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Artificial Intelligence is a fashionable term to use in our day and age. One can find it most everywhere: from the newspaper stand to the university library, the morning radio to the evening entertainment, and -most importantly -from the common everyday chatter to the daydreams of the collective unconscious. It is after all easy to get lost in the many successes of Artificial intelligence. Already, Go (Silver et al. 2016) and Chess (Silver et al. 2018) champions learn strategies yet unheard of from neural network. New antibiotics are discovered (Stokes et al. 2020) owing to recent advances. Tomorrow promises this and more. Better automatic translation (Vaswani et al. 2017), more accurate film recommendations (Töscher and Jahrer 2009), and even conversation partners (Shang et al. 2015) are only a few examples of what the future might hold.
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A B S T R A C T

In this thesis, we tackle the question of deep image classification, a fundamental issue for computer vision and visual understanding in general. Faced with neural networks' need for large training datasets, we look into the common practice of engineering new examples to augment the dataset. We take this as an opportunity to teach neural algorithms to reconcile information mixed from different samples with Mixing Sample Data Augmentation so as to better understand the problem.

To this end, we study both how to edit the content in a mixed image, and what the model should predict for the mixed images.

We first propose a new type of data augmentation that helps model generalize by embedding the semantic content of samples into the non-semantic context of other samples to generate in-class mixed samples. To this end, we design new neural architectures capable of generating such mixed samples, and then show the resulting mixed inputs help train stronger classifiers in a semi-supervised setting where few labeled samples are available.

In a second part, we show input mixing can be used as an input compression method to train multiple subnetworks in a base network from compressed inputs. Indeed, by formalizing the seminal multi-input multi-output (MIMO) framework as a mixing data augmentation and changing the underlying mixing mechanisms, we obtain strong improvements of over standard models and MIMO models. Furthermore, we shine a light on these models' tendency to train subnetworks that share no features and propose a solution by leveraging knowledge on the underlying input mixing.

Finally, we adapt this MIMO technique to the emerging Vision Transformer (ViT) models. Our work shows ViTs present unique challenges for MIMO training, but that they are also uniquely suited for it. We leverage ViTs' unique token based representations to introduce a source attribution mechanism that allows us to only train subnetworks in the last layers of the model. This causes the subnetworks to train a very strong shared feature extracting base while still being somewhat diverse and beneficial to model performance.

R É S U M É

Dans cette thèse, nous nous attaquons au problème de la classification d'images, un problème fondamental pour la vision par ordinateur et le raisonnement visuel en général. Face la quantité énorme de données nécessaires pour entrainer des réseaux profonds, nous nous intéressons aux différentes façons d'augmenter artificiellement la taille du jeu de données. Plus précisément, nous mettons cette technique à profit pour apprendre au algorithmes neuronaux à réconcilier l'information mixée à partir de différents exemples par le biais des augmentation de données mixantes afin de mieux comprendre le problème sous-jacent. A cette fin, nous étudions à la fois comment éditer le contenu mixé dans un exemple mixte et ce qu'un modèle devrait prédire sur une telle image.

Nous proposons d'abord un nouveau type d'augmentation qui aide le modèle à généraliser en incrustant le contenu sémantique d'un exemples dans le contexte non-sémantique d'un autre pour générer des exemples mixtes appartenant à une unique classe. Pour ce faire, nous proposons de nouvelles architectures permettant de générer de tels exemples, et montrons ensuite comment ces exemples mixtes aident à entraîner de meilleures classificateurs dans un contexte semi-supervisé.

Dans un second temps, nous montrons que le mixage d'image peut être utilisé comme un schéma de compression d'entrées permettant d'entraîner de multiples sous-réseaux au sein d'un réseau de base. En effet, en formalisant la méthode séminal "multi-input multi-output" (MIMO) comme un schéma d'augmentation de données par mixage d'images et en changeant le mécanisme de mixage sousjacent nous obtenons des gains en performance par rapports au modèles classiques. De plus, nous mettons en lumière la tendance de ces modèles à entraîner des sous-réseaux ne partageant aucune feature et proposons une solution exploitant notre compréhension de mécanisme de mixage des entrées en jeu dans ces méthodes.

Finalement, nous adaptons ces derniers modèles MIMO aux récents modèles Vision Transformer. Nos travaux montrent que ces nouvelles architectures présentent leurs propres uniques incompatibilités avec l'entraînement MIMO, mais qu'elles y sont aussi extrêmement adaptées à d'autres égards. Nous tirons avantage de la représentation par tokens des ViTs pour introduire un nouveau mécanisme d'attribution de source qui permet d'entrainer des sous-réseaux uniquement dans les dernières couches du modèle. Cela mène les sous-réseaux à entraîner un tronc commun très robuste tout en conservant des sous réseaux relativement diverses et bénéficie à la performance des modèles. It is however important to keep in mind that this state of affairs is only the results of a slow accretion decades in the making. This remains true even if we were to discount earlier inventions such as Charles Babbage's Analytical Engine [START_REF] Babbage | Babbage's analytical engine[END_REF] in the 1800s, Kurt Gödel's theoretical work [START_REF] Gödel | Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I[END_REF] and Alan Turing's eponymous machine [START_REF] Turing | On computable numbers, with an application to the Entscheidungsproblem[END_REF] under the pretext that they pertain to Computer Science per se. Indeed, much work has been done since the famed 1956 Dartmouth workshop that first coined the term of Artificial Intelligence [START_REF] Mccarthy | A proposal for the dartmouth summer research project on artificial intelligence[END_REF]). We do not purport here to provide definitions or history. Rather, we will say only this: the road from Dartmouth to today has seen many different paradigms [START_REF] Nilsson | Principles of artificial intelligence[END_REF][START_REF] Jordan | Learning in graphical models[END_REF][START_REF] Devroye | A probabilistic theory of pattern recognition[END_REF] rule over the years, and the infamous "AI winters" researchers have had to push through.

C O M M O N N O TAT I O N C O N V E N T I O N S

For all that statistical learning [START_REF] Devroye | A probabilistic theory of pattern recognition[END_REF]) has become the dominant paradigm in AI with the subfields of Machine Learning [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]) and Deep Learning [START_REF] Goodfellow | Deep Learning[END_REF], much remains to be done. Beyond the many ethical concerns [START_REF] Gebru | Oxford handbook on AI ethics book chapter on race and gender[END_REF] raised by neural networks, a lot of questions remain open: Why do very large networks perform well? [START_REF] Nakkiran | Deep double descent: Where bigger models and more data hurt[END_REF]) How should we optimize networks? [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] What deep architecture should we use? [START_REF] He | Identity Mappings in Deep Residual Networks[END_REF][START_REF] Vaswani | Attention is all you need[END_REF]) If Artificial Intelligence is to hold its promises for tomorrow, we must tackle these issues today. This thesis attempts to add a few points to the colossal sum that has been tallying up ever since Dartmouth. Our work focuses on finding new techniques to classify images with Deep Learning (and Machine Learning). As the neural networks trained in Deep Learning are very reliant on the quality and quantity of the training data, it is common practice to engineer new examples to augment the dataset. We take this as an opportunity to teach neural algorithms to reconcile information mixed from different samples so as to better understand the problem.

To this end, we study both how to edit the content in a mixed image, and what the model should predict for the mixed images. After a brief introduction to classifying images with neural networks (Section 1.1), we offer an overview of current Mixing Sample Data Augmentation (Section 1.2) and discuss our contributions (Section 1.3).

Learning to classify images with neural networks

Classifying images as a general problem can simply be understood as an issue of being able to associate any image x of a data distribution D [START_REF] Devroye | A probabilistic theory of pattern recognition[END_REF] with the corresponding label y (e.g. associating a picture of a dog with the class "dog"). Formally, this is simply an issue of finding a mapping or function f such that ∀(x, y) ∈ D, f (x) = y.

(1.1)

The heart of the issue therefore lies in finding the right function for the data distribution. Alas, covering the entire set of possible functions f is unrealistic and would raise a number of additional issues beyond the computational considerations.

Machine Learning often aims to seek the best solution f from among a restricted and tractable set of functions [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]. In fact, the common view is to consider parameterized functions {f θ } as a family of possible functions, and strive to find the best possible θ. The reader might note here that this introduces an additional wrinkle: it is unlikely that a function f θ that perfectly matches all images to their labels exists. If we add an additional criterion L that quantifies the gap between predictions and labels on the problem distribution, the goal therefore becomes to find -if it exists -an optimal θ such that

arg min θ L({f θ (x), y} (x,y)∈D ). (1.2)
In this thesis, we consider a family of parameterized functions commonly referred to as Neural Networks [START_REF] Goodfellow | Deep Learning[END_REF]. While there exist many other good families of parameterized functions (e.g. Support Vector Machines [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF], Graphical models [START_REF] Jordan | Learning in graphical models[END_REF], Convex functions [START_REF] Boyd | Convex optimization[END_REF], ...) for machine learning problems, Neural Networks have emerged in the last decade as the most powerful solution for Image Classification [START_REF] Szeliski | Computer vision: algorithms and applications[END_REF] and present a number of interesting properties.

Neural networks

As per [START_REF] Goodfellow | Deep Learning[END_REF], Neural networks are typically built from multiple successive layers (see Figure 1.1), each of which are themselves parameterized functions h i θ . Therefore, the larger function f θ can be understood to be

f θ = h 0 θ • h 1 θ • • • • • h L-1 θ , (1.3)
with each layer h i θ performing fairly basic operations. For instance, as seen in Figure 1.2a the historical dense layer d θ function with input size d and output size d simply computes

d θ (x) = W θ x T + b θ , (1.4)
where W θ is a d × d matrix and b a d -dimensional vector. As such, the general idea in neural networks is the following: each layer is very expressive (proven to be universal approximators for asymptotic sizes in Cybenko 1989), and each successive layer can build upon the representation given by its predecessor. Deep neural networks are intrinsically hierarchical in the functions they learn. They can afford to learn very low level notions in the first few layers, with the last layers learning very complex patterns from the low level motifs observed by the first few layers.

In practice, neural networks architectures are designed by hand and regarded as hyper-parameters instead of function parameters that must be optimized. As such, the default setting in Machine Learning is often that of a set neural architecture that defines a range of possible functions [START_REF] Goodfellow | Deep Learning[END_REF]. The optimization process only seeks to find the optimal parameters for this fixed architecture.

Example: Convolutional neural networks

It is perhaps easier to illustrate neural networks for computer vision on a concrete family of architectures: Convolutional neural networks (CNN). They have been for a number of years the gold standard architecture for Computer Vision, and remain competitive with the emerging Vision Transformer architectures [START_REF] Dosovitskiy | An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[END_REF]. As Chapter 2 and Chapter 3 build upon Convolutional architectures, we feel it is beneficial to provide a quick introduction here.

Convolutional neural networks [START_REF] Goodfellow | Deep Learning[END_REF]) mostly use two types of parameterized neural network layers: dense layers (introduced earlier) for classification, and convolutional layers for feature extraction. Contrarily to dense layers that operate on flat d-dimensional vectors, convolutional layers (see Figure 1.2b) for computer vision typically operate on spatial inputs with dimensions C × H × W where H and W are spatial dimensions and C denotes a number of parallel channels (e.g. the RGB channels in a standard image). Beyond this, con-volutional layers are however fairly similar to dense layers and a convolutional layer c can indeed be formalized in a fairly similar manner

c θ (x) = W θ * x T + b θ , (1.5)
where * is the convolution (or more exactly, correlation) operation instead of a matrix product operation. The most significant difference here -which goes hand in hand with the * operation -is that W θ is a small C × C × K × K convolution kernel instead of a weight matrix for an input with C channels and output with C channels.

Supervised Learning

Given a family of parameterized functions -typically a neural network as defined previously -we simply have to find the function that most closely matches the distribution we want to approximate with the function. This therefore leaves the question of how we can quantify the gap between the distribution and the predictions given by the function.

Ideally, if we quantify the distance between a prediction ŷ and the true label y with a cross-entropy function [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF])

l CE (ŷ, y) = - #Classes-1 i=0 y i log(ŷ i ),
(1.6) Supervised Machine Learning [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF] aims to find f θ that minimizes the expected value -or risk -of this distance over the entire distribution

R(D) = E (x,y)∈D [l CE (f θ (x), y)]. (1.7)
In practice, we are not able to access the full distribution D: if we were, we would have no need to learn a function f θ ! As such, we are typically limited to training on a training dataset D train and we seek a solution that minimizes the empirical risk Rtrain [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]:

arg min θ 1 #D train (x,y)∈D train l θ (f θ (x), y).
(1.8)

The most widely adopted way to solve this optimization problem with neural networks is to perform stochastic gradient descent [START_REF] Goodfellow | Deep Learning[END_REF]. Gradient descent is an iterative procedure that slowly modifies the parameters θ following the first order moment (gradient) of the empirical risk. Indeed, SGD samples (mini-)batches B of #B images from the training dataset to compute a loss objective over the batch

Rθ (B) = 1 #B (x,y)∈B l CE (f θ (x), y), (1.9)
such that we can update the parameters with a step -or learning rate -η:

θ update = θ -η ∂ Rθ (B) ∂θ .
(1.10)

Discussion

Most recent works have followed this general structure, and tend to focus on improving some components. The following provides a brief inventory of the most common lines of research.

Many neural architectures have been proposed over the years ranging from Convolutional Neural Network variants [START_REF] He | Identity Mappings in Deep Residual Networks[END_REF] to the recent Vision Transformers [START_REF] Vaswani | Attention is all you need[END_REF]. By designing and choosing different neural networks, we modify the set of possible functions f θ that can possibly be chosen by the algorithm. In practice, this is often the occasion to include or exclude explicit biases in the type of content the functions should focus on.

The optimization process used to minimize the empirical risk is also often reevaluated with alternative schemes. These schemes can implement completely new dynamics like Stochatstic Gradient Langevin Dynamics [START_REF] Welling | Bayesian learning via stochastic gradient Langevin dynamics[END_REF] or simply adapt the learning rate of SGD like Adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF].

Interestingly, the training objective itself is a very common target of research. Beyond adding a number of regularizer terms [START_REF] Krogh | A simple weight decay can improve generalization[END_REF], the loss function used to evaluate the performance of the model on the training set has also been modified [START_REF] Szegedy | Rethinking the Inception Architecture for Computer Vision[END_REF]) a number of times. In fact, even the Empirical Risk Minimization paradigm sees some opposition in the form of Invariant Risk Minimization [START_REF] Arjovsky | Invariant risk minimization[END_REF] variants.

In any case, minimizing the empirical risk instead of the true risk means we have to hope the training data can properly represent the distribution D. As such, the quality of this training set or distribution D train is of paramount importance. In practice, this can only be the case with very large training datasets which are rare and very expensive to curate. While there exist limited training settings like semi-supervised learning [START_REF] Chapelle | Semi-Supervised Learning[END_REF]) that seek to alleviate the need for very large and expensive training datasets, techniques have also emerged over the This thesis studies this problem in particular.

Thesis Focus: Mixing Samples Data augmentations

Deep neural networks therefore work by modeling the training distribution they are fed. This requires the training distribution to be representative of the general application data, which is typically a difficult proposition as discussed above.

It is therefore mandatory to artificially augment the size of the training dataset through a variety of procedures often referenced under the common umbrella of Data Augmentation (Perez and J. Wang 2017;[START_REF] Gontijo-Lopes | Affinity and Diversity: Quantifying Mechanisms of Data Augmentation[END_REF]. Data Augmentation seeks to generate "new" training samples by perturbing samples and training the models to generalize to those perturbed samples. This procedure is however typically limited as modifying one sample too much introduces perturbations on the label of the new artificial samples that we cannot predict.

Mixing Sample Data Augmentation (MSDA) creates new samples (Figure 1.3) by combining characteristics from two or more images (H. [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF]Y. Yang and Soatto 2019). This presents two advantages: the generated samples can be much more different from samples in the training set, and we have an idea of the perturbation induced on the label of one sample. As such, MSDA allows for a much more thorough augmentation of the available training data.

For instance, the seminal MSDA technique -MixUp (H. [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF])expands the training set to the convex hull of the training data. MixUp generates a new mixed labeled sample (x, ŷ) from two images (x 0 , y 0 ) and (x 1 , y 1 ) (see Equation 1.11 and Equation 1.12) following a mixing ratio λ ∼ β(α, α): (1.11) with soft in-between class label

x = λx 0 + (1 -λ)x 1 ,
ŷ = λy 0 + (1 -λ)y 1 .
(1.12)

MixUp -or interpolation -based mixing augmentations are typically thought to help regularize the model by introducing noise on the samples [START_REF] Carratino | On Mixup Regularization[END_REF].

Another family of diversity inducing MSDA was introduced by the CutMix Augmentation (Y. [START_REF] Yang | CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features[END_REF]. Colloquially, CutMix extracts a square patch from one of the inputs (x 1 or x 2 ) and pastes it onto the other input. Formally, we draw a binary mask M such that a square of values on the mask is set to 1 and the rest to 0, such that

x = M x 0 + (1 -M) x 1 .
(1.13)

Similarly to MixUp, CutMix follows a mixing ratio λ ∼ β(α, α). In CutMix, the mixing ratio dictates the area of the square mask used for mixing (ie, Avg(M) = λ). Interestingly, it must be noted that this wider mask formalism also applies to MixUp with M = λ1 H×W .

Positioning

This thesis was funded by Thales Land and Air Systems and Association Nationale de la Recherche et de la Technologie (ANRT) in the context of a CIFRE PhD. Thales Land and Air Systems builds electrical systems for aerospace, defense, transport and security. As part of its operations, the company's product must often work with a limited number of labeled samples for some objects that are either new or rarely appear. As such, it is especially important for Thales to find ways to inflate the size of its datasets. In particular, combining the contents of these rare images with other images could be particularly useful in a context like semi-supervised learning.

Mixing Samples Data Augmentations have the very peculiar characteristic of using soft labels ŷ instead of hard labels. More precisely, MSDA samples contain information from multiple samples: they are between-class samples instead of true in-distribution samples. At first blush, soft labels are an elegant way to reflect this state of affairs, and bring some additional regularizing benefits like label smoothing [START_REF] Szegedy | Rethinking the Inception Architecture for Computer Vision[END_REF].

In this thesis, we examine the issue of in-between MSDA samples and soft labels more closely to better understand the underlying mechanisms. Our work does not aim to invalidate the current paradigm, but instead explores possible avenues opened by challenging the use of in-between class mixed samples with soft labels. To the best of our knowledge, this question has been left mostly unexplored in the literature. We explore this problem along three main directions:

• In-class MSDA samples We first consider in Chapter 2 how in-class mixed samples could be obtained and leveraged to train stronger classifiers in difficult training scenarios. While some works in the literature have attempted to mix samples from the same class such that the mixed samples remain within a single class, we study a new paradigm that transposes the semantic content of one sample into the non-semantic context of another sample. To this end, we introduce generative frameworks that allow us to generate such mixed samples and then verify that these augmented samples can be leveraged to improve the performance of models in semi-supervised settings.

The work here has led to two publications: 

Summary table of publications

Introduction

Mixing samples data augmentations combine contents from multiple images to improve the performance of neural networks. The artificial hybrids created by traditional MSDA techniques are however clearly not natural images, which can also be observed from the soft targets used to train models on those samples.

MSDA techniques traditionally mix contents from source images indiscriminately, and therefore incorporate semantic content from both. This is the core reason the generated images are out of the target distribution and use non-binary labels: the hybrids literally contain some semantic content from the first image's class and some from the other's. There are benefits to this, and MixUp-based (H. [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF]) mixing techniques at the least have been proven to act as noisy regularizers [START_REF] Carratino | On Mixup Regularization[END_REF][START_REF] Thulasidasan | On mixup training: Improved calibration and predictive uncertainty for deep neural networks[END_REF]. Nevertheless, the fact remains that these MSDA do not truly extend the support of the training distribution as is the purview of standard data augmentation.

In this chapter, we explore the idea of generating mixed samples that inherit semantic content from only one of their parents, and take other non-semantic characteristics from their other parent. As the ultimate goal here is to improve networks for a given classification task, we define "semantic" with regard to the information used by a classifier trained on the problem. This has the distinct benefit of directly teaching models a measure of generalization: by showing a similar semantic content with different non-semantic attributes, we help the model become invariant to the non-semantic content.

This type of augmentation is particularly useful in settings like semi-supervised learning where we have access to a lot of training samples but few labels. Indeed, the role of unlabeled images in semi-supervised learning is to regularize solutions found by the classifier on the few labeled images available. As such, our mixing paradigm very naturally fits into semi-supervised design philosophies and helps regularize the model by teaching it to ignore some non-semantic characteristics.

To this end, we propose novel neural networks that take two images as inputs and yield an artificial sample that integrates semantic content from one of the sample with general non-semantic characteristics from the other sample from the available (labeled and unlabeled) data as illustrated in Figure 2.1. We can then use the trained generator to generate more artificial samples to train a semisupervised classifier.

Through the course of this thesis, we have proposed two different strategies to identify and combine contents from multiple samples to improve the performance of existing semi-supervised algorithms:

• SAMOSA In a first approach, we take the semantic parent sample as the basis and add some non-semantic characteristics from the non-semantic parent. We develop an autoencoder architecture that separates semantic content from non-semantic content in an image before recombining them. The autoencoder is trained to identify semantic and non-semantic contents with no preconceptions other than sharing some features with a classifier, and an asymmetric generator structure that uses one input to decide what to reconstruct and the other how to reconstruct. In this approach, we train the generator alongside the classifier we seek to improve, thereby regularizing the classifier.

• SciMix In a second approach, we propose a much stronger hybridizer that embeds semantic content from one sample into the general (non-semantic) context of the other sample. Here, we add explicit loss terms to guide hybridization but still refrain from explicitly defining non-semantic content.

Contrarily to SAMOSA, we separate the generator and classifier by first training the generator, then using a fully trained generator to generate hybrids on the fly as we train a semi-supervised classifier from scratch.

We first provide some context on Semi-Supervised Learning in Section 2.2. We then discuss our proposed SAMOSA (Section 2.3) and SciMix (Section 2.4) frameworks. Finally, we experimentally validate our methods in Section 2.5.

The work conducted in this chapter of this thesis has led to two publications: 

Related Work

This chapter tackles semi-supervised learning problems and develops generative models to generate our in-class hybrids. As such, the following provides some context on those topics.

Semi-Supervised Learning

We first introduce the semi-supervised [START_REF] Chapelle | Semi-Supervised Learning[END_REF]) problem before providing a quick overview of the relevant literature. In semi-supervised learning, the dataset D = D l ∪ D u contains two sub-datasets: a labeled D l dataset and an unlabeled D u dataset. At the core of semi-supervised learning therefore lies the question of how to find ways to leverage D u to extract information relevant to the task of interest. This has been achieved in a number of ways, ranging from generative modeling (C. Li et al. 2017) to graph based methods [START_REF] Iscen | Label Propagation for Deep Semi-Supervised Learning[END_REF][START_REF] Chapelle | Semi-Supervised Learning[END_REF]. While generative models have mostly relied on unsupervised generative training (C. Li et al. 2017), label propagation methods have been used in a number of graph based methods to infer labels for unlabeled data [START_REF] Iscen | Label Propagation for Deep Semi-Supervised Learning[END_REF].

Recent advances in self-supervised learning are often hijacked for Semi Supervised Learning by jointly performing supervised training with labeled samples and self-supervised learning on unlabeled samples [START_REF] Zhai | S4L: Self-Supervised Semi-Supervised Learning[END_REF]B. Kim et al. 2021). While these methods currently hold the state-of-the-art on larger datasets like ImageNet, the self-supervised objectives involved require a lot of unlabeled data to train on. As such, semi-supervised learning on smaller datasets remains the province of other more specialized semi-supervised frameworks. Specialized semi-supervised frameworks have focused in recent years on two techniques: consistency training [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF][START_REF] Miyato | Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning[END_REF][START_REF] Laine | Temporal Ensembling for Semi-Supervised Learning[END_REF][START_REF] Luo | Smooth Neighbors on Teacher Graphs for Semi-Supervised Learning[END_REF]) and pseudo-labeling [START_REF] Iscen | Label Propagation for Deep Semi-Supervised Learning[END_REF][START_REF] Sohn | Fix-Match: Simplifying Semi-Supervised Learning with Consistency and Confidence[END_REF][START_REF] Rizve | In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning[END_REF]. We illustrate these two families of techniques through Mean Teacher and FixMatch, two well established semi-supervised methods.

Mean Teacher and consistency based methods

The Mean Teacher [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF] framework makes use of two key components: a student network f θ (the one we want to train) and a teacher network fθ . The Mean Teacher framework's name stems from the fact this teacher network is in fact an exponential moving average of the student network such that fθ = EM A(f θ ) = f EM A(θ) . Given a teacher and student network, the Mean Teacher framework is a standard consistency based method that optimizes a consistency loss over unlabeled samples

L cons (D u ) = x∈Du fθ (x) -f θ (x) 2 , (2.1)
with the network optimizing the overall training loss

L M eanT eacher = L Sup (D l ) + λL cons (D u ), (2.2)
where λ is a trade-off term.

Mean Teacher [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF] constitutes a first significant milestone for deep semi-supervised learning, cementing consistency based techniques as a staple of the field after the early successes of Laine and Aila 2017. A large number of consistency based methods have been developed following its success [START_REF] Robert | HybridNet: Classification and Reconstruction Cooperation for Semi-Supervised Learning[END_REF]Verma et al. 2019b), and the Mean Teacher framework remained a standard baseline for a number of years. More disruptive mixing data augmentation techniques have proven effective for consistency based training [START_REF] Berthelot | MixMatch: A Holistic Approach to Semi-Supervised Learning[END_REF][START_REF] Berthelot | ReMixMatch: Semi-Supervised Learning with Distribution Matching and Augmentation Anchoring[END_REF]Verma et al. 2019b) 

FixMatch and pseudo-labeling based methods

The FixMatch [START_REF] Sohn | Fix-Match: Simplifying Semi-Supervised Learning with Consistency and Confidence[END_REF]) framework only uses one network -the one we wish to train -and instead focuses on the data augmentations applied to inputs. For one input x, FixMatch considers a weakly augmented version x weak (i.e. kept close tot he original input x) and a strongly augmented version x strong (i.e. augmented with transformations of significant magnitude).

The core idea of FixMatch is to compute pseudo-labels from the weakly augmented versions of the inputs and use those pseudo-labels to train the model on the strongly augmented inputs. Formally, this means computing probabilities p weak,x = f θ (x), converting them to pseudo-labels px = 1(max p weak,x ≥ τ ) arg max(p weak,x ).

As far as the optimization goes, the framework minimizes a simple pseudolabeling loss on the unlabeled data

L pseudo (D u ) = x∈Du l CE (f (x strong ), px ), (2.3)
with the network optimizing the overall training loss

L F ixM atch = L Sup (D l ) + λL pseudo (D u ), (2.4)
where λ is a trade-off term.

FixMatch [START_REF] Sohn | Fix-Match: Simplifying Semi-Supervised Learning with Consistency and Confidence[END_REF]) constitutes the current gold standard for semisupervised learning and semi-supervised pseudo labeling methods [START_REF] Chapelle | Semi-Supervised Learning[END_REF][START_REF] Iscen | Label Propagation for Deep Semi-Supervised Learning[END_REF] in particular. While refinements to the FixMatch method have since been proposed (J. Li et al. 2021;B. Zhang et al. 2021), these methods most often rely heavily on the backbone set by FixMatch. Interestingly, FixMatch has started to replace Mean Teacher as the semi-supervised framework of choice in more applied semi-supervised works (e.g. Object Detection (Y.-C. [START_REF] Liu | Unbiased Teacher v2: Semi-Supervised Object Detection for Anchor-Free and Anchor-Based Detectors[END_REF], ...)

Hybrid generation in the literature

A number of different techniques might allow the generation of edited samples, though few match our use case. For instance, while there is a large body of work on disentangled generation [START_REF] Higgins | Beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework[END_REF][START_REF] Robert | DualDis: Dual-Branch Disentangling with Adversarial Learning[END_REF], it does typically involve identifying the disentangled factors in an existing image. We are first and foremost interested in generative processes that allow us to combine contents from images. Here, we will discuss a few methods that do allow such combinations like Style Transfer based methods and Image-to-Image translation works.

AdaIN and style transfer

Style transfer seeks to modify an existing image to incorporate some "stylistic" characteristics from another image (e.g. see an image in the style of a painting [START_REF] Gatys | Image style transfer using convolutional neural networks[END_REF]). The core idea is to make use of a specific "perceptual" loss that measures the distance between images at different representation levels in a neural classifier: we can ask the image to be close to one image for some representation spaces and close to another in the remaining intermediate representations [START_REF] Gatys | Image style transfer using convolutional neural networks[END_REF]. Although the early techniques required computationally intensive gradient ascent procedures, this particular type of transformation has become more widespread with the advent of lightweight techniques like AdaIN (X. [START_REF] Huang | Arbitrary Style Transfer in Real-Time With Adaptive Instance Normalization[END_REF].

AdaIN trains a network to encode images into a latent space, manipulate the latent space and decode the latent representation into a new image using a perceptual loss that mirrors the latent modification. The heart of the techniques lies in the peculiar manipulation of the latent space: when trying to generate an image c in the style of an image s, we normalize "c"'s latent z c and replace the per-map moments (mean µ and standard deviation σ) with those of the stylistic latent s to obtain a hybrid latent z h :

z h = AdaIN (z c , z s ) = z c -µ(z c ) σ(z c ) σ(z s ) + µ(z s ).
(2.5)

At training, we go on to train the model to reconstruct an image close to c in content and s in style according to the perceptual loss. This way, AdaIN can generate hybrids at a low cost at test time by simply swapping the moments of the latent representation and retrieving the decoded image.

It is worth noting that AdaIN has had an enduring legacy beyond style transfer as the map modulation mechanism it introduces is central to the StyleGAN [START_REF] Karras | A Style-Based Generator Architecture for Generative Adversarial Networks[END_REF][START_REF] Karras | Analyzing and Improving the Image Quality of StyleGAN[END_REF]) family of generative networks. StyleGAN networks learn to generate very complex images solely by modulating feature maps at every layer of a Convolutional Neural Network that takes a constant vector as input. While StyleGAN networks do not combine multiple samples, they have been used in recent advances in another hybridizing technique: Image-to-Image translation.

(Unsupervised) image-to-image translation

Image-to-Image translation [START_REF] Zhu | Unpaired image-to-image translation using cycle-consistent adversarial networks[END_REF] typically aims to transpose an image from one domain into another domain (e.g. from day to night). Although traditional approaches rely on knowing the domains of interest, unsupervised Image-to-Image translation approaches simply attempt to translate one image into the domain of another without explicit domain knowledge.

Interestingly, work on this matter regularly draws inspiration from advances in style transfer. Bi-modal auto-encoding architectures appear fairly early on in this field (M.-Y. [START_REF] Liu | Unsupervised Image-to-Image Translation Networks[END_REF]X. Huang et al. 2018). More recent works in fewshot translation (M.-Y. [START_REF] Liu | Few-Shot Unsupervised Image-to-Image Translation[END_REF]) and unsupervised translation [START_REF] Baek | Rethinking the Truly Unsupervised Image-to-Image Translation[END_REF] have even started associating the domain (or class) information to a style code fed as input to a StyleGan inspired decoder. On a more supervised note, style based methods have been used to combine textures (domain information) with structural information (image information) [START_REF] Park | Swapping Autoencoder for Deep Image Manipulation[END_REF]) as shown on Figure 2.5 thanks to StyleGAN's peculiar structure.

Positioning

In this chapter, we propose a new type of mixing data augmentation that mixes the semantic content of one sample with other non-semantic content for low label settings like semi-supervised learning. We posit that such data augmentations can help models learn invariance to some non-semantic variations, and that this type of invariance is harder to learn in a semi-supervised setting.

As such, we aim here to generate hybrids that satisfy our requirements and demonstrate their usefulness in a semi-supervised setting. Our goal is not to replace any established semi-supervised algorithm, and the augmentations we propose are deployed alongside standard semi-supervised algorithm. In fact, we mainly evaluate the success of our contributions by the gains obtained by combining our augmentations with a backbone method like Mean Teacher [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF] or FixMatch [START_REF] Sohn | Fix-Match: Simplifying Semi-Supervised Learning with Consistency and Confidence[END_REF].

To generate the hybrids, we use an asymmetric decoder/generator that gives different roles to its two inputs in the generative process. In SAMOSA, we design an architecture that follows similar principles as AdaIN (X. Huang and Belongie 2017) and StyleGAN [START_REF] Karras | Analyzing and Improving the Image Quality of StyleGAN[END_REF] with one of the inputs influencing how the model generates from the other input. While the mechanism is similar, it comports some differences in how the internal maps are chosen as it was developed independently. SciMix on the other hand directly makes use of StyleGANv2 [START_REF] Karras | Analyzing and Improving the Image Quality of StyleGAN[END_REF] generator and adapts ideas from Swapping Auto-encoders [START_REF] Park | Swapping Autoencoder for Deep Image Manipulation[END_REF].

Crucially, the generators we train are specifically designed to help train a classifier whereas the discussed methods focus entirely on generating new images. Contrarily to those methods, the hybridization is mostly guided by semantic information from a classifier (as opposed to specialized perceptual loss terms).

SAMOSA: Adding non-semantic variations to an image

Our final goal here is to generate in-class hybrids that mix contents from two samples that inherit semantic content from one parent and non-semantic content from another as shown in Figure 2.6. The underlying idea behind these mixed samples is that such samples can decline the semantic content of the available samples in different non-semantic context given by the large unlabeled set we have in problems like semi-supervised learning.

Our SAMOSA framework can mix the contents of two inputs such that the mixed sample retains most of one sample's semantic content, but integrates some non-semantic characteristic from the other. To this end, SAMOSA learns to separate and identify semantic content from non-semantic content in images, and how to re-combine the extracted representations to create plausible hybrids (e.g. Figure 2.6b).

The main challenge when performing such mixing lies in this proper separation of semantic and non-semantic content. SAMOSA introduces a novel neural architecture that separates input information into semantic information useful to a classifier, and auxiliary information necessary for reconstruction. Furthermore, our SAMOSA framework leverages its novel asymmetrical decoder (inspired by work in generative modeling and edition (X. [START_REF] Huang | Arbitrary Style Transfer in Real-Time With Adaptive Instance Normalization[END_REF][START_REF] Karras | A Style-Based Generator Architecture for Generative Adversarial Networks[END_REF])) to mix any two extracted semantic and non-semantic content. The main contributions we seek with SAMOSA are therefore twofold:

• Create a generative framework that allows the creation of hybrids such that the mixed sample inherits the semantic content of one parent sample and non-semantic characteristics of the other.

• Offer a first proof of concept regarding the usefulness of this new mixing paradigm for semi-supervised learning by combining it with well known semi-supervised algorithms.

Overview of the SAMOSA framework

We detail in this section our proposed SAMOSA Framework. After a brief overview of the general framework, we give a detailed account of our novel asymmetrical decoder in Sec. 2.3.2 and detail SAMOSA's atypical learning scheme in Sec. 2.3.3. Finally, we discuss how our SAMOSA framework can be used in a SSL setting in Sec. 2.3.4.

First and foremost, we introduce in this paper a novel architecture presented in Figure 2.7. It is composed of two encoders E c and E r (one semantic -with regards to the classification process -and one non semantic), a simple classifier C and a bi-modal decoder D that takes inputs from a semantic modality z c and a non-semantic modality z r . SAMOSA is meant to be added on top of existing semi-supervised learning algorithms for neural architectures. In this sense, an input x is mapped to a feature representation z c = E c (x), which is then used to obtain a classifier prediction ŷ = C(z c ) = C(E c (x)). We further elaborate on the peculiarities of our additional reconstruction modules E r and D in Section 2.3.2.

To train such an architecture, we optimize the modules necessary for classification (E c and C) to minimize a two component loss L SAM OSA (Equation 2.6, Figure 2.7). Our novel regularizer Ω SAM OSA (in Equation 2.6) differs substantially from standard reconstruction regularizers by leveraging peculiarities of SAMOSA's architecture. On the other hand, the base loss L 0,X term in Equation 2.6 acts as a proxy to represent the base method (which we seek to improve) "X"'s training process (see Figure 2.7). For instance, the three base losses we considered are L 0,M T from Mean Teacher [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF], L 0,M ix from MixMatch [START_REF] Berthelot | MixMatch: A Holistic Approach to Semi-Supervised Learning[END_REF]) and L 0,F ix from FixMatch [START_REF] Sohn | Fix-Match: Simplifying Semi-Supervised Learning with Consistency and Confidence[END_REF]. As the basic algorithms we consider are meant to function on standard classifier models, L 0,X is only minimized for E c • C. The training and manipulation of the remaining modules as well as the regularizer term Ω SAM OSA are specific to SAMOSA, and are elaborated upon in Section 2.3.3.

L SAM OSA ({x l , y l } D l ∪ {x u } Du ) = L 0,X ({x l , y l } ∪ {x u }) + Ω SAM OSA ({x l } ∪ {x u }).
(2.6)

As such, the method trains a standard classifier E c • C according to a base SSL method X with loss L 0,X . Our contribution consists in adding a reconstruction regularizer Ω SAM OSA , a non-semantic encoder E r and a special bi-modal decoder D to be optimized and trained simultaneously with the base SSL classifier. The bi-modal decoder in particular requires careful design to mix semantic and nonsemantic content.

Adding a Non-Supervised Reconstruction Module

Our goal is to mix the semantic content of one sample with the non-semantic content of another. This requires both separating the two contents from samples and reconstructing from those contents in a modular fashion. To some extent, this has been achieved in style transfer (X. Huang and Belongie 2017) and generative modeling [START_REF] Higgins | Beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework[END_REF][START_REF] Karras | A Style-Based Generator Architecture for Generative Adversarial Networks[END_REF]. (X. Huang and Belongie 2017) and [START_REF] Karras | A Style-Based Generator Architecture for Generative Adversarial Networks[END_REF] for instance have shown manipulating activation statistics of intermediate activation maps in an autoencoder can be used to train a model capable of reconstructing an input image in a number of different ways. Those methods however either explicitly define what "style" (which we liken to non semantic information) is through a specifically designed loss functions and targets (X. Huang and Belongie 2017), or perform adversarial optimization that does not allow for specific reconstructions [START_REF] Karras | A Style-Based Generator Architecture for Generative Adversarial Networks[END_REF]. We propose here an architecture operating along similar principles, but that can reconstruct inputs without any pre-conception of what constitutes non-semantic information.

We retain the base model's E c as our semantic encoder, and add a separate encoder E r for the remaining non-semantic information. A novel asymmetrical bi-modal decoder D is then used to reconstruct the input images from the outputs of the encoders E c and E r . Practically, an input x is mapped to an additional non semantic feature representation z r = E r (x), which is then used in conjunction with z c to obtain a reconstructed image x = D(z c , z r ) = D(E c (x), E r (x)). This last reconstruction process is facilitated by the very peculiar structure of D.

Asymmetrical decoder D Crucially, we design a novel decoder module (Figure 2.8) to combine semantic and non semantic feature spaces. An immediate concern when reconstructing from two latent spaces as we propose is that an unconstrained non semantic feature space is liable to store all the necessary in- formation to reconstruct the input, thereby leaving a decoder free to ignore the semantic feature space z c . Previous work [START_REF] Robert | HybridNet: Classification and Reconstruction Cooperation for Semi-Supervised Learning[END_REF] ran into this issue when generating two partial reconstructions -one from semantic features and one from non-semantic features -and summing the two to obtain a complete reconstruction. This was addressed by forcefully stopping gradient flows of one partial reconstruction right before combination (depending on which partial reconstruction needs more training). However, this method led to both E c and E r each contributing very similar information as this process only ensures the two modalities contribute to the reconstruction. Conversely, we design an asymmetrical decoder that uses the two input modalities differently.

To prevent z r from encoding all the information, we shift its role from affecting what is on the reconstruction to affecting how the semantic latent space z c is translated to a reconstruction. As figured in Figure 2.8, D can be broken down into two sub decoders D pre and D post such that h = D pre (z c ) ∈ R S×H×W can be construed as a stack of S intermediate reconstruction maps. z r serves as a set of S gating weights ∈ [0, 1] (through the use of a final linear projection and softmax activation) such that only some intermediate activation maps h = z r h are used to compute the final reconstruction D post (h ) (e.g. only the red and yellow maps remain in Figure 2.8). While this can be seen as a rescaling of feature maps (like in style transfer) (X. [START_REF] Huang | Arbitrary Style Transfer in Real-Time With Adaptive Instance Normalization[END_REF][START_REF] Karras | A Style-Based Generator Architecture for Generative Adversarial Networks[END_REF]X. Huang et al. 2018), the absence of style targets might lead to z r selecting all maps with a method such as AdaIN. To address this, we ensure only a few maps are selected by z r for each sample using a softmax activation.

This architecture allows us to reconstruct samples while avoiding the pitfall of forcing the classifier's feature extractor E c to keep irrelevant information. Furthermore, we propose a learning scheme that pushes the semantic encoder E c 

Learning Scheme

Model optimization SAMOSA relies on a regularizer term Ω SAM OSA to leverage its peculiar architecture:

Ω SAM OSA ({x l } D l ∪ {x u } Du ) =λ rec L rec ({x l } ∪ {x u }) + λ SAM OSA Ω rec ({x l } ∪ {x u }), (2.7) 
with the loss L rec used to optimize E r and D for reconstruction of inputs, and the auxiliary regularizer Ω rec used to refine E c through knowledge learned by D. This differs significantly from traditional work in SSL that uses reconstruction for regularization as we do not directly optimize the classifier for reconstruction. Rather, we leverage our asymmetrical decoder's peculiar structure to regularize the classifier so that it solely learns to reconstruct information identified as semantic by our framework.

L rec = 1 #D x∈D D(E c (x), E r (x)) -x 2
2 (figured on Figure 2.9) tries to match inputs x to model reconstructions D(E c (x), E r (x)) through the L2 distance between the two. E c is deliberately not optimized here as skip connections [START_REF] He | Identity Mappings in Deep Residual Networks[END_REF]) in modern neural networks already let a lot of input information trickle down to their feature space. In our experiments, we found optimizing E c for reconstruction led D to rely entirely on E c and ignore E r .

Ω rec = 1 #D x∈D E (0..(dc-2)) c (x) -D (0) (E c (x), E r (x))
) 2 2 leverages our decoder's asymmetrical structure to regularize E c (Figure 2.9). Importantly, the first few intermediate reconstructions are purely semantic as they are prior to re-modulation by z r (the style input E r (x) in D(E c (x), E r (x)) is of no effect). Therefore, training E c to match these early decoder features provides a novel reconstruction regularizer for the feature extractor that is not polluted by non-semantic information (i.e. information injected by E r (x) in the reconstruction). In practice, Ω rec ties the last intermediate features E

(0..(dc-2)) c (x) extracted by E c (layer E (dc-2) c ) to the first intermediate reconstructions D (0) (E c (x), E r (x)) generated by D (layer D (0) ). Here, d c refers to the depth of E c , E (0..(dc-2)) c
to the composition of the first d c -1 convolutional layers of E c (all but the last one), and D (0) to the first convolutional layer of D.

This training process yields an architecture capable of generating hybrids that incorporates non-semantic content from a sample x 2 into a sample x 1 while preserving x 1 's semantic content. We now discuss how this can be put to use in a Semi-Supervised Learning setting.

Making use of the SAMOSA framework in Semi-Supervised Learning

We introduce a novel asymmetrical decoder that is modular by design with regard to semantic and non semantic content, as well as propose an adapted training scheme. In practice, the learning scheme itself can be used to regularize classifiers, but the trained models can also be used to generate augmented samples to train models on. For instance, a model could be trained to optimize L SAM OSA , then used to generate a set of artificial labeled samples through SAMOSA hybridization and the model could then be re-trained on the augmented dataset.

Indeed, generating hybrids given a trained model is straightforward (Algorithm A.3 and Figure 2.10). Specifically, given samples x (1) (with known label y (1) ) and x (2) , we extract the relevant features z

(1) c = E c (x (1) ), z (1) r = E r (x (1) ), z (2) c = E c (x (2) ) and z (2) r = E r (x (2) ). x h = D(z (1) c , z (2)
r ) is now a sample with class y (1) . As a conservative measure, we only keep the generated hybrid if C(E c (x h )) = y (1) to avoid disturbing decision boundaries too much. Note that with this, we generate a strong augmentation of x 1 and teach the classifier to group x 1 with its strongly augmented version in a similar line to work in contrastive representation learning [START_REF] He | Momentum Contrast for Unsupervised Visual Representation Learning[END_REF].

Integrating SAMOSA into classical semi-supervised learning frameworks As previously discussed, SAMOSA can be deployed in SSL systems in a variety of ways, two of which are explored experimentally paper. We study a first framework that trains a SSL model to optimize L SAM OSA , generates hybrids using labeled samples for the semantic component and unlabeled samples for the nonsemantic component, and re-trains the model on the augmented set (Appendix Algorithm A.1). We also show a more intricate incorporation of SAMOSA in the MixMatch framework (Appendix Algorithm A.2) by occasionally replacing the MixUp procedure with our in-class hybridization in the training of a MixMatch model optimizing L SAM OSA .

Take-aways from the SAMOSA project

The SAMOSA framework constitutes a first step in our quest to generate inclass mixed samples, and it learns to generate convincing hybrids on toy-datasets like the MNIST-M dataset (see Figure 2.11). On more complex real data like the CIFAR-10 and SVHN datasets the framework also succeeds in identifying and transferring some non-semantic characteristics (e.g. lighting and coloration) to the main semantic image as shown on Figure 2.11. Interestingly, these slight alterations already led to some improvements for semi-supervised frameworks on standard benchmarks at the time (CIFAR-10 and SVHN). While SAMOSA does technically fulfill most of the objectives we outlined in this chapter, we found significant shortcomings in our approach:

• The model only slightly modifies the semantic content While the hybrids on Figure 2.11 indeed succeed in adding some non-semantic variations to the semantic content of samples in the dataset, the resulting images remain very close to their semantic parent. As such, SAMOSA does not truly generate mixed samples that combine a significant amount of content from multiple images.

• The classifier does not benefit from hybrids it helped generate The nonsemantic content is identified from the content that is not useful to the classifier. Therefore, retraining the classifier with the hybrids generated by the framework only yields minimal performance improvements. In fact, the majority of the improvements observed stem from the regularization induced by the reconstruction on the classifier's feature space.

• Tying generator and classifier complicates training Training the generator along with the classifier makes scheduling delicate and significantly increases training time as well as overhead: we typically conduct experiments on 2 gpus, even for very simple datasets like the CIFAR-10 and SVHN datasets. Furthermore, training some of the more complex semi-supervised classifiers like MixMatch and FixMatch proves fairly difficult. Moreover, the strong augmentations that are part and parcel of these techniques interfere with the generative process and cause more variance in results.

To address this, we have since developed the SciMix framework which embeds the semantic content of one image into the context of another, and uses the resulting data augmentation to train semi-supervised classifiers from scratch.

SciMix: Embedding semantic content into other contexts

Our SAMOSA framework properly generates mixed samples that only contain semantic content from one image, and the slight non-semantic variations induced by the mixing process seem to help the model find more general solutions. The non-semantic variations however remain minimal, and the mixed samples therefore cannot truly be characterized as mixing content from both samples.

SciMix takes an opposite view to SAMOSA. Rather than attempt to identify and add non-semantic characteristics to a semantic parent, we directly embed semantic content into the general non-semantic context of the non-semantic parent. This ensures the mixed images contain a significant amount of content from the nonsemantic parent. The work of the hybridizer becomes identifying the semantic content (with the help of a classifier) and adding it to the other image.

The main contributions we propose with SciMix after developing SAMOSA are therefore:

• A better exploration of our new mixing paradigm designed to create artificial in-distribution samples that embed the non-semantic content of one sample into the non-semantic context of another.

• A new auto-encoding architecture and associated learning scheme that trains a generator (in lieu of a decoder) to mix semantic and non-semantic contents. In particular, we purposefully train a model to separate semantic and non-semantic contents into two representations, and train a styleinspired generator to embed the semantic content ("style" code) into the non-semantic background (traditional input). In contrast to SAMOSA, we use the semantic latent representations as a style or modulating input to the asymmetrical generator.

• A new learning process to leverage our new mixing data augmentation separately from the hybridization process. We show mixed samples can be used to optimize an additional supervised objective that significantly improves classifier performance.

Learning to generate hybrids

Auto-encoding architecture Our framework is based on a novel auto-encoder architecture presented in Figure 2.12a that treats semantic information as a global characteristic of an encoded image. An input x is projected into a semantic latent space z c by an encoder E c as well as a complementary non-semantic latent space z r by an encoder E r . While our framework should primarily be understood as an auto-encoder framework, the distinct nature of the latent spaces z c and z r requires more careful consideration. We choose in this paper to focus on the definition and exploitation of the semantic features z c , and simply treat z r as information irrelevant to z c . In other words, we design the framework so that the semantic information z c controls what the generator G reconstructs. As the notion of semantic information is fundamentally tied to that of the tasks under consideration, we define z c with respects to a classifier. More precisely, we treat the semantic latent space z c as the feature space of a classifier. To this end, we add a linear neural layer C on top of z c (see Figure 2.12a) that outputs a class prediction ŷ. Note that E c • C therefore constitutes a standard CNN classifier [START_REF] He | Identity Mappings in Deep Residual Networks[END_REF][START_REF] Zagoruyko | Wide Residual Networks[END_REF]. We ensure the classifier E c • C correctly learns semantic information through classification loss term L S on its output1 .

Contrarily to [START_REF] Park | Swapping Autoencoder for Deep Image Manipulation[END_REF], we complete the encoding with a generator G that computes a reconstruction x using the non-semantic features z r as direct inputs and the semantic features z c as style codes. This makes the non-semantic content z r easier to transfer, which is fortunate considering we can ensure semantic transfer more easily through a classifier E c • C (as opposed to SAMOSA). As we treat the model as an autoencoder, we use a reconstruction loss L rec to tie the reconstruction x to the input x. We further refine this reconstruction by using an adversarial critic to smooth out details [START_REF] Park | Swapping Autoencoder for Deep Image Manipulation[END_REF]. We add a discriminator network D (see Fig. 

L AE = L rec + L adv,r = x∈D x -G(E c (x), E r (x)) 2 + x∈D -log(D(G(E c (x), E r (x)))).
(2.8) Finally, our learning scheme is based on the minimization of the loss L gen composed of L S and L AE , plus an additional loss L hyb term:

L gen = L AE + L S + L hyb , (2.9)
which is described in the following hybridizing scheme.

Hybridization losses

Simply training the auto-encoder architecture, even with z c as the feature space of a classifier, is not enough to ensure that hybrids correctly inherit characteristics from their parents. To force the model to properly inject semantic content into the general background of known samples, we design explicit hybridization losses (studied more closely in Appendix Section A.4.2)

L hyb =L + hyb,class + L + hyb,cont + L - hyb,class + L - hyb,cont + L adv,h .
(2.10) L + hyb,class explicitly trains our model to rely on z c to generate the main semantic object in the generated reconstruction/hybrid. Indeed, we rely on the classifier E c • C's ability to identify and classify the main object in inputs (see Figure 2.12b).

Put plainly, we generate hybrids x h = G(E c (x 1 ), E r (x 2 )) from pairs of samples in a batch and obtain logits predictions C(E c (x h )) for those hybrids. L + hyb,class optimizes the model so that this prediction on the logits match the prediction on the semantic parent x 1 of x h . Importantly, we only optimize the hybridization process that generates x h : we do not optimize the classifier's prediction on x h or x 1 . The idea is that the autoencoder learns to place x h in the right class manifold, while said class manifold does not move to accommodate x h :

L + hyb,class = x∈D C(E c (x 1 )) -C(E c (G(E c (x 1 ), E r (x 2 )))) 2 .
(2.11)

Similarly, L + hyb,cont optimizes the model so that a generated hybrids x h 's nonsemantic representation z r,h matches its non semantic parent x 2 's non semantic component z r,2 . As in the semantic case, we only optimize the generative process that leads to the generation of x h but do not optimize E r to project x h close to its non-semantic parent:

L + hyb,cont = x∈D E r (x 2 ) -E r (G(E c (x 1 ), E r (x 2 ))) 2 .
(2.12)

We also train hybrids to differ from their parents through the negative semantic hybridization loss

L - hyb,class = x∈D -C(E c (x 2 )) -C(E c (G(E c (x 1 ), E r (x 2 )))) 2 and the negative non-semantic hybridization loss L - hyb,cont = x∈D -E r (x 1 ) - E r (G(E c (x 1 ), E c (x 2 ))) 2 .
In practice, this means maximizing the distance between hybrids and semantic (resp. non-semantic) parent in non-semantic (resp. semantic) space.

To ensure the quality of generated hybrids, we train the discriminator D to also recognize hybrids as synthetic images. With this discriminator we can simply add an adversarial loss term L adv,h to ensure hybrids look realistic (as far as D is concerned).

Training a classifier by leveraging our Data Augmentation

We now have a novel mixing data augmentation that can embed the semantic content of one sample to the non-semantic context of other samples, given a trained generator. This provides a useful and new way to improve any standard training method "X" by adding a single additional loss term

L contradict : L SciM ix = L X + L contradict .
Generating hybrids given a trained autoencoder Generating hybrids given a trained model is straightforward (Figure 2.12b shows how a hybrid is mixed). Specifically, given samples x (1) (with known label y (1) ) and x (2) , we extract the relevant features z

(1)

c = E c (x (1) ), z (1) r = E r (x (1) ), z (2) c = E c (x (2) ) and z (2) r = E r (x (2) ). x h = G(z (1) c , z (2)
r ) is now a sample with class y (1) . As a conservative measure, we only keep the generated hybrid if C(E c (x h )) = y (1) to avoid disturbing decision boundaries too much. Note that with this, we generate a strong augmentation of x 1 and teach the classifier to group x 1 with its strongly augmented version in a similar line to work in contrastive representation learning [START_REF] He | Momentum Contrast for Unsupervised Visual Representation Learning[END_REF].

Training a new classifier f We now propose a way to leverage our novel hybrids to improve the training of standard models such as Mean Teacher [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF] or FixMatch [START_REF] Sohn | Fix-Match: Simplifying Semi-Supervised Learning with Consistency and Confidence[END_REF]. To this end, we compute hybrids that mix the semantic content of each sample in the batch with the non-semantic content of other samples in the batch. We leverage those hybrids by optimizing an additional loss:

L contradict = xc,xr∈B,perm(B) [l M SE (f (x h ), α * f (x c ) + (1 -α)f (x r ))].
(2.13) This new loss takes advantage of our mixing paradigm by mostly imputing the semantic parent's label to our hybrids, with only a slight dependence on the non-semantic parent to acknowledge the imperfection of the mixing process. Contrarily to standard mixing augmentations, the ratio α > 0.5 is a fixed hyperparameter (in the spirit of label smoothing [START_REF] Szegedy | Rethinking the Inception Architecture for Computer Vision[END_REF])).

Results

We detail here the results experimental investigation we conducted to evaluate the performance of SAMOSA and SciMix. To this end, we mostly studied the semi-supervised problem on the CIFAR10 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] and SVHN [START_REF] Netzer | Reading digits in natural images with unsupervised feature learning[END_REF] datasets.

We applied our frameworks over well studied semi-supervised backbones like Mean Teacher [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF], MixMatch [START_REF] Berthelot | MixMatch: A Holistic Approach to Semi-Supervised Learning[END_REF], and FixMatch [START_REF] Sohn | Fix-Match: Simplifying Semi-Supervised Learning with Consistency and Confidence[END_REF]) (refer to Section 2.3.4 and Section 2.4.2 for how we apply our frameworks to these methods). More precisely, we chose Mean Teacher for both SAMOSA and SciMix as a reference consistency-based baseline. Beyond its widespread use in SSL, consistency induces a stabilization we feel would help extract invariant semantic features. For SAMOSA, we use MixMatch as a backbone to illustrate interactions of SAMOSA's generator with more modern methods that make use of mixing techniques (such as CutMix, CowMix, ICT and ReMixMatch). Since SciMix separates the generator from the trained semisupervised classifier, this interaction is more minimal. We therefore use FixMatch instead of MixMatch as a backbone. FixMatch is a state-of the art SSL method based on strong augmentation, and often serves as the reference or backbone in the literature (J. Li et al. 2021;B. Zhang et al. 2021).

For both frameworks, we operate on a standard WideResNet-28-2 (Zagoruyko and Komodakis 2016) for our classifiers (both f and E c • C). E r follows the same architecture as E c . In the case of SAMOSA, hybrids are generated by a decoder D that follows an inverted 13-layer 4-4-4 CNN architecture, with D pre being a 4-4 block and D post being made up of the last 4 block and final convolution. For SciMix, the hybrids are generated by a generator G that is a StyleGanv2 [START_REF] Karras | Analyzing and Improving the Image Quality of StyleGAN[END_REF] architecture. Hyperparameters and optimizers were generally taken to follow settings reported in the base methods' original papers [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF][START_REF] Berthelot | MixMatch: A Holistic Approach to Semi-Supervised Learning[END_REF][START_REF] Sohn | Fix-Match: Simplifying Semi-Supervised Learning with Consistency and Confidence[END_REF].

We report the mean ± std classification accuracy over 3 seeded runs for varying numbers of labeled samples in a dataset (the rest are treated as unlabeled). The SciMix generators used to train a model with N labeled samples are also trained with only N labeled samples. One generator is trained per setting, and classifiers trained with the generator's mixed samples are trained on the same split of labeled/unlabeled data to avoid information leakage. More details for all experiments are given in Appendix.

Method CIFAR10

250 500 1000

Purely supervised (lower bound) 27.8 ± 0.9 35.4 ± 1.9 43.5 ± 2.4

Mean Teacher 1 , (Tarvainen andValpola 2017) 61.3 ± 3.3 76.4 ± 3 

Performance improvements

As the final objective of this project is to improve the performance of semisupervised classifiers, we first discuss how SAMOSA and SciMix help regularize the networks. It is worth noting the experimental settings and codebases differ significantly between the two. Direct comparison of the performances is therefore not straightforward and will be discussed in Section 2.5.2.

SAMOSA

We show here that SAMOSA can improve quantitative performance when added to Mean Teacher and MixMatch (Table 2.1). In each table, we also report for reference the accuracy of models trained in a purely supervised fashion on the available labeled samples as a lower bound.

Mean Teacher (MT)

We evaluate a first application of SAMOSA for augmentation to show improvements on Mean Teacher (the procedure is detailed more closely in Appendix Algorithm A.1). We train the model normally for 300 epochs (with the reconstruction module), then we hybridize every labeled sample with 10 unlabeled samples. For every generated hybrid, we keep the artificial example only if it still gets predicted by the model as being part of the right class, otherwise the hybrid is replaced by its semantic "parent". The model is then retrained with this additional labeled data over 300 epochs. Afterwards, another hybridization procedure is repeated and a final training is conducted, still over the same number of epochs.

The model is trained using a SGD optimizer with cosine learning rate (base 0.2 learning rate) for 300 epochs over the unlabeled samples for CIFAR10 for one training cycle. After each training and subsequent augmentation step, the learning rate is reset and training resumes (for an overall 900 epochs). In the following training passes, the model is only optimized over the augmented dataset (instead of the true dataset) from epoch 150 to 250 of each cycle (following discussions in (Perez and J. Wang 2017;[START_REF] Gontijo-Lopes | Affinity and Diversity: Quantifying Mechanisms of Data Augmentation[END_REF])) with λ recons = 0.25 and λ SAM OSA = 0.5/0.1. Exact details in the supplementary material.

As a baseline, we check the performance of the model trained under the same procedure (3 training cycles) but with no reconstruction regularizer, and no artificial samples. Table 2.1 shows improvements from using the SAMOSA framework on top of Mean Teacher. Notably, we have very noticeable gains for 250 labels, which suggests the method is particularly useful when labeled information is lacking. To explore performance with very few labels, we furthermore tested the model with 100 labels on SVHN. An important accuracy gain from 62.5 ± 3.7 to 66.2 ± 2.2 is observed which is significant given such very low label settings are especially interesting in applied settings.

MixMatch (Mix)

We showcase a more intricate use of SAMOSA on MixMatch by directly incorporating our augmentation process in MixMatch's native hybridization (MixUp) as detailed in Appendix Algorithm A.2. We train the reconstruction module along the base classifier model, as well as optimize for the reconstruction regularizer. Every batch, with probability p = 0.2, we replace the MixUp examples with Hybrids generated from our reconstruction module. For every reconstructed hybrid, we keep the label/pseudolabel corresponding to its semantic "parent". Contrarily to the Mean Teacher case, we generate hybrids that have both labeled and unlabeled samples as semantic "parents" (as is done by MixUp in MixMatch) and leverage the pseudo-label MixMatch naturally generates throughout its course for MixUp. Exact details are given in the supplementary material, but are similar to the Mean Teacher ones. We follow [START_REF] Berthelot | MixMatch: A Holistic Approach to Semi-Supervised Learning[END_REF] and report results from a weight averaged model.

As a baseline comparison, we check the performance of the model trained under the same procedure (which is basically the normal training procedure) but with no reconstruction regularizer, and no artificial samples. As can be seen from Table 2.1, sizable gains are achieved on both the 500 and 250 labels CIFAR10 settings, and are consistent even when 3 runs are not enough to definitely verify improvements. Interestingly, adding SAMOSA to MixMatch increases the variance of the model which is not the case in the Mean Teacher case. The use of MixUp hybrids in MixMatch strongly influences the hybrids generated by SAMOSA (discussed in Section A.3.1). This and the random nature of MixUp could lead to a stronger variability in the quality of hybrids learned by a SAMOSA generator. Considering how reliant SAMOSA's classifier is on the quality of the generated hybrids for regularization, we believe this explains the higher variance on the MixMatch variant of SAMOSA. 

SciMix

Table 2.2 shows that adding our optimization on hybrids with L contradict -as described in Section 2.4.2 -does indeed lead to improved performance on CIFAR10 and SVHN. Indeed, training with SciMix hybrids leads to significant accuracy gains with a Mean Teacher classifier with a wide range of labeled samples. We also observe improvements over FixMatch on very low labeled settings (FixMatch performance quickly saturates on higher labeled settings). Interestingly, two concurrent behaviors can be observed on Mean Teacher: SciMix hybrids become more useful when less labeled samples are available but the quality of generated hybrids becomes unreliable with few labeled samples. Indeed, at 100 labeled samples on CIFAR10, the Mean Teacher classifier used to train the generator is too weak to provide very useful hybrids. With a strong SciMix hybridizer (trained with all samples), SciMix data augmentation would bring a Mean Teacher classifier to an accuracy of 60.4 ± 1.7 with 100 labels on CIFAR10.

Improvements of SciMix over SAMOSA

As discussed in Section 2.3.5, SciMix was created to address many of the problems observed in SAMOSA:

• The model only slightly modifies the semantic content Hybrids generated by SAMOSA on real datasets only incorporate minor non-semantic characteristics like color tint. As such, the generated hybrids do not truly mix the semantic contents of some sample with the non-semantic contents of others.

SciMix solves this issue as can be observed from the hybrids generated by both frameworks. Section 2.5.2.1 shows examples of hybrids generated by both frameworks and discusses the improvements brought by SciMix.

• The classifier does not benefit from hybrids it helped generate The classifier trained by SAMOSA benefits little from training on the hybrids generated by SAMOSA. We posit that this stems both from the implicit regularization of the classifier by the generative objectives, and from the fact the hybrids incorporate non-semantic information identified by the classifier itself.

Section 2.5.2.2 highlights this behavior for SAMOSA, and recovers a similar observation for a variant of SciMix which re-uses the weights of the classifier used to train the hybrid generator. In the latter cases, we show keeping the weights of the previous classifiers in fact leads to worse results than randomly initializing the weights of our semi-supervised classifier.

• Tying generator and classifier complicates training A significant issue when attempting to train new semi-supervised algorithms with the SAMOSA framework is that the schedules of the generator and classifier must be synchronized. Furthermore, training an autoencoder alongside our classifiers adds a large overhead to the SAMOSA framework which makes deployment of the framework unrealistic and cumbersome.

Appendix Section A.4.1 discusses the costs incurred by the SAMOSA approach in more details and gives some perspective on the types of schedules we use to train semi-supervised classifiers and hybrid generators.

Comparison of SAMOSA and SciMix hybrids

Comparing hybrids obtained by SAMOSA Figure 2.13 to those generated by SciMix Figure 2.14 shows the benefits of our SciMix framework. While SAMOSA's hybrids only incorporate minor non-semantic variations like lighting or coloration into the general content of their semantic parents, SciMix hybrids inherit large amounts of content from their non-semantic parent as well. For instance, the street numbers on Figure 2.14 inherit nearly all the non-semantic content of their non-semantic parent (background, color, font, ...), with only the actual semantic street number being inherited from the semantic parent. Interestingly, even the non-central digits are correctly identified as non-semantic by the framework and kept from the non-semantic parent. introducing explicit hybridization objectives, this enables the model to generate hybrids that satisfy the requirements outlined at the outset of this chapter.

Regularization vs. Data Augmentation

SAMOSA trains the evaluated semi-supervised classifier alongside the generative framework. While this is efficient in a sense, Table 2.3a shows classifiers trained in this manner benefit very little from further training with hybrids generated by the framework. This is not wholly surprising: hybrids only incorporate non-semantic variations that do not impact the classifier by construction, and the classifier already implicitly benefits from the hybridization due to the regularization induced by the generative framework. SciMix sidesteps this issue entirely by training a separate classifier with the generative framework.

The first three lines of Table 2.3b show the same behavior as SAMOSA: the classifier SciMix trains to guide the generator does not reliably benefit from training on the generated hybrids. Contrarily to SAMOSA however, SciMix uses its hybrids to train a new classifier from scratch which leads to much more reliable improvements as can be seen from the last line of Table 2.3b.

Comparison of quantitative results in comparable settings

As mentioned in Section 2.5.1, comparing the quantitative performances of SAMOSA and SciMix is not straightforward. Indeed, fair comparison of baselines to SAMOSA typically require using fairly complex training procedures. For instance, on the Mean Teacher setting, SAMOSA trains the network three times to incorporate new hybrids in each training cycle. Interestingly, the training settings of SciMix and SAMOSA with the Mean Teacher backbone are otherwise fairly similar. As it was established that explicitly training on the hybrids contributes fairly little to the overall performance of the SAMOSA framework, we feel it is fair to compare results at the end of 1 training cycle with results obtained by SciMix Table 2.4 shows comparable gains from SAMOSA and SciMix with 500 labeled samples on CIFAR 10, and significantly better gains from SciMix with 250 samples. This suggests the stronger hybrids generated by SciMix offer better regularization than SAMOSA in very low-label situations where the classifier struggles to learn invariance to non-semantic content. It must however also be noted the gains could be partally attributed to the fact SciMix does not use the same classifier as its generator.

Method

Further analysis of SciMix results

We provide here two further results obtained from our study of the SciMix Data Augmentation. The following experiments compare the quality of the SciMix hybrids against different mixing alternatives.

Preservation of semantic and non-semantic characteristics in hybrids

We quantify how well the generated hybrids x h inherit properties from the semantic and non-semantic parents x c and x r through the metrics s c and s r . The semantic transfer rate s c is the accuracy of an "oracle" classifier (trained on the entire dataset, as a proxy for human evaluation of hybrid labels) over a dataset built from hybrids that are assumed to have inherited the label of their semantic parent. Conversely, the non-semantic preservation rate s r is the proportion of hybrids x h that are closer to the non-semantic parent x r in pixel space (ie, x h - Table 2.5 shows SciMix compares favorably to texture altering hybrids (FDA, AdaIN) and standard mixing augmentations (MixUp with the label of the dominant samples as suggested in (Inoue 2018)) on a strong generator (SVHN 250 labels). While most existing hybridizations do tend to preserve the semantic content, SciMix shines in that it transfers semantic content while keeping hybrids very close to their non-semantic parent. Indeed, other hybrids remain much closer to their semantic parent (always the case -by design -for MixUp). 

x c > x h -x r ).

Comparison to Mixing Data Augmentation

We now show that in very low label settings, the "artificial" labelized samples SciMix can outperform the regularization offered by more traditional mixing Data Augmentation. Table 2.6 shows that SciMix mostly outperforms MixUp and CutMix for CIFAR10 with 250 labeled samples (the generator is too weak with 100 labels) and SVHN with 60 labeled samples (hardest setting). While MixUp does perform similarly to SciMix on CIFAR10, this is likely due to the low performance of the classifier E c • C trained with only 250 labels. Method CUB-200 64 × 64 96 × 96 Supervised 58.9 ± 1.0 65.2 ± 0.8 SciMix w/ Supervised 60.2 ± 0.6 65.6 ± 0.9 

Pushing SciMix on CUB-200

We finally push SciMix further by studying versions of the more complex Caltech-UCSD Birds 200 (CUB-200) dataset [START_REF] Welinder | Caltech-UCSD Birds 200[END_REF]) (6033 pictures of 200 bird species). Given CUB-200 inherently presents few labels, we directly study how fully supervised training benefits from SciMix on low labels settings (L S is a standard cross-entropy loss). Furthermore, we take advantage of CUB-200's higher native resolution to go beyond the limitations of 32 × 32 images in CIFAR 10 and SVHN: we use SciMix on commonly studied input sizes 64 × 64 (e.g. Tiny ImageNet [START_REF] Chrabaszcz | A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets[END_REF]) and 96 × 96 (e.g. STL-10 (Coates et al.

2011)).

Quality of generated hybrids As can be observed on Figure 2.15a, the SciMix autoencoder learns to generate interesting hybrids for different resolutions of the CUB-200 dataset. While the lower resolution 64×64 hybrids inherit more semantic characteristics of the relevant parent, 96 × 96 hybrids still retain semantic patterns tied to the semantic parent's class.

Interestingly, SciMix has no difficulty producing hybrids close to their nonsemantic parent as can be shown in Figure 2.15b by reprising the analysis of the non-semantic transfer rate s r from Section 2.5.3.1. Analyzing the semantic transfer rate s c proves more difficult as our best "oracle" classifiers remain unreliable (around 60% accuracy). Nevertheless, the semantic transfer rates s c in Figure 2.15b indicate hybrids generated by SciMix are properly classified by the oracle classifier as having inherited their semantic parent's class about 40% of the time (orders of magnitude more than attributable to random chance).

Performance gains Table 2.7 shows a fully supervised version of SciMix data augmentation improves supervised models on both 64 × 64 and 96 × 96 versions of CUB-200. This demonstrates that while SciMix augmentation strongly benefits from a large amount of unlabeled data, it can still generate hybrids diverse enough to benefit training with only a small set of data to generate hybrids from.

Conclusion

In this chapter, we explore an alternative MSDA paradigm that creates in-class samples by combining the semantic content of one sample and non-semantic content of another. This new paradigm helps teach invariance to a number of non-semantic characteristics, which is particularly useful in low-label settings like semi-supervised learning. To test this hypothesis, we design neural frameworks that learn to separate semantic and non-semantic contents in images and recombine them into in-class hybrids before applying them in semi-supervised scenarios.

We first propose SAMOSA, an auto-encoding framework that identifies and adds some non-semantic variations to a base semantic image with the aid of an asymmetric generator inspired by style transfer techniques. SAMOSA takes advantage of the generative process to train a semi-supervised classifier both to guide hybridization and to regularize the classifier.

We then take the opposite view with SciMix by training a hybridizer that identifies and embeds semantic content into a base image's non-semantic context. By inverting the roles of semantic and non-semantic content in the process, nonsemantic content does not have to be discovered by the framework: it remains non-semantic unless specifically identified as semantic. Contrarily to SAMOSA, SciMix uses a powerful StyleGanV2 [START_REF] Karras | Analyzing and Improving the Image Quality of StyleGAN[END_REF]) asymmetrical generator and explicit hybridizing losses to learn to embed semantic content into nonsemantic context. We also streamline the training setting with SciMix by training a semi-supervised classifier with SciMix hybrids after a hybrid generator is trained, with no additional regularization from the generative framework.

Experiments show both SAMOSA and SciMix generate hybrids that benefit the training of standard semi-supervised frameworks like Mean Teacher or FixMatch. While SAMOSA's hybrids only incorporate surface level non-semantic characteristics, qualitative evaluation shows SciMix generates hybrids that inherit significant amounts of contents from both of their parents. After showing the SciMix framework also streamlines a number of issues in the SAMOSA framework, we further validate the quality of the SciMix hybrids and the importance of its components. Finally, we show SciMix can also generate 64 × 64 or 96 × 96 hybrids on a fine grained setting with few labels per class and no unlabeled data like CUB-200.

All told, SciMix introduces a realistic way to generate in-class hybrids as we set out to do in this chapter. Empirical evidence suggests these in-class hybrids do help train semi-supervised models, especially in low label settings. Unfortunately, this also highlights the current limitation of the method: as we are reliant on an auxiliary classifier to guide the generative framework, the quality of our hybrids decreases in lower label settings. There are fortunately a number of solutions to this problem like managing to train stronger semi-supervised auxiliary classifiers along the generative framework which could be explored in further work.

This alternative point of view on mixing data augmentation addresses the question of soft labels by generating samples that only belong to one class and therefore use hard labels. It does not however directly address the mixing of different semantic contents in a single mixed image. The following chapters of this thesis will endeavor to treat mixed semantic contents in MSDA. 

M I X I N G S A M P L E S D ATA A U G M E N TAT I O N S A S C O M P R E S S E D R E P R E S E N TAT I O N S F O R M U LT I -I N P U T M U LT I -O U T P U T T R A I N I N G Contents

Introduction

Mixing samples data augmentations are often treated as samples with semantic content from multiple classes (H. [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF]. While this is a mostly accurate assessment, it fails to capture the exact nature of mixing samples data augmentations: the mixed samples contain information on multiple samples, which can be of differing classes.

The soft labels used by MSDA techniques therefore only constitute a reduction of the information in a mixed samples. It is not that the sample represents something that is in-between two classes, rather the sample contains information on two samples that are each natural in-class samples. Perhaps surprisingly, the soft "summarized" labels have only recently started to come under scrutiny, and only in so far that the proportions of the classes in the mixed sample have been re-evaluated (J.-N. [START_REF] Chen | TransMix: Attend To Mix for Vision Transformers[END_REF].

In this chapter, we explore the idea of providing multiple predictions for a mixed sample -one for each original parent sample -instead of a single aggregated soft prediction. This significantly changes the effect of the augmentation: instead of teaching the model to make a single in-between prediction, we encourage the model to see multiple interpretations of the same mixed input.

The MIMO architecture [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF]) slightly modifies standard convolutional networks to take multiple inputs (typically M=2) and yield M predictions. The M input/output pairs trained by MIMO each define a subnetwork with its own independent predictions. For all intents and purposes, providing multiple interpretations -one for each parent sample -of the same mixed input leads to separating the network into smaller subnetworks that predict the labels of the individual parent samples. Interestingly, we recover here our suggested MSDA scheme as MIMO combines the inputs similarly to a mixing augmentation and then makes separate predictions for each mixed image.

We propose to study the role and influence of mixing samples data augmentations in Multi-Input Multi-Output models. As a first step, we seek to improve the training process of independent subnetworks in MIMO frameworks to facilitate better performance of the ensembled subnetwork predictions. To a lesser extent, we aim to train cooperating subnetworks that can yield independent predictions while still benefiting from the regularizing effects of MSDA.

Through the course of this thesis, we have made 2 contribution towards this goal:

• MixMo We replace the suboptimal summing mixing mechanism at the heart of the seminal MIMO architecture by a more approriate noiseless CutMix scheme that allows better predictions on the original network inputs. This modification, along with a rebalancing of subnetwork training losses in line with MSDA practices, aims to improve the individual performance of the trained subnetworks as well as the overall ensembled accuracy.

• MixShare We then put in evidence MIMO architectures' peculiar tendency to train subnetworks that share no features or parameters. To recover some regularizing benefits from the MSDA procedure and train on smaller mod-els, we introduce an unmixing mechanism that addresses the root cause of this behavior.

After introducing the MIMO architecture in more detail along with some literature on ensembling in Section 3.2, we discuss the main contribution of this chapter in the form of the MixMo framework (Section 3.3). Finally, we will provide a quick investigation of MIMO models' peculiar lack of feature sharing between subnetworks and the possible solutions in Section 3.4.

The work conducted in this chapter of this thesis has led to two publications: 

Related Work

This chapter mostly focuses on a MSDA-centric view of the Multi-Input Multi-Output architecture [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF]). As the seminal paper is deeply rooted in the larger problem of ensembling, we provide here a short introduction to ensembling before discussing the MIMO framework proper.

Ensembling

Aggregating predictions from a diverse set of neural networks (i.e., with different failure cases) strongly improves generalization (T. G. [START_REF] Dietterich | Ensemble methods in machine learning[END_REF][START_REF] Hansen | Neural network ensembles[END_REF][START_REF] Lakshminarayanan | Simple and scalable predictive uncertainty estimation using deep ensembles[END_REF]). An ensemble of several small networks usually performs better than one large network empirically [START_REF] Lobacheva | On Power Laws in Deep Ensembles[END_REF]).

Ensembling's fundamental drawback is the inherent computational and memory overhead, which increases linearly with the number of members. This bottleneck is typically addressed by sacrificing either individual performance or diversity in a complex trade-off. Averaging predictions from several checkpoints on the training process, i.e. snapshot ensembles (G. Huang et al. 2017), fails to explore The multi-input multi-output strategies we focus on here aim to address this issue.

MIMO

Multi-input multi-output (MIMO) strategies [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF]Rame et al. 2021) provide an interesting solution to this conundrum by ensembling for virtually free. Through their multiple inputs and outputs, MIMO frameworks train independent subnetworks within a base network. Thanks to the sparse nature of large neural networks [START_REF] Malach | Proving the lottery ticket hypothesis: Pruning is all you need[END_REF], the resulting subnetworks yield strong and diverse predictions that can be ensembled. As shown on Figure 3.1 with M = 2, the M inputs are embedded by M subnetworks with no structural differences. Thus, we have M (inputs, labels) pairs in training: {(x i , y i )} 0≤i<M . More precisely, M images are fed to the network at once. The M inputs are encoded by M distinct convolutional layers {c i } 0≤i<M into a shared latent space before being aggregated through a summing operation. This representation is then processed by the core network into a single feature vector, which is classified by M dense layers {d i } 0≤i<M . Diverse subnetworks appear as d i learns to classify y i from input x i . At inference, we can ensemble M predictions by feeding the same image M times to the model.

As such, the multi-input multi-output MIMO achieves ensemble almost "for free": all of the layers except the first convolutional and last dense layers are shared (≈ +1% #parameters). [START_REF] Soflaei | Aggregated Learning: A Vector-Quantization Approach to Learning Neural Network Classifiers[END_REF]) motivated a related Aggregated Learning to learn concise representations with arguments from information bottleneck [START_REF] Tishby | The information bottleneck method[END_REF]. The idea is that over-parameterized CNNs [START_REF] Frankle | Semi-supervised semantic segmentation needs strong, highdimensional perturbations[END_REF][START_REF] Molchanov | Pruning convolutional neural networks for resource efficient transfer learning[END_REF][START_REF] Pensia | Optimal Lottery Tickets via SubsetSum: Logarithmic Over-Parameterization is Sufficient[END_REF]) can fit multiple subnetworks [START_REF] Veit | Residual networks behave like ensembles of relatively shallow networks[END_REF]. Interestingly, MIMO does not need structural differences among subnetworks: they learn to build their own paths while being as diverse as in DE.

Positioning

In this chapter, we formulate a new variant of MSDA that reprises the multiinput multi-output framework by providing separate predictions for each of the original parent samples. By borrowing techniques from mixing data augmentation, we seek to improve the subnetworks in MIMO architectures in order to obtain even better performance. As such, our work directly follows from the seminal MIMO [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF]) and only loosely borrows ideas from the rest of the ensembling literature.

More precisely, we first develop the MixMo framework by analyzing the MIMO framework through the lens of MSDA. We then develop the MixShare framework to understand and solve issues that emerge when trying to train many subnetworks in a small network with MixMo and MIMO.

MixMo: Multi-Input Multi-Output MSDA

We first propose MixMo, a new generalized multi-input multi-output framework: we train a base network with M ≥ 2 inputs and outputs as shown on Figure 3.2. This way, we fit M independent subnetworks [START_REF] Gao | Intra-Ensemble in Neural Networks[END_REF][START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF][START_REF] Soflaei | Aggregated Learning: A Vector-Quantization Approach to Learning Neural Network Classifiers[END_REF] defined by an input/output pair and a subset of network weights. This is possible as large networks only leverage a subset of their weights [START_REF] Frankle | Semi-supervised semantic segmentation needs strong, highdimensional perturbations[END_REF]. Rather than pruning (ie, eliminating) inactive filters (Yann [START_REF] Lecun | Optimal brain damage[END_REF]H. Li et al. 2017), we seek to fully use the available neurons and over parameterization through multiple subnetworks.

The key divergent point between MixMo variants lies in the multi-input mixing block that seeks to combine inputs in a way that favorizes the emergence of strong and diverse subnetworks. Should the merging be a basic summation or a concatenation, we would recover MIMO [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF] or respectively Aggregated Learning [START_REF] Soflaei | Aggregated Learning: A Vector-Quantization Approach to Learning Neural Network Classifiers[END_REF]) -which both featured this multi-input multi-output strategy. Our main intuition is simple: we see summing as a balanced and restrictive form of Mixup (H. [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF] where λ = 1 M . By analogy, we draw from the considerable MSDA literature to design a more appropriate mixing block. In particular, we leverage binary masking methods to ensure subnetworks diversity. Our framework allows us to create a new Cut-MixMo variant inspired by CutMix (Y. Yang and Soatto 2019), and illustrated in Figure 3.2: a patch of features from the first input is pasted into the features from the second input. This asymmetrical mixing also raises new questions regarding information flow in the network's features. We tackle the imbalance between the multiple classification training tasks via a new weighting scheme. Conversely, MixMo's double nature as a new mixing augmentation in features yields important insights on traditional MSDA.

In summary, our contributions are threefold:

1. We propose a general framework, MixMo, connecting two successful fields: mixing samples data augmentations & multi-input multi-output ensembling.

2. We identify the appropriate mixing block to best tackle the diversity/individual accuracy trade-off in subnetworks: our easy to implement Cut-MixMo benefits from the synergy between CutMix and ensembling.

3. We design a new weighting of the loss components to properly leverage the asymmetrical inputs mixing.

General overview

We leverage a training classification dataset D of i.i.d. pairs of associated image/label {x i , y i } |D| i=1 . We randomly sample a subset of |B| samples {x i , y i } i∈B that we randomly shuffle via some permutation π. Our training batch therefore is {(x i , x j ), (y i , y j )} i∈B,j=π(i) . The loss L MixMo is averaged over these |B| samples: the networks' weights are updated through backpropagation and gradient descent.

Let's focus on the training sample {(x 0 , x 1 ), (y 0 , y 1 )}. In MixMo, both inputs are separately encoded (see Figure 3.2) into the shared latent space with two different convolutional layers (with 3 input channels each and no bias term): x 0 via c 0 and x 1 via c 1 . To recover a strictly equivalent formulation to MIMO [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF], we simply sum the two encodings: c 0 (x 0 ) + c 1 (x 1 ). Indeed, MIMO merges inputs through channel-wise concatenation in pixels: MIMO's first convolutional layer (with 6 input channels and no bias term) hides the summing operation in the output channels.

Explicitly highlighting the underlying mixing leads us to consider a generalized multi-input mixing block M. This manifold mixing presents a unique opportunity to tackle the ensemble diversity/individual accuracy trade-off and to improve overall ensemble results (see Section 3.3.2.1). The shared representation M (c 0 (x 0 ), c 1 (x 1 )) feeds the next convolutional layers. We note κ the mixing ratio between inputs.

The core network C handles features that represent both inputs simultaneously. The dense layer d 0 predicts ŷ0 = d 0 [C (M {c 0 (x 0 ), c 1 (x 1 )})] and targets y 0 , while d 1 targets y 1 . Thus, the training loss is the sum of two cross-entropies L CE weighted by parametrized function w r (defined in Section 3.3.2.2) to balance the asymmetry when κ = 0.5:

L MixMo = w r (κ)L CE (y 0 , ŷ0 ) + w r (1-κ)L CE (y 1 , ŷ1 ) . (3.1)
At inference, the same input x is repeated twice: the core network C is fed the sum c 0 (x) + c 1 (x) that preserves maximum information from both encodings. Then, the diverse predictions are averaged: 1 2 (ŷ 0 + ŷ1 ). This allows us to benefit from ensembling in a single forward pass.

Mixing inputs and balancing concurrent subnetworks

Our MixMo framework relies on two key components: a mixing block that combines the inputs in a manner that allows separate predictions later on, and a balancing mechanism to train strong concurrent subnetworks.

Mixing block

The mixing block M -which combines both inputs into a shared representation -is the cornerstone of MixMo. Our main intuition was to analyze MIMO as a simplified Mixup variant where the mixing ratio κ is fixed to 0.5. Our generalized MixMo framework encompasses a wider range of variants inspired by MSDA mixing methods. Our first main variant -Linear-MixMo -fully extends Mixup. The mixing block is M Linear-MixMo (l 0 , l 1 ) = 2 [κl 0 + (1 -κ)l 1 ], where l 0 = c 0 (x 0 ), l 1 = c 1 (x 1 ) and κ ∼ Beta(α, α) with α the concentration parameter. The second and more effective variant Cut-MixMo adapts the patch mixing from CutMix:

M Cut-MixMo (l 0 , l 1 ) = 2 [1 M l 0 + (1 -1 M ) l 1 ] , (3.2) 
where 1 M is a binary mask with area ratio κ ∼ Beta(α, α), valued at 1 either on a rectangle or on the complementary of a rectangle. In brief, a patch from c 0 (x 0 ) is pasted onto c 1 (x 1 ), or vice versa. This binary mixing in Cut-MixMo advantageously replaces the linear interpolation in MIMO and Linear-MixMo: subnetworks are more accurate and more diverse, as shown empirically in Figure 3.8.

First, binary mixing in M trains stronger individual subnetworks for the same reasons why CutMix improves over Mixup. In a nutshell, linear MSDAs (Verma et al. 2019a;H. Zhang et al. 2018) produce noisy samples [START_REF] Carratino | On Mixup Regularization[END_REF]) that lead to robust representations. As MixMo tends to distribute different inputs on non-overlapping channels (as discussed later in Figure 3.4a), this regularization hardly takes place anymore in M Linear-MixMo . On the contrary, by masking features, we simulate common object occlusion problems. This spreads subnetworks' focus across different locations: the two classifiers are forced to find information relevant to their assigned input at disjoint locations. This occlusion remains effective as the receptive field in this first shallow latent space remains small. Secondly, linear interpolation is fundamentally ill-suited to induce diversity as full information is preserved from both inputs. CutMix on the other hand explicitly increases dataset diversity by presenting patches of images that do not normally appear together. Such benefits can be directly transposed to M Cut-MixMo : binary mixing with patches increases randomness and diversity between the subnetworks. Indeed, in a similar spirit to bagging [START_REF] Breiman | Bagging predictors[END_REF], different samples are given to the subnetworks. By deleting asymmetrical complementary locations from the two inputs, subnetworks will not rely on the same region and information. Overall, they are less likely to collapse on close solutions.

Loss weighting w r

Asymmetries in the mixing mechanism can cause one input to overshadow the other. Notably when κ = 0.5, the predominant input may be easier to predict. We seek a weighting function w r to balance the relative importance of the two L CE in L MixMo . This weighting modifies the effective learning rate, how gradients flow in the network and overall how mixed information is represented in features. In this paper, we propose to weight via the parametrized: regularization: the overshadowed input has a reduced impact on the loss. The opposite extreme, r → ∞, w ∞ (κ) → 1, removes reweighting. Consequently, w r inflates the importance of hard under-represented inputs, à la Focal Loss [START_REF] Lin | Focal loss for dense object detection[END_REF]. However, minimizing the role of the predominant inputs destabilizes training. Overall, we empirically observe that moderate values of r perform best as they trade off pros and cons from both extremes.

w r (κ) = 2 κ 1/r κ 1/r + (1 -κ) 1/r . ( 3 
Interestingly, the proper weighting of loss components is also a central theme in multi-task learning [START_REF] Caruana | Multitask learning[END_REF]Z. Chen et al. 2018). While it aims at predicting several tasks from a shared input, MixMo predicts a shared task from several different inputs. Beyond this inverted structure, we have similar issues: e.g. gradients for one task can be detrimental to another conflicting task. Fortunately, MixMo presents an advantage: the exact ratios κ and 1 -κ of each task are known exactly.

Generalization to M ≥ 2 subnetworks

MixMo is easily extended by optimizing

L MixMo = 0≤i<M M κ 1/r i j κ 1/r j L CE (y i , ŷi )
with {κ i } ∼ Dir(α) from a Dirichlet distribution (see Appendix Section A.5.2). The key change is that M now needs to handle more than 2 inputs: {c i (x i )} 0≤i<M . While linear interpolation is easily generalized, Cut-MixMo has several possible extensions: in our experiments, we first linearly interpolate between M -1 inputs and then patch in a region from the M -th.

From manifold mixing to MixMo

We have discussed at length how we extend multi-input multi-output frameworks by borrowing mixing protocols from MSDA. Now we reversely point out how our MixMo diverges from MSDA schemes. At first glimpse, the idea is the same as manifold mixing [START_REF] Faramarzi | PatchUp: A Regularization Technique for Convolutional Neural Networks[END_REF]B. Li et al. 2021;Verma et al. 2019a): M = 2 inputs are encoded into a latent space to be mixed before being fed to the rest of the network. Yet, while they mix at varying depths, we only mix in the shallowest space. Specifically, we only mix in features -and not in pixels -to allow separate encodings of the inputs: they need to remain distinct in the mixed representation for the subsequent classifiers.

Hence our two key differences: first, MixMo uses two separated encoders (one for each input), and second, it outputs two predictions instead of a single one. Indeed, MSDAs use a single classifier that targets a unique soft label reflecting the different classes via linear interpolation. MixMo instead chooses to fully leverage the composite nature of mixed samples and trains separated dense layers, d 0 and d 1 , ensembled "for free" at test time.

Section 3.3.5.4 demonstrates that MixMo works because it also uses two different encoders c 0 and c 1 . While training two classifiers may seem straightforward in MSDA, it actually raises a troubling question: which input should each classifier predicts ? Having two encoders provides a simple solution: the network is divided in two subnetworks, one for each input. Their separability is easily observed: Figure 3.4a shows the l 1 -norm of the 16 filters for the two encoders (WRN-28-10 on CIFAR-100). Each filter norm is far from zero in only one of the two encoders: c 0 (x 0 ) and c 1 (x 1 ) separate the inputs in different dimensions which allows subsequent layers to treat them differently. This leads MixMo to use most available filters. Following the structured pruning literature (H. Li et al. 2017), we consider in Figure 3.4b that a filter (in a layer of the core network) is active if its l 1 -norm is at least 40% of the l 1 -norm from its layer's most active filter (see Appendix Section A.5.4). This illustrates the known increase in sparsity in wider networks. Conversely, having 2 subnetworks in MixMo enables the weights ignored by one subnetwork to be leveraged by the other.

Main experimental results

We evaluate MixMo efficiency on standard image classification datasets: CIFAR-{10,100} [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] and Tiny ImageNet [START_REF] Chrabaszcz | A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets[END_REF]. We equally track accuracies (Top{1,5}, ↑) and the calibrated Negative Log-Likelihood (NLL c , ↓). Indeed, [START_REF] Ashukha | Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning[END_REF] shows that we should compare in-domain uncertainty estimations after temperature scaling (TS) [START_REF] Guo | On Calibration of Modern Neural Networks[END_REF]: we thus split the test set in two and calibrate (after averaging in ensembles) with the temperature optimized on the other half, as in [START_REF] Lobacheva | On Power Laws in Deep Ensembles[END_REF]Rame and Cord 2021). We nonetheless report NLL (without TS) along with the Expected Calibration Error [START_REF] Naeini | Obtaining well calibrated probabilities using bayesian binning[END_REF] in Appendix Section A.1.3.2.

Implementation details

We mostly study the Linear-MixMo and Cut-MixMo variants with M =2. We set hyper-parameter r=3 (see Section 3.3.5.3). α=2 performs better than 1 (see Appendix Section A.5.7). In contrast, MIMO [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF]) refers to linear summing, like Linear-MixMo, but with κ=0.5 instead of κ ∼ Beta(α, α).

Different mixing methods create a strong train-test distribution gap [START_REF] Carratino | On Mixup Regularization[END_REF][START_REF] Gontijo-Lopes | Affinity and Diversity: Quantifying Mechanisms of Data Augmentation[END_REF]. Thus, in Cut-MixMo we actually substitute M Cut-MixMo for M Linear-MixMo with probability 1 -p to accommodate for the summing in M at inference. We set the probability of patch mixing during training to p=0.5, with linear descent to 0 over the last twelfth of training epochs (see pseudocode in Appendix Algorithm A.6).

When combined with CutMix, the pixels inputs are: (m x (x i , x k , λ), m x (x j , x k , λ )) with interpolated targets (λy i + (1 -λ)y k , λ y j + (1 -λ )y k )), where k, k are randomly sampled and λ, λ ∼ Beta(1, 1).

MIMO duplicates samples b times via batch repetition: x i will be associated with x π(i) and x π (i) in the same batch if b=2. As the batch size remains fixed, the count of unique samples per batch and the learning rate is divided by b. Conversely, the number of steps is multiplied by b. Overall, this stabilizes training but multiplies its cost by b. We thus indicate an estimated (training/inference) overhead (wrt. vanilla training) in the time column of our tables. Note that some concurrent approaches also lengthen training: e.g. GradAug (T. Yang et al. 2020) via multiple subnetworks predictions (≈ ×3). 

We provide more details in Appendix Section

Main results on CIFAR-100 and CIFAR-10

Table 3.1 reports averaged scores over 3 runs for our main experiment on CI-FAR with WRN-28-10 (Zagoruyko and Komodakis 2016). We re-use the hyperparameters given in MIMO [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF] Compared to our strong Linear-MixMo+CutMix (purple curves), Cut-MixMo performs similarly in Top1, and better with CutMix for w≥4. While Linear-MixMo and DE learn from occlusion, Cut-MixMo also benefits from CutMix, notably from the induced label smoothing. Overall, Cut-MixMo, even without CutMix, significantly better estimates uncertainty.

Robustness to image corruptions

Deep networks' results decrease when facing unfamiliar samples. To measure robustness to train-test distribution gaps, (Hendrycks and T. Dietterich 2019) corrupted CIFAR-100 test images into CIFAR-100-c (more details in Appendix Section A.1.3.1). As in Puzzle-Mix (J.-H. [START_REF] Kim | Puzzle mix: Exploiting saliency and local statistics for optimal mixup[END_REF], we report WRN-28-10 results with and without AugMix [START_REF] Hendrycks | AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty[END_REF], a pixels data augmentation technique specifically introduced for this task. Table 3.2 shows that Cut-MixMo (b=4) best complements AugMix and reaches 71.1% Top1. 

Ensemble of MixMo

Since MixMo adds very little parameters (≈ +1%), we can combine independently trained MixMo like in DE. This ensembling of ensemble of subnetworks leads in practice to the averaging of M × N = 2 × N predictions. Figure 3.6 compares ensembling for vanilla networks and Cut-MixMo on CIFAR-100. We first recover the Memory Split Advantage [START_REF] Chirkova | Deep Ensembles on a Fixed Memory Budget: One Wide Network or Several Thinner Ones?[END_REF][START_REF] Lobacheva | On Power Laws in Deep Ensembles[END_REF]) (MSA): at similar parameter counts, N =5 vanilla WRN-28-3 do better than a single vanilla WRN-28-7 (+0.10 in NLL c ). Cut-MixMo challenges this MSA: we bridge the gap between using one network or several smaller networks (-0.04 on same setup). Visually, Cut-MixMo's curves remain closer to the lower envelope: performances are less dependent on how the memory budget is split. This is be- cause Cut-MixMo is effective mainly for larger architectures by better leveraging their parameters.

We also recover that wide vanilla networks tend to be less diverse [START_REF] Neal | A Modern Take on the Bias-Variance Tradeoff in Neural Networks[END_REF], and thus gain less from ensembling [START_REF] Lobacheva | On Power Laws in Deep Ensembles[END_REF]: N =2 vanilla WRN-28-14 (83.47% Top1, 0.656 NLL c ) perform not much better than N =2 WRN-28-7 (82.94%, 0.673). Contrarily, Cut-MixMo facilitates the ensembling of large networks with (86.58%, 0.488) vs. (85.50%, 0.516) (more comparisons in Appendix Section A.5.5).

MixMo analysis on CIFAR-100 w/ WRN-28-10

Training time

We have just seen that CutMix improves Linear-MixMo at varying widths w, but not enough to match Cut-MixMo in NLL c : CutMix can not fully compensate for the advantages from patch mixing over linear interpolation. We recover this finding in Figure 3 We further study the impact of patch mixing through the lens of the ensemble diversity/individual accuracy trade off. As in (Rame and Cord 2021), we measure diversity via the pairwise ratio-error [START_REF] Aksela | Comparison of classifier selection methods for improving committee performance[END_REF]) (d re , ↑), defined as the ratio between the number of different errors and simultaneous errors for two predictors. In Figure 3.8 and Figure 3.9, we average metrics over the last 10 epochs.

As argued in Section 3.3.2.1, patch mixing increases diversity compared to linear mixing in Figure 3.8. As the probability p of patch mixing grows, so does diversity: from d re (p=0.0)≈0.78 (Linear-MixMo) to d re (p=0.5)≈0.85 (Cut-MixMo). In contrast, DE has d re ≈0.76 while MIMO has d re ≈0.77 on the same setup. Increasing p past 0.6 boosts diversity even more at the cost of subnetworks' accuracies: this is due to underfitting and an increased test-train distribution gap. p ∈ [0.5, 0.6] is thus the best trade off. 

Weighting function w r

We analyze the impact of the parameter r in the reweighting function w r . Higher values tend to remove reweighting, as shown in Appendix Section A.5.3: they strongly decrease diversity in Figure 3.9. The opposite extreme with r=1 increases diversity via lopsided gradient updates but it degrades accuracy. We speculate it under-emphasizes hard samples. The range r ∈ [3, 6] strikes a good balance: results remain high and stable. In Section 3.3.3, we compared MixMo and MSDA. Table 3.4 confirms the need for 2 encoders and 2 classifiers. With 1 classifier and linearly interpolated labels (in the same spirit as (J. Chen et al. 2020)), the 2 encoders perform worse than 1 encoder. With 1 shared encoder and 2 classifiers, it is not clear which input each classifier should target. In the first naive , we randomly associate the 2 classifiers and the 2 inputs (encoded with the same encoder). This variant yields poor results. In ⊗, the first classifier tries to predict the label from the predominant input, the second targets the other input: ⊗ reaches 0.598 vs. 0.563 for Cut-MixMo.

Generalization to M ≥ 2 subnetworks

We try to generalize MixMo to more than M = 2 subnetworks in Figure 3.10. Cut-MixMo's subnetworks perform at 82.3% when M =2 vs. 79.5% when M =3. In MIMO, it's 79.8% vs. 77.7%. Because subnetworks do not share features, higher M degrades their results: only two can fit seamlessly. Ensemble Top1 overall decreases in spite of the additional predictions, as already noticed in MIMO [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF].

This reflects MixMo's strength in over-parametrized regimes, but also its limitations with fewer parameters when subnetworks underfit (recall previous Figure 3.5). Facing similar findings, MIMO [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF]) introduced input repetition so that subnetworks share their features, at the cost of drastically reduc- ing diversity. Our generalization may be extended by future approaches whose mixing blocks (perhaps not inspired by MSDA) would tackle these issues.

Pushing MixMo further: Tiny ImageNet

At a larger scale and with more varied 64 × 64 images, Cut-MixMo reaches a new state of the art of 70.24% on Tiny ImageNet [START_REF] Chrabaszcz | A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets[END_REF]) in Table 3.5. We re-use the hyper-parameters given in previous state of the art Puzzle-Mix (J.-H. [START_REF] Kim | Puzzle mix: Exploiting saliency and local statistics for optimal mixup[END_REF]. With w=1, PreActResNet-18 [START_REF] He | Identity Mappings in Deep Residual Networks[END_REF]) is not sufficiently parametrized for MixMo's advantages to express themselves on this challenging dataset. MixMo's full potential shines with wider networks: with w=2 and 44.9M parameters, Cut-MixMo reaches (69.13%, 1.28) vs. (67.76%, 1.33) for CutMix. Compared to DE with 3 networks, Cut-MixMo performs {worse, similarly, better} for width w ∈ {1, 2, 3}. At (almost) the same numbers of parameters, Cut-MixMo when w=2 performs better (69.13%, 1.28) than DE with 4 networks when w=1 (67.51%, 1.31).

Takeaways from the MixMo project

With MixMo, we have shown MIMO architectures can in fact be interpreted as a variation on mixing sample data augmentations. Under this particular angle, the seminal formulation of the framework is fairly sub-optimal: summing the encoded inputs is a poor compression process that obfuscates them both. Rather, MIMO methods should rely on binary mixing methods that helps diversify the subnetwork predictions like CutMix. Basing a MIMO architecture on CutMix -along with a few key additions like reintroducing MSDA style ponderation on the subnetwork training losses -leads to a much improved performance over the CIFAR datasets on large enough WideResNets. Importantly, MIMO architectures prove orthogonal to standard MSDA techniques as we also see significant improvements when the model inputs are mixed inputs themselves. While we did not combine MixMo with the in-class MSDA scheme developed in Chapter 2, the framework should prove orthogonal to in-class mixing on the inputs. It must be noted however that in-class mixing cannot be used to mix the inputs in the mixing block M as we need to mix semantic content from both inputs. MixMo also performs well on more complex settings like the corrupted CIFAR-100-C or the more complex TinyImageNet.

These last experiments on TinyImageNet (Section 3.3.6) however shine a light on the main issue with MIMO models: subnetworks can only be trained efficiently if the base model is wide enough. Indeed, we need to triple the width of ResNet-18 models before we see solid gains from using MixMo. Worse, MixMo performs worse than a single-input single-output model on TinyImageNet with a standard width ResNet-18. This same problem also appears on CIFAR-100 with narrower models.

As such, it seems of paramount importance to confirm the root cause of this shortcoming and identify strategies to address it. As it stands, MIMO architectures must remain limited to very wide architectures which restricts their applicability. Moreover, it seems likely that the difficulties observed in Section 3.3.5.5 and [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF]) when trying to learn more than 2 subnetworks are linked to this width issue.

MixShare: Feature sharing between MIMO subnetworks

Our MixMo framework (Rame et al. 2021) (see Section 3.3) improves the performance of MIMO [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF] architectures by treating the whole model as a mixed sample with separate predictions for each of the original inputs. Our work however highlights significant limitations of MIMO architectures: multiinput multi-output architectures require large base models and struggle to fit more than 2 subnetworks. Indeed, Section 3.3.4.4 shows a significant drop in performance on CIFAR 100 when going from 2 subnetworks to 4 subnetworks. This scaling issue is explained by analyzing the features inside the network, as we show at the beginning of this paper by extending our previous study of subnetwork behavior. Our analysis shows that the aforementioned scaling issues stem from how subnetworks share no features in the base network: each channel or feature is almost exclusively used by one subnetwork. As such, we can explain the scaling issue since each additional subnetwork significantly reduces the effective size of the individual subnetworks. Beyond causing issues on smaller architectures or harder datasets, this leads to very wasteful use of network parameters. This is especially unfortunate as the subnetworks could at the very least share generic features in the first layers. We see this as a missed opportunity, one that can significantly improve multi-input multi-output models' applicability to real world settings like mobile devices.

We therefore develop the MixShare framework along with the following contributions:

• We carefully study the repartition of features in MIMO subnetworks.

• We develop the unmixing mechanism to allow the final network features to describe each of the original inputs.

• We discuss necessary adjustments to obtain good performance with unmixing. In particular, we show particular care must be given to progressively weakening the unmixing process over training and to properly initializing input encoders.

MIMO Subnetworks do not share features

In this section, we strive to pinpoint the cause of multi-input multi-output architectures' scaling issues. To this end, we consider the following question: how do subnetworks behave in multi-input multi-output architectures ? Following Section 3.3.3, we check how the inputs are organized in the C feature maps of the mixing space by considering the L 1 norm of the C encoder kernels for each subnetwork (see Figure 3.11). This tells us whether a feature map contains more information about one input, and we can visualize which maps are used by which subnetwork through histograms h 0 and h 1 of feature influence for each subnetwork. Quantitatively, we can approximate the feature sharing rate through the ratio of min(h 0 ,h 1 ) max(h 0 ,h 1 ) . In the same spirit, we consider the L 1 norm of the columns of classifier weight matrices to quantify the importance of each feature to each classifier.

We conduct our study on a WideResNet-28-2 (Zagoruyko and Komodakis 2016) using the more realistic batch repetition 2 setting from (Rame et al. 2021) on the CIFAR 100 dataset (Krizhevsky and Hinton 2009) (see Appendix). We choose to consider this situation as it perfectly showcases the issues encountered by MIMO methods on smaller architectures. To complement this, we also show results on the slightly larger WideResNet-28-5 later on.

Figure 3.12 shows the subnetworks are fully independent in the core network: each channel in the input block encodes information about only one input, as the corresponding kernel of the other encoder's L 1 is very low. A similar behavior is observed in the output block, and further analysis of input influence on intermediary feature maps shows this behavior remains consistent within the network (See Appendix).

Multi-input multi-output architectures' scaling issues become much easier to understand in light of this: the amount of weights available to each of the underlying subnetworks decreases quadratically with the number of subnetwork. Indeed, since feature maps of different subnetworks cannot communicate, only 1 M weights can be non-zero. This fraction of non-zero weights must then be distributed between the M subnetworks. Furthermore, the subnetworks likely extract similar generic features, at least in the first layers. Since the subnetworks share no features, this means those features are unnecessarily replicated for each subnetwork. This is not wholly surprising or undesirable behavior as MIMO strives to train M independent subnetworks to obtain diverse ensembles. By avoiding overlap between subnetworks, the subnetworks act as a standard ensemble of smaller models, with the base model size acting as hard cap on the number of the parameters used by the ensemble.

While it is true not sharing any features ensures subnetworks' independence, it seems unnecessary. Indeed, the subnetworks are highly unlikely to extract completely different features. As such, subnetworks should benefit from sharing features at least in the early layers even if the classifier still consider fairly different features.

At first blush, nothing in the MIMO training protocol explicitly requires the subnetworks not share any features. Why do the subnetworks avoid sharing features? How could we encourage them to share some parameters? 

How can subnetworks share features?

We discuss here the obstacles preventing feature sharing in multi-input multioutput architectures, and propose solutions to correct this behavior.

Unmixing: extracting features for each input

We build upon an intuition put forth in MixMo (Rame et al. 2021): the lack of feature sharing is caused by the need for individual classifier at the end of the network to extract class information for one input specifically. Indeed, the M classifiers have access to the exact same set of extracted features. If two classifiers use the same feature, that feature needs to describe the state of two different inputs. This is an issue when one accounts for the fact inputs are in fact drawn independently and there can therefore be no meaningful feature describing the state of two inputs simultaneously.

Let us now consider how the classifiers should ideally behave on shared features. Since each classifier is paired to one of the input pathways, they should be able to extract two different interpretations of the shared features that still encode the same functional information (see Figure 3.13). For instance, the shared feature should encode for the presence of flowers but each classifier should be able to infer from the feature whether its personal input contains flowers. While this is not the case in traditional CNNs, MixMo (Rame et al. 2021) introduces a modification to the seminal MIMO architecture that causes feature maps to encode information about the different inputs separately. Indeed, since MixMo mixes inputs according to some binary mixing augmentation scheme (typically This is fortunate as it provides us with a fairly natural solution: unmixing. Unmixing (illustrated in Figure 3.13) recycles the binary masks generated for input mixing in order to filter the feature maps so that only information relevant to a specific input is contained in the unmixed version. This way, a single feature map can describe each of the inputs.

Figure 3.14 shows that applying unmixing causes the subnetworks to share features, both in the input and output block. In fact, every feature in the unmixed model is used by all subnetworks which proves unmixing indeed solves the core obstacle to feature sharing in MIMO networks.

Introducing unmixing however leads to unstable and generally worse performance as seen in Table 3.6. Crucially, even individual subnetwork accuracy suffers from unmixing which suggests an underlying issue.

Aligning encoder kernels to allow efficient feature sharing

Intuitively, feature sharing should at the very least lead to higher individual subnetwork accuracy as the subnetworks use more parameters. As such, we now investigate why unmixing degrades performance so dramatically.

By extracting multiple possible interpretations of a single feature, unmixing introduces a new problem in the model. Indeed, we need our interpretations of the same feature to encode the same functional characteristics (e.g. flower detection). The issue is that a randomly initialized multi-input multi-output network typically leads to having multiple interpretations of the same feature.

Indeed, the encoders computing the mixed representations are very different. For an input feature, the mixed feature map could contain information about horizontal borders on input 1 and vertical borders on input 2. As such, there is no consistent interpretation for our mixed features.

We can unify the interpretation of unmixed features at the start by simply aligning the kernels of the encoders. Indeed, as long as each feature encodes the same sort of information for each encoder, there should be no ambiguity introduced by the unmixing process.

Table 3.6 shows that fixing the initialization scheme of the encoders to the same value does indeed lead the model to outperform normal mixmo models.

Towards partial feature sharing

While proper unmixing does allow feature sharing in multi-input multi-output networks, Table 3.6 and Figure 3.14 show it leads to subnetworks sharing all features: the subnetworks are identical. This is even less desirable than fully separated subnetworks as it makes ensembling pointless [START_REF] Pang | Improving Adversarial Robustness via Promoting Ensemble Diversity[END_REF]Rame and Cord 2021).

Ideally, subnetworks would share some parameters but still remain distinct functionally. This way, we would be able to strike a compromise between fully separated and fully shared subnetworks. The issue with this however, is that removing obstacles to feature sharing makes it unnecessary for subnetworks to separate in any way.

In this preliminary work, we discuss two solutions: partial unmixing and fadeout unmixing. Partial unmixing is a straightforward solution where we only apply unmixing to a fixed subset of the final feature maps (e.g. 25%). In Fadeout unmixing we start training the network with proper unmixing but progressively reduce the strength of unmixing so that there is no unmixing towards the end of the procedure. For instance, we use the unmixing mask M + r(1 -M ) (instead of M ) with r = min(1, epoch/100) if we want to stop unmixing by epoch 100. As such, fadeout unmixing initializes the network in a shared state and progressively pushes the subnetworks to develop independent features. We now propose the full MixShare framework by combining proper kernel initialization and partial/fadeout unmixing along with slight adjustments to standard MIMO procedures like input repetition [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF]) and loss balancing (Rame et al. 2021) (see Appendix). Table 3.6 shows that both MixShare variants succeed in causing partial feature sharing. Partial fails to train strong individual subnetworks, but still showcases ensemble benefits. Fadeout on the other hand leads to strong performances and retains significant ensembling benefits on medium sized networks like a WideResNet 28-5.

Conclusion

In this chapter, we study how training models to output separate predictions on a MSDA sample's parent inputs leads to the emergence of concurrent subnetworks. Training multiple subnetworks within the same base networks has a number of benefits: the subnetworks' predictions can be ensembled, more features in the network see use, and features shared by the subnetworks should in theory be more general as they can be used to describe two independent inputs. We first proposes MixMo, which analyses MIMO architectures through the lens of Mixing Samples Data Augmentations. Given this point of view, we replace the sum based input mixing block by a CutMix based one to train stronger and more diverse subnetworks. We also recognize in the multiple outputs of the MIMO architecture a deconstruction of the standard soft labels. As such, we dynamically balance the weights of the subnetwork training losses to reflect the input mixing proportions.

As MixMo proves to have difficulty on smaller networks, we study the source of the problem with a new MixShare framework. After confirming that subnetworks share absolutely no features, we seek to solve MIMO models' dependency on large base networks by enabling feature sharing. We find introducing a novel unmixing mechanism leads -with proper initialization of the input encoders -the subnetworks to share all features. Unmixing uses knowledge on the input mixing process to provide different interpretations of the same final network feature, one for each input.

Experiments show MixMo improves on both ensembling and MSDA baselines for ResNet based architectures on the CIFAR datasets and TinyImageNet, with and without standard MSDA on the inputs. Interestingly, further experiments show MixMo make very efficient use of the base models' features and trains fairly robust models (as measured on the CIFAR-100-C dataset). MixShare succeeds in allowing feature sharing between subnetworks, but the subnetworks collapse to be identical. With a weakened version of unmixing to prevent that, we recover very good performance for MixShare on smaller architectures.

All in all, breaking down the soft label prediction for a mixed sample into distinct predictions succeeds in improving model performance and proves to be orthogonal to standard mixing augmentations. While the framework has difficulty scaling down to smaller networks, enabling feature sharing between networks seems to alleviate the issue. The procedure outlined in MixShare is however sensitive and requires careful tuning. As such, the next step should be to find a better way to balance feature sharing.

The unmixing mechanism we introduce in MixShare does not integrate very well with the way convolutional neural networks work. Indeed, CNNs are fundamentally built to learn one feature per feature map and activations late in the network tend to encompass the whole input in theory. Interestingly, this type of interaction is instead very natural in the context of attention mechanisms. As such, the recently proposed Vision Transformer architectures should prove much more adapted to training MIMO subnetworks that share features and cooperate during training.

Introduction

We have shown in Chapter 3 that predicting separately the original samples in a MSDA image leads to training concurrent subnetworks within the base network. The unmixing mechanism necessary to allow the subnetworks to share features is a bit difficult to optimize with on Convolutional Neural Networks however. It is however very reminiscent of the attention mechanism at the heart of the emerging Vision Transformers.

Vision Transformers (ViT) have started to overtake Convolutional Neural Networks on a large number of vision benchmarks over the last few years. ViTs present quite a few benefits over traditional CNNs: they often outperform CNNs for a similar number of parameters, can learn non local relationships much more easily, accommodate variable input sizes,and their attention mechanism is inherently explainable. Importantly, transformers have been shown (Touvron et al. 2021a) to require strong regularization to work. The MIMO paradigm is therefore well adapted to these models as training multiple subnetworks has strong regularizing effects [START_REF] Sun | Towards efficient feature sharing in MIMO architectures[END_REF][START_REF] Cygert | Robust Object Detection with Multi-input Multi-output Faster R-CNN[END_REF], and the attention mechanism natively performs a process analogous to unmixing. In spite of this, no previous work has successfully adapted MIMO frameworks to Vision Transformers.

In this chapter, we study how Multi-Input Multi-Output MSDA can be adapted to the Vision Transformer architecture, and in particular how differently the trained subnetworks behave compared to a MIMO CNN. Indeed, since ViTs naturally perform some sort of unmixing, a MIMO ViT should behave quite differently considering the difficulties observed when training the MixShare model. We propose the MixViT framework, deferring the separation of subnetworks to the last layers of the network. We achieve this separation by using the same encoder for the two inputs and instead adding a source attribution mechanism towards the end of the network to indicate which subnetwork should process a patch token.

After a brief introduction to the attention mechanism and common Vision

Transformer frameworks in Section 4.2, we will discuss our MixViT framework (Section 4.3.2) and our experimental results (Section 4.4).

The work conducted in this chapter of this thesis has led to one publication:

• SUN Rémy, MASSON Clément, THOME Nicolas and CORD Matthieu. ( 2022)

"Adapting Multi-Input Multi-Output schemes to Vision Transformers", submitted to ICLR 2023, in CVPR 2022 workshop on transformers and attention.

Related Work

As MixViT departs from Convolutional Neural Networks to work on Vision Transformers, we provide here a brief introduction to the attention mechanism and Vision Transformers.

Attention

At a very high level, the attention mechanism aims to represent an input token (ie, a d-dimensional vector) by how it relates to a set of contextual tokens: it looks to the "attention" the token must pay to part of a context [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF].

Let us consider an input t represented by a query token q and context tokens {c i } i=0...N -1 represented by value tokens {v i } i=0...N -1 and key tokens {k i } i=0...N -1 . In essence, the attention mechanism will first compute the attention weights 

α i = q T k i , ( 4 
o = Attention(t, {c i } i=0...N -1 ) = N -1 i=0 α i v i . (4.2)
In practice, transformers formalize this problem with three learnable matrices [START_REF] Vaswani | Attention is all you need[END_REF]). In Vision Transformers, the base attention block most often used is the selfattention block [START_REF] Cheng | Long short-term memorynetworks for machine reading[END_REF]). The Self-Attention (SA) block takes as input a set of tokens {t i } i=0...N -1 , and outputs a set of refined attended tokens {o i } i=0...N -1 . The peculiarity of self-attention is that the tokens {t i } i=0...N -1 play the roles of input (query) token and context tokens both:

W q , W k and W v such that q = W T q t, k i = W T k c i and v i = W T v c i (
o j = Attention(t j , {t i } i=0...N -1 ). (4.3)
Over the years, many variants of this SA block have been developed. Multi-Head Self-Attention (MHSA) blocks -the actual version used in the seminal ViT [START_REF] Dosovitskiy | An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[END_REF]) -simply compute multiple self-attention mechanisms ("heads") in parallel and aggregate the resulting representations with a dense projection. Gated Positional Self-Attention (GPSA) blocks [START_REF] D'ascoli | ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases[END_REF]) take into account the relative position of tokens when computing the attention, and use a special initialization scheme so the block emulates a convolutional operation at the start of training. Class-Attention (CA) blocks (Touvron et al. 2021b) only computes the attention of an additional "class" token with the input tokens, keeping the representation of the standard tokens fixed.

Vision Transformers

While this attention mechanism and the Transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF] were initially developed for Natural Language Processing, they have recently been adapted to Computer Vision problems [START_REF] Dosovitskiy | An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[END_REF]. As can be seen from Figure 4.1, only minimal changes must be made to accomodate the change in modality: the image is separated into N patches, and the patches are embedded by a shared embedding layer into (vector) tokens. These tokens 

Positioning

In this chapter, our focus remains on Multi-Input Multi-Output Mixing Sample Data Augmentation. We are only interested in Vision Transformers in so far that developing a MIMO MSDA framework for this new architecture has partic- ular implications in terms of feature sharing. Indeed, the use of a classification token along with the attention mechanism used at all stages of ViTs natively emulates the unmixing mechanism introduced in Chapter 3. While we add new components to the architecture, our work is largely meant to be adaptable to most existing Vision Transformer backbones.

MixViT: A MIMO MSDA formulation of Vision Transformers

Given the clear differences between Vision Transformers and standard Convolutional neural networks, careful thought must be given to a MIMO formulation of ViTs.

We find training properly designed MIMO vision transformers is both inexpensive and extremely beneficial in terms of performance. We observe this by proposing MixViT, the first MIMO transformer that outperforms its single-input single-output backbone. As shown on Figure 4.2b, we achieve this by deferring the separation of subnetworks to the last layers of the model, and introducing a novel "source attribution" mechanism to facilitate this separation. MixVit mixes patches from M inputs before embedding them as tokens with a linear projection e shared across subnetworks and feeding them to feature extraction blocks. We then use our "source attribution" to associate each attended token to the input/subnetwork they pertain to, and aggregate features with a class token. Finally, we get M predictions from the class token features with M different dense layers.

Our contributions are therefore as follows:

• We identify and address vision transformers' difficulty in sharing tokens across subnetworks in Section 4.3.1.

• Through our MixViT framework, we show subnetworks in vision transformers can -and should -only be located in the very last layers of the model. As such, MixViT adds only marginal costs at training and inference while strongly regularizing the model.

• We introduce a novel source attribution mechanism to facilitate this late separation of subnetworks.

Transposing MIMO frameworks to vision transformers

We start with a straightforward formulation of MIMO [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF]Rame et al. 2021) vision transformers. This section shows these translations fail on vision transformers, and highlights how vision transformer struggle to share tokens across subnetworks. We directly introduce the generalized MIMO strategy introduced in MixMo (Rame et al. 2021). For simplicity, we discuss the usual case where M = 2 subnetworks [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF]Rame et al. 2021) 

MIMO and MixMo formulations of Vision Transformers

At first blush, MIMO architectures can easily be transposed to vision transformers by analogy with convolutional neural networks (figured in Figure 4.2a). As such, this section looks into the baseline MIMO [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF] and MixMo (Rame et al. 2021) frameworks applied to ViTs. We outline below how vision transformers can replicate the steps outlined in From this, we can posit that the issue stems from sharing tokens between subnetworks. While Sum mixing has already been heavily criticized as sub-optimal by MixMo (Rame et al. 2021), it however remains necessary in MIMO frameworks at inference since both subnetworks need to see the whole input in one forward pass. Importantly, our corrected inference process needs to perform two forward passes, which is not realistic as it doubles the inference overhead.

In this paper, we show that -contrarily to CNN-based MIMO models -transformers can avoid this issue by deferring the subnetwork separation and input encoding to much later in the network (see Section 4.3.2 and Figure 4.2b). Interestingly, this simple restructuration even improves performances and allows us to introduce new subnetwork-encoding mechanisms.

Overview of MixViT

We propose in this paper MixViT (Figure 4.3), a multi-input multi-output framework suited to vision transformers that trains distinct subnetworks in the last layers of the network to address the issues raised in Section 4.3.1 and favorize feature sharing among subnetworks. MixViT relies on a novel "source attribution" mechanism to map the patch tokens to the different subnetworks after the feature extraction blocks. This section starts by introducing MixViT (Section 4. 

MixViT framework

At training time, the M × N patches extracted from the M inputs are mixed into N patches following a corrected CutMix (Y. Yang and Soatto 2019) scheme (ie, so that each position takes only one patch on its own without interpolation) with masks {M i } (see Figure 4.3) with a ratio λ ∼ β(α, α). The N mixed patches are then encoded into d-dimensional tokens by a linear layer e. Learnable positional embeddings are added to the tokens and the tokens are fed to the L Self-Attention blocks that serve as feature extraction blocks. This yields N attended tokens t but no indication which input/subnetwork each token belongs to. Source attribution associates tokens with the relevant input/subnetwork, and can be done through either source encoding or source embedding. At inference, we perform multiple passes on the last layer using differently sourced tokens.

We propose a novel source attribution mechanism s i to specify which input or subnetwork each patch pertains to. The source attribution adds subnetworkspecific information to the tokens following either a source encoding or source embedding mechanism as we elaborate on in Section 4.3.3.1. The sourced tokens t * are passed -along with a learnable classification token c 0 -to the remaining classifier blocks. After the class-attention blocks, we retrieve the classification token's features for classification. M predictions p i are then obtained from this feature representation through the use of M different dense layers d 0 . We then use the input targets y i to optimize the subnetworks' cross-entropy losses weighted by the mixing ratio λ following MixMo (Rame et al. 2021):

L M ixV iT = λ • l CE (y 0 , p 0 ) + (1 -λ) • l CE (y 1 , p 1 ). (4.4)
At inference, MixViT only has to perform feature extraction on the image's patch tokens once as shown on Figure 4.3: no mixing is needed since the tokens are subnetwork-agnostic. We then collect predictions for each subnetwork i by using s i to specialize the general feature patch tokens t for the subnetwork through source attribution, and then passing these specialized tokens to the classification blocks along with c 0 (see Figure 4.3). This allows us to keep subnetwork-specific tokens as was shown to be required in Section 4.3.1 without having to perform multiple full forward passes in the network.

Source attribution mechanisms

We move the subnetworks to the end of vision transformers by introducing source attribution mechanisms s i after the feature extraction blocks to specialize the generic patch tokens t into subnetwork-specific tokens t * . Conceptually, this replaces the separate patch encoders used in our naive formulation of a MIMO ViT in Section 4.3.1. This is most naturally achieved through the use of subnetwork-specific source encoders, similarly to the different image encoders used by MIMO and MixMo. More precisely, we define our source encoders s i such that s i = Linear(W s i ; b s i ) are Linear layers. Intuitively, each patch token is projected by the relevant source encoder s i . In practice, we project the feature tokens t with the Linear layers s i into specialized tokens, and mix these specialized tokens following the binary masks M i used on the inputs. The resulting projection is added to original residual token to obtain our subnetwork-specific token t * as figured in Equation 4.5 ( is the Hadamard product):

t * = t + M -1 i=0 M i s i (t) = t + M -1 i=0 M i (t × W s i T + b s i ). (4.5) 
We also propose an alternative lightweight source embedding mechanism to avoid incurring complications from training additional Linear layers (see Equation 4.6). Source embeddings s i act similarly to positional embeddings, and are d-dimensional vectors that are added to feature tokens to specify which subnetwork the patch is relevant to. This therefore only adds M d parameters and O(N M d) operations which is negligible in ViTs. Interestingly, source embeddings are actually a particular case of source encodings where the weight matrix is null such that s i = Linear(0 d×d ; b s i ) and

t * = t + M -1 i=0 M i s i (t) = t + M -1 i=0 M i (t × 0 d×d T + b s i ). (4.6) 4.3.3.2 Regarding computational overhead
Deferring the separation of subnetworks to the last layers allows us to perform separate evaluations for each subnetwork at a very low computational cost. Consider a transformer on a C-class problem with L self-attention blocks and 2 class-attention blocks taking N d-dimensional patch tokens. As a rule of thumb, one forward pass of MixViT roughly -at the most -incurs L+2M L+2 × as many computations as a normal model's during inference, and 1× at training. Indeed, the most intensive computations are tied to Linear d × d weight multiplications: d is usually much larger than N , C or M . While source encoding does incur M such computations per token, each Self-Attention layer incurs 6 per token and Class-Attention slightly more than 3 per token: even for our small ConViT (see Section 4.3.1) with M = 2 this represents about 6×5+3×2+2 6×5+3×2 1.06× multiplications. The amount of additional computations is therefore bounded by the ratio of passes through attention blocks. This approximation could easily be lowered however: it assumes class-attention is as expensive as self-attention which is very pessimistic (see Appendix Section A.7.3 for tighter approximations and asymptotic complexity).

Results of the MixViT framework

We first show our proposed MixViT framework strongly improves on whichever backbone it builds upon in Section 4.4.1, and outperforms MIMO CNNs (Section 4.4.2) on TinyImageNet. Furthermore, Section 4.4.3 shows MixViT is much more resilient on simpler training settings. We then compare MixViT to stateof-the-art transformers (Section 4.4.3.1). Finally, we demonstrate in Section 4.4.4 that separating subnetworks at the end of the model with our source attribution mechanism is indeed very beneficial.

Setting In this paper, we run experiments on the CIFAR-10/100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF], TinyImageNet [START_REF] Chrabaszcz | A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets[END_REF] and ImageNet-100 [START_REF] Tian | Contrastive multiview coding[END_REF] datasets. Most experiments use a variant of the ConViT (D'Ascoli et al. 2021) architecture with 5 GPSA blocks and 2 CA blocks with an embedding dimension of 384 and 12 heads (see Appendix). On the more complex datasets, we also use deeper CaiT (Touvron et al. 2021b) architectures. Our transformers work on 8 × 8 = 64 patches for CIFAR and TinyImageNet, and 14 × 14 = 196 patches on ImageNet-100. We report the best epoch overall ensemble accuracy as mean ± std over three seeded runs.

Implementation details

We mix inputs with a corrected CutMix scheme detailed in Appendix, and start training the subnetworks individually towards the end of training to ready the subnetworks to work on whole images. We largely adapt the DeiT (Touvron et al. 2021a) training settings that are widely used in the literature (Z. [START_REF] Zhang | Aggregating Nested Transformers[END_REF]Touvron et al. 2021b; S. H. [START_REF] Lee | Vision Transformer for Small-Size Datasets[END_REF]) (see Appendix). Unless specified otherwise, we therefore train with the AdamW (Loshchilov and Hutter 2019) optimizer for 150 epochs with weight decay, Ran-dErase [START_REF] Zhong | Random Erasing Data Augmentation[END_REF], AutoAugment [START_REF] Cubuk | AutoAugment: Learning Augmentation Strategies From Data[END_REF], stochastic depth (G. [START_REF] Huang | Deep Networks with Stochastic Depth[END_REF], label smoothing [START_REF] Szegedy | Rethinking the Inception Architecture for Computer Vision[END_REF]) and 3 Batch augmentations [START_REF] Hoffer | Augment Your Batch: Improving Generalization Through Instance Repetition[END_REF]. We also apply CutMix (Y. Yang and Soatto 2019) and MixUp (H. [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF]) but find applying them simultaneously instead of alternatively yields better result. Finally, we keep the 0.001 learning rate but adopt a step decay instead of cosine.

MixViT significantly improves the performance of vision transformers

Table 4.2 shows both of our MixViT variants provide significant improvements over their single-input single-output counterpart across a multitude of architectures and datasets. For instance, on TinyImageNet, our larger CaiT-XS model goes from an accuracy of 68.6% as a single-input single-output model to 70.9% accuracy with our MixViT-encoding protocol. Interestingly, while MixViT shows solid gains from ensembling, a large parts of the gains are due to a much higher accuracy of the individual subnetworks: the framework also has a strong regularizing effect, possibly due to the feature extractor being shared.

Our lightweight embedding-based variant of MixViT actually outperforms the more complete MixViT-encoding model on CIFAR-10/100 (Table 4.2d and Table 4.2c). MixViT-encoding however overtakes it on the more complex TinyIma-geNet (Table 4.2a). While the difference is minimal on our small ConViT model, MixViT-encoding proves much stronger on the deeper CaiT architectures. Interestingly, we observe this difference is deepened by both model depth (our ConViT has 7 layers against our CaiTs' 26) and model width (Cait-XXS uses 192dimensional embeddings against Cait-XS's 288). This demonstrates the benefits of both our proposed source attribution mechanisms: source embeddings are much faster and easier to train, but source encodings are more powerful overall. On the complex TinyIma-geNet dataset MixViT largely outperforms its much larger CNN-based competition (Table 4.3) in spite of a much shorter training scheme (150 epochs vs. 1000). Interestingly, this highlights a fundamental difference between traditional MIMO frameworks and our MixViT models. MixMo learns largely independent subnetworks that share no features (Rame et al. 2021;[START_REF] Sun | Towards efficient feature sharing in MIMO architectures[END_REF]) and therefore struggles to fit good subnetworks on narrow architectures. As such, MixMo needs to consider a wide ResNet-18-3 [START_REF] He | Identity Mappings in Deep Residual Networks[END_REF]) backbone to start showing improvements. MixViT simply does not have this issue as the subnetworks share features and a large part of the gains come from how the subnetworks learn features they can both use.

Implicit regularization for simpler training settings

Typical training schemes for vision transformers often require both heavy augmentation (Y. Yang and Soatto 2019; H. [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF]) (in the form of mixing augmentations) and batch augmentations [START_REF] Hoffer | Augment Your Batch: Improving Generalization Through Instance Repetition[END_REF]. This is concerning as these procedures can significantly extend training costs and time.

MixViT inherently provides some of the benefits of MSDA and batch augmentation. Indeed, we show mixed inputs to our feature extraction blocks which can emulate the effects of MSDA. Moreover, each sample in a batch appears as part of M input tuples: it has to be fed to each of the M subnetworks once. As such, each of the batch's sample is processed multiple times by the transformer's feature extraction blocks while mixed with other samples. Table 4.4 shows both MixViT variants prove much more resilient than their single-input single-output backbone on less regularized settings on CIFAR-100. It is particularly interesting to note that even with no batch augmentations and MSDA augmentations, our MixViT-embedding model matches the fully regularized variants of their single-input single-output backbone. While MSDA seems detrimental to training MixViT models with no batch augmentation to stabilize training, this is not a problem as MixViT models perform very well without MSDA inputs. Furthermore, 4.4 demonstrates MixViT models behave much better than their single-input single-output counterpart with low amounts of batch augmentation. This is particularly important as batch augmentation linearly increases computations and has been a key fixture of vision transformer training since its introduction in DeiT (Touvron et al. 2021a). This linear cost has led some modern works 

Comparison to similar transformers

In this section, we provide some context on the performance of our models with regard to the existing literature. We provide in Table 4.5 a comparison to the performance of normally trained transformers of similar sizes. Our results over 150 training epochs should allow a mostly fair comparison: vision transformers are typically trained for comparable or longer amounts of time (100 (Y. Liu et al. 2021;Touvron et al. 2021a) to 200 [START_REF] Hassani | Escaping the Big Data Paradigm with Compact Transformers[END_REF] or more (Z. [START_REF] Zhang | Aggregating Nested Transformers[END_REF][START_REF] Douillard | DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion[END_REF]) epochs) on CIFAR, TinyImageNet and ImageNet-100.

CIFAR-100 Results in Table 4.5 show our models largely outperform small transformers on the CIFAR datasets. In fact our MixViT-encoding's performance of 83.4% accuracy on the extended 300 epochs training setting (see Appendix Section A.7.4) is -by a large marginthe best transformer performance on CIFAR-100. Indeed, the best scores in the literature are an 82.7% accuracy for a CCT-7/3x1 [START_REF] Hassani | Escaping the Big Data Paradigm with Compact Transformers[END_REF]) model trained for 5000 epochs and an 82.6% accuracy for a NesT-B (Z. [START_REF] Zhang | Aggregating Nested Transformers[END_REF]) model with 90M parameters trained over 300 epochs. TinyImageNet Table 4.5 this time demonstrates MixViT largely outperforms transformers on the more complex TinyImageNet dataset. Interestingly, the best reported transformers on the dataset are in line with our single-input singleoutput backbones. Therefore, the gains on the state-of-the-art can largely be attributed to MixViT's benefits. Interestingly, to the best of our knowledge, our MixViT-encoding variant trained with a CaiT-XS backbone showcases an accuracy of 70.9% which improves on the previous state-of-the-art held by MixMo's ResNet-18-3 model (70.2% accuracy).

ImageNet-100 Table 4.5 shows MixViT outperforms the competing architectures for comparable training times. This suggests MixViT has little trouble accommodating larger 224 × 224 images.

Ablations

We verify in Table 4.6 the benefits of our source attribution design (Section 4.4.4.1), our inference scheme (Section 4.4.4.2) and our choice to mix inputs (Section 4.4.4.3) on CIFAR-100.

Method

# FLOPS Accuracy (%) 

Effect of source attribution

Table 4.6 shows MIMO training seems to inherently benefit the model: networks trained without source attribution are significantly better than standard ConViT networks. While such models learn completely identical subnetworks (as there is no source attribution), having to learn features useful for the classification of multiple images simultaneously provides ample regularization.

We separate subnetworks in the last layers instead of separately encoding the inputs early in the network to avoid having to perform multiple forward passes for inference (see Section 4.3.1). We however find in Table 4.6 that displacing the separation back to early in the model slightly deteriorates performance: the model benefits from wholly sharing feature blocks between subnetworks.

Inference scheme

In stark contrast to our findings in Section 4.3.1, we find summing the 2 source attributed versions of each patch token at the end of our network before performing a single forward pass yields reasonably good results (Table 4.6). While these results are indeed worse than separate inferences, they are also a far cry from the disastrous MixMo ConViT results in Section 4.3.1. We posit late patch representations are therefore significantly more suited than early patch representations to this sort of combination. Interestingly, we observe similar performance when drawing at random which patches should be attributed to which subnetwork. It is also worth noting that the regularization induced by our MixViT scheme is strong enough for the performance of individual subnetworks to be reasonable on its own.

Input mixing scheme

We initially chose to compress the inputs into a single set of N tokens through a CutMix scheme to avoid the quadratic cost that would come with using all M × N tokens from the M inputs. Table 4.6 actually indicates that far from deteriorating performance, our compressed scheme performs better than a model trained with all tokens. We explain this by the fact the CutMix compression introduces additional regularization on the shared feature extractor and slightly more diverse subnetworks.

Conclusion

In this chapter, we deployed a MIMO MSDA formulation of Vision Transformers, which involves a particular influence of the attention mechanism with the separation of the subnetworks. Since the attention mechanism natively mimics the unmixing mechanism introduced at the end of the previous chapter, MIMO ViTs naturally share features. While this behavior is desirable to an extent, it means special care must be given to designing a MIMO ViT.

Our contribution in this chapter is the MixViT framework. The MixViT framework significantly modifies the original MIMO workflow to account for these complications. Contrarily to previous approaches, we only separate the subnetworks in the last layers of the model. We do this by using the same encoder for both inputs and instead adding a source attribution mechanism in the last layers when we want the subnetworks to separate. As such, our subnetworks share the same early features by design.

Experiments show MixViT improves both ConViT and CaiT models on a large number of datasets (TinyImageNet, ImageNet-100, CIFAR), providing strong implicit regularization. As expected, the subnetworks trained by MixViT share features which explains the strong implicit regularization and the lesser reliance of MixViT on costly techniques like batch augmentation compared to single-input Vision Transformers. Contrarily to MixShare however, the subnetworks do not collapse to the same value and instead learn different functions on their own without any need for sensitive scheduling. This allows MixViT to completely outperform our CNN-based MixMo on the more complex TinyImageNet dataset. Indeed, MixViT does not need to use very wide networks since features can be shared between subnetworks which enables us to easily train on TinyImageNet.

Therefore, the attention mechanism and token representation of Vision Transformers does prove particularly suited to training subnetworks through MIMO MSDA. With the MixViT formulation, we recover the regularization effect characteristic of standard MSDA techniques. Additionally, sharing the first layers of the model between the subnetworks has a similar effect to initializing input encoders at the same value like in MixShare. As such, applying the MixViT formula -the source encoding variant -back to CNNs might solve the issues observed in MixShare.

C h a p t e r

C O N C L U S I O N

In this thesis, we explore how combining contents from multiple inputs helps train stronger image classifiers. To this end, we challenge the standard practice of using soft hybrid labels in Mixing Samples Data Augmentation that has been part and parcel of the technique since its inception. While soft labels are used for good reason in MSDA, their ubiquitousness limits the potential of content mixing methods. As such, this thesis aims to explore alternative MSDA formulations and their implications.

After providing a quick summary of this thesis' contributions to the problem, we offer a few insights into possible future work.

Main contributions

The main contributions of this thesis study various manners in which altering soft label MSDA can lead to interesting behaviors. In Chapter 2, we circumvent the issue of soft labels by generating in-class mixed samples that only contain the semantic content of one of the samples. We then directly challenge soft labels in Chapter 3 by training subnetworks to the network to output separate predictions, one for each input in the mixed sample. Finally, we highlight in Chapter 4 how the attention mechanism at the heart of the emerging Vision Transformers is fundamentally suited to training concurrent subnetworks from MSDA samples.

In-class mixing samples data augmentations We propose an alternative MSDA paradigm that creates in-class samples by combining the semantic content of one sample and non-semantic content of another in Chapter 2. We use it to teach invariance to some non-semantic characteristics in semi-supervised learning.

Our first approach SAMOSA is an auto-encoding framework that identifies and adds some non-semantic variations to a base semantic image with the aid of an asymmetric generator inspired by style transfer techniques. SAMOSA generates hybrids that mostly match their semantic parent with some slight non-semantic variations like lighting. While this seems sufficient to improve classifiers, this does not take full advantage of the non-semantic parent's content. We then take the opposite view with SciMix by training a hybridizer that identifies and embeds semantic content into a base image's non-semantic context using a powerful StyleGanV2 generator. Contrarily to SAMOSA, SciMix generates hybrids that inherit a lot of content from their non-semantic parent. While both methods provide significant gains when combined with classical semi-supervised methods like Mean Teach, SciMix seems to help more on lower label settings. We first propose MixMo, which projects each original parent sample with a different convolutional layer before mixing them, and outputs two predictions -one for each input -instead of a soft label. In this formulation, using a sum operation to mix samples recovers the seminal MIMO framework. Interestingly, we find replacing this sum operation with a CutMix operation leads to strong performance improvements on its own while still retaining ensembling benefits. We then develop the MixShare framework to address MixMo's difficulties on smaller networks. As this is likely due to the lack of feature sharing between MixMo subnetworks, we aim with MixShare to facilitate feature sharing. We introduce a novel unmixing mechanism that leads the subnetworks to share all features by "reversing" the mixing process used on the multiple inputs. This, along with proper initialization of the model and scheduling of the unmixing process, allows smaller networks to successfully train concurrent subnetworks.

Mixing Samples

Multi-Input Multi-Output MSDA, unmixing and attention mechanisms Finally, we look at the interaction between MIMO MSDA and Vision Transformers. This requires particular care as Transformers' attention mechanism provides a native implementation of the unmixing mechanism introduced by MixShare, and our work on MixShare demonstrates feature sharing between subnetworks significantly complicates training.

As such, we propose the MixViT framework that significantly modifies the original MIMO workflow: we only separate the subnetworks in the last layers of the model. We do this by using the same encoder for both inputs and instead adding a source attribution mechanism in the last layers when we want the subnetworks to separate. As such, our subnetworks share the same early features by design which is reminiscent of the initialization scheme we had to use in MixShare. The resulting framework yields strong improvements over the single-input singleoutput baseline for a minimal extra cost. Interestingly, MixViT strongly benefits from implicit regularization due to feature sharing between the subnetworks and only minimally benefits from subnetwork ensembling contrarily to MixMo.

Perspectives

At the start of this thesis, we asked how combining contents without resorting to soft labels could benefit image classification. We find selecting the contents we mix leads to a MSDA that helps train invariance in models for low label setting, while separating the predictions creates a paradigm closer to ensembling and multi-task learning. Both of these behaviors open new avenues when compared to standard MSDA's behavior as regularizer. We endeavor here to outline a few possible ways the three content mixing paradigms could further develop.

Regarding in-class MSDA SciMix heavily relies on a classifier to indicate semantic characteristics to embed in the non-semantic object. Classifiers are however typically limited in this aspect: logits for objects of the same class are mostly similar. As such, pretrained natural language image models like CLIP [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF]) might be significantly more suited to the problem compared to using an auxiliary classifier. Indeed, this sort of embedding provides significantly more nuance in expressing the content of an image, and has successfully been used to guide image modifications [START_REF] Couairon | FlexIT: Towards Flexible Semantic Image Translation[END_REF].

Interestingly, in-class hybrids say interesting things about the auxiliary classifier they rely on in the generative process: the hybrids show what the classifier identifies as semantic in the image and dataset. As such, we could leverage this to help distill model knowledge [START_REF] Ba | Do deep nets really need to be deep?[END_REF]Y. Li et al. 2021) for compression purposes, and to interpret how the auxiliary classifier makes its decision (Zhiheng Li and Xu 2021).

Regarding MIMO MSDA Feature sharing in MIMO CNNs is sensitive and subject to significant tuning in the scheduling of unmixing. Interestingly, retransposing the MixViT structure to CNNs might solve some of the more problematic issues. In any case, we have little to no control as to the degree of feature sharing between the subnetworks. Mixture of Experts [START_REF] Masoudnia | Mixture of experts: a literature survey[END_REF]) are a well studied technique for CNNs and Transformers that would allow us to force some features to be dedicated to one of the subnetworks.

Sharing features between subnetworks has interesting implications regarding the genericity of the features trained. Indeed, a shared feature is likelier to serve multiple roles in the discriminative process: the feature might be needed to classify a duck for the first network at the same time it helps classify a boat in the other network. Similar ideas can be found in the traditional Multi-Task literature [START_REF] Caruana | Multitask learning[END_REF], but seeing different inputs at once significantly changes the training dynamics of such a process.

On MSDA in general Traditional MSDA themselves present several shortcomings like their usual inability to accommodate more than 2 inputs or the relative failure of saliency based mixing methods [START_REF] Qin | ResizeMix: Mixing Data with Preserved Object Information and True Labels[END_REF]. The latter in particular is concerning as experimental results in [START_REF] Qin | ResizeMix: Mixing Data with Preserved Object Information and True Labels[END_REF] suggest it is pointless to specifically mix semantic content from both inputs: non-semantic content should also be mixed according to the experiments. Interestingly, recent results (J.-N. [START_REF] Chen | TransMix: Attend To Mix for Vision Transformers[END_REF] show it is in fact better to recalibrate the mixed target to accomodate for the presence of non-semantic information in the mixing process.

It is our belief properly designed MSDA techniques are particularly suited to bridging the gap between different tasks or modalities. In fact, Continual learning (Zhizhong Li and Hoiem 2017), which can be understood as a form of asynchronous multi-task learning, has recently taken to use MixUp [START_REF] Douillard | DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion[END_REF][START_REF] Madaan | Representational continuity for unsupervised continual learning[END_REF]) with good success. We think mixing contents of different images can help models find proper optima for joint objectives that are such that the individual objectives have very different landscapes. After all, what better way to reconcile contradictory views than to see multiple instances at once?

Combining contents beyond MSDA This thesis has restricted itself to combining contents in data augmentations, in part with the understanding data augmentation can be used in turn to encapsulate a number of desirable behaviors (Y. Li et al. 2021;[START_REF] Li | Discover the Unknown Biased Attribute of an Image Classifier[END_REF]. Nevertheless, understanding how to combine contents and exploit this combination has much broader implications. Indeed, the issue lies at the heart of many larger issues we have only alluded to with our MSDA approaches. For instance, combining different types of (often conflicting) knowledge within the network is of particular importance in fields like Multi-task learning [START_REF] Caruana | Multitask learning[END_REF] and Continual learning (Zhizhong [START_REF] Li | Learning without forgetting[END_REF]. This is particularly so in the latter where methods are starting to combine contents from different subnetworks [START_REF] Yan | Der: Dynamically expandable representation for class incremental learning[END_REF]. Similarly, combining contents from a stronger network trained with privileged information [START_REF] Vapnik | A new learning paradigm: Learning using privileged information[END_REF] with contents from a standard networks will require particular care.

Most remarkably however, combining contents has long been a central problem in multimodal learning [START_REF] Ramachandram | Deep multimodal learning: A survey on recent advances and trends[END_REF] where very different types of contents like text and images must be fused. This problem is coming to the forefront as we strive to train more and more general models if the recent rise of foundation models [START_REF] Bommasani | On the opportunities and risks of foundation models[END_REF]) is any indication. If neural networks are to take a larger place in our future, then it is perhaps time for them to combine information as we ourselves do everyday.
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General Setting We operate on a standard WideResNet-28-2 (1.5M parameters) which is widely used in the Semi-Supervised Learning literature as a base model (E c • C). E r follows the same architecture as E c with an additional final linear layer and softmax activation to obtain activation gates. The skeleton of D follows an inverted 13-layer 4-4-4 CNN architecture, with D pre being a 4-4 block and D post being made up of the last 4 block and final convolution. Downsampling/Upsampling convolutions are stabilized with an additional Batch Normalization layer in MixMatch experiments. Weights were initialized according to default pytorch layer initializations (Kaiming initializations). Batch Normalization layers followed standard pytorch configuration (momentum = 0.1). Gradients are clipped to unit norm to stabilize training, optimizers details vary from setting to setting (detailed below).

Samples are randomly flipped horizontally (only for CIFAR10) and shifted by up to 4 pixels both horizontally and vertically with reflect padding. The resulting augmented samples are then standardized channel-wise according to train set statistics. No holdout validation set is kept for either dataset but hyper-parameters are mostly directly adapted from [START_REF] Robert | HybridNet: Classification and Reconstruction Cooperation for Semi-Supervised Learning[END_REF][START_REF] Berthelot | MixMatch: A Holistic Approach to Semi-Supervised Learning[END_REF].

Reduced settings parameters for the Case Study were identical to normal settings outlined below with the sole differences being that they were run on only one gpu with halved learning rates and batch sizes.

Mean Teacher Based SAMOSA on CIFAR/SVHN/MNISTM The model is trained over 2 gpus using a SGD optimizer with weight decay 5e -4, Nesterov momentum 0.9 and cosine learning rate (base 0.2 learning rate) for 300/150/300 epochs over the unlabeled samples (the rate is set to fully decrease over 350/200 epochs), with the reconstructive modules E r and D optimized by a secondary SGD optimizer following the same parameters.

After each training and subsequent augmentation step, the model learning rate is reset and training resumes (leading to training for an overall 900 epochs). λ recons = 0.25, λ SAM OSA = 0.5/0.1/0.1 during training, consistency targets are optimized with weight λ cons = 300, with batches of 124/30 labeled samples and 388/500/500 unlabeled samples (similarly to [START_REF] Robert | HybridNet: Classification and Reconstruction Cooperation for Semi-Supervised Learning[END_REF]). In the second and third training passes, the model is only optimized over the augmented dataset from epoch 150/50/150 to 250/100/250 of each cycle, and is optimized over the true dataset for the remaining epochs (following discussions in (Perez and J. Wang 2017;[START_REF] Gontijo-Lopes | Affinity and Diversity: Quantifying Mechanisms of Data Augmentation[END_REF].

Consistency is actually optimized following the dual head trick used in [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF] where the classifier outputs two different decision y preds and y cons . y cons is optimized to reconstruct the EMA target's y EM A preds (weight λ cons = 300), and y preds is tied to reconstruct y cons (weight λ logitdist = 0.01). This limits the need for precise scheduling of consistency weights by having a "buffer" prediction head. The EMA model is updated with decay 0.97 (following a linear start for early iterations).

MixMatch Based SAMOSA on CIFAR10 The classifier E c • C is trained over 2 gpus using a AdamW optimizer with weight decay 0.02, β = (0.9, 0.999) and constant learning rate 0.002 for 900 epochs over the unlabeled samples, with the reconstructive modules E r and D optimized with a SGD optimizer with weight decay 5e -4, Nesterov momentum 0.9 and cosine learning rate (base learning rate 0.2) for 900 epochs (set to fully decrease over 950 epochs).

λ recons = 0.25, λ SAM OSA = 0.5, pseudolabel targets are optimized with weight λ u = 37.5 (linear ramp over 16384 iterations first), with batches of 256 labeled samples and 256 unlabeled samples (following the proportions in [START_REF] Berthelot | MixMatch: A Holistic Approach to Semi-Supervised Learning[END_REF], in the CIFAR10 250 label case the batch sizes are instead 250 and 250). Similarly to the Mean Teacher setting, we only incorporate hybrid samples from epoch 100 to epoch 800. Outside of this window, the model is optimized according to the standard MixMatch procedure (only on Mixed Up examples).

Hyperparameter Ranges Investigated Values for λ cons , λ logit_dist , λ u , λ recons,int , λ, β, as well as decay and learning rates were directly taken from [START_REF] Robert | HybridNet: Classification and Reconstruction Cooperation for Semi-Supervised Learning[END_REF][START_REF] Berthelot | MixMatch: A Holistic Approach to Semi-Supervised Learning[END_REF] with no parameter search. Batch sizes for the Mean Teacher experiments were also taken from [START_REF] Robert | HybridNet: Classification and Reconstruction Cooperation for Semi-Supervised Learning[END_REF]. Batch sizes for the Mix-Match experiments were taken to balance out labeled and unlabeled samples while being as large as possible (for faster training). We tried turning hybrid augmentation on {0,50,100,150} epochs into training and turning it of {100,50,0} epochs before the end of training on the Mean Teacher CIFAR10 1000 labels setting, and adapted the training schedule for other settings by taking the optimal setting with regards to test set accuracy on the CIFAR10 1000 label setting.

A.1.1.1 Architectures

We operate on a standard WideResNet-28-2 (Zagoruyko and Komodakis 2016) for our classifiers (both f and E c • C). E r follows the same architecture as E c . Note that we keep the same architecture for both the generator and trained classifier to avoid any interference due to different function classes engendered by the models. The skeleton of D follows a the one used in [START_REF] Robert | HybridNet: Classification and Reconstruction Cooperation for Semi-Supervised Learning[END_REF]. Hyperparameters and optimizers were generally taken to follow settings reported in the base methods' original papers [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF][START_REF] Berthelot | MixMatch: A Holistic Approach to Semi-Supervised Learning[END_REF].

More precisely, we outline in Table A.1,Table A.2,Table A.4,Table A.3,Table A.5 and Table A.6 the detailed make up of the neural networks used in this paper. 

C × H × W BatchNormalization2d C × H × W LeakyReLU Negative slope 0.1 C × H × W Conv2d F filters, 3 × 3 kernels, pad 1, stride s F × C s × H s BatchNormalization2d F × C s × H s LeakyReLU Negative slope 0.1 F × C s × H s Conv2d r F filters, 3 × 3 kernels, pad 1 F × C s × H s Conv2d x (replaces) iff F = C, F filters, 1 × 1 kernels, stride s, takes x F × C s × H s BatchNormalization2d x (replaces) iff F = C, takes x, only for MixMatch F × C s × H s Fusion x + r F × C s × H s Table A.5.
-WideResBlock of F filters ands stride s.

append i x λ cons = 300), and y preds is tied to reconstruct y cons (weight λ logitdist = 0.01). This limits the need for precise scheduling of consistency weights by having a "buffer" prediction head. The EMA model is updated with decay 0.97 (following a linear start for early iterations).

We keep the coefficient of the hybridizing loss L contradict = 1, and only apply it from epoch 50 to 150 as per standard data augmentation practices. To stabilize the estimation of L contradict , it is computed across three batches of hybrids (in the same spirit as recent advances in data augmentation such as Batch Augment).

FixMatch The classifier f is trained on a single gpu using a SGD optimizer with weight decay 5e -4, Nesterov momentum 0.9 and cosine learning rate (base 0.015/0.015/0.015/0.03/0.03 learning rate) for 1000 epochs over the unlabeled samples (the rate is set to fully decrease over 1050 epochs) during training with batches of 32 labeled samples and 224 unlabeled samples (similarly to [START_REF] Sohn | Fix-Match: Simplifying Semi-Supervised Learning with Consistency and Confidence[END_REF]). Pseudolabel targets are optimized with weight λ u = 1.

We keep the coefficient of the hybridizing loss L contradict = 1, and only apply it from epoch 100 to 200 as per standard data augmentation practices. To stabilize the estimation of L contradict , it is computed across three batches of hybrids (in the same spirit as recent advances in data augmentation such as Batch Augment).

A.1.2.4 Architectures

We operate on a standard WideResNet-28-2 (Zagoruyko and Komodakis 2016) for our classifiers (both f and E c • C). E r follows the same architecture as E c . Note that we keep the same architecture for both the generator and trained classifier to avoid any interference due to different function classes engendered by the models. The skeleton of G follows a StyleGanv2 [START_REF] Karras | Analyzing and Improving the Image Quality of StyleGAN[END_REF] architecture. Hyperparameters and optimizers were generally taken to follow settings reported in the base methods' original papers [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF][START_REF] Berthelot | MixMatch: A Holistic Approach to Semi-Supervised Learning[END_REF].

More precisely, we outline in MixMo operates in the features space and is complementary with pixels augmentations, i.e. cropping, AugMix. The standard vanilla pixels data augmentation (He et al. 2016a) consists of 4 pixels padding, random cropping and horizontal flipping. When combined with CutMix, notably to benefit from multilabel smoothing, the input may be of the form: (m x (x i , x k , λ), x j ), where x k is randomly chosen in the whole dataset, and not only inside the current batch2 . Moreover, M Cut-MixMo modifies by 1 M the visible part from mask 1 m (of area λ). We thus modify targets accordingly: (λ y i + (1 -λ )y k , y j ) where λ = 1m 1 M 1 M . To fully benefit from b, we force the repeated x i to remain predominant in its b appearances: i.e., we swap x i and x k if λ < 0.5. We see CutMix as a perturbation on the main batch sample.

Distributional uncertainty measures help when there is a mismatch between train and test data distributions. Thus (Hendrycks and T. Dietterich 2019) introduced CIFAR-100-c on which AugMix performs best. AugMix sums the pixels from a chain of several augmentations and is complementary to our approach in features. We use default parameters3 : the severity is set 3, the mixture's width to 3 and the mixture's depth to 4. We exclude operations in AugMix which overlap with CIFAR-100-c corruptions: thus, [equalize, posterize, rotate, solarize, shear_x, shear_y, translate_x, translate_y] remain. We disabled the Jensen-Shannon Divergence loss between predictions for the clean image and for the same image AugMix augmented: that would otherwise triple the training time. For comparison of out-of-domain uncertainty estimations, we report NLL as in [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF]: indeed, the recommendation of [START_REF] Ashukha | Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning[END_REF] to apply TS only stands for in-domain test set.

A.1.3.2 Evaluation setting and metrics

We reproduce the experimental setting from CutMix (Y. Yang and Soatto 2019), Manifold Mixup (Verma et al. 2019a) and other works such as the recent stateof-the-art ResizeMix [START_REF] Qin | ResizeMix: Mixing Data with Preserved Object Information and True Labels[END_REF]: in absence of a validation dataset, results are reported at the epoch that yields the best test accuracy. For fair comparison, we apply this early stopping for all concurrent approaches. Nonetheless, for the sake of completeness, Table A.12 shows results without early stopping on the main experiment (CIFAR with a standard WRN-28-10). We recover the exact same ranking among methods as in our main Table 3.1.

Following recent works in ensembling [START_REF] Chirkova | Deep Ensembles on a Fixed Memory Budget: One Wide Network or Several Thinner Ones?[END_REF][START_REF] Lobacheva | On Power Laws in Deep Ensembles[END_REF]Rame and Cord 2021), we have mainly focused on the NLL c metric for in-domain test set. Indeed, [START_REF] Ashukha | Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning[END_REF]) have shown that "comparison of [. . .] ensembling methods without temperature scaling (TS) [START_REF] Guo | On Calibration of Modern Neural Networks[END_REF] might not provide a fair ranking". Nevertheless in Table Table A.12, we found that Negative Log-Likelihood (NLL) (without TS) leads to similar conclusions as NLL c (after TS).

The TS even mostly seems to benefit to poorly calibrated models, as shown by the calibration criteria Expected Calibration Error (ECE, ↓, 15 bins). ECE measures how confidences match accuracies. MixMo attenuates over-confidence in large networks and thus reduces ECE. In our case, combining ensembling and data augmentation improves calibration [START_REF] Wen | Combining Ensembles and Data Augmentation Can Harm Your Calibration[END_REF]. Note that the appropriate measure of calibration is still under debate [START_REF] Nixon | Measuring Calibration in Deep Learning[END_REF]. Notably, [START_REF] Ashukha | Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning[END_REF]) have also stated that, despite being widely used, ECE is biased and unreliable: we can confirm that we found ECE to be dependant to hyper-parameters and implementation details. Due to space constraints and these pitfalls, we have not included this controversial metric in the main paper.

A.1.4 Experimental details for MixShare experiments

The code for this work was directly adapted from the official MixMo (Rame et al. 2021) codebase: https://github.com/alexrame/mixmo-pytorch.

We followed similar experimental settings on CIFAR 100 as MixMo (Rame et al. 2021) and present here the adapted setting description:

We used standard architecture WRN-28-w, with a focus on w = 2. We re-use the hyper-parameters configuration from MIMO [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF] 3.6 are given in the form of mean ± std over the three runs.

Fortunately, estimating the ratio of FLOPS is straightforward in Table 4.1: the additional overhead of MIMO and MixMo is known to be approximately 1× on CNNs (which also holds on transformers) and separate inference just leads to inferring twice, hence the 2× ratio. We use the upper bound derived in Appendix Section A.7.3 for MixViT and its variants that follow similar computational flows. For the last line of Table 4.6, we give a rough approximation derived by considering the impact of the larger number of tokens on the attention layers.

Corrected CutMix Scheme An issue that arises when considering a CutMix scheme to mix patch tokens is that CutMix masks have binary values for each pixel value whereas a patch contains multiple patches. It stands to reason therefore that we will often have situations where the patch contains both masked pixels and unmasked pixels. While the natural solution is simply to take a continuous mask value by averaging over the patch, we have seen in Section 4.3.1 that subnetworks have trouble sharing tokens.

To address this, we correct the CutMix scheme by using a majority vote within the patch: if most pixels are masked, then we mask the patch and vice-versa. Ties (where we have as many masked and unmasked pixels) are broken by choosing randomly for one set of inputs which input will be assigned the problematic patches. It worth noting that this scheme is for all intents and purposes the MixToken [START_REF] Jiang | All Tokens Matter: Token Labeling for Training Better Vision Transformers[END_REF]) scheme, with some practical differences in the sort of mask generated.

Architectural details

We used a modified variant of the ConViT (D'Ascoli et al.

2021

) architecture for our experiments hidden dimension 384, 12 attention heads, 5 GPSA blocks and 2 SA Blocks similarly to dytox [START_REF] Douillard | DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion[END_REF]. Patch size was taken to be 4 × 4 on CIFAR, 8 × 8 on TinyImageNet and 16 × 16 on ImageNet-100. It is worth noting GPSA blocks should in theory have a square number of heads to exactly emulate convolutional kernels at initialization, but we did not find this to be an issue experimentally.

We took the CaiT models directly from the seminal paper (Touvron et al. 2021b) and used the same patch size as for our ConViT model (which also coincides with CaiT's default settings).

Training details In general, we train our models over 150 epochs using the AdamW optimizer with a learning rate of 0.001, weight decay of 0.05 and linear warmup over 10% of training. We follow a step decay schedule with decay rate 0.1 at steps {125, 140}

We used a base batch size B of 128 on CIFAR and TinyImageNet and 1048 on ImageNet. The effective batch size b used was dependant on memory constraints, and the learning rate was scaled accordingly with a ratio b B following heuristics derived from [START_REF] Granziol | Learning rates as a function of batch size: A random matrix theory approach to neural network training[END_REF].

Following DeiT, we train with a lot of regularization. We use 0.05 weight decay, 0.05 stochastic depth for CaiT models, 0.1 label smoothing, 3 Batch augmentations. We use the CIFAR configuration of AutoAugment for CIFAR and TinyImageNet, and the ImageNet configuration for ImageNet-100. We also apply CutMix (Y. Yang and Soatto 2019) and MixUp (H. [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF]) but find applying them simultaneously instead of alternatively yields better result and is more stable. Practically speaking, we draw CutMix mask with α = 1.0 but instead of the mask having binary values (0 or 1), it has continuous values like a α = 0.8 MixUp scheme.

Similarly to MixMo, we progressively adapt the input mixing scheme to reflect the mechanism used at inference. In the MixMo case, this means using a summing scheme instead of CutMix with a probability p that linearly grows over the last twelfth of training. In the MixViT case, we use masks that take all tokens from one of the inputs with a probability p that linearly grows over the last twelfth of training. We directly inherited the mechanism from MixMo and did not tune the point at which we start increasing the probability p linearly.

Choice of hyperparameters

We tuned the parameter α ∈ {0.25, 0.5, 1.0, 2.0} used to draw MixViT's input mixing CutMix mask on CIFAR-100 and kept it fixed for all other experiments. α = 0.5 was chosen as it was more stable and not necessarily for optimality purposes. We did not tune the root parameter used for loss balancing in MixMo and instead discarded it early on in our preliminary experiments (equivalent to choosing root r = 1).

While cosine decay is standard in the transformer literature, we failed to converge with it on CIFAR-100 preliminary experiments. As we wished to ensure our single-input single-output backbone had converged for fair comparison with MixViT, we adopted a step decay schedule and roughly set decay steps by considering the training loss on CIFAR-100. Similarly, we train on 150 epochs instead of 100 because our models clearly failed to converge in 100 epochs on CIFAR-100.

We largely inherited all other parameters(patch sizes, batch sizes, 0.001 learning rate, 3 batch augmentations, 0.05 weight decay, AdamW optimizer, 0.05 stochastic depth dropout on CaiT, 0.1 label smoothing, CutMix α = 1.0, MixUp α = 0.8, RandErase and AutoAugment configurations) from the literature (Touvron et al. 2021a;S. H. Lee et al. 2021). We did double weight decay and stochastic depth on TinyImageNet and ImageNet-100 for MixViT to avoid overfitting and checked the performance of the backbone with those parameters, but did not look for an optimal value. append i x

A.2.5 Pseudo-code for the MixViT framework

We provide in Algorithm A.8 and Algorithm A.9 the training and inference procedure for MixViT. PatchEmbed simply embeds the inputs into patch representations as is standard in transformer frameworks, MixWithMasks simply mixes the inputs following the masks given, AddPosEmbed just adds the positional embeddings to the mixed tokens. SourceAttribution implements Equation 4.5 or Equation 4.6 depending on which variant of MixViT is considered. SourceAttributionTiled is similar, except it creates M sets of tokens, each equivalent to SourceAttribution(x,T i ) with T i being made up null masks 0 N except for the one at position i being a unit mask 1 N . 

Algorithm

} := SourceAttributionTiled(x) # Standard class-attention {x i } := {Concat([c 0 ;x i ])} for k=0,1 do {x i } := {CA k (x i )} end for # Predict from features {c 0,i } := {x i [0]} {p i } := {d i (c 0,i )} return {p i } end function
procedure and our hybridization procedure, and suggests there is indeed complementarity between our method and other mixing augmentation methods.

To verify these intuitions, we investigate this from a more quantitative point of view.

A.3.2 Case Study: Component Separation

We now investigate the composition of generated hybrids on reduced settings (MT Base) to verify the model's ability to generate hybrids that correctly inherit their parent's semantic and non-semantic components. To this end, at various points during training, we generate a study dataset of hybrid samples D H . The dataset is generated by mixing every sample in the labeled set with ten random unlabeled samples such that #D H = 10 × #D l .

Inheritance of semantic and non-semantic features We start by assessing how well generated hybrids inherit semantic/non-semantic features with respect to our model's learned projections. The quality of the inherited semantic component can be approximated straightforwardly by considering the accuracy s c of our trained classifier on hybrids (ie, checking how many hybrids are correctly classified as belonging to the same class as their semantic parent). As we do not have access to such a clear criterion for the non-semantic component, we use a proxy metric in the non-semantic latent space. We consider the distance d

l := z h r -z 1 r 2 2 (resp. d r := z h r -z 2 r 2 
2 ) between the extracted non-semantic feature z h r = E r (x h ) of a hybrid x h and those of its semantic parent z 1 r (resp. non-semantic parent z 2 r ). If d l ≥ d r , then we conclude the hybrid correctly inherited its non-semantic parent's style component. As such, we can define a non-semantic separation accuracy s r by the proportion of hybrids in D H correctly identified as being closer to their nonsemantic parent. In other words, we monitor whether the hybrid's non-semantic content is indeed closer to its non-semantic parent's.

The accuracy of the semantic and non-semantic separation tasks are presented in (Table A.13a) along with the average distances in non-semantic space to the hybrid's parent samples d l and d r at the end of training. On both datasets, we can observe that hybrids mostly inherit the correct semantic and non semantic characteristics at the end of training. In particular, non-semantic features of hybrids are about 10 times closer to their non-semantic parents' compared to their semantic parents'. Importantly, the observed inheritance of semantic/non-semantic features significantly improves over the course of the entire training. For instance, with 1000 labels on CIFAR10, semantic accuracy s c on generated hybrids at the end of the Once again, we assess the correct inheritance of semantic content from the semantic parent by tracking the classification accuracy s c over hybrids. This experiment however differs from the previous one in how the non-semantic distances d l and d r are computed. Instead, of considering the distances in z r latent space we leverage the construction of MNIST-M to propose a more interpretable criterion. The MNIST-M dataset presents one known non-semantic feature: the background of the samples. We therefore verify experimentally that the background of hybrids generated by our procedure closely matches the background of their non-semantic parents (more closely than the one of their semantic parent) instead of considering z r distances. By construction of MNIST-M, we know which pixels in images correspond to a digit and which correspond to a BSD 500 background: we know which MNIST sample was used to generate the sample. As such, we can have access to a mask that zeroes out pixels corresponding to the digit and does not alter background pixels for MNIST-M images. As qualitative studies (Figure A.2) suggest hybrid samples do correctly inherit digit outline from their semantic parent, we approximate the background of hybrids to be the same as that of their semantic parent. Therefore, we calculate the background of hybrid samples b h = m 1 * x h by applying a mask m 1 that zeroes out pixels corresponding to the digit in the semantic parent (known by construction). The backgrounds b 1 and b 2 of the parent samples are also known by construction (corresponding to the BSD 500 backgrounds used to generate samples). Similarly to our previous procedure, if

d l := b h -m 1 * b 1 2 2 ≥ d r := b h -m 1 * b 2 2
2 , then we conclude the hybrid correctly inherited its non-semantic parent's style component. The separation accuracies s c and s r as well as the distances between the hybrid's background and its parents' are given in Table A .13b. Results suggest a clear separation of semantic and non-semantic content in hybrids. The nature of the pixel distances tracked in this experiment strongly correlate the model's notion of non-semantic features with the known background modularity as expected. As such, the results strongly suggest that at least in simple cases, SAMOSA is capable of correctly identifying and separating the semantic and non-semantic factors in training data.

A.3.3 Semantic content in z r

In addition to verifying z r does indeed cause non-semantic changes in reconstruction/hybridization, we also observe that it does not contain a lot of semantic information. Training a classification head (with all 50000 labeled training samples) on the non-semantic space of a trained Mean Teacher based SAMOSA model (1000 label CIFAR 10 setting) does lead to low classification accuracy (about 30%). This contrasts with the 88% accuracy obtained by a linear layer trained on the semantic space z c with only 1000 labeled samples in previous experiments. As such, we verify that z r does not extract specifically semantic features in accordance with SAMOSA's design.

What little semantic information remains in z r is ignored by the decoder D as generated hybrids only inherit the class of their non-semantic parents in about 10% of cases (random chance). Furthermore, we can verify that expunging semantic content from z r is pointless. z r can be made wholly non-semantic by training a linear classifier to classify from z r , and training E r to fool this classifier. While a model trained this way retains almost no semantic information in non-semantic space z r (about 18% accuracy for a linear classifier trained on the frozen projection), such a model fails to better classify samples (accuracy of 88.5 ± 0.1 vs. 88.7 ± 0.3). append i x

A.4 Additional experiments and material for SciMix

We provide the following additional experiments and material for MixShare:

• In Section A.4.1, we discuss the difference in overhead between the SciMix and SAMOSA frameworks.

• In Section A.4.2, we show how various variants of the SciMix generative framework perform.

• In Section A.4.3, we show how various variants of the SciMix data augmentation perform.

• In Section A.4.4, shows some more hybrids for SciMix on SVHN.

A.4.1 Overhead of SAMOSA and SciMix

Beyond interfering with augmentation process, training the semi-supervised classifier alongside the generative framework makes the training process itself significantly more complex. The main pain points with this are: To better explore how our framework facilitates the incrustation of semantic content in the general context of existing samples, we first propose a rapid ablation study on the quality of the samples generated by variants of our auto-encoder on our hardest SVHN setting (60 labels). We evaluate this through the classification accuracy of models trained with the generator's mixed samples, the semantic transfer s c , the non-semantic transfer s r , and a visual evaluation of two hybrids (e.g. the leftmost hybrid mixes a blue 8 x c with a yellow 3 x r ).

We consider 4 variations on SciMix's generator to demonstrate the merits of our chosen method: z r as a style code. We flip the roles of z c and z r , to demonstrate z c is better used as a style code in SciMix. No L hyb . We train without an explicit optimization loss, to show L S and L rec are not sufficient to create good hybrids in SciMix. Basic L hyb . We demonstrate the orthogonalization losses L - hyb,class and L - hyb,cont contribute to the generator by considering a variant that does not optimize them. No frozen criterion L hyb . We do not force the generator to only optimize the generation of the hybrids when optimizing L hyb (the projection of the hybrids in the latent spaces is also modified).

Table A.14 shows that without explicit hybridization optimization, the model fails to properly transfer semantic characteristics (low s c score). Since the model does properly transfer semantic content with only L + hybrids , the addition of the orthogonalization constraints L - hybrids is not necessary to obtain useful hybrids. However, this orthogonalization increases the diversity in the generated hybrids and therefore leads to a better augmentation procedure. Not freezing the projection heads when training for hybridization on the other hand leads to a general deterioration of the training process and can therefore be felt in both transfer rates. Predictably, using z r as a global style code leads a very poor correspondence of hybrids to their non-semantic parents as things like backgrounds can become very complicated to reproduce with a modulation based generator.

A.4.3 Model analysis: Leveraging the hybrids as Data Augmentation

We considered 4 alternative methods to exploit the hybrids generated by our method: Labeled Only hybrids with a labeled semantic parent are considered (supervised training with a hard label) Pseudo-label Hybrids are treated as labeled samples (hard labels), with the labels inherited from the semantic parent's pseudo-labels. Consistency Hybrids are made to follow their semantic parent's prediction. Contradict Hybrids are made to match both their semantic parent's consistency target and their non-semantic parent targets. Table A.15 shows that the best results are obtained with L contradict , but L pseudo-label and L cons also outperform the baseline method on SVHN 60 labels (hardest setting). The fact L contradict outperforms other methods is interesting in that the loss does not actually treat the hybrids as pure labeled samples, but assumes some semantic content/noise is retained from the non-semantic samples. L labeled 's failure suggests that even with proper mixing, it not possible to improve models by only generalizing a few labeled samples. 

A.4.4 Additional hybrids

A.5 Additional experiments and material for MixMo

We provide the following additional experiments and material for MixMo:

• In Section A.5.1, we provide a quick refresher on common MSDA techniques.

• In Section A.5.2, we clarify our framework generalization with M > 2 subnetworks.

• In Section A.5.3, we illustrate the reweighting of the loss components.

• In Section A.5.4, we elaborate on our analysis of filters activity.

• In Section A.5.5, we analyze ensembles of Cut-MixMo with CutMix that reach state of the art.

• In Section A.5.6, we provide a preliminary study of MixMo on ImageNet.

• In Section A.5.7, we study the importance of α.

A.5.1 Mixed sample data augmentations

We have drawn inspiration from MSDA techniques to design our mixing block M. In particular, Section 3.3.5.2 compared different M based on recent papers. MixUp (H. [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF] linearly interpolates between pixels: m x (x i , x k , λ) = λx i + (1 -λ)x k . The remaining methods fall under the label of binary MSDA: m x (x i , x k , λ) = 1 m x i + (1 -1 m ) x k with 1 m a mask with binary values {0, 1} and area of ratio λ. They diverge in how this mask is created. The horizontal concatenation, also found in [START_REF] Summers | Improved Mixed-Example Data Augmentation[END_REF], simply draws a vertical line such that every pixel to the left belongs to one sample and every pixel to the right belongs to the other. Similarly, we define a vertical concatenation with an horizontal line. PatchUp [START_REF] Faramarzi | PatchUp: A Regularization Technique for Convolutional Neural Networks[END_REF] adapted DropBlock [START_REF] Ghiasi | Dropblock: A regularization method for convolutional networks[END_REF]): a canvas C of patches is created by sampling for every spatial coordinate from the Bernoulli distribution Ber(λ ) (where λ is a recalibrated value of λ): if the drawn binary value is 1, a patch around that coordinate is set to 1 on the final binary mask 1 m . PatchUp was designed for in-manifold mixing with a different mask by channels. However, duplicating the same 2D mask in all channels for M performs better in our experiments. FMix [START_REF] Harris | FMix: Enhancing Mixed Sample Data Augmentation[END_REF]) selects a large contiguous region in one image and pastes it onto another. The binary mask is made of the top-λ percentile of pixels from a low-pass filtered 2D map G drawn from an isotropic Gaussian distribution. CowMix (G. French et al. 2020a;G. French et al. 2020b) selects a cow-spotted set of regions, and is somehow similar to FMix with a Gaussian filtered 2D map G. CutMix (Y. Yang and Soatto 2019) was inspired by CutOut (DeVries and Taylor 2017). Formally, we sample a square with edges of length R √ λ , where R is the length of an image edge. Note that this sometimes leads to non square rectangles when the initially sampled square overlaps with the edge from the original image. We adjust our λ a posteriori to fix this boundary effect. Regarding the hyper-parameters, we use in M those provided in the seminal papers, except for sampling of κ where we set α = 2 in all setups. 

A.5.3 Weighting function w r

As outlined in Section 3.3.2.2, the asymmetry in the mixing mechanism leads to asymmetry in the relative importance of the two inputs. Thus we reweight the loss components with function w r , defined as w r (κ) = 2 κ 1/r κ 1/r +(1-κ) 1/r . It rescales the mixing ratio κ through the use of a 1 r root operator. In the main paper, we have focused on r = 3. really help for classification as demonstrated in Figure 3.4a and Figure 3.4b in the main paper. Following common practices in the structured pruning literature (H. Li et al. 2017), we used the l 1 -norm of convolutional filters as a proxy for importance. These 3D filters are of shape n i × k × k with n i the number of input channels and k the kernel size. In Figure 3.4b, we arbitrarily defined a filter as active if its l 1 -norm is at least 40% of the highest filter l 1 -norm in that filter's layer. We report the average percentage of active filters across all filters in the core network C, for 3 learning strategies: vanilla, CutMix and Cut-MixMo.

The threshold t a = 0.4 was chosen for visualization purposes. Nevertheless, the observed trend in activity proportions remains for varying thresholds in Table A.16. For example, for the lax t a = 0.2, CutMix uses 93.5% of filters vs. 98.5% for Cut-MixMo. 

A.5.5 Ensemble of Cut-MixMo with CutMix

Figure A.6 plots performance for different widths w in WRN-28-w and varying number of ensembled networks N : two vertically aligned points have the same parameter budget. Indeed, the total number of parameters in our architectures has been used as a proxy for model complexity, as in [START_REF] Chirkova | Deep Ensembles on a Fixed Memory Budget: One Wide Network or Several Thinner Ones?[END_REF][START_REF] Lobacheva | On Power Laws in Deep Ensembles[END_REF]. The increase in the total number of weights in MixMo is visually almost unnoticeable. Precisely, with WRN-28-10, MixMo (M =2) has 36.60M weights vs. 36.53M standardly (+0.2%). Moreover, the number of flops is 5.9571G Flops for MixMo vs. 5.9565G Flops standardly (+0.01%). That's why we state we achieve ensembling (almost) "for free".

We compare ensembling with CutMix rather than standard pixels data augmentation, as previously done in 3.7 from Section Section 3.3.4.4. CutMix induces additional regularization and label smoothing: empirically, it improves all our approaches. For a fixed memory budget, a single network usually performs worse than an ensemble of several medium-size networks: we recover the Memory Split Advantage even with CutMix. However, Cut-MixMo challenges this by remaining closer to the lower envelope. In other words, parameters allocation (more net-append i x works or bigger networks) has less impact on results. This is due to Cut-MixMo's ability to better use large networks.

In Table A.17, we summarize several experiments on CIFAR-100. Among other things, we can observe that large vanilla networks tend to gain less from ensembling [START_REF] Lobacheva | On Power Laws in Deep Ensembles[END_REF]): e.g. 2 vanillas WRN-28-10 (83.17% Top1, 0.668 NLL c ) do not perform much better than 2 WRN-28-7 (82.94%, 0.673). This remains true even with CutMix: (85.74%, 0.571) vs. (85.52%, 0.573). We speculate this is related to wide networks' tendency to converge to less diverse solutions, as studied in [START_REF] Neal | A Modern Take on the Bias-Variance Tradeoff in Neural Networks[END_REF]. Contrarily, MixMo improves the ensembling of large networks, with (86.04%, 0.494) vs. (85.50%, 0.517) on the same setup. When additionally combined with CutMix, we obtain state of the art (86.63%, 0.479) vs. (85.90%, 0.498). This demonstrates the importance of Cut-MixMo in cooperation with standard pixels data augmentation. It attenuates the drawbacks from overparameterization This is of great importance for practical efficiency: it modifies the optimal network width for real-world applications. 

A.5.6 Preliminary ImageNet experiments

To further prove MixMo's ability to scale to more complex problems, we also conduct a preliminary study of its behavior on the larger scale ImageNet dataset (J. [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF]. Following the protocol outlined in the seminal MIMO paper [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF], we consider variations on the standard ResNet-18 in the form of ResNet-18-w networks where w is multiplicative width factor.

These first experiments confirm that MixMo performs well when networks are overparameterized. For values of w ≥ 5, our network at the end of training outperforms both Vanilla and CutMix baselines. For example, with a ResNet-18-5 backbone, Cut-MixMo (78.20% Top1, 0.867 NLLc) improves over Vanilla (76.47%, 1.121) and CutMix (77.40%, 1.263). This remains the case for a ResNet-18-7 backbone with Cut-MixMo (78.55% Top1, 0.846 NLLc) outperforming Vanilla (76.86%, 1.100) and CutMix (77.18%, 1.190). In Fig. Figure A.7, we study the impact of different values of α, parameterizing the sampling law for κ ∼ Beta(α, α). For high values of α, the interval of κ narrows down around 0.5. Diversity is therefore decreased: we speculate this is because we do not benefit anymore from lopsided updates. The opposite extreme, when α=1, is equivalent to uniform distribution between 0 and 1. Therefore diversity is increased, at the cost of lower individual accuracy due to less stable training. For simplicity, we set α=2. Manifold-Mixup (Verma et al. 2019a) selected the same value on CIFAR-100. However, this value could be fine tuned on the target task: e.g. in split) before being applied to their relevant subnetwork losses. This rescaling is necessary as it ensures all parameters receive sufficient training signal.

A.5.7 Hyper-parameter α

We however find in our experiments it is more beneficial to do away with this re-balancing and keep the original mixing ratios, which we explain by the large amount of features shared between subnetworks. Since features are shared, we do not need to worry about some features receiving too little training signal.

A.6.2 A more nuanced discussion on kernel alignment

While MixShare uses the exact same initialization of the encoder kernels for simplicity, it is interesting to note much weaker versions of kernel alignment are sufficient to obtain similar results. Indeed, we found in our experiments that initializing the kernels to be simply co-linear is more than enough to ensure proper feature sharing. In fact, this leads to the exact same performance as using the same initialization and the encoder kernels quickly converge to similar values. This further validates our intuition that MIMO models need a "common language" to benefit from sharing features: all that is required is for encoder kernels to extract the same "type" of features.

A.6.3 Analysis of subnetwork features within the core network Section 3.4.1 studies what features each subnetwork uses in the input block and output block of the multi-input multi-output model. Studying the importance of features within the core networks for each subnetworks is more difficult as it is not possible to consider the model weights. Reprising an analysis conducted in the Appendix of (Rame et al. 2021), we identify the influence of intermediate features on subnetworks with the variance of the feature with respect to the relevant input. nevertheless much more difficult to control than the one introduced in MixViT, which could be adapted to CNNs and help address the issues of MixShare.

A.7.3 Further notes on MixViT overhead

We provide in Section 4.3.3.2 a very rough upper bound on the additional overhead incurred by MixViT at inference for one forward evaluation. We provide here a more nuanced discussion on the computations at play and show that -for M = 2 or at least bounded -the asymptotic complexity in L, N and d of MixViT is the same as that of a normal model.

Similarly to Section 4.3.3.2, we consider a transformer on a C-class problem with L self-attention blocks and 2 class-attention blocks taking N d-dimensional patch tokens. We neglect the computational overhead of induced by adding bias terms, embedding the patches into tokens, classifying from the classification tokens features, normalization and source attribution.

How many computations do class-attention and self-attention need ? We assumed previously class-attention and self-attention are as expensive computationally which leads to a very pessimistic upper bound on the overhead.

Let us count the important operations in a Self-Attention layer:

1. We have to extract key, query and value representations for each token which causes 3N d 2 operations due to 3N weight multiplications.

2. We have to compute the similarity scores between N tokens which means N 2 d operations.

3. We must compute the attended representation for all tokens which costs approximately N 2 d operations as one attended token requires adding N ddimensional tokens (we take the cost of multiplying the value representation by the attention weight to be atomic, but it is technically d). similarly to Batch augmentation and is often needed to obtain good results with CNN-based MIMO models (which is less so the case for MixViT as per Section 4.4.3). If we reduce the learning rate and train with 4 batch augmentations, we close the gap in performance. This is particularly noteworthy as vision transformers are typically disadvantaged against CNNs on the CIFAR datasets as can be seen by the fact our baseline single-input single-output ConViT model only reaches 81.1% accuracy (vs. 82.6%) even on this longer training schedule.
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Figure 1

 1 Figure 1.1. -Illustration of Neural Networks. Neural Networks use successive layer functions to extract more and more refined representations.

  Figure 1.2. -Examples of layer functions.
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 1 Figure 1.3. -Illustration of Mixing Sample Data Augmentations. MSDA combine contents from multiple images (e.g. a dog and a fox) to create new training data.
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 2 Figure 2.1. -Illustration of typical hybrids obtained by standard mixing methods and our methods. Standard mixing augmentations mix contents indiscriminately whereas our method mixes the semantic number from one sample with the background information from another.
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 2 Figure 2.2. -Overview of the Mean Teacher framework. Figure from the seminal paper (Tarvainen and Valpola 2017).

  for a time. To this day, a number of more preliminary exploration into semi-supervised learning for other domains still largely adapt the Mean Teacher framework (e.g. Cross-Domain Object Detection (Jinhong Deng et al. 2021), Medical Image Segmentation (K. Wang et al. 2022), ...).Mean Teacher and its affiliated consistency based methods have recently lost in prominence with the advent of deep pseudo-labeled frameworks like FixMatch.
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 2 Figure 2.3. -Overview of the FixMatch framework. Figure from the seminal paper (Sohn et al. 2020).
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 24 Figure 2.4. -Overview of the AdaIN framework. Figure from the seminal paper (X. Huang and Belongie 2017).
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 2 Figure 2.5. -Example of a style based Image-to-Image translation framework. Figure from the Swapping Auto-encoders paper (Park et al. 2020).

  Figure 2.5. -Example of a style based Image-to-Image translation framework. Figure from the Swapping Auto-encoders paper (Park et al. 2020).

   shows how SAMOSA combines a bird picture with color tones from a plane picture.

  (a) Classic MSDA creates betweenclass hybrids. (b) SAMOSA instead creates in-class hybrids.
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 2 Figure 2.6. -Content combination in classic MSDA and ours. While classical mixing combines all content (i.e. semantic "S" + non-semantic "NS") from both parents, SAMOSA mixes semantic content ("S") from one parent and non semantic content ("NS") from the other.
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 2 Figure 2.7. -Overview of the SAMOSA framework. z c and z r are extracted from input x. z c alone is used to classify the input (to optimize the base L 0,X loss). x (which reconstructs x due to Ω SAM OSA 's sub-loss L rec ) is computed from both extracted features z c and z r . E c is regularized by the learned decoder (through the Ω rec regularizer of Ω SAM OSA )
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 2 Figure 2.8. -Overview of the asymmetrical SAMOSA decoder. Our proposed asymmetrical decoder D reconstructs x from z c , with z r modulating which parts of D are active.
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 2 Figure 2.9. -Optimization of L SAMOSA in the modules. The base SSL loss L 0,X loss optimizes the classifier modules while the reconstruction loss L rec optimizes the additional modules E r and D. E c is benefits from the reconstruction module through the Ω rec regularizer
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 2 Figure 2.10. -Hybridization in SAMOSA. A trained model can then be used to combine semantic content from a boat picture and non semantic content from a plane picture.
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 2 Figure 2.11. -Examples of hybrids obtained by SAMOSA (Mean Teacher backbone) on the synthetic MNIST-M dataset as well as the real SVHN and CIFAR10 datasets.

  2.12a) to predict whether the considered image is a real sample or a reconstruction . Conversely, E r , E c and G are trained to fool D into (a) Semantic auto-encoder of SciMix's generator. x is encoded into z c (made semantic by L S ) and z r , which are decoded into x optimized by L AE = L rec + L adv,r . (b) Hybridization in SciMix's generator. Semantic components are extracted from x 1 and x 2 to obtain a hybrid optimized through L hyb (detailed in 5 sub-losses here).
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 2 Figure 2.12. -Overview of the SciMix generator architecture. SciMix trains an auto-encoder with two latent spaces, one of which is semantic

(

  [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF] 40.5 ± 6.4 63.1 ± 0.9 72 ± 3 48.7 ± 23.0 82.3 ± 5.5 SciMix w/ Mean Teacher 46.4 ± 1.2 68.0 ± 1 77.2 ± 0.5 83.4 ± .5 87.3 ± 2.8 Berthelot et al. 2019) 88.6 ± 0.7 96.4 ± 0.3 SciMix w/ FixMatch 90.7 ± 0.2 96.5 ± 0.9

Figure 2

 2 Figure 2.13. -Examples of SAMOSA Hybrids between true samples x 1 and x 2 . Results for the Mean-Teacher SAMOSA trained on SVHN (100 labels) and CIFAR10 (1000 labels). (Line 2 shows hybrids with the semantic content of Line 1 and non-semantic content of Line 4. Line 3 shows the opposite.)

  [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF] 63.1 ± 0.9 48.7 ± 23.0 Mean Teacher + MixUp (H.[START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF] 64.8 ± 3.5 61.8 ± 1.0 Mean Teacher + CutMix (Y. Yang and Soatto 2019) 55.0 ± 7.5 17.3 ± 3.7 SciMix w/ Mean Teacher (ours) 68 ± 1.0 83.4 ± 0.5

  (a) Examples of SciMix hybrids on CUB 64 × 64 (left) and 96 × 96 (right).

  Transfer rate in hybrids.

Figure 2 .

 2 Figure 2.15. -SciMix hybrids mix semantic and non-semantic contents on CUB-200.
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Figure 3

 3 Figure 3.1. -Overview of the MIMO framework.

Figure 3

 3 Figure 3.2. -MixMo overview. We embed M = 2 inputs into a shared space with convolutional layers (c 1 , c 2 ), mix them, pass the embedding through further layers and output 2 predictions via dense layers (d 1 , d 2 ). The key point of our MixMo is the mixing block. Mixing with patches performs better than basic summing: 85.40% vs. 83.06% (MIMO (Havasi et al. 2021)) on CIFAR-100 with WRN-28-10.

Figure 3

 3 Figure 3.3. -Overview of Cut-MixMo training. We sample a mixing mask given κ, and balance the losses with w r (κ) from Equation 3.3.

  .3) This defines a family of functions indexed by the parameter r, visualized for r = 3 in red on Figure3.3. See Appendix Section A.5.3 for complementary visualizations. This power law provides a natural relaxation between two extreme configurations. The first extreme, r = 1, w 1 (κ) = 2κ, is in line with linear label interpolation in MSDA. The resulting imbalance in each subnetwork's contribution to L MixMo causes lopsided updates. While it promotes diversity, it also reduces (a) Filters l 1 -norms of the input encoders c 0 and c 1 . (b) Proportion of active filters in the core network vs. width w.

Figure 3 . 4 .

 34 Figure 3.4. -Influence of MixMo on network utilization.(a) The encoders have separate channels: the two subsequent classifiers can differentiate the two inputs. (b) Less filters are strongly active ( f i 1 ≥ 0.4 × max f ∈layer f 1 ) in wider networks: Cut-MixMo reduces this negative point.

  A.1.3.1 and provide our open source PyTorch (Paszke et al. 2019) implementation.

Figure 3 .

 3 Figure 3.5 shows how MixMo grows stronger than DE (green curves) as width w in WRN-28-w increases. The parameterization becomes appropriate at w=4: Cut-MixMo (yellow curves) then matches DE -with half the parameters -in Figure 3.5a

  (a) Ensemble Top1 and NLL c . (b) Individual Top1.

Figure 3

 3 Figure 3.5. -Parameter efficiency of MixMo (metrics/#params). CIFAR-100 with WRN-28-w, b = 4. Comparisons between (a) ensemble and some of their (b) individual counterparts.

Figure 3

 3 Figure 3.6. -Ensemble effectiveness (NLL c /#params), for different widths w in WRN-28-w and numbers of members N . Standard data augmentations on CIFAR-100 with b = 4. Curves interpolated through power laws (Lobacheva et al. 2020).

  .7, this time at varying batch repetition b ∈ {1, 2, 4} when w=10. Moreover, Cut-MixMo outperforms DE for the same training time. Indeed, MixMo variants trained with a given b matches the training time of DE with N =b networks. In the rest of this section, we set b=2.

Figure 3

 3 Figure 3.7. -NLL c (↓) improves with longer training, via batch repetitions (MixMo) or additional networks (DE).

Figure 3

 3 Figure 3.8. -Diversity/accuracy as function of p with r = 3.

Figure 3

 3 Figure 3.9. -Diversity/accuracy as function of r with p = 0.5.

Figure 3 .

 3 Figure 3.10. -Ensemble/individual accuracies for M ≥ 2.

Figure 3 .

 3 Figure 3.11. -Influence of the feature maps for the subnetworks. We study the influence of features in the input and output block on the subnetworks (L 1 norm figured by bars). For the input block, we consider the L 1 norm of the feature kernels for the relevant encoders. For the output block, we look at the L 1 norm of columns in the classifier weights matrices. On the figure, this shows us the first input block kernel is mostly used by the first (red) subnetwork (7 vs. 1). Similarly, the first feature of the output block proves important only to the first (red) classifier.

Figure 3 .

 3 Figure 3.12. -Usage of features by MixMo subnetworks. Features are used by one subnetwork or the other, never both at the same time: the overlap (orange) is very low.

Figure 3 .

 3 Figure 3.13. -Overview of the MixShare framework. Two steps are necessary toallow feature sharing: 1) Ensure the subnetworks share a "common language" by initializing the convolutional encoders to be similar.2) Extract descriptions of each input from model features.

Figure 3 .

 3 Figure 3.14. -Usage of features by MixMo subnetworks with unmixing. Applying unmixing leads to features being used by both subnetworks: the overlap (orange) is very high.

  .1) before computing the attended representation o of the input token

Figure 4 .

 4 Figure 4.1. -Overview of the seminal ViT framework. The image is divided into patches that are tokenized and fed to transformer blocks.

  (a) Traditional MIMO CNN. (b) Our proposed MIMO transformer, MixViT.

Figure 4 .

 4 Figure 4.2. -Overview of MIMO architectures. MixViT, our transformer only separates subnetworks in the last layers which facilitates feature sharing between subnetworks and makes it possible to avoid summing the encoded inputs (purple in (a)) at inference (see Sec. 4.3.1).

  are trained unless specified otherwise in this paper. The following experiments consider the CIFAR-100 dataset (Krizhevsky and Hinton 2009) with a variant of the ConViT (D'Ascoli et al. 2021) architecture (see Section 4.4), but the conclusions hold for other settings. The backbone single-input single-output model feeds image patches to 5 Gated-Positional Self-Attention (GPSA (D'Ascoli et al. 2021)) blocks (which initially imitate convolutions) for feature extraction, before adding a classification token and applying 2 Class-Attention (CA (Touvron et al. 2021b)) blocks. Classification is then performed as usual by a dense layer on the attended classification token's features.

  Figure

  4.2a step by step, and provide an illustration of MIMO transformers in Figure A.9 of Appendix Section A.7.1. We consider (like in Figure 4.2a) M (inputs, labels) pairs {(x i , y i )} 0≤i<M during training: we feed M inputs to the model as a combined input. To this end, we break down each image into small 4 × 4 patches and embed the patches into N baseline when no summing is performed during training in line (5) (the patches are always mixed following a CutMix (Y. Yang and Soatto 2019) scheme).

  3.3) and source attribution (Section 4.3.3.1), before discussing MixViT's added overhead in Section 4.3.3.2. The only assumption our formulation of MixViT requires is a separation of the transformer into feature extraction blocks that use Self-Attention blocks and classifier blocks that rely on Class-Attention blocks (see Figure 4.2b). A number of modern vision transformers follow this structure like the ConViT (D'Ascoli et al. 2021) variant studied in Section 4.3.1 and the CaiT (Touvron et al. 2021b) architecture. Moreover, MixViT easily generalizes to other architectures.

Figure 4 .

 4 Figure 4.3. -Overview of our MixViT framework. At training, we insert a mixing and a source attribution step in the normal flow of the network.Source attribution associates tokens with the relevant input/subnetwork, and can be done through either source encoding or source embedding. At inference, we perform multiple passes on the last layer using differently sourced tokens.

Figure 4 . 4 .

 44 Figure 4.4. -MixViT performs well even without any batch repetitions on CIFAR-100.

  Data Augmentations as compressed representations for Multi-Input Multi-output training We then study how subnetworks can be trained within the model by training the model to output separate predictions for each of the original inputs in a MSDA sample. By incorporating the MSDA formalism into the Multi-Input Multi-Output (MIMO) framework we obtain a new mixing augmentation paradigm that offers self-ensembling properties and is orthogonal to traditional mixing augmentations.

  2017) via several independent trainings, Puzzle-Mix (J.-H.[START_REF] Kim | Puzzle mix: Exploiting saliency and local statistics for optimal mixup[END_REF]) via saliency detection (≈ ×2), GradAug (T.Yang et al. 2020) via multiple subnetworks predictions (≈ ×3) or Mixup BA[START_REF] Hoffer | Augment Your Batch: Improving Generalization Through Instance Repetition[END_REF]) via 10 batch augmentations (≈ ×7 with our hardware on a single GPU).

  with batch repetition 2 (bar2). The optimizer is SGD with learning rate of 0.1 b × batch-size 128 , batch size 64, linear warmup over 1 epoch, decay rate 0.1 at steps {75, 150, 225}, l 2 regularization 3e-4. We follow standard MSDA practices (Y. Yang and Soatto 2019) and set the maximum number of epochs to 300. Our experiments ran on a single NVIDIA 12Go-TITAN X Pascal GPU. All experiments were run three times on three fixed seeds from the same version of the codebase. Qualitative results presented in Figure 3.12 and Figure 3.14 are obtained by visualizing results for the first set of random seeds. Quantitative results presented in Table

  Identification of semantic and non-semantic parents on a hybrid dataset D H at the end of training on multiple datasets. Both the semantic separation s c and the non-semantic separation s r accuracies show the model properly incorporates semantic and nonsemantic information during hybridization. The ratio of the average non-semantic distances dc dr between hybrids and their semantic/nonsemantic parent is given to complement non-semantic separation scores s r .first training cycle (300 epochs, no hybrid augmentation yet) is 74.1±2.5, 93.0±2.5 at the end of the second (trained with hybrid augmentation) and 97.3 ± 0.6 at the end of training. In theory, two inputs reconstructed from the same semantic features but different non-semantic features should lead to extracting the same semantic features. However, in practice generated hybrids constitute new samples an overfit model could have trouble accommodating, or present combinations of semantic/non-semantic features that interfere with each other. As per the previous results, our augmentation strategy helps the model deal with those new problematic samples by presenting them as training samples.Inheritance of non-semantic background in MNIST-M To better understand non-semantic features, we run an additional experiment by generating an MNIST-M-style dataset[START_REF] Ganin | Unsupervised Domain Adaptation by Backpropagation[END_REF] by combining each digit picture in the MNIST (Yann.[START_REF] Lecun | THE MNIST DATABASE of handwritten digits[END_REF] dataset with a random crop from the BSD 500 dataset(Arbelaez et al. 2011) (Figure A.2). A model is trained following our standard procedure over 50000 training samples (100 labeled samples), and we track the hybrids generated during training as outlined previously.

Figure

  Figure A.2. -Hybrids for MNIST-M (format: see Fig. A.1).

••

  Additional training parameters when training the classifier In the SAMOSA experiments, we typically train a 1.5M parameter WideResNet-28-2 classifier. Due to the generative framework, we must additionally train a 1.5M parameter non-semantic encoder and a 2M parameter decoder/generator. This represents over 3 times as many parameters, and requires training over two GPUs to obtain results in reasonable time (since SAMOSA must trains three times to incorporate hybrids). While SciMix does have to train a generator along an auxiliary classifier, it only needs to be trained once and we do not need refine the auxiliary classifier with additional hybrids. Training the actual semi-supervised model only involves the 1.5M parameters of WideResNet-28-2 Difficulty in synchronizing classifier and generator training It must be noted that semi-supervised learning algorithms tend to use fairly diverse training settings, with some of them running fairly long. For reference, we train Mean Teacher over 300 epochs with SGD, MixMatch over 900 epochs with AdamW and FixMatch over 1000 epochs using SGD. The training settings for MixMatch and FixMatch in our experiments are in fact already shortened by a factor of 10. The generative framework for its part trains well with SGD over 300 epochs, with similar settings as the Mean Teacher framework. Beyond the fact it largely increases the already significant training

  We provide additional examples of hybrids on SVHN inFigure A.3.

Figure

  Figure A.3. -Additional SciMix hybrids on SVHN (100 labels).

  Figure A.4 provides the reader a visual understanding of their behaviour, which we explain below.

  Note we consider both versions of MixUp (in-pixel and manifold) in this paper, but only the in-pixel version of CutMix. Indeed, the manifold version of CutMix was shown in the seminal CutMix paper (Y. Yang and Soatto 2019) to be inferior to the standard in-pixel variant.

Figure

  Figure A.4. -Common MSDA procedures with λ = 0.5.

Figure

  Figure A.5 illustrates how w r behaves for r ∈ {1, 2, 3, 4, 10} and r → ∞. The first extreme r = 1 matches the diagonal w r (κ) = 2κ, without rescaling of κ, similarly to what is customary in MSDA. Our experiments in Section 3.3.5.3 justified the initial idea to shift the weighting function closer to the horizontal and constant curve w r (κ) = 1 with higher r. In the other experiments, we always set r = 3.

Figure

  Figure A.5. -Curves of the reweighting operation that projects κ to the flattened ratio w r (κ)

Figure

  Figure A.6. -Ensemble effectiveness (NLL c /#params). We slide the width in WRN-28-w and numbers of members N . CutMix data augmentation. Interpolations through power laws (Lobacheva et al. 2020) when more than 2 points are available.

Figure

  Figure A.7. -Diversity/accuracy as function of α.

  Figure A.7, α=4 seems to perform best for Cut-MixMo on CIFAR-100 with WRN-28-10 with r=3, p=0.5 and b=2.

Figure

  Figure A.8. -Influence of feature maps in the core network. Checking the variance of feature maps w.r.t. the two inputs at different levels of the network shows clear separation of features in standard multi-input multi-output architectures.

For

  the first subnetwork, if we consider the intermediate feature map (at one point in the network f ) M int = f int (D test , d), such that M int is of shape N × C × H × W with D test the test set, d a fixed input, N the size of the test set, C the number of intermediate feature maps and H × W the spatial coordinates. We compute the importance of each of the C feature map with respect to the first subnetwork as M ean(V ar(M int , dim = 0), dim = (1, 2)). The importance of intermediate features for the second subnetwork is obtained similarly by considering M int = f int (d, D test ).

Figure

  Figure A.8 shows the resulting feature importance maps at after each of the three residual blocks in the core network. As can be observed, the subnetworks remain consistently separated in the core network.

4 .

 4 Most implementations include a projection step to properly aggregate the multiple attention heads which means an additional N d 2 cost.5.Each token is then processed by the same 1 hidden layer multi-layer perceptron. While the hidden dimension of the perceptron can vary it is standard in the literature to take 4d. Therefore we have to consider 2 × 4 × N d 2 operations as we consider 2 weights multiplications of dimensions d × 4d.This yields a cost of approximately3N d 2 + N 2 d + N 2 d + N d 2 + 8N d 2 = 13N d 2 + 2N 2 din a Self-Attention layer whereas the cost of a Class-Attention layer is about 3N d 2 + N d + N d + d 2 + 8d 2 = (3N + 9)d 2 + 2N d operations. Indeed, Class-Attention follows a similar outline with the following differences: in 2) we only have N d
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  Chapter 4 finally looks into the link between our previously introduced unmixing and the attention mechanism at the heart of Vision Transformers. As this link causes MIMO MSDA to behave intrinsically differently than on CNNs, we modify the architecture to accommodate it. Interestingly, the feature sharing between subnetworks this entails causes this new MIMO MSDA to be closer to standard regularizing MSDA. We have summarized our finding on the issue in a publication:

	• RAME Alexandre* (equal contribution), SUN Rémy* (equal contribu-
	tion), and CORD Matthieu. (2022) "MixMo: Mixing Multiple Inputs for
	Multiple Outputs via Deep Subnetworks", in International Conference
	on Computer Vision.
	• SUN Rémy, RAME Alexandre, MASSON Clément, THOME Nicolas
	and CORD Matthieu. (2022) "Towards efficient feature sharing in MIMO
	architectures", in CVPR 2022 workshop on efficient deep learning for
	computer vision.
	two
	publications:

• SUN Rémy, MASSON Clément, HENAFF Gilles, THOME Nicolas. and CORD Matthieu (2021) "Semantic Augmentation by Mixing Contents for Semi-Supervised Learning". Submitted as a research article to Pattern Recognition; presented as a short paper at NeurIPS 2020 workshop on Self-Supervised Learning. • SUN Rémy, MASSON Clément, HENAFF Gilles, THOME Nicolas and CORD Matthieu. (2022) "Swapping Semantic Contents for Mixing Images", in International Conference on Pattern Recognition (Oral). • MSDA samples as compressed representations for MIMO training Taking a step back from the issue of what class the mixed sample should be, we observe that mixed samples contain information from two distinct samples in Chapter 3. As such, the notion of between-class samples and soft labels simply hides a more complex optimization problem. We leverage this vision of MSDA to generalize the recent Multi-Input Multi-Output (Havasi et al. 2021) pseudo-ensembling framework. We then introduce an unmixing mechanism to help feature sharing between the subnetworks induced by MIMO MSDA. The contributions in this chapter have concluded in • MIMO MSDA, unmixing and attention • SUN Rémy, MASSON Clément, THOME Nicolas and CORD Matthieu. (2022) "Adapting Multi-Input Multi-Output schemes to Vision Transformers", submitted to NeurIPS 2022, in CVPR 2022 workshop on transformers and attention.

Table 1 .

 1 1 gives a summary of the publications developed during this thesis.

	Publication	Chapter reference
	SUN Rémy, MASSON Clément, HENAFF Gilles, THOME Nicolas. and CORD	
	Matthieu (2021) "Semantic Augmentation by Mixing Contents for	
	Semi-Supervised Learning". Submitted as a research article to Pattern	2
	Recognition; presented as a short paper at NeurIPS 2020 workshop on	
	Self-Supervised Learning.	
	SUN Rémy, MASSON Clément, HENAFF Gilles, THOME Nicolas and CORD	
	Matthieu. (2022) "Swapping Semantic Contents for Mixing Images", in	2
	International Conference on Pattern Recognition (Oral).	
	RAME Alexandre* (equal contribution), SUN Rémy* (equal contribution), and CORD Matthieu.	
	(2022) "MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks",	3
	in International Conference on Computer Vision.	
	SUN Rémy, RAME Alexandre, MASSON Clément, THOME Nicolas and CORD	
	Matthieu. (2022) "Towards efficient feature sharing in MIMO architectures",	3
	in CVPR 2022 workshop on efficient deep learning for computer vision.	

SUN Rémy, MASSON Clément, THOME Nicolas and CORD Matthieu. (2022) 4 "Adapting Multi-Input Multi-Output schemes to Vision Transformers", submitted to ICLR 2023, in CVPR 2022 workshop on transformers and attention.
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.1. -Table of publications and thesis chapters.

Table 2 .

 2 2. -Gains from using SciMix. Mixing samples with SciMix as a data augmentation improves the performance of Mean Teacher and FixMatch.

Significant accuracy (%) gains are observed on CIFAR10 (with 100, 250 and 500 labels) and SVHN (with 60 and 100 labels).

Table 2

 2 We compare the classifier trained with only Mean Teacher, trained with the generator but no hybrids, trained with generator and then with hybrids, and finally of a new classifier trained with the hybrids. Although they were evaluated on different settings, we show results for both SAMOSA and SciMix.

.3. -Ablation on the gains from in-class MSDA.

  Table 2.4. -Comparison of SAMOSA and SciMix in mostly comparable conditions on the Mean Teacher backbone.

			CIFAR10	
		250		500	
		SAMOSA	SciMix	SAMOSA	SciMix
	Mean Teacher	57.7 ± 4.0 63.1 ± 0.9 69.6 ± 1.4	72 ± 3
	In-class MSDA w/ Mean Teacher 60.4 ± 0.3 68.0 ± 1 75.7 ± 3.4 77.2 ± 0.5
	Gains	+2.7	+4.9	+6.1	+5.2

Table 2 .6. -Comparison of SciMix with other MSDA on very few labels.

 2 

Table 2 .

 2 7. -

Impact of SciMix data augmentation for the CUB-200 dataset

  

at resolutions 64 × 64 and 96 × 96.

  • RAME Alexandre* (equal contribution), SUN Rémy* (equal contribution), and CORD Matthieu. (2022) "MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks", in International Conference on Computer Vision.

• SUN Rémy, RAME Alexandre, MASSON Clément, THOME Nicolas and CORD Matthieu. (2022) "Towards efficient feature sharing in MIMO architectures", in CVPR 2022 workshop on efficient deep learning for computer vision.

  . Cut-MixMo reaches (85.40% Top1, 0.535 NLL c ) on CIFAR-100 with b=4: it surpasses our Linear-MixMo (83.08%, 0.656) and MIMO (83.06%, 0.661). Cut-MixMo sets a new state of the art when

	Dataset			CIFAR-100	CIFAR-10
	Approach	Time Tr./Inf.	Top1 %, ↑	Top5 %, ↑	NLL c 10 -2 , ↓	Top1 %, ↑	NLL c 10 -2 , ↓
	Vanilla		81.63 95.49	73.9	96.34	12.6
	Mixup		83.44 95.92	65.7	97.07	11.2
	Manifold Mixup † CutMix	1/1	81.96 95.51 84.05 96.09	73.4 64.8	97.45 97.23	12.2 9.9
	ResizeMix †		84.31	-	-	97.60	-
	Puzzle-Mix †	2/1	84.31 96.46	66.8	-	-
	GradAug † + CutMix †	3/1	84.14 96.43 85.51 96.86	--	--	--
	Mixup BA †	7/1	84.30	-	-	97.80	-
	DE (2 Nets) + CutMix	2/2	83.17 96.37 85.74 96.82	66.4 57.1	96.67 97.52	11.1 8.6
	MIMO		82.40 95.78	68.8	96.38	12.1
	Linear-MixMo + CutMix	2/1	82.54 95.99 84.69 97.12	67.6 57.2	96.56 97.32	11.4 9.4
	Cut-MixMo		84.38 96.94	56.3	97.31	8.9
	+ CutMix		85.18 97.20	54.5	97.45	8.4
	MIMO		83.06 96.23	66.1	96.74	11.4
	Linear-MixMo + CutMix	4/1	83.08 96.26 85.47 97.04	65.6 55.8	96.91 97.68	10.8 8.7
	Cut-MixMo		85.40 97.22	53.5	97.51	8.1
	+ CutMix		85.77 97.42	52.4	97.73	7.9
	combined with CutMix (85.77%, 0.524). Results remain strong when b=2: Cut-
	MixMo (84.38%, 0.563) proves better on its own than traditional DE (Lakshmi-
	narayanan et al. 2017), and MSDAs like MixUps (H. Zhang et al. 2018; Verma et
	al. 2019a) or the stronger CutMix variant (Y. Yang and Soatto 2019). On CIFAR-10,
	we see similar trends: Cut-MixMo reaches 0.081 in NLL c , 0.079 with CutMix. Yet,
	the costlier batch augmented Mixup BA (Hoffer et al. 2020) edges it out in Top1.

Table 3.1. -Main results: WRN-28-10 on CIFAR. Bold highlights best scores, † marks approaches not re-implemented.
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.2. -Robustness comparison on CIFAR-100-c.

  Mapproach MixUp Hor. Concat. Vert. Concat. PatchUp 2D FMix CowMask CutMix

	Top1 ↑	82.5	82.78	84.00	84.16	83.76	84.17	84.38
	NLL c ↓	0.676	0.627	0.573	0.581	0.602	0.561	0.563

Table 3.3. -Influence of the MSDA used in the mixing block M.

Table 3

 3 

.5. -Results on Tiny ImageNet (PreActResNet-18-w).

of MixViT against similarly sized transformer results reported in the literature. to

  Table 4.5. -Comparison dispense with it (Z. Liu et al. 2021), but the procedure remains widely used in the literature (Z. Zhang et al. 2022; W. Wang et al. 2021). As such, MixViT's ability to provide strong performance with no batch augmentation could strongly simplify training schemes.

		Models	# Params	CIFAR100	CIFAR10	TinyImageNet ImageNet-100
				Accuracy (%) Accuracy (%) Accuracy (%)	Accuracy (%)
		Reported results (from [.])			
	Dytox ((Douillard et al. 2022), joint training)	10M	76.0	-	-	79.1
	CvT-7/4 ((Hassani et al. 2021))	3M	73.0	92.6	-	-
	CCT-7/3x1 ((Hassani et al. 2021))	4M	77.1	94.8	-	-
	DeiT-T (Touvron et al. 2021a) ((Z. Zhang et al. 2022))	5M	67.5	88.4	-	-
	PVT-T (W. Wang et al. 2021) ((Z. Zhang et al. 2022))	13M	69.6	90.5	-	-
	CaiT-XXS-24 (Touvron et al. 2021b) ((S. H. Lee et al. 2021))	9M	76.9	94.9	64.4	-
	SL-CaiT-XXS-24 ((S. H. Lee et al. 2021))	9M	80.3	95.8	67.1	-
	CvT-13 (Wu et al. 2021) ((Y. Liu et al. 2021))	20M	73.5	89.0	-	85.6
	CvT-13 + L DrLoc ((Y. Liu et al. 2021))	20M	74.5	90.3	-	86.1
			Our experiments			
	Best	MixViT-embedding	12/26M	82.4 ± 0.1	96.5 ± 0.2	69.4 ± 0.1	89.7 ± 0.3
	Backbone	MixViT-encoding	12/26M	82.1 ± 0.1	96.5 ± 0.2	70.9 ± 0.2	89.3 ± 0.2

Table 4 .
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	Importance of source attribution	
	Late source embedding	×1.1	82.4 ± 0.1
	Late source encoding	×1.1	82.1 ± 0.1
	No source attribution	×1.1	81.5 ± 0.2
	Early input source embedding	×2	82.2 ± 0.2
	Early source encoding	×2	82.2 ± 0.2
	Inference scheme	
	Separate inference	×1.1	82.4 ± 0.1
	Sum inference	×1	81.9 ± 0.1
	Alternating inference	×1	82.0 ± 0.4
	Single subnetwork inference	×1	82.0 ± 0.2
	Mixing scheme		
	Binarized CutMix	×1.1	82.4 ± 0.1
	All tokens	×2	81.5 ± 0.2

6. -Ablation on the importance of MixViT design choices. Default settings are highlighted in grey for reference.

Table A .

 A Table A.1. -General structure of E c . 2. -General structure of E r .

	append i x		
	A.1.1.2 Main modules	
		Layer		Details	Output shape
		Input		Preprocessed image x	× 32 × 32
		Conv2d		16 filters, 3 × 3 kernels, pad 1	× 32 × 32
		WideResBlock		32 filters, 3 × 3 kernels, pad 1	× 32 × 32
		WideResBlock		32 filters, 3 × 3 kernels, pad 1	× 32 × 32
		WideResBlock		32 filters, 3 × 3 kernels, pad 1	× 32 × 32
		WideResBlock		32 filters, 3 × 3 kernels, pad 1	× 32 × 32
		WideResBlock 64 filters, 3 × 3 kernels, pad 1, stride 2 × 16 × 16
		WideResBlock		64 filters, 3 × 3 kernels, pad 1	× 16 × 16
		WideResBlock		64 filters, 3 × 3 kernels, pad 1	× 16 × 16
		WideResBlock		64 filters, 3 × 3 kernels, pad 1	× 16 × 16
		WideResBlock 128 filters, 3 × 3 kernels, pad 1, stride 2 × 8 × 8
		WideResBlock		128 filters, 3 × 3 kernels, pad 1	× 8 × 8
		WideResBlock		128 filters, 3 × 3 kernels, pad 1	× 8 × 8
		WideResBlock		128 filters, 3 × 3 kernels, pad 1	× 8 × 8
		Layer		Details	Output shape
		Input Conv2d	Preprocessed image x 16 filters, 3 × 3 kernels, pad 1 Table A.4. -General structure of C.	× 32 × 32 × 32 × 32
		WideResBlock		32 filters, 3 × 3 kernels, pad 1	× 32 × 32
	WideResBlock A.1.1.3 Building blocks	32 filters, 3 × 3 kernels, pad 1	× 32 × 32
		WideResBlock		32 filters, 3 × 3 kernels, pad 1	× 32 × 32
	Layer	WideResBlock WideResBlock 64 filters, 3 × 3 kernels, pad 1, stride 2 × 16 × 16 × 32 × 32 32 filters, 3 × 3 kernels, pad 1 Details	Output shape
	Input	WideResBlock		64 filters, 3 × 3 kernels, pad 1 Preprocessed image x	× 16 × 16
		WideResBlock		64 filters, 3 × 3 kernels, pad 1	× 16 × 16
		WideResBlock		64 filters, 3 × 3 kernels, pad 1	× 16 × 16
		WideResBlock 128 filters, 3 × 3 kernels, pad 1, stride 2 × 8 × 8
		WideResBlock		128 filters, 3 × 3 kernels, pad 1	× 8 × 8
		WideResBlock		128 filters, 3 × 3 kernels, pad 1	× 8 × 8
		WideResBlock		128 filters, 3 × 3 kernels, pad 1	× 8 × 8
		Flatten		C × H × W → CHW
		Linear		64 units
		Softmax		

  Table A.7, Table A.8, Table A.9, Table A.10 and Table A.11 the detailed make up of the neural networks used in this paper. Linear 10 units, primary output, takes z c as input 10Linear 10 units, stability output, takes z c as input 10 Table A.7. -General structure of C.

	Layer	Details	Output shape
	Input	Semantic features z c	128 × 8 × 8

  Table A.15. -Comparison of various losses to leverage hybrids in L SciM ix (Section 2.4.2) on SVHN 60 labels.

	Method	Accuracy
	Baseline	48.7 ± 23.0
	L labeled	29.9 ± 17.6
	L pseudo-label 62.8 ± 5.4
	L consistency	77.8 ± 4.8
	L contradict	83.4 ± 0.4

  We argued in Section 3.3.3 that MixMo better leverages additional parameters in wider networks. Concretely, a larger proportion of filters in large networksMethodWidth t a = 0.2 t a = 0.3 t a = 0.4 t a = 0.5

		2	98.9	98.8	97.8	93.3
		3	97.3	96.4	93.2	87.5
		4	96.5	95.2	91.2	81.6
	Vanilla	5	95.1	91.7	85.7	73.3
		7	92.6	88.2	81.0	69.5
		10	87.8	80.4	71.5	57.3
		14	83.9	74.0	61.6	46.8
		2	99.2	99.0	97.8	95.3
		3	98.7	98.5	97.2	93.4
		4	98.1	97.4	94.0	87.3
	CutMix	5	97.0	96.1	90.7	80.6
		7	95.8	94.0	86.2	74.6
		10	93.5	88.4	81.3	67.0
		14	89.4	81.9	70.3	50.9
		2	100.0	100.0	99.4	97.3
		3	99.8	99.8	99.7	98.7
		4	99.7	99.7	99.6	98.7
	Cut-MixMo	5	99.3	99.3	98.9	97.4
		7	98.9	98.8	98.0	95.2
		10	98.5	98.2	96.8	92.4
		14	97.5	96.3	93.1	82.6

Table A.16. -Proportion (%) of active filters in core network vs. width w for a WRN-28-w on CIFAR 100 and different activity thresholds t a .

  Top1 76.44 78.06 79.16 80.81 75.82 76.36 75.66 75.17 76.98 76.11 NLL c 0.921 0.815 0.776 0.695 0.841 0.824 0.824 0.846 0.7661 0.798

	Width Approach	1-Net	2-Nets	Linear-MixMo Cut-MixMo 2-Cut-MixMos
	w	CutMix	-	-	-	-	-
	2						
		# params	1.48M	2.95M		1.49M	2.99M
		Top1	77.95 80.70 80.85 83.14 78.51 80.74 79.81 79.85 80.78 81.20
	3	NLL c	0.862 0.750 0.738 0.644 0.760 0.696 0.693 0.702 0.635 0.650
		# params	3.31M	6.62M		3.33M	6.66M
		Top1	78.84 81.55 81.48 83.93 80.43 81.66 81.68 81.69 82.57 82.58
	4	NLL c	0.824 0.711 0.711 0.609 0.712 0.656 0.646 0.635 0.590 0.588
		# params	5.87M	11.74M		5.89M	11.79M
		Top1	79.75 82.55 82.18 84.60 80.95 83.06 83.11 83.34 83.97 84.31
	5	NLL c	0.813 0.686 0.693 0.596 0.703 0.617 0.598 0.591 0.549 0.546
		# params	9.16M	18.32M		9.19M	18.39M
		Top1	81.14 83.71 82.94 85.52 82.4	84.51 84.32 84.94 85.50 85.90
	7	NLL c	0.764 0.648 0.673 0.573 0.675 0.581 0.562 0.543 0.516 0.498
		# params	17.92M	35.85M		17.97M	35.94M
		Top1	81.63 84.05 83.17 85.74 83.08 85.47 85.40 85.77 86.04 86.63
	10	NLL c	0.750 0.644 0.668 0.571 0.656 0.558 0.535 0.524 0.494 0.479
		# params	36.53M	73.07M		36.60M	73.21M
		Top1	82.01 84.31 83.47 85.80 83.79 86.05 85.76 86.19 86.58 87.11
	14	NLL c	0.730 0.645 0.656 0.569 0.648 0.545 0.527 0.518 0.488 0.473
		# params	71.55M	143.1M		71.64M	143.28M

Table A .

 A 17. -Summary: WRN-28-w on CIFAR-100. b = 4.

L S can correspond to any classifier training framework (e.g. supervised training, FixMatch (Sohn et al. 2020)). In semi-supervised experiments, we use Mean Teacher (Tarvainen and Valpola 2017) as a simple classifier guide in order to leverage SSL datasets.

Different setting from (Berthelot et al. 2019) for fast training.

https://github.com/google/edward2/

Following https://github.com/ildoonet/cutmix

https://github.com/google-research/augmix/blob/master/cifar.py

384-dimensional tokens using M linear embedding layers e i (one for each input).

Corresponding tokens (at the same position in the two images) are then mixed into one common set of tokens (either through sums [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF] or other mixing schemes (Rame et al. 2021)). The core network (feature blocks + classification blocks) then processes this representation until a final attended classification token is obtained. M dense layers {d i } 0≤i<M -one for each subnetwork -then yield M predictions from this attended classification. At test time, M predictions can be obtained for one image by embedding the image patches with the M linear embeddings and summing the sets of embedded patch tokens.

In the seminal MIMO framework, we mix the embedded tokens by simply summing them. The CutMix-based MixMo formulation interpolates between the tokens following either a randomly drawn square mask with ratio λ ∼ β(α, α), or a linear scheme (similar to summing).

MIMO frameworks do not translate well to transformers

Lines (2) and (3) in Table 4.1 show our direct transpositions of the seminal MIMO and MixMo frameworks do not outperform their single-input singleoutput ConViT backbone (line (1)): both frameworks fail to even reach the same performance. While the subnetworks still provide meaningful gains when ensembled, the individual performance of the subnetworks is very poor which brings down the overall accuracy. Applying the same solution as in MixShare does not seem to address the issue here as we study in Section A.7.2.

We posit that transformers have difficulty encoding multiple inputs within the same patch token. Indeed, we find spreading the inputs across separate tokens solves the problem. More precisely, instead of mixing the patch tokens of the inputs, we only keep the patch tokens relevant to one of the subnetworks and extract the corresponding predictions. By performing separate evaluations -one for each subnetwork -we can recover predictions from each subnetwork. Table 4.1's line (4) shows performing inference in this way on the models trained in line (3) significantly improves performance. Furthermore, the model outperforms the A p p e n d i x

A A P P E N D I X

In this Appendix, we offer additional material to contextualize the work presented in this thesis. We start with an inventory of the experimental settings (Section A.1) and pseudo-code algorithms (Section A.2) for the five papers presented in this thesis. Afterwards, we give additional details and material for SAMOSA in Section A.3, SciMix in Section A.4, MixMo in Section A.5, MixShare in Section A.6 and MixViT in Section A.7.

A.1 Experimental details

We outline experimental details for SAMOSA in Section A.1.1, SciMix in Section A.1.2, MixMo in Section A.1.3, MixShare in Section A.1.4 and MixViT in Section A.1.5.

A.1.1 Experimental details for SAMOSA experiments

Implementation was coded in python3 using the pytorch framework, parameters follow their default pytorch value unless specified otherwise. The code base was largely adapted from https://github.com/ThomasRobertFr/hybridnet for the Mean Teacher implementation and general code backbone, MixMatch implementation was adapted almost directly from https://github.com/YU1ut/ MixMatch-pytorch (with some modifications to follow [START_REF] Berthelot | MixMatch: A Holistic Approach to Semi-Supervised Learning[END_REF]) more closely).

For contractual reasons it is not possible to provide the experimental code, but code snippets can be provided on demand to illustrate the more important parts of the algorithm and experimental setting. 

SVHN dataset

The SVHN dataset [START_REF] Netzer | Reading digits in natural images with unsupervised feature learning[END_REF]) is comprised of 32 × 32 RGB images of street numbers (divided along ten classes: one per digit). Available samples are split between 73257 training samples and 26032 test images.

Samples are randomly flipped horizontally (only for CIFAR10) and shifted by up to 4 pixels both horizontally and vertically with reflect padding. The resulting augmented samples are then standardized channel-wise according to train set statistics. No holdout validation set is kept for either dataset but hyper-parameters are mostly directly adapted from [START_REF] Robert | HybridNet: Classification and Reconstruction Cooperation for Semi-Supervised Learning[END_REF][START_REF] Sohn | Fix-Match: Simplifying Semi-Supervised Learning with Consistency and Confidence[END_REF].

A.1.2.2 Generator training

We train the generator architecture following the procedure described in Section 2.4.1, using a Mean Teacher loss L S to train the classifier of the model. For each setting (eg CIFAR10 100 labels) we train one seeded generator to be used for data augmentation experiments. Most hyperparameters are shared across experimental settings. When parameters differ across settings, we detail the 5 values as CIFAR 10 100/250/500 / SVHN 60/100. The autoencoder modules E c , E r , C, D and G are trained on a single gpu using a SGD optimizer with weight decay 5e -4, Nesterov momentum 0.9 and cosine learning rate (base 0.1/0.1/0.1/0.2/0.2 learning rate) for 300 epochs over the unlabeled samples (the rate is set to fully decrease over 350 epochs), consistency targets are optimized with weight λ cons = 300, with batches of 60 labeled samples and 196 unlabeled samples (similarly to [START_REF] Robert | HybridNet: Classification and Reconstruction Cooperation for Semi-Supervised Learning[END_REF]).

Consistency is actually optimized following the dual head trick used in [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF] where the classifier outputs two different decision y preds and y cons . y cons is optimized to reconstruct the EMA target's y EM A preds (weight λ cons = 300), and y preds is tied to reconstruct y cons (weight λ logitdist = 0.01). This limits the need for precise scheduling of consistency weights by having a "buffer" prediction head. The EMA model is updated with decay 0.97 (following a linear start for early iterations).

To simplify notations in the main paper, loss coefficients are kept implicit. In this section, we will simply write out the corresponding hyperparameters λ term (eg λ S for L S ). For all main experiments -excluding model analysis experiments -in the paper, the hyperparameters considered are the same: λ recons = 1, λ adv,r = 0.5, λ S = 1, λ + hyb,class = 0.5, λ + hyb,cont = 0.5, λ - hyb,class = 0.05, λ - hyb,cont = 0.05, λ adv,h = 0.5. More precisely, we only start optimizing L + hyb,cont and L - hyb,cont after epoch 50 since residual networks (like E r ) tend to start close to the identity function.

A.1.2.3 Training a classifier with SciMix data augmentation

We train the generator architecture following the procedure described in Section 2.4.2 to train a new classifier model f from scratch. Using a pretrained generator (one per setting), we generate hybrids to train a new model. Accuracy results are obtained from an EMA average of the classifier model following [START_REF] Berthelot | MixMatch: A Holistic Approach to Semi-Supervised Learning[END_REF]. Most hyperparameters are shared across experimental settings. When parameters differ across settings, we detail the 5 values as CIFAR10 100/250/500 / SVHN 60/100.

Mean Teacher

The classifier f is trained on a single gpu using a SGD optimizer with weight decay 5e -4, Nesterov momentum 0.9 and cosine learning rate (base 0.1/0.1/0.1/0.2/0.2 learning rate) for 300 epochs over the unlabeled samples (the rate is set to fully decrease over 350 epochs) during training, consistency targets are optimized with weight λ cons = 300, with batches of 60 labeled samples and 196 unlabeled samples (similarly to [START_REF] Robert | HybridNet: Classification and Reconstruction Cooperation for Semi-Supervised Learning[END_REF].

Consistency is actually optimized following the dual head trick used in (Tarvainen and Valpola 2017) where the classifier outputs two different decision y preds and y cons . y cons is optimized to reconstruct the EMA target's y EM A preds (weight For Tiny ImageNet, we adapt PreActResNet-18-w, with w ∈ {1, 2, 3} times more filters. We re-use the hyper-parameters from Puzzle-Mix (J.-H. [START_REF] Kim | Puzzle mix: Exploiting saliency and local statistics for optimal mixup[END_REF]). The optimizer is SGD with learning rate of 0.2 b , batch size 100, decay rate 0.1 at steps {600, 900}, 1200 epochs maximum, weight decay 1e-4. Our experiments ran on a single NVIDIA 12Go-TITAN X Pascal GPU. All results without a † were obtained with these training configurations. We will soon release our code and pre-trained models to facilitate reproducibility.

Batch repetition increases performances at the cost of longer training, which may be discouraging for some practitioners. Thus in addition to b = 4 as in MIMO (havasi2020raining), we often consider the quicker b = 2. Note that most of our concurrent approaches also increase training time: DE (Lakshminarayanan et al. 

A.1.5 Experimental details for MixViT experiments

We give here a detailed inventory of hyperparameters and training procedure used in this paper. For contractual reasons, it is not possible to provide the codebase used in this paper, but we provide indications below.

Our experiments were run through a codebase implemented using the PyTorch [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF]) library. Our codebase built upon the public official implementation of MixMo (https://github.com/alexrame/mixmo-pytorch) and adapted components from multiple public codebases: The MixMo codebase should provide everything necessary to train multi-input multi-output networks. The main adaptation that must be made is the addition of the transformer networks and specific MixViT routines in the transformer networks.

All our experiments were run three times on three fixed seeds from the same codebase. Quantitative results are given in the form of mean ± std over the three runs.

Computational resources

We used approximately 5000 GPU hours in this work on a nation-wide cluster, with access to the cluster granted for a set number of GPU hours on the basis of a grant application. The cluster provides V100 GPUs with Intel Cascade Lake 6248 CPUs. Most experiments ran on a single GPU, with the ImageNet-100 being run on 4 GPUs at once.

FLOPS estimations

We provide an estimate of the relative number of FLOPS used by different methods in Table 4.1 and Table 4.6. This number is traditionally computed for pytorch models on a theoretical basis by standardized libraries like ptflops or fvcore. These libraries however do not support custom attention layers and are therefore un-usable for our purposes.

A.2 Pseudo-code algorithms

We provide here pseudo code for important components of SAMOSA in Section A.2.1, SciMix in Section A.2.2, MixMo in Section A.2.3, MixShare in Section A.2.4 and MixViT in Section A.2.5. 

A.2.1 Pseudo-code for the SAMOSA framework

Optimization step for L SAM OSA ( B) end for end for Algorithm A.3 Algorithm for the hybridization procedure. Require:

A.2.2 Pseudo-code for the SciMix framework

We provide here an outline in Pseudo Code of the SciMix framework. Algorithm A.4 shows the hybridization procedure while Algorithm A.5 shows how the data augmentation is leveraged to improve upon pre-existing frameworks.

Algorithm A. 4 Algorithm for the hybridization procedure. 

Require:

Sample 1 M a rectangular binary mask with average 

A.3 Additional experiments and material for SAMOSA

We provide the following additional experiments and material for MixShare:

• In Section A.3.1, we show the sort of hybrids SAMOSA generates with MixMatch as backbone.

• In Section A.3.2, we look into how well SAMOSA separates components in hybrids.

• In Section A.3.3, discusses how much semantic information remains in dedicated "non-semantic" latent z r .

A.3.1 Qualitative Study: Hybrids with MixMatch as a backbone We show in Figure A.1 hybrids generated by the method when combined Mix-Match. Interestingly, the MixMatch based variant is more aggressive in combining samples (the background in particular) while still preserving the outline of the relevant semantic content. This can be attributed to interplay between the MixUp times of FixMatch and MixMatch, the generative modules do not adapt well to their training settings. SciMix's use of an auxiliary classifier solves this problem for the most part: we always use a Mean Teacher algorithm to train the generative model. While this means we essentially use a weaker model to teach a stronger model on the FixMatch backbone, experimental results suggest the hybrids still provide useful regularization. Interestingly, as the auxiliary classifier still benefits from the reconstruction/hybridization process, it provides stronger performance than a standard Mean Teacher algorithm. On another note, we could have trained the auxiliary classifier with a FixMatch algorithm on very shortened schedule as our goal is not to get the best possible performance out of the auxiliary classifier. append i x

A.5.2 Generalization to M > 2 heads

We have mostly discussed our MixMo framework with M = 2 subnetworks. For better readability, we referred to the mixing ratios κ and 1 -κ with κ ∼ Beta(α, α). It's equivalent to a more generic formulation (κ 0 , κ 1 ) ∈ Dir 2 (α) from a symmetric Dirichlet distribution with concentration parameter α. This leads to the alternate

Now generalization to the general case M ≥ 2 is straightforward. We draw a tuple {κ i } 0≤i<M ∼ Dir M (α) and optimize the training loss:

where the new weighting naturally follows:

The remaining point is the generalization of the mixing block M, that relies on the existence of MSDA methods for M > 2 inputs. The linear interpolation can be easily expanded as in Mixup:

where l i = c i (x i ). However, extensions for other masking MSDAs have only recently started to emerge (J. Kim et al. 2021). For example, CutMix is not trivially generalizable to M > 2, as the patches could overlap and hide important semantic components. In our experiments, a soft extension of Cut-MixMo performs best: it first linearly interpolates M -1 inputs and then patches a region from the M -th:

where 1 M is a rectangle of area ratio κ k and k sampled uniformly in {0, 1, . . . , M -1}. However, it has been less successful than M = 2, as only two subnetworks can fit independently in standard parameterization regimes. Future work could design new framework components, such as specific mixing blocks, to tackle these limits.

append i x

A.6 Additional experiments and material for MixShare

We provide the following additional experiments and material for MixShare:

• In Section A.6.1, we provide additional details regarding the adjustments necessary to implement the MixShare framework.

• In Section A.6.2, we discuss the kernel initialization at more length.

• In Section A.6.3, show how the features in the core network influence each of the subnetworks.

A.6.1 Complementary adjustments to MIMO procedures in MixShare

MIMO methods use a number of auxiliary procedures to train strong subnetworks. However, as MixShare differs significantly from standard MIMO frameworks, it does not use these frameworks to the same extent.

CutMix probability in the input block MixMo (Rame et al. 2021) only uses cutmix mixing in its input block about half the time, using a basic summing operation on the two encoded inputs the rest of the time. This is because the model will use a summing operation at test time. Therefore, the use of cutmix at training induces an strong train/test gap that needs to be bridged by the use of summing during training.

We cannot afford to use summing half the time as unmixing relies on the use of cutmix in the input block. However, since our two encoders are very similar (due to our kernel alignment), cutmix and summing (or averaging) behave very similarly and the train/test gap is therefore minimal.

Input Repetition A slight train/test gap still remains however since the model is rarely presented the same image as input to both subnetworks at training time. We solve this by reprising a procedure introduced in the seminal MIMO paper [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF]): input repetition. In our case, we ensure 10% of inputs of our batches are made of repetition of the same image during training.

Loss rebalancing MixMo (Rame et al. 2021) introduced a re-weighting function of the subnetwork training losses that rescales the mixing ratios used in the inputs block. These ratios are rescaled to be less lopsided (closer to an even 50/50

A.7 Additional experiments and material for MixViT

We provide the following additional experiments and material for MixViT:

• In Section A.7.1, we provide additional figures for Section 4.3.1.

• In Section A.7.2, we discuss how initialization scheme would interact with MIMO formulations of ViTs, and how it relates to MixViT's mechanisms.

• In Section A.7.3, we provide further notes on the overhead incurred by MixViT.

• In Section A.7.4, we provide additional comparison of MixViT with MixViT on the CIFAR-100 dataset (which is much harder for vision transformers and CNNs). 

A.7.2 On encoder initialization and MixViT

In Section 4.3.1, we observe ViTs have trouble accommodating traditional MIMO techniques like the seminal MIMO [START_REF] Havasi | Training independent subnetworks for robust prediction[END_REF] and MixMo (Rame et al. 2021) frameworks. We find performing two parallel forwards at inference seems While the exact source of this behavior is not clear, the main difference between MIMO ViTs and MIMO CNNs seems to be that ViT subnetworks seem to naturally share features. This feature sharing in itself can likely be explained by the similarity between the unmixing mechanism we develop for MIMO CNNs in Section 3.4 and the way the attention mechanism selectively aggregates information from the patch tokens into the class token. Interestingly, we observe in MixShare that such feature sharing strongly deteriorates model performance unless the input encoders are initialized to the same value. One might therefore reasonably assume reprising this initialization scheme could offer a simpler solution to the issue of MIMO ViTs.

We verify in Table A.18 that -unlike in MixShare -initializing the patch embedding layers e 0 and e 1 (see Figure A.9b) to the same value does not solve the issue on its own. As such, the core problem is different than the one observed in MixShare and we do need to perform separate inference on MIMO and MixViT Vision Transformers.

It is worth noting however both source attribution in MixViT and encoder initialization in MixShare help the model rely on a largely shared feature representation: they both use a common encoder and add some subnetwork specific information. In MixViT, this directly follows from the definition of source attribution where we add a source attributed embedding or encoding to the general token representation.

The same thing arguably happens when using two different encoders initialized to the same value like in MixShare so long as the encoders weights remain close through training. Indeed, the linear weights (linear convolution kernels in CNNs) W 0 and W 1 can be decomposed as W 0 = W + W r 0 and W 1 = W + W r 1 with (for instance)

. If W 0 and W 1 are close, then the encoders can be thought to apply the same core weight W with the addition of smaller contributions from weights W r 0 and W r 1 . This approach is append i x operations (similarity to the class token), in 3) we only compute one attended representation for cost N d, in 4) we only compute the projection for one token at cost d 2 and in step 5) we only apply the MLP to one token for 8d 2 operations.

If we throw out the terms linear in d (as it is usually the largest term by far), Class-Attention therefore costs 3N +9 13N × as many operations as Self-Attention layer. Note that -to the best of our knowledge -N = 64 at the least in the literature, so this ratio is closer at a maximum 0.25×.

Tighter approximation of MixViT's inference overhead

We can now revise the very pessimistic approximation given Section 4.3.3.2 provided the estimations that Class-Attention costs at most 0.25× as many computations as Self-Attention. One forward evaluation of MixViT costs approximately L+0.5M L+0.5 × as many operations with this. For our modified ConViT, this indicates a ratio of only 1.1×.