF]. Mosquitoes feed mostly on birds and mammals, and some, like Ae. aegypti or Ae. albopictus, feed almost exclusively on human blood [START_REF] Ponlawat | Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand[END_REF]. Once they have had a blood meal containing a pathogen, it can develop in their bodies and reach the salivary glands, from where it can be transferred to a different human in a subsequent blood meal. The fact that anthropophilic mosquitoes are usually vectors of human diseases suggest a coevolution of host preference and pathogen-host interaction [START_REF] Takken | Host preferences of blood-feeding mosquitoes[END_REF].

Compartmental models are widely spread to model disease transmission. A classical approach to modeling the phenomenon are the so called SIR models (Susceptible-Infectious-Recovered). The basic modeling approach is the following

S ′ = bH - β H IS -bS, I ′ = β H IS -σI -bI, R ′ = σI -bR. (2) 
In this model, b stands for the birth (and death) rate, β is proportional to the probability of transmission between an infectious and a susceptible and σ stands for the rate at which people recover from disease. The total human population H, is considered to be constant. Transmission occurs when an infectious and a susceptible human encounter, this is modeled by humans in the susceptible compartment becoming infectious at a rate proportional to the product of the susceptible and the infectious population. This kind of models have its roots in the chemical law of mass action and consider random encounters between individuals in a well mixed population [START_REF] Heesterbeek | The law of mass-action in epidemiology: A historical perspective[END_REF]. These models, yet being simple, capture the essence of disease transmission. This model can be made gradually more complex. For instance an exposed compartment, E, can be added, i.e., a compartment of individuals that have the disease but are not able to transmit it yet, becoming a so called SEIR model. Many other tweaks can be done so that particular characteristics of each disease can be taken into account. To name a few: the presence of asymptomatic infectious people, a lack of recovery from disease or the ability to be reinfected.

For a vector-borne disease, such as dengue or malaria, the model has to be extended, for not only the human population must be considered, but also the mosquito one. The number of equations increases as a consequence. We introduce

S ′ H = b H H - β H I M S H -b H S H , E ′ H = β H I M S H -γ H E H -b H E H , R ′ H = σ H I -b H R, I ′ H = γ H E H -σ H I H -b H I H , S ′ M = f (M ) - β H S M I H -d M S M , E ′ M = β H S M I H -γ M E M -d M E M , I ′
to mosquito and mosquito to human are different phenomena, which do not occur necessarily with the same probability. Nevertheless, due to the difficulty in measuring the second one in lab conditions, β is usually considered to be the same for both cases. Mosquitoes' lack of a recovered compartment comes from the fact that mosquitoes remain infectious during their short lifetime and do not recover from these diseases. Here, f is a function that takes into account the growth of the mosquito population. We write it in a deliberately vague way to keep the model as general as possible for the moment. It is not unusual that this growth term does not only depend on the amount of female adult mosquitoes, represented here by M , but rather that it also takes into account, in one way or another, the aquatic phase of the mosquito life cycle. These models will play a role in chapter 3, when the control techniques we introduce in the following section are used in the context of epidemiology, where their potential to control disease becomes much more clear.

Dengue is a particular case worth singling out. As mentioned before, it presents 4 different strains than can infect individuals independently. Although this will not be treated in this thesis, models can take this into consideration at the cost of increasing the number of equations [START_REF] Kooi | Analysis of an asymmetric two-strain dengue model[END_REF][START_REF] Aguiar | Mathematical models for dengue fever epidemiology: A 10-year systematic review[END_REF]. It is also worth remarking that epidemiological models presented and studied in this work do not take into account vertical transmission of the arboviruses (the direct transmission of the pathogen from the mother to the offspring). The frequency of this phenomenon and its importance in transmission is still debated, although some studies suggest that it may play a key role in the establishment of endemicity in these viruses [START_REF] Ferreira-De-Lima | Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: a systematic review[END_REF]. For completeness, a mathematical model tackling this question can be found in [START_REF] Adams | How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model[END_REF].

II Vector Control: State of the Art

Vector control to prevent vector-borne diseases has a long history. It can be mainly split in two eras. Before the discovery of Dichlorodiphenyltrichloroethane (DDT), control was mainly done by environmental management: drainage of marsh and swamps, thus removing breeding sites, installation of mosquito screens in doors and windows as well as bed nets [START_REF] Wilson | The importance of vector control for the control and elimination of vector-borne diseases[END_REF]. In fact, the drainage of stagnant water to prevent Malaria dates back to antiquity, although the nature of these diseases and their means of transmission were not properly understood [START_REF] Boualam | Malaria in Europe: A Historical Perspective[END_REF][START_REF] Wilson | The importance of vector control for the control and elimination of vector-borne diseases[END_REF].

In the early 1940s, the discovery of DDT changed the panorama, and pesticides started to take the lead as the main tool to fight against vector-borne diseases. Big eradication campaigns were launched all around the world, such as the Global Malaria Eradication Programme (1955-1969) [START_REF] Nájera | Some lessons for the future from the Global Malaria Eradication Programme (1955-1969)[END_REF]. These campaigns relied heavily on generalized indoor residual spraying (spraying the interior of houses with insecticide periodically) but also aimed at raising public awareness and seeking community participation, resulting in the effective elimination of Malaria in several areas of the world like North America, the Caribbean, Western Europe and parts of Asia [START_REF] Wilson | The importance of vector control for the control and elimination of vector-borne diseases[END_REF][START_REF] Ogunah | Malaria vector control strategies. What is appropriate towards sustainable global eradication?[END_REF]. The use of insecticides, nevertheless, presents a series of issues that must be taken into consideration. Insecticides are, in general, non-specific, i.e., they kill several insects, and not only those we want to target. This can carry with it a series of ecological problems. Moreover, pesticides can often be toxic for other animals too, including humans, and therefore must be handled and used carefully. For instance, the once globally used DDT was banned in most countries in the 1970s when its high toxicity for humans was discovered [START_REF] Turusov | Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks[END_REF]. Pesticides present also a second type of problems: the development of resistance in mosquitoes due to mutations that are consequently selected. Resistance to different families of widely used insecticides has been observed around the world [START_REF] Moyes | Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans[END_REF]. This requires the constant change in dose and pesticide type to maintain the effectiveness of the technique, and, more generally, to the need of incorporating specific insecticide resistance management in any proper vector control campaign [START_REF] Dusfour | Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges[END_REF].

In recent years, we might be entering in a new era of vector control thanks to the rise of the rear and release techniques [START_REF] Ritchie | Reflections from an old Queenslander: can rear and release strategies be the next great era of vector control?[END_REF]. These techniques consist on the mass production of mosquitoes with a certain modification in order to be released in the wild. The goal of the introduction of these modified mosquitoes being to alter the original population in a way that makes less likely the propagation of diseases, or the reduction of the population directly. Particularly, two techniques have gained traction in the mosquito control community: The so called Wolbachia method and Sterile Insect Technique (SIT).

There is no silver bullet when it comes to mosquito control. In order to mitigate, or even eradicate, vector-borne diseases and its dire consequences on human health, an integrated vector management approach must always be implemented. Collaboration with local communities and authorities, communication and education on healthy habits around mosquito, vector and disease surveillance and evidence-based decision making to rationally use all the tools at our disposal, are essential pieces of it [START_REF]Integrated vector management for malaria control[END_REF]. It is precisely in the evidence-based decision making process that mathematical modeling, analysis and simulation (including the humble contributions of this thesis) finds its place in this fight. The addition of the rear and release techniques to the tool set can be a game changer in the years to come.

II.1 Use of Wolbachia

Wolbachia is an endosymbiotic bacterium, i.e. a bacterium living inside the cells of the host, of the order Rickettsiales. Wolbachia infects a wide variety of arthropods and nematodes, presenting also very different effects and relationships with its hosts [START_REF] Werren | Wolbachia: master manipulators of invertebrate biology[END_REF]. It was believed to be naturally present in around 20% of arthropods, although more recent analysis raise this figure up to 66% [START_REF] Hilgenboecker | How many species are infected with Wolbachia?-A statistical analysis of current data[END_REF], which would make of Wolbachia the most prevalent intracellular bacteria genus. First discovered in the gonads of mosquito Culex pipiens almost a century ago [START_REF] Hertig | Studies on rickettsia-like micro-organisms in insects[END_REF], it was not until the 1990s that Wolbachia caught the attention of the scientific community because of its abundance and effects produced on its hosts. In insects, Wolbachia behaves mostly as a reproductive parasite, being transmitted vertically from the mother to the offspring. To improve its chances of reproduction Wolbachia alters, sometimes drastically, the phenotype of its hosts. Among these changes we find feminization (genetic males that develop as females), parthenogenesis (females that reproduce without male intervention), male killing (males die at the embryo stage) and, the most frequent, Cytoplasmic Incompatibility (CI) [START_REF] Werren | Wolbachia: master manipulators of invertebrate biology[END_REF]. CI consists on the crossed infertility of an infected male and a non-infected female, see Table 1. Although it is not clear if Wolbachia is naturally present in Aedes mosquitoes [START_REF] Ross | An elusive endosymbiont: Does Wolbachia occur naturally in Aedes aegypti ?[END_REF], they can be artificially infected with particular strains that have been shown to produce CI on them [START_REF] Kambhampati | Unidirectional cytoplasmic incompatibility in the mosquito, Aedes albopictus[END_REF][START_REF] Sinkins | Wolbachia and cytoplasmic incompatibility in mosquitoes[END_REF]. This alone, allows already to use the release of Wolbachia-infected mosquitoes as a control strategy. If only male mosquitoes are released, the overall effects and mathematical modeling of this strategy become the same as with the SIT (see Section II.2). This particular use of Wolbachia is a form of Incompatible Insect Technique (IIT). A proper sex separation in this technique is crucial since the accidental release of females can lead to a undesired population replacement, and once the population is replaced by a population carrying Wolbachia the technique would stop being effective [START_REF] Papathanos | A perspective on the need and current status of efficient sex separation methods for mosquito genetic control[END_REF]. But the main reason for its use in vector control is that Wolbachia has been shown to reduce the vector capacity of Aedes mosquitoes for transmitting several arboviruses like dengue, [START_REF] Mousson | The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus[END_REF][START_REF] Walker | The w Mel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations[END_REF], chinkugunya, [START_REF] Moreira | A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium[END_REF], or zika, [START_REF] Chouin-Carneiro | Wolbachia strain wAlbA blocks Zika virus transmission in Aedes aegypti[END_REF], by reducing the virus load in the saliva, [START_REF] Moreira | A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium[END_REF][START_REF] Bian | The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti[END_REF], but also by producing a malformation in the trunk of its hosts, preventing the normal blood meal of the mosquitoes [START_REF] Turley | Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti[END_REF]. More recent evidence points in the direction of Wolbachia being useful for other genus of mosquito, even for reducing Malaria transmission by Anopheles mosquitoes, which is caused by protozoa and not viruses [START_REF] Ong | Wolbachia goes to work in the war on mosquitoes[END_REF].

Due to all the above, Aedes mosquitoes infected with Wolbachia have come to be a remark- able tool in the fight against mosquito-borne diseases. These features allow for a second use of Wolbachia-infected mosquito releases (the one that will be treated extensively in this thesis). By releasing both males and females, a self-sustained population of Wolbachia-infected mosquitoes can be established. This, combined with the CI, can lead to the replacement of the wild mosquito population by a new population carrying the bacterium, and less efficient in transmitting diseases. Indeed, several successful mass releases have been carried already in different locations in Australia [START_REF] O'neill | Scaled deployment of Wolbachia to protect the community from dengue and other Aedes transmitted arboviruses[END_REF][START_REF] Ryan | Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia[END_REF], Indonesia [START_REF] Tantowijoyo | Stable establishment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, Indonesia[END_REF] or Brazil [START_REF] Garcia | Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion[END_REF]. Thanks to these deployments we begin to have promising evidence of its ability to reduce dengue cases for real [START_REF] Indriani | Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: a quasi-experimental trial using controlled interrupted time series analysis[END_REF][START_REF] Ryan | Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia[END_REF]. As for the IIT we find also successful recent deployments in the literature, whether it is used alone (Australia, [START_REF] Beebe | Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia[END_REF]) or in combination with the SIT (Thailand [START_REF] Kittayapong | Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand[END_REF], Mexico [START_REF] Martín-Park | Pilot trial using mass field-releases of sterile males produced with the incompatible and sterile insect techniques as part of integrated Aedes aegypti control in Mexico[END_REF] and China [START_REF] Zheng | Incompatible and sterile insect techniques combined eliminate mosquitoes[END_REF]). With results ranging from a 50% population reduction, to almost complete suppression. The main actor behind most of this rear and release programs is currently the World Mosquito Program, having active projects involving Wolbachia in twelve countries and territories [155].

Non-spatial models. Before moving on to more complex models, let us introduce the basics of vector control modeling using Wolbachia in the setting of population replacement. The introduction in an ecosystem of Wolbachia-infected mosquitoes (both males and females) is usually modeled as follows.

               M ′ (t) = b M M (t) 1 - M (t) + W (t) K 1 -s h W (t) M (t) + W (t) -d M M (t), W ′ (t) = b W W (t) 1 - M (t) + W (t) K -d W W (t) + u(t) , t ∈ [0, T ], M (0) = K 1 - d M b M , W (0) = 0. (4) 
Let us break down the expressions above. M (t) stands for the density of wild mosquitoes, while W (t) for the density of Wolbachia-infected mosquitoes. Both populations are modeled with a death term and a birth term following a logistic growth. This implies the growth of the mosquito population will slow down and eventually saturate at a certain value depending on K, called the carrying capacity. These terms model the limitation of the resources in an ecosystem and prevent the density from blowing up. The first equation presents also another term, 1 -s h M/(M + W ), taking into account the CI, where 0 < s h ⩽ 1 models how strict is this incompatibility. It is assumed that the wild population is at equilibrium and that no Wolbachiainfected mosquitoes are present in the wild at the beginning of the intervention. The model has different values for the birth and death rates in each population. This is because Wolbachia alters several parameters of the biology of mosquitoes. Different strains can have different effects but, in general, Wolbachia infection lowers the birth rate, b W ⩽ b M , and increases the death rate d W ⩾ d N of mosquitoes [START_REF] Lau | Infertility and fecundity loss of Wolbachiainfected Aedes aegypti hatched from quiescent eggs is expected to alter invasion dynamics[END_REF]. This must be taken into account when introducing Wolbachia in an ecosystem, since it can make Wolbachia-infected mosquitoes less competitive and thus harder to introduce [START_REF] Garcia | Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion[END_REF]. Wolbachia can also alter other parameters related to the dynamics of dengue inside the mosquitoes (see Chapter 3). Finally, the function u(•) in the second equation represents the rate at which Wolbachia-infected mosquitoes are released into the ecosystem. This, in a mathematical setting, is called the control function and we will impose some natural constraints on it. For instance, the rate at which mosquitoes are released must be necessarily bounded, 0 ⩽ u(t) ⩽ U a.e., but also the total amount of mosquitoes at our disposal cannot be unlimited, thus, it is natural to introduce a bound on the integral of the control, T 0 u(t)dt ⩽ C. Therefore we will consider, in general, u ∈ U T,C,U , with

U T,C,U := u ∈ L ∞ (0, T ) , 0 ⩽ u ⩽ U a.e. in (0, T ), T 0 u(t)dt ⩽ C . (5) 
Nonetheless, in this work, we will rarely work directly on system (4), but rather on a simplification of it. As shown in [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF], system (4) can be simplified when the birth rate of the mosquitoes is assumed to be much higher than its death rate. This assumption is consistent with biological observations. Details of this passage can be found in Chapter 1 and in [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF], but in a nutshell, by considering b M = b 0 M /ϵ and b W = b 0 W /ϵ and letting ϵ tend to 0, one can prove that W (t), converges to Kp(t) and M (t) converges to K(1 -p(t)), where p(t) represents the proportion of Wolbachia-infected mosquitoes in the system. It is the solution to the following equation

d dt p(t) = f (p(t)) + u(t)g(p(t)), t ∈ [0, T ] p(0) = 0. (6) 
Solutions of system (4) and the solution of equation ( 6) can be proven to be close to each other in the sense of the Gamma-convergence. In equation [START_REF] Almeida | Mosquito population control strategies for fighting against arboviruses[END_REF], g(p) is a decreasing function and f (p) is negative until a certain value p = θ and then positive, therefore the uncontroled system presents a bistable behaviour, consistent with the fact that, thanks to CI, Wolbachia-infected mosquitoes can invade a wild population if they are numerous enough. The particular expressions of f (p) and g(p) can be found in Chapter 1, (1.5).

There are several works in the literature tackling different control problems involving this equation. In [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF] the authors consider the problem of steering system (4) from its initial equilibrium to the other non-trivial stable equilibrium of the system

(M * , W * ) = (0, K (1 -d W /b W )).
In other words, they are interested in minimizing the distance, for a certain fixed time horizon T , between the final state of the system and the desired final state (M * , W * ) . In order to do this they pose the problem

min u∈U T ,C,U 1 2 M (T ) 2 + 1 2 ([W * -W (T )] + ) 2 .
They show that, when translated to the simplified one-equation setting the problem becomes

min u∈U T ,C,U (1 -p(T )) 2 .
In their work they prove that solutions are bang-bang (this means that u * (t) can only take the extreme values 0 and U ) and that the best releasing protocol consists on a single phase release.

In other words, all mosquitoes should be released at the highest rate possible and either at the beginning or at the end. The factor determining when to release being the total amount of mosquitoes available. If the amount of available mosquitoes is enough to trigger a population replacement, mosquitoes should be released at the start to take advantage of CI, if not, at the end, since mosquitoes will die out as time passes. In mathematical terms, this threshold is given by C being bigger or smaller than

θ 0 M f (ν)+M g(ν)
dν. A natural extension of these results consists in taking into account the cost of the releases in the functional to minimize. A first study of this question in a limited setting can be found in [START_REF] Almeida | Optimization and Control for Partial Differential Equations: Uncertainty quantification, open and closed-loop control, and shape optimization[END_REF]. In this work the problem is simplified by assuming that the final state is fixed and set to p(T ) = θ. They prove that, in this context, the strategy minimizing the cost consists in one uninterrupted release, done whenever in the time window. Another generalization is done by considering the time window not fixed and including the final time in the functional to minimize. In this case the best strategy is carrying the release non-uninterruptedly and from the beginning. They also carry simulations on the 2D system (4), finding results in line with those of the 1D equation [START_REF] Almeida | Mosquito population control strategies for fighting against arboviruses[END_REF]. Chapter 1 can be seen as further generalization of these results.

Works non focused on the study of equation ( 6) but also tackling the problem of the mosquito population replacement using Wolbachia are, for instance: [START_REF] Almeida | Mosquito population control strategies for fighting against arboviruses[END_REF], where some properties of optimal controls are shown, backed with numerical simulations, in a system similar to (4) but including not only adults but also eggs; [START_REF] Campo-Duarte | Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations[END_REF], where the question of minimizing final time and costs is also tackled; [START_REF] Bliman | Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control[END_REF], where a feedback control strategy guaranteeing the invasion while keeping the costs to a minimum is presented or [START_REF] Bliman | Feedback Control Principles for Biological Control of Dengue Vectors[END_REF] where general ideas for biological control of mosquitoes are established, in an attempt to establish 'model-free' feedback control principles. A similar optimal control approach for Wolbachia-infected mosquito releases, but applied to the context of the IIT can be found in [START_REF] Strugarek | On the use of the sterile insect release technique to reduce or eliminate mosquito populations[END_REF]. Although, as previously mentioned and as the authors point out, mathematically speaking, the model studied in the case of the IIT is equivalent to an SIT model.

Spatial models.

Although non-spatial models can describe the overall dynamics of a population, space plays a fundamental role when it comes to biological invasions. Hence, a natural extension of the models described is the addition of the space variable. Enriching the models in such a way can make arise new non-trivial strategies with no space-free equivalent. The natural spatial extension of model ( 4) can be written as follows,

               ∂ t M -D∆M = b M M 1 - M + W K(x) 1 -s h W M + M W -d M M, ∂ t W -D∆W = b W W 1 - M + W K(x) -d W W + u, t ∈ [0, T ], x ∈ Ω, M (0, x) = M 0 (x), W (0, x) = 0, x ∈ Ω, ∂ ν M (t, x) = ∂ ν W (t, x) = 0, x ∈ ∂Ω, (7) 
where now the densities of the mosquito population depend on time, but also on space, M = M (t, x), W = W (t, x). The last line of the model means that no mosquitoes leave the domain we are considering for the problem. These boundary conditions can be straightforwardly altered without affecting the rest of the model if the problem studied requires so. In this model mosquitoes are considered to move in the landscape by diffusion, at diffusion rate D, which is the standard when modeling population movement. In addition, to write the model in all generality, the carrying capacity, K(•), does not need to be homogeneous in all the domain when the space is taken into consideration, which is almost always the case in field conditions. However, usually in the literature when diffusion is considered, the carrying capacity is considered constant in all the domain. This model has its own simplified version involving the proportion of Wolbachia-infected mosquitoes, under the same assumptions on the birth rates.

     ∂ t p(t, x) -D∆p(t, x) = f (p(t, x)) + u(t, x)g(p(t, x)), t ∈ [0, T ], x ∈ Ω p(0, x) = 0, ∀x ∈ Ω, ∂ ν p(t, x) = 0, x ∈ ∂Ω, (8) 
A formal derivation of this equation can be found in [START_REF] Strugarek | Reduction to a Single Closed Equation for 2-by-2 Reaction-Diffusion Systems of Lotka-Volterra Type[END_REF] and [START_REF] Duprez | Optimization of spatial control strategies for population replacement, application to Wolbachia[END_REF]. This equation is, nonetheless, only valid in case the carrying capacity is homogeneous, i.e., K(x) = K for all x ∈ Ω. When an inhomogeneous carrying capacity is considered an extra term needs to be added to take into account the gradient in the abundance of mosquitoes across the domain. In [START_REF] Nadin | Hindrances to bistable front propagation: application to Wolbachia invasion[END_REF], a formal derivation of this equation is carried out. Approximating the total population of mosquitoes at first order by the carrying capacity, they arrive to the following expression

         ∂ t p(t, x) -D∆p(t, x) -2D ∇K(x) K(x) • ∇p(t, x) = f (p(t, x)) + u(t, x)g(p(t, x)), (t, x) ∈ [0, T ] × Ω, p(0, x) = 0, ∀x ∈ Ω, ∂ ν p(t, x) = 0, x ∈ ∂Ω, (9) 
In Chapter 2 we study a problem where, in a first time, we set D = 0, i.e., diffusion is not considered, but with a non-homogeneous carrying capacity. Assuming K(•) to be constant, several problems have been addressed already in works preceding this thesis.

Since partial differential equations are much more difficult to study than ordinary ones a common approach to simplify the study of equation ( 8) is by posing the control problem on the initial datum of the equation. That is, consider one single instantaneous release at time t = 0, and then considering u(t, x) = 0. With u(0, x) = u 0 (x) and u 0 ∈ U 0,C,U , where

U 0,C,U := 0 ⩽ u 0 (x) ⩽ U a.e. in Ω, Ω u 0 (x)dx ⩽ C . (10) 
In line with this we find, for instance, [START_REF] Duprez | Optimization of spatial control strategies for population replacement, application to Wolbachia[END_REF], where the problem

min u 0 ∈U 0,C,U Ω (1 -p(T, x)) 2 dx,
is studied. In this work it is proven that spatially constant solutions are not always optimal, although they are always critical points. They also show that in case C is small enough, spatially constant solutions are at least local minimizers. Lastly, they give numerical counterexamples on the optimality of constants. About this same problem, in [START_REF] Almeida | CEMRACS 2018-numerical and mathematical modeling for biological and medical applications: deterministic, probabilistic and statistical descriptions[END_REF], Gaussian releases are considered and their location is optimized numerically and in [START_REF] Strugarek | Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model[END_REF] they settle the existence and give estimates for a threshold on a radially symmetric initial data such that the invasion is guaranteed. They also quantify the uncertainty associated with the invasion in a more realistic scenario by studying a stochastic framework. In [START_REF] Nadin | On the maximization problem for solutions of reaction-diffusion equations with respect to their initial data[END_REF], they consider a closely related problem, max u 0 ∈U 0,C,U Ω p(T, x) dx, and prove the existence of solutions (even for f (p) much more general than the one defined in (1.5)), and also give some conditions on the optimality of constants. In [START_REF] Mazari | Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: two-scale expansions and symmetrisations[END_REF], the authors extend these results and give a characterization of singular controls.

Finally, regarding the study of traveling waves, in [START_REF] Bliman | Establishing traveling wave in bistable reaction-diffusion system by feedback[END_REF] conditions for the ignition of a traveling wave by means of a feedback control are studied, while in [START_REF] Nadin | Hindrances to bistable front propagation: application to Wolbachia invasion[END_REF] they show that if the population gradient in an area is strong enough (due to an heterogeneous environment) invading fronts can be stopped and converge to stable ones.

Epidemiological models. Finally, Wolbachia-infected mosquito releases can be also modeled in an epidemiological framework. Incorporating the population dynamics introduced in (4) and the epidemiological model presented in (3) we can write

S ′ H = bH - β M H I M S H - β W H H I W S H -b H S H , E ′ H = β M H I M S H + β W H H I W S H -γ H E H -b H E H , I ′ H = γ H E H -σ H I H -b H I H , S ′ M = b M M 1 - M + W K 1 -s h W M + W - β M H S M I H -d M S M , E ′ M = β M H S M I H -γ M E M -d M E M , I ′ M = γ M E M -d M I M , S ′ W = b W W 1 - M + W K - β HW H S W I H -d W S W + u(t), E ′ W = β HW H S W I H -γ W E W -d W E W , I ′ W = γ W E W -d W I W . (11) 
Using Wolbachia in the context of population replacement implies the release of females. Thus the addition of these mosquitoes needs a new set of SEI compartments with different parameters, since infection with Wolbachia alters significantly different aspects of the biology of the mosquito. In particular, the most important effect in this context, β HW , β W H < β M , that is, the probability of transmission between human and mosquito is significantly lower when mosquitoes have Wolbachia (a detailed explanation of this model will be done in Chapter 3). Other works like [START_REF] Hughes | Modelling the use of Wolbachia to control dengue fever transmission[END_REF] use closely related models to asses the feasibility of Wolbachia use for dengue control. Also in [START_REF] Ndii | Modelling the transmission dynamics of dengue in the presence of Wolbachia[END_REF] they tackle this question, with a more complex model where the aquatic phase and seasonality are also taken into consideration. A multi-strain model in interaction with Wolbachia can be found in [START_REF] King | Variation in Wolbachia effects on Aedes mosquitoes as a determinant of invasiveness and vectorial capacity[END_REF].

Concerning optimal control problems, in [START_REF] Zhang | Releasing Wolbachia-infected Aedes aegypti to prevent the spread of dengue virus: A mathematical study[END_REF], a similar model is used, although considering perfect pathogen blocking by Wolbachia (β HW = β W H = 0) and only bang-bang controls. In this work they tackle, mostly numerically, the problem of minimizing at the same time the cost of intervention, the final distance to a disease-free equilibrium state where Wolbachia-infected mosquitoes have invaded the population and the total amount of infections during the time horizon considered. In mathematical terms, this corresponds to

min u∈{0,U } A 1 T 0 u(t) dt + A 2 T 0 I 2 H (t) dt + A 3 Ψ(x(T )). (12) 
Here, A i , i = 1, 2, 3 are constants weighting the importance of each term, and Ψ(x(T )) is a penalty term depending on the final state of the system, x(T ).

II.2 Sterile insect technique

The SIT consists on the massive release of male mosquitoes that have been previously sterilised (traditionally, in proportions of at least 10:1 with the wild male population [START_REF] Oliva | Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials[END_REF]). This technique is much older than the use of Wolbachia, dating back to the 1950s, and it has been tested numerous times, also with other insect pests [START_REF] Dame | Historical applications of induced sterilisation in field populations of mosquitoes[END_REF]. For instance, it was successfully used to eliminate the tsetse fly Glossina austensi from the Unguja island, in the Zanzibar archipelago [START_REF] Vreysen | Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique[END_REF] and the New World screwworm Cochliomyia hominivorax from Central America, the United States and Lybia [START_REF] Helinski | Radiation biology of mosquitoes[END_REF]. It is also currently being used with great success in the control of Ceratitis Capitata in the Mexican-Guatemalan border [START_REF] Enkerlin | Area freedom in Mexico from Mediterranean fruit fly (Diptera: Tephritidae): a review of over 30 years of a successful containment program using an integrated area-wide SIT approach[END_REF] and in the Valencian Region in Spain, where the need for aerial pesticide spraying was reduced by 90% [START_REF] Plá | Sterile Insect Technique Programme against Mediterranean Fruit Fly in the Valencian Community (Spain)[END_REF]. This solid background has allowed the elaboration of detailed roadmaps to implement an SIT program [START_REF] Oliva | Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials[END_REF].

Male mosquitoes are separated mostly by hand, which produces currently the bottleneck for the scaling up of the technique, although the process is also in the path for automatization. Trained workers can separate with high accuracy both sexes using specialized devices in the pupal stage since female pupae are bigger than male in Aedes and Culex mosquitoes [START_REF] Papathanos | A perspective on the need and current status of efficient sex separation methods for mosquito genetic control[END_REF]. For Anopheles on the other hand, the abdominal segment of pupae must be examined under the microscope to find morphological differences [START_REF] Gilles | Towards mosquito sterile insect technique programmes: exploring genetic, molecular, mechanical and behavioural methods of sex separation in mosquitoes[END_REF]. Other proposals for sex separation include taking advantage of behavioural differences at the adult stage (only females feed on blood). Blood meals with insecticide can be made available in a cage with unsorted mosquitoes). Finally the use of fluorescent transgenic markers only expressed in females at larval stage [START_REF] Catteruccia | An Anopheles transgenic sexing strain for vector control[END_REF], or other genetic means, like producing a GM strain where only males are resistant to a certain chemical, allowing to separate sexes from the egg stage [START_REF] Yamada | Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin[END_REF]. Then, sorted males are irradiated with X-rays or gamma rays in their late pupal or adult stage [START_REF] Helinski | Radiation biology of mosquitoes[END_REF]. Optimizing the dose of radiation is key when it comes to the effectiveness of the technique, since higher radiation doses lead to higher sterility rates, but also to reduced competitiveness of the mosquitoes, which can be detrimental for the success of the technique [START_REF] Parker | Sterile Insect Technique: a model for dose optimization for improved sterile insect quality[END_REF]. Less commonly, males can also be sterilised using chemicals [START_REF] Dame | Historical applications of induced sterilisation in field populations of mosquitoes[END_REF]. Sterile males then mate fertile females, producing non-viable eggs, thus reducing the population size. Female mosquitoes are generally considered to mate only once in their life time and use the stored sperm to fertilize their eggs, which enhances the performance of this technique. However, evidence of multiple matings in the wild has been found [START_REF] Boyer | Evidence of multiple inseminations in the field in Aedes albopictus[END_REF].

Successful releases were carried against Culex mosquitoes [START_REF] Patterson | Suppression and elimination of an island population of Culex pipiens quinquefasciatus with sterile males[END_REF] in Florida in the 1960s and against Anopheles in El Salvador in the 1970s [START_REF] Weidhaas | Release of chemosterilized males for the control of Anopheles albimanus in El Salvador[END_REF], to name a few. More recently, pilot field trials for Aedes have been tested in Italy [START_REF] Bellini | Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas[END_REF], Reunion island [START_REF] Oliva | The sterile insect technique for controlling populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: mating vigour of sterilized males[END_REF], Cuba [START_REF] Gato | Sterile Insect Technique: Successful Suppression of an Aedes aegypti Field Population in Cuba[END_REF] and in the Valencian Region in Spain [START_REF] Tur | Sterile Insect Technique in an Integrated Vector Management Program against Tiger Mosquito Aedes albopictus in the Valencia Region (Spain): Operating Procedures and Quality Control Parameters[END_REF]. Most of these projects are in close collaboration with the main driver in the development of the SIT in the last decade: the Joint FAO/IAEA Programme [START_REF] Lees | Back to the future: the sterile insect technique against mosquito disease vectors[END_REF].

A simple ODE model of the SIT can be written as follows

           M ′ (t) = b M M (t) 1 - M (t) K M (t) M (t) + s c M S (t) -d M M (t), M ′ S (t) = u(t) -d S M S (t), t ∈ [0, T ], M (0) = K 1 - d M b M , M S (0) = 0. (13) 
This model captures the essential part of the effect on the population of the introduction of sterile mosquitoes and it is the model that will be studied in Chapter 3. The term M/(M + s c M s ) is proportional to the probability of a mating with a fertile male. s c ∈ (0, 1] represents the mating competitiveness of the sterile mosquitoes, because female mosquitoes might tend to mate less frequently with sterile mosquitoes than with fertile ones. This is indeed a simplified model. In the literature, frequently, models contain the egg stage or they split the adult population in males and females to take into account a possible disparity in the number of mosquitoes that reach adulthood of each sex or that they have different lifespans or behaviours (sometimes they include both features at the same time). Also, in some models, Allee effects are considered in order to incorporate the effect of extinction of the population when it is reduced under a certain Introduction threshold. A more complete system, studied in [START_REF] Strugarek | On the use of the sterile insect release technique to reduce or eliminate mosquito populations[END_REF], is the following,

               E ′ (t) = b E F (t) 1 - E(t) K -(d E + τ E )E(t), F ′ (t) = r τ E E(t) M (t) M (t) + s c M S (t) 1 -e -β S (M (t)+scM S (t)) -d F F (t), M ′ (t) = (1 -r) τ E E(t) -d M M (t), M ′ S (t) = u(t) -d S M S (t), M S (0) = 0, t ∈ [0, T ]. (14) 
In this model, the carrying capacity of the environment is considered to saturate egg population (as a proxy for a saturated aquatic phase population more generally speaking. Intraspecific competition occurs mostly at the larval stage.), rather than the adult one directly. Adults are considered to reach the adult state with a female to male proportion of r. When females and males are considered to reach adulthood with the same probability, r = 1/2, and that they have the same death rate, d M = d F , both equations can be added to obtain a single one for adults, as it has been considered in the other models presented so far. Lastly, the term 1 -e -β S (M (t)+scM S (t)) sets the Allee effect. The term accounts for the difficulty for females to find a partner when the male mosquito density is small. All works presented hereafter study some version of model [START_REF] Alphey | Genetic Control of Mosquitoes[END_REF].

Works having applied optimal control to the study of the SIT present similar approaches on the way of posing the problem. Usually there is an endpoint condition to be satisfied (namely, F (T ) ⩽ ϵ), and the functionals to minimize include the cost of the intervention, or the cost and the final time. Examples of this are [START_REF] Almeida | Optimal control strategies for the sterile mosquitoes technique[END_REF] and [START_REF] Bliman | Optimal control approach for implementation of sterile insect techniques[END_REF]. In [START_REF] Almeida | Optimal control strategies for the sterile mosquitoes technique[END_REF], an optimal feedback control strategy is described. [START_REF] Bliman | Optimal control approach for implementation of sterile insect techniques[END_REF] performs numerical simulations on the continuous strategy and gives suboptimal strategies considering impulsive releases. An impulsive release consists on considering the release to be instantaneous and it is presented as a discontinuity in the amount of sterile mosquitoes in the system. Also [START_REF] Bliman | Implementation of control strategies for sterile insect techniques[END_REF] considers impulsive releases and gives open and closed-loop feedback strategies minimizing the number of sterile males to be released periodically in order to reach elimination. In [START_REF] Strugarek | On the use of the sterile insect release technique to reduce or eliminate mosquito populations[END_REF], the necessary conditions for reaching elimination using SIT (or IIT) are described for different kinds of release strategies: constant, instantaneous and periodic, and continuous. Finally, [START_REF] Bliman | Robust control strategy by the Sterile Insect Technique for reducing epidemiological risk in presence of vector migration[END_REF], broadens the scope of study by including migration of wild mosquitoes into the system. This is an important addition to the model since migrating mosquitoes from surrounding areas can repopulate areas that had been previously treated, disrupting the achievements.

SIT models also have their spatial counterparts including diffusion on the mosquito population. Similar questions to the ones posed in Section II.1 can be posed. As in II.1, the addition of space allows to study phenomena like invasion fronts. In [START_REF] Almeida | Optimization and control for partial differential equations-uncertainty quantification, open and closed-loop control, and shape optimization[END_REF] and [START_REF] Almeida | Wave blocking in a bistable system by local introduction of a population: application to sterile insect techniques on mosquito populations[END_REF] they study the phenomenon of wild mosquito reinvasion after mosquito have been eliminated. They show that buffer areas with permanent sterile mosquito releases above a certain threshold are effective for stopping a reinvasion front for any width of the buffer area considered. They also provide numerical simulations to illustrate this.

Lastly, in [START_REF] Almeida | Analysis of the "Rolling carpet" strategy to eradicate an invasive species[END_REF], they study the deployment technique known as Rolling carpet. This deployment technique consists on starting the treatment on one end of the terrain and progressively advancing towards the other end. In such a way that the treated area cannot be reinvaded since the remaining wild mosquitoes lay at the other side of the zone that is currently being treated. In [START_REF] Almeida | Analysis of the "Rolling carpet" strategy to eradicate an invasive species[END_REF] they compare the use of pesticides and that of the SIT for the rolling carpet deployment. They succeed in establishing travelling waves with negative speed (opposite speed to the sense in which the wild mosquito invasion would occur in the absence of treatment) for both cases, which ensures that treated areas will stay mosquito-free after the treatment.

Finally, models encompassing epidemiology and SIT can also be found, although optimal control approach in this setting is rare to the best of our knowledge. In [START_REF] Dumont | Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus[END_REF] they study an epidemiological model for Chikungunya while SIT releases are being performed. They compare the case of instantaneous periodical releases with a continuous and constant one. In [START_REF] Danbaba | Modeling the transmission dynamics of Zika with sterile insect technique[END_REF] the model studied is for Zika. Nevertheless, in principle, these models could be used for modeling many other vector-borne diseases adjusting some parameter values.

II.3 Other vector-based control techniques

For completeness, we mention that there are other vector-based control techniques which rely on the release of genetically modified mosquitoes. These techniques, in general, consist on introducing one or several modified genes into the mosquitoes' genome producing two kinds of effects:

-Deletereous / Inmmune boosting effects: In a similar spirit to the techniques already presented, one of the effects that these genes induce in mosquitoes is either boosting its immunity to disease or, on the contrary, killing the host when it gets infected. Other alternatives can be, for instance, preventing the females from flying or causing infertility in the mosquitoes [START_REF] Alphey | Natural and engineered mosquito immunity[END_REF][START_REF] Macias | Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?[END_REF]. -Gene drive: The other characteristic these genes present is that they produce a so called gene drive. This means that the modifying gene has the ability of being passed to the next generation (except, of course, in the case of sterilizing genes) with more than a 50% chance (the usual proportion in Mendelian inheritance). Thus, this gene can be rapidly spread through the population [START_REF] Alphey | Sterile-insect methods for control of mosquito-borne diseases: an analysis[END_REF][START_REF] Alphey | Natural and engineered mosquito immunity[END_REF]. As in other fields of application the use of genetically modified organisms is highly controversial due to the fear on possible unforeseen outcomes of the introduction of new genetic material in ecosystems. Even more, in the case of gene drives. Thorough studies and trials in small isolated settings should be carried before considering the possibility of generalizing the use of these techniques [START_REF] Nading | The lively ethics of global health GMOs: The case of the Oxitec mosquito[END_REF].

III Contributions of this thesis

In this thesis several problems regarding the optimal control of mosquito-borne diseases are studied, both analytically and numerically. Keeping in mind the goal of reducing the mosquitoborne disease burden, it aims at answering a variety of questions:

-How optimal strategies evolve when the cost of releasing mosquitoes is taken into account.

If the material restrictions for carrying the releases are considerable, how should the releasing policies be adapted to still be competent? -The spatial influence of an inhomogeneous environment in the optimal releasing strategies. Mosquitoes are not equally distributed in the environment, what is the best way to distribute mosquitoes in a release to maximize the efficacy of the techniques? -How strategies evolve when the focus shifts from the mosquito population to the human population. The ultimate goal of controlling mosquito population is to prevent the spread of the diseases they transmit. In case one of these diseases is already circulating, how should be carried the deployments in order to minimise the amount of infections? Our goal is to give qualitative answers to these questions, providing a better and deeper understanding of them, with the hope that this work can be the basis for future more quantitative and detailed studies of these topics.

The body of the manuscript is divided into three chapters. In the first two chapters we focus on the use of Wolbachia to achieve a population replacement. Although the ultimate goal in mind is always the control of vector-borne diseases, these chapters regard only the mosquito population.

It is implicit that by controlling the mosquito population effectively and efficiently the desired goal will follow. In the last chapter the focus of the study is switched. The problem studied concerns the human population in interaction with the mosquito one and optimal strategies are defined with respect to its effect on the reduction of the number of human cases of a disease. In this chapter both population replacement using Wolbachia and the sterile insect technique are studied and the optimal strategies arising for each one compared.

This manuscript is organized as follows:

-Chapter 1: Optimal release strategies for mosquito population replacement.

In Chapter 1 we pose and study a problem to find optimal strategies for population replacement balancing the cost of the releases and its performance. The performance of the strategy is measured by the time required to achieve a previously set final proportion of Wolbachia-infected mosquitoes when the final time is considered to be free or as the distance to a full invasion state at the final time, when the final time is fixed. We also study the robustness of optimal strategies with respect to the convexity of the function chosen to model the cost of the mosquito releases. This chapter is taken from [START_REF] Almeida | Optimal Control Strategies for Bistable ODE Equations: Application to Mosquito Population Replacement[END_REF]. -Chapter 2: Optimal initial time strategies for mosquito population replacement: influence of the carrying capacity on spatial releases In Chapter 2 we study the optimal spatial distribution of a single initial release in an inhomogeneous environment, assuming that mosquitoes do not diffuse in the domain. We also explore numerically the case with diffusion. This chapter is a work in progress. -Chapter 3: Mosquito-borne disease outbreak control via instant vector releases. In Chapter 3 the control problem is posed in an epidemiological model encompassing mosquitoes and humans. We study optimal instantaneous releases to minimize (or suppress when possible) the impact of an outbreak in the human population, studying both the use of Wolbachia and the SIT. This chapter is taken from [START_REF] Almeida | Vector-borne disease outbreak control via instant vector releases[END_REF]. We summarize hereafter, chapter by chapter, the main contributions of this thesis.

Chapter 1: Optimal release strategies for mosquito population replacement

Motivation

The goal of this chapter is to determine the optimal strategies for mosquito population replacement using Wolbachia according to a criterion that balances cost and performance. In this chapter we study the scalar equation [START_REF] Almeida | Mosquito population control strategies for fighting against arboviruses[END_REF]. The chapter stems from [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF], and generalizes the results obtained there, which can be seen as a particular case for one of the two families of problems studied (in particular, Family 2). We recall that, according to the notation used so far, p(t) denotes the proportion of Wolbachia-infected mosquitoes.

In mathematical terms, the problem considered is the following:

inf u∈U T ,C,U (1 -α) T 0 j 1 (u(t))dt + αj 2 (T, p(T )). (15) 
In [START_REF] Alphey | Sterile-insect methods for control of mosquito-borne diseases: an analysis[END_REF], j 1 is a function encompassing all the costs of mosquito releases: from production, to storage, transport or release. The particular choice for this function is non-obvious, we perform our study for a very general class of j 1 functions, namely: convex, linear and concave. We are interested in determining how robust are optimal strategies when cost functions with different convexities are considered. On the other hand, j 2 is a function modeling the performance of the intervention in some sense. α ∈ [0, 1] is a parameter determining the relative importance of each term. A small value of α implies a bigger concern for cost saving, on the contrary a big value of α means a bigger concern for the effectiveness of the technique. The control function belongs in U T,C,U , as defined in [START_REF] Almeida | Vector-borne disease outbreak control via instant vector releases[END_REF]. We recall this means that both the rate at which mosquitoes can be released and the total amount of mosquitoes at our disposal are bounded. In practice we consider two different families of problems, each one associated with a particular choice for j 2 .

For the first family of problems, we set a goal on the final proportion of mosquitoes to attain, p(T ) = p T and we let the final time for our intervention, T , free. In this setting the function measuring the performance will be j 2 (T ) = T . A strategy would be considered more performant if it achieves a desired final proportion in less time than another one. The problem can be written in this case as

     inf u∈U T ,C,U T >0 (1 -α) T 0 j 1 (u(t))dt + αT, p ′ = f (p) + ug(p) in (0, T ), p(0) = 0 , p(T ) = p T , (16) 
where p T ∈ (0, 1). For the second family, on the contrary, we fix the time horizon, T , in which the mosquito releases are going to be done. The performance in this case will be measured by how high is the level of population replacement achieved by the end of the intervention. We can formulate the problem in this case as

   inf u∈U T ,C,U (1 -α) T 0 j 1 (u(t))dt + α (1 -p(T )) 2 , p ′ = f (p) + ug(p), p(0) = 0 . ( 17 
)

Main Results

We highlight here the main results and contributions presented in this chapter. Results in this chapter have been obtained by exploiting the optimality conditions resulting from the application of Pontryagin's Maximum Principle (PMP). The maximum principle is a well known result in control theory and we do not dive deep into its hypothesis and details. For further reading on the topic we refer to [START_REF] Harmand | Optimal Control in Bioprocesses: Pontryagin's Maximum Principle in Practice[END_REF][START_REF] Trélat | Contrôle Optimal: Théorie et Applications[END_REF]. The following theorems are taken from Chapter 1 (Theorems A and B, which are, in turn, simplified versions of the more technical Theorems 1.2 and 1.3 respectively). These theorems fully characterize the solutions to both problem families posed in [START_REF] Alto | Larval Competition Differentially Affects Arbovirus Infection in Aedes Mosquitoes[END_REF] and [START_REF] Andraud | Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches[END_REF]. In particular, one can recover the results in [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF] by setting α = 1 in Theorem B.

The first theorem regarding Family 1, the case with the final time T free, [START_REF] Alto | Larval Competition Differentially Affects Arbovirus Infection in Aedes Mosquitoes[END_REF], reads

Theorem A (Family 1) There exists (T * , u * ) ∈ R + × U T,C,U solving Problem [START_REF] Alto | Larval Competition Differentially Affects Arbovirus Infection in Aedes Mosquitoes[END_REF]. The overall behaviour of u * depends on the convexity of j 1 (•), the value of α and the value of C.

In general, we distinguish the following cases: -Case 1. j 1 is either linear or strictly concave. There exists a real parameter α * ∈ [0, 1) given by the parameters of the problem such that:

-if C is large enough: If α ∈ [α * , 1], then u * = U 1 [0,T * ] . If α ∈ (0, α * ), then u * is
bang-bang with exactly one switch from U to 0 at a time t s ∈ (0, T * ) determined by α.

else, one has

u * = U 1 [0,C/U ] .
In this case, the optimal time T * reads

T * = p T 0 dν f (ν) + u * p (ν)g(ν) with u * p (ν) = U 1 (0,ps)
and

p s = p(t s ) if C is large enough, p(C/U ) otherwise.
-Case 2. j 1 is convex. If α ∈ (0, 1) singular controls may appear. The control u * is non-decreasing until t * ∈ (0, T * ) such that p(t * ) = p * and then non-increasing.

If α = 1, the term with j 1 is no longer present and u

* = U 1 [0,min{T * ,C/U }] .
In order to prove this theorem, we first prove and then exploit the monotonicity of the p associated to the optimal control u * in Lemma 1.1, and we introduce an adapted change of variables that allows us to drastically reduce the difficulty of the problem by transforming it into a problem of calculus of variations. To simplify the reasoning further, we solve first a simpler problem where no restriction on the total number of mosquitoes is considered (See Theorem 1.1). Solutions of this simpler problem that do respect the constraint T 0 u(t)dt ⩽ C will also be solutions of the constrained problem.

We prove that optimal strategies depend on the convexity of the cost function, j 1 . In case this function is concave or linear, solutions are bang-bang. Solutions start with u * = M and switch at most once, depending on the value of C and α. In case j 1 is a convex function, we characterize the singular controls solving the problem. The particular shape of these solutions is also dependent on C and α, as well as other parameters of the problem. Nonetheless, they all share a common property of being non-decreasing prior to p(t) = p * and non-increasing afterwards. With p * being explicitly known and verifying p * < θ. In Figure 4 we see can see an illustration of the kind of solutions obtained depending on the convexity of j 1 .

Figure 4 -Example of a bang-bang (left) and a singular control (right) arising as solutions of (16) for j 1 concave and convex respectively.

In the case of Family 2, where the final state, p(T ), is free, [START_REF] Andraud | Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches[END_REF], the result reads Theorem B (Family 2) There exists u * ∈ U T,C,U solving Problem [START_REF] Andraud | Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches[END_REF]. In addition, there exists an interval (t -, t + ) such that, outside of it u * = 0 and the state p u * associated to u * is constant. Inside (t -, t + ), p u * is increasing and the behaviour of u * depends on the convexity of j 1 (•), the value of α and the values of C and T . We distinguish between the following cases:

-Case 1. j 1 is either linear or strictly concave. The solution is u * = U 1 [t -,ts] , with t s ⩽ t + the switching time.

-Case 2. j 1 is convex. If α ∈ (0, 1) singular controls may appear. The control u * is non-decreasing until t * ∈ (t -, t + ) such that p(t * ) = p * and then non-increasing.

If α = 1, then u * = U 1 [t -,ts] , with t s defined as in the concave and linear case.

To prove this theorem we follow a similar path. We also prove a similar monotonicity property on p(t), allowing us to study a calculus of variations problem in a certain subinterval of the time window considered (Lemma 1.2). Then, we show that u * (t) = 0 outside of this interval. To characterise the solutions we reduce once again the complexity of the problem by breaking it down into two different ones. First we characterize the optimal strategy for α = 0 and an arbitrary final state fixed (Theorem 1.4) and then we treat the full problem as a one dimensional one where the variable to be optimized is, precisely, this final state.

For both families, in order to establish the existence of solutions for the concave case, one cannot apply the standard reasonings in calculus of variations, since the functional studied is not lower semicontinuous. We approach the problem in an innovative way, by investigating the optimality conditions for a finite dimension auxiliary problem. This reasoning allows us to obtain existence, but also to characterize the solutions, establishing they are bang-bang.

Note how optimal strategies described in Theorem B are, overall, very similar to those presented in Theorem A. In conclusion, in this chapter we prove a robustness property on the optimal controls, in the sense that solutions are similar for both families of problems.

Results obtained in this work can be translated into general guidelines for real releasing policies when we restrict ourselves to the cases where p(T ) > θ. This restriction being natural in practical applications, since, while in this case the system tends naturally to p(T ) = 1, in case p(T ) ⩽ θ the invasion of Wolbachia-infected mosquitoes will not occur without further intervention. In order to understand these guidelines, first we need to understand the meaning of the convexity/concavity of function j 1 in this problem. Function j 1 can be seen as aggregating all costs of mosquito production transport and release. In other words, it is a measure of the cost per mosquito per unit of time. The second derivative of this function is a measure of the marginal increase in the cost per mosquito as production is scaled up. For instance, the simplest scenario, j 1 (u) = u, means that costs are proportional to production: Releasing mosquitoes twice as fast over a period of time implies costs twice as high. This might not always be the case, economies of scale usually lead to a decrease in the marginal cost of production per unit, so j 1 can be expected to be concave: As more mosquitoes are released, the extra cost per mosquito is reduced. Nonetheless, opposite effects can occur. Scaling up production can come with unforeseen consequences in management, storage capacity or logistics, therefore, in some cases the marginal cost of production can quickly increase, justifying the need for a convex j 1 .

In a nutshell, if we know p at any given time, which can be done by setting up mosquito traps to measure the Wolbachia-infected mosquitoes in the wild (a common practice in any field implementation of any vector control technique), our results yield:

-If j 1 is either linear or strictly concave, and so mosquito production costs are decreasingly expensive or stay constant, the optimal releasing strategy is bang-bang. We act as soon and as fast as possible, until the critical proportion p = θ is surpassed. This means optimal controls are u * = M from the beginning, and with one switch, at most, after p(t) = θ. See figure 1.2. -If j 1 is strictly convex, and thus mosquito production is increasingly expensive, solutions are more complex due to the appearance of singular controls. Nevertheless, we can conclude that in this case efforts must also be concentrated at the beginning, since the optimal control is non-decreasing until p(t) = p * and non-increasing afterwards, with p * < θ. Therefore efforts can be relaxed after the proportion p(t) = p * is achieved. See figure 1.3.

Perspectives

The natural continuation of this work would be the addition of spatial dimensions to the problem. An adequate spatial distribution of the releases can be key for the success of these techniques and it is not obvious that homogeneous releases should always be the optimal solution. In fact, in [START_REF] Duprez | Optimization of spatial control strategies for population replacement, application to Wolbachia[END_REF] the contrary is proven. This should be even more the case when mosquito distribution in the environment in non-homogeneous. Nonetheless, the complexity of the problem when space is added invites to simplify it by posing less ambitious questions. In the next chapter space is introduced, but we restrict ourselves to the family 2 of problems, with T fixed, and with α = 1, that is, we do not optimize the cost of the releases, but only its performance in a non-homogeneous environment.

Chapter 2: Optimal initial time strategies for mosquito population replacement: influence of the carrying capacity on spatial releases

Motivation

The spatial distribution of the mosquito releases is a specially relevant aspect of the deployments. In this chapter we approach the question of how to optimize the spatial distribution of an instantaneous release at t = 0 when the distribution of wild mosquitoes in the environment is inhomogeneous. As introduced in section II.1, this is modeled by considering the carrying capacity of the environment to be not necessarily constant, but a function of the space variable, K(x), x ∈ Ω.

In order to deduce the equation studied in this chapter, we first consider an equation analogous to [START_REF] Almeida | Optimization and control for partial differential equations-uncertainty quantification, open and closed-loop control, and shape optimization[END_REF] but, in principle, without diffusion (D = 0). This case is a toy model lacking of realism, nonetheless, it is of interest from a mathematical point of view. It must be seen as a first step towards the study of the full model with diffusion, which we also tackle numerically. To highlight the spatial dependency of the carrying capacity and in order to facilitate the exposition we extract K(x) from the definition of g, therefore in this chapter g is defined by (2.6) 2 . Thus, the equation we are interested in reads

∂ t p(t, x) = f (p(t, x)) + u(t,x) K(x) g(p(t, x)), t ∈ [0, T ], x ∈ Ω p(0, x) = 0, ∀x ∈ Ω. ( 18 
)
The goal in mind is to minimize the distance of the final state to the state of full Wolbachia invasion in the population across the domain, thus, the problem we consider at first is

min u∈U T ,C,U T 0 Ω (1 -p(T, x)) 2 dx (19) 
where U T,C,U in this chapter is defined analogously to (5) but taking into account the space. That is,

U T,C,U = u ∈ L ∞ ([0, T ] × Ω), 0 ⩽ u ⩽ U a.e. , T 0 Ω u(t, x) dx dt ⩽ C .
As mentioned, in this chapter we focus in optimizing a single instantaneous release at time t = 0. In other words, we study problem [START_REF] Bara | Effect of Larval Competition on Extrinsic Incubation Period and Vectorial Capacity of Aedes albopictus for Dengue Virus[END_REF] when the time distribution of the releases is set to

u(t, x) = u 0 (x)δ(t). min p0∈P 0,C,U Ω (1 -p(T, x)) 2 dx, (20) 
2. Although f may also seem different from the one defined in (1.5), these changes are purely cosmetic.

where

P 0,C,U = p 0 ∈ L ∞ (Ω), 0 ⩽ p 0 ⩽ G -1 U K(x)
a.e.,

Ω K(x)G(p 0 (x)) dx ⩽ C . and ∂ t p(t, x) = f (p(t, x)), t ∈ [0, T ], p(0, x) = p 0 (x), x ∈ Ω. (21) 
Finally, we also take a look at the case with diffusion with Neumann boundary conditions (modeling that mosquitoes cannot leave the domain) from a numerical point of view. In this case, the problem is still the same, [START_REF] Beal | GEKKO Optimization Suite[END_REF], but the equation studied is

     ∂ t p(t, x) -D∆p(t, x) -2D ∇K(x) K(x) • ∇p = f (p(t, x)) -D ∆K K ψ(p), t ∈ [0, T ] p(0, x) = p 0 (x), x ∈ Ω, ∂ ν p(t, x) = 0, x ∈ ∂Ω. (22) with ψ(p) := p(1 -p) b 0 W -b 0 M (1-s h p) b 0 M (1-p)(1-s h p)+b 0 W p .
The deduction of this equation from a two-species model like system [START_REF] Almeida | Optimal control strategies for the sterile mosquitoes technique[END_REF] when an inhomogeneous carrying capacity is considered can be found in Chapter 2, and more detailed in [START_REF] Nadin | Hindrances to bistable front propagation: application to Wolbachia invasion[END_REF].

Main results

We present here the main results contained in Chapter 2 of this manuscript. In this chapter we first characterise the solutions with the help of a function we define, namely

w T (p 0 ) := -g(p 0 (x))(1 -p(T, x)) exp T 0 f ′ (p(s, x)) ds .
Exploiting the first and second order optimality conditions we prove that there exists a λ * ⩾ 0 such that the optimal solution to problem [START_REF] Beal | GEKKO Optimization Suite[END_REF],

p * 0 (x), satisfies -On {p * 0 = p U (x) := G -1 U K(x) }, we have w T ⩽ -λ * K(x) , -On {p * 0 = 0}, w T ⩾ -λ * K(x) , -On {0 < p * 0 < p U }, w T = -λ * K(x)
, and in this set, each minimum satisfies the condition ∂w T ∂p0 ⩾ 0. In the light of this result it becomes clear that the monotonicity of w T plays a fundamental role in the characterization of solutions. Next, we show that, under certain hypothesis on the parameters of the problem, there exists a T 0 > 0, that we compute explicitly, such that -If T ⩽ T 0 , then w T is monotonically increasing -If T > T 0 , then w T is unimodal, first decreasing, then increasing. We explore numerically the regions of the parameter space satisfying this hypothesis in Appendix B.

To conclude, we prove two theorems characterizing the solutions of problem [START_REF] Beal | GEKKO Optimization Suite[END_REF]. In case T ⩽ T 0 , we solve explicitly the problem, fully characterizing the solution. Here we present a simplified version of Theorem 2.1.

Theorem C (T ⩽ T 0 ) Assume T ⩽ T 0 and 0 < C < U |Ω|. Then there exists a unique Introduction p * 0 ∈ P 0,C,U , that solves problem [START_REF] Beal | GEKKO Optimization Suite[END_REF]. It is given by

p * 0 (x) =        0 if -λ * K(x) ⩽ w T (0), p U (x) := G -1 U K(x) if -λ * K(x) ⩾ w T (p U (x)), w -1 T -λ * K(x) if -λ * K(x) ∈ (w T (0), w T (p U (x))) ,
for any λ * ⩾ 0 such that the associated p * 0 (x) satisfies Ω K(x)G(p * 0 (x)) dx = C. In case T > T 0 we prove that either the solution can be determined in an analogous way to the previous case, or, in case it cannot, thanks to the solution of an auxiliary problem that we define, the original problem [START_REF] Beal | GEKKO Optimization Suite[END_REF] can be reduced to a one dimensional problem. Note that this reduction can be done whether the original problem was posed for

Ω ⊂ R or Ω ⊂ R 2 . Next theorem is a simplified version of Theorem 2.2.
Theorem D (T > T 0 ) Assume T > T 0 and 0 < C < U |Ω|. Under some conditions on the birth and death rates of mosquitoes, there exists at least one p * 0 ∈ P 0,C,U that solves problem [START_REF] Beal | GEKKO Optimization Suite[END_REF]. Defining

pλ (x) =            0 if -λ K(x) < min p0∈(0,p U (x)) w T (p 0 ), p U (x) if -λ K(x) ⩾ w T (p U (x)), w -1 T -λ K(x) if -λ K(x) ∈ min p0∈(0,p U (x)) w T (p 0 ), w T (p U (x)) ,
there exist λ 1 ⩾ λ 0 ⩾ 0 and at least one λ * ∈ [λ 0 , λ 1 ] such that either p * 0 (x) = pλ * (x) for all x ∈ Ω, or, under some circumstances, the following holds:

-For each λ ∈ [λ 0 , λ 1 ], we introduce χ * λ , a characteristic function solving

min 0⩽χ λ ⩽1 Ωλ K(x) 2 (1 -p(T, x)) 2 χ λ (x) + K(x) 2 (1 -χ λ (x))dx, under the constraint Ωλ K(x)G (p λ (x)) χ λ (x)dx ⩽ C - Ω\ Ωλ K(x)G (p λ (x)) dx,
with Ωλ ⊂ Ω a certain subdomain given by the parameters of the problem. Here, p(•, x) solves [START_REF] Beebe | Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia[END_REF], and has pλ (x) as its initial condition. There exists at least one λ * ∈ [λ 0 , λ 1 ], such that p * 0 can be described as

p * 0 (x) = p * λ * (x), if x ∈ Ω \ Ωλ * , p * λ * (x)χ * λ * , if x ∈ Ωλ * , -Considering p * 0 (x) as the initial condition of p(•, x), λ * is a solution of the one-dimensional problem min λ∈[λ0,λ1] Ω (1 -p(T, x)) 2 dx.
We also implement an ad hoc numerical algorithm to visualize optimal solutions by exploiting Theorem 2.1 and 2.2. Finally, we study numerically the problem with diffusion. Implementing a numerical algorithm in GEKKO (see [START_REF] Beal | GEKKO Optimization Suite[END_REF]). The equation studied in this case is equation [START_REF] Bellini | Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas[END_REF].

In [START_REF] Almeida | Vector-borne disease outbreak control via instant vector releases[END_REF] we show a selection of the solutions obtained in the simulations of this chapter in different settings.

An important property found is that the associated releases to the solutions of problem (20), i.e., u * 0 (x) = K(x)G (p * 0 (x)) are non-decreasing when K(x) increases in most cases. This implies that, in general, where the initial concentration of mosquitoes is higher, releases should be more intense too. We prove that this is the case, at least, for T ⩽ T 0 and the case T > T 0 when some conditions are met. This monotonicity breaks when diffusion is considered, giving raise to more complex behaviours such as the formation of invasive fronts. 

Perspectives

This work has, at least, three clear lines of research in which it could be extended.

-First, not restricting the study to an instantaneous release, but rather to the original problem [START_REF] Bara | Effect of Larval Competition on Extrinsic Incubation Period and Vectorial Capacity of Aedes albopictus for Dengue Virus[END_REF] with a continuous u(t, x). This is a work in progress, not included in this thesis. -Second, a more ambitious goal could be the study of several instantaneous releases. Usually, in the field, releases are scheduled, for example, weekly. This can be modeled by a control function composed of a series of instantaneous releases, equally separated in time,

u(t) = n i=1 u i (x)δ(t -t i ) with t i = (i -1)
T n and i = 1, . . . , n. Even when diffusion is not considered we expect this to be a very hard question to tackle in a non-numerical way.

-Lastly, the diffusive case could be studied from a theoretical point of view. A complete understanding of solutions in this case is undoubtedly the most important research line to follow. Although the passage from ordinary differential equations to partial differential equations adds a lot of complexity to the problem, a starting point could be to try to obtain results analogous to those in [START_REF] Duprez | Optimization of spatial control strategies for population replacement, application to Wolbachia[END_REF] on the optimality of the solutions for the nondiffusive case when diffusion is added. Numerically, it can be studied by simulating the system for small final times and diffusion rates. At the time of writing this thesis, these questions are currently being developed, for this chapter is a work in progress.

Chapter 3: Vector-borne disease outbreak control via instant vector releases

Motivation

In this chapter we introduce, study and simulate an epidemiological system consisting of mosquitoes and humans. We are interested in minimizing the amount of infections occurring in a human population during an outbreak of a disease transmitted by mosquitoes by applying vector-based control techniques. We investigate optimal ways to carry releases of Wolbachiainfected (see Section II.1) and sterile male mosquitoes (see Section II.2), we compare the results of both techniques and analyze their differences. In order to do so, we combine models for population dynamics and epidemiological models. For the population replacement the system has already been introduced in [START_REF] Almeida | CEMRACS 2018-numerical and mathematical modeling for biological and medical applications: deterministic, probabilistic and statistical descriptions[END_REF]. In practice, we won't work directly on this system given its complexity, but rather on a simplified one. In a nutshell, by assuming a high birth rate in the mosquito population, we perform the analogous passage from system (4) to the scalar equation ( 6) but applied to system [START_REF] Almeida | CEMRACS 2018-numerical and mathematical modeling for biological and medical applications: deterministic, probabilistic and statistical descriptions[END_REF] (see Chapter 3 for more details), obtaining

S ′ H = bH - β M H I M S H - β W H H I W S H -b H S H , E ′ H = β M H I M S H + β W H H I W S H -γ H E H -b H E H , I ′ H = γ H E H -σ H I H -b H I H , E ′ M = β M H (K(1 -p) -E M -I M )I H -γ M E M -d M E M , I ′ M = γ M E M -d M I M , E ′ W = β HW H (Kp -E W -I W )I H -γ W E W -d W E W , I ′ W = γ W E W -d W I W , p ′ = f (p) + ug(p). (23) 
where the equations for the susceptible mosquitoes take the much simpler form S M = K(1 -p) and S W = Kp.

A similar thing can be done to bring together models ( 13) and ( 3). This model is simpler, since the sterile mosquitoes released do not need to be considered from an epidemiological point of view. Since only females bite, the released males are unable to spread the disease. We obtain the following system

S ′ H = b H H - β M H I M S H -b H S H , E ′ H = β M H I M S H -γ H E H -b H E H , I ′ H = γ H E H -σ H I H -b H I H , S ′ M = b M M 1 - M K M M + s c M S - β M H S M I H -d M S M , E ′ M = β M H S M I H -γ M E M -d M E M , I ′ M = γ M E M -d M I M , M ′ S = u -d S M S . (24) 
The problem we are interested in is

min u∈S T 0 I H (t)dt, subject to T 0 u(t)dt = C, (25) 
with S being a set of admissible controls that we will specify. That is, minimising the amount of infected humans during an outbreak (of duration T ), provided that we have at our disposal C mosquitoes and that all will be released. We estimate the duration of an outbreak in the system by performing a simulation where a few infected humans are introduced in a fully susceptible population.

Systems with this amount of equations are needed in order to properly take into account the dynamics of disease in the population. In exchange, they are very hard to study, especially from a theoretical point of view. Our approach in this chapter will be to consider the mosquito releases to be instantaneous. This means that we consider that the time it takes to deploy a release is very small in comparison to the time horizon considered. This facilitates the study of the system, since it becomes a finite dimensional problem. Indeed, we are assuming that our control function is of the form u(t) = n i=1 c i δ (t -t i ), and the constraint reads now

T 0 u(t)dt = n i=1 c i δ (t -t i ) , 1 M([0,T ]),C 0 ([0,T ]) = n i=1 c i = C.
Therefore, the control variables will be the times at which the releases are carried, t i , and the amount of mosquitoes released each time, c i . The problem can be then stated as follows

min 0⩽ti⩽T ci⩾0 T 0 I H (t)dt, subject to n i=1 c i = C, i = 1, . . . , n. (26) 
without loss of generality, we impose

t 1 ⩽ • • • ⩽ t n .
This modifies systems ( 24) and ( 11) by transforming the equation where the control appears into differential equations with discontinuities. In proposition 3.1 of chapter 3 we show how this assumption modifies the dynamics of M S (t), system (3.8), and p(t), equation (3.11). Note that there is work to provide a well-posed framework, existence and regularity results to optimal control problems with measurement type data. This work has been developed in several articles such as [START_REF] Miller | The generalized solutions of nonlinear optimization problems with impulse control[END_REF][START_REF] Miller | Impulsive control in continuous and discrete-continuous systems[END_REF][START_REF] Motta | Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls[END_REF][START_REF] Motta | Nonlinear systems with unbounded controls and state constraints: a problem of proper extension[END_REF][START_REF] Wolenski | A differential solution concept for impulsive systems[END_REF]. In this chapter, we will apply such techniques to particular epidemiological systems. We provide a detailed proof of formulas for determining the control sensitivity of various quantities of interest, so that this work is self-contained.

Main Results

We extract the main contributions of Chapter 3. Results of this chapter are mostly numeric. We draft the numerical algorithm implemented with the aim of solving problem [START_REF] Bliman | Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control[END_REF] for systems [START_REF] Bliman | Optimal control approach for implementation of sterile insect techniques[END_REF] and [START_REF] Bian | The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti[END_REF]. Two different kinds of variables need to be determined: the release times, t i and the amount of mosquitoes released at each release, c i . For the release times we compute the derivative of the criterion with respect to each t i , δ ti J(t) analytically (See 3.4 for more details). At each step, we fix the amount of mosquitoes released, (c i ) 1⩽i⩽n , and we update the control according to the derivatives we computed, taking into account the restriction

0 ⩽ t 1 ⩽ • • • ⩽ t n ⩽ T . In other words, at a given step k, we update the control u k = i c i δ(t -t i ), according to u k+1 = Π T (u k -ε t ∇ t J(u k )) , where ∇ t J(u) = (δ t1 J(u), . . . , δ tn J(u)) ,
and where Π T denotes the projection onto the set of controls

{ 0 ⩽ t 1 ⩽ • • • ⩽ t n }.
In order to optimize the c i we implemented an Uzawa algorithm with an augmented Lagrangian. The functional considered was

L(u, λ) = T 0 I H (t)dt + λ n i=1 c i -C + ρ 2 n i=1 c i -C 2 . ( 27 
)
The functional is extended in order to handle the constraint n i=1 c i = C. In [START_REF] Bliman | Implementation of control strategies for sterile insect techniques[END_REF]. λ, is a nonnegative real number, and its value is computed iteratively along with u. The idea behind the Uzawa algorithm is to transform the constrained minimization problem into an unconstrained one, where the new functional is minimized with respect to u, and maximized with respect to λ (see [START_REF] Ito | Lagrange multiplier approach to variational problems and applications[END_REF] for details). The second term added in ( 27) is introduced only to accelerate the convergence of the algorithm. This is achieved for a certain range of values of the parameter ρ.

One step at a time, we approach the target saddle point of L(u, λ) by updating the control according to

u k+1 = u k -ε c (∇ c J(u k ) + λ k + ρ ( n i=1 c i -C)) , λ k+1 = max (λ k + ρ ( n i=1 c i -C) , 0) .
Here, ∇ c J(u) is analogous to ∇ t J(u) but the derivatives have been computed with respect to the c i . We represent a schematic version of the algorithm in Figure 6.

We sum up here the results of applying this algorithm to solve the problem considered for each of the techniques. In the case of the SIT, results depend not only on the amount of mosquitoes released, but also on the number of releases considered. Results for 10 and 20 releases can be seen in figures 3.1 and 3.2 respectively. The reduction in the amount of infections is greater when more mosquitoes are released, which was expected, but also when the same amount of mosquitoes is spread over more releases. In all cases the releases are distinct (there is not any case where t i = t i+1 ). This is due to the fact that since mosquito population decays exponentially two releases combined will sustain a sterile population for a shorter time than two separate releases. Nevertheless, this trend does not continue indefinitely. After approximately twenty releases, the further reduction in the number of cases becomes very small when more releases are considered.

Optimal strategies can be summed up as follows:

-In case we have at our disposal few mosquitoes, or in case we do not consider enough releases, the optimal strategy is focused on the mitigation of the outbreak. Mosquitoes are released spaced around the peak of the epidemic. Biologically speaking, if a sterile population cannot be sustained (in other words, if a wild population, cannot be kept low) in a consistent manner during the whole time window considered, then mosquitoes should be released when most of the transmissions are happening, that is, around the peak of the epidemic. An example of this is the upper row in Figure 7. -In case we have enough mosquitoes and we consider enough releases, these start shifting to the beginning of the time window, eventually reaching t 1 = 0. The optimal strategy shifts towards the suppression of the outbreak. Releases are concentrated at the beginning but nevertheless small releases keep being carried out over an extended period of time. The idea being to prevent the outbreak to gain traction in the first place by reducing drastically from the start the amount of wild mosquitoes. Later, the small releases allow to prevent the wild mosquitoes from repopulating the system, thus, preventing the appearance of a new outbreak later. An example of this kind of solution is the lower row of Figure 7. The shift to the left can be clearly seen when 20 releases are considered (bottom right graph). In the case of the Wolbachia releases, solutions do not present such rich behaviours. For any initial amount of releases considered, all collapse into one single release containing all the mosquitoes combined. Two clear distinct strategies appear as a function of the amount of mosquitoes at our disposal. The value splitting the two regimes is C = G(θ), which is, ex-Random initialization actly, the amount of mosquitoes necessary to increase in one single release the Wolbachia-infected mosquito proportion from p = 0 to p = θ. We recall that p evolves according to p ′ = f (p) and that θ is the single zero of f (p) in (0, 1). We also recall that if p ∈ (0, θ), f (p) < 0 and thus the proportion of Wobachia-infected mosquitoes decreases back to p = 0 after a certain time. On the other hand, if p ∈ (θ, 1), f (p) > 0 and thus the proportion of Wobachia-infected mosquitoes increases naturally (p → 1 when t → ∞), producing a population replacement without further intervention. Therefore, if C > G(θ) there are enough mosquitoes to trigger a population replacement in one single release, while if C < G(θ) there are not. This fact produces the threshold for C splitting two different strategies:

u 0 = n i=1 c 0 i δ t -t 0 i c k i , λ k fixed, t k i optimized u k+1 = Π T (u k -ε t ∇ t J(u k )) Functional flatness |J(u k+1 ) -J(u k )| < ϵ or k > N t t k i fixed, c k i , λ k optimized u k+1 = u k -ε c (∇ c J(u k ) + λ k + ρ ( n i=1 c i -C)) λ k+1 = max (λ k + ρ ( n i=1 c i -C) , 0) Functional flatness |J(u k+1 ) -J(u k )| < ϵ or k > N c k > N Optimal solution u * = n i=1 c * i δ (t -t * i )
-In case we cannot trigger a population replacement the optimal strategy consists again in the mitigation of the disease outbreak. Wobachia-infected mosquitoes are released before reaching the peak of the epidemic in order to maximize the proportion of Wolbachia-infected mosquitoes while most of the transmissions are happening, resulting in a dampening in the infection curve. -In case there are enough Wolbachia-infected mosquitoes to trigger the population replacement, the optimal strategy is to act as soon as possible. Since p will increase without further intervention, there is no advantage in delaying the release, so there is the highest proportion of Wolbachia-infected mosquitoes from the beginning. This switch in behaviour can be seen in figure 8. Finally, we also explore the case where only the times of the releases are optimized but the amount of mosquitoes to release at each time is fixed. We compare the reduction in the number of cases obtained with this simpler strategy with the more refined one. This problem is simpler to solve but also more in line with current applications.

Perspectives

To the best of our knowledge, literature is not rich in works similar to this. This work opens a broad range of interesting questions worth investigating in future works. A non-exhaustive list includes:

-In practice, mosquitoes are produced in relatively fixed amounts weekly. Given that the duration of an outbreak can be a considerable number of weeks, it would be interesting to look at C as a function of time. For instance, increasing in a linear way, C(t) = C 0 + C 1 t, or with discrete increases as a step function, C(t) = C 0 t 7 , with time measured in days. -In the case of the SIT, results vary significantly with the number of releases considered when this one is low, but the improvements dampen as the number of releases increase. It can be useful to properly study the improvement of results as a function of the number of releases considered for different values of C. That is, calling u * n the optimal strategy for n releases, explore numerically the function

J (n) := J(u * n ) -J(u * n-1
). The value of this function would give an idea of how worth it is to consider a bigger number of releases.

-Also in the SIT case, results depend on the time window considered, since mosquitoes can reproduce again in treated areas when the treatment is stopped. A very interesting question would be: How does the optimal strategy evolve as T increases? In other words, how do optimal strategies evolve when we do not restrict ourselves to the duration of a particular outbreak but instead we want to minimize the infections for, a priori, unbounded periods of time?

Chapter 1

Optimal release strategies for mosquito population replacement

This chapter is the subject of L. 

Introduction

Around Wolbachia control strategies

Around 700 000 people die annually due to mosquito-transmitted diseases [START_REF]Vector-borne diseases[END_REF]. In particular, mosquitoes of the genus Aedes, such as Aedes Aegypti and Aedes Albopictus can transmit several arboviruses as Dengue, Chikungunya, Yellow fever or Zika [START_REF] Guzman | Dengue: a continuing global threat[END_REF][START_REF] Organization | Dengue: guidelines for diagnosis, treatment, prevention and control[END_REF]. According to the World Health Organization, 390 million people are infected by Dengue every year and 3.9 billion people in 128 countries are at risk of infection [START_REF] Brady | Refining the global spatial limits of dengue virus transmission by evidence-based consensus[END_REF]. As no antiviral treatment nor efficient vaccine are known for Dengue, the current method for preventing its transmission relies mainly on targeting the vector, i.e. the mosquito [START_REF] Alphey | Sterile-insect methods for control of mosquito-borne diseases: an analysis[END_REF][START_REF] Alphey | Genetic Control of Mosquitoes[END_REF][START_REF] Hoffmann | Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission[END_REF]. As introduced in section II.1 of the Introduction of this thesis, it has been shown that the presence of the bacterium Wolbachia [START_REF] Hertig | Studies on rickettsia-like micro-organisms in insects[END_REF] in these mosquitoes reduces their vector capacity (capability of transmission of the associated disease) for the aforementioned arboviruses [START_REF] Walker | The w Mel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations[END_REF][START_REF] Moreira | A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium[END_REF][START_REF] Turley | Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti[END_REF][START_REF] Mousson | The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus[END_REF]. The bacterium is transmitted from the mother to the offspring. Furthermore, there is a phenomenon called Cytoplasmatic Incompatibility (CI) [START_REF] Sinkins | Wolbachia and cytoplasmic incompatibility in mosquitoes[END_REF][START_REF] Kambhampati | Unidirectional cytoplasmic incompatibility in the mosquito, Aedes albopictus[END_REF], which produces cross sterility between Wolbachia-infected males and uninfected females. These two key phenomena make the introduction of mosquitoes infected with Wolbachia a promising control strategy to prevent Dengue transmission.

In this chapter we explore several ways of modeling optimal release strategies, in the spirit of [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF], where a simpler approach involving a least squares functional was presented. We enrich the model of [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF] by introducing and analyzing two relevant families of problems.

In a nutshell, we will first consider two families of functionals that are convex combinations of a term accounting for the cost of the mosquitoes used and -either a growing function of the time horizon, let free, but fixing the final proportion of Wolbachia-infected mosquitoes.

-or a penalization (more precisely a decreasing function) of the final proportion of Wolbachia-infected mosquitoes at the final time of the experiment. Note that the horizon of time will be considered fixed in this case. This will lead us to introduce two large families of relevant optimization problems in order to model this issue. Analyzing them will allow us to discuss optimal strategies of mosquito releasing and also the robustness of the properties of the solutions with respect to the modeling choices (in particular the choice of the functional we optimize).

Nevertheless, the results presented in this chapter are not restricted to this particular problem. In Remark 1.2 we state the conditions under which our results are applicable to other control problems with bistable equations.

Issues concerning modeling of control strategy

To study these issues, let us consider the same model as in [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF] for modeling two interacting mosquito populations: a Wolbachia-free population M , and a Wolbachia carrying one, W . The resulting system reads

       dM (t) dt = b M M (t) 1 -s h W (t) M (t)+W (t) 1 -M (t)+W (t) K -d M M (t), dW (t) dt = b W W (t) 1 -M (t)+W (t) K -d W W (t) + u(t) , t > 0, M (0) = M 0 , W (0) = W 0 , (1.1) 
where -the parameter

s h ∈ [0, 1] is the cytoplasmic incompatibility (CI) rate 1 .
-The other parameters (b i , d i ) for i ∈ {M, W } are positive and denote respectively the intrinsic mortality and intrinsic birth rates. Moreover, we assume that b i > d i , i = M, W . -K > 0 denotes the environmental carrying capacity. Note that the term (1 -s h W M +W ) models the CI.

u(•) ∈ L ∞ (R + ) plays the role of a control function that we will use to act upon the system. This control function represents the rate at which Wolbachia-infected mosquitoes are introduced into the population. System (1.1) for modeling mosquito population dynamics with Wolbachia has been first introduced in [START_REF] Farkas | Structured and Unstructured Continuous Models for Wolbachia Infections[END_REF][START_REF] Fenton | Solving the Wolbachia paradox: modeling the tripartite interaction between host, Wolbachia, and a natural enemy[END_REF]. We also mention [START_REF] Hughes | Modelling the use of Wolbachia to control dengue fever transmission[END_REF] where this model is coupled with an epidemiological one.

The aim of this technique is to replace the wild population by a population of Wolbachiainfected mosquitoes. To understand mathematically this question, it is important to recall that, under the additional assumption

1 -s h < d M b W d W b M < 1 (1.2)
satisfied in practice [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF], System (1.1) has four non-negative steady states, among which two which are locally asymptotically stable, namely:

M = (M * , 0) := K 1 - d M b M , 0 and W = (0, W * ) := 0, K 1 - d W b W .
Observe that M corresponds to a mosquito population without Wolbachia-infected individuals whereas W corresponds to a mosquito population composed exclusively of infected individuals.

Note that the two remaining steady-states are unstable: they correspond to the whole population extinction and a coexistence state. Hence, the optimal control issue related to the mosquito population replacement problem can be recast as:

Starting from the equilibrium M, how to design a control steering the system as close as possible to the equilibrium state W, minimizing at the same time the cost of the releases?

Of course, although this is the general objective we wish to pursue, the previous formulation remains imprecise and it is necessary to clarify what is meant by "the cost of release" and the set in which it is relevant to choose the control function.

Following [START_REF] Almeida | Mosquito population control strategies for fighting against arboviruses[END_REF] and [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF], we will impose several biological constraints on the control function u: the rate at which mosquitoes can instantaneously be released will be assumed bounded above by some positive constant U , and so will be the total amount of released infected mosquitoes up to the final time T . The set of admissible control functions u(•) thus reads

U T,C,U := u ∈ L ∞ (0, T ) , 0 ⩽ u ⩽ U a.e. in (0, T ), T 0 u(t)dt ⩽ C . (1.3)
As shown in [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF], System (1.1) can be reduced to a single equation under the hypothesis of high birth rates, i.e. considering b M = b 0 M /ε, b W = b 0 W /ε and letting ε decrease to 0. In this frame, the proportion W/(M +W ) of Wolbachia-infected mosquitoes in the population, uniformly converges to p, the solution of a simple scalar ODE, namely

dp dt (t) = f (p(t)) + u(t)g(p(t)), t ∈ (0, T ) p(0) = 0, (1.4) 
where

f (p) = p(1 -p) d M b 0 W -d W b 0 M (1 -s h p) b 0 M (1 -p)(1 -s h p) + b 0 W p and g(p) = 1 K b 0 M (1 -p)(1 -s h p) b 0 M (1 -p)(1 -s h p) + b 0 W p . (1.5)
We remark that f (0) = f (1) = 0 and, under assumption (1.2), there exists a single root of f strictly between 0 and

1 at p = θ = 1 s h 1 - d M b 0 W d W b 0 M . The function p → g(p) is non-negative,
strictly decreasing in [0, 1] and such that g(1) = 0.

In the absence of a control function, the equation on p simplifies into dp dt = f (p). This is a bistable system, with an unstable equilibrium at p = θ and two stable equilibria at p = 0 and p = 1. Notice that the derivative of the function f /g has a unique zero p * in (0, θ) defined by

p * = 1 s h 1 - d M b 0 W d W b 0 M , (1.6) 
which will be useful in the following.

In [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF], the control problem 

inf u∈U T ,C,U J(u), with J(u) = 1 2 M (T ) 2 + 1 2 [(W * -W (T )) + ] 2 . ( 1 
lim ε→0 inf u∈U T ,C,U J ε (u) = inf u∈U T ,C,U J 0 (u), where J 0 (u) = lim ε→0 J ε (u) = K(1 -p(T )) 2 (1.8)
and p is the solution of (1.4) associated to the control function choice u(•). The arguments exposed in [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF] can be adapted easily to our problem. Since the solutions of both the full problem (1.7) and the minimization of J 0 given by (1.8) will be close in the sense above, it is relevant to investigate the later, which is easier to study both analytically and numerically.

We now introduce the two families of optimal control problems we will consider in the following sections. Although the model (1.4) driving the evolution of the Wolbachia-infected mosquitoes density is the same as in [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF], we will enrich it by introducing and analyzing new families of problems in which -the horizon of time can be let free; -the cost of producing Wolbachia-infected mosquitoes can be included. Since such a cost is not so easy to take into account, we will write it in a rather general way

T 0 j 1 (u(t)) dt (1.9)
where j 1 : R → R denotes a increasing function such that j 1 (0) = 0.

To take the time of the experiment and the final state into account in the cost functional, we will use a function

j 2 : R + × [0, 1] ∋ (T, p)) → j 2 (T, p) ∈ R.
Let us now present the two families of problems we will deal with. We will be led to make the following assumptions, in accordance with the modelling above:

               j 1 (•)
is a non-negative increasing function such that j 1 (0) = 0, two times differentiable, either strictly concave, linear or strictly convex on (0, T ). j 2 (•) is a non-negative function of class C 1 , strictly increasing w.r.t. its first variable and strictly decreasing w.r.t. its second variable. Moreover, for all p ∈ [0, 1], lim

T →+∞ j 2 (T, p) = +∞. (H.1)

Family 1

A first way of modeling optimal strategy for releasing Wolbachia-infected mosquitoes consists in minimizing a convex combination of the time horizon, denoted T , which is considered free and the cost of producing and releasing the mosquitoes defined by (1.9), by imposing a target value on the final density of Wolbachia-infected mosquitoes. This leads to introduce the following optimal control problem

     inf u∈U T ,C,U T >0 J α (T, u), p ′ = f (p) + ug(p) in (0, T ), p(0) = 0 , p(T ) = p T , (P 1,α p T ,C,U )
where p T ∈ (0, 1) is given and J α (u) is defined by

J α (T, u) = (1 -α) T 0 j 1 (u(t))dt + αj 2 (T, p(T )), (1.10) 
where α ∈ [0, 1], j 1 (•) and j 2 (•) satisfy (H.1) and U T,C,U is given by (1.3). The function (T, p) → j 2 (T, p) aims at penalizing the time used in our case. Once the existence of solutions is established, it will be fixed to be j 2 (T, p(T )) = T . In what follows, we will not tackle the case where α = 0 since in that case, existence may not be guaranteed. More precisely, it is rather easy to show that in that case, Problem (Q 1,α p T ,U ) has no solution whenever p T > θ.

Family 2

Another possible way of modeling optimal strategy for releasing Wolbachia-infected mosquitoes consists in minimizing a convex combination of the final distance from p(T ) to the state of total invasion p = 1 and the cost of producing and releasing the mosquitoes defined by (1.9). In that case, we fix the horizon of time T and let p(T ) free. This leads to consider the problem

   inf u∈U T ,C,U J α (u), p ′ = f (p) + ug(p), p(0) = 0 , (P 2,α T,C,U )
where α ∈ [0, 1], j 1 (•) and j 2 (•) satisfy (H.1) and U T,C,U is given by (1.3). The main difference here with respect to the previous case is the fact that the time horizon T is fixed, p(T ) is free and that j 2 (T, p(T )) now represents a function penalizing the final distance to a certain final state (typically, the state of total invasion p = 1). Since T in this family is fixed, abusing of the notation we will write J α (u) instead of J α (T, u), but J α (u) will still be defined by (1.10). After establishing the existence of solutions to this problem we will fix j 2 (T, p(T )) = (1 -p(T )) 2 as in (1.8). A study of similar problems in a much more limited setting can be found in [START_REF] Almeida | Optimization and Control for Partial Differential Equations: Uncertainty quantification, open and closed-loop control, and shape optimization[END_REF].

Main results

Let us state here briefly the main results of this chapter. These results will be further detailed in sections 1.2.2 and 1.3.1 respectively. In this section, in order to avoid too much technicality, we provide simplified statements of the main contributions of this chapter. Let us fix U > 0 and C > 0, and let us consider j 1 (•) satisfying the hypothesis stated above in (H.1).

Our first result regards Family 1. In accordance with the biological modelling considerations above, let us assume hereafter that j 2 (T, p T ) = T and that the final proportion of mosquitoes in the populations is fixed p(T ) = p T < 1. The following result is a simplified and less precise version of Theorem 1.2.

Theorem A (Family 1) There exists (T * , u * ) ∈ R + × U T,C,U solving Problem (P 1,α p T ,C,U ). The overall behaviour of u * depends on the convexity of j 1 (•), the value of α and the value of C.

In general, we distinguish the following cases:

-Case 1. j 1 is either linear or strictly concave. There exists a real parameter α * ∈ [0, 1) given by the parameters of the problem such that:

-if C is large enough: If α ∈ [α * , 1], then u * = U 1 [0,T * ] . If α ∈ (0, α * ), then u * is
bang-bang with exactly one switch from U to 0 at a time t s ∈ (0, T * ) determined by α.

else, one has

u * = U 1 [0,C/U ] .
In this case, the optimal time T * reads

T * = p T 0 dν f (ν) + u * p (ν)g(ν) with u * p (ν) = U 1 (0,ps)
and

p s = p(t s ) if C is large enough, p(C/U ) otherwise.
-Case 2. j 1 is convex. If α ∈ (0, 1) singular controls may appear. The control u * is non-decreasing until t * ∈ (0, T * ) such that p(t * ) = p * and then non-increasing.

If α = 1, the term with j 1 is no longer present and

u * = U 1 [0,min{T * ,C/U }] .
Remark 1.1. We remark that in case j 1 is either linear or strictly concave the controls are always bang-bang (and the case α = 1 is similar to α < 1) while when j 1 is convex, singular controls may appear when α < 1 while for α = 1 the control is still bang-bang.

For our second result, regarding Family 2 let us assume hereafter that j 2 (T, p T ) = (1 -p T ) 2 and that the time horizon T > 0 is fixed. The following result is a simplified and less precise version of Theorem 1.3.

Theorem B (Family 2)

There exists u * ∈ U T,C,U solving Problem (P 2,α T,C,U ). In addition, there exists an interval (t -, t + ) such that, outside of it u * = 0 and the state p u * associated to u * is constant. Inside (t -, t + ), p u * is increasing and the behaviour of u * depends on the convexity of j 1 (•), the value of α and the values of C and T . We distinguish between the following cases:

-Case 1. j 1 is either linear or strictly concave. The solution is u * = U 1 [t -,ts] , with t s ⩽ t + the switching time.

-Case 2. j 1 is convex. If α ∈ (0, 1) singular controls may appear. The control u * is non-decreasing until t * ∈ (t -, t + ) such that p(t * ) = p * and then non-increasing.

If α = 1, then u * = U 1 [t -,ts] , with t s defined as in the concave and linear case.

Remark 1.2. The use of bistable ODEs is widely spread to model a great variety of phenomena from biology, to physics and economy. Examples of systems with a bistable behaviour can be found in population dynamics, exploitation of natural resources, cell division, cancer modeling, apoptosis, chemical reactions or mechanical systems. Therefore, these results may be interesting outside of the particular context in which they have been presented. In order to be able to apply Theorems A and B, f, g ∈ C 1 ([0, 1]) for the system considered must satisfy two conditions:

-Bistability: p → f (p) must satisfy that f (0) = f (1) = 0, and that there exists a unique θ ∈ (0, 1) such that f (θ) = 0, f (p) < 0 for p ∈ (0, θ) and f (p) > 0 for p ∈ (θ, 1). -Increasingly costly to control: p → g(p) must be non-negative, strictly decreasing in [0, 1] and such that g(1) = 0. This means that as the state of the system gets closer to the steady state p = 1 it becomes increasingly harder to push. Moreover, function p → (f /g)(p) must satisfy two additional conditions, namely:

-Unimodality: p → (f /g) (p) must be unimodal, that is, strictly decreasing for p ∈ (0, p * ) and strictly increasing afterwards. With 0 < p * < θ.

-lim p→1 (f /g) (p) = +∞.

Biological interpretation of our results and final comments

From a biological point of view, this problem is studied with more generality than what is strictly necessary. Only a certain subset of parameters is interesting for real field releases. In order to give a biological interpretation we restrict ourselves to the case where p(T ) > θ so that the system in the long term tends to p = 1 without further action. Otherwise, once the releases ended the system would return to the initial condition after a certain time meaning that the installation of the Wolbachia-infected mosquito population would have failed. Independently of the family considered, with this restriction, our results yield:

-If j 1 is either linear or strictly concave, the optimal releasing strategy is bang-bang.

Starting with u * = U and switching at most once, only after the critical proportion, p(t) = θ, is surpassed. -If j 1 is strictly convex, the possible appearance of singular solutions makes the analysis more intricate. In any case, solutions attain their maximal value at t = t * such that p(t * ) = p * . Either u * has a global maximum at t * or there exists an open interval I where u * (t) = U and t * belongs to I, although in the first case the value of the maximum attained at that point is not always straightforward to determine. The function j 1 aggregates all the costs of the mosquito production, transport and release. Its convexity represents the marginal increase of the cost per mosquito. A concave function means that producing mosquitoes becomes proportionally less expensive as we scale up the production, while a convex function implies the opposite; the rate at which the costs increase grows as we increase the mosquito production. Finally, a linear j 1 means that the cost of production is scale-independent, directly proportional to the number of mosquitoes produced.

Since in a real case some of the parameters may be very difficult to determine beforehand, this interpretation gives us some guidelines to implement a sensible feedback strategy in the field. In order to do this, we would have to measure the proportion of infected mosquitoes using traps and adapt the amount of mosquitoes we release in consequence. We have shown that under a broad set of circumstances the best strategy is to act as soon as possible, and as fast as possible, at least until the critical value p(t) = θ is attained. An exception to this rule being the case when the production of mosquitoes is increasingly expensive. Nevertheless, in this context, the effort must also be concentrated soon, when the proportion of mosquitoes is p(t) ≈ p * , which allows to reduce the amount of mosquitoes used before reaching p(t) = θ.

Analysis of Family 1 problems

1.2.1 A first result: optimization without constraint on the number of mosquitoes used.

This section is devoted to studying the case where the time horizon T is free and no constraint is imposed on the total number of mosquitoes used. In other words, we will deal with the optimal control problem

     inf u∈V T ,U T >0 J α (T, u), p ′ = f (p) + ug(p) in (0, T ), p(0) = 0 , p(T ) = p T , (Q 1,α p T ,U )
where J α (T, u) is defined by

J α (T, u) = (1 -α) T 0 j 1 (u(t))dt + αT, (1.11) 
where α ∈ [0, 1], j 1 (•) satisfies (H.1) and V T,U is given by

V T,U := {u ∈ L ∞ (0, T ) , 0 ⩽ u ⩽ U a.e. in (0, T )} . (1.12) 
In what follows, it will be convenient to introduce the following notations:

m * (p T ) := max p∈[0,p T ] - f (p) g(p) > 0 and m * (p T ) = min p∈[0,p T ] - f (p) g(p) ⩽ 0. (1.13)
for p T ∈ (0, 1). Note that, as long as p → (f /g) (p) satisfies the conditions of Remark 1.2, these quantities are unique.

Let us introduce the mapping F 0 defined by

v → F 0 (v) := (1 -α)(vj ′ 1 (v) -j 1 (v)) -α (1 -α)j ′ 1 (v) . (1.14)
For the sake of notational simplicity, we do not underline the dependence of F with respect to α. A straightforward computation shows that F 0 is increasing (resp. decreasing) whenever j 1 is strictly convex (resp. strictly concave).

Theorem 1.1. Let us assume that α ∈ (0, 1], p T ∈ (0, 1), (1.2) is true, and j 1 (•) satisfies the first assumption of (H.1). Let us assume that U > m * (p T ). Then, there exists a pair

(T * , u * ) ∈ R + × V T,U solving Problem (Q 1,α p T ,U
). Moreover, let us distinguish between two cases: -The case where j 1 is either linear or strictly concave. Let us introduce the real parameter α * ∈ [0, 1) given by

α * = -m * j 1 (U )/U 1 -m * j 1 (U )/U . (1.15) In this case, if α ∈ [α * , 1], then u * = U 1 [0,T * ] and if α ∈ (0, α * ), then u * is bang-bang
with exactly one switch from U to 0 at t s ∈ (0, T * ) such that

t s = ps 0 dν f (ν) + U g(ν)
where p s is implicitly determined by -

f (p s ) g(p s ) = -αU (1 -α)j 1 (U )
.

The optimal time T * is given by

T * = p T 0 dν f (ν) + u * p (ν)g(ν) with u * p (ν) = U 1 (0,ps) ,
with the convention that

p s = p T if α ∈ [α * , 1].
-The case where j 1 is convex. In this case, define u * p as

u * p : [0, p T ] ∋ p t → max{min{U, F -1 0 (-f (p t )/g(p t ))}, 0}
If α ∈ (0, 1) the optimal time T * and control u * read

T * = p T 0 dν f (ν) + u * p (ν)g(ν)
and ∀t ∈ [0,

T * ], u * (t) = u * p (p t )
where p t denotes the unique solution in [0, p T ] of the equation t

= pt 0 dν f (ν)+u * p (ν)g(ν) . If α = 1 the same holds with u * p = U 1 [0,p T ] . If α = 1 the same holds with u * p = U 1 [0,p T ] . Remark 1.3. A reasonable concern in the definition of v → F 0 (v) is its behavior in case j ′ 1 (0) = ∞ or j ′ 1 (0) = 0 like in the functions u → j 1 (u) := √ u and u → j 1 (u) := u 2 .
We can check, taking limits, that in these cases the reasoning is still valid and that the results obtained hold. The limit reads

lim v→0 F 0 (v) = lim v→0 v - j 1 (v) j ′ 1 (v) - α (1 -α)j ′ 1 (v) -If j ′ 1 (0) = ∞, we obtain lim v→0 F 0 (v) = 0.
In this case, j 1 (•) must be concave and therefore F 0 (•) decreasing, thus F 0 (v) < 0 for all v ∈ (0, U ]. Looking at the maximization conditions, (1.24), we see that this is consistent with the results.

-If j ′ 1 (0) = 0 we can apply l'Hôpital's rule to find lim v→0

j1(v) j ′ 1 (v) = lim v→0 j ′ 1 (v) j ′′ 1 (v) = 0 and therefore lim v→0 F 0 (v) = -∞.
This implies that we can never have F (0) ⩾ 0 and thus u * > 0 for all t ∈ (0, T * ). For the sake of simplicity we showed this for F 0 (•) but this remark will still be valid for the functions F λ (•) we will introduce in 1.20.

Let us comment and illustrate the result above, by describing the behaviour of the solutions of Family 1, classified with respect to the convexity of j 1 (•) and pointing out the limit values of α separating the different regimes.

Exploiting Theorem 1.2, we know that in the concave and linear cases, solutions are necessarily bang-bang. Either u * = U 1 [0,T * ] or with one switch from U to 0 occurring at time

t s = ps 0 dν f (ν)+U g(ν) with p s solving -f (ps) g(ps) = -αU (1-α)j1(U )
. This happens if and only if α < α * . The value of α separating both regimes is α * = -m * j1(U )/U 1-m * j1(U )/U . The existence and uniqueness of such a p s is guaranteed under the hypothesis of Remark 1.2, and not exclusively for the f and g of this particular problem.

The convex case has a richer set of behaviours than the other ones. As an example, on Fig. 1.3 solutions are plotted for the particular choice j 1 (u) = e u/11 -1. This function is not intended to represent any realistic scenario but to illustrate the variety of possible solutions. The parameters considered for these simulations are given in Table 1.1, using the biological parameters considered in [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF]. To obtain this plot, one needs to compute the function F -1 0 which has been done by using the nonlinear system solver of the software Python.

0 t s T * 0 T * u * U u * U α < α * α ⩾ α * Figure 1.2 -Control functions u * solving problem (Q 1,α p T ,U )
The key factors to understand the behaviour of u * in the convex case are the relative positions of F 0 (0) and F 0 (U ) with respect to m * and m * . We begin by excluding the case F 0 (0) ⩾ m * because for all p T ∈ (0, 1), F 0 (0) ⩽ 0 < m * . Let us introduce

α 0 := -m * j ′ 1 (0) 1 -m * j ′ 1 (0) , (1.16 
)

α 1 := U j ′ 1 (U ) -j 1 (U ) -m * j ′ 1 (U ) 1 + U j ′ 1 (U ) -j 1 (U ) -m * j ′ 1 (U )
, (1.17)

α 2 := U j ′ 1 (U ) -j 1 (U ) -m * j ′ 1 (U ) 1 + U j ′ 1 (U ) -j 1 (U ) -m * j ′ 1 (U ) . (1.18)
These values are the thresholds separating the different regimes of the solutions. As an example, we deduce the value of α

1 . If U ⩾ F -1 0 (m * ) then u * p : [0, p T ] ∋ p t → max{min{U, F -1 0 (-f /g(p t ))}, 0} = max{F -1 0 (-f /g(p t )), 0}.
Instead, if U < F -1 0 (m * ), there will be an interval of positive measure in which u * p = U . Since F 0 depends on α, we can compute the smallest value of α for which the inequality U ⩾ F -1 0 (m * ) holds:

F 0 (U ) := (1 -α)(U j ′ 1 (U ) -j 1 (U )) -α (1 -α)j ′ 1 (U ) ⩾ m * ⇔ α ⩾ U j ′ 1 (U ) -j 1 (U ) -m * j ′ 1 (U ) 1 + U j ′ 1 (U ) -j 1 (U ) -m * j ′ 1 (U ) := α 1
Here we assumed U j ′ 1 (U )-j 1 (U )-m * j ′ 1 (U ) ⩾ 0, otherwise one can check that it is impossible to have F 0 (U ) ⩾ m * . Doing a similar reasoning, one can see that we have similar equivalencies between F 0 (0) ⩽ m * and α ⩾ α 0 and between F 0 (U ) ⩽ m * and α ⩾ α 2 .

We conclude that the behaviors of the solution with respect to α are the following:

-If α ⩾ α 0 , then u * > 0 for a.e. t ∈ (0, T * ), whereas if α < α 0 then there is an interval at the end in which u * = 0.

-If α ⩽ α 1 , then u * < U for a.e. t ∈ (0, T * ). -If α 1 < α < α 2 an interval in which u * = U appears. -Finally if α ⩾ α 2 , u * = U for a.e. t ∈ (0, T * ). We recall that the function x → x 1+x maps [0, ∞) into [0, 1). This implies that (α 0 , α 2 ) ∈ [0, 1) 2 and that if U j ′ 1 (U ) -j 1 (U ) -m * j ′ 1 (U ) ⩾ 0, α 1 ∈ [0, 1) too. For the purpose of the discussion, in case U j ′ 1 (U ) -j 1 (U ) -m * j ′ 1 (U ) < 0 we can consider that α ⩾ α 1 always. Finally, since x → x
1+x is increasing one only needs to compare the numerators of the expressions of α 0 , α 1 and α 2 in order to compare their values. Computing this we obtain that α 2 ⩾ α 0 and α 2 ⩾ α 1 . Nevertheless, in a general setting the relative position between α 1 and α 0 is not fixed. 

Description of solutions

The following result characterizes the solutions to Family 1 problems.

Let us introduce

C p T (U ) = p T 0 U f (ν) + U g(ν)
dν.

(1. [START_REF] Bara | Effect of Larval Competition on Extrinsic Incubation Period and Vectorial Capacity of Aedes albopictus for Dengue Virus[END_REF] In this section we will assume, in accordance with the modeling issues discussed in Section 1.1.2, that j 2 (T, p T ) = T . Therefore, (1.11) becomes

J α (T, u) = (1 -α) T 0 j 1 (u(t))dt + αT.
For α ∈ (0, 1), let us also introduce the mapping

v → F λ (v) := (1 -α)(vj ′ 1 (v) -j 1 (v)) -α (1 -α)j ′ 1 (v) -λ , (1.20) 
where λ ∈ R -is a constant depending on the parameters of the problem, and the quantity

C Q := T * Q 0 u * Q (t)dt, (1.21) 
with T * Q , u * Q being the solution to the unconstrained case that has been treated in Theorem 1.1. Therefore, C Q is the cost associated with this solution.

Nevertheless, we remark that existence properties for the optimal control problem (P 1,α p T ,C,U ), studied in Section A, are established in a more general setting, without prescribing explicitly the function j 2 .

Theorem 1.2 (Family 1). Let us assume that α ∈ (0, 1], p T ∈ (0, 1), (1.2) is true, and j 1 (•) satisfies the assumptions of (H.1). Let us assume that U > m * (p T ) and

C > C p T (U ) if p T ⩽ θ and C > C θ (U ) otherwise.
Then, there exists a pair (T * , u * ) ∈ R + × U T,C,U solving Problem (P 1,α p T ,C,U ). Moreover, let us distinguish two cases:

-Case where j 1 is either linear or strictly concave. The optimal time and control are given by

u * = U 1 [0,min{C Q ,C}/U ] and T * = min{C Q , C} U + p T ps dν f (ν) ,
with p s solving C ps (U ) = min{C Q , C}. -Case where j 1 is convex. Let u * p be defined by

u * p : [0, p T ] ∋ p t → max min U, F -1 λ - f (p t ) g(p t ) , 0 
If α ∈ (0, 1) the optimal time T * and control u * are given by

T * = p T 0 dν f (ν) + u * p (ν)g(ν)
and ∀t ∈ [0,

T * ], u * (t) = u * p (p t )
where p t denotes the unique solution in [0, p T ] of the equation t = 

* = U 1 [0,T * ] with T * = p T 0 dν f (ν)+U g(ν) = C U .
For the sake of clarity we exclude this case from the statement of the theorem, but it will be briefly discussed in the proof.

Proof of Theorem 1.1

The existence of solutions for Problem (Q 1,α p T ,U ) follows from an immediate adaptation of Proposition A.3 and is left to the reader. Our approach is based on an adequate change of variable. In order to make this proof easier to follow, let us distinguish several steps.

Step 1: a change of variable for recasting the optimal control problem.

To introduce the adequate change of variable, we need the following result.

Lemma 1.1. Let (T * , u * ) ∈ R + × V T,U solve Problem (Q 1,α p T ,U ) and let α > 0. Let us introduce p u * solving p ′ u * = f (p u * ) + u * g(p u * ) in (0, T * ) p u * (0) = 0,
then one has p ′ u * (t) > 0 for all t ∈ (0, T * ). Proof. Let us argue by contradiction, assuming the existence of 0 ⩽ t 1 < t 2 ⩽ T such that p u * (t 2 ) ⩽ p u * (t 1 ). Looking at the functional J α we are minimizing, we claim that T * is the smallest time at which p u * (T * ) = p T . Indeed, since α > 0, if there exists T < T * such that p u * (T ) = p T , the pair (T, u * | (0,T ) ) is admissible for Problem (Q 1,α p T ,U ), and moreover, J α (T, u * | (0,T ) ) < J α (T * , u * ) which contradicts the minimality of (T * , u * ).

Let us first assume that p u * (t 2 ) < p u * (t 1 ). Therefore, since p u * (T ) = p T , we infer by continuity the existence of t 3 ∈ (t 2 , T * ) such that p u * (t 3 ) = p u * (t 1 ). Let us define ũ as

ũ(t) = u * (t) t ∈ (0, t 1 ), u * (t + t 3 -t 1 ) t ∈ (t 1 , T )
where T = T * -t 3 + t 1 . We proceed by direct comparison between the cost of both controls, obtaining

J α (T * , u * ) -J α ( T , ũ) = (1 -α) t3 t1 j 1 (u * (t))dt + α(t 3 -t 1 ) > 0,
which contradicts the optimality of (T * , u * ). The remaining case where p u * (t 1 ) = p u * (t 2 ) can be treated similarly, by choosing t 3 = t 2 .

Let us now exploit this lemma in order to perform a useful change of variables that will allow us to reformulate Problem (Q 1,α p T ,U ). Given that u ∈ V T,U solving Problem (Q 1,α p T ,U ) satisfies the necessary conditions p(0) = 0, p(T ) = p T and p ′ (t) = f (p(t)) + u(t)g(p(t)) > 0 for all t ∈ (0, T ). Therefore, p defines a bijection from (0, T ) onto (0, p T ). Denoting by p -1 : [0, p T ] → [0, T ] its inverse, one has

p(t) = p t ⇔ t = p -1 (p t ) = pt 0 (p -1 ) ′ (ν)dν = pt 0 dν p ′ (p -1 (ν))
which leads to define the change of variable

t = pt 0 dν f (ν) + u(p -1 (ν))g(ν)
.

Introducing the function p t → u p (p t ) defined by u p (p t ) := u(p -1 (p t )) = u(t), one can easily infer that Problem (Q 1,α p T ,U ) is equivalent to

inf u∈ Vp T ,U Ĵp,α (u p ), ( Q 1,α p T ,U )
where Ĵp,α (u p ) is defined by

Ĵp,α (u p ) = p T 0 (1 -α)j 1 (u p (ν)) + α f (ν) + u p (ν)g(ν) dν, (1.22) 
and Vp T ,U , is given by

Vp T ,U := {u p ∈ L ∞ (0, p T ) , 0 ⩽ u p ⩽ U a.e.} .
To recover the solution of (Q 1,α p T ,U ) from the solution of ( Q 1,α p T ,U ), it suffices to undo the change of variable by setting u(•) = u p (p(•)).

Note that, according to Lemma 1.1, the space Vp T ,U is bigger than the space where solutions actually belong. The appropriate space is the range of V T,U , defined in (1.12), by the change of variable above, that is

W := {u p ∈ L ∞ (0, p T ) , f (p t ) + u p (p t )g(p t ) > 0 a.e.} .
It is notable that, as can be observed in Figure 1.4, one has u p ∈ W ⇔ -f /g(•) < u p (•) ⩽ U a.e. on (0, min{p T , θ}) and 0 ⩽ u p (•) ⩽ U a.e. on (min{p T , θ}, p T ).

It follows from the definition of

W that inf u∈ Vp T ,U Ĵp,α (u p ) ⩽ inf u∈W Ĵp,α (u p )
To solve the optimization problem in the right-hand side, we will solve Problem ( Q 1,α p T ,U ), and check a posteriori that its solution u * p ∈ Vp T ,U satisfies u * p ∈ W so that we will infer that

inf u∈W Ĵp,α (u) = inf u∈ Vp T ,U Ĵp,α (u) = Ĵp,α (u * p ).
Step 2: first-order optimality conditions through the Pontryagin Maximum Principle.

Let us introduce, with a slight abuse of notation, the function t given by

t(p t ) = pt 0 dν f (ν) + u p (ν)g(ν)
. The case α = 1 is obvious and leads to u * (•) = U on [0, T * ], after applying the inverse change of variable.

Let Ū = [0, U ].
Let us now assume that α ∈ (0, 1). It is standard to introduce the switching function 3 ψ defined by

ψ(v) = - f (p t )(1 -α)j ′ 1 (v) + g(p t ) ((1 -α) (vj ′ 1 (v) -j 1 (v)) -α) (f (p t ) + vg(p t )) 2 ,
and the maximization condition (1.23) yields

     ψ(0) ⩽ 0 on {u * p = 0}, ψ(u * p ) = 0 on {0 < u * p < U }, ψ(U ) ⩾ 0 on {u * p = U },
these equalities and inequalities being understood up to a null Lebesgue measure set. These functions allows us to write the aforementioned optimality conditions as

     F 0 (0) ⩾ -f (pt) g(pt) on {u * p = 0}, F 0 (u * p ) = -f (pt) g(pt) on {0 < u * p < U }, F 0 (U ) ⩽ -f (pt) g(pt) on {u * p = U }, (1.24) 
where F 0 is given by (1.14).

Since the derivative of F 0 writes

F ′ 0 (v) = (1 -α)j ′′ 1 (v) (1 -α)j 1 (v) + α ((1 -α)j ′ 1 (v)) 2 ,
this function shares the sign of j ′′ 1 (v).

Step 3: analysis of the first-order optimality conditions.

Before discussing the different cases, it is useful to recall the behaviour of the function p t → -f (pt) g(pt) , represented in Figure 1.4. This function has two roots at p t = 0 and p t = θ, is strictly positive between them and strictly negative after p t = θ, with a maximum at p t = p * as defined in (1.6) and such that lim pt→1 f (p t )/g(p t ) = -∞ (See Remark 1.2). Another property that will be useful thereafter is that p t → f (p t )/g(p t ) is not constant on any set of positive measure.

We conclude the proof looking each case separately:

2. Indeed, one way consists in applying the Pontryagin Maximum Principle (PMP). Introducing the Hamiltonian H of the system, defined by

H : (0, 1) × R + × R × {0, -1} × Ū → R (pt, t, τ, q 0 , up) → τ +q 0 ((1-α)j 1 (up)+α) f (p t )+upg(p t )
.

where τ is the conjugated variable of t and satisfies τ ′ = -∂tH = 0 and therefore, τ is constant. Furthermore the transversality condition on τ yields τ = 0. The instantaneous maximization condition reads u * p (pt) ∈ arg max v∈ Ū H(pt, t, τ, q 0 , v). Finally, since (τ, q 0 ) is nontrivial, one has q 0 = -1.

3. Indeed, according to the PMP, the switching function is given by ψ := ∂upH(pt, t, τ, v). -If j ′′ 1 (•) = 0 then F 0 is constant, so that F 0 (0) = F 0 (U ) and u * p is necessarily bang-bang, equal to 0 or U a.e. in (0, p T ) because F 0 (u * p ) = -f (pt) g(pt) cannot be constant. Looking at conditions (1.24) we see that if

F 0 (0) ⩽ m * the solution is u * p = U 1 [0,p T ] , since only the condition F 0 (U ) ⩽ -f (pt)
g(pt) can be satisfied. On the other hand, if F 0 (0) > m * then u * p has one switch from U to 0. We conclude by computing

F 0 (0) = -α (1 -α)j ′ 1 (0) ⩽ m * ⇐⇒ α ⩾ -m * j ′ 1 (0) 1 -m * j ′ 1 (0) = α *
and noticing that j ′ 1 (0) = j 1 (U )/U . -If j ′′ 1 (•) < 0, then F is decreasing. We introduce the function Ψ we are maximizing, given by

Ψ(v) := - (1 -α)j 1 (v) + α f (p t ) + vg(p t )
and we recall that Ψ ′ = ψ. To show that u * p is bang-bang, let us use (1.23). For a given p t ∈ (0, p T ), let N (v) be the numerator of ψ(v). If there exists v 0 ∈ (0, U ) maximizing

Ψ(•), then f (p t ) + v 0 g(p t ) > 0 according to Lemma 1.1. Moreover, ψ(v 0 ) = N (v 0 ) = 0 since v 0 is a critical point of Ψ and Ψ ′′ (v 0 ) = ψ ′ (v 0 ) ⩽ 0. We compute ψ ′ (v 0 ) = N ′ (v 0 ) (f (p t ) + vg(p t )) 2 -N (v 0 )2 (f (p t ) + vg(p t )) g(p t ) (f (p t ) + vg(p t )) 4 = N ′ (v 0 ) (f (p t ) + v 0 g(p t )) 2 .
which has the same sign as N ′ (v 0 ), and

N ′ (v 0 ) = -(1 -α)j ′′ 1 (v 0 ) (f (p t ) + v 0 g(p t )) .
Therefore, one has Ψ ′′ (v 0 ) > 0 leading to a contradiction with the maximality of v 0 . It follows that the points v 0 ∈ (0, U ) satisfying F 0 (v 0 ) = -f (pt) g(pt) cannot maximize Ψ, which shows that any solution is bang-bang.

A straightforward computation shows that

Ψ(U ) -Ψ(0) = - (1 -α)j 1 (U )f (p t ) -αU g(p t ) f (p t )(f (p t ) + U g(p t )) .
According to the optimality conditions (1.23), and because of the variations of -f /g, one sees that if u * p has a switching point, then it necessarily occurs strictly after θ since F 0 (0) < 0. Hence, from the expression of Ψ(U ) -Ψ(0), we get that any switching point p s solves the equation

- f (p s ) g(p s ) = -αU (1 -α)j 1 (U )
and we can compute that the smallest value of α for which this equation has a solution is the one such that m * = -αU

(1-α)j1(U ) which allows us to recover α * . -If j ′′ 1 (•) > 0, then F 0 (•)
is increasing, and the three conditions (1.24) are mutually exclusive and are thus both necessary and sufficient. The function p t → -f (pt) g(pt) is increasing until p * , defined in (1.6), and then decreasing (See the unimodality condition in Remark 1.2). Since F 0 defines a bijection, the optimality conditions (1.24) rewrite

         0 ⩾ F -1 0 -f (pt) g(pt) on {u * p = 0}, u * p = F -1 0 -f (pt) g(pt) on {0 < u * p < U }, U ⩽ F -1 0 -f (pt) g(pt) on {u * p = U }.
The expected expression of u * follows then easily.

In order to finish the proof, we have to check that the solution u * p ∈ Vp T ,U belongs to W. This two spaces only differ for p t ∈ [0, θ). We have that F 0 (0) = -α (1-α)j ′ 1 (0) ⩽ 0. This implies that u * p ̸ = 0 in (0, θ), because the optimality condition

0 ⩾ F -1 0 -f (pt) g(pt)
cannot be satisfied in any open interval inside (0, θ). In the concave and linear case, since the solution is bang-bang, this also means that u * p = U in (0, θ), therefore f (p t ) + u * p (p t )g(p t ) > 0 in p t ∈ (0, θ). In the convex case, we need to prove that f (p t ) + u * p (p t )g(p t ) > 0 also in case the solution is a singular control. In that case, u * p satisfies the equation

u * p = F -1 0 -f (pt) g(pt)
. Now F 0 (•) is increasing, and so is F -1 0 (•), therefore

F -1 0 - f (p t ) g(p t ) > - f (p t ) g(p t ) ⇔ - f (p t ) g(p t ) > F 0 - f (p t ) g(p t ) for p t ∈ (0, θ).

This is true if, and only if

v > F 0 (v) for v ∈ (0, m * ]. We have that v > F 0 (v) ⇔ v > (1 -α)(vj ′ 1 (v) -j 1 (v)) -α (1 -α)j ′ 1 (v) ⇔ 0 > - (1 -α)j 1 (v) + α (1 -α)j ′ 1 (v)
.

All the terms in the last fraction are positive, yielding that f (p t ) + u * p (p t )g(p t ) > 0 for all p t ∈ (0, θ), which ends the proof.

Proof of Theorem 1.2

Let us first recall that existence of solutions for Problem (P 1,α p T ,C,U ) has been proved in Proposition A.3.

Step 1: derivation of the first-order optimality conditions.

By mimicking the reasoning in the first step of the proof of Theorem 1.1, one shows that the conclusion of Lemma 1.1 still holds true in that case, in other words, the optimal state p u * is increasing in [0, T * ]. This allow us to reformulate Problem (P 1,α p T ,C,U ) by defining the change of variable

t : p t → pt 0 dν f (ν) + u(p -1 (ν))g(ν)
,

introducing the function p t → u p (p t ) defined by u p (p t ) := u(p -1 (p t )) = u(t), so that Prob- lem (P 1,α p T ,C,U ) is equivalent to inf u∈ Ûp T ,C,U Ĵp,α (u p ), ( P1,α p T ,C,U )
where Ĵp,α (u p ) is defined by (1.22) and Ûp T ,C,U is given by

Ûp T ,C,U := u p ∈ L ∞ ([0, p T ]) , 0 ⩽ u p ⩽ U a.e. , p T 0 u p (ν) f (ν) + u p (ν)g(ν) dν ⩽ C .
To recover the solution of (P 1,α p T ,C,U ) from the solution of ( P1,α p T ,C,U ), it suffices to undo the variable change by setting u(•) = u p (p(•)). Note that, as pointed out in the step 1 of Section 1.2.3, we are solving the problem in Ûp T ,C,U , a bigger space than the range of U T,C,U by the change of variable introduced in Lemma 1.1. This range is Ŵ = W ∩ Ûp T ,C,U . As we have seen before, solutions to Problems ( P1,α p T ,C,U ) and

inf u∈ Ŵ Ĵp,α (u p ), (1.25) 
coincide as long as the solutions to Problem ( P1,α p T ,C,U ) satisfy f (p t ) + u * p (p t )g(p t ) > 0. Mimicking the reasoning at the end Step 3 in Section 1.2.3, one can similarly check that solutions to both problems above still coincide.

Let us derive and analyze optimality conditions for this problem. To handle the constraint

p T 0 u p (ν) f (ν) + u p (ν)g(ν)
dν ⩽ C, we introduce the mapping

p t → z p (p t ) = pt 0 u p (ν) f (ν) + u p (ν)g(ν)
dν.

By following the same lines as in the proof of Theorem 1.1 and applying the PMP, one gets the existence of λ ⩽ 0 such that λ ⩽ 0 , λ(z p (p T ) -C) = 0. (transversality and slackness condition) (1.26) and the optimal control u * p solves for a.e. p t , u * p (p t ) ∈ arg max

v∈ Ū λv + q 0 ((1 -α)j 1 (v) + α) f (p t ) + vg(p t ) . (1.27)
In what follows, if p T ⩽ θ, we will assume without loss of generality that

C > C p T (U ), (1.28) 
the case C = C p T (U ) being straightforward (in that case, one has necessarily u * p (p t ) = U on [0, p T ]).

Let us show that q 0 = -1. To this aim, let us assume by contradiction that q 0 = 0. Hence, the optimality condition reads u * p (p t ) ∈ arg max v∈ Ū ψ(v) where ψ(v) = λv f (pt)+vg(pt) , and since the 3-tuple of Lagrange multipliers is nontrivial according to the PMP, we necessarily have λ < 0 which, by condition (1.26), implies in turn that

z p (p T ) = C. If p t ∈ (0, θ) (resp. p t ∈ (θ, 1)), ψ is increasing (resp. decreasing). Hence, if p T ⩽ θ, then u * p = U 1 [0,p T ]
. This allows us to write

z p (p T ) = U t(p T ) leading to a contradiction since C > U t(p T ) = z p (p T ) (See Remark 1.5). On the other hand, if p T > θ the final state cannot be reached since u * p = U 1 [0,θ] + 01 [θ,p T ] .
Given that with this control, p u * cannot attain p T (remaining indefinitely at p u * = θ) we reach again a contradiction. Therefore, it follows that q 0 = -1.

Step 2: analysis of the first-order optimality conditions.

Before discussing further the optimality conditions of this problem we remark a key fact in this proof. We introduce

C Q := T * Q 0 u * Q (t)dt, where T * Q , u * Q is the solution to Problem (Q 1,α p T ,U
) for the same value of α considered. Since U T,C,U ⊂ V T,U we have that

inf up∈V T ,U Ĵp,α (u p ) ⩽ inf up∈U T ,C,U Ĵp,α (u p ).
This implies that if C ⩾ C Q , then u * = u * Q . Moreover, we can also deduce that, in case

C < C Q the constraint z p (p T ) ⩽ C is always saturated. By contradiction, if z p (p T ) < C, then the slackness condition yields λ = 0. Therefore u * p (p t ) ∈ arg max v∈ Ū -(1-α)j1(v)+α f (pt)+vg(pt)
, but this is the optimality condition for the unconstrained case and u * Q ̸ ∈ U T,C,U . Thus, the constraint must be saturated and we must have λ < 0. Consequently, we consider C < C Q and λ < 0 from now on.

We begin by discussing the case α = 1. From the optimality condition (1.27) we can derive

     1 λ ⩾ -f (pt) g(pt) on {u * p = 0}, 1 λ = -f (pt) g(pt) on {0 < u * p < U }, 1 λ ⩽ -f (pt) g(pt) on {u * p = U }.
Once again these equalities and inequalities must be understood up to a null Lebesgue measure set. From these conditions we see easily that u * p is bang-bang, since p t → f (pt) g(pt) is not constant on any set of positive measure. Also, using the monotonicity of p t → f (pt) g(pt) and the fact that λ < 0 we conclude that u * p has, at most, one switch from U to 0. Since the case without constraint had no switches and we are assuming C < C Q , it follows that u * p = U 1 [0,ps] , with p s solving C ps (U ) = C. We can easily express this as a function of time since

C ps (U ) = ps 0 U f (ν)+U g(ν) dν = U ps 0 dν f (ν)+U g(ν) = U t s , thus u * = U 1 [0,ts] , with t s = C U .
Assuming now α ∈ (0, 1) and following the same lines as in the unconstrained case we introduce

v → F λ (v) := (1 -α)(vj ′ 1 (v) -j 1 (v)) -α (1 -α)j ′ 1 (v) -λ .
Then, we can write the optimality conditions for Problem ( P1,α p T ,C,U ) as

     F λ (0) ⩾ -f (pt) g(pt) on {u * p = 0}, F λ (u * p ) = -f (pt) g(pt) on {0 < u * p < U }, F λ (U ) ⩽ -f (pt) g(pt) on {u * p = U }.
(1.29)

A straightforward computation shows that, like in the unconstrained case, F ′ λ (•) and j ′′ 1 (•) have the same sign. This allows us to draw the same conclusions on the behaviour of u * p as in the unconstrained case. We sketch the reasoning hereafter:

-If j ′′ 1 (•) = 0 then F λ is constant and u * p bang-bang. Since F λ (0) = - α (1-α)j ′ 1 (0)-λ ⩽ 0,
then there is at most one switch. Moreover, we know that the constraint z p (p T ) ⩽ C is saturated and therefore that u

* = U 1 [0,ts] with t s = C U . -If j ′′ 1 (•) < 0, then F λ is decreasing.
Mutatis mutandis, we can reproduce the calculations done in Theorem 1.1, deducing that the behaviour of u * p is identical to the unconstrained case. That is, u * p is bang-bang with at most one switch from U to 0. Again, using the saturation of the constraint we deduce that

u * = U 1 [0,ts] with t s = C U . -If j ′′ 1 (•) > 0, then F (•)
is increasing, and thus the three conditions (1.29) are both necessary and sufficient. This also implies that, once again, F λ defines a bijection, so the optimality conditions (1.29) can be rewritten as

         0 ⩾ F -1 λ -f (pt) g(pt) on {u * p = 0}, u * p = F -1 λ -f (pt) g(pt) on {0 < u * p < U }, U ⩽ F -1 λ -f (pt) g(pt) on {u * p = U }.
From these conditions we can do a straightforward derivation of the expression of u * .

Remark 1.6. Note that the control u * in the convex case with constraint has a very similar expression to the unconstrained case. Indeed the monotonicity of p t → F -1 λ (-f /g(p t )) is the same: increasing until p t = p * and then decreasing. This translates into u * being non-decreasing until t * , solving p u * (t * ) = p * and non-increasing afterwards. The relative positions of F λ (0) and F λ (U ) with respect to m * and m * still play the same crucial role in the behaviour of solutions. Nevertheless, the values of α 0 , α 1 and α 2 do not make sense anymore, since F λ depends on λ which may change for different choices of α and C.

Analysis of Family 2 problems

Description of solutions

In this section we present and discuss the results obtained for the problem (P 2,α T,C,U ) of Family 2. As discussed in Section 1.1.2 let us assume j 2 (T, p(T )) = (1 -p(T )) 2 . Therefore, (1.11) becomes

J α (u) = (1 -α) T 0 j 1 (u(t))dt + α(1 -p(T )) 2 .
In this family the time horizon T is fixed and p(T ) is free. The existence issues in a broader setting are treated separately in Appendix A.

We introduce the following notations in order to state the main result of this section:

U * := max p∈[0,1] - f ′ (p) g ′ (p) (1.30)
Let us also introduce also p max and p defined in the following way:

-

If C ⩽ C θ , p max solves p max 0 dν f (ν) + U g(ν) = min C U , T . -If C > C θ , p max solves p max 0 dν f (ν) + U 1 (0, p) g(ν) = T.
where p is such that

p 0 dν f (ν) + U g(ν) = min{C/U, T }. (1.31) 
We remark that in the first case we have p max ⩽ θ.

Let us also introduce the mapping

v → F λ,τ (v) := vj ′ 1 (v) -j 1 (v) + τ j ′ 1 (v) -λ ,
where λ, τ ∈ R -. Finally let us define

α 0 := Kj 1 (U )/U 2 + Kj 1 (U )/U and α max = j 1 (U )/ (f (p max ) + U g(p max )) 2(1 -p max ) + j 1 (U )/ (f (p max ) + U g(p max ))
.

Note that both parameters satisfy α 0 , α max ∈ (0, 1) and, assuming U ⩾ m * (p T ) and U > U * , they satisfy the inequality α 0 ⩽ α max 4 . Here, K denotes the environmental carrying capacity (see (1.1)). It appears in the definition of α 0 and hereafter due to the fact that g(0) = 1/K.

4.

In order to prove this we recall that x → x 2+x is an increasing function of x, we have α 0 ⩽ α max if and only if

K j 1 (U ) U ⩽ j 1 (U ) (1 -p max )(f (p max ) + U g(p max ))
.

Reordering this we get U ⩾ K(1 -p max )(f (p max ) + U g(p max )). Note that for p max = 0 we have the equality, therefore we want to be sure that p

→ (1 -p)(f (p) + U g(p)) is non-increasing. Computing the derivative we obtain -K(f (p) + U g(p)) + K(1 -p)(f ′ (p) + U g ′ (p)).
The conditions needed for both terms to be individually smaller than zero are, precisely, U > m * (p T ) and U > U * .

Theorem 1.3. Let us assume that (1.2) is true, and that j 1 (•) satisfies the assumptions of (H.1). Let us assume that U > m * (p T ) and α ∈ (0, 1] 5 . Then, there exists a control u * ∈ U T,C,U solving problem (P 2,α T,C,U ) and times t -, t + ∈ [0, T ] such that u * = 0 in (0, t -) ∪ (t + , T ) and in (t -, t + ):

-Case where j 1 is either linear or strictly concave. The optimal control is u * = U 1 [t -,ts] , with t s ⩽ t + . Assuming further that U > U * we have that -If α ⩽ α 0 , u * = 0 for all t ∈ (t -, t + ).

-If α 0 < α < α max then u * = U 1 [t -,ts] with t s the smallest possible value such that

p u * (T ) = p * T , p * T being the only solution to (1 -p * T ) (f (p * T ) + U g(p * T )) = 1-α 2α j 1 (U )
. This value can be explicitly computed: if p * T ⩽ θ, then t s = T and if p * T > θ then t s solves t s -t -= ps 0 dν f (ν)+U g(ν) , with p s the solution of

p * T 0 dν f (ν)+U 1 (0,ps ) g(ν) = T . -If α ⩾ α max then u * = U 1 [t -,ts] with t s solving t s -t -= p 0 dν f (ν)+U g(ν) .
-Case where j 1 is convex. Let u * p be defined by

u * p : [0, p T ] ∋ p t → max{min{U, F -1 λ,τ (-f /g(p t ))}, 0}
If α ∈ (0, 1) the optimal control u * reads u * (t) = u * p (p t ) for all t ∈ [t -, t + ], where p t denotes the unique solution in [0, p T ] to the equation t

= pt 0 dν f (ν)+u * p (ν)g(ν) . If α = 1 then u * = U 1 [t -,t + ] . Moreover, calling T * ≡ t + -t -: -If p u * (T ) < θ, then t + = T -If p u * (T ) = θ, control functions u * ξ such that u * ξ (•) = u * (• -ξ) a.e. with ξ ∈ [-t -, T -t + ] are also solutions. -If p u * (T ) > θ, then (t -, t + ) = (0, T ), thus T * = T .
Remark 1.7. Analogously to Family 1, in the convex case, λ and τ are equal to zero in case the constraints p(T ) 0 u * p (ν)/(f (ν) + u * p (ν)g(ν))dν ⩽ C and T * ⩽ T , respectively, are not saturated. If the constraints are saturated, λ and τ are defined implicitly by these equalities.

A first result: optimization with T free but bounded and p T fixed

We begin by stating and proving an intermediate result that will be useful for proving Theorem 1.3. In this section we investigate a seemingly unrelated problem, where only the cost term is considered, the final state is fixed, and the final time is free, but bounded. With a slight abuse of notation let us introduce

     inf u∈V T * ,U T * ⩽T J(T * , u) p ′ = f (p) + ug(p) in (0, T * ), p(0) = 0 , p(T * ) = p T , (Q 2,T p T ,C,U )
where J(T * , u) is defined by

J(T * , u) = T * 0 j 1 (u(t))dt. (1.32)
For τ ∈ R -, let us introduce the mapping

v → F τ (v) := vj ′ 1 (v) -j 1 (v) + τ j ′ 1 (v)
.

(1.33)

5. We exclude the case α = 0 for simplicity. Note that in that case the answer is trivially u * = 0 a.e. in [0, T ].

Theorem 1.4. Let us assume that p T ∈ (0, 1), that (1.2) is true, and that j 1 (•) satisfies the assumptions of (H.1). Let us assume that U > m * (p T ) and that

T ⩾ p T 0 dν f (ν) + U g(ν)
Then, there exists a pair (T * , u * ) ∈ [0, T ] × U T,C,U solving Problem (Q 2,T p T ,C,U ). Moreover, let us distinguish between two cases:

-Case where j 1 is either linear or strictly concave. The optimal time and control read

u * = U 1 [0,ts] and T * = p T 0 dν f (ν) + U 1 (0,ps) g(ν)
.

Where p s is the only solution to t s = ps 0 dν f (ν)+U g(ν) . Moreover, if p T ⩽ θ then t s = T * and if p T > θ then t s is such that T * = T .

-Case where j 1 is convex. Let u * p be defined by

u * p : [0, p T ] ∋ p t → max{min{U, F -1 τ (-f /g(p t ))}, 0}.
The optimal time T * and control u * read

T * = p T 0 dν f (ν) + u * p (ν)g(ν) and ∀t ∈ [0, T * ], u * (t) = u * p (p t )
where p t denotes the unique solution in [0, p T ] to the equation t = pt 0 dν f (ν)+u * p (ν)g(ν) . Moreover, τ ∈ R -and if for τ = 0, T * ⩽ T then τ = 0, otherwise τ is implicitly determined by the equation T * = T .

Proof of Theorem 1.4

In order to prove Theorem 1.4 we will follow similar steps to the ones in Family 1. The idea behind the proof is to recast Problem (Q 2,T p T ,C,U ) into a problem of Family 1 with an extra constraint T * ⩽ T . We find the desired results by performing a similar reasoning to the one carried out in the proof of Theorem 1.2. Recall that our conclusions hold true for a larger class of functions f and g (See Remark 1.2).

Step 1: recasting into a Family 1 control problem with T * bounded.

Adapting slightly the reasoning in Lemma 1.1, we see that the result is valid for Problem (Q 2,T p T ,C,U ). We can therefore repeat the change of variable performed in Sections 1.2.3 and 1.2.4, that is

t : p t → pt 0 dν f (ν) + u(p -1 (ν))g(ν)
and

u p (p t ) := u(p -1 (p t )) = u(t).
Let us introduce a new problem. inf

u∈ Vp * T ,U Ĵp (u p ), ( Q2,T p T ,C,U )
where Ĵp (u p ) :=

p T 0 j1(up(ν)) f (ν)+up(ν)g(ν)
dν and Vp * T ,U is given by

Vp * T ,U := u p ∈ Vp T ,U , p T 0 dν f (ν) + u p (ν)g(ν) ⩽ T .
From this new problem we will be able to recover the solutions of (Q 2,T p T ,C,U ) by undoing the change of variable.

Similarly to the analysis of the problems of Family 1, we should impose the restriction f (p(t)) + u * (t)g(p(t)) > 0 for t ∈ [0, T ] in the control space. Once again, we will not impose it in order to simplify the derivation of the solutions. Using analogous arguments to those exposed in Section 1.2.3, one can easily check that the solutions we obtain indeed belong to the range of U T,C,U by the change of variable used.

Step 2: first-order optimality conditions through the Pontryagin Maximum Principle.

In addition to the notations used so far, we introduce, abusing of the notation t(p t ) := pt 0 dν f (ν)+up(ν)g(ν) in order to handle the constraint T * ⩽ T . Applying the PMP we find: 

τ ⩽ 0 , τ (t(p T ) -T ) = 0, (
v∈ Ū τ + q 0 j 1 (v) f (p t ) + vg(p t )
.

(1.34)

We can check that, if T >

p T 0 dν f (ν)+U g(ν)
, then q 0 = -1. By the PMP the pair τ, q 0 is non-trivial. Assuming q 0 = 0, this implies that τ < 0 and u * p ≡ U 1 [0,p T ] . Since τ < 0 by the slackness condition T * = T and T * = p T 0 dν f (ν)+U g(ν) . So, without loss of generality, for the rest of the proof we consider T > p T 0 dν f (ν)+U g(ν) and q 0 = -1.

Step 3: analysis of the first-order optimality conditions.

In the same spirit as in Theorem 1.2, we introduce the switching function

v → ψ(v) := ∂H ∂v (p t , t, τ, v) = -f (p t )j ′ 1 (v) -g(p t ) (vj ′ 1 (v) -j 1 (v) + τ ) (f (p t ) + vg(p t )) 2 .

The maximization condition yields

     ψ(0) ⩽ 0 on {u * p = 0}, ψ(u * p ) = 0 on {0 < u * p < U }, ψ(U ) ⩾ 0 on {u * p = U }.
We remind that equalities and inequalities in this context must be understood up to a null Lebesgue measure set. Using the mapping F τ (•) introduced in (1.33) we can write the optimality conditions as

     F τ (0) ⩾ -f (pt) g(pt) on {u * p = 0}, F τ (u * p ) = -f (pt) g(pt) on {0 < u * p < U }, F τ (U ) ⩽ -f (pt) g(pt) on {u * p = U }. (1.35)
We compute the derivative of F τ

F ′ τ (v) = j ′′ 1 (v) j 1 (v) -τ j ′ 1 (v) 2 .
The sign of F ′ τ (•) depends exclusively on the sign of j ′′ 1 (•), hence we can extract similar conclusions on the behaviour of u * p to the ones obtained in Theorem 1.2, namely, u * p is bang-bang in the linear case and the three optimality conditions are mutually exclusive in the convex case. As for the concave case, we can prove that u * p is bang-bang too. To do this it suffices to reproduce the computations carried out in Theorem 1.1 but with the switching function of this section. These results lead us to conclude that:

-

If j ′′ 1 (•) ⩽ 0, then u * = U 1 [0,ts] . Using Lemma 1.1 we obtain that if p T ⩽ θ, then t s = T * = p T 0 dν f (ν)+U g(ν)
, since there cannot be any switch. If p T > θ, since t 0 j 1 (U )ds is an increasing function of time, by direct comparison we find that the switching time must be as small as possible. Since t s = ps 0 dν f (ν)+U g(ν) , a smaller t s implies a smaller p s . Taking into account that T * = p T 0 dν f (ν)+U 1 (0,ps) g(ν) we conclude that minimising t s is equivalent to maximising T * . Therefore t s is such that T * = T . -If j ′′ 1 (•) > 0, the three optimality conditions are mutually exclusive and therefore necessary and sufficient. Applying F -1 τ to both sides of the inequalities in (1.35) we obtain the expression in the statement for u * p . We conclude arguing by contradiction. Let us call T * τ the T * obtained for a particular value of τ . If T * 0 ⩽ T then, for bigger values of T , the slackness condition implies τ = 0 and therefore T * = T * 0 . The only way we can have τ < 0 is in case T * 0 > T , and in that case, using again the slackness condition we need T * τ = T . Looking at the definition of T * τ and u * p , we conclude that τ must have a value such that

p T 0 dν f (ν)+u * p (ν)g(ν) = T .

Proof of Theorem 1.3

In order to prove Theorem 1.3 we will characterize an interval in which p ′ u * > 0. In this interval we will be able to adapt some of the results seen so far, specially those of Theorem 1.4. The solution outside of this interval will be null.

Step 1: recasting into a Family 1 control problem with T * bounded. Lemma 1.2. Let u * ∈ U T,C,U be a control solving (P 2,α T,C,U ) and let α > 0. Let us introduce

p u * solving p ′ u * = f (p u * ) + u * g(p u * ) in (0, T ), p u * (0) = 0.
Then, there exists one single interval (t -, t + ) ⊆ (0, T ) in which p ′ u * > 0. Moreover, outside of this interval, u * = 0 and p ′ u * = 0, implying that p u * (0) = p u * (t -) = 0 and p u * (t + ) = p u * (T ).

Proof. The proof will be done by contradiction and it will follow the same lines as the one carried in Lemma 1.1. Assuming p u * (T ) > 0 (if p u * (T ) = 0 the solution is trivially u * = 0), there necessarily exists a non-zero measure set in which p ′ u * > 0. We call

t -= inf{t ∈ (0, T ) | p ′ u * (t) > 0} and t + = sup{t ∈ (0, T ) | p ′ u * (t) > 0}, therefore {t ∈ (0, T ) | p ′ u * (t) > 0} ⊆ (t -, t +
). We assume that there exists an interval of non-zero measure (t 1 , t 2 ) ⊂ (t -, t + ) such that p ′ u * ⩽ 0 a.e. on (t 1 , t 2 ).

We split the proof in two parts: first we assume p u * (T ) ⩽ θ, and we define ũ as

ũ(t) =      0 t ∈ (0, t 2 -t 1 ) u * (t -t 2 + t 1 ) t ∈ (t 2 -t 1 , t 2 ), u * (t) t ∈ (t 2 , T ).
We proceed by direct comparison between the cost of both controls, obtaining

J α (u * ) -J α (ũ) = (1 -α)   T 0 j 1 (u * (t))dt - T 0 j 1 (ũ(t))dt   + α((1 -p u * (T )) 2 -(1 -p ũ(T )) 2 ) = (1 -α) t2 t1 j 1 (u * (t))dt + α((1 -p u * (T )) 2 -(1 -p ũ(T )) 2 ). Since p ′ ũ = 0 on (0, t 2 -t 1 ) but p ′ u * ⩽ 0 in (t 1 , t 2
) and they are equal on intervals of the same length, it follows that p ũ(T ) ⩾ p u * (T ). Therefore J α (u * ) -J α (ũ) ⩾ 0 which leads to a contradiction if the inequality is strict. In order to have the equality we need p ′ u * = 0 in (t 1 , t 2 ) and since we assumed p u * (T ) ⩽ θ this can only happen if p u * (t 1 ) = p u * (t 2 ) = θ and u * = 0 on (t 1 , t 2 ). But in this case t 2 = T , t 1 = t + , so (t -, t + ) = {t ∈ (0, T ) | p ′ u * (t) > 0} anyway. Next, we assume p u * (T ) > θ, and we define ũ as

ũ(t) =      u * (t) t ∈ (0, t 1 ) u * (t + t 2 -t 1 ) t ∈ (t 1 , T -t 2 + t 1 ), 0 t ∈ (T -t 2 + t 1 , T ). (1.36) 
Comparing the cost of both controls we obtain again J α (u * ) > J α (ũ), because in this case p ũ(T ) > p u * (T ) always. This yields the desired contradiction. Since (t -, t + ) = {t ∈ (0, T ) | p ′ u * (t) > 0} we have that u * = 0 and p ′ u * = 0 in (0, t -) and thus p u * (t -) = 0. On the other hand, we have p u * (t + ) ⩾ p u * (T ). But we must also have u * = 0 and p ′ u * = 0 in (t + , T ), otherwise at least one of the two terms in J α (u * ) would be bigger, thus p u * (t + ) = p u * (T ).

This lemma proves that p u * (t) is a bijection from (t -, t + ) onto (p u * (t -), p u * (t + )). A straightforward exploration of its consequences already proves the last part of Theorem 1.3. Since we must have p ′ = 0 in (0, t -) ∪ (t + , T ) and p u * (t + ) = p u * (T ) it follows that:

-If p u * < θ, then t + = T , otherwise we would have p ′ < 0 in (t + , T ) and p u * (t + ) < p u * (T ).

-If p u * = θ, as long as the length of (0, t -) ∪ (t + , T ) is the same, the length of each interval does not affect the functional J α (u), hence the conclusion. -If p u * (T ) > θ, we have p u * (t + ) = p u * (T ) > θ so t + = T , otherwise we would have p ′ > 0 in (t + , T ) and p u * (t + ) > p u * (T ). We have also that t -= 0,. By contradiction we can construct a function following the same principle as in (1.36) (setting t 1 = 0 and t 2 = t -) and prove that u * is not optimal. Exploiting this lemma further we can repeat the change of variable of the previous theorems one more time, but only in the subinterval (t -, t + ).

Let us introduce the following problem:

inf u∈U T p T ,C,U p T ∈[0,1) Ĵp,α (p T , u p ), ( P2,α T,C,U )
where Ĵp,α (p T , u p ) is defined by

Ĵp,α (p T , u p ) = (1 -α) p T 0 j 1 (u p (ν)) f (ν) + u p (ν)g(ν) dν + α(1 -p T ) 2 , (1.37) 
α ∈ (0, 1] and U T p T ,C,U is given by

U T p T ,C,U := u p ∈ Ûp T ,C,U , p T 0 dν f (ν) + u p (ν)g(ν)
⩽ T .

We remark that thanks to the change of variable, actually

T * = t + -t -= p T 0 dν f (ν)+up(ν)g(ν)
, therefore U T p T ,C,U can also be expressed as U T p T ,C,U := u p ∈ Ûp T ,C,U , T * ⩽ T . To recover the solution of (P 2,α T,C,U ) on the interval (t -, t + ) from the solution of ( P2,α T,C,U ), we need to undo the change of variable by setting u(•) = u p (p(•)). Next, we need to determine t -and t + which will be done in the following steps. Finally, u * = 0 in (0, t -) and in (t + , T ).

Similarly to the analysis of the problems of Family 1, according to Lemma 1.2, we should impose the restriction f (p(t)) + u * (t)g(p(t)) > 0 for t ∈ (t -, t + ) in the control space. Once again, we will not impose it in order to simplify the derivation of the solutions. Using analogous arguments to those exposed before, one can check that the solutions we obtain indeed belong to the range of U T,C,U by the change of variable introduced in Lemma 1.2.

Step 2: Finding p max (case α = 1).

Let us define

Φ : [0, 1) ∋ p T → inf up∈U T p T ,C,U p T 0 j 1 (u p (ν)) f (ν) + u p (ν)g(ν)
dν.

Thanks to Theorem 1.4 we know this problem has a solution for all p T ∈ [0, 1) if T is big enough. And therefore we can rewrite Problem ( P2,α T,C,U ) as a minimisation problem in one variable, namely: inf

p T ∈[0,1) (1 -α)Φ(p T ) + α (1 -p T ) 2 .
Nevertheless, in Theorem 1.4, no constraint on the total number of mosquitoes used was imposed. Moreover the final time T was supposed big enough for solutions to exist. In order to apply the results of Theorem 1.4 to prove Theorem 1.3 we need to establish first which values of p T are reachable for a given set of constraints. In other words, depending on T , C and U , there will be values of p T such that U T p T ,C,U is empty. We note this maximal value p max . Once we have characterized the set [0, p max ], inside it we can disregard the constraint on C and apply Theorem 1.4 to find the solution.

In order to find the value of p max we study the case α = 1 in Problem (P 2,α T,C,U ). We recall it

inf u∈U T ,C,U (1 -p(T )) 2 .
Indeed, when α is set to 1 we are maximising p T for a given set of constraints C and T regardless of j 1 (•). This problem, in the case T > C/U , is discussed and solved in [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF]. There, it is proven that solutions are bang-bang and such that saturate the constraint T 0 u * (t)dt = C. Combining this result with Lemma 1.2 and since we are only looking at the subinterval (t -, t + ) where p ′ u * > 0, we conclude that solutions have at most one switch from U to 0, and only if p u * (T ) > θ.

A straightforward extension of their results yields that in the more general case, where the T > C/U is not imposed, we have that if C ⩽ C θ then p max ⩽ θ and solves

p max 0 dν f (ν) + U g(ν) = min C U , T .
Instead if C > C θ , then p max > θ and solves

p max 0 dν f (ν) + U 1 (0, p) g(ν) = T
where p is such that p 0 dν f (ν)+U g(ν) = min{C/U, T }.

Step 3: Finding p * T Thanks to the previous step we can finally write the expression we want to minimize, that is

inf p T ∈[0,p max T ] (1 -α)Φ(p T ) + α (1 -p T ) 2 .
Now, for all p T ∈ [0, p max ] we know that Φ(p T ) is well defined and that u * p solving Problem ( Q2,T p T ,C,U ) for a given p * T solving this minimization problem, will solve Problem ( P2,α T,C,U ) too. We write the optimality conditions

         (1 -α)K j1(u * p (0)) u * p (0) -2α ⩾ 0 if p * T = 0 (1 -α) j1(u * p (p * T )) f (p * T )+u * p (p * T )g(p * T ) -2α(1 -p * T ) = 0 if 0 < p * T < p max , (1 -α) j1(u * p (p max )) f (p max )+u * p (p max )g(p max ) -2α(1 -p max ) ⩽ 0 if p * T = p max .
(1.38)

In the convex case, these necessary conditions are not enough to give an explicit answer in a general setting. The first condition not even being well defined since u * p (0) can be arbitrarily close to 0. Nevertheless, we focus here in the concave and linear case where these conditions can be further exploited. In case u * (p * T ) = U , we can rewrite the optimality conditions (1.38) as

     (1 -α)K j1(U ) U -2α ⩾ 0 if p * T = 0 (1 -α) j1(U ) f (p * T )+U g(p * T ) -2α(1 -p * T ) = 0 if 0 < p * T < p max , (1 -α) j1(U ) f (p max )+U g(p max ) -2α(1 -p max ) ⩽ 0 if p * T = p max .
(1.39)

Assuming U > U * , the three conditions are mutually exclusive. Let us show it by computing the derivative of the condition with respect to p T and showing that it is strictly increasing

-(1 -α) j 1 (U ) (f (p T ) + U g(p T )) 2 (f ′ (p T ) + U g ′ (p T )) + 2α > 0, which is equivalent to f ′ (p T ) + U g ′ (p T ) < 2α 1 -α (f (p T ) + U g(p T )) 2 j 1 (U ) .
This inequality needs to be satisfied for all α, and the right hand side is non-negative and increasing in α, therefore we want to ensure f ′ (p T ) + U g ′ (p T ) < 0. This is true for all p T if and

only if U > max p T ∈[0,1] -f ′ (p T ) g ′ (p T ) := U * 6 .
We can distinguish three cases -If α ⩽ α 0 then p * T = 0. Therefore u * = 0 for all t ∈ [0, T * ].

-If α 0 < α < α max then 0 < p * T < p max and it is the only solution of the equation

(1 -p * T )(f (p * T ) + U g(p * T )) = 1-α 2α j 1 (U ).
If p * T ⩽ θ there will not be any switch. If p * T > θ, then since the final state is fixed and t 0 j 1 (U )ds is an increasing function of time, the switching point will be the smallest possible such that

p u * (T ) = p * T , this is u * p = U 1 [0,ps] with p s solving T * = p * T 0 dν f (ν)+U 1 (0,ps) g(ν) = T . -If α ⩾ α max then p * T = p max . Therefore u * p = U 1 [0, p] .
In other words, the switch is only possible if the constraint on the total amount of mosquitoes is saturated.

6. This requirement is not much stronger than the minimum required for the existence of solutions, U > m * (p T ). For instance, with the parameters considered in Table 1.1 we obtain m * (1) ≈ 0.0033 and U * ≈ 0.077. On the other hand, the value of U in this table has been fixed to be U = 10.

Chapter 2

Optimal initial time strategies for mosquito population replacement: influence of the carrying capacity on spatial releases

This chapter is the subject of a work in progress in collaboration with L. Almeida, G. Peltier, Y. Privat and N. Vauchelet.

Introduction

In this chapter we explore how an inhomogeneous carrying capacity can influence an instantaneous release of mosquitoes at initial time in the context of the population replacement technique using Wolbachia. Previous works having studied population replacement in a similar framework in which space is considered can be found in [START_REF] Duprez | Optimization of spatial control strategies for population replacement, application to Wolbachia[END_REF][START_REF] Strugarek | Reduction to a Single Closed Equation for 2-by-2 Reaction-Diffusion Systems of Lotka-Volterra Type[END_REF][START_REF] Nadin | Hindrances to bistable front propagation: application to Wolbachia invasion[END_REF][START_REF] Almeida | CEMRACS 2018-numerical and mathematical modeling for biological and medical applications: deterministic, probabilistic and statistical descriptions[END_REF]. In contrast to these works, in this chapter we will not consider diffusion at first. Although mosquitoes do not travel a lot during their lifetimes, diffusion should be considered in any realistic model. Since diffusion adds a lot of complexity to the problem, as a first step towards this ultimate goal, we start by studying a toy model without it. The diffusive case is later explored, only numerically. Despite the lack of realism, this case is nevertheless interesting from a mathematical perspective. This chapter being a work in progress, the case with diffusion will be further developed in the future.

Let us consider the two-species model

       ∂ t M = b M M 1 - M + W K(x) 1 -s h W M + W -d M M, ∂ t W = b W W 1 - M + W K(x) -d W W, t ∈ [0, T ], x ∈ Ω (2.1)
where M = M (t, x) represents the density of Wolbachia-free mosquitoes and W = W (t, x) the density of Wolbachia-infected mosquitoes. The birth rate of both species is denoted b i , i = M, W , and the death rate d i , i = M, W . The birth rate in mosquitoes is considerably higher 61 than its death rate, therefore these parameters have the constraint d i ⩽ b i . Also, due to the way Wolbachia affects the biology of the mosquito we can assume that s b W ⩽ b M and d M ⩽ d W .

The parameter s h measures the cytoplasmic incompatibility, 0 ⩽ s h ⩽ 1, when s h = 1 the cytoplasmic incompatibility is perfect, when s h = 0 there is no cytoplasmic incompatibility. We assume that, at t = 0, there are no Wolbachia-infected mosquitoes in the system and that the wild mosquitoes are at equilibrium, that is W (0, x) = 0 and M (0,

x) = K(x) 1 -d M b M . In (2.1),
Ω is a given bounded domain of R or R 2 and T > 0 is the time horizon of the problem.

Let u denote a function accounting for the rate at which Wolbachia-infected mosquitoes are released in the domain. The addition of this function only modifies the equation on the Wolbachia-infected mosquitoes. It does it in the following way

∂ t W = b W W 1 - M + W K(x) -d W W + u(t, x), t ∈ [0, T ], x ∈ Ω.
The goal we pursue is to find an optimal release function, u, such that at a given final time T the solution (M, W ) to (2.1) is as close as possible of the Wolbachia invasion steady state denoted

(0, W * ) = 0, K(x) 1 -d W b W
. Choosing a least square distance, this leads us to introduce the following cost functional

J(u) = 1 2 Ω M (T, x) 2 + [(W * -W (T, x)) + ] 2 dx. (2.2)
We consider some natural constraints on the number of available mosquitoes to realize the experiments and also on the rate at which this mosquitoes can be released. The set of admissible controls is therefore given by

U T,C,U = u ∈ L ∞ ([0, T ] × Ω), 0 ⩽ u ⩽ U a.e. , T 0 Ω u(t, x) dtdx ⩽ C . (2.3)
With the tools presented so far we can state the optimal control problem we deal with, namely:

inf u∈U T ,C,U J(u), (2.4) 
where J is defined by (2.2) and U T,C,U is defined by (2.3). It has been proved in [START_REF] Strugarek | Reduction to a Single Closed Equation for 2-by-2 Reaction-Diffusion Systems of Lotka-Volterra Type[END_REF] and [10, Proposition 2.2] that when the fecundity rates are large, that is, if we assume that b M = b 0 M ϵ and b W = b 0 W ϵ and we let ϵ → 0, then system (2.1) may be reduced to the problem

   ∂ t p(t, x) = f (p(t, x)) + u(t, x) K(x) g(p(t, x)), t > 0, p(0, x) = 0, x ∈ Ω, (2.5) 
where

f (p) = b 0 M d W s h p(1 -p)(p -θ) b 0 M (1 -p)(1 -s h p) + b 0 W p and g(p) = b 0 M (1 -p)(1 -s h p) b 0 M (1 -p)(1 -s h p) + b 0 W p , (2.6) 
with

θ = 1 s h 1 - d M b 0 W d W b 0 M , (2.7) 
which is strictly comprised between 0 and 1 under the condition 1 -

s h < d M b 0 W d W b 0 M < 1 
, which will be assumed from now on. Moreover, the cost functional J reduced to

J 0 (u) = Ω K(x) 2 (1 -p(T, x)) 2 dx, (2.8) 
as well as an asymptotic version of Problem (2.4) reading

inf u∈U T ,C,U Ω K(x) 2 (1 -p(T, x)) 2 dx, (2.9) 
where p solves (2.5) and U T,C,U is defined by (2.3). This model reduction allows us to study the problem in simpler terms, knowing that solutions of the simplified problem (2.9) will be asymptotically close to solutions of problem (2.4) in the sense of the Gamma-convergence (see [START_REF] Duprez | Optimization of spatial control strategies for population replacement, application to Wolbachia[END_REF][START_REF] Strugarek | Reduction to a Single Closed Equation for 2-by-2 Reaction-Diffusion Systems of Lotka-Volterra Type[END_REF] for details).

The case without considering a spatial variable has been studied in detail in [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF]. Then the aim of this chapter is to extend the former analysis to the case when the space is considered by adding a global constraint on the whole domain and when the carrying capacity varies on it, which is indeed the case in a natural environment.

The case of a single initial release

Simplified optimal control problem

Despite the model reduction performed, problem (2.9) is still a very challenging one. To facilitate the study of this problem we will restrain ourselves to a simplified setting. We assume that the time repartition of the release is given by u(t, x) = u 0 (x)δ 0 (t). In other words, we consider that there is one single release, done at the initial time and that the time it takes to do the release is negligible in comparison with the time window considered.

Following the reasoning developed in [START_REF] Duprez | Optimization of spatial control strategies for population replacement, application to Wolbachia[END_REF], one can prove that equation (2.5) simplifies into

∂ t p(t, x) = f (p(t, x)), t ∈ [0, T ], x ∈ Ω p(0 + , x) = G -1 u0(x) K(x) , (2.10) 
where the function G is defined as the primitive vanishing at zero of the inverse of g,

G(p) = p 0 dν g(ν) .
In this simplified setting we are looking for solutions to the optimal control problem

min u0∈U 0,C,U Ω K(x) 2 (1 -p(T, x)) 2 dx, (P u0 )
with the space of admissible controls being

U 0,C,U = u 0 ∈ L ∞ (Ω), 0 ⩽ u 0 ⩽ U a.e., Ω u 0 (x) dx ⩽ C . (2.11)
Looking at (2.10) we see there is a one-to-one relation between the release carried at the initial time u 0 (x) and the initial data of the equation on the proportion of Wolbachia-infected mosquitoes. We can reformulate problem (P u0 ) in terms of this initial proportion by defining

p 0 (x) := G -1 u0(x) K(x)
= p(0 + , x) and considering it the new control variable of the problem. We find that Problem (P u0 ) is equivalent to the following optimal control problem min

p0∈P 0,C,U Ω K(x) 2 (1 -p(T, x)) 2 dx (P p0 )
where p 0 is the initial data of the differential equation in (2.10) and the space of admissible controls is

P 0,C,U = p 0 ∈ L ∞ (Ω), 0 ⩽ p 0 ⩽ G -1 U K(x)
a.e.,

Ω K(x)G(p 0 (x)) dx ⩽ C . (2.12)
Since g is decreasing, we have that G is convex. However, unless some restrictive assumptions on f , the cost functional is not convex, but clearly continuous. Before analysing the problem in depth, we can obtain easily the following lemmas that will be useful later for the characterization of the solutions. First, we observe that the constraint of the problem is saturated :

Lemma 2.1. If u * 0 = K(x)G(p * 0 ) is an optimal solution then Ω u * 0 (x) dx = C, or equivalently Ω K(x)G(p * 0 (x)) dx = C.
Proof. This is a trivial consequence of the fact that, on the one hand, G is increasing therefore so is G -1 , on the other hand, the solutions of (2.10) are ordered, that is if

p 1 (0 + , x) ⩽ p 2 (0 + , x) then p 1 (•, x) ⩽ p 2 (•, x).
Using also the monotony of the solutions to (2.10) with respect to their initial data, we have :

Lemma 2.2. If U |Ω| ⩽ C
, the optimal solution is given by u * 0 = U or equivalently p * 0 = p U := G -1 ( U K ). Hence, from now on, we will always assume that U |Ω| > C.

Remark 2.1. We recall that, despite the results are presented for problem (P p0 ), since G is continuous and strictly increasing, we can compute solutions to problem (P u0 ) using the simple one-to-one relation

u * 0 (x) := K(x)G(p * 0 (x)).

Optimality conditions

First order optimality condition

Let us introduce the Lagrangian

L(p 0 ) = 1 2 Ω K(x) 2 (1 -p(T, x)) 2 dx + λ Ω K(x)G(p 0 ) dx -C ,
for some λ ∈ R + . To compute its derivative, we introduce the linearized system

∂ t δp = f ′ (p)δp, δp(0 + , x) = h, (2.13)
and the adjoint state

-∂ t q = f ′ (p)q, q(T, x) = -K(x) 2 (1 -p(T, x)) < 0. (2.14)
In particular, from (2.13) we deduce

∂p(T, x) ∂p 0 (x) = exp T 0 f ′ (p(s, x))ds . (2.15)
Then, to verify the first order optimality condition, we compute

dL(p 0 ) • h = - Ω K(x) 2 (1 -p(T, x))δp(T, x) dx + λ Ω K(x)G ′ (p 0 )h dx .
Using (2.13) and (2.14), we deduce

0 = T 0 Ω ∂ t (δpq) dxdt = Ω δp(T, x)q(T, x) dx - Ω hq(0, x) dx.
Therefore,

dL(p 0 ) • h = Ω h (q(0, x) + λK(x)G ′ (p 0 )) dx = Ω K(x) g(p 0 ) h 1 K(x) g(p 0 )q(0, x) + λ dx, (2.16) 
where we have used the fact that G ′ = 1 g . It leads us to introduce the switch function

ω x,T (p 0 ) = 1 K(x)
g(p 0 (x))q(0, x).

(2.17)

We may have a more explicit expression of the switch function. Indeed, solving (2.14) we get

q(0, x) = -K(x) 2 (1 -p(T, x)) exp T 0 f ′ (p(s, x)) ds .
Injecting into (2.17), we obtain

ω x,T (p 0 ) := -K(x)g(p 0 (x))(1 -p(T, x)) exp T 0 f ′ (p(s, x)) ds < 0. (2.18)
Note that function ω x,T only depends on x through K(x) and the initial condition p 0 (x), therefore, when looked as a function of the initial condition, the only dependency of p 0 → ω x,T on x is through K(x). It will be useful in the following to work with a different switch function that will allow us to simplify the exposition by rendering the switching function independent of x.

This will simplify the characterization of the solutions in Theorems 2.1 and 2.2. We introduce

w T (p 0 ) := ω x,T (p 0 ) K(x) = -g(p 0 (x))(1 -p(T, x)) exp T 0 f ′ (p(s, x)) ds < 0. (2.19)
We may also compute some particular values of the switch function :

-In {p 0 = 0}, i.e. on the set {u 0 = 0}, we have p(t, x) = 0 for all t ⩾ 0 and we get w 0 = -g(0) exp(T f ′ (0)). -In {p 0 = θ}, p(t.x) = θ for all t ⩾ 0, and

w θ = -g(θ)(1 -θ) exp(T f ′ (θ)).
The following result is a classical consequence of the Pontryagin Maximum Principle (PMP): Lemma 2.3. Let the switch function w T be as in (2.19). There exists λ * ⩾ 0 such that the optimal solution u * 0 verifies :

-on {u * 0 = U } = p * 0 = p U := G -1 U K(x) , we have w T ⩽ -λ * K(x) , -on {u * 0 = 0} = {p * 0 = 0}, w T ⩾ -λ * K(x) , -on {0 < u * 0 < U } = {0 < p * 0 < p U }, w T = -λ * K(x) .

Second order optimality condition

We compute the second order derivative of the Lagrangian. We have from (2.16)-(2.17),

dL(p 0 ) • h = Ω K(x) 2 g(p 0 ) h w T + λ K(x) dx.
Then,

d 2 L(p 0 ) • h • h = Ω K(x) 2 g ′ (p 0 ) g(p 0 ) 2 h 2 w T + λ K(x) dx + Ω K(x) 2 g(p 0 ) h 2 ∂w T ∂p 0 dx.
A first consequence of the computation is that on the set {0 < u * 0 < U } = {0 < p * 0 < p U }, we have by Lemma 2.3 that

d 2 L(p 0 ) • h • h = Ω K(x) 2 g(p 0 ) h 2 ∂w T ∂p 0 dx.
At the minimum it must hold that for every h, we have

d 2 L(p 0 ) • h • h ⩾ 0.
Then we have obtained :

Lemma 2.4. On the set {0 < u * 0 < U } = {0 < p * 0 < p U }, each minimum should verify the condition ∂w T ∂p 0 ⩾ 0.

Study of the switch function

We devote this section to the study of the switch function w = w T (p 0 ) defined in (2.19). This function depends on T and the initial condition p 0 (x). Nevertheless, in this section, we are only interested in its behaviour as a function of the initial condition. Therefore, in what follows, we fix a x ∈ Ω and we consider T as a parameter. To ease the lecture, we simply write w(p 0 ). We thus write w(p 0 ) = -g(p 0 )(1 -p(T )) exp T 0 f ′ (p(s)) ds . We present a Lemma on the monotonicity of w that will play a crucial role in the characterization of the solutions of problem (P p0 ).

Before stating the Lemma, we require some additional preliminaries and notations. Since we assumed b 0 2 ⩽ b 0 1 and d 1 ⩽ d 2 , one can prove (see Appendix B.1) that f ′′ admits a unique zero θ 2 in (0, 1). Additionally, for any p ∈ [0, 1], we have f ′′ (p) > 0 if and only if p < θ 2 . Setting θ := max(θ, θ 2 ), we now introduce the following function We investigate for which parameters (H.2) is true in Appendix B.1.

p 0 → A(p 0 ) := g ′ (p 0 ) g(p 0 ) - 1 1 -p(T ) e
Lemma 2.5. Assume (H.2) holds. There exists T 0 > 0 such that, if T ⩽ T 0 , then ∂w ∂p0 (p 0 ) > 0 for any p 0 ∈ (0, 1). Meanwhile, if T > T 0 , there exists one single p T 0 ∈ (0, θ) such that ∂w ∂p 0 (p 0 ) < 0, ∀p 0 ∈ (0, p T 0 ) and

∂w ∂p 0 (p 0 ) > 0, ∀p 0 ∈ (p T 0 , 1). (2.21)
Let us notice that we have an explicit expression of T 0 which is given in (2.23) in the proof below.

Proof. We first look at the sign of ∂w ∂p0 at p 0 = 0 to derive the value of T 0 .

Sign of ∂w ∂p0 at p 0 = 0. Recalling (2.15), calculations yield

∂w ∂p 0 = -g ′ (p 0 )(1 -p(T ))e T 0 f ′ (p(s))ds) + g(p 0 )e 2 T 0 f ′ (p(s))ds -g(p 0 )(1 -p(T ))e T 0 f ′ (p(s))ds T 0 f ′′ (p(s))e s 0 f ′ (p(σ))dσ ds, (2.22) 
As a result, there holds

∂w ∂p 0 p0=0 = -g ′ (0)e T f ′ (0) + g(0)e 2T f ′ (0) -g(0)e T f ′ (0) T 0 f ′′ (p(s)))e sf ′ (0) ds = -e T f ′ (0) g ′ (0) -g(0)e T f ′ (0) + g(0) f ′′ (0) f ′ (0) e T f ′ (0) -1 .
Let us recall that g(0) > 0 > g ′ (0) and f ′ (0) < 0 < f ′′ (0). From the above expression we deduce that

∂w ∂p 0 p0=0 ⩾ 0 ⇔ g ′ (0) -g(0)e T f ′ (0) + g(0) f ′′ (0) f ′ (0) e T f ′ (0) -1 ⩽ 0 ⇔ e T f ′ (0) g(0) f ′′ (0) f ′ (0) -1 ⩽ g(0) f ′′ (0) f ′ (0) -g ′ (0) ⇔ e T f ′ (0) ⩾ f ′′ (0)g(0) -f ′ (0)g ′ (0) g(0) (f ′′ (0) -f ′ (0)) ⇔ T ⩽ 1 f ′ (0) ln f ′′ (0)g(0) -f ′ (0)g ′ (0) g(0) (f ′′ (0) -f ′ (0)) =: T 0 . (2.23)
One can check that the value of T 0 is always well defined and positive. Indeed, the argument of the logarithm is positive since

f ′′ (0)g(0) -f ′ (0)g ′ (0) = b W b 2 M (2d M b M s h + d W b M -b W d M ) > b W b 2 M 2d M b M s h > 0.
On the other hand, the argument of the logarithm is also smaller than one, since g(0) = 1 and

f ′′ (0) -f ′ (0)g ′ (0) < f ′′ (0) -f ′ (0). Consequently, if T > T 0 , then ∂w ∂p0 < 0 in a neighborhood of p 0 = 0.
Note that we can rewrite expression (2.22) using A(p 0 ) as defined in equation (2.20),

∂w ∂p 0 = -g(p 0 )(1 -p(T ))e T 0 f ′ (p(s))ds) g ′ (p 0 ) g(p 0 ) - 1 1 -p(T ) e T 0 f ′ (p(s))ds + T 0 f ′′ (p(s))e s 0 f ′ (p(σ))dσ ds = w(p 0 )A(p 0 ), (2.24) 
Recall that w(p 0 ) < 0 and therefore ∂w ∂p0 changes signs as many times, and in the same points, as A(p 0 ).

Fix T > 0 and set θ := max(θ, θ 2 ) ∈ (0, 1). Let us prove ∂w ∂p0 > 0 for all p 0 ∈ ( θ, 1). From (2.24) and (2.19), it is enough to prove that A = A(p 0 ) defined by (2.20) is negative on ( θ, 1). The first two terms of (2.20) are strictly negative for all p 0 ∈ (0, 1). Therefore it is sufficient to prove that If p 0 ∈ ( θ, 1), f ′′ (p(t)) ⩽ 0 for all t ∈ (0, T ).

Let us recall that θ 2 is the unique zero of f ′′ in (0, 1), and that f ′′ < 0 in (θ 2 , 1) (see Proposition B.1). Let p 0 > θ. Then, since p 0 > θ, one can readily check that t → p(t) is nondecreasing. Therefore p(t) ⩾ p 0 > θ 2 , so that f ′′ (p(t)) ⩽ 0 for all t. Thus ∂w ∂p0 > 0 on ( θ, 1).

Conclusion.

In conclusion, if T ⩽ T 0 , we proved that ∂w ∂p0 p0=0 ⩾ 0 and so is ∂w ∂p0 for all p 0 ∈ ( θ, 1). By Hypothesis (H.2), ∂w ∂p0 changes sign at most once, by contradiction ∂w ∂p0 cannot change sign in (0, θ), and thus ∂w ∂p0 ⩾ 0 for all p 0 ∈ (0, 1). On the other hand, if T > T 0 ,

p 0 -λ * /K(x) p * 0 = p U -λ * /K(x) p * 0 = w -1 T -λ * K(x) -λ * /K(x) p * 0 = 0 w T (p U )
w T (0)

Figure 2.1 -Typical shape of p 0 → w T (p 0 ), in the case T ⩽ T 0 . ∂w ∂p0 p0=0 < 0 and ∂w ∂p0 > 0 for all p 0 > θ. Therefore w has at least one minimum. Again, by Hypothesis (H.2), ∂w ∂p0 changes sign at most once, and thus the minimum, that we note p T 0 , must be unique. (2.21) follows straightforwardly.

The case T ⩽ T 0

We place ourselves first in the case T ⩽ T 0 . Let us introduce the following mappings defined

on R + Λ → ψ x,T (Λ) :=        0 if -Λ ⩽ w T (0), p U (x) := G -1 U K(x) if -Λ ⩾ w T (p U (x)), w -1 T (-Λ) if -Λ ∈ (w T (0), w T (p U (x))) .
(2.25) and

λ → I(λ) := Ω K(x)G ψ x,T λ K(x) dx, (2.26) 
Theorem 2.1. Assume T ⩽ T 0 and 0 < C < U |Ω|. Then there exists a unique p * 0 ∈ P 0,C,U , that solves problem (P p0 ). It is given by

p * 0 (x) = ψ x,T λ * K(x)
for any λ * such that I(λ * ) = C.

Proof. Fix any x ∈ Ω and denote Let λ * ⩾ 0 be any value given by Lemma 2.3 and assume p * 0 = p * 0 (x) is any optimal control solving problem (P p0 ). The optimality conditions given by Lemma 2.3 can be rewritten as:

w(p 0 ) := w T (p 0 (x)), p U = p U (x) := G -1 U K(x) > 0. p 0 w(p U ) w(0) -λ * /K(x) p * 0 = p U -λ * /K(x) p * 0 ∈ {0, p U } -λ * /K(x) p * 0 = 0 A) p 0 w(0) w(p U ) min p0 w(p 0 ) -λ * /K(x) p * 0 = p U -λ * /K(x) p * 0 ∈ {0, p U } -λ * /K(x) p * 0 ∈ 0, w -1 -λ * K(x) -λ * /K(x) p * 0 = 0 B) p 0 w(0) w(p U ) min p0 w(p 0 ) -λ * /K(x) p * 0 = p U -λ * /K(x) p * 0 ∈ 0, w -1 -λ * K(x) -λ * /K(x) p * 0 = w -1 -λ * K(x) -λ * /K(x) p * 0 = 0 C)
-If p * 0 = 0 then w(0) ⩾ -λ * K(x) . -If p * 0 = p U then w(p U ) ⩽ -λ * K(x) . -If 0 < p * 0 < p U then w(p * 0 ) = -λ * K(x) .
Fix now T ⩽ T 0 . The above allows to compute the value p * 0 = p * 0 (x) as follows. First, we look at the function p 0 → w(p 0 ) for 0 ⩽ p 0 ⩽ p U . Since w is increasing, we have w(0) ⩽ w(p 0 ) ⩽ w(p U ) < 0 with w(0) < w(p U ). Now, depending on the value λ * , we distinguish three cases:

-If -λ * K(x) ⩽ w(0), then necessarily p * 0 = 0. -If -λ * K(x) ⩾ w(p U ), then necessarily p * 0 = p U . -If -λ * K(x) ∈ (w(0), w(p U )), then necessarily p * 0 = w -1 -λ * K(x) .
In other words, for any given T ⩽ T 0 and x ∈ Ω we have

p * 0 (x) = ψ x,T λ * K(x) =        0 if -λ * K(x) ⩽ w T (0), p U (x) if -λ * K(x) ⩾ w T (p U (x)), w -1 T -λ * K(x) if -λ * K(x) ∈ (w T (0), w T (p U (x))) .
(2.27)

As a consequence, if u * 0 is an optimal control, p * 0 must satisfy (2.27), meaning p * 0 is uniquely determined for a given λ * . We claim that each value λ * , given by Lemma (2.3), leads to the same function p * 0 , meaning p * 0 is uniquely determined. Consider I(λ) as defined in (2.26). If p * 0 is optimal, then necessarily I (λ * ) = C, see Lemma 2.1. Note that the function ψ x,T is clearly continuous and nonincreasing, thus so is I. Also,

I (λ) = Ω K(x)G(0)dx = 0, if λ ⩾ λ max := -w T (0) min x K(x), I (λ) = Ω K(x)G(p U (x))dx = U |Ω|, if λ ⩽ λ min := -max x K(x)w T (p U (x)).
Since we assumed 0 < C < U |Ω|, we deduce that there exist λ min < λ * 1 ⩽ λ * 2 < λ max such that

I (λ) = C ∀λ ∈ [λ * 1 , λ * 2 ].
As a result, there holds

λ * ∈ [λ * 1 , λ * 2 ]. While λ * is not uniquely determined, we claim that ψ x,T is constant on [λ * 1 /K(x), λ * 2 /K(x)
] for a.e. x ∈ Ω. Assume by contradiction that there exists a set S ⊂ Ω with positive measure such that ψ x,T is nonconstant on [λ * 1 /K(x), λ * 2 /K(x)] for all x ∈ S. This implies, since ψ x,T is nonincreasing,

ψ x,T λ * 1 K(x) > ψ x,T λ * 2 K(x) , ∀x ∈ S.
On the other hand, there also holds

ψ x,T λ * 1 K(x) ⩾ ψ x,T λ * 2 K(x) , ∀x ∈ Ω.
As a result, since G is increasing, we deduce that

I (λ * 1 ) -I (λ * 2 ) = Ω\S K(x) G ψ x,T λ * 1 K(x) -G ψ x,T λ * 2 K(x) dx + S K(x) G ψ x,T λ * 1 K(x) -G ψ x,T λ * 2 K(x) dx ⩾ S K(x) G ψ x,T λ * 1 K(x) -G ψ x,T λ * 2 K(x) dx > 0
where the last inequality follows from the fact that |S| > 0 and K(x) > min Ω K > 0. This contradicts the fact that

I (λ * 1 ) = I (λ * 2 ) = C. Therefore ψ x,T is constant on [λ * 1 /K(x), λ * 2 /K(x)] for a.e. x ∈ Ω. As a result, p * 0 (x) = ψ x,T λ * K(x) is uniquely determined, for any value λ * ∈ [λ * 1 , λ * 2 ].
Notice that Theorem 2.1 implies that releases should be more important where the carrying capacity is high. Since λ * is fixed, the argument of ψ x,T (•), λ * /K(x), is smaller where K(x) is higher. In caseλ * K(x) ̸ ∈ (w T (0), w T (p U (x))), we have either u 0 (x) = 0 or u 0 (x) = U . On the other hand, in case

-λ * K(x) ∈ (w T (0), w T (p U (x))), ψ x,T λ * K(x) = ω -1 T -λ * K(x)
. And since ω T (•) is monotonically increasing (see Figure 2.1), a bigger K(x) implies a bigger argument (because of the minus sign), which implies a bigger p * 0 (x). Since u * 0 (x) = K(x)G(p * 0 (x)), and G is also monotonically increasing, it follows that u * 0 (x) must be non-decreasing when K(x) increases in general, and strictly increasing with K(x) whenever u * 0 (x) ̸ ∈ {0, U }.

The case T > T 0

We study now the case T > T 0 , in order to state the results for this case it will be useful to introduce some tools and notations. Let us introduce the following mappings

Λ → ψ 0 x,T (Λ) :=      0 if -Λ ⩽ w T (0), p U (x) if -Λ > max (w T (0), w T (p U (x))) , w -1 T (-Λ) if -Λ ∈ (w T (0), w T (p U (x))] ,
(2.28) the third case only being defined if w T (0) < w T (p U (x)), and

Λ → ψ 1 x,T (Λ) :=          0 if -Λ < min p0∈(0,p U (x)) w T (p 0 ), p U (x) if -Λ ⩾ w T (p U (x)), w -1 T (-Λ) if -Λ ∈ min p0∈(0,p U (x)) w T (p 0 ), w T (p U (x)) , (2.29) 
the third case only being defined if min

p0∈(0,p U (x)) w T (p 0 ) < w T (p U (x)). It is important to remark that w -1 -λ * K(x)
might not be uniquely defined, since the function is not injective on its whole domain. Whenever there is an ambiguity it will be understood that the value of w

-1 -λ * K(x)
we refer to is the one on the increasing branch of w(p 0 ) (the one satisfying ∂w ∂p0 (p 0 ) ⩾ 0), since it is the only one satisfying the second order optimality conditions.

For a given value of λ ⩾ 0, let us introduce the set:

Ωλ := x ∈ Ω | ψ 0 x,T λ K(x) ̸ = ψ 1 x,T λ K(x)
.

(2.30)

By definition, for all x ∈ Ω \ Ωλ , ψ 0

x,T λ K(x) = ψ 1 x,T λ K(x)
. In order to underline this, for x ∈ Ω \ Ωλ we will denote ψ

• x,T λ K(x) := ψ 0 x,T λ K(x) = ψ 1 x,T λ K(x) . Note also that in case ψ 0 x,T λ K(x) ̸ = ψ 1 x,T λ K(x) , then ψ 0 x,T λ K(x) = 0, therefore ψ 0 x,T λ K(x) = 0 for all x ∈ Ωλ .
In the same spirit as in Theorem 2.1, the idea behind Theorem 2.2 is to write the solution in the form

p * 0 (x) = ψ • x,T λ K(x)
for certain values of λ. Therefore, solutions in Ωλ will be hard to characterize in general. In order to study solutions in this set we introduce a secondary problem, the solution of which, will allow us to determine the solutions of problem (P p0 ) in Ωλ . Assuming | Ωλ | > 0, we introduce the quantity

Cλ := C - Ω\ Ωλ K(x)G ψ • x,T λ K(x) dx.
Assuming Cλ > 0 we consider the following problem:

Secondary problem.

min χλ∈X Ωλ K(x) 2 (1 -p(T, x)) 2 χ λ (x) + K(x) 2 (1 -χ λ (x))dx , Ωλ K(x)G ψ 1 x,T λ * K(x) χ λ (x)dx ⩽ Cλ . (P Ωλ )
Where the new control variable is χ λ ∈ X and

X := χ λ ∈ L ∞ ( Ωλ ) | 0 ⩽ χ λ ⩽ 1 .
Here p(T, x) is assumed to have ψ 1

x,T λ K(x) as initial condition. Finally, let us also define

I 0 (λ) := Ω K(x)G ψ 0 x,T λ K(x) dx and I 1 (λ) := Ω K(x)G ψ 1 x,T λ K(x)
dx. (2.31) and λ 0 := min λ such that I 0 (λ) = C, (2.32)

λ 1 := max λ such that I 1 (λ) = C. (2.33)
Note that as long as 0 < C < U |Ω| these two quantities will always be well defined.

Theorem 2.2. Assume T > T 0 , 0 < C < U |Ω| and (H.2). Then there exists at least one p * 0 ∈ P 0,C,U that solves problem (P p0 ). It is given by

p * 0 (x) = ψ • x,T λ * K(x) for all x ∈ Ω \ Ωλ * , and p * 0 (x) =    ψ 1 x,T λ * K(x) , for x ∈ Ωλ * s.t. χ * λ * (x) = 1, ψ 0 x,T λ * K(x) , for x ∈ Ωλ * s.t. χ * λ * (x) = 0, where ψ 0 x,T λ * K(x) = 0 for all x ∈ Ωλ * , λ * ∈ [λ 0 , λ 1 ] and χ * λ * (x) is the solution to problem (P Ωλ ) with λ = λ * . Furthermore, if | Ωλ0 | = 0, then λ * = λ 0 and p * 0 (x) = ψ • x,T λ0 K(x)
for all x ∈ Ω.

Proof. In this proof we use the same notation as in the proof of Theorem 2.1. Let us fix any x ∈ Ω and let λ * ⩾ 0 be any value given by Lemma 2.3. Let us consider p * 0 ∈ P 0,C,U be the solution to problem (P p0 ).

Using the first and second order optimality conditions (Lemmas (2.3) and (2.4)) we know that there exists a λ * ⩾ 0 such that the optimal control p * 0 must satisfy that -If

p * 0 = 0 then w(0) ⩾ -λ * K(x) . -If p * 0 = p U then w(p U ) ⩽ -λ * K(x) . -If 0 < p * 0 < p U then w(p * 0 ) = -λ * K(x)
and ∂w ∂p0 (p * 0 ) ⩾ 0. We fix T > T 0 and exploit these optimality conditions. Under hypothesis (H.2), by Lemma 2.5, w(p 0 ) is unimodal, that is, strictly decreasing until a certain p T 0 ∈ (0, θ) and then strictly increasing. Depending on the relative position of w(0),w(p U ) and min w(p 0 ) we can have three different behaviours of the optimal control. We detail here as an example the case w(0) ⩾ w(p U ) > min w(p 0 ). For cases w(0) > w(p U ) ⩾ min w(p 0 ) and w(p U ) > w(0) > min w(p 0 ) see Figure 2.2.

Assume p U is such that w(0) ⩾ w(p U ) > min w(p 0 ) (second case in Figure 2.2), then we distinguish four cases:

-

If -λ * K(x) ⩾ w(0), then necessarily p * 0 = p U . -If w(0) ⩾ -λ * K(x) ⩾ w(p U ), then necessarily p * 0 ∈ {0, p U }. -If w(p U ) ⩾ -λ * K(x) ⩾ min w(p 0 ), then necessarily p * 0 ∈ 0, w -1 -λ * K(x)
.

-Ifλ * K(x) ⩽ min w(p 0 ), then necessarily p * 0 = 0. Two things remain to be investigated: The values that λ * can take, and, in case p * 0 is not uniquely determined, how to choose between the two options. In order to do this, let us consider mappings ψ 0

x,T and ψ 1 x,T as defined in (2.28) and (2.29) respectively. Note that these two mappings are always well defined and they give, respectively, the minimum and maximum values p * 0 can take when two values of p 0 satisfy the optimality conditions. For instance, if for a given value of λ * , p * 0 ∈ {0, p U }, then ψ 0

x,T λ * K(x) = 0 and ψ 1 x,T λ * K(x)
= p U . Remark also that whenever

ψ 0 x,T λ K(x) ̸ = ψ 1 x,T λ K(x) , ψ 0 x,T λ K(x) = 0. Mappings ψ 0 x,T λ K(x) , ψ 1 x,T λ K(x)
are non-increasing with respect to λ. Although in case T > T 0 , ψ 0

x,T and ψ 1 x,T are only continuous in case C (see Figure 2.2), it still holds that for all λ ⩾ 0 we have that I 0 (λ) ⩽ I 1 (λ), with I 0 (λ), I 1 (λ), as defined in (2.31). Furthermore, if λ * is any value given by Lemma 2.3 we have that

I 0 (λ * ) ⩽ Ω K(x)G(p * 0 (x))dx ⩽ I 1 (λ * ). (2.34) Using Lemma 2.1, (2.34) means that I 0 (λ * ) ⩽ C ⩽ I 1 (λ * ). It follows that λ * ∈ [λ 0 , λ 1 ].
Fixing now a λ * ∈ [λ 0 , λ 1 ], let us consider the set Ωλ * as defined in (2.30). Note that if

| Ωλ * | = 0, we can conclude that p * 0 (x) = ψ • x,T -λ * K(x)
using the same arguments as in the proof of Theorem 2.1. In particular, if

| Ωλ0 | = 0, since p * 0 (x) = ψ • x,T λ0 K(x) , ψ • x,T (λ) is non-increasing w.r.t λ and Ω K(x) 2 (1 -p(T, x))
2 dx is descreasing w.r.t to the initial data of p(T, x), we can conclude that λ * = λ 0 , proving the last statement of the theorem.

For the rest of the proof we assume that | Ωλ * | > 0. Note also that the optimal control p * 0 must be such that 0 < Cλ * ⩽ C. We consider problem (P Ωλ ) with λ = λ * . Observing that the criterion to optimize is affine with respect to χ λ * and that its differential at χ * λ * is the linear mapping

L ∞ (Ω) ∋ h → Ωλ * h K(x) K(x)p(T, x)(p(T, x) -2) + λG ψ 1 x,T λ * K(x)
dx, leads to introduce where the switching function Φ for this problem, namely

Φ(x) := K(x) p(T, x)(2 -p(T, x)) G ψ 1 x,T λ * K(x)
.

We infer from the so-called bathtub principle (see e.g. Section 1.14 of [START_REF] Lieb | Analysis. English[END_REF]) the existence of a unique real number λ * such that

{ λ * > Φ} ⊂ {χ * λ * = 0} ⊂ { λ * ⩾ Φ}, { λ * < Φ} ⊂ {χ * λ * = 1} ⊂ { λ * ⩽ Φ} and furthermore, {0 < χ * λ * < 1} ⊂ { λ * = Φ}.
Note that such inclusions must be understood up to a zero Lebesgue measure set.

Let us notate

D := x ∈ Ωλ * | 0 < χ * λ * (x) < 1 .
In case |D| = 0, the optimality conditions become necessary and sufficient. The solution can be written as

χ * λ * (x) = 1 , if λ * < Φ, 0 , if λ * > Φ.
In case |D| > 0, since the problem is linear in χ λ * we know that there exists a bang-bang solution. That is, a solution that only takes the values χ * λ * = 0 and χ * λ * = 1. This means that despite it may exists a solution with 0 < χ * λ * (x) < 1 for x ∈ D, we can always construct a bang-bang alternative that performs just as good. Assuming λ * = Φ in D (Φ is constant in D by definition), we introduce

χ α λ * (x) = 1, if λ * < Φ or x ∈ D α , 0, if λ * > Φ or x ∈ D \ D α .
where D α is any subset of D such that |D α |/|D| = α, and α ∈ [0, 1]. To compute the value of α we use one more time Lemma 2.1, concluding that, in this case,

χ * λ * (x) = χ α λ * (x) for α such that Ωλ * K(x)G ψ 1 x,T λ * K(x) χ α λ * (x)dx = Cλ * .
Note how the solution to this secondary problem, (P Ωλ ), sheds light on the primary problem, (P p0 ), by allowing us to write the solution on Ωλ * as

p * 0 (x) = ψ 1 x,T (λ * ), on χ * λ * (x) = 1, ψ 0 x,T (λ * ), on χ * λ * (x) = 0,
concluding the proof.

Corollary 2.1. Assume 0 < C < U |Ω| and K(x) = K constant in all Ω. Then there exists a p * 0 ∈ P 0,C,U that solves problem (P p0 ).

-If T ⩽ T 0 , it is given by

p * 0 (x) = G -1 C K|Ω| for all x ∈ Ω. -If T > T 0 , -If w(0) < w G -1 C K|Ω| , then p * 0 (x) = G -1 C K|Ω| for all x ∈ Ω -If w(0) ⩾ w G -1 C K|Ω|
, then there exists at least one λ * ∈ [λ 0 , λ 1 ] such that p * 0 (x) can be written as

p * 0 (x) = ψ 1 x,T λ * K , for x ∈ D, 0, for x ∈ Ω \ D,
where D can be any subdomain of

Ω with size |D| = C KG(ψ 1 x,T ( λ * K ))
.

Proof. The existence of a unique solution written as

p * 0 (x) = ψ x,T λ * K(x)
for the case T ⩽ T 0 can be easily adapted from the proof of Theorem 2.1. Since the constraint must be saturated, we have that

Ω K(x)G ψ x,T λ * K(x) dx = K Ω G ψ x,T λ * K dx = C, but for K constant, w is constant w.r.t.
x, and thus, so is ψ x,T λ * K . Therefore,

K Ω G ψ x,T λ * K dx = KG ψ x,T λ * K |Ω| = C.
Concluding that

p * 0 (x) = ψ x,T λ * K = G -1 C K|Ω| .
The case T > T 0 is greatly simplified in this setting. Since

ψ x,T λ * K is constant w.r.t. x, either | Ωλ | = 0, or Ωλ = Ω. Like in the general case, if | Ωλ0 | = 0 we have that p * 0 (x) = ψ • x,T λ0 K = G -1
C K|Ω| , and by the monotonicity of Ω (1 -p(T, x)) 2 dx w.r.t to the initial condition of p(T, x) we can conclude. On the other hand, in this case, we can put the condition

| Ωλ0 | = 0 in simpler terms. If | Ωλ0 | = 0, then ψ 0 x,T λ0 K = ψ 1 x,T λ0 K .
Looking at the two functions, this happens if and only if w(0) < -λ0 K and we have that

w(0) < - λ 0 K = w(p * 0 (x)) = w ψ • x,T λ 0 K = w G -1 C K|Ω| , therefore | Ωλ0 | = 0 if and only if w(0) < w G -1 C K|Ω| .
In case w(0

) ⩾ w G -1 C K|Ω| , we have that | Ωλ0 | > 0 and thus, | Ωλ * | > 0, furthermore, since K is constant, Ωλ * = Ω.
Fixing a value for λ * , p * 0 (x) can only take two values in Ω, p * 0 (x) = 0 or p * 0 (x) = ψ 1 x,T ( λ * K ). Therefore, from Lemma 2.1 we can directly deduce the size of the domain where

p * 0 (x) = ψ 1 x,T λ * K , that we denote D, Ω KG(p * 0 (x)) dx = D KG ψ 1 x,T λ * K dx = |D|KG ψ 1 x,T λ * K = C, thus, |D| = C KG(ψ 1 x,T λ * K ) .
Therefore the solution can be writen like

p * 0 (x) = ψ 1 x,T λ * K a.e. on D and p * 0 (x) = 0 elsewhere, with |D| = G -1 C Kψ 1 x,T ( λ * K )
.

Numerical Implementation of results

Thanks to Theorems 2.1 and 2.2 we can implement an algorithm for computing solutions to problems (P u0 ) and (P p0 ). In the case T ⩽ T 0 , the computations will be a direct application of the results presented in Theorem 2.1, where solutions are unique up to a rearrangement. In the case T > T 0 , Theorem 2.2 allows us to heavily simplify the problem, by recasting it as a one-dimensional one when solutions cannot be found directly. Namely,

min λ∈[λ0,λ1] Ω K(x) 2 (1 -p(T, x)) 2 dx (Q)
where we assume that the initial condition for p(T, x) is given by the optimal releasing strategy, p * 0 (x), given by theorem 2.2, assuming that λ = λ * . The parameters used for the simulations are presented in Table 2.1.

1D simulations

The simplest setting in which we can study the problem is considering only one spatial dimension. We present two examples of the solutions obtained exploiting the results proven in this chapter in a 1D setting. We consider the following function representing the carrying Cytoplasmatic incompatibility level 0.9

Table 2.1 -Values of the parameters used in simulations. The values for the biological parameters have been taken from [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF].

capacity of the environment

K S (x) = K 0 1 + 1 2 sin 2πx |Ω| - π 2 , K P (x) = 3K 0 2 1 [0,|Ω|/2] + K 0 2 1 (|Ω|/2,|Ω|]
With the parameters considered, the two functions have the same average carrying capacity, K 0 . That is, Ω K S (x) dx = Ω K P (x) dx = K 0 |Ω|, which is also the value we would obtain in case of an homogeneous carrying capacity equal to K 0 in all the domain. The domain considered is Ω = [0, |Ω|]. We chose these two functions in order to have a piecewise constant function and a function non-constant in any positive measure interval for comparison.

For the parameters in Table 2.1, A(•), as defined in (2.20), satisfies hypothesis (H.2). The time when the function stops being increasing and starts being unimodal (decreasing, then increasing) is T 0 ≈ 3.51, computed using formula (2.23). We choose to show the results for a time smaller than T 0 and a time bigger than T 0 , so both behaviours can be observed. The simulations have been performed using an ad hoc algorithm exploiting the results of Theorems 2.1 and 2.2.

In Figure 2.3 we can see the results for K(•) = K S (•). This choice models a scenario where mosquitoes are concentrated in the center of the domain studied and its concentration fade out as we move towards the boundaries. In the case C = 30 (left column), we observe how the optimal strategy flattens and widens as T increases. To understand this effect, we recall that in case p 0 (x) < θ, p(t, x) is decreasing with respect to t. In other words, the Wolbachia-infected mosquitoes tend to be replaced by wild mosquitoes if they don't surpass a critical threshold. Furthermore, if p 0 (x) > θ, p(t, x) is increasing with respect to t, and therefore Wolbachia-infected mosquitoes take over the population without further intervention. For the parameters considered we have θ ≈ 0.21 (The green dash-dotted line in Figure 2.3). According to our interpretation, since for T small, p(T, x) is close to its initial condition, a value of p 0 (x) below the threshold does not impact greatly the final result and reaching a bigger initial proportion in places where K(x) is higher is prioritized. On the other hand, when T is big, p(T, x) can be far from its initial condition. Hence, there is an incentive for p * 0 (x) to be above θ, since the proportion of Wolbachia-infected mosquitoes in the parts of the domain above θ will naturally increase with time. This also explains why the end of the release interval is abrupt. If the release is not going to achieve the critical proportion, it is better not to release. This effect can be seen clearly in the bottom-left graph and should be more pronounced the bigger is T .

The changes between T = 1 and T = 25 in the case C = 200 are imperceptible. A possible explanation is that in this case p * 0 (x) > θ for all x ∈ Ω already in the first case. Therefore the proportion of Wolbachia-infected mosquitoes is going to increase with time everywhere. This case illustrates how u * 0 (•) is non-decreasing as K(•) increases, and how that is not necessarily the case of p * 0 (•), which decreases when K(•) increases if p * 0 (•) = p U (•). We recall that we have proven this monotonicity porperty for the case T ⩽ T 0 and in case T > T 0 but | Ωλ0 | = 0, which is the case in the In Figure 2.4 we show the results for the simulations with K(•) = K P (•). This figure represents a scenario with two patches of land with two very distinct conditions for mosquitoes, as it can be the case, for example, of an urban area close to a wetland. In the case C = 30 we can observe again the difference between the short-term and long-term strategies. With T = 1 reaching a higher proportion on the left patch is prioritized, leaving the second patch untreated. Meanwhile, when the time horizon is increased, it also increases the incentive to release in a wider area above the critical proportion p 0 (x) = θ. Therefore the optimal releasing strategy consists in releasing a slightly smaller amount on the left patch in order to release in a certain domain in the right one.

In this case, on the bottom-left graph, we are in the case where | Ωλ0 | > 0, and thus the secondary problem must be solved for the values of λ in [λ 0 , λ 1 ] (see (Q)). Since K(•) is simple, the amount of mosquitoes released and the size of each subdomain of the right patch can be determined almost explicitely. For a fixed value of λ ∈ [λ 0 , λ 1 ], the amount of mosquitoes released in the left patch is

|Ω| 2 0 K(x)G (p * 0 (x)) dx = |Ω| 2 0 3K 0 2 G ψ 1 x,T 2λ 3K 0 dx = 3|Ω|K 0 4 G ψ 1 x,T 2λ 3K 0 , analogously in the right patch p * 0 (x) = ψ 1 x,T 2λ 
K0
wherever it is not 0. Therefore the size of the subdomain D, where mosquitoes are released in the right patch is such that

C = 3|Ω|K 0 4 G ψ 1 x,T 2λ 3K 0 + |D|K 0 2 G ψ 1 x,T 2λ K 0 .
This equality can be satisfied for different values of λ and |D|. To find the optimal value λ and thus the optimal value of |D|, we solve the one-dimensional optimization problem (Q), which in this case reads

min λ∈[λ0,λ1] 3|Ω|K 2 0 16 ((1 -p l (T )) 2 ) + |D|K 2 0 4 ((1 -p r (T )) 2 ) = min λ∈[λ0,λ1] 3|Ω| 4 ((1 -p l (T )) 2 ) + |D|((1 -p r (T )) 2 = min λ∈[λ0,λ1] 3|Ω| 4 ((1 -p l (T )) 2 ) + 1 G(p r 0 ) 2C K 0 - 3|Ω| 2 G(p l 0 ) ((1 -p r (T )) 2
where p l (T ) and p r (T ) solve equation p ′ (t) = f (p(t)) with initial condition p l 0 = ψ 1

x,T 2λ 3K0

and p r 0 = ψ 1

x,T 2λ K0

respectively. This solution, nonetheless, is what we have been calling unique 'up to a rearrangement'. As long as the size of the domain where mosquitoes are released is preserved, the solution can be moved on the right half of the domain and still being optimal. In Figure 2.5 we show another choice for the solution.

Once again, in the case C = 200 (right column) the solution does not change significantly when T is increased. We can see how the monotonicity of u * 0 (•) with respect to K(•) is respected, but not for p * 0 (•). In this case, releasing a smaller amount of mosquitoes in the right patch induces a higher initial proportion due to the smaller carrying capacity there.

The case with diffusion

So far, we have not considered diffusion in the system. Considering that mosquitoes do not disperse simplifies the analysis of the problem, but this comes at the expense of losing realism in the modeling. In this section we present some simulations in which diffusion is taken into account to see how the solutions presented above are modified. This is a perspective work, which, at the time of writing this thesis, is under development. The simulations have been carried out using GEKKO (see [START_REF] Beal | GEKKO Optimization Suite[END_REF]).

When diffusion is considered, equation (2.10) has to be modified. When the carrying capacity is homogeneous this can be done by just adding a Laplacian of the proportion of Wolbachia- infected mosquitoes, obtaining

∂ t p -D∆p = f (p), (t, x) ∈ [0, T ] × Ω.
The proper deduction of this equation from a two population system with the same diffusion rate like the one introduced in (7) can be found in [START_REF] Strugarek | Reduction to a Single Closed Equation for 2-by-2 Reaction-Diffusion Systems of Lotka-Volterra Type[END_REF] and [START_REF] Duprez | Optimization of spatial control strategies for population replacement, application to Wolbachia[END_REF]. The obtention of this limit is slightly more complicated in the case we are interested in, which is that of an inhomogeneous carrying capacity. For clarity, in order to understand the apparition of the new terms, we go over the computations here. A detailed deduction nonetheless can be found in [START_REF] Nadin | Hindrances to bistable front propagation: application to Wolbachia invasion[END_REF]. We start by considering the full controlled system, but taking diffusion into account 

               ∂ t M -D∆M = b M M 1 - M + W K(x) 1 -s h W M + M W -d M M, ∂ t W -D∆W = b W W 1 - M + W K(x) -d W W + u, t ∈ [0, T ], x ∈ Ω, M (0, x) = M 0 (x), W (0, x) = 0, x ∈ Ω, ∂ ν M (t, x) = ∂ ν W (t, x) = 0, x ∈ ∂Ω, (2.35) 
∂ t N -D∆N = N 1 ε 1 - N K b 0 W p + b 0 M (1 -p)(1 -s h p) -d W p -d M (1 -p) + u, (2.36) 
∂ t p -D∆p -2D ∇p • ∇N N = p(1 -p) 1 ε 1 - N K b 0 W -b 0 M (1 -s h p) + d M -d W - 1 -p N u. (2.37)
For ε small enough, we can expand N = N ε (t, x) as

N = N ε (t, x) = K(x) 1 -εn ε (t, x) + o(ε) .
From here, we deduce the relation

n ε (t, x) = d W p(t, x) + d M (1 -p(t, x)) -D∆K(x)/K(x) -u/K(x) b 0 W p(t, x) + b 0 M (1 -p(t, x))(1 -s h p(t, x))
.

Injecting this expression into the right hand side of (2.37), we obtain that p solves the following scalar reaction-diffusion equation :

       ∂ t p -D∆p -2D ∇p • ∇K K = f (p) + u K g(p) -D ∆K K ψ(p), t > 0, x ∈ Ω, ∂ ν p = 0, t > 0, x ∈ ∂Ω, p(0, x) = 0, x ∈ Ω, (2.38) 
where f and g are the same as in (2.6) and

ψ(p) = p(1 -p) b 0 W -b 0 M (1 -s h p) b 0 M (1 -p)(1 -s h p) + b 0 W p . (2.39) 
We are interested in observing how diffusion modifies the results presented so far. We place ourselves in the case with a bigger time horizon, T = 25, corresponding with the lower rows of Figures 2.3 and 2.4. We show the results for two different diffusion rate values: a smaller one, D = 0.001, and a bigger one, D = 0.02. In Figure 2.6, we set K(•) = K S (•). In the left column, diffusion seems to concentrate the initial distribution of mosquitoes, making it slightly narrower and taller, although with a little decrease happening in the center of the release for a small diffusion value (upper left graph). Solutions in this case, nonetheless, seem quite robust to the addition of diffusion for the parameters considered. In the case of a piece-wise constant carrying capacity1 K(•) = K P (•) (Figure 2.7) the addition of diffusion immediately breaks the monotonicity of u * 0 (•) with respect to K(•). This means that, contrary to the case without diffusion, releases do not need to be stronger where there are more wild mosquitoes, and that optimal releasing policies may be more complex. We also observe how mosquitoes are released in a way such that a big density difference is created in the area close to the boundary between patches. As we can see, specially in the bottom left graph, by setting an initial density difference in this boundary, an invasive wave propagates from the patch with a higher carrying capacity to the other one. It is also noteworthy that in this case a new stationary state appears strictly between p = 0 • 1 [0,|Ω|] and p = 1 [0,|Ω| .

2D simulations

The method developed in this chapter can be applied any dimension. Problems (P u0 ) and (P p0 ) can be solved using Theorems 2.1 and 2.2 or, at least, reduced to the one-dimensional optimization problem (Q), independently of the number of spatial dimensions considered. For a real application, nonetheless, the most interesting case is 2D.

Despite it does not present any novelties conceptually speaking, to illustrate the potential of the results, we show also two more simulations done in a 2D setting. We considered the following carrying capacity

K 2D (x, y) = K 0 1 + 1 6 sin 2πx L x - π 2 + 1 3 sin 2πy L y - π 2 .
As in the case with K S , K 2D models a scenario with a higher concentration of mosquitoes towards the center of the domain and a smaller one towards the boundaries. Nevertheless, note that K 2D is not radially symmetric.

For the simulations we took Ω = [0, L x ] × [0, L y ], with L x = L y = 1. Once again, for the parameters chosen, Ω K 2D (x, y) dx dy = K 0 |Ω|. The results of the simulations can be seen in Figure 2.8. We portray only the case T = 25 for two values of C. Results match the intuition one can have from the related 1D case K(•) = K S (•). When a small amount of mosquitoes is considered, C = 30 the solution is flat and wide to surpass the critical proportion p 0 = θ in a bigger area, since the proportion of Wolbachia-infected mosquitoes will naturally increase in those places. Also, u * 0 (x) = 0 outside of this area for the reasons already exposed. On the other hand when a bigger amount of mosquitoes is considered, C = 200, the solution is bigger than p 0 = θ everywhere and varies more rapidly, being higher where the carrying capacity is higher, but flattening out when u * 0 = U is reached. Chapter 3

Vector-borne disease outbreak control via instant vector releases

This chapter is the subject of L. Almeida, J. Bellver Arnau, Y. Privat and C. Rebelo. "Vector-borne disease outbreak control via instant vector releases", submitted for publication [START_REF] Almeida | Vector-borne disease outbreak control via instant vector releases[END_REF].

Introduction

Vector-borne diseases have a large impact on human health around the world, representing 17% of all infectious diseases. These diseases can be due to parasites, bacteria or viruses and be transmitted by different types of vectors like, for instance, ticks, fleas or mosquitoes. A significant part of the models presented in this chapter are applicable in a general setting. In particular, the part concerning the Sterile Insect Technique (SIT) is applicable to any vector borne disease where male vectors do not transmit the disease and where the vector has sexual reproduction which will be significantly perturbed by the release of sterile males.

Many of these diseases, such as dengue, Zika, chikungunya, yellow fever or the West Nile fever are caused by arboviruses. The vector responsible for the transmission of many arboviruses are the mosquitoes of the genus Aedes, specially the species Aedes Aegipty and Aedes Albopictus. Dengue is the most prevalent of these diseases, with more than 3.9 billion people in over 129 countries at risk of contracting it, and an estimated 40,000 death toll every year according to the World Health Organization [START_REF]Vector-borne diseases[END_REF]. Since, at present, there is no effective vaccine or antiviral drug, the only treatment option is to relieve the symptoms. As for preventing the spread of the disease, current methods consist of directly targeting the vector.

In the fight against arboviruses, and in particular dengue, two of the main control techniques targeting the mosquitoes are the SIT and the use of Wolbachia. Both methods rely on introducing mosquitoes into the wild population with certain modifications, which allow to control the infections. The SIT consists on the release of large amounts of sterile male mosquitoes in order to reduce the mosquito population by mating with the females in the place of the fertile ones. This technique has been both studied mathematically [START_REF] Bliman | Implementation of control strategies for sterile insect techniques[END_REF] and tested in the field [START_REF] Bellini | Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas[END_REF][START_REF] Harris | Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes[END_REF], not only with mosquitoes but also with other pests. The Wolbachia technique has mostly been used for Aedes mosquitoes (and this is the context in which we chose to present it in this chapter) but there are also many promising signs indicating that it should be possible to use it for other types of mosquitoes or even other vectors [START_REF] Ong | Wolbachia goes to work in the war on mosquitoes[END_REF]. The release of Wolbachia-infected mosquitoes on the other hand, does not seek to eradicate the mosquito population, but rather to replace it with a new one, less capable of transmitting several diseases. Thus, both males and females need to be released in order to establish a new population. More details on the functioning of these techniques and its biological insights can be found in the Introduction of this thesis, sections II.2 for the SIT and II.1 for population replacement technique using Wolbachia.

Our main goal in this chapter is to study and compare the effect of these techniques in interaction with the disease dynamics, in order to determine optimal strategies to mitigate the effects of vector-borne disease outbreaks using mosquito releases. These techniques are not usually applied in an epidemiological context. In case of an outbreak other alternatives with more immediate effects exist, like the use of pesticides. Also, the population replacement technique using Wolbachia requires the release of female mosquitoes, which, though being much poorer vectors than its wild counterparts, raises ethical questions when used in the case a virus is actively circulating in a population. This work should be seen as a first step towards understanding better the effects of modified vector releasing in epidemiological contexts, opening the debate around broadening the scope of application of these techniques. Since the releases occur in a much shorter time scale than the duration of the outbreak, they will be considered instantaneous. Therefore, impulsive controls are a natural setting to model field releases. This will be properly detailed in section 3.3. As stated before, our models are valid in a much wider setting but, for the sake of clarity, for the remaining of the chapter we will describe them in the setting of arboviruses and of Aedes mosquitoes as vectors. Although with several differences, previous works model and study the arboviruses transmission between Wolbachia-infected mosquitoes, wild-type mosquitoes and humans [START_REF] Ndii | Modelling the transmission dynamics of dengue in the presence of Wolbachia[END_REF][START_REF] Hughes | Modelling the use of Wolbachia to control dengue fever transmission[END_REF]. A previous study of optimal control related issues, considering only bang-bang controls, can be found in [START_REF] Zhang | Releasing Wolbachia-infected Aedes aegypti to prevent the spread of dengue virus: A mathematical study[END_REF].

In order to model the virus dynamics between mosquitoes and humans we consider a SEIR (Susceptible-Exposed-Infectious-Recovered) model for the humans and a SEI model for the mosquitoes (their short lifespan leads us to neglect the recovered compartment for the mosquitoes). As for the population dynamics we assume the humans to have the same birth and death rate and consider a logistic growth with a death term for the mosquitoes. The human and mosquito populations are subscripted H and M respectively.

S ′ H = b H H - β M H I M S H -b H S H E ′ H = β M H I M S H -γ H E H -b H E H I ′ H = γ H E H -σ H I H -b H I H S ′ M = b M M 1 - M K - β M H S M I H -d M S M E ′ M = β M H S M I H -γ M E M -d M E M I ′ M = γ M E M -d M I M (3.1)
The (positive) parameters used in system (3.1) are:

b H , b M , the birth rates for humans and mosquitoes.

d M , the death rate for mosquitoes. For humans the death rate is assumed to be equal to the birth rate. β M is the rate of mosquito bites giving rise to a transmission between infected mosquitoes and humans, or infected humans and mosquitoes. γ H and γ M are the progression rates from latent to infectious compartments in humans and mosquitoes, respectively. σ H is the recovery rate from the disease.

-H is the total amount of humans,

H = S H + E H + I H + R H .
-M is the total amount of mosquitoes, M = S M + E M + I M . The equation for the recovered human reads

R ′ H = σ H I H -b H R H .
Since H is constant we can remove R H from the system of differential equations and compute it as R H = H -S H -E H -I H . System (3.1) can be used for modeling, a priori, any vector-borne disease without other means of transmission and for which reinfection cannot occur.

In order to study these disease controlling techniques we need to modify this basic system in a way that takes into account the particularities of each one of them.

Remark 3.1. It is important to remark that throughout the chapter whenever we refer to 'mosquitoes' we are referring exclusively to the female mosquitoes, unless the contrary is specified. Male mosquitoes do not bite humans and therefore are unable of transmitting diseases. Thus, the variables referring to the mosquitoes such as S M , I M or I M , refer to female mosquitoes. An exception being when the SIT is treated (see section II.2). In the SIT only male mosquitoes are released, thus, M S will refer to male mosquitoes. In order to be able to do this simplification, we assume that male and female population have the same dynamics. We assume that the probability at birth of female and male is the same (50%) and that they both have the same life expectancy (d ♂ = d ♀ = d M ).

The sterile insect technique

To model the effects of the addition of sterile mosquitoes into the system we have to add an equation for them and a term accounting for the interaction between them and the mosquito population. Following the same approach as in [START_REF] Almeida | Optimal control strategies for the sterile mosquitoes technique[END_REF] we introduce the following system

S ′ H = b H H - β M H I M S H -b H S H E ′ H = β M H I M S H -γ H E H -b H E H I ′ H = γ H E H -σ H I H -b H I H S ′ M = b M M 1 - M K M M + s c M S - β M H S M I H -d M S M E ′ M = β M H S M I H -γ M E M -d M E M I ′ M = γ M E M -d M I M M ′ S = u -d S M S (SIT )
Since sterile mosquitoes don't reproduce we only consider a death term and the function u, representing the rate at which sterile mosquitoes are introduced in the population and interpreted as a control term for this system. We also add a birth term in the susceptible mosquitoes compartment, proportional to the probability that a female mosquito encounters a fertile male to mate (assuming that there are the same amount of male and female mosquitoes in the wild population). The positive parameter s c accounts for the competitiveness of the sterile mosquitoes since female mosquitoes may be less inclined to mate with them. This parameter presents a huge variation in the literature, from works estimating it to be low (s c = 0.14 in [START_REF] Oliva | The sterile insect technique for controlling populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: mating vigour of sterilized males[END_REF]) to works where no difference in competitiveness was found [START_REF] Soma | Does mosquito mass-rearing produce an inferior mosquito?[END_REF]. According to [START_REF] Oliva | The sterile insect technique for controlling populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: mating vigour of sterilized males[END_REF], it would be relevant to assume the parameter s c depending on the ratio of sterile to fertile mosquitoes which would imply s c = s c (M S /M ). Nevertheless, for simplicity, we will assume it to be constant. Note that there is no need to consider the dynamics of dengue in the sterile mosquito population, since the released mosquitoes are only male and therefore they do not feed on human blood. Thus, they are unable to transmit the disease.

The Wolbachia method

In this case we add a second mosquito population. This new population is composed by mosquitoes carrying Wolbachia, and the related quantities will be subscripted by W . It has been shown that Wolbachia decreases the fecundity and increases the mortality rates of mosquitoes [START_REF] Walker | The w Mel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations[END_REF], therefore b W < b M and d W > d M . Also, Wolbachia reduces the vector capacity of the mosquitoes. We thus introduce 0 < β W H < β HW < β M to make the distinction between the rate of mosquito bites giving rise to a transmission from human to Wolbachia-carrying mosquitoes, β HW , and the rate of mosquito bites giving rise to a transmission from Wolbachia-carrying mosquitoes to humans, β W H . The first one is smaller than β M since Wolbachia affects the capability of mosquitoes to feed due to a deformation in the trunk [START_REF] Turley | Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti[END_REF]. The second one should be smaller than the first one since Wolbachia also affects the way the disease develops inside the body of the mosquitoes and reduces the viral load in their saliva [START_REF] Moreira | A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium[END_REF][START_REF] Bian | The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti[END_REF]. We also introduce the term 1 -s h W M +W to take into account the cytoplasmic incompatibility. s h represents the level of cytoplasmic incompatibility achieved by the strain of Wolbachia. We have 0 ⩽ s h ⩽ 1, with s h = 0 meaning that there is not any incompatibility and s h = 1 meaning that the incompatibility is perfect. Finally we introduce γ W since Wolbachia also delays the amount of time it takes for dengue virus to reach the saliva of the mosquitoes, lengthening like this the effective incubation period of the disease in the mosquitoes carrying it [START_REF] Ye | Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti[END_REF].

S ′ H = bH - β M H I M S H - β W H H I W S H -b H S H E ′ H = β M H I M S H + β W H H I W S H -γ H E H -b H E H I ′ H = γ H E H -σ H I H -b H I H S ′ M = b M M 1 - M + W K 1 -s h W M + W - β M H S M I H -d M S M E ′ M = β M H S M I H -γ M E M -d M E M I ′ M = γ M E M -d M I M S ′ W = b W W 1 - M + W K - β HW H S W I H -d W S W + u E ′ W = β HW H S W I H -γ W E W -d W E W I ′ W = γ W E W -d W I W (W B)
Before moving on to the control problem we perform two simplifications on the system. We consider the following variables: M := S M +E M +I M and W := S W +E W +I W . These variables account for the mosquito population regardless of the dengue dynamics. These variables present the following dynamics

M ′ = b M M 1 -s h W M + W 1 - M + W K -d M M W ′ = b W W 1 - M + W K -d W W + u (3.2)
These equations describing the population dynamics of the mosquitoes in our model are those of the model in [START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF]. One can observe looking at the values in table 3.

1 that b M ≫ d M and b W ≫ d W .
That is, that the birth rate of the mosquitoes is much higher than the death rate in both populations. In [10, Prop. 1], it is proven that in the high birth rate limit, i.e. considering b M = b 0 M /ε, b W = b 0 W /ε and taking the limit ε → 0, the proportion of mosquitoes p = W/(M + W ) converges uniformly to the solution of a simple equation on the proportion of Wolbachia-infected mosquitoes. The asymptotic system (3.2) hence reads:

p ′ = f (p) + ug(p).
where

f (p) = p(1 -p) d M b 0 W -d W b 0 M (1 -s h p) b 0 M (1 -p)(1 -s h p) + b 0 W p and g(p) = 1 K b 0 M (1 -p)(1 -s h p) b 0 M (1 -p)(1 -s h p) + b 0 W p .
Another consequence is that M + W converges to K and so, in the limit, W = (M + W ) W M +W = Kp, and therefore M = K(1 -p).

This limit leaves the equations for the humans and for the infected mosquitoes unchanged. In order to modify the equations for the latent mosquitoes we can straightforwardly set M +W = K. Finally, using that S M = M -E M -I M and S W = W -E W -I W we can eliminate the two equations for the susceptible mosquitoes of the system. The equations for the exposed mosquitoes become:

E ′ M = β M H (K(1 -p) -E M -I M )I H -γ M E M -d M E M E ′ W = β HW H (Kp -E W -I W )I H -γ W E W -d W E W (3.3)
Incorporating these changes into system (W B) we obtain the system we are going to study

S ′ H = bH - β M H I M S H - β W H H I W S H -b H S H E ′ H = β M H I M S H + β W H H I W S H -γ H E H -b H E H I ′ H = γ H E H -σ H I H -b H I H E ′ M = β M H (K(1 -p) -E M -I M )I H -γ M E M -d M E M I ′ M = γ M E M -d M I M E ′ W = β HW H (Kp -E W -I W )I H -γ W E W -d W E W I ′ W = γ W E W -d W I W p ′ = f (p) + ug(p) (W B ′ )

Study of the uncontrolled system

In this section we study the uncontrolled systems (setting u = 0 for all t ∈ [0, T ]) and compute the equilibria and the per stage reproduction number given by the next generation technique, R 0 , of dengue in each case. This R 0 is a useful tool in the study of epidemiological systems with two stages, in this case host-vector and vector-host. It stands for the number of secondary infections generated per stage in a population where all individuals are susceptible to the disease (S H = H and S M = total population of vectors), which is the setting in which we will perform the numerical simulations. This number is the square root of the basic reproduction number [84, Page 110].

Sterile insect technique

Since we consider u = 0 and M S (0) = 0, M S (t) = 0 for all t ∈ [0, T ], turning system (SIT ) into (3.1). So computing the equilibria and R 0 of this system boils down to computing those of system (3.1). In order to compute the R 0 of the system (that we denote R M 0 ) we proceed as in [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF]. For details of these computations, we refer to Appendix C.1. We find a R M 0 value of

R M 0 = β M K * γ M γ H Hd M (b H + σ H )(γ M + d M )(γ H + b H )
,

where 

K * = K(1 -d M /b M ). Since M = S M + E M + I M ,
M ′ = b M M 1 - M K -d M M. (3.4) 
This equation presents two equilibria, M * = 0 and

M * = K(1 -d M /b M ).
We can use this to simplify the study of the equilibria of system (3.1). The system to solve becomes

0 = b H H - β M H I * M S * H -b H S * H 0 = β M H I * M S * H -γ H E * H -b H E * H 0 = γ H E * H -σ H I * H -b H I * H 0 = d M M * - β M H S * M I * H -d M S * M 0 = β M H S * M I * H -γ M E * M -d M E * M 0 = γ M E * M -d M I * M (3.5)
Solving this simpler system we obtain three different equilibria:

-The extinction equilibrium 

= (γ H +b H )(σ H +b H ) b H γ H , a M = γ M +d M γ M , I * H = K * β M Hb H a M + K * β M 1 - 1 (R M 0 ) 2 H a H and I * M = β M a H d M + β M 1 - 1 (R M 0 ) 2 K * a M .
It is enlightening to write the endemic equilibrium in terms of R M 0 , since it clearly shows that if R M 0 < 1 the endemic equilibrium does not exist.

For the parameters considered in table 3.1 we find R M 0 ≈ 1.67, which gives a basic reproduction number of R M 0 2 ≈ 2.80.

Wolbachia method

Since the equation p ′ = f (p) is independent of the rest we can solve it separatedly. The function f (p) has only three zeros, p * = 0, p * = 1 and p * = θ, satisfying 0 < θ < 1. The last zero only exists assuming further that 1 -

s h < d M b 0 W d W b 0 M < 1,
which is satisfied in our case. The value of θ can be computed from the parameters of the problem, obtaining θ = 1 s h 1 -

d M b 0 W d W b 0 M
. This implies that, independently of the epidemiological part of the model, there exists a Wolbachia-free equilibrium, a full invasion equilibrium and a coexistence equilibrium in the mosquito population.

We compute now the solutions to

0 = b H H - β M H I * M S * H - β W H H I * W S * H -b H S * H 0 = β M H I * M S * H + β W H H I * W S * H -γ H E * H -b H E * H 0 = γ H E * H -σ H I * H -b H I * H 0 = β M H (K(1 -p * ) -E * M -I * M )I * H -γ M E * M -d M E * M 0 = γ M E * M -d M I * M 0 = β HW H (Kp * -E * W -I * W )I * H -γ W E * W -d W E * W 0 = γ W E * W -d W I * W (3.6) as a function of p * . Let us define a W := γ W +d W γ W , R W 0 := β HW β W H Kγ W γ H Hd W (b H + σ H )(γ W + d W )(γ H + b H )
, and R M 0 as defined before but using K instead of K * . Note that in the high birth rate limit, K * = K(1 -d M b M ) tends to K. These R M 0 and R W 0 are the per stage reproduction numbers associated with the disease-free equilibria, for p * = 0 (Wolbachia-free) and p * = 1 (full invasion) respectively. They are also computed following the procedure detailed in Appendix C.1. Let us also define

R 2 p * := R W 0 2 p * + R M 0 2
(1 -p * ) (an analogous closed formula was considered in [START_REF] Cardona-Salgado | Optimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains[END_REF]). We find that system (3.6) has the trivial solution (S * H , E * H , I * H , E * M , I * M , E * W , I * W ) = (H, 0, 0, 0, 0, 0, 0), which gives three different equilibria for system (W B ′ ): (H, 0, 0, 0, 0, 0, 0, 0),(H, 0, 0, 0, 0, 0, 0, θ) and (H, 0, 0, 0, 0, 0, 0, 1). In case R p * > 1, system (3.6) presents another real solution

H -a H I * H , σ H +b H γ H I * H , Hr, d M γ M I * M , K a M β M r Hb H a W +β M r (1 -p * ), d W γ W I * W , K a W β HW r Hb H a W +β HW r p * ,
where r is the positive root of the second order polynomial

P (Z) = Z 2 β M β HW + a H β M d W R M 0 2 (1 -p * ) + β HW d M R W 0 2 p * +Z R 2 p * a H d M d W -R 2 p * -1 (β M d W + β HW d M ) -R 2 p * -1 d M d W .
That means that system (W B ′ ) can have up to six equilibria, due to the fact that there are three different values of p * and that R p * can be bigger than one for some values of p * but not for others.

The per stage reproduction number R M 0 is slightly higher than the per stage reproduction number for the sterile insect model due to the change of K * by K. For the values in Table 3 We present here a result on the persistence of the disease in the system. Its proof can be found in Section C.2 of the Appendix. Theorem 3.1. If there exists p * such that R p * > 1 then the system (W B ′ ) is uniformly persistent in the space of the initial conditions such that p(t) → p * , that is there exists η > 0 such that for each initial condition with p(0) such that p(t) → p * we have that

lim t→+∞ (E H + I H + E N + I N + E W + I W )(t) > η.
If R p * < 1 for each initial condition with p(0) such that p(t) → p * we have that lim t→+∞ (E H +

I H + E N + I N + E W + I W )(t) = 0.

Control Problem and Impulsive Dynamics

We place ourselves in the case of a dengue outbreak in a fully susceptible population. The goal of the releases will be to minimize the amount of cases during the duration of the outbreak. Therefore, considering a time window of size T , we want to find u minimizing T 0 I H (t) dt. Other works have studied related problems in the case of Wolbachia [START_REF] Zhang | Releasing Wolbachia-infected Aedes aegypti to prevent the spread of dengue virus: A mathematical study[END_REF], or problems involving only the mosquito population [START_REF] Almeida | Optimal Control Strategies for Bistable ODE Equations: Application to Mosquito Population Replacement[END_REF][START_REF] Almeida | Mosquito population control strategies for fighting against arboviruses[END_REF][START_REF] Almeida | Optimization and Control for Partial Differential Equations: Uncertainty quantification, open and closed-loop control, and shape optimization[END_REF][START_REF] Almeida | Optimal control strategies for the sterile mosquitoes technique[END_REF] considering controls in L ∞ (0, T ).

Field releases are done with a certain periodicity and in a short amount of time with respect to the time window considered, this leads us to consider the control denoted u(•) as a linear combination of pulses, namely

u(t) = n i=1 c i δ(t -t i ).
where δ(t) is the Dirac measure at t = 0 and 0 ⩽ t 1 ⩽ • • • ⩽ t n are the release times. It is natural to impose some constraints on the control function. Usually it is assumed that the rate at which mosquitoes are released is bounded (u ∈ L ∞ (0, T )) but also that the total amount of mosquitoes used is bounded ( T 0 u(t)dt ⩽ C). Our approach is different. We also assume that we have a limited amount of mosquitoes at our disposal, C, but we assume that all of them are used. Since our control function is a linear combination of pulses, this translates into imposing the constraint n i=1 c i = C. Therefore, for both systems (SIT ) and (W B ′ ), the optimization problem we will study is Minimize J(u) over the set of time jumps (t i ) 1⩽i⩽n ∈ [0, T ] n and the nonnegative coeffi-

cients (c i ) 1⩽i⩽n such that n i=1 c i = C, (P)
where the number of jumps, n, and the time horizon, T , are fixed and the cost functional J stands for the total number of infected humans, given by

J(u) := T 0 I H (t)dt. (3.7) 
Since we are going to deal with several jumps it is convenient to introduce some notation first. We consider n jumps performed at times t i , for i = 1, . . . , n. If needed for the sake of notational simplicity, we will denote t 0 = 0 and t n+1 = T . Since functions may present discontinuities we introduce the notations

F (t - i ) := lim t→t - i F (t), F (t + i ) := lim t→t + i F (t),
where F (t) represents any function. We also introduce the characteristic function of a set S, equal to 1 when its variable belongs to S and 0 elsewhere. In what follows, we will denote it 1 S .

The equations for M S and p in systems (SIT ) and (W B ′ ) must be adapted to the impulsive formulation of the problem. By considering u defined by u(t) = n i=1 c i δ(t -t i ) in systems (W B ′ ) and (SIT ) we can pass from a infinite dimensional optimization problem to a discrete one. Here we detail how, by doing this passage, these systems where the control appears become differential equations with jump discontinuities. In order to do so we consider u given by u(t) = n i=1 ci ε 1 [ti,ti+ε] and we take the limit ε → 0. The following proof is adapted from [START_REF] Nedeljkov | Ordinary differential equations with delta function terms[END_REF]. We detail the deduction of equation (3.11). However, equation (3.8) can be easily obtained following the same reasoning. Proposition 3.1. Let us consider p ε , solving the following equation

p ′ ε (t) = f (p ε (t)) + ci ε 1 [ti,ti+ε] g(p ε (t)), t ∈ [t i-1 , t i+1 ] p ε (t i-1 ) = p i-1 .
Let G be the antiderivative vanishing at zero of 1/g(p), that is G(p) := p 0 dq g(q) . Then when ε tends to 0, p ε (•) converges pointwise to p(•) given by

p(t) = p -(t), t ∈ [t i-1 , t i ] p + (t), t ∈ (t i , t i+1 ]
where p -and p + solve

dp - dt (t) = f (p -(t)) p -(t i-1 ) = p i-1 , and 
dp + dt (t) = f (p + (t)) p + (t i ) = G -1 (G(p -(t i )) + c i ),
respectively.

Proof. Outside the interval [t i , t i + ε] the behaviour of p(t) is clear. We study the behaviour of p ε (t) in [t i , t i + ε], in order to establish the jump of p(t) at t i .

p ε (t) = p -(t i ) + t ti f (p ε (s)) + c i ε g(p ε (s))ds, then for every t ∈ [t i , t i + ε], one has |p ε (t)| ⩽ p -(t i ) + t ti |f (0)| + c i ε |g(0)| ds + t ti L f + c i ε L g |p ε (s)| ds ⩽ 1 + c i K + t ti L f + c i ε L g |p ε (s)| ds
where L f and L g are the Lipschitz constants of f (•) and g(•) respectively. These constants exist since both functions are C 1 in [0, 1]. Using Grönwall's inequality we obtain that

|p ε (t)| ⩽ 1 + c i K exp (εL f + c i L g ),
which is bounded. Let us consider now z ε , the solution to

z ′ ε (t) = ci ε g(z ε (t)) z ε (t i ) = p(t - i ),
We prove now that, in the limit, both z ε and p ε present the same jump at t i . In order to do this we compute for t ∈ [t i , t i + ε],

|z ε (t) -p ε (t)| ⩽ t ti |f (p ε (s))| ds + t ti c i ε |g(z ε (s)) -g(p ε (s))| ds ⩽ εM f + t ti c i ε L g |z ε (s) -p ε (s)| ds
where M f = max p∈[0,1] f (p). Using again Grönwall's Lemma we obtain

|z ε (t) -p ε (t)| ⩽ εM f exp (c i L g ) → 0 as ε → 0.
This proves that sup t∈[ti,ti+ε] |z ε (t) -p ε (t)| → 0 when ε → 0, and therefore z ε and p ε present the same jump at t i in the limit. To conclude, we solve

z ε (t) in [t i , t i + ε], ti+ε ti z ′ (s) g(z ε (s)) ds = ti+ε ti c i ε ds = c i , which leads to G(z ε (t i + ε)) -G(z ε (t i )) = c i and thus z ε (t i + ε) = G -1 (G(z ε (t i )) + c i ). Taking the limit ε → 0 we conclude that p + (t i ) = G -1 (G(p -(t i )) + c i ).
Proposition 3.1 can be used to deduce the differential equations with jump discontinuities that follow M S and p in systems (SIT ) and (W B ′ ) repectively.

Sterile insect technique

In order to find the equation satisfied by M S we take

u(t) = n i=1 c i ε 1 [ti,ti+ε] ,
so the equation satisfied by M ′ S becomes

M ′ S (t) = n i=1 c i ε 1 [ti,ti+ε] -d S M S (t).
Taking the limit ε → 0 we obtain that the equation converges to

M ′ S (t) = -d S M S (t), t ∈ [t i , t i+1 ], i = 0, . . . , n M S (t + i ) = M S (t - i ) + c i , i = 1, . . . , n (3.8) 
i = 1, . . . , n affects the value of X(t) for any t > t 1 . In general, and for the rest of the section, we define the variation of any given function of time, F χ , depending on a parameter, χ, as

δ χ F χ (t) := lim ε→0 F χ+ε (t) -F χ (t) ε .
As an example, in the case of the variation of X with respect to a given t k we have

δ t k X(t) := lim ε→0 X ε (t) -X(t) ε .
From equation (3.12) we have that

X(t) = X 0 + t 0 A(X(s))ds + t 0 B(X(s))y(s)ds.
For a given k ∈ {1, . . . , n}, in case t < t k , one has δ t k X(t) = 0, since the time of the jump has no effect until it occurs. In case t > t k

δ t k X(t) = δ t k t 0 A(X(s))ds + δ t k t k 0 B(X(s))y(s)ds + t t k B(X(s))y(s)ds = t 0 δ t k A(X(s))ds + B(X(t k ))y(t - k ) -B(X(t k ))y(t + k ) + t 0 δ t k (B(X(s))y(s)) ds = t 0 (DA(X(s)) + DB(X(s))y(s)) δ t k X(s)ds + B(X(t k ))(y(t - k ) -y(t + k )) + t 0 B(X(s))δ t k y(s)ds.
We can express this as an ordinary differential equation with a jump discontinuity:

   (δ t k X) ′ (t) = (DA(X(t)) + DB(X(t))y(t)) δ t k X(t) + B(X(t))δ t k y(t), t ∈ [0, T ] \ {t k } δ t k X(0) = 0, δ t k X(t + k ) = δ t k X(t - k ) + B(X(t k ))(y(t - k ) -y(t + k )).
But since δ t k X(t) = 0 for t < t k , we can simplify this system to:

(δ t k X) ′ (t) = (DA(X(t)) + DB(X(t))y(t)) δ t k X(t) + B(X(t))δ t k y(t), t ∈ [t k , T ] δ t k X(t + k ) = B(X(t k ))(y(t - k ) -y(t + k )) (3.13) 
where δ t k y(t) := lim ε→0 (y ε (t) -y(t))/ε.

Following the same lines we consider now y ε (t) as the solution to

   y ′ ε (t) = a(y ε (t)), t ∈ [0, T ] \ {t i } i=1,...,n y ε (t + i ) = b(y ε (t - i ), c i ), i ̸ = k, y ε (t + k ) = b(y ε (t - k ), c k + ε).
In this case, for t > t k we have

δ c k X(t) = t 0 δ c k A(X(s)) + δ c k B(X(s))y(s) + B(X(s))δ c k y(s) ds = t 0 (DA(X(s)) + DB(X(s))y(s)) δ c k X(s) + B(X(s))δ c k y(s) ds.
Since δ c k X(t) = 0 for t < t k , we can express this as the following ordinary differential equation:

(δ c k X) ′ (t) = (DA(X(t)) + DB(X(t))y(t)) δ c k X(t) + B(X(t))δ c k y(t), t ∈ [t k , T ] δ c k X(t + k ) = 0. (3.14)
with, again, δ c k y(t) := lim ε→0 (y ε (t) -y(t))/ε.

In problem (P), the functional we want to minimize is

J(u) = T 0 I H (t)dt. Since I H (t) is continuous we have that δ t k J(u) = T 0 δ t k I H (t)dt, we also have that δ c k J(u) = T 0 δ c k I H (t)dt.
Hereafter we use expressions (3.13) and (3.14) in order to compute δ t k J and δ c k J for systems (SIT ) and (W B ′ ).

Sterile Insect Technique

We consider system (SIT ). The variable satisfying a differential equation with a jump discontinuity is M S (t). Therefore, considering

X(t) = (S H (t), E H (t), I H (t), S M (t), E M (t), I M (t)) and y(t) = M S (t) we find that δ t k J = T t k (δ t k X(t)) 3 dt and δ c k J = T t k (δ c k X(t)) 3 dt where δ t k X(t)
and δ c k X(t) are defined by equations (3.13) and (3.14) respectively and the subscript stands for the third component of the vector. There are nonetheless two more terms to compute, δ t k M S (t) and δ c k M S (t). In the case of the Sterile Insect Technique we have a closed expression for M S (t), see equation (3.9), therefore the computation of the variation of J with respect to t k and c k is straightforward. We have

δ t k M S (t) = 0, t ∈ [0, t k ] d S c k e -d S (t-t k ) t ∈ (t k , T ], (3.15) 
and

δ c k M S (t) = 0, t ∈ [0, t k ] e -d S (t-t k ) t ∈ (t k , T ]. (3.16) 

Wolbachia method

In the case of the use of Wolbachia (system (W B ′ )) the variable satisfying a differential equation with a jump discontinuity is the proportion of Wolbachia infected mosquitoes, p(t). We consider now X

(t) = (S H (t), E H (t), I H (t), E M (t), I M (t), E W (t), I W (t)) and y(t) = p(t). Once more, δ t k J = T t k (δ t k X(t)) 3 dt and δ c k J = T t k (δ c k X(t)) 3 dt.
Since the expressions of δ t k p(t) and δ c k p(t) are significantly harder to find than in the sterile insect case we compute them in the following propositions.

Proposition 3.2. Let p solve    p ′ (t) = f (p(t)) + n i=1 c i δ(t -t i )g(p(t)), t ∈ [0, T ] p(0) = p 0 .
with p(t + i ) ̸ = θ for all i = 1, . . . , n. Let c i be fixed for all i = 1, . . . , n and let p ε (t) solve

     p ′ ε (t) = f (p ε (t)) + n i=1 i̸ =k c i δ(t -t i )g(p(t)) + c k δ(t -(t k + ε))g(p ε (t)), p ε (0) = p 0 .
Then, the variation of p(t) with respect to t k , δ t k p(t) := lim ε→0 pε(T )-p(T ) ε

, is

δ tk p(t) =      0, t ∈ [0, t k ] f (p(t - k ))g(p(t + k ))-f (p(t + k ))g(p(t - k )) g(p(t - k )) f (p(t)) f (p(t + i )) i j=k+1 g(p(t + j )) g(p(t - j )) f (p(t - j )) f (p(t + j-1 )) , t ∈ (t i , t i+1 ], k ⩽ i ⩽ n.
(3.17)

Proof. We begin considering t ∈ [t i , t i+1 ]. In each one of these intervals we have that p ′ (t) = f (p(t)). Since f is bistable, f (p) < 0 in (0, θ) and f (p) > 0 in (θ, 1). Therefore, since we assumed p(t + i ) ̸ = θ for all i = 1, . . . , n, p(t) is injective in [t i , t i+1 ], and we can write

p(t) p(t + i ) dq f (q) = t -t i .
We define F to be the antiderivative of 1/f vanishing at p(t

+ i ), that is F (p) := p p(t + i ) dq f (q) , thus we obtain the relationship F (p(t)) -F (p(t + i )) = t -t i . (3.18) 
We remark that p(t) = p ε (t) for all t ∈ [0, t k ]. Therefore in that interval δ t k p(t) = 0. Hence, we can restrict ourselves to the case k ⩽ i ⩽ n. Differentiating implicitly this equation, we get

1 f (p(t)) δ t k p(t) - 1 f (p(t + i )) δ t k p(t + i ) = 0
and thus

δ t k p(t) = f (p(t)) f (p(t + i )) δ t k p(t + i ).
To compute δ t k p(t + i ) we use that p(t

+ i ) = G -1 (G(p(t - i )) + c i ), therefore δ t k p(t + i ) = (G -1 ) ′ (G(p(t - i )) + c i )G ′ (p(t - i ))δ t k p(t - i ) = g(p(t + i )) g(p(t - i )) δ t k p(t - i )
where we used the inverse function theorem to write (G

-1 ) ′ = 1/(G ′ • G -1 ). Analogously to equation (3.18) we find that F (p(t - i )) -F (p(t + i-1 )) = t -t i-1 , so δ t k p(t - i ) = f (p(t - i )) f (p(t + i-1 )) δ t k p(t + i-1
). We can repeat this process iteratively until we get to

F (p(t - k+1 )) -F (p(t + k )) = t -t k , then 1 f (p(t - k+1 )) δ t k p(t - k+1 ) = -1 + 1 f (p(t + k )) δ t k p(t + k ) = -1 + 1 f (p(t + k )) g(p(t + k )) g(p(t - k )) δ t k p(t - k ) and δ t k p(t - k ) = δ t k t k t k-1 (f (p(t)))dt = f (p(t - k )
) from which we can deduce the final expression.

Note that in the expression of δ t k p(t) we are using the convention that if the productory subscript is bigger than the superscript, then its equal to 1.

Proposition 3.3. Let p solve p ′ (t) = f (p(t)) + n i=1 c i δ(t -t i )g(p(t)), t ∈ [0, T ] p(0) = p 0 .
with p(t + i ) ̸ = θ for all i = 1, . . . , n. Let t i be fixed for all i = 1, . . . , n and let p ε (t) solve

     p ′ ε (t) = f (p ε (t)) + n i=1 i̸ =k c i δ(t -t i )g(p ε (t)) + (c k + ε)δ(t -t k )g(p ε (t)), p ε (0) = p 0 .
Then, the variation of p(t) with respect to c k , δ c k p(t) := lim ε→0 pε(t)-p(t) ε

, is

δ c k p(t) =      0, t ∈ [0, t k ] g(p(t + k )) f (p(t)) f (p(t + i )) i j=k+1 g(p(t + j )) g(p(t - j )) f (p(t - j )) f (p(t + j-1 )) , t ∈ (t i , t i+1 ], k ⩽ i ⩽ n. (3.19)
Proof. Following a very similar process to the one carried out in the proof of Proposition 3.2, we obtain

δ c k p(t) = f (p(t)) f (p(t + i )) δ c k p(t + i ).
In problem (P), the c i must satisfy the constraint n i=1 c i = C, but we are not dealing with this constraint for the moment, therefore δ c k c i = δ ki , where δ ki is the Kronecker's delta.

We compute δ c k p(t + i ), obtaining

δ c k p(t + i ) = (G -1 ) ′ (G(p(t - i )) + c i ) G ′ (p(t - i ))δ c k p(t - i ) + δ ki = g(p(t + i )) g(p(t - i )) δ c k p(t - i ) + δ ki g(p(t + i )).
Following the same lines of the proof of Proposition 3.2, from equation (3.18) applied in the

interval [t i-1 , t i ], differentiating implicitly we obtain δ c k p(t - i ) = f (p(t - i )) f (p(t + i-1 )) δ c k p(t + i-1
). Finally, iterating the process until the interval [t k , t k+1 ] and rearranging the terms we obtain the result.

Results

We present in this section the optimal solutions of problem (P), obtained through numerical simulations. We optimize simultaneously the time profile of the releases and the amount of mosquitoes released in each one. We allow two releases to occur at the same time. This implies that at that time a release with the total amount of mosquitoes of the two releases combined is done, reducing the number of effective releases by one. The simulations have been performed using Python. For the numerical optimization, the time variables are updated by using a standard step variable gradient descent method. Regarding the weights (c i ) 1⩽i⩽n , due to the constraint n i=1 c i = C, we used an augmented Lagrangian algorithm. An explanation of the method used can be found in section 3.6. The details about the computation of the gradients of the functional are detailed in section 3.4. The models considered in this work capture the essence of the interaction of the modified vectors with the disease and its effect on the transmission. Nevertheless, in order to be precise, more complex models should be considered. These simulations do not intend to give quantitative results, but rather qualitative ones.

To model the start of an outbreak we place ourselves in the context of a fully susceptible population where there are present a small amount of infected humans and mosquitoes. Since in our model the total amount of humans is constant and since we consider at t = 0 the mosquito compartment at equilibrium, we need to subtract this initial amount of infectious from the respective susceptible compartments. Thus, the initial conditions for our simulations will be

(S H (0), E H (0), I H (0), S M (0), E M (0), I M (0)) = (H -I 0 H , 0, I 0 H , K * -I 0 M , 0, I 0 M ),
with I 0 H ≪ H and I 0 M ≪ K * (in particular for the simulations we chose I 0 H = I 0 M = 20). All the other variables in the two systems are set to 0 at the start, namely M S (0) = 0 and (E W (0), I W (0), p(0)) = (0, 0, 0).

Since R M

0 is greater than 1, this will lead to an outbreak of the disease and a spike in the number of cases. We perform several simulations for different values of C. Throughout the simulations we will fix the parameters of the systems to the values in Table 3.1, which correspond to the particular case of dengue. 1. In the model studied in [START_REF] Strugarek | On the use of the sterile insect release technique to reduce or eliminate mosquito populations[END_REF] the term accounting for the birth of mosquitoes is not straightforwardly equivalent to the one in our model. Its value has been adapted in order to account for this difference.

2. K to H ratios present a huge variability in the literature. Indeed, the ratio may depend on numerous factors and may not be constant in time. Lacking on solid evidence to pick a value, we choose K such that the size of the mosquito population at equilibrium is equal to the human population size.

Sterile Insect Technique

The optimal solution for problem (P) in the SIT setting consists of a combination of consecutive pulses with a similar spacing. The fact that several spaced jumps are more efficient in reducing the number of susceptible mosquitoes, eventually leading to a reduction in the number of infections, is a result of the fact that the amount of sterile mosquitoes decreases exponentially between releases. Therefore, by spacing the releases a population of sterile mosquitoes can be sustained longer than doing one single release with all the mosquitoes together. We also observe that results do not only depend on the amount of mosquitoes released, but also in the number of releases considered. Comparing Figures 3.1 and 3.2 we can see how, by increasing the number of releases from 10 to 20, the final amount of infections is considerably reduced, specially with a comparatively high amount of mosquitoes. Nevertheless, this trend does not continue indefinitely. Increasing the number of releases way above 20 does not reduced significantly the number of infections anymore, even though there is no clear cut in the number of releases for which the reduction is significant and may depend on the C considered. The times and costs of the instant releases at Figures 3.1 As we can observe in Figures 3.1 and 3.2, with a comparatively low amount of mosquitoes, C = 3 • 10 7 , the releases are concentrated around the peak of the infections, with the largest releases occurring right during the peak. Their effect is of only mitigating the outbreak, that is, the curve of infections remains fairly similar but peaking a bit earlier and lower. For this amount of mosquitoes we do not observe a great reduction in the number of cases by using 20 releases instead of 10. Namely, for 10 releases we obtain J 10 = 250375.4 and for 20, J 20 = 244012.2. We can compute the reduction in the number of cases by comparing, numerically, J(u) for the uncontrolled system with J(u) for the controlled one. The value of J(u) = T 0 I H (t)dt in the case of the uncontrolled system yields J 0 = 293644.1. This means that with C = 3 • 10 7 we obtain approximately a 14.7% reduction in the total amount of cases for 10 releases and a 16.9% reduction for 20.

A possible interpretation for this solution is that, with the amount of mosquitoes considered, the population of susceptible mosquitoes cannot be consistently kept low for a long period. Therefore, the best use of the sterile males is to release them to reduce as much as possible the amount of susceptible mosquitoes when the transmission is at its prime.

On the other hand, with a comparatively big amount of mosquitoes, C = 6 • 10 7 , the releases shift to the beginning and present an asymmetrical, skewed shape. We see this happening with 10 releases, attenuating considerably further the outbreak, but even more in the case with 20 releases. In this case, the first release occurs at t 1 = 0.0 and it results in an almost complete eradication of the outbreak. The largest releases occur soon after the first one. Releases get more sparse and smaller as time advances, specially for 20 releases, where some of them are clearly detached from the rest and occur after the peak of the outbreak. The fact that mosquitoes keep being released once the outbreak is suppresed is related to the fact that our model does not incorporate an Allee effect. This means that even when the wild mosquito population is very low, it can grow again to its initial values if the releases of sterile mosquitoes stop. Therefore, releases of small amounts of mosquitoes are needed so the outbreak does not start again inside the time horizon considered. The difference observed as a result of the different number of jumps in this case is more abrupt. We obtain a value of J 10 = 72862.0 for 10 releases, which means a 75.2% less infections in the time window considered, and a value of J 20 = 2124.4 for 20 releases, that is, a 99.3% reduction. With this amount of mosquitoes, specially when they are spread over 20 releases, the population can be kept low for a long time. Our interpretation of these results is that, due to this capability of long term population reduction, the optimal solution consists in releasing as soon as possible, preventing the outbreak from gaining traction in the first place. Then, smaller releases keep being done to prevent the population from increasing again. Hence, being able to divide the mosquitoes in more releases becomes more important in this case. We see clearly how the number of releases can affect the outcome, even for the same C, in the lower rows of figures 3.1 and 3.2. With 10 releases, although initially the outbreak is greatly reduced, the population cannot be kept low consistently in all the time window considered and the cases rise again substantially towards the end.

Another approach we can take, arguably more in line with applications on the field, is to optimize only the times of the releases while keeping the amount of mosquitoes constant. This corresponds to having the mosquitoes conditioned in recipients all containing approximately the In figures 3.3 and 3.4 we can see that optimal strategies in time do not differ a lot with those of figures 3.1 and 3.2 respectively. Still, releases are done around the peak of the outbreak in the case of a relatively low amount of mosquitoes. As we increase the amount of mosquitoes and the number of releases they shift to the left, resulting in a further reduction of the infections.

As for the effectiveness of this approach, we show a comparison of the results of the optimization of the times alone and that of the times and the costs in tables 3.6 and 3.7. As we can see there does not seem to be a significant advantage in optimizing both times and costs except in one case, the case with C = 6 • 10 7 and 10 releases. The fact that the optimal strategy can change significantly when the number of releases is increased suggests that solutions for this setting are very sensitive to changes on the problem characteristics. Comparing figures 3.1 with 3.3, and 3.2 with 3.4, we see that optimizing the amount of mosquitoes at each release makes the first releases move to the left but also increases their time span, a similar effect to the addition of new releases. Elaborating further in our biological interpretation of the results, this suggests that for ten releases and C = 6 • 10 7 we can keep the population low during a certain amount of time, but not enough to prevent the outbreak. A slight improvement of the technique in this setting (either an increase in the number of releases or an optimization of the number of mosquitoes released at each impulse) can make a difference in the ability to control the outbreak by keeping the wild mosquito population at a low level over a longer period of time, thus improving the results. On the other hand, when we are far from significantly reducing the outbreak or when we can almost prevent it, the advantage of also optimizing the amount of mosquitoes at each release becomes smaller. 

Wolbachia method

Regarding the Wolbachia method in all cases all the pulses cluster in one single pulse. In other words, the optimal solution is performing a single release with all the available mosquitoes. This makes useless to optimize the amount of mosquitoes released in each jump and turns the problem into a one-dimensional optimization one: min t1∈[0,T ] J(u), with J(u) = T 0 I H (t)dt and u(t) = Cδ(t -t 1 ).

As found in other works studying the use of Wolbachia to produce a mosquito population replacement [START_REF] Almeida | Optimal Control Strategies for Bistable ODE Equations: Application to Mosquito Population Replacement[END_REF][START_REF] Almeida | Optimal releases for population replacement strategies: application to Wolbachia[END_REF], solutions present two clearly distinct behaviours. Since the equation p ′ = f (p) is bi-stable, if the proportion of Wolbachia infected mosquitoes exceeds a certain threshold, p = θ, then the system moves to a full invasion state without further intervention. The parameter determining the two regimes is the total amount of mosquitoes, C. If there are more mosquitoes than the amount needed to lead the system to p = θ we will observe one kind of behaviour, different from the case where there are less. From the initial conditions we have p(0) = 0. We can compute the amount of mosquitoes needed to reach p = θ in a single jump. If we reach p = θ in the first jump, θ = p(t

+ 1 ) = G -1 G(p(t - 1 ) + C) = G -1 (C), thus C = G(θ).
For the parameters considered here, G(θ) ≈ 14850.

In figure 3.5 we plot the optimal solutions to problem (P) for system (W B ′ ) with the parameters of table 3.1. In case C < G(θ) the jump occurs before the outbreak reaches its peak. The larger is C, the smaller is t 1 . In Figure 3.5, for C = 10000, t 1 = 147.5. Instead, in case C > G(θ) the jump is at t 1 = 0. The system from this point tends to p = 1 without the need of releasing mosquitoes anymore. The value of J(u) = T 0 I H (t)dt in the case of the uncontrolled system yields J 0 = 294501.4. With C = 10000 the profile of the outbreak is not altered very much, but it peaks at a lower value. The value of J(u) in this case is J 10000 = 288362.7, roughly a 2.1% reduction in the total amount of cases. With C = 20000 the change is the infected humans curve is much more appreciable. The curve peaks at a much lower level but decays slower. In this case the value of The biological interpretation of these results is in line with the one for the sterile mosquitoes. When it is not possible to trigger a population replacement, the optimal strategy is to release the mosquitoes before the peak of the epidemic. Since the number of Wolbachia-infected mosquitoes declines with time, this policy minimizes the presence of the wild mosquitoes (with a greater vector capacity) during the phase of largest transmission. On the other hand, if it is possible to trigger the population replacement, the sooner we act in the system, the better. Since the proportion of Wolbachia-infected mosquitoes is going to increase naturally there are no incentives in waiting to make the release.

We remark that the amount of mosquitoes needed for this technique to be effective is much lower than for the SIT. This makes sense, since the Wolbachia population is self-sustainable while the sterile mosquitoes must be constantly released. Nonetheless, the exact values of mosquitoes released, or the ratio of mosquitoes needed in one technique with respect to the other cannot be drawn directly from our study due to the limitations of the model and the uncertainty on the parameters.

Numerics: an augmented Lagrangian algorithm

In this section, we explain and detail further the numerical method used for obtaining the results. We implemented a gradient descent to optimize the times of the releases, t i . At each step, the coefficients (c i ) 1⩽i⩽n being given, the control function was updated according to u k+1 = Π T (u k -ε t ∇ t J(u k )) , where ∇ t J(u) = (δ t1 J(u), . . . , δ tn J(u))

and where Π T denotes the projection onto the set of controls

n i=1 c i δ(t -t i ), 0 ⩽ t 1 ⩽ • • • ⩽ t n .
Here, J(u) = T 0 I H (t)dt. The values of δ ti J(u) for i = 1, . . . , n have been computed in Proposition 3.2 (see Section 3.4).

Starting from a random initial condition we optimize the time of the releases, t i , until a certain level of functional flatness is attained. Then we optimize the c i , that is, the amount of mosquitoes released at each t i .

The costs, c i , have been optimized using an augmented Lagrangian algorithm, which comes to consider the following functional

L(u, λ) = T 0 I H (t)dt + λ n i=1 c i -C + ρ 2 n i=1 c i -C 2 .
The second term is added in order to take into account the constraint n i=1 c i = C. The real number λ is the Lagrange multiplier associated this constraint, which has to be find numerically at the same time than u. The augmented Lagrangian method transforms the constrained minimization problem into an unconstrained one, similarly to the Uzawa algorithm. The new functional has to be minimized with respect to u, and maximized with respect to λ. The solution to the problem is hence searched as a saddle point of L. The addition of the third term can be seen as a convexification of the dual problem. The addition of the squared term to the Lagrangian accelerates the convergence whenever ρ is chosen carefully.

In order to find the saddle point of L we take one step at a time, minimizing with respect to u and maximizing then it with respect to λ, following the scheme:

u k+1 = u k -ε c (∇ c J(u k ) + λ k + ρ ( n i=1 c i -C)) , λ k+1 = max (λ k + ρ ( n i=1 c i -C) , 0) .
Where ∇ c J(u) is the gradient of the functional J(u) with respect to the costs, analogous to ∇ t J(u). The components of ∇ c J(u) have been computed in Proposition 3.3 (see Apendix 3.4). Additional explanations regarding augmented Lagrangian type algorithms can be found in [START_REF] Ito | Lagrange multiplier approach to variational problems and applications[END_REF].

In order to picture better the algorithm implemented we provide in figure 3.6 an example of history of two key quantities along the iterations of the algorithm, namely J(u) = T 0 I H (t)dt and i c i -C during a simulation. We take as an example the simulation for the sterile insect technique with 20 releases and C = 3 • 10 7 . The value of J falls sharply at the begginning as the times of the releases, (t i ) 1⩽i⩽n , move from their initial random positions. The small oscillations observed later correspond to the first time we optimize the weights, (c i ) 1⩽i⩽n . Since we are looking for a saddle point of L there are iterations where the value of J actually increases. Then it starts a slow convergence to the final state where the values of (t i ) 1⩽i⩽n and (c i ) 1⩽i⩽n are refined. The simulation stops when a certain level of functional flatness is attained. In Figure 3.6, on the right, the x-axis presents slightly less iterations since we only show the iterations on the weights. At first this quantity oscillates until the value of L stabilizes. Since we alternate the optimization of the times and the weights, whenever the times are adjusted, new oscillations appear as the weights, (c i ) 1⩽i⩽n , adjust to the new (t i ) 1⩽i⩽n values. As expected, in the long run i c i -C stabilizes around 0, so the constraint i c i = C is respected. L ∞ (0, T ), and by a property of the weak star convergence, one gets that 0 ⩽ u * ⩽ U a.e. in (0, T ) and We thus infer that u * ∈ U T,C,U .

Next, we consider (p n ) n∈N where p n solves p ′ n = f (p n ) + u n g(p n ) in (0, T ) with p n (0) = 0. Using the fact that f and g are continuous in [0, 1] and since 0 ⩽ p n ⩽ 1 in [0, T ], we deduce that (p ′ n ) n∈IN is bounded in L ∞ (0, T ). Hence, p n is bounded in W 1,∞ ([0, T ]) and according to the Ascoli-Arzelá theorem, (p n ) n∈IN converges in C 0 ([0, T ]) to p * ∈ W 1,∞ (0, T ) up to a subsequence. Now, let φ ∈ H 1 (0, T ). One has p n (T )φ(T ) - Therefore, a standard variational analysis yields that p * satisfies p ′ * = f (p * ) + u * g(p * ) in (0, T ) with p * (0) = 0.

Finally, in order to assure the existence of solutions, it remains to prove that lim n→∞ J α (u n ) ⩾ J α (u * ).

(A.1)

By convexity of j 1 , the functional U T,C,U ∋ u → T 0 j 1 (u(t)) dt is convex. Furthermore, it is easy to see that the functional L 2 (0, T ; [0, U ]) ∋ u → T 0 j 1 (u(t)) dt is continuous for the strong convergence of L 2 (0, T ; [0, U ]) (indeed, this follows from the fact that the strong convergence in L 2 implies pointwise one and from the dominated convergence theorem). Now, using that a convex function on a real locally convex space is lower semicontinuous if and only if it is weakly lower semicontinuous, we infer that lim inf Up to a subsequence, (p n (T )) n∈IN converges to p * (T ) and it follows by assumption on j 2 that up to a subsequence, lim inf n→+∞ j 2 (T, p n (T )) ⩾ j 2 (T, p * (T )), whence (A.1). This concludes the proof.

A.2 Existence for Problem (P 2,α T,C,U ) in the case where j 1 is concave

The concave case is a bit more intricate than the convex one. Indeed, we strongly used the convexity of j 1 to prove the lower semicontinuity of the integral term in the definition of J α . We overcome this difficulty by introducing an auxiliary problem where only bang-bang control functions with a finite number of switches are considered.

Proposition A.2. Let us assume that j 1 (•) and j 2 (•) satisfy (H ′ ). Let α ∈ (0, 1], T > 0, U > 0, C > 0 and let us assume that j 1 is concave. Then, Problem (P 2,α T,C,U ) has a solution which is necessarily bang-bang, equal a.e. to 0 or U and with at most two switches.

Proof. To deal with the concave case, we introduce the set We first claim that Problem (P N ) has a solution. Indeed, note first that U N is compact for the strong topology of L 1 (0, T ) (since a sequence of switching points converges up to a subsequence in [0, T ] according to the Bolzano-Weierstrass lemma). Let (u N,n ) n∈IN denote a minimizing sequence for Problem (P 2,α T,C,U ). Up to a subsequence, (u N,n ) n∈IN converges to some element u N in L 1 (0, T ). Since j 1 (•) is locally Lipschitz as a concave function, there exists K > 0 such that (0,T ) j 1 (u N,n ) - Finally, dealing similarly as in the proof of Lemma A.1 with the term j 2 (T, p N,n (T )), where p N,n stands for the solution to p ′ = f (p) + u N,n g(p) and p(0) = 0, enables us to show that (A.1) still holds true in that case. It follows that Problem (P N ) has a solution u N .

Let us now show that u N has at most two switches. Let u N ∈ U N solving Problem (P N ). Let 0 ⩽ ξ 1 < ... < ξ N0 ⩽ T denote the distinct switching points of u N with N 0 ⩽ N , with the convention that ξ 1 = 0 if, and only if, u N = U in a neighborhood of t = 0 and that x N0 = T if, and only if, u N = U in a neighborhood of t = T . We have to distinguish between two cases: there exist three distinct switching points ξ k-1 , ξ k and ξ k+1 such that (a) ξ k-1 > 0 and u = U on (ξ k , ξ k+1 ), or (b) ξ k+1 < T and u = U on (ξ k-1 , ξ k ). In what follows, we will only deal with the case (a), the study of the case (b) being exactly similar.

Let us first write J α (u N ) as a function of the ξ k as J α (u N ) := J ξ α (ξ 1 , . . . , ξ N0 ) := (1 -α)j 1 (U ) Since α > 0, ∂j2 ∂p (T, p N (T )) < 0 and p → g(p) is strictly decreasing we reach a contradiction. It follows that u N has at most two switches and we infer that

inf u∈U N J α (u) = min v∈U2 J α (v) (A.2)
To conclude, one needs to investigate the links between Problems (P N ) and (P 2,α T,C,U ). One important ingredient is the following lemma, whose proof is postponed to the end of this section for the sake of readability.

Lemma A.1. Let u be an element of U T,C,U such that u is bang-bang. Then, there exists u N in U N such that lim According to the convergence results above, we infer that, ε > 0 being given, there exists N 0 ∈ IN such that N ⩾ N 0 =⇒ lim sup k→+∞ (0,T )

j 1 (u N k ) -ε ⩽ lim sup k→+∞ (0,T ) j 1 (u k ) ⩽ (0,T ) j 1 (u).
Dealing with the term involving j 2 is easier. Indeed, by using the approximation results above and mimicking the reasoning in the proof of Proposition A.1, one gets The condition θ ∈ (0, 1) can be written in terms of the other parameters, (1 -p(T, x)) 2 dx, for every i ∈ {1, . . . , n}, where we are denoting by p(t, x) the solution to equation (2.10) with initial condition p0 (x).

0 < θ < 1 ⇔ 0 < 1 - d M b 0 W d W b 0 M < s h ⇔ 1 > d M b 0 W d W b 0 M > 1 -s h ⇔ d W d M > b 0 W b 0 M > d W d M (1 -s h ).
We can follow the same reasoning as before to prove that Both F and its inverse are continuous functions and thus, so it is its composition. Therefore p(T, •) is also a measurable function of p 0 (x) and since it is non-negative both integrals are equal. This implies that, if there exists a solution monotonic by intervals, p * 0 ∈ P0,C,U there must also exist a solution in P 0,C,U . Thus, we restrict our analysis to the first kind of functions.

Let us consider a minimizing sequence (p n 0 ) n∈N ∈ P0,C,U for problem (P p0 ). We know it exists since P0,C,U is non-empty. Due to the fact that for all n ∈ N, 0 ⩽ pn 0 (x) ⩽ G -1 (U/K(x)) a.e. in Ω and using the monotonicity of pn 0 on each interval (x i-1 nx i ), we deduce from Helly's selection theorem (see [START_REF] Rudin | Principles of mathematical analysis[END_REF]) that (p n 0 ) n∈N converges pointwisely to an element p * 0 , up to a subsequence. Basic properties of pointwise convergence lead us to conclude that 0 ⩽ p * 0 (x) ⩽ G -1 (U/K(x)) a.e. in Ω. Moreover, according to the Lebesgue dominated convergence theorem, one has Indeed, we recall that K(•) is piecewise constant and thus it does not affect the convergence properties of the sequence under the integral. Therefore, p * 0 ∈ P0,C,U . A similar reasoning shows that the sequence (F -1 (F (p n 0 (x)) + T )) n∈N converges almost everywhere in Ω and therefore, we have lim n→∞ J 0 (p n 0 (x)) = J 0 (p * 0 (x)) , according to (B.1). It follows that p * 0 is indeed a solution to problem (P p0 ).

infected compartments 1 to 4. These matrices for our model read

F =      0 0 0 β M 0 0 0 0 0 β M H K * 0 0 0 0 0 0      and V =     γ H + b H 0 0 0 -γ H σ H + b H 0 0 0 0 γ M + d M 0 0 0 -γ M d M     .
In [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF] is shown that R 0 = ρ(F V -1 ), where ρ denotes the spectral radius of the resulting matrix, namely

R M 0 = ρ(F V -1 ) = β M K * γ M γ H Hd M (b H + σ H )(γ M + d M )(γ H + b H ) .
In the case of system (W B ′ ), where also mosquitoes with Wolbachia are present, there are six infected compartments and two relevant R 0 , one at the disease-free/Wolbachia-free equilibrium and one at the disease-free/full invasion equilibrium. We follow, step by step, the same procedure, adapting it to the new system for each of the R 0 . We define x = (E H , I H , E M , I M , E W , I W , S H , p) and we write the system as ẋ = F(x) -V(x), where

F(x) ⊤ =                 β M H I M S H + β W H H I W S H 0 β M H (K(1 -p) -E M -I M )I H 0 β HW H (Kp -E W -I W )I H 0 0 0                
, and V(x) contais the rest of the terms.

The two relevant equilibria are both disease-free, one is the Wolbachia-free equilibrium, x M 0 = (0, 0, 0, 0, 0, 0, H, 0) and the other the full invasion equilibrium, x W 0 = (0, 0, 0, 0, 0, 0, H, 1). Matrix V is the same in both cases, namely

V =         γ H + b H 0 0 0 0 0 -γ H σ H + b H 0 0 0 0 0 0 γ M + d M 0 0 0 0 0 -γ M d M 0 0 0 0 0 0 γ W + d W 0 0 0 0 0 -γ W d W        
.

On the other hand, F has a different value at each equilibrium, namely Although computed differently, we recover the value of R M 0 obtained in system (3.1) (keep in mind that in the high birth limit K = K * ). As for the value of R W 0 we obtain

F M =          0 0 0 β M 0 β W
R W 0 = ρ(F W V -1 ) = β HW β W H Kγ W γ H Hd W (b H + σ H )(γ W + d W )(γ H + b H ) .
C.2 Proof of Theorem 3.1

Let us fix p * = 0, the remaining cases can be dealt analogously. First of all we assume R p * > 1 and apply [55, Theorem 1] in order to obtain our persistence result. The set of initial conditions which we refer in the theorem is

(S H , E H , I H , E M , I M , E W , I W , p) ∈ R 7 +0 × [0, θ[ .
Note that it is an immediate consequence of the equations that if one of the latent or of the infectious classes is nonempty then it will remain always nonempty. Moreover we know that if p(0) < θ then p(t) → p * . Hence in order to prove persistence in our set we can consider a 0 < ζ < θ and prove persistence in

(S H , E H , I H , E M , I M , E W , I W , p) ∈ R 7 +0 × [0, θ -ζ] .
Notice that we assumed the human population constant and equal to H and that the mosquito population satisfies a logistic growth. Taking this into account there exists a constant K > 0 such that the set

K = (S H , E H , I H , E M , I M , E W , I W , p) ∈ R 7 +0 × [0, θ -ζ] : S H + E H + I H + E M + I M + E W + I W ≤ K
is a positively invariant compact set and each solution of system (W B ′ ) with initial condition in R 7 +0 × [0, θ -ζ] enters in K. For each x 0 = (S 0 H , E 0 H , I 0 H , E 0 M , I 0 M , E 0 W , I 0 W , p 0 ) ∈ K there exists exactly one solution x(t; x 0 ) of system (W B ′ ) defined in R 0+ and such that x(0; x 0 ) = x 0 and x(t; x 0 ) ∈ K for all t ≥ 0. We have that x 0 → x(t; x 0 ) is a semi-dynamical system in K. We have that the set K \ S is invariant by the remark above about the latent and the infectious classes. As we have R p * > 1 we can consider δ 1 > 0 and η > 0 such that

γ M β 2 M Hd M (γ M +d M ) -(1+δ 1 )(γ H +b H )(σ H +b H ) γ H (K(1 -p * ) -2η) + + γ W β HW β W H
Hd W (γ W +d W ) -(1+δ 1 )(γ H +b H )(σ H +b H ) γ H (Kp * -2η) > 0.

(C.1)

We consider ξ and δ 2 such that 0 < δ 2 < ξ < δ 1 and define in K the map P (SH , EH , IH , EM , IM , EW , IW ) =

(1 + ξ)EH + (1+δ 1 )(γ H +b H )

γ H IH + γ M β M d M (γ M +d M ) EM + (1+δ 2 )β M d M IM + γ W β W H d W (γ W +d W ) EW + (1+δ 2 )β W H d W IW .
Let us consider also for sufficiently small ε the neighbourhood of S U = {x ∈ K : P (x) < ε} .

We have that P (x) = 0 ⇐⇒ x ∈ S.

Moreover let us assume, in order to arrive to a contradiction, that: ∃x 0 ∈ U \ S such that P (x(t; x 0 )) < ε for all t > 0.

(C.2)

Let ϕ(t) = P (x(t; x 0 )), we are going to prove that there exists k > 0 such that ϕ ′ (t) ≥ kϕ(t) (C.3) for large t. In fact, taking into account (C.2), we obtain that there exists ε * > 0 such that lim inf t→+∞ S H (t) > b H H ε * +b H and this ε * > 0 can be chosen sufficiently small if we choose ε small. We assume that ε is chosen in order to imply ε * + b H b H (1+δ 2 ) < 1+ξ and also that the latent and infected mosquitoes classes are smaller then η for t > 0 (this will be useful after and is possible by (C.2)). Then we evaluate ϕ ′ (t) and recall that p(t) → p * when t → +∞. We obtain

ϕ ′ (t) = b H ε * + b H (1 + ξ) -(1 + δ 2 ) (β M I M + β W H I W ) + (δ 1 -ξ)(γ H + b H )E H + δ 2 β M γ M d M E M + β W H γ W d W E W + γ M β 2 M Hd M (γ M + d M ) - (1 + δ 1 )(γ H + b H )(σ H + b H ) γ H (K(1 -p) -E M -I M ) + γ W β HW β W H Hd W (γ W + d W ) - (1 + δ 1 )(γ H + b H )(σ H + b H ) γ H (Kp -E W -I W ) I H .
We have that p(t) → p * and hence by (C.1) we have that for sufficiently large t the coefficient of I H in the last expression is positive. The existence of k > 0 satisfying (C.3) follows and this contradicts (C.2). We conclude that S is an uniform repeller and the result for R p * > 1 follows. The case R p * < 1 can be obtained in the spirit of the previous one constructing this time a function ϕ * for which there exists k * < 0 such that for each t > 0 ϕ * ′ (t) ≤ -k * ϕ * (t).

(C.4)
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 3 Figure 3 -Aedes albopictus geographic distribution in Europe as of March 2022. Source of the image: [50]

Figure 5 -

 5 Figure 5 -Results of the simulations for a sinusoidal carrying capacity, modeling a higher concentration of mosquitoes in the center of the domain. From left to right: results in 1D, results in 1D with diffusion and results in 2D. In all simulations T = 25, C = 30.
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 6 Figure 6 -Schematic representation of the Algorithm implemented in Chapter 3 to solve problem (26).

Figure 7 -

 7 Figure 7 -Evolution on optimal strategies for the SIT when the amount of mosquitoes to release is increased, from C = 3 • 10 7 (left column) to C = 6 • 10 7 (right column). In the upper and lower rows, 10 and 20 releases are considered respectively. The dashed blue line corresponds to the amount of sterile mosquitoes in the system. The amount of infectious humans, I * H , is shown in red. Notice the change in scale in the left axis of the bottom row due to the reduction in the amount of human infections.

Figure 8 -

 8 Figure 8 -Switch of optimal strategy for the Wolbachia method when C is increased from C < G(θ) (left) to C > G(θ) (right). The proportion of Wolbachia infected mosquitoes corresponds to the dashed blue line and should be read with the axis to the right of each graphic. The amount of infected humans, I * H , is depicted in red and its axis is on the left. Notice how the scale for the human infections is considerably bigger in the left graphic.
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 711 Figure 1.1 -Plots of p → f (p) (left) and p → g(p) (right) for the values of the parameters in Table1.1. In this case θ ≈ 0.211.

Figure 1 . 3 -

 13 Figure 1.3 -Control functions (T * , u * ) solving problem (P 1,α p T ,C,U ) with j 1 (u) = e u/11 -1 as α increases, from left to right and from top to bottom. The values of α 0 , α 1 and α 2 obtained are α 0 ≈ 0.15, α 1 ≈ 0.44 and α 2 ≈ 0.55. For the sake of clarity, for α = 0.005 and α = 0.1, u * has not been represented in all its domain. Note that u * = 0 in the rest of the domain.

  +u * p (ν)g(ν) and λ is a Lagrange multiplier such that λ = 0 if, and only if,C Q ⩽ C. If α = 1 then u * = U 1 [0,min{C p T (U ),C}/U ] .Remark 1.4. In case C Q > C, we have that λ < 0. Moreover, this value λ is implicitly determined by the equationp T 0 u * p (ν)/(f (ν) + u * p (ν)g(ν))dν = C. Remark 1.5. For p T ⩽ θ and C = C p T we still have existence of solutions, and indeed u

Figure 1 . 4 -

 14 Figure 1.4 -Function p t → -f (pt)g(pt) represented between p t = 0 and p t = 0.3 for the parameters at table 1.1.

If j ′′ 1 (

 1 •) ⩽ 0, using Theorem 1.4 we have u * = U 1 [0,ts] . The switching point happening only if p u * (T ) > θ. In case there is a switch, u * (p T ) = 0 and therefore the only optimality condition that can be satisfied is -2α(1 -p max ) ⩽ 0. Therefore p * T = p max and u * p = U 1 [0, p] .

T 0 f 0 f

 00 ′ (p(s))ds + T ′′ (p(s))e s 0 f ′ (p(σ))dσ ds.(2.20)and the following hypothesis on it Function p 0 → A(p 0 ) changes sign at most once in (0, θ). (H.2)
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 22 Figure 2.2 -Schematic representation of w, as a function of p 0 in case T > T 0 . As p U increases (from top to bottom) the three diagrams, that we call A, B and C, show the three possible relative positions of w(0), w(p U ) and min p0 w.

  bottom-right graph (C = 200, T = 25). The only case where | Ωλ0 | > 0 in Figure 2.3 is the one with C = 30, T = 25 (bottom-left graph).
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 23 Figure 2.3 -Results for K(•) = K S (•) for different amount of mosquitoes released, C, and different final times, T . K(•) and u * 0 (•) must be read in the left axis and p * 0 (•), p * (T /2) and p * (T ), in the right axis. Here p * stands for the solution of equation (2.10) with initial data p * 0 (•). In green, the line p = θ.
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 24 Figure 2.4 -Results for the piecewise constant carrying capacity, K(•) = K P (•), for different values of C and T . They are presented in an identical way to Figure 2.3. The green dash-dotted line represents p = θ.
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 25 Figure 2.5 -Alternative arrangement of the solution for the case K(•) = K P (•) with C = 30 and T = 25 (bottom left graph of Figure 2.4).

Assuming a high fecundity, b M = b 0 M ε and b W = b 0 Wε

 00 with ε ≪ 1, and introducing the total population N = M + W and the proportion of the species W , p = W M +W , from system (2.35) we compute
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 26 Figure 2.6 -Results for K(•) = K S (•) for the diffusive system. For different diffusion rates, D ∈ {0.001, 0.02}, total amount of mosquitoes C ∈ {30, 200} and final time T = 25.
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 27 Figure 2.7 -Results for a piecewise carrying capacity K(•) = K P (•) for the system with diffusion. Diffusion rates D ∈ {0.001, 0.02} and total amount of mosquitoes C ∈ {30, 200}.
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 28 Figure 2.8 -Results in a 2D setting, K = K 2D , T = 25 and C ∈ {30, 200}.

  for any equilibrium of the system (S * M , E * M , I * M ), we have that M * = S * M + E * M + I * M must also be an equilibrium of the equation

  and 3.2 are given in Tables 3.2 and 3.3 respectively.

T 0 I• 10 7 t 1 4 t 3 3 6 • 10 7 t 1

 07143371 H (t)dt 3 = 172.0, t 2 = 178.4 c 1 = 2277164.9, c 2 = 3118801.0 250375.= 185.6, t 4 = 193.0 c 3 = 3457741.0, c 4 = 3525953.9 t 5 = 200.7, t 6 = 208.7 c 5 = 3458904.6, c 6 = 3328601.2 t 7 = 217.3, t 8 = 226.6 c 7 = 3157284.8, c 8 = 2932013.1 t 9 = 237.0, t 10 = 249.1 c 9 = 2615241.0, c 10 = 2128294.= 78.8, t 2 = 90.3 c 1 = 6568442.3, c 2 = 8417318.4 72862.0 t 3 = 102.9, t 4 = 116.3 c 3 = 8619401.9, c 4 = 8082975.5 t 5 = 130.6, t 6 = 146.3 c 5 = 7239149.0, c 6 = 6225676.6 t 7 = 163.5, t 8 = 182.9 c 7 = 5173640.8, c 8 = 4146284.4 t 9 = 205.0, t 10 = 230.8 c 9 = 3194370.6, c 10 = 2332740.8
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 31 Figure 3.1 -Results of the simulations for the SIT with C = 3 • 10 7 (upper row) and C = 6 • 10 7 (lower row) considering 10 releases. The dashed blue line corresponds to the amount of sterile mosquitoes released. I * H , on the right column, corresponds to the uncontrolled case.
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 32 Figure 3.2 -Results of the simulations for the SIT with C = 3 • 10 7 (upper row) and C = 6 • 10 7 (lower row) considering 20 releases.
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 33 Figure 3.3 -Results of the simulations for the SIT with C = 3 • 10 7 (upper row) and C = 6 • 10 7 (lower row) considering 10 releases and an equal distribution of the mosquitoes between the releases.
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 34 Figure 3.4 -Results of the simulations for the SIT with C = 3 • 10 7 (upper row) and C = 6 • 10 7 (lower row) considering 20 releases and an equal distribution of the mosquitoes between the releases.

T 0 I

 0 H (t)dt is J 20000 = 128899.1, which is a 56.2% reduction in the number of cases.
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 35 Figure 3.5 -Results of the simulations for the Wolbachia method with C = 10000 (upper row) and C = 20000 (lower row). The proportion of Wolbachia infected mosquitoes corresponds to the dashed blue line on the left column. I * H , on the right column, corresponds to the uncontrolled case.
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 36 Figure 3.6 -Evolution of the functional J(u) and c i -C during the sterile insect simulation for 20 releases and C = 3 • 10 7 .

T 0 u

 0 * (t) dt = lim n→+∞ T 0 u n (t) dt = lim n→+∞ ⟨u n , 1⟩ L ∞ ,L 1 ⩽ C.

T 0 p

 0 n (t)φ(t) dt = T 0 (f (p n ) + u n g(p n ))φfor all n ∈ IN. According to the previous considerations, extracting adequately subsequences and letting then n tend to +∞ shows that p * (T )φ(T ) -

T 0 p

 0 * (t)φ(t) dt = T 0 (f (p * ) + u * g(p * ))φ.

j 1

 1 (u n (t)) dt ⩾ T 0 lim inf n→∞ j 1 (u * (t)) dt.

U

  N := {u ∈ U T,C,U , u bang-bang equal a.e. to 0 or U and having at most N switches} .Let N ∈ IN * be given and consider the auxiliary probleminf u∈U N J α (u) p ′ = f (p) + ug(p) , p(0) = 0. (P N )

|j 1

 1 (u N,n ) -j 1 (u N )| ⩽ K∥u N,n -u N ∥ L 1 (0,T ) .

j∈ 1 ,

 1 N0 j odd (ξ j+1 -ξ j ) + αj 2 (T, p N (T )),where p N denotes the solution to the Cauchy problem p ′ = f (p) + u N g(p) with p(0) = 0.

Figure A. 1 -

 1 Figure A.1 -Left: case (a). Right: case (b).

N

  →+∞u N (t) = u(t) for a.e. t ∈ (0, T ).Let u ∈ U T,C,U . It is well-known that the set {v ∈ U T,C,U | v is bang-bang, equal a.e. to 0 or U } is dense into U T,C,U for the weak-star topology topology of L ∞ (0, T ). Hence, there exists(u k ) k∈IN ∈ U IN T,C,U converging weakly-star to u in L ∞ (0, T ). By concavity of j 1 in R, the mapping U T,C,U ∋ u → T 0 j 1 (u(t)) dtis concave. Mimicking the argument used at the end of the proof of Proposition A.1, one shows the upper semicontinuity property: lim sup k→+∞ (0,T ) j 1 (u k ) ⩽ (0,T ) j 1 (u) Now, according to Lemma A.1, there exists u N k ∈ U N such that lim N →+∞ u N k (t) = u k (t) for a.e. t ∈ (0, T ). The dominated convergence theorem thus yields lim N →+∞ (0,T ) j 1 (u N k ) = (0,T ) j 1 (u k ).

lim N,k→+∞ j 2 (

 2 Figure B.2 -Hypothesis (H.2) tested for small values of b W and high values of s h . All pictures have d M in the x-axis and d W in the y-axis. In this image, s h ∈ {0.9, 1} increases from left to right and b W ∈ {0.33, 0.47} decreases from top to bottom.

Since b 0 W ⩽ b 0 M

 00 and d M ⩽ d W , this means that if b W ⩽ 1 -s h , necessarily θ > 1, thus these values can be excluded from the exploration. Indeed, the black lines wrapping the dots in Figures B.1 and B.2 are d W = d M , b 0 W = 1 and b 0 W = 1 -s h . As we can see in Figure B.1 and B.2, Hypothesis H.2 is satisfied by most of the parameters of the parameter space. For high values of b W is always satisfied (also for those values not shown in Figure B.1). As b W decreases, red dots appear for high values of s h and d W >> d M . Only for high values of s h and small values of b W the red dots dominate the picture. In a realistic scenario, based on the values for the parameters found in te literature [10, 46] we expect a high Observe that min p0∈P 0,C,U J 0 (p 0 ) = min p0∈ P0,C,U J 0 (p 0 ), with J 0 defined by (2.8). Indeed, if p * 0 is minimizer of J 0 in P 0,C,U , then Ω K(x) 2 (1 -p(T, x)) 2 dx = Ω\[xi-1,xi] K(x) 2 (1 -p(T, x)) 2 dx + K 2

xi xi- 1 ( 1 -- 1 ( 1 -

 1111 p(T, x)) 2 dx = xi xip(T, x)) 2 dxfor every i ∈ {1, . . . , n}. To see this clearly we can write p(t, x) as a function of its initial condition by realising that p(t, x) can be written as∂ ∂t p(t, x) = f (p(t, x)) ⇒ Defining F (p)as the primitive of 1/f (p) vanishing at 0, F (p) := p 0 dν f (ν) , we can write F (p(T, x)) = F (p 0 (x)) + T ⇒ p(T, x) = F -1 (F (p 0 (x)) + T ) . (B.1)

Ω

  K(x)G (p * 0 (x)) dx = lim n→∞ Ω K(x)G (p n 0 (x)) dx = lim n→∞ ⟨K(x)G (p n 0 (x)) , 1⟩ L ∞ ,L 1 ⩽ C.

  Consider the setS = {(S H , E H , I H , E M , I M , E W , I W , p) ∈ K : E H + I H + E M + I M + E W + I W = 0} .

  

  

  

  

Table 1 -

 1 Offspring outcomes in a population with both Wolbachia-infected and non-infected mosquitoes.

	a a ♂ Infected a a a a a ♀ Infected Non-infected Infected CI
	Non-infected Infected Non-infected

Table 1 .

 1 in the linear and concave case.

	Category	Parameter	Name	Value
	Optimization	p T U	Final state Maximal instantaneous release rate	0.99 10
		b 0 M b 0 W	Normalized wild birth rate Normalized infected birth rate	1 0.9
	Biology	d M	Wild death rate	0.27
		d W	Infected death rate	0.3
		K	Normalized carrying capacity	1
		s h	Cytoplasmatic incompatibility level	0.9

1 -Parameter values used to plot the solutions to problem (P 1,α p T ,C,U )

  It is standard to derive optimality conditions for this problem 2 and one gets for a.e. p t , u * p (p t ) ∈ arg max

	v∈	Ū -	(1 -α)j 1 (v) + α f (p t ) + vg(p t )	.	(1.23)

  .1 we find R M 0 ≈ 1.68 and R W 0 ≈ 1.03, which give basic reproduction numbers of R M ≈ 1.08 respectively. That means that even in a fully invaded population, outbreaks could still appear, but would have a smaller impact. Nevertheless these values should be taken with a grain of salt, since most of the parameters considered present a lot of variability in the literature.

		0	2 ≈ 2.83
	0 and R W	2

Table 3 .

 3 

			1 -Parameter values for dengue		
	Category	Parameter	Name	Value	Source
		b M	Wild mosquitoes birth rate	4.4 day -1	[10, 132] 1
		b W	Wolbachia infected birth rate	3.96 day -1	[10, 132]
		d M	Wild mosquitoes death rate	0.04 day -1	[10, 132]
		d W	Wolbachia infected death rate	0.044 day -1	[10, 132]
		d S	Sterile mosquitoes death rate	0.12 day -1	[6]
		s h	Cytoplasmic incompatibility level	0.9	[10]
		s c	Competitiveness level	0.9	
		K	Carrying capacity	65234 2	
	Biology	b H	Human birth/death rate	0.013 year -1	
		σ H	Human recover time	0.2 day -1	[102]
		H	Human population size	65000	[70]
		β M	Transmission rate H↔M	0.1647 day -1	[102]
		β HW	Transmission rate H→W	0.157 day -1	[102]
		β W H	Transmission rate H←W	0.0785 day -1	[102]
		γ M	Non infected incubation period	0.186 day -1	[157]
		γ W	Wolbachia infected incubation period 0.146 day -1	[157]
		γ H	Human incubation period	0.17 day -1	[36]
	Optimization	T C	Final time Amount of mosquitoes released	450 days 10 4 -6 • 10 7	

Table 3 .

 3 2 -Results of the simulations performed for the SIT with 10 releases C

	Time of releases	Amount of mosquitoes released

Table 3 .

 3 3 -Results of the simulations performed for the SIT with 20 releases C = 200.2, t 10 = 204.4 c 9 = 1674451.1, c 10 = 1653637.3 t 11 = 208.7, t 12 = 213.2 c 11 = 1641097.9, c 12 = 1597815.1 t 13 = 217.8, t 14 = 222.7 c 13 = 1544202.8, c 14 = 1491664.7 t 15 = 227.8, t 16 = 233.3 c 15 = 1438846.7, c 16 = 1380652.5 t 17 = 239.1, t 18 = 245.5 c 17 = 1308476.4, c 18 = 1199302.0 t 19 = 252.4, t 20 = 259.9 c 19 = 1056512.9, c 20 = 857882.1 = 4175080.6, c 4 = 4104782.5 t 5 = 18.1, t 6 = 23.4 c 5 = 4025147.5, c 6 = 3942640.9 t 7 = 29.2, t 8 = 35.5 c 7 = 3855009.1, c 8 = 3759644.0 t 9 = 42.4, t 10 = 50.2 c 9 = 3651466.3, c 10 = 3522392.6 t 11 = 59.0, t 12 = 69.1 c 11 = 3362768.5, c 12 = 3162408.6 t 13 = 80.8, t 14 = 94.2 c 13 = 2913468.2, c 14 = 2614816.3 t 15 = 109.9, t 16 = 128.1 c 15 = 2275534.3, c 16 = 1912277.7 t 17 = 149.5, t 18 = 174.9 c 17 = 1548925.6, c 18 = 1209010.4 t 19 = 205.7, t 20 = 243.9 c 19 = 911714.1, c 20 = 607524.1

		Time of releases	Amount of mosquitoes released	T 0 I H (t)dt
	t 1 = 167.7, t 2 = 171.5	c 1 = 1084557.5, c 2 = 1529725.4	
	t 3 = 175.7, t 4 = 179.9	c 3 = 1720612.9, c 4 = 1786314.4	
	t 5 = 184.0, t 6 = 188.1	c 5 = 1793907.7, c 6 = 1781311.8	
	t 7 = 192.1, t 8 = 196.1	c 7 = 1750939.8, c 8 = 1708089.2	
	3 • 10 7 t 9 6 • 10 7	t 1 = 0.0, t 2 = 3.7 t 3 = 8.2, t 4 = 13.0	c 1 = 4230525.4, c 2 = 4214863.5 c 3	244012.2 2124.4

Table 3 .

 3 4 -Results of the simulations performed for the SIT with 10 releases and all c i = C/10. • 10 7 t 1 = 173.2, t 2 = 180.6, t 3 = 187.4, t 4 = 194.1, t 5 = 201.1 250880.3 t 6 = 208.3, t 7 = 216.3, t 8 = 225.1, t 9 = 235.4, t 10 = 248.0 6 • 10 7 t 1 = 98.4, t 2 = 109.2, t 3 = 119.5, t 4 = 130.1, t 5 = 141.5 99223.3 t 6 = 154.3, t 7 = 169.0, t 8 = 186.5, t 9 = 208.3, t 10 = 236.4

	C	Time of releases	T 0 I H (t)dt
	3		

  = 187.8, t 7 = 191.4, t 8 = 195.0, t 9 = 198.7, t 10 = 202.5 t 11 = 206.5, t 12 = 210.6, t 13 = 214.9, t 14 = 219.5, t 15 = 224.4 t 16 = 229.8, t 17 = 235.7, t 18 = 242.3, t 19 = 250.0, t 20 = 259.5 6 • 10 7 t 1 = 0.0, t 2 = 3.8, t 3 = 8.0, t 4 = 12.4, t 5 = 17.0 2556.1 t 6 = 21.7, t 7 = 26.8, t 8 = 32.1, t 9 = 38.0, t 10 = 44.4 t 11 = 51.6, t 12 = 59.6, t 13 = 68.9, t 14 = 79.7, t 15 = 92.6 t 16 = 108.1, t 17 = 127.4, t 18 = 151.7, t 19 = 183.3, t 20 = 225.5

	t 6	244623.4

3 • 10 7 t 1 = 168.3, t 2 = 172.8, t 3 = 176.8, t 4 = 180.6, t 5 = 184.2

Table 3 .

 3 6 -Comparison of the reductions in the infections obtained on the simulations performed for the SIT with 10 releases.

	C	Times Times and costs
	3 • 10 7 14.6%	14.7%
	6 • 10 7 66.2%	75.1%

Table 3 .

 3 7 -Comparison of the reductions in the infections obtained on the simulations performed for the SIT with 20 releases.

	C	Times Times and costs
	3 • 10 7 16.7%	16.9%
	6 • 10 7 99.1%	99.3%

Indeed, when s h = 1, CI is perfect, whereas when s h = 0 there is no CI

Note that K P as defined is not differentiable and thus ∇K P and ∆K P are not defined. Nevertheless, we can always consider a differentialble function KP such that KP (x) = 3K 0 /2 for x < |Ω|/2 -ϵ, KP (x) = K 0 /2 for x > |Ω|/2 + ϵ and such that ϵ is smaller than the space step considered in the discretization done by the numerical algorithm implemented to compute the solutions. The carrying capacity in these simulations should be interpreted as the latter case.

là je vais pleurer! Merci! Funding This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement Nº 754362. xvi

We can solve this equation explicitly. Since the initial condition is M S (0) = 0 the solution reads M S (t) = i j=1 c j e -d S (t-tj ) , t ∈ [t i , t i+1 ], i = 1, . . . , n (3.9)

Wolbachia method

Looking at the equation on p in system (W B ′ ) and substituting the control function by

we obtain

(3.10)

Let G be the antiderivative vanishing at zero of 1/g(p), that is G(p) := p 0 dq g(q) , when we take the limit ε → 0 in equation (3.10) we obtain:

Optimality conditions

We devote this section to the computation of the gradients of the functional J in problem (P) for systems (SIT ) and (W B ′ ). These gradients will be used in the numerical simulations of section 3.5. We discuss it first in a general setting to later apply to our problems.

Let X : R + → R N be the solution to X ′ (t) = A(X(t)) + B(X(t))y(t), t ∈ [0, T ] X(0) = X 0 , (3.12)

with A, B : R + → R N continuous and y : R + → R the solution to the differential equation with jump discontinuities

with a, b : R + → R. Now, consider y ε (t), the solution to

where tk = t k + ε. Finally, lets consider also X ε the solution to

We consider X to be a function of time, nevertheless, the value of the parameters t i and c i , Appendix A

Existence of solutions for Chapter 1 problems

This appendix is devoted to studying existence issues for problems (P 1,α p T ,C,U ) and (P 2,α T,C,U ). Note that the existence property for Problem (P 1,α p T ,C,U ) is a bit more intricate to show since the horizon of time T is let free.

Nevertheless, we will have to distinguish between the case where j 1 is convex or concave: the first case is standard whereas the second one needs a particular approach.

The existence of solutions for problems (P 1,α p T ,C,U ) and (P 2,α T,C,U ) will be studied with less restrictive hypothesis on the regularity of j 1 (•) and j 2 (•). We introduce:

is a non-negative increasing function such that j 1 (0) = 0, either strictly concave, linear or strictly convex on (0, T ). j 2 (•) is a non-negative function, strictly increasing w.r.t. its first variable and strictly decreasing w.r.t. its second variable. Moreover, for all p ∈ [0, 1], lim

A.1 Existence for Problem (P 2,α T,C,U ) in the case where j 1 is convex

The proof is standard and rests upon the direct method in the calculus of variations.

Proposition A.1. Let us assume that j 1 (•) and j 2 (•) satisfy (H ′ ). Let T > 0, U > 0, C > 0 and let us assume that j 1 is convex in R and that for every T , p T → j 2 (T, p T ) is lower semi-continuous in [0, 1]. Then, Problem (P 2,α T,C,U ) has a solution.

Proof. Since U T,C,U is non-empty, let us consider a minimizing sequence (u n ) n∈N ∈ U N T,C,U for Problem (P 2,α T,C,U ). We have 0 ⩽ u n ⩽ U a.e. in (0, T ) for all n ∈ N and, according to the Banach-Alaouglu theorem, we conclude that U T,C,U is compact for the weak-star topology of L ∞ (0, T ). Therefore, up to a subsequence, u n converges to u * for the weak-star topology of the existence of N0 ∈ IN such that

Since ε has been chosen arbitrarily, and since

This concludes the proof: Problem (P 2,α T,C,U ) has a solution which solves moreover Problem (P 2 ).

Proof of Lemma A.1. Since u is assumed to be bang-bang, let us write u = U 1 I where I denotes a measurable subset of (0, T ). Let ε > 0. By outer regularity of the Lebesgue measure, there exists un open subset of (0, T ) containing I and such that

Let us introduce

Since ε is arbitrary and since the series with general term β n -α n is convergent, it follows that (u n ) n∈IN converges to u in L 1 (0, T ) and thus also pointwise. This concludes the proof.

A.3 Existence results for Problem (P 1,α p T ,C,U )

Proposition A.3. Let us assume that α ∈ (0, 1], p T ∈ (0, 1), (1.2) is true, and that j 1 (•) and j 2 (•) satisfy the assumptions of (H ′ ). Let us assume that U > m * (p T ) and

Finally, let us also assume that for every p T , T → j 2 (T, p T ) is lower semi-continuous in R + .

Then, Problem (P 1,α p T ,C,U ) has a solution.

Proof. To avoid working on a variable domain, let us make the following change of variables: we define p(s) := p(T s) and ũ(s

where J(T, ũ) is defined by

A.3. Existence results for Problem (P 1,α p T ,C,U ) 119

and D p T is the set of admissible controls

Let us first prove that D p T is non-empty. To this aim, let us define

and look for controls of the form u ξ (t) = U 1 [0,ξ] belonging to this set, where

Let us introduce pξ solving p′ ξ = T (f (p ξ ) + ũξ g(p ξ )) in (0, 1) and pξ (0) = 0. By integrating both sides of the differential equation, we get that the time T ξ taken by p ξ to reach the final state p T reads

Note that in case p ξ (ξ) ⩽ θ the second integral does not converge unless ξ = 1, in which case it vanishes. This expression gives a lower bound on C depending on p T . If

We conclude that under the hypothesis of this proposition T ξ < ∞ and D p T is non-empty.

Let us consider a minimizing sequence (T n , ũn ) n∈N ∈ (D p T ) N and let pn be the solution of p′ = T (f (p) + ũn g(p n )) in (0, 1) and pn (0) = 0. By minimality, one has lim n→∞ Jα (T n , ũn ) < ∞, i.e.

Each term of the sum being bounded from below by 0, it follows that both of them are also bounded above. Since α > 0 and lim n→∞ j 2 (T n , p T ) = +∞, it follows that (T n ) n∈IN is bounded, and therefore, up to a subsequence, T n → T < ∞ as n → +∞. By mimicking the arguments used for problem (P 2,α T,C,U ), one shows that, up to a subsequence, (ũ n ) n∈IN converges to ũ * ∈ U T ,C,U weakly-star in L ∞ (0, 1; [0, U ]). Moreover,(p n ) n∈IN converges to p * in C 0 ([0, T ]), where p * solves the equation

and p * (0) = 0. As a consequence, ( Jα (T n , ũn )) n∈IN converges to Jα ( T , ũ * ), which concludes the proof.

Appendix B

Complementary material to Chapter 2

B.1 Numerical exploration of the parameter space for Hypothesis H.2

Proof. The existence of a zero of f ′′ is straightforward to prove: there holds f (0) = f (θ) = f (1) = 0, thus from Rolle's theorem there exist two zeros of f ′ in (0, 1). Then applying again Rolle's theorem we prove the existence of some zero θ 2 of f ′′ , lying in between the two zeros of f ′ , thus θ 2 ∈ (0, 1) in all generality.

Let us now prove the uniqueness of the zero of f ′′ in [0, 1]. By computing the rational function f ′′ , we see that {f ′′ = 0} = {R = 0} where, denoting κ :

Then, using Descarte's rule of sign, we find that R has zero or two positive roots. However, since f ′′ has at least one zero in (0, 1), so does R, so that R admits exactly two positive roots. Meanwhile, applying the rule to p → R(-p) implies that R has one negative root. Now, we set S(p) = R(p + 1). In particular, the leading coefficient of S is Ā > 0 while one can prove that S(0) = Ā + B + C + D < 0.

Clearly S has three real roots, and their product is given by -S(0) Ā > 0. However, S has at least one negative root since R does. Since the product of all three roots of S is positive, S has exactly two negative roots and one positive root. As a result, R has exactly one root in [0, 1], and the conclusion follows.
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This section is devoted to a numerical exploration of the space of parameters, in order to establish the validity of Hypothesis (H. W and smaller values of d W and d M , for which hypothesis (H.2) is satisfied. The values of the parameters not satisfying Hypothesis (H.2) would represent a particular strain of Wolbachia that, in a certain variety of mosquito, would produce a high CI rate and a big penalty on their fertility, which, a priori, is not impossible.

B.2 Existence of solutions for problem (P p 0 ) for piecewise constant K(•) in 1D

We devote this section to the study of the existence of minimizers for problem (P p0 ). We present here a partial result, settling the existence in 1D for the case where K(•) is piecewise constant. This proof, nevertheless, cannot be straightforwardly extended for the fully general case.

Proposition B.2. Let K be a piecewise constant function, with x ∈ Ω ⊂ R. Then there exists p * 0 ∈ P 0,C,U solving problem (P p0 ).

Proof. Let us write K(x)

We place ourselves in one of the intervals

Let us consider any function p 0 ∈ P 0,C,U in this interval. We claim there exists a monotonic (decreasing or increasing) rearrangement of p 0 , that we will denote p0 such that p0 ∈ P 0,C,U . To define this rearrangement, let us introduce, in a given interval

Then, we define p0 in that interval as p0 (x) := inf{s ∈ [0, 1] : µ(s) ⩽ x}.

The fact that such a rearrangement will respect 0 ⩽ p0 ⩽ G -1 (U/K(x)) is trivial since rearranging a function does not change its maximums or minimums (see [START_REF] Rakotoson | Réarrangement relatif. Un instrument d'estimations dans les problèmes aux limites[END_REF]). Suppose

for every i ∈ {1, . . . , n}. G is a continuous function, hence it is measurable. Therefore, since G is non-negative and measurable we have This implies that if Ω K(x)G(p 0 (x)) dx ⩽ C, then Ω K(x)G(p 0 (x)) dx ⩽ C. These reasoning can be easily extended to all of the subintervals. Therefore we have proved that P 0,C,U is stable under rearrangements.

Let us define now

Appendix C

Complementary material for Chapter 3

We detail in this section the computations of R M 0 and R W 0 defined in section 3.2. To compute the value of these quantities we follow the lines of [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF]. The relevant compartments for these computations are only the infected ones. As [START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF] points out, this distinction is determined from the epidemiological interpretation of the model and cannot be deduced from the structure of the equations alone. The infected compartments in our case are those in which there are individuals carrying the dengue virus. For model (3.1) these are E H ,I H ,E M and I M .

We need then to separate the changes in the compartments due to new infections from the rest. We write system (3.1) in the following way x = (E H , I H , E M , I M , S H , S M ), ẋ = F(x) -V(x), where F contains the rate of appearance of new infections in each compartment and V the rate of transfer of individuals into the compartments by all other means.

Let's see the decomposition of the first equation, E ′ H , as an example:

.

Doing this decomposition for all the equations we obtain

β M H S M I H , 0, 0, 0 and V(x) containing all the other terms.

Then we construct the matrices

and V = ∂V i ∂x j (x 0 ) i,j

, i, j = 1, . . . , 4

where x 0 represents the equilibrium for which we compute the R 0 , i.e., the disease-free equilibrium x 0 = (0, 0, 0, 0, H, K * ). The values taken by i and j are given by the fact we labeled the 127