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Résumé xi

OPTIMAL MOSQUITO RELEASE STRATEGIES FOR VECTOR-BORNE DISEASE CONTROL
Résumé

Avec la hausse globale des maladies & vecteurs et I’expansion des habitats des moustiques dues au changement
climatique, le contréle des populations de moustiques est sans doute un des principaux défis pour la santé humaine
dans les années a venir. Cette thése est consacrée a la modélisation, I’analyse et la simulation de stratégies optimales
de controle des moustiques et des maladies qu’ils transmettent en utilisant des lachers de spécimens modifiés.
Nous étudions d’abord les stratégies optimales de remplacement de population. Celles-ci consistent & remplacer
de maniére optimale la population sauvage par une population porteuse de la bactérie endosymbiotique Wolbachia,
car il a été démontré que les moustiques porteurs de cette bactérie sont moins susceptibles de transmettre certains
arbovirus. En considérant une limite de fécondité élevée, nous réduisons ’étude de la population de moustiques &
une seule équation sur la proportion de moustiques infectés par Wolbachia. Nous étudions d’abord des stratégies
optimisant une combinaison convexe du cotut des lachers et de la performance de la technique. Nous effectuons
une analyse compléte de ce probléme, en prouvant une propriété de monotonie temporelle sur la proportion de
moustiques infectés par Wolbachia et en utilisant une reformulation du probléme basée sur un changement de
variable approprié. Dans un deuxiéme temps, nous considérons ’optimisation spatiale des lachers, en optimisant un
seul lacher instantané a I'instant initial maximisant la proportion finale de moustiques infectés par Wolbachia dans
le domaine & un horizon temporel donné. Nous caractérisons complétement les solutions sous certaines hypothéses
dans le cas non-diffusif. De plus, des simulations sont effectuées pour le cas avec diffusion. Enfin, nous étendons
l'objet de I’étude aux humains. Nous considérons un modéle épidémiologique dans lequel les deux populations
sont prises en compte ainsi que la dynamique d’une maladie vectorielle avec une transmission exclusivement
homme-moustique et moustique-homme comme la dengue. Dans ce cadre, nous minimisons la quantité d’infections
humaines pendant une épidémie en utilisant des lachers instantanés de spécimens modifiés, représentés par des
combinaisons linéaires de mesures de Dirac avec des coefficients positifs déterminant leurs intensités. Les stratégies
optimales pour le remplacement de population et la technique de 'insecte stérile sont étudiées numériquement
a l’aide d’algorithmes ad hoc, basés sur I’écriture de conditions d’optimalité au premier ordre caractérisant la
meilleure combinaison de mesures de Dirac.

Mots clés : controle optimal, contréle vectoriel épidémique, moustiques, systémes dynamiques, ma-
ladies a transmission vectorielle, wolbachia, remplacement de population des vecteurs, technique
de l'insecte stérile.

Abstract

With vector-borne diseases rising globally and mosquitoes expanding their habitats due to climate change,
mosquito control is undoubtedly one of the main challenges for human health in the years to come. This thesis is
devoted to the modeling, analysis and simulation of mosquito and mosquito-borne diseases optimal control strate-
gies using modified vector releases. We first investigate optimal population replacement strategies. These consist
in replacing optimally the wild population by a population carrying the endosymbiotic bacterium Wolbachia,
since it has been shown that mosquitoes carrying this bacterium are less likely to transmit some arboviruses.
By considering a high fecundity limit we reduce the study of the mosquito population to a single equation on
the proportion of Wolbachia-infected mosquitoes. First, we study strategies optimizing a convex combination
of both the cost of the releases and the performance of the technique. We fully analyse this problem, proving
a time monotonicity property on the proportion of Wolbachia-infected mosquitoes and using a reformulation of
the problem based on a suitable change of variable. Next, we consider the spatial optimization of the releases,
optimizing a single instantaneous release at the initial time maximising the final proportion of Wolbachia-infected
mosquitoes throughout the domain at a given time horizon. We fully characterize the solutions under some hy-
pothesis in the non-diffusive case. Moreover, simulations are carried for the case with diffusion. Finally, we extend
the focus of the study to humans. We consider an epidemiological model in which both populations are taken into
account as well as the dynamics of a vector-borne disease with exclusively human-mosquito and mosquito-human
transmission like dengue. In this setting, we minimise the amount of human infections during an outbreak using
instantaneous releases of modified vectors, represented by linear combinations of Dirac measures with positive
coefficients determining their intensity. Optimal strategies for both population replacement and the sterile insect
technique are studied numerically using ad-hoc algorithms, based on writing first-order optimality conditions
characterizing the best combination of Dirac measures.

Keywords: optimal control, epidemic vector control, mosquitoes, dynamical systems, vector-borne
diseases, wolbachia, vector population replacement, sterile insect technique.

Laboratoire Jacques-Louis Lions
Sorbonne Université — Campus Pierre et Marie Curie — 4 place Jussieu — 75005 Paris — France
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Introduction

I Issues and challenges regarding mosquitoes

I.1 Vector-borne disease burden

In the evolutionary arms race that pathogens ! and hosts have been running for eons, perhaps
one of the most curious ways microorganisms have found to reach our bodies is by hitchhiking
inside the bodies of other life forms. Vector-borne diseases are diseases transmitted to humans
by means of a necessary non-human animal intermediary, usually arthropods, transmitting the
disease through their bite. The intermediary animal is called the wvector of the disease. The
list of known vector-borne diseases is long and includes some of the biggest human Kkillers of all
times. To name a few vector-borne diseases and its vectors: Bubonic Plague, which decimated
Europe in the XIVth century, is transmitted by fleas, Lyme disease by ticks, Typhus by lice, the
Sleeping sickness by Tsetse flies and Leishmaniasis by sandflies [147]. In this work we will focus
on one particular vector and its associated vector-borne diseases: the mosquito.

Mosquitoes are, by far, the vectors responsible of transmitting the wider variety of diseases,
and with the biggest toll on human health around the globe. The mosquitoes transmitting human
diseases can be divided into two subfamilies: Anophelinae and Culicinae.

The first family includes the mosquitoes of the genus Anopheles. Anopheles mosquitoes are
the culprits transmitting Malaria. Malaria is a severe disease caused by protozoa of the genus
Plasmodium, it is known since ancient times and it is considered one of the infectious diseases
responsible for more human deaths in history. Despite seeing a clearly descending trend in the
last 15 years, Malaria remains as the seventh leading cause of death for children under 5 years
old, and the fifth for children between 5 and 14 [114]. With the African region bearing, by
far, the biggest burden in cases and deaths [119], as we can see in Figure [1] According to the
World Health Organisation (WHO), there were 241 million cases and 627000 deaths by Malaria
in 2020 alone. The African region representing 95% of cases and 96% of deaths. Children under
5 accounting for around 80% of all malaria deaths in the region |146].

On the other hand, the subfamily Culicinae includes Aedes and Culer mosquitoes. Sev-
eral species of mosquitoes belonging to these genus transmit virus causing diseases like dengue
fever, Zika, Chikungunya, West Nile fever, Yellow fever or japanese encephalitis amongst others.
Amidst these diseases, dengue is the most prevalent one.

Dengue, in over 80% of cases, presents mild to no symptoms. Nevertheless, some cases can
develop a direr version of the disease called severe dengue, which can produce intense bleeding
and death. In spite of there not being specific treatment for severe dengue, with an early detection
and proper medical care, fatality rates can get as low as 1%. Nevertheless, dengue is a cause
of major concern in tropical and subtropical areas. Estimations suggest that 100 to 400 million

1. From greek: pathos, “passion, suffering” and gen “causing, producing”.
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Number of deaths from malaria, 2019

Deaths from malaria, by age, World, 1990 to 2019
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Figure 1 — Share of deaths from malaria by age group in the last three decades (left) and malaria
death toll geographic distribution as of 2019 (right). Source of the image: [119]

infections of dengue occur each year [145], with Africa, South America, and especially South East
Asia bearing most of them. The last decades have seen a dramatic increase in cases. Having
almost doubled in the last thirty years (See Figure 2)).

Number of dengue fever infections, 1990 to 2019 m Number of dengue fever infections, 2019

‘World

55 million e
« *(,iZ
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50 million

45 million
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Source: Institute for Health Metrics and Evaluation, Global Burden of Disease (2019) OurWorldinData.org/burden-of-disease + CC BY Source: Institute for Health Metrics and Evaluation, Global Burden of Disease (2019) OurWorldinData.org/burden-of-disease + CC BY

Figure 2 — Number of dengue fever infections’ evolution in the last three decades (left) and its
geographic distribution as of 2019 (right). Source of the data: . Source of the image: [105]

No efficient vaccine has been found yet for any of these viruses, although, Valneva and Pfizer
have promising vaccine candidates at Phase 3 of clinical trials for Chikungunya and Lyme disease
. The only commercialized vaccine for dengue so far is Dengvaxia®. After the initial
hype, governments and agencies took a step back and it is currently only recommended for
children ranging 9 to 16 years old and only if they have been previously infected by one of
the strains of dengue (dengue is, in fact, four different closely related virus strains DENV-1 to
DENV-4), but is discouraged for other ages and for seronegative people since it has been shown
to increase the risk of developing severe dengue in case of an infection . Moreover,
treatment for vector-borne diseases usually consists on alleviating the symptoms, since rarely the
pathogen can be targeted directly. Therefore, prevention against these diseases relies heavily on
controlling the vector.

On top of this, in recent years an expansion of the vector’s habitat is taking place. In Europe,
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for instance, dengue vector Ae. albopictus was first documented in Albania in the 1970s and it
has not ceased to expand its distribution ever since, settling with special strength along the
mediterranian coast [116]. Its current known distribution is depicted in Figure [8| To give two
examples, in France, Ae. albopictus entered from Italy in 2004. Its advance has been steady
and it has colonized great areas of the south and south-west since then. It has settled even
in other areas detached from the main front like the Parisian region, probably following main
human transportation routes [86]. This invasion process has been well studied and documented
and has also sparkled the interest from a mathematical point of view [118]. Also in 2004, Aedes
albopictus arrived in Spain, being firstly detected in the catalan town of San Cugat del Vallés
. Although initially attributed to the importation of used car tires, the real origin is not
clear . It has since expanded to other regions, specially southwards along the mediterranian
coast. This, in combination with the presence of the common Culer mosquitoes has lead to
West Nile fever outbreaks in the last years in Andalusia and efforts from the government
to try to contain their advance . Although the epidemiological situation in Europe is not
worrying for the moment, a project for controlling vector population based on the Sterile Insect
Technique (see Section , is currently being developed in the Valencia region, where
Aedes albopictus has a stronger presence.

‘% = efsam Aedes albopictus, March 2022
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1.2 Mosquito life cycle

Although details vary amongst species |40], mosquitoes undergo similar stages during their
development. Their life cycle can be split into two clearly distinct phases: an aquatic phase
composed of three stages, egg, larval and pupal, and an aerial phase as adults. In the aquatic
phase mosquitoes are developing and sexually immature. After undergoing a metamorphose,
they reach their aerial phase, where they mate and reproduce. This work does not focus on the
modeling of the aquatic phase, which is a whole topic on its own. For the sake of completeness
and as a starting point for the kind of models that will be discussed in this thesis, we quickly
introduce the following model that can be found in [128].

E' = bpA— (h(L) + dp)E,

L' =h(L)E — (¢(L) + 71 +dp)L,
P'=7.L— (rp +dp)P,

A" =71pP —dhA.

(1)

This model is an example of compartmental modeling, a classical way to approach the modeling
of population dynamics of a species. The model consists on a set of quantities or compartments
that represent the abundance of, in this case, a certain life stage of the mosquito population, and
which evolve according to ordinary differential equations. These equations can depend on the
abundance of individuals in the compartment itself or in other compartments, creating a flow of
individuals between compartments. All the parameters in system are positive.

In , eggs are considered to be laid by adults at a certain rate bg, and die at rate dg.
The eggs are considered to hatch at a rate depending on the amount of larvae present in the
environment, h(L), since larval density may stimulate or inhibit the hatching ability of the eggs
through more than one mechanism simultaneously [48) |80]. After hatching, eggs become larvae.
At this stage intra-specific competition for resources between larvae is a well documented fact
affecting their development (and even their vector capacity as adults) |16} [19]. It is represented
in this model, , by the term ¢(L)L. Larvae die at rate d;, and progress to the pupal stage at
rate 77,. Pupae, analogously die at rate dp and progress to the adult stage at rate 7p. At this
stage mosquito reproduce, laying eggs and restarting the cycle.

Although model is already fairly general, it is not the only way in which the life cycle
of the mosquito can be modeled. Models can take into account disparities in male and female
mosquito population, like having a different likelihood of reaching adulthood or having different
dynamics, for instance, a different life expectancy. They can also take into consideration the
resource availability in the environment by introducing a carrying capacity in the egg or adult
stages (see . As for model , more layers of complexity can be added to it. For instance,
mosquito population presents a clear seasonality, specially in temperate climates [51} 67, |76} [134].
This is due to its complex dependence on external factors such as: temperature, rainfall and
humidity, presence or lack of nutrients, length of the daylight (also known as photoperiod), etc.
These factors vary periodically through the year. Incorporating periodicity into the parameters
of system can help to reproduce such variations, which can in turn help to predict disease
outbreaks, which also present seasonal variations [111] |39} 92, [123].

Furthermore, some mosquito species present mechanisms to resist adverse conditions, such
as desiccation or low temperatures during winters, which are not included in this simple model.
These mechanisms include, at the egg stage, quiescence (dormancy responding directly to adverse
conditions, ceasing as soon as good conditions return) and diapause (more complex and hormon-
ally regulated, allowing to resist seasonal adverse conditions like winter), but also dormancy in
the larval or adult stage [43].
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1.3 Epidemiology of Vector Borne Diseases

We turn the focus in this section to the adult stage of the mosquito. It is in this last stage that
female mosquitoes acquire their blood feeding behaviour. Females use blood to obtain proteins,
iron and other important substances for the egg formation [38]. Mosquitoes feed mostly on birds
and mammals, and some, like Ae. aegypti or Ae. albopictus, feed almost exclusively on human
blood [112]. Once they have had a blood meal containing a pathogen, it can develop in their
bodies and reach the salivary glands, from where it can be transferred to a different human in a
subsequent blood meal. The fact that anthropophilic mosquitoes are usually vectors of human
diseases suggest a coevolution of host preference and pathogen-host interaction [131].

Compartmental models are widely spread to model disease transmission. A classical approach
to modeling the phenomenon are the so called SIR models (Susceptible-Infectious-Recovered).
The basic modeling approach is the following

B

/ —_— —_— — —
s = b;{ LIS~ bS,
I' = SIS—ol-bl, (2)
R = ol —bR.

In this model, b stands for the birth (and death) rate, 8 is proportional to the probability of
transmission between an infectious and a susceptible and o stands for the rate at which people
recover from disease. The total human population H, is considered to be constant. Transmission
occurs when an infectious and a susceptible human encounter, this is modeled by humans in
the susceptible compartment becoming infectious at a rate proportional to the product of the
susceptible and the infectious population. This kind of models have its roots in the chemical law
of mass action and consider random encounters between individuals in a well mixed population
[62]. These models, yet being simple, capture the essence of disease transmission.

This model can be made gradually more complex. For instance an exposed compartment,
E, can be added, i.e., a compartment of individuals that have the disease but are not able to
transmit it yet, becoming a so called SEIR model. Many other tweaks can be done so that
particular characteristics of each disease can be taken into account. To name a few: the presence
of asymptomatic infectious people, a lack of recovery from disease or the ability to be reinfected.

For a vector-borne disease, such as dengue or malaria, the model has to be extended, for
not only the human population must be considered, but also the mosquito one. The number of
equations increases as a consequence. We introduce

Sy = bgH-— %IJVISH —buSH,

Ey = %IJVISH —vYuEy —buFEy,

R/H = O‘HI — bHR7

Iy = yoPy—oply —buln, (3)
Sy = f(M)- %SMIH —dm S,

By = %SMIH —YmEy — dy B,

Iy = yumEwm —duln.

Now the susceptible-infectious encounters occur between human and mosquitoes. Analog models
to this one are common in the literature |17} 82].
Concerning this model several caveats should be addressed. First, transmission from human
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to mosquito and mosquito to human are different phenomena, which do not occur necessarily
with the same probability. Nevertheless, due to the difficulty in measuring the second one in lab
conditions, [ is usually considered to be the same for both cases. Mosquitoes’ lack of a recovered
compartment comes from the fact that mosquitoes remain infectious during their short lifetime
and do not recover from these diseases. Here, f is a function that takes into account the growth
of the mosquito population. We write it in a deliberately vague way to keep the model as general
as possible for the moment. It is not unusual that this growth term does not only depend on the
amount of female adult mosquitoes, represented here by M, but rather that it also takes into
account, in one way or another, the aquatic phase of the mosquito life cycle. These models will
play a role in chapter [3] when the control techniques we introduce in the following section are
used in the context of epidemiology, where their potential to control disease becomes much more
clear.

Dengue is a particular case worth singling out. As mentioned before, it presents 4 different
strains than can infect individuals independently. Although this wil not be treated in this thesis,
models can take this into consideration at the cost of increasing the number of equations |75,
2|. It is also worth remarking that epidemiological models presented and studied in this work
do not take into account vertical transmission of the arboviruses (the direct transmission of
the pathogen from the mother to the offspring). The frequency of this phenomenon and its
importance in transmission is still debated, although some studies suggest that it may play a key
role in the establishment of endemicity in these viruses [54]. For completeness, a mathematical
model tackling this question can be found in [1].

IT Vector Control: State of the Art

Vector control to prevent vector-borne diseases has a long history. It can be mainly split in
two eras. Before the discovery of Dichlorodiphenyltrichloroethane (DDT), control was mainly
done by environmental management: drainage of marsh and swamps, thus removing breeding
sites, installation of mosquito screens in doors and windows as well as bed nets |144]. In fact,
the drainage of stagnant water to prevent Malaria dates back to antiquity, although the nature
of these diseases and their means of transmission were not properly understood |30} |144].

In the early 1940s, the discovery of DDT changed the panorama, and pesticides started to take
the lead as the main tool to fight against vector-borne diseases. Big eradication campaigns were
launched all around the world, such as the Global Malaria Eradication Programme (1955-1969)
[96]. These campaigns relied heavily on generalized indoor residual spraying (spraying the interior
of houses with insecticide periodically) but also aimed at raising public awareness and seeking
community participation, resulting in the effective elimination of Malaria in several areas of the
world like North America, the Caribbean, Western Europe and parts of Asia |144] |100]. The
use of insecticides, nevertheless, presents a series of issues that must be taken into consideration.
Insecticides are, in general, non-specific, i.e., they kill several insects, and not only those we want
to target. This can carry with it a series of ecological problems. Moreover, pesticides can often be
toxic for other animals too, including humans, and therefore must be handled and used carefully.
For instance, the once globally used DDT was banned in most countries in the 1970s when its
high toxicity for humans was discovered |138|. Pesticides present also a second type of problems:
the development of resistance in mosquitoes due to mutations that are consequently selected.
Resistance to different families of widely used insecticides has been observed around the world
[91]. This requires the constant change in dose and pesticide type to maintain the effectiveness
of the technique, and, more generally, to the need of incorporating specific insecticide resistance
management in any proper vector control campaign [47].
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In recent years, we might be entering in a new era of vector control thanks to the rise of the
rear and release techniques [115]. These techniques consist on the mass production of mosquitoes
with a certain modification in order to be released in the wild. The goal of the introduction of
these modified mosquitoes being to alter the original population in a way that makes less likely the
propagation of diseases, or the reduction of the population directly. Particularly, two techniques
have gained traction in the mosquito control community: The so called Wolbachia method and
Sterile Insect Technique (SIT).

There is no silver bullet when it comes to mosquito control. In order to mitigate, or even
eradicate, vector-borne diseases and its dire consequences on human health, an integrated vector
management approach must always be implemented. Collaboration with local communities and
authorities, communication and education on healthy habits around mosquito, vector and disease
surveillance and evidence-based decision making to rationally use all the tools at our disposal,
are essential pieces of it |70]. It is precisely in the evidence-based decision making process that
mathematical modeling, analysis and simulation (including the humble contributions of this
thesis) finds its place in this fight. The addition of the rear and release techniques to the tool
set can be a game changer in the years to come.

I1.1 Use of Wolbachia

Wolbachia is an endosymbiotic bacterium, i.e. a bacterium living inside the cells of the
host, of the order Rickettsiales. Wolbachia infects a wide variety of arthropods and nematodes,
presenting also very different effects and relationships with its hosts [143]. It was believed to
be naturally present in around 20% of arthropods, although more recent analysis raise this
figure up to 66% [65], which would make of Wolbachia the most prevalent intracellular bacteria
genus. First discovered in the gonads of mosquito Culex pipiens almost a century ago [64],
it was not until the 1990s that Wolbachia caught the attention of the scientific community
because of its abundance and effects produced on its hosts. In insects, Wolbachia behaves mostly
as a reproductive parasite, being transmitted vertically from the mother to the offspring. To
improve its chances of reproduction Wolbachia alters, sometimes drastically, the phenotype of
its hosts. Among these changes we find feminization (genetic males that develop as females),
parthenogenesis (females that reproduce without male intervention), male killing (males die at
the embryo stage) and, the most frequent, Cytoplasmic Incompatibility (CI) [143]. CI consists
on the crossed infertility of an infected male and a non-infected female, see Table[I} Although it
is not clear if Wolbachia is naturally present in Aedes mosquitoes [120], they can be artificially
infected with particular strains that have been shown to produce CI on them |72} [124]. This
alone, allows already to use the release of Wolbachia-infected mosquitoes as a control strategy. If
only male mosquitoes are released, the overall effects and mathematical modeling of this strategy
become the same as with the SIT (see Section [[.2). This particular use of Wolbachia is a form
of Incompatible Insect Technique (IIT). A proper sex separation in this technique is crucial
since the accidental release of females can lead to a undesired population replacement, and once
the population is replaced by a population carrying Wolbachia the technique would stop being
effective [106]. But the main reason for its use in vector control is that Wolbachia has been
shown to reduce the vector capacity of Aedes mosquitoes for transmitting several arboviruses
like dengue, [90} 141], chinkugunya, [89], or zika, [37], by reducing the virus load in the saliva,
[89) 23], but also by producing a malformation in the trunk of its hosts, preventing the normal
blood meal of the mosquitoes |137]. More recent evidence points in the direction of Wolbachia
being useful for other genus of mosquito, even for reducing Malaria transmission by Anopheles
mosquitoes, which is caused by protozoa and not viruses [103].

Due to all the above, Aedes mosquitoes infected with Wolbachia have come to be a remark-
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g ? | Infected | Non-infected

Infected Infected CI

Non-infected | Infected | Non-infected

Table 1 — Offspring outcomes in a population with both Wolbachia-infected and non-infected
mosquitoes.

able tool in the fight against mosquito-borne diseases. These features allow for a second use of
Wolbachia-infected mosquito releases (the one that will be treated extensively in this thesis). By
releasing both males and females, a self-sustained population of Wolbachia-infected mosquitoes
can be established. This, combined with the CI, can lead to the replacement of the wild mosquito
population by a new population carrying the bacterium, and less efficient in transmitting dis-
eases. Indeed, several successful mass releases have been carried already in different locations in
Australia [99} [122], Indonesia [132] or Brazil [56]. Thanks to these deployments we begin to have
promising evidence of its ability to reduce dengue cases for real |69} |122]. As for the IIT we find
also successful recent deployments in the literature, whether it is used alone (Australia, [21]) or
in combination with the SIT (Thailand [74], Mexico [84] and China [152]). With results rang-
ing from a 50% population reduction, to almost complete suppression. The main actor behind
most of this rear and release programs is currently the World Mosquito Program, having active
projects involving Wolbachia in twelve countries and territories [148|.

Non-spatial models. Before moving on to more complex models, let us introduce the basics
of vector control modeling using Wolbachia in the setting of population replacement. The intro-
duction in an ecosystem of Wolbachia-infected mosquitoes (both males and females) is usually
modeled as follows.

MI(£) = barM(2) (1 - M (1 _ sh]\MI)/V:IEtI)/V@)) —dy M),
W) = by W) (1- M _dwW () +ult) , t € [0,T), @)

M(0) = K (1 _ ‘Zj;) L W(0) = 0.

Let us break down the expressions above. M(t) stands for the density of wild mosquitoes,
while W(t) for the density of Wolbachia-infected mosquitoes. Both populations are modeled
with a death term and a birth term following a logistic growth. This implies the growth of
the mosquito population will slow down and eventually saturate at a certain value depending
on K, called the carrying capacity. These terms model the limitation of the resources in an
ecosystem and prevent the density from blowing up. The first equation presents also another
term, 1 — s, M /(M + W), taking into account the CI, where 0 < s;, < 1 models how strict is this
incompatibility. It is assumed that the wild population is at equilibrium and that no Wolbachia-
infected mosquitoes are present in the wild at the beginning of the intervention. The model
has different values for the birth and death rates in each population. This is because Wolbachia
alters several parameters of the biology of mosquitoes. Different strains can have different effects
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but, in general, Wolbachia infection lowers the birth rate, by < by, and increases the death
rate dy > dn of mosquitoes |77]. This must be taken into account when introducing Wolbachia
in an ecosystem, since it can make Wolbachia-infected mosquitoes less competitive and thus
harder to introduce [56]. Wolbachia can also alter other parameters related to the dynamics of
dengue inside the mosquitoes (see Chapter [3)). Finally, the function wu(-) in the second equation
represents the rate at which Wolbachia-infected mosquitoes are released into the ecosystem.
This, in a mathematical setting, is called the control function and we will impose some natural
constraints on it. For instance, the rate at which mosquitoes are released must be necessarily
bounded, 0 < u(t) < U a.e., but also the total amount of mosquitoes at our disposal cannot be
unlimited, thus, it is natural to introduce a bound on the integral of the control, fOT u(t)dt < C.
Therefore we will consider, in general, u € Ur ¢, with

T
Urcu = {u e L*(0,7),0<u<Ua.e. in (07T),/ u(t)dt < C’} . (5)
0

Nonetheless, in this work, we will rarely work directly on system , but rather on a simplification
of it. As shown in [10], system can be simplified when the birth rate of the mosquitoes is
assumed to be much higher than its death rate. This assumption is consistent with biological
observations. Details of this passage can be found in Chapter [I| and in [10], but in a nutshell,
by considering by = b, /e and by = b9, /e and letting € tend to 0, one can prove that W(t),
converges to Kp(t) and M (t) converges to K (1 — p(t)), where p(t) represents the proportion of
Wolbachia-infected mosquitoes in the system. It is the solution to the following equation

&0t = f(p®) +u()g(p(t), te[0,T] (6)
p(0) = 0.

Solutions of system and the solution of equation (6]) can be proven to be close to each other

in the sense of the Gamma-convergence. In equation (6)), g(p) is a decreasing function and f(p) is

negative until a certain value p = 0 and then positive, therefore the uncontroled system presents

a bistable behaviour, consistent with the fact that, thanks to CI, Wolbachia-infected mosquitoes

can invade a wild population if they are numerous enough. The particular expressions of f(p)

and g(p) can be found in Chapter 1} (1.5).

There are several works in the literature tackling different control problems involving this
equation. In [10] the authors consider the problem of steering system from it initial equilib-
rium to the other non-trivial stable equilibrium of the system (M*, W*) = (0, K (1 — dw /bw))-
In other words, they are interested in minimizing the distance, for a certain fixed time horizon
T, between the final state of the system and the desired final state (M*, W*) . In order to do
this they pose the problem

min 1M(T)2 + % (IW* = W(T))4)>.

ueUr c,Uu 2
They show that, when translated to the simplified one-equation setting the problem becomes

min (1 —p(T))>.

wEUT c,U

In their work they prove that solutions are bang-bang (this means that u*(¢) can only take the
extreme values 0 and U) and that the best releasing protocol consists on a single phase release.
In other words, all mosquitoes should be released at the highest rate possible and either at the
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beginning or at the end. The factor determining when to release being the total amount of
mosquitoes available. If the amount of available mosquitoes is enough to trigger a population
replacement, mosquitoes should be released at the start to take advantage of CI, if not, at the
end, since mosquitoes will die out as time passes. In mathematical terms, this threshold is given
by C being bigger or smaller than f09 W dv.

A natural extension of these results consists in taking into account the cost of the releases
in the functional to minimize. A first study of this question in a limited setting can be found
in [3]. In this work the problem is simplified by assuming that the final state is fixed and set
to p(T)) = 6. They prove that, in this context, the strategy minimizing the cost consists in one
uninterrupted release, done whenever in the time window. Another generalization is done by
considering the time window not fixed and including the final time in the functional to minimize.
In this case the best strategy is carrying the release non-uninterruptedly and from the beginning.
They also carry simulations on the 2D system , finding results in line with those of the 1D
equation @ Chapter (I can be seen as further generalization of these results.

Works non focused on the study of equation @ but also tackling the problem of the mosquito
population replacement using Wolbachia are, for instance: [6], where some properties of optimal
controls are shown, backed with numerical simulations, in a system similar to but including
not only adults but also eggs; 33|, where the question of minimizing final time and costs is
also tackled; [26], where a feedback control strategy guaranteeing the invasion while keeping the
costs to a minimum is presented or [25] where general ideas for biological control of mosquitoes
are established, in an attempt to establish 'model-free’ feedback control principles. A similar
optimal control approach for Wolbachia-infected mosquito releases, but applied to the context
of the IIT can be found in [127]. Although, as previously mentioned and as the authors point
out, mathematically speaking, the model studied in the case of the IIT is equivalent to an SIT
model.

Spatial models. Although non-spatial models can describe the overall dynamics of a popu-
lation, space plays a fundamental role when it comes to biological invasions. Hence, a natural
extension of the models described is the addition of the space variable. Enriching the models in
such a way can make arise new non-trivial strategies with no space-free equivalent. The natural
spatial extension of model can be written as follows,

M+ W W
M—DAM =byM([(1- T2  (1-sp— ) —dyM
O bar K (z) < ShM+MW> duM,
M+ W

M(0,2) = M%(z), W(0,2) =0, =€,
O, M(t,z) =0, W(t,xz) =0, z €I,

where now the densities of the mosquito population depend on time, but also on space, M =
M(t,z), W = W(t,z). The last line of the model means that no mosquitoes leave the domain
we are considering for the problem. These boundary conditions can be straightforwardly al-
tered without affecting the rest of the model if the problem studied requires so. In this model
mosquitoes are considered to move in the landscape by diffusion, at diffusion rate D, which is the
standard when modeling population movement. In addition, to write the model in all generality,
the carrying capacity, K (-), does not need to be homogeneous in all the domain when the space is
taken into consideration, which is almost always the case in field conditions. However, usually in
the literature when diffusion is considered, the carrying capacity is considered constant in all the
domain. This model has its own simplified version involving the proportion of Wolbachia-infected
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mosquitoes, under the same assumptions on the birth rates.

atp(t’ 13) - DAp(t,l‘) = f(p(t,:t)) + u(tv .Z‘)g(p(t,it)), te [O7T]7 z €
p(0,2) =0, VzeQ, (8)
Op(t,z) =0, €N,

A formal derivation of this equation can be found in [129] and [46]. This equation is, nonetheless,
only valid in case the carrying capacity is homogeneous, i.e., K(z) = K for all x € Q. When
an inhomogeneous carrying capacity is considered an extra term needs to be added to take
into account the gradient in the abundance of mosquitoes across the domain. In [93], a formal
derivation of this equation is carried out. Approximating the total population of mosquitoes at
first order by the carrying capacity, they arrive to the following expression

VK(x)
K(x)

Op(t, ) — DAp(t, x) — 2D -Vp(t,x) = f(p(t, ) + ult, 2)g(p(t, x)), (t,x) €[0,T]xQ,

p(0,2) =0, Ve,
Op(t,z) =0, €09,
(9)
In Chapter 2] we study a problem where, in a first time, we set D = 0, i.e., diffusio