
HAL Id: tel-03952815
https://hal.science/tel-03952815v1

Submitted on 23 Jan 2023 (v1), last revised 6 Feb 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Content combination strategies for Image Classification
Rémy Sun

To cite this version:
Rémy Sun. Content combination strategies for Image Classification. Computer Science [cs]. Sorbonne
Universite, 2022. English. �NNT : �. �tel-03952815v1�

https://hal.science/tel-03952815v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE SORBONNE UNIVERSITÉ
Spécialité Informatique

École Doctorale Informatique, Télécommunications et Électronique (Paris)

Content combination strategies for Image Classification
Stratégies de combinaison de contenus pour la classification d’images

Présentée par
Rémy Sun

Dirigée par
Pr. Matthieu CORD et Pr. Nicolas THOME

Pour obtenir le grade de
DOCTEUR de SORBONNE UNIVERSITÉ

Présentée et soutenue publiquement le 17/10/2022

Devant le jury composé de :

Pr. Frédéric Precioso Rapporteur
Professeur, Université Côte d’Azur

Pr. Céline Hudelot Rapportrice
Professeur, Centrale-Supéléc

Pr. Elisa Fromont Examinatrice
Professeur, Université Rennes 1

Pr. Catherine Achard Examinatrice
Professeur, Sorbonne Univsersité

Dr. Hervé Jégou Examinateur
Directeur, Research Scientist, Meta, FAIR

Pr. Matthieu Cord Directeur de thèse
Professeur, Sorbonne Université

Pr. Nicolas Thome Co-Directeur de thèse
Professeur, Sorbonne Université

M. Clément Masson Encadrant (Invité)
Research engineer

Rémy Sun: Content Combination Strategies for Image Classification., © 2022

C O N T E N T S

contents iii
list of figures v
list of tables vii
remerciements ix
abstract i
résumé iii
acronyms v
common notation conventions vii
1 introduction 1

1 .1 Learning to classify images with neural networks 2

1 .2 Thesis Focus: Mixing Samples Data augmentations 7

1 .3 Positioning . 8

1 .4 Summary table of publications . 11

2 in-class mixing samples data augmentations 13

2 .1 Introduction . 13

2 .2 Related Work . 16

2 .3 SAMOSA: Adding non-semantic variations to an image 22

2 .4 SciMix: Embedding semantic content into other contexts 31

2 .5 Results . 36

2 .6 Conclusion . 46

3 msda as compressed representations for mimo training 49

3 .1 Introduction . 49

3 .2 Related Work . 51

3 .3 MixMo: Multi-Input Multi-Output MSDA 53

3 .4 MixShare: Feature sharing between MIMO subnetworks 69

3 .5 Conclusion . 76

4 multi- input multi-output msda , unmixing and attention

mechanisms 79

4 .1 Introduction . 79

4 .2 Related Work . 80

4 .3 MixViT: A MIMO MSDA formulation of Vision Transformers . . . 83

4 .4 Results of the MixViT framework . 89

4 .5 Conclusion . 95

5 conclusion 97

5 .1 Main contributions . 97

5 .2 Perspectives . 99

iii

iv contents

bibliography 103

a appendix 117

a .1 Experimental details . 117

a .2 Pseudo-code algorithms . 133

a .3 Additional experiments and material for SAMOSA 139

a .4 Additional experiments and material for SciMix 144

a .5 Additional experiments and material for MixMo 148

a .6 Additional experiments and material for MixShare 156

a .7 Additional experiments and material for MixViT 159

L I S T O F F I G U R E S

Chapter 1: introduction 1

Figure 1.1 Illustration of Neural Networks. 3

Figure 1.2 Examples of layer functions. 4

Figure 1.3 Illustration of Mixing Sample Data Augmentations. 7

Chapter 2: in -class mixing samples data augmen -
tations 13

Figure 2.1 Illustration of hybrids yielded by standard MSDA and ours. 15

Figure 2.2 Overview of the Mean Teacher framework. 17

Figure 2.3 Overview of the FixMatch framework. 18

Figure 2.4 Overview of the AdaIN framework 20

Figure 2.5 Example of an Image-to-Image translation framework. . . 21

Figure 2.6 Illustration of the separation of contents in MSDA. 23

Figure 2.7 Overview of the SAMOSA framework. 24

Figure 2.8 Overview of the asymmetrical SAMOSA decoder. 26

Figure 2.9 Optimization of LSAMOSA in the modules. 27

Figure 2.10 Hybridization in SAMOSA. 28

Figure 2.11 Examples of hybrids obtained by SAMOSA. 30

Figure 2.12 Overview of the SciMix generator architecture. 33

Figure 2.13 Examples of SAMOSA hybrids. 41

Figure 2.14 Examples of SciMix hybrids. 41

Figure 2.15 SciMix hybrids on CUB-200. 45

Chapter 3: msda as compressed representations

for mimo training 49

Figure 3.1 Overview of the MIMO framework. 52

Figure 3.2 Overview of the MixMo framework. 54

Figure 3.3 Illustration of MixMo’s training scheme. 57

Figure 3.4 Influence of MixMo on network utilization. 58

Figure 3.5 Parameter efficiency of MixMo. 62

Figure 3.6 Ensemble effectiveness of MixMo. 63

Figure 3.7 Influence of training time on MixMo. 64

Figure 3.8 Influence of the mixing probability in MixMo. 65

Figure 3.9 Influence of the weighting function in MixMo. 66

Figure 3.10 MixMo performance for M ≥ 2 67

Figure 3.11 Influence of the feature maps for the subnetworks. 71

v

vi List of Figures

Figure 3.12 Usage of features by MixMo subnetworks. 72

Figure 3.13 Overview of the MixShare framework. 72

Figure 3.14 Usage of features by MixMo subnetworks with unmixing. 73

Chapter 4: multi- input multi -output msda , unmix -
ing and attention mechanisms 79

Figure 4.1 Overview of the seminal ViT framework. 82

Figure 4.2 Overview of MIMO architectures. 83

Figure 4.3 Overview of our MixViT framework. 87

Figure 4.4 Influence of batch augmentations on MixViT. 92

Chapter 5: conclusion 97

Appendix A: appendix 117

Figure A.1 Examples of SAMOSA hybrids with MixMatch. 139

Figure A.2 Hybrids for MNIST-M in SAMOSA. 142

Figure A.3 Additional SciMix hybrids on SVHN. 147

Figure A.4 Illustration of common MSDA procedures. 149

Figure A.5 Plots of the reweighting operation. 151

Figure A.6 Ensemble effectiveness with CutMix in MixMo. 153

Figure A.7 α trade-off in MixMo. 155

Figure A.8 Influence of feature maps in the core network. 157

Figure A.9 Transposition of traditional MIMO architectures to vision
transformers. 159

L I S T O F TA B L E S

Table 1.1 Table of publications and thesis chapters. 11

Chapter 2: in -class mixing samples data augmen -
tations 13

Table 2.1 Gains from using SAMOSA on CIFAR10. 37

Table 2.2 Gains from using SciMix. 39

Table 2.3 Ablation on the gains from in-class MSDA. 42

Table 2.4 Quantitative comparison of SAMOSA and SciMix 43

Table 2.5 Transfer rates of semantic and non-semantic contents. . . . 44

Table 2.6 Comparison of SciMix with other MSDA on very few labels. 44

Table 2.7 Gains from using SciMix on CUB-200 45

Chapter 3: msda as compressed representations

for mimo training 49

Table 3.1 Performance of the MixMo framework on CIFAR-10 and 100. 61

Table 3.2 Robustness comparison on CIFAR-100-c. 63

Table 3.3 Influence of the MSDA used in the mixing block. 65

Table 3.4 Importance of the encoder/decoders in MixMo. 66

Table 3.5 MixMo performance on Tiny ImageNet 68

Table 3.6 Performance of MixShare. 74

Chapter 4: multi- input multi -output msda , unmix -
ing and attention mechanisms 79

Table 4.1 Performance of MIMO formulations of ViTs. 85

Table 4.2 Gains from using MixViT. 91

Table 4.3 Comparison of MixViT and MixMo. 91

Table 4.4 CIFAR-100 accuracy with MSDA/BA. 92

Table 4.5 Comparison of MixViT against SOTA ViT performances. . 93

Table 4.6 Ablation on MixViT design choices. 94

Appendix A: appendix 117

Table A.1 General structure of Ec in SAMOSA. 120

Table A.2 General structure of Er in SAMOSA. 120

Table A.3 General structure of D in SAMOSA. 121

Table A.4 General structure of C in SAMOSA. 121

Table A.5 WideResBlock of F filters ands stride s. 121

Table A.6 DeconvBlock of F filters ands stride s. 122

vii

viii List of Tables

Table A.7 General structure of C in SciMix. 124

Table A.8 General structure of Ec in SciMix. 125

Table A.9 General structure of Er in SciMix. 125

Table A.10 General structure of G in SciMix. 125

Table A.11 General structure of D in SciMix. 126

Table A.12 Accuracy at the end of training for MixMo experiments. . 128

Table A.13 Component separation in SAMOSA. 141

Table A.14 Comparison of various architectural variants of SciMix . . 145

Table A.15 Comparison of various losses in SciMix data augmentation. 147

Table A.16 Proportion (%) of active filters in MixMo networks. 152

Table A.17 Summary table of split advantanges in MixMo. 154

Table A.18 Impact of initialization when transposing MIMO trans-
formers. 160

Table A.19 Comparison between MixMo and MixViT on CIFAR-100. . 162

R E M E R C I E M E N T S

Il me reste le souvenir d’un matin à la cafétéria de l’ISTIC avec Luc Bougé où,
sans doute exaspéré par une autre de mes interminables tergiversations, il m’a
donné l’un des plus précieux conseils de ma vie. Les années et les expériences
m’auront malheureusement soutiré l’exacte formulation, mais je permettrai de
relater ici ce que j’en ai retiré: la recherche - comme la vie - s’écrit de jour en
jour, au fil des hasards, des idées, des coïncidences, des succès, des imprévus, des
tribulations, des opportunités, des convictions. Et au travers des personnalités
dont on a la chance de croiser le chemin.

J’aimerais - avant de commencer en bonne et dûe forme - prendre le temps de
remercier les personnes qui m’ont permis d’aboutir à l’écriture de ce manuscrit.

Je remercie avant toute chose mon directeur de thèse Matthieu Cord, et mon co-
directeur de thèse Nicolas Thome. Matthieu, je te remercie pour m’avoir accueilli
dans ton équipe, accompagné dans mes travaux, et accommodé dans mes excen-
tricités en ces temps troublés. Si j’ai pu conduire cette thèse en toute tranquillité
d’esprit, c’est grâce à ton accessibilité et ta bienveillance. J’ai beaucoup grandi
à ton contact et par ton exemple, aussi bien scientifiquement qu’humainement.
Comme tu le sais bien, il m’est facile de me perdre dans mes investigations mais
je pense avoir au moins appris à le reconnaître et surveiller après 3 ans. Nicolas,
je te suis profondément reconnaissant pour ton importante contribution dans les
travaux de cette thèse, et ton infatigable aplomb. J’ai - moi-même et mes travaux -
grandement bénéficié de tes nombreux questionnements et remarques. Et à vous
deux, j’ai toujours pris à coeur vos réserves et critiques, même si j’ai pu sembler
obtus par moments.

Mes remerciements vont aussi à Thales. Par Thales, je pense certes à la so-
ciété qui m’a financé durant ces travaux, mais surtout aux personnes que j’ai
pu côtoyé ces trois dernières années. D’abord, Clément pour m’avoir suivi au
jour le jour, gardé attentif dans mes raisonnements et avoir toujours su se rendre
disponible quand j’en ai eu besoin. Gilles aussi, pour son suivi et pour m’avoir
fourni l’opportunité de discuter de mes travaux au sein de l’entreprise. Mes col-
lègues doctorants au service François, Thomas et Thomas avec qui j’ai pu échanger
et commisérer. Et bien sûr les collègues qui m’ont écouté parler d’apprentissage
machine et échangé une plaisanterie ou deux au déjeuner même s’ils sont trop
nombreux pour tous être cités.

Je remercie le jury pour l’intérêt porté à mes travaux, et au temps consacré à
l’examen de mes travaux au milieu de leurs nombreuses obligations. Je souhaite

ix

x remerciements

en particulier témoigner de ma reconnaissance à Frédéric Precioso et Céline Hude-
lot qui ont accepté de prendre le temps de rapporter ce (long) manuscrit. Je re-
mercie aussi vivement les examinateurs Hervé Jégou, Elisa Fromont et Catherine
Achard qui ont accepté d’examiner cette thèse.

Je tiens à remercier également les “chordettes”, les autres doctorants de Matthieu
(alphabétiquement !). Alexandre, avec qui j’aurai pas mal réfléchi. Antoine, tou-
jours affable et plaisant. Arthur, souvent prêt à offrir son aide. Asya, dont l’anglais
natif a parfois été bien utile. Corentin, pour les discussions et les indications.
Fabio, qui a apporté un bout d’Italie à Jussieu. Guillaume, pour ses manipulations
d’images qui m’ont toujours intéréssé. Hugo, et son expertise sur les transform-
ers. Mostafa, pour sa bonne humeur. Rémi, parce qu’il sait ce qu’est un montage
10-20. Yifu, pour sa présence rassurante durant mes premiers mois de thèse. Et
les doctorants de Nicolas aussi. Charles, avec qui je devrais retourner chez Xu.
Laura, qui a une oreille attentive. Olivier, pour son aide avec l’infrastructure du
CNAM. Thuy, pour sa gentillesse. Vincent, qui m’a fait découvrir des techniques
intéressantes. Je profite de l’occasion pour remercier les équipes scientifiques et
administratives, au CNAM et surtout dans l’équipe MLIA à Jussieu. L’équipe
MLIA m’a fourni un excellent environnement durant cette thèse. C’est aussi bien
le fait de l’implication des permanents, du service informatique (que j’ai parfois
dû embêter plus que de raison), et des nombreux doctorants (trop nombreux pour
en faire l’inventaire) de tous horizons.

Enfin, je souhaite remercier mes professeurs de l’Ecole Normale Supérieure
de Rennes à qui je dois aussi beaucoup. Luc Bougé, qui m’a accompagné à une
période de ma vie où je ne savais pas vraiment où aller. David Pichardie, qui
s’est toujours montré encourageant dans mes démarches. Hervé Jégou, même
s’il n’a jamais été mon professeur, dont les conseils inestimables m’ont permis de
construire mon projet et mon parcours. Aussi, David Cachera, Martin Quinson, So-
phie Pinchinat et François Schwarzentruber qui m’ont appris bien des leçons sur
l’enseignement et la méthodologie. Comprises des années plus tard certes, mais
comprises tout de même. Je remercie aussi mes directeurs de stage de recherche:
François Coste qui m’a fait découvrir l’apprentissage machine alors que je voulais
faire de la bio-informatique, Christoph Lampert qui m’a fait comprendre ce qu’est
la recherche en apprentissage, et Michel Besserve qui m’a pour la première fois
forcé à vraiment réfléchir à ce qu’est un “bon mécanisme”.

A M A FA M I L L E

A ma petite soeur, qui m’a souvent mis la pression avec ses nombreux talents
et sa lubie de me croire bien plus malin que je ne le suis réellement. A ma
grand-mère pour qui ce manuscrit arrive 16 ans trop tard, qui m’aura décidément
remplit la tête d’idées saugrenues. Et à mes parents qui ont fait les sacrifices
nécessaires pour me soutenir et m’encourager dans mes choix tout au long de ma
vie. Et si je ne l’ai jamais dit, je le sais, que j’ai eu beaucoup de chance de toujours
pouvoir poser mes questions les plus étranges à la maison.

xi

A B S T R A C T

In this thesis, we tackle the question of deep image classification, a fundamental
issue for computer vision and visual understanding in general. Faced with neural
networks’ need for large training datasets, we look into the common practice of
engineering new examples to augment the dataset. We take this as an opportunity
to teach neural algorithms to reconcile information mixed from different samples
with Mixing Sample Data Augmentation so as to better understand the problem.
To this end, we study both how to edit the content in a mixed image, and what
the model should predict for the mixed images.

We first propose a new type of data augmentation that helps model generalize
by embedding the semantic content of samples into the non-semantic context of
other samples to generate in-class mixed samples. To this end, we design new
neural architectures capable of generating such mixed samples, and then show
the resulting mixed inputs help train stronger classifiers in a semi-supervised
setting where few labeled samples are available.

In a second part, we show input mixing can be used as an input compression
method to train multiple subnetworks in a base network from compressed inputs.
Indeed, by formalizing the seminal multi-input multi-output (MIMO) framework
as a mixing data augmentation and changing the underlying mixing mechanisms,
we obtain strong improvements of over standard models and MIMO models.
Furthermore, we shine a light on these models’ tendency to train subnetworks
that share no features and propose a solution by leveraging knowledge on the
underlying input mixing.

Finally, we adapt this MIMO technique to the emerging Vision Transformer
(ViT) models. Our work shows ViTs present unique challenges for MIMO training,
but that they are also uniquely suited for it. We leverage ViTs’ unique token based
representations to introduce a source attribution mechanism that allows us to only
train subnetworks in the last layers of the model. This causes the subnetworks
to train a very strong shared feature extracting base while still being somewhat
diverse and beneficial to model performance.

i

R É S U M É

Dans cette thèse, nous nous attaquons au problème de la classification d’images,
un problème fondamental pour la vision par ordinateur et le raisonnement visuel
en général. Face la quantité énorme de données nécessaires pour entrainer des
réseaux profonds, nous nous intéressons aux différentes façons d’augmenter ar-
tificiellement la taille du jeu de données. Plus précisément, nous mettons cette
technique à profit pour apprendre au algorithmes neuronaux à réconcilier l’infor-
mation mixée à partir de différents exemples par le biais des augmentation de
données mixantes afin de mieux comprendre le problème sous-jacent. A cette fin,
nous étudions à la fois comment éditer le contenu mixé dans un exemple mixte
et ce qu’un modèle devrait prédire sur une telle image.

Nous proposons d’abord un nouveau type d’augmentation qui aide le modèle
à généraliser en incrustant le contenu sémantique d’un exemples dans le contexte
non-sémantique d’un autre pour générer des exemples mixtes appartenant à une
unique classe. Pour ce faire, nous proposons de nouvelles architectures permettant
de générer de tels exemples, et montrons ensuite comment ces exemples mixtes
aident à entraîner de meilleures classificateurs dans un contexte semi-supervisé.

Dans un second temps, nous montrons que le mixage d’image peut être utilisé
comme un schéma de compression d’entrées permettant d’entraîner de multiples
sous-réseaux au sein d’un réseau de base. En effet, en formalisant la méthode
séminal “multi-input multi-output” (MIMO) comme un schéma d’augmentation
de données par mixage d’images et en changeant le mécanisme de mixage sous-
jacent nous obtenons des gains en performance par rapports au modèles clas-
siques. De plus, nous mettons en lumière la tendance de ces modèles à entraîner
des sous-réseaux ne partageant aucune feature et proposons une solution exploi-
tant notre compréhension de mécanisme de mixage des entrées en jeu dans ces
méthodes.

Finalement, nous adaptons ces derniers modèles MIMO aux récents modèles
Vision Transformer. Nos travaux montrent que ces nouvelles architectures pré-
sentent leurs propres uniques incompatibilités avec l’entraînement MIMO, mais
qu’elles y sont aussi extrêmement adaptées à d’autres égards. Nous tirons avan-
tage de la représentation par tokens des ViTs pour introduire un nouveau mé-
canisme d’attribution de source qui permet d’entrainer des sous-réseaux uni-
quement dans les dernières couches du modèle. Cela mène les sous-réseaux à
entraîner un tronc commun très robuste tout en conservant des sous réseaux
relativement diverses et bénéficie à la performance des modèles.

iii

A C R O N Y M S

AI Artificial Intelligence
MSDA Mixing Sample Data Augmentation
MIMO Multi-input Multi-output
CV Computer Vision
NLP Natural Language Processing
DA Data Augmentation
GPU Graphics Processing Unit
FC Fully Connected
ML Machine Learning
DL Deep Learning
MLP Multi-Layer Perceptron
CNN Convolutional Neural Network
ViT Vision Transformers
ReLU Rectified Linear Unit
BN Batch Normalization
MSE Mean-Squared Error
SGD Stochastic Gradient Descent
SGLD Stochastic Gradient Langevin Dynamic
SL Supervised Learning
SSL Semi-Supervised Learning
GAN Generative Adversarial Network
GAP Global Average Pooling
SA Self-Attention
CA Class-Attention
MHSA Multi-Head Self-Attention
GPSA Gated Positional Self-Attention

v

C O M M O N N O TAT I O N C O N V E N T I O N S

D A distribution or a dataset
x A model input, usually an image
y A label
z An internal latent variable
h Intermediate activation maps
f A classifier function, typically a neural network
d(.) Dense layer functions
c(.) Convolutional layer functions
θ Model parameters
R A risk
Ω A regularizer term
L An aggregated loss function over multiple samples
l A loss function on an individual instance
W Linear weights or convolutional kernels
b Bias terms
λ A ponderation coefficient or ratio
M A mask (for mixing)
1 An indicator function
M Number of inputs in MIMO frameworks
L Number layers
t A transformer token
� Hadamard product
∗ Convolutional product

vii

C
h

a
p

t
e

r

1
I N T R O D U C T I O N

Tomorrow owes you the sum of
your yesterdays. No more than that.
And no less.

Robin Hobb

Artificial Intelligence is a fashionable term to use in our day and age. One can
find it most everywhere: from the newspaper stand to the university library, the
morning radio to the evening entertainment, and - most importantly - from the
common everyday chatter to the daydreams of the collective unconscious. It is
after all easy to get lost in the many successes of Artificial intelligence. Already,
Go (Silver et al. 2016) and Chess (Silver et al. 2018) champions learn strategies
yet unheard of from neural network. New antibiotics are discovered (Stokes et
al. 2020) owing to recent advances. Tomorrow promises this and more. Better
automatic translation (Vaswani et al. 2017), more accurate film recommendations
(Töscher and Jahrer 2009), and even conversation partners (Shang et al. 2015) are
only a few examples of what the future might hold.

It is however important to keep in mind that this state of affairs is only the
results of a slow accretion decades in the making. This remains true even if we
were to discount earlier inventions such as Charles Babbage’s Analytical Engine
(Babbage 1982) in the 1800s, Kurt Gödel’s theoretical work (Gödel 1931) and
Alan Turing’s eponymous machine (Turing et al. 1936) under the pretext that
they pertain to Computer Science per se. Indeed, much work has been done
since the famed 1956 Dartmouth workshop that first coined the term of Artificial
Intelligence (McCarthy et al. 1956). We do not purport here to provide definitions
or history. Rather, we will say only this: the road from Dartmouth to today has
seen many different paradigms (Nilsson 1982; Jordan 1999; Devroye et al. 2013)
rule over the years, and the infamous “AI winters” researchers have had to push
through.

For all that statistical learning (Devroye et al. 2013) has become the dominant
paradigm in AI with the subfields of Machine Learning (Bishop 2006) and Deep
Learning (Goodfellow et al. 2016), much remains to be done. Beyond the many

1

2 introduction

ethical concerns (Gebru 2019) raised by neural networks, a lot of questions remain
open: Why do very large networks perform well? (Nakkiran et al. 2021) How
should we optimize networks? (Kingma and Ba 2014) What deep architecture
should we use? (He et al. 2016b; Vaswani et al. 2017) If Artificial Intelligence is to
hold its promises for tomorrow, we must tackle these issues today.

This thesis attempts to add a few points to the colossal sum that has been
tallying up ever since Dartmouth. Our work focuses on finding new techniques
to classify images with Deep Learning (and Machine Learning). As the neural
networks trained in Deep Learning are very reliant on the quality and quantity
of the training data, it is common practice to engineer new examples to augment
the dataset. We take this as an opportunity to teach neural algorithms to reconcile
information mixed from different samples so as to better understand the problem.
To this end, we study both how to edit the content in a mixed image, and what
the model should predict for the mixed images. After a brief introduction to clas-
sifying images with neural networks (Section 1.1), we offer an overview of current
Mixing Sample Data Augmentation (Section 1.2) and discuss our contributions
(Section 1.3).

1.1 Learning to classify images with neural networks

Classifying images as a general problem can simply be understood as an issue
of being able to associate any image x of a data distribution D (Devroye et al.
2013) with the corresponding label y (e.g. associating a picture of a dog with the
class “dog”). Formally, this is simply an issue of finding a mapping or function f

such that

∀(x, y) ∈ D, f(x) = y. (1.1)

The heart of the issue therefore lies in finding the right function for the data
distribution. Alas, covering the entire set of possible functions f is unrealistic and
would raise a number of additional issues beyond the computational considera-
tions.

Machine Learning often aims to seek the best solution f from among a re-
stricted and tractable set of functions (Bishop 2006). In fact, the common view is
to consider parameterized functions {fθ} as a family of possible functions, and
strive to find the best possible θ. The reader might note here that this introduces
an additional wrinkle: it is unlikely that a function fθ that perfectly matches all
images to their labels exists. If we add an additional criterion L that quantifies

1.1 learning to classify images with neural networks 3

Figure 1.1. – Illustration of Neural Networks. Neural Networks use successive
layer functions to extract more and more refined representations.

the gap between predictions and labels on the problem distribution, the goal
therefore becomes to find - if it exists - an optimal θ such that

arg min
θ
L({fθ(x), y}(x,y)∈D). (1.2)

In this thesis, we consider a family of parameterized functions commonly re-
ferred to as Neural Networks (Goodfellow et al. 2016). While there exist many
other good families of parameterized functions (e.g. Support Vector Machines
(Bishop 2006), Graphical models (Jordan 1999), Convex functions (Boyd et al.
2004), ...) for machine learning problems, Neural Networks have emerged in the
last decade as the most powerful solution for Image Classification (Szeliski 2022)
and present a number of interesting properties.

1.1.1 Neural networks

As per Goodfellow et al. 2016, Neural networks are typically built from multiple
successive layers (see Figure 1.1), each of which are themselves parameterized
functions hiθ. Therefore, the larger function fθ can be understood to be

fθ = h0θ ◦ h1θ ◦ · · · ◦ hL−1θ , (1.3)

with each layer hiθ performing fairly basic operations. For instance, as seen in
Figure 1.2a the historical dense layer dθ function with input size d and output size
d′ simply computes

dθ(x) = Wθx
T + bθ, (1.4)

where Wθ is a d′ × d matrix and b a d′-dimensional vector.

4 introduction

(a) Dense layer (b) Convolutional layer

Figure 1.2. – Examples of layer functions.

As such, the general idea in neural networks is the following: each layer is very
expressive (proven to be universal approximators for asymptotic sizes in Cybenko
1989), and each successive layer can build upon the representation given by its
predecessor. Deep neural networks are intrinsically hierarchical in the functions
they learn. They can afford to learn very low level notions in the first few layers,
with the last layers learning very complex patterns from the low level motifs
observed by the first few layers.

In practice, neural networks architectures are designed by hand and regarded
as hyper-parameters instead of function parameters that must be optimized. As
such, the default setting in Machine Learning is often that of a set neural archi-
tecture that defines a range of possible functions (Goodfellow et al. 2016). The
optimization process only seeks to find the optimal parameters for this fixed
architecture.

1.1.2 Example: Convolutional neural networks

It is perhaps easier to illustrate neural networks for computer vision on a
concrete family of architectures: Convolutional neural networks (CNN). They
have been for a number of years the gold standard architecture for Computer Vi-
sion, and remain competitive with the emerging Vision Transformer architectures
(Dosovitskiy et al. 2021). As Chapter 2 and Chapter 3 build upon Convolutional
architectures, we feel it is beneficial to provide a quick introduction here.

Convolutional neural networks (Goodfellow et al. 2016) mostly use two types
of parameterized neural network layers: dense layers (introduced earlier) for clas-
sification, and convolutional layers for feature extraction. Contrarily to dense
layers that operate on flat d-dimensional vectors, convolutional layers (see Fig-
ure 1.2b) for computer vision typically operate on spatial inputs with dimensions
C ×H ×W where H and W are spatial dimensions and C denotes a number of
parallel channels (e.g. the RGB channels in a standard image). Beyond this, con-

1.1 learning to classify images with neural networks 5

volutional layers are however fairly similar to dense layers and a convolutional
layer c can indeed be formalized in a fairly similar manner

cθ(x) = Wθ ∗ xT + bθ, (1.5)

where ∗ is the convolution (or more exactly, correlation) operation instead of a
matrix product operation. The most significant difference here - which goes hand
in hand with the ∗ operation - is that Wθ is a small C × C ′ ×K ×K convolution
kernel instead of a weight matrix for an input with C channels and output with
C ′ channels.

1.1.3 Supervised Learning

Given a family of parameterized functions - typically a neural network as
defined previously - we simply have to find the function that most closely matches
the distribution we want to approximate with the function. This therefore leaves
the question of how we can quantify the gap between the distribution and the
predictions given by the function.

Ideally, if we quantify the distance between a prediction ŷ and the true label y
with a cross-entropy function (Bishop 2006)

lCE(ŷ, y) = −
#Classes−1∑

i=0

yi log(ŷi), (1.6)

Supervised Machine Learning (Bishop 2006) aims to find fθ that minimizes the
expected value - or risk - of this distance over the entire distribution

R(D) = E(x,y)∈D[lCE(fθ(x), y)]. (1.7)

In practice, we are not able to access the full distribution D: if we were, we
would have no need to learn a function fθ! As such, we are typically limited to
training on a training dataset Dtrain and we seek a solution that minimizes the
empirical risk R̂train (Bishop 2006):

arg min
θ

1

#Dtrain

∑
(x,y)∈Dtrain

lθ(fθ(x), y). (1.8)

The most widely adopted way to solve this optimization problem with neu-
ral networks is to perform stochastic gradient descent (Goodfellow et al. 2016).
Gradient descent is an iterative procedure that slowly modifies the parameters

6 introduction

θ following the first order moment (gradient) of the empirical risk. Indeed, SGD
samples (mini-)batches B of #B images from the training dataset to compute a
loss objective over the batch

R̂θ(B) =
1

#B

∑
(x,y)∈B

lCE(fθ(x), y), (1.9)

such that we can update the parameters with a step - or learning rate - η:

θupdate = θ − η∂R̂θ(B)

∂θ
. (1.10)

1.1.4 Discussion

Most recent works have followed this general structure, and tend to focus on
improving some components. The following provides a brief inventory of the
most common lines of research.

Many neural architectures have been proposed over the years ranging from
Convolutional Neural Network variants (He et al. 2016b) to the recent Vision
Transformers (Vaswani et al. 2017). By designing and choosing different neural
networks, we modify the set of possible functions fθ that can possibly be chosen
by the algorithm. In practice, this is often the occasion to include or exclude
explicit biases in the type of content the functions should focus on.

The optimization process used to minimize the empirical risk is also often re-
evaluated with alternative schemes. These schemes can implement completely
new dynamics like Stochatstic Gradient Langevin Dynamics (Welling and Teh
2011) or simply adapt the learning rate of SGD like Adam (Kingma and Ba 2014).

Interestingly, the training objective itself is a very common target of research.
Beyond adding a number of regularizer terms (Krogh and Hertz 1991), the loss
function used to evaluate the performance of the model on the training set has also
been modified (Szegedy et al. 2016) a number of times. In fact, even the Empirical
Risk Minimization paradigm sees some opposition in the form of Invariant Risk
Minimization (Arjovsky et al. 2019) variants.

In any case, minimizing the empirical risk instead of the true risk means we
have to hope the training data can properly represent the distribution D. As such,
the quality of this training set or distribution Dtrain is of paramount importance.
In practice, this can only be the case with very large training datasets which are
rare and very expensive to curate. While there exist limited training settings like
semi-supervised learning (Chapelle et al. 2006) that seek to alleviate the need for
very large and expensive training datasets, techniques have also emerged over the

1.2 thesis focus : mixing samples data augmentations 7

Figure 1.3. – Illustration of Mixing Sample Data Augmentations. MSDA com-
bine contents from multiple images (e.g. a dog and a fox) to create
new training data.

years to directly inflate the size of the training dataset (Perez and J. Wang 2017).
This thesis studies this problem in particular.

1.2 Thesis Focus: Mixing Samples Data augmenta-
tions

Deep neural networks therefore work by modeling the training distribution
they are fed. This requires the training distribution to be representative of the
general application data, which is typically a difficult proposition as discussed
above.

It is therefore mandatory to artificially augment the size of the training dataset
through a variety of procedures often referenced under the common umbrella
of Data Augmentation (Perez and J. Wang 2017; Gontijo-Lopes et al. 2021). Data
Augmentation seeks to generate “new” training samples by perturbing samples
and training the models to generalize to those perturbed samples. This proce-
dure is however typically limited as modifying one sample too much introduces
perturbations on the label of the new artificial samples that we cannot predict.

Mixing Sample Data Augmentation (MSDA) creates new samples (Figure 1.3)
by combining characteristics from two or more images (H. Zhang et al. 2018; Y.
Yang and Soatto 2019). This presents two advantages: the generated samples can
be much more different from samples in the training set, and we have an idea of
the perturbation induced on the label of one sample. As such, MSDA allows for
a much more thorough augmentation of the available training data.

8 introduction

For instance, the seminal MSDA technique - MixUp (H. Zhang et al. 2018) -
expands the training set to the convex hull of the training data. MixUp generates
a new mixed labeled sample (x̂, ŷ) from two images (x0, y0) and (x1, y1) (see
Equation 1.11 and Equation 1.12) following a mixing ratio λ ∼ β(α, α):

x̂ = λx0 + (1− λ)x1, (1.11)

with soft in-between class label

ŷ = λy0 + (1− λ)y1. (1.12)

MixUp - or interpolation - based mixing augmentations are typically thought
to help regularize the model by introducing noise on the samples (Carratino et al.
2020).

Another family of diversity inducing MSDA was introduced by the CutMix
Augmentation (Y. Yang and Soatto 2019). Colloquially, CutMix extracts a square
patch from one of the inputs (x1 or x2) and pastes it onto the other input. Formally,
we draw a binary mask M such that a square of values on the mask is set to 1

and the rest to 0, such that

x̂ =M� x0 + (1−M)� x1. (1.13)

Similarly to MixUp, CutMix follows a mixing ratio λ ∼ β(α, α). In CutMix, the
mixing ratio dictates the area of the square mask used for mixing (ie,Avg(M) = λ).
Interestingly, it must be noted that this wider mask formalism also applies to
MixUp withM = λ1H×W .

1.3 Positioning

This thesis was funded by Thales Land and Air Systems and Association Na-
tionale de la Recherche et de la Technologie (ANRT) in the context of a CIFRE
PhD. Thales Land and Air Systems builds electrical systems for aerospace, de-
fense, transport and security. As part of its operations, the company’s product
must often work with a limited number of labeled samples for some objects that
are either new or rarely appear. As such, it is especially important for Thales to
find ways to inflate the size of its datasets. In particular, combining the contents
of these rare images with other images could be particularly useful in a context
like semi-supervised learning.

Mixing Samples Data Augmentations have the very peculiar characteristic of
using soft labels ŷ instead of hard labels. More precisely, MSDA samples contain

1.3 positioning 9

information from multiple samples: they are between-class samples instead of
true in-distribution samples. At first blush, soft labels are an elegant way to
reflect this state of affairs, and bring some additional regularizing benefits like
label smoothing (Szegedy et al. 2016).

In this thesis, we examine the issue of in-between MSDA samples and soft labels
more closely to better understand the underlying mechanisms. Our work does
not aim to invalidate the current paradigm, but instead explores possible avenues
opened by challenging the use of in-between class mixed samples with soft labels.
To the best of our knowledge, this question has been left mostly unexplored in
the literature. We explore this problem along three main directions:

• In-class MSDA samples We first consider in Chapter 2 how in-class mixed
samples could be obtained and leveraged to train stronger classifiers in dif-
ficult training scenarios. While some works in the literature have attempted
to mix samples from the same class such that the mixed samples remain
within a single class, we study a new paradigm that transposes the semantic
content of one sample into the non-semantic context of another sample. To
this end, we introduce generative frameworks that allow us to generate such
mixed samples and then verify that these augmented samples can be lever-
aged to improve the performance of models in semi-supervised settings.
The work here has led to two publications:

• SUN Rémy, MASSON Clément, HENAFF Gilles, THOME Nicolas. and
CORD Matthieu (2021) “Semantic Augmentation by Mixing Contents
for Semi-Supervised Learning”. Submitted as a research article to Pat-
tern Recognition; presented as a short paper at NeurIPS 2020 workshop
on Self-Supervised Learning.

• SUN Rémy, MASSON Clément, HENAFF Gilles, THOME Nicolas and
CORD Matthieu. (2022) “Swapping Semantic Contents for Mixing Im-
ages”, in International Conference on Pattern Recognition (Oral).

• MSDA samples as compressed representations for MIMO training Tak-
ing a step back from the issue of what class the mixed sample should be,
we observe that mixed samples contain information from two distinct sam-
ples in Chapter 3. As such, the notion of between-class samples and soft
labels simply hides a more complex optimization problem. We leverage this
vision of MSDA to generalize the recent Multi-Input Multi-Output (Havasi
et al. 2021) pseudo-ensembling framework. We then introduce an unmix-
ing mechanism to help feature sharing between the subnetworks induced
by MIMO MSDA. The contributions in this chapter have concluded in two
publications:

10 introduction

• RAME Alexandre* (equal contribution), SUN Rémy* (equal contribu-
tion), and CORD Matthieu. (2022) “MixMo: Mixing Multiple Inputs for
Multiple Outputs via Deep Subnetworks”, in International Conference
on Computer Vision.

• SUN Rémy, RAME Alexandre, MASSON Clément, THOME Nicolas
and CORD Matthieu. (2022) “Towards efficient feature sharing in MIMO
architectures”, in CVPR 2022 workshop on efficient deep learning for
computer vision.

• MIMO MSDA, unmixing and attention Chapter 4 finally looks into the link
between our previously introduced unmixing and the attention mechanism
at the heart of Vision Transformers. As this link causes MIMO MSDA to
behave intrinsically differently than on CNNs, we modify the architecture to
accommodate it. Interestingly, the feature sharing between subnetworks this
entails causes this new MIMO MSDA to be closer to standard regularizing
MSDA. We have summarized our finding on the issue in a publication:

• SUN Rémy, MASSON Clément, THOME Nicolas and CORD Matthieu.
(2022) “Adapting Multi-Input Multi-Output schemes to Vision Trans-
formers”, submitted to ICLR 2023, in CVPR 2022 workshop on trans-
formers and attention.

1.4 summary table of publications 11

1.4 Summary table of publications

Table 1.1 gives a summary of the publications developed during this thesis.

Publication Chapter reference

SUN Rémy, MASSON Clément, HENAFF Gilles, THOME Nicolas. and CORD

2

Matthieu (2021) “Semantic Augmentation by Mixing Contents for
Semi-Supervised Learning”. Submitted as a research article to Pattern
Recognition; presented as a short paper at NeurIPS 2020 workshop on

Self-Supervised Learning.

SUN Rémy, MASSON Clément, HENAFF Gilles, THOME Nicolas and CORD
2Matthieu. (2022) “Swapping Semantic Contents for Mixing Images”, in

International Conference on Pattern Recognition (Oral).

RAME Alexandre* (equal contribution), SUN Rémy* (equal contribution), and CORD Matthieu.
3(2022) “MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks”,

in International Conference on Computer Vision.

SUN Rémy, RAME Alexandre, MASSON Clément, THOME Nicolas and CORD
3Matthieu. (2022) “Towards efficient feature sharing in MIMO architectures”,

in CVPR 2022 workshop on efficient deep learning for computer vision.

SUN Rémy, MASSON Clément, THOME Nicolas and CORD Matthieu. (2022)
4“Adapting Multi-Input Multi-Output schemes to Vision Transformers”, submitted

to ICLR 2023, in CVPR 2022 workshop on transformers and attention.

Table 1.1. – Table of publications and thesis chapters.

C
h

a
p

t
e

r

2
I N - C L A S S M I X I N G S A M P L E S D ATA
A U G M E N TAT I O N S

Contents
2 .1 Introduction . 13
2 .2 Related Work . 16

2 .2 .1 Semi-Supervised Learning . 16

2 .2 .2 Hybrid generation in the literature . 19

2 .2 .3 Positioning . 21

2 .3 SAMOSA: Adding non-semantic variations to an image 22
2 .3 .1 Overview of the SAMOSA framework 23

2 .3 .2 Adding a Non-Supervised Reconstruction Module 25

2 .3 .3 Learning Scheme . 27

2 .3 .4 Making use of the SAMOSA framework in Semi-Supervised Learning 29

2 .3 .5 Take-aways from the SAMOSA project 29

2 .4 SciMix: Embedding semantic content into other contexts 31
2 .4 .1 Learning to generate hybrids . 32

2 .4 .2 Training a classifier by leveraging our Data Augmentation 35

2 .5 Results . 36
2 .5 .1 Performance improvements . 37

2 .5 .2 Improvements of SciMix over SAMOSA 39

2 .5 .3 Further analysis of SciMix results . 43

2 .5 .4 Pushing SciMix on CUB-200 . 45

2 .6 Conclusion . 46

2.1 Introduction

Mixing samples data augmentations combine contents from multiple images
to improve the performance of neural networks. The artificial hybrids created by
traditional MSDA techniques are however clearly not natural images, which can
also be observed from the soft targets used to train models on those samples.

13

14 in -class mixing samples data augmentations

MSDA techniques traditionally mix contents from source images indiscrimi-
nately, and therefore incorporate semantic content from both. This is the core
reason the generated images are out of the target distribution and use non-binary
labels: the hybrids literally contain some semantic content from the first image’s
class and some from the other’s. There are benefits to this, and MixUp-based
(H. Zhang et al. 2018) mixing techniques at the least have been proven to act as
noisy regularizers (Carratino et al. 2020; Thulasidasan et al. 2019). Nevertheless,
the fact remains that these MSDA do not truly extend the support of the training
distribution as is the purview of standard data augmentation.

In this chapter, we explore the idea of generating mixed samples that inherit
semantic content from only one of their parents, and take other non-semantic
characteristics from their other parent. As the ultimate goal here is to improve
networks for a given classification task, we define “semantic” with regard to the
information used by a classifier trained on the problem. This has the distinct
benefit of directly teaching models a measure of generalization: by showing a
similar semantic content with different non-semantic attributes, we help the model
become invariant to the non-semantic content.

This type of augmentation is particularly useful in settings like semi-supervised
learning where we have access to a lot of training samples but few labels. Indeed,
the role of unlabeled images in semi-supervised learning is to regularize solutions
found by the classifier on the few labeled images available. As such, our mixing
paradigm very naturally fits into semi-supervised design philosophies and helps
regularize the model by teaching it to ignore some non-semantic characteristics.

To this end, we propose novel neural networks that take two images as inputs
and yield an artificial sample that integrates semantic content from one of the
sample with general non-semantic characteristics from the other sample from
the available (labeled and unlabeled) data as illustrated in Figure 2.1. We can
then use the trained generator to generate more artificial samples to train a semi-
supervised classifier.

Through the course of this thesis, we have proposed two different strategies to
identify and combine contents from multiple samples to improve the performance
of existing semi-supervised algorithms:

• SAMOSA In a first approach, we take the semantic parent sample as the
basis and add some non-semantic characteristics from the non-semantic
parent. We develop an autoencoder architecture that separates semantic
content from non-semantic content in an image before recombining them.
The autoencoder is trained to identify semantic and non-semantic contents
with no preconceptions other than sharing some features with a classifier,
and an asymmetric generator structure that uses one input to decide what to

2.1 introduction 15

Figure 2.1. – Illustration of typical hybrids obtained by standard mixing meth-
ods and our methods. Standard mixing augmentations mix contents
indiscriminately whereas our method mixes the semantic number
from one sample with the background information from another.

reconstruct and the other how to reconstruct. In this approach, we train the
generator alongside the classifier we seek to improve, thereby regularizing
the classifier.

• SciMix In a second approach, we propose a much stronger hybridizer that
embeds semantic content from one sample into the general (non-semantic)
context of the other sample. Here, we add explicit loss terms to guide hy-
bridization but still refrain from explicitly defining non-semantic content.
Contrarily to SAMOSA, we separate the generator and classifier by first train-
ing the generator, then using a fully trained generator to generate hybrids
on the fly as we train a semi-supervised classifier from scratch.

We first provide some context on Semi-Supervised Learning in Section 2.2.
We then discuss our proposed SAMOSA (Section 2.3) and SciMix (Section 2.4)
frameworks. Finally, we experimentally validate our methods in Section 2.5.

The work conducted in this chapter of this thesis has led to two publications:

• SUN Rémy, MASSON Clément, HENAFF Gilles, THOME Nicolas. and CORD
Matthieu (2021) “Semantic Augmentation by Mixing Contents for Semi-
Supervised Learning”. Submitted as a research article to Pattern Recognition;
presented as a short paper at NeurIPS 2020 workshop on Self-Supervised
Learning.

• SUN Rémy, MASSON Clément, HENAFF Gilles, THOME Nicolas and CORD
Matthieu. (2022) “Swapping Semantic Contents for Mixing Images”, in In-
ternational Conference on Pattern Recognition (Oral).

16 in -class mixing samples data augmentations

2.2 Related Work

This chapter tackles semi-supervised learning problems and develops gener-
ative models to generate our in-class hybrids. As such, the following provides
some context on those topics.

2.2.1 Semi-Supervised Learning

We first introduce the semi-supervised (Chapelle et al. 2006) problem before
providing a quick overview of the relevant literature. In semi-supervised learning,
the dataset D = Dl ∪ Du contains two sub-datasets: a labeled Dl dataset and an
unlabeled Du dataset. At the core of semi-supervised learning therefore lies the
question of how to find ways to leverage Du to extract information relevant to the
task of interest.

This has been achieved in a number of ways, ranging from generative modeling
(C. Li et al. 2017) to graph based methods (Iscen et al. 2019; Chapelle et al. 2006).
While generative models have mostly relied on unsupervised generative training
(C. Li et al. 2017), label propagation methods have been used in a number of
graph based methods to infer labels for unlabeled data (Iscen et al. 2019).

Recent advances in self-supervised learning are often hijacked for Semi Super-
vised Learning by jointly performing supervised training with labeled samples
and self-supervised learning on unlabeled samples (Zhai et al. 2019; B. Kim et al.
2021). While these methods currently hold the state-of-the-art on larger datasets
like ImageNet, the self-supervised objectives involved require a lot of unlabeled
data to train on. As such, semi-supervised learning on smaller datasets remains
the province of other more specialized semi-supervised frameworks.

Specialized semi-supervised frameworks have focused in recent years on two
techniques: consistency training (Tarvainen and Valpola 2017; Miyato et al. 2019;
Laine and Aila 2017; Luo et al. 2018) and pseudo-labeling (Iscen et al. 2019; Sohn
et al. 2020; Rizve et al. 2021). We illustrate these two families of techniques through
Mean Teacher and FixMatch, two well established semi-supervised methods.

2.2.1.1 Mean Teacher and consistency based methods

The Mean Teacher (Tarvainen and Valpola 2017) framework makes use of two
key components: a student network fθ (the one we want to train) and a teacher
network f̂θ. The Mean Teacher framework’s name stems from the fact this teacher
network is in fact an exponential moving average of the student network such
that f̂θ = EMA(fθ) = fEMA(θ).

2.2 related work 17

Figure 2.2. – Overview of the Mean Teacher framework. Figure from the seminal
paper (Tarvainen and Valpola 2017).

Given a teacher and student network, the Mean Teacher framework is a stan-
dard consistency based method that optimizes a consistency loss over unlabeled
samples

Lcons(Du) =
∑
x∈Du

‖f̂θ(x)− fθ(x)‖2, (2.1)

with the network optimizing the overall training loss

LMeanTeacher = LSup(Dl) + λLcons(Du), (2.2)

where λ is a trade-off term.

Mean Teacher (Tarvainen and Valpola 2017) constitutes a first significant mile-
stone for deep semi-supervised learning, cementing consistency based techniques
as a staple of the field after the early successes of Laine and Aila 2017. A large
number of consistency based methods have been developed following its success
(Robert et al. 2018; Verma et al. 2019b), and the Mean Teacher framework remained
a standard baseline for a number of years. More disruptive mixing data augmen-
tation techniques have proven effective for consistency based training (Berthelot
et al. 2019; Berthelot et al. 2020; Verma et al. 2019b) for a time. To this day, a
number of more preliminary exploration into semi-supervised learning for other
domains still largely adapt the Mean Teacher framework (e.g. Cross-Domain Ob-
ject Detection (Jinhong Deng et al. 2021), Medical Image Segmentation (K. Wang
et al. 2022), ...).

Mean Teacher and its affiliated consistency based methods have recently lost in
prominence with the advent of deep pseudo-labeled frameworks like FixMatch.

18 in -class mixing samples data augmentations

Figure 2.3. – Overview of the FixMatch framework. Figure from the seminal
paper (Sohn et al. 2020).

2.2.1.2 FixMatch and pseudo-labeling based methods

The FixMatch (Sohn et al. 2020) framework only uses one network - the one
we wish to train - and instead focuses on the data augmentations applied to
inputs. For one input x, FixMatch considers a weakly augmented version xweak
(i.e. kept close tot he original input x) and a strongly augmented version xstrong
(i.e. augmented with transformations of significant magnitude).

The core idea of FixMatch is to compute pseudo-labels from the weakly aug-
mented versions of the inputs and use those pseudo-labels to train the model
on the strongly augmented inputs. Formally, this means computing probabil-
ities pweak,x = fθ(x), converting them to pseudo-labels p̂x = 1(max pweak,x ≥
τ) argmax(pweak,x).

As far as the optimization goes, the framework minimizes a simple pseudo-
labeling loss on the unlabeled data

Lpseudo(Du) =
∑
x∈Du

lCE(f(xstrong), p̂x), (2.3)

with the network optimizing the overall training loss

LFixMatch = LSup(Dl) + λLpseudo(Du), (2.4)

where λ is a trade-off term.

FixMatch (Sohn et al. 2020) constitutes the current gold standard for semi-
supervised learning and semi-supervised pseudo labeling methods (Chapelle et
al. 2006; Iscen et al. 2019) in particular. While refinements to the FixMatch method
have since been proposed (J. Li et al. 2021; B. Zhang et al. 2021), these methods
most often rely heavily on the backbone set by FixMatch. Interestingly, FixMatch

2.2 related work 19

has started to replace Mean Teacher as the semi-supervised framework of choice
in more applied semi-supervised works (e.g. Object Detection (Y.-C. Liu et al.
2022), ...)

2.2.2 Hybrid generation in the literature

A number of different techniques might allow the generation of edited samples,
though few match our use case. For instance, while there is a large body of
work on disentangled generation (Higgins et al. 2017; Robert et al. 2019), it does
typically involve identifying the disentangled factors in an existing image. We
are first and foremost interested in generative processes that allow us to combine
contents from images. Here, we will discuss a few methods that do allow such
combinations like Style Transfer based methods and Image-to-Image translation
works.

2.2.2.1 AdaIN and style transfer

Style transfer seeks to modify an existing image to incorporate some “stylistic”
characteristics from another image (e.g. see an image in the style of a painting
(Gatys et al. 2016)). The core idea is to make use of a specific “perceptual” loss
that measures the distance between images at different representation levels in a
neural classifier: we can ask the image to be close to one image for some represen-
tation spaces and close to another in the remaining intermediate representations
(Gatys et al. 2016). Although the early techniques required computationally in-
tensive gradient ascent procedures, this particular type of transformation has
become more widespread with the advent of lightweight techniques like AdaIN
(X. Huang and Belongie 2017).

AdaIN trains a network to encode images into a latent space, manipulate the
latent space and decode the latent representation into a new image using a per-
ceptual loss that mirrors the latent modification. The heart of the techniques lies
in the peculiar manipulation of the latent space: when trying to generate an image
c in the style of an image s, we normalize “c”’s latent zc and replace the per-map
moments (mean µ and standard deviation σ) with those of the stylistic latent s to
obtain a hybrid latent zh:

zh = AdaIN(zc, zs) =
zc − µ(zc)

σ(zc)
� σ(zs) + µ(zs). (2.5)

At training, we go on to train the model to reconstruct an image close to c in
content and s in style according to the perceptual loss. This way, AdaIN can

20 in -class mixing samples data augmentations

Figure 2.4. – Overview of the AdaIN framework. Figure from the seminal paper
(X. Huang and Belongie 2017).

generate hybrids at a low cost at test time by simply swapping the moments of
the latent representation and retrieving the decoded image.

It is worth noting that AdaIN has had an enduring legacy beyond style trans-
fer as the map modulation mechanism it introduces is central to the StyleGAN
(Karras et al. 2019; Karras et al. 2020) family of generative networks. StyleGAN
networks learn to generate very complex images solely by modulating feature
maps at every layer of a Convolutional Neural Network that takes a constant vec-
tor as input. While StyleGAN networks do not combine multiple samples, they
have been used in recent advances in another hybridizing technique: Image-to-
Image translation.

2.2.2.2 (Unsupervised) image-to-image translation

Image-to-Image translation (Zhu et al. 2017) typically aims to transpose an
image from one domain into another domain (e.g. from day to night). Although
traditional approaches rely on knowing the domains of interest, unsupervised
Image-to-Image translation approaches simply attempt to translate one image
into the domain of another without explicit domain knowledge.

Interestingly, work on this matter regularly draws inspiration from advances
in style transfer. Bi-modal auto-encoding architectures appear fairly early on in
this field (M.-Y. Liu et al. 2017; X. Huang et al. 2018). More recent works in few-
shot translation (M.-Y. Liu et al. 2019) and unsupervised translation (Baek et al.
2021) have even started associating the domain (or class) information to a style
code fed as input to a StyleGan inspired decoder. On a more supervised note,
style based methods have been used to combine textures (domain information)

2.2 related work 21

Figure 2.5. – Example of a style based Image-to-Image translation framework.
Figure from the Swapping Auto-encoders paper (Park et al. 2020).

with structural information (image information) (Park et al. 2020) as shown on
Figure 2.5 thanks to StyleGAN’s peculiar structure.

2.2.3 Positioning

In this chapter, we propose a new type of mixing data augmentation that mixes
the semantic content of one sample with other non-semantic content for low label
settings like semi-supervised learning. We posit that such data augmentations
can help models learn invariance to some non-semantic variations, and that this
type of invariance is harder to learn in a semi-supervised setting.

As such, we aim here to generate hybrids that satisfy our requirements and
demonstrate their usefulness in a semi-supervised setting. Our goal is not to
replace any established semi-supervised algorithm, and the augmentations we
propose are deployed alongside standard semi-supervised algorithm. In fact, we
mainly evaluate the success of our contributions by the gains obtained by com-
bining our augmentations with a backbone method like Mean Teacher (Tarvainen
and Valpola 2017) or FixMatch (Sohn et al. 2020).

22 in -class mixing samples data augmentations

To generate the hybrids, we use an asymmetric decoder/generator that gives
different roles to its two inputs in the generative process. In SAMOSA, we design
an architecture that follows similar principles as AdaIN (X. Huang and Belongie
2017) and StyleGAN (Karras et al. 2020) with one of the inputs influencing how
the model generates from the other input. While the mechanism is similar, it
comports some differences in how the internal maps are chosen as it was devel-
oped independently. SciMix on the other hand directly makes use of StyleGANv2

(Karras et al. 2020) generator and adapts ideas from Swapping Auto-encoders
(Park et al. 2020).

Crucially, the generators we train are specifically designed to help train a clas-
sifier whereas the discussed methods focus entirely on generating new images.
Contrarily to those methods, the hybridization is mostly guided by semantic
information from a classifier (as opposed to specialized perceptual loss terms).

2.3 SAMOSA: Adding non-semantic variations to
an image

Our final goal here is to generate in-class hybrids that mix contents from two
samples that inherit semantic content from one parent and non-semantic content
from another as shown in Figure 2.6. The underlying idea behind these mixed
samples is that such samples can decline the semantic content of the available
samples in different non-semantic context given by the large unlabeled set we
have in problems like semi-supervised learning.

Our SAMOSA framework can mix the contents of two inputs such that the
mixed sample retains most of one sample’s semantic content, but integrates some
non-semantic characteristic from the other. To this end, SAMOSA learns to sep-
arate and identify semantic content from non-semantic content in images, and
how to re-combine the extracted representations to create plausible hybrids (e.g.
Figure 2.6b).

The main challenge when performing such mixing lies in this proper separa-
tion of semantic and non-semantic content. SAMOSA introduces a novel neural
architecture that separates input information into semantic information useful to
a classifier, and auxiliary information necessary for reconstruction. Furthermore,
our SAMOSA framework leverages its novel asymmetrical decoder (inspired by
work in generative modeling and edition (X. Huang and Belongie 2017; Karras
et al. 2019)) to mix any two extracted semantic and non-semantic content. Fig-
ure 2.6b shows how SAMOSA combines a bird picture with color tones from a
plane picture.

2.3 samosa : adding non -semantic variations to an image 23

(a) Classic MSDA creates between-
class hybrids.

(b) SAMOSA instead creates in-class
hybrids.

Figure 2.6. – Content combination in classic MSDA and ours. While classical
mixing combines all content (i.e. semantic ”S” + non-semantic “NS”)
from both parents, SAMOSA mixes semantic content (“S”) from one
parent and non semantic content (“NS”) from the other.

The main contributions we seek with SAMOSA are therefore twofold:

• Create a generative framework that allows the creation of hybrids such that
the mixed sample inherits the semantic content of one parent sample and
non-semantic characteristics of the other.

• Offer a first proof of concept regarding the usefulness of this new mixing
paradigm for semi-supervised learning by combining it with well known
semi-supervised algorithms.

2.3.1 Overview of the SAMOSA framework

We detail in this section our proposed SAMOSA Framework. After a brief
overview of the general framework, we give a detailed account of our novel asym-
metrical decoder in Sec. 2.3.2 and detail SAMOSA’s atypical learning scheme in
Sec. 2.3.3. Finally, we discuss how our SAMOSA framework can be used in a SSL
setting in Sec. 2.3.4.

First and foremost, we introduce in this paper a novel architecture presented
in Figure 2.7. It is composed of two encoders Ec and Er (one semantic - with

24 in -class mixing samples data augmentations

Figure 2.7. – Overview of the SAMOSA framework. zc and zr are extracted from
input x. zc alone is used to classify the input (to optimize the base
L0,X loss). x̂ (which reconstructs x due to ΩSAMOSA’s sub-loss Lrec)
is computed from both extracted features zc and zr. Ec is regularized
by the learned decoder (through the Ωrec regularizer of ΩSAMOSA)

regards to the classification process - and one non semantic), a simple classifier
C and a bi-modal decoder D that takes inputs from a semantic modality zc and
a non-semantic modality zr. SAMOSA is meant to be added on top of existing
semi-supervised learning algorithms for neural architectures. In this sense, an
input x is mapped to a feature representation zc = Ec(x), which is then used to
obtain a classifier prediction ŷ = C(zc) = C(Ec(x)). We further elaborate on the
peculiarities of our additional reconstruction modules Er and D in Section 2.3.2.

To train such an architecture, we optimize the modules necessary for classi-
fication (Ec and C) to minimize a two component loss LSAMOSA (Equation 2.6,
Figure 2.7). Our novel regularizer ΩSAMOSA (in Equation 2.6) differs substan-
tially from standard reconstruction regularizers by leveraging peculiarities of
SAMOSA’s architecture. On the other hand, the base loss L0,X term in Equa-
tion 2.6 acts as a proxy to represent the base method (which we seek to improve)
“X”’s training process (see Figure 2.7). For instance, the three base losses we con-
sidered are L0,MT from Mean Teacher (Tarvainen and Valpola 2017), L0,Mix from
MixMatch (Berthelot et al. 2019) and L0,F ix from FixMatch (Sohn et al. 2020). As
the basic algorithms we consider are meant to function on standard classifier
models, L0,X is only minimized for Ec ◦ C. The training and manipulation of
the remaining modules as well as the regularizer term ΩSAMOSA are specific to
SAMOSA, and are elaborated upon in Section 2.3.3.

2.3 samosa : adding non -semantic variations to an image 25

LSAMOSA({xl, yl}Dl
∪ {xu}Du) = L0,X({xl, yl} ∪ {xu})

+ ΩSAMOSA({xl} ∪ {xu}).
(2.6)

As such, the method trains a standard classifier Ec ◦ C according to a base SSL
method X with loss L0,X . Our contribution consists in adding a reconstruction
regularizer ΩSAMOSA, a non-semantic encoder Er and a special bi-modal decoder
D to be optimized and trained simultaneously with the base SSL classifier. The
bi-modal decoder in particular requires careful design to mix semantic and non-
semantic content.

2.3.2 Adding a Non-Supervised Reconstruction Module

Our goal is to mix the semantic content of one sample with the non-semantic
content of another. This requires both separating the two contents from samples
and reconstructing from those contents in a modular fashion. To some extent, this
has been achieved in style transfer (X. Huang and Belongie 2017) and generative
modeling (Higgins et al. 2017; Karras et al. 2019). (X. Huang and Belongie 2017)
and (Karras et al. 2019) for instance have shown manipulating activation statistics
of intermediate activation maps in an autoencoder can be used to train a model
capable of reconstructing an input image in a number of different ways. Those
methods however either explicitly define what “style” (which we liken to non
semantic information) is through a specifically designed loss functions and targets
(X. Huang and Belongie 2017), or perform adversarial optimization that does
not allow for specific reconstructions (Karras et al. 2019). We propose here an
architecture operating along similar principles, but that can reconstruct inputs
without any pre-conception of what constitutes non-semantic information.

We retain the base model’s Ec as our semantic encoder, and add a separate
encoder Er for the remaining non-semantic information. A novel asymmetrical
bi-modal decoder D is then used to reconstruct the input images from the outputs
of the encoders Ec and Er. Practically, an input x is mapped to an additional non
semantic feature representation zr = Er(x), which is then used in conjunction
with zc to obtain a reconstructed image x̂ = D(zc, zr) = D(Ec(x), Er(x)). This last
reconstruction process is facilitated by the very peculiar structure of D.

Asymmetrical decoder D Crucially, we design a novel decoder module (Fig-
ure 2.8) to combine semantic and non semantic feature spaces. An immediate
concern when reconstructing from two latent spaces as we propose is that an
unconstrained non semantic feature space is liable to store all the necessary in-

26 in -class mixing samples data augmentations

Figure 2.8. – Overview of the asymmetrical SAMOSA decoder. Our proposed
asymmetrical decoder D reconstructs x from zc, with zr modulating
which parts of D are active.

formation to reconstruct the input, thereby leaving a decoder free to ignore the
semantic feature space zc. Previous work (Robert et al. 2018) ran into this issue
when generating two partial reconstructions - one from semantic features and
one from non-semantic features - and summing the two to obtain a complete
reconstruction. This was addressed by forcefully stopping gradient flows of one
partial reconstruction right before combination (depending on which partial re-
construction needs more training). However, this method led to both Ec and Er
each contributing very similar information as this process only ensures the two
modalities contribute to the reconstruction. Conversely, we design an asymmetri-
cal decoder that uses the two input modalities differently.

To prevent zr from encoding all the information, we shift its role from affecting
what is on the reconstruction to affecting how the semantic latent space zc is
translated to a reconstruction. As figured in Figure 2.8, D can be broken down
into two sub decoders Dpre and Dpost such that h = Dpre(zc) ∈ RS×H×W can be
construed as a stack of S intermediate reconstruction maps. zr serves as a set of
S gating weights ∈ [0, 1] (through the use of a final linear projection and softmax
activation) such that only some intermediate activation maps h′ = zr � h are
used to compute the final reconstruction Dpost(h

′) (e.g. only the red and yellow
maps remain in Figure 2.8). While this can be seen as a rescaling of feature maps
(like in style transfer) (X. Huang and Belongie 2017; Karras et al. 2019; X. Huang
et al. 2018), the absence of style targets might lead to zr selecting all maps with a
method such as AdaIN. To address this, we ensure only a few maps are selected
by zr for each sample using a softmax activation.

This architecture allows us to reconstruct samples while avoiding the pitfall
of forcing the classifier’s feature extractor Ec to keep irrelevant information. Fur-
thermore, we propose a learning scheme that pushes the semantic encoder Ec

2.3 samosa : adding non -semantic variations to an image 27

Figure 2.9. – Optimization of LSAMOSA in the modules. The base SSL loss L0,X

loss optimizes the classifier modules while the reconstruction loss
Lrec optimizes the additional modules Er and D. Ec is benefits from
the reconstruction module through the Ωrec regularizer

to leverage the decoder D to identify what it should keep track of through the
second term ΩSAMOSA of the loss given in Equation 2.6.

2.3.3 Learning Scheme

Model optimization SAMOSA relies on a regularizer term ΩSAMOSA to leverage
its peculiar architecture:

ΩSAMOSA({xl}Dl
∪ {xu}Du) =λrecLrec({xl} ∪ {xu})

+ λSAMOSAΩrec({xl} ∪ {xu}),
(2.7)

with the loss Lrec used to optimize Er and D for reconstruction of inputs, and
the auxiliary regularizer Ωrec used to refine Ec through knowledge learned by D.
This differs significantly from traditional work in SSL that uses reconstruction
for regularization as we do not directly optimize the classifier for reconstruction.
Rather, we leverage our asymmetrical decoder’s peculiar structure to regular-
ize the classifier so that it solely learns to reconstruct information identified as
semantic by our framework.

Lrec = 1
#D
∑

x∈D‖D(Ec(x), Er(x))− x‖22 (figured on Figure 2.9) tries to match in-
puts x to model reconstructions D(Ec(x), Er(x)) through the L2 distance between
the two. Ec is deliberately not optimized here as skip connections (He et al. 2016b)

28 in -class mixing samples data augmentations

Figure 2.10. – Hybridization in SAMOSA. A trained model can then be used to
combine semantic content from a boat picture and non semantic
content from a plane picture.

in modern neural networks already let a lot of input information trickle down to
their feature space. In our experiments, we found optimizing Ec for reconstruction
led D to rely entirely on Ec and ignore Er.

Ωrec = 1
#D
∑

x∈D‖E
(0..(dc−2))
c (x) − D(0)(Ec(x), Er(x)))‖22 leverages our decoder’s

asymmetrical structure to regularize Ec (Figure 2.9). Importantly, the first few in-
termediate reconstructions are purely semantic as they are prior to re-modulation
by zr (the style input Er(x) in D(Ec(x), Er(x)) is of no effect). Therefore, training
Ec to match these early decoder features provides a novel reconstruction regu-
larizer for the feature extractor that is not polluted by non-semantic information
(i.e. information injected by Er(x) in the reconstruction). In practice, Ωrec ties the
last intermediate features E(0..(dc−2))

c (x) extracted by Ec (layer E(dc−2)
c) to the first

intermediate reconstructions D(0)(Ec(x), Er(x)) generated by D (layer D(0)). Here,
dc refers to the depth of Ec, E

(0..(dc−2))
c to the composition of the first dc − 1 convo-

lutional layers of Ec (all but the last one), and D(0) to the first convolutional layer
of D.

This training process yields an architecture capable of generating hybrids that
incorporates non-semantic content from a sample x2 into a sample x1 while pre-
serving x1’s semantic content. We now discuss how this can be put to use in a
Semi-Supervised Learning setting.

2.3 samosa : adding non -semantic variations to an image 29

2.3.4 Making use of the SAMOSA framework in Semi-Supervised
Learning

We introduce a novel asymmetrical decoder that is modular by design with re-
gard to semantic and non semantic content, as well as propose an adapted training
scheme. In practice, the learning scheme itself can be used to regularize classifiers,
but the trained models can also be used to generate augmented samples to train
models on. For instance, a model could be trained to optimize LSAMOSA, then used
to generate a set of artificial labeled samples through SAMOSA hybridization and
the model could then be re-trained on the augmented dataset.

Indeed, generating hybrids given a trained model is straightforward (Algo-
rithm A.3 and Figure 2.10). Specifically, given samples x(1) (with known label
y(1)) and x(2), we extract the relevant features z

(1)
c = Ec(x

(1)), z(1)r = Er(x
(1)),

z
(2)
c = Ec(x

(2)) and z(2)r = Er(x
(2)). xh = D(z

(1)
c , z

(2)
r) is now a sample with class y(1).

As a conservative measure, we only keep the generated hybrid if C(Ec(xh)) = y(1)

to avoid disturbing decision boundaries too much. Note that with this, we gen-
erate a strong augmentation of x1 and teach the classifier to group x1 with its
strongly augmented version in a similar line to work in contrastive representation
learning (He et al. 2020).

Integrating SAMOSA into classical semi-supervised learning frameworks As
previously discussed, SAMOSA can be deployed in SSL systems in a variety of
ways, two of which are explored experimentally paper. We study a first frame-
work that trains a SSL model to optimize LSAMOSA, generates hybrids using
labeled samples for the semantic component and unlabeled samples for the non-
semantic component, and re-trains the model on the augmented set (Appendix
Algorithm A.1). We also show a more intricate incorporation of SAMOSA in the
MixMatch framework (Appendix Algorithm A.2) by occasionally replacing the
MixUp procedure with our in-class hybridization in the training of a MixMatch
model optimizing LSAMOSA.

2.3.5 Take-aways from the SAMOSA project

The SAMOSA framework constitutes a first step in our quest to generate in-
class mixed samples, and it learns to generate convincing hybrids on toy-datasets
like the MNIST-M dataset (see Figure 2.11). On more complex real data like the
CIFAR-10 and SVHN datasets the framework also succeeds in identifying and
transferring some non-semantic characteristics (e.g. lighting and coloration) to
the main semantic image as shown on Figure 2.11. Interestingly, these slight

30 in -class mixing samples data augmentations

alterations already led to some improvements for semi-supervised frameworks
on standard benchmarks at the time (CIFAR-10 and SVHN).

Figure 2.11. – Examples of hybrids obtained by SAMOSA (Mean Teacher back-
bone) on the synthetic MNIST-M dataset as well as the real SVHN
and CIFAR10 datasets.

While SAMOSA does technically fulfill most of the objectives we outlined in
this chapter, we found significant shortcomings in our approach:

• The model only slightly modifies the semantic content While the hybrids
on Figure 2.11 indeed succeed in adding some non-semantic variations to the
semantic content of samples in the dataset, the resulting images remain very
close to their semantic parent. As such, SAMOSA does not truly generate
mixed samples that combine a significant amount of content from multiple
images.

• The classifier does not benefit from hybrids it helped generate The non-
semantic content is identified from the content that is not useful to the
classifier. Therefore, retraining the classifier with the hybrids generated by
the framework only yields minimal performance improvements. In fact,
the majority of the improvements observed stem from the regularization
induced by the reconstruction on the classifier’s feature space.

• Tying generator and classifier complicates training Training the generator
along with the classifier makes scheduling delicate and significantly in-
creases training time as well as overhead: we typically conduct experiments
on 2 gpus, even for very simple datasets like the CIFAR-10 and SVHN
datasets. Furthermore, training some of the more complex semi-supervised
classifiers like MixMatch and FixMatch proves fairly difficult. Moreover, the

2.4 scimix : embedding semantic content into other contexts 31

strong augmentations that are part and parcel of these techniques interfere
with the generative process and cause more variance in results.

To address this, we have since developed the SciMix framework which em-
beds the semantic content of one image into the context of another, and uses the
resulting data augmentation to train semi-supervised classifiers from scratch.

2.4 SciMix: Embedding semantic content into other
contexts

Our SAMOSA framework properly generates mixed samples that only contain
semantic content from one image, and the slight non-semantic variations induced
by the mixing process seem to help the model find more general solutions. The
non-semantic variations however remain minimal, and the mixed samples there-
fore cannot truly be characterized as mixing content from both samples.

SciMix takes an opposite view to SAMOSA. Rather than attempt to identify and
add non-semantic characteristics to a semantic parent, we directly embed semantic
content into the general non-semantic context of the non-semantic parent. This
ensures the mixed images contain a significant amount of content from the non-
semantic parent. The work of the hybridizer becomes identifying the semantic
content (with the help of a classifier) and adding it to the other image.

The main contributions we propose with SciMix after developing SAMOSA are
therefore:

• A better exploration of our new mixing paradigm designed to create arti-
ficial in-distribution samples that embed the non-semantic content of one
sample into the non-semantic context of another.

• A new auto-encoding architecture and associated learning scheme that
trains a generator (in lieu of a decoder) to mix semantic and non-semantic
contents. In particular, we purposefully train a model to separate seman-
tic and non-semantic contents into two representations, and train a style-
inspired generator to embed the semantic content (“style” code) into the
non-semantic background (traditional input). In contrast to SAMOSA, we
use the semantic latent representations as a style or modulating input to the
asymmetrical generator.

• A new learning process to leverage our new mixing data augmentation
separately from the hybridization process. We show mixed samples can

32 in -class mixing samples data augmentations

be used to optimize an additional supervised objective that significantly
improves classifier performance.

2.4.1 Learning to generate hybrids

Auto-encoding architecture Our framework is based on a novel auto-encoder
architecture presented in Figure 2.12a that treats semantic information as a global
characteristic of an encoded image. An input x is projected into a semantic latent
space zc by an encoder Ec as well as a complementary non-semantic latent space
zr by an encoder Er. While our framework should primarily be understood as
an auto-encoder framework, the distinct nature of the latent spaces zc and zr
requires more careful consideration. We choose in this paper to focus on the
definition and exploitation of the semantic features zc, and simply treat zr as
information irrelevant to zc. In other words, we design the framework so that
the semantic information zc controls what the generator G reconstructs. As the
notion of semantic information is fundamentally tied to that of the tasks under
consideration, we define zc with respects to a classifier. More precisely, we treat
the semantic latent space zc as the feature space of a classifier. To this end, we
add a linear neural layer C on top of zc (see Figure 2.12a) that outputs a class
prediction ŷ. Note that Ec ◦C therefore constitutes a standard CNN classifier (He
et al. 2016b; Zagoruyko and Komodakis 2016). We ensure the classifier Ec ◦ C
correctly learns semantic information through classification loss term LS on its
output 1.

Contrarily to (Park et al. 2020), we complete the encoding with a generator
G that computes a reconstruction x̂ using the non-semantic features zr as direct
inputs and the semantic features zc as style codes. This makes the non-semantic
content zr easier to transfer, which is fortunate considering we can ensure seman-
tic transfer more easily through a classifier Ec ◦ C (as opposed to SAMOSA). As
we treat the model as an autoencoder, we use a reconstruction loss Lrec to tie the
reconstruction x̂ to the input x. We further refine this reconstruction by using an
adversarial critic to smooth out details (Park et al. 2020). We add a discrimina-
tor network D (see Fig. 2.12a) to predict whether the considered image is a real
sample or a reconstruction . Conversely, Er, Ec and G are trained to fool D into

1. LS can correspond to any classifier training framework (e.g. supervised training, FixMatch
(Sohn et al. 2020)). In semi-supervised experiments, we use Mean Teacher (Tarvainen and Valpola
2017) as a simple classifier guide in order to leverage SSL datasets.

2.4 scimix : embedding semantic content into other contexts 33

(a) Semantic auto-encoder of SciMix’s
generator. x is encoded into zc
(made semantic by LS) and zr,
which are decoded into x̂ opti-
mized by LAE = Lrec + Ladv,r.

(b) Hybridization in SciMix’s genera-
tor. Semantic components are ex-
tracted from x1 and x2 to obtain
a hybrid optimized through Lhyb
(detailed in 5 sub-losses here).

Figure 2.12. – Overview of the SciMix generator architecture. SciMix trains an
auto-encoder with two latent spaces, one of which is semantic

seeing reconstructions x̂ as real images. The resulting loss Ladv,r serves to improve
reconstructions learned through the reconstruction loss.

LAE = Lrec + Ladv,r =
∑
x∈D

‖x−G(Ec(x), Er(x))‖2

+
∑
x∈D

− log(D(G(Ec(x), Er(x)))).
(2.8)

Finally, our learning scheme is based on the minimization of the loss Lgen com-
posed of LS and LAE , plus an additional loss Lhyb term:

Lgen = LAE + LS + Lhyb, (2.9)

which is described in the following hybridizing scheme.

Hybridization losses Simply training the auto-encoder architecture, even with
zc as the feature space of a classifier, is not enough to ensure that hybrids cor-
rectly inherit characteristics from their parents. To force the model to properly
inject semantic content into the general background of known samples, we design
explicit hybridization losses (studied more closely in Appendix Section A.4.2)

Lhyb =L+
hyb,class + L+

hyb,cont

+ L−hyb,class + L−hyb,cont + Ladv,h.
(2.10)

34 in -class mixing samples data augmentations

L+
hyb,class explicitly trains our model to rely on zc to generate the main semantic

object in the generated reconstruction/hybrid. Indeed, we rely on the classifier
Ec ◦C’s ability to identify and classify the main object in inputs (see Figure 2.12b).

Put plainly, we generate hybrids xh = G(Ec(x1), Er(x2)) from pairs of samples
in a batch and obtain logits predictions C(Ec(xh)) for those hybrids. L+

hyb,class

optimizes the model so that this prediction on the logits match the prediction
on the semantic parent x1 of xh. Importantly, we only optimize the hybridization
process that generates xh: we do not optimize the classifier’s prediction on xh or
x1. The idea is that the autoencoder learns to place xh in the right class manifold,
while said class manifold does not move to accommodate xh:

L+
hyb,class =

∑
x∈D

‖C(Ec(x1))

− C(Ec(G(Ec(x1), Er(x2))))‖2.
(2.11)

Similarly, L+
hyb,cont optimizes the model so that a generated hybrids xh’s non-

semantic representation zr,h matches its non semantic parent x2’s non semantic
component zr,2. As in the semantic case, we only optimize the generative process
that leads to the generation of xh but do not optimize Er to project xh close to its
non-semantic parent:

L+
hyb,cont =

∑
x∈D

‖Er(x2)− Er(G(Ec(x1), Er(x2)))‖2. (2.12)

We also train hybrids to differ from their parents through the negative seman-
tic hybridization loss L−hyb,class =

∑
x∈D−‖C(Ec(x2))− C(Ec(G(Ec(x1), Er(x2))))‖2

and the negative non-semantic hybridization loss L−hyb,cont =
∑

x∈D−‖Er(x1) −
Er(G(Ec(x1), Ec(x2)))‖2. In practice, this means maximizing the distance between
hybrids and semantic (resp. non-semantic) parent in non-semantic (resp. seman-
tic) space.

To ensure the quality of generated hybrids, we train the discriminator D to
also recognize hybrids as synthetic images. With this discriminator we can simply
add an adversarial loss term Ladv,h to ensure hybrids look realistic (as far as D is
concerned).

2.4 scimix : embedding semantic content into other contexts 35

2.4.2 Training a classifier by leveraging our Data Augmenta-
tion

We now have a novel mixing data augmentation that can embed the semantic
content of one sample to the non-semantic context of other samples, given a
trained generator. This provides a useful and new way to improve any standard
training method “X” by adding a single additional loss term Lcontradict: LSciMix =

LX + Lcontradict.

Generating hybrids given a trained autoencoder Generating hybrids given a
trained model is straightforward (Figure 2.12b shows how a hybrid is mixed).
Specifically, given samples x(1) (with known label y(1)) and x(2), we extract the
relevant features z(1)c = Ec(x

(1)), z(1)r = Er(x
(1)), z(2)c = Ec(x

(2)) and z
(2)
r = Er(x

(2)).
xh = G(z

(1)
c , z

(2)
r) is now a sample with class y(1). As a conservative measure, we

only keep the generated hybrid if C(Ec(xh)) = y(1) to avoid disturbing decision
boundaries too much. Note that with this, we generate a strong augmentation of
x1 and teach the classifier to group x1 with its strongly augmented version in a
similar line to work in contrastive representation learning (He et al. 2020).

Training a new classifier f We now propose a way to leverage our novel hy-
brids to improve the training of standard models such as Mean Teacher (Tarvainen
and Valpola 2017) or FixMatch (Sohn et al. 2020). To this end, we compute hybrids
that mix the semantic content of each sample in the batch with the non-semantic
content of other samples in the batch. We leverage those hybrids by optimizing
an additional loss:

Lcontradict =
∑

xc,xr∈B,perm(B)

[lMSE(f(xh), α ∗ f(xc)

+ (1− α)f(xr))].

(2.13)

This new loss takes advantage of our mixing paradigm by mostly imputing
the semantic parent’s label to our hybrids, with only a slight dependence on
the non-semantic parent to acknowledge the imperfection of the mixing process.
Contrarily to standard mixing augmentations, the ratio α > 0.5 is a fixed hyper-
parameter (in the spirit of label smoothing (Szegedy et al. 2016)).

36 in -class mixing samples data augmentations

2.5 Results

We detail here the results experimental investigation we conducted to evaluate
the performance of SAMOSA and SciMix. To this end, we mostly studied the
semi-supervised problem on the CIFAR10 (Krizhevsky and Hinton 2009) and
SVHN (Netzer et al. 2011) datasets.

We applied our frameworks over well studied semi-supervised backbones like
Mean Teacher (Tarvainen and Valpola 2017), MixMatch (Berthelot et al. 2019), and
FixMatch (Sohn et al. 2020) (refer to Section 2.3.4 and Section 2.4.2 for how we
apply our frameworks to these methods). More precisely, we chose Mean Teacher
for both SAMOSA and SciMix as a reference consistency-based baseline. Beyond
its widespread use in SSL, consistency induces a stabilization we feel would
help extract invariant semantic features. For SAMOSA, we use MixMatch as a
backbone to illustrate interactions of SAMOSA’s generator with more modern
methods that make use of mixing techniques (such as CutMix, CowMix, ICT
and ReMixMatch). Since SciMix separates the generator from the trained semi-
supervised classifier, this interaction is more minimal. We therefore use FixMatch
instead of MixMatch as a backbone. FixMatch is a state-of the art SSL method
based on strong augmentation, and often serves as the reference or backbone in
the literature (J. Li et al. 2021; B. Zhang et al. 2021).

For both frameworks, we operate on a standard WideResNet-28-2 (Zagoruyko
and Komodakis 2016) for our classifiers (both f and Ec ◦ C). Er follows the same
architecture as Ec. In the case of SAMOSA, hybrids are generated by a decoder
D that follows an inverted 13-layer 4-4-4 CNN architecture, with Dpre being a
4-4 block and Dpost being made up of the last 4 block and final convolution. For
SciMix, the hybrids are generated by a generator G that is a StyleGanv2 (Karras
et al. 2020) architecture. Hyperparameters and optimizers were generally taken
to follow settings reported in the base methods’ original papers (Tarvainen and
Valpola 2017; Berthelot et al. 2019; Sohn et al. 2020).

We report the mean ± std classification accuracy over 3 seeded runs for vary-
ing numbers of labeled samples in a dataset (the rest are treated as unlabeled).
The SciMix generators used to train a model with N labeled samples are also
trained with only N labeled samples. One generator is trained per setting, and
classifiers trained with the generator’s mixed samples are trained on the same
split of labeled/unlabeled data to avoid information leakage. More details for all
experiments are given in Appendix.

2.5 results 37

Method CIFAR10

250 500 1000

Purely supervised (lower bound) 27.8± 0.9 35.4± 1.9 43.5± 2.4

Mean Teacher1, (Tarvainen and Valpola 2017) 61.3± 3.3 76.4± 3.1 87.6± 0.3
SAMOSA w/ Mean Teacher (ours) 68.1± 3.3 82.4± 1.3 88.7± 0.3

MixMatch12, (Berthelot et al. 2019) 82.4± 0.4 86.8± 0.2 90.4± 0.1
SAMOA w/ MixMatch (ours) 84.1± 2.2 89.4± 0.8 90.7± 0.3

Table 2.1. – Comparative accuracies (%) with SAMOSA as an add-on module
on CIFAR10.

2.5.1 Performance improvements

As the final objective of this project is to improve the performance of semi-
supervised classifiers, we first discuss how SAMOSA and SciMix help regularize
the networks. It is worth noting the experimental settings and codebases differ
significantly between the two. Direct comparison of the performances is therefore
not straightforward and will be discussed in Section 2.5.2.

2.5.1.1 SAMOSA

We show here that SAMOSA can improve quantitative performance when
added to Mean Teacher and MixMatch (Table 2.1). In each table, we also report
for reference the accuracy of models trained in a purely supervised fashion on
the available labeled samples as a lower bound.

Mean Teacher (MT) We evaluate a first application of SAMOSA for augmen-
tation to show improvements on Mean Teacher (the procedure is detailed more
closely in Appendix Algorithm A.1). We train the model normally for 300 epochs
(with the reconstruction module), then we hybridize every labeled sample with
10 unlabeled samples. For every generated hybrid, we keep the artificial example
only if it still gets predicted by the model as being part of the right class, otherwise
the hybrid is replaced by its semantic “parent”. The model is then retrained with
this additional labeled data over 300 epochs. Afterwards, another hybridization
procedure is repeated and a final training is conducted, still over the same number
of epochs.

The model is trained using a SGD optimizer with cosine learning rate (base
0.2 learning rate) for 300 epochs over the unlabeled samples for CIFAR10 for one
training cycle. After each training and subsequent augmentation step, the learning
rate is reset and training resumes (for an overall 900 epochs). In the following
training passes, the model is only optimized over the augmented dataset (instead

38 in -class mixing samples data augmentations

of the true dataset) from epoch 150 to 250 of each cycle (following discussions
in (Perez and J. Wang 2017; Gontijo-Lopes et al. 2021)) with λrecons = 0.25 and
λSAMOSA = 0.5/0.1. Exact details in the supplementary material.

As a baseline, we check the performance of the model trained under the same
procedure (3 training cycles) but with no reconstruction regularizer, and no artifi-
cial samples. Table 2.1 shows improvements from using the SAMOSA framework
on top of Mean Teacher. Notably, we have very noticeable gains for 250 labels,
which suggests the method is particularly useful when labeled information is
lacking. To explore performance with very few labels, we furthermore tested the
model with 100 labels on SVHN. An important accuracy gain from 62.5± 3.7 to
66.2± 2.2 is observed which is significant given such very low label settings are
especially interesting in applied settings.

MixMatch (Mix) We showcase a more intricate use of SAMOSA on MixMatch
by directly incorporating our augmentation process in MixMatch’s native hy-
bridization (MixUp) as detailed in Appendix Algorithm A.2. We train the re-
construction module along the base classifier model, as well as optimize for the
reconstruction regularizer. Every batch, with probability p = 0.2, we replace the
MixUp examples with Hybrids generated from our reconstruction module. For
every reconstructed hybrid, we keep the label/pseudolabel corresponding to its
semantic “parent”. Contrarily to the Mean Teacher case, we generate hybrids that
have both labeled and unlabeled samples as semantic “parents” (as is done by
MixUp in MixMatch) and leverage the pseudo-label MixMatch naturally generates
throughout its course for MixUp. Exact details are given in the supplementary
material, but are similar to the Mean Teacher ones. We follow (Berthelot et al.
2019) and report results from a weight averaged model.

As a baseline comparison, we check the performance of the model trained under
the same procedure (which is basically the normal training procedure) but with no
reconstruction regularizer, and no artificial samples. As can be seen from Table 2.1,
sizable gains are achieved on both the 500 and 250 labels CIFAR10 settings, and
are consistent even when 3 runs are not enough to definitely verify improvements.
Interestingly, adding SAMOSA to MixMatch increases the variance of the model
which is not the case in the Mean Teacher case. The use of MixUp hybrids in
MixMatch strongly influences the hybrids generated by SAMOSA (discussed in
Section A.3.1). This and the random nature of MixUp could lead to a stronger
variability in the quality of hybrids learned by a SAMOSA generator. Considering
how reliant SAMOSA’s classifier is on the quality of the generated hybrids for
regularization, we believe this explains the higher variance on the MixMatch
variant of SAMOSA.

2. Different setting from (Berthelot et al. 2019) for fast training.

2.5 results 39

(a) Mean Teacher

Method CIFAR10 SVHN

100 250 500 60 100

Mean Teacher, (Tarvainen and Valpola 2017) 40.5± 6.4 63.1± 0.9 72± 3 48.7± 23.0 82.3± 5.5
SciMix w/ Mean Teacher 46.4± 1.2 68.0± 1 77.2± 0.5 83.4± .5 87.3± 2.8

(b) FixMatch

Method CIFAR10 SVHN

100 60

FixMatch, (Berthelot et al. 2019) 88.6± 0.7 96.4± 0.3
SciMix w/ FixMatch 90.7± 0.2 96.5± 0.9

Table 2.2. – Gains from using SciMix. Mixing samples with SciMix as a data aug-
mentation improves the performance of Mean Teacher and FixMatch.
Significant accuracy (%) gains are observed on CIFAR10 (with 100,
250 and 500 labels) and SVHN (with 60 and 100 labels).

2.5.1.2 SciMix

Table 2.2 shows that adding our optimization on hybrids with Lcontradict - as de-
scribed in Section 2.4.2 - does indeed lead to improved performance on CIFAR10

and SVHN. Indeed, training with SciMix hybrids leads to significant accuracy
gains with a Mean Teacher classifier with a wide range of labeled samples. We
also observe improvements over FixMatch on very low labeled settings (FixMatch
performance quickly saturates on higher labeled settings). Interestingly, two con-
current behaviors can be observed on Mean Teacher: SciMix hybrids become more
useful when less labeled samples are available but the quality of generated hy-
brids becomes unreliable with few labeled samples. Indeed, at 100 labeled samples
on CIFAR10, the Mean Teacher classifier used to train the generator is too weak
to provide very useful hybrids. With a strong SciMix hybridizer (trained with all
samples), SciMix data augmentation would bring a Mean Teacher classifier to an
accuracy of 60.4± 1.7 with 100 labels on CIFAR10.

2.5.2 Improvements of SciMix over SAMOSA

As discussed in Section 2.3.5, SciMix was created to address many of the prob-
lems observed in SAMOSA:

• The model only slightly modifies the semantic content Hybrids generated
by SAMOSA on real datasets only incorporate minor non-semantic charac-
teristics like color tint. As such, the generated hybrids do not truly mix the
semantic contents of some sample with the non-semantic contents of others.

40 in -class mixing samples data augmentations

SciMix solves this issue as can be observed from the hybrids generated by
both frameworks. Section 2.5.2.1 shows examples of hybrids generated by
both frameworks and discusses the improvements brought by SciMix.

• The classifier does not benefit from hybrids it helped generate The classi-
fier trained by SAMOSA benefits little from training on the hybrids gener-
ated by SAMOSA. We posit that this stems both from the implicit regular-
ization of the classifier by the generative objectives, and from the fact the
hybrids incorporate non-semantic information identified by the classifier
itself.

Section 2.5.2.2 highlights this behavior for SAMOSA, and recovers a similar
observation for a variant of SciMix which re-uses the weights of the classifier
used to train the hybrid generator. In the latter cases, we show keeping
the weights of the previous classifiers in fact leads to worse results than
randomly initializing the weights of our semi-supervised classifier.

• Tying generator and classifier complicates training A significant issue
when attempting to train new semi-supervised algorithms with the SAMOSA
framework is that the schedules of the generator and classifier must be syn-
chronized. Furthermore, training an autoencoder alongside our classifiers
adds a large overhead to the SAMOSA framework which makes deployment
of the framework unrealistic and cumbersome.

Appendix Section A.4.1 discusses the costs incurred by the SAMOSA ap-
proach in more details and gives some perspective on the types of schedules
we use to train semi-supervised classifiers and hybrid generators.

2.5.2.1 Comparison of SAMOSA and SciMix hybrids

Comparing hybrids obtained by SAMOSA Figure 2.13 to those generated by
SciMix Figure 2.14 shows the benefits of our SciMix framework.

While SAMOSA’s hybrids only incorporate minor non-semantic variations like
lighting or coloration into the general content of their semantic parents, SciMix
hybrids inherit large amounts of content from their non-semantic parent as well.
For instance, the street numbers on Figure 2.14 inherit nearly all the non-semantic
content of their non-semantic parent (background, color, font, ...), with only the
actual semantic street number being inherited from the semantic parent. Interest-
ingly, even the non-central digits are correctly identified as non-semantic by the
framework and kept from the non-semantic parent.

2.5 results 41

(a) SVHN (b) CIFAR10

Figure 2.13. – Examples of SAMOSA Hybrids between true samples x1 and x2.
Results for the Mean-Teacher SAMOSA trained on SVHN (100 la-
bels) and CIFAR10 (1000 labels). (Line 2 shows hybrids with the
semantic content of Line 1 and non-semantic content of Line 4. Line
3 shows the opposite.)

Figure 2.14. – Examples of SciMix hybrids. The hybrids properly mix semantic
and non-semantic contents. Same format as Figure 2.13

This stems from the fundamental difference in design between SAMOSA and
SciMix: where SAMOSA attempts to discover non-semantic variations in the con-
tent of images, SciMix works to embed the semantic content of one sample into the
general context of the other. Although this approach requires inverting the roles
of the semantic and non-semantic latent codes in the asymmetric generator and

42 in -class mixing samples data augmentations

(a) SAMOSA on CIFAR 10

Method CIFAR 10

500

Mean Teacher, (Tarvainen and Valpola 2017) 76.4± 3.1
SAMOSA Gen. classifier w/ Mean Teacher

82.1± 1.5(no hybrids)
SAMOSA Gen. classifier w/ Mean Teacher 82.4± 1.3
SAMOSA New classifier w/ Mean Teacher N/A

(b) SciMix on SVHN

Method SVHN

60

Mean Teacher, (Tarvainen and Valpola 2017) 48.7± 23.0
SciMix Gen. classifier w/ Mean Teacher

72.0± 2.7(no hybrids)
SciMix Gen. classifier w/ Mean Teacher 72.6± 2.3
SciMix New classifier w/ Mean Teacher 83.4± .5

Table 2.3. – Ablation on the gains from in-class MSDA. We compare the classi-
fier trained with only Mean Teacher, trained with the generator but
no hybrids, trained with generator and then with hybrids, and finally
of a new classifier trained with the hybrids. Although they were eval-
uated on different settings, we show results for both SAMOSA and
SciMix.

introducing explicit hybridization objectives, this enables the model to generate
hybrids that satisfy the requirements outlined at the outset of this chapter.

2.5.2.2 Regularization vs. Data Augmentation

SAMOSA trains the evaluated semi-supervised classifier alongside the gener-
ative framework. While this is efficient in a sense, Table 2.3a shows classifiers
trained in this manner benefit very little from further training with hybrids gen-
erated by the framework. This is not wholly surprising: hybrids only incorporate
non-semantic variations that do not impact the classifier by construction, and the
classifier already implicitly benefits from the hybridization due to the regulariza-
tion induced by the generative framework. SciMix sidesteps this issue entirely by
training a separate classifier with the generative framework.

The first three lines of Table 2.3b show the same behavior as SAMOSA: the
classifier SciMix trains to guide the generator does not reliably benefit from train-
ing on the generated hybrids. Contrarily to SAMOSA however, SciMix uses its
hybrids to train a new classifier from scratch which leads to much more reliable
improvements as can be seen from the last line of Table 2.3b.

2.5.2.3 Comparison of quantitative results in comparable settings

As mentioned in Section 2.5.1, comparing the quantitative performances of
SAMOSA and SciMix is not straightforward. Indeed, fair comparison of baselines
to SAMOSA typically require using fairly complex training procedures. For in-
stance, on the Mean Teacher setting, SAMOSA trains the network three times to
incorporate new hybrids in each training cycle.

2.5 results 43

Method CIFAR10

250 500

SAMOSA SciMix SAMOSA SciMix

Mean Teacher 57.7± 4.0 63.1± 0.9 69.6± 1.4 72± 3
In-class MSDA w/ Mean Teacher 60.4± 0.3 68.0± 1 75.7± 3.4 77.2± 0.5

Gains +2.7 +4.9 +6.1 +5.2

Table 2.4. – Comparison of SAMOSA and SciMix in mostly comparable condi-
tions on the Mean Teacher backbone.

Interestingly, the training settings of SciMix and SAMOSA with the Mean
Teacher backbone are otherwise fairly similar. As it was established that explicitly
training on the hybrids contributes fairly little to the overall performance of the
SAMOSA framework, we feel it is fair to compare results at the end of 1 training
cycle with results obtained by SciMix

Table 2.4 shows comparable gains from SAMOSA and SciMix with 500 labeled
samples on CIFAR 10, and significantly better gains from SciMix with 250 samples.
This suggests the stronger hybrids generated by SciMix offer better regularization
than SAMOSA in very low-label situations where the classifier struggles to learn
invariance to non-semantic content. It must however also be noted the gains
could be partally attributed to the fact SciMix does not use the same classifier as
its generator.

2.5.3 Further analysis of SciMix results

We provide here two further results obtained from our study of the SciMix
Data Augmentation. The following experiments compare the quality of the SciMix
hybrids against different mixing alternatives.

2.5.3.1 Preservation of semantic and non-semantic characteristics in hybrids

We quantify how well the generated hybrids xh inherit properties from the
semantic and non-semantic parents xc and xr through the metrics sc and sr. The
semantic transfer rate sc is the accuracy of an “oracle” classifier (trained on the
entire dataset, as a proxy for human evaluation of hybrid labels) over a dataset
built from hybrids that are assumed to have inherited the label of their semantic
parent. Conversely, the non-semantic preservation rate sr is the proportion of
hybrids xh that are closer to the non-semantic parent xr in pixel space (ie, ‖xh −
xc‖ > ‖xh − xr‖).

44 in -class mixing samples data augmentations

Method SVHN

FDA (Y. Yang and Soatto 2020) 77.0
Semantic AdaIN (X. Huang and Belongie 2017) 92.1
transfer sc MixUp (H. Zhang et al. 2018; Inoue 2018) 94.2

SciMix 95.2

FDA (Y. Yang and Soatto 2020) 22.4
Non-Semantic AdaIN (X. Huang and Belongie 2017) 60.0
preservation sr MixUp (H. Zhang et al. 2018; Inoue 2018) 00.0

SciMix 98.2

Table 2.5. – Transfer rates of semantic and non-semantic contents. SciMix hy-
brids properly mix semantic and non-semantic contents.

Table 2.5 shows SciMix compares favorably to texture altering hybrids (FDA,
AdaIN) and standard mixing augmentations (MixUp with the label of the dom-
inant samples as suggested in (Inoue 2018)) on a strong generator (SVHN 250

labels). While most existing hybridizations do tend to preserve the semantic con-
tent, SciMix shines in that it transfers semantic content while keeping hybrids
very close to their non-semantic parent. Indeed, other hybrids remain much closer
to their semantic parent (always the case - by design - for MixUp).

Method CIFAR10 SVHN

250 60

Mean Teacher, (Tarvainen and Valpola 2017) 63.1± 0.9 48.7± 23.0
Mean Teacher + MixUp (H. Zhang et al. 2018) 64.8± 3.5 61.8± 1.0
Mean Teacher + CutMix (Y. Yang and Soatto 2019) 55.0± 7.5 17.3± 3.7

SciMix w/ Mean Teacher (ours) 68± 1.0 83.4± 0.5

Table 2.6. – Comparison of SciMix with other MSDA on very few labels.

2.5.3.2 Comparison to Mixing Data Augmentation

We now show that in very low label settings, the “artificial” labelized samples
SciMix can outperform the regularization offered by more traditional mixing
Data Augmentation. Table 2.6 shows that SciMix mostly outperforms MixUp and
CutMix for CIFAR10 with 250 labeled samples (the generator is too weak with 100

labels) and SVHN with 60 labeled samples (hardest setting). While MixUp does
perform similarly to SciMix on CIFAR10, this is likely due to the low performance
of the classifier Ec ◦ C trained with only 250 labels.

2.5 results 45

(a) Examples of SciMix hybrids on CUB 64× 64 (left)
and 96× 96 (right).

CUB sc sr

Random 0.5 50.0

64
× 43.5 99.8
64

96
× 41.6 99.8
96

(b) Transfer rate in hy-
brids.

Figure 2.15. – SciMix hybrids mix semantic and non-semantic contents on CUB-
200.

Method CUB-200

64× 64 96× 96

Supervised 58.9± 1.0 65.2± 0.8
SciMix w/ Supervised 60.2± 0.6 65.6± 0.9

Table 2.7. – Impact of SciMix data augmentation for the CUB-200 dataset at
resolutions 64× 64 and 96× 96.

2.5.4 Pushing SciMix on CUB-200

We finally push SciMix further by studying versions of the more complex
Caltech-UCSD Birds 200 (CUB-200) dataset (Welinder et al. 2010) (6033 pictures
of 200 bird species). Given CUB-200 inherently presents few labels, we directly
study how fully supervised training benefits from SciMix on low labels settings
(LS is a standard cross-entropy loss). Furthermore, we take advantage of CUB-
200’s higher native resolution to go beyond the limitations of 32 × 32 images in
CIFAR 10 and SVHN: we use SciMix on commonly studied input sizes 64 × 64

(e.g. Tiny ImageNet (Chrabaszcz et al. 2017)) and 96×96 (e.g. STL-10 (Coates et al.
2011)).

Quality of generated hybrids As can be observed on Figure 2.15a, the SciMix
autoencoder learns to generate interesting hybrids for different resolutions of the
CUB-200 dataset. While the lower resolution 64×64 hybrids inherit more semantic
characteristics of the relevant parent, 96× 96 hybrids still retain semantic patterns
tied to the semantic parent’s class.

46 in -class mixing samples data augmentations

Interestingly, SciMix has no difficulty producing hybrids close to their non-
semantic parent as can be shown in Figure 2.15b by reprising the analysis of the
non-semantic transfer rate sr from Section 2.5.3.1. Analyzing the semantic transfer
rate sc proves more difficult as our best “oracle” classifiers remain unreliable
(around 60% accuracy). Nevertheless, the semantic transfer rates sc in Figure 2.15b
indicate hybrids generated by SciMix are properly classified by the oracle classifier
as having inherited their semantic parent’s class about 40% of the time (orders of
magnitude more than attributable to random chance).

Performance gains Table 2.7 shows a fully supervised version of SciMix data
augmentation improves supervised models on both 64× 64 and 96× 96 versions
of CUB-200. This demonstrates that while SciMix augmentation strongly benefits
from a large amount of unlabeled data, it can still generate hybrids diverse enough
to benefit training with only a small set of data to generate hybrids from.

2.6 Conclusion

In this chapter, we explore an alternative MSDA paradigm that creates in-class
samples by combining the semantic content of one sample and non-semantic
content of another. This new paradigm helps teach invariance to a number of
non-semantic characteristics, which is particularly useful in low-label settings
like semi-supervised learning. To test this hypothesis, we design neural frame-
works that learn to separate semantic and non-semantic contents in images and
recombine them into in-class hybrids before applying them in semi-supervised
scenarios.

We first propose SAMOSA, an auto-encoding framework that identifies and
adds some non-semantic variations to a base semantic image with the aid of
an asymmetric generator inspired by style transfer techniques. SAMOSA takes
advantage of the generative process to train a semi-supervised classifier both to
guide hybridization and to regularize the classifier.

We then take the opposite view with SciMix by training a hybridizer that
identifies and embeds semantic content into a base image’s non-semantic context.
By inverting the roles of semantic and non-semantic content in the process, non-
semantic content does not have to be discovered by the framework: it remains
non-semantic unless specifically identified as semantic. Contrarily to SAMOSA,
SciMix uses a powerful StyleGanV2 (Karras et al. 2020) asymmetrical generator
and explicit hybridizing losses to learn to embed semantic content into non-
semantic context. We also streamline the training setting with SciMix by training a

2.6 conclusion 47

semi-supervised classifier with SciMix hybrids after a hybrid generator is trained,
with no additional regularization from the generative framework.

Experiments show both SAMOSA and SciMix generate hybrids that benefit the
training of standard semi-supervised frameworks like Mean Teacher or FixMatch.
While SAMOSA’s hybrids only incorporate surface level non-semantic characteris-
tics, qualitative evaluation shows SciMix generates hybrids that inherit significant
amounts of contents from both of their parents. After showing the SciMix frame-
work also streamlines a number of issues in the SAMOSA framework, we further
validate the quality of the SciMix hybrids and the importance of its components.
Finally, we show SciMix can also generate 64 × 64 or 96 × 96 hybrids on a fine
grained setting with few labels per class and no unlabeled data like CUB-200.

All told, SciMix introduces a realistic way to generate in-class hybrids as we set
out to do in this chapter. Empirical evidence suggests these in-class hybrids do
help train semi-supervised models, especially in low label settings. Unfortunately,
this also highlights the current limitation of the method: as we are reliant on an
auxiliary classifier to guide the generative framework, the quality of our hybrids
decreases in lower label settings. There are fortunately a number of solutions to
this problem like managing to train stronger semi-supervised auxiliary classifiers
along the generative framework which could be explored in further work.

This alternative point of view on mixing data augmentation addresses the
question of soft labels by generating samples that only belong to one class and
therefore use hard labels. It does not however directly address the mixing of
different semantic contents in a single mixed image. The following chapters of
this thesis will endeavor to treat mixed semantic contents in MSDA.

C
h

a
p

t
e

r 3
M I X I N G S A M P L E S D ATA A U G M E N TAT I O N S A S
C O M P R E S S E D R E P R E S E N TAT I O N S F O R
M U LT I - I N P U T M U LT I - O U T P U T T R A I N I N G

Contents
3 .1 Introduction . 49

3 .2 Related Work . 51

3 .2 .1 Ensembling . 51

3 .2 .2 MIMO . 52

3 .2 .3 Positioning . 53

3 .3 MixMo: Multi-Input Multi-Output MSDA . 53

3 .3 .1 General overview . 55

3 .3 .2 Mixing inputs and balancing concurrent subnetworks 56

3 .3 .3 From manifold mixing to MixMo . 59

3 .3 .4 Main experimental results . 59

3 .3 .5 MixMo analysis on CIFAR-100 w/ WRN-28-10 64

3 .3 .6 Pushing MixMo further: Tiny ImageNet 67

3 .3 .7 Takeaways from the MixMo project . 67

3 .4 MixShare: Feature sharing between MIMO subnetworks 69

3 .4 .1 MIMO Subnetworks do not share features 70

3 .4 .2 How can subnetworks share features? 73

3 .5 Conclusion . 76

3.1 Introduction

Mixing samples data augmentations are often treated as samples with seman-
tic content from multiple classes (H. Zhang et al. 2018). While this is a mostly
accurate assessment, it fails to capture the exact nature of mixing samples data
augmentations: the mixed samples contain information on multiple samples,
which can be of differing classes.

49

50 msda as compressed representations for mimo training

The soft labels used by MSDA techniques therefore only constitute a reduc-
tion of the information in a mixed samples. It is not that the sample represents
something that is in-between two classes, rather the sample contains information
on two samples that are each natural in-class samples. Perhaps surprisingly, the
soft “summarized” labels have only recently started to come under scrutiny, and
only in so far that the proportions of the classes in the mixed sample have been
re-evaluated (J.-N. Chen et al. 2022).

In this chapter, we explore the idea of providing multiple predictions for a
mixed sample - one for each original parent sample - instead of a single aggre-
gated soft prediction. This significantly changes the effect of the augmentation:
instead of teaching the model to make a single in-between prediction, we encour-
age the model to see multiple interpretations of the same mixed input.

The MIMO architecture (Havasi et al. 2021) slightly modifies standard convolu-
tional networks to take multiple inputs (typically M=2) and yield M predictions.
The M input/output pairs trained by MIMO each define a subnetwork with its
own independent predictions. For all intents and purposes, providing multiple
interpretations - one for each parent sample - of the same mixed input leads to
separating the network into smaller subnetworks that predict the labels of the
individual parent samples. Interestingly, we recover here our suggested MSDA
scheme as MIMO combines the inputs similarly to a mixing augmentation and
then makes separate predictions for each mixed image.

We propose to study the role and influence of mixing samples data augmenta-
tions in Multi-Input Multi-Output models. As a first step, we seek to improve the
training process of independent subnetworks in MIMO frameworks to facilitate
better performance of the ensembled subnetwork predictions. To a lesser extent,
we aim to train cooperating subnetworks that can yield independent predictions
while still benefiting from the regularizing effects of MSDA.

Through the course of this thesis, we have made 2 contribution towards this
goal:

• MixMo We replace the suboptimal summing mixing mechanism at the heart
of the seminal MIMO architecture by a more approriate noiseless CutMix
scheme that allows better predictions on the original network inputs. This
modification, along with a rebalancing of subnetwork training losses in line
with MSDA practices, aims to improve the individual performance of the
trained subnetworks as well as the overall ensembled accuracy.

• MixShare We then put in evidence MIMO architectures’ peculiar tendency
to train subnetworks that share no features or parameters. To recover some
regularizing benefits from the MSDA procedure and train on smaller mod-

3.2 related work 51

els, we introduce an unmixing mechanism that addresses the root cause of
this behavior.

After introducing the MIMO architecture in more detail along with some lit-
erature on ensembling in Section 3.2, we discuss the main contribution of this
chapter in the form of the MixMo framework (Section 3.3). Finally, we will provide
a quick investigation of MIMO models’ peculiar lack of feature sharing between
subnetworks and the possible solutions in Section 3.4.

The work conducted in this chapter of this thesis has led to two publications:

• RAME Alexandre* (equal contribution), SUN Rémy* (equal contribution),
and CORD Matthieu. (2022) “MixMo: Mixing Multiple Inputs for Multiple
Outputs via Deep Subnetworks”, in International Conference on Computer
Vision.

• SUN Rémy, RAME Alexandre, MASSON Clément, THOME Nicolas and
CORD Matthieu. (2022) “Towards efficient feature sharing in MIMO archi-
tectures”, in CVPR 2022 workshop on efficient deep learning for computer
vision.

3.2 Related Work

This chapter mostly focuses on a MSDA-centric view of the Multi-Input Multi-
Output architecture (Havasi et al. 2021). As the seminal paper is deeply rooted
in the larger problem of ensembling, we provide here a short introduction to
ensembling before discussing the MIMO framework proper.

3.2.1 Ensembling

Aggregating predictions from a diverse set of neural networks (i.e., with differ-
ent failure cases) strongly improves generalization (T. G. Dietterich 2000; Hansen
and Salamon 1990; Lakshminarayanan et al. 2017). An ensemble of several small
networks usually performs better than one large network empirically (Lobacheva
et al. 2020).

Ensembling’s fundamental drawback is the inherent computational and mem-
ory overhead, which increases linearly with the number of members. This bottle-
neck is typically addressed by sacrificing either individual performance or diversity
in a complex trade-off. Averaging predictions from several checkpoints on the
training process, i.e. snapshot ensembles (G. Huang et al. 2017), fails to explore

52 msda as compressed representations for mimo training

Figure 3.1. – Overview of the MIMO framework.

multiple local optima (Ashukha et al. 2020). So does Monte Carlo Dropout (Gal
and Ghahramani 2016). The recent BatchEnsemble (Dusenberry et al. 2020) is
parameter-efficient, yet requires multiple forward passes. TreeNets (S. Lee et al.
2015) reduce training and inference cost by sharing low-level layers. This however
always comes at the cost of reduced diversity.

The multi-input multi-output strategies we focus on here aim to address this
issue.

3.2.2 MIMO

Multi-input multi-output (MIMO) strategies (Havasi et al. 2021; Rame et al.
2021) provide an interesting solution to this conundrum by ensembling for vir-
tually free. Through their multiple inputs and outputs, MIMO frameworks train
independent subnetworks within a base network. Thanks to the sparse nature of
large neural networks (Malach et al. 2020), the resulting subnetworks yield strong
and diverse predictions that can be ensembled. As shown on Figure 3.1 with
M = 2, the M inputs are embedded by M subnetworks with no structural dif-
ferences. Thus, we have M (inputs, labels) pairs in training: {(xi, yi)}0≤i<M . More
precisely, M images are fed to the network at once. The M inputs are encoded by
M distinct convolutional layers {ci}0≤i<M into a shared latent space before being
aggregated through a summing operation. This representation is then processed
by the core network into a single feature vector, which is classified by M dense
layers {di}0≤i<M . Diverse subnetworks appear as di learns to classify yi from input
xi. At inference, we can ensemble M predictions by feeding the same image M
times to the model.

As such, the multi-input multi-output MIMO achieves ensemble almost “for
free”: all of the layers except the first convolutional and last dense layers are

3.3 mixmo : multi - input multi -output msda 53

shared (≈ +1% #parameters). (Soflaei et al. 2020) motivated a related Aggregated
Learning to learn concise representations with arguments from information bot-
tleneck (Tishby 2001). The idea is that over-parameterized CNNs (Frankle and
Carbin 2019; Molchanov et al. 2017; Pensia et al. 2020) can fit multiple subnet-
works (Veit et al. 2016). Interestingly, MIMO does not need structural differences
among subnetworks: they learn to build their own paths while being as diverse
as in DE.

3.2.3 Positioning

In this chapter, we formulate a new variant of MSDA that reprises the multi-
input multi-output framework by providing separate predictions for each of the
original parent samples. By borrowing techniques from mixing data augmen-
tation, we seek to improve the subnetworks in MIMO architectures in order to
obtain even better performance. As such, our work directly follows from the sem-
inal MIMO (Havasi et al. 2021) and only loosely borrows ideas from the rest of
the ensembling literature.

More precisely, we first develop the MixMo framework by analyzing the MIMO
framework through the lens of MSDA. We then develop the MixShare framework
to understand and solve issues that emerge when trying to train many subnet-
works in a small network with MixMo and MIMO.

3.3 MixMo: Multi-Input Multi-Output MSDA

We first propose MixMo, a new generalized multi-input multi-output frame-
work: we train a base network with M ≥ 2 inputs and outputs as shown on
Figure 3.2. This way, we fit M independent subnetworks (Gao et al. 2019; Havasi
et al. 2021; Soflaei et al. 2020) defined by an input/output pair and a subset of
network weights. This is possible as large networks only leverage a subset of their
weights (Frankle and Carbin 2019). Rather than pruning (ie, eliminating) inactive
filters (Yann Lecun et al. 1990; H. Li et al. 2017), we seek to fully use the available
neurons and over parameterization through multiple subnetworks.

The key divergent point between MixMo variants lies in the multi-input mixing
block that seeks to combine inputs in a way that favorizes the emergence of
strong and diverse subnetworks. Should the merging be a basic summation or
a concatenation, we would recover MIMO (Havasi et al. 2021) or respectively
Aggregated Learning (Soflaei et al. 2020) - which both featured this multi-input
multi-output strategy.

54 msda as compressed representations for mimo training

Figure 3.2. – MixMo overview. We embed M = 2 inputs into a shared space
with convolutional layers (c1, c2), mix them, pass the embedding
through further layers and output 2 predictions via dense layers
(d1, d2). The key point of our MixMo is the mixing block. Mixing
with patches performs better than basic summing: 85.40% vs. 83.06%
(MIMO (Havasi et al. 2021)) on CIFAR-100 with WRN-28-10.

Our main intuition is simple: we see summing as a balanced and restrictive
form of Mixup (H. Zhang et al. 2018) where λ = 1

M
. By analogy, we draw from

the considerable MSDA literature to design a more appropriate mixing block. In
particular, we leverage binary masking methods to ensure subnetworks diversity.
Our framework allows us to create a new Cut-MixMo variant inspired by CutMix
(Y. Yang and Soatto 2019), and illustrated in Figure 3.2: a patch of features from
the first input is pasted into the features from the second input.

This asymmetrical mixing also raises new questions regarding information
flow in the network’s features. We tackle the imbalance between the multiple
classification training tasks via a new weighting scheme. Conversely, MixMo’s
double nature as a new mixing augmentation in features yields important insights
on traditional MSDA.

In summary, our contributions are threefold:

1. We propose a general framework, MixMo, connecting two successful fields:
mixing samples data augmentations & multi-input multi-output ensem-
bling.

3.3 mixmo : multi - input multi -output msda 55

2. We identify the appropriate mixing block to best tackle the diversity/in-
dividual accuracy trade-off in subnetworks: our easy to implement Cut-
MixMo benefits from the synergy between CutMix and ensembling.

3. We design a new weighting of the loss components to properly leverage the
asymmetrical inputs mixing.

3.3.1 General overview

We leverage a training classification dataset D of i.i.d. pairs of associated im-
age/label {xi, yi}|D|i=1. We randomly sample a subset of |B| samples {xi, yi}i∈B that
we randomly shuffle via some permutation π. Our training batch therefore is
{(xi, xj), (yi, yj)}i∈B,j=π(i). The loss LMixMo is averaged over these |B| samples: the
networks’ weights are updated through backpropagation and gradient descent.

Let’s focus on the training sample {(x0, x1), (y0, y1)}. In MixMo, both inputs are
separately encoded (see Figure 3.2) into the shared latent space with two different
convolutional layers (with 3 input channels each and no bias term): x0 via c0 and
x1 via c1. To recover a strictly equivalent formulation to MIMO (Havasi et al. 2021),
we simply sum the two encodings: c0(x0) + c1(x1). Indeed, MIMO merges inputs
through channel-wise concatenation in pixels: MIMO’s first convolutional layer
(with 6 input channels and no bias term) hides the summing operation in the
output channels.

Explicitly highlighting the underlying mixing leads us to consider a gener-
alized multi-input mixing block M. This manifold mixing presents a unique
opportunity to tackle the ensemble diversity/individual accuracy trade-off and to
improve overall ensemble results (see Section 3.3.2.1). The shared representation
M (c0(x0), c1(x1)) feeds the next convolutional layers. We note κ the mixing ratio
between inputs.

The core network C handles features that represent both inputs simultaneously.
The dense layer d0 predicts ŷ0 = d0 [C (M{c0(x0), c1(x1)})] and targets y0, while d1
targets y1. Thus, the training loss is the sum of two cross-entropies LCE weighted
by parametrized function wr (defined in Section 3.3.2.2) to balance the asymmetry
when κ 6= 0.5:

LMixMo = wr(κ)LCE (y0, ŷ0) + wr(1−κ)LCE (y1, ŷ1) . (3.1)

At inference, the same input x is repeated twice: the core network C is fed the sum
c0(x) + c1(x) that preserves maximum information from both encodings. Then,
the diverse predictions are averaged: 1

2
(ŷ0 + ŷ1). This allows us to benefit from

ensembling in a single forward pass.

56 msda as compressed representations for mimo training

3.3.2 Mixing inputs and balancing concurrent subnetworks

Our MixMo framework relies on two key components: a mixing block that
combines the inputs in a manner that allows separate predictions later on, and a
balancing mechanism to train strong concurrent subnetworks.

3.3.2.1 Mixing block

The mixing blockM - which combines both inputs into a shared representation
- is the cornerstone of MixMo. Our main intuition was to analyze MIMO as a
simplified Mixup variant where the mixing ratio κ is fixed to 0.5. Our generalized
MixMo framework encompasses a wider range of variants inspired by MSDA
mixing methods. Our first main variant - Linear-MixMo - fully extends Mixup.
The mixing block is MLinear-MixMo (l0, l1) = 2 [κl0 + (1− κ)l1], where l0 = c0(x0),
l1 = c1(x1) and κ ∼ Beta(α, α) with α the concentration parameter. The second
and more effective variant Cut-MixMo adapts the patch mixing from CutMix:

MCut-MixMo (l0, l1) = 2 [1M�l0 + (1− 1M)�l1] , (3.2)

where 1M is a binary mask with area ratio κ ∼ Beta(α, α), valued at 1 either
on a rectangle or on the complementary of a rectangle. In brief, a patch from
c0(x0) is pasted onto c1(x1), or vice versa. This binary mixing in Cut-MixMo
advantageously replaces the linear interpolation in MIMO and Linear-MixMo:
subnetworks are more accurate and more diverse, as shown empirically in Fig-
ure 3.8.

First, binary mixing inM trains stronger individual subnetworks for the same
reasons why CutMix improves over Mixup. In a nutshell, linear MSDAs (Verma et
al. 2019a; H. Zhang et al. 2018) produce noisy samples (Carratino et al. 2020) that
lead to robust representations. As MixMo tends to distribute different inputs on
non-overlapping channels (as discussed later in Figure 3.4a), this regularization
hardly takes place anymore inMLinear-MixMo. On the contrary, by masking features,
we simulate common object occlusion problems. This spreads subnetworks’ focus
across different locations: the two classifiers are forced to find information relevant
to their assigned input at disjoint locations. This occlusion remains effective as
the receptive field in this first shallow latent space remains small.

Secondly, linear interpolation is fundamentally ill-suited to induce diversity
as full information is preserved from both inputs. CutMix on the other hand
explicitly increases dataset diversity by presenting patches of images that do not
normally appear together. Such benefits can be directly transposed toMCut-MixMo:
binary mixing with patches increases randomness and diversity between the
subnetworks. Indeed, in a similar spirit to bagging (Breiman 1996), different

3.3 mixmo : multi - input multi -output msda 57

Figure 3.3. – Overview of Cut-MixMo training. We sample a mixing mask given
κ, and balance the losses with wr(κ) from Equation 3.3.

samples are given to the subnetworks. By deleting asymmetrical complementary
locations from the two inputs, subnetworks will not rely on the same region and
information. Overall, they are less likely to collapse on close solutions.

3.3.2.2 Loss weighting wr

Asymmetries in the mixing mechanism can cause one input to overshadow the
other. Notably when κ 6= 0.5, the predominant input may be easier to predict. We
seek a weighting function wr to balance the relative importance of the two LCE

in LMixMo. This weighting modifies the effective learning rate, how gradients flow
in the network and overall how mixed information is represented in features. In
this paper, we propose to weight via the parametrized:

wr(κ) = 2
κ1/r

κ1/r + (1− κ)1/r
. (3.3)

This defines a family of functions indexed by the parameter r, visualized for
r = 3 in red on Figure 3.3. See Appendix Section A.5.3 for complementary vi-
sualizations. This power law provides a natural relaxation between two extreme
configurations. The first extreme, r = 1, w1(κ) = 2κ, is in line with linear label in-
terpolation in MSDA. The resulting imbalance in each subnetwork’s contribution
to LMixMo causes lopsided updates. While it promotes diversity, it also reduces

58 msda as compressed representations for mimo training

(a) Filters l1-norms of the input en-
coders c0 and c1.

(b) Proportion of active filters in the
core network vs. width w.

Figure 3.4. – Influence of MixMo on network utilization.(a) The encoders have
separate channels: the two subsequent classifiers can differentiate
the two inputs. (b) Less filters are strongly active (‖fi‖1 ≥ 0.4 ×
maxf∈layer‖f‖1) in wider networks: Cut-MixMo reduces this negative
point.

regularization: the overshadowed input has a reduced impact on the loss. The
opposite extreme, r → ∞, w∞(κ) → 1, removes reweighting. Consequently, wr
inflates the importance of hard under-represented inputs, à la Focal Loss (Lin
et al. 2017). However, minimizing the role of the predominant inputs destabilizes
training. Overall, we empirically observe that moderate values of r perform best
as they trade off pros and cons from both extremes.

Interestingly, the proper weighting of loss components is also a central theme
in multi-task learning (Caruana 1997; Z. Chen et al. 2018). While it aims at
predicting several tasks from a shared input, MixMo predicts a shared task from
several different inputs. Beyond this inverted structure, we have similar issues: e.g.
gradients for one task can be detrimental to another conflicting task. Fortunately,
MixMo presents an advantage: the exact ratios κ and 1−κ of each task are known
exactly.

3.3.2.3 Generalization to M ≥ 2 subnetworks

MixMo is easily extended by optimizing LMixMo =
∑

0≤i<M M
κ
1/r
i∑

j κ
1/r
j

LCE (yi, ŷi)

with {κi} ∼ Dir(α) from a Dirichlet distribution (see Appendix Section A.5.2).
The key change is thatM now needs to handle more than 2 inputs: {ci(xi)}0≤i<M .
While linear interpolation is easily generalized, Cut-MixMo has several possible
extensions: in our experiments, we first linearly interpolate between M − 1 inputs
and then patch in a region from the M -th.

3.3 mixmo : multi - input multi -output msda 59

3.3.3 From manifold mixing to MixMo

We have discussed at length how we extend multi-input multi-output frame-
works by borrowing mixing protocols from MSDA. Now we reversely point out
how our MixMo diverges from MSDA schemes. At first glimpse, the idea is the
same as manifold mixing (Faramarzi et al. 2020; B. Li et al. 2021; Verma et al.
2019a): M = 2 inputs are encoded into a latent space to be mixed before being
fed to the rest of the network. Yet, while they mix at varying depths, we only mix
in the shallowest space. Specifically, we only mix in features - and not in pixels
- to allow separate encodings of the inputs: they need to remain distinct in the
mixed representation for the subsequent classifiers.

Hence our two key differences: first, MixMo uses two separated encoders (one
for each input), and second, it outputs two predictions instead of a single one.
Indeed, MSDAs use a single classifier that targets a unique soft label reflecting the
different classes via linear interpolation. MixMo instead chooses to fully leverage
the composite nature of mixed samples and trains separated dense layers, d0 and
d1, ensembled “for free” at test time.

Section 3.3.5.4 demonstrates that MixMo works because it also uses two differ-
ent encoders c0 and c1. While training two classifiers may seem straightforward
in MSDA, it actually raises a troubling question: which input should each clas-
sifier predicts ? Having two encoders provides a simple solution: the network
is divided in two subnetworks, one for each input. Their separability is easily
observed: Figure 3.4a shows the l1-norm of the 16 filters for the two encoders
(WRN-28-10 on CIFAR-100). Each filter norm is far from zero in only one of the
two encoders: c0(x0) and c1(x1) separate the inputs in different dimensions which
allows subsequent layers to treat them differently.

This leads MixMo to use most available filters. Following the structured prun-
ing literature (H. Li et al. 2017), we consider in Figure 3.4b that a filter (in a
layer of the core network) is active if its l1-norm is at least 40% of the l1-norm
from its layer’s most active filter (see Appendix Section A.5.4). This illustrates the
known increase in sparsity in wider networks. Conversely, having 2 subnetworks
in MixMo enables the weights ignored by one subnetwork to be leveraged by the
other.

3.3.4 Main experimental results

We evaluate MixMo efficiency on standard image classification datasets: CIFAR-
{10,100} (Krizhevsky and Hinton 2009) and Tiny ImageNet (Chrabaszcz et al. 2017).
We equally track accuracies (Top{1,5}, ↑) and the calibrated Negative Log-Likelihood

60 msda as compressed representations for mimo training

(NLLc, ↓). Indeed, (Ashukha et al. 2020) shows that we should compare in-domain
uncertainty estimations after temperature scaling (TS) (Guo et al. 2017): we thus
split the test set in two and calibrate (after averaging in ensembles) with the
temperature optimized on the other half, as in (Lobacheva et al. 2020; Rame and
Cord 2021). We nonetheless report NLL (without TS) along with the Expected
Calibration Error (Naeini et al. 2015) in Appendix Section A.1.3.2.

3.3.4.1 Implementation details

We mostly study the Linear-MixMo and Cut-MixMo variants with M=2. We
set hyper-parameter r=3 (see Section 3.3.5.3). α=2 performs better than 1 (see
Appendix Section A.5.7). In contrast, MIMO (Havasi et al. 2021) refers to linear
summing, like Linear-MixMo, but with κ=0.5 instead of κ ∼ Beta(α, α).

Different mixing methods create a strong train-test distribution gap (Carratino
et al. 2020; Gontijo-Lopes et al. 2021). Thus, in Cut-MixMo we actually substitute
MCut-MixMo forMLinear-MixMo with probability 1 − p to accommodate for the sum-
ming in M at inference. We set the probability of patch mixing during training
to p=0.5, with linear descent to 0 over the last twelfth of training epochs (see
pseudocode in Appendix Algorithm A.6).

When combined with CutMix, the pixels inputs are: (mx(xi, xk, λ),mx(xj, xk′ , λ
′))

with interpolated targets (λyi + (1− λ)yk, λ
′yj + (1− λ′)yk′)), where k, k′ are ran-

domly sampled and λ, λ′ ∼ Beta(1, 1).

MIMO duplicates samples b times via batch repetition: xi will be associated
with xπ(i) and xπ′(i) in the same batch if b=2. As the batch size remains fixed,
the count of unique samples per batch and the learning rate is divided by b.
Conversely, the number of steps is multiplied by b. Overall, this stabilizes training
but multiplies its cost by b. We thus indicate an estimated (training/inference)
overhead (wrt. vanilla training) in the time column of our tables. Note that some
concurrent approaches also lengthen training: e.g. GradAug (T. Yang et al. 2020)
via multiple subnetworks predictions (≈ ×3).

We provide more details in Appendix Section A.1.3.1 and provide our open
source PyTorch (Paszke et al. 2019) implementation.

3.3.4.2 Main results on CIFAR-100 and CIFAR-10

Table 3.1 reports averaged scores over 3 runs for our main experiment on CI-
FAR with WRN-28-10 (Zagoruyko and Komodakis 2016). We re-use the hyper-
parameters given in MIMO (Havasi et al. 2021). Cut-MixMo reaches (85.40% Top1,
0.535 NLLc) on CIFAR-100 with b=4: it surpasses our Linear-MixMo (83.08%,
0.656) and MIMO (83.06%, 0.661). Cut-MixMo sets a new state of the art when

3.3 mixmo : multi - input multi -output msda 61

Dataset CIFAR-100 CIFAR-10

Approach Time
Tr./Inf.

Top1

%, ↑
Top5

%, ↑
NLLc
10−2, ↓

Top1

%, ↑
NLLc
10−2, ↓

Vanilla

1/1

81.63 95.49 73.9 96.34 12.6
Mixup 83.44 95.92 65.7 97.07 11.2

Manifold Mixup† 81.96 95.51 73.4 97.45 12.2
CutMix 84.05 96.09 64.8 97.23 9.9

ResizeMix† 84.31 - - 97.60 -

Puzzle-Mix† 2/1 84.31 96.46 66.8 - -

GradAug†
3/1

84.14 96.43 - - -
+ CutMix† 85.51 96.86 - - -

Mixup BA† 7/1 84.30 - - 97.80 -

DE (2 Nets)
2/2

83.17 96.37 66.4 96.67 11.1
+ CutMix 85.74 96.82 57.1 97.52 8.6

MIMO

2/1

82.40 95.78 68.8 96.38 12.1

Linear-MixMo 82.54 95.99 67.6 96.56 11.4
+ CutMix 84.69 97.12 57.2 97.32 9.4

Cut-MixMo 84.38 96.94 56.3 97.31 8.9
+ CutMix 85.18 97.20 54.5 97.45 8.4

MIMO

4/1

83.06 96.23 66.1 96.74 11.4

Linear-MixMo 83.08 96.26 65.6 96.91 10.8
+ CutMix 85.47 97.04 55.8 97.68 8.7

Cut-MixMo 85.40 97.22 53.5 97.51 8.1
+ CutMix 85.77 97.42 52.4 97.73 7.9

Table 3.1. – Main results: WRN-28-10 on CIFAR. Bold highlights best scores, †
marks approaches not re-implemented.

combined with CutMix (85.77%, 0.524). Results remain strong when b=2: Cut-
MixMo (84.38%, 0.563) proves better on its own than traditional DE (Lakshmi-
narayanan et al. 2017), and MSDAs like MixUps (H. Zhang et al. 2018; Verma et
al. 2019a) or the stronger CutMix variant (Y. Yang and Soatto 2019). On CIFAR-10,
we see similar trends: Cut-MixMo reaches 0.081 in NLLc, 0.079 with CutMix. Yet,
the costlier batch augmented Mixup BA (Hoffer et al. 2020) edges it out in Top1.

Figure 3.5 shows how MixMo grows stronger than DE (green curves) as width w
in WRN-28-w increases. The parameterization becomes appropriate at w=4: Cut-
MixMo (yellow curves) then matches DE - with half the parameters - in Figure 3.5a

62 msda as compressed representations for mimo training

(a) Ensemble Top1 and NLLc. (b) Individual Top1.

Figure 3.5. – Parameter efficiency of MixMo (metrics/#params). CIFAR-100 with
WRN-28-w, b = 4. Comparisons between (a) ensemble and some of
their (b) individual counterparts.

and its subnetworks match a vanilla network in Figure 3.5b. Beyond, MixMo better
uses over-parameterization: Cut-MixMo+CutMix surpasses DE+CutMix in NLLc
for w≥5, and this is true in Top1 for w≥10.

Compared to our strong Linear-MixMo+CutMix (purple curves), Cut-MixMo
performs similarly in Top1, and better with CutMix for w≥4. While Linear-MixMo
and DE learn from occlusion, Cut-MixMo also benefits from CutMix, notably
from the induced label smoothing. Overall, Cut-MixMo, even without CutMix,
significantly better estimates uncertainty.

3.3.4.3 Robustness to image corruptions

Deep networks’ results decrease when facing unfamiliar samples. To measure
robustness to train-test distribution gaps, (Hendrycks and T. Dietterich 2019) cor-
rupted CIFAR-100 test images into CIFAR-100-c (more details in Appendix Sec-
tion A.1.3.1). As in Puzzle-Mix (J.-H. Kim et al. 2020), we report WRN-28-10 results
with and without AugMix (Hendrycks et al. 2020), a pixels data augmentation
technique specifically introduced for this task. Table 3.2 shows that Cut-MixMo
(b=4) best complements AugMix and reaches 71.1% Top1.

3.3 mixmo : multi - input multi -output msda 63

Figure 3.6. – Ensemble effectiveness (NLLc/#params), for different widths w in
WRN-28-w and numbers of members N . Standard data augmenta-
tions on CIFAR-100 with b = 4. Curves interpolated through power
laws (Lobacheva et al. 2020).

3.3.4.4 Ensemble of MixMo

Since MixMo adds very little parameters (≈ +1%), we can combine indepen-
dently trained MixMo like in DE. This ensembling of ensemble of subnetworks
leads in practice to the averaging of M × N = 2 × N predictions. Figure 3.6
compares ensembling for vanilla networks and Cut-MixMo on CIFAR-100. We
first recover the Memory Split Advantage (Chirkova et al. 2020; Lobacheva et al.
2020) (MSA): at similar parameter counts, N=5 vanilla WRN-28-3 do better than a
single vanilla WRN-28-7 (+0.10 in NLLc). Cut-MixMo challenges this MSA: we
bridge the gap between using one network or several smaller networks (−0.04 on
same setup). Visually, Cut-MixMo’s curves remain closer to the lower envelope:
performances are less dependent on how the memory budget is split. This is be-

Approach 1 Net. CutMix Puzzle-Mix† DE (2 Nets) MIMO Linear-MixMo Cut-MixMo
AugMix - X - - X - X - - X - X

Top1 ↑ 52.2 67.8 51.93 58.09 70.46 53.8 69.9 53.6 55.6 70.4 57.0 71.1
Top5 ↑ 73.7 87.5 72.03 77.3 87.7 74.9 88.9 74.9 76.1 89.4 77.4 89.5
NLL ↓ 2.50 1.38 2.13 1.96 1.34 2.27 1.24 2.66 2.33 1.22 2.04 1.16

Table 3.2. – Robustness comparison on CIFAR-100-c.

64 msda as compressed representations for mimo training

cause Cut-MixMo is effective mainly for larger architectures by better leveraging
their parameters.

We also recover that wide vanilla networks tend to be less diverse (Neal et al.
2018), and thus gain less from ensembling (Lobacheva et al. 2020): N=2 vanilla
WRN-28-14 (83.47% Top1, 0.656 NLLc) perform not much better than N=2 WRN-
28-7 (82.94%, 0.673). Contrarily, Cut-MixMo facilitates the ensembling of large
networks with (86.58%, 0.488) vs. (85.50%, 0.516) (more comparisons in Appendix
Section A.5.5).

3.3.5 MixMo analysis on CIFAR-100 w/ WRN-28-10

3.3.5.1 Training time

We have just seen that CutMix improves Linear-MixMo at varying widths w,
but not enough to match Cut-MixMo in NLLc: CutMix can not fully compensate
for the advantages from patch mixing over linear interpolation. We recover this
finding in Figure 3.7, this time at varying batch repetition b ∈ {1, 2, 4} when
w=10. Moreover, Cut-MixMo outperforms DE for the same training time. Indeed,
MixMo variants trained with a given b matches the training time of DE with N=b

networks. In the rest of this section, we set b=2.

Figure 3.7. – NLLc(↓) improves with longer training, via batch repetitions
(MixMo) or additional networks (DE).

3.3.5.2 The mixing block

Table 3.3 compares performance for several mixing blocks (Faramarzi et al.
2020; Harris et al. 2020; Summers and Dinneen 2019; Y. Yang and Soatto 2019). No
matter the shape (illustrated in Appendix Section A.5.1), binary masks perform
better than linear mixing: the cow-spotted mask (84.17%, 0.561) (G. French et al.
2020a; G. French et al. 2020b) notably performs well. The basic CutMix patching
(84.38%, 0.563) is nevertheless more accurate and was our main focus.

3.3 mixmo : multi - input multi -output msda 65

Mapproach MixUp Hor. Concat. Vert. Concat. PatchUp 2D FMix CowMask CutMix

Top1 ↑ 82.5 82.78 84.00 84.16 83.76 84.17 84.38
NLLc ↓ 0.676 0.627 0.573 0.581 0.602 0.561 0.563

Table 3.3. – Influence of the MSDA used in the mixing blockM.

We further study the impact of patch mixing through the lens of the ensemble
diversity/individual accuracy trade off. As in (Rame and Cord 2021), we measure
diversity via the pairwise ratio-error (Aksela 2003) (dre, ↑), defined as the ratio
between the number of different errors and simultaneous errors for two predictors.
In Figure 3.8 and Figure 3.9, we average metrics over the last 10 epochs.

As argued in Section 3.3.2.1, patch mixing increases diversity compared to lin-
ear mixing in Figure 3.8. As the probability p of patch mixing grows, so does
diversity: from dre(p=0.0)≈0.78 (Linear-MixMo) to dre(p=0.5)≈0.85 (Cut-MixMo).
In contrast, DE has dre≈0.76 while MIMO has dre≈0.77 on the same setup. Increas-
ing p past 0.6 boosts diversity even more at the cost of subnetworks’ accuracies:
this is due to underfitting and an increased test-train distribution gap. p ∈ [0.5, 0.6]

is thus the best trade off.

Figure 3.8. – Diversity/accuracy as function of p with r = 3.

3.3.5.3 Weighting function wr

We analyze the impact of the parameter r in the reweighting function wr. Higher
values tend to remove reweighting, as shown in Appendix Section A.5.3: they
strongly decrease diversity in Figure 3.9. The opposite extreme with r=1 increases
diversity via lopsided gradient updates but it degrades accuracy. We speculate
it under-emphasizes hard samples. The range r ∈ [3, 6] strikes a good balance:
results remain high and stable.

66 msda as compressed representations for mimo training

Figure 3.9. – Diversity/accuracy as function of r with p = 0.5.

3.3.5.4 Multiple encoders and classifiers

enc. # clas. nllc ↓

1 1 0.604

2 1 0.666

1 2
	

0.687

1 2
⊗

0.598

2 2 0.563

Table 3.4. – Ablation on the
importance of the
encoder/decoders
in MixMo.

In Section 3.3.3, we compared MixMo and
MSDA. Table 3.4 confirms the need for 2 en-
coders and 2 classifiers. With 1 classifier and
linearly interpolated labels (in the same spirit
as (J. Chen et al. 2020)), the 2 encoders perform
worse than 1 encoder. With 1 shared encoder
and 2 classifiers, it is not clear which input each
classifier should target. In the first naive 	, we
randomly associate the 2 classifiers and the 2

inputs (encoded with the same encoder). This
	 variant yields poor results. In ⊗, the first clas-
sifier tries to predict the label from the predom-
inant input, the second targets the other input:
⊗ reaches 0.598 vs. 0.563 for Cut-MixMo.

3.3.5.5 Generalization to M ≥ 2 subnetworks

We try to generalize MixMo to more than M = 2 subnetworks in Figure 3.10.
Cut-MixMo’s subnetworks perform at 82.3% when M=2 vs. 79.5% when M=3. In
MIMO, it’s 79.8% vs. 77.7%. Because subnetworks do not share features, higher
M degrades their results: only two can fit seamlessly. Ensemble Top1 overall
decreases in spite of the additional predictions, as already noticed in MIMO
(Havasi et al. 2021).

This reflects MixMo’s strength in over-parametrized regimes, but also its lim-
itations with fewer parameters when subnetworks underfit (recall previous Fig-
ure 3.5). Facing similar findings, MIMO (Havasi et al. 2021) introduced input
repetition so that subnetworks share their features, at the cost of drastically reduc-

3.3 mixmo : multi - input multi -output msda 67

Figure 3.10. – Ensemble/individual accuracies for M ≥ 2.

ing diversity. Our generalization may be extended by future approaches whose
mixing blocks (perhaps not inspired by MSDA) would tackle these issues.

3.3.6 Pushing MixMo further: Tiny ImageNet

At a larger scale and with more varied 64 × 64 images, Cut-MixMo reaches
a new state of the art of 70.24% on Tiny ImageNet (Chrabaszcz et al. 2017) in
Table 3.5. We re-use the hyper-parameters given in previous state of the art Puzzle-
Mix (J.-H. Kim et al. 2020). With w=1, PreActResNet-18 (He et al. 2016b) is not
sufficiently parametrized for MixMo’s advantages to express themselves on this
challenging dataset. MixMo’s full potential shines with wider networks: with w=2

and 44.9M parameters, Cut-MixMo reaches (69.13%, 1.28) vs. (67.76%, 1.33) for
CutMix. Compared to DE with 3 networks, Cut-MixMo performs {worse, similarly,
better} for width w ∈ {1, 2, 3}. At (almost) the same numbers of parameters, Cut-
MixMo when w=2 performs better (69.13%, 1.28) than DE with 4 networks when
w=1 (67.51%, 1.31).

3.3.7 Takeaways from the MixMo project

With MixMo, we have shown MIMO architectures can in fact be interpreted as
a variation on mixing sample data augmentations. Under this particular angle,
the seminal formulation of the framework is fairly sub-optimal: summing the
encoded inputs is a poor compression process that obfuscates them both. Rather,
MIMO methods should rely on binary mixing methods that helps diversify the
subnetwork predictions like CutMix.

68 msda as compressed representations for mimo training

Width w (# params) w = 1 (11.2M) w = 2 (44.9M) w = 3 (100.5M)

Approach Time
Tr./Inf.

Top1

%, ↑
NLLc
↓

Top1

%, ↑
NLLc
↓

Top1

%, ↑
NLLc
↓

Vanilla

1/1

62.56 1.53 64.80 1.51 65.78 1.53

Mixup 63.74 1.62 66.62 1.50 67.27 1.51

Manifold Mixup† 58.70 1.92 - - - -
Co-Mixup† 64.15 - - - - -

CutMix 65.09 1.58 67.76 1.33 68.95 1.29

Puzzle-Mix† 2/1 64.48 1.65 - - - -

DE (2 Nets) 2/2 65.53 1.39 68.06 1.37 68.38 1.36

DE (3 Nets) 3/3 66.76 1.34 69.05 1.29 69.36 1.28

DE (4 Nets) 4/4 67.51 1.31 69.94 1.24 69.72 1.26

Linear-MixMo
2/1

61.58 1.61 66.62 1.41 68.18 1.36

Cut-MixMo 63.78 1.48 68.30 1.30 69.89 1.26

Linear-MixMo
4/1

62.91 1.51 67.03 1.41 68.38 1.38

Cut-MixMo 64.44 1.48 69.13 1.28 70.24 1.19

Table 3.5. – Results on Tiny ImageNet (PreActResNet-18-w).

Basing a MIMO architecture on CutMix - along with a few key additions like
reintroducing MSDA style ponderation on the subnetwork training losses - leads
to a much improved performance over the CIFAR datasets on large enough
WideResNets. Importantly, MIMO architectures prove orthogonal to standard
MSDA techniques as we also see significant improvements when the model in-
puts are mixed inputs themselves. While we did not combine MixMo with the
in-class MSDA scheme developed in Chapter 2, the framework should prove or-
thogonal to in-class mixing on the inputs. It must be noted however that in-class
mixing cannot be used to mix the inputs in the mixing blockM as we need to mix
semantic content from both inputs. MixMo also performs well on more complex
settings like the corrupted CIFAR-100-C or the more complex TinyImageNet.

These last experiments on TinyImageNet (Section 3.3.6) however shine a light
on the main issue with MIMO models: subnetworks can only be trained efficiently
if the base model is wide enough. Indeed, we need to triple the width of ResNet-
18 models before we see solid gains from using MixMo. Worse, MixMo performs
worse than a single-input single-output model on TinyImageNet with a standard
width ResNet-18. This same problem also appears on CIFAR-100 with narrower
models.

3.4 mixshare : feature sharing between mimo subnetworks 69

As such, it seems of paramount importance to confirm the root cause of this
shortcoming and identify strategies to address it. As it stands, MIMO architectures
must remain limited to very wide architectures which restricts their applicabil-
ity. Moreover, it seems likely that the difficulties observed in Section 3.3.5.5 and
(Havasi et al. 2021) when trying to learn more than 2 subnetworks are linked to
this width issue.

3.4 MixShare: Feature sharing between MIMO sub-
networks

Our MixMo framework (Rame et al. 2021) (see Section 3.3) improves the per-
formance of MIMO (Havasi et al. 2021) architectures by treating the whole model
as a mixed sample with separate predictions for each of the original inputs. Our
work however highlights significant limitations of MIMO architectures: multi-
input multi-output architectures require large base models and struggle to fit
more than 2 subnetworks. Indeed, Section 3.3.4.4 shows a significant drop in
performance on CIFAR 100 when going from 2 subnetworks to 4 subnetworks.

This scaling issue is explained by analyzing the features inside the network,
as we show at the beginning of this paper by extending our previous study of
subnetwork behavior. Our analysis shows that the aforementioned scaling issues
stem from how subnetworks share no features in the base network: each chan-
nel or feature is almost exclusively used by one subnetwork. As such, we can
explain the scaling issue since each additional subnetwork significantly reduces
the effective size of the individual subnetworks. Beyond causing issues on smaller
architectures or harder datasets, this leads to very wasteful use of network param-
eters. This is especially unfortunate as the subnetworks could at the very least
share generic features in the first layers. We see this as a missed opportunity, one
that can significantly improve multi-input multi-output models’ applicability to
real world settings like mobile devices.

We therefore develop the MixShare framework along with the following contri-
butions:

• We carefully study the repartition of features in MIMO subnetworks.

• We develop the unmixing mechanism to allow the final network features to
describe each of the original inputs.

• We discuss necessary adjustments to obtain good performance with unmix-
ing. In particular, we show particular care must be given to progressively

70 msda as compressed representations for mimo training

weakening the unmixing process over training and to properly initializing
input encoders.

3.4.1 MIMO Subnetworks do not share features

In this section, we strive to pinpoint the cause of multi-input multi-output
architectures’ scaling issues. To this end, we consider the following question: how
do subnetworks behave in multi-input multi-output architectures ?

Following Section 3.3.3, we check how the inputs are organized in the C feature
maps of the mixing space by considering the L1 norm of the C encoder kernels for
each subnetwork (see Figure 3.11). This tells us whether a feature map contains
more information about one input, and we can visualize which maps are used
by which subnetwork through histograms h0 and h1 of feature influence for each
subnetwork. Quantitatively, we can approximate the feature sharing rate through
the ratio of min(h0,h1)

max(h0,h1)
. In the same spirit, we consider the L1 norm of the columns

of classifier weight matrices to quantify the importance of each feature to each
classifier.

We conduct our study on a WideResNet-28-2 (Zagoruyko and Komodakis 2016)
using the more realistic batch repetition 2 setting from (Rame et al. 2021) on the
CIFAR 100 dataset (Krizhevsky and Hinton 2009) (see Appendix). We choose to
consider this situation as it perfectly showcases the issues encountered by MIMO
methods on smaller architectures. To complement this, we also show results on
the slightly larger WideResNet-28-5 later on.

Figure 3.12 shows the subnetworks are fully independent in the core network:
each channel in the input block encodes information about only one input, as the
corresponding kernel of the other encoder’s L1 is very low. A similar behavior is
observed in the output block, and further analysis of input influence on interme-
diary feature maps shows this behavior remains consistent within the network
(See Appendix).

Multi-input multi-output architectures’ scaling issues become much easier to
understand in light of this: the amount of weights available to each of the underly-
ing subnetworks decreases quadratically with the number of subnetwork. Indeed,
since feature maps of different subnetworks cannot communicate, only 1

M
weights

can be non-zero. This fraction of non-zero weights must then be distributed be-
tween the M subnetworks. Furthermore, the subnetworks likely extract similar
generic features, at least in the first layers. Since the subnetworks share no features,
this means those features are unnecessarily replicated for each subnetwork.

This is not wholly surprising or undesirable behavior as MIMO strives to train
M independent subnetworks to obtain diverse ensembles. By avoiding overlap

3.4 mixshare : feature sharing between mimo subnetworks 71

Figure 3.11. – Influence of the feature maps for the subnetworks. We study the
influence of features in the input and output block on the subnet-
works (L1 norm figured by bars). For the input block, we consider
the L1 norm of the feature kernels for the relevant encoders. For the
output block, we look at the L1 norm of columns in the classifier
weights matrices. On the figure, this shows us the first input block
kernel is mostly used by the first (red) subnetwork (7 vs. 1). Simi-
larly, the first feature of the output block proves important only to
the first (red) classifier.

72 msda as compressed representations for mimo training

(a) Encoder kernels L1 norm. (b) Classifier columns L1 norm.

Figure 3.12. – Usage of features by MixMo subnetworks. Features are used by
one subnetwork or the other, never both at the same time: the over-
lap (orange) is very low.

between subnetworks, the subnetworks act as a standard ensemble of smaller
models, with the base model size acting as hard cap on the number of the param-
eters used by the ensemble.

While it is true not sharing any features ensures subnetworks’ independence,
it seems unnecessary. Indeed, the subnetworks are highly unlikely to extract
completely different features. As such, subnetworks should benefit from sharing
features at least in the early layers even if the classifier still consider fairly different
features.

At first blush, nothing in the MIMO training protocol explicitly requires the
subnetworks not share any features. Why do the subnetworks avoid sharing
features? How could we encourage them to share some parameters?

Figure 3.13. – Overview of the MixShare framework. Two steps are necessary to
allow feature sharing: 1) Ensure the subnetworks share a “common
language” by initializing the convolutional encoders to be similar.
2) Extract descriptions of each input from model features.

3.4 mixshare : feature sharing between mimo subnetworks 73

(a) Encoder kernels L1 norm. (b) Classifier columns L1 norm.

Figure 3.14. – Usage of features by MixMo subnetworks with unmixing. Ap-
plying unmixing leads to features being used by both subnetworks:
the overlap (orange) is very high.

3.4.2 How can subnetworks share features?

We discuss here the obstacles preventing feature sharing in multi-input multi-
output architectures, and propose solutions to correct this behavior.

3.4.2.1 Unmixing: extracting features for each input

We build upon an intuition put forth in MixMo (Rame et al. 2021): the lack
of feature sharing is caused by the need for individual classifier at the end of
the network to extract class information for one input specifically. Indeed, the M
classifiers have access to the exact same set of extracted features. If two classifiers
use the same feature, that feature needs to describe the state of two different
inputs. This is an issue when one accounts for the fact inputs are in fact drawn
independently and there can therefore be no meaningful feature describing the
state of two inputs simultaneously.

Let us now consider how the classifiers should ideally behave on shared fea-
tures. Since each classifier is paired to one of the input pathways, they should be
able to extract two different interpretations of the shared features that still encode
the same functional information (see Figure 3.13). For instance, the shared feature
should encode for the presence of flowers but each classifier should be able to
infer from the feature whether its personal input contains flowers.

While this is not the case in traditional CNNs, MixMo (Rame et al. 2021) intro-
duces a modification to the seminal MIMO architecture that causes feature maps
to encode information about the different inputs separately. Indeed, since MixMo
mixes inputs according to some binary mixing augmentation scheme (typically

74 msda as compressed representations for mimo training

Method 28-2 28-5

Acc. ens. Acc. Ind. Classifier share rate Acc. ens. Acc. Ind. Classifier share rate

MixMo 74.8± 0.2 71.6± 0.2 4.9± 0.4 81.9± 0.1 79.4± 0.2 8.2± 0.1
MixMo + Unmix 69.7± 15.4 69.7± 15.4 99.1± 0.4 79.4± 2.7 79.4± 2.7 98.8± 0.7
MixMo + Unmix + kernel init. 79.0± 0.1 79.0± 0.1 99.4± 0.1 82.1± 0.2 82.1± 0.2 99.3± 0.1

MixShare (partial on 25% features) 73.3± 0.5 71.5± 1.0 60.6± 6.5 79.9± 0.3 78.8± 0.4 60.0± 2.3
MixShare (fadeout to 100 epochs) 79.0± 0.1 76.7± 1.3 64.4± 6.0 82.4± 0.3 81.6± 0.5 62.7± 8.3

Table 3.6. – Performance of MixShare. Overall ensemble accuracy (%), average
subnetwork accuracy (%) and classifier (output block) sharing rate
(see Sec. 3.4.1) for MixMo variants, mean± std reported over 3 runs.
Mixshare with fadeout unmixing yields both strong individual mod-
els and ensemble gains.

CutMix (Y. Yang and Soatto 2019)), each pixel on the final feature maps encodes
information about one of the inputs.

This is fortunate as it provides us with a fairly natural solution: unmixing.
Unmixing (illustrated in Figure 3.13) recycles the binary masks generated for
input mixing in order to filter the feature maps so that only information relevant
to a specific input is contained in the unmixed version. This way, a single feature
map can describe each of the inputs.

Figure 3.14 shows that applying unmixing causes the subnetworks to share
features, both in the input and output block. In fact, every feature in the unmixed
model is used by all subnetworks which proves unmixing indeed solves the core
obstacle to feature sharing in MIMO networks.

Introducing unmixing however leads to unstable and generally worse perfor-
mance as seen in Table 3.6. Crucially, even individual subnetwork accuracy suffers
from unmixing which suggests an underlying issue.

3.4.2.2 Aligning encoder kernels to allow efficient feature sharing

Intuitively, feature sharing should at the very least lead to higher individual
subnetwork accuracy as the subnetworks use more parameters. As such, we now
investigate why unmixing degrades performance so dramatically.

By extracting multiple possible interpretations of a single feature, unmixing
introduces a new problem in the model. Indeed, we need our interpretations of the
same feature to encode the same functional characteristics (e.g. flower detection).
The issue is that a randomly initialized multi-input multi-output network typically
leads to having multiple interpretations of the same feature.

Indeed, the encoders computing the mixed representations are very different.
For an input feature, the mixed feature map could contain information about

3.4 mixshare : feature sharing between mimo subnetworks 75

horizontal borders on input 1 and vertical borders on input 2. As such, there is
no consistent interpretation for our mixed features.

We can unify the interpretation of unmixed features at the start by simply
aligning the kernels of the encoders. Indeed, as long as each feature encodes
the same sort of information for each encoder, there should be no ambiguity
introduced by the unmixing process.

Table 3.6 shows that fixing the initialization scheme of the encoders to the same
value does indeed lead the model to outperform normal mixmo models.

3.4.2.3 Towards partial feature sharing

While proper unmixing does allow feature sharing in multi-input multi-output
networks, Table 3.6 and Figure 3.14 show it leads to subnetworks sharing all
features: the subnetworks are identical. This is even less desirable than fully
separated subnetworks as it makes ensembling pointless (Pang et al. 2019; Rame
and Cord 2021).

Ideally, subnetworks would share some parameters but still remain distinct
functionally. This way, we would be able to strike a compromise between fully
separated and fully shared subnetworks. The issue with this however, is that
removing obstacles to feature sharing makes it unnecessary for subnetworks to
separate in any way.

In this preliminary work, we discuss two solutions: partial unmixing and fade-
out unmixing. Partial unmixing is a straightforward solution where we only
apply unmixing to a fixed subset of the final feature maps (e.g. 25%). In Fadeout
unmixing we start training the network with proper unmixing but progressively
reduce the strength of unmixing so that there is no unmixing towards the end of
the procedure. For instance, we use the unmixing mask M + r(1 −M) (instead
of M) with r = min(1, epoch/100) if we want to stop unmixing by epoch 100. As
such, fadeout unmixing initializes the network in a shared state and progressively
pushes the subnetworks to develop independent features.

We now propose the full MixShare framework by combining proper kernel
initialization and partial/fadeout unmixing along with slight adjustments to stan-
dard MIMO procedures like input repetition (Havasi et al. 2021) and loss bal-
ancing (Rame et al. 2021) (see Appendix). Table 3.6 shows that both MixShare
variants succeed in causing partial feature sharing. Partial fails to train strong in-
dividual subnetworks, but still showcases ensemble benefits. Fadeout on the other
hand leads to strong performances and retains significant ensembling benefits on
medium sized networks like a WideResNet 28-5.

76 msda as compressed representations for mimo training

3.5 Conclusion

In this chapter, we study how training models to output separate predictions
on a MSDA sample’s parent inputs leads to the emergence of concurrent sub-
networks. Training multiple subnetworks within the same base networks has a
number of benefits: the subnetworks’ predictions can be ensembled, more features
in the network see use, and features shared by the subnetworks should in theory
be more general as they can be used to describe two independent inputs.

We first proposes MixMo, which analyses MIMO architectures through the lens
of Mixing Samples Data Augmentations. Given this point of view, we replace the
sum based input mixing block by a CutMix based one to train stronger and more
diverse subnetworks. We also recognize in the multiple outputs of the MIMO
architecture a deconstruction of the standard soft labels. As such, we dynamically
balance the weights of the subnetwork training losses to reflect the input mixing
proportions.

As MixMo proves to have difficulty on smaller networks, we study the source of
the problem with a new MixShare framework. After confirming that subnetworks
share absolutely no features, we seek to solve MIMO models’ dependency on
large base networks by enabling feature sharing. We find introducing a novel
unmixing mechanism leads - with proper initialization of the input encoders - the
subnetworks to share all features. Unmixing uses knowledge on the input mixing
process to provide different interpretations of the same final network feature, one
for each input.

Experiments show MixMo improves on both ensembling and MSDA baselines
for ResNet based architectures on the CIFAR datasets and TinyImageNet, with
and without standard MSDA on the inputs. Interestingly, further experiments
show MixMo make very efficient use of the base models’ features and trains fairly
robust models (as measured on the CIFAR-100-C dataset). MixShare succeeds in
allowing feature sharing between subnetworks, but the subnetworks collapse to
be identical. With a weakened version of unmixing to prevent that, we recover
very good performance for MixShare on smaller architectures.

All in all, breaking down the soft label prediction for a mixed sample into
distinct predictions succeeds in improving model performance and proves to be
orthogonal to standard mixing augmentations. While the framework has difficulty
scaling down to smaller networks, enabling feature sharing between networks
seems to alleviate the issue. The procedure outlined in MixShare is however
sensitive and requires careful tuning. As such, the next step should be to find a
better way to balance feature sharing.

3.5 conclusion 77

The unmixing mechanism we introduce in MixShare does not integrate very
well with the way convolutional neural networks work. Indeed, CNNs are fun-
damentally built to learn one feature per feature map and activations late in the
network tend to encompass the whole input in theory. Interestingly, this type
of interaction is instead very natural in the context of attention mechanisms. As
such, the recently proposed Vision Transformer architectures should prove much
more adapted to training MIMO subnetworks that share features and cooperate
during training.

C
h

a
p

t
e

r 4
M U LT I - I N P U T M U LT I - O U T P U T M S D A ,
U N M I X I N G A N D AT T E N T I O N M E C H A N I S M S

Contents
4 .1 Introduction . 79
4 .2 Related Work . 80

4 .2 .1 Attention . 80

4 .2 .2 Vision Transformers . 81

4 .2 .3 Positioning . 82

4 .3 MixViT: A MIMO MSDA formulation of Vision Transformers 83
4 .3 .1 Transposing MIMO frameworks to vision transformers 84

4 .3 .2 Overview of MixViT . 86

4 .3 .3 MixViT framework . 86

4 .4 Results of the MixViT framework . 89
4 .4 .1 MixViT significantly improves the performance of vision transformers 90

4 .4 .2 Comparison against CNN-based MIMO methods 91

4 .4 .3 Implicit regularization for simpler training settings 92

4 .4 .4 Ablations . 94

4 .5 Conclusion . 95

4.1 Introduction

We have shown in Chapter 3 that predicting separately the original samples in
a MSDA image leads to training concurrent subnetworks within the base network.
The unmixing mechanism necessary to allow the subnetworks to share features is
a bit difficult to optimize with on Convolutional Neural Networks however. It is
however very reminiscent of the attention mechanism at the heart of the emerging
Vision Transformers.

Vision Transformers (ViT) have started to overtake Convolutional Neural Net-
works on a large number of vision benchmarks over the last few years. ViTs
present quite a few benefits over traditional CNNs: they often outperform CNNs

79

80 multi - input multi -output msda , unmixing and attention mechanisms

for a similar number of parameters, can learn non local relationships much more
easily, accommodate variable input sizes,and their attention mechanism is inher-
ently explainable. Importantly, transformers have been shown (Touvron et al.
2021a) to require strong regularization to work. The MIMO paradigm is there-
fore well adapted to these models as training multiple subnetworks has strong
regularizing effects (Sun et al. 2022; Cygert and Czyżewski 2022), and the atten-
tion mechanism natively performs a process analogous to unmixing. In spite of
this, no previous work has successfully adapted MIMO frameworks to Vision
Transformers.

In this chapter, we study how Multi-Input Multi-Output MSDA can be adapted
to the Vision Transformer architecture, and in particular how differently the
trained subnetworks behave compared to a MIMO CNN. Indeed, since ViTs natu-
rally perform some sort of unmixing, a MIMO ViT should behave quite differently
considering the difficulties observed when training the MixShare model. We pro-
pose the MixViT framework, deferring the separation of subnetworks to the last
layers of the network. We achieve this separation by using the same encoder for
the two inputs and instead adding a source attribution mechanism towards the
end of the network to indicate which subnetwork should process a patch token.

After a brief introduction to the attention mechanism and common Vision
Transformer frameworks in Section 4.2, we will discuss our MixViT framework
(Section 4.3.2) and our experimental results (Section 4.4).

The work conducted in this chapter of this thesis has led to one publication:

• SUN Rémy, MASSON Clément, THOME Nicolas and CORD Matthieu. (2022)
“Adapting Multi-Input Multi-Output schemes to Vision Transformers”, sub-
mitted to ICLR 2023, in CVPR 2022 workshop on transformers and attention.

4.2 Related Work

As MixViT departs from Convolutional Neural Networks to work on Vision
Transformers, we provide here a brief introduction to the attention mechanism
and Vision Transformers.

4.2.1 Attention

At a very high level, the attention mechanism aims to represent an input token
(ie, a d-dimensional vector) by how it relates to a set of contextual tokens: it looks
to the “attention” the token must pay to part of a context (Bahdanau et al. 2015).

4.2 related work 81

Let us consider an input t represented by a query token q and context tokens
{ci}i=0...N−1 represented by value tokens {vi}i=0...N−1 and key tokens {ki}i=0...N−1.
In essence, the attention mechanism will first compute the attention weights

αi = qTki, (4.1)

before computing the attended representation o of the input token

o = Attention(t, {ci}i=0...N−1) =
N−1∑
i=0

αivi. (4.2)

In practice, transformers formalize this problem with three learnable matrices
Wq,Wk and Wv such that q = W T

q t, ki = W T
k ci and vi = W T

v ci (Vaswani et al. 2017).

In Vision Transformers, the base attention block most often used is the self-
attention block (Cheng et al. 2016). The Self-Attention (SA) block takes as input a
set of tokens {ti}i=0...N−1, and outputs a set of refined attended tokens {oi}i=0...N−1.
The peculiarity of self-attention is that the tokens {ti}i=0...N−1 play the roles of
input (query) token and context tokens both:

oj = Attention(tj, {ti}i=0...N−1). (4.3)

Over the years, many variants of this SA block have been developed. Multi-
Head Self-Attention (MHSA) blocks - the actual version used in the seminal ViT
(Dosovitskiy et al. 2021) - simply compute multiple self-attention mechanisms
(“heads”) in parallel and aggregate the resulting representations with a dense
projection. Gated Positional Self-Attention (GPSA) blocks (D’Ascoli et al. 2021)
take into account the relative position of tokens when computing the attention,
and use a special initialization scheme so the block emulates a convolutional
operation at the start of training. Class-Attention (CA) blocks (Touvron et al.
2021b) only computes the attention of an additional “class” token with the input
tokens, keeping the representation of the standard tokens fixed.

4.2.2 Vision Transformers

While this attention mechanism and the Transformer architecture (Vaswani
et al. 2017) were initially developed for Natural Language Processing, they have
recently been adapted to Computer Vision problems (Dosovitskiy et al. 2021). As
can be seen from Figure 4.1, only minimal changes must be made to accomodate
the change in modality: the image is separated into N patches, and the patches
are embedded by a shared embedding layer into (vector) tokens. These tokens

82 multi - input multi -output msda , unmixing and attention mechanisms

Figure 4.1. – Overview of the seminal ViT framework. The image is divided into
patches that are tokenized and fed to transformer blocks.

are then passed as input to L transformer blocks. Transformers blocks themselves
are simply made from an attention block and a few linear layers along with some
residual connections.

Classification is performed by inserting an additional learnable classification
token into the set of patch tokens. This classification token progressively aggre-
gates information from the patch tokens through successive layers, and a linear
classification layer outputs predictions from the feature representation of this
classification token after L transformer blocks.

This base framework offers a general skeleton whose components are often
modified to solve a number of underlying issues. For instance, a number of archi-
tectures have modified the attention mechanism to emulate convolutional neural
networks (D’Ascoli et al. 2021; Z. Liu et al. 2021) since Vision Transformers need
help learning local structures inherent to vision problems. Others have taken to
inserting the classification token in the last layers of the model (D’Ascoli et al.
2021; Touvron et al. 2021b) or altogether replacing it by a pooling step on the
patch token features (Zhai et al. 2022).

4.2.3 Positioning

In this chapter, our focus remains on Multi-Input Multi-Output Mixing Sam-
ple Data Augmentation. We are only interested in Vision Transformers in so far
that developing a MIMO MSDA framework for this new architecture has partic-

4.3 mixvit : a mimo msda formulation of vision transformers 83

(a) Traditional MIMO CNN. (b) Our proposed MIMO transformer,
MixViT.

Figure 4.2. – Overview of MIMO architectures. MixViT, our transformer only
separates subnetworks in the last layers which facilitates feature
sharing between subnetworks and makes it possible to avoid sum-
ming the encoded inputs (purple in (a)) at inference (see Sec. 4.3.1).

ular implications in terms of feature sharing. Indeed, the use of a classification
token along with the attention mechanism used at all stages of ViTs natively
emulates the unmixing mechanism introduced in Chapter 3. While we add new
components to the architecture, our work is largely meant to be adaptable to most
existing Vision Transformer backbones.

4.3 MixViT: A MIMO MSDA formulation of Vision
Transformers

Given the clear differences between Vision Transformers and standard Convo-
lutional neural networks, careful thought must be given to a MIMO formulation
of ViTs.

We find training properly designed MIMO vision transformers is both inex-
pensive and extremely beneficial in terms of performance. We observe this by
proposing MixViT, the first MIMO transformer that outperforms its single-input
single-output backbone. As shown on Figure 4.2b, we achieve this by deferring
the separation of subnetworks to the last layers of the model, and introducing a
novel “source attribution” mechanism to facilitate this separation. MixVit mixes
patches from M inputs before embedding them as tokens with a linear projection
e shared across subnetworks and feeding them to feature extraction blocks. We
then use our “source attribution” to associate each attended token to the input/-
subnetwork they pertain to, and aggregate features with a class token. Finally, we
get M predictions from the class token features with M different dense layers.

Our contributions are therefore as follows:

84 multi - input multi -output msda , unmixing and attention mechanisms

• We identify and address vision transformers’ difficulty in sharing tokens
across subnetworks in Section 4.3.1.

• Through our MixViT framework, we show subnetworks in vision transform-
ers can - and should - only be located in the very last layers of the model.
As such, MixViT adds only marginal costs at training and inference while
strongly regularizing the model.

• We introduce a novel source attribution mechanism to facilitate this late
separation of subnetworks.

4.3.1 Transposing MIMO frameworks to vision transformers

We start with a straightforward formulation of MIMO (Havasi et al. 2021; Rame
et al. 2021) vision transformers. This section shows these translations fail on
vision transformers, and highlights how vision transformer struggle to share
tokens across subnetworks. We directly introduce the generalized MIMO strategy
introduced in MixMo (Rame et al. 2021). For simplicity, we discuss the usual
case where M = 2 subnetworks (Havasi et al. 2021; Rame et al. 2021) are trained
unless specified otherwise in this paper.

The following experiments consider the CIFAR-100 dataset (Krizhevsky and
Hinton 2009) with a variant of the ConViT (D’Ascoli et al. 2021) architecture (see
Section 4.4), but the conclusions hold for other settings. The backbone single-input
single-output model feeds image patches to 5 Gated-Positional Self-Attention
(GPSA (D’Ascoli et al. 2021)) blocks (which initially imitate convolutions) for
feature extraction, before adding a classification token and applying 2 Class-
Attention (CA (Touvron et al. 2021b)) blocks. Classification is then performed as
usual by a dense layer on the attended classification token’s features.

4.3.1.1 MIMO and MixMo formulations of Vision Transformers

At first blush, MIMO architectures can easily be transposed to vision transform-
ers by analogy with convolutional neural networks (figured in Figure 4.2a). As
such, this section looks into the baseline MIMO (Havasi et al. 2021) and MixMo
(Rame et al. 2021) frameworks applied to ViTs. We outline below how vision trans-
formers can replicate the steps outlined in Figure 4.2a step by step, and provide
an illustration of MIMO transformers in Figure A.9 of Appendix Section A.7.1.

We consider (like in Figure 4.2a) M (inputs, labels) pairs {(xi, yi)}0≤i<M during
training: we feed M inputs to the model as a combined input. To this end, we
break down each image into small 4 × 4 patches and embed the patches into N

4.3 mixvit : a mimo msda formulation of vision transformers 85

Backbone Method Inference Mix. # FLOPS Accuracy (%) Subnetwork Acc. (%)

ConViT

(1) Single-input (D’Ascoli et al. 2021) N/A 1× 79.5± 0.1 -
(2) MIMO (Havasi et al. 2021) Sum 1× 77.1± 0.1 74.8± 0.1
(3) MixMo (Rame et al. 2021) Sum 1× 77.0± 0.2 75.2± 0.1
(4) MixMo (Rame et al. 2021) Separate 2× 78.5± 0.2 76.4± 0.1
(5) CutMix-only MixMo Separate 2× 80.1± 0.2 78.3± 0.3

Table 4.1. – Performance of MIMO formulations of ViTs. CIFAR-100 accuracy
and estimated FLOPS of the backbone and MIMO formulations.

384-dimensional tokens using M linear embedding layers ei (one for each input).
Corresponding tokens (at the same position in the two images) are then mixed
into one common set of tokens (either through sums (Havasi et al. 2021) or other
mixing schemes (Rame et al. 2021)). The core network (feature blocks + classifica-
tion blocks) then processes this representation until a final attended classification
token is obtained. M dense layers {di}0≤i<M - one for each subnetwork - then
yield M predictions from this attended classification. At test time, M predictions
can be obtained for one image by embedding the image patches with the M linear
embeddings and summing the sets of embedded patch tokens.

In the seminal MIMO framework, we mix the embedded tokens by simply
summing them. The CutMix-based MixMo formulation interpolates between the
tokens following either a randomly drawn square mask with ratio λ ∼ β(α, α), or
a linear scheme (similar to summing).

4.3.1.2 MIMO frameworks do not translate well to transformers

Lines (2) and (3) in Table 4.1 show our direct transpositions of the seminal
MIMO and MixMo frameworks do not outperform their single-input single-
output ConViT backbone (line (1)): both frameworks fail to even reach the same
performance. While the subnetworks still provide meaningful gains when ensem-
bled, the individual performance of the subnetworks is very poor which brings
down the overall accuracy. Applying the same solution as in MixShare does not
seem to address the issue here as we study in Section A.7.2.

We posit that transformers have difficulty encoding multiple inputs within the
same patch token. Indeed, we find spreading the inputs across separate tokens
solves the problem. More precisely, instead of mixing the patch tokens of the
inputs, we only keep the patch tokens relevant to one of the subnetworks and ex-
tract the corresponding predictions. By performing separate evaluations - one for
each subnetwork - we can recover predictions from each subnetwork. Table 4.1’s
line (4) shows performing inference in this way on the models trained in line
(3) significantly improves performance. Furthermore, the model outperforms the

86 multi - input multi -output msda , unmixing and attention mechanisms

baseline when no summing is performed during training in line (5) (the patches
are always mixed following a CutMix (Y. Yang and Soatto 2019) scheme).

From this, we can posit that the issue stems from sharing tokens between sub-
networks. While Sum mixing has already been heavily criticized as sub-optimal
by MixMo (Rame et al. 2021), it however remains necessary in MIMO frameworks
at inference since both subnetworks need to see the whole input in one forward
pass. Importantly, our corrected inference process needs to perform two forward
passes, which is not realistic as it doubles the inference overhead.

In this paper, we show that - contrarily to CNN-based MIMO models - trans-
formers can avoid this issue by deferring the subnetwork separation and input
encoding to much later in the network (see Section 4.3.2 and Figure 4.2b). Inter-
estingly, this simple restructuration even improves performances and allows us
to introduce new subnetwork-encoding mechanisms.

4.3.2 Overview of MixViT

We propose in this paper MixViT (Figure 4.3), a multi-input multi-output frame-
work suited to vision transformers that trains distinct subnetworks in the last
layers of the network to address the issues raised in Section 4.3.1 and favorize
feature sharing among subnetworks. MixViT relies on a novel “source attribution”
mechanism to map the patch tokens to the different subnetworks after the feature
extraction blocks. This section starts by introducing MixViT (Section 4.3.3) and
source attribution (Section 4.3.3.1), before discussing MixViT’s added overhead in
Section 4.3.3.2.

The only assumption our formulation of MixViT requires is a separation of
the transformer into feature extraction blocks that use Self-Attention blocks and
classifier blocks that rely on Class-Attention blocks (see Figure 4.2b). A number
of modern vision transformers follow this structure like the ConViT (D’Ascoli
et al. 2021) variant studied in Section 4.3.1 and the CaiT (Touvron et al. 2021b)
architecture. Moreover, MixViT easily generalizes to other architectures.

4.3.3 MixViT framework

At training time, the M × N patches extracted from the M inputs are mixed
into N patches following a corrected CutMix (Y. Yang and Soatto 2019) scheme (ie,
so that each position takes only one patch on its own without interpolation) with
masks {Mi} (see Figure 4.3) with a ratio λ ∼ β(α, α). The N mixed patches are
then encoded into d-dimensional tokens by a linear layer e. Learnable positional

4.3 mixvit : a mimo msda formulation of vision transformers 87

embeddings are added to the tokens and the tokens are fed to the L Self-Attention
blocks that serve as feature extraction blocks. This yields N attended tokens t but
no indication which input/subnetwork each token belongs to.

Figure 4.3. – Overview of our MixViT framework. At training, we insert a mix-
ing and a source attribution step in the normal flow of the network.
Source attribution associates tokens with the relevant input/subnet-
work, and can be done through either source encoding or source
embedding. At inference, we perform multiple passes on the last
layer using differently sourced tokens.

We propose a novel source attribution mechanism si to specify which input
or subnetwork each patch pertains to. The source attribution adds subnetwork-
specific information to the tokens following either a source encoding or source
embedding mechanism as we elaborate on in Section 4.3.3.1. The sourced tokens
t∗ are passed - along with a learnable classification token c0 - to the remaining
classifier blocks. After the class-attention blocks, we retrieve the classification
token’s features for classification. M predictions pi are then obtained from this
feature representation through the use of M different dense layers d0. We then use
the input targets yi to optimize the subnetworks’ cross-entropy losses weighted
by the mixing ratio λ following MixMo (Rame et al. 2021):

88 multi - input multi -output msda , unmixing and attention mechanisms

LMixV iT = λ · lCE(y0, p0) + (1− λ) · lCE(y1, p1). (4.4)

At inference, MixViT only has to perform feature extraction on the image’s
patch tokens once as shown on Figure 4.3: no mixing is needed since the tokens
are subnetwork-agnostic. We then collect predictions for each subnetwork i by us-
ing si to specialize the general feature patch tokens t for the subnetwork through
source attribution, and then passing these specialized tokens to the classification
blocks along with c0 (see Figure 4.3). This allows us to keep subnetwork-specific
tokens as was shown to be required in Section 4.3.1 without having to perform
multiple full forward passes in the network.

4.3.3.1 Source attribution mechanisms

We move the subnetworks to the end of vision transformers by introducing
source attribution mechanisms si after the feature extraction blocks to specialize
the generic patch tokens t into subnetwork-specific tokens t∗. Conceptually, this
replaces the separate patch encoders used in our naive formulation of a MIMO
ViT in Section 4.3.1.

This is most naturally achieved through the use of subnetwork-specific source
encoders, similarly to the different image encoders used by MIMO and MixMo.
More precisely, we define our source encoders si such that si = Linear(W s

i ; bsi)

are Linear layers. Intuitively, each patch token is projected by the relevant source
encoder si. In practice, we project the feature tokens t with the Linear layers si into
specialized tokens, and mix these specialized tokens following the binary masks
Mi used on the inputs. The resulting projection is added to original residual
token to obtain our subnetwork-specific token t∗ as figured in Equation 4.5 (� is
the Hadamard product):

t∗ = t+
M−1∑
i=0

Mi � si(t) = t+
M−1∑
i=0

Mi � (t×W s
i
T + bsi). (4.5)

We also propose an alternative lightweight source embedding mechanism to
avoid incurring complications from training additional Linear layers (see Equa-
tion 4.6). Source embeddings si act similarly to positional embeddings, and are
d-dimensional vectors that are added to feature tokens to specify which sub-
network the patch is relevant to. This therefore only adds Md parameters and
O(NMd) operations which is negligible in ViTs. Interestingly, source embeddings
are actually a particular case of source encodings where the weight matrix is null
such that si = Linear(0d×d; bsi) and

4.4 results of the mixvit framework 89

t∗ = t+
M−1∑
i=0

Mi � si(t) = t+
M−1∑
i=0

Mi � (t× 0d×d
T

+ bsi). (4.6)

4.3.3.2 Regarding computational overhead

Deferring the separation of subnetworks to the last layers allows us to per-
form separate evaluations for each subnetwork at a very low computational cost.
Consider a transformer on a C-class problem with L self-attention blocks and 2

class-attention blocks taking N d-dimensional patch tokens. As a rule of thumb,
one forward pass of MixViT roughly - at the most - incurs L+2M

L+2
× as many com-

putations as a normal model’s during inference, and 1× at training.

Indeed, the most intensive computations are tied to Linear d × d weight mul-
tiplications: d is usually much larger than N , C or M . While source encoding
does incur M such computations per token, each Self-Attention layer incurs 6

per token and Class-Attention slightly more than 3 per token: even for our small
ConViT (see Section 4.3.1) with M = 2 this represents about 6×5+3×2+2

6×5+3×2 ' 1.06×
multiplications. The amount of additional computations is therefore bounded
by the ratio of passes through attention blocks. This approximation could easily
be lowered however: it assumes class-attention is as expensive as self-attention
which is very pessimistic (see Appendix Section A.7.3 for tighter approximations
and asymptotic complexity).

4.4 Results of the MixViT framework

We first show our proposed MixViT framework strongly improves on whichever
backbone it builds upon in Section 4.4.1, and outperforms MIMO CNNs (Sec-
tion 4.4.2) on TinyImageNet. Furthermore, Section 4.4.3 shows MixViT is much
more resilient on simpler training settings. We then compare MixViT to state-
of-the-art transformers (Section 4.4.3.1). Finally, we demonstrate in Section 4.4.4
that separating subnetworks at the end of the model with our source attribution
mechanism is indeed very beneficial.

Setting In this paper, we run experiments on the CIFAR-10/100 (Krizhevsky
and Hinton 2009), TinyImageNet (Chrabaszcz et al. 2017) and ImageNet-100 (Tian
et al. 2020) datasets. Most experiments use a variant of the ConViT (D’Ascoli
et al. 2021) architecture with 5 GPSA blocks and 2 CA blocks with an embedding
dimension of 384 and 12 heads (see Appendix). On the more complex datasets,
we also use deeper CaiT (Touvron et al. 2021b) architectures. Our transformers

90 multi - input multi -output msda , unmixing and attention mechanisms

work on 8 × 8 = 64 patches for CIFAR and TinyImageNet, and 14 × 14 = 196

patches on ImageNet-100. We report the best epoch overall ensemble accuracy as
mean± std over three seeded runs.

Implementation details We mix inputs with a corrected CutMix scheme de-
tailed in Appendix, and start training the subnetworks individually towards the
end of training to ready the subnetworks to work on whole images. We largely
adapt the DeiT (Touvron et al. 2021a) training settings that are widely used in
the literature (Z. Zhang et al. 2022; Touvron et al. 2021b; S. H. Lee et al. 2021)
(see Appendix). Unless specified otherwise, we therefore train with the AdamW
(Loshchilov and Hutter 2019) optimizer for 150 epochs with weight decay, Ran-
dErase (Zhong et al. 2020), AutoAugment (Cubuk et al. 2019), stochastic depth
(G. Huang et al. 2016), label smoothing (Szegedy et al. 2016) and 3 Batch aug-
mentations (Hoffer et al. 2020). We also apply CutMix (Y. Yang and Soatto 2019)
and MixUp (H. Zhang et al. 2018) but find applying them simultaneously instead
of alternatively yields better result. Finally, we keep the 0.001 learning rate but
adopt a step decay instead of cosine.

4.4.1 MixViT significantly improves the performance of vision
transformers

Table 4.2 shows both of our MixViT variants provide significant improvements
over their single-input single-output counterpart across a multitude of architec-
tures and datasets. For instance, on TinyImageNet, our larger CaiT-XS model goes
from an accuracy of 68.6% as a single-input single-output model to 70.9% accu-
racy with our MixViT-encoding protocol. Interestingly, while MixViT shows solid
gains from ensembling, a large parts of the gains are due to a much higher accu-
racy of the individual subnetworks: the framework also has a strong regularizing
effect, possibly due to the feature extractor being shared.

Our lightweight embedding-based variant of MixViT actually outperforms the
more complete MixViT-encoding model on CIFAR-10/100 (Table 4.2d and Ta-
ble 4.2c). MixViT-encoding however overtakes it on the more complex TinyIma-
geNet (Table 4.2a). While the difference is minimal on our small ConViT model,
MixViT-encoding proves much stronger on the deeper CaiT architectures. In-
terestingly, we observe this difference is deepened by both model depth (our
ConViT has 7 layers against our CaiTs’ 26) and model width (Cait-XXS uses 192-
dimensional embeddings against Cait-XS’s 288). This demonstrates the benefits of
both our proposed source attribution mechanisms: source embeddings are much
faster and easier to train, but source encodings are more powerful overall.

4.4 results of the mixvit framework 91

(a) TinyImageNet
Backbone Method Accuracy (%)

ConViT
Single-input/output 65.4± 0.2
MixVit-embedding (ours) 70.0± 0.1
MixVit-encoding (ours) 70.2± 0.2

CaiT
XXS-24

Single-input/output 66.2± 0.3
MixVit-embedding (ours) 68.6± 0.3
MixVit-encoding (ours) 69.6± 0.2

CaiT
XS-24

Single-input/output 68.6± 0.1
MixVit-embedding (ours) 69.4± 0.1
MixVit-encoding (ours) 70.9± 0.2

(b) ImageNet-100

Backbone Method Accuracy (%)

ConViT
Single-input/output 86.6± 0.2
MixVit-embedding (ours) 88.8± 0.3
MixVit-encoding (ours) 88.6± 0.5

CaiT
XXS-24

Single-input/output 85.8± 0.2
MixVit-embedding (ours) 87.2± 0.3
MixVit-encoding (ours) 86.7± 0.2

CaiT
XS-24

Single-input/output 87.6± 0.4
MixVit-embedding (ours) 89.7± 0.3
MixVit-encoding (ours) 89.3± 0.2

(c) CIFAR-100

Backbone Method Accuracy (%)

ConViT
Single-input/output 79.5± 0.1
MixViT-embedding (ours) 82.4± 0.1
MixViT-encoding (ours) 82.1± 0.1

(d) CIFAR-10

Backbone Method Accuracy (%)

ConViT
Single-input/output 96.1± 0.1
MixViT-embedding (ours) 96.5± 0.2
MixViT-encoding (ours) 96.5± 0.2

Table 4.2. – Gains from using MixViT. MixViT significantly improves the perfor-
mance of vision transformers

4.4.2 Comparison against CNN-based MIMO methods

Backbone Method # Params Accuracy (%)

ResNet
18

Single-input/output 11M 65.1
MixMo 11M 64.4

ResNet
18-3

Single-input/output 100M 69.0
MixMo 100M 70.2

CaiT
XS-24

Single-input/output 26M 68.6± 0.1

MixVit-embedding 26M 69.4± 0.1

MixVit-encoding 26M 70.9± 0.2

Table 4.3. – Comparison of MixViT and MixMo.
MixViT outperforms CNN-based
MixMo models on Tiny-ImageNet.

On the complex TinyIma-
geNet dataset MixViT largely
outperforms its much larger
CNN-based competition (Ta-
ble 4.3) in spite of a much
shorter training scheme (150

epochs vs. 1000). Interestingly,
this highlights a fundamental
difference between traditional
MIMO frameworks and our
MixViT models. MixMo learns
largely independent subnet-
works that share no features
(Rame et al. 2021; Sun et al. 2022) and therefore struggles to fit good subnetworks
on narrow architectures. As such, MixMo needs to consider a wide ResNet-18-3
(He et al. 2016b) backbone to start showing improvements. MixViT simply does
not have this issue as the subnetworks share features and a large part of the gains
come from how the subnetworks learn features they can both use.

92 multi - input multi -output msda , unmixing and attention mechanisms

4.4.3 Implicit regularization for simpler training settings

Typical training schemes for vision transformers often require both heavy aug-
mentation (Y. Yang and Soatto 2019; H. Zhang et al. 2018) (in the form of mixing
augmentations) and batch augmentations (Hoffer et al. 2020). This is concerning
as these procedures can significantly extend training costs and time.

MixViT inherently provides some of the benefits of MSDA and batch augmen-
tation. Indeed, we show mixed inputs to our feature extraction blocks which can
emulate the effects of MSDA. Moreover, each sample in a batch appears as part of
M input tuples: it has to be fed to each of the M subnetworks once. As such, each
of the batch’s sample is processed multiple times by the transformer’s feature
extraction blocks while mixed with other samples.

Model MSDA BA Accuracy (%)

ConViT 72.3± 0.3
ConViT X 75.3± 0.1
ConViT X 74.9± 0.3
ConViT X X 79.5± 0.1

MixViT-embedding 79.0± 0.5
MixViT-embedding X 77.3± 0.2
MixViT-embedding X 81.5± 0.4
MixViT-embedding X X 82.4± 0.1

MixVit-encoding 77.7± 0.1
MixVit-encoding X 75.8± 0.1
MixVit-encoding X 81.7± 0.3
MixVit-encoding X X 82.1± 0.1

Table 4.4. – CIFAR-100 accuracy
with MSDA/BA.

Figure 4.4. – MixViT performs well
even without any batch
repetitions on CIFAR-100.

Table 4.4 shows both MixViT variants prove much more resilient than their
single-input single-output backbone on less regularized settings on CIFAR-100.
It is particularly interesting to note that even with no batch augmentations and
MSDA augmentations, our MixViT-embedding model matches the fully regular-
ized variants of their single-input single-output backbone. While MSDA seems
detrimental to training MixViT models with no batch augmentation to stabilize
training, this is not a problem as MixViT models perform very well without MSDA
inputs.

Furthermore, 4.4 demonstrates MixViT models behave much better than their
single-input single-output counterpart with low amounts of batch augmentation.
This is particularly important as batch augmentation linearly increases computa-
tions and has been a key fixture of vision transformer training since its introduc-
tion in DeiT (Touvron et al. 2021a). This linear cost has led some modern works

4.4 results of the mixvit framework 93

Models # Params CIFAR100 CIFAR10 TinyImageNet ImageNet-100

Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

Reported results (from [.])

Dytox ((Douillard et al. 2022), joint training) 10M 76.0 - - 79.1
CvT-7/4 ((Hassani et al. 2021)) 3M 73.0 92.6 - -
CCT-7/3x1 ((Hassani et al. 2021)) 4M 77.1 94.8 - -
DeiT-T (Touvron et al. 2021a) ((Z. Zhang et al. 2022)) 5M 67.5 88.4 - -
PVT-T (W. Wang et al. 2021) ((Z. Zhang et al. 2022)) 13M 69.6 90.5 - -
CaiT-XXS-24 (Touvron et al. 2021b) ((S. H. Lee et al. 2021)) 9M 76.9 94.9 64.4 -
SL-CaiT-XXS-24 ((S. H. Lee et al. 2021)) 9M 80.3 95.8 67.1 -
CvT-13 (Wu et al. 2021) ((Y. Liu et al. 2021)) 20M 73.5 89.0 - 85.6
CvT-13 + LDrLoc ((Y. Liu et al. 2021)) 20M 74.5 90.3 - 86.1

Our experiments

Best
Backbone

MixViT-embedding 12/26M 82.4± 0.1 96.5± 0.2 69.4± 0.1 89.7± 0.3
MixViT-encoding 12/26M 82.1± 0.1 96.5± 0.2 70.9± 0.2 89.3± 0.2

Table 4.5. – Comparison of MixViT against similarly sized transformer results
reported in the literature.

to dispense with it (Z. Liu et al. 2021), but the procedure remains widely used
in the literature (Z. Zhang et al. 2022; W. Wang et al. 2021). As such, MixViT’s
ability to provide strong performance with no batch augmentation could strongly
simplify training schemes.

4.4.3.1 Comparison to similar transformers

In this section, we provide some context on the performance of our models
with regard to the existing literature. We provide in Table 4.5 a comparison to the
performance of normally trained transformers of similar sizes. Our results over
150 training epochs should allow a mostly fair comparison: vision transformers
are typically trained for comparable or longer amounts of time (100 (Y. Liu et al.
2021; Touvron et al. 2021a) to 200 (Hassani et al. 2021) or more (Z. Zhang et al.
2022; Douillard et al. 2022) epochs) on CIFAR, TinyImageNet and ImageNet-100.

CIFAR-100 Results in Table 4.5 show our models largely outperform small
transformers on the CIFAR datasets. In fact our MixViT-encoding’s performance
of 83.4% accuracy on the extended 300 epochs training setting (see Appendix
Section A.7.4) is - by a large margin - the best transformer performance on
CIFAR-100. Indeed, the best scores in the literature are an 82.7% accuracy for
a CCT-7/3x1 (Hassani et al. 2021) model trained for 5000 epochs and an 82.6%

accuracy for a NesT-B (Z. Zhang et al. 2022) model with 90M parameters trained
over 300 epochs.

TinyImageNet Table 4.5 this time demonstrates MixViT largely outperforms
transformers on the more complex TinyImageNet dataset. Interestingly, the best
reported transformers on the dataset are in line with our single-input single-
output backbones. Therefore, the gains on the state-of-the-art can largely be at-
tributed to MixViT’s benefits. Interestingly, to the best of our knowledge, our

94 multi - input multi -output msda , unmixing and attention mechanisms

MixViT-encoding variant trained with a CaiT-XS backbone showcases an accu-
racy of 70.9% which improves on the previous state-of-the-art held by MixMo’s
ResNet-18-3 model (70.2% accuracy).

ImageNet-100 Table 4.5 shows MixViT outperforms the competing architec-
tures for comparable training times. This suggests MixViT has little trouble ac-
commodating larger 224× 224 images.

4.4.4 Ablations

We verify in Table 4.6 the benefits of our source attribution design (Section 4.4.4.1),
our inference scheme (Section 4.4.4.2) and our choice to mix inputs (Section 4.4.4.3)
on CIFAR-100.

Method # FLOPS Accuracy (%)

Importance of source attribution

Late source embedding ×1.1 82.4± 0.1
Late source encoding ×1.1 82.1± 0.1
No source attribution ×1.1 81.5± 0.2
Early input source embedding ×2 82.2± 0.2
Early source encoding ×2 82.2± 0.2

Inference scheme

Separate inference ×1.1 82.4± 0.1
Sum inference ×1 81.9± 0.1
Alternating inference ×1 82.0± 0.4
Single subnetwork inference ×1 82.0± 0.2

Mixing scheme

Binarized CutMix ×1.1 82.4± 0.1
All tokens ×2 81.5± 0.2

Table 4.6. – Ablation on the importance of MixViT design choices. Default set-
tings are highlighted in grey for reference.

4.4.4.1 Effect of source attribution

Table 4.6 shows MIMO training seems to inherently benefit the model: networks
trained without source attribution are significantly better than standard ConViT
networks. While such models learn completely identical subnetworks (as there
is no source attribution), having to learn features useful for the classification of
multiple images simultaneously provides ample regularization.

4.5 conclusion 95

We separate subnetworks in the last layers instead of separately encoding the
inputs early in the network to avoid having to perform multiple forward passes
for inference (see Section 4.3.1). We however find in Table 4.6 that displacing the
separation back to early in the model slightly deteriorates performance: the model
benefits from wholly sharing feature blocks between subnetworks.

4.4.4.2 Inference scheme

In stark contrast to our findings in Section 4.3.1, we find summing the 2 source
attributed versions of each patch token at the end of our network before perform-
ing a single forward pass yields reasonably good results (Table 4.6). While these
results are indeed worse than separate inferences, they are also a far cry from the
disastrous MixMo ConViT results in Section 4.3.1. We posit late patch represen-
tations are therefore significantly more suited than early patch representations
to this sort of combination. Interestingly, we observe similar performance when
drawing at random which patches should be attributed to which subnetwork. It
is also worth noting that the regularization induced by our MixViT scheme is
strong enough for the performance of individual subnetworks to be reasonable
on its own.

4.4.4.3 Input mixing scheme

We initially chose to compress the inputs into a single set of N tokens through
a CutMix scheme to avoid the quadratic cost that would come with using all
M × N tokens from the M inputs. Table 4.6 actually indicates that far from
deteriorating performance, our compressed scheme performs better than a model
trained with all tokens. We explain this by the fact the CutMix compression
introduces additional regularization on the shared feature extractor and slightly
more diverse subnetworks.

4.5 Conclusion

In this chapter, we deployed a MIMO MSDA formulation of Vision Transform-
ers, which involves a particular influence of the attention mechanism with the
separation of the subnetworks. Since the attention mechanism natively mimics the
unmixing mechanism introduced at the end of the previous chapter, MIMO ViTs
naturally share features. While this behavior is desirable to an extent, it means
special care must be given to designing a MIMO ViT.

Our contribution in this chapter is the MixViT framework. The MixViT frame-
work significantly modifies the original MIMO workflow to account for these

96 multi - input multi -output msda , unmixing and attention mechanisms

complications. Contrarily to previous approaches, we only separate the subnet-
works in the last layers of the model. We do this by using the same encoder for
both inputs and instead adding a source attribution mechanism in the last layers
when we want the subnetworks to separate. As such, our subnetworks share the
same early features by design.

Experiments show MixViT improves both ConViT and CaiT models on a large
number of datasets (TinyImageNet, ImageNet-100, CIFAR), providing strong im-
plicit regularization. As expected, the subnetworks trained by MixViT share fea-
tures which explains the strong implicit regularization and the lesser reliance of
MixViT on costly techniques like batch augmentation compared to single-input
Vision Transformers. Contrarily to MixShare however, the subnetworks do not
collapse to the same value and instead learn different functions on their own
without any need for sensitive scheduling. This allows MixViT to completely
outperform our CNN-based MixMo on the more complex TinyImageNet dataset.
Indeed, MixViT does not need to use very wide networks since features can be
shared between subnetworks which enables us to easily train on TinyImageNet.

Therefore, the attention mechanism and token representation of Vision Trans-
formers does prove particularly suited to training subnetworks through MIMO
MSDA. With the MixViT formulation, we recover the regularization effect char-
acteristic of standard MSDA techniques. Additionally, sharing the first layers of
the model between the subnetworks has a similar effect to initializing input en-
coders at the same value like in MixShare. As such, applying the MixViT formula
- the source encoding variant - back to CNNs might solve the issues observed in
MixShare.

C
h

a
p

t
e

r 5
C O N C L U S I O N

In this thesis, we explore how combining contents from multiple inputs helps
train stronger image classifiers. To this end, we challenge the standard practice
of using soft hybrid labels in Mixing Samples Data Augmentation that has been
part and parcel of the technique since its inception. While soft labels are used for
good reason in MSDA, their ubiquitousness limits the potential of content mixing
methods. As such, this thesis aims to explore alternative MSDA formulations and
their implications.

After providing a quick summary of this thesis’ contributions to the problem,
we offer a few insights into possible future work.

5.1 Main contributions

The main contributions of this thesis study various manners in which altering
soft label MSDA can lead to interesting behaviors. In Chapter 2, we circumvent
the issue of soft labels by generating in-class mixed samples that only contain the
semantic content of one of the samples. We then directly challenge soft labels in
Chapter 3 by training subnetworks to the network to output separate predictions,
one for each input in the mixed sample. Finally, we highlight in Chapter 4 how
the attention mechanism at the heart of the emerging Vision Transformers is
fundamentally suited to training concurrent subnetworks from MSDA samples.

In-class mixing samples data augmentations We propose an alternative MSDA
paradigm that creates in-class samples by combining the semantic content of one
sample and non-semantic content of another in Chapter 2. We use it to teach
invariance to some non-semantic characteristics in semi-supervised learning.

Our first approach SAMOSA is an auto-encoding framework that identifies and
adds some non-semantic variations to a base semantic image with the aid of an
asymmetric generator inspired by style transfer techniques. SAMOSA generates
hybrids that mostly match their semantic parent with some slight non-semantic
variations like lighting. While this seems sufficient to improve classifiers, this does

97

98 conclusion

not take full advantage of the non-semantic parent’s content. We then take the
opposite view with SciMix by training a hybridizer that identifies and embeds
semantic content into a base image’s non-semantic context using a powerful
StyleGanV2 generator. Contrarily to SAMOSA, SciMix generates hybrids that
inherit a lot of content from their non-semantic parent. While both methods
provide significant gains when combined with classical semi-supervised methods
like Mean Teach, SciMix seems to help more on lower label settings.

Mixing Samples Data Augmentations as compressed representations for Mul-
ti-Input Multi-output training We then study how subnetworks can be trained
within the model by training the model to output separate predictions for each
of the original inputs in a MSDA sample. By incorporating the MSDA formalism
into the Multi-Input Multi-Output (MIMO) framework we obtain a new mixing
augmentation paradigm that offers self-ensembling properties and is orthogonal
to traditional mixing augmentations.

We first propose MixMo, which projects each original parent sample with a
different convolutional layer before mixing them, and outputs two predictions
- one for each input - instead of a soft label. In this formulation, using a sum
operation to mix samples recovers the seminal MIMO framework. Interestingly,
we find replacing this sum operation with a CutMix operation leads to strong
performance improvements on its own while still retaining ensembling benefits.
We then develop the MixShare framework to address MixMo’s difficulties on
smaller networks. As this is likely due to the lack of feature sharing between
MixMo subnetworks, we aim with MixShare to facilitate feature sharing. We
introduce a novel unmixing mechanism that leads the subnetworks to share all
features by “reversing” the mixing process used on the multiple inputs. This,
along with proper initialization of the model and scheduling of the unmixing
process, allows smaller networks to successfully train concurrent subnetworks.

Multi-Input Multi-Output MSDA, unmixing and attention mechanisms Fi-
nally, we look at the interaction between MIMO MSDA and Vision Transformers.
This requires particular care as Transformers’ attention mechanism provides a
native implementation of the unmixing mechanism introduced by MixShare, and
our work on MixShare demonstrates feature sharing between subnetworks signif-
icantly complicates training.

As such, we propose the MixViT framework that significantly modifies the orig-
inal MIMO workflow: we only separate the subnetworks in the last layers of the
model. We do this by using the same encoder for both inputs and instead adding
a source attribution mechanism in the last layers when we want the subnetworks
to separate. As such, our subnetworks share the same early features by design

5.2 perspectives 99

which is reminiscent of the initialization scheme we had to use in MixShare. The
resulting framework yields strong improvements over the single-input single-
output baseline for a minimal extra cost. Interestingly, MixViT strongly benefits
from implicit regularization due to feature sharing between the subnetworks and
only minimally benefits from subnetwork ensembling contrarily to MixMo.

5.2 Perspectives

At the start of this thesis, we asked how combining contents without resorting
to soft labels could benefit image classification. We find selecting the contents we
mix leads to a MSDA that helps train invariance in models for low label setting,
while separating the predictions creates a paradigm closer to ensembling and
multi-task learning. Both of these behaviors open new avenues when compared
to standard MSDA’s behavior as regularizer. We endeavor here to outline a few
possible ways the three content mixing paradigms could further develop.

Regarding in-class MSDA SciMix heavily relies on a classifier to indicate se-
mantic characteristics to embed in the non-semantic object. Classifiers are however
typically limited in this aspect: logits for objects of the same class are mostly sim-
ilar. As such, pretrained natural language image models like CLIP (Radford et al.
2021) might be significantly more suited to the problem compared to using an
auxiliary classifier. Indeed, this sort of embedding provides significantly more
nuance in expressing the content of an image, and has successfully been used to
guide image modifications (Couairon et al. 2022).

Interestingly, in-class hybrids say interesting things about the auxiliary classi-
fier they rely on in the generative process: the hybrids show what the classifier
identifies as semantic in the image and dataset. As such, we could leverage this
to help distill model knowledge (Ba and Caruana 2014; Y. Li et al. 2021) for com-
pression purposes, and to interpret how the auxiliary classifier makes its decision
(Zhiheng Li and Xu 2021).

Regarding MIMO MSDA Feature sharing in MIMO CNNs is sensitive and
subject to significant tuning in the scheduling of unmixing. Interestingly, re-
transposing the MixViT structure to CNNs might solve some of the more prob-
lematic issues. In any case, we have little to no control as to the degree of feature
sharing between the subnetworks. Mixture of Experts (Masoudnia and Ebrahim-
pour 2014) are a well studied technique for CNNs and Transformers that would
allow us to force some features to be dedicated to one of the subnetworks.

100 conclusion

Sharing features between subnetworks has interesting implications regarding
the genericity of the features trained. Indeed, a shared feature is likelier to serve
multiple roles in the discriminative process: the feature might be needed to clas-
sify a duck for the first network at the same time it helps classify a boat in the
other network. Similar ideas can be found in the traditional Multi-Task litera-
ture (Caruana 1997), but seeing different inputs at once significantly changes the
training dynamics of such a process.

On MSDA in general Traditional MSDA themselves present several shortcom-
ings like their usual inability to accommodate more than 2 inputs or the relative
failure of saliency based mixing methods (Qin et al. 2020). The latter in particular
is concerning as experimental results in Qin et al. 2020 suggest it is pointless to
specifically mix semantic content from both inputs: non-semantic content should
also be mixed according to the experiments. Interestingly, recent results (J.-N.
Chen et al. 2022) show it is in fact better to recalibrate the mixed target to acco-
modate for the presence of non-semantic information in the mixing process.

It is our belief properly designed MSDA techniques are particularly suited to
bridging the gap between different tasks or modalities. In fact, Continual learning
(Zhizhong Li and Hoiem 2017), which can be understood as a form of asyn-
chronous multi-task learning, has recently taken to use MixUp (Douillard et al.
2022; Madaan et al. 2021) with good success. We think mixing contents of differ-
ent images can help models find proper optima for joint objectives that are such
that the individual objectives have very different landscapes. After all, what better
way to reconcile contradictory views than to see multiple instances at once?

Combining contents beyond MSDA This thesis has restricted itself to com-
bining contents in data augmentations, in part with the understanding data aug-
mentation can be used in turn to encapsulate a number of desirable behaviors
(Y. Li et al. 2021; Zhiheng Li and Xu 2021). Nevertheless, understanding how to
combine contents and exploit this combination has much broader implications.
Indeed, the issue lies at the heart of many larger issues we have only alluded
to with our MSDA approaches. For instance, combining different types of (often
conflicting) knowledge within the network is of particular importance in fields
like Multi-task learning (Caruana 1997) and Continual learning (Zhizhong Li and
Hoiem 2017). This is particularly so in the latter where methods are starting to
combine contents from different subnetworks (Yan et al. 2021). Similarly, combin-
ing contents from a stronger network trained with privileged information (Vapnik
and Vashist 2009) with contents from a standard networks will require particular
care.

5.2 perspectives 101

Most remarkably however, combining contents has long been a central problem
in multimodal learning (Ramachandram and Taylor 2017) where very different
types of contents like text and images must be fused. This problem is coming to
the forefront as we strive to train more and more general models if the recent
rise of foundation models (Bommasani et al. 2021) is any indication. If neural
networks are to take a larger place in our future, then it is perhaps time for them
to combine information as we ourselves do everyday.

B I B L I O G R A P H Y

Aksela, Matti (2003). “Comparison of classifier selection methods for improving
committee performance”. In: MCS (cit. on p. 65).

Arbelaez, Pablo, Michael Maire, Charless Fowlkes, and Jitendra Malik (2011).
“Contour Detection and Hierarchical Image Segmentation”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (TPAMI) (cit. on p. 141).

Arjovsky, Martin, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz (2019).
“Invariant risk minimization”. In: arXiv preprint library (cit. on p. 6).

Ashukha, Arsenii, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov
(2020). “Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
Learning”. In: Proceedings of the International Conference on Learning Representa-
tions (ICLR) (cit. on pp. 52, 60, 126, 127, 129).

Ba, Jimmy and Rich Caruana (2014). “Do deep nets really need to be deep?” In:
Advances in Neural Information Processing Systems (NeurIPS) (cit. on p. 99).

Babbage, Henry P (1982). “Babbage’s analytical engine”. In: The Origins of Digital
Computers (cit. on p. 1).

Baek, Kyungjune, Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Hyunjung Shim
(2021). “Rethinking the Truly Unsupervised Image-to-Image Translation”. In:
Proceedings of the IEEE International Conference on Computer Vision (ICCV) (cit.
on p. 20).

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural ma-
chine translation by jointly learning to align and translate”. In: Proceedings of
the International Conference on Learning Representations (ICLR) (cit. on p. 80).

Berthelot, David, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn,
Han Zhang, and Colin Raffel (2020). “ReMixMatch: Semi-Supervised Learning
with Distribution Matching and Augmentation Anchoring”. In: Proceedings of
the International Conference on Learning Representations (ICLR) (cit. on p. 17).

Berthelot, David, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver,
and Colin A Raffel (2019). “MixMatch: A Holistic Approach to Semi-Supervised
Learning”. In: Advances in Neural Information Processing Systems (NeurIPS) (cit.
on pp. 17, 24, 36–39, 117–119, 123, 124, 134).

Bishop, Christopher (2006). Pattern Recognition and Machine Learning. Springer (cit.
on pp. 1–3, 5).

Bommasani, Rishi, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, et al. (2021). “On the opportunities and risks of foundation models”.
In: Technical report (cit. on p. 101).

103

104 bibliography

Boyd, Stephen, Stephen P Boyd, and Lieven Vandenberghe (2004). Convex opti-
mization. Cambridge university press (cit. on p. 3).

Breiman, Leo (1996). “Bagging predictors”. In: Machine learning (cit. on p. 56).
Carratino, Luigi, Moustapha Cissé, Rodolphe Jenatton, and Jean-Philippe Vert

(2020). “On Mixup Regularization”. In: arXiv preprint library (cit. on pp. 8, 14,
56, 60).

Caruana, Rich (1997). “Multitask learning”. In: Machine learning (cit. on pp. 58,
100).

Chapelle, Olivier, Bernhard Schlkopf, and Alexander Zien (2006). Semi-Supervised
Learning. The MIT Press (cit. on pp. 6, 16, 18).

Chen, Jie-Neng, Shuyang Sun, Ju He, Philip H.S. Torr, Alan Yuille, and Song Bai
(2022). “TransMix: Attend To Mix for Vision Transformers”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (cit. on
pp. 50, 100).

Chen, John, Samarth Sinha, and Anastasios Kyrillidis (2020). “ImCLR: Implicit
Contrastive Learning for Image Classification”. In: arXiv preprint library (cit.
on p. 66).

Chen, Zhao, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich (2018).
“Gradnorm: Gradient normalization for adaptive loss balancing in deep multi-
task networks”. In: International Conference on Machine Learning (ICML) (cit. on
p. 58).

Cheng, Jianpeng, Li Dong, and Mirella Lapata (2016). “Long short-term memory-
networks for machine reading”. In: Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP) (cit. on p. 81).

Chirkova, Nadezhda, Ekaterina Lobacheva, and Dmitry P. Vetrov (2020). “Deep
Ensembles on a Fixed Memory Budget: One Wide Network or Several Thinner
Ones?” In: arXiv preprint library (cit. on pp. 63, 129, 153).

Chrabaszcz, Patryk, Ilya Loshchilov, and Frank Hutter (2017). “A Downsampled
Variant of ImageNet as an Alternative to the CIFAR datasets”. In: arXiv preprint
library (cit. on pp. 45, 59, 67, 89, 126).

Coates, Adam, Andrew Ng, and Honglak Lee (2011). “An Analysis of Single-Layer
Networks in Unsupervised Feature Learning”. In: Internaltional Conference on
Artificial Intelligence and Statistics (AISTATS) (cit. on p. 45).

Couairon, Guillaume, Asya Grechka, Jakob Verbeek, Holger Schwenk, and Matthieu
Cord (2022). “FlexIT: Towards Flexible Semantic Image Translation”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(cit. on p. 99).

Cubuk, Ekin D., Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le
(2019). “AutoAugment: Learning Augmentation Strategies From Data”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (cit. on p. 90).

bibliography 105

Cybenko, George (1989). “Approximation by superpositions of a sigmoidal func-
tion”. In: Mathematics of control, signals and systems (cit. on p. 4).

Cygert, Sebastian and Andrzej Czyżewski (2022). “Robust Object Detection with
Multi-input Multi-output Faster R-CNN”. In: Image Analysis and Processing
(ICIAP) (cit. on p. 80).

D’Ascoli, Stéphane, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli,
and Levent Sagun (2021). “ConViT: Improving Vision Transformers with Soft
Convolutional Inductive Biases”. In: International Conference on Machine Learn-
ing (ICML) (cit. on pp. 81, 82, 84–86, 89, 131, 160, 162).

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009). “ImageNet: A
Large-Scale Hierarchical Image Database”. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (cit. on pp. 126, 155).

Deng, Jinhong, Wen Li, Yuhua Chen, and Lixin Duan (2021). “Unbiased mean
teacher for cross-domain object detection”. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (cit. on p. 17).

DeVries, Terrance and Graham W Taylor (2017). “Improved regularization of
convolutional neural networks with cutout”. In: arXiv preprint library (cit. on
p. 149).

Devroye, Luc, László Györfi, and Gábor Lugosi (2013). A probabilistic theory of
pattern recognition. Springer Science & Business Media (cit. on pp. 1, 2).

Dietterich, Thomas G (2000). “Ensemble methods in machine learning”. In: MCS
(cit. on p. 51).

Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiao-
hua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby (2021). “An Im-
age is Worth 16x16 Words: Transformers for Image Recognition at Scale”. In:
International Conference on Learning Representations (cit. on pp. 4, 81).

Douillard, Arthur, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord
(2022). “DyTox: Transformers for Continual Learning with DYnamic TOken
eXpansion”. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) (cit. on pp. 93, 100, 131).

Dusenberry, Michael, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek, Kather-
ine Heller, Balaji Lakshminarayanan, and Dustin Tran (2020). “Efficient and
scalable bayesian neural nets with rank-1 factors”. In: International Conference
on Machine Learning (ICML) (cit. on p. 52).

Faramarzi, Mojtaba, Mohammad Amini, Akilesh Badrinaaraayanan, Vikas Verma,
and Sarath Chandar (2020). “PatchUp: A Regularization Technique for Convo-
lutional Neural Networks”. In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI) (cit. on pp. 59, 64, 148).

106 bibliography

Frankle, Jonathan and Michael Carbin (2019). “The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks”. In: Proceedings of the International
Conference on Learning Representations (ICLR) (cit. on p. 53).

French, Geoff, Timo Aila, Samuli Laine, Michal Mackiewicz, and Graham Fin-
layson (2020a). “Semi-supervised semantic segmentation needs strong, high-
dimensional perturbations”. In: Proceedings of the British Machine Vision Confer-
ence (BMVC) (cit. on pp. 64, 149).

French, Geoff, Avital Oliver, and Tim Salimans (2020b). “Milking CowMask for
Semi-Supervised Image Classification”. In: arXiv preprint library (cit. on pp. 64,
149).

Gal, Yarin and Zoubin Ghahramani (2016). “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning”. In: International Conference
on Machine Learning (ICML) (cit. on p. 52).

Ganin, Yaroslav and Victor Lempitsky (2015). “Unsupervised Domain Adaptation
by Backpropagation”. In: International Conference on Machine Learning (ICML)
(cit. on p. 141).

Gao, Yuan, Zixiang Cai, and Lei Yu (2019). “Intra-Ensemble in Neural Networks”.
In: arXiv preprint library (cit. on p. 53).

Gatys, Leon A, Alexander S Ecker, and Matthias Bethge (2016). “Image style trans-
fer using convolutional neural networks”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (cit. on p. 19).

Gebru, Timnit (2019). “Oxford handbook on AI ethics book chapter on race and
gender”. In: arXiv preprint library (cit. on p. 2).

Ghiasi, Golnaz, Tsung-Yi Lin, and Quoc V Le (2018). “Dropblock: A regulariza-
tion method for convolutional networks”. In: Advances in Neural Information
Processing Systems (NeurIPS) (cit. on p. 148).

Gödel, Kurt (1931). “Über formal unentscheidbare Sätze der Principia Mathemat-
ica und verwandter Systeme I”. In: Monatshefte für mathematik und physik (cit.
on p. 1).

Gontijo-Lopes, Raphael, Sylvia J. Smullin, Ekin D. Cubuk, and Ethan Dyer (2021).
“Affinity and Diversity: Quantifying Mechanisms of Data Augmentation”. In:
Proceedings of the International Conference on Learning Representations (ICLR) (cit.
on pp. 7, 38, 60, 118).

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT
Press (cit. on pp. 1, 3–5).

Granziol, Diego, Stefan Zohren, and Stephen Roberts (2020). “Learning rates as a
function of batch size: A random matrix theory approach to neural network
training”. In: arXiv preprint library (cit. on p. 132).

Guo, Chuan, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger (2017). “On Cali-
bration of Modern Neural Networks”. In: International Conference on Machine
Learning (ICML) (cit. on pp. 60, 129).

bibliography 107

Hansen, Lars Kai and Peter Salamon (1990). “Neural network ensembles”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (cit. on
p. 51).

Harris, Ethan, Antonia Marcu, Matthew Painter, Mahesan Niranjan, Adam Prügel-
Bennett, and Jonathon Hare (2020). “FMix: Enhancing Mixed Sample Data
Augmentation”. In: arXiv preprint library (cit. on pp. 64, 148).

Hassani, Ali, Steven Walton, Nikhil Shah, Abulikemu Abuduweili, Jiachen Li,
and Humphrey Shi (2021). “Escaping the Big Data Paradigm with Compact
Transformers”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshop (cit. on p. 93).

Havasi, Marton, Rodolphe Jenatton, Stanislav Fort, Jeremiah Liu, Jasper Roland
Snoek, Balaji Lakshminarayanan, Andrew Mingbo Dai, and Dustin Tran (2021).
“Training independent subnetworks for robust prediction”. In: Proceedings of
the International Conference on Learning Representations (ICLR) (cit. on pp. 9,
50–55, 60, 66, 69, 75, 84, 85, 126, 127, 129, 155, 156, 159).

He, Kaiming, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick (2020). “Mo-
mentum Contrast for Unsupervised Visual Representation Learning”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(cit. on pp. 29, 35).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016a). “Deep resid-
ual learning for image recognition”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (cit. on p. 127).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016b). “Identity
Mappings in Deep Residual Networks”. In: Proceedings of the IEEE European
Conference on Computer Vision (ECCV) (cit. on pp. 2, 6, 27, 32, 67, 91).

Hendrycks, Dan and Thomas Dietterich (2019). “Benchmarking Neural Network
Robustness to Common Corruptions and Perturbations”. In: Proceedings of the
International Conference on Learning Representations (ICLR) (cit. on pp. 62, 127).

Hendrycks, Dan, Norman Mu, Ekin Dogus Cubuk, Barret Zoph, Justin Gilmer,
and Balaji Lakshminarayanan (2020). “AugMix: A Simple Data Processing
Method to Improve Robustness and Uncertainty”. In: Proceedings of the Inter-
national Conference on Learning Representations (ICLR) (cit. on p. 62).

Higgins, Irina, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner (2017). “Beta-VAE: Learn-
ing Basic Visual Concepts with a Constrained Variational Framework”. In: Pro-
ceedings of the International Conference on Learning Representations (ICLR) (cit. on
pp. 19, 25).

Hoffer, Elad, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, and Daniel
Soudry (2020). “Augment Your Batch: Improving Generalization Through
Instance Repetition”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (cit. on pp. 61, 90, 92, 127).

108 bibliography

Huang, Gao, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q
Weinberger (2017). “Snapshot Ensembles: Train 1, get M for free”. In: Proceed-
ings of the International Conference on Learning Representations (ICLR) (cit. on
p. 51).

Huang, Gao, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger (2016).
“Deep Networks with Stochastic Depth”. In: Proceedings of the IEEE European
Conference on Computer Vision (ECCV) (cit. on p. 90).

Huang, Xun and Serge Belongie (2017). “Arbitrary Style Transfer in Real-Time
With Adaptive Instance Normalization”. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV) (cit. on pp. 19, 20, 22, 25, 26, 44).

Huang, Xun, Ming-Yu Liu, Serge Belongie, and Jan Kautz (2018). “Multimodal Un-
supervised Image-to-image Translation”. In: Proceedings of the IEEE European
Conference on Computer Vision (ECCV) (cit. on pp. 20, 26).

Inoue, Hiroshi (2018). “Data Augmentation By Pairing Samples for Images Clas-
sification”. In: arXiv preprint library (cit. on p. 44).

Iscen, Ahmet, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum (2019). “Label
Propagation for Deep Semi-Supervised Learning”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (cit. on pp. 16,
18).

Jiang, Zi-Hang, Qibin Hou, Li Yuan, Daquan Zhou, Yujun Shi, Xiaojie Jin, Anran
Wang, and Jiashi Feng (2021). “All Tokens Matter: Token Labeling for Train-
ing Better Vision Transformers”. In: Advances in Neural Information Processing
Systems (NeurIPS) (cit. on p. 131).

Jordan, Michael Irwin (1999). Learning in graphical models. MIT press (cit. on pp. 1,
3).

Karras, Tero, Samuli Laine, and Timo Aila (2019). “A Style-Based Generator Ar-
chitecture for Generative Adversarial Networks”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (cit. on pp. 20,
22, 25, 26).

Karras, Tero, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila (2020). “Analyzing and Improving the Image Quality of StyleGAN”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (cit. on pp. 20, 22, 36, 46, 124).

Kim, Byoungjip, Jinho Choo, Yeong-Dae Kwon, Seongho Joe, Seungjai Min, and
Youngjune Gwon (2021). “SelfMatch: Combining Contrastive Self-Supervision
and Consistency for Semi-Supervised Learning”. In: (cit. on p. 16).

Kim, Jang-Hyun, Wonho Choo, and Hyun Oh Song (2020). “Puzzle mix: Exploit-
ing saliency and local statistics for optimal mixup”. In: International Conference
on Machine Learning (ICML) (cit. on pp. 62, 67, 126, 127).

Kim, JangHyun, Wonho Choo, Hosan Jeong, and Hyun Oh Song (2021). “Co-
Mixup: Saliency Guided Joint Mixup with Supermodular Diversity”. In: Pro-

bibliography 109

ceedings of the International Conference on Learning Representations (ICLR) (cit. on
p. 150).

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic opti-
mization”. In: Proceedings of the International Conference on Learning Representa-
tions (ICLR) (cit. on pp. 2, 6).

Krizhevsky, Alex and Geoffrey Hinton (2009). Learning multiple layers of features
from tiny images. Tech. rep. (cit. on pp. 36, 59, 70, 84, 89, 122, 126).

Krogh, Anders and John Hertz (1991). “A simple weight decay can improve
generalization”. In: Advances in Neural Information Processing Systems (NeurIPS)
(cit. on p. 6).

Laine, Samuli and Timo Aila (2017). “Temporal Ensembling for Semi-Supervised
Learning”. In: Proceedings of the International Conference on Learning Representa-
tions (ICLR) (cit. on pp. 16, 17).

Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell (2017). “Sim-
ple and scalable predictive uncertainty estimation using deep ensembles”. In:
Advances in Neural Information Processing Systems (NeurIPS) (cit. on pp. 51, 61,
126).

Lecun, Yann. (1998). “THE MNIST DATABASE of handwritten digits”. In: http://yann.lecun.com/exdb/mnist/
(cit. on p. 141).

Lecun, Yann, J. S. Denker, Sara A. Solla, R. E. Howard, and L.D. Jackel (1990).
“Optimal brain damage”. In: Advances in Neural Information Processing Systems
(NeurIPS) (cit. on p. 53).

Lee, Seung Hoon, Seunghyun Lee, and Byung Cheol Song (2021). “Vision Trans-
former for Small-Size Datasets”. In: arXiv preprint library (cit. on pp. 90, 93,
132).

Lee, Stefan, Senthil Purushwalkam, Michael Cogswell, David J. Crandall, and
Dhruv Batra (2015). “Why M Heads are Better than One: Training a Diverse
Ensemble of Deep Networks”. In: arXiv preprint library (cit. on p. 52).

Li, Boyi, Felix Wu, Ser-Nam Lim, Serge Belongie, and Kilian Q. Weinberger (2021).
“On Feature Normalization and Data Augmentation”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (cit. on
p. 59).

Li, Chongxuan, Taufik Xu, Jun Zhu, and Bo Zhang (2017). “Triple Generative Ad-
versarial Nets”. In: Advances in Neural Information Processing Systems (NeurIPS)
(cit. on p. 16).

Li, Hao, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf (2017).
“Pruning Filters for Efficient ConvNets”. In: Proceedings of the International
Conference on Learning Representations (ICLR) (cit. on pp. 53, 59, 152).

Li, Junnan, Caiming Xiong, and Steven C.H. Hoi (2021). “CoMatch: Semi-Supervised
Learning With Contrastive Graph Regularization”. In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV) (cit. on pp. 18, 36).

110 bibliography

Li, Yuhang, Feng Zhu, Ruihao Gong, Mingzhu Shen, Xin Dong, Fengwei Yu, Shao-
qing Lu, and Shi Gu (2021). “Mixmix: All you need for data-free compression
are feature and data mixing”. In: Proceedings of the IEEE International Conference
on Computer Vision (ICCV) (cit. on pp. 99, 100).

Li, Zhiheng and Chenliang Xu (2021). “Discover the Unknown Biased Attribute
of an Image Classifier”. In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV) (cit. on pp. 99, 100).

Li, Zhizhong and Derek Hoiem (2017). “Learning without forgetting”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (cit. on p. 100).

Lin, Tsung-Yi, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár (2017).
“Focal loss for dense object detection”. In: Proceedings of the IEEE International
Conference on Computer Vision (ICCV) (cit. on p. 58).

Liu, Ming-Yu, Thomas Breuel, and Jan Kautz (2017). “Unsupervised Image-to-
Image Translation Networks”. In: Advances in Neural Information Processing
Systems (NeurIPS) (cit. on p. 20).

Liu, Ming-Yu, Xun Huang, Arun Mallya, Tero Karras, Timo Aila, Jaakko Lehtinen,
and Jan Kautz (2019). “Few-Shot Unsupervised Image-to-Image Translation”.
In: Proceedings of the International Conference on Learning Representations (ICLR)
(cit. on p. 20).

Liu, Yahui, Enver Sangineto, Wei Bi, Nicu Sebe, Bruno Lepri, and Marco De Nadai
(2021). “Efficient Training of Visual Transformers with Small Datasets”. In:
Advances in Neural Information Processing Systems (NeurIPS) (cit. on p. 93).

Liu, Yen-Cheng, Chih-Yao Ma, and Zsolt Kira (2022). “Unbiased Teacher v2: Semi-
Supervised Object Detection for Anchor-Free and Anchor-Based Detectors”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (cit. on p. 19).

Liu, Ze, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo (2021). “Swin Transformer: Hierarchical Vision Transformer
Using Shifted Windows”. In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV) (cit. on pp. 82, 93).

Lobacheva, Ekaterina, Nadezhda Chirkova, Maxim Kodryan, and Dmitry P Vetrov
(2020). “On Power Laws in Deep Ensembles”. In: Advances in Neural Informa-
tion Processing Systems (NeurIPS) (cit. on pp. 51, 60, 63, 64, 129, 153, 154).

Loshchilov, Ilya and Frank Hutter (2019). “Decoupled Weight Decay Regulariza-
tion”. In: Proceedings of the International Conference on Learning Representations
(ICLR) (cit. on p. 90).

Luo, Yucen, Jun Zhu, Mengxi Li, Yong Ren, and Bo Zhang (2018). “Smooth Neigh-
bors on Teacher Graphs for Semi-Supervised Learning”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (cit. on
p. 16).

bibliography 111

Madaan, Divyam, Jaehong Yoon, Yuanchun Li, Yunxin Liu, and Sung Ju Hwang
(2021). “Representational continuity for unsupervised continual learning”. In:
Proceedings of the International Conference on Learning Representations (ICLR) (cit.
on p. 100).

Malach, Eran, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir (2020).
“Proving the lottery ticket hypothesis: Pruning is all you need”. In: Interna-
tional Conference on Machine Learning (ICML) (cit. on p. 52).

Masoudnia, Saeed and Reza Ebrahimpour (2014). “Mixture of experts: a literature
survey”. In: Artificial Intelligence Review (cit. on p. 99).

McCarthy, John, Marvin L Minsky, Nathaniel Rochester, and Claude E Shannon
(1956). “A proposal for the dartmouth summer research project on artificial
intelligence”. In: Dartmouth Summer Research Project on Artificial Intelligence
(cit. on p. 1).

Miyato, T., S. Maeda, M. Koyama, and S. Ishii (2019). “Virtual Adversarial Training:
A Regularization Method for Supervised and Semi-Supervised Learning”. In:
(cit. on p. 16).

Molchanov, Pavlo, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz (2017).
“Pruning convolutional neural networks for resource efficient transfer learn-
ing”. In: Proceedings of the International Conference on Learning Representations
(ICLR) (cit. on p. 53).

Naeini, Mahdi Pakdaman, Gregory Cooper, and Milos Hauskrecht (2015). “Ob-
taining well calibrated probabilities using bayesian binning”. In: Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI) (cit. on p. 60).

Nakkiran, Preetum, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and
Ilya Sutskever (2021). “Deep double descent: Where bigger models and more
data hurt”. In: Journal of Statistical Mechanics: Theory and Experiment (cit. on
p. 2).

Neal, Brady, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna,
Simon Lacoste-Julien, and Ioannis Mitliagkas (2018). “A Modern Take on the
Bias-Variance Tradeoff in Neural Networks”. In: arXiv preprint library (cit. on
pp. 64, 154).

Netzer, Yuval, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew
Y Ng (2011). “Reading digits in natural images with unsupervised feature
learning”. In: Advances in Neural Information Processing Systems (NeurIPS) (cit.
on pp. 36, 122).

Nilsson, Nils J (1982). Principles of artificial intelligence. Springer Science & Business
Media (cit. on p. 1).

Nixon, Jeremy, Michael W Dusenberry, Linchuan Zhang, Ghassen Jerfel, and
Dustin Tran (2019). “Measuring Calibration in Deep Learning.” In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshop (cit. on p. 129).

112 bibliography

Pang, Tianyu, Kun Xu, Chao Du, Ning Chen, and Jun Zhu (2019). “Improving
Adversarial Robustness via Promoting Ensemble Diversity”. In: International
Conference on Machine Learning (ICML) (cit. on p. 75).

Park, Taesung, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei
Efros, and Richard Zhang (2020). “Swapping Autoencoder for Deep Image
Manipulation”. In: Advances in Neural Information Processing Systems (NeurIPS)
(cit. on pp. 21, 22, 32).

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala (2019). “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information Processing Systems
(NeurIPS) (cit. on pp. 60, 130).

Pensia, Ankit, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, and Dimitris
Papailiopoulos (2020). “Optimal Lottery Tickets via SubsetSum: Logarithmic
Over-Parameterization is Sufficient”. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS) (cit. on p. 53).

Perez, Luis and Jason Wang (2017). “The Effectiveness of Data Augmentation in
Image Classification Using Deep Learning”. In: arXiv preprint library (cit. on
pp. 7, 38, 118).

Qin, Jie, Jiemin Fang, Qian Zhang, Wenyu Liu, Xingang Wang, and Xinggang
Wang (2020). “ResizeMix: Mixing Data with Preserved Object Information
and True Labels”. In: arXiv preprint library (cit. on pp. 100, 127).

Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
(2021). “Learning transferable visual models from natural language supervi-
sion”. In: International Conference on Machine Learning (ICML) (cit. on p. 99).

Ramachandram, Dhanesh and Graham W Taylor (2017). “Deep multimodal learn-
ing: A survey on recent advances and trends”. In: IEEE signal processing maga-
zine (cit. on p. 101).

Rame, Alexandre and Matthieu Cord (2021). “DICE: Diversity in Deep Ensembles
via Conditional Redundancy Adversarial Estimation”. In: Proceedings of the
International Conference on Learning Representations (ICLR) (cit. on pp. 60, 65, 75,
129).

Rame, Alexandre, Remy Sun, and Matthieu Cord (2021). “MixMo: Mixing Multi-
ple Inputs for Multiple Outputs via Deep Subnetworks”. In: Proceedings of the
IEEE International Conference on Computer Vision (ICCV) (cit. on pp. 52, 69, 70,
73, 75, 84–87, 91, 129, 156, 158–160, 162).

Rizve, Mamshad Nayeem, Kevin Duarte, Yogesh S Rawat, and Mubarak Shah
(2021). “In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label

bibliography 113

Selection Framework for Semi-Supervised Learning”. In: Proceedings of the
International Conference on Learning Representations (ICLR) (cit. on p. 16).

Robert, Thomas, Nicolas Thome, and Matthieu Cord (2018). “HybridNet: Classi-
fication and Reconstruction Cooperation for Semi-Supervised Learning”. In:
Proceedings of the IEEE European Conference on Computer Vision (ECCV) (cit. on
pp. 17, 26, 118, 119, 122, 123).

Robert, Thomas, Nicolas Thome, and Matthieu Cord (2019). “DualDis: Dual-
Branch Disentangling with Adversarial Learning”. In: arXiv preprint library
(cit. on p. 19).

Shang, Lifeng, Zhengdong Lu, and Hang Li (2015). “Neural responding machine
for short-text conversation”. In: Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics (ACL Short Papers) (cit. on p. 1).

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. (2016). “Mastering the game of Go with deep
neural networks and tree search”. In: Nature (cit. on p. 1).

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. (2018). “A general reinforcement learning algorithm that mas-
ters chess, shogi, and Go through self-play”. In: Science (cit. on p. 1).

Soflaei, Masoumeh, Hongyu Guo, Ali Al-Bashabsheh, Yongyi Mao, and Richong
Zhang (2020). “Aggregated Learning: A Vector-Quantization Approach to
Learning Neural Network Classifiers”. In: Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI) (cit. on p. 53).

Sohn, Kihyuk, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin
A Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li (2020). “Fix-
Match: Simplifying Semi-Supervised Learning with Consistency and Confi-
dence”. In: Advances in Neural Information Processing Systems (NeurIPS) (cit. on
pp. 16, 18, 21, 24, 32, 35, 36, 122, 124).

Stokes, Jonathan M, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-
Ruiz, Nina M Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae,
Zohar Bloom-Ackermann, et al. (2020). “A deep learning approach to antibi-
otic discovery”. In: Cell (cit. on p. 1).

Summers, Cecilia and Michael J Dinneen (2019). “Improved Mixed-Example Data
Augmentation”. In: Proceedings of the IEEE Winter Conference on Application of
Computer Vision (WACV) (cit. on pp. 64, 148).

Sun, Remy, Alexandre Rame, Clement Masson, Nicolas Thome, and Matthieu
Cord (2022). “Towards efficient feature sharing in MIMO architectures”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshop (cit. on pp. 80, 91).

114 bibliography

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna (2016). “Rethinking
the Inception Architecture for Computer Vision”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (cit. on pp. 6, 9,
35, 90).

Szeliski, Richard (2022). Computer vision: algorithms and applications. Springer Sci-
ence & Business Media (cit. on p. 3).

Tarvainen, Antti and Harri Valpola (2017). “Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learning
results”. In: Advances in Neural Information Processing Systems (NeurIPS) (cit. on
pp. 16, 17, 21, 24, 32, 35–37, 39, 42, 44, 118, 119, 123, 124).

Thulasidasan, Sunil, Gopinath Chennupati, Jeff A Bilmes, Tanmoy Bhattacharya,
and Sarah Michalak (2019). “On mixup training: Improved calibration and
predictive uncertainty for deep neural networks”. In: Advances in Neural Infor-
mation Processing Systems (NeurIPS) (cit. on p. 14).

Tian, Yonglong, Dilip Krishnan, and Phillip Isola (2020). “Contrastive multiview
coding”. In: Proceedings of the IEEE European Conference on Computer Vision
(ECCV) (cit. on p. 89).

Tishby, Naftali (2001). “The information bottleneck method”. In: Allerton Confer-
ence on Communication, Control and Computation (cit. on p. 53).

Töscher, Andreas and Michael Jahrer (2009). “The BigChaos Solution to the Netflix
Grand Prize”. In: (cit. on p. 1).

Touvron, Hugo, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Herve Jegou (2021a). “Training data-efficient image trans-
formers and distillation through attention”. In: International Conference on Ma-
chine Learning (ICML) (cit. on pp. 80, 90, 92, 93, 132).

Touvron, Hugo, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and
Hervé Jégou (2021b). “Going Deeper With Image Transformers”. In: Proceed-
ings of the IEEE International Conference on Computer Vision (ICCV) (cit. on pp. 81,
82, 84, 86, 89, 90, 93, 131).

Turing, Alan Mathison et al. (1936). “On computable numbers, with an application
to the Entscheidungsproblem”. In: Journal of Math (cit. on p. 1).

Vapnik, Vladimir and Akshay Vashist (2009). “A new learning paradigm: Learn-
ing using privileged information”. In: Neural networks (cit. on p. 100).

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N Gomez, Łukasz Kaiser, and Illia Polosukhin (2017). “Attention is all you
need”. In: Advances in Neural Information Processing Systems (NeurIPS) (cit. on
pp. 1, 2, 6, 81).

Veit, Andreas, Michael Wilber, and Serge Belongie (2016). “Residual networks
behave like ensembles of relatively shallow networks”. In: Advances in Neural
Information Processing Systems (NeurIPS) (cit. on p. 53).

bibliography 115

Verma, Vikas, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas,
David Lopez-Paz, and Yoshua Bengio (2019a). “Manifold Mixup: Better Rep-
resentations by Interpolating Hidden States”. In: International Conference on
Machine Learning (ICML) (cit. on pp. 56, 59, 61, 127, 155).

Verma, Vikas, Alex Lamb, Juho Kannala, Yoshua Bengio, and David Lopez-Paz
(2019b). “Interpolation Consistency Training for Semi-supervised Learning”.
In: International Joint Conference on Artificial Intelligence (cit. on p. 17).

Wang, Kaiping, Bo Zhan, Chen Zu, Xi Wu, Jiliu Zhou, Luping Zhou, and Yan
Wang (2022). “Semi-supervised medical image segmentation via a tripled-
uncertainty guided mean teacher model with contrastive learning”. In: Medical
Image Analysis 79 (cit. on p. 17).

Wang, Wenhai, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong
Lu, Ping Luo, and Ling Shao (2021). “Pyramid Vision Transformer: A Versatile
Backbone for Dense Prediction Without Convolutions”. In: Proceedings of the
IEEE International Conference on Computer Vision (ICCV) (cit. on p. 93).

Welinder, P., S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona
(2010). Caltech-UCSD Birds 200. Tech. rep. (cit. on p. 45).

Welling, Max and Yee W Teh (2011). “Bayesian learning via stochastic gradient
Langevin dynamics”. In: International Conference on Machine Learning (ICML)
(cit. on p. 6).

Wen, Yeming, Ghassen Jerfel, Rafael Muller, Michael W Dusenberry, Jasper Snoek,
Balaji Lakshminarayanan, and Dustin Tran (2021). “Combining Ensembles
and Data Augmentation Can Harm Your Calibration”. In: Proceedings of the
International Conference on Learning Representations (ICLR) (cit. on p. 129).

Wu, Haiping, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and
Lei Zhang (2021). “CvT: Introducing Convolutions to Vision Transformers”.
In: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
(cit. on p. 93).

Yan, Shipeng, Jiangwei Xie, and Xuming He (2021). “Der: Dynamically expand-
able representation for class incremental learning”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (cit. on p. 100).

Yang, Taojiannan, Sijie Zhu, and Chen Chen (2020). “GradAug: A New Regular-
ization Method for Deep Neural Networks”. In: Advances in Neural Information
Processing Systems (NeurIPS) (cit. on pp. 60, 127).

Yang, Yanchao and Stefano Soatto (2019). “CutMix: Regularization Strategy to
Train Strong Classifiers With Localizable Features”. In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV) (cit. on pp. 7, 8, 44, 54, 61,
64, 74, 86, 90, 92, 126, 127, 129, 132, 149).

Yang, Yanchao and Stefano Soatto (2020). “FDA: Fourier Domain Adaptation for
Semantic Segmentation”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (cit. on p. 44).

116 bibliography

Zagoruyko, Sergey and Nikos Komodakis (2016). “Wide Residual Networks”. In:
Proceedings of the British Machine Vision Conference (BMVC) (cit. on pp. 32, 36,
60, 70, 119, 124, 162).

Zhai, Xiaohua, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer (2022).
“Scaling vision transformers”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (cit. on p. 82).

Zhai, Xiaohua, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer (2019). “S4L:
Self-Supervised Semi-Supervised Learning”. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV) (cit. on p. 16).

Zhang, Bowen, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Oku-
mura, and Takahiro Shinozaki (2021). “FlexMatch: Boosting Semi-Supervised
Learning with Curriculum Pseudo Labeling”. In: Advances in Neural Informa-
tion Processing Systems (NeurIPS) (cit. on pp. 18, 36).

Zhang, Hongyi, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz (2018).
“mixup: Beyond empirical risk minimization”. In: Proceedings of the Interna-
tional Conference on Learning Representations (ICLR) (cit. on pp. 7, 8, 14, 44, 49,
54, 56, 61, 90, 92, 132, 148).

Zhang, Zizhao, Han Zhang, Long Zhao, Ting Chen, and Tomas Pfister (2022).
“Aggregating Nested Transformers”. In: Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI) (cit. on pp. 90, 93).

Zhong, Zhun, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang (2020). “Ran-
dom Erasing Data Augmentation”. In: Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI) (cit. on p. 90).

Zhu, Jun-Yan, Taesung Park, Phillip Isola, and Alexei A Efros (2017). “Unpaired
image-to-image translation using cycle-consistent adversarial networks”. In:
Proceedings of the IEEE International Conference on Computer Vision (ICCV) (cit.
on p. 20).

A
p

p
e

n
d

i
x

A
A P P E N D I X

In this Appendix, we offer additional material to contextualize the work pre-
sented in this thesis. We start with an inventory of the experimental settings (Sec-
tion A.1) and pseudo-code algorithms (Section A.2) for the five papers presented
in this thesis. Afterwards, we give additional details and material for SAMOSA in
Section A.3, SciMix in Section A.4, MixMo in Section A.5, MixShare in Section A.6
and MixViT in Section A.7.

A.1 Experimental details

We outline experimental details for SAMOSA in Section A.1.1, SciMix in Sec-
tion A.1.2, MixMo in Section A.1.3, MixShare in Section A.1.4 and MixViT in
Section A.1.5.

A.1.1 Experimental details for SAMOSA experiments

Implementation was coded in python3 using the pytorch framework, param-
eters follow their default pytorch value unless specified otherwise. The code
base was largely adapted from https://github.com/ThomasRobertFr/hybridnet
for the Mean Teacher implementation and general code backbone, MixMatch
implementation was adapted almost directly from https://github.com/YU1ut/
MixMatch-pytorch (with some modifications to follow (Berthelot et al. 2019) more
closely).

For contractual reasons it is not possible to provide the experimental code, but
code snippets can be provided on demand to illustrate the more important parts
of the algorithm and experimental setting.

Most experiments were run on a nationwide computation cluster with 261 Nodes
of 2 Intel Cascade Lake 6248 CPUs and 4 Nvidia V100 SXM2 32 Go GPUs op-
erating RedHat version 8.1 with conda 4.8.0. The SVHN Mean Teacher based
experiments were run on another workstation with an Intel Xeon Silver 4108 CPU
and 4 Nvidia Titan Xp 12 Go GPUs operating Debian Bullseye.

117

https://github.com/ThomasRobertFr/hybridnet
https://github.com/YU1ut/MixMatch-pytorch
https://github.com/YU1ut/MixMatch-pytorch

118 appendix

General Setting We operate on a standard WideResNet-28-2 (1.5M parameters)
which is widely used in the Semi-Supervised Learning literature as a base model
(Ec ◦ C). Er follows the same architecture as Ec with an additional final linear
layer and softmax activation to obtain activation gates. The skeleton of D follows
an inverted 13-layer 4-4-4 CNN architecture, with Dpre being a 4-4 block and Dpost

being made up of the last 4 block and final convolution. Downsampling/Upsam-
pling convolutions are stabilized with an additional Batch Normalization layer
in MixMatch experiments. Weights were initialized according to default pytorch
layer initializations (Kaiming initializations). Batch Normalization layers followed
standard pytorch configuration (momentum = 0.1). Gradients are clipped to unit
norm to stabilize training, optimizers details vary from setting to setting (detailed
below).

Samples are randomly flipped horizontally (only for CIFAR10) and shifted by
up to 4 pixels both horizontally and vertically with reflect padding. The resulting
augmented samples are then standardized channel-wise according to train set
statistics. No holdout validation set is kept for either dataset but hyper-parameters
are mostly directly adapted from (Robert et al. 2018; Berthelot et al. 2019).

Reduced settings parameters for the Case Study were identical to normal set-
tings outlined below with the sole differences being that they were run on only
one gpu with halved learning rates and batch sizes.

Mean Teacher Based SAMOSA on CIFAR/SVHN/MNISTM The model is
trained over 2 gpus using a SGD optimizer with weight decay 5e − 4, Nesterov
momentum 0.9 and cosine learning rate (base 0.2 learning rate) for 300/150/300

epochs over the unlabeled samples (the rate is set to fully decrease over 350/200

epochs), with the reconstructive modules Er and D optimized by a secondary
SGD optimizer following the same parameters.

After each training and subsequent augmentation step, the model learning
rate is reset and training resumes (leading to training for an overall 900 epochs).
λrecons = 0.25, λSAMOSA = 0.5/0.1/0.1 during training, consistency targets are
optimized with weight λcons = 300, with batches of 124/30 labeled samples and
388/500/500 unlabeled samples (similarly to (Robert et al. 2018)). In the second
and third training passes, the model is only optimized over the augmented dataset
from epoch 150/50/150 to 250/100/250 of each cycle, and is optimized over the
true dataset for the remaining epochs (following discussions in (Perez and J. Wang
2017; Gontijo-Lopes et al. 2021)).

Consistency is actually optimized following the dual head trick used in (Tar-
vainen and Valpola 2017) where the classifier outputs two different decision
ypreds and ycons. ycons is optimized to reconstruct the EMA target’s yEMA

preds (weight
λcons = 300), and ypreds is tied to reconstruct ycons (weight λlogitdist = 0.01). This

A.1 experimental details 119

limits the need for precise scheduling of consistency weights by having a “buffer”
prediction head. The EMA model is updated with decay 0.97 (following a linear
start for early iterations).

MixMatch Based SAMOSA on CIFAR10 The classifier Ec ◦ C is trained over
2 gpus using a AdamW optimizer with weight decay 0.02, β = (0.9, 0.999) and
constant learning rate 0.002 for 900 epochs over the unlabeled samples, with the
reconstructive modules Er and D optimized with a SGD optimizer with weight
decay 5e−4, Nesterov momentum 0.9 and cosine learning rate (base learning rate
0.2) for 900 epochs (set to fully decrease over 950 epochs).

λrecons = 0.25, λSAMOSA = 0.5, pseudolabel targets are optimized with weight
λu = 37.5 (linear ramp over 16384 iterations first), with batches of 256 labeled
samples and 256 unlabeled samples (following the proportions in (Berthelot et al.
2019), in the CIFAR10 250 label case the batch sizes are instead 250 and 250).
Similarly to the Mean Teacher setting, we only incorporate hybrid samples from
epoch 100 to epoch 800. Outside of this window, the model is optimized according
to the standard MixMatch procedure (only on Mixed Up examples).

Hyperparameter Ranges Investigated Values for λcons, λlogit_dist, λu, λrecons,int, λ, β,
as well as decay and learning rates were directly taken from (Robert et al. 2018;
Berthelot et al. 2019) with no parameter search. Batch sizes for the Mean Teacher
experiments were also taken from (Robert et al. 2018). Batch sizes for the Mix-
Match experiments were taken to balance out labeled and unlabeled samples
while being as large as possible (for faster training). We tried turning hybrid
augmentation on {0,50,100,150} epochs into training and turning it of {100,50,0}
epochs before the end of training on the Mean Teacher CIFAR10 1000 labels set-
ting, and adapted the training schedule for other settings by taking the optimal
setting with regards to test set accuracy on the CIFAR10 1000 label setting.

A.1.1.1 Architectures

We operate on a standard WideResNet-28-2 (Zagoruyko and Komodakis 2016)
for our classifiers (both f and Ec◦C). Er follows the same architecture as Ec. Note
that we keep the same architecture for both the generator and trained classifier to
avoid any interference due to different function classes engendered by the models.
The skeleton of D follows a the one used in (Robert et al. 2018). Hyperparame-
ters and optimizers were generally taken to follow settings reported in the base
methods’ original papers (Tarvainen and Valpola 2017; Berthelot et al. 2019).

More precisely, we outline in Table A.1, Table A.2, Table A.4, Table A.3, Table A.5
and Table A.6 the detailed make up of the neural networks used in this paper.

120 appendix

A.1.1.2 Main modules

Layer Details Output shape

Input Preprocessed image x 3× 32× 32
Conv2d 16 filters, 3× 3 kernels, pad 1 16× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 64 filters, 3× 3 kernels, pad 1, stride 2 64× 16× 16
WideResBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
WideResBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
WideResBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
WideResBlock 128 filters, 3× 3 kernels, pad 1, stride 2 128× 8× 8
WideResBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8
WideResBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8
WideResBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8

Table A.1. – General structure of Ec.

Layer Details Output shape

Input Preprocessed image x 3× 32× 32
Conv2d 16 filters, 3× 3 kernels, pad 1 16× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 64 filters, 3× 3 kernels, pad 1, stride 2 64× 16× 16
WideResBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
WideResBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
WideResBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
WideResBlock 128 filters, 3× 3 kernels, pad 1, stride 2 128× 8× 8
WideResBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8
WideResBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8
WideResBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8
Flatten C ×H ×W → CHW 8192
Linear 64 units 64
Softmax 64

Table A.2. – General structure of Er.

A.1 experimental details 121

Layer Details Output shape

Input Semantic features zc, (Style weights zr) 128× 8× 8, (64)
DeconvBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8
DeconvBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8
DeconvBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8
DeconvBlock 64 filters, 3× 3 kernels, pad 1, stride 2 64× 16× 16
DeconvBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
DeconvBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
DeconvBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
DeconvBlock h 64 filters, 3× 3 kernels, pad 1, stride 2 64× 32× 32

Auxiliary modulation h’ zr � h 64× 32

DeconvBlock 64 filters, 3× 3 kernels, pad 1, takes h′ 64× 32× 32
DeconvBlock 64 filters, 3× 3 kernels, pad 1 64× 32× 32
DeconvBlock 64 filters, 3× 3 kernels, pad 1 64× 32× 32
DeconvBlock h 16 filters, 3× 3 kernels, pad 1 16× 32× 32
Deconv2d 3 filters, 3× 3 kernels, pad 1 3× 32× 32

Table A.3. – General structure of D.

Layer Details Output shape

Input Semantic features zc 128× 8× 8
BatchNormalization2d 128× 8× 8
LeakyReLU Negative slope 0.1 128× 8× 8
Global Average Pooling f 128 units 128

Linear 10 units, primary output, takes f as input 10
Linear 10 units, stability output, takes f as input 10

Table A.4. – General structure of C.

A.1.1.3 Building blocks

Layer Details Output shape

Input Preprocessed image x C ×H ×W

BatchNormalization2d C ×H ×W
LeakyReLU Negative slope 0.1 C ×H ×W
Conv2d F filters, 3× 3 kernels, pad 1, stride s F × C

s
× H

s

BatchNormalization2d F × C
s
× H

s

LeakyReLU Negative slope 0.1 F × C
s
× H

s

Conv2d r F filters, 3× 3 kernels, pad 1 F × C
s
× H

s

Conv2d x (replaces) iff F 6= C, F filters, 1× 1 kernels, stride s, takes x F × C
s
× H

s

BatchNormalization2d x (replaces) iff F 6= C, takes x, only for MixMatch F × C
s
× H

s

Fusion x + r F × C
s
× H

s

Table A.5. – WideResBlock of F filters ands stride s.

122 appendix

Layer Details Output shape

Input Preprocessed image x C ×H ×W

BatchNormalization2d C ×H ×W
LeakyReLU Negative slope 0.1 C ×H ×W
Deconv2d F filters, 3× 3 kernels, pad 1, stride s F × sC × sH

Table A.6. – DeconvBlock of F filters ands stride s.

A.1.2 Experimental details for SciMix experiments

We first detail how we obtain experimental results presented in Section 2.4.
All experiments were run using the Pytorch framework. Afterwards, we present
additional examples of hybrids on SVHN and pseudo-code of SciMix’s main
components.

A.1.2.1 Datasets

CIFAR10 dataset The CIFAR10 dataset (Krizhevsky and Hinton 2009) is a
subset of the TinyImages dataset comprised 32× 32 RGB images from ten classes:
airplane, car, truck, boat, bird, cat, deer, dog, frog and horse. Available samples
are split between 50000 training samples and 10000 test samples.

SVHN dataset The SVHN dataset (Netzer et al. 2011) is comprised of 32× 32

RGB images of street numbers (divided along ten classes: one per digit). Available
samples are split between 73257 training samples and 26032 test images.

Samples are randomly flipped horizontally (only for CIFAR10) and shifted by
up to 4 pixels both horizontally and vertically with reflect padding. The resulting
augmented samples are then standardized channel-wise according to train set
statistics. No holdout validation set is kept for either dataset but hyper-parameters
are mostly directly adapted from (Robert et al. 2018; Sohn et al. 2020).

A.1.2.2 Generator training

We train the generator architecture following the procedure described in Sec-
tion 2.4.1, using a Mean Teacher loss LS to train the classifier of the model. For
each setting (eg CIFAR10 100 labels) we train one seeded generator to be used for
data augmentation experiments. Most hyperparameters are shared across experi-
mental settings. When parameters differ across settings, we detail the 5 values as
CIFAR 10 100/250/500 / SVHN 60/100.

A.1 experimental details 123

The autoencoder modules Ec, Er, C,D and G are trained on a single gpu using
a SGD optimizer with weight decay 5e− 4, Nesterov momentum 0.9 and cosine
learning rate (base 0.1/0.1/0.1/0.2/0.2 learning rate) for 300 epochs over the
unlabeled samples (the rate is set to fully decrease over 350 epochs), consistency
targets are optimized with weight λcons = 300, with batches of 60 labeled samples
and 196 unlabeled samples (similarly to (Robert et al. 2018)).

Consistency is actually optimized following the dual head trick used in (Tar-
vainen and Valpola 2017) where the classifier outputs two different decision
ypreds and ycons. ycons is optimized to reconstruct the EMA target’s yEMA

preds (weight
λcons = 300), and ypreds is tied to reconstruct ycons (weight λlogitdist = 0.01). This
limits the need for precise scheduling of consistency weights by having a “buffer”
prediction head. The EMA model is updated with decay 0.97 (following a linear
start for early iterations).

To simplify notations in the main paper, loss coefficients are kept implicit. In
this section, we will simply write out the corresponding hyperparameters λterm
(eg λS for LS). For all main experiments - excluding model analysis experiments
- in the paper, the hyperparameters considered are the same: λrecons = 1, λadv,r =

0.5, λS = 1, λ+hyb,class = 0.5, λ+hyb,cont = 0.5, λ−hyb,class = 0.05, λ−hyb,cont = 0.05, λadv,h =

0.5. More precisely, we only start optimizing L+
hyb,cont and L−hyb,cont after epoch 50

since residual networks (like Er) tend to start close to the identity function.

A.1.2.3 Training a classifier with SciMix data augmentation

We train the generator architecture following the procedure described in Sec-
tion 2.4.2 to train a new classifier model f from scratch. Using a pretrained gener-
ator (one per setting), we generate hybrids to train a new model. Accuracy results
are obtained from an EMA average of the classifier model following (Berthelot
et al. 2019). Most hyperparameters are shared across experimental settings. When
parameters differ across settings, we detail the 5 values as CIFAR10 100/250/500

/ SVHN 60/100.

Mean Teacher The classifier f is trained on a single gpu using a SGD optimizer
with weight decay 5e− 4, Nesterov momentum 0.9 and cosine learning rate (base
0.1/0.1/0.1/0.2/0.2 learning rate) for 300 epochs over the unlabeled samples (the
rate is set to fully decrease over 350 epochs) during training, consistency targets
are optimized with weight λcons = 300, with batches of 60 labeled samples and
196 unlabeled samples (similarly to (Robert et al. 2018)).

Consistency is actually optimized following the dual head trick used in (Tar-
vainen and Valpola 2017) where the classifier outputs two different decision
ypreds and ycons. ycons is optimized to reconstruct the EMA target’s yEMA

preds (weight

124 appendix

λcons = 300), and ypreds is tied to reconstruct ycons (weight λlogitdist = 0.01). This
limits the need for precise scheduling of consistency weights by having a “buffer”
prediction head. The EMA model is updated with decay 0.97 (following a linear
start for early iterations).

We keep the coefficient of the hybridizing loss Lcontradict = 1, and only apply it
from epoch 50 to 150 as per standard data augmentation practices. To stabilize
the estimation of Lcontradict, it is computed across three batches of hybrids (in the
same spirit as recent advances in data augmentation such as Batch Augment).

FixMatch The classifier f is trained on a single gpu using a SGD optimizer
with weight decay 5e− 4, Nesterov momentum 0.9 and cosine learning rate (base
0.015/0.015/0.015/0.03/0.03 learning rate) for 1000 epochs over the unlabeled
samples (the rate is set to fully decrease over 1050 epochs) during training with
batches of 32 labeled samples and 224 unlabeled samples (similarly to (Sohn et al.
2020)). Pseudolabel targets are optimized with weight λu = 1.

We keep the coefficient of the hybridizing loss Lcontradict = 1, and only apply it
from epoch 100 to 200 as per standard data augmentation practices. To stabilize
the estimation of Lcontradict, it is computed across three batches of hybrids (in the
same spirit as recent advances in data augmentation such as Batch Augment).

A.1.2.4 Architectures

We operate on a standard WideResNet-28-2 (Zagoruyko and Komodakis 2016)
for our classifiers (both f and Ec◦C). Er follows the same architecture as Ec. Note
that we keep the same architecture for both the generator and trained classifier
to avoid any interference due to different function classes engendered by the
models. The skeleton of G follows a StyleGanv2 (Karras et al. 2020) architecture.
Hyperparameters and optimizers were generally taken to follow settings reported
in the base methods’ original papers (Tarvainen and Valpola 2017; Berthelot et al.
2019).

More precisely, we outline in Table A.7, Table A.8, Table A.9, Table A.10 and
Table A.11 the detailed make up of the neural networks used in this paper.

Layer Details Output shape

Input Semantic features zc 128× 8× 8
Linear 10 units, primary output, takes zc as input 10
Linear 10 units, stability output, takes zc as input 10

Table A.7. – General structure of C.

A.1 experimental details 125

Layer Details Output shape

Input Preprocessed image x 3× 32× 32
Conv2d 16 filters, 3× 3 kernels, pad 1 16× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 64 filters, 3× 3 kernels, pad 1, stride 2 64× 16× 16
WideResBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
WideResBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
WideResBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
WideResBlock 128 filters, 3× 3 kernels, pad 1, stride 2 128× 8× 8
WideResBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8
WideResBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8
WideResBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8
BatchNormalization2d 128× 8× 8
LeakyReLU Negative slope 0.1 128× 8× 8
Global Average Pooling f 128 units 128

Table A.8. – General structure of Ec.

Layer Details Output shape

Input Preprocessed image x 3× 32× 32
Conv2d 16 filters, 3× 3 kernels, pad 1 16× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
WideResBlock 64 filters, 3× 3 kernels, pad 1, stride 2 64× 16× 16
WideResBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
WideResBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
WideResBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
WideResBlock 128 filters, 3× 3 kernels, pad 1, stride 2 128× 8× 8
WideResBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8
WideResBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8
WideResBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8
Conv2d 8 filters, 1× 1 kernels, pad 0 8× 8× 8

Table A.9. – General structure of Er.

Layer Details Output shape

Input Non-semantic features zr, (Style weights zc) 8× 8× 8, 128
StyleResBlock 32 filters, 3× 3 kernels, pad 1 32× 8× 8
StyleResBlock 64 filters, 3× 3 kernels, pad 1 64× 8× 8
StyleResBlock 128 filters, 3× 3 kernels, pad 1 128× 8× 8
StyleResBlock 64 filters, 3× 3 kernels, pad 1 64× 16× 16
StyleResBlock 32 filters, 3× 3 kernels, pad 1 32× 32× 32
Deconv2d 3 filters, 3× 3 kernels, pad 1 3× 32× 32

Table A.10. – General structure of G.

126 appendix

Layer Details Output shape

Input Preprocessed image x 3× 32× 32
Conv2d 32 filters, 3× 3 kernels, pad 1 32× 16× 16
ResBlock 64 filters, 3× 3 kernels, pad 1 64× 8× 8
ResBlock 128 filters, 3× 3 kernels, pad 1 128× 4× 4
ResBlock 32 filters, 3× 3 kernels, pad 1 256× 2× 2
Linear 256 units 256
Linear 1 units 1

Table A.11. – General structure of D.

A.1.3 Experimental details for MixMo experiments

A.1.3.1 Implementation details

We first used the popular image classification datasets CIFAR-100 and CIFAR-
10 (Krizhevsky and Hinton 2009). They contain 60k 32× 32 natural and colored
images in respectively 100 classes and 10 classes, with 50k training images and
10k test images. At a larger scale, we study Tiny ImageNet (Chrabaszcz et al.
2017), a downsampled version of ImageNet (J. Deng et al. 2009). It contains 200

different categories, 100k 64 × 64 training images (i.e. 500 images per class) and
10k test images.

Our code was adapted from the official MIMO (Havasi et al. 2021) implemen-
tation 1. For CIFAR, we re-use the hyper-parameters from MIMO (Havasi et al.
2021). The optimizer is SGD with learning rate of 0.1

b
× batch-size

128
, batch size 64, lin-

ear warmup over 1 epoch, decay rate 0.1 at steps {100, 200, 225}, l2 regularization
3e-4. We follow standard MSDA practices (Ashukha et al. 2020; J.-H. Kim et al.
2020; Y. Yang and Soatto 2019) and set the maximum number of epochs to 300.
For Tiny ImageNet, we adapt PreActResNet-18-w, with w ∈ {1, 2, 3} times more
filters. We re-use the hyper-parameters from Puzzle-Mix (J.-H. Kim et al. 2020).
The optimizer is SGD with learning rate of 0.2

b
, batch size 100, decay rate 0.1 at

steps {600, 900}, 1200 epochs maximum, weight decay 1e-4. Our experiments ran
on a single NVIDIA 12Go-TITAN X Pascal GPU. All results without a † were
obtained with these training configurations. We will soon release our code and
pre-trained models to facilitate reproducibility.

Batch repetition increases performances at the cost of longer training, which
may be discouraging for some practitioners. Thus in addition to b = 4 as in MIMO
(havasi2020raining), we often consider the quicker b = 2. Note that most of our
concurrent approaches also increase training time: DE (Lakshminarayanan et al.

1. https://github.com/google/edward2/

https://github.com/google/edward2/

A.1 experimental details 127

2017) via several independent trainings, Puzzle-Mix (J.-H. Kim et al. 2020) via
saliency detection (≈ ×2), GradAug (T. Yang et al. 2020) via multiple subnetworks
predictions (≈ ×3) or Mixup BA (Hoffer et al. 2020) via 10 batch augmentations
(≈ ×7 with our hardware on a single GPU).

MixMo operates in the features space and is complementary with pixels aug-
mentations, i.e. cropping, AugMix. The standard vanilla pixels data augmentation
(He et al. 2016a) consists of 4 pixels padding, random cropping and horizontal
flipping. When combined with CutMix, notably to benefit from multilabel smooth-
ing, the input may be of the form: (mx(xi, xk, λ), xj), where xk is randomly chosen
in the whole dataset, and not only inside the current batch 2. Moreover,MCut-MixMo

modifies by 1M the visible part from mask 1m (of area λ). We thus modify targets
accordingly: (λ′yi + (1− λ′)yk, yj) where λ′ =

∑
1m�1M∑

1M
. To fully benefit from b, we

force the repeated xi to remain predominant in its b appearances: i.e., we swap xi
and xk if λ′ < 0.5. We see CutMix as a perturbation on the main batch sample.

Distributional uncertainty measures help when there is a mismatch between
train and test data distributions. Thus (Hendrycks and T. Dietterich 2019) intro-
duced CIFAR-100-c on which AugMix performs best. AugMix sums the pixels
from a chain of several augmentations and is complementary to our approach in
features. We use default parameters 3: the severity is set 3, the mixture’s width to
3 and the mixture’s depth to 4. We exclude operations in AugMix which overlap
with CIFAR-100-c corruptions: thus, [equalize, posterize, rotate, solarize, shear_x,
shear_y, translate_x, translate_y] remain. We disabled the Jensen-Shannon Di-
vergence loss between predictions for the clean image and for the same image
AugMix augmented: that would otherwise triple the training time. For compari-
son of out-of-domain uncertainty estimations, we report NLL as in (Havasi et al.
2021): indeed, the recommendation of (Ashukha et al. 2020) to apply TS only
stands for in-domain test set.

A.1.3.2 Evaluation setting and metrics

We reproduce the experimental setting from CutMix (Y. Yang and Soatto 2019),
Manifold Mixup (Verma et al. 2019a) and other works such as the recent state-
of-the-art ResizeMix (Qin et al. 2020): in absence of a validation dataset, results
are reported at the epoch that yields the best test accuracy. For fair comparison,
we apply this early stopping for all concurrent approaches. Nonetheless, for the
sake of completeness, Table A.12 shows results without early stopping on the
main experiment (CIFAR with a standard WRN-28-10). We recover the exact same
ranking among methods as in our main Table 3.1.

2. Following https://github.com/ildoonet/cutmix
3. https://github.com/google-research/augmix/blob/master/cifar.py

https://github.com/ildoonet/cutmix
https://github.com/google-research/augmix/blob/master/cifar.py

128 appendix

Dataset CIFAR-100 CIFAR-10

Approach Time
Tr./Inf.

Top1

%, ↑
Top5

%, ↑
NLLc
10−2, ↓

NLL
10−2, ↓

ECE
10−2, ↓

Top1

%, ↑
NLLc
10−2, ↓

NLL
10−2, ↓

ECE
10−2, ↓

Vanilla

1/1

81.47 95.57 73.6 76.2 6.47 96.31 12.5 14.1 1.95

Mixup 83.15 95.75 66.3 67.3 1.62 97.00 11.3 11.5 0.97

Hard PatchUp† 83.87 - - 66.0 - 97.47 - 11.4 -
CutMix 83.74 96.18 65.4 66.1 4.95 97.21 9.7 10.8 1.51

Puzzle-Mix† 2/1 84.05 96.08 66.9 68.1 2.76 - - - -

GradAug†
3/1

83.98 96.28 - - - - - - -
+ CutMix† 85.25 96.85 - - - - - - -

Mixup BA† 7/1 84.30 - - - - 97.80 - - -

DE (2 Nets)
2/2

83.15 96.30 66.0 67.2 5.15 96.58 11.1 12.2 1.82

+ CutMix 85.46 96.90 57.4 57.5 3.62 97.51 8.7 9.0 1.16

MIMO (M = 2)

2/1

82.04 95.75 69.1 72.4 6.32 96.33 12.1 13.4 1.89

Linear-MixMo 81.88 95.97 67.8 70.3 6.20 96.55 11.4 12.5 1.67

+ CutMix 84.55 96.95 57.4 57.5 2.54 97.34 8.9 9.3 1.34

Cut-MixMo 84.07 96.97 56.6 57.9 4.19 97.26 8.7 9.1 0.98

+ CutMix 85.17 97.28 54.4 54.5 2.13 97.33 8.5 8.6 0.88

MIMO (M = 2)

4/1

82.74 95.90 67.0 74.0 7.56 96.66 11.5 13.6 1.98

MIMO† (M = 3) 82.0 - - 69.0 2.2 96.4 - 12.3 1.0

Linear-MixMo 82.53 96.08 65.8 68.5 6.64 96.78 10.8 11.8 1.80

+ CutMix 85.24 96.97 56.3 56.4 3.53 97.53 8.8 8.6 1.19

Cut-MixMo 85.32 97.12 53.6 54.8 4.53 97.42 8.1 8.4 1.15

+ CutMix 85.59 97.33 53.2 53.3 1.95 97.70 8.0 8.2 0.98

Table A.12. – WRN-28-10 on CIFAR without early stopping.

A.1 experimental details 129

Following recent works in ensembling (Chirkova et al. 2020; Lobacheva et al.
2020; Rame and Cord 2021), we have mainly focused on the NLLc metric for
in-domain test set. Indeed, (Ashukha et al. 2020) have shown that “comparison
of [. . .] ensembling methods without temperature scaling (TS) (Guo et al. 2017)
might not provide a fair ranking”. Nevertheless in Table Table A.12, we found
that Negative Log-Likelihood (NLL) (without TS) leads to similar conclusions as
NLLc (after TS).

The TS even mostly seems to benefit to poorly calibrated models, as shown by
the calibration criteria Expected Calibration Error (ECE, ↓, 15 bins). ECE measures
how confidences match accuracies. MixMo attenuates over-confidence in large
networks and thus reduces ECE. In our case, combining ensembling and data
augmentation improves calibration (Wen et al. 2021). Note that the appropriate
measure of calibration is still under debate (Nixon et al. 2019). Notably, (Ashukha
et al. 2020) have also stated that, despite being widely used, ECE is biased and un-
reliable: we can confirm that we found ECE to be dependant to hyper-parameters
and implementation details. Due to space constraints and these pitfalls, we have
not included this controversial metric in the main paper.

A.1.4 Experimental details for MixShare experiments

The code for this work was directly adapted from the official MixMo (Rame
et al. 2021) codebase: https://github.com/alexrame/mixmo-pytorch.

We followed similar experimental settings on CIFAR 100 as MixMo (Rame et al.
2021) and present here the adapted setting description:

We used standard architecture WRN-28-w, with a focus on w = 2. We re-use
the hyper-parameters configuration from MIMO (Havasi et al. 2021) with batch
repetition 2 (bar2). The optimizer is SGD with learning rate of 0.1

b
× batch-size

128
,

batch size 64, linear warmup over 1 epoch, decay rate 0.1 at steps {75, 150, 225},
l2 regularization 3e-4. We follow standard MSDA practices (Y. Yang and Soatto
2019) and set the maximum number of epochs to 300. Our experiments ran on a
single NVIDIA 12Go-TITAN X Pascal GPU.

All experiments were run three times on three fixed seeds from the same version
of the codebase. Qualitative results presented in Figure 3.12 and Figure 3.14 are
obtained by visualizing results for the first set of random seeds. Quantitative
results presented in Table 3.6 are given in the form of mean± std over the three
runs.

https://github.com/alexrame/mixmo-pytorch

130 appendix

A.1.5 Experimental details for MixViT experiments

We give here a detailed inventory of hyperparameters and training procedure
used in this paper. For contractual reasons, it is not possible to provide the code-
base used in this paper, but we provide indications below.

Our experiments were run through a codebase implemented using the PyTorch
(Paszke et al. 2019) library. Our codebase built upon the public official implemen-
tation of MixMo (https://github.com/alexrame/mixmo-pytorch) and adapted
components from multiple public codebases:

• We took ConViT building blocks from
github.com/facebookresearch/convit/blob/main/convit.py

• We took CaiT building blocks from
github.com/facebookresearch/deit/blob/main/cait_models.py

• We took our AutoAugment implementation from
github.com/DeepVoltaire/AutoAugment

• We took a number of primitive functions from the timm library
github.com/rwightman/pytorch-image-models

The MixMo codebase should provide everything necessary to train multi-input
multi-output networks. The main adaptation that must be made is the addition
of the transformer networks and specific MixViT routines in the transformer
networks.

All our experiments were run three times on three fixed seeds from the same
codebase. Quantitative results are given in the form of mean± std over the three
runs.

Computational resources We used approximately 5000 GPU hours in this work
on a nation-wide cluster, with access to the cluster granted for a set number of
GPU hours on the basis of a grant application. The cluster provides V100 GPUs
with Intel Cascade Lake 6248 CPUs. Most experiments ran on a single GPU, with
the ImageNet-100 being run on 4 GPUs at once.

FLOPS estimations We provide an estimate of the relative number of FLOPS
used by different methods in Table 4.1 and Table 4.6. This number is traditionally
computed for pytorch models on a theoretical basis by standardized libraries
like ptflops or fvcore. These libraries however do not support custom attention
layers and are therefore un-usable for our purposes.

https://github.com/alexrame/mixmo-pytorch
github.com/facebookresearch/convit/blob/main/convit.py
github.com/facebookresearch/deit/blob/main/cait_models.py
github.com/DeepVoltaire/AutoAugment
github.com/rwightman/pytorch-image-models

A.1 experimental details 131

Fortunately, estimating the ratio of FLOPS is straightforward in Table 4.1: the
additional overhead of MIMO and MixMo is known to be approximately 1×
on CNNs (which also holds on transformers) and separate inference just leads
to inferring twice, hence the 2× ratio. We use the upper bound derived in Ap-
pendix Section A.7.3 for MixViT and its variants that follow similar computational
flows. For the last line of Table 4.6, we give a rough approximation derived by
considering the impact of the larger number of tokens on the attention layers.

Corrected CutMix Scheme An issue that arises when considering a CutMix
scheme to mix patch tokens is that CutMix masks have binary values for each pixel
value whereas a patch contains multiple patches. It stands to reason therefore that
we will often have situations where the patch contains both masked pixels and
unmasked pixels. While the natural solution is simply to take a continuous mask
value by averaging over the patch, we have seen in Section 4.3.1 that subnetworks
have trouble sharing tokens.

To address this, we correct the CutMix scheme by using a majority vote within
the patch: if most pixels are masked, then we mask the patch and vice-versa. Ties
(where we have as many masked and unmasked pixels) are broken by choosing
randomly for one set of inputs which input will be assigned the problematic
patches. It worth noting that this scheme is for all intents and purposes the
MixToken (Jiang et al. 2021) scheme, with some practical differences in the sort
of mask generated.

Architectural details We used a modified variant of the ConViT (D’Ascoli et al.
2021) architecture for our experiments hidden dimension 384, 12 attention heads,
5 GPSA blocks and 2 SA Blocks similarly to dytox (Douillard et al. 2022). Patch
size was taken to be 4 × 4 on CIFAR, 8 × 8 on TinyImageNet and 16 × 16 on
ImageNet-100. It is worth noting GPSA blocks should in theory have a square
number of heads to exactly emulate convolutional kernels at initialization, but we
did not find this to be an issue experimentally.

We took the CaiT models directly from the seminal paper (Touvron et al. 2021b)
and used the same patch size as for our ConViT model (which also coincides with
CaiT’s default settings).

Training details In general, we train our models over 150 epochs using the
AdamW optimizer with a learning rate of 0.001, weight decay of 0.05 and linear
warmup over 10% of training. We follow a step decay schedule with decay rate
0.1 at steps {125, 140}

We used a base batch size B of 128 on CIFAR and TinyImageNet and 1048 on
ImageNet. The effective batch size b used was dependant on memory constraints,

132 appendix

and the learning rate was scaled accordingly with a ratio
√

b
B

following heuristics
derived from (Granziol et al. 2020).

Following DeiT, we train with a lot of regularization. We use 0.05 weight decay,
0.05 stochastic depth for CaiT models, 0.1 label smoothing, 3 Batch augmentations.
We use the CIFAR configuration of AutoAugment for CIFAR and TinyImageNet,
and the ImageNet configuration for ImageNet-100. We also apply CutMix (Y.
Yang and Soatto 2019) and MixUp (H. Zhang et al. 2018) but find applying them
simultaneously instead of alternatively yields better result and is more stable.
Practically speaking, we draw CutMix mask with α = 1.0 but instead of the mask
having binary values (0 or 1), it has continuous values like a α = 0.8 MixUp
scheme.

Similarly to MixMo, we progressively adapt the input mixing scheme to reflect
the mechanism used at inference. In the MixMo case, this means using a summing
scheme instead of CutMix with a probability p that linearly grows over the last
twelfth of training. In the MixViT case, we use masks that take all tokens from
one of the inputs with a probability p that linearly grows over the last twelfth of
training. We directly inherited the mechanism from MixMo and did not tune the
point at which we start increasing the probability p linearly.

Choice of hyperparameters We tuned the parameter α ∈ {0.25, 0.5, 1.0, 2.0}
used to draw MixViT’s input mixing CutMix mask on CIFAR-100 and kept it
fixed for all other experiments. α = 0.5 was chosen as it was more stable and
not necessarily for optimality purposes. We did not tune the root parameter used
for loss balancing in MixMo and instead discarded it early on in our preliminary
experiments (equivalent to choosing root r = 1).

While cosine decay is standard in the transformer literature, we failed to con-
verge with it on CIFAR-100 preliminary experiments. As we wished to ensure
our single-input single-output backbone had converged for fair comparison with
MixViT, we adopted a step decay schedule and roughly set decay steps by consid-
ering the training loss on CIFAR-100. Similarly, we train on 150 epochs instead of
100 because our models clearly failed to converge in 100 epochs on CIFAR-100.

We largely inherited all other parameters(patch sizes, batch sizes, 0.001 learning
rate, 3 batch augmentations, 0.05 weight decay, AdamW optimizer, 0.05 stochastic
depth dropout on CaiT, 0.1 label smoothing, CutMix α = 1.0, MixUp α = 0.8,
RandErase and AutoAugment configurations) from the literature (Touvron et al.
2021a; S. H. Lee et al. 2021). We did double weight decay and stochastic depth
on TinyImageNet and ImageNet-100 for MixViT to avoid overfitting and checked
the performance of the backbone with those parameters, but did not look for an
optimal value.

A.2 pseudo -code algorithms 133

A.2 Pseudo-code algorithms

We provide here pseudo code for important components of SAMOSA in Sec-
tion A.2.1, SciMix in Section A.2.2, MixMo in Section A.2.3, MixShare in Sec-
tion A.2.4 and MixViT in Section A.2.5.

A.2.1 Pseudo-code for the SAMOSA framework

Algorithm A.3 (and Figure 2.10) presents how hybrids can be generated from
the SAMOSA auto-encoding framework. We then propose a general application
of SAMOSA hybrids to the Mean Teacher framework in Algorithm A.1, and a
closer integration with the MixMatch framework in Algorithm A.2

Algorithm A.1 Skeleton of SAMOSA integration with the Mean Teacher
Framework. Additions to the Mean Teacher Framework are in blue.
Require: DatasetD = Dl∪Dl, Number of complete training cycles ncycles, Number

of epochs in a cycle nepochs.
for cycle in 1. . . n_cycles do
Dl,0 = Dl
for epoch in 1. . . n_epochs do

for B = Bl ∪ Bu in Batch(D) do
Compute LSAMOSA(B) = L0,MT (B)+ΩSAMOSA(B)
Optimization step for LSAMOSA(B)

end for
end for
for epoch in 1. . . 10 do
Dh = ∅
for Bl,Bu in zip(Batch(Dl,0), Batch(Du)) do
O = Hybridize(Bl,Bu)
Dh = Dh ∪ O

end for
end for
Dl = Dl,0 ∪ Dh

end for

134 appendix

Algorithm A.2 Skeleton of SAMOSA integration with the MixMatch Frame-
work. Additions to the MixMatch Framework are in blue.
Require: Dataset D = Dl ∪ Dl, Number of epochs during training nepochs
Dl,0 = Dl
for epoch in 1. . . n_epochs do

for B = Bl ∪ Bu in Batch(D) do
Xl,Yl := Bl
Xu := Bu
Estimate pseudo-targets Yu as per (Berthelot et al. 2019)
W := Concat({(xl, yl)}, {xu, yu})
W̃ := Shuffle(W)
p ∼ Random(0, 1)
if p < 1

5
then

B̃ = Hybridize(W , W̃)
else
B̃ = MixUpbiased(W , W̃)

end if
Compute LSAMOSA(B̃) = L0,Mix(B̃)+ΩSAMOSA(B̃)
Optimization step for LSAMOSA(B̃)

end for
end for

Algorithm A.3 Algorithm for the hybridization procedure.
Require: Batch B = Bl ∪ Bu, Modules Ec, Er, C,D

function Hybridize(Bl,Bu)
O = ∅
for (x(1), y(1)), x(2) ∈ zip(Bl,Bu) do
z
(1)
c = Ec(x

(1))

z
(2)
r = Er(x

(2))
xh = D(x(1), x(2))
if argmax(C(Ec(xh))) == y(1) then
xh = x(1)

end if
O = O ∪ {(xh, y(1))}

end for
return O

end function

A.2 pseudo -code algorithms 135

A.2.2 Pseudo-code for the SciMix framework

We provide here an outline in Pseudo Code of the SciMix framework. Algo-
rithm A.4 shows the hybridization procedure while Algorithm A.5 shows how
the data augmentation is leveraged to improve upon pre-existing frameworks.

Algorithm A.4 Algorithm for the hybridization procedure.

Require: Batch B = Bl ∪ Bu, Modules Ec, Er, G
function Hybridize(Bl,Bu)
O = ∅
for (x(1), y(1)), x(2) ∈ zip(Bl,Bu) do
z
(1)
c = Ec(x

(1))

z
(2)
r = Er(x

(2))

xh = G(z
(1)
c , z

(2)
r)

O = O ∪ {(xh, y(1))}
end for
return O

end function

Algorithm A.5 Training a model following method X with the additional hy-
bridization loss.
Require: Dataset D = Dl ∪ Dl, Number of epochs nepochs.

for epoch in 1. . . n_epochs do
for B = Bl ∪ Bu in Batch(D) do

Compute method X’s batch BX = PreprocessX(B)
Compute hybrids Bh = Hybridize(B, π(B))
Compute LSciMix(B) = LX(BX) + Lcontradict(Bh)
Optimization step for LSciMix(B)

end for
end for

136 appendix

A.2.3 Pseudo-code for the MixMo framework

Algorithm A.6 Procedure for Cut-MixMo with M = 2 subnetworks

Require: Dataset D = {xi, yi}|D|i=1, probability p of applying binary mixing via
patches, reweighting coefficient r, concentration parameter α, batch size bs,
batch repetition b, optimizer g , learning rate lr. Parameters: first convolutions
{c0, c1}, dense layers {d0, d1} and core network C, randomly initialized.
for epoch from 1 to #epochs do

for step from 1 to |D|×b
bs

do
Randomly select bs

b
samples

Duplicate these samples b times to create batch {xi, yi}i∈B of size bs
Randomly shuffle B with π to create {(xi, xj), (yi, yj)}i∈B,j=π(i)
Define the mixing mechanism at the batch level
if epoch > 11

12
× #epochs then

pe = p#epochs−epoch
1
12
×#epochs

else
pe = p

end if
Sample 1binary ∼ Ber(pe) from Bernoulli, Sample 1outside ∼ Ber(0.5)
Forward and loss
for i ∈ B do

Sample κi ∼ Beta(α, α), l0i = c0(xi) and l1i = c1(xπ(i))
if 1binary then

Sample 1M a rectangular binary mask with average κi
if 1outside then
1M ← 1− 1M, κi ← 1− κi

end if
li = 2 [1M�l0 + (1− 1M)�l1]

else
li = 2 [κil0 + (1− κi)l1]

end if
Extract features fi ← C(li) from core network
Compute predictions ŷ0i ← d0(fi) and ŷ1i ← d1(fi)

Compute weights wi ← 2
κ
1/r
i

κ
1/r
i +(1−κi)1/r

Compute loss Li ← wiLCE (yi, ŷ
0
i) + (2− wi)LCE

(
yπ(i), ŷ

1
i

)
end for
Aggregate loss LMixMo ← 1

|B|
∑
Li

c0, c1, C, d0, d1 ← g
(
gradient = ∇LMixMo, learning rate = lr

b

)
end for

end for

A.2 pseudo -code algorithms 137

A.2.4 Pseudo-code for the MixShare framework

Algorithm A.7 Procedure for MixShare training with M = 2 subnetworks

Require: Dataset D = {xi, yi}|D|i=1, reweighting coefficient r, concentration pa-
rameter α, batch size bs, batch repetition b, optimizer g , learning rate lr. Pa-
rameters: first convolutions {c0, c1} (initialized to the same value), dense
layers {d0, d1} and core network C, randomly initialized.
for epoch from 1 to #epochs do

for step from 1 to |D|×b
bs

do
Prepare repeated batch B
Define the mixing mechanism at the batch level
Sample 1outside ∼ Ber(0.5)
Forward and loss
for i ∈ B do

Sample κi ∼ Beta(α, α), l0i = c0(xi) and l1i = c1(xπ(i))
Sample 1M a rectangular binary mask with average κi
if 1outside then

1M ← 1− 1M, κi ← 1− κi
end if
li = 2 [1M�l0 + (1− 1M)�l1]
Extract features fi ← C(li) from core network
Unmix and predict
Compute f ′0 ← GlobalAveragePool(1M � fi)
Compute f ′1 ← GlobalAveragePool((1− 1M)� fi)
Compute predictions ŷ0i ← d0(f

′
0) and ŷ1i ← d1(f

′
1)

Compute weights wi ← 2
κ
1/r
i

κ
1/r
i +(1−κi)1/r

Compute loss Li ← wiLCE (yi, ŷ
0
i) + (2− wi)LCE

(
yπ(i), ŷ

1
i

)
end for
Aggregate loss LMixShare ← 1

|B|
∑
Li

c0, c1, C, d0, d1 ← g
(
gradient = ∇LMixMo, learning rate = lr

b

)
end for

end for

138 appendix

A.2.5 Pseudo-code for the MixViT framework

We provide in Algorithm A.8 and Algorithm A.9 the training and inference
procedure for MixViT. PatchEmbed simply embeds the inputs into patch rep-
resentations as is standard in transformer frameworks, MixWithMasks simply
mixes the inputs following the masks given, AddPosEmbed just adds the posi-
tional embeddings to the mixed tokens. SourceAttribution implements Equa-
tion 4.5 or Equation 4.6 depending on which variant of MixViT is considered.
SourceAttributionTiled is similar, except it creates M sets of tokens, each equiv-
alent to SourceAttribution(x,Ti) with Ti being made up null masks 0N except
for the one at position i being a unit mask 1N .

Algorithm A.8 Mixvit forward at train-
ing.
Require: Inputs xi, MasksMi

Self-Attention blocks SAk
Class-Attention blocks CAk
Classification token c0
Dense classification layers di
function Forward

Format the input
{xi} := {PatchEmbed(xi)}
x := MixWithMasks({xi},{Mi})
x := AddPosEmbed(xi)
Standard forward evaluations
for k=0,...,L-1 do

x := SAk(x)
end for
Attribute sources to patches
x := SourceAttribution(x,{Mi})
Standard class-attention
x := Concat([c0;x])
for k=0,1 do

x := CAk(x)
end for
Predict from features
c0 := x[0]
{pi} := di(c0)
return {pi}

end function

Algorithm A.9 MixViT forward at infer-
ence.
Require: Inputs xi, MasksMi

Self-Attention blocks SAk
Class-Attention blocks CAk
Classification token c0
Dense classification layers di
function Forward

Format the input
{xi} := {PatchEmbed(xi)}
No mixing needed !
x := AddPosEmbed(xi)
Standard forward evaluations
for k=0,...,L-1 do

x := SAk(x)
end for
Create sets of sourced tokens
{xi} := SourceAttributionTiled(x)
Standard class-attention
{xi} := {Concat([c0;xi])}
for k=0,1 do

{xi} := {CAk(xi)}
end for
Predict from features
{c0,i} := {xi[0]}
{pi} := {di(c0,i)}
return {pi}

end function

A.3 additional experiments and material for samosa 139

A.3 Additional experiments and material for SAMOSA

We provide the following additional experiments and material for MixShare:

• In Section A.3.1, we show the sort of hybrids SAMOSA generates with
MixMatch as backbone.

• In Section A.3.2, we look into how well SAMOSA separates components in
hybrids.

• In Section A.3.3, discusses how much semantic information remains in ded-
icated “non-semantic” latent zr.

A.3.1 Qualitative Study: Hybrids with MixMatch as a back-
bone

(a) SVHN (b) CIFAR10

Figure A.1. – Examples of SAMOSA Hybrids with a MixMatch backbone
between true samples x1 and x2. Results for the Mean-Teacher
SAMOSA trained on SVHN (100 labels) and CIFAR10 (1000 labels).
(Line 2 shows hybrids with the semantic content of Line 1 and non-
semantic content of Line 4. Line 3 shows the opposite.)

We show in Figure A.1 hybrids generated by the method when combined Mix-
Match. Interestingly, the MixMatch based variant is more aggressive in combining
samples (the background in particular) while still preserving the outline of the
relevant semantic content. This can be attributed to interplay between the MixUp

140 appendix

procedure and our hybridization procedure, and suggests there is indeed comple-
mentarity between our method and other mixing augmentation methods.

To verify these intuitions, we investigate this from a more quantitative point of
view.

A.3.2 Case Study: Component Separation

We now investigate the composition of generated hybrids on reduced settings
(MT Base) to verify the model’s ability to generate hybrids that correctly inherit
their parent’s semantic and non-semantic components. To this end, at various
points during training, we generate a study dataset of hybrid samples DH . The
dataset is generated by mixing every sample in the labeled set with ten random
unlabeled samples such that #DH = 10×#Dl.

Inheritance of semantic and non-semantic features We start by assessing how
well generated hybrids inherit semantic/non-semantic features with respect to our
model’s learned projections. The quality of the inherited semantic component can
be approximated straightforwardly by considering the accuracy sc of our trained
classifier on hybrids (ie, checking how many hybrids are correctly classified as
belonging to the same class as their semantic parent). As we do not have access
to such a clear criterion for the non-semantic component, we use a proxy metric
in the non-semantic latent space. We consider the distance dl := ‖zhr − z1r‖22 (resp.
dr := ‖zhr − z2r‖22) between the extracted non-semantic feature zhr = Er(xh) of a
hybrid xh and those of its semantic parent z1r (resp. non-semantic parent z2r). If
dl ≥ dr, then we conclude the hybrid correctly inherited its non-semantic parent’s
style component. As such, we can define a non-semantic separation accuracy sr by
the proportion of hybrids in DH correctly identified as being closer to their non-
semantic parent. In other words, we monitor whether the hybrid’s non-semantic
content is indeed closer to its non-semantic parent’s.

The accuracy of the semantic and non-semantic separation tasks are presented
in (Table A.13a) along with the average distances in non-semantic space to the
hybrid’s parent samples dl and dr at the end of training. On both datasets, we can
observe that hybrids mostly inherit the correct semantic and non semantic charac-
teristics at the end of training. In particular, non-semantic features of hybrids are
about 10 times closer to their non-semantic parents’ compared to their semantic
parents’.

Importantly, the observed inheritance of semantic/non-semantic features sig-
nificantly improves over the course of the entire training. For instance, with 1000

labels on CIFAR10, semantic accuracy sc on generated hybrids at the end of the

A.3 additional experiments and material for samosa 141

Method CIFAR10 SVHN

1000 250

Accuracy sc (%) 97.3± 0.6 100± 0.0

Accuracy sr (%) 100± 0 98.2± 0.3
Ratio of mean dc

dr
15.5± 2.6 7.6± 1.4

(a) Component separation (CIFAR10

and SVHN).

Method MNIST-M

100

Accuracy sc (%) 99.9± 0.2

Accuracy sr (%) 96.8± 3.1
Ratio of mean dc

dr
11.0± 4.0

(b) Background inheritance (MNIST-
M).

Table A.13. – Identification of semantic and non-semantic parents on a hybrid
dataset DH at the end of training on multiple datasets. Both the
semantic separation sc and the non-semantic separation sr accu-
racies show the model properly incorporates semantic and non-
semantic information during hybridization. The ratio of the average
non-semantic distances dc

dr
between hybrids and their semantic/non-

semantic parent is given to complement non-semantic separation
scores sr.

first training cycle (300 epochs, no hybrid augmentation yet) is 74.1±2.5, 93.0±2.5

at the end of the second (trained with hybrid augmentation) and 97.3± 0.6 at the
end of training. In theory, two inputs reconstructed from the same semantic
features but different non-semantic features should lead to extracting the same
semantic features. However, in practice generated hybrids constitute new samples
an overfit model could have trouble accommodating, or present combinations of
semantic/non-semantic features that interfere with each other. As per the pre-
vious results, our augmentation strategy helps the model deal with those new
problematic samples by presenting them as training samples.

Inheritance of non-semantic background in MNIST-M To better understand
non-semantic features, we run an additional experiment by generating an MNIST-
M-style dataset (Ganin and Lempitsky 2015) by combining each digit picture in
the MNIST (Yann. Lecun 1998) dataset with a random crop from the BSD 500

dataset (Arbelaez et al. 2011) (Figure A.2). A model is trained following our
standard procedure over 50000 training samples (100 labeled samples), and we
track the hybrids generated during training as outlined previously.

Once again, we assess the correct inheritance of semantic content from the se-
mantic parent by tracking the classification accuracy sc over hybrids. This experi-
ment however differs from the previous one in how the non-semantic distances dl
and dr are computed. Instead, of considering the distances in zr latent space we
leverage the construction of MNIST-M to propose a more interpretable criterion.

142 appendix

Figure A.2. – Hybrids for MNIST-M (format: see Fig. A.1).

The MNIST-M dataset presents one known non-semantic feature: the back-
ground of the samples. We therefore verify experimentally that the background
of hybrids generated by our procedure closely matches the background of their
non-semantic parents (more closely than the one of their semantic parent) instead
of considering zr distances. By construction of MNIST-M, we know which pixels
in images correspond to a digit and which correspond to a BSD 500 background:
we know which MNIST sample was used to generate the sample. As such, we
can have access to a mask that zeroes out pixels corresponding to the digit and
does not alter background pixels for MNIST-M images. As qualitative studies
(Figure A.2) suggest hybrid samples do correctly inherit digit outline from their
semantic parent, we approximate the background of hybrids to be the same as
that of their semantic parent. Therefore, we calculate the background of hybrid
samples bh = m1 ∗xh by applying a mask m1 that zeroes out pixels corresponding
to the digit in the semantic parent (known by construction). The backgrounds b1
and b2 of the parent samples are also known by construction (corresponding to
the BSD 500 backgrounds used to generate samples). Similarly to our previous
procedure, if dl := ‖bh −m1 ∗ b1‖22 ≥ dr := ‖bh −m1 ∗ b2‖22, then we conclude the
hybrid correctly inherited its non-semantic parent’s style component.

The separation accuracies sc and sr as well as the distances between the hybrid’s
background and its parents’ are given in Table A.13b. Results suggest a clear
separation of semantic and non-semantic content in hybrids. The nature of the
pixel distances tracked in this experiment strongly correlate the model’s notion
of non-semantic features with the known background modularity as expected.
As such, the results strongly suggest that at least in simple cases, SAMOSA is
capable of correctly identifying and separating the semantic and non-semantic
factors in training data.

A.3 additional experiments and material for samosa 143

A.3.3 Semantic content in zr

In addition to verifying zr does indeed cause non-semantic changes in recon-
struction/hybridization, we also observe that it does not contain a lot of semantic
information. Training a classification head (with all 50000 labeled training sam-
ples) on the non-semantic space of a trained Mean Teacher based SAMOSA model
(1000 label CIFAR 10 setting) does lead to low classification accuracy (about 30%).
This contrasts with the 88% accuracy obtained by a linear layer trained on the se-
mantic space zc with only 1000 labeled samples in previous experiments. As such,
we verify that zr does not extract specifically semantic features in accordance with
SAMOSA’s design.

What little semantic information remains in zr is ignored by the decoder D as
generated hybrids only inherit the class of their non-semantic parents in about
10% of cases (random chance). Furthermore, we can verify that expunging seman-
tic content from zr is pointless. zr can be made wholly non-semantic by training
a linear classifier to classify from zr, and training Er to fool this classifier. While
a model trained this way retains almost no semantic information in non-semantic
space zr (about 18% accuracy for a linear classifier trained on the frozen pro-
jection), such a model fails to better classify samples (accuracy of 88.5 ± 0.1 vs.
88.7± 0.3).

144 appendix

A.4 Additional experiments and material for SciMix

We provide the following additional experiments and material for MixShare:

• In Section A.4.1, we discuss the difference in overhead between the SciMix
and SAMOSA frameworks.

• In Section A.4.2, we show how various variants of the SciMix generative
framework perform.

• In Section A.4.3, we show how various variants of the SciMix data augmen-
tation perform.

• In Section A.4.4, shows some more hybrids for SciMix on SVHN.

A.4.1 Overhead of SAMOSA and SciMix

Beyond interfering with augmentation process, training the semi-supervised
classifier alongside the generative framework makes the training process itself
significantly more complex. The main pain points with this are:

• Additional training parameters when training the classifier In the SAMOSA
experiments, we typically train a 1.5M parameter WideResNet-28-2 classi-
fier. Due to the generative framework, we must additionally train a 1.5M
parameter non-semantic encoder and a 2M parameter decoder/generator.
This represents over 3 times as many parameters, and requires training over
two GPUs to obtain results in reasonable time (since SAMOSA must trains
three times to incorporate hybrids).
While SciMix does have to train a generator along an auxiliary classifier,
it only needs to be trained once and we do not need refine the auxiliary
classifier with additional hybrids. Training the actual semi-supervised model
only involves the 1.5M parameters of WideResNet-28-2

• Difficulty in synchronizing classifier and generator training It must be
noted that semi-supervised learning algorithms tend to use fairly diverse
training settings, with some of them running fairly long. For reference, we
train Mean Teacher over 300 epochs with SGD, MixMatch over 900 epochs
with AdamW and FixMatch over 1000 epochs using SGD. The training set-
tings for MixMatch and FixMatch in our experiments are in fact already
shortened by a factor of 10. The generative framework for its part trains well
with SGD over 300 epochs, with similar settings as the Mean Teacher frame-
work. Beyond the fact it largely increases the already significant training

A.4 additional experiments and material for scimix 145

times of FixMatch and MixMatch, the generative modules do not adapt well
to their training settings.

SciMix’s use of an auxiliary classifier solves this problem for the most part:
we always use a Mean Teacher algorithm to train the generative model.
While this means we essentially use a weaker model to teach a stronger
model on the FixMatch backbone, experimental results suggest the hy-
brids still provide useful regularization. Interestingly, as the auxiliary classi-
fier still benefits from the reconstruction/hybridization process, it provides
stronger performance than a standard Mean Teacher algorithm. On another
note, we could have trained the auxiliary classifier with a FixMatch algo-
rithm on very shortened schedule as our goal is not to get the best possible
performance out of the auxiliary classifier.

A.4.2 Model analysis: Importance of the learning scheme

Hybrids parent pairs xr/xc
Method Accuracy sc sr sample hybrids

Structural zc 39.5± 9.3 16.0 56.0

No Lhyb 48.5± 14.2 11.7 99.8

Basic Lhyb 66.3± 1.0 66.2 99.4

Non Frozen criterion Lhyb 81.8± 3.0 75.1 73.8

Full Setup 83.4± 0.5 76.7 98.8

Table A.14. – Comparison of various architectural variants (Section 2.4.1) along
with samples of generated hybrids for each variant on SVHN 60

labels.

146 appendix

To better explore how our framework facilitates the incrustation of semantic
content in the general context of existing samples, we first propose a rapid ablation
study on the quality of the samples generated by variants of our auto-encoder on
our hardest SVHN setting (60 labels). We evaluate this through the classification
accuracy of models trained with the generator’s mixed samples, the semantic
transfer sc, the non-semantic transfer sr, and a visual evaluation of two hybrids
(e.g. the leftmost hybrid mixes a blue 8 xc with a yellow 3 xr).

We consider 4 variations on SciMix’s generator to demonstrate the merits of our
chosen method: zr as a style code. We flip the roles of zc and zr, to demonstrate
zc is better used as a style code in SciMix. No Lhyb. We train without an explicit
optimization loss, to show LS and Lrec are not sufficient to create good hybrids
in SciMix. Basic Lhyb. We demonstrate the orthogonalization losses L−hyb,class and
L−hyb,cont contribute to the generator by considering a variant that does not optimize
them. No frozen criterion Lhyb. We do not force the generator to only optimize
the generation of the hybrids when optimizing Lhyb (the projection of the hybrids
in the latent spaces is also modified).

Table A.14 shows that without explicit hybridization optimization, the model
fails to properly transfer semantic characteristics (low sc score). Since the model
does properly transfer semantic content with only L+

hybrids, the addition of the
orthogonalization constraints L−hybrids is not necessary to obtain useful hybrids.
However, this orthogonalization increases the diversity in the generated hybrids
and therefore leads to a better augmentation procedure. Not freezing the projec-
tion heads when training for hybridization on the other hand leads to a general
deterioration of the training process and can therefore be felt in both transfer rates.
Predictably, using zr as a global style code leads a very poor correspondence of
hybrids to their non-semantic parents as things like backgrounds can become
very complicated to reproduce with a modulation based generator.

A.4.3 Model analysis: Leveraging the hybrids as Data Aug-
mentation

We considered 4 alternative methods to exploit the hybrids generated by our
method: Labeled Only hybrids with a labeled semantic parent are considered
(supervised training with a hard label) Pseudo-label Hybrids are treated as la-
beled samples (hard labels), with the labels inherited from the semantic parent’s
pseudo-labels. Consistency Hybrids are made to follow their semantic parent’s
prediction. Contradict Hybrids are made to match both their semantic parent’s
consistency target and their non-semantic parent targets.

A.4 additional experiments and material for scimix 147

Method Accuracy

Baseline 48.7± 23.0
Llabeled 29.9± 17.6
Lpseudo−label 62.8± 5.4
Lconsistency 77.8± 4.8
Lcontradict 83.4± 0.4

Table A.15. – Comparison of various losses to leverage hybrids in LSciMix (Sec-
tion 2.4.2) on SVHN 60 labels.

Table A.15 shows that the best results are obtained withLcontradict, butLpseudo−label
and Lcons also outperform the baseline method on SVHN 60 labels (hardest set-
ting). The fact Lcontradict outperforms other methods is interesting in that the loss
does not actually treat the hybrids as pure labeled samples, but assumes some se-
mantic content/noise is retained from the non-semantic samples. Llabeled’s failure
suggests that even with proper mixing, it not possible to improve models by only
generalizing a few labeled samples.

A.4.4 Additional hybrids

We provide additional examples of hybrids on SVHN in Figure A.3.

Figure A.3. – Additional SciMix hybrids on SVHN (100 labels).

148 appendix

A.5 Additional experiments and material for MixMo

We provide the following additional experiments and material for MixMo:

• In Section A.5.1, we provide a quick refresher on common MSDA tech-
niques.

• In Section A.5.2, we clarify our framework generalization with M > 2 sub-
networks.

• In Section A.5.3, we illustrate the reweighting of the loss components.

• In Section A.5.4, we elaborate on our analysis of filters activity.

• In Section A.5.5, we analyze ensembles of Cut-MixMo with CutMix that
reach state of the art.

• In Section A.5.6, we provide a preliminary study of MixMo on ImageNet.

• In Section A.5.7, we study the importance of α.

A.5.1 Mixed sample data augmentations

We have drawn inspiration from MSDA techniques to design our mixing block
M. In particular, Section 3.3.5.2 compared different M based on recent papers.
Figure A.4 provides the reader a visual understanding of their behaviour, which
we explain below.

MixUp (H. Zhang et al. 2018) linearly interpolates between pixels: mx(xi, xk, λ) =

λxi + (1 − λ)xk. The remaining methods fall under the label of binary MSDA:
mx(xi, xk, λ) = 1m � xi + (1− 1m)� xk with 1m a mask with binary values {0, 1}
and area of ratio λ. They diverge in how this mask is created. The horizontal con-
catenation, also found in (Summers and Dinneen 2019), simply draws a vertical
line such that every pixel to the left belongs to one sample and every pixel to the
right belongs to the other. Similarly, we define a vertical concatenation with an
horizontal line. PatchUp (Faramarzi et al. 2020) adapted DropBlock (Ghiasi et al.
2018): a canvas C of patches is created by sampling for every spatial coordinate
from the Bernoulli distribution Ber(λ′) (where λ′ is a recalibrated value of λ): if
the drawn binary value is 1, a patch around that coordinate is set to 1 on the final
binary mask 1m. PatchUp was designed for in-manifold mixing with a different
mask by channels. However, duplicating the same 2D mask in all channels forM
performs better in our experiments. FMix (Harris et al. 2020) selects a large con-
tiguous region in one image and pastes it onto another. The binary mask is made

A.5 additional experiments and material for mixmo 149

of the top-λ percentile of pixels from a low-pass filtered 2D map G drawn from an
isotropic Gaussian distribution. CowMix (G. French et al. 2020a; G. French et al.
2020b) selects a cow-spotted set of regions, and is somehow similar to FMix with
a Gaussian filtered 2D map G. CutMix (Y. Yang and Soatto 2019) was inspired by
CutOut (DeVries and Taylor 2017). Formally, we sample a square with edges of
length R

√
λ , where R is the length of an image edge. Note that this sometimes

leads to non square rectangles when the initially sampled square overlaps with
the edge from the original image. We adjust our λ a posteriori to fix this bound-
ary effect. Regarding the hyper-parameters, we use inM those provided in the
seminal papers, except for sampling of κ where we set α = 2 in all setups.

Note we consider both versions of MixUp (in-pixel and manifold) in this paper,
but only the in-pixel version of CutMix. Indeed, the manifold version of CutMix
was shown in the seminal CutMix paper (Y. Yang and Soatto 2019) to be inferior
to the standard in-pixel variant.

Figure A.4. – Common MSDA procedures with λ = 0.5.

150 appendix

A.5.2 Generalization to M > 2 heads

We have mostly discussed our MixMo framework with M = 2 subnetworks. For
better readability, we referred to the mixing ratios κ and 1−κ with κ ∼ Beta(α, α).
It’s equivalent to a more generic formulation (κ0, κ1) ∈ Dir2(α) from a symmetric
Dirichlet distribution with concentration parameter α. This leads to the alternate

equations LMixMo =
∑

i=0,1wr(κi)LCE (yi, ŷi), where wr(κi) = 2
κ
1/r
i∑

j=0,1 κ
1/r
j

.

Now generalization to the general case M ≥ 2 is straightforward. We draw a
tuple {κi}0≤i<M ∼ DirM(α) and optimize the training loss:

LMixMo =
M−1∑
i=0

wr(κi)LCE (yi, ŷi) , (A.1)

where the new weighting naturally follows:

wr(κi) = M
κ
1/r
i∑M−1

j=0 κ
1/r
j

,∀i ∈ {0, . . . ,M − 1}. (A.2)

The remaining point is the generalization of the mixing blockM, that relies on
the existence of MSDA methods for M > 2 inputs. The linear interpolation can
be easily expanded as in Mixup:

MLinear-MixMo ({li}) = M
M−1∑
i=0

κili, (A.3)

where li = ci(xi). However, extensions for other masking MSDAs have only re-
cently started to emerge (J. Kim et al. 2021). For example, CutMix is not trivially
generalizable to M > 2, as the patches could overlap and hide important semantic
components. In our experiments, a soft extension of Cut-MixMo performs best: it
first linearly interpolates M − 1 inputs and then patches a region from the M -th:

MCut-MixMo ({li}) = M [1M�lk+

(1− 1M)�
M−1∑
i=0,i 6=k

κi
1− κk

li],
(A.4)

where 1M is a rectangle of area ratio κk and k sampled uniformly in {0, 1, . . . ,M−
1}. However, it has been less successful than M = 2, as only two subnetworks
can fit independently in standard parameterization regimes. Future work could
design new framework components, such as specific mixing blocks, to tackle these
limits.

A.5 additional experiments and material for mixmo 151

A.5.3 Weighting function wr

As outlined in Section 3.3.2.2, the asymmetry in the mixing mechanism leads
to asymmetry in the relative importance of the two inputs. Thus we reweight the
loss components with function wr, defined as wr(κ) = 2 κ1/r

κ1/r+(1−κ)1/r . It rescales the
mixing ratio κ through the use of a 1

r
root operator. In the main paper, we have

focused on r = 3.

Figure A.5 illustrates how wr behaves for r ∈ {1, 2, 3, 4, 10} and r →∞. The first
extreme r = 1 matches the diagonal wr(κ) = 2κ, without rescaling of κ, similarly
to what is customary in MSDA. Our experiments in Section 3.3.5.3 justified the
initial idea to shift the weighting function closer to the horizontal and constant
curve wr(κ) = 1 with higher r. In the other experiments, we always set r = 3.

Figure A.5. – Curves of the reweighting operation that projects κ to the flattened
ratio wr(κ)

A.5.4 Filters activity

We argued in Section 3.3.3 that MixMo better leverages additional parameters
in wider networks. Concretely, a larger proportion of filters in large networks

152 appendix

Method Width ta = 0.2 ta = 0.3 ta = 0.4 ta = 0.5

Vanilla

2 98.9 98.8 97.8 93.3
3 97.3 96.4 93.2 87.5
4 96.5 95.2 91.2 81.6
5 95.1 91.7 85.7 73.3
7 92.6 88.2 81.0 69.5

10 87.8 80.4 71.5 57.3
14 83.9 74.0 61.6 46.8

CutMix

2 99.2 99.0 97.8 95.3
3 98.7 98.5 97.2 93.4
4 98.1 97.4 94.0 87.3
5 97.0 96.1 90.7 80.6
7 95.8 94.0 86.2 74.6

10 93.5 88.4 81.3 67.0
14 89.4 81.9 70.3 50.9

Cut-MixMo

2 100.0 100.0 99.4 97.3
3 99.8 99.8 99.7 98.7
4 99.7 99.7 99.6 98.7
5 99.3 99.3 98.9 97.4
7 98.9 98.8 98.0 95.2

10 98.5 98.2 96.8 92.4
14 97.5 96.3 93.1 82.6

Table A.16. – Proportion (%) of active filters in core network vs. width w for a
WRN-28-w on CIFAR 100 and different activity thresholds ta.

really help for classification as demonstrated in Figure 3.4a and Figure 3.4b in
the main paper. Following common practices in the structured pruning literature
(H. Li et al. 2017), we used the l1-norm of convolutional filters as a proxy for
importance. These 3D filters are of shape ni × k × k with ni the number of input
channels and k the kernel size. In Figure 3.4b, we arbitrarily defined a filter as
active if its l1-norm is at least 40% of the highest filter l1-norm in that filter’s
layer. We report the average percentage of active filters across all filters in the core
network C, for 3 learning strategies: vanilla, CutMix and Cut-MixMo.

The threshold ta = 0.4 was chosen for visualization purposes. Nevertheless,
the observed trend in activity proportions remains for varying thresholds in
Table A.16. For example, for the lax ta = 0.2, CutMix uses 93.5% of filters vs.
98.5% for Cut-MixMo.

A.5 additional experiments and material for mixmo 153

Figure A.6. – Ensemble effectiveness (NLLc/#params). We slide the width in
WRN-28-w and numbers of members N . CutMix data augmentation.
Interpolations through power laws (Lobacheva et al. 2020) when
more than 2 points are available.

A.5.5 Ensemble of Cut-MixMo with CutMix

Figure A.6 plots performance for different widths w in WRN-28-w and varying
number of ensembled networks N : two vertically aligned points have the same
parameter budget. Indeed, the total number of parameters in our architectures has
been used as a proxy for model complexity, as in (Chirkova et al. 2020; Lobacheva
et al. 2020). The increase in the total number of weights in MixMo is visually al-
most unnoticeable. Precisely, with WRN-28-10, MixMo (M=2) has 36.60M weights
vs. 36.53M standardly (+0.2%). Moreover, the number of flops is 5.9571G Flops for
MixMo vs. 5.9565G Flops standardly (+0.01%). That’s why we state we achieve
ensembling (almost) “for free”.

We compare ensembling with CutMix rather than standard pixels data aug-
mentation, as previously done in 3.7 from Section Section 3.3.4.4. CutMix induces
additional regularization and label smoothing: empirically, it improves all our ap-
proaches. For a fixed memory budget, a single network usually performs worse
than an ensemble of several medium-size networks: we recover the Memory Split
Advantage even with CutMix. However, Cut-MixMo challenges this by remaining
closer to the lower envelope. In other words, parameters allocation (more net-

154 appendix

works or bigger networks) has less impact on results. This is due to Cut-MixMo’s
ability to better use large networks.

In Table A.17, we summarize several experiments on CIFAR-100. Among other
things, we can observe that large vanilla networks tend to gain less from en-
sembling (Lobacheva et al. 2020): e.g. 2 vanillas WRN-28-10 (83.17% Top1, 0.668

NLLc) do not perform much better than 2 WRN-28-7 (82.94%, 0.673). This re-
mains true even with CutMix: (85.74%, 0.571) vs. (85.52%, 0.573). We speculate
this is related to wide networks’ tendency to converge to less diverse solutions,
as studied in (Neal et al. 2018). Contrarily, MixMo improves the ensembling of
large networks, with (86.04%, 0.494) vs. (85.50%, 0.517) on the same setup. When
additionally combined with CutMix, we obtain state of the art (86.63%, 0.479) vs.
(85.90%, 0.498). This demonstrates the importance of Cut-MixMo in cooperation
with standard pixels data augmentation. It attenuates the drawbacks from over-
parameterization This is of great importance for practical efficiency: it modifies
the optimal network width for real-world applications.

Width Approach 1-Net 2-Nets Linear-MixMo Cut-MixMo 2-Cut-MixMos
w CutMix - X - X - X - X - X

2

Top1 76.44 78.06 79.16 80.81 75.82 76.36 75.66 75.17 76.98 76.11

NLLc 0.921 0.815 0.776 0.695 0.841 0.824 0.824 0.846 0.7661 0.798

params 1.48M 2.95M 1.49M 2.99M

3

Top1 77.95 80.70 80.85 83.14 78.51 80.74 79.81 79.85 80.78 81.20

NLLc 0.862 0.750 0.738 0.644 0.760 0.696 0.693 0.702 0.635 0.650

params 3.31M 6.62M 3.33M 6.66M

4

Top1 78.84 81.55 81.48 83.93 80.43 81.66 81.68 81.69 82.57 82.58

NLLc 0.824 0.711 0.711 0.609 0.712 0.656 0.646 0.635 0.590 0.588

params 5.87M 11.74M 5.89M 11.79M

5

Top1 79.75 82.55 82.18 84.60 80.95 83.06 83.11 83.34 83.97 84.31

NLLc 0.813 0.686 0.693 0.596 0.703 0.617 0.598 0.591 0.549 0.546

params 9.16M 18.32M 9.19M 18.39M

7

Top1 81.14 83.71 82.94 85.52 82.4 84.51 84.32 84.94 85.50 85.90

NLLc 0.764 0.648 0.673 0.573 0.675 0.581 0.562 0.543 0.516 0.498

params 17.92M 35.85M 17.97M 35.94M

10

Top1 81.63 84.05 83.17 85.74 83.08 85.47 85.40 85.77 86.04 86.63

NLLc 0.750 0.644 0.668 0.571 0.656 0.558 0.535 0.524 0.494 0.479

params 36.53M 73.07M 36.60M 73.21M

14

Top1 82.01 84.31 83.47 85.80 83.79 86.05 85.76 86.19 86.58 87.11

NLLc 0.730 0.645 0.656 0.569 0.648 0.545 0.527 0.518 0.488 0.473

params 71.55M 143.1M 71.64M 143.28M

Table A.17. – Summary: WRN-28-w on CIFAR-100. b = 4.

A.5.6 Preliminary ImageNet experiments

To further prove MixMo’s ability to scale to more complex problems, we also
conduct a preliminary study of its behavior on the larger scale ImageNet dataset

A.5 additional experiments and material for mixmo 155

(J. Deng et al. 2009). Following the protocol outlined in the seminal MIMO paper
(Havasi et al. 2021), we consider variations on the standard ResNet-18 in the form
of ResNet-18-w networks where w is multiplicative width factor.

These first experiments confirm that MixMo performs well when networks are
overparameterized. For values of w ≥ 5, our network at the end of training out-
performs both Vanilla and CutMix baselines. For example, with a ResNet-18-5
backbone, Cut-MixMo (78.20% Top1, 0.867 NLLc) improves over Vanilla (76.47%,
1.121) and CutMix (77.40%, 1.263). This remains the case for a ResNet-18-7 back-
bone with Cut-MixMo (78.55% Top1, 0.846 NLLc) outperforming Vanilla (76.86%,
1.100) and CutMix (77.18%, 1.190).

A.5.7 Hyper-parameter α

Figure A.7. – Diversity/accuracy as function of α.

In Fig. Figure A.7, we study the impact of different values of α, parameterizing
the sampling law for κ ∼ Beta(α, α). For high values of α, the interval of κ narrows
down around 0.5. Diversity is therefore decreased: we speculate this is because
we do not benefit anymore from lopsided updates. The opposite extreme, when
α=1, is equivalent to uniform distribution between 0 and 1. Therefore diversity is
increased, at the cost of lower individual accuracy due to less stable training. For
simplicity, we set α=2. Manifold-Mixup (Verma et al. 2019a) selected the same
value on CIFAR-100. However, this value could be fine tuned on the target task:
e.g. in Figure A.7, α=4 seems to perform best for Cut-MixMo on CIFAR-100 with
WRN-28-10 with r=3, p=0.5 and b=2.

156 appendix

A.6 Additional experiments and material for MixShare

We provide the following additional experiments and material for MixShare:

• In Section A.6.1, we provide additional details regarding the adjustments
necessary to implement the MixShare framework.

• In Section A.6.2, we discuss the kernel initialization at more length.

• In Section A.6.3, show how the features in the core network influence each
of the subnetworks.

A.6.1 Complementary adjustments to MIMO procedures in
MixShare

MIMO methods use a number of auxiliary procedures to train strong subnet-
works. However, as MixShare differs significantly from standard MIMO frame-
works, it does not use these frameworks to the same extent.

CutMix probability in the input block MixMo (Rame et al. 2021) only uses
cutmix mixing in its input block about half the time, using a basic summing
operation on the two encoded inputs the rest of the time. This is because the
model will use a summing operation at test time. Therefore, the use of cutmix at
training induces an strong train/test gap that needs to be bridged by the use of
summing during training.

We cannot afford to use summing half the time as unmixing relies on the use
of cutmix in the input block. However, since our two encoders are very similar
(due to our kernel alignment), cutmix and summing (or averaging) behave very
similarly and the train/test gap is therefore minimal.

Input Repetition A slight train/test gap still remains however since the model
is rarely presented the same image as input to both subnetworks at training time.
We solve this by reprising a procedure introduced in the seminal MIMO paper
(Havasi et al. 2021): input repetition. In our case, we ensure 10% of inputs of our
batches are made of repetition of the same image during training.

Loss rebalancing MixMo (Rame et al. 2021) introduced a re-weighting function
of the subnetwork training losses that rescales the mixing ratios used in the
inputs block. These ratios are rescaled to be less lopsided (closer to an even 50/50

A.6 additional experiments and material for mixshare 157

(a) Feature variance af-
ter block 1.

(b) Feature variance af-
ter block 2.

(c) Feature variance af-
ter block 3.

Figure A.8. – Influence of feature maps in the core network. Checking the vari-
ance of feature maps w.r.t. the two inputs at different levels of the
network shows clear separation of features in standard multi-input
multi-output architectures.

split) before being applied to their relevant subnetwork losses. This rescaling is
necessary as it ensures all parameters receive sufficient training signal.

We however find in our experiments it is more beneficial to do away with this
re-balancing and keep the original mixing ratios, which we explain by the large
amount of features shared between subnetworks. Since features are shared, we
do not need to worry about some features receiving too little training signal.

A.6.2 A more nuanced discussion on kernel alignment

While MixShare uses the exact same initialization of the encoder kernels for
simplicity, it is interesting to note much weaker versions of kernel alignment are
sufficient to obtain similar results.

Indeed, we found in our experiments that initializing the kernels to be simply
co-linear is more than enough to ensure proper feature sharing. In fact, this leads
to the exact same performance as using the same initialization and the encoder
kernels quickly converge to similar values.

This further validates our intuition that MIMO models need a “common lan-
guage” to benefit from sharing features: all that is required is for encoder kernels
to extract the same “type” of features.

A.6.3 Analysis of subnetwork features within the core network

Section 3.4.1 studies what features each subnetwork uses in the input block and
output block of the multi-input multi-output model. Studying the importance of
features within the core networks for each subnetworks is more difficult as it is not

158 appendix

possible to consider the model weights. Reprising an analysis conducted in the
Appendix of (Rame et al. 2021), we identify the influence of intermediate features
on subnetworks with the variance of the feature with respect to the relevant input.

For the first subnetwork, if we consider the intermediate feature map (at one
point in the network f)Mint = fint(Dtest, d), such thatMint is of shape N × C ×
H × W with Dtest the test set, d a fixed input, N the size of the test set, C the
number of intermediate feature maps and H × W the spatial coordinates. We
compute the importance of each of the C feature map with respect to the first
subnetwork as Mean(V ar(Mint, dim = 0), dim = (1, 2)). The importance of inter-
mediate features for the second subnetwork is obtained similarly by considering
Mint = fint(d,Dtest).

Figure A.8 shows the resulting feature importance maps at after each of the
three residual blocks in the core network. As can be observed, the subnetworks
remain consistently separated in the core network.

A.7 additional experiments and material for mixvit 159

A.7 Additional experiments and material for MixViT

We provide the following additional experiments and material for MixViT:

• In Section A.7.1, we provide additional figures for Section 4.3.1.

• In Section A.7.2, we discuss how initialization scheme would interact with
MIMO formulations of ViTs, and how it relates to MixViT’s mechanisms.

• In Section A.7.3, we provide further notes on the overhead incurred by
MixViT.

• In Section A.7.4, we provide additional comparison of MixViT with MixViT
on the CIFAR-100 dataset (which is much harder for vision transformers
and CNNs).

A.7.1 Illustration of MIMO and MixMo transformers

(a) MIMO Transformer. (b) MixMo Transformer

Figure A.9. – Transposition of traditional MIMO architectures to vision trans-
formers.

Figure A.9 shows how we transpose the seminal MIMO and MixMo approaches
to vision transformers in Section 4.3.1. As can be seen, the network embeds the
images with separate encodings before mixing them into a single representation
and proceeding normally.

A.7.2 On encoder initialization and MixViT

In Section 4.3.1, we observe ViTs have trouble accommodating traditional MIMO
techniques like the seminal MIMO (Havasi et al. 2021) and MixMo (Rame et al.
2021) frameworks. We find performing two parallel forwards at inference seems

160 appendix

Backbone Method Inference Mix. # FLOPS Accuracy (%) Sub network Acc. (%)

ConViT

Single-input (D’Ascoli et al. 2021) N/A 1× 79.5± 0.1 -
MixMo (Rame et al. 2021) Sum 1× 77.0± 0.2 75.2± 0.1
MixMo (Rame et al. 2021) Separate 2× 78.5± 0.2 76.4± 0.1

MixMo + same init. Sum 1× 77.1± 0.3 75.2± 0.3

Table A.18. – Impact of initialization when transposing MIMO transformers.
CIFAR-100 accuracy and estimated FLOPS of the backbone and
MIMO formulations.

to address the issue, which suggests Vision Transformers have trouble sharing
tokens between inputs or subnetworks.

While the exact source of this behavior is not clear, the main difference between
MIMO ViTs and MIMO CNNs seems to be that ViT subnetworks seem to natu-
rally share features. This feature sharing in itself can likely be explained by the
similarity between the unmixing mechanism we develop for MIMO CNNs in Sec-
tion 3.4 and the way the attention mechanism selectively aggregates information
from the patch tokens into the class token. Interestingly, we observe in MixShare
that such feature sharing strongly deteriorates model performance unless the in-
put encoders are initialized to the same value. One might therefore reasonably
assume reprising this initialization scheme could offer a simpler solution to the
issue of MIMO ViTs.

We verify in Table A.18 that - unlike in MixShare - initializing the patch em-
bedding layers e0 and e1 (see Figure A.9b) to the same value does not solve the
issue on its own. As such, the core problem is different than the one observed in
MixShare and we do need to perform separate inference on MIMO and MixViT
Vision Transformers.

It is worth noting however both source attribution in MixViT and encoder
initialization in MixShare help the model rely on a largely shared feature repre-
sentation: they both use a common encoder and add some subnetwork specific
information. In MixViT, this directly follows from the definition of source attri-
bution where we add a source attributed embedding or encoding to the general
token representation.

The same thing arguably happens when using two different encoders initialized
to the same value like in MixShare so long as the encoders weights remain close
through training. Indeed, the linear weights (linear convolution kernels in CNNs)
W0 and W1 can be decomposed as W0 = W + W r

0 and W1 = W + W r
1 with (for

instance) W r
0 = W0−W1

2
,W r

1 = W1−W0

2
and W = W0− W0−W1

2
= W0+W1

2
. If W0 and W1

are close, then the encoders can be thought to apply the same core weight W with
the addition of smaller contributions from weights W r

0 and W r
1 . This approach is

A.7 additional experiments and material for mixvit 161

nevertheless much more difficult to control than the one introduced in MixViT,
which could be adapted to CNNs and help address the issues of MixShare.

A.7.3 Further notes on MixViT overhead

We provide in Section 4.3.3.2 a very rough upper bound on the additional
overhead incurred by MixViT at inference for one forward evaluation. We provide
here a more nuanced discussion on the computations at play and show that - for
M = 2 or at least bounded - the asymptotic complexity in L, N and d of MixViT
is the same as that of a normal model.

Similarly to Section 4.3.3.2, we consider a transformer on a C-class problem with
L self-attention blocks and 2 class-attention blocks taking N d-dimensional patch
tokens. We neglect the computational overhead of induced by adding bias terms,
embedding the patches into tokens, classifying from the classification tokens
features, normalization and source attribution.

How many computations do class-attention and self-attention need ? We
assumed previously class-attention and self-attention are as expensive computa-
tionally which leads to a very pessimistic upper bound on the overhead.

Let us count the important operations in a Self-Attention layer:

1. We have to extract key, query and value representations for each token which
causes 3Nd2 operations due to 3N weight multiplications.

2. We have to compute the similarity scores between N tokens which means
N2d operations.

3. We must compute the attended representation for all tokens which costs
approximately N2d operations as one attended token requires adding N d-
dimensional tokens (we take the cost of multiplying the value representation
by the attention weight to be atomic, but it is technically d).

4. Most implementations include a projection step to properly aggregate the
multiple attention heads which means an additional Nd2 cost.

5. Each token is then processed by the same 1 hidden layer multi-layer percep-
tron. While the hidden dimension of the perceptron can vary it is standard
in the literature to take 4d. Therefore we have to consider 2× 4×Nd2 oper-
ations as we consider 2 weights multiplications of dimensions d× 4d.

This yields a cost of approximately 3Nd2 +N2d+N2d+Nd2 + 8Nd2 = 13Nd2 +

2N2d in a Self-Attention layer whereas the cost of a Class-Attention layer is about
3Nd2 +Nd+Nd+d2 +8d2 = (3N+9)d2 +2Nd operations. Indeed, Class-Attention
follows a similar outline with the following differences: in 2) we only have Nd

162 appendix

operations (similarity to the class token), in 3) we only compute one attended
representation for cost Nd, in 4) we only compute the projection for one token at
cost d2 and in step 5) we only apply the MLP to one token for 8d2 operations.

If we throw out the terms linear in d (as it is usually the largest term by far),
Class-Attention therefore costs 3N+9

13N
× as many operations as Self-Attention layer.

Note that - to the best of our knowledge - N = 64 at the least in the literature, so
this ratio is closer at a maximum 0.25×.

Tighter approximation of MixViT’s inference overhead We can now revise the
very pessimistic approximation given Section 4.3.3.2 provided the estimations that
Class-Attention costs at most 0.25× as many computations as Self-Attention. One
forward evaluation of MixViT costs approximately L+0.5M

L+0.5
× as many operations

with this. For our modified ConViT, this indicates a ratio of only 1.1×.

Asymptotic complexity in L, N and d Asymptotically, for a fixed number
of subnetworks (M=2 usually), the complexity of MixViT and the underlying
transformers are identical and equal to O(L(Nd2 +N2d)). Indeed, as can be seen
from the previous calculations, Self-Attention has a complexity of O(N2d+Nd2)

and Class-Attention O(Nd2). A normal forward pass is therefore on the order
O(L(Nd2 +N2d)) as we have L+ 2 attention layers. MixViT-encoding induces M
computations on the same order in the form O(Nd2) source encodings. MixViT-
encoding’s complexity is therefore O((L + M)Nd2 + LN2d) or O(L(Nd2 + N2d))

if we consider M bounded.

A.7.4 Further comparison to MixMo on CIFAR-100

Models # Params Accuracy (%)

WideResNet-28-5∗ 9M 82.6
WideResNet-28-5 MixMo∗ 9M 83.3

ConViT (D’Ascoli et al. 2021) 12M 79.5± 0.1

MixViT-embedding w/ ConViT 12M 82.4± 0.1

MixViT-encoding w/ ConViT 12M 82.1± 0.1

ConViT∗ (D’Ascoli et al. 2021) 12M 81.4± 0.2

MixViT-embedding w/ ConViT∗ 12M 82.6± 0.2

MixViT-encoding w/ ConViT∗ 12M 83.2± 0.2

Table A.19. – Comparison between MixMo and
MixViT on CIFAR-100. ∗ indicates
300 training epochs with 4 batch
augmentations.

Table 4.3 shows MixViT
matches the similarly sized
WideResNet-28-5 (Zagoruyko
and Komodakis 2016) on CIFAR-
100 when given the same train-
ing budget. While MixMo’s
(Rame et al. 2021) reported
WideResNet-28-5 performance
is better than our default
setting MixViT performance,
MixMo models train over 300

epochs with batch repetition 4.
Batch repetition functions very

A.7 additional experiments and material for mixvit 163

similarly to Batch augmentation and is often needed to obtain good results with
CNN-based MIMO models (which is less so the case for MixViT as per Sec-
tion 4.4.3). If we reduce the learning rate and train with 4 batch augmentations,
we close the gap in performance. This is particularly noteworthy as vision trans-
formers are typically disadvantaged against CNNs on the CIFAR datasets as can
be seen by the fact our baseline single-input single-output ConViT model only
reaches 81.1% accuracy (vs. 82.6%) even on this longer training schedule.

	Contents
	List of Figures
	List of Tables
	Remerciements
	Abstract
	Résumé
	Acronyms
	Common notation conventions
	1 Introduction
	1.1 Learning to classify images with neural networks
	1.1.1 Neural networks
	1.1.2 Example: Convolutional neural networks
	1.1.3 Supervised Learning
	1.1.4 Discussion

	1.2 Thesis Focus: Mixing Samples Data augmentations
	1.3 Positioning
	1.4 Summary table of publications

	2 In-class mixing samples data augmentations
	2.1 Introduction
	2.2 Related Work
	2.2.1 Semi-Supervised Learning
	2.2.2 Hybrid generation in the literature
	2.2.3 Positioning

	2.3 SAMOSA: Adding non-semantic variations to an image
	2.3.1 Overview of the SAMOSA framework
	2.3.2 Adding a Non-Supervised Reconstruction Module
	2.3.3 Learning Scheme
	2.3.4 Making use of the SAMOSA framework in Semi-Supervised Learning
	2.3.5 Take-aways from the SAMOSA project

	2.4 SciMix: Embedding semantic content into other contexts
	2.4.1 Learning to generate hybrids
	2.4.2 Training a classifier by leveraging our Data Augmentation

	2.5 Results
	2.5.1 Performance improvements
	2.5.2 Improvements of SciMix over SAMOSA
	2.5.3 Further analysis of SciMix results
	2.5.4 Pushing SciMix on CUB-200

	2.6 Conclusion

	3 MSDA as compressed representations for MIMO training
	3.1 Introduction
	3.2 Related Work
	3.2.1 Ensembling
	3.2.2 MIMO
	3.2.3 Positioning

	3.3 MixMo: Multi-Input Multi-Output MSDA
	3.3.1 General overview
	3.3.2 Mixing inputs and balancing concurrent subnetworks
	3.3.3 From manifold mixing to MixMo
	3.3.4 Main experimental results
	3.3.5 MixMo analysis on CIFAR-100 w/ WRN-28-10
	3.3.6 Pushing MixMo further: Tiny ImageNet
	3.3.7 Takeaways from the MixMo project

	3.4 MixShare: Feature sharing between MIMO subnetworks
	3.4.1 MIMO Subnetworks do not share features
	3.4.2 How can subnetworks share features?

	3.5 Conclusion

	4 Multi-Input Multi-Output MSDA, unmixing and attention mechanisms
	4.1 Introduction
	4.2 Related Work
	4.2.1 Attention
	4.2.2 Vision Transformers
	4.2.3 Positioning

	4.3 MixViT: A MIMO MSDA formulation of Vision Transformers
	4.3.1 Transposing MIMO frameworks to vision transformers
	4.3.2 Overview of MixViT
	4.3.3 MixViT framework

	4.4 Results of the MixViT framework
	4.4.1 MixViT significantly improves the performance of vision transformers
	4.4.2 Comparison against CNN-based MIMO methods
	4.4.3 Implicit regularization for simpler training settings
	4.4.4 Ablations

	4.5 Conclusion

	5 Conclusion
	5.1 Main contributions
	5.2 Perspectives

	Bibliography
	A Appendix
	A.1 Experimental details
	A.1.1 Experimental details for SAMOSA experiments
	A.1.2 Experimental details for SciMix experiments
	A.1.3 Experimental details for MixMo experiments
	A.1.4 Experimental details for MixShare experiments
	A.1.5 Experimental details for MixViT experiments

	A.2 Pseudo-code algorithms
	A.2.1 Pseudo-code for the SAMOSA framework
	A.2.2 Pseudo-code for the SciMix framework
	A.2.3 Pseudo-code for the MixMo framework
	A.2.4 Pseudo-code for the MixShare framework
	A.2.5 Pseudo-code for the MixViT framework

	A.3 Additional experiments and material for SAMOSA
	A.3.1 Qualitative Study: Hybrids with MixMatch as a backbone
	A.3.2 Case Study: Component Separation
	A.3.3 Semantic content in zr

	A.4 Additional experiments and material for SciMix
	A.4.1 Overhead of SAMOSA and SciMix
	A.4.2 Model analysis: Importance of the learning scheme
	A.4.3 Model analysis: Leveraging the hybrids as Data Augmentation
	A.4.4 Additional hybrids

	A.5 Additional experiments and material for MixMo
	A.5.1 Mixed sample data augmentations
	A.5.2 Generalization to M>2 heads
	A.5.3 Weighting function wr
	A.5.4 Filters activity
	A.5.5 Ensemble of Cut-MixMo with CutMix
	A.5.6 Preliminary ImageNet experiments
	A.5.7 Hyper-parameter

	A.6 Additional experiments and material for MixShare
	A.6.1 Complementary adjustments to MIMO procedures in MixShare
	A.6.2 A more nuanced discussion on kernel alignment
	A.6.3 Analysis of subnetwork features within the core network

	A.7 Additional experiments and material for MixViT
	A.7.1 Illustration of MIMO and MixMo transformers
	A.7.2 On encoder initialization and MixViT
	A.7.3 Further notes on MixViT overhead
	A.7.4 Further comparison to MixMo on CIFAR-100

