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Résumé xi

Optimal mosquito release strategies for vector-borne disease control
Résumé

Avec la hausse globale des maladies à vecteurs et l’expansion des habitats des moustiques dues au changement
climatique, le contrôle des populations de moustiques est sans doute un des principaux défis pour la santé humaine
dans les années à venir. Cette thèse est consacrée à la modélisation, l’analyse et la simulation de stratégies optimales
de contrôle des moustiques et des maladies qu’ils transmettent en utilisant des lâchers de spécimens modifiés.
Nous étudions d’abord les stratégies optimales de remplacement de population. Celles-ci consistent à remplacer
de manière optimale la population sauvage par une population porteuse de la bactérie endosymbiotique Wolbachia,
car il a été démontré que les moustiques porteurs de cette bactérie sont moins susceptibles de transmettre certains
arbovirus. En considérant une limite de fécondité élevée, nous réduisons l’étude de la population de moustiques à
une seule équation sur la proportion de moustiques infectés par Wolbachia. Nous étudions d’abord des stratégies
optimisant une combinaison convexe du coût des lâchers et de la performance de la technique. Nous effectuons
une analyse complète de ce problème, en prouvant une propriété de monotonie temporelle sur la proportion de
moustiques infectés par Wolbachia et en utilisant une reformulation du problème basée sur un changement de
variable approprié. Dans un deuxième temps, nous considérons l’optimisation spatiale des lâchers, en optimisant un
seul lâcher instantané à l’instant initial maximisant la proportion finale de moustiques infectés par Wolbachia dans
le domaine à un horizon temporel donné. Nous caractérisons complètement les solutions sous certaines hypothèses
dans le cas non-diffusif. De plus, des simulations sont effectuées pour le cas avec diffusion. Enfin, nous étendons
l’objet de l’étude aux humains. Nous considérons un modèle épidémiologique dans lequel les deux populations
sont prises en compte ainsi que la dynamique d’une maladie vectorielle avec une transmission exclusivement
homme-moustique et moustique-homme comme la dengue. Dans ce cadre, nous minimisons la quantité d’infections
humaines pendant une épidémie en utilisant des lâchers instantanés de spécimens modifiés, représentés par des
combinaisons linéaires de mesures de Dirac avec des coefficients positifs déterminant leurs intensités. Les stratégies
optimales pour le remplacement de population et la technique de l’insecte stérile sont étudiées numériquement
à l’aide d’algorithmes ad hoc, basés sur l’écriture de conditions d’optimalité au premier ordre caractérisant la
meilleure combinaison de mesures de Dirac.

Mots clés : contrôle optimal, contrôle vectoriel épidémique, moustiques, systèmes dynamiques, ma-
ladies à transmission vectorielle, wolbachia, remplacement de population des vecteurs, technique
de l’insecte stérile.

Abstract

With vector-borne diseases rising globally and mosquitoes expanding their habitats due to climate change,
mosquito control is undoubtedly one of the main challenges for human health in the years to come. This thesis is
devoted to the modeling, analysis and simulation of mosquito and mosquito-borne diseases optimal control strate-
gies using modified vector releases. We first investigate optimal population replacement strategies. These consist
in replacing optimally the wild population by a population carrying the endosymbiotic bacterium Wolbachia,
since it has been shown that mosquitoes carrying this bacterium are less likely to transmit some arboviruses.
By considering a high fecundity limit we reduce the study of the mosquito population to a single equation on
the proportion of Wolbachia-infected mosquitoes. First, we study strategies optimizing a convex combination
of both the cost of the releases and the performance of the technique. We fully analyse this problem, proving
a time monotonicity property on the proportion of Wolbachia-infected mosquitoes and using a reformulation of
the problem based on a suitable change of variable. Next, we consider the spatial optimization of the releases,
optimizing a single instantaneous release at the initial time maximising the final proportion of Wolbachia-infected
mosquitoes throughout the domain at a given time horizon. We fully characterize the solutions under some hy-
pothesis in the non-diffusive case. Moreover, simulations are carried for the case with diffusion. Finally, we extend
the focus of the study to humans. We consider an epidemiological model in which both populations are taken into
account as well as the dynamics of a vector-borne disease with exclusively human-mosquito and mosquito-human
transmission like dengue. In this setting, we minimise the amount of human infections during an outbreak using
instantaneous releases of modified vectors, represented by linear combinations of Dirac measures with positive
coefficients determining their intensity. Optimal strategies for both population replacement and the sterile insect
technique are studied numerically using ad-hoc algorithms, based on writing first-order optimality conditions
characterizing the best combination of Dirac measures.

Keywords: optimal control, epidemic vector control, mosquitoes, dynamical systems, vector-borne
diseases, wolbachia, vector population replacement, sterile insect technique.

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France
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Introduction

I Issues and challenges regarding mosquitoes

I.1 Vector-borne disease burden

In the evolutionary arms race that pathogens 1 and hosts have been running for eons, perhaps
one of the most curious ways microorganisms have found to reach our bodies is by hitchhiking
inside the bodies of other life forms. Vector-borne diseases are diseases transmitted to humans
by means of a necessary non-human animal intermediary, usually arthropods, transmitting the
disease through their bite. The intermediary animal is called the vector of the disease. The
list of known vector-borne diseases is long and includes some of the biggest human killers of all
times. To name a few vector-borne diseases and its vectors: Bubonic Plague, which decimated
Europe in the XIVth century, is transmitted by fleas, Lyme disease by ticks, Typhus by lice, the
Sleeping sickness by Tsetse flies and Leishmaniasis by sandflies [154]. In this work we will focus
on one particular vector and its associated vector-borne diseases: the mosquito.

Mosquitoes are, by far, the vectors responsible of transmitting the wider variety of diseases,
and with the biggest toll on human health around the globe. The mosquitoes transmitting human
diseases can be divided into two subfamilies: Anophelinae and Culicinae.

The first family includes the mosquitoes of the genus Anopheles. Anopheles mosquitoes are
the culprits transmitting Malaria. Malaria is a severe disease caused by protozoa of the genus
Plasmodium, it is known since ancient times and it is considered one of the infectious diseases
responsible for more human deaths in history. Despite seeing a clearly descending trend in the
last 15 years, Malaria remains as the seventh leading cause of death for children under 5 years
old, and the fifth for children between 5 and 14 [119]. With the African region bearing, by
far, the biggest burden in cases and deaths [124], as we can see in Figure 1. According to the
World Health Organisation (WHO), there were 241 million cases and 627000 deaths by Malaria
in 2020 alone. The African region representing 95% of cases and 96% of deaths. Children under
5 accounting for around 80% of all malaria deaths in the region [153].

On the other hand, the subfamily Culicinae includes Aedes and Culex mosquitoes. Sev-
eral species of mosquitoes belonging to these genus transmit virus causing diseases like dengue
fever, Zika, Chikungunya, West Nile fever, Yellow fever or japanese encephalitis amongst others.
Amidst these diseases, dengue is the most prevalent one.

Dengue, in over 80% of cases, presents mild to no symptoms. Nevertheless, some cases can
develop a direr version of the disease called severe dengue, which can produce intense bleeding
and death. In spite of there not being specific treatment for severe dengue, with an early detection
and proper medical care, fatality rates can get as low as 1%. Nevertheless, dengue is a cause
of major concern in tropical and subtropical areas. Estimations suggest that 100 to 400 million

1. From greek: pathos, “passion, suffering” and gen “causing, producing”.

1
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Figure 1 – Share of deaths from malaria by age group in the last three decades (left) and malaria
death toll geographic distribution as of 2019 (right). Source of the image: [124]

infections of dengue occur each year [152], with Africa, South America, and especially South East
Asia bearing most of them. The last decades have seen a dramatic increase in cases. Having
almost doubled in the last thirty years [59] (See Figure 2).

Figure 2 – Number of dengue fever infections’ evolution in the last three decades (left) and its
geographic distribution as of 2019 (right). Source of the data: [59]. Source of the image: [110]

No efficient vaccine has been found yet for any of these viruses, although, Valneva and Pfizer
have promising vaccine candidates at Phase 3 of clinical trials for Chikungunya and Lyme disease
[145, 114]. The only commercialized vaccine for dengue so far is Dengvaxia®. After the initial
hype, governments and agencies took a step back and it is currently only recommended for
children ranging 9 to 16 years old and only if they have been previously infected by one of
the strains of dengue (dengue is, in fact, four different closely related virus strains DENV-1 to
DENV-4), but is discouraged for other ages and for seronegative people since it has been shown
to increase the risk of developing severe dengue in case of an infection [131, 141, 138]. Moreover,
treatment for vector-borne diseases usually consists on alleviating the symptoms, since rarely the
pathogen can be targeted directly. Therefore, prevention against these diseases relies heavily on
controlling the vector.

On top of this, in recent years an expansion of the vector’s habitat is taking place. In Europe,
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for instance, dengue vector Ae. albopictus was first documented in Albania in the 1970s and it
has not ceased to expand its distribution ever since, settling with special strength along the
mediterranian coast [121]. Its current known distribution is depicted in Figure 3. To give two
examples, in France, Ae. albopictus entered from Italy in 2004. Its advance has been steady
and it has colonized great areas of the south and south-west since then. It has settled even
in other areas detached from the main front like the Parisian region, probably following main
human transportation routes [89]. This invasion process has been well studied and documented
and has also sparkled the interest from a mathematical point of view [123]. Also in 2004, Aedes
albopictus arrived in Spain, being firstly detected in the catalan town of San Cugat del Vallès
[18]. Although initially attributed to the importation of used car tires, the real origin is not
clear [122]. It has since expanded to other regions, specially southwards along the mediterranian
coast. This, in combination with the presence of the common Culex mosquitoes has lead to
West Nile fever outbreaks in the last years in Andalusia [90] and efforts from the government
to try to contain their advance [91]. Although the epidemiological situation in Europe is not
worrying for the moment, a project for controlling vector population based on the Sterile Insect
Technique (see Section II.2) [142], is currently being developed in the Valencia region, where
Aedes albopictus has a stronger presence.

Figure 3 – Aedes albopictus geographic distribution in Europe as of March 2022. Source of the
image: [50]
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I.2 Mosquito life cycle

Although details vary amongst species [40], mosquitoes undergo similar stages during their
development. Their life cycle can be split into two clearly distinct phases: an aquatic phase
composed of three stages, egg, larval and pupal, and an aerial phase as adults. In the aquatic
phase mosquitoes are developing and sexually immature. After undergoing a metamorphose,
they reach their aerial phase, where they mate and reproduce. This work does not focus on the
modeling of the aquatic phase, which is a whole topic on its own. For the sake of completeness
and as a starting point for the kind of models that will be discussed in this thesis, we quickly
introduce the following model that can be found in [133].

E′ = bEA− (h(L) + dE)E,

L′ = h(L)E − (ϕ(L) + τL + dL)L,

P ′ = τLL− (τP + dP )P,

A′ = τPP − dAA.

(1)

This model is an example of compartmental modeling, a classical way to approach the modeling
of population dynamics of a species. The model consists on a set of quantities or compartments
that represent the abundance of, in this case, a certain life stage of the mosquito population, and
which evolve according to ordinary differential equations. These equations can depend on the
abundance of individuals in the compartment itself or in other compartments, creating a flow of
individuals between compartments. All the parameters in system (1) are positive.

In (1), eggs are considered to be laid by adults at a certain rate bE , and die at rate dE .
The eggs are considered to hatch at a rate depending on the amount of larvae present in the
environment, h(L), since larval density may stimulate or inhibit the hatching ability of the eggs
through more than one mechanism simultaneously [48, 81]. After hatching, eggs become larvae.
At this stage intra-specific competition for resources between larvae is a well documented fact
affecting their development (and even their vector capacity as adults) [16, 19]. It is represented
in this model, (1), by the term ϕ(L)L. Larvae die at rate dL and progress to the pupal stage at
rate τL. Pupae, analogously die at rate dP and progress to the adult stage at rate τP . At this
stage mosquito reproduce, laying eggs and restarting the cycle.

Although model (1) is already fairly general, it is not the only way in which the life cycle
of the mosquito can be modeled. Models can take into account disparities in male and female
mosquito population, like having a different likelihood of reaching adulthood or having different
dynamics, for instance, a different life expectancy. They can also take into consideration the
resource availability in the environment by introducing a carrying capacity in the egg or adult
stages (see II.2). As for model (1), more layers of complexity can be added to it. For instance,
mosquito population presents a clear seasonality, specially in temperate climates [51, 68, 77, 139].
This is due to its complex dependence on external factors such as: temperature, rainfall and
humidity, presence or lack of nutrients, length of the daylight (also known as photoperiod), etc.
These factors vary periodically through the year. Incorporating periodicity into the parameters
of system (1) can help to reproduce such variations, which can in turn help to predict disease
outbreaks, which also present seasonal variations [116, 39, 97, 128].

Furthermore, some mosquito species present mechanisms to resist adverse conditions, such
as desiccation or low temperatures during winters, which are not included in this simple model.
These mechanisms include, at the egg stage, quiescence (dormancy responding directly to adverse
conditions, ceasing as soon as good conditions return) and diapause (more complex and hormon-
ally regulated, allowing to resist seasonal adverse conditions like winter), but also dormancy in
the larval or adult stage [43].
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I.3 Epidemiology of Vector Borne Diseases

We turn the focus in this section to the adult stage of the mosquito. It is in this last stage that
female mosquitoes acquire their blood feeding behaviour. Females use blood to obtain proteins,
iron and other important substances for the egg formation [38]. Mosquitoes feed mostly on birds
and mammals, and some, like Ae. aegypti or Ae. albopictus, feed almost exclusively on human
blood [117]. Once they have had a blood meal containing a pathogen, it can develop in their
bodies and reach the salivary glands, from where it can be transferred to a different human in a
subsequent blood meal. The fact that anthropophilic mosquitoes are usually vectors of human
diseases suggest a coevolution of host preference and pathogen-host interaction [136].

Compartmental models are widely spread to model disease transmission. A classical approach
to modeling the phenomenon are the so called SIR models (Susceptible-Infectious-Recovered).
The basic modeling approach is the following

S′ = bH − β

H
IS − bS,

I ′ =
β

H
IS − σI − bI,

R′ = σI − bR.

(2)

In this model, b stands for the birth (and death) rate, β is proportional to the probability of
transmission between an infectious and a susceptible and σ stands for the rate at which people
recover from disease. The total human population H, is considered to be constant. Transmission
occurs when an infectious and a susceptible human encounter, this is modeled by humans in
the susceptible compartment becoming infectious at a rate proportional to the product of the
susceptible and the infectious population. This kind of models have its roots in the chemical law
of mass action and consider random encounters between individuals in a well mixed population
[63]. These models, yet being simple, capture the essence of disease transmission.

This model can be made gradually more complex. For instance an exposed compartment,
E, can be added, i.e., a compartment of individuals that have the disease but are not able to
transmit it yet, becoming a so called SEIR model. Many other tweaks can be done so that
particular characteristics of each disease can be taken into account. To name a few: the presence
of asymptomatic infectious people, a lack of recovery from disease or the ability to be reinfected.

For a vector-borne disease, such as dengue or malaria, the model has to be extended, for
not only the human population must be considered, but also the mosquito one. The number of
equations increases as a consequence. We introduce

S′
H = bHH −

β

H
IMSH − bHSH ,

E′
H =

β

H
IMSH − γHEH − bHEH ,

R′
H = σHI − bHR,

I ′H = γHEH − σHIH − bHIH ,

S′
M = f(M)− β

H
SMIH − dMSM ,

E′
M =

β

H
SMIH − γMEM − dMEM ,

I ′M = γMEM − dMIM .

(3)

Now the susceptible-infectious encounters occur between human and mosquitoes. Analog models
to this one are common in the literature [17, 83].

Concerning this model several caveats should be addressed. First, transmission from human
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to mosquito and mosquito to human are different phenomena, which do not occur necessarily
with the same probability. Nevertheless, due to the difficulty in measuring the second one in lab
conditions, β is usually considered to be the same for both cases. Mosquitoes’ lack of a recovered
compartment comes from the fact that mosquitoes remain infectious during their short lifetime
and do not recover from these diseases. Here, f is a function that takes into account the growth
of the mosquito population. We write it in a deliberately vague way to keep the model as general
as possible for the moment. It is not unusual that this growth term does not only depend on the
amount of female adult mosquitoes, represented here by M , but rather that it also takes into
account, in one way or another, the aquatic phase of the mosquito life cycle. These models will
play a role in chapter 3, when the control techniques we introduce in the following section are
used in the context of epidemiology, where their potential to control disease becomes much more
clear.

Dengue is a particular case worth singling out. As mentioned before, it presents 4 different
strains than can infect individuals independently. Although this will not be treated in this
thesis, models can take this into consideration at the cost of increasing the number of equations
[76, 2]. It is also worth remarking that epidemiological models presented and studied in this
work do not take into account vertical transmission of the arboviruses (the direct transmission
of the pathogen from the mother to the offspring). The frequency of this phenomenon and its
importance in transmission is still debated, although some studies suggest that it may play a key
role in the establishment of endemicity in these viruses [54]. For completeness, a mathematical
model tackling this question can be found in [1].

II Vector Control: State of the Art

Vector control to prevent vector-borne diseases has a long history. It can be mainly split in
two eras. Before the discovery of Dichlorodiphenyltrichloroethane (DDT), control was mainly
done by environmental management: drainage of marsh and swamps, thus removing breeding
sites, installation of mosquito screens in doors and windows as well as bed nets [150]. In fact,
the drainage of stagnant water to prevent Malaria dates back to antiquity, although the nature
of these diseases and their means of transmission were not properly understood [30, 150].

In the early 1940s, the discovery of DDT changed the panorama, and pesticides started to take
the lead as the main tool to fight against vector-borne diseases. Big eradication campaigns were
launched all around the world, such as the Global Malaria Eradication Programme (1955–1969)
[101]. These campaigns relied heavily on generalized indoor residual spraying (spraying the
interior of houses with insecticide periodically) but also aimed at raising public awareness and
seeking community participation, resulting in the effective elimination of Malaria in several areas
of the world like North America, the Caribbean, Western Europe and parts of Asia [150, 105]. The
use of insecticides, nevertheless, presents a series of issues that must be taken into consideration.
Insecticides are, in general, non-specific, i.e., they kill several insects, and not only those we want
to target. This can carry with it a series of ecological problems. Moreover, pesticides can often be
toxic for other animals too, including humans, and therefore must be handled and used carefully.
For instance, the once globally used DDT was banned in most countries in the 1970s when its
high toxicity for humans was discovered [144]. Pesticides present also a second type of problems:
the development of resistance in mosquitoes due to mutations that are consequently selected.
Resistance to different families of widely used insecticides has been observed around the world
[96]. This requires the constant change in dose and pesticide type to maintain the effectiveness
of the technique, and, more generally, to the need of incorporating specific insecticide resistance
management in any proper vector control campaign [47].
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In recent years, we might be entering in a new era of vector control thanks to the rise of the
rear and release techniques [120]. These techniques consist on the mass production of mosquitoes
with a certain modification in order to be released in the wild. The goal of the introduction of
these modified mosquitoes being to alter the original population in a way that makes less likely the
propagation of diseases, or the reduction of the population directly. Particularly, two techniques
have gained traction in the mosquito control community: The so called Wolbachia method and
Sterile Insect Technique (SIT).

There is no silver bullet when it comes to mosquito control. In order to mitigate, or even
eradicate, vector-borne diseases and its dire consequences on human health, an integrated vector
management approach must always be implemented. Collaboration with local communities and
authorities, communication and education on healthy habits around mosquito, vector and disease
surveillance and evidence-based decision making to rationally use all the tools at our disposal,
are essential pieces of it [71]. It is precisely in the evidence-based decision making process that
mathematical modeling, analysis and simulation (including the humble contributions of this
thesis) finds its place in this fight. The addition of the rear and release techniques to the tool
set can be a game changer in the years to come.

II.1 Use of Wolbachia

Wolbachia is an endosymbiotic bacterium, i.e. a bacterium living inside the cells of the
host, of the order Rickettsiales. Wolbachia infects a wide variety of arthropods and nematodes,
presenting also very different effects and relationships with its hosts [149]. It was believed to
be naturally present in around 20% of arthropods, although more recent analysis raise this
figure up to 66% [66], which would make of Wolbachia the most prevalent intracellular bacteria
genus. First discovered in the gonads of mosquito Culex pipiens almost a century ago [65],
it was not until the 1990s that Wolbachia caught the attention of the scientific community
because of its abundance and effects produced on its hosts. In insects, Wolbachia behaves mostly
as a reproductive parasite, being transmitted vertically from the mother to the offspring. To
improve its chances of reproduction Wolbachia alters, sometimes drastically, the phenotype of
its hosts. Among these changes we find feminization (genetic males that develop as females),
parthenogenesis (females that reproduce without male intervention), male killing (males die at
the embryo stage) and, the most frequent, Cytoplasmic Incompatibility (CI) [149]. CI consists
on the crossed infertility of an infected male and a non-infected female, see Table 1. Although it
is not clear if Wolbachia is naturally present in Aedes mosquitoes [125], they can be artificially
infected with particular strains that have been shown to produce CI on them [73, 129]. This
alone, allows already to use the release of Wolbachia-infected mosquitoes as a control strategy. If
only male mosquitoes are released, the overall effects and mathematical modeling of this strategy
become the same as with the SIT (see Section II.2). This particular use of Wolbachia is a form
of Incompatible Insect Technique (IIT). A proper sex separation in this technique is crucial
since the accidental release of females can lead to a undesired population replacement, and once
the population is replaced by a population carrying Wolbachia the technique would stop being
effective [111]. But the main reason for its use in vector control is that Wolbachia has been
shown to reduce the vector capacity of Aedes mosquitoes for transmitting several arboviruses
like dengue, [95, 147], chinkugunya, [92], or zika, [37], by reducing the virus load in the saliva,
[92, 23], but also by producing a malformation in the trunk of its hosts, preventing the normal
blood meal of the mosquitoes [143]. More recent evidence points in the direction of Wolbachia
being useful for other genus of mosquito, even for reducing Malaria transmission by Anopheles
mosquitoes, which is caused by protozoa and not viruses [108].

Due to all the above, Aedes mosquitoes infected with Wolbachia have come to be a remark-
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aaaaaaa
♂

♀ Infected Non-infected

Infected Infected CI

Non-infected Infected Non-infected

Table 1 – Offspring outcomes in a population with both Wolbachia-infected and non-infected
mosquitoes.

able tool in the fight against mosquito-borne diseases. These features allow for a second use of
Wolbachia-infected mosquito releases (the one that will be treated extensively in this thesis). By
releasing both males and females, a self-sustained population of Wolbachia-infected mosquitoes
can be established. This, combined with the CI, can lead to the replacement of the wild mosquito
population by a new population carrying the bacterium, and less efficient in transmitting dis-
eases. Indeed, several successful mass releases have been carried already in different locations
in Australia [104, 127], Indonesia [137] or Brazil [56]. Thanks to these deployments we begin to
have promising evidence of its ability to reduce dengue cases for real [70, 127]. As for the IIT
we find also successful recent deployments in the literature, whether it is used alone (Australia,
[21]) or in combination with the SIT (Thailand [75], Mexico [85] and China [159]). With results
ranging from a 50% population reduction, to almost complete suppression. The main actor be-
hind most of this rear and release programs is currently the World Mosquito Program, having
active projects involving Wolbachia in twelve countries and territories [155].

Non-spatial models. Before moving on to more complex models, let us introduce the basics
of vector control modeling using Wolbachia in the setting of population replacement. The intro-
duction in an ecosystem of Wolbachia-infected mosquitoes (both males and females) is usually
modeled as follows.

M ′(t) = bMM(t)

(
1− M(t) +W (t)

K

)(
1− sh

W (t)

M(t) +W (t)

)
− dMM(t),

W ′(t) = bWW (t)

(
1− M(t) +W (t)

K

)
− dWW (t) + u(t) , t ∈ [0, T ],

M(0) = K

(
1− dM

bM

)
, W (0) = 0.

(4)

Let us break down the expressions above. M(t) stands for the density of wild mosquitoes,
while W (t) for the density of Wolbachia-infected mosquitoes. Both populations are modeled
with a death term and a birth term following a logistic growth. This implies the growth of
the mosquito population will slow down and eventually saturate at a certain value depending
on K, called the carrying capacity. These terms model the limitation of the resources in an
ecosystem and prevent the density from blowing up. The first equation presents also another
term, 1− shM/(M +W ), taking into account the CI, where 0 < sh ⩽ 1 models how strict is this
incompatibility. It is assumed that the wild population is at equilibrium and that no Wolbachia-
infected mosquitoes are present in the wild at the beginning of the intervention. The model
has different values for the birth and death rates in each population. This is because Wolbachia
alters several parameters of the biology of mosquitoes. Different strains can have different effects
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but, in general, Wolbachia infection lowers the birth rate, bW ⩽ bM , and increases the death
rate dW ⩾ dN of mosquitoes [78]. This must be taken into account when introducing Wolbachia
in an ecosystem, since it can make Wolbachia-infected mosquitoes less competitive and thus
harder to introduce [56]. Wolbachia can also alter other parameters related to the dynamics of
dengue inside the mosquitoes (see Chapter 3). Finally, the function u(·) in the second equation
represents the rate at which Wolbachia-infected mosquitoes are released into the ecosystem.
This, in a mathematical setting, is called the control function and we will impose some natural
constraints on it. For instance, the rate at which mosquitoes are released must be necessarily
bounded, 0 ⩽ u(t) ⩽ U a.e., but also the total amount of mosquitoes at our disposal cannot be
unlimited, thus, it is natural to introduce a bound on the integral of the control,

∫ T
0
u(t)dt ⩽ C.

Therefore we will consider, in general, u ∈ UT,C,U , with

UT,C,U :=

{
u ∈ L∞ (0, T ) , 0 ⩽ u ⩽ U a.e. in (0, T ),

∫ T

0

u(t)dt ⩽ C

}
. (5)

Nonetheless, in this work, we will rarely work directly on system (4), but rather on a simplification
of it. As shown in [10], system (4) can be simplified when the birth rate of the mosquitoes is
assumed to be much higher than its death rate. This assumption is consistent with biological
observations. Details of this passage can be found in Chapter 1 and in [10], but in a nutshell,
by considering bM = b0M/ϵ and bW = b0W /ϵ and letting ϵ tend to 0, one can prove that W (t),
converges to Kp(t) and M(t) converges to K(1 − p(t)), where p(t) represents the proportion of
Wolbachia-infected mosquitoes in the system. It is the solution to the following equation{

d
dtp(t) = f(p(t)) + u(t)g(p(t)), t ∈ [0, T ]

p(0) = 0.
(6)

Solutions of system (4) and the solution of equation (6) can be proven to be close to each other
in the sense of the Gamma-convergence. In equation (6), g(p) is a decreasing function and f(p) is
negative until a certain value p = θ and then positive, therefore the uncontroled system presents
a bistable behaviour, consistent with the fact that, thanks to CI, Wolbachia-infected mosquitoes
can invade a wild population if they are numerous enough. The particular expressions of f(p)
and g(p) can be found in Chapter 1, (1.5).

There are several works in the literature tackling different control problems involving this
equation. In [10] the authors consider the problem of steering system (4) from its initial equilib-
rium to the other non-trivial stable equilibrium of the system (M∗,W ∗) = (0,K (1− dW /bW )).
In other words, they are interested in minimizing the distance, for a certain fixed time horizon
T , between the final state of the system and the desired final state (M∗,W ∗) . In order to do
this they pose the problem

min
u∈UT,C,U

1

2
M(T )2 +

1

2
([W ∗ −W (T )]+)

2
.

They show that, when translated to the simplified one-equation setting the problem becomes

min
u∈UT,C,U

(1− p(T ))2 .

In their work they prove that solutions are bang-bang (this means that u∗(t) can only take the
extreme values 0 and U) and that the best releasing protocol consists on a single phase release.
In other words, all mosquitoes should be released at the highest rate possible and either at the



10 Introduction

beginning or at the end. The factor determining when to release being the total amount of
mosquitoes available. If the amount of available mosquitoes is enough to trigger a population
replacement, mosquitoes should be released at the start to take advantage of CI, if not, at the
end, since mosquitoes will die out as time passes. In mathematical terms, this threshold is given
by C being bigger or smaller than

∫ θ
0

M
f(ν)+Mg(ν) dν.

A natural extension of these results consists in taking into account the cost of the releases
in the functional to minimize. A first study of this question in a limited setting can be found
in [3]. In this work the problem is simplified by assuming that the final state is fixed and set
to p(T ) = θ. They prove that, in this context, the strategy minimizing the cost consists in one
uninterrupted release, done whenever in the time window. Another generalization is done by
considering the time window not fixed and including the final time in the functional to minimize.
In this case the best strategy is carrying the release non-uninterruptedly and from the beginning.
They also carry simulations on the 2D system (4), finding results in line with those of the 1D
equation (6). Chapter 1 can be seen as further generalization of these results.

Works non focused on the study of equation (6) but also tackling the problem of the mosquito
population replacement using Wolbachia are, for instance: [6], where some properties of optimal
controls are shown, backed with numerical simulations, in a system similar to (4) but including
not only adults but also eggs; [33], where the question of minimizing final time and costs is
also tackled; [26], where a feedback control strategy guaranteeing the invasion while keeping the
costs to a minimum is presented or [25] where general ideas for biological control of mosquitoes
are established, in an attempt to establish ’model-free’ feedback control principles. A similar
optimal control approach for Wolbachia-infected mosquito releases, but applied to the context
of the IIT can be found in [132]. Although, as previously mentioned and as the authors point
out, mathematically speaking, the model studied in the case of the IIT is equivalent to an SIT
model.

Spatial models. Although non-spatial models can describe the overall dynamics of a popu-
lation, space plays a fundamental role when it comes to biological invasions. Hence, a natural
extension of the models described is the addition of the space variable. Enriching the models in
such a way can make arise new non-trivial strategies with no space-free equivalent. The natural
spatial extension of model (4) can be written as follows,

∂tM −D∆M = bMM

(
1− M +W

K(x)

)(
1− sh

W

M +MW

)
− dMM,

∂tW −D∆W = bWW

(
1− M +W

K(x)

)
− dWW + u, t ∈ [0, T ], x ∈ Ω,

M(0, x) =M0(x), W (0, x) = 0, x ∈ Ω,

∂νM(t, x) = ∂νW (t, x) = 0, x ∈ ∂Ω,

(7)

where now the densities of the mosquito population depend on time, but also on space, M =
M(t, x), W = W (t, x). The last line of the model means that no mosquitoes leave the domain
we are considering for the problem. These boundary conditions can be straightforwardly al-
tered without affecting the rest of the model if the problem studied requires so. In this model
mosquitoes are considered to move in the landscape by diffusion, at diffusion rate D, which is the
standard when modeling population movement. In addition, to write the model in all generality,
the carrying capacity, K(·), does not need to be homogeneous in all the domain when the space is
taken into consideration, which is almost always the case in field conditions. However, usually in
the literature when diffusion is considered, the carrying capacity is considered constant in all the
domain. This model has its own simplified version involving the proportion of Wolbachia-infected
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mosquitoes, under the same assumptions on the birth rates.
∂tp(t, x)−D∆p(t, x) = f(p(t, x)) + u(t, x)g(p(t, x)), t ∈ [0, T ], x ∈ Ω

p(0, x) = 0, ∀x ∈ Ω,

∂νp(t, x) = 0, x ∈ ∂Ω,
(8)

A formal derivation of this equation can be found in [134] and [46]. This equation is, nonetheless,
only valid in case the carrying capacity is homogeneous, i.e., K(x) = K for all x ∈ Ω. When
an inhomogeneous carrying capacity is considered an extra term needs to be added to take
into account the gradient in the abundance of mosquitoes across the domain. In [98], a formal
derivation of this equation is carried out. Approximating the total population of mosquitoes at
first order by the carrying capacity, they arrive to the following expression
∂tp(t, x)−D∆p(t, x)− 2D

∇K(x)

K(x)
· ∇p(t, x) = f(p(t, x)) + u(t, x)g(p(t, x)), (t, x) ∈ [0, T ]× Ω,

p(0, x) = 0, ∀x ∈ Ω,

∂νp(t, x) = 0, x ∈ ∂Ω,
(9)

In Chapter 2 we study a problem where, in a first time, we set D = 0, i.e., diffusion is not
considered, but with a non-homogeneous carrying capacity. Assuming K(·) to be constant,
several problems have been addressed already in works preceding this thesis.

Since partial differential equations are much more difficult to study than ordinary ones a
common approach to simplify the study of equation (8) is by posing the control problem on the
initial datum of the equation. That is, consider one single instantaneous release at time t = 0,
and then considering u(t, x) = 0. With u(0, x) = u0(x) and u0 ∈ U0,C,U , where

U0,C,U :=

{
0 ⩽ u0(x) ⩽ U a.e. in Ω,

∫
Ω

u0(x)dx ⩽ C

}
. (10)

In line with this we find, for instance, [46], where the problem

min
u0∈U0,C,U

∫
Ω

(1− p(T, x))2 dx,

is studied. In this work it is proven that spatially constant solutions are not always optimal, al-
though they are always critical points. They also show that in case C is small enough, spatially
constant solutions are at least local minimizers. Lastly, they give numerical counterexamples
on the optimality of constants. About this same problem, in [11], Gaussian releases are con-
sidered and their location is optimized numerically and in [135] they settle the existence and
give estimates for a threshold on a radially symmetric initial data such that the invasion is
guaranteed. They also quantify the uncertainty associated with the invasion in a more realistic
scenario by studying a stochastic framework. In [99], they consider a closely related problem,
maxu0∈U0,C,U

∫
Ω
p(T, x) dx, and prove the existence of solutions (even for f(p) much more general

than the one defined in (1.5)), and also give some conditions on the optimality of constants. In
[86], the authors extend these results and give a characterization of singular controls.

Finally, regarding the study of traveling waves, in [29] conditions for the ignition of a traveling
wave by means of a feedback control are studied, while in [98] they show that if the population
gradient in an area is strong enough (due to an heterogeneous environment) invading fronts can
be stopped and converge to stable ones.
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Epidemiological models. Finally, Wolbachia-infected mosquito releases can be also modeled
in an epidemiological framework. Incorporating the population dynamics introduced in (4) and
the epidemiological model presented in (3) we can write

S′
H = bH − βM

H
IMSH −

βWH

H
IWSH − bHSH ,

E′
H =

βM
H

IMSH +
βWH

H
IWSH − γHEH − bHEH ,

I ′H = γHEH − σHIH − bHIH ,

S′
M = bMM

(
1− M +W

K

)(
1− sh

W

M +W

)
− βM

H
SMIH − dMSM ,

E′
M =

βM
H

SMIH − γMEM − dMEM ,
I ′M = γMEM − dMIM ,

S′
W = bWW

(
1− M +W

K

)
− βHW

H
SW IH − dWSW + u(t),

E′
W =

βHW
H

SW IH − γWEW − dWEW ,
I ′W = γWEW − dW IW .

(11)

Using Wolbachia in the context of population replacement implies the release of females. Thus
the addition of these mosquitoes needs a new set of SEI compartments with different param-
eters, since infection with Wolbachia alters significantly different aspects of the biology of the
mosquito. In particular, the most important effect in this context, βHW , βWH < βM , that is, the
probability of transmission between human and mosquito is significantly lower when mosquitoes
have Wolbachia (a detailed explanation of this model will be done in Chapter 3). Other works
like [69] use closely related models to asses the feasibility of Wolbachia use for dengue control.
Also in [102] they tackle this question, with a more complex model where the aquatic phase and
seasonality are also taken into consideration. A multi-strain model in interaction with Wolbachia
can be found in [74].

Concerning optimal control problems, in [158], a similar model is used, although considering
perfect pathogen blocking by Wolbachia (βHW = βWH = 0) and only bang-bang controls. In
this work they tackle, mostly numerically, the problem of minimizing at the same time the cost
of intervention, the final distance to a disease-free equilibrium state where Wolbachia-infected
mosquitoes have invaded the population and the total amount of infections during the time
horizon considered. In mathematical terms, this corresponds to

min
u∈{0,U}

A1

∫ T

0

u(t) dt+A2

∫ T

0

I2H(t) dt+A3Ψ(x(T )). (12)

Here, Ai, i = 1, 2, 3 are constants weighting the importance of each term, and Ψ(x(T )) is a
penalty term depending on the final state of the system, x(T ).

II.2 Sterile insect technique

The SIT consists on the massive release of male mosquitoes that have been previously ster-
ilised (traditionally, in proportions of at least 10:1 with the wild male population [106]). This
technique is much older than the use of Wolbachia, dating back to the 1950s, and it has been
tested numerous times, also with other insect pests [41]. For instance, it was successfully used
to eliminate the tsetse fly Glossina austensi from the Unguja island, in the Zanzibar archipelago
[146] and the New World screwworm Cochliomyia hominivorax from Central America, the United
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States and Lybia [64]. It is also currently being used with great success in the control of Ceratitis
Capitata in the Mexican-Guatemalan border [49] and in the Valencian Region in Spain, where
the need for aerial pesticide spraying was reduced by 90% [115]. This solid background has
allowed the elaboration of detailed roadmaps to implement an SIT program [106].

Male mosquitoes are separated mostly by hand, which produces currently the bottleneck for
the scaling up of the technique, although the process is also in the path for automatization.
Trained workers can separate with high accuracy both sexes using specialized devices in the
pupal stage since female pupae are bigger than male in Aedes and Culex mosquitoes [111]. For
Anopheles on the other hand, the abdominal segment of pupae must be examined under the
microscope to find morphological differences [58]. Other proposals for sex separation include
taking advantage of behavioural differences at the adult stage (only females feed on blood).
Blood meals with insecticide can be made available in a cage with unsorted mosquitoes). Finally
the use of fluorescent transgenic markers only expressed in females at larval stage [35], or other
genetic means, like producing a GM strain where only males are resistant to a certain chemical,
allowing to separate sexes from the egg stage [156]. Then, sorted males are irradiated with X-rays
or gamma rays in their late pupal or adult stage [64]. Optimizing the dose of radiation is key when
it comes to the effectiveness of the technique, since higher radiation doses lead to higher sterility
rates, but also to reduced competitiveness of the mosquitoes, which can be detrimental for the
success of the technique [112]. Less commonly, males can also be sterilised using chemicals [41].
Sterile males then mate fertile females, producing non-viable eggs, thus reducing the population
size. Female mosquitoes are generally considered to mate only once in their life time and use the
stored sperm to fertilize their eggs, which enhances the performance of this technique. However,
evidence of multiple matings in the wild has been found [31].

Successful releases were carried against Culex mosquitoes [113] in Florida in the 1960s and
against Anopheles in El Salvador in the 1970s [148], to name a few. More recently, pilot field trials
for Aedes have been tested in Italy [22], Reunion island [107], Cuba [57] and in the Valencian
Region in Spain [142]. Most of these projects are in close collaboration with the main driver in
the development of the SIT in the last decade: the Joint FAO/IAEA Programme [79].

A simple ODE model of the SIT can be written as follows
M ′(t) = bMM(t)

(
1− M(t)

K

)
M(t)

M(t) + scMS(t)
− dMM(t),

M ′
S(t) = u(t)− dSMS(t), t ∈ [0, T ],

M(0) = K

(
1− dM

bM

)
, MS(0) = 0.

(13)

This model captures the essential part of the effect on the population of the introduction of sterile
mosquitoes and it is the model that will be studied in Chapter 3. The term M/(M + scMs) is
proportional to the probability of a mating with a fertile male. sc ∈ (0, 1] represents the mating
competitiveness of the sterile mosquitoes, because female mosquitoes might tend to mate less
frequently with sterile mosquitoes than with fertile ones. This is indeed a simplified model. In
the literature, frequently, models contain the egg stage or they split the adult population in
males and females to take into account a possible disparity in the number of mosquitoes that
reach adulthood of each sex or that they have different lifespans or behaviours (sometimes they
include both features at the same time). Also, in some models, Allee effects are considered in
order to incorporate the effect of extinction of the population when it is reduced under a certain
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threshold. A more complete system, studied in [132], is the following,

E′(t) = bEF (t)

(
1− E(t)

K

)
− (dE + τE)E(t),

F ′(t) = r τEE(t)
M(t)

M(t) + scMS(t)

(
1− e−βS(M(t)+scMS(t))

)
− dFF (t),

M ′(t) = (1− r) τEE(t)− dMM(t),

M ′
S(t) = u(t)− dSMS(t), MS(0) = 0, t ∈ [0, T ].

(14)

In this model, the carrying capacity of the environment is considered to saturate egg population
(as a proxy for a saturated aquatic phase population more generally speaking. Intraspecific
competition occurs mostly at the larval stage.), rather than the adult one directly. Adults are
considered to reach the adult state with a female to male proportion of r. When females and
males are considered to reach adulthood with the same probability, r = 1/2, and that they have
the same death rate, dM = dF , both equations can be added to obtain a single one for adults, as it
has been considered in the other models presented so far. Lastly, the term 1−e−βS(M(t)+scMS(t))

sets the Allee effect. The term accounts for the difficulty for females to find a partner when the
male mosquito density is small. All works presented hereafter study some version of model (14).

Works having applied optimal control to the study of the SIT present similar approaches on
the way of posing the problem. Usually there is an endpoint condition to be satisfied (namely,
F (T ) ⩽ ϵ), and the functionals to minimize include the cost of the intervention, or the cost and
the final time. Examples of this are [7] and [24]. In [7], an optimal feedback control strategy is
described. [24] performs numerical simulations on the continuous strategy and gives suboptimal
strategies considering impulsive releases. An impulsive release consists on considering the release
to be instantaneous and it is presented as a discontinuity in the amount of sterile mosquitoes in the
system. Also [27] considers impulsive releases and gives open and closed-loop feedback strategies
minimizing the number of sterile males to be released periodically in order to reach elimination.
In [132], the necessary conditions for reaching elimination using SIT (or IIT) are described
for different kinds of release strategies: constant, instantaneous and periodic, and continuous.
Finally, [28], broadens the scope of study by including migration of wild mosquitoes into the
system. This is an important addition to the model since migrating mosquitoes from surrounding
areas can repopulate areas that had been previously treated, disrupting the achievements.

SIT models also have their spatial counterparts including diffusion on the mosquito popula-
tion. Similar questions to the ones posed in Section II.1 can be posed. As in II.1, the addition of
space allows to study phenomena like invasion fronts. In [8] and [12] they study the phenomenon
of wild mosquito reinvasion after mosquito have been eliminated. They show that buffer areas
with permanent sterile mosquito releases above a certain threshold are effective for stopping
a reinvasion front for any width of the buffer area considered. They also provide numerical
simulations to illustrate this.

Lastly, in [9], they study the deployment technique known as Rolling carpet. This deployment
technique consists on starting the treatment on one end of the terrain and progressively advancing
towards the other end. In such a way that the treated area cannot be reinvaded since the
remaining wild mosquitoes lay at the other side of the zone that is currently being treated. In
[9] they compare the use of pesticides and that of the SIT for the rolling carpet deployment.
They succeed in establishing travelling waves with negative speed (opposite speed to the sense
in which the wild mosquito invasion would occur in the absence of treatment) for both cases,
which ensures that treated areas will stay mosquito-free after the treatment.

Finally, models encompassing epidemiology and SIT can also be found, although optimal
control approach in this setting is rare to the best of our knowledge. In [45] they study an
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epidemiological model for Chikungunya while SIT releases are being performed. They compare
the case of instantaneous periodical releases with a continuous and constant one. In [42] the
model studied is for Zika. Nevertheless, in principle, these models could be used for modeling
many other vector-borne diseases adjusting some parameter values.

II.3 Other vector-based control techniques

For completeness, we mention that there are other vector-based control techniques which
rely on the release of genetically modified mosquitoes. These techniques, in general, consist on
introducing one or several modified genes into the mosquitoes’ genome producing two kinds of
effects:

— Deletereous / Inmmune boosting effects: In a similar spirit to the techniques already
presented, one of the effects that these genes induce in mosquitoes is either boosting its
immunity to disease or, on the contrary, killing the host when it gets infected. Other
alternatives can be, for instance, preventing the females from flying or causing infertility
in the mosquitoes [13, 82].

— Gene drive: The other characteristic these genes present is that they produce a so called
gene drive. This means that the modifying gene has the ability of being passed to the
next generation (except, of course, in the case of sterilizing genes) with more than a 50%
chance (the usual proportion in Mendelian inheritance). Thus, this gene can be rapidly
spread through the population [15, 13].

As in other fields of application the use of genetically modified organisms is highly controversial
due to the fear on possible unforeseen outcomes of the introduction of new genetic material
in ecosystems. Even more, in the case of gene drives. Thorough studies and trials in small
isolated settings should be carried before considering the possibility of generalizing the use of
these techniques [100].

III Contributions of this thesis

In this thesis several problems regarding the optimal control of mosquito-borne diseases are
studied, both analytically and numerically. Keeping in mind the goal of reducing the mosquito-
borne disease burden, it aims at answering a variety of questions:

— How optimal strategies evolve when the cost of releasing mosquitoes is taken into account.
If the material restrictions for carrying the releases are considerable, how should the
releasing policies be adapted to still be competent?

— The spatial influence of an inhomogeneous environment in the optimal releasing strate-
gies. Mosquitoes are not equally distributed in the environment, what is the best way to
distribute mosquitoes in a release to maximize the efficacy of the techniques?

— How strategies evolve when the focus shifts from the mosquito population to the human
population. The ultimate goal of controlling mosquito population is to prevent the spread
of the diseases they transmit. In case one of these diseases is already circulating, how
should be carried the deployments in order to minimise the amount of infections?

Our goal is to give qualitative answers to these questions, providing a better and deeper under-
standing of them, with the hope that this work can be the basis for future more quantitative and
detailed studies of these topics.

The body of the manuscript is divided into three chapters. In the first two chapters we focus
on the use of Wolbachia to achieve a population replacement. Although the ultimate goal in mind
is always the control of vector-borne diseases, these chapters regard only the mosquito population.
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It is implicit that by controlling the mosquito population effectively and efficiently the desired
goal will follow. In the last chapter the focus of the study is switched. The problem studied
concerns the human population in interaction with the mosquito one and optimal strategies are
defined with respect to its effect on the reduction of the number of human cases of a disease. In
this chapter both population replacement using Wolbachia and the sterile insect technique are
studied and the optimal strategies arising for each one compared.

This manuscript is organized as follows:
— Chapter 1: Optimal release strategies for mosquito population replacement.

In Chapter 1 we pose and study a problem to find optimal strategies for population
replacement balancing the cost of the releases and its performance. The performance of
the strategy is measured by the time required to achieve a previously set final proportion
of Wolbachia-infected mosquitoes when the final time is considered to be free or as the
distance to a full invasion state at the final time, when the final time is fixed. We also
study the robustness of optimal strategies with respect to the convexity of the function
chosen to model the cost of the mosquito releases. This chapter is taken from [4].

— Chapter 2: Optimal initial time strategies for mosquito population replace-
ment: influence of the carrying capacity on spatial releases In Chapter 2 we study
the optimal spatial distribution of a single initial release in an inhomogeneous environ-
ment, assuming that mosquitoes do not diffuse in the domain. We also explore numerically
the case with diffusion. This chapter is a work in progress.

— Chapter 3: Mosquito-borne disease outbreak control via instant vector re-
leases. In Chapter 3 the control problem is posed in an epidemiological model encom-
passing mosquitoes and humans. We study optimal instantaneous releases to minimize
(or suppress when possible) the impact of an outbreak in the human population, studying
both the use of Wolbachia and the SIT. This chapter is taken from [5].

We summarize hereafter, chapter by chapter, the main contributions of this thesis.

Chapter 1: Optimal release strategies for mosquito population replace-
ment

Motivation

The goal of this chapter is to determine the optimal strategies for mosquito population re-
placement using Wolbachia according to a criterion that balances cost and performance. In this
chapter we study the scalar equation (6). The chapter stems from [10], and generalizes the results
obtained there, which can be seen as a particular case for one of the two families of problems
studied (in particular, Family 2). We recall that, according to the notation used so far, p(t)
denotes the proportion of Wolbachia-infected mosquitoes.

In mathematical terms, the problem considered is the following:

inf
u∈UT,C,U

(1− α)
∫ T

0

j1(u(t))dt+ αj2(T, p(T )). (15)

In (15), j1 is a function encompassing all the costs of mosquito releases: from production, to
storage, transport or release. The particular choice for this function is non-obvious, we perform
our study for a very general class of j1 functions, namely: convex, linear and concave. We are
interested in determining how robust are optimal strategies when cost functions with different
convexities are considered. On the other hand, j2 is a function modeling the performance of the
intervention in some sense. α ∈ [0, 1] is a parameter determining the relative importance of each
term. A small value of α implies a bigger concern for cost saving, on the contrary a big value
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of α means a bigger concern for the effectiveness of the technique. The control function belongs
in UT,C,U , as defined in (5). We recall this means that both the rate at which mosquitoes can
be released and the total amount of mosquitoes at our disposal are bounded. In practice we
consider two different families of problems, each one associated with a particular choice for j2.

For the first family of problems, we set a goal on the final proportion of mosquitoes to attain,
p(T ) = pT and we let the final time for our intervention, T , free. In this setting the function
measuring the performance will be j2(T ) = T . A strategy would be considered more performant
if it achieves a desired final proportion in less time than another one. The problem can be written
in this case as 

inf
u∈UT,C,U

T>0

(1− α)
∫ T

0

j1(u(t))dt+ αT,

p′ = f(p) + ug(p) in (0, T ), p(0) = 0 , p(T ) = pT ,

(16)

where pT ∈ (0, 1). For the second family, on the contrary, we fix the time horizon, T , in which
the mosquito releases are going to be done. The performance in this case will be measured by
how high is the level of population replacement achieved by the end of the intervention. We can
formulate the problem in this case as inf

u∈UT,C,U

(1− α)
∫ T
0
j1(u(t))dt+ α (1− p(T ))2 ,

p′ = f(p) + ug(p), p(0) = 0 .
(17)

Main Results

We highlight here the main results and contributions presented in this chapter. Results in this
chapter have been obtained by exploiting the optimality conditions resulting from the application
of Pontryagin’s Maximum Principle (PMP). The maximum principle is a well known result in
control theory and we do not dive deep into its hypothesis and details. For further reading on
the topic we refer to [61, 140]. The following theorems are taken from Chapter 1 (Theorems
A and B, which are, in turn, simplified versions of the more technical Theorems 1.2 and 1.3
respectively). These theorems fully characterize the solutions to both problem families posed in
(16) and (17). In particular, one can recover the results in [10] by setting α = 1 in Theorem B.

The first theorem regarding Family 1, the case with the final time T free, (16), reads

Theorem A (Family 1) There exists (T ∗, u∗) ∈ R+ ×UT,C,U solving Problem (16). The overall
behaviour of u∗ depends on the convexity of j1(·), the value of α and the value of C.

In general, we distinguish the following cases:
— Case 1. j1 is either linear or strictly concave. There exists a real parameter α∗ ∈ [0, 1) given

by the parameters of the problem such that:
— if C is large enough: If α ∈ [α∗, 1], then u∗ = U1[0,T∗]. If α ∈ (0, α∗), then u∗ is

bang-bang with exactly one switch from U to 0 at a time ts ∈ (0, T ∗) determined by α.
— else, one has u∗ = U1[0,C/U ].
In this case, the optimal time T ∗ reads

T ∗ =

∫ pT

0

dν

f(ν) + u∗p(ν)g(ν)
with u∗p(ν) = U1(0,ps)

and
ps =

{
p(ts) if C is large enough,
p(C/U) otherwise.
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— Case 2. j1 is convex. If α ∈ (0, 1) singular controls may appear. The control u∗ is
non-decreasing until t∗ ∈ (0, T ∗) such that p(t∗) = p∗ and then non-increasing.

If α = 1, the term with j1 is no longer present and u∗ = U1[0,min{T∗,C/U}].

In order to prove this theorem, we first prove and then exploit the monotonicity of the p
associated to the optimal control u∗ in Lemma 1.1, and we introduce an adapted change of
variables that allows us to drastically reduce the difficulty of the problem by transforming it into
a problem of calculus of variations. To simplify the reasoning further, we solve first a simpler
problem where no restriction on the total number of mosquitoes is considered (See Theorem
1.1). Solutions of this simpler problem that do respect the constraint

∫ T
0
u(t)dt ⩽ C will also be

solutions of the constrained problem.
We prove that optimal strategies depend on the convexity of the cost function, j1. In case

this function is concave or linear, solutions are bang-bang. Solutions start with u∗ = M and
switch at most once, depending on the value of C and α. In case j1 is a convex function, we
characterize the singular controls solving the problem. The particular shape of these solutions
is also dependent on C and α, as well as other parameters of the problem. Nonetheless, they
all share a common property of being non-decreasing prior to p(t) = p∗ and non-increasing
afterwards. With p∗ being explicitly known and verifying p∗ < θ. In Figure 4 we see can see an
illustration of the kind of solutions obtained depending on the convexity of j1.

Figure 4 – Example of a bang-bang (left) and a singular control (right) arising as solutions of
(16) for j1 concave and convex respectively.

In the case of Family 2, where the final state, p(T ), is free, (17), the result reads

Theorem B (Family 2) There exists u∗ ∈ UT,C,U solving Problem (17). In addition, there exists
an interval (t−, t+) such that, outside of it u∗ = 0 and the state pu∗ associated to u∗ is constant.
Inside (t−, t+), pu∗ is increasing and the behaviour of u∗ depends on the convexity of j1(·), the
value of α and the values of C and T . We distinguish between the following cases:

— Case 1. j1 is either linear or strictly concave. The solution is u∗ = U1[t−,ts], with ts ⩽ t+

the switching time.
— Case 2. j1 is convex. If α ∈ (0, 1) singular controls may appear. The control u∗ is

non-decreasing until t∗ ∈ (t−, t+) such that p(t∗) = p∗ and then non-increasing.
If α = 1, then u∗ = U1[t−,ts], with ts defined as in the concave and linear case.
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To prove this theorem we follow a similar path. We also prove a similar monotonicity property
on p(t), allowing us to study a calculus of variations problem in a certain subinterval of the time
window considered (Lemma 1.2). Then, we show that u∗(t) = 0 outside of this interval. To
characterise the solutions we reduce once again the complexity of the problem by breaking it
down into two different ones. First we characterize the optimal strategy for α = 0 and an
arbitrary final state fixed (Theorem 1.4) and then we treat the full problem as a one dimensional
one where the variable to be optimized is, precisely, this final state.

For both families, in order to establish the existence of solutions for the concave case, one
cannot apply the standard reasonings in calculus of variations, since the functional studied is
not lower semicontinuous. We approach the problem in an innovative way, by investigating the
optimality conditions for a finite dimension auxiliary problem. This reasoning allows us to obtain
existence, but also to characterize the solutions, establishing they are bang-bang.

Note how optimal strategies described in Theorem B are, overall, very similar to those pre-
sented in Theorem A. In conclusion, in this chapter we prove a robustness property on the
optimal controls, in the sense that solutions are similar for both families of problems.

Results obtained in this work can be translated into general guidelines for real releasing
policies when we restrict ourselves to the cases where p(T ) > θ. This restriction being natural
in practical applications, since, while in this case the system tends naturally to p(T ) = 1, in
case p(T ) ⩽ θ the invasion of Wolbachia-infected mosquitoes will not occur without further
intervention. In order to understand these guidelines, first we need to understand the meaning
of the convexity/concavity of function j1 in this problem. Function j1 can be seen as aggregating
all costs of mosquito production transport and release. In other words, it is a measure of the
cost per mosquito per unit of time. The second derivative of this function is a measure of the
marginal increase in the cost per mosquito as production is scaled up. For instance, the simplest
scenario, j1(u) = u, means that costs are proportional to production: Releasing mosquitoes
twice as fast over a period of time implies costs twice as high. This might not always be the
case, economies of scale usually lead to a decrease in the marginal cost of production per unit,
so j1 can be expected to be concave: As more mosquitoes are released, the extra cost per
mosquito is reduced. Nonetheless, opposite effects can occur. Scaling up production can come
with unforeseen consequences in management, storage capacity or logistics, therefore, in some
cases the marginal cost of production can quickly increase, justifying the need for a convex j1.

In a nutshell, if we know p at any given time, which can be done by setting up mosquito
traps to measure the Wolbachia-infected mosquitoes in the wild (a common practice in any field
implementation of any vector control technique), our results yield:

— If j1 is either linear or strictly concave, and so mosquito production costs are decreasingly
expensive or stay constant, the optimal releasing strategy is bang-bang. We act as soon
and as fast as possible, until the critical proportion p = θ is surpassed. This means optimal
controls are u∗ = M from the beginning, and with one switch, at most, after p(t) = θ.
See figure 1.2.

— If j1 is strictly convex, and thus mosquito production is increasingly expensive, solu-
tions are more complex due to the appearance of singular controls. Nevertheless, we can
conclude that in this case efforts must also be concentrated at the beginning, since the op-
timal control is non-decreasing until p(t) = p∗ and non-increasing afterwards, with p∗ < θ.
Therefore efforts can be relaxed after the proportion p(t) = p∗ is achieved. See figure 1.3.

Perspectives

The natural continuation of this work would be the addition of spatial dimensions to the
problem. An adequate spatial distribution of the releases can be key for the success of these
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techniques and it is not obvious that homogeneous releases should always be the optimal solution.
In fact, in [46] the contrary is proven. This should be even more the case when mosquito
distribution in the environment in non-homogeneous. Nonetheless, the complexity of the problem
when space is added invites to simplify it by posing less ambitious questions. In the next chapter
space is introduced, but we restrict ourselves to the family 2 of problems, with T fixed, and
with α = 1, that is, we do not optimize the cost of the releases, but only its performance in a
non-homogeneous environment.

Chapter 2: Optimal initial time strategies for mosquito population re-
placement: influence of the carrying capacity on spatial releases

Motivation

The spatial distribution of the mosquito releases is a specially relevant aspect of the deploy-
ments. In this chapter we approach the question of how to optimize the spatial distribution of
an instantaneous release at t = 0 when the distribution of wild mosquitoes in the environment
is inhomogeneous. As introduced in section II.1, this is modeled by considering the carrying
capacity of the environment to be not necessarily constant, but a function of the space variable,
K(x), x ∈ Ω.

In order to deduce the equation studied in this chapter, we first consider an equation analogous
to (8) but, in principle, without diffusion (D = 0). This case is a toy model lacking of realism,
nonetheless, it is of interest from a mathematical point of view. It must be seen as a first
step towards the study of the full model with diffusion, which we also tackle numerically. To
highlight the spatial dependency of the carrying capacity and in order to facilitate the exposition
we extract K(x) from the definition of g, therefore in this chapter g is defined by (2.6) 2. Thus,
the equation we are interested in reads{

∂tp(t, x) = f(p(t, x)) + u(t,x)
K(x) g(p(t, x)), t ∈ [0, T ], x ∈ Ω

p(0, x) = 0, ∀x ∈ Ω.
(18)

The goal in mind is to minimize the distance of the final state to the state of full Wolbachia
invasion in the population across the domain, thus, the problem we consider at first is

min
u∈UT,C,U

∫ T

0

∫
Ω

(1− p(T, x))2 dx (19)

where UT,C,U in this chapter is defined analogously to (5) but taking into account the space.
That is,

UT,C,U =

{
u ∈ L∞([0, T ]× Ω), 0 ⩽ u ⩽ U a.e. ,

∫ T

0

∫
Ω

u(t, x) dx dt ⩽ C

}
.

As mentioned, in this chapter we focus in optimizing a single instantaneous release at time
t = 0. In other words, we study problem (19) when the time distribution of the releases is set to
u(t, x) = u0(x)δ(t).

min
p0∈P0,C,U

∫
Ω

(1− p(T, x))2 dx, (20)

2. Although f may also seem different from the one defined in (1.5), these changes are purely cosmetic.
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where

P0,C,U =

{
p0 ∈ L∞(Ω), 0 ⩽ p0 ⩽ G−1

(
U

K(x)

)
a.e.,

∫
Ω

K(x)G(p0(x)) dx ⩽ C

}
.

and {
∂tp(t, x) = f(p(t, x)), t ∈ [0, T ],

p(0, x) = p0(x), x ∈ Ω.
(21)

Finally, we also take a look at the case with diffusion with Neumann boundary conditions
(modeling that mosquitoes cannot leave the domain) from a numerical point of view. In this
case, the problem is still the same, (20), but the equation studied is

∂tp(t, x)−D∆p(t, x)− 2D∇K(x)
K(x) · ∇p = f(p(t, x))−D∆K

K ψ(p), t ∈ [0, T ]

p(0, x) = p0(x), x ∈ Ω,

∂νp(t, x) = 0, x ∈ ∂Ω.
(22)

with ψ(p) := p(1 − p) b0W−b0M (1−shp)
b0M (1−p)(1−shp)+b0W p

. The deduction of this equation from a two-species
model like system (7) when an inhomogeneous carrying capacity is considered can be found in
Chapter 2, and more detailed in [98].

Main results

We present here the main results contained in Chapter 2 of this manuscript. In this chapter
we first characterise the solutions with the help of a function we define, namely

wT (p0) := −g(p0(x))(1− p(T, x)) exp

(∫ T

0

f ′(p(s, x)) ds

)
.

Exploiting the first and second order optimality conditions we prove that there exists a λ∗ ⩾ 0
such that the optimal solution to problem (20), p∗0(x), satisfies

— On {p∗0 = pU (x) := G−1
(

U
K(x)

)
}, we have wT ⩽ − λ∗

K(x) ,

— On {p∗0 = 0}, wT ⩾ − λ∗

K(x) ,
— On {0 < p∗0 < pU}, wT = − λ∗

K(x) , and in this set, each minimum satisfies the condition
∂wT

∂p0
⩾ 0.

In the light of this result it becomes clear that the monotonicity of wT plays a fundamental
role in the characterization of solutions. Next, we show that, under certain hypothesis on the
parameters of the problem, there exists a T0 > 0, that we compute explicitly, such that

— If T ⩽ T0, then wT is monotonically increasing
— If T > T0, then wT is unimodal, first decreasing, then increasing.

We explore numerically the regions of the parameter space satisfying this hypothesis in Appendix
B.

To conclude, we prove two theorems characterizing the solutions of problem (20). In case
T ⩽ T0, we solve explicitly the problem, fully characterizing the solution. Here we present a
simplified version of Theorem 2.1.

Theorem C (T ⩽ T0) Assume T ⩽ T0 and 0 < C < U |Ω|. Then there exists a unique
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p∗0 ∈ P0,C,U , that solves problem (20). It is given by

p∗0(x) =


0 if − λ∗

K(x) ⩽ wT (0),

pU (x) := G−1
(

U
K(x)

)
if − λ∗

K(x) ⩾ wT (pU (x)),

w−1
T

(
− λ∗

K(x)

)
if − λ∗

K(x) ∈ (wT (0), wT (pU (x))) ,

for any λ∗ ⩾ 0 such that the associated p∗0(x) satisfies
∫
Ω
K(x)G(p∗0(x)) dx = C.

In case T > T0 we prove that either the solution can be determined in an analogous way to
the previous case, or, in case it cannot, thanks to the solution of an auxiliary problem that we
define, the original problem (20) can be reduced to a one dimensional problem. Note that this
reduction can be done whether the original problem was posed for Ω ⊂ R or Ω ⊂ R2. Next
theorem is a simplified version of Theorem 2.2.

Theorem D (T > T0) Assume T > T0 and 0 < C < U |Ω|. Under some conditions on the birth
and death rates of mosquitoes, there exists at least one p∗0 ∈ P0,C,U that solves problem (20).
Defining

p̃λ(x) =


0 if − λ

K(x) < min
p0∈(0,pU (x))

wT (p0),

pU (x) if − λ
K(x) ⩾ wT (pU (x)),

w−1
T

(
− λ
K(x)

)
if − λ

K(x) ∈
[

min
p0∈(0,pU (x))

wT (p0), wT (pU (x))

)
,

there exist λ1 ⩾ λ0 ⩾ 0 and at least one λ∗ ∈ [λ0, λ1] such that either p∗0(x) = p̃λ∗(x) for all
x ∈ Ω, or, under some circumstances, the following holds:

— For each λ ∈ [λ0, λ1], we introduce χ∗
λ, a characteristic function solving

min
0⩽χλ⩽1

∫
Ω̃λ

K(x)2(1− p(T, x))2χλ(x) +K(x)2(1− χλ(x))dx,

under the constraint∫
Ω̃λ

K(x)G (p̃λ(x))χλ(x)dx ⩽ C −
∫
Ω\Ω̃λ

K(x)G (p̃λ(x)) dx,

with Ω̃λ ⊂ Ω a certain subdomain given by the parameters of the problem. Here, p(·, x)
solves (21), and has p̃λ(x) as its initial condition. There exists at least one λ∗ ∈ [λ0, λ1],
such that p∗0 can be described as

p∗0(x) =

{
p̃∗λ∗(x), if x ∈ Ω \ Ω̃λ∗ ,

p̃∗λ∗(x)χ∗
λ∗ , if x ∈ Ω̃λ∗ ,

— Considering p∗0(x) as the initial condition of p(·, x), λ∗ is a solution of the one-dimensional
problem

min
λ∈[λ0,λ1]

∫
Ω

(1− p(T, x))2 dx.

We also implement an ad hoc numerical algorithm to visualize optimal solutions by exploiting
Theorem 2.1 and 2.2. Finally, we study numerically the problem with diffusion. Implementing
a numerical algorithm in GEKKO (see [20]). The equation studied in this case is equation (22).
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In (5) we show a selection of the solutions obtained in the simulations of this chapter in different
settings.

An important property found is that the associated releases to the solutions of problem (20),
i.e., u∗0(x) = K(x)G (p∗0(x)) are non-decreasing when K(x) increases in most cases. This implies
that, in general, where the initial concentration of mosquitoes is higher, releases should be more
intense too. We prove that this is the case, at least, for T ⩽ T0 and the case T > T0 when some
conditions are met. This monotonicity breaks when diffusion is considered, giving raise to more
complex behaviours such as the formation of invasive fronts.

Figure 5 – Results of the simulations for a sinusoidal carrying capacity, modeling a higher con-
centration of mosquitoes in the center of the domain. From left to right: results in 1D, results
in 1D with diffusion and results in 2D. In all simulations T = 25, C = 30.

Perspectives

This work has, at least, three clear lines of research in which it could be extended.

— First, not restricting the study to an instantaneous release, but rather to the original
problem (19) with a continuous u(t, x). This is a work in progress, not included in this
thesis.

— Second, a more ambitious goal could be the study of several instantaneous releases. Usu-
ally, in the field, releases are scheduled, for example, weekly. This can be modeled by a
control function composed of a series of instantaneous releases, equally separated in time,
u(t) =

∑n
i=1 ui(x)δ(t− ti) with ti = (i− 1)Tn and i = 1, . . . , n. Even when diffusion is not

considered we expect this to be a very hard question to tackle in a non-numerical way.
— Lastly, the diffusive case could be studied from a theoretical point of view. A complete

understanding of solutions in this case is undoubtedly the most important research line
to follow. Although the passage from ordinary differential equations to partial differential
equations adds a lot of complexity to the problem, a starting point could be to try to
obtain results analogous to those in [46] on the optimality of the solutions for the non-
diffusive case when diffusion is added. Numerically, it can be studied by simulating the
system for small final times and diffusion rates. At the time of writing this thesis, these
questions are currently being developed, for this chapter is a work in progress.
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Chapter 3: Vector-borne disease outbreak control via instant vector
releases

Motivation

In this chapter we introduce, study and simulate an epidemiological system consisting of
mosquitoes and humans. We are interested in minimizing the amount of infections occurring
in a human population during an outbreak of a disease transmitted by mosquitoes by applying
vector-based control techniques. We investigate optimal ways to carry releases of Wolbachia-
infected (see Section II.1) and sterile male mosquitoes (see Section II.2), we compare the results
of both techniques and analyze their differences. In order to do so, we combine models for
population dynamics and epidemiological models. For the population replacement the system
has already been introduced in (11). In practice, we won’t work directly on this system given its
complexity, but rather on a simplified one. In a nutshell, by assuming a high birth rate in the
mosquito population, we perform the analogous passage from system (4) to the scalar equation
(6) but applied to system (11) (see Chapter 3 for more details), obtaining

S′
H = bH − βM

H
IMSH −

βWH

H
IWSH − bHSH ,

E′
H =

βM
H

IMSH +
βWH

H
IWSH − γHEH − bHEH ,

I ′H = γHEH − σHIH − bHIH ,

E′
M =

βM
H

(K(1− p)− EM − IM )IH − γMEM − dMEM ,
I ′M = γMEM − dMIM ,

E′
W =

βHW
H

(Kp− EW − IW )IH − γWEW − dWEW ,
I ′W = γWEW − dW IW ,
p′ = f(p) + ug(p).

(23)

where the equations for the susceptible mosquitoes take the much simpler form SM = K(1− p)
and SW = Kp.

A similar thing can be done to bring together models (13) and (3). This model is simpler,
since the sterile mosquitoes released do not need to be considered from an epidemiological point
of view. Since only females bite, the released males are unable to spread the disease. We obtain
the following system

S′
H = bHH −

βM
H

IMSH − bHSH ,

E′
H =

βM
H

IMSH − γHEH − bHEH ,
I ′H = γHEH − σHIH − bHIH ,

S′
M = bMM

(
1− M

K

)
M

M + scMS
− βM

H
SMIH − dMSM ,

E′
M =

βM
H

SMIH − γMEM − dMEM ,
I ′M = γMEM − dMIM ,
M ′
S = u− dSMS .

(24)

The problem we are interested in is

min
u∈S

∫ T

0

IH(t)dt, subject to
∫ T

0

u(t)dt = C, (25)
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with S being a set of admissible controls that we will specify. That is, minimising the amount
of infected humans during an outbreak (of duration T ), provided that we have at our disposal C
mosquitoes and that all will be released. We estimate the duration of an outbreak in the system
by performing a simulation where a few infected humans are introduced in a fully susceptible
population.

Systems with this amount of equations are needed in order to properly take into account
the dynamics of disease in the population. In exchange, they are very hard to study, especially
from a theoretical point of view. Our approach in this chapter will be to consider the mosquito
releases to be instantaneous. This means that we consider that the time it takes to deploy a
release is very small in comparison to the time horizon considered. This facilitates the study of
the system, since it becomes a finite dimensional problem. Indeed, we are assuming that our
control function is of the form u(t) =

∑n
i=1 ciδ (t− ti), and the constraint reads now∫ T

0

u(t)dt =

〈
n∑
i=1

ciδ (t− ti) , 1

〉
M([0,T ]),C0([0,T ])

=

n∑
i=1

ci = C.

Therefore, the control variables will be the times at which the releases are carried, ti, and the
amount of mosquitoes released each time, ci. The problem can be then stated as follows

min
0⩽ti⩽T
ci⩾0

∫ T

0

IH(t)dt, subject to
n∑
i=1

ci = C, i = 1, . . . , n. (26)

without loss of generality, we impose t1 ⩽ · · · ⩽ tn. This modifies systems (24) and (11) by
transforming the equation where the control appears into differential equations with disconti-
nuities. In proposition 3.1 of chapter 3 we show how this assumption modifies the dynamics of
MS(t), system (3.8), and p(t), equation (3.11). Note that there is work to provide a well-posed
framework, existence and regularity results to optimal control problems with measurement type
data. This work has been developed in several articles such as [87, 88, 93, 94, 151]. In this chap-
ter, we will apply such techniques to particular epidemiological systems. We provide a detailed
proof of formulas for determining the control sensitivity of various quantities of interest, so that
this work is self-contained.

Main Results

We extract the main contributions of Chapter 3. Results of this chapter are mostly numeric.
We draft the numerical algorithm implemented with the aim of solving problem (26) for systems
(24) and (23). Two different kinds of variables need to be determined: the release times, ti and the
amount of mosquitoes released at each release, ci. For the release times we compute the derivative
of the criterion with respect to each ti, δtiJ(t) analytically (See 3.4 for more details). At each
step, we fix the amount of mosquitoes released, (ci)1⩽i⩽n, and we update the control according
to the derivatives we computed, taking into account the restriction 0 ⩽ t1 ⩽ · · · ⩽ tn ⩽ T . In
other words, at a given step k, we update the control uk =

∑
i ciδ(t− ti), according to

uk+1 = ΠT (uk − εt∇tJ(uk)) , where ∇tJ(u) = (δt1J(u), . . . , δtnJ(u)) ,

and where ΠT denotes the projection onto the set of controls { 0 ⩽ t1 ⩽ · · · ⩽ tn}. In order
to optimize the ci we implemented an Uzawa algorithm with an augmented Lagrangian. The
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functional considered was

L(u, λ) =

∫ T

0

IH(t)dt+ λ

(
n∑
i=1

ci − C

)
+
ρ

2

(
n∑
i=1

ci − C

)2

. (27)

The functional is extended in order to handle the constraint
∑n
i=1 ci = C. In (27). λ, is a non-

negative real number, and its value is computed iteratively along with u. The idea behind the
Uzawa algorithm is to transform the constrained minimization problem into an unconstrained
one, where the new functional is minimized with respect to u, and maximized with respect to
λ (see [72] for details). The second term added in (27) is introduced only to accelerate the
convergence of the algorithm. This is achieved for a certain range of values of the parameter ρ.

One step at a time, we approach the target saddle point of L(u, λ) by updating the control
according to

uk+1 = uk − εc (∇cJ(uk) + λk + ρ (
∑n
i=1 ci − C)) ,

λk+1 = max (λk + ρ (
∑n
i=1 ci − C) , 0) .

Here, ∇cJ(u) is analogous to ∇tJ(u) but the derivatives have been computed with respect to
the ci. We represent a schematic version of the algorithm in Figure 6.

We sum up here the results of applying this algorithm to solve the problem considered for each
of the techniques. In the case of the SIT, results depend not only on the amount of mosquitoes
released, but also on the number of releases considered. Results for 10 and 20 releases can be
seen in figures 3.1 and 3.2 respectively. The reduction in the amount of infections is greater when
more mosquitoes are released, which was expected, but also when the same amount of mosquitoes
is spread over more releases. In all cases the releases are distinct (there is not any case where
ti = ti+1). This is due to the fact that since mosquito population decays exponentially two
releases combined will sustain a sterile population for a shorter time than two separate releases.
Nevertheless, this trend does not continue indefinitely. After approximately twenty releases, the
further reduction in the number of cases becomes very small when more releases are considered.

Optimal strategies can be summed up as follows:
— In case we have at our disposal few mosquitoes, or in case we do not consider enough

releases, the optimal strategy is focused on the mitigation of the outbreak. Mosquitoes
are released spaced around the peak of the epidemic. Biologically speaking, if a sterile
population cannot be sustained (in other words, if a wild population, cannot be kept low)
in a consistent manner during the whole time window considered, then mosquitoes should
be released when most of the transmissions are happening, that is, around the peak of
the epidemic. An example of this is the upper row in Figure 7.

— In case we have enough mosquitoes and we consider enough releases, these start shifting to
the beginning of the time window, eventually reaching t1 = 0. The optimal strategy shifts
towards the suppression of the outbreak. Releases are concentrated at the beginning but
nevertheless small releases keep being carried out over an extended period of time. The
idea being to prevent the outbreak to gain traction in the first place by reducing drastically
from the start the amount of wild mosquitoes. Later, the small releases allow to prevent
the wild mosquitoes from repopulating the system, thus, preventing the appearance of a
new outbreak later. An example of this kind of solution is the lower row of Figure 7. The
shift to the left can be clearly seen when 20 releases are considered (bottom right graph).

In the case of the Wolbachia releases, solutions do not present such rich behaviours. For
any initial amount of releases considered, all collapse into one single release containing all
the mosquitoes combined. Two clear distinct strategies appear as a function of the amount
of mosquitoes at our disposal. The value splitting the two regimes is C = G(θ), which is, ex-



III. Contributions of this thesis 27

Random initialization
u0 =

∑n
i=1 c

0
i δ
(
t− t0i

)

cki , λk fixed, tki optimized
uk+1 = ΠT (uk − εt∇tJ(uk))

Functional flatness
|J(uk+1)− J(uk)| < ϵ

or k > Nt

tki fixed, cki , λk optimized
uk+1 = uk − εc (∇cJ(uk) + λk + ρ (

∑n
i=1 ci − C))

λk+1 = max (λk + ρ (
∑n
i=1 ci − C) , 0)

Functional flatness
|J(uk+1)− J(uk)| < ϵ

or k > Nc

k > N

Optimal solution
u∗ =

∑n
i=1 c

∗
i δ (t− t∗i )

no

yes

no

yes

no

yes

Figure 6 – Schematic representation of the Algorithm implemented in Chapter 3 to solve problem
(26).
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Figure 7 – Evolution on optimal strategies for the SIT when the amount of mosquitoes to release
is increased, from C = 3 · 107 (left column) to C = 6 · 107 (right column). In the upper and
lower rows, 10 and 20 releases are considered respectively. The dashed blue line corresponds to
the amount of sterile mosquitoes in the system. The amount of infectious humans, I∗H , is shown
in red. Notice the change in scale in the left axis of the bottom row due to the reduction in the
amount of human infections.

actly, the amount of mosquitoes necessary to increase in one single release the Wolbachia-infected
mosquito proportion from p = 0 to p = θ. We recall that p evolves according to p′ = f(p) and
that θ is the single zero of f(p) in (0, 1). We also recall that if p ∈ (0, θ), f(p) < 0 and thus the
proportion of Wobachia-infected mosquitoes decreases back to p = 0 after a certain time. On
the other hand, if p ∈ (θ, 1), f(p) > 0 and thus the proportion of Wobachia-infected mosquitoes
increases naturally (p → 1 when t → ∞), producing a population replacement without further
intervention. Therefore, if C > G(θ) there are enough mosquitoes to trigger a population re-
placement in one single release, while if C < G(θ) there are not. This fact produces the threshold
for C splitting two different strategies:

— In case we cannot trigger a population replacement the optimal strategy consists again
in the mitigation of the disease outbreak. Wobachia-infected mosquitoes are released
before reaching the peak of the epidemic in order to maximize the proportion of Wol-
bachia-infected mosquitoes while most of the transmissions are happening, resulting in a
dampening in the infection curve.

— In case there are enough Wolbachia-infected mosquitoes to trigger the population replace-
ment, the optimal strategy is to act as soon as possible. Since p will increase without
further intervention, there is no advantage in delaying the release, so there is the highest
proportion of Wolbachia-infected mosquitoes from the beginning.

This switch in behaviour can be seen in figure 8.
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Figure 8 – Switch of optimal strategy for the Wolbachia method when C is increased from C <
G(θ) (left) to C > G(θ) (right). The proportion of Wolbachia infected mosquitoes corresponds to
the dashed blue line and should be read with the axis to the right of each graphic. The amount
of infected humans, I∗H , is depicted in red and its axis is on the left. Notice how the scale for the
human infections is considerably bigger in the left graphic.

Finally, we also explore the case where only the times of the releases are optimized but the
amount of mosquitoes to release at each time is fixed. We compare the reduction in the number
of cases obtained with this simpler strategy with the more refined one. This problem is simpler
to solve but also more in line with current applications.

Perspectives

To the best of our knowledge, literature is not rich in works similar to this. This work opens
a broad range of interesting questions worth investigating in future works. A non-exhaustive list
includes:

— In practice, mosquitoes are produced in relatively fixed amounts weekly. Given that the
duration of an outbreak can be a considerable number of weeks, it would be interesting to
look at C as a function of time. For instance, increasing in a linear way, C(t) = C0+C1t,
or with discrete increases as a step function, C(t) = C0

⌈
t
7

⌉
, with time measured in days.

— In the case of the SIT, results vary significantly with the number of releases considered
when this one is low, but the improvements dampen as the number of releases increase. It
can be useful to properly study the improvement of results as a function of the number of
releases considered for different values of C. That is, calling u∗n the optimal strategy for
n releases, explore numerically the function J (n) := J(u∗n)− J(u∗n−1). The value of this
function would give an idea of how worth it is to consider a bigger number of releases.

— Also in the SIT case, results depend on the time window considered, since mosquitoes
can reproduce again in treated areas when the treatment is stopped. A very interesting
question would be: How does the optimal strategy evolve as T increases? In other words,
how do optimal strategies evolve when we do not restrict ourselves to the duration of a
particular outbreak but instead we want to minimize the infections for, a priori, unbounded
periods of time?



30 Introduction



Chapter 1
Optimal release strategies for mosquito
population replacement

This chapter is the subject of L. Almeida, J. Bellver Arnau and Y. Privat. “Optimal Control
Strategies for Bistable ODE Equations: Application to Mosquito Population Replacement”,

published in Applied Mathematics & Optimization [4].

1.1 Introduction

1.1.1 Around Wolbachia control strategies

Around 700 000 people die annually due to mosquito-transmitted diseases [154]. In partic-
ular, mosquitoes of the genus Aedes, such as Aedes Aegypti and Aedes Albopictus can transmit
several arboviruses as Dengue, Chikungunya, Yellow fever or Zika [60, 109]. According to the
World Health Organization, 390 million people are infected by Dengue every year and 3.9 bil-
lion people in 128 countries are at risk of infection [32]. As no antiviral treatment nor efficient
vaccine are known for Dengue, the current method for preventing its transmission relies mainly
on targeting the vector, i.e. the mosquito [15, 14, 67]. As introduced in section II.1 of the
Introduction of this thesis, it has been shown that the presence of the bacterium Wolbachia [65]
in these mosquitoes reduces their vector capacity (capability of transmission of the associated
disease) for the aforementioned arboviruses [147, 92, 143, 95]. The bacterium is transmitted
from the mother to the offspring. Furthermore, there is a phenomenon called Cytoplasmatic
Incompatibility (CI) [129, 73], which produces cross sterility between Wolbachia-infected males
and uninfected females. These two key phenomena make the introduction of mosquitoes infected
with Wolbachia a promising control strategy to prevent Dengue transmission.

In this chapter we explore several ways of modeling optimal release strategies, in the spirit
of [10], where a simpler approach involving a least squares functional was presented. We enrich
the model of [10] by introducing and analyzing two relevant families of problems.

In a nutshell, we will first consider two families of functionals that are convex combinations
of a term accounting for the cost of the mosquitoes used and

— either a growing function of the time horizon, let free, but fixing the final proportion of
Wolbachia-infected mosquitoes.
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— or a penalization (more precisely a decreasing function) of the final proportion of Wol-
bachia-infected mosquitoes at the final time of the experiment. Note that the horizon of
time will be considered fixed in this case.

This will lead us to introduce two large families of relevant optimization problems in order to
model this issue. Analyzing them will allow us to discuss optimal strategies of mosquito releasing
and also the robustness of the properties of the solutions with respect to the modeling choices
(in particular the choice of the functional we optimize).

Nevertheless, the results presented in this chapter are not restricted to this particular problem.
In Remark 1.2 we state the conditions under which our results are applicable to other control
problems with bistable equations.

1.1.2 Issues concerning modeling of control strategy

To study these issues, let us consider the same model as in [10] for modeling two interacting
mosquito populations: a Wolbachia-free population M , and a Wolbachia carrying one, W . The
resulting system reads

dM(t)
dt = bMM(t)

(
1− sh W (t)

M(t)+W (t)

)(
1− M(t)+W (t)

K

)
− dMM(t),

dW (t)
dt = bWW (t)

(
1− M(t)+W (t)

K

)
− dWW (t) + u(t) , t > 0,

M(0) =M0 , W (0) =W 0,

(1.1)

where
— the parameter sh ∈ [0, 1] is the cytoplasmic incompatibility (CI) rate 1.
— The other parameters (bi, di) for i ∈ {M,W} are positive and denote respectively the

intrinsic mortality and intrinsic birth rates. Moreover, we assume that bi > di, i =M,W .
— K > 0 denotes the environmental carrying capacity. Note that the term (1 − sh W

M+W )
models the CI.

— u(·) ∈ L∞(R+) plays the role of a control function that we will use to act upon the
system. This control function represents the rate at which Wolbachia-infected mosquitoes
are introduced into the population.

System (1.1) for modeling mosquito population dynamics with Wolbachia has been first intro-
duced in [52, 53]. We also mention [69] where this model is coupled with an epidemiological
one.

The aim of this technique is to replace the wild population by a population of Wolbachia-
infected mosquitoes. To understand mathematically this question, it is important to recall that,
under the additional assumption

1− sh <
dMbW
dW bM

< 1 (1.2)

satisfied in practice [10], System (1.1) has four non-negative steady states, among which two
which are locally asymptotically stable, namely:

M̄ = (M∗, 0) :=

(
K

(
1− dM

bM

)
, 0

)
and W̄ = (0,W ∗) :=

(
0,K

(
1− dW

bW

))
.

Observe that M̄ corresponds to a mosquito population without Wolbachia-infected individuals
whereas W̄ corresponds to a mosquito population composed exclusively of infected individuals.

1. Indeed, when sh = 1, CI is perfect, whereas when sh = 0 there is no CI



1.1. Introduction 33

Note that the two remaining steady-states are unstable: they correspond to the whole population
extinction and a coexistence state.

Hence, the optimal control issue related to the mosquito population replacement problem can
be recast as:

Starting from the equilibrium M̄, how to design a control steering the system as close as
possible to the equilibrium state W̄, minimizing at the same time the cost of the releases?

Of course, although this is the general objective we wish to pursue, the previous formulation
remains imprecise and it is necessary to clarify what is meant by "the cost of release" and the
set in which it is relevant to choose the control function.

Following [6] and [10], we will impose several biological constraints on the control function u:
the rate at which mosquitoes can instantaneously be released will be assumed bounded above by
some positive constant U , and so will be the total amount of released infected mosquitoes up to
the final time T . The set of admissible control functions u(·) thus reads

UT,C,U :=

{
u ∈ L∞ (0, T ) , 0 ⩽ u ⩽ U a.e. in (0, T ),

∫ T

0

u(t)dt ⩽ C

}
. (1.3)

As shown in [10], System (1.1) can be reduced to a single equation under the hypothesis of
high birth rates, i.e. considering bM = b0M/ε, bW = b0W /ε and letting ε decrease to 0. In this
frame, the proportionW/(M+W ) of Wolbachia-infected mosquitoes in the population, uniformly
converges to p, the solution of a simple scalar ODE, namely{

dp
dt (t) = f(p(t)) + u(t)g(p(t)), t ∈ (0, T )
p(0) = 0,

(1.4)

where

f(p) = p(1− p) dMb
0
W − dW b0M (1− shp)

b0M (1− p)(1− shp) + b0W p
and g(p) =

1

K

b0M (1− p)(1− shp)
b0M (1− p)(1− shp) + b0W p

. (1.5)

We remark that f(0) = f(1) = 0 and, under assumption (1.2), there exists a single root of
f strictly between 0 and 1 at p = θ = 1

sh

(
1− dMb0W

dW b0M

)
. The function p 7→ g(p) is non-negative,

strictly decreasing in [0, 1] and such that g(1) = 0.
In the absence of a control function, the equation on p simplifies into dp

dt = f(p). This is a
bistable system, with an unstable equilibrium at p = θ and two stable equilibria at p = 0 and
p = 1. Notice that the derivative of the function f/g has a unique zero p∗ in (0, θ) defined by

p∗ =
1

sh

(
1−

√
dMb0W
dW b0M

)
, (1.6)

which will be useful in the following.
In [10], the control problem

inf
u∈UT,C,U

J(u), with J(u) =
1

2
M(T )2 +

1

2
[(W ∗ −W (T ))+]

2
. (1.7)

related to the aforementioned system (1.1), is considered. Denoting by Jε(u) the criterion J(u)
where the birth rates bM and bW have been respectively replaced by b1,ε = b0M/ε and b2,ε = b0W /ε,
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Figure 1.1 – Plots of p 7→ f(p) (left) and p 7→ g(p) (right) for the values of the parameters in
Table 1.1. In this case θ ≈ 0.211.

with ε > 0, a Γ-convergence type result is proven [10, Proposition 2]. More precisely, any solution
uε of Problem (1.7) with birth rates b1,ε and b2,ε converges weakly-star in L∞(0, T ) to a solution
of the reduced problem (1.4). Moreover,

lim
ε→0

inf
u∈UT,C,U

Jε(u) = inf
u∈UT,C,U

J0(u),

where
J0(u) = lim

ε→0
Jε(u) = K(1− p(T ))2 (1.8)

and p is the solution of (1.4) associated to the control function choice u(·). The arguments
exposed in [10] can be adapted easily to our problem. Since the solutions of both the full
problem (1.7) and the minimization of J0 given by (1.8) will be close in the sense above, it is
relevant to investigate the later, which is easier to study both analytically and numerically.

We now introduce the two families of optimal control problems we will consider in the following
sections. Although the model (1.4) driving the evolution of the Wolbachia-infected mosquitoes
density is the same as in [10], we will enrich it by introducing and analyzing new families of
problems in which

— the horizon of time can be let free;
— the cost of producing Wolbachia-infected mosquitoes can be included. Since such a cost

is not so easy to take into account, we will write it in a rather general way∫ T

0

j1(u(t)) dt (1.9)

where j1 : R→ R denotes a increasing function such that j1(0) = 0.

To take the time of the experiment and the final state into account in the cost functional, we
will use a function j2 : R+ × [0, 1] ∋ (T, p)) 7→ j2(T, p) ∈ R.

Let us now present the two families of problems we will deal with. We will be led to make
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the following assumptions, in accordance with the modelling above:

j1(·) is a non-negative increasing function such that j1(0) = 0,
two times differentiable, either strictly concave, linear or strictly convex on (0, T ).

j2(·) is a non-negative function of class C1, strictly increasing
w.r.t. its first variable and strictly decreasing w.r.t. its second variable.
Moreover, for all p ∈ [0, 1], lim

T→+∞
j2(T, p) = +∞.

(H.1)

Family 1

A first way of modeling optimal strategy for releasing Wolbachia-infected mosquitoes consists
in minimizing a convex combination of the time horizon, denoted T , which is considered free
and the cost of producing and releasing the mosquitoes defined by (1.9), by imposing a target
value on the final density of Wolbachia-infected mosquitoes. This leads to introduce the following
optimal control problem

inf
u∈UT,C,U

T>0

Jα(T, u),

p′ = f(p) + ug(p) in (0, T ), p(0) = 0 , p(T ) = pT ,

(P1,α
pT ,C,U

)

where pT ∈ (0, 1) is given and Jα(u) is defined by

Jα(T, u) = (1− α)
∫ T

0

j1(u(t))dt+ αj2(T, p(T )), (1.10)

where α ∈ [0, 1], j1(·) and j2(·) satisfy (H.1) and UT,C,U is given by (1.3). The function
(T, p) 7→ j2(T, p) aims at penalizing the time used in our case. Once the existence of solu-
tions is established, it will be fixed to be j2(T, p(T )) = T . In what follows, we will not tackle
the case where α = 0 since in that case, existence may not be guaranteed. More precisely, it is
rather easy to show that in that case, Problem (Q1,α

pT ,U
) has no solution whenever pT > θ.

Family 2

Another possible way of modeling optimal strategy for releasing Wolbachia-infected mosquitoes
consists in minimizing a convex combination of the final distance from p(T ) to the state of total
invasion p = 1 and the cost of producing and releasing the mosquitoes defined by (1.9). In that
case, we fix the horizon of time T and let p(T ) free. This leads to consider the problem inf

u∈UT,C,U

Jα(u),

p′ = f(p) + ug(p), p(0) = 0 ,
(P2,α

T,C,U )

where α ∈ [0, 1], j1(·) and j2(·) satisfy (H.1) and UT,C,U is given by (1.3). The main difference
here with respect to the previous case is the fact that the time horizon T is fixed, p(T ) is free
and that j2(T, p(T )) now represents a function penalizing the final distance to a certain final
state (typically, the state of total invasion p = 1). Since T in this family is fixed, abusing of the
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notation we will write Jα(u) instead of Jα(T, u), but Jα(u) will still be defined by (1.10). After
establishing the existence of solutions to this problem we will fix j2(T, p(T )) = (1− p(T ))2 as in
(1.8). A study of similar problems in a much more limited setting can be found in [3].

1.1.3 Main results

Let us state here briefly the main results of this chapter. These results will be further detailed
in sections 1.2.2 and 1.3.1 respectively. In this section, in order to avoid too much technicality,
we provide simplified statements of the main contributions of this chapter. Let us fix U > 0 and
C > 0, and let us consider j1(·) satisfying the hypothesis stated above in (H.1).

Our first result regards Family 1. In accordance with the biological modelling considerations
above, let us assume hereafter that j2(T, pT ) = T and that the final proportion of mosquitoes
in the populations is fixed p(T ) = pT < 1. The following result is a simplified and less precise
version of Theorem 1.2.

Theorem A (Family 1) There exists (T ∗, u∗) ∈ R+ × UT,C,U solving Problem (P1,α
pT ,C,U

). The
overall behaviour of u∗ depends on the convexity of j1(·), the value of α and the value of C.

In general, we distinguish the following cases:
— Case 1. j1 is either linear or strictly concave. There exists a real parameter α∗ ∈ [0, 1) given

by the parameters of the problem such that:
— if C is large enough: If α ∈ [α∗, 1], then u∗ = U1[0,T∗]. If α ∈ (0, α∗), then u∗ is

bang-bang with exactly one switch from U to 0 at a time ts ∈ (0, T ∗) determined by α.
— else, one has u∗ = U1[0,C/U ].
In this case, the optimal time T ∗ reads

T ∗ =

∫ pT

0

dν

f(ν) + u∗p(ν)g(ν)
with u∗p(ν) = U1(0,ps)

and
ps =

{
p(ts) if C is large enough,
p(C/U) otherwise.

— Case 2. j1 is convex. If α ∈ (0, 1) singular controls may appear. The control u∗ is
non-decreasing until t∗ ∈ (0, T ∗) such that p(t∗) = p∗ and then non-increasing.

If α = 1, the term with j1 is no longer present and u∗ = U1[0,min{T∗,C/U}].

Remark 1.1. We remark that in case j1 is either linear or strictly concave the controls are
always bang-bang (and the case α = 1 is similar to α < 1) while when j1 is convex, singular
controls may appear when α < 1 while for α = 1 the control is still bang-bang.

For our second result, regarding Family 2 let us assume hereafter that j2(T, pT ) = (1− pT )2
and that the time horizon T > 0 is fixed. The following result is a simplified and less precise
version of Theorem 1.3.

Theorem B (Family 2) There exists u∗ ∈ UT,C,U solving Problem (P2,α
T,C,U ). In addition, there

exists an interval (t−, t+) such that, outside of it u∗ = 0 and the state pu∗ associated to u∗ is
constant. Inside (t−, t+), pu∗ is increasing and the behaviour of u∗ depends on the convexity of
j1(·), the value of α and the values of C and T . We distinguish between the following cases:

— Case 1. j1 is either linear or strictly concave. The solution is u∗ = U1[t−,ts], with ts ⩽ t+

the switching time.
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— Case 2. j1 is convex. If α ∈ (0, 1) singular controls may appear. The control u∗ is
non-decreasing until t∗ ∈ (t−, t+) such that p(t∗) = p∗ and then non-increasing.

If α = 1, then u∗ = U1[t−,ts], with ts defined as in the concave and linear case.

Remark 1.2. The use of bistable ODEs is widely spread to model a great variety of phenomena
from biology, to physics and economy. Examples of systems with a bistable behaviour can be
found in population dynamics, exploitation of natural resources, cell division, cancer modeling,
apoptosis, chemical reactions or mechanical systems. Therefore, these results may be interesting
outside of the particular context in which they have been presented.

In order to be able to apply Theorems A and B, f, g ∈ C1 ([0, 1]) for the system considered
must satisfy two conditions:

— Bistability: p 7→ f(p) must satisfy that f(0) = f(1) = 0, and that there exists a unique
θ ∈ (0, 1) such that f(θ) = 0, f(p) < 0 for p ∈ (0, θ) and f(p) > 0 for p ∈ (θ, 1).

— Increasingly costly to control: p 7→ g(p) must be non-negative, strictly decreasing in
[0, 1] and such that g(1) = 0. This means that as the state of the system gets closer to
the steady state p = 1 it becomes increasingly harder to push.

Moreover, function p 7→ (f/g)(p) must satisfy two additional conditions, namely:
— Unimodality: p 7→ (f/g) (p) must be unimodal, that is, strictly decreasing for p ∈ (0, p∗)

and strictly increasing afterwards. With 0 < p∗ < θ.
— limp→1 (f/g) (p) = +∞.

1.1.4 Biological interpretation of our results and final comments
From a biological point of view, this problem is studied with more generality than what is

strictly necessary. Only a certain subset of parameters is interesting for real field releases. In
order to give a biological interpretation we restrict ourselves to the case where p(T ) > θ so that
the system in the long term tends to p = 1 without further action. Otherwise, once the releases
ended the system would return to the initial condition after a certain time meaning that the
installation of the Wolbachia-infected mosquito population would have failed. Independently of
the family considered, with this restriction, our results yield:

— If j1 is either linear or strictly concave, the optimal releasing strategy is bang-bang.
Starting with u∗ = U and switching at most once, only after the critical proportion,
p(t) = θ, is surpassed.

— If j1 is strictly convex, the possible appearance of singular solutions makes the analysis
more intricate. In any case, solutions attain their maximal value at t = t∗ such that
p(t∗) = p∗. Either u∗ has a global maximum at t∗ or there exists an open interval I
where u∗(t) = U and t∗ belongs to I, although in the first case the value of the maximum
attained at that point is not always straightforward to determine.

The function j1 aggregates all the costs of the mosquito production, transport and release. Its
convexity represents the marginal increase of the cost per mosquito. A concave function means
that producing mosquitoes becomes proportionally less expensive as we scale up the production,
while a convex function implies the opposite; the rate at which the costs increase grows as we
increase the mosquito production. Finally, a linear j1 means that the cost of production is
scale-independent, directly proportional to the number of mosquitoes produced.

Since in a real case some of the parameters may be very difficult to determine beforehand,
this interpretation gives us some guidelines to implement a sensible feedback strategy in the field.
In order to do this, we would have to measure the proportion of infected mosquitoes using traps
and adapt the amount of mosquitoes we release in consequence. We have shown that under a
broad set of circumstances the best strategy is to act as soon as possible, and as fast as possible,
at least until the critical value p(t) = θ is attained. An exception to this rule being the case
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when the production of mosquitoes is increasingly expensive. Nevertheless, in this context, the
effort must also be concentrated soon, when the proportion of mosquitoes is p(t) ≈ p∗, which
allows to reduce the amount of mosquitoes used before reaching p(t) = θ.

1.2 Analysis of Family 1 problems

1.2.1 A first result: optimization without constraint on the number of
mosquitoes used.

This section is devoted to studying the case where the time horizon T is free and no constraint
is imposed on the total number of mosquitoes used. In other words, we will deal with the optimal
control problem 

inf
u∈VT,U

T>0

Jα(T, u),

p′ = f(p) + ug(p) in (0, T ), p(0) = 0 , p(T ) = pT ,

(Q1,α
pT ,U

)

where Jα(T, u) is defined by

Jα(T, u) = (1− α)
∫ T

0

j1(u(t))dt+ αT, (1.11)

where α ∈ [0, 1], j1(·) satisfies (H.1) and VT,U is given by

VT,U := {u ∈ L∞ (0, T ) , 0 ⩽ u ⩽ U a.e. in (0, T )} . (1.12)

In what follows, it will be convenient to introduce the following notations:

m∗(pT ) := max
p∈[0,pT ]

(
−f(p)
g(p)

)
> 0 and m∗(pT ) = min

p∈[0,pT ]

(
−f(p)
g(p)

)
⩽ 0. (1.13)

for pT ∈ (0, 1). Note that, as long as p 7→ (f/g) (p) satisfies the conditions of Remark 1.2, these
quantities are unique.

Let us introduce the mapping F0 defined by

v 7→ F0(v) :=
(1− α)(vj′1(v)− j1(v))− α

(1− α)j′1(v)
. (1.14)

For the sake of notational simplicity, we do not underline the dependence of F with respect to
α. A straightforward computation shows that F0 is increasing (resp. decreasing) whenever j1 is
strictly convex (resp. strictly concave).

Theorem 1.1. Let us assume that α ∈ (0, 1], pT ∈ (0, 1), (1.2) is true, and j1(·) satisfies
the first assumption of (H.1). Let us assume that U > m∗(pT ). Then, there exists a pair
(T ∗, u∗) ∈ R+ × VT,U solving Problem (Q1,α

pT ,U
). Moreover, let us distinguish between two cases:

— The case where j1 is either linear or strictly concave. Let us introduce the real parameter
α∗ ∈ [0, 1) given by

α∗ =
−m∗j1(U)/U

1−m∗j1(U)/U
. (1.15)

In this case, if α ∈ [α∗, 1], then u∗ = U1[0,T∗] and if α ∈ (0, α∗), then u∗ is bang-bang
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with exactly one switch from U to 0 at ts ∈ (0, T ∗) such that

ts =

∫ ps

0

dν

f(ν) + Ug(ν)
where ps is implicitly determined by − f(ps)

g(ps)
=

−αU
(1− α)j1(U)

.

The optimal time T ∗ is given by

T ∗ =

∫ pT

0

dν

f(ν) + u∗p(ν)g(ν)
with u∗p(ν) = U1(0,ps),

with the convention that ps = pT if α ∈ [α∗, 1].
— The case where j1 is convex. In this case, define u∗p as

u∗p : [0, pT ] ∋ pt 7→ max{min{U,F−1
0 (−f(pt)/g(pt))}, 0}

If α ∈ (0, 1) the optimal time T ∗ and control u∗ read

T ∗ =

∫ pT

0

dν

f(ν) + u∗p(ν)g(ν)
and ∀t ∈ [0, T ∗], u∗(t) = u∗p(pt)

where pt denotes the unique solution in [0, pT ] of the equation t =
∫ pt
0

dν
f(ν)+u∗

p(ν)g(ν)
. If

α = 1 the same holds with u∗p = U1[0,pT ].
If α = 1 the same holds with u∗p = U1[0,pT ].

Remark 1.3. A reasonable concern in the definition of v 7→ F0(v) is its behavior in case
j′1(0) = ∞ or j′1(0) = 0 like in the functions u 7→ j1(u) :=

√
u and u 7→ j1(u) := u2. We can

check, taking limits, that in these cases the reasoning is still valid and that the results obtained
hold. The limit reads

lim
v→0

F0(v) = lim
v→0

v − j1(v)

j′1(v)
− α

(1− α)j′1(v)

— If j′1(0) = ∞, we obtain limv→0 F0(v) = 0. In this case, j1(·) must be concave and
therefore F0(·) decreasing, thus F0(v) < 0 for all v ∈ (0, U ]. Looking at the maximization
conditions, (1.24), we see that this is consistent with the results.

— If j′1(0) = 0 we can apply l’Hôpital’s rule to find limv→0
j1(v)
j′1(v)

= limv→0
j′1(v)
j′′1 (v) = 0 and

therefore limv→0 F0(v) = −∞. This implies that we can never have F (0) ⩾ 0 and thus
u∗ > 0 for all t ∈ (0, T ∗).

For the sake of simplicity we showed this for F0(·) but this remark will still be valid for the
functions Fλ(·) we will introduce in 1.20.

Let us comment and illustrate the result above, by describing the behaviour of the solutions
of Family 1, classified with respect to the convexity of j1(·) and pointing out the limit values of
α separating the different regimes.

Exploiting Theorem 1.2, we know that in the concave and linear cases, solutions are nec-
essarily bang-bang. Either u∗ = U1[0,T∗] or with one switch from U to 0 occurring at time
ts =

∫ ps
0

dν
f(ν)+Ug(ν) with ps solving − f(ps)g(ps)

= −αU
(1−α)j1(U) . This happens if and only if α < α∗.

The value of α separating both regimes is α∗ = −m∗j1(U)/U
1−m∗j1(U)/U . The existence and uniqueness of

such a ps is guaranteed under the hypothesis of Remark 1.2, and not exclusively for the f and g
of this particular problem.

The convex case has a richer set of behaviours than the other ones. As an example, on Fig. 1.3
solutions are plotted for the particular choice j1(u) = eu/11− 1. This function is not intended to
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0 ts T ∗ 0 T ∗

u∗

U

u∗

U

α < α∗ α ⩾ α∗

Figure 1.2 – Control functions u∗ solving problem (Q1,α
pT ,U

) in the linear and concave case.

Category Parameter Name Value

Optimization pT Final state 0.99
U Maximal instantaneous release rate 10

Biology

b0M Normalized wild birth rate 1
b0W Normalized infected birth rate 0.9
dM Wild death rate 0.27
dW Infected death rate 0.3
K Normalized carrying capacity 1
sh Cytoplasmatic incompatibility level 0.9

Table 1.1 – Parameter values used to plot the solutions to problem (P1,α
pT ,C,U

)

represent any realistic scenario but to illustrate the variety of possible solutions. The parameters
considered for these simulations are given in Table 1.1, using the biological parameters considered
in [10]. To obtain this plot, one needs to compute the function F−1

0 which has been done by
using the nonlinear system solver of the software Python.

The key factors to understand the behaviour of u∗ in the convex case are the relative positions
of F0(0) and F0(U) with respect to m∗ and m∗. We begin by excluding the case F0(0) ⩾ m∗

because for all pT ∈ (0, 1), F0(0) ⩽ 0 < m∗. Let us introduce

α0 :=
−m∗j

′
1(0)

1−m∗j′1(0)
, (1.16)

α1 :=
Uj′1(U)− j1(U)−m∗j′1(U)

1 + Uj′1(U)− j1(U)−m∗j′1(U)
, (1.17)

α2 :=
Uj′1(U)− j1(U)−m∗j

′
1(U)

1 + Uj′1(U)− j1(U)−m∗j′1(U)
. (1.18)

These values are the thresholds separating the different regimes of the solutions. As an
example, we deduce the value of α1. If U ⩾ F−1

0 (m∗) then

u∗p : [0, pT ] ∋ pt 7→ max{min{U,F−1
0 (−f/g(pt))}, 0} = max{F−1

0 (−f/g(pt)), 0}.
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Instead, if U < F−1
0 (m∗), there will be an interval of positive measure in which u∗p = U . Since

F0 depends on α, we can compute the smallest value of α for which the inequality U ⩾ F−1
0 (m∗)

holds:

F0(U) :=
(1− α)(Uj′1(U)− j1(U))− α

(1− α)j′1(U)
⩾ m∗ ⇔ α ⩾

Uj′1(U)− j1(U)−m∗j′1(U)

1 + Uj′1(U)− j1(U)−m∗j′1(U)
:= α1

Here we assumed Uj′1(U)−j1(U)−m∗j′1(U) ⩾ 0, otherwise one can check that it is impossible
to have F0(U) ⩾ m∗. Doing a similar reasoning, one can see that we have similar equivalencies
between F0(0) ⩽ m∗ and α ⩾ α0 and between F0(U) ⩽ m∗ and α ⩾ α2.

We conclude that the behaviors of the solution with respect to α are the following:
— If α ⩾ α0, then u∗ > 0 for a.e. t ∈ (0, T ∗), whereas if α < α0 then there is an interval at

the end in which u∗ = 0.
— If α ⩽ α1, then u∗ < U for a.e. t ∈ (0, T ∗).
— If α1 < α < α2 an interval in which u∗ = U appears.
— Finally if α ⩾ α2, u∗ = U for a.e. t ∈ (0, T ∗).
We recall that the function x 7→ x

1+x maps [0,∞) into [0, 1). This implies that (α0, α2) ∈
[0, 1)2 and that if Uj′1(U) − j1(U) − m∗j′1(U) ⩾ 0, α1 ∈ [0, 1) too. For the purpose of the
discussion, in case Uj′1(U)− j1(U)−m∗j′1(U) < 0 we can consider that α ⩾ α1 always. Finally,
since x 7→ x

1+x is increasing one only needs to compare the numerators of the expressions of
α0, α1 and α2 in order to compare their values. Computing this we obtain that α2 ⩾ α0 and
α2 ⩾ α1. Nevertheless, in a general setting the relative position between α1 and α0 is not fixed.

Figure 1.3 – Control functions (T ∗, u∗) solving problem (P1,α
pT ,C,U

) with j1(u) = eu/11 − 1 as α
increases, from left to right and from top to bottom. The values of α0, α1 and α2 obtained are
α0 ≈ 0.15, α1 ≈ 0.44 and α2 ≈ 0.55. For the sake of clarity, for α = 0.005 and α = 0.1, u∗ has
not been represented in all its domain. Note that u∗ = 0 in the rest of the domain.

1.2.2 Description of solutions
The following result characterizes the solutions to Family 1 problems.
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Let us introduce
CpT (U) =

∫ pT

0

U

f(ν) + Ug(ν)
dν. (1.19)

In this section we will assume, in accordance with the modeling issues discussed in Sec-
tion 1.1.2, that j2(T, pT ) = T . Therefore, (1.11) becomes

Jα(T, u) = (1− α)
∫ T

0

j1(u(t))dt+ αT.

For α ∈ (0, 1), let us also introduce the mapping

v 7→ Fλ(v) :=
(1− α)(vj′1(v)− j1(v))− α

(1− α)j′1(v)− λ
, (1.20)

where λ ∈ R− is a constant depending on the parameters of the problem, and the quantity

CQ :=

∫ T∗
Q

0

u∗Q(t)dt, (1.21)

with
(
T ∗
Q, u

∗
Q
)

being the solution to the unconstrained case that has been treated in Theorem
1.1. Therefore, CQ is the cost associated with this solution.

Nevertheless, we remark that existence properties for the optimal control problem (P1,α
pT ,C,U

),
studied in Section A, are established in a more general setting, without prescribing explicitly the
function j2.

Theorem 1.2 (Family 1). Let us assume that α ∈ (0, 1], pT ∈ (0, 1), (1.2) is true, and j1(·)
satisfies the assumptions of (H.1). Let us assume that U > m∗(pT ) and

C > CpT (U) if pT ⩽ θ and C > Cθ(U) otherwise.

Then, there exists a pair (T ∗, u∗) ∈ R+ × UT,C,U solving Problem (P1,α
pT ,C,U

). Moreover, let us
distinguish two cases:

— Case where j1 is either linear or strictly concave. The optimal time and control are given by

u∗ = U1[0,min{CQ,C}/U ] and T ∗ =
min{CQ, C}

U
+

∫ pT

ps

dν

f(ν)
,

with ps solving Cps(U) = min{CQ, C}.
— Case where j1 is convex. Let u∗p be defined by

u∗p : [0, pT ] ∋ pt 7→ max

{
min

{
U,F−1

λ

(
−f(pt)
g(pt)

)}
, 0

}
If α ∈ (0, 1) the optimal time T ∗ and control u∗ are given by

T ∗ =

∫ pT

0

dν

f(ν) + u∗p(ν)g(ν)
and ∀t ∈ [0, T ∗], u∗(t) = u∗p(pt)

where pt denotes the unique solution in [0, pT ] of the equation t =
∫ pt
0

dν
f(ν)+u∗

p(ν)g(ν)
and

λ is a Lagrange multiplier such that λ = 0 if, and only if, CQ ⩽ C.
If α = 1 then u∗ = U1[0,min{CpT (U),C}/U ].
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Remark 1.4. In case CQ > C, we have that λ < 0. Moreover, this value λ is implicitly
determined by the equation

∫ pT
0

u∗p(ν)/(f(ν) + u∗p(ν)g(ν))dν = C.

Remark 1.5. For pT ⩽ θ and C = CpT we still have existence of solutions, and indeed u∗ =
U1[0,T∗] with T ∗ =

∫ pT
0

dν
f(ν)+Ug(ν) = C

U . For the sake of clarity we exclude this case from the
statement of the theorem, but it will be briefly discussed in the proof.

1.2.3 Proof of Theorem 1.1

The existence of solutions for Problem (Q1,α
pT ,U

) follows from an immediate adaptation of
Proposition A.3 and is left to the reader. Our approach is based on an adequate change of
variable. In order to make this proof easier to follow, let us distinguish several steps.

Step 1: a change of variable for recasting the optimal control problem.

To introduce the adequate change of variable, we need the following result.

Lemma 1.1. Let (T ∗, u∗) ∈ R+ × VT,U solve Problem (Q1,α
pT ,U

) and let α > 0. Let us introduce
pu∗ solving {

p′u∗ = f(pu∗) + u∗g(pu∗) in (0, T ∗)
pu∗(0) = 0,

then one has p′u∗(t) > 0 for all t ∈ (0, T ∗).

Proof. Let us argue by contradiction, assuming the existence of 0 ⩽ t1 < t2 ⩽ T such that
pu∗(t2) ⩽ pu∗(t1). Looking at the functional Jα we are minimizing, we claim that T ∗ is the
smallest time at which pu∗(T ∗) = pT . Indeed, since α > 0, if there exists T < T ∗ such
that pu∗(T ) = pT , the pair (T, u∗|(0,T )) is admissible for Problem (Q1,α

pT ,U
), and moreover,

Jα(T, u
∗|(0,T )) < Jα(T

∗, u∗) which contradicts the minimality of (T ∗, u∗).
Let us first assume that pu∗(t2) < pu∗(t1). Therefore, since pu∗(T ) = pT , we infer by

continuity the existence of t3 ∈ (t2, T
∗) such that pu∗(t3) = pu∗(t1). Let us define ũ as

ũ(t) =

{
u∗(t) t ∈ (0, t1),

u∗(t+ t3 − t1) t ∈ (t1, T̃ )

where T̃ = T ∗ − t3 + t1. We proceed by direct comparison between the cost of both controls,
obtaining

Jα(T
∗, u∗)− Jα(T̃ , ũ) = (1− α)

∫ t3

t1

j1(u
∗(t))dt+ α(t3 − t1) > 0,

which contradicts the optimality of (T ∗, u∗). The remaining case where pu∗(t1) = pu∗(t2) can be
treated similarly, by choosing t3 = t2.

Let us now exploit this lemma in order to perform a useful change of variables that will allow
us to reformulate Problem (Q1,α

pT ,U
). Given that u ∈ VT,U solving Problem (Q1,α

pT ,U
) satisfies the

necessary conditions p(0) = 0, p(T ) = pT and p′(t) = f(p(t)) + u(t)g(p(t)) > 0 for all t ∈ (0, T ).
Therefore, p defines a bijection from (0, T ) onto (0, pT ). Denoting by p−1 : [0, pT ] → [0, T ] its
inverse, one has

p(t) = pt ⇔ t = p−1(pt) =

∫ pt

0

(p−1)′(ν)dν =

∫ pt

0

dν

p′(p−1(ν))
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which leads to define the change of variable

t =

∫ pt

0

dν

f(ν) + u(p−1(ν))g(ν)
.

Introducing the function pt 7→ up(pt) defined by up(pt) := u(p−1(pt)) = u(t), one can easily infer
that Problem (Q1,α

pT ,U
) is equivalent to

inf
u∈V̂pT ,U

Ĵp,α(up), (Q̂1,α
pT ,U

)

where Ĵp,α(up) is defined by

Ĵp,α(up) =

∫ pT

0

(1− α)j1(up(ν)) + α

f(ν) + up(ν)g(ν)
dν, (1.22)

and V̂pT ,U , is given by

V̂pT ,U := {up ∈ L∞ (0, pT ) , 0 ⩽ up ⩽ U a.e.} .

To recover the solution of (Q1,α
pT ,U

) from the solution of (Q̂1,α
pT ,U

), it suffices to undo the change
of variable by setting u(·) = up(p(·)).

Note that, according to Lemma 1.1, the space V̂pT ,U is bigger than the space where solutions
actually belong. The appropriate space is the range of VT,U , defined in (1.12), by the change of
variable above, that is

W := {up ∈ L∞ (0, pT ) , f(pt) + up(pt)g(pt) > 0 a.e.} .

It is notable that, as can be observed in Figure 1.4, one has

up ∈ W ⇔ −f/g(·) < up(·) ⩽ U a.e. on (0,min{pT , θ}) and 0 ⩽ up(·) ⩽ U a.e. on (min{pT , θ}, pT ).

It follows from the definition of W that

inf
u∈V̂pT ,U

Ĵp,α(up) ⩽ inf
u∈W

Ĵp,α(up)

To solve the optimization problem in the right-hand side, we will solve Problem (Q̂1,α
pT ,U

), and
check a posteriori that its solution u∗p ∈ V̂pT ,U satisfies u∗p ∈ W so that we will infer that

inf
u∈W

Ĵp,α(u) = inf
u∈V̂pT ,U

Ĵp,α(u) = Ĵp,α(u
∗
p).

Step 2: first-order optimality conditions through the Pontryagin Maximum Princi-
ple.

Let us introduce, with a slight abuse of notation, the function t given by

t(pt) =

∫ pt

0

dν

f(ν) + up(ν)g(ν)
.
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Let Ū = [0, U ]. It is standard to derive optimality conditions for this problem 2 and one gets

for a.e. pt, u∗p(pt) ∈ argmax
v∈Ū
− (1− α)j1(v) + α

f(pt) + vg(pt)
. (1.23)

The case α = 1 is obvious and leads to u∗(·) = U on [0, T ∗], after applying the inverse change of
variable.

Let us now assume that α ∈ (0, 1). It is standard to introduce the switching function 3 ψ
defined by

ψ(v) = −f(pt)(1− α)j
′
1(v) + g(pt) ((1− α) (vj′1(v)− j1(v))− α)

(f(pt) + vg(pt))
2 ,

and the maximization condition (1.23) yields
ψ(0) ⩽ 0 on {u∗p = 0},
ψ(u∗p) = 0 on {0 < u∗p < U},
ψ(U) ⩾ 0 on {u∗p = U},

these equalities and inequalities being understood up to a null Lebesgue measure set. These
functions allows us to write the aforementioned optimality conditions as

F0(0) ⩾ − f(pt)g(pt)
on {u∗p = 0},

F0(u
∗
p) = −

f(pt)
g(pt)

on {0 < u∗p < U},
F0(U) ⩽ − f(pt)g(pt)

on {u∗p = U},
(1.24)

where F0 is given by (1.14).
Since the derivative of F0 writes

F ′
0(v) = (1− α)j′′1 (v)

(1− α)j1(v) + α

((1− α)j′1(v))
2 ,

this function shares the sign of j′′1 (v).

Step 3: analysis of the first-order optimality conditions.

Before discussing the different cases, it is useful to recall the behaviour of the function pt 7→
− f(pt)g(pt)

, represented in Figure 1.4. This function has two roots at pt = 0 and pt = θ, is strictly
positive between them and strictly negative after pt = θ, with a maximum at pt = p∗ as defined
in (1.6) and such that limpt→1 f(pt)/g(pt) = −∞ (See Remark 1.2). Another property that will
be useful thereafter is that pt 7→ f(pt)/g(pt) is not constant on any set of positive measure.

We conclude the proof looking each case separately:

2. Indeed, one way consists in applying the Pontryagin Maximum Principle (PMP). Introducing the Hamilto-
nian H of the system, defined by

H : (0, 1)× R+ × R× {0,−1} × Ū → R
(pt, t, τ, q0, up) 7→ τ+q0((1−α)j1(up)+α)

f(pt)+upg(pt)
.

where τ is the conjugated variable of t and satisfies τ ′ = −∂tH = 0 and therefore, τ is constant. Fur-
thermore the transversality condition on τ yields τ = 0. The instantaneous maximization condition reads
u∗p(pt) ∈ argmaxv∈Ū H(pt, t, τ, q0, v). Finally, since (τ, q0) is nontrivial, one has q0 = −1.

3. Indeed, according to the PMP, the switching function is given by ψ := ∂upH(pt, t, τ, v).
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Figure 1.4 – Function pt 7→ − f(pt)g(pt)
represented between pt = 0 and pt = 0.3 for the parameters

at table 1.1.

— If j′′1 (·) = 0 then F0 is constant, so that F0(0) = F0(U) and u∗p is necessarily bang-bang,
equal to 0 or U a.e. in (0, pT ) because F0(u

∗
p) = −

f(pt)
g(pt)

cannot be constant. Looking at
conditions (1.24) we see that if F0(0) ⩽ m∗ the solution is u∗p = U1[0,pT ], since only the
condition F0(U) ⩽ − f(pt)g(pt)

can be satisfied. On the other hand, if F0(0) > m∗ then u∗p has
one switch from U to 0. We conclude by computing

F0(0) =
−α

(1− α)j′1(0)
⩽ m∗ ⇐⇒ α ⩾ −m∗

j′1(0)

1−m∗j′1(0)
= α∗

and noticing that j′1(0) = j1(U)/U .
— If j′′1 (·) < 0, then F is decreasing. We introduce the function Ψ we are maximizing, given

by

Ψ(v) := − (1− α)j1(v) + α

f(pt) + vg(pt)

and we recall that Ψ′ = ψ. To show that u∗p is bang-bang, let us use (1.23). For a given
pt ∈ (0, pT ), let N(v) be the numerator of ψ(v). If there exists v0 ∈ (0, U) maximizing
Ψ(·), then f(pt) + v0g(pt) > 0 according to Lemma 1.1. Moreover, ψ(v0) = N(v0) = 0
since v0 is a critical point of Ψ and Ψ′′(v0) = ψ′(v0) ⩽ 0. We compute

ψ′(v0) =
N ′(v0) (f(pt) + vg(pt))

2 −N(v0)2 (f(pt) + vg(pt)) g(pt)

(f(pt) + vg(pt))
4 =

N ′(v0)

(f(pt) + v0g(pt))
2 .

which has the same sign as N ′(v0), and

N ′(v0) = −(1− α)j′′1 (v0) (f(pt) + v0g(pt)) .

Therefore, one has Ψ′′(v0) > 0 leading to a contradiction with the maximality of v0. It
follows that the points v0 ∈ (0, U) satisfying F0(v0) = − f(pt)g(pt)

cannot maximize Ψ, which
shows that any solution is bang-bang.
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A straightforward computation shows that

Ψ(U)−Ψ(0) = − (1− α)j1(U)f(pt)− αUg(pt)
f(pt)(f(pt) + Ug(pt))

.

According to the optimality conditions (1.23), and because of the variations of −f/g,
one sees that if u∗p has a switching point, then it necessarily occurs strictly after θ since
F0(0) < 0.
Hence, from the expression of Ψ(U)−Ψ(0), we get that any switching point ps solves the
equation

−f(ps)
g(ps)

=
−αU

(1− α)j1(U)

and we can compute that the smallest value of α for which this equation has a solution is
the one such that m∗ = −αU

(1−α)j1(U) which allows us to recover α∗.
— If j′′1 (·) > 0, then F0(·) is increasing, and the three conditions (1.24) are mutually exclusive

and are thus both necessary and sufficient. The function pt 7→ − f(pt)g(pt)
is increasing until

p∗, defined in (1.6), and then decreasing (See the unimodality condition in Remark 1.2).
Since F0 defines a bijection, the optimality conditions (1.24) rewrite

0 ⩾ F−1
0

(
− f(pt)g(pt)

)
on {u∗p = 0},

u∗p = F−1
0

(
− f(pt)g(pt)

)
on {0 < u∗p < U},

U ⩽ F−1
0

(
− f(pt)g(pt)

)
on {u∗p = U}.

The expected expression of u∗ follows then easily.

In order to finish the proof, we have to check that the solution u∗p ∈ V̂pT ,U belongs to W.
This two spaces only differ for pt ∈ [0, θ). We have that F0(0) = −α

(1−α)j′1(0)
⩽ 0. This implies

that u∗p ̸= 0 in (0, θ), because the optimality condition 0 ⩾ F−1
0

(
− f(pt)g(pt)

)
cannot be satisfied in

any open interval inside (0, θ). In the concave and linear case, since the solution is bang-bang,
this also means that u∗p = U in (0, θ), therefore f(pt) + u∗p(pt)g(pt) > 0 in pt ∈ (0, θ). In the
convex case, we need to prove that f(pt) + u∗p(pt)g(pt) > 0 also in case the solution is a singular

control. In that case, u∗p satisfies the equation u∗p = F−1
0

(
− f(pt)g(pt)

)
. Now F0(·) is increasing, and

so is F−1
0 (·), therefore

F−1
0

(
−f(pt)
g(pt)

)
> −f(pt)

g(pt)
⇔ −f(pt)

g(pt)
> F0

(
−f(pt)
g(pt)

)
for pt ∈ (0, θ).

This is true if, and only if v > F0(v) for v ∈ (0,m∗]. We have that

v > F0(v)⇔ v >
(1− α)(vj′1(v)− j1(v))− α

(1− α)j′1(v)
⇔ 0 > − (1− α)j1(v) + α

(1− α)j′1(v)
.

All the terms in the last fraction are positive, yielding that f(pt) + u∗p(pt)g(pt) > 0 for all
pt ∈ (0, θ), which ends the proof.
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1.2.4 Proof of Theorem 1.2

Let us first recall that existence of solutions for Problem (P1,α
pT ,C,U

) has been proved in Propo-
sition A.3.

Step 1: derivation of the first-order optimality conditions.

By mimicking the reasoning in the first step of the proof of Theorem 1.1, one shows that the
conclusion of Lemma 1.1 still holds true in that case, in other words, the optimal state pu∗ is
increasing in [0, T ∗]. This allow us to reformulate Problem (P1,α

pT ,C,U
) by defining the change of

variable
t : pt 7→

∫ pt

0

dν

f(ν) + u(p−1(ν))g(ν)
,

introducing the function pt 7→ up(pt) defined by up(pt) := u(p−1(pt)) = u(t), so that Prob-
lem (P1,α

pT ,C,U
) is equivalent to

inf
u∈ÛpT ,C,U

Ĵp,α(up), (P̂1,α
pT ,C,U

)

where Ĵp,α(up) is defined by (1.22) and ÛpT ,C,U is given by

ÛpT ,C,U :=

{
up ∈ L∞ ([0, pT ]) , 0 ⩽ up ⩽ U a.e. ,

∫ pT

0

up(ν)

f(ν) + up(ν)g(ν)
dν ⩽ C

}
.

To recover the solution of (P1,α
pT ,C,U

) from the solution of (P̂1,α
pT ,C,U

), it suffices to undo the variable
change by setting u(·) = up(p(·)). Note that, as pointed out in the step 1 of Section 1.2.3, we
are solving the problem in ÛpT ,C,U , a bigger space than the range of UT,C,U by the change of
variable introduced in Lemma 1.1. This range is Ŵ = W ∩ ÛpT ,C,U . As we have seen before,
solutions to Problems (P̂1,α

pT ,C,U
) and

inf
u∈Ŵ

Ĵp,α(up), (1.25)

coincide as long as the solutions to Problem (P̂1,α
pT ,C,U

) satisfy f(pt)+u∗p(pt)g(pt) > 0. Mimicking
the reasoning at the end Step 3 in Section 1.2.3, one can similarly check that solutions to both
problems above still coincide.

Let us derive and analyze optimality conditions for this problem. To handle the constraint∫ pT

0

up(ν)

f(ν) + up(ν)g(ν)
dν ⩽ C,

we introduce the mapping

pt 7→ zp(pt) =

∫ pt

0

up(ν)

f(ν) + up(ν)g(ν)
dν.

By following the same lines as in the proof of Theorem 1.1 and applying the PMP, one gets the
existence of λ ⩽ 0 such that

λ ⩽ 0 , λ(zp(pT )− C) = 0. (transversality and slackness condition) (1.26)
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and the optimal control u∗p solves

for a.e. pt, u∗p(pt) ∈ argmax
v∈Ū

λv + q0((1− α)j1(v) + α)

f(pt) + vg(pt)
. (1.27)

In what follows, if pT ⩽ θ, we will assume without loss of generality that

C > CpT (U), (1.28)

the case C = CpT (U) being straightforward (in that case, one has necessarily u∗p(pt) = U on
[0, pT ]).

Let us show that q0 = −1. To this aim, let us assume by contradiction that q0 = 0. Hence,
the optimality condition reads u∗p(pt) ∈ argmaxv∈Ū ψ(v) where ψ(v) = λv

f(pt)+vg(pt)
, and since

the 3-tuple of Lagrange multipliers is nontrivial according to the PMP, we necessarily have λ < 0
which, by condition (1.26), implies in turn that zp(pT ) = C. If pt ∈ (0, θ) (resp. pt ∈ (θ, 1)), ψ
is increasing (resp. decreasing). Hence, if pT ⩽ θ, then u∗p = U1[0,pT ]. This allows us to write
zp(pT ) = Ut(pT ) leading to a contradiction since C > Ut(pT ) = zp(pT ) (See Remark 1.5). On
the other hand, if pT > θ the final state cannot be reached since u∗p = U1[0,θ] + 01[θ,pT ]. Given
that with this control, pu∗ cannot attain pT (remaining indefinitely at pu∗ = θ) we reach again
a contradiction. Therefore, it follows that q0 = −1.

Step 2: analysis of the first-order optimality conditions.

Before discussing further the optimality conditions of this problem we remark a key fact in
this proof. We introduce

CQ :=

∫ T∗
Q

0

u∗Q(t)dt,

where
(
T ∗
Q, u

∗
Q
)

is the solution to Problem (Q1,α
pT ,U

) for the same value of α considered. Since
UT,C,U ⊂ VT,U we have that

inf
up∈VT,U

Ĵp,α(up) ⩽ inf
up∈UT,C,U

Ĵp,α(up).

This implies that if C ⩾ CQ, then u∗ = u∗Q. Moreover, we can also deduce that, in case
C < CQ the constraint zp(pT ) ⩽ C is always saturated. By contradiction, if zp(pT ) < C, then
the slackness condition yields λ = 0. Therefore u∗p(pt) ∈ argmax

v∈Ū
− (1−α)j1(v)+α

f(pt)+vg(pt)
, but this is the

optimality condition for the unconstrained case and u∗Q ̸∈ UT,C,U . Thus, the constraint must be
saturated and we must have λ < 0. Consequently, we consider C < CQ and λ < 0 from now on.

We begin by discussing the case α = 1. From the optimality condition (1.27) we can derive
1
λ ⩾ − f(pt)g(pt)

on {u∗p = 0},
1
λ = − f(pt)g(pt)

on {0 < u∗p < U},
1
λ ⩽ − f(pt)g(pt)

on {u∗p = U}.

Once again these equalities and inequalities must be understood up to a null Lebesgue measure
set. From these conditions we see easily that u∗p is bang-bang, since pt 7→ f(pt)

g(pt)
is not constant on

any set of positive measure. Also, using the monotonicity of pt 7→ f(pt)
g(pt)

and the fact that λ < 0

we conclude that u∗p has, at most, one switch from U to 0. Since the case without constraint
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had no switches and we are assuming C < CQ, it follows that u∗p = U1[0,ps], with ps solving
Cps(U) = C. We can easily express this as a function of time since Cps(U) =

∫ ps
0

U
f(ν)+Ug(ν)dν =

U
∫ ps
0

dν
f(ν)+Ug(ν) = Uts, thus u∗ = U1[0,ts], with ts = C

U .

Assuming now α ∈ (0, 1) and following the same lines as in the unconstrained case we intro-
duce

v 7→ Fλ(v) :=
(1− α)(vj′1(v)− j1(v))− α

(1− α)j′1(v)− λ
.

Then, we can write the optimality conditions for Problem (P̂1,α
pT ,C,U

) as
Fλ(0) ⩾ − f(pt)g(pt)

on {u∗p = 0},
Fλ(u

∗
p) = −

f(pt)
g(pt)

on {0 < u∗p < U},
Fλ(U) ⩽ − f(pt)g(pt)

on {u∗p = U}.
(1.29)

A straightforward computation shows that, like in the unconstrained case, F ′
λ(·) and j′′1 (·)

have the same sign. This allows us to draw the same conclusions on the behaviour of u∗p as in
the unconstrained case. We sketch the reasoning hereafter:

— If j′′1 (·) = 0 then Fλ is constant and u∗p bang-bang. Since Fλ(0) = − α
(1−α)j′1(0)−λ

⩽ 0,
then there is at most one switch. Moreover, we know that the constraint zp(pT ) ⩽ C is
saturated and therefore that u∗ = U1[0,ts] with ts = C

U .
— If j′′1 (·) < 0, then Fλ is decreasing. Mutatis mutandis, we can reproduce the calculations

done in Theorem 1.1, deducing that the behaviour of u∗p is identical to the unconstrained
case. That is, u∗p is bang-bang with at most one switch from U to 0. Again, using the
saturation of the constraint we deduce that u∗ = U1[0,ts] with ts = C

U .
— If j′′1 (·) > 0, then F (·) is increasing, and thus the three conditions (1.29) are both necessary

and sufficient. This also implies that, once again, Fλ defines a bijection, so the optimality
conditions (1.29) can be rewritten as

0 ⩾ F−1
λ

(
− f(pt)g(pt)

)
on {u∗p = 0},

u∗p = F−1
λ

(
− f(pt)g(pt)

)
on {0 < u∗p < U},

U ⩽ F−1
λ

(
− f(pt)g(pt)

)
on {u∗p = U}.

From these conditions we can do a straightforward derivation of the expression of u∗.

Remark 1.6. Note that the control u∗ in the convex case with constraint has a very similar
expression to the unconstrained case. Indeed the monotonicity of pt 7→ F−1

λ (−f/g(pt)) is the
same: increasing until pt = p∗ and then decreasing. This translates into u∗ being non-decreasing
until t∗, solving pu∗(t∗) = p∗ and non-increasing afterwards. The relative positions of Fλ(0) and
Fλ(U) with respect to m∗ and m∗ still play the same crucial role in the behaviour of solutions.
Nevertheless, the values of α0, α1 and α2 do not make sense anymore, since Fλ depends on λ
which may change for different choices of α and C.
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1.3 Analysis of Family 2 problems

1.3.1 Description of solutions

In this section we present and discuss the results obtained for the problem (P2,α
T,C,U ) of Family

2. As discussed in Section 1.1.2 let us assume j2(T, p(T )) = (1 − p(T ))2. Therefore, (1.11)
becomes

Jα(u) = (1− α)
∫ T

0

j1(u(t))dt+ α(1− p(T ))2.

In this family the time horizon T is fixed and p(T ) is free. The existence issues in a broader
setting are treated separately in Appendix A.

We introduce the following notations in order to state the main result of this section:

U∗ := max
p∈[0,1]

(
−f

′(p)

g′(p)

)
(1.30)

Let us also introduce also pmax and p̄ defined in the following way:
— If C ⩽ Cθ,

pmax solves
∫ pmax

0

dν

f(ν) + Ug(ν)
= min

{
C

U
, T

}
.

— If C > Cθ,

pmax solves
∫ pmax

0

dν

f(ν) + U1(0,p̄)g(ν)
= T.

where p̄ is such that ∫ p̄

0

dν

f(ν) + Ug(ν)
= min{C/U, T}. (1.31)

We remark that in the first case we have pmax ⩽ θ.
Let us also introduce the mapping

v 7→ Fλ,τ (v) :=
vj′1(v)− j1(v) + τ

j′1(v)− λ
,

where λ, τ ∈ R−.
Finally let us define

α0 :=
Kj1(U)/U

2 +Kj1(U)/U
and αmax =

j1(U)/ (f(pmax) + Ug(pmax))

2(1− pmax) + j1(U)/ (f(pmax) + Ug(pmax))
.

Note that both parameters satisfy α0, αmax ∈ (0, 1) and, assuming U ⩾ m∗(pT ) and U > U∗,
they satisfy the inequality α0 ⩽ αmax 4. Here, K denotes the environmental carrying capacity
(see (1.1)). It appears in the definition of α0 and hereafter due to the fact that g(0) = 1/K.

4. In order to prove this we recall that x 7→ x
2+x

is an increasing function of x, we have α0 ⩽ αmax if and only
if

K
j1(U)

U
⩽

j1(U)

(1− pmax)(f(pmax) + Ug(pmax))
.

Reordering this we get U ⩾ K(1 − pmax)(f(pmax) + Ug(pmax)). Note that for pmax = 0 we have the equality,
therefore we want to be sure that p 7→ (1 − p)(f(p) + Ug(p)) is non-increasing. Computing the derivative we
obtain −K(f(p) + Ug(p)) +K(1 − p)(f ′(p) + Ug′(p)). The conditions needed for both terms to be individually
smaller than zero are, precisely, U > m∗(pT ) and U > U∗.
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Theorem 1.3. Let us assume that (1.2) is true, and that j1(·) satisfies the assumptions of
(H.1). Let us assume that U > m∗(pT ) and α ∈ (0, 1] 5. Then, there exists a control u∗ ∈ UT,C,U
solving problem (P2,α

T,C,U ) and times t−, t+ ∈ [0, T ] such that u∗ = 0 in (0, t−) ∪ (t+, T ) and in
(t−, t+):

— Case where j1 is either linear or strictly concave. The optimal control is u∗ = U1[t−,ts], with
ts ⩽ t+. Assuming further that U > U∗ we have that
— If α ⩽ α0, u∗ = 0 for all t ∈ (t−, t+).
— If α0 < α < αmax then u∗ = U1[t−,ts] with ts the smallest possible value such that

pu∗(T ) = p∗T , p∗T being the only solution to (1 − p∗T ) (f(p∗T ) + Ug(p∗T )) = 1−α
2α j1(U).

This value can be explicitly computed: if p∗T ⩽ θ, then ts = T and if p∗T > θ then ts

solves ts − t− =
∫ ps
0

dν
f(ν)+Ug(ν) , with ps the solution of

∫ p∗T
0

dν
f(ν)+U1(0,ps)g(ν)

= T .

— If α ⩾ αmax then u∗ = U1[t−,ts] with ts solving ts − t− =
∫ p̄
0

dν
f(ν)+Ug(ν) .

— Case where j1 is convex. Let u∗p be defined by

u∗p : [0, pT ] ∋ pt 7→ max{min{U,F−1
λ,τ (−f/g(pt))}, 0}

If α ∈ (0, 1) the optimal control u∗ reads u∗(t) = u∗p(pt) for all t ∈ [t−, t+], where pt
denotes the unique solution in [0, pT ] to the equation t =

∫ pt
0

dν
f(ν)+u∗

p(ν)g(ν)
.

If α = 1 then u∗ = U1[t−,t+].
Moreover, calling T ∗ ≡ t+ − t−:
— If pu∗(T ) < θ, then t+ = T
— If pu∗(T ) = θ, control functions u∗ξ such that u∗ξ(·) = u∗(· − ξ) a.e. with ξ ∈ [−t−, T − t+]

are also solutions.
— If pu∗(T ) > θ, then (t−, t+) = (0, T ), thus T ∗ = T .

Remark 1.7. Analogously to Family 1, in the convex case, λ and τ are equal to zero in case the
constraints

∫ p(T )

0
u∗p(ν)/(f(ν) + u∗p(ν)g(ν))dν ⩽ C and T ∗ ⩽ T , respectively, are not saturated.

If the constraints are saturated, λ and τ are defined implicitly by these equalities.

1.3.2 A first result: optimization with T free but bounded and pT fixed

We begin by stating and proving an intermediate result that will be useful for proving Theo-
rem 1.3. In this section we investigate a seemingly unrelated problem, where only the cost term
is considered, the final state is fixed, and the final time is free, but bounded. With a slight abuse
of notation let us introduce

inf
u∈VT∗,U

T∗⩽T

J(T ∗, u)

p′ = f(p) + ug(p) in (0, T ∗), p(0) = 0 , p(T ∗) = pT ,

(Q2,T
pT ,C,U

)

where J(T ∗, u) is defined by

J(T ∗, u) =

∫ T∗

0

j1(u(t))dt. (1.32)

For τ ∈ R−, let us introduce the mapping

v 7→ Fτ (v) :=
vj′1(v)− j1(v) + τ

j′1(v)
. (1.33)

5. We exclude the case α = 0 for simplicity. Note that in that case the answer is trivially u∗ = 0 a.e. in [0, T ].
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Theorem 1.4. Let us assume that pT ∈ (0, 1), that (1.2) is true, and that j1(·) satisfies the
assumptions of (H.1). Let us assume that U > m∗(pT ) and that

T ⩾
∫ pT

0

dν

f(ν) + Ug(ν)

Then, there exists a pair (T ∗, u∗) ∈ [0, T ]× UT,C,U solving Problem (Q2,T
pT ,C,U

). Moreover, let us
distinguish between two cases:

— Case where j1 is either linear or strictly concave. The optimal time and control read

u∗ = U1[0,ts] and T ∗ =

∫ pT

0

dν

f(ν) + U1(0,ps)g(ν)
.

Where ps is the only solution to ts =
∫ ps
0

dν
f(ν)+Ug(ν) . Moreover, if pT ⩽ θ then ts = T ∗

and if pT > θ then ts is such that T ∗ = T .
— Case where j1 is convex. Let u∗p be defined by

u∗p : [0, pT ] ∋ pt 7→ max{min{U,F−1
τ (−f/g(pt))}, 0}.

The optimal time T ∗ and control u∗ read

T ∗ =

∫ pT

0

dν

f(ν) + u∗p(ν)g(ν)
and ∀t ∈ [0, T ∗], u∗(t) = u∗p(pt)

where pt denotes the unique solution in [0, pT ] to the equation t =
∫ pt
0

dν
f(ν)+u∗

p(ν)g(ν)
.

Moreover, τ ∈ R− and if for τ = 0, T ∗ ⩽ T then τ = 0, otherwise τ is implicitly
determined by the equation T ∗ = T .

1.3.3 Proof of Theorem 1.4
In order to prove Theorem 1.4 we will follow similar steps to the ones in Family 1. The

idea behind the proof is to recast Problem (Q2,T
pT ,C,U

) into a problem of Family 1 with an extra
constraint T ∗ ⩽ T . We find the desired results by performing a similar reasoning to the one
carried out in the proof of Theorem 1.2. Recall that our conclusions hold true for a larger class
of functions f and g (See Remark 1.2).

Step 1: recasting into a Family 1 control problem with T ∗ bounded.

Adapting slightly the reasoning in Lemma 1.1, we see that the result is valid for Problem
(Q2,T

pT ,C,U
). We can therefore repeat the change of variable performed in Sections 1.2.3 and 1.2.4,

that is
t : pt 7→

∫ pt

0

dν

f(ν) + u(p−1(ν))g(ν)
and up(pt) := u(p−1(pt)) = u(t).

Let us introduce a new problem.
inf

u∈V̂p∗
T

,U

Ĵp(up), (Q̂2,T
pT ,C,U

)

where Ĵp(up) :=
∫ pT
0

j1(up(ν))
f(ν)+up(ν)g(ν)

dν and V̂p∗T ,U is given by

V̂p∗T ,U :=

{
up ∈ V̂pT ,U ,

∫ pT

0

dν

f(ν) + up(ν)g(ν)
⩽ T

}
.
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From this new problem we will be able to recover the solutions of (Q2,T
pT ,C,U

) by undoing the
change of variable.

Similarly to the analysis of the problems of Family 1, we should impose the restriction
f(p(t)) + u∗(t)g(p(t)) > 0 for t ∈ [0, T ] in the control space. Once again, we will not im-
pose it in order to simplify the derivation of the solutions. Using analogous arguments to those
exposed in Section 1.2.3, one can easily check that the solutions we obtain indeed belong to the
range of UT,C,U by the change of variable used.

Step 2: first-order optimality conditions through the Pontryagin Maximum Princi-
ple.

In addition to the notations used so far, we introduce, abusing of the notation t(pt) :=∫ pt
0

dν
f(ν)+up(ν)g(ν)

in order to handle the constraint T ∗ ⩽ T . Applying the PMP we find:

τ ⩽ 0 , τ(t(pT )− T ) = 0, (transversality and slackness condition)

with τ being a constant. The optimal control u∗p solves

for a.e. pt, u∗p(pt) ∈ argmax
v∈Ū

τ + q0j1(v)

f(pt) + vg(pt)
. (1.34)

We can check that, if T >
∫ pT
0

dν
f(ν)+Ug(ν) , then q0 = −1. By the PMP the pair

(
τ, q0

)
is

non-trivial. Assuming q0 = 0, this implies that τ < 0 and u∗p ≡ U1[0,pT ]. Since τ < 0 by the
slackness condition T ∗ = T and T ∗ =

∫ pT
0

dν
f(ν)+Ug(ν) . So, without loss of generality, for the rest

of the proof we consider T >
∫ pT
0

dν
f(ν)+Ug(ν) and q0 = −1.

Step 3: analysis of the first-order optimality conditions.

In the same spirit as in Theorem 1.2, we introduce the switching function

v 7→ ψ(v) :=
∂H
∂v

(pt, t, τ, v)

=
−f(pt)j′1(v)− g(pt) (vj′1(v)− j1(v) + τ)

(f(pt) + vg(pt))
2 .

The maximization condition yields
ψ(0) ⩽ 0 on {u∗p = 0},
ψ(u∗p) = 0 on {0 < u∗p < U},
ψ(U) ⩾ 0 on {u∗p = U}.

We remind that equalities and inequalities in this context must be understood up to a null
Lebesgue measure set. Using the mapping Fτ (·) introduced in (1.33) we can write the optimality
conditions as 

Fτ (0) ⩾ − f(pt)g(pt)
on {u∗p = 0},

Fτ (u
∗
p) = −

f(pt)
g(pt)

on {0 < u∗p < U},
Fτ (U) ⩽ − f(pt)g(pt)

on {u∗p = U}.
(1.35)
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We compute the derivative of Fτ

F ′
τ (v) = j′′1 (v)

j1(v)− τ
j′1(v)

2
.

The sign of F ′
τ (·) depends exclusively on the sign of j′′1 (·), hence we can extract similar conclusions

on the behaviour of u∗p to the ones obtained in Theorem 1.2, namely, u∗p is bang-bang in the linear
case and the three optimality conditions are mutually exclusive in the convex case. As for the
concave case, we can prove that u∗p is bang-bang too. To do this it suffices to reproduce the
computations carried out in Theorem 1.1 but with the switching function of this section. These
results lead us to conclude that:

— If j′′1 (·) ⩽ 0, then u∗ = U1[0,ts]. Using Lemma 1.1 we obtain that if pT ⩽ θ, then
ts = T ∗ =

∫ pT
0

dν
f(ν)+Ug(ν) , since there cannot be any switch. If pT > θ, since

∫ t
0
j1(U)ds

is an increasing function of time, by direct comparison we find that the switching time
must be as small as possible. Since ts =

∫ ps
0

dν
f(ν)+Ug(ν) , a smaller ts implies a smaller

ps. Taking into account that T ∗ =
∫ pT
0

dν
f(ν)+U1(0,ps)g(ν)

we conclude that minimising ts is
equivalent to maximising T ∗. Therefore ts is such that T ∗ = T .

— If j′′1 (·) > 0, the three optimality conditions are mutually exclusive and therefore necessary
and sufficient. Applying F−1

τ to both sides of the inequalities in (1.35) we obtain the
expression in the statement for u∗p.
We conclude arguing by contradiction. Let us call T ∗

τ the T ∗ obtained for a particular
value of τ . If T ∗

0 ⩽ T then, for bigger values of T , the slackness condition implies τ = 0
and therefore T ∗ = T ∗

0 . The only way we can have τ < 0 is in case T ∗
0 > T , and in that

case, using again the slackness condition we need T ∗
τ = T . Looking at the definition of

T ∗
τ and u∗p, we conclude that τ must have a value such that

∫ pT
0

dν
f(ν)+u∗

p(ν)g(ν)
= T .

1.3.4 Proof of Theorem 1.3

In order to prove Theorem 1.3 we will characterize an interval in which p′u∗ > 0. In this
interval we will be able to adapt some of the results seen so far, specially those of Theorem 1.4.
The solution outside of this interval will be null.

Step 1: recasting into a Family 1 control problem with T ∗ bounded.

Lemma 1.2. Let u∗ ∈ UT,C,U be a control solving (P2,α
T,C,U ) and let α > 0. Let us introduce pu∗

solving {
p′u∗ = f(pu∗) + u∗g(pu∗) in (0, T ),

pu∗(0) = 0.

Then, there exists one single interval (t−, t+) ⊆ (0, T ) in which p′u∗ > 0. Moreover, outside of
this interval, u∗ = 0 and p′u∗ = 0, implying that pu∗(0) = pu∗(t−) = 0 and pu∗(t+) = pu∗(T ).

Proof. The proof will be done by contradiction and it will follow the same lines as the one carried
in Lemma 1.1. Assuming pu∗(T ) > 0 (if pu∗(T ) = 0 the solution is trivially u∗ = 0), there
necessarily exists a non-zero measure set in which p′u∗ > 0. We call t− = inf{t ∈ (0, T ) | p′u∗(t) >
0} and t+ = sup{t ∈ (0, T ) | p′u∗(t) > 0}, therefore {t ∈ (0, T ) | p′u∗(t) > 0} ⊆ (t−, t+). We
assume that there exists an interval of non-zero measure (t1, t2) ⊂ (t−, t+) such that p′u∗ ⩽ 0 a.e.
on (t1, t2).
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We split the proof in two parts: first we assume pu∗(T ) ⩽ θ, and we define ũ as

ũ(t) =


0 t ∈ (0, t2 − t1)
u∗(t− t2 + t1) t ∈ (t2 − t1, t2),
u∗(t) t ∈ (t2, T ).

We proceed by direct comparison between the cost of both controls, obtaining

Jα(u
∗)− Jα(ũ) = (1− α)

 T∫
0

j1(u
∗(t))dt−

T∫
0

j1(ũ(t))dt

+ α((1− pu∗(T ))2 − (1− pũ(T ))2)

= (1− α)
∫ t2

t1

j1(u
∗(t))dt+ α((1− pu∗(T ))2 − (1− pũ(T ))2).

Since p′ũ = 0 on (0, t2 − t1) but p′u∗ ⩽ 0 in (t1, t2) and they are equal on intervals of the
same length, it follows that pũ(T ) ⩾ pu∗(T ). Therefore Jα(u∗) − Jα(ũ) ⩾ 0 which leads to a
contradiction if the inequality is strict. In order to have the equality we need p′u∗ = 0 in (t1, t2)
and since we assumed pu∗(T ) ⩽ θ this can only happen if pu∗(t1) = pu∗(t2) = θ and u∗ = 0 on
(t1, t2). But in this case t2 = T , t1 = t+, so (t−, t+) = {t ∈ (0, T ) | p′u∗(t) > 0} anyway.

Next, we assume pu∗(T ) > θ, and we define ũ as

ũ(t) =


u∗(t) t ∈ (0, t1)

u∗(t+ t2 − t1) t ∈ (t1, T − t2 + t1),

0 t ∈ (T − t2 + t1, T ).

(1.36)

Comparing the cost of both controls we obtain again Jα(u
∗) > Jα(ũ), because in this case

pũ(T ) > pu∗(T ) always. This yields the desired contradiction.
Since (t−, t+) = {t ∈ (0, T ) | p′u∗(t) > 0} we have that u∗ = 0 and p′u∗ = 0 in (0, t−) and

thus pu∗(t−) = 0. On the other hand, we have pu∗(t+) ⩾ pu∗(T ). But we must also have u∗ = 0
and p′u∗ = 0 in (t+, T ), otherwise at least one of the two terms in Jα(u

∗) would be bigger, thus
pu∗(t+) = pu∗(T ).

This lemma proves that pu∗(t) is a bijection from (t−, t+) onto (pu∗(t−), pu∗(t+)). A straight-
forward exploration of its consequences already proves the last part of Theorem 1.3. Since we
must have p′ = 0 in (0, t−) ∪ (t+, T ) and pu∗(t+) = pu∗(T ) it follows that:

— If pu∗ < θ, then t+ = T , otherwise we would have p′ < 0 in (t+, T ) and pu∗(t+) < pu∗(T ).
— If pu∗ = θ, as long as the length of (0, t−)∪ (t+, T ) is the same, the length of each interval

does not affect the functional Jα(u), hence the conclusion.
— If pu∗(T ) > θ, we have pu∗(t+) = pu∗(T ) > θ so t+ = T , otherwise we would have p′ > 0

in (t+, T ) and pu∗(t+) > pu∗(T ). We have also that t− = 0,. By contradiction we can
construct a function following the same principle as in (1.36) (setting t1 = 0 and t2 = t−)
and prove that u∗ is not optimal.

Exploiting this lemma further we can repeat the change of variable of the previous theorems one
more time, but only in the subinterval (t−, t+).

Let us introduce the following problem:

inf
u∈UT

pT ,C,U

pT∈[0,1)

Ĵp,α(pT , up), (P̂2,α
T,C,U )
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where Ĵp,α(pT , up) is defined by

Ĵp,α(pT , up) = (1− α)
∫ pT

0

j1(up(ν))

f(ν) + up(ν)g(ν)
dν + α(1− pT )2, (1.37)

α ∈ (0, 1] and UTpT ,C,U is given by

UTpT ,C,U :=

{
up ∈ ÛpT ,C,U ,

∫ pT

0

dν

f(ν) + up(ν)g(ν)
⩽ T

}
.

We remark that thanks to the change of variable, actually T ∗ = t+ − t− =
∫ pT
0

dν
f(ν)+up(ν)g(ν)

,

therefore UTpT ,C,U can also be expressed as UTpT ,C,U :=
{
up ∈ ÛpT ,C,U , T ∗ ⩽ T

}
. To recover the

solution of (P2,α
T,C,U ) on the interval (t−, t+) from the solution of (P̂2,α

T,C,U ), we need to undo the
change of variable by setting u(·) = up(p(·)). Next, we need to determine t− and t+ which will
be done in the following steps. Finally, u∗ = 0 in (0, t−) and in (t+, T ).

Similarly to the analysis of the problems of Family 1, according to Lemma 1.2, we should
impose the restriction f(p(t)) + u∗(t)g(p(t)) > 0 for t ∈ (t−, t+) in the control space. Once
again, we will not impose it in order to simplify the derivation of the solutions. Using analogous
arguments to those exposed before, one can check that the solutions we obtain indeed belong to
the range of UT,C,U by the change of variable introduced in Lemma 1.2.

Step 2: Finding pmax (case α = 1).

Let us define
Φ : [0, 1) ∋ pT 7→ inf

up∈UT
pT ,C,U

∫ pT

0

j1(up(ν))

f(ν) + up(ν)g(ν)
dν.

Thanks to Theorem 1.4 we know this problem has a solution for all pT ∈ [0, 1) if T is big enough.
And therefore we can rewrite Problem (P̂2,α

T,C,U ) as a minimisation problem in one variable,
namely:

inf
pT∈[0,1)

(1− α)Φ(pT ) + α (1− pT )2 .

Nevertheless, in Theorem 1.4, no constraint on the total number of mosquitoes used was imposed.
Moreover the final time T was supposed big enough for solutions to exist. In order to apply the
results of Theorem 1.4 to prove Theorem 1.3 we need to establish first which values of pT are
reachable for a given set of constraints. In other words, depending on T , C and U , there will
be values of pT such that UTpT ,C,U is empty. We note this maximal value pmax. Once we have
characterized the set [0, pmax], inside it we can disregard the constraint on C and apply Theorem
1.4 to find the solution.

In order to find the value of pmax we study the case α = 1 in Problem (P2,α
T,C,U ). We recall it

inf
u∈UT,C,U

(1− p(T ))2.

Indeed, when α is set to 1 we are maximising pT for a given set of constraints C and T regardless
of j1(·). This problem, in the case T > C/U , is discussed and solved in [10]. There, it is proven
that solutions are bang-bang and such that saturate the constraint

∫ T
0
u∗(t)dt = C. Combining

this result with Lemma 1.2 and since we are only looking at the subinterval (t−, t+) where
p′u∗ > 0, we conclude that solutions have at most one switch from U to 0, and only if pu∗(T ) > θ.
A straightforward extension of their results yields that in the more general case, where the
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T > C/U is not imposed, we have that if C ⩽ Cθ then pmax ⩽ θ and solves∫ pmax

0

dν

f(ν) + Ug(ν)
= min

{
C

U
, T

}
.

Instead if C > Cθ, then pmax > θ and solves∫ pmax

0

dν

f(ν) + U1(0,p̄)g(ν)
= T

where p̄ is such that
∫ p̄
0

dν
f(ν)+Ug(ν) = min{C/U, T}.

Step 3: Finding p∗T

Thanks to the previous step we can finally write the expression we want to minimize, that is

inf
pT∈[0,pmax

T ]
(1− α)Φ(pT ) + α (1− pT )2 .

Now, for all pT ∈ [0, pmax] we know that Φ(pT ) is well defined and that u∗p solving Problem
(Q̂2,T

pT ,C,U
) for a given p∗T solving this minimization problem, will solve Problem (P̂2,α

T,C,U ) too.
We write the optimality conditions

(1− α)K j1(u
∗
p(0))

u∗
p(0)

− 2α ⩾ 0 if p∗T = 0

(1− α) j1(u
∗
p(p

∗
T ))

f(p∗T )+u∗
p(p

∗
T )g(p∗T ) − 2α(1− p∗T ) = 0 if 0 < p∗T < pmax,

(1− α) j1(u
∗
p(p

max))

f(pmax)+u∗
p(p

max)g(pmax) − 2α(1− pmax) ⩽ 0 if p∗T = pmax.

(1.38)

In the convex case, these necessary conditions are not enough to give an explicit answer in
a general setting. The first condition not even being well defined since u∗p(0) can be arbitrarily
close to 0. Nevertheless, we focus here in the concave and linear case where these conditions can
be further exploited.

If j′′1 (·) ⩽ 0, using Theorem 1.4 we have u∗ = U1[0,ts]. The switching point happening only
if pu∗(T ) > θ. In case there is a switch, u∗(pT ) = 0 and therefore the only optimality condition
that can be satisfied is −2α(1− pmax) ⩽ 0. Therefore p∗T = pmax and u∗p = U1[0,p̄].

In case u∗(p∗T ) = U , we can rewrite the optimality conditions (1.38) as
(1− α)K j1(U)

U − 2α ⩾ 0 if p∗T = 0

(1− α) j1(U)
f(p∗T )+Ug(p∗T ) − 2α(1− p∗T ) = 0 if 0 < p∗T < pmax,

(1− α) j1(U)
f(pmax)+Ug(pmax) − 2α(1− pmax) ⩽ 0 if p∗T = pmax.

(1.39)

Assuming U > U∗, the three conditions are mutually exclusive. Let us show it by computing
the derivative of the condition with respect to pT and showing that it is strictly increasing

−(1− α) j1(U)

(f(pT ) + Ug(pT ))2
(f ′(pT ) + Ug′(pT )) + 2α > 0,
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which is equivalent to

f ′(pT ) + Ug′(pT ) <
2α

1− α
(f(pT ) + Ug(pT ))

2

j1(U)
.

This inequality needs to be satisfied for all α, and the right hand side is non-negative and
increasing in α, therefore we want to ensure f ′(pT ) + Ug′(pT ) < 0. This is true for all pT if and
only if U > maxpT∈[0,1]

(
− f

′(pT )
g′(pT )

)
:= U∗ 6. We can distinguish three cases

— If α ⩽ α0 then p∗T = 0. Therefore u∗ = 0 for all t ∈ [0, T ∗].
— If α0 < α < αmax then 0 < p∗T < pmax and it is the only solution of the equation

(1− p∗T )(f(p∗T ) +Ug(p∗T )) =
1−α
2α j1(U). If p∗T ⩽ θ there will not be any switch. If p∗T > θ,

then since the final state is fixed and
∫ t
0
j1(U)ds is an increasing function of time, the

switching point will be the smallest possible such that pu∗(T ) = p∗T , this is u∗p = U1[0,ps]

with ps solving T ∗ =
∫ p∗T
0

dν
f(ν)+U1(0,ps)g(ν)

= T .
— If α ⩾ αmax then p∗T = pmax. Therefore u∗p = U1[0,p̄]. In other words, the switch is only

possible if the constraint on the total amount of mosquitoes is saturated.

6. This requirement is not much stronger than the minimum required for the existence of solutions, U >
m∗(pT ). For instance, with the parameters considered in Table 1.1 we obtain m∗(1) ≈ 0.0033 and U∗ ≈ 0.077.
On the other hand, the value of U in this table has been fixed to be U = 10.



60 CHAPTER 1. Optimal release strategies for mosquito population replacement



Chapter 2
Optimal initial time strategies for
mosquito population replacement:
influence of the carrying capacity on
spatial releases

This chapter is the subject of a work in progress in collaboration with L. Almeida, G. Peltier,
Y. Privat and N. Vauchelet.

2.1 Introduction

In this chapter we explore how an inhomogeneous carrying capacity can influence an instanta-
neous release of mosquitoes at initial time in the context of the population replacement technique
using Wolbachia. Previous works having studied population replacement in a similar framework
in which space is considered can be found in [46, 134, 98, 11]. In contrast to these works, in this
chapter we will not consider diffusion at first. Although mosquitoes do not travel a lot during
their lifetimes, diffusion should be considered in any realistic model. Since diffusion adds a lot
of complexity to the problem, as a first step towards this ultimate goal, we start by studying
a toy model without it. The diffusive case is later explored, only numerically. Despite the lack
of realism, this case is nevertheless interesting from a mathematical perspective. This chapter
being a work in progress, the case with diffusion will be further developed in the future.

Let us consider the two-species model
∂tM = bMM

(
1− M +W

K(x)

)(
1− sh

W

M +W

)
− dMM,

∂tW = bWW

(
1− M +W

K(x)

)
− dWW, t ∈ [0, T ], x ∈ Ω

(2.1)

where M = M(t, x) represents the density of Wolbachia-free mosquitoes and W = W (t, x)
the density of Wolbachia-infected mosquitoes. The birth rate of both species is denoted bi,
i =M,W , and the death rate di, i =M,W . The birth rate in mosquitoes is considerably higher
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than its death rate, therefore these parameters have the constraint di ⩽ bi. Also, due to the way
Wolbachia affects the biology of the mosquito we can assume that s bW ⩽ bM and dM ⩽ dW .
The parameter sh measures the cytoplasmic incompatibility, 0 ⩽ sh ⩽ 1, when sh = 1 the
cytoplasmic incompatibility is perfect, when sh = 0 there is no cytoplasmic incompatibility. We
assume that, at t = 0, there are no Wolbachia-infected mosquitoes in the system and that the
wild mosquitoes are at equilibrium, that is W (0, x) = 0 and M(0, x) = K(x)

(
1− dM

bM

)
. In (2.1),

Ω is a given bounded domain of R or R2 and T > 0 is the time horizon of the problem.
Let u denote a function accounting for the rate at which Wolbachia-infected mosquitoes

are released in the domain. The addition of this function only modifies the equation on the
Wolbachia-infected mosquitoes. It does it in the following way

∂tW = bWW

(
1− M +W

K(x)

)
− dWW + u(t, x), t ∈ [0, T ], x ∈ Ω.

The goal we pursue is to find an optimal release function, u, such that at a given final time T
the solution (M,W ) to (2.1) is as close as possible of the Wolbachia invasion steady state denoted
(0,W ∗) =

(
0,K(x)

(
1− dW

bW

))
. Choosing a least square distance, this leads us to introduce the

following cost functional

J(u) =
1

2

∫
Ω

(
M(T, x)2 + [(W ∗ −W (T, x))+]

2
)
dx. (2.2)

We consider some natural constraints on the number of available mosquitoes to realize the ex-
periments and also on the rate at which this mosquitoes can be released. The set of admissible
controls is therefore given by

UT,C,U =

{
u ∈ L∞([0, T ]× Ω), 0 ⩽ u ⩽ U a.e. ,

∫ T

0

∫
Ω

u(t, x) dtdx ⩽ C

}
. (2.3)

With the tools presented so far we can state the optimal control problem we deal with,
namely:

inf
u∈UT,C,U

J(u), (2.4)

where J is defined by (2.2) and UT,C,U is defined by (2.3).
It has been proved in [134] and [10, Proposition 2.2] that when the fecundity rates are large,

that is, if we assume that bM =
b0M
ϵ and bW =

b0W
ϵ and we let ϵ → 0, then system (2.1) may be

reduced to the problem ∂tp(t, x) = f(p(t, x)) +
u(t, x)

K(x)
g(p(t, x)), t > 0,

p(0, x) = 0, x ∈ Ω,
(2.5)

where

f(p) = b0MdW sh
p(1− p)(p− θ)

b0M (1− p)(1− shp) + b0W p
and g(p) =

b0M (1− p)(1− shp)
b0M (1− p)(1− shp) + b0W p

, (2.6)

with

θ =
1

sh

(
1− dMb

0
W

dW b0M

)
, (2.7)
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which is strictly comprised between 0 and 1 under the condition 1− sh < dMb0W
dW b0M

< 1, which will
be assumed from now on. Moreover, the cost functional J reduced to

J0(u) =

∫
Ω

K(x)2(1− p(T, x))2 dx, (2.8)

as well as an asymptotic version of Problem (2.4) reading

inf
u∈UT,C,U

∫
Ω

K(x)2(1− p(T, x))2 dx, (2.9)

where p solves (2.5) and UT,C,U is defined by (2.3). This model reduction allows us to study
the problem in simpler terms, knowing that solutions of the simplified problem (2.9) will be
asymptotically close to solutions of problem (2.4) in the sense of the Gamma-convergence (see
[46, 134] for details).

The case without considering a spatial variable has been studied in detail in [10]. Then the
aim of this chapter is to extend the former analysis to the case when the space is considered
by adding a global constraint on the whole domain and when the carrying capacity varies on it,
which is indeed the case in a natural environment.

2.2 The case of a single initial release

2.2.1 Simplified optimal control problem

Despite the model reduction performed, problem (2.9) is still a very challenging one. To
facilitate the study of this problem we will restrain ourselves to a simplified setting. We assume
that the time repartition of the release is given by u(t, x) = u0(x)δ0(t). In other words, we
consider that there is one single release, done at the initial time and that the time it takes to do
the release is negligible in comparison with the time window considered.

Following the reasoning developed in [46], one can prove that equation (2.5) simplifies into{
∂tp(t, x) = f(p(t, x)), t ∈ [0, T ], x ∈ Ω

p(0+, x) = G−1
(
u0(x)
K(x)

)
,

(2.10)

where the function G is defined as the primitive vanishing at zero of the inverse of g,

G(p) =

∫ p

0

dν

g(ν)
.

In this simplified setting we are looking for solutions to the optimal control problem

min
u0∈U0,C,U

∫
Ω

K(x)2(1− p(T, x))2 dx, (Pu0
)

with the space of admissible controls being

U0,C,U =

{
u0 ∈ L∞(Ω), 0 ⩽ u0 ⩽ U a.e.,

∫
Ω

u0(x) dx ⩽ C

}
. (2.11)
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Looking at (2.10) we see there is a one-to-one relation between the release carried at the
initial time u0(x) and the initial data of the equation on the proportion of Wolbachia-infected
mosquitoes. We can reformulate problem (Pu0

) in terms of this initial proportion by defining
p0(x) := G−1

(
u0(x)
K(x)

)
= p(0+, x) and considering it the new control variable of the problem. We

find that Problem (Pu0
) is equivalent to the following optimal control problem

min
p0∈P0,C,U

∫
Ω

K(x)2(1− p(T, x))2 dx (Pp0)

where p0 is the initial data of the differential equation in (2.10) and the space of admissible
controls is

P0,C,U =

{
p0 ∈ L∞(Ω), 0 ⩽ p0 ⩽ G−1

(
U

K(x)

)
a.e.,

∫
Ω

K(x)G(p0(x)) dx ⩽ C

}
. (2.12)

Since g is decreasing, we have that G is convex. However, unless some restrictive assumptions
on f , the cost functional is not convex, but clearly continuous.

Before analysing the problem in depth, we can obtain easily the following lemmas that will
be useful later for the characterization of the solutions. First, we observe that the constraint of
the problem is saturated :

Lemma 2.1. If u∗0 = K(x)G(p∗0) is an optimal solution then
∫
Ω

u∗0(x) dx = C, or equivalently∫
Ω

K(x)G(p∗0(x)) dx = C.

Proof. This is a trivial consequence of the fact that, on the one hand, G is increasing therefore
so is G−1, on the other hand, the solutions of (2.10) are ordered, that is if p1(0+, x) ⩽ p2(0

+, x)
then p1(·, x) ⩽ p2(·, x).

Using also the monotony of the solutions to (2.10) with respect to their initial data, we have :

Lemma 2.2. If U |Ω| ⩽ C, the optimal solution is given by u∗0 = U or equivalently p∗0 = pU :=
G−1( UK ).

Hence, from now on, we will always assume that U |Ω| > C.

Remark 2.1. We recall that, despite the results are presented for problem (Pp0), since G is
continuous and strictly increasing, we can compute solutions to problem (Pu0

) using the simple
one-to-one relation

u∗0(x) := K(x)G(p∗0(x)).

2.2.2 Optimality conditions

First order optimality condition

Let us introduce the Lagrangian

L(p0) =
1

2

∫
Ω

K(x)2(1− p(T, x))2 dx+ λ

(∫
Ω

K(x)G(p0) dx− C
)
,
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for some λ ∈ R+. To compute its derivative, we introduce the linearized system

∂tδp = f ′(p)δp, δp(0+, x) = h, (2.13)

and the adjoint state

− ∂tq = f ′(p)q, q(T, x) = −K(x)2(1− p(T, x)) < 0. (2.14)

In particular, from (2.13) we deduce

∂p(T, x)

∂p0(x)
= exp

(∫ T

0

f ′(p(s, x))ds

)
. (2.15)

Then, to verify the first order optimality condition, we compute

dL(p0) · h = −
∫
Ω

K(x)2(1− p(T, x))δp(T, x) dx+ λ

(∫
Ω

K(x)G′(p0)h dx

)
.

Using (2.13) and (2.14), we deduce

0 =

∫ T

0

∫
Ω

∂t(δpq) dxdt =

∫
Ω

δp(T, x)q(T, x) dx−
∫
Ω

hq(0, x) dx.

Therefore,

dL(p0) · h =

∫
Ω

h (q(0, x) + λK(x)G′(p0)) dx =

∫
Ω

K(x)

g(p0)
h

(
1

K(x)
g(p0)q(0, x) + λ

)
dx, (2.16)

where we have used the fact that G′ = 1
g . It leads us to introduce the switch function

ωx,T (p0) =
1

K(x)
g(p0(x))q(0, x). (2.17)

We may have a more explicit expression of the switch function. Indeed, solving (2.14) we get

q(0, x) = −K(x)2(1− p(T, x)) exp

(∫ T

0

f ′(p(s, x)) ds

)
.

Injecting into (2.17), we obtain

ωx,T (p0) := −K(x)g(p0(x))(1− p(T, x)) exp

(∫ T

0

f ′(p(s, x)) ds

)
< 0. (2.18)

Note that function ωx,T only depends on x through K(x) and the initial condition p0(x), there-
fore, when looked as a function of the initial condition, the only dependency of p0 7→ ωx,T on x
is through K(x). It will be useful in the following to work with a different switch function that
will allow us to simplify the exposition by rendering the switching function independent of x.
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This will simplify the characterization of the solutions in Theorems 2.1 and 2.2. We introduce

wT (p0) :=
ωx,T (p0)

K(x)
= −g(p0(x))(1− p(T, x)) exp

(∫ T

0

f ′(p(s, x)) ds

)
< 0. (2.19)

We may also compute some particular values of the switch function :
— In {p0 = 0}, i.e. on the set {u0 = 0}, we have p(t, x) = 0 for all t ⩾ 0 and we get

w0 = −g(0) exp(Tf ′(0)).
— In {p0 = θ}, p(t.x) = θ for all t ⩾ 0, and wθ = −g(θ)(1− θ) exp(Tf ′(θ)).
The following result is a classical consequence of the Pontryagin Maximum Principle (PMP):

Lemma 2.3. Let the switch function wT be as in (2.19). There exists λ∗ ⩾ 0 such that the
optimal solution u∗0 verifies :

— on {u∗0 = U} =
{
p∗0 = pU := G−1

(
U

K(x)

)}
, we have wT ⩽ − λ∗

K(x) ,

— on {u∗0 = 0} = {p∗0 = 0}, wT ⩾ − λ∗

K(x) ,
— on {0 < u∗0 < U} = {0 < p∗0 < pU}, wT = − λ∗

K(x) .

Second order optimality condition

We compute the second order derivative of the Lagrangian. We have from (2.16)–(2.17),

dL(p0) · h =

∫
Ω

K(x)2

g(p0)
h

(
wT +

λ

K(x)

)
dx.

Then,

d2L(p0) · h · h =

∫
Ω

K(x)2g′(p0)

g(p0)2
h2
(
wT +

λ

K(x)

)
dx+

∫
Ω

K(x)2

g(p0)
h2
∂wT
∂p0

dx.

A first consequence of the computation is that on the set {0 < u∗0 < U} = {0 < p∗0 < pU}, we
have by Lemma 2.3 that

d2L(p0) · h · h =

∫
Ω

K(x)2

g(p0)
h2
∂wT
∂p0

dx.

At the minimum it must hold that for every h, we have d2L(p0) · h · h ⩾ 0. Then we have
obtained :

Lemma 2.4. On the set {0 < u∗0 < U} = {0 < p∗0 < pU}, each minimum should verify the
condition

∂wT
∂p0

⩾ 0.

2.2.3 Study of the switch function

We devote this section to the study of the switch function w = wT (p0) defined in (2.19). This
function depends on T and the initial condition p0(x). Nevertheless, in this section, we are only
interested in its behaviour as a function of the initial condition. Therefore, in what follows, we fix
a x ∈ Ω and we consider T as a parameter. To ease the lecture, we simply write w(p0). We thus
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write w(p0) = −g(p0)(1− p(T )) exp
(∫ T

0
f ′(p(s)) ds

)
. We present a Lemma on the monotonicity

of w that will play a crucial role in the characterization of the solutions of problem (Pp0).

Before stating the Lemma, we require some additional preliminaries and notations. Since we
assumed b02 ⩽ b01 and d1 ⩽ d2, one can prove (see Appendix B.1) that f ′′ admits a unique zero
θ2 in (0, 1). Additionally, for any p ∈ [0, 1], we have f ′′(p) > 0 if and only if p < θ2. Setting
θ := max(θ, θ2), we now introduce the following function

p0 7→ A(p0) :=
g′(p0)

g(p0)
− 1

1− p(T )
e
∫ T
0
f ′(p(s))ds +

∫ T

0

f ′′(p(s))e
∫ s
0
f ′(p(σ))dσds. (2.20)

and the following hypothesis on it

Function p0 7→ A(p0) changes sign at most once in (0, θ̄). (H.2)

We investigate for which parameters (H.2) is true in Appendix B.1.

Lemma 2.5. Assume (H.2) holds. There exists T0 > 0 such that, if T ⩽ T0, then ∂w
∂p0

(p0) > 0

for any p0 ∈ (0, 1). Meanwhile, if T > T0, there exists one single pT0 ∈ (0, θ̄) such that

∂w

∂p0
(p0) < 0, ∀p0 ∈ (0, pT0 ) and

∂w

∂p0
(p0) > 0, ∀p0 ∈ (pT0 , 1). (2.21)

Let us notice that we have an explicit expression of T0 which is given in (2.23) in the proof
below.

Proof. We first look at the sign of ∂w
∂p0

at p0 = 0 to derive the value of T0.

Sign of ∂w
∂p0

at p0 = 0. Recalling (2.15), calculations yield

∂w

∂p0
=− g′(p0)(1− p(T ))e

∫ T
0
f ′(p(s))ds) + g(p0)e

2
∫ T
0
f ′(p(s))ds

− g(p0)(1− p(T ))e
∫ T
0
f ′(p(s))ds

∫ T

0

f ′′(p(s))e
∫ s
0
f ′(p(σ))dσds, (2.22)

As a result, there holds

∂w

∂p0

∣∣∣∣
p0=0

=− g′(0)eTf
′(0) + g(0)e2Tf

′(0) − g(0)eTf
′(0)

∫ T

0

f ′′(p(s)))esf
′(0)ds

]
=− eTf

′(0)
[
g′(0)− g(0)eTf

′(0) + g(0)
f ′′(0)

f ′(0)

(
eTf

′(0) − 1
) ]
.
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Let us recall that g(0) > 0 > g′(0) and f ′(0) < 0 < f ′′(0). From the above expression we deduce
that

∂w

∂p0

∣∣∣∣
p0=0

⩾ 0

⇔ g′(0)− g(0)eTf
′(0) + g(0)

f ′′(0)

f ′(0)

(
eTf

′(0) − 1
)
⩽ 0

⇔ eTf
′(0)g(0)

(
f ′′(0)

f ′(0)
− 1

)
⩽ g(0)

f ′′(0)

f ′(0)
− g′(0)

⇔ eTf
′(0) ⩾

f ′′(0)g(0)− f ′(0)g′(0)
g(0) (f ′′(0)− f ′(0))

⇔ T ⩽
1

f ′(0)
ln

(
f ′′(0)g(0)− f ′(0)g′(0)
g(0) (f ′′(0)− f ′(0))

)
=: T0. (2.23)

One can check that the value of T0 is always well defined and positive. Indeed, the argument of
the logarithm is positive since

f ′′(0)g(0)− f ′(0)g′(0) = bW
b2M

(2dMbMsh + dW bM − bW dM ) >
bW
b2M

2dMbMsh > 0.

On the other hand, the argument of the logarithm is also smaller than one, since g(0) = 1 and
f ′′(0)− f ′(0)g′(0) < f ′′(0)− f ′(0). Consequently, if T > T0, then ∂w

∂p0
< 0 in a neighborhood of

p0 = 0.
Note that we can rewrite expression (2.22) using A(p0) as defined in equation (2.20),

∂w

∂p0
=− g(p0)(1− p(T ))e

∫ T
0
f ′(p(s))ds)

[
g′(p0)

g(p0)

− 1

1− p(T )
e
∫ T
0
f ′(p(s))ds +

∫ T

0

f ′′(p(s))e
∫ s
0
f ′(p(σ))dσds

]
= w(p0)A(p0), (2.24)

Recall that w(p0) < 0 and therefore ∂w
∂p0

changes signs as many times, and in the same points,
as A(p0).

Fix T > 0 and set θ̄ := max(θ, θ2) ∈ (0, 1). Let us prove ∂w
∂p0

> 0 for all p0 ∈ (θ̄, 1). From
(2.24) and (2.19), it is enough to prove that A = A(p0) defined by (2.20) is negative on (θ̄, 1).
The first two terms of (2.20) are strictly negative for all p0 ∈ (0, 1). Therefore it is sufficient to
prove that

If p0 ∈ (θ̄, 1), f ′′(p(t)) ⩽ 0 for all t ∈ (0, T ).

Let us recall that θ2 is the unique zero of f ′′ in (0, 1), and that f ′′ < 0 in (θ2, 1) (see Proposition
B.1). Let p0 > θ̄. Then, since p0 > θ, one can readily check that t 7→ p(t) is nondecreasing.
Therefore p(t) ⩾ p0 > θ2, so that f ′′(p(t)) ⩽ 0 for all t. Thus ∂w

∂p0
> 0 on (θ̄, 1).

Conclusion. In conclusion, if T ⩽ T0, we proved that ∂w
∂p0

∣∣
p0=0

⩾ 0 and so is ∂w
∂p0

for all
p0 ∈ (θ̄, 1). By Hypothesis (H.2), ∂w

∂p0
changes sign at most once, by contradiction ∂w

∂p0
cannot

change sign in (0, θ̄), and thus ∂w
∂p0

⩾ 0 for all p0 ∈ (0, 1). On the other hand, if T > T0,
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p0

−λ∗/K(x)

p∗0 = pU

−λ∗/K(x)

p∗0 = w−1
T

(
− λ∗

K(x)

)

−λ∗/K(x)

p∗0 = 0

wT (pU )

wT (0)

Figure 2.1 – Typical shape of p0 7→ wT (p0), in the case T ⩽ T0.

∂w
∂p0

∣∣
p0=0

< 0 and ∂w
∂p0

> 0 for all p0 > θ̄. Therefore w has at least one minimum. Again, by
Hypothesis (H.2), ∂w

∂p0
changes sign at most once, and thus the minimum, that we note pT0 , must

be unique. (2.21) follows straightforwardly.

2.2.4 The case T ⩽ T0

We place ourselves first in the case T ⩽ T0. Let us introduce the following mappings defined
on R+

Λ 7→ ψx,T (Λ) :=


0 if − Λ ⩽ wT (0),

pU (x) := G−1
(

U
K(x)

)
if − Λ ⩾ wT (pU (x)),

w−1
T (−Λ) if − Λ ∈ (wT (0), wT (pU (x))) .

(2.25)

and
λ 7→ I(λ) :=

∫
Ω

K(x)G

(
ψx,T

(
λ

K(x)

))
dx, (2.26)

Theorem 2.1. Assume T ⩽ T0 and 0 < C < U |Ω|. Then there exists a unique p∗0 ∈ P0,C,U ,
that solves problem (Pp0). It is given by

p∗0(x) = ψx,T

(
λ∗

K(x)

)
for any λ∗such that I(λ∗) = C.

Proof. Fix any x ∈ Ω and denote

w(p0) := wT (p0(x)), pU = pU (x) := G−1

(
U

K(x)

)
> 0.
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p0

w(pU )

w(0)

−λ∗/K(x)

p∗0 = pU

−λ∗/K(x)

p∗0 ∈ {0, pU}

−λ∗/K(x)

p∗0 = 0

A)

p0

w(0)

w(pU )

minp0 w(p0)

−λ∗/K(x)

p∗0 = pU

−λ∗/K(x)

p∗0 ∈ {0, pU}

−λ∗/K(x)

p∗0 ∈
{
0, w−1

(
− λ∗

K(x)

)}

−λ∗/K(x)

p∗0 = 0

B)

p0

w(0)

w(pU )

minp0 w(p0)

−λ∗/K(x)

p∗0 = pU

−λ∗/K(x)

p∗0 ∈
{
0, w−1

(
− λ∗

K(x)

)}

−λ∗/K(x)

p∗0 = w−1
(
− λ∗

K(x)

)

−λ∗/K(x)

p∗0 = 0

C)

Figure 2.2 – Schematic representation of w, as a function of p0 in case T > T0. As pU increases
(from top to bottom) the three diagrams, that we call A, B and C, show the three possible
relative positions of w(0), w(pU ) and minp0 w.
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Let λ∗ ⩾ 0 be any value given by Lemma 2.3 and assume p∗0 = p∗0(x) is any optimal control
solving problem (Pp0). The optimality conditions given by Lemma 2.3 can be rewritten as:

— If p∗0 = 0 then w(0) ⩾ − λ∗

K(x) .
— If p∗0 = pU then w(pU ) ⩽ − λ∗

K(x) .
— If 0 < p∗0 < pU then w(p∗0) = − λ∗

K(x) .

Fix now T ⩽ T0. The above allows to compute the value p∗0 = p∗0(x) as follows. First, we look
at the function p0 → w(p0) for 0 ⩽ p0 ⩽ pU . Since w is increasing, we have w(0) ⩽ w(p0) ⩽
w(pU ) < 0 with w(0) < w(pU ). Now, depending on the value λ∗, we distinguish three cases:

— If − λ∗

K(x) ⩽ w(0), then necessarily p∗0 = 0.
— If − λ∗

K(x) ⩾ w(pU ), then necessarily p∗0 = pU .

— If − λ∗

K(x) ∈ (w(0), w(pU )), then necessarily p∗0 = w−1
(
− λ∗

K(x)

)
.

In other words, for any given T ⩽ T0 and x ∈ Ω we have

p∗0(x) = ψx,T

(
λ∗

K(x)

)
=


0 if − λ∗

K(x) ⩽ wT (0),

pU (x) if − λ∗

K(x) ⩾ wT (pU (x)),

w−1
T

(
− λ∗

K(x)

)
if − λ∗

K(x) ∈ (wT (0), wT (pU (x))) .

(2.27)

As a consequence, if u∗0 is an optimal control, p∗0 must satisfy (2.27), meaning p∗0 is uniquely
determined for a given λ∗. We claim that each value λ∗, given by Lemma (2.3), leads to the
same function p∗0, meaning p∗0 is uniquely determined. Consider I(λ) as defined in (2.26). If p∗0
is optimal, then necessarily I (λ∗) = C, see Lemma 2.1. Note that the function ψx,T is clearly
continuous and nonincreasing, thus so is I. Also,

I (λ) =

∫
Ω

K(x)G(0)dx = 0, if λ ⩾ λmax := −wT (0)min
x
K(x),

I (λ) =

∫
Ω

K(x)G(pU (x))dx = U |Ω|, if λ ⩽ λmin := −max
x

K(x)wT (pU (x)).

Since we assumed 0 < C < U |Ω|, we deduce that there exist λmin < λ∗1 ⩽ λ∗2 < λmax such that

I (λ) = C ∀λ ∈ [λ∗1, λ
∗
2].

As a result, there holds λ∗ ∈ [λ∗1, λ
∗
2]. While λ∗ is not uniquely determined, we claim that ψx,T

is constant on [λ∗1/K(x), λ∗2/K(x)] for a.e. x ∈ Ω. Assume by contradiction that there exists a
set S ⊂ Ω with positive measure such that ψx,T is nonconstant on [λ∗1/K(x), λ∗2/K(x)] for all
x ∈ S. This implies, since ψx,T is nonincreasing,

ψx,T

(
λ∗1
K(x)

)
> ψx,T

(
λ∗2
K(x)

)
, ∀x ∈ S.

On the other hand, there also holds

ψx,T

(
λ∗1
K(x)

)
⩾ ψx,T

(
λ∗2
K(x)

)
, ∀x ∈ Ω.
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As a result, since G is increasing, we deduce that

I (λ∗1)− I (λ∗2) =
∫
Ω\S

K(x)

(
G

(
ψx,T

(
λ∗1
K(x)

))
−G

(
ψx,T

(
λ∗2
K(x)

)))
dx

+

∫
S

K(x)

(
G

(
ψx,T

(
λ∗1
K(x)

))
−G

(
ψx,T

(
λ∗2
K(x)

)))
dx

⩾
∫
S

K(x)

(
G

(
ψx,T

(
λ∗1
K(x)

))
−G

(
ψx,T

(
λ∗2
K(x)

)))
dx

> 0

where the last inequality follows from the fact that |S| > 0 and K(x) > minΩK > 0. This
contradicts the fact that I (λ∗1) = I (λ∗2) = C. Therefore ψx,T is constant on [λ∗1/K(x), λ∗2/K(x)]

for a.e. x ∈ Ω. As a result, p∗0(x) = ψx,T

(
λ∗

K(x)

)
is uniquely determined, for any value λ∗ ∈

[λ∗1, λ
∗
2].

Notice that Theorem 2.1 implies that releases should be more important where the carrying
capacity is high. Since λ∗ is fixed, the argument of ψx,T (·), λ∗/K(x), is smaller where K(x) is
higher. In case − λ∗

K(x) ̸∈ (wT (0), wT (pU (x))), we have either u0(x) = 0 or u0(x) = U . On the

other hand, in case − λ∗

K(x) ∈ (wT (0), wT (pU (x))), ψx,T
(

λ∗

K(x)

)
= ω−1

T

(
− λ∗

K(x)

)
. And since ωT (·)

is monotonically increasing (see Figure 2.1), a bigger K(x) implies a bigger argument (because
of the minus sign), which implies a bigger p∗0(x). Since u∗0(x) = K(x)G(p∗0(x)), and G is also
monotonically increasing, it follows that u∗0(x) must be non-decreasing when K(x) increases in
general, and strictly increasing with K(x) whenever u∗0(x) ̸∈ {0, U}.

2.2.5 The case T > T0

We study now the case T > T0, in order to state the results for this case it will be useful to
introduce some tools and notations. Let us introduce the following mappings

Λ 7→ ψ0
x,T (Λ) :=


0 if − Λ ⩽ wT (0),

pU (x) if − Λ > max (wT (0), wT (pU (x))) ,

w−1
T (−Λ) if − Λ ∈ (wT (0), wT (pU (x))] ,

(2.28)

the third case only being defined if wT (0) < wT (pU (x)), and

Λ 7→ ψ1
x,T (Λ) :=


0 if − Λ < min

p0∈(0,pU (x))
wT (p0),

pU (x) if − Λ ⩾ wT (pU (x)),

w−1
T (−Λ) if − Λ ∈

[
min

p0∈(0,pU (x))
wT (p0), wT (pU (x))

)
,

(2.29)

the third case only being defined if min
p0∈(0,pU (x))

wT (p0) < wT (pU (x)). It is important to remark

that w−1
(
− λ∗

K(x)

)
might not be uniquely defined, since the function is not injective on its whole

domain. Whenever there is an ambiguity it will be understood that the value of w−1
(
− λ∗

K(x)

)
we refer to is the one on the increasing branch of w(p0) (the one satisfying ∂w

∂p0
(p0) ⩾ 0), since it

is the only one satisfying the second order optimality conditions.
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For a given value of λ ⩾ 0, let us introduce the set:

Ω̃λ :=

{
x ∈ Ω | ψ0

x,T

(
λ

K(x)

)
̸= ψ1

x,T

(
λ

K(x)

)}
. (2.30)

By definition, for all x ∈ Ω \ Ω̃λ, ψ0
x,T

(
λ

K(x)

)
= ψ1

x,T

(
λ

K(x)

)
. In order to underline this, for

x ∈ Ω \ Ω̃λ we will denote ψ•x,T
(

λ
K(x)

)
:= ψ0

x,T

(
λ

K(x)

)
= ψ1

x,T

(
λ

K(x)

)
. Note also that in case

ψ0
x,T

(
λ

K(x)

)
̸= ψ1

x,T

(
λ

K(x)

)
, then ψ0

x,T

(
λ

K(x)

)
= 0, therefore ψ0

x,T

(
λ

K(x)

)
= 0 for all x ∈ Ω̃λ.

In the same spirit as in Theorem 2.1, the idea behind Theorem 2.2 is to write the solution in
the form p∗0(x) = ψ•x,T

(
λ

K(x)

)
for certain values of λ. Therefore, solutions in Ω̃λ will be hard to

characterize in general. In order to study solutions in this set we introduce a secondary problem,
the solution of which, will allow us to determine the solutions of problem (Pp0) in Ω̃λ. Assuming
|Ω̃λ| > 0, we introduce the quantity

C̃λ := C −
∫
Ω\Ω̃λ

K(x)G

(
ψ•x,T

(
λ

K(x)

))
dx.

Assuming C̃λ > 0 we consider the following problem:

Secondary problem.

min
χλ∈X

∫
Ω̃λ

K(x)2(1− p(T, x))2χλ(x) +K(x)2(1− χλ(x))dx ,
∫
Ω̃λ

K(x)G

(
ψ1
x,T

(
λ∗

K(x)

))
χλ(x)dx ⩽ C̃λ. (PΩ̃λ

)

Where the new control variable is χλ ∈ X and

X :=
{
χλ ∈ L∞(Ω̃λ) | 0 ⩽ χλ ⩽ 1

}
.

Here p(T, x) is assumed to have ψ1
x,T

(
λ

K(x)

)
as initial condition.

Finally, let us also define

I0(λ) :=
∫
Ω
K(x)G

(
ψ0
x,T

(
λ

K(x)

))
dx and I1(λ) :=

∫
Ω
K(x)G

(
ψ1
x,T

(
λ

K(x)

))
dx. (2.31)

and
λ0 := minλ such that I0(λ) = C, (2.32)

λ1 := maxλ such that I1(λ) = C. (2.33)

Note that as long as 0 < C < U |Ω| these two quantities will always be well defined.

Theorem 2.2. Assume T > T0, 0 < C < U |Ω| and (H.2). Then there exists at least one
p∗0 ∈ P0,C,U that solves problem (Pp0). It is given by

p∗0(x) = ψ•x,T

(
λ∗

K(x)

)
for all x ∈ Ω \ Ω̃λ∗ , and p∗0(x) =

ψ
1
x,T

(
λ∗

K(x)

)
, for x ∈ Ω̃λ∗ s.t. χ∗

λ∗(x) = 1,

ψ0
x,T

(
λ∗

K(x)

)
, for x ∈ Ω̃λ∗ s.t. χ∗

λ∗(x) = 0,

where ψ0
x,T

(
λ∗

K(x)

)
= 0 for all x ∈ Ω̃λ∗ , λ∗ ∈ [λ0, λ1] and χ∗

λ∗(x) is the solution to problem (PΩ̃λ
)
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with λ = λ∗.
Furthermore, if |Ω̃λ0 | = 0, then λ∗ = λ0 and p∗0(x) = ψ•x,T

(
λ0

K(x)

)
for all x ∈ Ω.

Proof. In this proof we use the same notation as in the proof of Theorem 2.1. Let us fix any
x ∈ Ω and let λ∗ ⩾ 0 be any value given by Lemma 2.3. Let us consider p∗0 ∈ P0,C,U be the
solution to problem (Pp0).

Using the first and second order optimality conditions (Lemmas (2.3) and (2.4)) we know
that there exists a λ∗ ⩾ 0 such that the optimal control p∗0 must satisfy that

— If p∗0 = 0 then w(0) ⩾ − λ∗

K(x) .
— If p∗0 = pU then w(pU ) ⩽ − λ∗

K(x) .
— If 0 < p∗0 < pU then w(p∗0) = − λ∗

K(x) and ∂w
∂p0

(p∗0) ⩾ 0.
We fix T > T0 and exploit these optimality conditions. Under hypothesis (H.2), by Lemma

2.5, w(p0) is unimodal, that is, strictly decreasing until a certain pT0 ∈ (0, θ̄) and then strictly
increasing. Depending on the relative position of w(0),w(pU ) and minw(p0) we can have three
different behaviours of the optimal control. We detail here as an example the case w(0) ⩾
w(pU ) > minw(p0). For cases w(0) > w(pU ) ⩾ minw(p0) and w(pU ) > w(0) > minw(p0) see
Figure 2.2.

Assume pU is such that w(0) ⩾ w(pU ) > minw(p0) (second case in Figure 2.2), then we
distinguish four cases:

— If − λ∗

K(x) ⩾ w(0), then necessarily p∗0 = pU .
— If w(0) ⩾ − λ∗

K(x) ⩾ w(pU ), then necessarily p∗0 ∈ {0, pU}.

— If w(pU ) ⩾ − λ∗

K(x) ⩾ minw(p0), then necessarily p∗0 ∈
{
0, w−1

(
− λ∗

K(x)

)}
.

— If − λ∗

K(x) ⩽ minw(p0), then necessarily p∗0 = 0.
Two things remain to be investigated: The values that λ∗ can take, and, in case p∗0 is not

uniquely determined, how to choose between the two options. In order to do this, let us consider
mappings ψ0

x,T and ψ1
x,T as defined in (2.28) and (2.29) respectively. Note that these two map-

pings are always well defined and they give, respectively, the minimum and maximum values p∗0
can take when two values of p0 satisfy the optimality conditions. For instance, if for a given value
of λ∗, p∗0 ∈ {0, pU}, then ψ0

x,T

(
λ∗

K(x)

)
= 0 and ψ1

x,T

(
λ∗

K(x)

)
= pU . Remark also that whenever

ψ0
x,T

(
λ

K(x)

)
̸= ψ1

x,T

(
λ

K(x)

)
, ψ0

x,T

(
λ

K(x)

)
= 0.

Mappings ψ0
x,T

(
λ

K(x)

)
, ψ1

x,T

(
λ

K(x)

)
are non-increasing with respect to λ. Although in case

T > T0, ψ0
x,T and ψ1

x,T are only continuous in case C (see Figure 2.2), it still holds that for all
λ ⩾ 0 we have that I0(λ) ⩽ I1(λ), with I0(λ), I1(λ), as defined in (2.31). Furthermore, if λ∗ is
any value given by Lemma 2.3 we have that

I0(λ∗) ⩽
∫
Ω

K(x)G(p∗0(x))dx ⩽ I1(λ∗). (2.34)

Using Lemma 2.1, (2.34) means that I0(λ∗) ⩽ C ⩽ I1(λ∗). It follows that λ∗ ∈ [λ0, λ1].
Fixing now a λ∗ ∈ [λ0, λ1], let us consider the set Ω̃λ∗ as defined in (2.30). Note that if

|Ω̃λ∗ | = 0, we can conclude that p∗0(x) = ψ•x,T

(
− λ∗

K(x)

)
using the same arguments as in the proof

of Theorem 2.1. In particular, if |Ω̃λ0 | = 0, since p∗0(x) = ψ•x,T

(
λ0

K(x)

)
, ψ•x,T (λ) is non-increasing

w.r.t λ and
∫
Ω
K(x)2 (1− p(T, x))2 dx is descreasing w.r.t to the initial data of p(T, x), we can

conclude that λ∗ = λ0, proving the last statement of the theorem.
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For the rest of the proof we assume that |Ω̃λ∗ | > 0. Note also that the optimal control p∗0
must be such that 0 < C̃λ∗ ⩽ C. We consider problem (PΩ̃λ

) with λ = λ∗. Observing that the
criterion to optimize is affine with respect to χλ∗ and that its differential at χ∗

λ∗ is the linear
mapping

L∞(Ω) ∋ h 7→
∫
Ω̃λ∗

h K(x)

(
K(x)p(T, x)(p(T, x)− 2) + λ̃G

(
ψ1
x,T

(
λ∗

K(x)

)))
dx,

leads to introduce where the switching function Φ for this problem, namely

Φ(x) := K(x)
p(T, x)(2− p(T, x))

G
(
ψ1
x,T

(
λ∗

K(x)

)) .

We infer from the so-called bathtub principle (see e.g. Section 1.14 of [80]) the existence of
a unique real number λ̃∗ such that

{λ̃∗ > Φ} ⊂ {χ∗
λ∗ = 0} ⊂ {λ̃∗ ⩾ Φ}, {λ̃∗ < Φ} ⊂ {χ∗

λ∗ = 1} ⊂ {λ̃∗ ⩽ Φ}

and furthermore, {0 < χ∗
λ∗ < 1} ⊂ {λ̃∗ = Φ}. Note that such inclusions must be understood up

to a zero Lebesgue measure set.

Let us notate D :=
{
x ∈ Ω̃λ∗ | 0 < χ∗

λ∗(x) < 1
}

. In case |D| = 0, the optimality conditions
become necessary and sufficient. The solution can be written as

χ∗
λ∗(x) =

{
1 , if λ̃∗ < Φ,

0 , if λ̃∗ > Φ.

In case |D| > 0, since the problem is linear in χλ∗ we know that there exists a bang-bang
solution. That is, a solution that only takes the values χ∗

λ∗ = 0 and χ∗
λ∗ = 1. This means that

despite it may exists a solution with 0 < χ∗
λ∗(x) < 1 for x ∈ D, we can always construct a

bang-bang alternative that performs just as good. Assuming λ̃∗ = Φ in D (Φ is constant in D
by definition), we introduce

χαλ∗(x) =

{
1, if λ̃∗ < Φ or x ∈ Dα,

0, if λ̃∗ > Φ or x ∈ D \Dα.

where Dα is any subset of D such that |Dα|/|D| = α, and α ∈ [0, 1]. To compute the value of α
we use one more time Lemma 2.1, concluding that, in this case, χ∗

λ∗(x) = χαλ∗(x) for α such that∫
Ω̃λ∗

K(x)G
(
ψ1
x,T

(
λ∗

K(x)

))
χαλ∗(x)dx = C̃λ∗ . Note how the solution to this secondary problem,

(PΩ̃λ
), sheds light on the primary problem, (Pp0), by allowing us to write the solution on Ω̃λ∗ as

p∗0(x) =

{
ψ1
x,T (λ

∗), on χ∗
λ∗(x) = 1,

ψ0
x,T (λ

∗), on χ∗
λ∗(x) = 0,

concluding the proof.
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Corollary 2.1. Assume 0 < C < U |Ω| and K(x) = K constant in all Ω. Then there exists a
p∗0 ∈ P0,C,U that solves problem (Pp0).

— If T ⩽ T0, it is given by

p∗0(x) = G−1

(
C

K|Ω|

)
for all x ∈ Ω.

— If T > T0,
— If w(0) < w

(
G−1

(
C

K|Ω|

))
, then

p∗0(x) = G−1

(
C

K|Ω|

)
for all x ∈ Ω

— If w(0) ⩾ w
(
G−1

(
C

K|Ω|

))
, then there exists at least one λ∗ ∈ [λ0, λ1] such that p∗0(x)

can be written as

p∗0(x) =

{
ψ1
x,T

(
λ∗

K

)
, for x ∈ D,

0, for x ∈ Ω \D,

where D can be any subdomain of Ω with size |D| = C

KG(ψ1
x,T (

λ∗
K ))

.

Proof. The existence of a unique solution written as p∗0(x) = ψx,T

(
λ∗

K(x)

)
for the case T ⩽ T0

can be easily adapted from the proof of Theorem 2.1. Since the constraint must be saturated,
we have that ∫

Ω

K(x)G

(
ψx,T

(
λ∗

K(x)

))
dx = K

∫
Ω

G

(
ψx,T

(
λ∗

K

))
dx = C,

but for K constant, w is constant w.r.t. x, and thus, so is ψx,T
(
λ∗

K

)
. Therefore,

K

∫
Ω

G

(
ψx,T

(
λ∗

K

))
dx = KG

(
ψx,T

(
λ∗

K

))
|Ω| = C.

Concluding that

p∗0(x) = ψx,T

(
λ∗

K

)
= G−1

(
C

K|Ω|

)
.

The case T > T0 is greatly simplified in this setting. Since ψx,T

(
λ∗

K

)
is constant w.r.t.

x, either |Ω̃λ| = 0, or Ω̃λ = Ω. Like in the general case, if |Ω̃λ0
| = 0 we have that p∗0(x) =

ψ•x,T
(
λ0

K

)
= G−1

(
C

K|Ω|

)
, and by the monotonicity of

∫
Ω
(1 − p(T, x))2 dx w.r.t to the initial

condition of p(T, x) we can conclude. On the other hand, in this case, we can put the condition
|Ω̃λ0 | = 0 in simpler terms. If |Ω̃λ0 | = 0, then ψ0

x,T

(
λ0

K

)
= ψ1

x,T

(
λ0

K

)
. Looking at the two

functions, this happens if and only if w(0) < −λ0

K and we have that

w(0) < −λ0
K

= w(p∗0(x)) = w

(
ψ•x,T

(
λ0
K

))
= w

(
G−1

(
C

K|Ω|

))
,



2.3. Numerical Implementation of results 77

therefore
|Ω̃λ0
| = 0 if and only if w(0) < w

(
G−1

(
C

K|Ω|

))
.

In case w(0) ⩾ w
(
G−1

(
C

K|Ω|

))
, we have that |Ω̃λ0

| > 0 and thus, |Ω̃λ∗ | > 0, furthermore,

since K is constant, Ω̃λ∗ = Ω.
Fixing a value for λ∗, p∗0(x) can only take two values in Ω, p∗0(x) = 0 or p∗0(x) = ψ1

x,T (
λ∗

K ).
Therefore, from Lemma 2.1 we can directly deduce the size of the domain where p∗0(x) =

ψ1
x,T

(
λ∗

K

)
, that we denote D,∫
Ω

KG(p∗0(x)) dx =

∫
D

KG

(
ψ1
x,T

(
λ∗

K

))
dx = |D|KG

(
ψ1
x,T

(
λ∗

K

))
= C,

thus,

|D| = C

KG(ψ1
x,T

(
λ∗

K

)
)
.

Therefore the solution can be writen like

p∗0(x) = ψ1
x,T

(
λ∗

K

)
a.e. on D

and p∗0(x) = 0 elsewhere, with |D| = G−1

(
C

Kψ1
x,T (

λ∗
K )

)
.

2.3 Numerical Implementation of results

Thanks to Theorems 2.1 and 2.2 we can implement an algorithm for computing solutions to
problems (Pu0

) and (Pp0). In the case T ⩽ T0, the computations will be a direct application
of the results presented in Theorem 2.1, where solutions are unique up to a rearrangement. In
the case T > T0, Theorem 2.2 allows us to heavily simplify the problem, by recasting it as a
one-dimensional one when solutions cannot be found directly. Namely,

min
λ∈[λ0,λ1]

∫
Ω

K(x)2(1− p(T, x))2 dx (Q)

where we assume that the initial condition for p(T, x) is given by the optimal releasing strategy,
p∗0(x), given by theorem 2.2, assuming that λ = λ∗. The parameters used for the simulations are
presented in Table 2.1.

2.3.1 1D simulations

The simplest setting in which we can study the problem is considering only one spatial
dimension. We present two examples of the solutions obtained exploiting the results proven
in this chapter in a 1D setting. We consider the following function representing the carrying



78 CHAPTER 2. Influence of the carrying capacity on spatial releases

Category Parameter Name Value

Optimization

T Final time {1, 25}
U Maximal instantaneous release rate 250
C Amount of mosquitoes avaliable {30, 200}
|Ω| Domain size 1
K0 Average carrying capacity 100

Biology

b0M Normalized wild birth rate 1
b0W Normalized infected birth rate 0.9
dM Wild death rate 0.27
dW Infected death rate 0.3
sh Cytoplasmatic incompatibility level 0.9

Table 2.1 – Values of the parameters used in simulations. The values for the biological parameters
have been taken from [10].

capacity of the environment

KS(x) = K0

(
1 +

1

2
sin

(
2πx

|Ω|
− π

2

))
, KP (x) =

3K0

2
1[0,|Ω|/2] +

K0

2
1(|Ω|/2,|Ω|]

With the parameters considered, the two functions have the same average carrying capacity,
K0. That is,

∫
Ω
KS(x) dx =

∫
Ω
KP (x) dx = K0|Ω|, which is also the value we would obtain in

case of an homogeneous carrying capacity equal to K0 in all the domain. The domain considered
is Ω = [0, |Ω|]. We chose these two functions in order to have a piecewise constant function and
a function non-constant in any positive measure interval for comparison.

For the parameters in Table 2.1, A(·), as defined in (2.20), satisfies hypothesis (H.2). The time
when the function stops being increasing and starts being unimodal (decreasing, then increasing)
is T0 ≈ 3.51, computed using formula (2.23). We choose to show the results for a time smaller
than T0 and a time bigger than T0, so both behaviours can be observed. The simulations have
been performed using an ad hoc algorithm exploiting the results of Theorems 2.1 and 2.2.

In Figure 2.3 we can see the results for K(·) = KS(·). This choice models a scenario where
mosquitoes are concentrated in the center of the domain studied and its concentration fade out
as we move towards the boundaries. In the case C = 30 (left column), we observe how the
optimal strategy flattens and widens as T increases. To understand this effect, we recall that in
case p0(x) < θ, p(t, x) is decreasing with respect to t. In other words, the Wolbachia-infected
mosquitoes tend to be replaced by wild mosquitoes if they don’t surpass a critical threshold.
Furthermore, if p0(x) > θ, p(t, x) is increasing with respect to t, and therefore Wolbachia-infected
mosquitoes take over the population without further intervention. For the parameters considered
we have θ ≈ 0.21 (The green dash-dotted line in Figure 2.3). According to our interpretation,
since for T small, p(T, x) is close to its initial condition, a value of p0(x) below the threshold
does not impact greatly the final result and reaching a bigger initial proportion in places where
K(x) is higher is prioritized. On the other hand, when T is big, p(T, x) can be far from its
initial condition. Hence, there is an incentive for p∗0(x) to be above θ, since the proportion of
Wolbachia-infected mosquitoes in the parts of the domain above θ will naturally increase with
time. This also explains why the end of the release interval is abrupt. If the release is not going
to achieve the critical proportion, it is better not to release. This effect can be seen clearly in
the bottom-left graph and should be more pronounced the bigger is T .

The changes between T = 1 and T = 25 in the case C = 200 are imperceptible. A possible
explanation is that in this case p∗0(x) > θ for all x ∈ Ω already in the first case. Therefore the
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proportion of Wolbachia-infected mosquitoes is going to increase with time everywhere. This
case illustrates how u∗0(·) is non-decreasing as K(·) increases, and how that is not necessarily the
case of p∗0(·), which decreases when K(·) increases if p∗0(·) = pU (·). We recall that we have proven
this monotonicity porperty for the case T ⩽ T0 and in case T > T0 but |Ω̃λ0

| = 0, which is the
case in the bottom-right graph (C = 200, T = 25). The only case where |Ω̃λ0

| > 0 in Figure 2.3
is the one with C = 30, T = 25 (bottom-left graph).

Figure 2.3 – Results for K(·) = KS(·) for different amount of mosquitoes released, C, and
different final times, T . K(·) and u∗0(·) must be read in the left axis and p∗0(·), p∗(T/2) and
p∗(T ), in the right axis. Here p∗ stands for the solution of equation (2.10) with initial data p∗0(·).
In green, the line p = θ.

In Figure 2.4 we show the results for the simulations withK(·) = KP (·). This figure represents
a scenario with two patches of land with two very distinct conditions for mosquitoes, as it can
be the case, for example, of an urban area close to a wetland. In the case C = 30 we can observe
again the difference between the short-term and long-term strategies. With T = 1 reaching a
higher proportion on the left patch is prioritized, leaving the second patch untreated. Meanwhile,
when the time horizon is increased, it also increases the incentive to release in a wider area above
the critical proportion p0(x) = θ. Therefore the optimal releasing strategy consists in releasing
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a slightly smaller amount on the left patch in order to release in a certain domain in the right
one.

In this case, on the bottom-left graph, we are in the case where |Ω̃λ0
| > 0, and thus the

secondary problem must be solved for the values of λ in [λ0, λ1] (see (Q)). Since K(·) is simple,
the amount of mosquitoes released and the size of each subdomain of the right patch can be
determined almost explicitely. For a fixed value of λ ∈ [λ0, λ1], the amount of mosquitoes
released in the left patch is∫ |Ω|

2

0

K(x)G (p∗0(x)) dx =

∫ |Ω|
2

0

3K0

2
G

(
ψ1
x,T

(
2λ

3K0

))
dx =

3|Ω|K0

4
G

(
ψ1
x,T

(
2λ

3K0

))
,

analogously in the right patch p∗0(x) = ψ1
x,T

(
2λ
K0

)
wherever it is not 0. Therefore the size of the

subdomain D, where mosquitoes are released in the right patch is such that

C =
3|Ω|K0

4
G

(
ψ1
x,T

(
2λ

3K0

))
+
|D|K0

2
G

(
ψ1
x,T

(
2λ

K0

))
.

This equality can be satisfied for different values of λ and |D|. To find the optimal value λ and
thus the optimal value of |D|, we solve the one-dimensional optimization problem (Q), which in
this case reads

min
λ∈[λ0,λ1]

3|Ω|K2
0

16
((1− pl(T ))2) + |D|K

2
0

4
((1− pr(T ))2)

= min
λ∈[λ0,λ1]

3|Ω|
4

((1− pl(T ))2) + |D|((1− pr(T ))2

= min
λ∈[λ0,λ1]

3|Ω|
4

((1− pl(T ))2) + 1

G(pr0)

(
2C

K0
− 3|Ω|

2
G(pl0)

)
((1− pr(T ))2

where pl(T ) and pr(T ) solve equation p′(t) = f(p(t)) with initial condition pl0 =
(
ψ1
x,T

(
2λ
3K0

))
and pr0 =

(
ψ1
x,T

(
2λ
K0

))
respectively. This solution, nonetheless, is what we have been calling

unique ‘up to a rearrangement’. As long as the size of the domain where mosquitoes are released
is preserved, the solution can be moved on the right half of the domain and still being optimal.
In Figure 2.5 we show another choice for the solution.

Once again, in the case C = 200 (right column) the solution does not change significantly
when T is increased. We can see how the monotonicity of u∗0(·) with respect to K(·) is respected,
but not for p∗0(·). In this case, releasing a smaller amount of mosquitoes in the right patch induces
a higher initial proportion due to the smaller carrying capacity there.

2.3.2 The case with diffusion

So far, we have not considered diffusion in the system. Considering that mosquitoes do not
disperse simplifies the analysis of the problem, but this comes at the expense of losing realism in
the modeling. In this section we present some simulations in which diffusion is taken into account
to see how the solutions presented above are modified. This is a perspective work, which, at the
time of writing this thesis, is under development. The simulations have been carried out using
GEKKO (see [20]).

When diffusion is considered, equation (2.10) has to be modified. When the carrying capacity
is homogeneous this can be done by just adding a Laplacian of the proportion of Wolbachia-
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Figure 2.4 – Results for the piecewise constant carrying capacity, K(·) = KP (·), for different
values of C and T . They are presented in an identical way to Figure 2.3. The green dash-dotted
line represents p = θ.

infected mosquitoes, obtaining

∂tp−D∆p = f(p), (t, x) ∈ [0, T ]× Ω.

The proper deduction of this equation from a two population system with the same diffusion
rate like the one introduced in (7) can be found in [134] and [46]. The obtention of this limit
is slightly more complicated in the case we are interested in, which is that of an inhomogeneous
carrying capacity. For clarity, in order to understand the apparition of the new terms, we go
over the computations here. A detailed deduction nonetheless can be found in [98]. We start by
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Figure 2.5 – Alternative arrangement of the solution for the case K(·) = KP (·) with C = 30 and
T = 25 (bottom left graph of Figure 2.4).

considering the full controlled system, but taking diffusion into account

∂tM −D∆M = bMM

(
1− M +W

K(x)

)(
1− sh

W

M +MW

)
− dMM,

∂tW −D∆W = bWW

(
1− M +W

K(x)

)
− dWW + u, t ∈ [0, T ], x ∈ Ω,

M(0, x) =M0(x), W (0, x) = 0, x ∈ Ω,

∂νM(t, x) = ∂νW (t, x) = 0, x ∈ ∂Ω,

(2.35)

Assuming a high fecundity, bM =
b0M
ε and bW =

b0W
ε with ε ≪ 1, and introducing the total

population N =M +W and the proportion of the species W , p = W
M+W , from system (2.35) we

compute

∂tN −D∆N = N

(
1

ε

(
1− N

K

)(
b0W p+ b0M (1− p)(1− shp)

)
− dW p− dM (1− p)

)
+ u, (2.36)

∂tp−D∆p− 2D
∇p · ∇N

N
= p(1− p)

(
1

ε

(
1− N

K

)(
b0W − b0M (1− shp)

)
+ dM − dW

)
− 1− p

N
u. (2.37)

For ε small enough, we can expand N = Nε(t, x) as

N = Nε(t, x) = K(x)
(
1− εnε(t, x) + o(ε)

)
.
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From here, we deduce the relation

nε(t, x) =
dW p(t, x) + dM (1− p(t, x))−D∆K(x)/K(x)− u/K(x)

b0W p(t, x) + b0M (1− p(t, x))(1− shp(t, x))
.

Injecting this expression into the right hand side of (2.37), we obtain that p solves the following
scalar reaction-diffusion equation :

∂tp−D∆p− 2D
∇p · ∇K

K
= f(p) +

u

K
g(p)−D∆K

K
ψ(p), t > 0, x ∈ Ω,

∂νp = 0, t > 0, x ∈ ∂Ω,
p(0, x) = 0, x ∈ Ω,

(2.38)

where f and g are the same as in (2.6) and

ψ(p) = p(1− p) b0W − b0M (1− shp)
b0M (1− p)(1− shp) + b0W p

. (2.39)

We are interested in observing how diffusion modifies the results presented so far. We place
ourselves in the case with a bigger time horizon, T = 25, corresponding with the lower rows
of Figures 2.3 and 2.4. We show the results for two different diffusion rate values: a smaller
one, D = 0.001, and a bigger one, D = 0.02. In Figure 2.6, we set K(·) = KS(·). In the left
column, diffusion seems to concentrate the initial distribution of mosquitoes, making it slightly
narrower and taller, although with a little decrease happening in the center of the release for a
small diffusion value (upper left graph). Solutions in this case, nonetheless, seem quite robust
to the addition of diffusion for the parameters considered. In the case of a piece-wise constant
carrying capacity 1 K(·) = KP (·) (Figure 2.7) the addition of diffusion immediately breaks the
monotonicity of u∗0(·) with respect to K(·). This means that, contrary to the case without
diffusion, releases do not need to be stronger where there are more wild mosquitoes, and that
optimal releasing policies may be more complex. We also observe how mosquitoes are released
in a way such that a big density difference is created in the area close to the boundary between
patches. As we can see, specially in the bottom left graph, by setting an initial density difference
in this boundary, an invasive wave propagates from the patch with a higher carrying capacity
to the other one. It is also noteworthy that in this case a new stationary state appears strictly
between p = 0 · 1[0,|Ω|] and p = 1[0,|Ω|.

2.3.3 2D simulations

The method developed in this chapter can be applied any dimension. Problems (Pu0
) and

(Pp0) can be solved using Theorems 2.1 and 2.2 or, at least, reduced to the one-dimensional
optimization problem (Q), independently of the number of spatial dimensions considered. For a
real application, nonetheless, the most interesting case is 2D.

Despite it does not present any novelties conceptually speaking, to illustrate the potential of
the results, we show also two more simulations done in a 2D setting. We considered the following

1. Note that KP as defined is not differentiable and thus ∇KP and ∆KP are not defined. Nevertheless, we
can always consider a differentialble function K̃P such that K̃P (x) = 3K0/2 for x < |Ω|/2 − ϵ, K̃P (x) = K0/2
for x > |Ω|/2 + ϵ and such that ϵ is smaller than the space step considered in the discretization done by the
numerical algorithm implemented to compute the solutions. The carrying capacity in these simulations should be
interpreted as the latter case.
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Figure 2.6 – Results for K(·) = KS(·) for the diffusive system. For different diffusion rates,
D ∈ {0.001, 0.02}, total amount of mosquitoes C ∈ {30, 200} and final time T = 25.

carrying capacity

K2D(x, y) = K0

(
1 +

1

6
sin

(
2πx

Lx
− π

2

)
+

1

3
sin

(
2πy

Ly
− π

2

))
.

As in the case withKS , K2D models a scenario with a higher concentration of mosquitoes towards
the center of the domain and a smaller one towards the boundaries. Nevertheless, note that K2D

is not radially symmetric.
For the simulations we took Ω = [0, Lx] × [0, Ly], with Lx = Ly = 1. Once again, for the

parameters chosen,
∫
Ω
K2D(x, y) dx dy = K0|Ω|. The results of the simulations can be seen in

Figure 2.8. We portray only the case T = 25 for two values of C. Results match the intuition
one can have from the related 1D case K(·) = KS(·). When a small amount of mosquitoes is
considered, C = 30 the solution is flat and wide to surpass the critical proportion p0 = θ in
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Figure 2.7 – Results for a piecewise carrying capacity K(·) = KP (·) for the system with diffusion.
Diffusion rates D ∈ {0.001, 0.02} and total amount of mosquitoes C ∈ {30, 200}.

a bigger area, since the proportion of Wolbachia-infected mosquitoes will naturally increase in
those places. Also, u∗0(x) = 0 outside of this area for the reasons already exposed. On the other
hand when a bigger amount of mosquitoes is considered, C = 200, the solution is bigger than
p0 = θ everywhere and varies more rapidly, being higher where the carrying capacity is higher,
but flattening out when u∗0 = U is reached.
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Figure 2.8 – Results in a 2D setting, K = K2D, T = 25 and C ∈ {30, 200}.



Chapter 3
Vector-borne disease outbreak control via
instant vector releases

This chapter is the subject of L. Almeida, J. Bellver Arnau, Y. Privat and C. Rebelo.
“Vector-borne disease outbreak control via instant vector releases”, submitted for publication

[5].

3.1 Introduction

Vector-borne diseases have a large impact on human health around the world, representing
17% of all infectious diseases. These diseases can be due to parasites, bacteria or viruses and be
transmitted by different types of vectors like, for instance, ticks, fleas or mosquitoes. A significant
part of the models presented in this chapter are applicable in a general setting. In particular,
the part concerning the Sterile Insect Technique (SIT) is applicable to any vector borne disease
where male vectors do not transmit the disease and where the vector has sexual reproduction
which will be significantly perturbed by the release of sterile males.

Many of these diseases, such as dengue, Zika, chikungunya, yellow fever or the West Nile
fever are caused by arboviruses. The vector responsible for the transmission of many arboviruses
are the mosquitoes of the genus Aedes, specially the species Aedes Aegipty and Aedes Albopictus.
Dengue is the most prevalent of these diseases, with more than 3.9 billion people in over 129
countries at risk of contracting it, and an estimated 40,000 death toll every year according to
the World Health Organization [154]. Since, at present, there is no effective vaccine or antiviral
drug, the only treatment option is to relieve the symptoms. As for preventing the spread of the
disease, current methods consist of directly targeting the vector.

In the fight against arboviruses, and in particular dengue, two of the main control techniques
targeting the mosquitoes are the SIT and the use of Wolbachia. Both methods rely on introduc-
ing mosquitoes into the wild population with certain modifications, which allow to control the
infections. The SIT consists on the release of large amounts of sterile male mosquitoes in order
to reduce the mosquito population by mating with the females in the place of the fertile ones.
This technique has been both studied mathematically [27] and tested in the field [22, 62], not
only with mosquitoes but also with other pests. The Wolbachia technique has mostly been used
for Aedes mosquitoes (and this is the context in which we chose to present it in this chapter)
but there are also many promising signs indicating that it should be possible to use it for other

87
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types of mosquitoes or even other vectors [108]. The release of Wolbachia-infected mosquitoes
on the other hand, does not seek to eradicate the mosquito population, but rather to replace it
with a new one, less capable of transmitting several diseases. Thus, both males and females need
to be released in order to establish a new population. More details on the functioning of these
techniques and its biological insights can be found in the Introduction of this thesis, sections II.2
for the SIT and II.1 for population replacement technique using Wolbachia.

Our main goal in this chapter is to study and compare the effect of these techniques in
interaction with the disease dynamics, in order to determine optimal strategies to mitigate the
effects of vector-borne disease outbreaks using mosquito releases. These techniques are not
usually applied in an epidemiological context. In case of an outbreak other alternatives with more
immediate effects exist, like the use of pesticides. Also, the population replacement technique
using Wolbachia requires the release of female mosquitoes, which, though being much poorer
vectors than its wild counterparts, raises ethical questions when used in the case a virus is actively
circulating in a population. This work should be seen as a first step towards understanding better
the effects of modified vector releasing in epidemiological contexts, opening the debate around
broadening the scope of application of these techniques. Since the releases occur in a much shorter
time scale than the duration of the outbreak, they will be considered instantaneous. Therefore,
impulsive controls are a natural setting to model field releases. This will be properly detailed in
section 3.3. As stated before, our models are valid in a much wider setting but, for the sake of
clarity, for the remaining of the chapter we will describe them in the setting of arboviruses and of
Aedes mosquitoes as vectors. Although with several differences, previous works model and study
the arboviruses transmission between Wolbachia-infected mosquitoes, wild-type mosquitoes and
humans [102, 69]. A previous study of optimal control related issues, considering only bang-bang
controls, can be found in [158].

In order to model the virus dynamics between mosquitoes and humans we consider a SEIR
(Susceptible-Exposed-Infectious-Recovered) model for the humans and a SEI model for the
mosquitoes (their short lifespan leads us to neglect the recovered compartment for the mosquitoes).
As for the population dynamics we assume the humans to have the same birth and death rate
and consider a logistic growth with a death term for the mosquitoes. The human and mosquito
populations are subscripted H and M respectively.

S′
H = bHH −

βM
H

IMSH − bHSH

E′
H =

βM
H

IMSH − γHEH − bHEH
I ′H = γHEH − σHIH − bHIH
S′
M = bMM

(
1− M

K

)
− βM

H
SMIH − dMSM

E′
M =

βM
H

SMIH − γMEM − dMEM
I ′M = γMEM − dMIM

(3.1)

The (positive) parameters used in system (3.1) are:
— bH , bM , the birth rates for humans and mosquitoes.
— dM , the death rate for mosquitoes. For humans the death rate is assumed to be equal to

the birth rate.
— βM is the rate of mosquito bites giving rise to a transmission between infected mosquitoes

and humans, or infected humans and mosquitoes.
— γH and γM are the progression rates from latent to infectious compartments in humans

and mosquitoes, respectively.
— σH is the recovery rate from the disease.
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— H is the total amount of humans, H = SH + EH + IH +RH .
— M is the total amount of mosquitoes, M = SM + EM + IM .

The equation for the recovered human reads R′
H = σHIH − bHRH . Since H is constant we can

remove RH from the system of differential equations and compute it as RH = H−SH−EH−IH .
System (3.1) can be used for modeling, a priori, any vector-borne disease without other means
of transmission and for which reinfection cannot occur.

In order to study these disease controlling techniques we need to modify this basic system in
a way that takes into account the particularities of each one of them.

Remark 3.1. It is important to remark that throughout the chapter whenever we refer to
‘mosquitoes’ we are referring exclusively to the female mosquitoes, unless the contrary is specified.
Male mosquitoes do not bite humans and therefore are unable of transmitting diseases. Thus,
the variables referring to the mosquitoes such as SM , IM or IM , refer to female mosquitoes. An
exception being when the SIT is treated (see section II.2). In the SIT only male mosquitoes are
released, thus, MS will refer to male mosquitoes. In order to be able to do this simplification,
we assume that male and female population have the same dynamics. We assume that the
probability at birth of female and male is the same (50%) and that they both have the same life
expectancy (d♂ = d♀ = dM ).

3.1.1 The sterile insect technique

To model the effects of the addition of sterile mosquitoes into the system we have to add an
equation for them and a term accounting for the interaction between them and the mosquito
population. Following the same approach as in [7] we introduce the following system

S′
H = bHH −

βM
H

IMSH − bHSH

E′
H =

βM
H

IMSH − γHEH − bHEH
I ′H = γHEH − σHIH − bHIH
S′
M = bMM

(
1− M

K

)
M

M + scMS
− βM

H
SMIH − dMSM

E′
M =

βM
H

SMIH − γMEM − dMEM
I ′M = γMEM − dMIM
M ′
S = u− dSMS

(SIT )

Since sterile mosquitoes don’t reproduce we only consider a death term and the function u,
representing the rate at which sterile mosquitoes are introduced in the population and interpreted
as a control term for this system. We also add a birth term in the susceptible mosquitoes
compartment, proportional to the probability that a female mosquito encounters a fertile male
to mate (assuming that there are the same amount of male and female mosquitoes in the wild
population). The positive parameter sc accounts for the competitiveness of the sterile mosquitoes
since female mosquitoes may be less inclined to mate with them. This parameter presents a huge
variation in the literature, from works estimating it to be low (sc = 0.14 in [107]) to works
where no difference in competitiveness was found [130]. According to [107], it would be relevant
to assume the parameter sc depending on the ratio of sterile to fertile mosquitoes which would
imply sc = sc(MS/M). Nevertheless, for simplicity, we will assume it to be constant. Note that
there is no need to consider the dynamics of dengue in the sterile mosquito population, since the
released mosquitoes are only male and therefore they do not feed on human blood. Thus, they
are unable to transmit the disease.
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3.1.2 The Wolbachia method

In this case we add a second mosquito population. This new population is composed by
mosquitoes carrying Wolbachia, and the related quantities will be subscripted by W . It has been
shown that Wolbachia decreases the fecundity and increases the mortality rates of mosquitoes
[147], therefore bW < bM and dW > dM . Also, Wolbachia reduces the vector capacity of the
mosquitoes. We thus introduce 0 < βWH < βHW < βM to make the distinction between the rate
of mosquito bites giving rise to a transmission from human to Wolbachia-carrying mosquitoes,
βHW , and the rate of mosquito bites giving rise to a transmission from Wolbachia-carrying
mosquitoes to humans, βWH . The first one is smaller than βM since Wolbachia affects the
capability of mosquitoes to feed due to a deformation in the trunk [143]. The second one should
be smaller than the first one since Wolbachia also affects the way the disease develops inside the
body of the mosquitoes and reduces the viral load in their saliva [92, 23]. We also introduce the
term 1 − sh W

M+W to take into account the cytoplasmic incompatibility. sh represents the level
of cytoplasmic incompatibility achieved by the strain of Wolbachia. We have 0 ⩽ sh ⩽ 1, with
sh = 0 meaning that there is not any incompatibility and sh = 1 meaning that the incompatibility
is perfect. Finally we introduce γW since Wolbachia also delays the amount of time it takes for
dengue virus to reach the saliva of the mosquitoes, lengthening like this the effective incubation
period of the disease in the mosquitoes carrying it [157].

S′
H = bH − βM

H
IMSH −

βWH

H
IWSH − bHSH

E′
H =

βM
H

IMSH +
βWH

H
IWSH − γHEH − bHEH

I ′H = γHEH − σHIH − bHIH
S′
M = bMM

(
1− M +W

K

)(
1− sh

W

M +W

)
− βM

H
SMIH − dMSM

E′
M =

βM
H

SMIH − γMEM − dMEM
I ′M = γMEM − dMIM
S′
W = bWW

(
1− M +W

K

)
− βHW

H
SW IH − dWSW + u

E′
W =

βHW
H

SW IH − γWEW − dWEW
I ′W = γWEW − dW IW

(WB)

Before moving on to the control problem we perform two simplifications on the system. We
consider the following variables: M := SM+EM+IM and W := SW +EW +IW . These variables
account for the mosquito population regardless of the dengue dynamics. These variables present
the following dynamics

M ′ = bMM

(
1− sh

W

M +W

)(
1− M +W

K

)
− dMM

W ′ = bWW

(
1− M +W

K

)
− dWW + u

(3.2)

These equations describing the population dynamics of the mosquitoes in our model are those
of the model in [10]. One can observe looking at the values in table 3.1 that bM ≫ dM and
bW ≫ dW . That is, that the birth rate of the mosquitoes is much higher than the death
rate in both populations. In [10, Prop. 1], it is proven that in the high birth rate limit, i.e.
considering bM = b0M/ε, bW = b0W /ε and taking the limit ε → 0, the proportion of mosquitoes
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p = W/(M +W ) converges uniformly to the solution of a simple equation on the proportion of
Wolbachia-infected mosquitoes. The asymptotic system (3.2) hence reads:

p′ = f(p) + ug(p).

where

f(p) = p(1− p) dMb
0
W − dW b0M (1− shp)

b0M (1− p)(1− shp) + b0W p
and g(p) =

1

K

b0M (1− p)(1− shp)
b0M (1− p)(1− shp) + b0W p

.

Another consequence is that M +W converges to K and so, in the limit, W = (M +W ) W
M+W =

Kp, and therefore M = K(1− p).
This limit leaves the equations for the humans and for the infected mosquitoes unchanged. In

order to modify the equations for the latent mosquitoes we can straightforwardly setM+W = K.
Finally, using that SM = M − EM − IM and SW = W − EW − IW we can eliminate the two
equations for the susceptible mosquitoes of the system. The equations for the exposed mosquitoes
become:

E′
M =

βM
H

(K(1− p)− EM − IM )IH − γMEM − dMEM

E′
W =

βHW
H

(Kp− EW − IW )IH − γWEW − dWEW
(3.3)

Incorporating these changes into system (WB) we obtain the system we are going to study

S′
H = bH − βM

H
IMSH −

βWH

H
IWSH − bHSH

E′
H =

βM
H

IMSH +
βWH

H
IWSH − γHEH − bHEH

I ′H = γHEH − σHIH − bHIH
E′
M =

βM
H

(K(1− p)− EM − IM )IH − γMEM − dMEM
I ′M = γMEM − dMIM
E′
W =

βHW
H

(Kp− EW − IW )IH − γWEW − dWEW
I ′W = γWEW − dW IW
p′ = f(p) + ug(p)

(WB′)

3.2 Study of the uncontrolled system

In this section we study the uncontrolled systems (setting u = 0 for all t ∈ [0, T ]) and compute
the equilibria and the per stage reproduction number given by the next generation technique,
R0, of dengue in each case. This R0 is a useful tool in the study of epidemiological systems
with two stages, in this case host-vector and vector-host. It stands for the number of secondary
infections generated per stage in a population where all individuals are susceptible to the disease
(SH = H and SM = total population of vectors), which is the setting in which we will perform
the numerical simulations. This number is the square root of the basic reproduction number [84,
Page 110].

3.2.1 Sterile insect technique

Since we consider u = 0 and MS(0) = 0, MS(t) = 0 for all t ∈ [0, T ], turning system (SIT )
into (3.1). So computing the equilibria and R0 of this system boils down to computing those of
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system (3.1). In order to compute the R0 of the system (that we denote RM0 ) we proceed as in
[44]. For details of these computations, we refer to Appendix C.1. We find a RM0 value of

RM0 = βM

√
K∗γMγH

HdM (bH + σH)(γM + dM )(γH + bH)
,

where K∗ = K(1 − dM/bM ). Since M = SM + EM + IM , for any equilibrium of the system
(S∗
M , E

∗
M , I

∗
M ), we have that M∗ = S∗

M +E∗
M + I∗M must also be an equilibrium of the equation

M ′ = bMM

(
1− M

K

)
− dMM. (3.4)

This equation presents two equilibria, M∗ = 0 and M∗ = K(1 − dM/bM ). We can use this
to simplify the study of the equilibria of system (3.1). The system to solve becomes

0 = bHH −
βM
H

I∗MS
∗
H − bHS∗

H

0 =
βM
H

I∗MS
∗
H − γHE∗

H − bHE∗
H

0 = γHE
∗
H − σHI∗H − bHI∗H

0 = dMM
∗ − βM

H
S∗
MI

∗
H − dMS∗

M

0 =
βM
H

S∗
MI

∗
H − γME∗

M − dME∗
M

0 = γME
∗
M − dMI∗M

(3.5)

Solving this simpler system we obtain three different equilibria:

— The extinction equilibrium

(S∗
H , E

∗
H , I

∗
H , R

∗
H , S

∗
M , E

∗
M , I

∗
M ) = (H, 0, 0, 0, 0, 0, 0)

— The disease-free equilibrium

(S∗
H , E

∗
H , I

∗
H , R

∗
H , S

∗
M , E

∗
M , I

∗
M ) = (H, 0, 0, 0,K∗, 0, 0)

— The endemic equilibrium

(S∗
H , E

∗
H , I

∗
H , R

∗
H , S

∗
M , E

∗
M , I

∗
M ) =

(
H − aHI∗H ,

σH+bH
γH

I∗H , I
∗
H ,

σH

bH
I∗H ,K

∗ − aMI∗M ,
dM
γM
I∗M , I

∗
M

)
where aH = (γH+bH)(σH+bH)

bHγH
, aM = γM+dM

γM
,

I∗H =
K∗βM

HbHaM +K∗βM

(
1− 1

(RM0 )2

)
H

aH
and I∗M =

βM
aHdM + βM

(
1− 1

(RM0 )2

)
K∗

aM
.

It is enlightening to write the endemic equilibrium in terms of RM0 , since it clearly shows
that if RM0 < 1 the endemic equilibrium does not exist.

For the parameters considered in table 3.1 we find RM0 ≈ 1.67, which gives a basic reproduction
number of

(
RM0

)2 ≈ 2.80.
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3.2.2 Wolbachia method

Since the equation p′ = f(p) is independent of the rest we can solve it separatedly. The
function f(p) has only three zeros, p∗ = 0, p∗ = 1 and p∗ = θ, satisfying 0 < θ < 1. The last zero
only exists assuming further that 1 − sh < dMb0W

dW b0M
< 1, which is satisfied in our case. The value

of θ can be computed from the parameters of the problem, obtaining θ = 1
sh

(
1− dMb0W

dW b0M

)
. This

implies that, independently of the epidemiological part of the model, there exists a Wolbachia-free
equilibrium, a full invasion equilibrium and a coexistence equilibrium in the mosquito population.

We compute now the solutions to

0 = bHH −
βM
H

I∗MS
∗
H −

βWH

H
I∗WS

∗
H − bHS∗

H

0 =
βM
H

I∗MS
∗
H +

βWH

H
I∗WS

∗
H − γHE∗

H − bHE∗
H

0 = γHE
∗
H − σHI∗H − bHI∗H

0 =
βM
H

(K(1− p∗)− E∗
M − I∗M )I∗H − γME∗

M − dME∗
M

0 = γME
∗
M − dMI∗M

0 =
βHW
H

(Kp∗ − E∗
W − I∗W )I∗H − γWE∗

W − dWE∗
W

0 = γWE
∗
W − dW I∗W

(3.6)

as a function of p∗.
Let us define aW := γW+dW

γW
,

RW0 :=

√
βHWβWHKγW γH

HdW (bH + σH)(γW + dW )(γH + bH)
,

and RM0 as defined before but using K instead of K∗. Note that in the high birth rate limit, K∗ =
K(1− dM

bM
) tends to K. These RM0 and RW0 are the per stage reproduction numbers associated

with the disease-free equilibria, for p∗ = 0 (Wolbachia-free) and p∗ = 1 (full invasion) respectively.
They are also computed following the procedure detailed in Appendix C.1. Let us also define
R2
p∗ :=

(
RW0

)2
p∗ +

(
RM0

)2
(1 − p∗) (an analogous closed formula was considered in [34]). We

find that system (3.6) has the trivial solution (S∗
H , E

∗
H , I

∗
H , E

∗
M , I

∗
M , E

∗
W , I

∗
W ) = (H, 0, 0, 0, 0, 0, 0),

which gives three different equilibria for system (WB′): (H, 0, 0, 0, 0, 0, 0, 0),(H, 0, 0, 0, 0, 0, 0, θ)
and (H, 0, 0, 0, 0, 0, 0, 1). In case Rp∗ > 1, system (3.6) presents another real solution(
H − aHI∗H ,

σH+bH
γH

I∗H , Hr,
dM
γM
I∗M ,

K
aM

βMr
HbHaW+βMr (1− p

∗), dWγW I∗W ,
K
aW

βHW r
HbHaW+βHW rp

∗
)
,

where r is the positive root of the second order polynomial

P (Z) = Z2
(
βMβHW + aH

(
βMdW

(
RM0

)2
(1− p∗) + βHW dM

(
RW0

)2
p∗
))

+Z
(
R2
p∗aHdMdW −

(
R2
p∗ − 1

)
(βMdW + βHW dM )

)
−
(
R2
p∗ − 1

)
dMdW .

That means that system (WB′) can have up to six equilibria, due to the fact that there are
three different values of p∗ and that Rp∗ can be bigger than one for some values of p∗ but not
for others.

The per stage reproduction number RM0 is slightly higher than the per stage reproduction
number for the sterile insect model due to the change of K∗ by K. For the values in Table 3.1
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we find RM0 ≈ 1.68 and RW0 ≈ 1.03, which give basic reproduction numbers of
(
RM0

)2 ≈ 2.83

and
(
RW0

)2 ≈ 1.08 respectively. That means that even in a fully invaded population, outbreaks
could still appear, but would have a smaller impact. Nevertheless these values should be taken
with a grain of salt, since most of the parameters considered present a lot of variability in the
literature.

We present here a result on the persistence of the disease in the system. Its proof can be
found in Section C.2 of the Appendix.

Theorem 3.1. If there exists p∗ such that Rp∗ > 1 then the system (WB′) is uniformly persistent
in the space of the initial conditions such that p(t)→ p∗, that is there exists η > 0 such that for
each initial condition with p(0) such that p(t)→ p∗ we have that

lim
t→+∞

(EH + IH + EN + IN + EW + IW )(t) > η.

If Rp∗ < 1 for each initial condition with p(0) such that p(t)→ p∗ we have that limt→+∞(EH +
IH + EN + IN + EW + IW )(t) = 0.

3.3 Control Problem and Impulsive Dynamics

We place ourselves in the case of a dengue outbreak in a fully susceptible population. The
goal of the releases will be to minimize the amount of cases during the duration of the outbreak.
Therefore, considering a time window of size T , we want to find u minimizing

∫ T
0
IH(t) dt. Other

works have studied related problems in the case of Wolbachia [158], or problems involving only
the mosquito population [4, 6, 3, 7] considering controls in L∞(0, T ).

Field releases are done with a certain periodicity and in a short amount of time with respect
to the time window considered, this leads us to consider the control denoted u(·) as a linear
combination of pulses, namely

u(t) =

n∑
i=1

ciδ(t− ti).

where δ(t) is the Dirac measure at t = 0 and 0 ⩽ t1 ⩽ · · · ⩽ tn are the release times. It is
natural to impose some constraints on the control function. Usually it is assumed that the rate
at which mosquitoes are released is bounded (u ∈ L∞(0, T )) but also that the total amount of
mosquitoes used is bounded (

∫ T
0
u(t)dt ⩽ C). Our approach is different. We also assume that

we have a limited amount of mosquitoes at our disposal, C, but we assume that all of them are
used. Since our control function is a linear combination of pulses, this translates into imposing
the constraint

∑n
i=1 ci = C. Therefore, for both systems (SIT ) and (WB′), the optimization

problem we will study is

Minimize J(u) over the set of time jumps (ti)1⩽i⩽n ∈ [0, T ]n and the nonnegative coeffi-

cients (ci)1⩽i⩽n such that
n∑
i=1

ci = C, (P)

where the number of jumps, n, and the time horizon, T , are fixed and the cost functional J
stands for the total number of infected humans, given by

J(u) :=

∫ T

0

IH(t)dt. (3.7)
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Since we are going to deal with several jumps it is convenient to introduce some notation first.
We consider n jumps performed at times ti, for i = 1, . . . , n. If needed for the sake of notational
simplicity, we will denote t0 = 0 and tn+1 = T . Since functions may present discontinuities we
introduce the notations

F (t−i ) := lim
t→t−i

F (t), F (t+i ) := lim
t→t+i

F (t),

where F (t) represents any function. We also introduce the characteristic function of a set S,
equal to 1 when its variable belongs to S and 0 elsewhere. In what follows, we will denote it 1S .

The equations for MS and p in systems (SIT ) and (WB′) must be adapted to the impulsive
formulation of the problem. By considering u defined by u(t) =

∑n
i=1 ciδ(t − ti) in systems

(WB′) and (SIT ) we can pass from a infinite dimensional optimization problem to a discrete
one. Here we detail how, by doing this passage, these systems where the control appears become
differential equations with jump discontinuities. In order to do so we consider u given by u(t) =∑n
i=1

ci
ε 1[ti,ti+ε] and we take the limit ε → 0. The following proof is adapted from [103]. We

detail the deduction of equation (3.11). However, equation (3.8) can be easily obtained following
the same reasoning.

Proposition 3.1. Let us consider pε, solving the following equation{
p′ε(t) = f(pε(t)) +

ci
ε 1[ti,ti+ε]g(pε(t)), t ∈ [ti−1, ti+1]

pε(ti−1) = pi−1.

Let G be the antiderivative vanishing at zero of 1/g(p), that is G(p) :=
∫ p
0

dq
g(q) . Then when ε

tends to 0, pε(·) converges pointwise to p(·) given by

p(t) =

{
p−(t), t ∈ [ti−1, ti]

p+(t), t ∈ (ti, ti+1]

where p− and p+ solve{
dp−

dt (t) = f(p−(t))
p−(ti−1) = pi−1,

and
{

dp+

dt (t) = f(p+(t))
p+(ti) = G−1(G(p−(ti)) + ci),

respectively.

Proof. Outside the interval [ti, ti + ε] the behaviour of p(t) is clear. We study the behaviour of
pε(t) in [ti, ti + ε], in order to establish the jump of p(t) at ti.

pε(t) = p−(ti) +

∫ t

ti

f(pε(s)) +
ci
ε
g(pε(s))ds,

then for every t ∈ [ti, ti + ε], one has

|pε(t)| ⩽
∣∣p−(ti)∣∣+ ∫ t

ti

|f(0)|+ ci
ε
|g(0)| ds+

∫ t

ti

(
Lf +

ci
ε
Lg

)
|pε(s)| ds

⩽ 1 +
ci
K

+

∫ t

ti

(
Lf +

ci
ε
Lg

)
|pε(s)| ds

where Lf and Lg are the Lipschitz constants of f(·) and g(·) respectively. These constants exist
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since both functions are C1 in [0, 1]. Using Grönwall’s inequality we obtain that

|pε(t)| ⩽
(
1 +

ci
K

)
exp (εLf + ciLg),

which is bounded. Let us consider now zε, the solution to{
z′ε(t) =

ci
ε g(zε(t))

zε(ti) = p(t−i ),

We prove now that, in the limit, both zε and pε present the same jump at ti. In order to do this
we compute for t ∈ [ti, ti + ε],

|zε(t)− pε(t)| ⩽
∫ t

ti

|f(pε(s))| ds+
∫ t

ti

ci
ε
|g(zε(s))− g(pε(s))| ds

⩽ εMf +

∫ t

ti

ci
ε
Lg |zε(s)− pε(s)| ds

where Mf = maxp∈[0,1] f(p). Using again Grönwall’s Lemma we obtain

|zε(t)− pε(t)| ⩽ εMf exp (ciLg)→ 0 as ε→ 0.

This proves that supt∈[ti,ti+ε] |zε(t)− pε(t)| → 0 when ε → 0, and therefore zε and pε present
the same jump at ti in the limit. To conclude, we solve zε(t) in [ti, ti + ε],∫ ti+ε

ti

z′(s)

g(zε(s))
ds =

∫ ti+ε

ti

ci
ε
ds = ci,

which leads to G(zε(ti + ε))−G(zε(ti)) = ci and thus zε(ti + ε) = G−1(G(zε(ti)) + ci). Taking
the limit ε→ 0 we conclude that p+(ti) = G−1(G(p−(ti)) + ci).

Proposition 3.1 can be used to deduce the differential equations with jump discontinuities
that follow MS and p in systems (SIT ) and (WB′) repectively.

3.3.1 Sterile insect technique
In order to find the equation satisfied by MS we take

u(t) =

n∑
i=1

ci
ε
1[ti,ti+ε],

so the equation satisfied by M ′
S becomes

M ′
S(t) =

n∑
i=1

ci
ε
1[ti,ti+ε] − dSMS(t).

Taking the limit ε→ 0 we obtain that the equation converges to{
M ′
S(t) = −dSMS(t), t ∈ [ti, ti+1], i = 0, . . . , n

MS(t
+
i ) = MS(t

−
i ) + ci, i = 1, . . . , n

(3.8)
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We can solve this equation explicitly. Since the initial condition is MS(0) = 0 the solution reads

MS(t) =

i∑
j=1

cje
−dS(t−tj), t ∈ [ti, ti+1], i = 1, . . . , n (3.9)

3.3.2 Wolbachia method
Looking at the equation on p in system (WB′) and substituting the control function by

u(t) =

n∑
i=1

ci
ε
1[ti,ti+ε],

we obtain

p′(t) = f(p(t)) + g(p(t))

n∑
i=1

ci
ε
1[ti,ti+ε]. (3.10)

Let G be the antiderivative vanishing at zero of 1/g(p), that is G(p) :=
∫ p
0

dq
g(q) , when we take

the limit ε→ 0 in equation (3.10) we obtain:{
p′(t) = f(p(t)), t ∈ [ti, ti+1], i = 0, . . . , n
p(t+i ) = G−1(G(p(t−i )) + ci), i = 1, . . . , n

(3.11)

3.4 Optimality conditions

We devote this section to the computation of the gradients of the functional J in problem
(P) for systems (SIT ) and (WB′). These gradients will be used in the numerical simulations of
section 3.5. We discuss it first in a general setting to later apply to our problems.

Let X : R+ → RN be the solution to{
X′(t) = A(X(t)) +B(X(t))y(t), t ∈ [0, T ]
X(0) = X0,

(3.12)

with A,B : R+ → RN continuous and y : R+ → R the solution to the differential equation with
jump discontinuities {

y′(t) = a(y(t)), t ∈ [0, T ] \ {ti}i=1,...,n

y(t+i ) = b(y(t−i ), ci), i = 1, . . . , n

with a, b : R+ → R. Now, consider yε(t), the solution to
y′ε(t) = a(yε(t)), t ∈ [0, T ] \ {ti}i=1,...,n

yε(t
+
i ) = b(yε(t

−
i ), ci), i ̸= k

yε(t̃
+
k ) = b(yε(t̃

−
k ), ck),

where t̃k = tk + ε. Finally, lets consider also Xε the solution to{
X′
ε(t) = A(Xε(t)) +B(Xε(t))yε(t), t ∈ [0, T ]

Xε(0) = X0,

We consider X to be a function of time, nevertheless, the value of the parameters ti and ci,
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i = 1, . . . , n affects the value of X(t) for any t > t1. In general, and for the rest of the section,
we define the variation of any given function of time, Fχ, depending on a parameter, χ, as

δχFχ(t) := lim
ε→0

Fχ+ε(t)− Fχ(t)
ε

.

As an example, in the case of the variation of X with respect to a given tk we have

δtkX(t) := lim
ε→0

Xε(t)−X(t)

ε
.

From equation (3.12) we have that

X(t) = X0 +

∫ t

0

A(X(s))ds+

∫ t

0

B(X(s))y(s)ds.

For a given k ∈ {1, . . . , n}, in case t < tk, one has δtkX(t) = 0, since the time of the jump has
no effect until it occurs. In case t > tk

δtkX(t) = δtk

∫ t

0

A(X(s))ds+ δtk

(∫ tk

0

B(X(s))y(s)ds+

∫ t

tk

B(X(s))y(s)ds

)
=

∫ t

0

δtkA(X(s))ds+B(X(tk))y(t
−
k )−B(X(tk))y(t

+
k ) +

∫ t

0

δtk (B(X(s))y(s)) ds

=

∫ t

0

(DA(X(s)) +DB(X(s))y(s)) δtkX(s)ds+B(X(tk))(y(t
−
k )− y(t

+
k ))

+

∫ t

0

B(X(s))δtky(s)ds.

We can express this as an ordinary differential equation with a jump discontinuity: (δtkX)
′
(t) = (DA(X(t)) +DB(X(t))y(t)) δtkX(t) +B(X(t))δtky(t), t ∈ [0, T ] \ {tk}

δtkX(0) = 0,
δtkX(t+k ) = δtkX(t−k ) +B(X(tk))(y(t

−
k )− y(t

+
k )).

But since δtkX(t) = 0 for t < tk, we can simplify this system to:

{
(δtkX)

′
(t) = (DA(X(t)) +DB(X(t))y(t)) δtkX(t) +B(X(t))δtky(t), t ∈ [tk, T ]

δtkX(t+k ) = B(X(tk))(y(t
−
k )− y(t

+
k ))

(3.13)

where δtky(t) := limε→0(yε(t)− y(t))/ε.

Following the same lines we consider now yε(t) as the solution to
y′ε(t) = a(yε(t)), t ∈ [0, T ] \ {ti}i=1,...,n

yε(t
+
i ) = b(yε(t

−
i ), ci), i ̸= k,

yε(t
+
k ) = b(yε(t

−
k ), ck + ε).
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In this case, for t > tk we have

δckX(t) =

∫ t

0

δckA(X(s)) + δckB(X(s))y(s) +B(X(s))δcky(s) ds

=

∫ t

0

(DA(X(s)) +DB(X(s))y(s)) δckX(s) +B(X(s))δcky(s) ds.

Since δckX(t) = 0 for t < tk, we can express this as the following ordinary differential equation:

{
(δckX)

′
(t) = (DA(X(t)) +DB(X(t))y(t)) δckX(t) +B(X(t))δcky(t), t ∈ [tk, T ]

δckX(t+k ) = 0.
(3.14)

with, again, δcky(t) := limε→0(yε(t)− y(t))/ε.
In problem (P), the functional we want to minimize is J(u) =

∫ T
0
IH(t)dt. Since IH(t) is

continuous we have that

δtkJ(u) =

∫ T

0

δtkIH(t)dt,

we also have that δckJ(u) =
∫ T
0
δckIH(t)dt. Hereafter we use expressions (3.13) and (3.14) in

order to compute δtkJ and δckJ for systems (SIT ) and (WB′).

3.4.1 Sterile Insect Technique

We consider system (SIT ). The variable satisfying a differential equation with a jump discon-
tinuity is MS(t). Therefore, considering X(t) = (SH(t), EH(t), IH(t), SM (t), EM (t), IM (t)) and
y(t) = MS(t) we find that δtkJ =

∫ T
tk
(δtkX(t))3 dt and δckJ =

∫ T
tk
(δckX(t))3 dt where δtkX(t)

and δckX(t) are defined by equations (3.13) and (3.14) respectively and the subscript stands for
the third component of the vector. There are nonetheless two more terms to compute, δtkMS(t)
and δckMS(t). In the case of the Sterile Insect Technique we have a closed expression for MS(t),
see equation (3.9), therefore the computation of the variation of J with respect to tk and ck is
straightforward. We have

δtkMS(t) =

{
0, t ∈ [0, tk]

dScke
−dS(t−tk) t ∈ (tk, T ],

(3.15)

and

δckMS(t) =

{
0, t ∈ [0, tk]

e−dS(t−tk) t ∈ (tk, T ].
(3.16)

3.4.2 Wolbachia method

In the case of the use of Wolbachia (system (WB′)) the variable satisfying a differential
equation with a jump discontinuity is the proportion of Wolbachia infected mosquitoes, p(t). We
consider now X(t) = (SH(t), EH(t), IH(t), EM (t), IM (t), EW (t), IW (t)) and y(t) = p(t). Once
more, δtkJ =

∫ T
tk
(δtkX(t))3 dt and δckJ =

∫ T
tk
(δckX(t))3 dt. Since the expressions of δtkp(t) and

δckp(t) are significantly harder to find than in the sterile insect case we compute them in the
following propositions.
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Proposition 3.2. Let p solve p′(t) = f(p(t)) +
n∑
i=1

ciδ(t− ti)g(p(t)), t ∈ [0, T ]

p(0) = p0.

with p(t+i ) ̸= θ for all i = 1, . . . , n. Let ci be fixed for all i = 1, . . . , n and let pε(t) solve
p′ε(t) = f(pε(t)) +

n∑
i=1
i ̸=k

ciδ(t− ti)g(p(t)) + ckδ(t− (tk + ε))g(pε(t)),

pε(0) = p0.

Then, the variation of p(t) with respect to tk, δtkp(t) := limε→0
pε(T )−p(T )

ε , is

δtkp(t) =


0, t ∈ [0, tk]

f(p(t−k ))g(p(t+k ))−f(p(t+k ))g(p(t−k ))

g(p(t−k ))

f(p(t))

f(p(t+i ))

i∏
j=k+1

g(p(t+j ))

g(p(t−j ))

f(p(t−j ))

f(p(t+j−1))
, t ∈ (ti, ti+1], k ⩽ i ⩽ n.

(3.17)

Proof. We begin considering t ∈ [ti, ti+1]. In each one of these intervals we have that p′(t) =
f(p(t)). Since f is bistable, f(p) < 0 in (0, θ) and f(p) > 0 in (θ, 1). Therefore, since we assumed
p(t+i ) ̸= θ for all i = 1, . . . , n, p(t) is injective in [ti, ti+1], and we can write∫ p(t)

p(t+i )

dq

f(q)
= t− ti.

We define F to be the antiderivative of 1/f vanishing at p(t+i ), that is F (p) :=
∫ p
p(t+i )

dq
f(q) , thus

we obtain the relationship
F (p(t))− F (p(t+i )) = t− ti. (3.18)

We remark that p(t) = pε(t) for all t ∈ [0, tk]. Therefore in that interval δtkp(t) = 0. Hence,
we can restrict ourselves to the case k ⩽ i ⩽ n. Differentiating implicitly this equation, we get

1

f(p(t))
δtkp(t)−

1

f(p(t+i ))
δtkp(t

+
i ) = 0

and thus
δtkp(t) =

f(p(t))

f(p(t+i ))
δtkp(t

+
i ).

To compute δtkp(t
+
i ) we use that p(t+i ) = G−1(G(p(t−i )) + ci), therefore

δtkp(t
+
i ) = (G−1)′(G(p(t−i )) + ci)G

′(p(t−i ))δtkp(t
−
i ) =

g(p(t+i ))

g(p(t−i ))
δtkp(t

−
i )

where we used the inverse function theorem to write (G−1)′ = 1/(G′ ◦ G−1). Analogously to
equation (3.18) we find that F (p(t−i ))− F (p(t

+
i−1)) = t− ti−1, so δtkp(t

−
i ) =

f(p(t−i ))

f(p(t+i−1))
δtkp(t

+
i−1).

We can repeat this process iteratively until we get to F (p(t−k+1))− F (p(t
+
k )) = t− tk, then

1

f(p(t−k+1))
δtkp(t

−
k+1) = −1 +

1

f(p(t+k ))
δtkp(t

+
k ) = −1 +

1

f(p(t+k ))

g(p(t+k ))

g(p(t−k ))
δtkp(t

−
k )
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and δtkp(t
−
k ) = δtk

∫ tk
tk−1

(f(p(t)))dt = f(p(t−k )) from which we can deduce the final expression.

Note that in the expression of δtkp(t) we are using the convention that if the productory
subscript is bigger than the superscript, then its equal to 1.

Proposition 3.3. Let p solve{
p′(t) = f(p(t)) +

∑n
i=1 ciδ(t− ti)g(p(t)), t ∈ [0, T ]

p(0) = p0.

with p(t+i ) ̸= θ for all i = 1, . . . , n. Let ti be fixed for all i = 1, . . . , n and let pε(t) solve
p′ε(t) = f(pε(t)) +

n∑
i=1
i ̸=k

ciδ(t− ti)g(pε(t)) + (ck + ε)δ(t− tk)g(pε(t)),

pε(0) = p0.

Then, the variation of p(t) with respect to ck, δckp(t) := limε→0
pε(t)−p(t)

ε , is

δckp(t) =


0, t ∈ [0, tk]

g(p(t+k ))
f(p(t))

f(p(t+i ))

i∏
j=k+1

g(p(t+j ))

g(p(t−j ))

f(p(t−j ))

f(p(t+j−1))
, t ∈ (ti, ti+1], k ⩽ i ⩽ n.

(3.19)

Proof. Following a very similar process to the one carried out in the proof of Proposition 3.2, we
obtain δckp(t) =

f(p(t))

f(p(t+i ))
δckp(t

+
i ). In problem (P), the ci must satisfy the constraint

∑n
i=1 ci = C,

but we are not dealing with this constraint for the moment, therefore δckci = δki, where δki is
the Kronecker’s delta.

We compute δckp(t
+
i ), obtaining

δckp(t
+
i ) = (G−1)′(G(p(t−i )) + ci)

(
G′(p(t−i ))δckp(t

−
i ) + δki

)
=

g(p(t+i ))

g(p(t−i ))
δckp(t

−
i ) + δkig(p(t

+
i )).

Following the same lines of the proof of Proposition 3.2, from equation (3.18) applied in the
interval [ti−1, ti], differentiating implicitly we obtain δckp(t

−
i ) =

f(p(t−i ))

f(p(t+i−1))
δckp(t

+
i−1). Finally,

iterating the process until the interval [tk, tk+1] and rearranging the terms we obtain the result.

3.5 Results

We present in this section the optimal solutions of problem (P), obtained through numeri-
cal simulations. We optimize simultaneously the time profile of the releases and the amount of
mosquitoes released in each one. We allow two releases to occur at the same time. This implies
that at that time a release with the total amount of mosquitoes of the two releases combined is
done, reducing the number of effective releases by one. The simulations have been performed us-
ing Python. For the numerical optimization, the time variables are updated by using a standard
step variable gradient descent method. Regarding the weights (ci)1⩽i⩽n, due to the constraint∑n
i=1 ci = C, we used an augmented Lagrangian algorithm. An explanation of the method used
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can be found in section 3.6. The details about the computation of the gradients of the functional
are detailed in section 3.4. The models considered in this work capture the essence of the inter-
action of the modified vectors with the disease and its effect on the transmission. Nevertheless,
in order to be precise, more complex models should be considered. These simulations do not
intend to give quantitative results, but rather qualitative ones.

To model the start of an outbreak we place ourselves in the context of a fully susceptible
population where there are present a small amount of infected humans and mosquitoes. Since in
our model the total amount of humans is constant and since we consider at t = 0 the mosquito
compartment at equilibrium, we need to subtract this initial amount of infectious from the
respective susceptible compartments. Thus, the initial conditions for our simulations will be

(SH(0), EH(0), IH(0), SM (0), EM (0), IM (0)) = (H − I0H , 0, I0H ,K∗ − I0M , 0, I0M ),

with I0H ≪ H and I0M ≪ K∗ (in particular for the simulations we chose I0H = I0M = 20). All the
other variables in the two systems are set to 0 at the start, namely

MS(0) = 0 and (EW (0), IW (0), p(0)) = (0, 0, 0).

Since RM0 is greater than 1, this will lead to an outbreak of the disease and a spike in the number
of cases. We perform several simulations for different values of C. Throughout the simulations
we will fix the parameters of the systems to the values in Table 3.1, which correspond to the
particular case of dengue.

Table 3.1 – Parameter values for dengue
Category Parameter Name Value Source

Biology

bM Wild mosquitoes birth rate 4.4 day−1 [10, 132] 1

bW Wolbachia infected birth rate 3.96 day−1 [10, 132]
dM Wild mosquitoes death rate 0.04 day−1 [10, 132]
dW Wolbachia infected death rate 0.044 day−1 [10, 132]
dS Sterile mosquitoes death rate 0.12 day−1 [6]
sh Cytoplasmic incompatibility level 0.9 [10]
sc Competitiveness level 0.9
K Carrying capacity 65234 2

bH Human birth/death rate 0.013 year−1

σH Human recover time 0.2 day−1 [102]
H Human population size 65000 [70]
βM Transmission rate H↔M 0.1647 day−1 [102]
βHW Transmission rate H→W 0.157 day−1 [102]
βWH Transmission rate H←W 0.0785 day−1 [102]
γM Non infected incubation period 0.186 day−1 [157]
γW Wolbachia infected incubation period 0.146 day−1 [157]
γH Human incubation period 0.17 day−1 [36]

Optimization T Final time 450 days
C Amount of mosquitoes released 104 - 6 · 107

1. In the model studied in [132] the term accounting for the birth of mosquitoes is not straightforwardly
equivalent to the one in our model. Its value has been adapted in order to account for this difference.

2. K to H ratios present a huge variability in the literature. Indeed, the ratio may depend on numerous factors
and may not be constant in time. Lacking on solid evidence to pick a value, we choose K such that the size of
the mosquito population at equilibrium is equal to the human population size.
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3.5.1 Sterile Insect Technique
The optimal solution for problem (P) in the SIT setting consists of a combination of con-

secutive pulses with a similar spacing. The fact that several spaced jumps are more efficient in
reducing the number of susceptible mosquitoes, eventually leading to a reduction in the number
of infections, is a result of the fact that the amount of sterile mosquitoes decreases exponentially
between releases. Therefore, by spacing the releases a population of sterile mosquitoes can be
sustained longer than doing one single release with all the mosquitoes together. We also observe
that results do not only depend on the amount of mosquitoes released, but also in the number
of releases considered. Comparing Figures 3.1 and 3.2 we can see how, by increasing the number
of releases from 10 to 20, the final amount of infections is considerably reduced, specially with
a comparatively high amount of mosquitoes. Nevertheless, this trend does not continue indefi-
nitely. Increasing the number of releases way above 20 does not reduced significantly the number
of infections anymore, even though there is no clear cut in the number of releases for which the
reduction is significant and may depend on the C considered. The times and costs of the instant
releases at Figures 3.1 and 3.2 are given in Tables 3.2 and 3.3 respectively.

Table 3.2 – Results of the simulations performed for the SIT with 10 releases
C Time of releases Amount of mosquitoes released

∫ T
0
IH(t)dt

3 · 107

t1 = 172.0, t2 = 178.4 c1 = 2277164.9, c2 = 3118801.0

250375.4
t3 = 185.6, t4 = 193.0 c3 = 3457741.0, c4 = 3525953.9
t5 = 200.7, t6 = 208.7 c5 = 3458904.6, c6 = 3328601.2
t7 = 217.3, t8 = 226.6 c7 = 3157284.8, c8 = 2932013.1
t9 = 237.0, t10 = 249.1 c9 = 2615241.0, c10 = 2128294.3

6 · 107

t1 = 78.8, t2 = 90.3 c1 = 6568442.3, c2 = 8417318.4

72862.0
t3 = 102.9, t4 = 116.3 c3 = 8619401.9, c4 = 8082975.5
t5 = 130.6, t6 = 146.3 c5 = 7239149.0, c6 = 6225676.6
t7 = 163.5, t8 = 182.9 c7 = 5173640.8, c8 = 4146284.4
t9 = 205.0, t10 = 230.8 c9 = 3194370.6, c10 = 2332740.8

As we can observe in Figures 3.1 and 3.2, with a comparatively low amount of mosquitoes,
C = 3 · 107, the releases are concentrated around the peak of the infections, with the largest
releases occurring right during the peak. Their effect is of only mitigating the outbreak, that is,
the curve of infections remains fairly similar but peaking a bit earlier and lower. For this amount
of mosquitoes we do not observe a great reduction in the number of cases by using 20 releases
instead of 10. Namely, for 10 releases we obtain J10 = 250375.4 and for 20, J20 = 244012.2.
We can compute the reduction in the number of cases by comparing, numerically, J(u) for the
uncontrolled system with J(u) for the controlled one. The value of J(u) =

∫ T
0
IH(t)dt in the

case of the uncontrolled system yields J0 = 293644.1. This means that with C = 3 · 107 we
obtain approximately a 14.7% reduction in the total amount of cases for 10 releases and a 16.9%
reduction for 20.

A possible interpretation for this solution is that, with the amount of mosquitoes considered,
the population of susceptible mosquitoes cannot be consistently kept low for a long period.
Therefore, the best use of the sterile males is to release them to reduce as much as possible the
amount of susceptible mosquitoes when the transmission is at its prime.

On the other hand, with a comparatively big amount of mosquitoes, C = 6 · 107, the releases
shift to the beginning and present an asymmetrical, skewed shape. We see this happening with
10 releases, attenuating considerably further the outbreak, but even more in the case with 20
releases. In this case, the first release occurs at t1 = 0.0 and it results in an almost complete
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Table 3.3 – Results of the simulations performed for the SIT with 20 releases
C Time of releases Amount of mosquitoes released

∫ T
0
IH(t)dt

3 · 107

t1 = 167.7, t2 = 171.5 c1 = 1084557.5, c2 = 1529725.4

244012.2

t3 = 175.7, t4 = 179.9 c3 = 1720612.9, c4 = 1786314.4
t5 = 184.0, t6 = 188.1 c5 = 1793907.7, c6 = 1781311.8
t7 = 192.1, t8 = 196.1 c7 = 1750939.8, c8 = 1708089.2
t9 = 200.2, t10 = 204.4 c9 = 1674451.1, c10 = 1653637.3
t11 = 208.7, t12 = 213.2 c11 = 1641097.9, c12 = 1597815.1
t13 = 217.8, t14 = 222.7 c13 = 1544202.8, c14 = 1491664.7
t15 = 227.8, t16 = 233.3 c15 = 1438846.7, c16 = 1380652.5
t17 = 239.1, t18 = 245.5 c17 = 1308476.4, c18 = 1199302.0
t19 = 252.4, t20 = 259.9 c19 = 1056512.9, c20 = 857882.1

6 · 107

t1 = 0.0, t2 = 3.7 c1 = 4230525.4, c2 = 4214863.5

2124.4

t3 = 8.2, t4 = 13.0 c3 = 4175080.6, c4 = 4104782.5
t5 = 18.1, t6 = 23.4 c5 = 4025147.5, c6 = 3942640.9
t7 = 29.2, t8 = 35.5 c7 = 3855009.1, c8 = 3759644.0
t9 = 42.4, t10 = 50.2 c9 = 3651466.3, c10 = 3522392.6
t11 = 59.0, t12 = 69.1 c11 = 3362768.5, c12 = 3162408.6
t13 = 80.8, t14 = 94.2 c13 = 2913468.2, c14 = 2614816.3
t15 = 109.9, t16 = 128.1 c15 = 2275534.3, c16 = 1912277.7
t17 = 149.5, t18 = 174.9 c17 = 1548925.6, c18 = 1209010.4
t19 = 205.7, t20 = 243.9 c19 = 911714.1, c20 = 607524.1

eradication of the outbreak. The largest releases occur soon after the first one. Releases get more
sparse and smaller as time advances, specially for 20 releases, where some of them are clearly
detached from the rest and occur after the peak of the outbreak. The fact that mosquitoes keep
being released once the outbreak is suppresed is related to the fact that our model does not
incorporate an Allee effect. This means that even when the wild mosquito population is very
low, it can grow again to its initial values if the releases of sterile mosquitoes stop. Therefore,
releases of small amounts of mosquitoes are needed so the outbreak does not start again inside
the time horizon considered. The difference observed as a result of the different number of jumps
in this case is more abrupt. We obtain a value of J10 = 72862.0 for 10 releases, which means a
75.2% less infections in the time window considered, and a value of J20 = 2124.4 for 20 releases,
that is, a 99.3% reduction.

With this amount of mosquitoes, specially when they are spread over 20 releases, the popu-
lation can be kept low for a long time. Our interpretation of these results is that, due to this
capability of long term population reduction, the optimal solution consists in releasing as soon as
possible, preventing the outbreak from gaining traction in the first place. Then, smaller releases
keep being done to prevent the population from increasing again. Hence, being able to divide the
mosquitoes in more releases becomes more important in this case. We see clearly how the number
of releases can affect the outcome, even for the same C, in the lower rows of figures 3.1 and 3.2.
With 10 releases, although initially the outbreak is greatly reduced, the population cannot be
kept low consistently in all the time window considered and the cases rise again substantially
towards the end.

Another approach we can take, arguably more in line with applications on the field, is to
optimize only the times of the releases while keeping the amount of mosquitoes constant. This
corresponds to having the mosquitoes conditioned in recipients all containing approximately the
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Figure 3.1 – Results of the simulations for the SIT with C = 3 · 107 (upper row) and C = 6 · 107
(lower row) considering 10 releases. The dashed blue line corresponds to the amount of sterile
mosquitoes released. I∗H , on the right column, corresponds to the uncontrolled case.

same number of individuals. Of course, the result in the reduction of the infections will be worse
than the counterpart we have just presented. Nevertheless it raises a reasonable question: to
which extent it is preferable the use of a more sophisticated technique over a less efficient but
simpler one? The results are presented tables 3.4 and 3.5.

Table 3.4 – Results of the simulations performed for the SIT with 10 releases and all ci = C/10.
C Time of releases

∫ T
0
IH(t)dt

3 · 107 t1 = 173.2, t2 = 180.6, t3 = 187.4, t4 = 194.1, t5 = 201.1
250880.3

t6 = 208.3, t7 = 216.3, t8 = 225.1, t9 = 235.4, t10 = 248.0

6 · 107 t1 = 98.4, t2 = 109.2, t3 = 119.5, t4 = 130.1, t5 = 141.5
99223.3

t6 = 154.3, t7 = 169.0, t8 = 186.5, t9 = 208.3, t10 = 236.4

In figures 3.3 and 3.4 we can see that optimal strategies in time do not differ a lot with those
of figures 3.1 and 3.2 respectively. Still, releases are done around the peak of the outbreak in the
case of a relatively low amount of mosquitoes. As we increase the amount of mosquitoes and the
number of releases they shift to the left, resulting in a further reduction of the infections.

As for the effectiveness of this approach, we show a comparison of the results of the optimiza-
tion of the times alone and that of the times and the costs in tables 3.6 and 3.7. As we can see
there does not seem to be a significant advantage in optimizing both times and costs except in
one case, the case with C = 6 · 107 and 10 releases.
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Figure 3.2 – Results of the simulations for the SIT with C = 3 · 107 (upper row) and C = 6 · 107
(lower row) considering 20 releases.

Table 3.5 – Results of the simulations performed for the SIT with 20 releases and all ci = C/20.
C Time of releases

∫ T
0
IH(t)dt

3 · 107
t1 = 168.3, t2 = 172.8, t3 = 176.8, t4 = 180.6, t5 = 184.2

244623.4
t6 = 187.8, t7 = 191.4, t8 = 195.0, t9 = 198.7, t10 = 202.5

t11 = 206.5, t12 = 210.6, t13 = 214.9, t14 = 219.5, t15 = 224.4
t16 = 229.8, t17 = 235.7, t18 = 242.3, t19 = 250.0, t20 = 259.5

6 · 107
t1 = 0.0, t2 = 3.8, t3 = 8.0, t4 = 12.4, t5 = 17.0

2556.1
t6 = 21.7, t7 = 26.8, t8 = 32.1, t9 = 38.0, t10 = 44.4

t11 = 51.6, t12 = 59.6, t13 = 68.9, t14 = 79.7, t15 = 92.6
t16 = 108.1, t17 = 127.4, t18 = 151.7, t19 = 183.3, t20 = 225.5

The fact that the optimal strategy can change significantly when the number of releases is
increased suggests that solutions for this setting are very sensitive to changes on the problem
characteristics. Comparing figures 3.1 with 3.3, and 3.2 with 3.4, we see that optimizing the
amount of mosquitoes at each release makes the first releases move to the left but also increases
their time span, a similar effect to the addition of new releases. Elaborating further in our
biological interpretation of the results, this suggests that for ten releases and C = 6 · 107 we
can keep the population low during a certain amount of time, but not enough to prevent the
outbreak. A slight improvement of the technique in this setting (either an increase in the number
of releases or an optimization of the number of mosquitoes released at each impulse) can make
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Figure 3.3 – Results of the simulations for the SIT with C = 3 · 107 (upper row) and C = 6 · 107
(lower row) considering 10 releases and an equal distribution of the mosquitoes between the
releases.

a difference in the ability to control the outbreak by keeping the wild mosquito population at a
low level over a longer period of time, thus improving the results. On the other hand, when we
are far from significantly reducing the outbreak or when we can almost prevent it, the advantage
of also optimizing the amount of mosquitoes at each release becomes smaller.

Table 3.6 – Comparison of the reductions in the infections obtained on the simulations performed
for the SIT with 10 releases.

C Times Times and costs
3 · 107 14.6% 14.7%
6 · 107 66.2% 75.1%

Table 3.7 – Comparison of the reductions in the infections obtained on the simulations performed
for the SIT with 20 releases.

C Times Times and costs
3 · 107 16.7% 16.9%
6 · 107 99.1% 99.3%
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Figure 3.4 – Results of the simulations for the SIT with C = 3 · 107 (upper row) and C = 6 · 107
(lower row) considering 20 releases and an equal distribution of the mosquitoes between the
releases.

3.5.2 Wolbachia method

Regarding the Wolbachia method in all cases all the pulses cluster in one single pulse. In
other words, the optimal solution is performing a single release with all the available mosquitoes.
This makes useless to optimize the amount of mosquitoes released in each jump and turns the
problem into a one-dimensional optimization one: min

t1∈[0,T ]
J(u), with J(u) =

∫ T
0
IH(t)dt and

u(t) = Cδ(t− t1).
As found in other works studying the use of Wolbachia to produce a mosquito population

replacement [4, 10], solutions present two clearly distinct behaviours. Since the equation p′ =
f(p) is bi-stable, if the proportion of Wolbachia infected mosquitoes exceeds a certain threshold,
p = θ, then the system moves to a full invasion state without further intervention. The parameter
determining the two regimes is the total amount of mosquitoes, C. If there are more mosquitoes
than the amount needed to lead the system to p = θ we will observe one kind of behaviour,
different from the case where there are less. From the initial conditions we have p(0) = 0. We
can compute the amount of mosquitoes needed to reach p = θ in a single jump. If we reach
p = θ in the first jump, θ = p(t+1 ) = G−1

(
G(p(t−1 ) + C)

)
= G−1(C), thus C = G(θ). For the

parameters considered here, G(θ) ≈ 14850.
In figure 3.5 we plot the optimal solutions to problem (P) for system (WB′) with the param-

eters of table 3.1. In case C < G(θ) the jump occurs before the outbreak reaches its peak. The
larger is C, the smaller is t1. In Figure 3.5, for C = 10000, t1 = 147.5. Instead, in case C > G(θ)
the jump is at t1 = 0. The system from this point tends to p = 1 without the need of releasing
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mosquitoes anymore. The value of J(u) =
∫ T
0
IH(t)dt in the case of the uncontrolled system

yields J0 = 294501.4. With C = 10000 the profile of the outbreak is not altered very much, but
it peaks at a lower value. The value of J(u) in this case is J10000 = 288362.7, roughly a 2.1%
reduction in the total amount of cases. With C = 20000 the change is the infected humans curve
is much more appreciable. The curve peaks at a much lower level but decays slower. In this case
the value of

∫ T
0
IH(t)dt is J20000 = 128899.1, which is a 56.2% reduction in the number of cases.

Figure 3.5 – Results of the simulations for the Wolbachia method with C = 10000 (upper row)
and C = 20000 (lower row). The proportion of Wolbachia infected mosquitoes corresponds to the
dashed blue line on the left column. I∗H , on the right column, corresponds to the uncontrolled
case.

The biological interpretation of these results is in line with the one for the sterile mosquitoes.
When it is not possible to trigger a population replacement, the optimal strategy is to release the
mosquitoes before the peak of the epidemic. Since the number of Wolbachia-infected mosquitoes
declines with time, this policy minimizes the presence of the wild mosquitoes (with a greater
vector capacity) during the phase of largest transmission. On the other hand, if it is possible
to trigger the population replacement, the sooner we act in the system, the better. Since the
proportion of Wolbachia-infected mosquitoes is going to increase naturally there are no incentives
in waiting to make the release.

We remark that the amount of mosquitoes needed for this technique to be effective is much
lower than for the SIT. This makes sense, since the Wolbachia population is self-sustainable while
the sterile mosquitoes must be constantly released. Nonetheless, the exact values of mosquitoes
released, or the ratio of mosquitoes needed in one technique with respect to the other cannot be
drawn directly from our study due to the limitations of the model and the uncertainty on the
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parameters.

3.6 Numerics: an augmented Lagrangian algorithm

In this section, we explain and detail further the numerical method used for obtaining the
results. We implemented a gradient descent to optimize the times of the releases, ti. At each
step, the coefficients (ci)1⩽i⩽n being given, the control function was updated according to

uk+1 = ΠT (uk − εt∇tJ(uk)) , where ∇tJ(u) = (δt1J(u), . . . , δtnJ(u))

and where ΠT denotes the projection onto the set of controls{
n∑
i=1

ciδ(t− ti), 0 ⩽ t1 ⩽ · · · ⩽ tn

}
.

Here, J(u) =
∫ T
0
IH(t)dt. The values of δtiJ(u) for i = 1, . . . , n have been computed in

Proposition 3.2 (see Section 3.4).
Starting from a random initial condition we optimize the time of the releases, ti, until a

certain level of functional flatness is attained. Then we optimize the ci, that is, the amount of
mosquitoes released at each ti.

The costs, ci, have been optimized using an augmented Lagrangian algorithm, which comes
to consider the following functional

L(u, λ) =

∫ T

0

IH(t)dt+ λ

(
n∑
i=1

ci − C

)
+
ρ

2

(
n∑
i=1

ci − C

)2

.

The second term is added in order to take into account the constraint
∑n
i=1 ci = C. The real

number λ is the Lagrange multiplier associated this constraint, which has to be find numeri-
cally at the same time than u. The augmented Lagrangian method transforms the constrained
minimization problem into an unconstrained one, similarly to the Uzawa algorithm. The new
functional has to be minimized with respect to u, and maximized with respect to λ. The solu-
tion to the problem is hence searched as a saddle point of L. The addition of the third term
can be seen as a convexification of the dual problem. The addition of the squared term to the
Lagrangian accelerates the convergence whenever ρ is chosen carefully.

In order to find the saddle point of L we take one step at a time, minimizing with respect to
u and maximizing then it with respect to λ, following the scheme:

uk+1 = uk − εc (∇cJ(uk) + λk + ρ (
∑n
i=1 ci − C)) ,

λk+1 = max (λk + ρ (
∑n
i=1 ci − C) , 0) .

Where ∇cJ(u) is the gradient of the functional J(u) with respect to the costs, analogous to
∇tJ(u). The components of ∇cJ(u) have been computed in Proposition 3.3 (see Apendix 3.4).
Additional explanations regarding augmented Lagrangian type algorithms can be found in [72].

In order to picture better the algorithm implemented we provide in figure 3.6 an example of
history of two key quantities along the iterations of the algorithm, namely J(u) =

∫ T
0
IH(t)dt

and
∑
i ci − C during a simulation. We take as an example the simulation for the sterile insect

technique with 20 releases and C = 3 · 107. The value of J falls sharply at the begginning as the
times of the releases, (ti)1⩽i⩽n, move from their initial random positions. The small oscillations
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observed later correspond to the first time we optimize the weights, (ci)1⩽i⩽n. Since we are
looking for a saddle point of L there are iterations where the value of J actually increases. Then
it starts a slow convergence to the final state where the values of (ti)1⩽i⩽n and (ci)1⩽i⩽n are
refined. The simulation stops when a certain level of functional flatness is attained. In Figure 3.6,
on the right, the x-axis presents slightly less iterations since we only show the iterations on the
weights. At first this quantity oscillates until the value of L stabilizes. Since we alternate the
optimization of the times and the weights, whenever the times are adjusted, new oscillations
appear as the weights, (ci)1⩽i⩽n, adjust to the new (ti)1⩽i⩽n values. As expected, in the long
run

∑
i ci − C stabilizes around 0, so the constraint

∑
i ci = C is respected.

Figure 3.6 – Evolution of the functional J(u) and
∑
ci − C during the sterile insect simulation

for 20 releases and C = 3 · 107.
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Appendix A
Existence of solutions for Chapter 1
problems

This appendix is devoted to studying existence issues for problems (P1,α
pT ,C,U

) and (P2,α
T,C,U ).

Note that the existence property for Problem (P1,α
pT ,C,U

) is a bit more intricate to show since the
horizon of time T is let free.

Nevertheless, we will have to distinguish between the case where j1 is convex or concave: the
first case is standard whereas the second one needs a particular approach.

The existence of solutions for problems (P1,α
pT ,C,U

) and (P2,α
T,C,U ) will be studied with less

restrictive hypothesis on the regularity of j1(·) and j2(·). We introduce:

j1(·) is a non-negative increasing function such that j1(0) = 0,
either strictly concave, linear or strictly convex on (0, T ).

j2(·) is a non-negative function, strictly increasing w.r.t. its first variable
and strictly decreasing w.r.t. its second variable. Moreover, for all p ∈ [0, 1],
lim

T→+∞
j2(T, p) = +∞.

(H′)

A.1 Existence for Problem (P2,α
T,C,U) in the case where j1 is

convex

The proof is standard and rests upon the direct method in the calculus of variations.

Proposition A.1. Let us assume that j1(·) and j2(·) satisfy (H′). Let T > 0, U > 0, C > 0 and
let us assume that j1 is convex in R and that for every T , pT 7→ j2(T, pT ) is lower semi-continuous
in [0, 1]. Then, Problem (P2,α

T,C,U ) has a solution.

Proof. Since UT,C,U is non-empty, let us consider a minimizing sequence (un)n∈N ∈ UN
T,C,U for

Problem (P2,α
T,C,U ). We have 0 ⩽ un ⩽ U a.e. in (0, T ) for all n ∈ N and, according to the

Banach-Alaouglu theorem, we conclude that UT,C,U is compact for the weak-star topology of
L∞(0, T ). Therefore, up to a subsequence, un converges to u∗ for the weak-star topology of

113
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L∞(0, T ), and by a property of the weak star convergence, one gets that 0 ⩽ u∗ ⩽ U a.e. in
(0, T ) and ∫ T

0

u∗(t) dt = lim
n→+∞

∫ T

0

un(t) dt = lim
n→+∞

⟨un, 1⟩L∞,L1 ⩽ C.

We thus infer that u∗ ∈ UT,C,U .

Next, we consider (pn)n∈N where pn solves p′n = f(pn) + ung(pn) in (0, T ) with pn(0) = 0.
Using the fact that f and g are continuous in [0, 1] and since 0 ⩽ pn ⩽ 1 in [0, T ], we deduce that
(p′n)n∈IN is bounded in L∞(0, T ). Hence, pn is bounded in W 1,∞([0, T ]) and according to the
Ascoli-Arzelá theorem, (pn)n∈IN converges in C0([0, T ]) to p∗ ∈W 1,∞(0, T ) up to a subsequence.
Now, let φ ∈ H1(0, T ). One has

pn(T )φ(T )−
∫ T

0

pn(t)φ(t) dt =

∫ T

0

(f(pn) + ung(pn))φ

for all n ∈ IN. According to the previous considerations, extracting adequately subsequences and
letting then n tend to +∞ shows that

p∗(T )φ(T )−
∫ T

0

p∗(t)φ(t) dt =

∫ T

0

(f(p∗) + u∗g(p∗))φ.

Therefore, a standard variational analysis yields that p∗ satisfies p′∗ = f(p∗) + u∗g(p∗) in (0, T )
with p∗(0) = 0.

Finally, in order to assure the existence of solutions, it remains to prove that

lim
n→∞

Jα(un) ⩾ Jα(u
∗). (A.1)

By convexity of j1, the functional

UT,C,U ∋ u 7→
∫ T

0

j1 (u(t)) dt

is convex. Furthermore, it is easy to see that the functional L2(0, T ; [0, U ]) ∋ u 7→
∫ T
0
j1 (u(t)) dt

is continuous for the strong convergence of L2(0, T ; [0, U ]) (indeed, this follows from the fact that
the strong convergence in L2 implies pointwise one and from the dominated convergence theo-
rem). Now, using that a convex function on a real locally convex space is lower semicontinuous
if and only if it is weakly lower semicontinuous, we infer that

lim inf
n→∞

∫ T

0

j1 (un(t)) dt ⩾
∫ T

0

lim inf
n→∞

j1 (u
∗(t)) dt.

Up to a subsequence, (pn(T ))n∈IN converges to p∗(T ) and it follows by assumption on j2 that up
to a subsequence, lim infn→+∞ j2(T, pn(T )) ⩾ j2(T, p

∗(T )), whence (A.1). This concludes the
proof.
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A.2 Existence for Problem (P2,α
T,C,U) in the case where j1 is

concave

The concave case is a bit more intricate than the convex one. Indeed, we strongly used the
convexity of j1 to prove the lower semicontinuity of the integral term in the definition of Jα.
We overcome this difficulty by introducing an auxiliary problem where only bang-bang control
functions with a finite number of switches are considered.

Proposition A.2. Let us assume that j1(·) and j2(·) satisfy (H′). Let α ∈ (0, 1], T > 0, U > 0,
C > 0 and let us assume that j1 is concave. Then, Problem (P2,α

T,C,U ) has a solution which is
necessarily bang-bang, equal a.e. to 0 or U and with at most two switches.

Proof. To deal with the concave case, we introduce the set

UN := {u ∈ UT,C,U , u bang-bang equal a.e. to 0 or U and having at most N switches} .

Let N ∈ IN∗ be given and consider the auxiliary problem{
infu∈UN

Jα(u)

p′ = f(p) + ug(p) , p(0) = 0.
(PN )

We first claim that Problem (PN ) has a solution. Indeed, note first that UN is compact for the
strong topology of L1(0, T ) (since a sequence of switching points converges up to a subsequence
in [0, T ] according to the Bolzano-Weierstrass lemma). Let (uN,n)n∈IN denote a minimizing
sequence for Problem (P2,α

T,C,U ). Up to a subsequence, (uN,n)n∈IN converges to some element uN
in L1(0, T ). Since j1(·) is locally Lipschitz as a concave function, there exists K > 0 such that∣∣∣∣∣

∫
(0,T )

j1(uN,n)−
∫
(0,T )

j1(uN )

∣∣∣∣∣ ⩽
∫ T

0

|j1(uN,n)− j1(uN )| ⩽ K∥uN,n − uN∥L1(0,T ).

Finally, dealing similarly as in the proof of Lemma A.1 with the term j2(T, pN,n(T )), where pN,n
stands for the solution to p′ = f(p) + uN,ng(p) and p(0) = 0, enables us to show that (A.1) still
holds true in that case. It follows that Problem (PN ) has a solution uN .

Let us now show that uN has at most two switches. Let uN ∈ UN solving Problem (PN ).
Let 0 ⩽ ξ1 < ... < ξN0

⩽ T denote the distinct switching points of uN with N0 ⩽ N , with the
convention that ξ1 = 0 if, and only if, uN = U in a neighborhood of t = 0 and that xN0

= T
if, and only if, uN = U in a neighborhood of t = T . We have to distinguish between two cases:
there exist three distinct switching points ξk−1, ξk and ξk+1 such that (a) ξk−1 > 0 and u = U
on (ξk, ξk+1), or (b) ξk+1 < T and u = U on (ξk−1, ξk). In what follows, we will only deal with
the case (a), the study of the case (b) being exactly similar.

Let us first write Jα(uN ) as a function of the ξk as

Jα(uN ) := Jξα(ξ1, . . . , ξN0) := (1− α)j1(U)
∑

j∈J1,N0K
j odd

(ξj+1 − ξj) + αj2(T, pN (T )),

where pN denotes the solution to the Cauchy problem p′ = f(p) + uNg(p) with p(0) = 0.
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Figure A.1 – Left: case (a). Right: case (b).

Hence, one can rewrite Problem (PN ) as
infξ1<···<ξN0

Jξα(ξ1, . . . , ξN0),∑
j∈J1,N0K
j odd

(ξj − ξj−1) ⩽ C/U,

ξj − ξj+1 < 0 , j = 1, . . . , N0 − 1

Notice that this problem is equivalent to Problem (PN ) and has therefore a solution. We write
pN (T ) in terms of the ξk as

pN (T ) =
∑

j∈J1,N0K
j odd

∫ ξj+1

ξj

(f(pN (t)) + Ug(pN (t))) dt.

Let k denote the integer satisfying the conditions of the case (a). Applying the Karush Kuhn-
Tucker theorem to the optimization problem above in order to obtain the optimality conditions
yields the existence of a Lagrange multiplier µ ∈ R+ such that

µ

 ∑
k∈J1,N0K
k odd

(ξk − ξk−1)− C/U

 = 0 (slackness condition)

and {
(−1)k(1− α)j1(U) + (−1)kα∂j2∂p (T, pN (T ))Mg(pN (ξk)) + (−1)kµM = 0

(−1)k+1(1− α)j1(U) + (−1)k+1α∂j2∂p (T, pN (T ))Mg(pN (ξk+1)) + (−1)k+1µM = 0.

Therefore, adding these two equations, we get

αU
∂j2
∂p

(T, pN (T ))(g(pN (ξk))− g(pN (ξk+1))) = 0.
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Since α > 0, ∂j2
∂p (T, pN (T )) < 0 and p 7→ g(p) is strictly decreasing we reach a contradiction. It

follows that uN has at most two switches and we infer that

inf
u∈UN

Jα(u) = min
v∈U2

Jα(v) (A.2)

To conclude, one needs to investigate the links between Problems (PN ) and (P2,α
T,C,U ). One

important ingredient is the following lemma, whose proof is postponed to the end of this section
for the sake of readability.

Lemma A.1. Let u be an element of UT,C,U such that u is bang-bang. Then, there exists uN in
UN such that

lim
N→+∞

uN (t) = u(t) for a.e. t ∈ (0, T ).

Let u ∈ UT,C,U . It is well-known that the set {v ∈ UT,C,U | v is bang-bang, equal a.e. to 0 or U}
is dense into UT,C,U for the weak-star topology topology of L∞(0, T ). Hence, there exists
(uk)k∈IN ∈ U IN

T,C,U converging weakly-star to u in L∞(0, T ).
By concavity of j1 in R, the mapping

UT,C,U ∋ u 7→
∫ T

0

j1 (u(t)) dt

is concave. Mimicking the argument used at the end of the proof of Proposition A.1, one shows
the upper semicontinuity property:

lim sup
k→+∞

∫
(0,T )

j1(uk) ⩽
∫
(0,T )

j1(u)

Now, according to Lemma A.1, there exists uNk ∈ UN such that

lim
N→+∞

uNk (t) = uk(t) for a.e. t ∈ (0, T ).

The dominated convergence theorem thus yields

lim
N→+∞

∫
(0,T )

j1(u
N
k ) =

∫
(0,T )

j1(uk).

According to the convergence results above, we infer that, ε > 0 being given, there exists N0 ∈ IN
such that

N ⩾ N0 =⇒ lim sup
k→+∞

∫
(0,T )

j1(u
N
k )− ε ⩽ lim sup

k→+∞

∫
(0,T )

j1(uk) ⩽
∫
(0,T )

j1(u).

Dealing with the term involving j2 is easier. Indeed, by using the approximation results above
and mimicking the reasoning in the proof of Proposition A.1, one gets

lim
N,k→+∞

j2(T, p
N
k (T )) = j2(T, p(T ))

where pNk (resp. p) denotes the solution to the Cauchy problem p′ = f(p)+uNk g(p) and p(0) = 0
(resp. p′ = f(p) + ug(p) and p(0) = 0). The combination of the convergence results above yields
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the existence of N̂0 ∈ IN such that

N ⩾ N̂0 =⇒ lim sup
k→+∞

Jα(u
N
k ))− ε ⩽ Jα(u).

Since ε has been chosen arbitrarily, and since Jα(uNk ) ⩾ minv∈U2
Jα(v) according to (A.2), one

gets
Jα(u) ⩾ min

v∈U2

Jα(v).

This concludes the proof: Problem (P2,α
T,C,U ) has a solution which solves moreover Problem (P2).

Proof of Lemma A.1. Since u is assumed to be bang-bang, let us write u = U1I where I denotes
a measurable subset of (0, T ). Let ε > 0. By outer regularity of the Lebesgue measure, there
exists un open subset of (0, T ) containing I and such that |I| ⩽ |O| ⩽ |I| + ε. Let us write
O =

⋃
n∈IN(αn, βn) where the intervals (αn, βn) are disjoint and such that |O| =

∑
n∈IN(βn−αn).

Let us introduce un := U1⋃n
p=0(αp,βp). Writing u = (u− U1O) + U1O, one has∫ T

0

|u− un| ⩽ U

∫ T

0

|1I − 1O|+ U

∫ T

0

|1O − 11⋃n
p=0(αp,βp)

|

⩽ 2εU + U

+∞∑
p=n+1

(βp − αp)

Since ε is arbitrary and since the series with general term βn − αn is convergent, it follows that
(un)n∈IN converges to u in L1(0, T ) and thus also pointwise. This concludes the proof.

A.3 Existence results for Problem (P1,α
pT ,C,U

)

Proposition A.3. Let us assume that α ∈ (0, 1], pT ∈ (0, 1), (1.2) is true, and that j1(·) and
j2(·) satisfy the assumptions of (H′). Let us assume that U > m∗(pT ) and

C > CpT (U) if pT ⩽ θ and C > Cθ(U) otherwise.

Finally, let us also assume that for every pT , T 7→ j2(T, pT ) is lower semi-continuous in R+.
Then, Problem (P1,α

pT ,C,U
) has a solution.

Proof. To avoid working on a variable domain, let us make the following change of variables: we
define p̃(s) := p(Ts) and ũ(s) := u(Ts), with s ∈ [0, 1]. Then, Problem (P1,α

pT ,C,U
) rewrites inf

(T,ũ)∈DpT
J̃α(T, ũ),

p̃′(s) = T (f(p̃(s)) + ũ(s)g(p̃(s))) , p̃(0) = 0 , p̃(1) = pT ,
(P̃1,α

pT ,C,U
)

where J̃(T, ũ) is defined by

J̃(T, ũ) = (1− α) T
∫ 1

0

j1(ũ(s))ds+ αj2(T, pT ).
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and DpT is the set of admissible controls

DpT = {(T, ũ) ∈ R+ × U1,C,U × [0, 1] | p̃(1) = pT } .

Let us first prove that DpT is non-empty. To this aim, let us define

T pT (U) :=

∫ pT

0

dν

f(ν) + Ug(ν)
(A.3)

and look for controls of the form uξ(t) = U1[0,ξ] belonging to this set, where

ξ =

{
1 if UT pT ⩽ C
C

UTpT
if UT pT > C.

(A.4)

Let us introduce p̃ξ solving p̃′ξ = T (f(p̃ξ) + ũξg(p̃ξ)) in (0, 1) and p̃ξ(0) = 0. By integrating both
sides of the differential equation, we get that the time Tξ taken by pξ to reach the final state pT
reads

Tξ =

∫ pξ(ξ)

0

dν

f(ν) + Ug(ν)
+

∫ pT

pξ(ξ)

dν

f(ν)
.

Note that in case pξ(ξ) ⩽ θ the second integral does not converge unless ξ = 1, in which
case it vanishes. This expression gives a lower bound on C depending on pT . If pT ⩽ θ we
must have ξ = 1, concluding that pξ(ξ) = pT and C ⩾ UT pT = CpT , with CpT as defined
in (1.19). Instead if pT > θ, then either ξ = 1 implying C ⩾ CpT or pξ(ξ) > θ and therefore
C > U

∫ θ
0

dν
f(ν)+Ug(ν) = Cθ. Since in this case CpT > Cθ, the least restrictive condition is C > Cθ.

We conclude that under the hypothesis of this proposition Tξ <∞ and DpT is non-empty.
Let us consider a minimizing sequence (Tn, ũn)n∈N ∈ (DpT )N and let p̃n be the solution of

p̃′ = T (f(p̃) + ũng(p̃n)) in (0, 1) and p̃n(0) = 0. By minimality, one has lim
n→∞

J̃α(Tn, ũn) < ∞,
i.e.

lim
n→∞

(1− α) Tn
∫ 1

0

j1(ũn(s))ds+ αj2(Tn, pT ) <∞.

Each term of the sum being bounded from below by 0, it follows that both of them are also
bounded above. Since α > 0 and limn→∞ j2(Tn, pT ) = +∞, it follows that (Tn)n∈IN is bounded,
and therefore, up to a subsequence, Tn → T̃ <∞ as n→ +∞. By mimicking the arguments used
for problem (P2,α

T,C,U ), one shows that, up to a subsequence, (ũn)n∈IN converges to ũ∗ ∈ UT̃ ,C,U
weakly-star in L∞(0, 1; [0, U ]). Moreover,(p̃n)n∈IN converges to p̃∗ in C0([0, T̃ ]), where p̃∗ solves
the equation

(p̃∗)′ = T̃ (f(p̃∗) + ũ∗g(p̃∗)) in (0, T̃ )

and p̃∗(0) = 0. As a consequence, (J̃α(Tn, ũn))n∈IN converges to J̃α(T̃ , ũ∗), which concludes the
proof.
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Appendix B
Complementary material to Chapter 2

B.1 Numerical exploration of the parameter space for Hy-
pothesis H.2

Proposition B.1. Assuming dM ⩽ dW ⩽ b0W ⩽ b0M and 0 < θ < 1, then f ′′ admits a single
zero in (0, 1).

Proof. The existence of a zero of f ′′ is straightforward to prove: there holds f(0) = f(θ) =
f(1) = 0, thus from Rolle’s theorem there exist two zeros of f ′ in (0, 1). Then applying again
Rolle’s theorem we prove the existence of some zero θ2 of f ′′, lying in between the two zeros of
f ′, thus θ2 ∈ (0, 1) in all generality.

Let us now prove the uniqueness of the zero of f ′′ in [0, 1]. By computing the rational function
f ′′, we see that {f ′′ = 0} = {R = 0} where, denoting κ := 1 + sh − b2

b1
> 0,

R(p) := (sh − s2hθ − κ2 + κsh + κshθ)p
3 + 3(κ− sh − shθ)p2 − 3(1− shθ)p+ θ − κθ + 1

= Āp3 + B̄p2 + C̄p+ D̄

Thus to conclude, it is enough to prove that R has a unique zero in [0, 1]. Because dM ⩽ dW ⩽
b0W ⩽ b0M holds, we find that

Ā > 0, B̄ ⩽ 0, C̄ < 0, D̄ > 0.

Then, using Descarte’s rule of sign, we find that R has zero or two positive roots. However,
since f ′′ has at least one zero in (0, 1), so does R, so that R admits exactly two positive roots.
Meanwhile, applying the rule to p 7→ R(−p) implies that R has one negative root.

Now, we set S(p) = R(p + 1). In particular, the leading coefficient of S is Ā > 0 while one
can prove that

S(0) = Ā+ B̄ + C̄ + D̄ < 0.

Clearly S has three real roots, and their product is given by −S(0)
Ā

> 0. However, S has at least
one negative root since R does. Since the product of all three roots of S is positive, S has exactly
two negative roots and one positive root. As a result, R has exactly one root in [0, 1], and the
conclusion follows.
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This section is devoted to a numerical exploration of the space of parameters, in order to
establish the validity of Hypothesis (H.2). For the exploration, we normalize the parameters
assuming b0M = 1. The results are presented in Figures B.1 and B.2. To produce these images
fo a given pair of values (sh, bW ), two random values for dW and dM are chosen, such that
dM ⩽ dW ⩽ b0W ⩽ b0M = 1. If the randomly generated set of parameters are such that θ ̸∈ (0, 1),
the set is discarded. If indeed 0 < θ < 1, then the Hypothesis (H.2) is tested. In blue, are the
values of the parameters for which Hypothesis (H.2) is satisfied. In red, the values for which is
not.

Figure B.1 – Hypothesis (H.2) tested for different parameter values. All pictures have dM in the
x-axis and dW in the y-axis. In this image, sh ∈ {0.5, 0.67, 0.83, 1} increases from left to right
and bW ∈ {0.6, 0.73, 0.87, 1} decreases from top to bottom. Blue dots mean Hypothesis (H.2) is
satisfied for those parameters, while red dots mean it is not.
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Figure B.2 – Hypothesis (H.2) tested for small values of bW and high values of sh. All pictures
have dM in the x-axis and dW in the y-axis. In this image, sh ∈ {0.9, 1} increases from left to
right and bW ∈ {0.33, 0.47} decreases from top to bottom.

The condition θ ∈ (0, 1) can be written in terms of the other parameters,

0 < θ < 1⇔ 0 < 1− dMb
0
W

dW b0M
< sh ⇔ 1 >

dMb
0
W

dW b0M
> 1− sh ⇔

dW
dM

>
b0W
b0M

>
dW
dM

(1− sh).

Since b0W ⩽ b0M and dM ⩽ dW , this means that if bW ⩽ 1 − sh, necessarily θ > 1, thus these
values can be excluded from the exploration. Indeed, the black lines wrapping the dots in Figures
B.1 and B.2 are dW = dM , b0W = 1 and b0W = 1− sh.

As we can see in Figure B.1 and B.2, Hypothesis H.2 is satisfied by most of the parameters
of the parameter space. For high values of bW is always satisfied (also for those values not shown
in Figure B.1). As bW decreases, red dots appear for high values of sh and dW >> dM . Only
for high values of sh and small values of bW the red dots dominate the picture. In a realistic
scenario, based on the values for the parameters found in te literature [10, 46] we expect a high
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value of sh and b0W and smaller values of dW and dM , for which hypothesis (H.2) is satisfied. The
values of the parameters not satisfying Hypothesis (H.2) would represent a particular strain of
Wolbachia that, in a certain variety of mosquito, would produce a high CI rate and a big penalty
on their fertility, which, a priori, is not impossible.

B.2 Existence of solutions for problem (Pp0) for piecewise
constant K(·) in 1D

We devote this section to the study of the existence of minimizers for problem (Pp0). We
present here a partial result, settling the existence in 1D for the case where K(·) is piecewise
constant. This proof, nevertheless, cannot be straightforwardly extended for the fully general
case.

Proposition B.2. Let K be a piecewise constant function, with x ∈ Ω ⊂ R. Then there exists
p∗0 ∈ P0,C,U solving problem (Pp0).

Proof. Let us write K(x) =
∑n
i=1Ki1[xi−1,xi]. We place ourselves in one of the intervals

[xi−1, xi], where K(·) is constant.
Let us consider any function p0 ∈ P0,C,U in this interval. We claim there exists a monotonic

(decreasing or increasing) rearrangement of p0, that we will denote p̂0 such that p̂0 ∈ P0,C,U . To
define this rearrangement, let us introduce, in a given interval [xi−1, xi],

µ(s) := |{x ∈ [xi−1, xi] : p0(x) > s}| .

Then, we define p̂0 in that interval as

p̂0(x) := inf{s ∈ [0, 1] : µ(s) ⩽ x}.

The fact that such a rearrangement will respect 0 ⩽ p̂0 ⩽ G−1 (U/K(x)) is trivial since rearrang-
ing a function does not change its maximums or minimums (see [118]). Suppose

∫
Ω
K(x)G(p0(x)) dx ⩽

C, then ∫
Ω

K(x)G(p̂0(x)) dx =

∫
Ω\[xi−1,xi]

K(x)G(p0(x)) dx+Ki

∫ xi

xi−1

G(p̂0(x)) dx

for every i ∈ {1, . . . , n}. G is a continuous function, hence it is measurable. Therefore, since G
is non-negative and measurable we have∫ xi

xi−1

G(p0(x)) dx =

∫ xi

xi−1

G(p̂0(x)) dx

by equimeasurability of the rearrangement.
This implies that if

∫
Ω
K(x)G(p0(x)) dx ⩽ C, then

∫
Ω
K(x)G(p̂0(x)) dx ⩽ C. These reasoning

can be easily extended to all of the subintervals. Therefore we have proved that P0,C,U is stable
under rearrangements.

Let us define now

P̂0,C,U := {p̂0 ∈ P0,C,U | p̂0 is monotonic in [xi−1, xi], i = 1, . . . , n} .
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Observe that
min

p0∈P0,C,U

J0(p0) = min
p̂0∈P̂0,C,U

J0(p̂0),

with J0 defined by (2.8). Indeed, if p∗0 is minimizer of J0 in P0,C,U , then∫
Ω

K(x)2(1− p̂(T, x))2 dx =

∫
Ω\[xi−1,xi]

K(x)2(1− p(T, x))2 dx+K2
i

∫ xi

xi−1

(1− p̂(T, x))2 dx,

for every i ∈ {1, . . . , n}, where we are denoting by p̂(t, x) the solution to equation (2.10) with
initial condition p̂0(x).

We can follow the same reasoning as before to prove that∫ xi

xi−1

(1− p(T, x))2 dx =

∫ xi

xi−1

(1− p̂(T, x))2 dx

for every i ∈ {1, . . . , n}. To see this clearly we can write p(t, x) as a function of its initial
condition by realising that p(t, x) can be written as

∂

∂t
p(t, x) = f(p(t, x))⇒

∫ p

0

dν

f(ν)
=

∫ t

0

ds = t.

Defining F (p) as the primitive of 1/f(p) vanishing at 0, F (p) :=
∫ p
0

dν
f(ν) , we can write

F (p(T, x)) = F (p0(x)) + T ⇒ p(T, x) = F−1 (F (p0(x)) + T ) . (B.1)

Both F and its inverse are continuous functions and thus, so it is its composition. Therefore
p(T, ·) is also a measurable function of p0(x) and since it is non-negative both integrals are equal.

This implies that, if there exists a solution monotonic by intervals, p̂∗0 ∈ P̂0,C,U there must
also exist a solution in P0,C,U . Thus, we restrict our analysis to the first kind of functions.

Let us consider a minimizing sequence (p̂n0 )n∈N ∈ P̂0,C,U for problem (Pp0). We know it exists
since P̂0,C,U is non-empty. Due to the fact that for all n ∈ N, 0 ⩽ p̂n0 (x) ⩽ G−1(U/K(x)) a.e. in
Ω and using the monotonicity of p̂n0 on each interval (xi−1nxi), we deduce from Helly’s selection
theorem (see [126]) that (p̂n0 )n∈N converges pointwisely to an element p̂∗0, up to a subsequence.

Basic properties of pointwise convergence lead us to conclude that 0 ⩽ p̂∗0(x) ⩽ G−1(U/K(x))
a.e. in Ω. Moreover, according to the Lebesgue dominated convergence theorem, one has∫

Ω

K(x)G (p̂∗0(x)) dx = lim
n→∞

∫
Ω

K(x)G (p̂n0 (x)) dx = lim
n→∞

⟨K(x)G (p̂n0 (x)) , 1⟩L∞,L1 ⩽ C.

Indeed, we recall that K(·) is piecewise constant and thus it does not affect the convergence
properties of the sequence under the integral. Therefore, p̂∗0 ∈ P̂0,C,U .

A similar reasoning shows that the sequence (F−1 (F (p̂n0 (x)) + T ))n∈N converges almost ev-
erywhere in Ω and therefore, we have

lim
n→∞

J0 (p̂n0 (x)) = J0 (p̂∗0(x)) ,

according to (B.1). It follows that p̂∗0 is indeed a solution to problem (Pp0).
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Appendix C
Complementary material for Chapter 3

C.1 R0 computations

We detail in this section the computations of RM0 and RW0 defined in section 3.2. To compute
the value of these quantities we follow the lines of [44]. The relevant compartments for these
computations are only the infected ones. As [44] points out, this distinction is determined from
the epidemiological interpretation of the model and cannot be deduced from the structure of the
equations alone. The infected compartments in our case are those in which there are individuals
carrying the dengue virus. For model (3.1) these are EH ,IH ,EM and IM .

We need then to separate the changes in the compartments due to new infections from the
rest. We write system (3.1) in the following way x = (EH , IH , EM , IM , SH , SM ),

ẋ = F(x)− V(x),

where F contains the rate of appearance of new infections in each compartment and V the rate
of transfer of individuals into the compartments by all other means.

Let’s see the decomposition of the first equation, E′
H , as an example:

E′
H =

βM
H

IMSH︸ ︷︷ ︸
F1(x)

− (γHEH + bHEH)︸ ︷︷ ︸
V1(x)

.

Doing this decomposition for all the equations we obtain

F(x) =
(
βM
H

IMSH , 0,
βM
H

SMIH , 0, 0, 0

)
and V(x) containing all the other terms.

Then we construct the matrices

F =

(
∂Fi
∂xj

(x0)

)
i,j

and V =

(
∂Vi
∂xj

(x0)

)
i,j

, i, j = 1, . . . , 4

where x0 represents the equilibrium for which we compute the R0, i.e., the disease-free equilib-
rium x0 = (0, 0, 0, 0, H,K∗). The values taken by i and j are given by the fact we labeled the
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infected compartments 1 to 4. These matrices for our model read

F =


0 0 0 βM
0 0 0 0

0
βM
H

K∗ 0 0

0 0 0 0

 and V =


γH + bH 0 0 0
−γH σH + bH 0 0
0 0 γM + dM 0
0 0 −γM dM

 .

In [44] is shown that R0 = ρ(FV −1), where ρ denotes the spectral radius of the resulting
matrix, namely

RM0 = ρ(FV −1) = βM

√
K∗γMγH

HdM (bH + σH)(γM + dM )(γH + bH)
.

In the case of system (WB′), where also mosquitoes with Wolbachia are present, there are six
infected compartments and two relevant R0, one at the disease-free/Wolbachia-free equilibrium
and one at the disease-free/full invasion equilibrium. We follow, step by step, the same procedure,
adapting it to the new system for each of the R0. We define x = (EH , IH , EM , IM , EW , IW , SH , p)
and we write the system as ẋ = F(x)− V(x), where

F(x)⊤ =



βM
H

IMSH +
βWH

H
IWSH

0
βM
H

(K(1− p)− EM − IM )IH

0
βHW
H

(Kp− EW − IW )IH

0
0
0


,

and V(x) contais the rest of the terms.

The two relevant equilibria are both disease-free, one is the Wolbachia-free equilibrium, xM
0 =

(0, 0, 0, 0, 0, 0, H, 0) and the other the full invasion equilibrium, xW
0 = (0, 0, 0, 0, 0, 0, H, 1). Matrix

V is the same in both cases, namely

V =


γH + bH 0 0 0 0 0
−γH σH + bH 0 0 0 0
0 0 γM + dM 0 0 0
0 0 −γM dM 0 0
0 0 0 0 γW + dW 0
0 0 0 0 −γW dW

 .
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On the other hand, F has a different value at each equilibrium, namely

FM =



0 0 0 βM 0 βWH

0 0 0 0 0 0

0
βM
H

K 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


and FW =



0 0 0 βM 0 βWH

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0
βHW
H

K 0 0 0 0

0 0 0 0 0 0


.

Although computed differently, we recover the value of RM0 obtained in system (3.1) (keep in
mind that in the high birth limit K = K∗). As for the value of RW0 we obtain

RW0 = ρ(FWV
−1) =

√
βHWβWHKγW γH

HdW (bH + σH)(γW + dW )(γH + bH)
.

C.2 Proof of Theorem 3.1

Let us fix p∗ = 0, the remaining cases can be dealt analogously. First of all we assume
Rp∗ > 1 and apply [55, Theorem 1] in order to obtain our persistence result. The set of initial
conditions which we refer in the theorem is{

(SH , EH , IH , EM , IM , EW , IW , p) ∈ R7
+0 × [0, θ[

}
.

Note that it is an immediate consequence of the equations that if one of the latent or of the
infectious classes is nonempty then it will remain always nonempty. Moreover we know that
if p(0) < θ then p(t) → p∗. Hence in order to prove persistence in our set we can consider a
0 < ζ < θ and prove persistence in{

(SH , EH , IH , EM , IM , EW , IW , p) ∈ R7
+0 × [0, θ − ζ]

}
.

Notice that we assumed the human population constant and equal to H and that the mosquito
population satisfies a logistic growth. Taking this into account there exists a constant K̄ > 0
such that the set

K =
{
(SH , EH , IH , EM , IM , EW , IW , p) ∈ R7

+0 × [0, θ − ζ] : SH + EH + IH + EM + IM + EW + IW ≤ K̄
}

is a positively invariant compact set and each solution of system (WB′) with initial condition in
R7

+0 × [0, θ − ζ] enters in K. For each x0 = (S0
H , E

0
H , I

0
H , E

0
M , I

0
M , E

0
W , I

0
W , p

0) ∈ K there exists
exactly one solution x(t;x0) of system (WB′) defined in R0+ and such that x(0;x0) = x0 and
x(t;x0) ∈ K for all t ≥ 0. We have that x0 → x(t;x0) is a semi-dynamical system in K.

Consider the set

S = {(SH , EH , IH , EM , IM , EW , IW , p) ∈ K : EH + IH + EM + IM + EW + IW = 0} .

We have that the set K \ S is invariant by the remark above about the latent and the infectious
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classes. As we have Rp∗ > 1 we can consider δ1 > 0 and η > 0 such that(
γMβ2

M
HdM (γM+dM )

− (1+δ1)(γH+bH )(σH+bH )
γH

)
(K(1− p∗)− 2η)+

+

(
γW βHW βWH
HdW (γW+dW )

− (1+δ1)(γH+bH )(σH+bH )
γH

)
(Kp∗ − 2η) > 0.

(C.1)

We consider ξ and δ2 such that 0 < δ2 < ξ < δ1 and define in K the map

P (SH , EH , IH , EM , IM , EW , IW ) =

(1 + ξ)EH + (1+δ1)(γH+bH )
γH

IH + γMβM
dM (γM+dM )

EM + (1+δ2)βM
dM

IM + γW βWH
dW (γW+dW )

EW + (1+δ2)βWH
dW

IW .

Let us consider also for sufficiently small ε the neighbourhood of S

U = {x ∈ K : P (x) < ε} .

We have that
P (x) = 0⇐⇒ x ∈ S.

Moreover let us assume, in order to arrive to a contradiction, that:

∃x0 ∈ U \ S such that P (x(t;x0)) < ε for all t > 0. (C.2)

Let ϕ(t) = P (x(t;x0)), we are going to prove that there exists k > 0 such that

ϕ′(t) ≥ kϕ(t) (C.3)

for large t. In fact, taking into account (C.2), we obtain that there exists ε∗ > 0 such that
lim inft→+∞ SH(t) > bHH

ε∗+bH
and this ε∗ > 0 can be chosen sufficiently small if we choose ε small.

We assume that ε is chosen in order to imply
ε∗ + bH
bH

(1+δ2) < 1+ξ and also that the latent and

infected mosquitoes classes are smaller then η for t > 0 (this will be useful after and is possible
by (C.2)). Then we evaluate ϕ′(t) and recall that p(t)→ p∗ when t→ +∞. We obtain

ϕ′(t) =

(
bH

ε∗ + bH
(1 + ξ)− (1 + δ2)

)
(βMIM + βWHIW )

+ (δ1 − ξ)(γH + bH)EH + δ2

(
βMγM
dM

EM +
βWHγW
dW

EW

)
+

((
γMβ

2
M

HdM (γM + dM )
− (1 + δ1)(γH + bH)(σH + bH)

γH

)
(K(1− p)− EM − IM )

+

(
γWβHWβWH

HdW (γW + dW )
− (1 + δ1)(γH + bH)(σH + bH)

γH

)
(Kp− EW − IW )

)
IH .

We have that p(t) → p∗ and hence by (C.1) we have that for sufficiently large t the coefficient
of IH in the last expression is positive. The existence of k > 0 satisfying (C.3) follows and this
contradicts (C.2). We conclude that S is an uniform repeller and the result for Rp∗ > 1 follows.

The case Rp∗ < 1 can be obtained in the spirit of the previous one constructing this time a
function ϕ∗ for which there exists k∗ < 0 such that for each t > 0

ϕ∗′(t) ≤ −k∗ϕ∗(t). (C.4)
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