
HAL Id: tel-03952742
https://hal.science/tel-03952742

Submitted on 23 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to model based test generation and
monitoring strategies and their networking applications

Natalia Kushik

To cite this version:
Natalia Kushik. Contributions to model based test generation and monitoring strategies and their
networking applications. Computer Science [cs]. Institut Polytechnique de Paris, 2022. �tel-03952742�

https://hal.science/tel-03952742
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
2I

P
PA

X
X

X
X

Contributions to model based test

generation and monitoring strategies

and their networking applications
Habilitation à Diriger des Recherches de l’Institut Polytechnique de Paris

préparée à Télécom SudParis

École doctorale n◦626 École doctorale de l’Institut Polytechnique de

Paris (EDIPP)

Spécialité de doctorat: Informatique, données, intelligence artificielle

Thèse présentée et soutenue à Palaiseau, le 15/09/2022, par

NATALIA KUSHIK

Composition du Jury :

Rob Hierons

Professor, University of Sheffield Rapporteur

Pascale Le Gall

Professeur, CentraleSupélec Rapporteur

Franz Wotawa

Professor, Graz University of Technology Rapporteur

Burkhart Wolff

Professeur, Université Paris-Saclay Président

Roland Groz

Professeur, Grenoble INP UGA Examinateur

Tiziano Villa

Professor, University of Verona Examinateur

Djamal Zeghlache

Professeur, Télécom SudParis Examinateur

Abstract

The work presents a number of contributions in the area of model based testing (MBT), on

the one hand, and some MBT applications, on the other hand. MBT generally relies on a

formal specification of the system under test that later on allows to assure that its imple-

mentation conforms to the specification (or not). In our case, we mostly focus on the analy-

sis of reactive systems, i.e., the systems working in request-response mode and moreover

the behavior of these systems is sequential. Therefore, we mostly study transition or state

models that change their states when an input is applied and/or an output is produced.

Application areas of this work mostly cover networks and in particular dynamic and pro-

grammable networks whose components need to be thoroughly tested and verified. At

the same time, as the behavior of reactive systems is not only sequential but also (highly)

nondeterministic, we pay additional attention to the methods and techniques developed for

testing (with the guaranteed fault coverage) and monitoring against nondeterministic and

probably non-observable specifications. We discuss the problems that appear in the latter

case and draw a particular attention to the state identification issues in nondeterministic

specifications. We present the current state of the art in the area of state identification and

propose original solutions for some Finite State Machine (FSM)/Automata classes with the

complexity estimation. Note that some particular network components can also have rather

a combinational behavior, such as for example, forwarding devices, and thus we also draw

our attention to the logic circuit based testing and related fault models. At the same time,

sequential circuits can be considered as scalable representations for FSMs and thus, we

also consider testing against sequential circuits. Note that some of the contributions of this

work remain purely fundamental and we still do not have interesting case studies for the

specifications in question, however, for some others we discuss their applications in the

area of network management. Moreover, for particular “network-driven” test purposes, we

discuss other – sometimes simpler – testing and verification possibilities that allow under

certain assumptions, assure the correct functioning of network components.

3

Acknowledgements

First of all, I would like to thank the jury members who helped evaluating this work:

Rob Hierons, Pascale Le Gall, Franz Wotawa, Roland Groz, Burkhart Wolff, Tiziano Villa,

and Djamal Zeghlache, many thanks for accepting to attend this habilitation defense and

giving all your valuable feedback.

Particular acknowledgements go of course to the Reviewers, Rob, Pascale, and Franz,

and their comments and suggestions on the manuscript, as well.

Since the very first steps, my research activities were guided by my PhD advisor, Nina

Yevtushenko. Thank you Nina, for all your efforts, your enthusiasm and opportunities you

have opened. Thanks a lot to the professors and colleagues from my Alma Mater Tomsk

State University.

Since my arrival to Télécom SudParis, I was greatly accompanied by Ana Cavalli,

Stephane Maag, and Djamal Zeghlache, among other colleagues, of course. Thank you

very much for your trust and your kind support.

I would like to thank Benjamin Doerr who helped me all the way through the habilitation

process at IP Paris.

All my colleagues and co-authors whom I tried to mention in the manuscript, thank you

very much for the hard work. My previous and current students, thank you for the constant

motivation.

My dearest family members and my friends, your support is appreciated more than

anything, thank you very much.

5

Contents

1 Introduction 13

1.1 Motivation, context and research challenges 13

1.2 Major contributions . 16

1.3 Structure of the manuscript . 17

2 Preliminaries 19

2.1 MBT and monitoring; fault models, and guaranteed fault coverage 19

2.2 Finite State Machines and Automata . 22

3 State id. in MBT, formal verif. and monitoring 25

3.1 Reachability and distinguishability in FSM based testing and monitoring . . 25

3.2 ‘Gedanken’ experiments: problem statement and related work 30

3.3 Initial and Final State id. 34

3.3.1 Deriving preset and adaptive homing, distinguishing, synchronizing

experiments for nondeterministic FSMs/Automata 34

3.3.2 Evaluating the length of state identification sequences and the com-

plexity of related problems . 52

3.4 Making it more practical – possibilities to reduce the complexity, discussing

particular cases . 57

3.4.1 Nondeterministic FSMs with ‘good’ projections 58

7

Chapter 0 Contents

3.4.2 Probabilistic approach for test suite minimization against nondeter-

ministic specifications . 61

4 Testing against logic circuits 65

4.1 Background: logic circuits for describing combinational and sequential be-

havior . 66

4.2 Novel results in testing logic circuits . 69

4.2.1 Test generation based on logic circuit verification 69

4.2.2 (Novel) fault models when testing against the logic circuits and cor-

relation between them . 73

5 Testing and verification of dynamic and programmable networks 77

5.1 Application areas: dynamic networks and SDN 77

5.2 Verifying the topologies and requests in dynamic and programmable networks 80

5.3 MBT for SDN enabled switches . 82

5.4 MBT for SDN frameworks and related fault models 85

5.5 Formal verification for pro-active testing when detecting SDN races 88

6 Conclusions 93

6.1 Some concluding remarks . 93

6.2 Future / current work and perspectives 95

8

List of Figures

2.1 MBT general schema . 20

2.2 Complete observable nondeterministic FSM S 23

2.3 Input/Output Automaton S . 24

3.1 Extended FSM for the SCP . 29

3.2 FSM slice for the EFSM in Figure 3.1 . 35

3.3 Truncated successor tree for the FSM in Figure 3.2 36

3.4 Automaton A for SS derivation for the input/output automaton S 41

3.5 FSM M for the input/output automaton S 42

3.6 HTC for FSM S in Figure 2.2 . 46

3.7 P1,2,3 derivation scheme . 47

3.8 A complete observable nondeterministic FSM S where state 3 is d-reachable

from states 1 and 2 . 49

3.9 STC for FSM S in Figure 3.8 . 50

3.10 Complete non-observable nondeterministic FSM S 59

3.11 Deterministic projection Sd of the FSM S 60

3.12 DTC for FSM S in Figure 3.10 . 60

4.1 An example circuit in the form of AIG . 68

9

Chapter 0 List of Figures

4.2 Verilog description example . 70

4.3 SBF test suite fault coverage against SSFs and HDFs 74

4.4 SSF test suite fault coverage against HDFs and SBFs 74

4.5 HDF test suite fault coverage against SSFs and SBFs 75

5.1 SDN Topology considered for the races’ detection 89

10

List of Tables

3.1 Example FSM S . 38

3.2 S2
home automaton for the FSM S . 38

3.3 Mn transitions over the input idist . 56

4.1 Example LUT . 67

5.1 Fault Coverage for digital circuit fault models 85

11

Chapter 1

Introduction

1.1 Motivation, context and research challenges

As information and software technologies develop rapidly, more and more attention is paid

to the correct functioning of the related software and hardware components. Indeed, for

example, in critical systems guaranteeing the correct behavior of software/hardware com-

ponents and their compositions is crucial. At the same time, the complexity of discrete

event systems and in particular, communicating systems that are mainly considered in this

thesis, increases as well. The behavior of communicating systems such as communica-

tion protocols, services, etc. is often nondeterministic (and sometimes non-observable)

and thus, their testing and verification become more challenging.

Following the general tendency in testing such systems, we consider state models as

relative specifications [vBP94, DEM+10, LSKP96, Kön12]. We assume that a System un-

der Test (SUT) can accept the inputs and produce the outputs, moving from one state to an-

other. The internal system state is assumed to be unknown (Black box), and testing is per-

formed via the application of input sequences and the observation of the output reactions,

with further conclusions about the correctness of the SUT. Non-intrusive monitoring strate-

gies, on the contrary, aim at omitting the first step, i.e., no inputs are applied, the system be-

havior is only being observed and in this case, the community sometimes refers to it as pas-

sive testing (see, for example [LNS+97, CMDO09, CRM12, ACC+04, CGP03, MHN18]).

If the SUT can be adequately modeled by a Finite State Machine or an Automaton,

then the general testing steps should, on the one hand, check the output on each tran-

sition, and, on the other hand, verify that the implementation reached the state that was

13

Chapter 1 Introduction

expected. In fact, classical FSM-based testing techniques are known to start with the

checking sequence derivation [Hen64]. One can note three main steps that test genera-

tion strategies usually rely on: 1) to reach a certain designated state (from the initial one),

2) at a given state, to traverse (to cover) the outgoing transitions under each input, and

3) to distinguish the state that was reached from all others. To execute these steps, state

identification sequences for the specification machine are usually applied [LY94, LY96].

Homing and synchronizing sequences are used to identify the final or current state of the

machine, while distinguishing sequences are applied to uniquely conclude about its initial

state. Such sequences are well studied for complete deterministic FSMs and Automata,

where the first work of Moore is related to the 50-s of the last century [Moo56]. At the

same time, for nondeterministic and moreover non-observable and/or partial specifica-

tions, there are some gaps in the literature for the state identification problems, that this

work aims to cover. In particular, this comes to the first three Research Challenges (par-

tially) addressed in the manuscript (and related publications):

RC1: Methods and techniques for deriving homing, distinguishing and synchronizing se-

quences for nondeterministic and non-observable specifications should be provided;

RC2: The length of the state identification sequences should be assessed, including the

reachability of the upper bounds;

RC3: The complexity of the existence check and derivation of homing, distinguishing and

synchronizing sequences for nondeterministic specifications should be evaluated.

Note also that from the practical point of view, not always the upper bounds established

for RC2 are reachable; same for the complexity classes and related completeness/hard-

ness of the problems in RC3. Therefore, another branch of research directions of the

author (with the colleagues) is also devoted to studying specific FSM classes where the

worst complexity upper bounds are not reachable.

Obviously, state identification problems are essential for stateful systems, however, in

reality some communication components, such as for example, forwarding devices, can be

still adequately modeled with a single state. In this case, the output which is produced at a

given time instance only depends on the current input and does not depend on the state,

i.e., the behavior is not sequential but rather combinational. Generally, such systems can

be modeled as combinational logic circuits and their testing relies on covering the paths

in the specification circuit which go from primary inputs to primary outputs and consists

of traversing related logic gates. Mutation testing can be effectively applied in this case,

when certain faults are inserted directly in the combinational logic and an input pattern that

detects this fault is derived. One of the well known faults in this case are Single Stuck-at

faults when a given gate output is assumed to be stuck at Constant 1 or Constant 0 (see,

14

Chapter 1 Introduction

for example [KPKR95, MMS15, Pat05]). Related fault models have shown their effective-

ness in hardware testing, however their applicability to testing communication components

still remains challenging. At the same time, logic circuits can serve as a scalable represen-

tation for the FSMs and can be considered at specifications at a lower abstraction level.

However, in this case, sequential circuits are considered where the configurations of the

latches correspond to FSM states.

Therefore, novel (networking related) fault models and their expressiveness w.r.t. the

well studied single stuck-at faults is also interesting to investigate. This work covers the

aforementioned issues through addressing the following challenges:

RC4: The effectiveness of the well studied fault models for logic circuits should be evalu-

ated for the up to date network components;

RC5: Novel fault models for logic circuit testing should be proposed; their effectiveness

should be evaluated w.r.t. the single stuck-at faults.

As mentioned above, the main application area of the results is the area of networks

and their analysis. Moreover, classical or traditional networks and their modeling with state

or transition systems have been largely studied (for example, the work [vBP94] summa-

rizes well the related achievements in 90-s of the previous century). We thus make an

attempt, through the collaborations with networking research groups, mainly at Télécom

SudParis and Airbus Defence and Space, to provide novel model based test generation

strategies for dynamic and programmable networks. In this case, the general underlying

topology is given beforehand, and this topology mostly describes the physical layer or the

fixed non-changeable resources. The virtual links can appear and disappear w.r.t. these

physical/resource possibilities. Otherwise, a link can be always kept but its parameters

(weights) can dynamically change their values. For example, a bandwidth that is assigned

to a given link can be changed dynamically1. These networks and their related testing and

verification techniques are currently developing and in this work, we aim at addressing the

following related challenges:

RC6: Novel verification strategies should be proposed for programmable and dynamic net-

works;

RC7: Once verified the dynamic/programmable network description, one should assure

the implementation indeed conforms to the user request, i.e., novel MBT techniques should

be proposed for that matter.

1In this case, we assume the potential changes in time, when the parameter values belong to a certain

(finite) set.

15

Chapter 1 Introduction

This work (partially) addresses the challenges mentioned above and presents the re-

lated contributions that were obtained by the author in collaboration with the researchers

from Télécom SudParis, the Ivannikov Institute for System Programming of the Russian

Academy of Sciences, Tomsk State University, Sabanci University, American University of

Sharjah, National Taiwan University, and Airbus Defence and Space. In Conclusions, the

author (critically) evaluates these contributions and discusses the future research chal-

lenges.

1.2 Major contributions

The main contributions of this work can be informally divided into two parts: i) fundamen-

tal studies devoted to test generation and monitoring strategies for reactive systems, that

can be described as automata or FSMs (with the guaranteed fault coverage, whenever

possible); ii) MBT and monitoring strategies for programmable and dynamic networks, i.e.,

the application of (some fundamental) results. Note that in many cases, contributions from

the first part stay rather theoretical as when testing network components in the second

part, the specifications quite often get to be much simpler, or on the contrary, much more

complex. We nonetheless, continue working in both directions, on the one hand, study-

ing various specifications for possibly nondeterministic and partial reactive systems and

solving MBT related problems, and on the other, we continue deriving and applying formal

models and methods for up to date network components, using existing test generation

strategies and developing novel approaches.

The main contributions of this work can be therefore summarized as follows:

• We provided novel techniques for deriving state identification sequences for non-

deterministic, possibly non-observable FSMs; for some classes of input/output au-

tomata we also provided the methods for deriving homing and synchronizing se-

quences.

• We filled in some gaps in the estimation of the complexity of the existence check and

derivation of state identification sequences for nondeterministic FSMs; note that in

a general case, the existence check problem remains PSPACE-complete for preset

sequences.

• We estimated the length of the state identification sequences and showed that differ-

16

Chapter 1 Introduction

ently from deterministic FSMs, moving from preset to adaptive experiment strategy2

would not necessarily help to get a polynomial length of the sequence of interest.

• Given the unpromising complexity results, we studied and identified specific classes

of nondeterministic machines where the worst complexity upper bounds are not

reachable.

• At a lower abstraction level, we proposed novel fault models based on logic circuits

and investigated their effectiveness and their correlation with the known single stuck-

at faults.

• We investigated the applicability of the logic circuit based fault models for testing

programmable network components, in particular, for testing SDN enabled switches.

• We proposed novel fault models, in fact that omit the specification at all, when testing

SDN frameworks; we also adjusted model checking based testing approaches for

testing SDN frameworks where the test purposes are related to potential races.

• We proposed verification techniques for dynamic and programmable network topolo-

gies, as well as their monitoring strategies using model checking approaches.

1.3 Structure of the manuscript

The manuscript consists of 6 chapters. Chapter 1 contains the Introduction which the

Reader currently follows.

Chapter 2 briefly presents the necessary background. We start through introducing

model based testing in general. As one of the advantages of the related techniques is

their exhaustiveness, we discuss the fault coverage, and to be able to guarantee the latter

(in some cases) we come to the fault models. Finally, we introduce the main state based

models that are used in this work; those are mainly finite state machines, that being at

current state, accept an input, produce an output, moving to the next state. Note that this

model requests that each input is followed by an output which is a very strict constraint that

however allows providing various testing techniques including efficient state identification.

Nevertheless, we also investigated other models, such as input/output automata where the

constraint mentioned above is not necessarily present.

2In an adaptive strategy, the next input to be applied is chosen based on the output reaction to the

previously applied inputs.

17

Chapter 1 Introduction

Chapter 3 contains some selected original results in the area of state identification for

nondeterministic FSMs. We focus on the preset and adaptive strategies for homing, syn-

chronizing and distinguishing sequences. We analyze the complexity of the corresponding

existence check and derivation problems and discuss possible reductions for this complex-

ity. In particular, we identify some specific FSM classes where the worst complexity upper

bounds are not reachable.

Chapter 4 continues the contributions to the model based testing strategies, however

in this case we use a lower abstraction level and come to logic circuits as related specifi-

cations. For the systems that have a single internal state, i.e., rather ‘stateless’ systems,

the input uniquely determines the output to be produced, differently from the sequential

behavior (as in FSMs for example), where the current state matters. Stateless systems

can be modeled by combinational circuits and in fact, there can be found some network

components for which the corresponding model is quite adequate. An example is a switch

or a forwarding device which given the values of the network packet parameters, forwards

it accordingly (the output port is identified). We therefore present some logic circuit based

fault models and the original results on the correlation of these models. Both, combina-

tional and sequential circuits are considered, as the latter can also be considered as a

scalable representation for an FSM.

Chapter 5 focuses on the networking applications of the model based testing strate-

gies. We study dynamic and reconfigurable networks and discuss how such dynamicity

can simplify or complicate the testing and verification steps. Some stateful and stateless

specifications have been derived for the network components of interest and we discuss

the related test objectives. Note that these objectives reflect not only functional aspects,

i.e., conformance testing, but also specific non-functional issues that can occur in dis-

tributed systems, such as for example, races in channels.

Chapter 6 summarizes the results presented in the manuscript. We also discuss a

number of perspectives concerning the current and future research directions in the area

of model based testing, its long standing problems such as, for example state identification,

and its current applications in distributed systems, for example in (future) networks.

18

Chapter 2

Preliminaries

This chapter aims at (briefly) presenting the necessary notions and introducing the nota-

tions that are utilized in the manuscript.

2.1 MBT and monitoring; fault models, and guaranteed

fault coverage

When testing any software or hardware systems, we are usually interested in providing

certain guarantees. Ideally, we would like to conclude that a given system has no bugs

at all, no security issues, etc. However, this task generally is not solvable. At the same

time, introducing certain assumptions about the system under test or under verification,

can allow drawing some conclusions about the absence of the bugs of certain types, or it

can let us assure that a given system possesses certain properties. The more bugs (or the

bugs of more types) are guaranteed to be not present is the system, the higher is the fault

coverage of the related testing technique. We however cannot provide any guarantees

unless we provide a formal specification of the system under test/verification. Therefore,

when it comes to MBT, we usually have the System (or Implementation) under Test or

SUT/IUT and its formal description - specification.

The system specification is used to derive the test sequences or test cases. A finite

set of test sequences or a test suite, is applied to an IUT and the output reactions are

observed. If the output reactions observed are as expected1 by the specification, then the

1They can be exactly the same, or for example, included in the set of allowed possible reactions, etc.

19

Chapter 2 Preliminaries

A set of system

requirements

IUT

Formal Model
Test sequences

R
E

S
U

LTS

Test Suite

Output response

Figure 2.1: MBT general schema

test suite passed, otherwise the test suite failed. A general schema of the MBT is shown

in Fig. 2.1.

Once a system specification is derived, we assume that the implementation is modelled

using the same formalism. For example, if a system behavior is described as a finite state

machine then an implementation can only have two types of faults, namely transition and

output faults; for combinational and sequential circuits as system specifications classical

faults are, for example, single stuck-at faults. We aim as deriving test suites with the

guaranteed fault coverage, i.e., we would like to assure that each output and/or transition

fault is detected by the test suite T S. However, when it comes to the observation of the

output reactions and their comparison with the expected ones, as mentioned above, the

conformance relation is what matters. Simply, we can assume the equivalence or equality

in this case, but not necessarily - another interesting conformance relation is inclusion or

reduction, when an implementation does only what is allowed by the specification and no

more than that. Therefore, in order to provide the guarantees when deriving test suites, a

fault model is necessary.

A fault model [PYvB96] usually is a triple < S ,@,FD > where S is the specifica-

tion or the formal description of the system behavior, @ represents the conformance re-

lation between an implementation I under test and the specification S , while FD is a

fault domain which limits the possible implementations, i.e., I ∈ FD. We are interested

in an exhaustive test suite that detects each implementation I ∈ FD that is not conform-

ing to S , i.e., I 6@ S . Depending on how the implementations from FD are given, one

can consider black, white and grey box testing methodologies. Generally, in the case of

black box, we know nothing but the maximum number of states of each machine I ∈ FD

which is defined by the corresponding conformance relation.

20

Chapter 2 Preliminaries

[Vas73, Cho78, SD88, FvBK+91]; in white box testing scenario, we assume that all the

potential faulty implementations are explicitly enumerated [PM64], [KYC14a] and thus,

the fault diagnosis2 can be performed at once with testing [GvBD93, EPYvB03]; for the

grey box, a mutation machine can be derived [EDYvB12, KPY99, PNR16], such that sub-

machines of this machine represent potential faulty implementations. In this manuscript,

we are mostly interested in black and white box testing which will be further applied to

testing network components.

Note that the testing strategy described above is often referred to as active testing,

which is, in fact, used to emphasize the possibility of controlling the IUT. Indeed, note

that the input sequences are being applied to the IUT in Fig.2.1 and only after the testing

conclusions are drawn. This is however, not always possible, in particular when it comes

to certain crucial network components that cannot be tested in a stand alone mode. In this

case, only observations are available and these observations are made where observation

points are available. This is where monitoring or passive testing becomes of a big help (see

for example, [KLCY16], [CRM12, ACC+04, LNS+97, LMM16, Mil98, MA01]).

In the general case, we can assume that input sequences coming to the IUT as well

as its output reactions can be observed by the tester or the monitor. For each input/output

sequence α/β the tester usually checks that this input/output pair does not violate the

specification (this can be done for example, via the simulation of the behavior of S on the

input sequence α). If on the contrary, a violation is observed for a given input/output pair,

then the tester returns the verdict ‘fail ’. A corresponding input sequence α can be then

alerted together with the verdict.

For the testing and monitoring strategies discussed in the work, we mostly consider S
to be described as a corresponding finite state machine or an automaton. The former can

be represented by a sequential circuit in a scalable way. For a system that does not have a

sequential behavior, the specification S can be provided as a corresponding combinational

circuit. These models are formally introduced further in the manuscript.

2Note again, that we do not speak here about the software debugging [WGL+16] directly, however, the

latter is possible if there is an established correspondence between (some) faults in the specification S and

those in the source code.

21

Chapter 2 Preliminaries

2.2 Finite State Machines and Automata

A finite state machine (FSM) [Gil62], or simply a machine (sometimes referred to as an

automaton with output [TB73]), is a 5-tuple S =< S, I,O,hS,Sin > where S is a finite

nonempty set of states with the set Sin ⊆ S of initial states, I and O are finite input and

output alphabets, and hS ⊆ S× I×O× S is a transition relation. FSM S is non-initialized

if Sin = S and in this case, we omit the set Sin of initial states and a non-initialized FSM

is denoted as a 4-tuple < S, I,O,hS >. FSM S is an initialized FSM if |Sin| = 1 and FSM

S with the initial state s j is denoted S/s j. Otherwise, we write S =< S, I,O,hS,s0 > to

denote the fact that FSM S is initialized with the initial state s0. If 1 < |Sin|< |S| then FSM

S often is called weakly initialized.

FSM S is nondeterministic if for some pair (s, i) ∈ S× I, there exist several pairs

(o,s′) ∈ O× S such that (s, i,o,s′) ∈ hS; otherwise, the FSM is deterministic. FSM S is

observable if for every two transitions (s, i,o,s1), (s, i,o,s2) ∈ hS it holds that s1 = s2. FSM

S is complete if for every pair (s, i) ∈ S× I, there exists a transition (s, i,o,s′) ∈ hS; oth-

erwise, the FSM is partial. An example of a complete observable nondeterministic FSM

(taken from [YKK19]) is shown in Figure 2.2. We will not discuss hereafter what are the

reasons for the specifications of interest to be nondeterministic, as in fact this question is

rather philosophical. We note that in reactive communicating systems, such as telecom-

munication protocols, services, etc. nondeterministic behavior can be stated directly in

the specification, due to possible output responses to the same inputs at the same states

(optionality), or it can also come from partial observability and controllability of an SUT

[EGGC09]. It is also possible that for the compactness of the formal specification of an

SUT, its nondeterministic specification is provided, instead of an equivalent deterministic

one.

In FSMs, the behavior relation hS is extended to input and output sequences in usual

way and given an input sequence i1 . . . il , we say that an output sequence o1 . . .ol ∈
out(s, i1 . . . il) if and only if there exists a state s′ such that (s, i1 . . . il,o1 . . .ol,s′) ∈ hS.

Given an input/output pair io and a state s of a complete FSM S, a subset of states that

contains each state s′ of FSM S such that (s, i,o,s′)∈ hS is the io-successor of state s. The

io-successor of state s can be empty and then sometimes we say that the io-successor of

state s does not exist. A trace tr of FSM S at state s is a sequence of input/output pairs

which label consecutive transitions starting from state s, tr = i1o1 . . . ilol (or i1/o1 . . . il/ol).

A sequence i1 . . . il is an input sequence of the trace while o1 . . .ol is an output sequence.

If FSM S is complete and observable, given state s and a trace γ of the FSM at state s,

the γ-successor of state s is state s′ (in fact, a singleton {s′}) which is reached from s

22

Chapter 2 Preliminaries

1 2

3 4

b/0

a/1

a/0
b/1

b/1 a/0

b/0

b/0

a/1

b/0
b/1

a/1

a/0

Figure 2.2: Complete observable nondeterministic FSM S

via the trace γ. If FSM S is non-observable then the γ-successor of state s is the set of

all states which can be reached from s via the trace γ. If γ is not a trace at state s then

the γ-successor of state s is empty. Given a non-empty subset S′ of states and a trace γ

of the FSM, the γ-successor of S′ is the union of γ-successors over all states of the set

S′. For example, for the FSM in Figure 2.2 an aba/001-successor of the subset of states

S′ = {1,2} is the set {2,4} while an aba/111-successor of the set S′ = {1,2} in empty

(or does not exist).

The notion of an FSM is very close to the Automaton model that does not support

output responses, i.e., automaton transitions are labeled by actions that are not divided into

inputs and outputs and usually these actions are called inputs or, simply, letters. One may

eliminate outputs at each transition of a given FSM in order to get the underlying automaton

that can be nondeterministic for a nondeterministic FSM. Note however, that there can be

more complex definitions for automata and some of them we utilize in this manuscript. For

example, the actions can be split into inputs and outputs, however, differently from an FSM

in the automaton behavior not each input is necessarily followed by an output.

A (non-initialized) Input/Output Automaton is a 4-tuple S =< S, I,O,TS > where S is

a finite set of states; I and O are finite non-empty disjoint sets of inputs and outputs,

respectively; TS ⊆ S× I×S∪S×O×S is a transition relation where 3-tuples (s, i,s′) ∈ TS

and (s,o,s′) ∈ TS are transitions. The machine can contain a special output δ ∈ O that

represents the quiescence [Tre96] at the states where only the transitions under inputs

are defined. In some sense, it means that no output can be produced after the transition

is executed, and this fact is defined by this special output δ. An example of such an

automaton is given in Figure 2.3. We note that this automaton is even more specific,

23

Chapter 2 Preliminaries

s1

s3

s5

s2

s4

i1

i2

δ

i1

i2

δ

o1

o2

o1

o2i1

i2

δ

Figure 2.3: Input/Output Automaton S

it contains for example a property that not only inputs and outputs are split into disjoint

sets but also when at a state where an input is applied, no output can be produced and

vice-versa. We study this special class of automata further in the manuscript.

The FSM and automata models briefly introduced above (and their modifications) will

further serve as specifications for testing purposes. We will present some of the analy-

sis problems for the related models and our related contributions in the area, which help

improving testing or monitoring strategies for communicating systems.

24

Chapter 3

State identification in MBT, formal

verification and monitoring

The chapter is devoted to the presentation of some existing and original results in the area

of state identification of finite state systems. Most of the results that contain the author’s

contributions, are obtained for (nondeterministic) FSM state identification. Note that the

problem of state identification is one of the major problems in FSM based testing and we

first present the relevant motivation, referring the Reader to the so-called W-method (and

its modifications) [Vas73, Cho78].

3.1 Reachability and distinguishability in FSM based test-

ing and monitoring

Currently, there exist a number of FSM based test generation strategies, and related meth-

ods keep improving. For a survey of such methods, the Reader can for example, refer to

[DEM+10], where a short description of them is presented, as well as the relevant experi-

mental results (on the test suite length, in particular). All these methods such as HSI, DS,

etc. somehow represent an improvement of the so called W-method that was originally

proposed by Vasilevskii [Vas73], and later adjusted by Chow [Cho78]. Below, we briefly in-

troduce the W-method and some related constraints for the exhaustiveness of the returned

test suite.

The method is used for deriving test suites with the guaranteed fault coverage against

25

Chapter 3 State id. in MBT, formal verif. and monitoring

complete deterministic machines. Note that the specification machine should also be re-

duced (minimal), which means that its states are pair-wise distinguishable. The notion of

distinguishability will be introduced a bit later as it refers to the initial state identification.

In fact, a distinguishing sequence for a pair or a bigger subset of states allows to uniquely

determine the initial state of this subset after the application of the sequence (and the

observation of the corresponding output response). When the machine is deterministic it

means that the output reactions on this sequence are pair-wise different.

Generally, in W-method, given the initialized specification FSM S , one should first reach

each FSM state, then traverse each transition at the reached state and in the end, append

a so called characterization or W set. The latter consists of the sequences distinguishing

each state pair. The sequences that allow reaching each FSM state from the initial one,

form the reachability or state cover set, correspondingly. In other words, we first reach

a state, assure that the output at the next transition is correct, and then assure that the

reached final state in the implementation is exactly the same as it was expected in S 1.

Note that this original version of the method has been modified in various ways, for

example, in order to reduce the height and/or the width of the resulting tree which is ob-

tained via the concatenation of the related reachability set, the input alphabet and the W

set. A general idea behind such optimization is to substitute the W set with a smaller one.

If there exists a distinguishing sequence for the specification machine, this sequence can

be thus appended instead of the W set (DS method). Otherwise, only targeted sets can

be appended as well which distinguish the reached state from any others (HSI method, for

example). As mentioned above, the Reader may check a survey [DEM+10] that presents

various W modifications such as DS, HSI, H, etc., and moreover supports the results with

the experimental evaluation. We will skip this part as we mostly contribute to the deriva-

tion of the related sets, but we note that the obtained results can be and are utilized in

the modified W versions. In the current chapter, we will instead focus on the presenta-

tion of the (original) results for the reachability and distinguishability for (nondeterministic)

specifications.

When it comes to system verification [Hol03] which generally consists of checking cer-

tain properties over it, or otherwise, when performing a non-intrusive monitoring of an SUT,

reachability analysis can be also of help. In fact, knowing a current state of the system can

in some cases reduce the verification/monitoring efforts. Assume that for a given SUT a

set P = {p1, p2, . . . , pk} of properties should be checked. Assume also that the specifi-

1This is done under the assumption that the number of implementation states is no bigger than that of the

specification.

26

Chapter 3 State id. in MBT, formal verif. and monitoring

cation S contains n states s1,s2, . . . ,sn, respectively. Not all properties can be relevant for

checking at state s j, and a subset of properties Pj ⊆ P can be defined (of those that indeed

should be checked). In this case, when verifying the system behavior we could first bring

the system to a known state s j and after that check the subset Pj ⊆ P. If the system is

tested passively, and no input stimuli are allowed, then the state s j can sometimes be de-

duced from the SUT input/output traces being observed. And later on again only relevant

properties would be checked.

As the last point forms one of contributions of the author, in particular, on the use

of the final state identification for improving monitoring strategies [KLCY16], we will give

more details here and illustrate the idea on an example. In fact, let us consider a Simple

Connection Protocol (SCP) for that matter. The SCP is a protocol designed to ‘connect’

two entities, negotiating the quality of service at the connection establishment [ACC+04].

The SCP allows connecting an entity called the upper layer to an entity called the lower

layer. The upper layer dialogues with SCP to fix the quality of service (QoS) desirable

for the future connection. Once this negotiation succeeds, the upper layer comes to the

lower layer requesting the establishment of a connection satisfying the quality of service

previously agreed on. The lower layer accepts or refuses this connection request. If the

lower layer accepts the request, then it informs the upper layer that the connection was

established and the upper layer can start transmitting data. Once the transmission of data

is finished, the upper layer sends a message to close the connection. If the lower layer

refuses the connection, the system allows the upper layer to make three requests before

informing the upper layer that all the connection attempts failed. If the upper layer would

like to be connected to the lower layer, it is necessary to restart the QoS negotiation from

the beginning. After the connection gets established (accepted), the upper layer can send

data to the lower layer with a guaranteed QoS. Each time the upper layer sends any data,

the lower layer acknowledges the total amount of received data. The FSM describing the

behavior of this protocol is shown in Figure 3.1. Note that this FSM is more complex

than that presented in Section 2, as it contains context variables, predicates and input

parameters. It is an Extended machine whose formal definition we omit due to the room

constraints; we invite the Reader to see such a definition, for example in [PBG04]. These

machines sometimes allow to represent the SUT behavior in a more compact way, partially

hiding the states, for example, in the vector of context variable values. We deal with a

similar model in Chapter 5, namely we construct extended automata when analyzing the

possibilities of races in distributed architectures.

For the SCP, we use an Extended FSM (or EFSM for short) that has the following inputs

and outputs [ACC+04]. The upper layer can request the desired QoS level with the mes-

27

Chapter 3 State id. in MBT, formal verif. and monitoring

sage req(QoS) with QoS in the range [0,3]. The lower layer replies whether it can support

the desired QoS level or not with the messages nosupport(QoS) or support(QoS). The

upper layer then issues the message conn (an output) trying to establish the connection.

The replies can be:

• accept(QoS) if the connection guarantees QoS,

• re f use if the lower layer is busy,

• abort if more than two refused attempts have occurred.

The upper layer then can issue the data(size,value) message to transmit the data. Each

data message is acknowledged with the message ack(DataCountOut). At any point, if

the upper layer decides to end the connection, the message reset can be sent. The reset

message should be replied with an abort message by the lower layer. Finally, any input at

a wrong state should be replied with an error message (err).

Assume that for the SCP protocol we need to check the following properties.

• Receipt confirmation: When some data are sent to the lower layer, an acknowledge-

ment (ack) should be sent to the upper layer, i.e., the following input/output sequence

should be observed: data/ack.

• Connection attempt management : At least two refused attempts should be allowed

before definitely rejecting the upper layer connection, which corresponds to the

conn/re f use.conn/re f use.connect/abort input/output sequence.

• Client communication termination: Any successful connection must be properly ter-

minated; the upper layer sends a reset after the connection was established, and

before requesting a new QoS or connection, the abort message has to be produced.

Thus, the following input/output sequence should be observed: conn/accept(QoSOut).−
.reset/abort.

As mentioned above, not all the properties are pertinent to each EFSM state. There-

fore, when monitoring the SUT, after determining its current state only properties that are

related to that state can be checked. For example, if the IUT is at state s3 the first property

should be checked. However, if the SUT is at state s2, there is no need to check this prop-

erty. At the same time, there exist many non-functional requirements that can be checked

28

Chapter 3 State id. in MBT, formal verif. and monitoring

s1 s2

s3

T1:req(QoS) / nosupport(QoSOut)

QoSOut := QoS

T2: conn,data(size, value) / err

T3: reset / abort T4:req(QoS) /

support(QoSOut)

ConnQoS := QoS

QoSOut := ConnQoS

T5:conn, TryCount < 2 & SysAvail

= 0 / refuse

TryCount := TryCount + 1

T6: req(QoS),data(size, value) /

err

T8:conn, TryCount ≥ 2 /

abort

TryCount := 0; ConnQoS :=

0;

DataCount := 0

T9: reset / abort TryCount

:= 0; ConnQoS := 0;

DataCount := 0

T7:conn, TryCount < 2

& SysAvail = 1 / accept

(QoSOut)

T10:data(size, value) /

ack(DataCountOut)

DataCount := DataCount + size

DataCountOut := DataCount

T11:req(QoS), conn / err

T12:reset / abort

TryCount := 0;

ConnQoS := 0;

DataCount := 0

Figure 3.1: Extended FSM for the SCP

at state s3 - one can verify, for example, that the length of transferred data does not ex-

ceed the available disk space, or that the QoS provided is indeed the one guaranteed at

the QoS negotiation phase. Note that checking such non-functional properties while the

SUT is not at state s3 puts an unnecessary load on the monitoring system. Determining

the current state of the SUT can be done through construction of possible homing and/or

synchronizing sequences, for example, up to a given length. Further, during the system

monitoring the observed sequence is compared to the pre-built ones, and if two coincide,

then the current state is uniquely determined and only relevant state properties are thus

checked.

Note that in some cases, even the reducing of uncertainty of the current system state,

can already minimize the monitoring or verification efforts, and for that matter so called

S′-synchronizing sequences can be used [San05] (the final state is not necessarily unique

29

Chapter 3 State id. in MBT, formal verif. and monitoring

but definitely belongs to the set S′). We later on present some contributions that were

obtained in the area of state identification for nondeterministic specifications, that can thus

help, optimizing testing and/or verification efforts.

3.2 ‘Gedanken’ experiments: problem statement and re-

lated work

Distinguishing, homing and synchronizing experiments for FSMs form a set of so called

‘gedanken’ experiments [Moo56] that have been introduced by Moore, in the middle of

the previous century. An experiment in this case is the process of applying an input se-

quence (or a set of those), observing an output reaction of the machine under experiment

(if needed) and drawing a conclusion about the final or the initial state of this machine.

As mentioned above, homing and synchronizing sequences (HS and SS, respectively)

are used to identify the final or the current state of the machine, while distinguishing se-

quences (DS) are built for the initial state identification. The way the experiment is carried

out defines the type of the experiment, which can be either preset or adaptive; the experi-

ment is adaptive if the next input to be applied is chosen based on the previously observed

outputs, and the experiment is preset if the outputs need to be observed only at the end

of the experiment, or need not to be observed at all. A preset experiment is thus rep-

resented by just an input sequence, whereas an adaptive experiment is represented by

a tree-based structure which can be referred to as an adaptive sequence or a test case

[LY94, PY05]. Therefore, when it comes to state identification for FSMs and automata,

usually we are interested in the existence check of the corresponding preset or adaptive

experiment; further, a derivation strategy for such experiment should be proposed. Along-

side, the complexity of both problems is another challenging issue, as well as the length of

the corresponding sequences or the size of the relevant tree-based structures. Note that

studying these tasks for nondeterministic FSMs/automata and some their classes is one of

the main areas of interest of the author. This chapter therefore briefly presents the related

contributions, and to better highlight those, we first start with a short presentation of the

related work.

The problems of checking the existence and derivation of state identification sequences

have been widely investigated in the past seventy years. Major results obtained in this

area mainly concern the deterministic FSM case: for non-initialized complete deterministic

minimal machines the existence decision and derivation of an appropriate sequence for

30

Chapter 3 State id. in MBT, formal verif. and monitoring

the final state identification (HS and SS) can be performed in polynomial time [San05].

Moreover, in some cases, such sequences always exist, such as for example, an HS of

polynomial length (w.r.t. the number of FSM states) for a complete deterministic connected

reduced FSM.

However, even for the ‘good’ cases of HS and SS for deterministic FSMs the problem

becomes much harder when it comes to constructing a shortest HS or SS. Indeed, the

problem of deriving a shortest HS/SS is NP-hard even for complete non-initialized deter-

ministic minimal FSMs [San05].

DSs make the above problems much harder; indeed, even for complete deterministic

FSMs, the existence check of a DS is PSPACE-complete [LY94]. Note that in some cases,

the DS existence check complexity can be reduced via an adaptive strategy. A remarkable

example of such complexity reduction for complete deterministic FSMs has been proposed

in [LY94] where the existence check of an adaptive distinguishing sequence has been

proven to be solved in polynomial time with respect to the number of FSM states.

For nondeterministic FSMs, the paper [ACY95] can serve as another example - the ex-

istence check of an adaptive distinguishing sequence for a pair of states of an observable

machine can also be solved in polynomial time. Since then, adaptive strategies gained

a lot of attention, as the complexity in some cases can be indeed reduced dramatically

and some of the contributions presented below, cover adaptive strategies for the state

identification, with the polynomial complexity.

For nondeterministic machines, again, the problems listed above become harder. In-

deed, as shortest synchronizing sequences can have exponential length in this case [IS04],

their existence check and derivation cannot be performed in polynomial time. At the same

time, distinguishing a state pair in an observable nondeterministic FSM can also require a

sequence of an exponential length [SEY07] (it is linear for complete deterministic FSM).

When it comes to the derivation techniques for preset and adaptive state identification

experiments, existing strategies, in our opinion, can be classified into three large groups.

Methods of the first group follow a classical successor tree based approach. Techniques

from the second group rely on an iterative derivation of the experiment of interest; induc-

tion base in this case is usually a set of sequences merging or distinguishing (separating

or splitting) state pairs. The third group of techniques is based on the use of various

solvers for the final state identification2. Successor tree based approaches have been

2The author partially contributed to all these groups for nondeterministic machines and their ‘gedanken’

experiments.

31

Chapter 3 State id. in MBT, formal verif. and monitoring

largely investigated for deterministic complete automata and FSMs; the interested Reader

can for example refer to [San05] where such methods are well presented for homing and

synchronizing sequences. Tree based approaches can be utilized when constructing dis-

tinguishing sequences as well, moreover, not only a successor tree but also a splitting tree

can be exploited [LY96]. The difference between these two is that in a splitting tree, nodes

can be labelled by input sequences or by related subset of states; successor tree unrolls

the behavior of the machine and usually its nodes are labelled by state subsets. Note that

splitting tree approaches are utilized for deterministic specifications to make sure that such

state subset partitioning is always possible.

This group of techniques, in particular, was studied by the author during her PhD

[Kus13]3 at Tomsk State University, Russia, under the supervision of Prof. N. Yevtushenko.

In fact, methods for deriving homing and distinguishing experiments were proposed (also

published in [KEY11]) and it has been shown that for nondeterministic but observable

FSMs, the truncated successor tree can be constructed in the following way. The root of

the tree for a complete FSM S =< S, I,O,hS > is labeled with the set of the pairs sp,sq,

where sp,sq ∈ S, sp 6= sq; the nodes of the tree are labeled by sets of pairs of the set S.

Edges of the tree are labeled by inputs and there exists an edge labeled by i from a node

P of level j, j ≥ 0, to a node Q such that a pair sp,sq ∈ Q if this pair is an io-successor

of some pair from P. The set Q contains a singleton if io-successors of some pair of P

coincide for some o ∈O. If the input i distinguishes each pair of states of P, then the set Q

is empty. Given a node P at the level k, k > 0, the node is terminal if one of the following

conditions (truncating rules) holds.

Rule-1: P is the empty set.

Rule-2: P contains a set R without singletons that labels a node at a level j, j < k.

Rule-3: P has only singletons.

These rules allow establishing the conditions for existence check and derivation of an

HS for a nondeterministic FSM. Given a path of the truncated successor tree from the root

to a node labeled with the set of singletons or with the empty set, the input sequence α

that labels this path is an HS for the FSM S. At the same time, if the successor tree has

no nodes labeled with a set of singletons or with the empty set, i.e., is not truncated using

Rules 1 or 3, then FSM S is not homing.

The same technique can be used for checking the existence and derivation of an SS for

the FSM S, the last rule just requires that all the singletons are the same. Similarly, when it

is used for deriving a DS, Rule 3 checks for containing a singleton, and the corresponding

3This part therefore appears in the related work and not in the contributions of the current thesis.

32

Chapter 3 State id. in MBT, formal verif. and monitoring

branch thus becomes unpromising. If the successor tree has no nodes labeled with the

empty set, i.e., is not truncated using Rule 1 then there is no distinguishing sequence for

S.

In iterative derivation approaches (second group), state identification sequences are

usually pre-calculated for state pairs; in fact, for deterministic automata and their SSs it

also serves as a criterion for the existence check [Nat86, Epp90]. Once state identification

sequences are derived for each state pair, one can start with the first state pair and apply

the corresponding sequence, then another (third) state is added to the set of states. The

behavior of the machine is simulated on the first sequence and the related state successors

are computed. Whenever these successors are not singletons, the corresponding state

identification sequence for the resulting pair is appended to the initial sequence. Another

state is then added to the set of states and the process is repeated iteratively. Such

approach allows building HSs and SSs, accordingly, moreover, for SSs it automatically

proves the cubic upper bound on their length [San05, Epp90].

Currently, the application of solvers for the existence check and/or derivation of state

identification sequences becomes very popular. For an SS derivation of potentially partial

nondeterministic automata, the interested Reader can refer to [SV19, SV18], where the

problem is reduced to SAT solving via a corresponding encoding of inputs and transitions

of the machine. SAT and constraint solving has been also applied for the checking se-

quence generation [NPR18, PAGO19]. In this case, a checking sequence is utilized to

distinguish a potential mutant from the specification and to some extent can be treated as

a distinguishing sequence for a direct sum of the specification and implementation FSMs,

i.e., a sequence identifying the initial state of the machine with two initial states. Note that

in the cited works even non-classical FSMs are considered, namely the authors take into

account symbolic inputs and outputs.

Below, we present some of the original results, in the area of the existence check and

derivation of preset and adaptive homing, distinguishing and synchronizing sequences for

nondeterministic FSMs and automata.

33

Chapter 3 State id. in MBT, formal verif. and monitoring

3.3 Novel results in the area of (adaptive) experiments for

initial and final state identification

3.3.1 Deriving preset and adaptive homing, distinguishing, synchro-

nizing experiments for nondeterministic FSMs/Automata

Deriving preset HS, DS and SS for nondeterministic FSMs - successor tree based

approach

Similar to the existence check and derivation approaches for the state identification, we

start with the successor tree. As mentioned above, first results were obtained during the

PhD of the author and thus, were listed as a related work. Hereafter, we note that these

results are very well adjustable for the case of non-observable machines.

In particular, in [KLCY16] we were interested in deriving a set of non-redundant homing

sequences of length l or less, for a subset S′ ⊆ S, |S′| > 1, of a given FSM S that can

be non-observable. For that matter, one can build a similar truncated successor tree.

However, this time the root of the tree is labeled with the set S′, while the nodes of the tree

are labeled by state subsets such that none of them is a proper subset of another. Edges

of the tree are labeled by inputs and there exists an edge labeled by an input i from a node

labeled by P at level j, j ≥ 0, to a node labeled by Q if Q is the set of i-successors of all

subsets of P. The set Q contains a singleton if non-empty io-successors of some subset

of P coincide for some o ∈O or if corresponding non-empty io-successors of some subset

of P do not intersect. Sets which are proper subsets of other items are deleted from the

set Q.

Given a node labeled with the set P at the level k, k > 0, the node is terminal if one of

the following conditions holds.

Rule-1: P contains only singletons.

Rule-2: The depth of the node P is greater than l.

If the successor tree has no nodes labeled with the singletons only, then there is no

homing sequence of length l or less for the subset S′. Otherwise, each path to a node

labeled with the set of singletons is added to the set of non-redundant homing sequences.

An example of such successor tree and related HSs of length up to two is shown in

Figure 3.3. This tree is produced for the FSM slice of the Extended FSM in Figure 3.1.

34

Chapter 3 State id. in MBT, formal verif. and monitoring

s1 s2

s3

T1:req / nosupport

T2: conn,data / err

T3: reset / abort

T4:req / support

T5:conn / refuse

T6: req,data / err

T8:conn / abort

T9: reset / abort

T7:conn / accept

T10:data / ack

T11:req, conn / err

T12:reset / abort

Figure 3.2: FSM slice for the EFSM in Figure 3.1

The latter is obtained after deleting from a given EFSM all the predicates, parameters and

update functions (the slice itself is shown in Figure 3.2).

According to the successor tree in Figure 3.3, the resulting set of (non-redundant) hom-

ing sequences for the FSM in Figure 3.2 is the following:

{req.reset,req.conn,req.data,reset,data.rec,data.conn,data.reset,conn.req,conn.data,conn.reset}.
This set can be used for reducing the monitoring efforts as discussed in Section 3.1.

An interesting remark that we would like to draw the Reader’s attention to, is that once

obtaining the set of all singletons for the observable machine, we can prolong the corre-

sponding input sequence if we need to. However, for the non-observable machines this is

not necessarily the case, indeed, not each prolongation of an HS remains an HS - this is

due to the fact that a singleton can produce a state pair, triple, etc. after an application of

a given input4.

Note that this approach can be applied for generating synchronizing sequences, all

the singletons obtained due to Rule-1, should be the same; only in this case the node is

declared terminal.

For generating distinguishing sequences for non-observable FSMs, one can build a

similar successor tree and make sure that for each node there is no merging at the same

4One can however put any input as a prefix to any HS for a non-initialized non-observable machine,

without loosing the necessary property.

35

Chapter 3 State id. in MBT, formal verif. and monitoring

s1,s2,s3

s1 s2,s3

s2 s1,s3

s3 s2,s1 s1

s1 s2,s3 s1 s2 s3 s1 s2 s3 s1

s1 s2 s3 s2 s1,s3 s1 s2 s3 s1

s1 s2 s3 s1 s2 s3 s3 s2,s1 s1

req

conn

data reset

req conn data reset

req conn data reset

req conn data reset

Figure 3.3: Truncated successor tree for the FSM in Figure 3.2

state. Otherwise, such a node should be declared terminal as well. Another option is

to proceed, as discussed above, considering the subsets of state pairs, putting in the

root all the pairs of set S′ and terminate when a node is labelled by the empty set. The

sequence that labels a path to such a node is a DS or a separating sequence for the given

nondeterministic, possibly, non-observable machine.

Alternative strategies for preset state identification sequences - reducing the prob-

lem to SS in automata

The successor tree built with subsets of state pairs can be naturally considered for deriving

a transition diagram of a special automaton whose states are pairs of states of the FSM S
together with the designated state sink. Note that there are no outputs in this automaton,

nor any quiescence, i.e., this is a classical automaton considered in the works related to

SS derivation [Vol08, IS04, SV18, Mar14]; actions (letters) of the automaton in question

correspond to the FSM inputs.

The transitions of the automaton are defined according to the tree branches where

the state sink is reached under input i when a corresponding pair is distinguished by the

input i or for some o ∈ O, the io-successor is a singleton. An HS exists for the FSM S if

and only if the obtained automaton has a synchronizing sequence to the sink state. The

latter thus provides an alternative way to derive (all) homing sequences for a given FSM.

Note that a similar automaton can be derived for the set of all distinguishing sequences,

36

Chapter 3 State id. in MBT, formal verif. and monitoring

the automaton can become partial when, given a pair sp,sq, for some input i there exists

o such that the io-successor of sp,sq is a singleton. We further present the strategies

for deriving an automaton, that contains either all HSs or all DSs for a given complete

nondeterministic observable FSM.

Consider a nondeterministic FSM S =< S, I,O,hS >, S = {s1, . . . ,sn}, in [KY15c], we

propose to derive an automaton S2
home such that the set of all synchronizing sequences of

this automaton coincides with the set of all homing sequences of FSM S, i.e., Lhome(S) =

Lsynch(S2
home).

Algorithm 1: Deriving the automaton S2
home

Input : A complete observable nondeterministic FSM S =< S, I,O,hS >

Output: Automaton S2
home

States of S2
home are pairs s j,sk, j < k, and the designated state sink while actions

are inputs of the FSM S (letters);

for each input i ∈ I do

for each state s j,sk of the automaton S2
home do

if {sp,st} is the io-successor of the set {s j,sk} for some output o ∈ O,

p < t and j < k then
Add to the automaton S2

home the transition (s j,sk, i, sp,st)
if for each output o ∈ O the io-successor of the pair s j,sk is a singleton or

states s j and sk are distinguished by the input i then
Add to the automaton S2

home the transition (s j,sk, i, sink)

By construction, the automaton S2
home has the following features. First of all, S2

home

can be nondeterministic. Moreover, for a sequence α ∈ I?, a pair sp,sq, sp,sq ∈ S, sp 6= sq,

α takes the automaton S2
home from the pair sp,sq to the sink state if and only for each

trace γ ∈ (IO)? with the input projection α, the γ-successor of sp,sq is the empty set or a

singleton. Therefore, the following statement holds.

Proposition 1 An input sequence α is a homing sequence for the FSM S if and only if α

is a synchronizing sequence for S2
home.

The set of all homing sequences of the FSM S is thus equal to the set of all synchroniz-

ing sequences of the automaton S2
home, i.e., Lhome(S) = Lsynch(S2

home). As an example,

consider an FSM with a flow table in Table 3.1.

37

Chapter 3 State id. in MBT, formal verif. and monitoring

Table 3.1: Example FSM S

Input/State 0 1 2 3

i0 3/(0,3) 1/(0,3) 2/(0,3) 3/(0,3)

i1 1/(0,2) 0/(0,2) 2/(0,2) 3/(0,3)

1/(0,3) 0/(0,3) 2/(1,2) 3/(1,3)

1/(2,3) 2/(2,3) 3/(2,3)

i2 2/(0,1) 2/(0,1) 0/(0,1) 3/(0,3)

2/(0,3) 2/(0,3) 0/(0,3) 3/(1,3)

2/(1,3) 2/(1,3) 1/(1,3) 3/(2,3)

1/(0,1)

Note this example is interesting as it shows an exponential upper bound on the length

of a homing sequence5. Table 3.1 contains transitions of the corresponding FSM S with

four states 0,1,2,3, the set I = {i0, i1, i2} of inputs, and the set O= {(j,k),(j < k)&(j,k∈
{0,1,2,3})} of outputs. The sequence α = i0i1i0i2i0i1i0 is an HS for the FSM S, and this

HS is the shortest in this case.

The flow table of the automaton S2
home returned by Algorithm 1 is shown in Table 3.2.

Table 3.2: S2
home automaton for the FSM S

Input/State 0,1 0,2 0,3 1,2 1,3 2,3 sink

i0 1,3 2,3 sink 1,2 1,3 2,3 sink

i1 0,1 1,2 1,3 0,2 0,3 2,3 sink

i2 sink 0,2 2,3 0,2 1,2 0,1 sink

1,2 1,2 1,2 2,3 0,3

1,3

By direct inspection, one can assure that for the automaton S2
home, a shortest synchro-

nizing sequence is also the sequence i0i1i0i2i0i1i0. Any prolongation of this sequence is a

synchronizing sequence for the automaton S2
home and a homing sequence for the FSM S.

In order to describe the set of all distinguishing sequences one can rely on the same

technique with a very slight difference: when for some o ∈ O, the io-successors of states

of some pair of P coincide there is no edge from the node labeled by i to the next tree

5The class of the machines with the reachable exponential upper bound on the length of an HS was

proposed and studied in [KY13, Kus13].

38

Chapter 3 State id. in MBT, formal verif. and monitoring

level in the corresponding successor tree. Indeed, when building the automaton S2
dist , for

each input i ∈ I and each state s j,sk of the automaton S2
dist we check if states s j and sk

are distinguished (separated) by this input; and if so, we add the transition (s j,sk, i, sink).

If for each o ∈ O, the io-successors of states s j and sk do not coincide and {sp,st} is

the io′-successor of the set {s j,sk} for some o′ ∈ O, p < t and j < k, we add to S2
dist

the transition (s j,sk, i, sp,st), respectively. The automaton can be partial, since for some

pair s j,sk, j < k, of states of FSM S, there can be no transition under input i if states s j

and sk have the same nonempty io-successor for some output o. The Reader can refer to

[KY15c] for more details, examples, and related algorithms and propositions.

Deriving Homing and Synchronizing sequences for Input/Output Automata

The automata that were considered above represent a very particular case, as the actions

are not divided into inputs and outputs, a potential quiescence at a state is not consid-

ered, etc. In fact, synchronizing experiments are mostly studied for this exact class of

automata (see for example, [IS04, San05, SV19, Vol08, ÇKY+18] and among the long

standing problems for this class there is conjecture that was recently proven. Namely, this

is the Cerny conjecture which concerns complete deterministic automata (without outputs)

and in particular, the length of a shortest SS. The conjecture claims it is quadratic w.r.t.

the number of states of the automaton while it is proven to be no more than cubic [Vol08].

Trahtman recently uploaded his paper to archive where he presented a proof of this con-

jecture (currently the archive contains the 4-th version of the paper) [Tra20]. Note again

that in the aforementioned works, there is a very restricted class of automata, however in

testing applications it is more convenient to deal with a reactive system when inputs and

outputs are separated. Therefore, in one of our works (together with the researchers from

ISP RAS, Russia) we considered a little more generic case of automata which we describe

below6.

We consider Input/Output Automata briefly introduced in Chapter 2 (see an example

automaton in Figure 2.3). Moreover we restrict the automata class under consideration,

namely, we are interested only in those input/output automata for which the following holds:

1. At each state only inputs or only outputs are allowed, i.e., S = S1∪ S2, S1∩ S2 = /0

and TS ⊆ S1× I×S∪S2×O×S;

2. The transition diagram does not contain cycles/loops labeled with outputs, i.e., the

6The results are published in [KYBK18].

39

Chapter 3 State id. in MBT, formal verif. and monitoring

language of the machine does not contain traces with infinite postfix of outputs;

3. The machine has a special output δ /∈ O that represents the quiescence [Tre96] at

the states where the transitions under inputs are defined; at each state s ∈ S1, there

is a loop under δ, namely (s,δ,s) ∈ TS.

We return again to the example input/output automaton, consider a machine in Fig-

ure 2.3. The automaton S has five states, namely S = {s1, . . . ,s5}, where S1 = {s1,s2,s5}
and S2 = {s3,s4}. At each state from the set S1 the automaton accepts inputs i1 and i2.

However, when the machine is at state s3 or s4 no inputs can be accepted and only outputs

o1 or o2 can be produced. Note that this automaton precisely belongs to the considered

class.

In order to define HS and SS for such a class of input/output automata, we introduce

the following experiment hypothesis:

We assume that before applying any input, a tester (or any experimenting entity) waits for

a given maximal output timeout t.

The experiment is performed as follows: the tester expects an output in t time units; if

the machine produces one, then the timer is reset and the tester waits for another t time

units. If no output is produced by the system in t time units then the tester applies the

next input (if any) and resets the timer. In fact, this hypothesis is introduced to somehow

avoid an infinite (indeed, “very-very long”) waiting time before applying the next input (in

FSMs and experiments with them, this never happens as each input we apply requires an

immediate output reaction to be produced).

The latter explains the necessity of introducing the specific output δ /∈O, namely when-

ever the output is not observed we assume that the system/machine produced the output

δ. Such extension of the output alphabet allows to define the corresponding HSs and

SSs for an Input/Output automaton. A sequence α = i1i2 . . . ik is synchronizing for the

automaton S if there exists a state s ∈ S such that for each trace β1i1β2i2 . . .βkikβk+1

where p is the length of a longest sequence of consecutive outputs and β j ∈ (O∪{δ})p,

j = 1, . . . ,k+1, it holds that the β1i1β2i2 . . .βkikβk+1-successor of the set S is either empty

or equals {s}. A sequence α = i1i2 . . . ik is homing for the automaton S if for each trace

β1i1β2i2 . . .βkikβk+1, β j ∈ (O∪{δ})p, j = 1, . . . ,k+1, it holds that the β1i1β2i2 . . .βkikβk+1-

successor of the set S is either empty or is a singleton. For example, for the automaton S

in Figure 2.3, α = i1i1 is a homing sequence.

We propose to derive an SS for an automaton S where actions are divided into inputs

40

Chapter 3 State id. in MBT, formal verif. and monitoring

and outputs via an iterative elimination of the transitions labeled by outputs. Such tran-

sitions can always be omitted as for the automata class considered here, there does not

exist a state where transitions under inputs and outputs are defined at the same time. In

other words, we propose to derive an automaton where only the transitions under inputs

are left and then use the SS derivation strategies for the automata without outputs. There-

fore, we build an automaton A =< S1, I,TA > which at the beginning has an empty set of

transitions, TA = /0. For each transition (s, i,s′) ∈ TS, where s,s′ ∈ S1, we iteratively add to

TA this transition (s, i,s′). At the same time, for each transition (s, i,s′′), where s ∈ S1 and

s′′ ∈ S2, we add to TA the transition (s, i,s′′′) where state s′′′ ∈ S1 and s′′′ is in a β-successor

of s′′ in the automaton S, β ∈ O∗. As a result, each synchronizing sequence α for A is a

synchronizing sequence for S.

The automaton A for the example input/output automaton S is shown in Figure 3.4.

s1

s5

s2

i1

i2 i1

i2i1

i2i2

i1i2
i2

i2

Figure 3.4: Automaton A for SS derivation for the input/output automaton S

By direct inspection, one can check that the automaton A is not synchronizing and

thus, there is no SS for S.

In order to derive an HS for an input/output automaton S, one can also reduce the

problem to the HS derivation for well studied models, in particular for the HS derivation

of a corresponding FSM. This FSM can be obtained via simulation and concatenation of

potential output reactions at the relevant states. In fact, we propose to derive an FSM

M =< S1, I,O∪O2 ∪ ·· · ∪Op ∪{δ},TM > which at the beginning has an empty set of

transitions, i.e., TM = /0, where p is the length of a longest output trace of the automaton S.

Later, for each state s ∈ S1, such that (s, i,s′) ∈ TS, s′ ∈ S1, we add to the TM the transition

(s, i,δ,s′). At the same time, for each state s∈ S1, such that (s, i,s′)∈ TS, s′ ∈ S2, we add to

the TM the transition (s, i,o1o2 . . .ok,s′′), k ≤ p, where s′′ ∈ S1 is the o1o2 . . .ok-successor

41

Chapter 3 State id. in MBT, formal verif. and monitoring

of state s′. Note, that similar to the SS existence check and derivation, a sequence α is

homing for the automaton S if and only if α is a homing sequence for the FSM M.

For the example input/output automaton S, the FSM M is shown in Figure 3.5.

s1

s5

s2

i1/δ

i2/δ i1/o2

i2/o1o1i1/o1

i2/o1o2
i2/o2

i1/δi2/o2

i2/o1o2

i2/o1o1

Figure 3.5: FSM M for the input/output automaton S

One can check that the sequence α = i1i1 is homing for the FSM M, and it is thus an

HS for the automaton S in Figure 2.3 as well.

Therefore, the results obtained for classical FSMs and automata can be used for more

generic models, especially, when the corresponding problem reduction, for instance, as

shown above, can be found.

Using QBF solvers for HS existence check and derivation

As mentioned above, the satisfiability of Boolean formulas have been used, for example, for

the existence check of an SS of a given automaton. In our case, together with the partners

from the Russian Academy of Sciences and National Taiwan University, we proposed to ap-

ply Quantified Boolean formulas for the existence check and derivation of preset and adap-

tive HSs for nondeterministic FSMs. The results are presented in [WTJK17, TWJ+21], and

in this manuscript we mostly show the preset strategy. More details, in particular, about

the adaptive HS (for FSM state pairs) can be found in [TWJ+21].

We work with a quantified Boolean formula (QBF) Φ over the set of variables X =

X1 ∪ ·· · ∪ Xk, with Xi 6= /0 and Xi ∩ X j = /0 for i 6= j, expressed in its prenex form as

42

Chapter 3 State id. in MBT, formal verif. and monitoring

Q1X1, . . . ,QkXk.φ, where Qi ∈ {∃,∀} with Qi 6= Qi+1, and φ is a quantifier-free Boolean

formula over variables X . Moreover, the matrix φ is in the conjunctive normal form. Given

a non-initialized complete NFSM S =< S, I,O,hS >, we aim at finding a shortest preset

homing sequence. We search from length 1 to the theoretical upper bound 2(
|S|
2)− 1 of

a shortest homing sequence, for observable FSMs [KY13], and 22|S| for non-observable

FSMs. If a sequence of interest is not found, then the given FSM is not homing7. The QBF

formulation for the bounded preset HS checking is as follows.

As the sets S, I, O are finite, we perform Boolean encoding on the states, input sym-

bols, and output symbols with current-state variables ~s, next-state variables ~s′, input vari-

ables ~x, and output variables ~y. The transition relation hS of the machine can be thus

represented by the characteristic function T (~s,~x,~y,~s′) in terms of the Boolean variables.

Note that in the QBF formulation, we rely on time-frame expansion and denote the vari-

ables at the t th time-frame with a superscript index t.

Then the QBF corresponding to the existence of a preset homing sequence of length

n can be expressed as

∃~X ,∀~Y ,∀~S,∀~S∗.[∆(n)(~X ,~Y ,~S)∧∆(n)(~X ,~Y , ~S∗)→ (~sn = ~s∗
n
)],

where variables ~X =(~x1, . . . ,~xn),~Y =(~y1, . . . ,~yn),~S=(~s0, . . . ,~sn), ~S∗=(~s∗
0
, . . . ,~s∗

n
),

and ∆(n) is the conjunction of the transition relation of n time-frames, i.e.,

∆(n)(~X ,~Y ,~S)=
∧n

k=1 T (~sk−1,~xk,~yk,~sk) and ∆(n)(~X ,~Y , ~S∗)=
∧n

k=1 T (~s∗
k−1

,~xk,~yk,~s∗
k
), where

variables ~s∗ are fresh copies of the variables~s.

By construction, this formula is true if and only if the underlying complete NFSM has a

preset homing sequence of length n.

Similarly, the existence check of an adaptive homing strategy of height n where all the

paths have the same length can be expressed as

∃~x1,∀~y1,∃~x2,∀~y2, . . . ,∃~xn,∀~yn,∀~S,∀~S∗.((∆(n)(~X ,~Y ,~S)∧∆(n)(~X ,~Y , ~S∗))→ (~sn =~s∗
n
)),

where ~X = (~x1, . . . ,~xn),~Y = (~y1, . . . ,~yn), ~S = (~s0, . . . ,~sn), ~S∗ = (~s∗
0
, . . . ,~s∗

n
) are vec-

tors of input variables, output variables, state variables, and fresh copies of state variables,

respectively, and ∆(n) is the conjunction of the transition relation of n time-frames, i.e.,

∆(n)(~X ,~Y ,~S) =
∧n

k=1 T (~sk−1,~xk,~yk,~sk) and ∆(n)(~X ,~Y , ~S∗) =
∧n

k=1 T (~s∗
k−1

,~xk,~yk,~s∗
k
).

Note that the condition of the same length of the paths in this case is important, as

7Note however, that the non-existence of a preset HS does not imply the same result for the adaptive HS.

43

Chapter 3 State id. in MBT, formal verif. and monitoring

there exist non-observable machines where it cannot be held. We adjusted the formulas

accordingly for a more general case and invite the Reader to refer to [TWJ+21], respec-

tively. As in some cases, state pair homability is necessary and sufficient and in all cases,

it is a necessary condition for the FSM to be (adaptively) homing, we also studied such

particular pair-wise cases, and adjusted the QBF formulation accordingly. At the same

time, pair-wise homability itself is discussed in more details ahead in the current chapter.

We note that the advantage of using solvers for the state identification or even other

tasks, is in fact the existence of various solvers and their availability. In other words, once

a necessary encoding is performed, as for example above, the (QBF) formula can be ef-

ficiently checked and the HS existence check can be verified. We should however note,

that such utility not always leads to the most efficient solutions. In fact, in the mentioned

works the interested Reader can find detailed experiments on the comparison of various

QBF solvers, such as DepQBF [LB10], CAQE[RT15], among others. An interesting ten-

dency was observed when comparing to a successor tree based approach implemented in

FSMHSGen [Lop19]. The successor tree strategy is more efficient in terms of performance

(time-wise) than the QBF solvers. However, for nondeterministic machines FSMHSGen

runs out of memory faster than the QBF solvers, and therefore for some cases for exam-

ple, where the HS does not exist, QBF solvers can go deeper in their search (up to a bigger

length). Therefore, an interesting perspective that we plan, in fact, to study in the future,

is a hybrid possibility - up to some level we descend in the successor tree and then run a

solver for a weakly initialized corresponding FSM. This is not done yet and is left as further

challenges.

Iterative approaches for adaptive final state identification sequences

In this section, we first discuss how the adaptive HS (or an AHS for short) existence for

a complete observable nondeterministic FSM can be decided in polynomial time. The

corresponding results were presented in [KY15b]; we omit the proofs as usual inviting the

interested Reader to check the relevant publication.

We are interested in checking if a given FSM S =< S, I,O,hS > is adaptively homing,

i.e., if it possesses an AHS. An important property for almost all iterative approaches ap-

proaches in general is a possibility to reduce the AHS existence check task to the same

one, but over a smaller state subset. The latter is possible, indeed, due to the following

statement.

44

Chapter 3 State id. in MBT, formal verif. and monitoring

Proposition 2 A complete observable non-initialized FSM S is adaptively homing if and

only if each pair of two different states is adaptively homing.

At the same time, for a given state pair, one can efficiently decide if it is homing or

not, using the corresponding intersection of the related languages at these states. Let

us consider two different states s1 and s2 of S, without loss of generality. We derive the

intersection S/s1 ∩ S/s2 = (Q,(s1,s2), I,O,hS/s1∩S/s2) in a usual way. States of S/s1 ∩ S/s2

are pairs (s j,sk), j < k, j,k = 1, . . . ,n, and there is a transition ((s j,sk), i,o,(s′j,s
′
k)) ∈

hS/s1∩S/s2 if and only if s′j 6= s′k and s′j,s
′
k are io-successors of states s j and sk. If for all o

there are no such io-successors then a transition at the state (s j,sk) under input i is not

defined.

Proposition 3 Given two states s1 and s2 of a complete observable FSM S=< S, I,O,hS >

and the intersection S/s1 ∩ S/s2, states s1 and s2 are not adaptively homing if and only if

the intersection S/s1 ∩ S/s2 has a complete submachine.

Therefore, states s1 and s2 are adaptively homing if and only if the intersection S/s1 ∩
S/s2 has no complete submachine, i.e., each submachine has an input undefined in some

state.

The existence of a complete submachine can be checked by iterative removal from

the intersection S/s1 ∩ S/s2 each state that has an undefined input along with its incoming

transitions. If at the end, the initial state is also removed then the two given states are

adaptively homing, otherwise they are not adaptively homing. The procedure is polynomial

with respect to the number of states [VYB+12] when the number of inputs and outputs are

polynomial with respect to the number of states, and thus, the complexity of checking the

existence of a complete submachine of S/s1 ∩ S/s2 is polynomial, since this machine has

at most n(n−1)/2 states. The latter allows to conclude that the problem of checking the

existence of an adaptive homing sequence for a complete observable FSM S is in P.

Note however, that we will further discuss that for a preset HS the problem is more

complex. In fact, it can also be seen from the results related to the solvers’ usability for

the HS existence check. We will now discuss how an AHS can be constructed from those

AHSs built for state pairs.

Indeed, state pairs {s1,s2} and their related AHS can be iteratively utilized for the

construction of the AHS for the machine S. In this case, we propose to represent the AHS

by a corresponding test case [PY05]. Given an input alphabet I and an output alphabet

45

Chapter 3 State id. in MBT, formal verif. and monitoring

O, a test case TC(I,O) is an initialized initially connected observable single-input output-

complete FSM over input alphabet I and output alphabet O that has an acyclic transition

graph. In other words, at each state either only one input with all possible outputs is defined

or there are no outgoing transitions, and in the latter case, the state is a deadlock state. A

test case is a partial FSM once |I|> 1. By definition, a test case TC(I,O) represents an

adaptive experiment with a complete FSM S over alphabets I and O in the following way. If

input i1 is a defined input at the initial state t0 of TC(I,O) then first, the input i1 is applied

to the FSM S under investigation and TC(I,O) moves to the i1o-successor t1 of state t0 if

S produces the output o as the response to the input i1. The next input to apply is the input

defined at state t1, etc. The procedure terminates when a deadlock state is reached. The

height of the test case TC(I,O) is the length of a longest trace from the initial state to a

deadlock state of TC(I,O) and it specifies the length of a longest input sequence defined

in the test case that can be applied to the FSM S during the adaptive experiment.

Given FSM S =< S, I,O,hS >, a test case TC(I,O) is a homing test case (HTC) for S
if for every trace γ from the initial state to a deadlock state, the γ-successor of the set S in

S is a singleton or the empty set. For the example FSM S in Figure 2.2, a HTC is shown in

Figure 3.6.

p1

p2 p3

p4 p5

p6 p7 p8

b/0 b/1

a/0 a/1

a/1 a/0 b/1 b/0

a/0

a/1

Figure 3.6: HTC for FSM S in Figure 2.2

46

Chapter 3 State id. in MBT, formal verif. and monitoring

The iterative approach for building an HTC starts with a state pair, consider a homing

test case HTC{s1,s2} = P1,2 for the set {s1,s2}. We derive a test case P1,2,3 by adding

the state s3 into the set labeling the initial state of P1,2 and obtain P1,2,3 that includes

all the transitions of P1,2. Subsets of states that label deadlock states of the intersection

S∩ P1,2,3 are not necessary singletons but they contain at most two states, since the

specification FSM is observable. Each pair of different states of S is homing, thus, for each

deadlock state ({si,s j}, p) of S∩P1,2,3 the initial test case P1,2,3 is concatenated with the

corresponding test case Pi, j. Proceeding in the same way the test case P1,2,...,n is derived.

By construction, the test case P1,2,...,n is a homing test case for the FSM S. A schematic

representation of this strategy is given in Figure 3.7.

P1,2 =

1,2

∅ d

i/o1 i/o2

⇓

P1,2,3 =

1,2,3

f d, t

i/o1 i/o2

Pd,t

Figure 3.7: P1,2,3 derivation scheme

Note that this result was first discussed in [KEYC16a]. Later, with the colleagues from

ISP RAS, we strengthened the aforementioned result. In particular, we estimated the

number of states in the corresponding test case [YKK19]. In fact, we have shown that

for the FSM S with n states and a homing pair {s1,s2} of S, there exists a homing test

case HTC{s1,s2} such that the set of states of HTC{s1,s2} is the union of the set of all

pairs of different states of FSM S, the set of singletons of S and the deadlock state D.

Moreover, given a j-homing state8 q1 and an m-homing state q2, if j ≤ m, then state q2

is unreachable from state q1 in HTC{s1,s2}. The number of transitions of the test case

HTC{s1,s2} therefore does not exceed |O|n(n−1)/2. We also proposed an algorithm that

is based on an iterative enumeration of state pairs, for deriving a homing test case HTC

8The subset is a j-homing set if it is a (j− 1)-homing, or there exists an input i ∈ I, such that for each

o ∈ O, its io-successor is either empty or is a (j−1)-homing set.

47

Chapter 3 State id. in MBT, formal verif. and monitoring

for the FSM S with at most |O|(n− 1)2n/2 transitions. For that matter we make use of

two arrays: IOsuc and Input. The first is a two dimensional array; columns of IOsuc

correspond to states of the given FSM while the rows correspond to possible io pairs, i.e.,

given a state and an io pair, the related cell has either the corresponding io-successor or

it is empty (the transition is not defined). In fact, this is a representation of the specification

machine itself. While the array Input, at the same time, stores for each j-homing {sa,sb}
pair the corresponding input i{sa,sb} that brings {sa,sb} to a (j− 1)-homing set. Such

additional arrays allow the derivation of the homing test case HTC in polynomial time. In

fact, the following result has been established.

Theorem 1 Given a homing FSM S =< S, I,O,hS >, |S| = n, and the maximum integer

k such that FSM S has a pair of different states that is k-homing, there exists a homing

test case of the height at most (n− 1)k with at most (n− 1)2n/2+ n+ 1 states, at most

|O|(n− 1)2n/2 transitions; the (time) complexity of deriving this test case is O(|O|n5)

when S is represented by the array IOsuc and an array Input is already derived.

The interested Reader may find the details, including the proofs in [YKK21].

Note that adaptive homing sequences, derived iteratively (or otherwise), can be ef-

fectively prolonged to adaptive synchronizing sequences, that we similarly represent via

synchronizing test cases. As in the case of preset final state identification sequences, a

synchronizing test case is a homing one with additional constraints on the singletons. In

particular, a homing test case TC(I,O) is a synchronizing test case (STC) for the FSM S,

if there exists a state s such that for every trace γ of TC(I,O) from the initial to a deadlock

state, γ-successor of S is either {s} or the empty set.

The existence check of synchronizing test cases is reduced to that one of homing, with

additional conditions of so called definitely-reachable states (or simply d-reachable). State

s′ ∈ S is d-reachable from state s ∈ S if there exists a test case P(s,s′) over alphabets I

and O such that for every trace γ of P(s,s′) from the initial state to a deadlock state, the

γ-successor of state s in FSM S is either the empty set or is the set {s′}. We refer to such

a test case as a d-transfer test case. In [PY11], necessary and sufficient conditions are

established that allow to check if a state s ∈ S is definitely reachable from the initial state

s0 of the initialized FSM S. In [KYY16], together with the colleagues from Tomsk State

University and Sabanci University, we adjusted this procedure for arbitrary states s and s′.

In fact, the main result in [KYY16] is probably the following.

Proposition 4 There exists a synchronizing test case for a complete observable FSM

48

Chapter 3 State id. in MBT, formal verif. and monitoring

S =< S, I,O,hS >, if and only if FSM S is homing and there exists a state s′ ∈ S such that

for each state s ∈ S state s′ is definitely reachable from s.

This statement gives a constructive approach for deriving an STC. Consider a trace γ

that takes HTC from the initial state to a deadlock state. The γ−successor of each state of

the set S either does not exist or contains a unique state s. Since for any state s ∈ S, there

exists a d-transfer test case P(s,s′), then each trace δ that takes P(s,s′) from the initial

state to a deadlock state takes the FSM S from state s to state s′, i.e., the γδ-successor of

each state of the set S either does not exist or contains a unique state s′. In other words,

HTC is thus prolonged up to STC via appending the relevant d-transfer test cases.

As an example, consider an FSM S in Fig 3.8. Note that state 3 is d-reachable state

for this FSM (from state 1 via input b and from state 2 via input a).

1 2

3

a/0
a/1

b/2

b/1

b/0

a/0

a/0

b/2

Figure 3.8: A complete observable nondeterministic FSM S where state 3 is d-reachable

from states 1 and 2

The synchronizing test case for S in Figure 3.8 is shown in Figure 3.9. Note again, that

differently from preset sequences, the adaptive synchronizing experiment can be longer or

shorter depending on the output reactions of the machine under experiment. For example,

for the FSM in Figure 3.8, if the machine replies 0 to the input b, the experiment can be

over after the next b (same if it replies 1 in fact at the first step). However, if the machine

replies 2 as the output reaction to the first input, then the synchronizing experiment can

only be finished in 3 steps.

Iterative approach for adaptive distinguishing sequences for merging-free FSMs

The results presented above can be extended for distinguishing sequences, however only

for a very specific class of FSMs. Similar to AHS, adaptive distinguishing sequences can

be also represented by a test case and an iterative approach for building such a test case

49

Chapter 3 State id. in MBT, formal verif. and monitoring

{1,2,3}

{1,3}

{1}

{1,2}

{2}

{3}

b/0

b/2

b/1

a/0
a/1

b/2

b/0 b/1

b/2

a/0

Figure 3.9: STC for FSM S in Figure 3.8

can be applied. A test case TC(I,O) is a distinguishing test case (DTC) for an FSM

S =< S, I,O,hS >, if every trace γ from the initial state to a deadlock state can be a trace

at most at a single state of the set S.

Generally, the generation of DTCs can be performed by an iterative construction of all

1-distinguishing, 2-distinguishing, ..., k-distinguishing9 subsets of states; until the set S is

obtained. However, this strategy can return a test case of an exponential height (see the

next section for the estimation of the DTC length/height).

As mentioned above, the iterative approach based on the test cases for state pairs

cannot be directly applied to an arbitrary FSM. Nevertheless there exists a special class of

nondeterministic FSMs, for which the problem of checking whether an FSM is adaptively

distinguishing (ADS exists) can be performed in a polynomial time, and the length of a

shortest distinguishing case (if it exists) is polynomial with respect to the number of FSM

states. Such a class of nondeterministic FSMs was presented in [YK15].

Given a complete observable FSM S, we assume that for each input i and each two

different states of the FSM the non-empty io-successors of these states do not coincide

for any output o. We further refer to such FSM as a merging-free FSM. By definition, for

a complete observable merging-free FSM S, for any sequence γ ∈ (IO)∗, the non-empty

9A subset of states is k-distinguishing if it is (k− 1)-distinguishing, or there exists an input i ∈ I, such

that for each o ∈ O, its io-successor is either empty or is a (k− 1)-distinguishing set, and in addition, the

io-successors of two different states of it do not coincide.

50

Chapter 3 State id. in MBT, formal verif. and monitoring

γ-successors of two different states of S do not coincide. Such merging-free machines are

of interest in our case, as almost all the results presented for AHSs of complete observable

FSMs are valid for such a class.

Proposition 5 Given two states s1 and s2 of a complete observable merging-free FSM

S =< S, I,O,hS > and the intersection S/s1 ∩ S/s2, states s1 and s2 are adaptively distin-

guishing if and only if the intersection S/s1 ∩ S/s2 has no complete submachine, i.e., each

submachine has an input undefined in some state.

Again, similar to the AHS, a complete observable merging-free FSM S is adaptively dis-

tinguishing if and only if each pair of its states is adaptively distinguishing. The procedure

for building the DTC{s1,s2,...,sn} repeats the one for the AHS in this case. We start with the

DTC{s1,s2} and then add state s3 to the initial state and therefore construct DTC{s1,s2,s3}

appending the necessary test cases in the relevant deadlock states of DTC{s1,s2}. The

procedure repeats iteratively until the last state sn is added and the DTC for S is derived.

Therefore, if a complete observable merging-free FSM S =< S, I,O,hS >, |S| = n, is

adaptively distinguishing then the length of a shortest adaptive distinguishing sequence is

of the order n3. Note that in the manuscript, we omit examples of such merging-free FSMs

and the corresponding DTCs, however the interested Reader can for example check the

publication [YK15], where more details are provided.

Due to a room of the manuscript, some techniques for deriving (adaptive) state identi-

fication sequences for nondeterminstic FSMs have been omitted. For example, we briefly

mentioned above k-homing and k-distinguishing state subsets and the related iterative ap-

proaches for building HTCs and DTCs. We proposed such approaches in collaboration

with the researchers from the Russian Academy of Sciences / Tomsk State University,

American University of Sharjah, and Télécom SudParis. The algorithms and proofs can be

found in [KEYC16b]. We also note that recently we extended the results over S′-homing

and S′-synchronizing test cases, when for example, the set of related singletons to finish

the experiment, is limited by a subset S′ of FSM states. The latter was done in collabora-

tion with researchers from the Russian Academy of Sciences and the related results are

published in [YKK21].

51

Chapter 3 State id. in MBT, formal verif. and monitoring

3.3.2 Evaluating the length of state identification sequences and the

complexity of related problems

This section is devoted to a brief summary of the original results obtained in the area of the

complexity estimation for the state identification of nondeterministic FSMs. In particular,

we are interested in the reachability of the worst cases when it comes to the length of the

related sequences, and for some preset and adaptive state identification sequences we

managed to prove such reachability for specific classes of nondeterministic FSMs.

Preset homing sequences and relevant complexity

We start with the final state identification and in particular, with the HSs for that matter. First

of all, we note that differently from deterministic FSMs, not every complete nondeterminis-

tic observable reduced FSM has a homing sequence. Moreover, as shown in the PhD the-

sis of the author, according to Rules 1-3 for the truncating of the successor tree, the length

of a shortest homing sequence for a complete observable FSM S =< S, I,O,hS,Sin >,

|S| = n, |S′| = m,m ≤ n, is limited by the value 2(
n
2)− 2(

n
2)−(

m
2). Note that this upper

bound concerns a potentially weakly initialized FSM. If the machine S is non-initialized,

then it gives 2(
n
2)− 1, accordingly. Note also that in [SEY07], the reachability of the up-

per bound 2n2/4 of the length of a distinguishing (in fact, separating, for nondeterministic

FSMs10) sequence has been proven. For an observable FSM, each separating sequence

is also a homing sequence, but the question of reachability for the HS is still interesting.

This question was in fact studied in the PhD of the author and the results were published

[KY13]. We thus do not include these results in the current manuscript, but we will only

mention that there exists a class of complete observable nondeteministic machines with

n > 3 states and (n− 1) inputs, such that a shortest HS for each FSM of this class has

length of 2n−1−1. Therefore, the exponential upper bound for the HS length is reachable,

and we are currently working on reducing this gap between 2n−1− 1 and 2(
n
2)− 1, to be

able to say more about the reachability.

The exponential upper bound on the length of an HS for nondeterministic machines

automatically implies that the corresponding decision problem of the HS existence check

cannot be in the class NP. More precisely, the corresponding complexity was estimated

in [KKE14]. In order to prove the PSPACE-completeness of the related decision problem,

one can return to the truncated successor tree and formulate first a simpler problem (can

10The output reactions on this sequence do not intersect.

52

Chapter 3 State id. in MBT, formal verif. and monitoring

be formulated for non-initialized or even weakly initialized machines).

α-HOMING

Input: a complete observable nondeterministic FSM S =< S, I,O,hS,S′ >, |S|= n, |S′|=
m,m≥ 2, an input sequence α.

Problem: Is α a homing sequence for the FSM S?

In fact, α is a homing sequence for S if and only if the terminal node in the α-branch is

labeled with the empty set or with the set P that has only singletons (see the corresponding

successor tree). The latter automatically proves that α-HOMING ∈ PSPACE, as when

deriving a branch of the tree labeled α, we only store the set P of state pairs reached after

j steps. Given an input i j+1, we update P by the set of all i j+1o-successors of pairs of P for

all outputs o ∈ O. Correspondingly, for an observable FSM the cardinality of the updated

set is at most n(n−1)/2+n. Therefore, at each step the internal memory of polynomial

size (with respect to the number of states of FSM S) is utilized.

HOMING problem (existence check of an HS for a nondeterministic FSM) complexity

is estimated in the same way with just the only difference that the next input to test is

not the next input of a sequence α but an input which is nondeterministically chosen. If

after at most 2(
n
2)−2(

n
2)−(

m
2) steps a terminal node is not reached using Rules 1 or 3 then

there is no HS for a given FSM. Otherwise, a nondeterministically generated sequence that

leads to a terminal node due to Rules 1 or 3, is the HS for FSM S. Therefore, HOMING

∈ NPSPACE and due to Savitch’s theorem [Sav70] it is in PSPACE. Note that even for

deterministic machines that are not reduced, this HOMING problem is PSPACE-complete

[San05], therefore it remains the same for the case of nondeterministic FSMs. The same

results hold for preset and adaptive homing sequences for partial deterministic weakly

initialized and non-initialized FSMs; these classes of FSMs we studied (with the colleagues

from Sabanci University and Tomsk State University) in [YYK17], accordingly.

We again draw the Reader’s attention to the fact that the exponential upper bounds on

the length of SS and DS for nondeterministic automata and FSMs have been previously

established [IS04, SEY07]. We omit any details concerning these results as they do not

take part in the author’s contributions. Instead, we move to the adaptive distinguishing

sequences, where some original results (with the colleagues from American University of

Sharjah and Tomsk State University) concerning the height of the corresponding experi-

ment have been obtained.

53

Chapter 3 State id. in MBT, formal verif. and monitoring

Evaluating the height (length) of a DTC

We first of all remind that for deterministic machines, adaptive DSs help a lot in terms of

complexity reduction. The height of the corresponding experiment becomes quadratic w.r.t.

the number of FSM states [LY94]. Note also that if we used an incremental approach for

building a DTC for a nondeterministic FSM, starting from 1-distinguishing, 2-distinguishing,

etc. subsets of states, until reaching the set S which is k-distinguishing for a certain k, the

complexity in terms of the number of these iterations is already exponential. Indeed, what

if we have to enumerate all the state subsets before coming the set S? The latter gives the

upper bound on the height of the experiment as ∑
m
i=2

(n
i

)
, where m is the number of initial

states for a weakly initialized machine. In [EYK18], we prove the reachability of this upper

bound for a non-initialized machine. Indeed, we present a class of nondeterministic FSMs

with n states such that the set S is k = (2n− n− 1)-distinguishing and not (2n− n− 2)-

distinguishing, i.e., a shortest DTC has precisely the height of (2n−n−1). As usual, we

omit most of the details and related proofs, presenting mostly the intuition about how such

a machine is constructed.

Similar to [KY13],[HYC12], we introduce a special linear order over the set of all non-

empty subsets of the state set S that are not singletons. In fact, we construct an appropriate

sequence (chain) of such subsets. The number of all such subsets is (2n−n−1). Given

such a sequence of subsets of states, we show that the tail subset with two states of the

sequence is the only subset that is 1-distinguishing. Moreover, for each other subset g, it

holds that if the following subset in the sequence is t-distinguishing, t > 0, then the set g

is the only (t +1)-distinguishing subset of the given FSM.

Given the set S = {1, . . . ,n} (without loss of generality) and 0 < k ≤ n, let C`(n,k)

denote the sequence of all subsets of the set S of the cardinality k headed by the subset

{n− k+ 1, . . . ,n} and tailed by the subset {1, . . . ,k}, and Ca(n,k) denote the sequence

of subsets {1, . . . ,k}, . . . , {n− k + 1, . . . ,n} where the subsets of C`(n,k) are written

in the reverse order. Thus, C`(n,1) is a sequence of singletons {n},. . . , {2}, {1} while

Ca(n,1) = {1},{2}, . . . ,{n}. C`(n,n) = Ca(n,n) = {1, . . . ,n}. We assume that the se-

quence C`x (m,r) (or Cax (m,r)) is obtained by adding the item x to each subset of the

sequence C`(m,r) (or Ca(m,r)). As usual, we use C.C′ to denote the concatenation of

the two sequences C and C′.

Given integers n and k, n > 1, 1 ≤ k ≤ n, and sequences C`(m,r) for all k ≤ m < n

and 0 < r < k, we use the following formulas to derive C`(n,k). C`(n,k) = C`n (n−1,k−
1).Can−1(n− 2,k− 1). . . .Ck a (k− 1,k− 1), if (n− k) is odd. Otherwise, if (n− k) is

54

Chapter 3 State id. in MBT, formal verif. and monitoring

even C`(n,k) =C`n (n−1,k−1).Cn−1 a (n−2,k−1). . . .Ck ` (k−1,k−1). Note that by

induction, the sequence C`(n,k), 1 ≤ k ≤ n, obtained this way has exactly once each

subset of the set {1, . . . ,n} of the cardinality k. Similarly, given sequences C`(n,k)

and Ca(n,k), 0 < k ≤ n, a sequence Cn is derived as follows. Cn = C`(n,n).C`(n,n−
1).Ca(n,n− 2).Ca(n,2), if n is even. Otherwise, if n is odd, Cn = C`(n,n).C`(n,n−
1).Ca(n,n−2).C`(n,2). By construction, the sequence Cn contains each non-empty

subset of the set {1, . . . ,n} of the cardinality k > 1 exactly once. Moreover, for each

two consecutive subsets p j and p j+1 of Cn two cases are possible: (i) if |p j+1| < |p j|
then p j+1\p j is a singleton; (ii) if |p j+1| = |p j| then the sets p j\p j+1 and p j+1\p j

are singletons. Therefore, Cn defines a linear order �n over all nonempty subsets of

states of the set {1, . . . ,n} which are not singletons. For example, for n = 5, Cn defines

a sequence {1,2,3,4,5} �5 {2,3,4,5} �5 {1,3,4,5} �5 {1,2,4,5} �5 {1,2,3,5} �5

{1,2,3,4} �5 {1,2,3} �5 {2,3,4} �5 {1,3,4} �5 {1,2,4} �5 {1,2,5} �5 {2,3,5} �5

{1,3,5} �5 {1,4,5} �5 {2,4,5} �5 {3,4,5} �5 {4,5} �5 {3,5} �5 {2,5} �5 {1,5} �5

{1,4} �5 {2,4} �5 {3,4} �5 {2,3} �5 {1,3} �5 {1,2}.

Given the order �n, we derive a class of observable nondeterministic FSMs (an FSM

Mn with n states), such that a shortest adaptive test case is of the height 2n−n−1. The

derived FSM has states 1, . . . ,n (n > 2), L = 2n− n− 1 inputs, and
(n

2

)
+ n+ 1 outputs.

For each i, 0 < i < L, consider consecutive subsets of Cn, p = pi and p′ = pi+1 in order

to derive the FSM transitions under the input ip/p′ which is used for providing the cor-

responding (L− (i− 1))-distinguishability of the set p. The L-th input, named idist , has

to distinguish only states of the tail subset of Cn. The outputs 0,o1,o2, . . . ,on define io-

successors for providing the corresponding distinguishability of the set p while the output

o(a,b), 0 < a < b ≤ n, is used in order to show that states a and b have the same io(a,b)-

successor under the corresponding input i. Transitions are derived using the two cases,

Case-1 that applies when |p|> |p′| and Case-2 applied when |p|= |p′|.

Case-1: |p|> 2, and p′ = p\{r}, r ∈ p. For every state j, j ∈ p′, there are transitions:

(j, ip/p′,0, j) and (j, ip/p′,ot , j) for every t ∈ p\{ j,r}. For state r∈ p, there are transitions:

(r, ip/p′,ot ,r) for every t ∈ p\{r}. For every state j, j /∈ p, there are the transitions:

(j, ip/p′,0, j) and (j, ip/p′,ot ,r) for some t /∈ p\{1,r}.

Proposition 6 Given subsets p of cardinality k > 2 and p′ = p\{r}, r ∈ p, each ip/p′o-

successor of p, o 6= 0, has the cardinality less than k. Moreover, the ip/p′0-successor of

p is p′ and for any other output o, the ip/p′o-successors (if they exist) of any two different

states of p do not coincide.

55

Chapter 3 State id. in MBT, formal verif. and monitoring

Proposition 7 Given subsets p of cardinality k > 2, p′ = p\{r}, r ∈ p, and a subset q of

the set {1, . . . ,n}, |q| > 1 and q 6= p, there either exists an ip/p′o-successor of q that is

equal to q or there exist two different states of the subset q that have the same non-empty

ip/p′o-successors for some o.

The latter assures that when considering a subset p an input ip/p′ should be applied

to get to the subset p′ in the corresponding DTC. Moreover, this input ip/p′ is “useless” for

any other subset q.

Case-2: ∃ j ∈ p,r /∈ p, such that p′ = p\{ j}∪{r}. For every state s /∈ p\{ j} there

are transitions (s, ip/p′,0,r). For every state s ∈ p\{ j}, there are transitions (s, ip/p′,0,s).

For every state s /∈ p∪ {r}, and state t ∈ p there are transitions (s, ip/p′,o(s,t),s) and

(t, ip/p′,o(s,t),s). For every state b ∈ p, there are transitions (b, ip/p′,oc,b) for each c ∈
p\{b}.

Proposition 8 The ip/p′0-successor of p is p′ and ∀o 6= 0 the cardinality of the ip/p′o-

successor of p is less than |p|.
Given any subset q 6= p, |q|> 1, and ip/p′ , either for some output o there exist two equal

non-empty ip/p′o-successors of two different states of q or for some output o, the ip/p′o-

successor of q is q.

Similar to the propositions above, the latter states that the input ip/p′ is ‘helpful’ only

for distinguishing states of the subset p′.

Finally, for the linear order relation �n and the corresponding chain Cn with the tail

subset { j,k}, j < k, we add a proper input idist that distinguishes states j and k, i.e.,

the set { j,k} is 1-distinguishing while for any other pair of states there exists an output

o such that the non-empty io-successors of the states of the pair coincide. For example,

this can be done as proposed in Table 3.3: ∀s /∈ { j,k} there are transitions (s, idist ,1,0)

and (s, idist ,1,o1); at state j there is a transition (j, idist ,1,0) while at state k there is a

transition (k, idist ,1,o1).

Table 3.3: Mn transitions over the input idist

State 1 . . . j−1 j j+1 . . . k−1 k k+1 . . . n

Input idist 1/0,o1 . . . 1/0,o1 1/0 1/0,o1 . . . 1/0,o1 1/01 1/0,o1 . . . 1/0,o1

By construction, the derived FSM Mn has O(n32n) transitions and for this FSM, the

following property holds.

56

Chapter 3 State id. in MBT, formal verif. and monitoring

Theorem 2 The FSM Mn has a shortest adaptive test case of length 2n−n−1.

Therefore, DTC can also reach exponential length for nondeterministic specifications

and therefore, test generation with the guaranteed fault coverage against such specifica-

tions can be somewhat unpractical. That is the reason, why another area of research of

the author, covers the possibilities for the complexity reduction, on the one hand, preserv-

ing the fault coverage or the necessary properties for example, for state identification, and

on the other, reducing the length of the related sequences or searching for the sequence

existence check problems that are in P. Note that the second (habilitation, Doctor of Sci-

ences) thesis of the author, presented in Russia in 2016 was exactly devoted to decreasing

the complexity of ‘gedanken’ experiments with nondeterministic FSMs [Kus16]. Below, we

discuss just some examples when such complexity can be decreased. Note also, that

some of the results presented below are rather recent and have been obtained after the

habilitation [Kus16].

3.4 Making it more practical – possibilities to reduce the

complexity, discussing particular cases

When talking about particular cases of nondeterministic FSMs, we can first note a couple

of ‘good’ classes11 already discussed above.

• Complete observable non-initialized FSMs for the final state identification: indeed,

as previously established, for these FSMs preset HSs and SSs might not be so

promising, however the existence of the adaptive HS and SS can be done in poly-

nomial time and the height of the corresponding test case is polynomial (w.r.t. the

number of FSM states).

• Complete observable non-initialized merging-free FSMs for the initial state identifi-

cation: similar to the case above, this class is promising as the existence check of

an adaptive DS can be done in polynomial time, and the corresponding test case

has a polynomial height as well.

11In our case, ‘good’ means an ‘easy’ (solved in polynomial time) existence check and/or derivation prob-

lem of the corresponding state identification or testing task.

57

Chapter 3 State id. in MBT, formal verif. and monitoring

3.4.1 Nondeterministic FSMs with ‘good’ projections

Given a specification FSM S, it can be weakly or non-initialized, depending on the test

purpose and testing methodology. One needs to perform the test generation against this

specification in an efficient way. We first start with an efficient related state identification

for S, which can be nondeterministic and maybe even non-observable. Solving this task

right away can be complicated, as also discussed above, however maybe this specification

machine S allows a ‘good’ projection and then the state identification can be rather simple.

A projection is a submachine of the specification S that is obtained via deleting some tran-

sitions12. Later on, we check if the projection belongs to a ‘good’ FSM class, for example, it

is deterministic complete and reduced, or it is in one of the classes mentioned in the items

above, and if this is the case then a corresponding experiment can be derived efficiently for

the state identification. The preset/adaptive state identification sequence for the projection

is also that one for the initial specification FSM. In this case, not only polynomial length of

the corresponding state identification sequence is the purpose but also a fast construction

of such a projection.

It is known that n(n− 1)/2 is the tight upper bound for the height of an ADS for de-

terministic FSMs [LY94], therefore a deterministic projection is of interest. We call a tran-

sition (s, i,o,s′) ∈ hS deterministic if for any transition (s, i,o′,s′′) ∈ hS we have o′ = o

and s′′ = s′. For a given FSM S =< S, I,O,hS >, we define the deterministic projection

Sd =< S, Id,Od,hd
S > of S as follows. Sd and S have the same set S of states. For a tran-

sition (s, i,o,s′) ∈ hS, (s, i,o,s′) ∈ hd
S , if and only if (s, i,o,s′) is a deterministic transition

in S. Id and Od consist of the inputs and outputs used in the transitions in hd
S . Intuitively,

Sd is the same FSM as S where the deterministic transitions are preserved but all other

transitions are removed. Sd is thus a deterministic FSM by definition. Moreover, it is easy

to see that an adaptive DS for Sd or DTC can be directly used as a DTC for S as well. In the

lucky case that Sd is a completely specified deterministic FSM, the existence check and

the adaptive DS construction algorithms given in [LY94] can directly be applied. Therefore,

a nondeterministic FSM can still be ‘good’ if it allows a deterministic projection and this

projection possesses a DTC. Note that the deterministic projection is unique and can be

computed in a linear time w.r.t. the number of transitions of the specification FSM.

Similarly, in an FSM S, a transition from state s under input i is observable if for any

two transitions (s, i,o,s′), (s, i,o′,s′′) ∈ hS we have (s′′ 6= s′ =⇒ o′ 6= o). We define the

observable projection So =< S, Io,Oo,ho
S > of S that contains all observable transitions

12Note that the related results on the projections have been obtained together with the colleagues from

Tomsk State University, Sabanci University and published in [YYK16, KY15a].

58

Chapter 3 State id. in MBT, formal verif. and monitoring

and only them. Note that the derivation of the FSM So requires not more than |hS||S||I||O|
steps. If we manage to get not only observable but also complete and merging-free pro-

jection, then the DTC existence check and derivation becomes simpler. Any DTC, which

will have a polynomial height in this case, of the projection So will also be the one of the

specification FSM S.

As an example, consider an FSM S in Figure 3.10. This FSM is non-observable, and

in fact, ‘bad’ transitions are those under input i3. Deleting these transitions brings to a

deterministic projection Sd which is shown in Figure 3.11. This projection also happens to

be a complete FSM with the set Id = {i1, i2} of inputs.

1 2

3 4

i3/o1 i2/o2

i1/o1

i3/o1

i3/o3, i1/o1

i2/o1, i3/o1

i1/o2

i3/o1

i2/o1, i3/o2

i1/o2

i3/o3

i2/o2, i3/o3

Figure 3.10: Complete non-observable nondeterministic FSM S

A DTC for the FSM Sd can be of height 2; it is shown in Figure 3.12. It is also a DTC

for the initial FSM S.

Note, that such projections can be also applied not only to solve state identification

problems but to simplify the test suite generation directly (whenever applicable).

Consider a fault model < S,∼=,FD= {I1,I2, . . . ,Ik}> where the potential faulty imple-

mentations are explicitly enumerated. The specification S is an initialized nondeterministic

(possibly, non-observable) FSM, and ∼= is an adaptive indistinguishability relation that is

sometimes referred to as r-compatibility relation. In this case, one can make use of the

observable projections So and I o of the FSMs S and I ∈ FD. In particular, one can derive

a test suite distinguishing the mutants I1, I2, . . . , Ik from the specification S via an adap-

59

Chapter 3 State id. in MBT, formal verif. and monitoring

1 2

3 4

i2/o2

i1/o1

i1/o1

i2/o1

i1/o2

i2/o1

i1/o2

i2/o2

Figure 3.11: Deterministic projection Sd of the FSM S

{1,2,3,4}

{2,3} {3,4}

{3} {2} {4}

i1/o1 i2/o2

i1/o2 i1/o1 i2/o2 i2/o1

Figure 3.12: DTC for FSM S in Figure 3.10

tive sequence (if exists). The latter can be done through considering the corresponding

direct sum So⊕ I o for which an adaptive distinguishing sequence for state pair {s0, p0}
is derived, where s0 is the initial state of the specification S while p0 is that one of the

implementation I . Each such DTC is added to the test suite T S. If for some I in FD there

is no adaptive distinguishing sequence for corresponding observable projections then the

test generation algorithm returns the answer ’An exhaustive test suite cannot be derived

using observable projections’. Otherwise, the set of all DTCs is an exhaustive test suite

w.r.t. the fault model < S,∼=,FD >.

An observable projection of the specification FSM represents a heuristic approach

(published in [YKL+17]) for decreasing the complexity of the derivation of exhaustive test

60

Chapter 3 State id. in MBT, formal verif. and monitoring

cases for nondeterministic, possibly partial and non-observable FSMs. For two initialized

observable possibly partial FSMs So and I o with n and m states the length of an adap-

tive distinguishing sequence when it exists is at most mn [ACY95]. Therefore, this test

generation procedure is polynomial with respect to mn, i.e., it solves the problem of an

exhaustive test suite derivation for the fault model < S,∼=,FD > in polynomial time with

respect to the cardinality of the set FD. Note that in this case, FD contains the most

probable mutants on the observable transitions of S, since this method can only identify

such mutants. Note that the faults that can potentially appear in the observable part of

the non-observable system specification that includes all deterministic transitions, in fact

reflect the critical, sometimes non-flexible system requirements. Deterministic transitions

claim that no optionality of the output responses can be considered at a given state under

a given input. Observable transitions, on the other hand, allow such optionality but only

when the corresponding nondeterminism remains observable, i.e., when the next state is

unique for each possible output response. Such deterministic and observable projections

can exist for real protocol specifications, and as an example in [YKL+17] the Reader can

find the File Transfer Protocol (FTP) specification and related mutants.

3.4.2 Probabilistic approach for test suite minimization against non-

deterministic specifications

Another option to decrease the complexity of the test suite generation against a nondeter-

ministic specification is to introduce some additional knowledge about this nondeterministic

behavior. In [KYL21], together with the colleagues from ISP RAS and ADS, we propose to

introduce the probabilities to the nondeterministic transitions. The latter in some cases, for

observable FSMs, allows to minimize the test suite preserving the test suite exhaustive-

ness at a certain level.

Given the specification machine S=< S, I,O,hS,s0 >, we augment each nondetermin-

istic transition (s, i,o,s′) ∈ hS with the probability p. The probabilistic specification is thus

the FSM S =< S, I,O,hS,s0, pr >, where pr is the function that defines the probability for

the output o to be produced at state s under input i, pr : S× I×O −→ [0,1]. Note that,

we restrict the assignation of pr in such a way that ∀s ∈ S ∀i ∈ I ∑o∈O pr(s, i,o) = 1. The

function pr can be extended over input/output sequences from (IO)∗; given an input/out-

put sequence α/β = (α′/β′).(i/o), pr(s0,α,β) = pr(s0,α
′,β′)∗ pr(s, i,o), where s is the

α′/β′-successor of the state s0 of the specification FSM S; if the trace α′/β′ is not defined

at state s0 then this probability equals 0. For the defined sequence γ such a successor is

61

Chapter 3 State id. in MBT, formal verif. and monitoring

unique due to the observability of the specification FSM S; as usual pr(s,ε,ε) = 1.

Consider a fault model where < S,∼=,{I1,I2, . . . ,Ik} > and ∼= is a non-separability

relation now, i.e., differently from the case above, we now consider only preset test cases.

We adjust the non-separability relation for the augmented probabilistic specification FSM

S13. We thus define a probabilistic separability for a given implementation I j and the

specification S. Given P as a user defined probability14, a sequence α∈ I∗ is a P-probably

separating sequence for I j and S, if ∑β∈out(I j,α)∩out(S,α) pr(s0,α,β) ≤ 1−P. I j is not

probabilistic, and pr(s0,α,β) is the probability to observe β when α is applied at the initial

state s0 of S.

Correspondingly, for a fault model < S,∼=,FD = {I1,I2, . . . ,Ik}>, we say that the test

suite P-T S is P-probably exhaustive if ∀I j ∈ FD ∃α ∈ P-T S such that α is a P-probably

separating sequence for I j and S. We aim at deriving such test suites for user defined

probabilities via filtering a given exhaustive test suite T S for the fault model < S,∼=,FD =

{I1,I2, . . . ,Ik}>.

In other words, given a user defined probability P, we propose to derive a test suite

P-T S ⊆ T S, aiming at reducing |P-T S| (in size), and which is P-probably exhaustive

for < S,∼=,FD = {I1,I2, . . . ,Ik} >. In order to do so, we propose to build a matrix M

whose rows are assigned with the test sequences from T S while columns correspond

to all the implementations from FD. mi, j contains the maximal guaranteed probability

pi, j for the sequence αi (in lexicographical order) to separate the implementation I j (also

in lexicographical order) from the specification FSM S. This probability is calculated as

pi, j = 1−∑β∈out(I j,αi)∩out(S,αi) pr(s0,αi,β).

By construction, each column of the matrix M contains at least one 1, as the test suite

T S is exhaustive. After M is derived what is left to do is to build a minimal cover of it,

where a subset P-T S corresponding to the rows, covers all columns {I1,I2, . . . ,Ik}, such

that each probability pi, j ≥ P where P is user defined. The latter means that for each

potential faulty implementation from FD there exists at least one test sequence from P-T S

that P-probably separates it from the specification S.

We omit the discussion about how such a row cover can be constructed - it can be

done through an explicit combinatorial enumeration or various (combinatorial) optimization

strategies can be applied. The solution to the problem always exists and in the worst

13Note that the notion of a probabilistic FSM has been introduced before, however the notion of distin-

guishability was defined differently (as non-equivalence, for example) [HM09], [ACY95], [VTdlH+05].
14A level of certainty that a sequence separates the specification and an implementation

62

Chapter 3 State id. in MBT, formal verif. and monitoring

case scenario, when nothing could be minimized, P-T S = T S. Otherwise, if we are lucky

enough, the overall test suite length can be minimized while the fault coverage can be

preserved with the defined level P of certainty.

We note that other optimization strategies can be applied to simplify the state identifi-

cation and test generation tasks, those can include various heuristics (some we discussed

for example, in [KY15a]) or some scalable representations can be employed to accelerate

the distinguishablity (see for example, [KYTS15]). These approaches keep developing as

in fact, as discussed above, even if the general complexity is high for the related prob-

lems, many specific FSM classes still remain practical and at the same time allow a lower

complexity. We will check some of the scalable representations for the FSMs in the next

chapter.

63

Chapter 3 State id. in MBT, formal verif. and monitoring

64

Chapter 4

Decreasing the abstraction level -

Testing against logic circuits: fault

models and test derivation strategies

In the previous chapter, we discussed various contributions to testing stateful systems -

we assumed that the output of the SUT at the next time instance depends not only on the

input applied to it but also on its internal state. Moreover, we generally considered that

this state remains unknown and thus, went deeper into the state identification problems.

However, not all systems are like that; at least in the area of communication networks,

stateless behavior is also met quite often. Logic circuits can effectively model both - it

only depends if they have latches or not. Moreover, logic circuits can also serve as scal-

able representations to solve various analysis problems over FSMs, including again, the

problems of the state identification (see for example, one of our recent works [TWJ+21]).

Therefore, it is interesting to decrease the abstraction level when testing discrete event

systems, and consider not high level descriptions for system behavior, but rather low, in

terms of the corresponding logic circuit where inputs and outputs are represented by the

Boolean vectors and states (if present) are ‘stored’ in the corresponding latches.

Given an FSM, a corresponding logic circuit that models its behavior can be obtained

through the use of logic synthesis solutions (see, for example [VKBSV97, BM10, BT09,

Sas93, DMBSV85, Tri16], among others). In this case, Boolean functions for the output

and transition functions, should be derived, and there are various related research ques-

tions that have been widely studied and yet, novel improved solutions are needed and thus

keep appearing. For example, when it comes to the logic synthesis, there are questions of

65

Chapter 4 Testing against logic circuits

the resulting circuit optimality, including numerous criteria (number of gates, path length,

delay, etc.) or state encoding (which partially relates to the first one). At the same time,

for a given logic circuit a relevant FSM can be obtained via a direct simulation of the circuit

behavior at each state under each input vector. Note that these approaches work under

the synchronous behavior assumption, i.e., a clock signal makes the combinational logic

produce its outputs at once, as well as the latches to change their states (just like in FSMs

considered in the previous chapter, the output is produced simultaneously with the state

change).

We do not focus on this FSM-circuit relationship in this manuscript but rather note that

it is very well studied and can be useful not only for design but also for testing reasons,

when an SUT has and has not internal states. Yet, we note that the faults that can be

detected at the FSM level, not necessarily are detected when it comes to related logic

circuit implementations, and vice versa. Indeed, for the logic circuit the faults of interest

also differ - if in the previous chapter we mostly focused on detecting transition and/or

output faults then now, when it comes to logic circuits, we can talk about a permutation of

two logic wires, for example. We observed that in some cases the fault models developed

for testing logic circuits can be improved, and this chapter is devoted to study of such fault

models, correlation between them and related test suite generation. At the same time,

when it comes to the communication systems, logic circuits can be quite adequate and

efficient models for testing reasons, and in the next chapter we discuss one of related

case studies.

4.1 Background: logic circuits for describing combina-

tional and sequential behavior

A logic circuit consists of logic gates. Each logic gate has input (-s) and a single output.

Outputs of some gates are connected to inputs of the others. The inputs of some gates that

are not connected to any other gate output are claimed to be primary inputs of the circuit

while the outputs of some gates are claimed as primary outputs. Combinational circuits

are feedback-free and these circuits have no latches, i.e., the circuit output significantly

depends only on its current input. Sequential circuits, on the contrary, have logic gates and

latches or other types of flip-flops that can be considered as the internal circuit memory.

Note that the model of a logic circuit is of interest of the author, alongside with other

models discussed before, such as FSMs and Automata. In fact, we utilized combina-

66

Chapter 4 Testing against logic circuits

Table 4.1: Example LUT

x0 x1 x2 x3 z0 z1

1 1 1 1 1 1

0 1 1 1 1 1

1 1 0 0 1 0

tional circuits for testing SDN switches [LKB+18] as well as for estimating the quality of

web/electronic services [KYC+14b, KPY+14]. Moreover, we evaluated the related FPGA

implementations when a logic circuit is designed to implement a supervised machine learn-

ing algorithm [LLK+18]. Sequential circuits are used as scalable representations for FSMs

and thus, we studied the related fault models and proposed the test generation strategies

at the corresponding abstraction level.

We now come back to the definition of the circuits of interests and their representations

that we use (-d) in our work. As usual, in a circuit, each logic gate implements a Boolean

function. Most common 2-input gates are AND/OR/XOR/NAND/NOR/XNOR that imple-

ment conjunction/disjunction/xor and their inversions. There are also 1-input gates such

as NOT/BUFF that implement the inversion and the equality function, correspondingly.

There can be more complex gates that can have more inputs as well.

A logic circuit can be represented in various ways. For example, a circuit can be

represented as a graph, and, in particular, an And-Invertor graph, such that logic elements

are only represented by AND and NOT gates. In this case, these gates are called AIG

nodes. An example of an AIG graph generated from logic synthesis and verification system

ABC [BM10] is shown in Figure 4.1.

A combinational circuit implements or represents a system of Boolean functions. A

circuit accepts a Boolean vector as an input and produces the Boolean vector as an output

according to the corresponding system of Boolean functions. Each combinational circuit

can be described by a Look-up-Table (LUT). A LUT contains a set of input/output pairs of a

given circuit: if for the input i the circuit produces an output o, then the pair i/o is included

into the LUT. An example LUT for a system of partially specified Boolean functions is

given in Table 4.1. In fact, this LUT is used as an illustrative example in [KYC+14b] and it

represents a very small dataset encoded as Boolean vectors for the Quality of Experience

(QoE) level of 3 users with a given booking service.

The AIG in Figure 4.1 is the result of the logic synthesis by ABC, given the LUT in

67

Chapter 4 Testing against logic circuits

Figure 4.1: An example circuit in the form of AIG

68

Chapter 4 Testing against logic circuits

Table 4.1 described in the special PLA format (NOT nodes are taken in bold).

Note that there are similar formats if we aim at synthesizing a sequential circuit, for

example, from a corresponding FSM description. One of those can be KISS (or kiss2)

format which is widely used as well in the description of various logic synthesis and verifi-

cation benchmarks [Nij]. In fact, a KISS file contains a transition table of a structural FSM

where inputs and outputs are encoded as Boolean vectors, however the states can remain

abstract.

4.2 Novel results in testing logic circuits

4.2.1 Test generation based on logic circuit verification

We now turn to the test suite generation when the specification S is represented by a logic

circuit which can be sequential or combinational. Some of the methods and techniques,

as well as testing assumptions, are rather similar to those when testing against FSMs.

For example, in the previous chapter, we discussed how to derive a test suite using ex-

plicit enumeration of potential mutants of the specification, i.e., under white box testing

assumption. In this case, for each mutant, a corresponding sequence that distinguishes

this mutant from the specification, is added to the test suite (if such a sequence exists).

We now discuss how this strategy can be applied when the specification is represented by

a corresponding logic circuit.

White box testing for Verilog descriptions

We hereafter consider another commonly used format for a logic circuit. In fact, we pro-

pose to derive the test cases directly from a circuit description in a hardware description

language such as VHDL or Verilog. We use Verilog and the logic synthesis and verification

solution ABC accepts it well. As an example consider a Verilog description in Figure 4.2

for a circuit S1, represented as an AIG, with a set X = {x0,x1,x2,x3} of inputs, and a set

Z = {z0,z1} of outputs. This Verilog description is very simple and intuitive, it represents

the AIG from Figure 4.1.

Let an SUT specification be given as a logic circuit which for example, is described

in HDL or Verilog. For further test generation, we first define the distinguishability for the

69

Chapter 4 Testing against logic circuits

module s1_for_ver (

x0 , x1 , x2 , x3 ,

z0 , z1) ;

i npu t x0 , x1 , x2 , x3 ;

output z0 , z1 ;

wi re n6 , n7 , n8 , n9 , n10 , n11 , n12 , n13 , n14 ;

assign n6 = ~x2 ;

assign n7 = ~x3 ;

assign n8 = x2 & x3 ;

assign n9 = ~n8 ;

assign n10 = x0 & n7 ;

assign n11 = n6 & n10 ;

assign n12 = ~n11 ;

assign n13 = n9 & n12 ;

assign n14 = ~n13 ;

assign z0 = x1 & n14 ;

assign z1 = x1 & n8 ;

endmodule

Figure 4.2: Verilog description example

70

Chapter 4 Testing against logic circuits

circuits of interest. For the sake of simplicity, we start with combinational circuits. Similar

to FSMs, two combinational circuits S1 and S2 are equivalent, if for each input vector i

they produce the same output o. When talking about sequential circuits the equivalence

relation is defined in more complex way, namely, for each input sequence applied at the

current (initial) states, output responses of the circuits are the same1. If circuits S1 and S2

are not equivalent, then there exists an input vector i (an input sequence α for sequential

circuits), such that the circuit S1 produces an output o1 (an output sequence β1), the circuit

S2 produces an output o2 (an output sequence β2), and o1 6= o2 (β1 6= β2). In this case,

the corresponding input (input sequence) is a distinguishing vector/pattern (sequence).

We are interested in deriving such distinguishing sequences for two or more Verilog

descriptions and for that matter we rely on the well known Satisfiability problem (SAT) for

a corresponding Conjunctive Normal Form (CNF)2. The CNF is derived for a miter of two

circuits S1 and S2. Miter has the set of inputs I = {i1, . . . , in}, just like S1 and S2, and the

set {m1, . . . ,mp} of outputs. The function f j that is implemented at the output j of the

miter is the XOR of output functions g j and h j of the circuits S1 and S2 correspondingly.

Circuits S1 and S2 are equivalent if each output of the miter always equals 0; otherwise,

the corresponding input i that returns an output o 6= (0, . . . ,0) is a distinguishing pattern

for the circuits S1 and S2. Miter is a known technique that is used in logic synthesis and

verification for checking if two circuits are equivalent (see, for example some related works

of R. Brayton’s research group [MCBE06, CMBK07, BEM12] who in fact developed the

system ABC that we utilize).

We propose to use this miter-based technique combined with the white box test gen-

eration strategy, to derive an exhaustive test suite against a logic circuit specification

[KYTS15]. Note again that if in Chapter 3 we were interested in detecting transition and/or

output faults in the corresponding FSM, then now the fault domain should also be changed

accordingly, i.e., now the mutants will be derived against the specification circuit.

We thus consider the fault model < S ,≡,FD> where S is the Verilog-description of an

SUT,≡ is the equivalence relation and the fault domain FD contains all possible mutants of

interest for the description S . Hereafter, as mutants, we consider the Verilog specifications

with faults of specific types, such as for example replacements of one gate by another,

1The Reader may refer to [JVCH10, Pix92] for the related notions and algorithms in the area of hardware

equivalence.
2Note, that in circuit design and verification, many tasks such as, for example, synthesis and/or opti-

mization are often reduced to SAT or QBF solving (see, for example [ZJM21, BEK+14, BKS14]), due to the

existence of quite efficient solvers, nowadays.

71

Chapter 4 Testing against logic circuits

classical stuck-at faults, permutation of input wires3, etc. As an example, consider a circuit

S2 that can be obtained from the circuit S1 (Figures 4.1 and 4.2) by changing the input

identifier of the AND gate z1, namely, n8 is replaced with x2. The mutant S2 is distinguished

from the specification S1 via the input i = (1,1,1,0). Indeed, the circuit S1 produces the

output o1 = (0,0) while the circuit S2 produces the output o2 = (0,1). Note that first,

second, and higher order mutants of the Verilog description S can be considered, i.e.,

mutants with single, double, etc. faults.

We derive an exhaustive test T S for the < S ,≡,FD > in the exact same iterative man-

ner as we used for the FSM specifications; just that in this case we are looking for an input

pattern i (a sequence of length 1 for combinational circuits), satisfying the corresponding

CNF. Deriving mutants one by one, we first check whether sequences (patterns) of already

derived test suite can distinguish a current mutant M from the Verilog description S . If this

is not the case then we check whether there exists an input pattern i distinguishing Verilog

descriptions S and M . If such sequence exists then we add it to the test suite T S. If

not, or the time, given for solving the corresponding SAT problem is over, then we stop the

procedure or can turn to another mutant. The latter depends on the test objective, since in

order to get an exhaustive test suite, we can only add such mutants M to the set FD that

were distinguished from S in realistic time.

Note that we tried this technique using the system ABC and it usually returns an ex-

haustive test suite without ‘dropping’ some mutants, since a counter example for a satisfi-

able CNF is provided very fast. However, for some mutants the verdict can be inconclusive

due to the lack of time when using SAT solving for equivalent circuits, that is quite rare.

Such white box testing approach against logic circuits seems to be promising since all

the ABC operators work fast enough even for huge circuits. In particular, in our experiments

we relied on the commands miter, iprove and write_counter to derive the miter, check

if the result is SAT and if so, save the corresponding input i. It is also possible to use

the equivalence check for the sequential circuits, namely dprove, but this obviously takes

longer, in general. Some experiments with those circuits for different types of faults are

presented in the next section.

3More details on the faults of interest are given in the next section.

72

Chapter 4 Testing against logic circuits

4.2.2 (Novel) fault models when testing against the logic circuits and

correlation between them

We consider three types of faults that can occur in the circuit implementation, namely Sin-

gle Stuck-At Faults (SSFs), Single Bridge Faults, and Hardly Detectable Faults. Note that

the first ones are very well studied (see, for example [Pat05]) and moreover the test suites

derived against SSFs are known to detect many other faults. In [KLY16], we empirically

verify this fact, namely we try to see how good are the test suites built against SSFs when it

comes to other circuit mutants. We perform a similar investigation in [LKB+18] when study-

ing this fault model w.r.t. the faults that can occur in forwarding devices for programmable

networks (results presented in Chapter 5, accordingly).

For the fault models of interest, the mutants considered are the following:

• Single Stuck-At Fault Mutants that occur when one circuit gate gets ‘stuck’ at a given

logical value (“1” or “0”);

• Single Bridge Fault (SBF) Mutants that occur when a given input of a given logical

gate is wrongly wired (bridged), i.e., taking the input from the wrong gate;

• Hardly Detectable Fault (HDF) Mutants that occur when a single gate changes its

output for a single input.

We rely on the ABC tool, as discussed above with the dprove function to derive the

test suites. The experimental results presented below concern the sequential benchmarks

from the ITC’99 package (Second Release) [CRS00]. In [KLY16], the Reader can find the

results on the test length and test size for the circuits b01, . . . , b10 from the ITC’994. We

omit these results in here, considering that the correlation between the fault models can

be more interesting. Such correlation is investigated as follows: after all test suites, under

white box assumption, are built, each test suite is used to try to distinguish the mutants

of two other different types. For example, the test suite derived for SSFs is used to try to

‘kill’ the mutants for the HDFs and the SBFs. The results of the experiments are shown in

Figures 4.3, 4.4, 4.5, respectively.

As can be seen from the graphs, even well studied SSFs and related test suites against

them can sometimes provide a low fault coverage for sequential circuits. Indeed, less than

40% of the fault coverage for some cases of the hard detectable faults is quite unpromising;

we admit however that the bridges are generally detected easier.

4Circuit parameters and their brief descriptions are also given in the related publication [KLY16].

73

Chapter 4 Testing against logic circuits

Figure 4.3: SBF test suite fault coverage against SSFs and HDFs

Figure 4.4: SSF test suite fault coverage against HDFs and SBFs

74

Chapter 4 Testing against logic circuits

Figure 4.5: HDF test suite fault coverage against SSFs and SBFs

The experiments briefly presented above aim to motivate the necessity of studying

different specifications when testing discrete event systems, as well as considering various

abstraction levels. Indeed, for a software or hardware system that is developed for further

production, the test cases should be provided and collected at different levels. In our work,

we study two levels for sequential systems where FSMs or automata represent the high

level description, while the logic circuits correspond to the low abstraction level. Note that

not always the test suites that are good at one level, are sufficiently good at another level.

In other words, it is interesting to study how faults detected (or guaranteed to be detected)

at one level can correlate and be detected when moving to another abstraction level. We

performed a small empirical study on that matter together with our colleagues from ISP

RAS.

In particular, our colleagues from ISP (Russia), work on Extended FSM based testing

strategies for hardware systems, and we decided to compare the fault coverage of the test

suites for logic circuits and EFSMs. The experimental evaluation on the same circuits b01,

. . . , b10 from the ITC’99 was presented in [SLK+16]. The goal of the experiments was

very similar to that one above: which fault coverage can be achieved at a circuit level given

the test suite derived from an Extended FSM for the sequential circuit in question? And

vise versa: for the SSF and other logic circuit test suites, which faults can they detect over

EFSMs? Below, we briefly present the test generation strategies and some results.

The EFSM based strategy employs a so called RETGA functional test generation

method [IAS15]. The method has two phases: i) automatic extraction of the EFSM spec-

75

Chapter 4 Testing against logic circuits

ification from the target HDL description; ii) generation of a test suite that covers each

transition of the EFSM model (transition tour). For this test generation strategy we esti-

mated, on the one hand, the statement or branch coverage in the hardware description

language for the circuit of interest, and on the other, the fault coverage for the set of mu-

tants of three types, i.e., SSFs, HDFs and SBFs. In fact, we united the mutants derived

and considered this set together as a set of ‘low level’ mutants. We omit the details of the

results of the experiments, inviting the Reader to check the publication, and note that for

some circuits, for example b02, more than 80% of the low level mutants were detected. At

the same time, for this circuit a 100% branch and statement coverage has been obtained

with the RETGA tests. Nevertheless, for the circuit b10 a 100% branch and statement

coverage for an HDL description does not bring good results for the low level mutants. In-

deed, not even 40% of those are detected for this circuit with the RETGA-based test suite.

Therefore, the test suites derived for the high abstraction level not necessarily detect the

faults at lower abstraction level.

Similar experiments we performed also for the tests derived against the low level mu-

tants. For the same circuit b02 we have more than 88% of the mutants coverage and 100%

for the branch and statement coverage. However, again, this is not always the case, and

for the circuit b10, we have 64,88% of the low level mutant detection5 and 93,24% for the

statement coverage (85,71% for the branch one). Somehow we can conclude that the low

level tests reach higher levels of mutant coverage than high level ones, but they are longer,

at the same time. Therefore, the conclusion can only be repeated - both abstraction levels

are necessary and it would only be better if the test suites derived against the FSMs / au-

tomata can be combined with those against logic circuits, i.e., the SUT should pass both

(as well as many others that are available) before being put into production / deployment.

We however note that the fault models are not limited with those discussed in the

last two chapters - it is mostly the authors’ interests that go around these very models.

Nevertheless, depending on the application areas, we tried defining other original fault

models and some of them we discuss in the next Chapter.

5For some mutants, a distinguishing sequence was not found using ABC.

76

Chapter 5

Testing and verification of dynamic and

programmable networks

This chapter summarizes some of the application areas of several fault models considered

above. As mentioned already, we try not only to solve the fundamental tasks in the area

of model based testing, but also study some critical systems and investigate which fault

models and test generation strategies could be appropriate. The author takes advantage

of being part of the Networks and Mobile Multimedia Services Department at TSP. This

fact presents the opportunities for collaboration, where the application areas are networks

and in particular, programmable and dynamic networks. In such networks, some changes

of the network topology or related network parameters are possible, during the system

functioning. We therefore, investigated how the components of such networks can be

tested and verified and which guarantees and at which levels can be provided.

5.1 Application areas: dynamic networks and SDN

Dynamic networks As mentioned above, such networks allow the network parameters

associated to links to be changing their values at run-time. We say that a static network is a

computer network where each link has a set of parameters that do not change, for example

bandwidth (capacity) or delay. The parameters of the links may change in dynamic net-

works1. Static networks can be modeled as (directed) weighted graphs (V,E, p1, . . . , pk),

1We assume the network topology does not change in dynamic networks, and according to our industrial

partner ADS with whom we work on this subject, this assumption is quite realistic.

77

Chapter 5 Testing and verification of dynamic and programmable networks

where V is a set of nodes, E ⊆ V ×V is a set of directed edges, and pi is a link param-

eter function pi : E →N, for i ∈ {1, . . . ,k}; without loss of generality, we assume that the

parameter functions map to non-negative integers (denoted by N) or related values can

be encoded with them. Similarly, dynamic networks can be modeled as such graphs, how-

ever, pi maps an edge to a non-empty set of integer values, i.e., pi : E → 2N \ /0, where

2N denotes the power-set of N. Note that a dynamic network snapshot, at a given time

instance, is a static network itself.

Two main tasks of interest (mainly stated by the ADS again) for these kind of networks,

in the context of verification and testing, are the following. i) Given a network topology and

the functions pi for the dynamic network parameters, one should verify that this topology

satisfies the properties of interest. For example, one should check that each node has

at least one coming and one outgoing edge, or that the topology is not fully mesh, for in-

stance, etc. ii) Once a network is implemented, for example, as an emulated environment,

can we check at run-time that the properties of interest are not violated? For example, can

we check that the values of the dynamic parameters do not exceed a given constant? ADS

is interested in these tasks in the framework of Satellite communications, and currently in

the thesis of E. Petersen, supervised jointly with Jorge López and Djamal Zeghlache (the-

sis director), we are trying to apply the formal methods’ strategies to the validation of such

dynamic networks.

Software defined networking (SDN) These networks represent another case study for

the model based testing and verification strategies. The dynamicity in this case is different:

again, the topology is fixed, but given such a topology, one can implement various paths

or various (virtual) networks on it. In dynamic networks, we assume that each node can

generate packets and can also forward them, i.e., can act as a host and a switch at once.

In SDN, we assume that the nodes are split into these two types, and for the sake of

simplicity we assume that the related sets are disjoint. SDN allows to program a network

through the requests to the application or the controller, and the request is implemented

on the data plane. Such programming is performed via the necessary rules installed in

the switches which, depending on the traffic type of the packet of interest, will forward it

to the defined port. These forwarding rules are ‘pushed’ to the switches by the controller

that has a global view of the network; switches are configured remotely and dynamically

through interfaces using protocols such as the Open Flow (OF) protocol [MAB+08]. The

SDN resource topology (data plane) or resource network connectivity topology (RNCT) is

represented as an undirected graph G= (V,E) where E ⊆{{a,b}|a∈V & b∈V} without

multiple edges and loops. The set V =Ho∪Sw, Ho∩Sw= /0, of nodes represents network

78

Chapter 5 Testing and verification of dynamic and programmable networks

devices such as hosts (the set Ho) and switches (the set Sw). Edges of the graph (the

set E) represent connections (links) between two nodes in G and each link can transmit

packets in both directions.

Several tasks of interest can be listed when it comes to verification and testing for SDN.

i) What was requested at the application layer, is it exactly implemented on the data plane?

ii) Does the controller/application/switch behave as requested by their specifications? iii)

How is the interoperability between the entities listed? Can their be any races considered,

for example? Indeed, what if two applications compete to access the controller and that

the latter pushed the rules accordingly; will these races affect the final implementation of

the requests on the data plane? iv) Finally, similar to the previous case study, given the

network topology, one can check certain properties of it. Moreover, if together with the

topology a virtual network request is also specified, one can also assure that this request

is indeed implementable and ‘makes sense’ before proceeding with its actual implementa-

tion. Some of these questions were studied during the thesis of A. Berriri (thesis director -

Djamal Zeghlache) [Ber19] and also in collaboration with the ISP RAS researchers.

We present the problems listed above and some related solutions in a top down ap-

proach: first, we will discuss how to validate the provided specifications. Note that in the

contributions previously presented, we never drew any attention to this question, namely,

since the first general schema in Figure 2.1, we assumed that the specification of the SUT

is provided and moreover it is valid, i.e., we can test the conformance of the SUT to this

valid specification. In Chapter 4, we however considered extracting some specifications

from the HDL code, but again we did not verify them. This might be a negative point and

a future direction for the author to consider. Yet, we note that a large spectrum of works

in testing and verification community are devoted (for almost half of the century) to the

validation of the related specifications (see, for example, [HHL+91, JL93, Hol82, vB75] for

validating the protocol specifications using various means). We tried to apply some valida-

tion strategies in dynamic and programmable networks’ area as we realized some network

requests cannot be valid at all under certain environments2. Therefore, the first section

is devoted to such verification with some very known formal verification means. Having

validated the topology at the top, we come afterwards to touching real implementations

that can be treated as SUTs and to which active and passive test generation strategies

can be applied. Finally, when some critical network components are tested in isolation, we

come to the discussion of their interoperability. On the one hand, we define some original

fault models where the SUT is a composition of various network entities, and on the other,

2A simple example is a request to implement a virtual network that contradicts the physical resources,

e.g., to request a virtual link when a physical one is not even provided.

79

Chapter 5 Testing and verification of dynamic and programmable networks

we proactively test the possible races in the composition of interest.

5.2 Verifying the topologies and requests in dynamic and

programmable networks

We start this validation part with a bit of motivation. Assume that we analyze certain vir-

tual network requests and further their implementations. We will limit ourselves to the

requests written in TOSCA language (Topology and Orchestration Specification for Cloud

Applications) [DMT16]. In a well formatted TOSCA request (correct syntax, i.e., parsed

successfully), a number of semantic inconsistencies can be present; we discussed several

types of those in our work [LKYZ17]. If an inconsistent user request for a virtual network

that for example, contains contradicting declarations, is deployed in the virtualization plat-

form, where SDN can be one of the underlying technologies, unexpected or undesirable

results might occur. Different constraints might be violated, such as for example service

level agreements. As the consistency of the system is compromised by such requests, in

one way or another the request is not properly implemented or it can even threaten the

security and safety of the whole system.

Therefore, various properties of the virtual requests should be checked before any

implementation on the data plane. First of all, any request should be free of functional

inconsistencies, it should be implementable within a given topology. Moreover, resource /

dependency issues should be also verified beforehand. Those can represent, for exam-

ple, restrictions on the Virtual Network Function (VNF) neighboring connections or on the

resources used by VNFs. Note also that such request validation should be performed at

different abstraction levels. In fact, even if a request is expressed in terms of a set of virtual

paths, without any labels such as VNFs on the nodes, not taking into account any depen-

dencies between them, it still needs to be pre-validated. We do not draw much attention

of the Reader to this issue, but just note that we studied these challenges and in fact,

submitting even two paths as a request to an SDN controller can lead to more paths that

can unintentionally appear on the data plane. In [BKY+21], we established the sufficient

conditions when a given set of paths can be implemented without any undesired paths,

i.e., no loops would appear for example, but this is only done under the assumption that all

the packets have the same traffic type.

Similar motivation leads to validate the specifications for dynamic networks, where only

the values of dynamic parameters are changing over the edges. It is very possible that

80

Chapter 5 Testing and verification of dynamic and programmable networks

the topology description is not consistent, for example, that the links are not symmetric

when they should be, or the network density is bigger or smaller than a given constant.

Again, many of these properties can be directly verified on graphs, while for some a model

checker can be employed. In [PLK+20], together with our ADS partners, we propose to

utilize an SMT-solver for that matter and thus, describe the properties as Many Sorted

First Order Logic (MSFOL) formulas. We encode the set of nodes V as an object of array

sort; the sort of V is thus an array whose indices and values are integers. Directed edges

are nothing more than records (tuples with sorts), particularly, pairs of integers. Dynamic

parameters of the network, such as bandwidth or delay, are encoded according to their

respective functions pi. If the values of the parameters are integers and they belong to a

finite set, then we enumerate the values (intervals in the simplest cases), depending of the

source/destination node. For each parameter and each function, one can provide its own

formula φi; their conjunction φN (together with the topology formula as well), is considered

afterwards for the verification. In fact, φN represents the model of the dynamic network in

question.

Having the properties to be checked, π as a conjunction of them, and the model φN ,

the model checking process is quite straightforward. First, we check that both φN and π

are satisfiable; otherwise, either the model (whose verification can be performed before-

hand as well) or the properties have inconsistencies. Further, if the formula φN ∧ π is

satisfiable, then we conclude that the properties π hold for the model φN . If the formula is

not satisfiable then there is a conflict between φN and π. This approach was implemented

using the solver z3 [DMB08]. The Reader can refer to [PLK+20] to see the properties

that were checked for two dynamic parameters. We admit that the verification process is

sometimes not very scalable, but it partly depends on the network type. For a network of

30 nodes, some properties take seconds, some can take up to 10 minutes to be verified,

which also depends on the formula π.

As any networks and their components, dynamic networks can also be verified at run-

time, i.e., a continuous monitoring or passive testing of an implemented dynamic network,

can be performed. We note that such monitoring strategies of distributed architectures are

also of the interest of the author, and apart from dynamic and programmable networks,

we tried other distributed architecture scenarios, such as for instance Cloud Computing.

For example, in the thesis of P. Carvallo (supervised jointly with Ana Cavalli, financed by

Montimage company, thesis director - Stephane Maag) [Car18], we studied the security is-

sues related to potential insider threat and discussed the relevant monitoring strategies. At

the same time, in [LKZ17, LKZ19], we provided some active and passive testing solutions

for the placement modules that assign virtual machines to hosts, in cloud infrastructures

81

Chapter 5 Testing and verification of dynamic and programmable networks

[PB15]. We omit these results hereafter, inviting the Reader to check the cited thesis and

publications. Instead, we show some online monitoring possibilities over the case study of

a dynamic network.

Given a dynamic network, when monitoring its behavior, one can check that static

network instances do not violate its dynamic description, i.e., the network model φN intro-

duced above. We can consider a corresponding conformance relation � which is similar

to a reduction; a static network conforms to its dynamic description, if it has exactly the

same topology and for each dynamic parameter at each edge e, its value belongs to the

allowed set pi(e). In order to verify this relation � at run-time, the behavior of an SUT can

be monitored for checking that each link (va,vb) ∈ V ×V is implemented correctly, and

that each value of the i-th parameter belongs to the set pi((va,vb))
3. At run-time we verify

that the value of pi((va,vb)) does not violate φN , and if this is not the case, an alert can be

produced to signal the link (va,vb) itself as well as the i-th parameter which was wrongly

assigned when implementing the static instance.

Such passive testing or monitoring strategies in networks area are indeed efficient,

however it is hard to provide any guarantees when it comes to this testing mode. The

reason is that, differently from active testing where we build the sequences to be applied

(preset or adaptive), in the passive mode, some of the sequences / traces might not even

be observed during the testing time and thus, we cannot conclude about the SUT behavior

on such not shown traces. We therefore try to study and apply both modes, passive and

active, when it comes to networks’ application area, and below we present the latter.

5.3 MBT for SDN enabled switches

In this section, we summarize the results presented in [LKB+18] that concern testing one

of the critical components in SDN networks, namely an SDN switch. As mentioned above,

a switch processes the received packets according to the installed forwarding rules. A

forwarding rule consists of three parts: a packet matching part, an action part, and a

location / priority part. The matching part describes the values a received network packet

should have in order for the rule to be applied. The action part indicates how to process the

matched network packets; the location / priority part controls the rule hierarchy using tables

and priorities. A rule R defined in the switch configuration can therefore be represented

3We assume that the points of observation in this case can be placed at each node v ∈V and each link

(va,vb), correspondingly.

82

Chapter 5 Testing and verification of dynamic and programmable networks

by the following implication: (p1 ∈ V1 & p2 ∈ V2 & . . . & pi ∈ Vi & . . . & pn ∈ Vn) =⇒
out put_ports = {o1,o2, . . . ,om}. In this case, pi refers to an input parameter, oi refers to

an output port and the sets V1, V2, . . . , Vn define a range or an interval for each switch

parameter p1, p2, . . . , pn, correspondingly4.

We would like to check that the switch is implemented correctly, i.e., that it indeed

implements the set of predefined rules. In order to introduce a fault model, given the

implication above, we introduce two types of possible mutants, i.e., which mistakes can

happen to a rule R when being pushed to a switch under test.

An output mutant for the rule R is defined as follows: (p1 ∈V1 & p2 ∈V2 & . . . & pi ∈
Vi & . . . & pn ∈Vn) =⇒ out put_ports= {o′1, . . . ,o′m′}, and {o′1, . . . ,o′m′} 6= {o1, . . . ,om}.

A parameter value mutant for the rule R is defined as follows: (p1 ∈ V1 & p2 ∈
V2 & . . . & pi ∈V ′i & . . . & pn ∈Vn) =⇒ out put_ports = {o1,o2, . . . ,om}, and V ′i 6=Vi.

We assume that the switch implementation has no faults if each packet is processed

exactly in the way that the switch configuration requires. Moreover, if for a given packet

there is no rule in the switch configuration with the corresponding matching part then this

packet is simply dropped by the switch, i.e., forwarded nowhere. The fault model in this

case is < Switch,=,FD > where Switch, the specification, is the set of switch rules; = is

the conformance relation represented by the equality, and FD is the fault domain where the

potential switch implementations are explicitly enumerated. We thus consider a white box

testing assumption; potential faulty implementations correspond to the mutants introduced

above. Note also that the system specification can be complete or partial. The set Switch

of switch rules is said to be complete if for each preamble (p1 ∈V1 & p2 ∈V2 & . . . & pn ∈
Vn) there exists a rule R∈ Switch such that R= ((p1 ∈V1 & p2 ∈V2 & . . . & pn ∈Vn) =⇒
out put_ports = {o1,o2, . . . ,om}). Otherwise, the specification Switch is partial.

Note that the specification Switch represented by rules of type R has no memory and

thus can be effectively modeled as a combinational circuit. Moreover, it is intuitive to con-

sider Boolean representations for values transmitted in network packets as they represent

data in binary strings. A combinational circuit LC can be derived in different ways; in

[LKB+18] a straightforward approach for this purpose is proposed. We rely on the use of

logic synthesis solutions, in particular, ABC again, from LUT for a system of (partially spec-

ified) Boolean functions. Once a logic circuit LC that simulates the behavior of the switch

with the rules Switch is derived, one can apply different techniques for test generation. We

decided to apply those, discussed in Chapter 4, i.e., we consider the SSF, HDF, SBF faults

4The defined intervals are assumed to contain integers, without loss of generality.

83

Chapter 5 Testing and verification of dynamic and programmable networks

in circuit LC and discuss which fault coverage it can bring against output and parameter

value mutants over switch rules. It turns out, some guarantees can in some cases be given

when it comes to SSFs.

Proposition 9 If Switch is complete and ∃ i ∈ {1, . . .m} such that ∃! R ∈ Switch, R =

((p1 ∈ V1 & p2 ∈ V2 & . . . & pn ∈ Vn) =⇒ out put_ports = {o1,o2, . . . ,om}) and oi /∈
{o1,o2, . . . ,om}, then each output fault in the rule R is detected by an exhaustive test suite

w.r.t. SSFs.

Whenever Switch is not complete, the behavior of LC over the undefined patterns can

be specified in different ways. In our approach and in our experiments, we use ABC, which

sets the corresponding outputs to 0. This fact allows to guarantee the fault coverage for

output mutants of the rules when initially the specification Switch is not complete.

Proposition 10 If for a set of rules Switch ∃ i ∈ {1, . . .m} such that ∃! R ∈ Switch, R =

((p1 ∈ V1 & p2 ∈ V2 & . . . & pn ∈ Vn) =⇒ out put_ports = {o1,o2, . . . ,om}) and oi ∈
{o1,o2, . . . ,om}, then each output fault in the rule R is detected by an exhaustive test suite

w.r.t. SSFs.

Therefore, if in the set Switch of switch rules, each output port is used in at most one

rule, then an exhaustive test suite w.r.t. SSFs is also exhaustive w.r.t. rule output mutants.

The above statements do not necessarily hold for the parameter value mutations. Such

faults can in some cases be detected by other test suites such as HDFs or SBFs.

We checked the related fault coverage empirically, performing the experiments with

an Open vSwitch (OVS) [PPK+15]. The Reader can refer to [LKB+18] for the details of

experimental setup and results. We just mention that the topology was small, containing

4 switches, all connected to ONOS controller and 4 hosts, each connected to its own

switch. One of the switches was declared to be an SUT and a circuit LC was derived

using ABC, to model it. We generated 45 mutants of various orders for the rule R of the

specification (1 got to be equivalent so we deleted it) and designed the test suites using

the SSF, HDF and SBF strategies. We also tried to re-synthesize the circuit LC, to obtain

other mutants and thus, get a richer test suite. As re-synthesis result (LC′) is not always

minimal, indeed, the circuit can have more gates, for example, and this can help increasing

the fault coverage. Note that the resulted circuit LC′ is an AIG. The experimental results

are shown in Table 5.1, where the last column refers to the union of all 3 test suites, i.e.,

ACF stands for ‘all circuit faults’.

84

Chapter 5 Testing and verification of dynamic and programmable networks

Table 5.1: Fault Coverage for digital circuit fault models

Circuit SSF SBF HDF ACF (total)

LC 79% 45% 18% 86%

LC′ 95% 97% 95% 100%

We conclude that test suites derived based on logic circuit fault models have high fault

coverage for SDN-enabled switch faults. An interesting aspect is that the fault coverage

highly increases when the original circuit specification is transformed into an AIG.

Note that similar to the run-time verification of dynamic networks (or other architec-

tures), the same can be done with the SDN switches, when the specification circuit LC

is obtained. The simulation of LC can in some cases be much faster than the search of

the particular switch rule and its further application to conclude about the expected out-

put port(-s). Therefore, the task of the switch monitoring that verifies that the packets are

forwarded to the exact ports specified by Switch, can be reduced to the problem of the

LC simulation, i.e., obtaining an output pattern for a given input one. We performed such

experiments as well, to see how fast this simulation is. We measured the time that the

switch takes to process a packet as the difference between the packet ingress and the

packet egress. And for the Open vSwitch under test it was ∼ 0.29ms. The time taken to

simulate a single pattern in LC was measured to be ∼ 0.003408ms, on average. This not

only encourages to use this formalism in model based monitoring for forwarding devices,

but maybe even consider the synthesis of those, using logic synthesis solutions. Such

logic circuit based design for forwarding devices is one of the directions to consider in the

future.

We mention again, that all this modeling and test generation was performed under the

stateless switch assumption. If we assume that a switch can have memory, for example, it

would not drop the packets but would ask the controller what to do with them, or any other

intelligence would be introduced, then maybe stateful models would be more appropriate

(sequential circuits, FSMs, etc.).

5.4 MBT for SDN frameworks and related fault models

It is important to test each network component in isolation, but at the same time, it is also

important to test and verify their interoperability. In this section, we consider a bigger sys-

tem under test, assuming that maybe network components contain certain inconsistencies

85

Chapter 5 Testing and verification of dynamic and programmable networks

but for the end-user or a tenant what counts is the final result. In other words, maybe

both a controller and a switch have some bugs but these bugs are masked one by another

and what matters is that the user request for a certain network or a path is implemented

correctly. We therefore propose to test the SDN framework, including the controller(-s),

switches, and connections between them. A tester then sends specific requests to the

SDN controller asking for different paths to be implemented in the RNCT.

We assume that the SDN infrastructure is functioning correctly when each requested

path and only it is created. Hereafter, we consider a virtual path (or simply a path) as a se-

quence of directed edges whose head and tail nodes are hosts and all other intermediary

nodes are switches. As in fact, mostly connectivity issues are tested, similar to [ETSY04],

the fault model this time has only two items, <=,FD > where the conformance relation is

again the equality; no specification is included in the fault model.

The following types of faults can be considered: a requested edge can be directed to

a wrong node, additional edges can appear as well as some edges can disappear. Thus,

a fault domain FD contains all possible paths of the RNCT. A test case is thus a path

of the RNCT and a test suite is a finite set of paths. We are interested in exhaustive

test suites such that any difference between a requested and implemented path can be

detected. Such test generation strategies for black and white box testing were proposed in

[BLK+18] where for obtaining an appropriate output reaction of the SUT we relied on the

traffic generation (see, for example, [ZKVM12, DSO14, FYT+16] for some works on this

subject).

For the Black Box Testing, as the set of all paths of the RCNT is finite, the simplest

way to construct an exhaustive test suite w.r.t. <=,FD > is to consider the set of all such

paths. However, this test suite is rather long, and a possibility to reduce the test suite size

is to consider equivalence classes for the paths. For example, if we assume that each

node processes inputs independently of the node where they come from, two paths can

be considered (i, j)-equivalent if both paths have a directed edge from node i to node j.

That is either all the packets that should be directed from i to j are processed correctly,

i.e., are sent from i to j, or are processed wrongly, i.e., are sent anywhere except the j-th

node. In this case, the set of paths that contains a path of each (i, j)-equivalent class

where (i, j) is an edge in the RCNT, is an exhaustive test suite w.r.t. the corresponding

fault model <=,FD >.

In order to cover all equivalence classes in an optimal way, an optimization problem

can be stated and solved. One option is to consider the Boolean (weighted) matrix and

solve the corresponding covering problem [VKBS97] for which many libraries and scalable

86

Chapter 5 Testing and verification of dynamic and programmable networks

software solutions are developed.

If the node processes a packet depending on where it comes from then equivalence

classes could be considered w.r.t. path subsequences of length l ≥ 2. Given a sequence

γ of RNCT edges of length l between node i and node j, two paths are considered γ-

equivalent if they both contain γ. A test suite is exhaustive if it has at least one path of

each equivalence class. A minimal cover of a corresponding Boolean matrix can also be

used for optimal test generation.

For the White Box Testing, as usual, only the mutants of interest, enumerated explicitly,

can be considered. One can define critical edges, that need to be tested first; for exam-

ple, critical edges that include critical services. In this case, in FD, implementations can

potentially contain three types of faults that need to be detected. i) An edge is directed to

a wrong node, i.e., from the edge of interest (vi,v j) to (vi,v j′) where j 6= j′. ii) An edge

e = (vi,v j) is deleted. iii) A non-existing edge (vi,vk) is created for a critical edge (vi,v j),

where j 6= k. We propose to generate a test suite so that all the critical edges are covered.

For a given critical edge (vi,v j), one can first backtrack to find a shortest sequence that

starts in a host and finishes at the node v j, say p1. Further, a forwardtrack can be per-

formed to find a shortest sequence that starts at the node vi and finishes at a host, say p2.

The sequence p1.p2 is then added to the test suite. As each critical edge is covered by

construction, the derived test suite is exhaustive w.r.t. <=,FD > where FD has explicitly

enumerated mutants of types i)-iii). This somewhat naive approach can be also improved.

A test minimization can be performed similar to black box testing approach, via solving a

covering problem. In this case, a minimal set of paths that cover all critical edges can be

identified.

The fault models considered when testing SDN frameworks can include other param-

eters of switches, for example, such as input and output ports through which a packet

goes. In [YBK+18], we discussed some related equivalence classes for example, defining

another equivalence relation when two paths are equivalent if a given switch processes

inputs independently of many parameters only paying attention to where a packet came

from and what is its destination port. More parameters from the packet header can be

included to define other equivalent classes, we are currently working on defining the most

relevant parameters for various traffic types and respective equivalence classes.

87

Chapter 5 Testing and verification of dynamic and programmable networks

5.5 Formal verification for pro-active testing when detect-

ing SDN races

In this section, we focus on another kind of interoperability issues. In fact, we now try to

see when such issues cause misconfigurations on the data plane. One of the reasons is

the presence of races in the messages that application, controller, and switch exchange.

In [VLK+19], we proposed a proactive testing approach for detecting such races in SDN

frameworks. We note that the problem of SDN races has been raised and studied before

us. Moreover, there are some existing utilities, such as for example SDNracer [EMB+16].

However, the approaches proposed before rely on the definition of a specific (partial) order

between the possible SDN events and further monitoring if the defined order is violated.

For example, in [MBE+15] the authors derive a specific HB graph (happens-before model)

to identify the order of events. Therefore, the detection stays passive in this case. Another

possibility is to take a preventive path, i.e., to derive the SDN components that are carefully

synchronized, so that races cannot show up [MHC17]. Despite the fact that test generation

based on formal verification has been largely considered before [FWA09], we however

are not aware of the application of such test generation strategies for race detection in

distributed systems.

As a result of several traineeships of E. Vinarskii at TSP (under joint supervision with D.

Zeghlache), we therefore proposed a complementary approach [VLK+19] which is based

on proactive testing, i.e., on generation of specific application requests that can lead to a

race in an SDN framework. For that reason, we model the SDN components by a simplified

version of an Extended Finite Input/Output Automaton, EIOA, for short.

An EIOA A is a tuple (S, I,O,V,T,s0), where S is a finite nonempty set of states with

the designated initial state s0; I and O are finite input and output alphabets; V is a finite,

possibly empty set of context variables with the set DV of vectors of context variables’

values if V 6= /0; T is a set of transitions. In our case, inputs and outputs are parame-

terized, i.e., inputs and outputs of the EIOA are pairs (input, vector of input parameters’

values) or (output, vector of output parameters’ values) and DI (DO) is the set of vec-

tors of input (output) parameters’ values if the set of parameters is not empty. A transition

is a 6-tuple (s,a,P,vp,vo,s′) where s,s′ ∈ S are initial and final states of the transition;

a ∈ I ∪O; P : DV ×DI → {True,False} is the transition predicate; vp : DV → DV is the

context update transition function. The transition (s,a,P,vp,vo,s′) is executed only when

the transition predicate P evaluates to true and the vectors of context variables’ values

and output parameters’ values are updated according to the functions vp and vo after the

88

Chapter 5 Testing and verification of dynamic and programmable networks

transition execution.

We also assume that when dealing with an EIOA, no input is accepted and no output

is produced when a transition is executed. However, when both an input and an output

are defined at a state, they can ‘compete’ between themselves, i.e., what the machine

does first - accepts the input or produces the output is nondeterministically decided5. We

hereafter refer to such ‘competition’ as an input/output race (a race between input and

output actions). When an EIOA works in isolation, the races can occur within certain

states. However, when the machine acts as a component of a multi-agent system, other

types of races can take place. In particular, the communication channels can serve as

‘tunnels’ where the actions ‘compete’ to be faster for reaching the output, we refer to this

type of races as intra-channel races. In the given SDN case study, we are concerned with

the interactions of three entities, namely the application, controller, and switch. Therefore,

potential races in the channels cover either the northbound or southbound interface. The

interacting entities are depicted in Figure 5.1. Note that we limit ourselves to 1 application,

1 controller and 1 switch6.

Northbound

Interface
Application Controller

Southbound

Interface

Channel 1

Channel 2

Switch

Figure 5.1: SDN Topology considered for the races’ detection

For the race detection in EIOAs and their compositions, we rely on the formal verifica-

tion based on the Linear Temporal Logic (LTL) formulas and the correlation between LTL

formulas and EIOA properties. We therefore built the EIOAs modeling the SDN compo-

nents of interest and described the related behavior in the Promela language to further

utilize the SPIN model checker [Hol03]. The Reader can refer to [VLK+19] to find the

appropriate descriptions that we hereafter omit, focusing rather on the test generation

strategy. Note that as the races can occur in the channels as well, both were also modeled

as appropriate EIAOs.

To detect the Input/Output races in a given state of a given automaton, we proposed

a probabilistic approach. The strategy is based on a choice of a state s of the EIOA,

where both input i and output o related via some parameter are defined. The Spin model

5Note that such behavior is completely different from the FSMs, considered in Chapter 3, where an input

is always followed by an output.
6We are currently working on increasing the number of interacting entities.

89

Chapter 5 Testing and verification of dynamic and programmable networks

checker is used for verifying the LTL formula prohibiting a race between i and o. For

example, let curr_mess denote an input or an output action (message) at state s while

next_mess denote the action at the next time instance. To guarantee that the output o is

never produced before the input i is received, an LTL formula of the following kind can be

verified: G(¬((curr_mess == o)→ (next_mess == i))). If the formula of interest can be

violated for the component of interest, then Spin produces a counterexample α. Note that

not each counterexample is feasible for the topology of interest; further checking should

be performed by applying a sequence of inputs simulating α, with appropriate timeouts to

an implementation (component of interest). As the approach is proactive, we execute the

derived counterexample α potentially leading to a race against the implementation of the

SDN framework. For that reason, we rely on an automated script; the script is executed

at most N times, simulating α as an input to the component of interest. If during the

execution of the script the competition between an input and output can be observed, then

the script returns T RUE. Otherwise, the script returns FALSE. The approach therefore is

implemented as a randomized algorithm that can be trusted on a race detection. However,

if the returned reply is FALSE, we cannot be 100% sure there are no Input/Output races

in an SDN component of interest.

We proposed a similar probabilistic approach for the intra-channel races, when for

example the rules or requests submitted into a channel by a given component can be

permutated. In the case of the experimental evaluation those are the rules submitted

by the controller and later on pushed to the switch. In order to detect if there exists

a potential permutation in the channel, we try to proactively create this race condition.

To do so, the SDN application installs rules with their IDs in chronological order; more-

over, each rule has a hard timeout equal to its ID. To derive several LTL formulas we

express the dependencies between the rule i and the rule i+ 1. For example, we state

that G((table[i+1] == 0)→ (table[i] == 0)), i.e., the rule i should be deleted before the

rule i+1. The derived properties together with the original model are then ‘fed’ to Spin. If

Spin does not detect a violation of any of the properties then not a single race of interest

can be detected. This does not necessarily guarantee the absence of such races. How-

ever, if a counterexample α is produced then its feasibility is first verified; a non-feasible

counterexample again results in the ‘not detected ’ (FALSE) conclusion. On the contrary,

if α is feasible, and during the N times that the corresponding script was executed, a race

was indeed detected, then the result T RUE is returned.

We roughly estimated the probability of success of these randomized algorithms for

the specifications derived for ONOS controller and an Open vSwitch. The calculated prob-

ability was rather low, i.e., around 30 and 50%. However, experimentally we managed to

90

Chapter 5 Testing and verification of dynamic and programmable networks

indeed observe the permutation of rules, therefore we managed to detect a race between

the PostFlow requests in the related channel. We are currently working on the general-

ization of this approach, trying to define the races through introducing a special order over

inputs and outputs in automaton states. The latter can probably allow defining races in

longer traces but this point needs to be investigated. Another challenging issue is the test

suite exhaustiveness for the races’ detection; we are currently working on it as well.

91

Chapter 5 Testing and verification of dynamic and programmable networks

92

Chapter 6

Conclusions

6.1 Some concluding remarks

We hereafter briefly summarize the results that were presented in the manuscript, trying

also to give a certain evaluation and critics to those.

The research directions of the author mostly cover model based testing and verification

and their applications to some network components. The main models considered in the

work are FSMs and automata as well as their scalable representations as logic circuits. We

thus contributed to the testing strategies against these models (active as well as passive)

and worked on the tasks that on the one hand, lead to test generation with the guaranteed

fault coverage, and on the other, analyzed the related complexity and studied some possi-

ble simplifications, such as extraction of some classes with the reduced complexity of test

derivation.

In the area of FSM/Automata based testing, we in particular, focused on the state iden-

tification issues for nondeterministic specifications, as these ones are met quite often in

real life. More precisely, we proposed novel techniques for deriving preset and adaptive

homing/synchronizing and distinguishing sequences that allow identifying current and ini-

tial states of the machine. We also evaluated the length of some of the sequences and

showed that similar to the deterministic FSMs, in some cases, moving from preset to adap-

tive strategy can decrease the length of the sequence from exponential one to polynomial.

Methods for deriving homing and synchronizing sequences for nondeterministic FSMs can

be effectively utilized for deriving those for finite Input/Output automata, where transitions

are labelled either by inputs or outputs; in some cases no inputs even need to be applied

93

Chapter 6 Conclusions

to determine the current state (output observations are sufficient). Given the high com-

plexity of the FSM based test generation strategies, we paid a particular attention to some

possibilities (special classes of the specifications) when the worst case complexity cannot

be reached. We also discussed other approaches to decrease this complexity, such as, for

example, considering white box testing approaches instead of black box. Moreover, taking

into account specific projections in the latter case, can allow deriving an exhaustive test

suite of polynomial length w.r.t. the number of states of the specification machine. When

talking about the passive testing, we also proposed certain optimizations/improvements

based on the current state identification; indeed, knowing the current implementation state

can reduce the number of properties to be checked on- or off-line.

It is not a simple task to assess how interesting are the results that were summarized

above, from the practical point of view. On the one hand, we consider more and more

complex specifications, where the nondeterministic behavior can be also non-observable,

for example. At the same time, we started to work with input/output automata where not

each input is followed by an output and proposed related state identification techniques for

them. On the other hand, we must say that many and even the majority of these results

currently stay just fundamental, and as seen from Chapter 5, sometimes the fault models

and the specifications are simpler (no states, for instance) or on the contrary, more complex

(they are extended, with predicates, parameters, etc.), and so there is still somewhat a

gap between the results of Chapters 3 and applications in Chapter 5, which we plan to

overcome step by step in our future work.

In the area of test generation against logic circuits, we studied well known faults mod-

els, such as single stuck-at faults, and also introduced some others. We proposed the

techniques for deriving distinguishing sequences for such models, and thus, adjusted the

white box test generation strategy for deriving the test suites using logic synthesis and

verification solutions. Logic circuit based solutions have been also adopted for deriving

homing sequences for nondeterministic FSMs; in this case, the problem is reduced not to

SAT solving but to QBF solving. We analyzed various fault models against combinational

and sequential circuit specifications and applied some of them to testing network compo-

nents, such as an SDN switch. Due to room limitations, we did not present much of the

related results, but we also studied the combinational circuits for quality evaluation/predic-

tion of some electronic services and this model also seems appropriate. We generalized

the corresponding logic synthesis strategy later on, for implementing some supervised

machine learning technique, with its further FPGA implementation.

As for the drawbacks, some critical remarks on the related results need to be taken

94

Chapter 6 Conclusions

into account. Almost in all our experiments, logic synthesis and verification solutions stay

a software. In other words, we do take advantage of certain scalability, for example, when

it comes to simulation tasks, however we still rely on simulating the circuit in a software

and not in a hardware. This part needs to be strengthened, as logic circuits in particular

are very natural to be implemented in FPGA, for example, and existing logic synthesis

solutions allow Verilog and HDL descriptions, so we need to try to take advantage of this

fact in the future. This might help not only to derive the test cases but even to implement

the related components in hardware, such as for example, the switches mentioned above.

In the application areas, we considered networks with certain dynamicity. In particular,

those are either dynamic networks where the topology stays the same but parameters on

the links change their values (from a given set) in time; or programmable networks where

on a physical or resource topology several virtual networks or paths, can be implemented

(can be later reconfigured if necessary). We analyzed the necessity of the validation of the

related user requests, on the first place. Later on, partially followed by the user-defined

specifications, we proposed some test generation and monitoring strategies for this kind

of networks, and estimated the guarantees that can be provided, in terms of the test suite

exhaustiveness. We applied some of the test generation strategies based on automata

and logic circuit models, to verify the programmable network components in isolation and

also when checking their interoperability. In some cases, we introduced the novel fault

models that reflect better the related SUTs and their potential faults, in SDN networks, for

example.

Evaluating the results related to testing and verification of specific kinds of networks,

one can notice what was already mentioned before - the models utilized in real life as

specifications, are sometimes much simpler or much more complex than those known as

(nondeterministic) FSM or automata. Filling this gap, and bringing more MBT solutions to

network components before the deployment (and even after) is an interesting challenge for

the future research directions (probably, not only of the author).

6.2 Future / current work and perspectives

Some of the research questions raised in Chapter 1, have been answered in the related

publications and the replies are partially included in this work. As usual, more questions

appeared and keep appearing and they need further investigation.

In the area of FSM/automata state identification, we are trying now to consider rather

95

Chapter 6 Conclusions

non-classical state models, for example, extended FSMs and automata (where both inputs

and outputs can be defined at the same state). Not much work has been done in the

community in this area, but there are already works on distinguishing EFSM configurations

[PBG04], deriving homing sequences for timed machines [TY20], testing against FSMs

with time guards, timeouts [EYF09, TEY18], etc. However, such models can differ a lot,

depending on the restrictions that can be put on the predicates/guards, and therefore,

more research is needed in this area. At the same time, not everywhere the complexity

of the related problems has been estimated - some upper bounds on the length of the

sequences are not known to be reachable (even for classical deterministic specifications,

where the Cerny conjecture can serve as one of illustrative examples). The hardness of

certain existence check and derivation problems of state identification sequences is not

yet proven.

Another example that can be considered here is a homing sequence for a nonde-

terministic complete observable FSM where we managed to prove the reachability of an

exponential upper bound of the order O(2n−1) for a machine with n states. However the

upper bound that comes from the truncated successor tree is of another order, i.e., O(2n2
),

therefore this gap needs to be filled in, either moving the left border of the interval or the

right one, or both. Determining the corresponding length, and deriving the classes of

machines with the bad properties to reach such bounds is one of the directions of the cur-

rent/future work of the author. As there exist also good FSM/automata classes for which

the worst complexity upper bounds are not reachable, and thus, these machines can serve

as good specifications for easy test suite generation, we continue studying those as well.

At another abstraction level, when a machine is represented by a logic circuit, we

need to better study the advantages. First of all, obtaining such a circuit - if the specifica-

tion was not given this way, is already a complicated task. Second, we are not avoiding

any complexity but rather change the problem, expressing for example, homing sequence

existence check using QBF formula. Therefore, we need to again study the classes of ma-

chines when such a problem reduction is useful. The correlation between the fault models

at different abstraction level should be studied thoroughly. Ideally, for a case study of inter-

est if would be nice to have the mutants derived for the faults related to the system and its

users, as well as the mutants derived for the specifications at different levels. It would be

nice to know what is the relationship between such mutants, not to build a test suite as the

union of those for various levels, but using some optimization strategies. We use subjunc-

tive mood in here on purpose, as this task does not seem very feasible to the author at

this stage for any SUT or any application area, but we started to work on it at least, when

comparing traditional fault models against those defined for SDN components.

96

When it comes to the application areas, we always want to perform more experiments

when having access to real data. We will try to do this taking advantage of the existing

collaborations with the TSP colleagues, as well as our industrial partners. At the same

time, we would not like to limit ourselves with dynamic or programmable networks and turn

our attention or other distributed systems (as we partially did already with Cloud infras-

tructures, for example). There is a hope that good nondeterministic specifications can find

their place in such case studies, and thus test generation strategies with the guaranteed

fault coverage will be implementable in real time. All these aspects need to be investigated

carefully and again it is an avenue for our future work.

97

98

Self-references

[BKY+21] Igor B. Burdonov, Alexandre Kossachev, Nina Yevtushenko, Jorge López, Na-

talia Kushik, and Djamal Zeghlache. Preventive model-based verification and

repairing for SDN requests. In Raian Ali, Hermann Kaindl, and Leszek A. Ma-

ciaszek, editors, Proceedings of the 16th International Conference on Eval-

uation of Novel Approaches to Software Engineering, ENASE 2021, Online

Streaming, April 26-27, 2021, pages 421–428. SCITEPRESS, 2021.

[BLK+18] Asma Berriri, Jorge López, Natalia Kushik, Nina Yevtushenko, and Djamal

Zeghlache. Towards model based testing for software defined networks. In

Ernesto Damiani, George Spanoudakis, and Leszek A. Maciaszek, editors,

Proceedings of the 13th International Conference on Evaluation of Novel Ap-

proaches to Software Engineering, ENASE 2018, Funchal, Madeira, Portugal,

March 23-24, 2018, pages 440–446. SciTePress, 2018.

[EYK18] Khaled El-Fakih, Nina Yevtushenko, and Natalia Kushik. Adaptive distinguish-

ing test cases of nondeterministic finite state machines: test case derivation

and length estimation. Formal Aspects Comput., 30(2):319–332, 2018.

[KEY11] Natalia Kushik, Khaled El-Fakih, and Nina Yevtushenko. Preset and adaptive

homing experiments for nondeterministic finite state machines. In Béatrice

Bouchou-Markhoff, Pascal Caron, Jean-Marc Champarnaud, and Denis Mau-

rel, editors, Implementation and Application of Automata - 16th International

Conference, CIAA 2011, Blois, France, July 13-16, 2011. Proceedings, vol-

ume 6807 of Lecture Notes in Computer Science, pages 215–224. Springer,

2011.

[KEYC16a] Natalia Kushik, Khaled El-Fakih, Nina Yevtushenko, and Ana R. Cavalli. On

adaptive experiments for nondeterministic finite state machines. Int. J. Softw.

Tools Technol. Transf., 18(3):251–264, 2016.

99

[KEYC16b] Natalia Kushik, Khaled El-Fakih, Nina Yevtushenko, and Ana R. Cavalli.

On adaptive experiments for nondeterministic finite state machines. STTT,

18(3):251–264, 2016.

[KKE14] Natalia G. Kushik, Victor V. Kulyamin, and Nina V. Evtushenko. On the com-

plexity of existence of homing sequences for nondeterministic finite state ma-

chines. Program. Comput. Softw., 40(6):333–336, 2014.

[KLCY16] Natalia Kushik, Jorge López, Ana R. Cavalli, and Nina Yevtushenko. Improv-

ing protocol passive testing through "gedanken" experiments with finite state

machines. In 2016 IEEE International Conference on Software Quality, Re-

liability and Security, QRS 2016, Vienna, Austria, August 1-3, 2016, pages

315–322. IEEE, 2016.

[KLY16] N. G. Kushik, J. E. López, and N. V. Yevtushenko. Investigation of correlation

of test sequences for reliability testing of digital physical system components.

Russian Physics Journal, 59(8):1274–1280, Dec 2016.

[KPY+14] Natalia Kushik, Jeevan Pokhrel, Nina Yevtushenko, Ana R. Cavalli, and Wis-

sam Mallouli. Qoe prediction for multimedia services: Comparing fuzzy and

logic network approaches. Int. J. Organ. Collect. Intell., 4(3):44–64, 2014.

[Kus13] Natalia Kushik. Methods for deriving homing and distinguishing experiments

for non-deterministic FSMs (in Russian). Phd thesis, Tomsk State University,

2013. 137 pages.

[Kus16] Natalia Kushik. Methods for defining FSM classes with reduced complexity of

‘gedanken’ experiments (in Russian). Habilitation (doctor of sciences), Tomsk

State University, 2016. 287 pages.

[KY13] Natalia Kushik and Nina Yevtushenko. On the length of homing sequences

for nondeterministic finite state machines. In Proceedings of International

Conference on Implementation and Application of Automata (CIAA), pages

220–231, 2013.

[KY15a] Natalia Kushik and Hüsnü Yenigün. Heuristics for deriving adaptive hom-

ing and distinguishing sequences for nondeterministic finite state machines.

In Khaled El-Fakih, Gerassimos D. Barlas, and Nina Yevtushenko, editors,

Testing Software and Systems - 27th IFIP WG 6.1 International Conference,

ICTSS 2015, Sharjah and Dubai, United Arab Emirates, November 23-25,

100

2015, Proceedings, volume 9447 of Lecture Notes in Computer Science,

pages 243–248. Springer, 2015.

[KY15b] Natalia Kushik and Nina Yevtushenko. Adaptive homing is in P. In Nikolay V.

Pakulin, Alexander K. Petrenko, and Bernd-Holger Schlingloff, editors, Pro-

ceedings Tenth Workshop on Model Based Testing, MBT 2015, London, UK,

18th April 2015, volume 180 of EPTCS, pages 73–78, 2015.

[KY15c] Natalia Kushik and Nina Yevtushenko. Describing homing and distinguish-

ing sequences for nondeterministic finite state machines via synchronizing

automata. In Frank Drewes, editor, Implementation and Application of Au-

tomata - 20th International Conference, CIAA 2015, Umeå, Sweden, August

18-21, 2015, Proceedings, volume 9223 of Lecture Notes in Computer Sci-

ence, pages 188–198. Springer, 2015.

[KYBK18] Natalia Kushik, Nina Yevtushenko, Igor B. Bourdonov, and Alexander S. Kos-

satchev. Deriving synchronizing and homing sequences for input/output au-

tomata. Autom. Control. Comput. Sci., 52(7):589–595, 2018.

[KYC14a] Natalia Kushik, Nina Yevtushenko, and Ana R. Cavalli. On testing against

partial non-observable specifications. In 9th International Conference on

the Quality of Information and Communications Technology, QUATIC 2014,

Guimaraes, Portugal, September 23-26, 2014, pages 230–233. IEEE Com-

puter Society, 2014.

[KYC+14b] Natalia Kushik, Nina Yevtushenko, Ana R. Cavalli, Wissam Mallouli, and Jee-

van Pokhrel. Evaluating web service qoe by learning logic networks. In

Valérie Monfort and Karl-Heinz Krempels, editors, WEBIST 2014 - Proceed-

ings of the 10th International Conference on Web Information Systems and

Technologies, Volume 1, Barcelona, Spain, 3-5 April, 2014, pages 168–176.

SciTePress, 2014.

[KYL21] Natalia Kushik, Nina Yevtushenko, and Jorge López. Testing against non-

deterministic fsms: a probabilistic approach for test suite minimization. In

Ana Cavalli and Héctor D. Menéndez, editors, Testing Software and Systems

- 33rd IFIP WG 6.1 International Conference, ICTSS 2021, University College

London, United Kingdom, 10-12 November 2021, Proceedings, Lecture Notes

in Computer Science. Springer, 2021.

[KYTS15] Natalia Kushik, Nina Yevtushenko, Stanislav N. Torgaev, and Nikita Shatilov.

On using ABC for deriving distinguishing sequences for verilog-descriptions.

101

In 2015 IEEE East-West Design & Test Symposium, EWDTS 2015, Batumi,

Georgia, September 26-29, 2015, pages 1–4. IEEE Computer Society, 2015.

[KYY16] Natalia Kushik, Nina Yevtushenko, and Hüsnü Yenigün. Reducing the com-

plexity of checking the existence and derivation of adaptive synchronizing

experiments for nondeterministic fsms. In Proceedings of the International

Workshop on domAin specific Model-based AppRoaches to vErificaTion and

validaTiOn, AMARETTO@MODELSWARD 2016, Rome, Italy, February 19-

21, 2016., pages 83–90, 2016.

[LKB+18] Jorge López, Natalia Kushik, Asma Berriri, Nina Yevtushenko, and Djamal

Zeghlache. Test derivation for sdn-enabled switches: A logic circuit based ap-

proach. In Inmaculada Medina-Bulo, Mercedes G. Merayo, and Robert M. Hi-

erons, editors, Testing Software and Systems - 30th IFIP WG 6.1 International

Conference, ICTSS 2018, Cádiz, Spain, October 1-3, 2018, Proceedings, vol-

ume 11146 of Lecture Notes in Computer Science, pages 69–84. Springer,

2018.

[LKYZ17] Jorge López, Natalia Kushik, Nina Yevtushenko, and Djamal Zeghlache. Ana-

lyzing and validating virtual network requests. In Jorge S. Cardoso, Leszek A.

Maciaszek, Marten van Sinderen, and Enrique Cabello, editors, Proceed-

ings of the 12th International Conference on Software Technologies, ICSOFT

2017, Madrid, Spain, July 24-26, 2017, pages 441–446. SciTePress, 2017.

[LKZ17] Jorge López, Natalia Kushik, and Djamal Zeghlache. Quality estimation of

virtual machine placement in cloud infrastructures. In Nina Yevtushenko,

Ana Rosa Cavalli, and Hüsnü Yenigün, editors, Testing Software and Systems

- 29th IFIP WG 6.1 International Conference, ICTSS 2017, St. Petersburg,

Russia, October 9-11, 2017, Proceedings, volume 10533 of Lecture Notes in

Computer Science, pages 213–229. Springer, 2017.

[LKZ19] Jorge López, Natalia Kushik, and Djamal Zeghlache. Virtual machine place-

ment quality estimation in cloud infrastructures using integer linear program-

ming. Softw. Qual. J., 27(2):731–755, 2019.

[LLK+18] Jorge López, Andrey Laputenko, Natalia Kushik, Nina Yevtushenko, and

Stanislav N. Torgaev. Scalable supervised machine learning apparatus for

computationally constrained devices. In Leszek A. Maciaszek and Marten van

Sinderen, editors, Proceedings of the 13th International Conference on Soft-

102

ware Technologies, ICSOFT 2018, Porto, Portugal, July 26-28, 2018, pages

552–562. SciTePress, 2018.

[PLK+20] Erick Petersen, Jorge López, Natalia Kushik, Claude Poletti, and Djamal

Zeghlache. On using smt-solvers for modeling and verifying dynamic net-

work emulators: (work in progress). In 19th IEEE International Symposium

on Network Computing and Applications, NCA 2020, Cambridge, MA, USA,

November 24-27, 2020, pages 1–3. IEEE, 2020.

[SLK+16] Sergey A. Smolov, Jorge López, Natalia Kushik, Nina Yevtushenko, Mikhail M.

Chupilko, and Alexander S. Kamkin. Testing logic circuits at different abstrac-

tion levels: An experimental evaluation. In 2016 IEEE East-West Design &

Test Symposium, EWDTS 2016, Yerevan, Armenia, October 14-17, 2016,

pages 1–4. IEEE Computer Society, 2016.

[TWJ+21] Kuan-Hua Tu, Hung-En Wang, Jie-Hong Roland Jiang, Natalia Kushik, and

Nina Yevtushenko. Homing sequence derivation with quantified boolean sat-

isfiability. IEEE Transactions on Computers, pages 696–711, 2021.

[VLK+19] Evgenii Vinarskii, Jorge López, Natalia Kushik, Nina Yevtushenko, and Djamal

Zeghlache. A model checking based approach for detecting SDN races. In

Christophe Gaston, Nikolai Kosmatov, and Pascale Le Gall, editors, Testing

Software and Systems - 31st IFIP WG 6.1 International Conference, ICTSS

2019, Paris, France, October 15-17, 2019, Proceedings, volume 11812 of

Lecture Notes in Computer Science, pages 194–211. Springer, 2019.

[WTJK17] Hung-En Wang, Kuan-Hua Tu, Jie-Hong R. Jiang, and Natalia Kushik. Hom-

ing sequence derivation with quantified boolean satisfiability. In Nina Yev-

tushenko, Ana Rosa Cavalli, and Hüsnü Yenigün, editors, Testing Software

and Systems - 29th IFIP WG 6.1 International Conference, ICTSS 2017, St.

Petersburg, Russia, October 9-11, 2017, Proceedings, volume 10533 of Lec-

ture Notes in Computer Science, pages 230–242. Springer, 2017.

[YBK+18] Nina Yevtushenko, Igor B. Burdonov, Alexandre Kossachev, Jorge López, Na-

talia Kushik, and Djamal Zeghlache. Test derivation for the software defined

networking platforms: Novel fault models and test completeness. In 2018

IEEE East-West Design & Test Symposium, EWDTS 2018, Kazan, Russia,

September 14-17, 2018, pages 1–6. IEEE, 2018.

[YK15] Nina Yevtushenko and Natalia Kushik. Decreasing the length of adaptive

distinguishing experiments for nondeterministic merging-free finite state ma-

103

chines. In 2015 IEEE East-West Design & Test Symposium, EWDTS 2015,

Batumi, Georgia, September 26-29, 2015, pages 1–4. IEEE Computer Soci-

ety, 2015.

[YKK19] Nina Yevtushenko, Victor V. Kuliamin, and Natalia Kushik. Evaluating the

complexity of deriving adaptive homing, synchronizing and distinguishing se-

quences for nondeterministic fsms. In Christophe Gaston, Nikolai Kosma-

tov, and Pascale Le Gall, editors, Testing Software and Systems - 31st IFIP

WG 6.1 International Conference, ICTSS 2019, Paris, France, October 15-

17, 2019, Proceedings, volume 11812 of Lecture Notes in Computer Science,

pages 86–103. Springer, 2019.

[YKK21] Nina Yevtushenko, Victor Kuliamin, and Natalia Kushik. Evaluating the com-

plexity of deriving adaptive s′-homing and s′-synchronizing sequences for non-

deterministic fsms. Software Quality Journal, 2021.

[YKL+17] Hüsnü Yenigün, Natalia Kushik, Jorge López, Nina Yevtushenko, and Ana R.

Cavalli. Decreasing the complexity of deriving test suites against nondeter-

ministic finite state machines. In 2017 IEEE East-West Design & Test Sym-

posium, EWDTS 2017, Novi Sad, Serbia, September 29 - October 2, 2017,

pages 1–4. IEEE Computer Society, 2017.

[YYK16] Hüsnü Yenigün, Nina Yevtushenko, and Natalia Kushik. Some classes of fi-

nite state machines with polynomial length of distinguishing test cases. In

Sascha Ossowski, editor, Proceedings of the 31st Annual ACM Symposium

on Applied Computing, Pisa, Italy, April 4-8, 2016, pages 1680–1685. ACM,

2016.

[YYK17] Hüsnü Yenigün, Nina Yevtushenko, and Natalia Kushik. The complexity of

checking the existence and derivation of adaptive synchronizing experiments

for deterministic fsms. Inf. Process. Lett., 127:49–53, 2017.

104

Bibliography

[ACC+04] Baptiste Alcalde, Ana R. Cavalli, Dongluo Chen, Davy Khuu, and David Lee.

Network protocol system passive testing for fault management: A backward

checking approach. In David de Frutos-Escrig and Manuel Núñez, editors,

Formal Techniques for Networked and Distributed Systems - FORTE 2004,

24th IFIP WG 6.1 International Conference, Madrid Spain, September 27-

30, 2004, Proceedings, volume 3235 of Lecture Notes in Computer Science,

pages 150–166. Springer, 2004.

[ACY95] Rajeev Alur, Costas Courcoubetis, and Mihalis Yannakakis. Distinguishing

tests for nondeterministic and probabilistic machines. In Proceedings of the

Twenty-Seventh Annual ACM Symposium on Theory of Computing, 29 May-1

June 1995, Las Vegas, Nevada, USA, pages 363–372, 1995.

[BEK+14] Roderick Bloem, Uwe Egly, Patrick Klampfl, Robert Konighofer, and Florian

Lonsing. Sat-based methods for circuit synthesis. In 2014 Formal Methods

in Computer-Aided Design (FMCAD), pages 31–34, 2014.

[BEM12] Robert Brayton, Niklas Een, and Alan Mishchenko. Using speculation for se-

quential equivalence checking. In Proceedings of the International Workshop

on Logic and Synthesis, IWLS 2012, pages 139–145, 2012.

[Ber19] Asma Berriri. Model based testing techniques for software defined networks.

(Méthodes de test basées sur les modèles pour la validation des réseaux

logiciels (SDN)). PhD thesis, University of Paris-Saclay, France, 2019.

[BKS14] Roderick Bloem, Robert Könighofer, and Martina Seidl. Sat-based synthesis

methods for safety specs. In Kenneth L. McMillan and Xavier Rival, editors,

Verification, Model Checking, and Abstract Interpretation - 15th International

Conference, VMCAI 2014, San Diego, CA, USA, January 19-21, 2014, Pro-

ceedings, volume 8318 of Lecture Notes in Computer Science, pages 1–20.

Springer, 2014.

105

[BM10] Robert K. Brayton and Alan Mishchenko. ABC: an academic industrial-

strength verification tool. In Computer Aided Verification, 22nd Interna-

tional Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings,

pages 24–40, 2010.

[BT09] Alexander Barkalov and Larysa Titarenko. Logic Synthesis for FSM-Based

Control Units, volume 53 of Lecture Notes in Electrical Engineering. Springer,

2009.

[Car18] Pamela Carvallo. Security in the Cloud: an anomaly-based detection frame-

work for the insider threats. (Sécurité dans le cloud: framework de détection

de menaces internes basé sur l’analyse d’anomalies). PhD thesis, University

of Paris-Saclay, France, 2018.

[CGP03] Ana R. Cavalli, Caroline Gervy, and Svetlana Prokopenko. New approaches

for passive testing using an extended finite state machine specification. Inf.

Softw. Technol., 45(12):837–852, 2003.

[Cho78] Tsun S. Chow. Testing software design modeled by finite-state machines.

IEEE Trans. Software Eng., 4(3):178–187, 1978.

[ÇKY+18] Berk Çirisci, Muhammed Kerem Kahraman, Cagri Uluc Yildirimoglu, Kamer

Kaya, and Hüsnü Yenigün. Using structure of automata for faster synchroniz-

ing heuristics. In Slimane Hammoudi, Luís Ferreira Pires, and Bran Selic, ed-

itors, Proceedings of the 6th International Conference on Model-Driven Engi-

neering and Software Development, MODELSWARD 2018, Funchal, Madeira

- Portugal, January 22-24, 2018, pages 544–551. SciTePress, 2018.

[CMBK07] Satrajit Chatterjee, Alan Mishchenko, Robert K. Brayton, and Andreas

Kuehlmann. On resolution proofs for combinational equivalence. In Proceed-

ings of the 44th Design Automation Conference, DAC 2007, San Diego, CA,

USA, June 4-8, 2007, pages 600–605. IEEE, 2007.

[CMDO09] Ana Cavalli, Stephane Maag, and Edgardo Montes De Oca. A passive con-

formance testing approach for a manet routing protocol. In Proceedings of

the 2009 ACM Symposium on Applied Computing, SAC ’09, pages 207–211.

ACM, 2009.

[CRM12] Xiaoping Che, Felipe Lalanne Rojas, and Stephane Maag. A logic-based

passive testing approach for the validation of communicating protocols. In

106

ENASE’12: 7th International Conference on Evaluation of Novel Approaches

to Software Engineering, 2012.

[CRS00] F. Corno, M.S. Reorda, and G. Squillero. Rt-level itc’99 benchmarks and first

atpg results. IEEE Design Test of Computers, 17(3):44–53, 2000.

[DEM+10] Rita Dorofeeva, Khaled El-Fakih, Stéphane Maag, Ana R. Cavalli, and Nina

Yevtushenko. Fsm-based conformance testing methods: A survey annotated

with experimental evaluation. Inf. Softw. Technol., 52(12):1286–1297, 2010.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In

International conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 337–340. Springer, 2008.

[DMBSV85] G. De Micheli, R.K. Brayton, and A. Sangiovanni-Vincentelli. Optimal state

assignment for finite state machines. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 4(3):269–285, 1985.

[DMT16] Palma D., Rutkowski M., and Spatzier T. Tosca simple pro-

file in yaml version 1.0. oasis committee specification 01. http:

//docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/

csprd02/TOSCA-Simple-Profile-YAML-v1.0-csprd02.html, 2016.

[DSO14] Lebrun David, Vissicchio Stefano, and Bonaventure Olivier. Towards test-

driven software defined networking. In 2014 IEEE Network Operations and

Management Symposium, pages 1–9, 2014.

[EDYvB12] Khaled El-Fakih, Rita Dorofeeva, Nina Yevtushenko, and Gregor von

Bochmann. Fsm-based testing from user defined faults adapted to incremen-

tal and mutation testing. Program. Comput. Softw., 38(4):201–209, 2012.

[EGGC09] Jose Pablo Escobedo, Christophe Gaston, Pascale Le Gall, and Ana R. Cav-

alli. Observability and controllability issues in conformance testing of web ser-

vice compositions. In Manuel Núñez, Paul Baker, and Mercedes G. Merayo,

editors, Testing of Software and Communication Systems, 21st IFIP WG 6.1

International Conference, TESTCOM 2009 and 9th International Workshop,

FATES 2009, Eindhoven, The Netherlands, November 2-4, 2009. Proceed-

ings, volume 5826 of Lecture Notes in Computer Science, pages 217–222.

Springer, 2009.

107

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd02/TOSCA-Simple-Profile-YAML-v1.0-csprd02.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd02/TOSCA-Simple-Profile-YAML-v1.0-csprd02.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd02/TOSCA-Simple-Profile-YAML-v1.0-csprd02.html

[EMB+16] Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, and

Martin T. Vechev. Sdnracer: concurrency analysis for software-defined net-

works. In Proceedings of the 37th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI 2016, Santa Barbara, CA,

USA, June 13-17, 2016, pages 402–415, 2016.

[Epp90] David Eppstein. Reset sequences for monotonic automata. SIAM J. Comput.,

19(3):500–510, 1990.

[EPYvB03] Khaled El-Fakih, Svetlana Prokopenko, Nina Yevtushenko, and Gregor von

Bochmann. Fault diagnosis in extended finite state machines. In Dieter

Hogrefe and Anthony Wiles, editors, Testing of Communicating Systems, 15th

IFIP International Conference, TestCom 2003, Sophia Antipolis, France, May

26-28, 2003, Proceedings, volume 2644 of Lecture Notes in Computer Sci-

ence, pages 197–210. Springer, 2003.

[ETSY04] Khaled El-Fakih, Vadim Trenkaev, Natalia Spitsyna, and Nina Yevtushenko.

FSM based interoperability testing methods for multi stimuli model. In Test-

ing of Communicating Systems, 16th IFIP International Conference, TestCom

2004, Oxford, UK, March 17-19, 2004, Proceedings, pages 60–75, 2004.

[EYF09] Khaled El-Fakih, Nina Yevtushenko, and Hacène Fouchal. Testing timed fi-

nite state machines with guaranteed fault coverage. In Manuel Núñez, Paul

Baker, and Mercedes G. Merayo, editors, Testing of Software and Communi-

cation Systems, 21st IFIP WG 6.1 International Conference, TESTCOM 2009

and 9th International Workshop, FATES 2009, Eindhoven, The Netherlands,

November 2-4, 2009. Proceedings, volume 5826 of Lecture Notes in Com-

puter Science, pages 66–80. Springer, 2009.

[FvBK+91] Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar Amalou,

and Abderrazak Ghedamsi. Test selection based on finite state models. IEEE

Trans. Software Eng., 17(6):591–603, 1991.

[FWA09] Gordon Fraser, Franz Wotawa, and Paul Ammann. Testing with model check-

ers: a survey. Softw. Test. Verification Reliab., 19(3):215–261, 2009.

[FYT+16] Seyed Kaveh Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas

Sekar. BUZZ: testing context-dependent policies in stateful networks. In

13th USENIX Symposium on Networked Systems Design and Implementa-

tion, pages 275–289, 2016.

108

[Gil62] A. Gill. Introduction to the theory of finite-state machines. McGraw Hill, 1962.

[GvBD93] Abderrazak Ghedamsi, Gregor von Bochmann, and Rachida Dssouli. Mul-

tiple fault diagnostics for finite state machines. In Proceedings IEEE INFO-

COM ’93, The Conference on Computer Communications, Twelfth Annual

Joint Conference of the IEEE Computer and Communications Societies, Net-

working: Foundation for the Future, San Francisco, CA, USA, March 28 - April

1, 1993, pages 782–791. IEEE Computer Society, 1993.

[Hen64] F. C. Hennie. Fault detecting experiments for sequential circuits. In Proceed-

ings of Symposium on Switching Circuit Theory and Logical Design, pages

95–110, 1964.

[HHL+91] K.C. Huang, W.S. Hsieh, C.S. Lu, M.S. Yang, T.S. Nain, and Ihnen Lin. Imple-

mentation and design of pvd: An interactive protocol specification and valida-

tion environment. Microprocessing and Microprogramming, 32(1):281–288,

1991. Euromicro symposium on microprocessing and microprogramming.

[HM09] Robert M. Hierons and Mercedes G. Merayo. Mutation testing from probabilis-

tic and stochastic finite state machines. J. Syst. Softw., 82(11):1804–1818,

2009.

[Hol82] Gerard J. Holzmann. A theory for protocol validation. IEEE Trans. Computers,

31(8):730–738, 1982.

[Hol03] Gerard Holzmann. The Spin model checker: primer and reference manual.

Addison-Wesley Professional, 2003.

[HYC12] Iksoon Hwang, Nina Yevtushenko, and Ana R. Cavalli. Tight bound on the

length of distinguishing sequences for non-observable nondeterministic finite-

state machines with a polynomial number of inputs and outputs. Inf. Process.

Lett., 112(7):298–301, 2012.

[IAS15] Melnichenko I., Kamkin A., and Smolov S. An extended finite state machine-

based approach to code coverage-directed test generation for hardware de-

signs. Proceedings of ISP RAS, 27:161–182, 2015.

[IS04] Masami Ito and Kayoko Shikishima-Tsuji. Some results on directable au-

tomata. In Theory Is Forever, Essays Dedicated to Arto Salomaa on the

Occasion of His 70th Birthday, pages 125–133, 2004.

109

[JL93] Ajin Jirachiefpattana and Richard Lai. Verifying estelle specifications: nu-

merical petri nets approach. In 1993 International Conference on Network

Protocols, ICNP 1993, San Francisco, CA, USA, October 19-22, 1993, Pro-

ceedings, pages 334–341. IEEE Computer Society, 1993.

[JVCH10] Jie-Hong Roland Jiang, Tiziano Villa, Yves Crama, and Peter L. Hammer.

Hardware equivalence and property verification. In Yves Crama and Peter L.

Hammer, editors, Boolean Models and Methods in Mathematics, Computer

Science, and Engineering, pages 599–674. Cambridge University Press,

2010.

[Kön12] Hartmut König. Protocol Engineering. Springer, 2012.

[KPKR95] S. Kajihara, I. Pomeranz, K. Kinoshita, and S.M. Reddy. Cost-effective gen-

eration of minimal test sets for stuck-at faults in combinational logic circuits.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 14(12):1496–1504, 1995.

[KPY99] I. Koufareva, Alexandre Petrenko, and Nina Yevtushenko. Test generation

driven by user-defined fault models. In Gyula Csopaki, Sarolta Dibuz, and

Katalin Tarnay, editors, Testing of Communicating Systems: Method and Ap-

plications, IFIP TC6 12th International Workshop on Testing Communicating

Systems, September 1-3, 1999, Budapest, Hungary, volume 147 of IFIP Con-

ference Proceedings, pages 215–236. Kluwer, 1999.

[LB10] Florian Lonsing and Armin Biere. DepQBF: A dependency-aware QBF solver.

Journal on Satisfiability, Boolean Modeling and Computation, 7(2-3):71–76,

2010.

[LMM16] Jorge López, Stéphane Maag, and Gerardo Morales. Behavior evaluation

for trust management based on formal distributed network monitoring. World

Wide Web, 19(1):21–39, 2016.

[LNS+97] David Lee, Arun N. Netravali, Krishan K. Sabnani, Binay Sugla, and Ajita

John. Passive testing and applications to network management. In 1997

International Conference on Network Protocols (ICNP ’97), 28-31 October

1997, Atlanta, GA, USA, page 113. IEEE Computer Society, 1997.

[Lop19] Jorge Lopez. FSMHSGen. https://github.com/jorgelopezcoronado/

FSMHSGen, 2019.

110

https://github.com/jorgelopezcoronado/FSMHSGen
https://github.com/jorgelopezcoronado/FSMHSGen

[LSKP96] D. Lee, K.K. Sabnani, D.M. Kristol, and S. Paul. Conformance testing of

protocols specified as communicating finite state machines-a guided random

walk based approach. IEEE Transactions on Communications, 44(5):631–

640, 1996.

[LY94] D. Lee and M. Yannakakis. Testing finite-state machines: State identification

and verification. IEEE Transactions on Computers, 43(3):306–320, 1994.

[LY96] D. Lee and M. Yannakakis. Principles and methods of testing finite state

machines - a survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[MA01] R.E. Miller and K.A. Arisha. Fault identification in networks by passive testing.

In Proceedings of the 34th Annual Simulation Symposium, pages 277–284,

2001.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-

terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow:

enabling innovation in campus networks. ACM SIGCOMM Computer Com-

munication Review, 38(2):69–74, 2008.

[Mar14] Pavel Martyugin. Computational complexity of certain problems related to

carefully synchronizing words for partial automata and directing words for

nondeterministic automata. Theory Comput. Syst., 54(2):293–304, 2014.

[MBE+15] Jeremie Miserez, Pavol Bielik, Ahmed El-Hassany, Laurent Vanbever, and

Martin T. Vechev. Sdnracer: detecting concurrency violations in software-

defined networks. In Proceedings of the 1st ACM SIGCOMM Symposium on

Software Defined Networking Research, SOSR ’15, Santa Clara, California,

USA, June 17-18, 2015, pages 22:1–22:7, 2015.

[MCBE06] Alan Mishchenko, Satrajit Chatterjee, Robert K. Brayton, and Niklas Eén. Im-

provements to combinational equivalence checking. In Soha Hassoun, editor,

2006 International Conference on Computer-Aided Design, ICCAD 2006, San

Jose, CA, USA, November 5-9, 2006, pages 836–843. ACM, 2006.

[MHC17] Jedidiah McClurg, Hossein Hojjat, and Pavol Cerný. Synchronization synthe-

sis for network programs. In Computer Aided Verification - 29th International

Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceed-

ings, Part II, pages 301–321, 2017.

111

[MHN18] Mercedes G. Merayo, Robert M. Hierons, and Manuel Núñez. Passive testing

with asynchronous communications and timestamps. Distributed Comput.,

31(5):327–342, 2018.

[Mil98] R.E. Miller. Passive testing of networks using a cfsm specification. In 1998

IEEE International Performance, Computing and Communications Confer-

ence. Proceedings (Cat. No.98CH36191), pages 111–116, 1998.

[MMS15] Anzhela Yu. Matrosova, Eugeniy Mitrofanov, and Toral Shah. Multiple stuck-at

fault testability of a combinational circuit derived by covering ROBDD nodes

by invert-and-or sub-circuits. In 2015 IEEE East-West Design & Test Sympo-

sium, EWDTS 2015, Batumi, Georgia, September 26-29, 2015, pages 1–4.

IEEE Computer Society, 2015.

[Moo56] Edward F. Moore. Gedanken-experiments on sequential machines. In Au-

tomata Studies, pages 129–153. Princeton University Press, Princeton, NJ,

1956.

[Nat86] B. K. Natarajan. An algorithmic approach to the automated design of parts

orienters. In Proceedings of Symposium on Foundations of Computer Sci-

ence (SFCS), pages 132–142, 1986.

[Nij] Radboud University Nijmegen. Automata wiki. https://automata.cs.ru.

nl/BenchmarkCircuits/Kiss.

[NPR18] Omer Nguena-Timo, Alexandre Petrenko, and S. Ramesh. Checking se-

quence generation for symbolic input/output FSMs by constraint solving. In

Proceedings of International Colloquium on Theoretical Aspects of Comput-

ing (ICTAC), pages 354–375, 2018.

[PAGO19] Alexandre Petrenko, Florent Avellaneda, Roland Groz, and Catherine Oriat.

FSM inference and checking sequence construction are two sides of the

same coin. Softw. Qual. J., 27(2):651–674, 2019.

[Pat05] Janak H. Patel. Stuck-at fault: A fault model for the next millen-

nium? http://web.stanford.edu/class/ee386/public/stuck_at_

fault_6per_page, 2005.

[PB15] Fabio Lopez Pires and Benjamín Barán. Virtual machine placement literature

review. CoRR, abs/1506.01509, 2015.

112

https://automata.cs.ru.nl/BenchmarkCircuits/Kiss
https://automata.cs.ru.nl/BenchmarkCircuits/Kiss
http://web.stanford.edu/class/ee386/public/stuck_at_fault_6per_page
http://web.stanford.edu/class/ee386/public/stuck_at_fault_6per_page

[PBG04] Alexandre Petrenko, Sergiy Boroday, and Roland Groz. Confirming configu-

rations in EFSM testing. IEEE Trans. Software Eng., 30(1):29–42, 2004.

[Pix92] Carl Pixley. A theory and implementation of sequential hardware equivalence.

IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 11(12):1469–1478,

1992.

[PM64] J. F. Poage and E. J. McCluskey. Derivation of optimum test sequencies for

sequential machines. In 1964 Proceedings of the Fifth Annual Symposium on

Switching Circuit Theory and Logical Design, pages 121–132, 1964.

[PNR16] Alexandre Petrenko, Omer Nguena-Timo, and S. Ramesh. Multiple mutation

testing from FSM. In Elvira Albert and Ivan Lanese, editors, Formal Tech-

niques for Distributed Objects, Components, and Systems - 36th IFIP WG

6.1 International Conference, FORTE 2016, Held as Part of the 11th Inter-

national Federated Conference on Distributed Computing Techniques, Dis-

CoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings, volume

9688 of Lecture Notes in Computer Science, pages 222–238. Springer, 2016.

[PPK+15] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno

Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Ami-

don, and Martin Casado. The design and implementation of open vswitch. In

12th USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI 15), pages 117–130. USENIX Association, 2015.

[PY05] Alexandre Petrenko and Nina Yevtushenko. Conformance tests as checking

experiments for partial nondeterministic FSM. In Formal Approaches to Soft-

ware Testing, 5th International Workshop, FATES 2005, Edinburgh, UK, July

11, 2005, Revised Selected Papers, pages 118–133, 2005.

[PY11] Alexandre Petrenko and Nina Yevtushenko. Adaptive testing of deterministic

implementations specified by nondeterministic fsms. In Burkhart Wolff and

Fatiha Zaïdi, editors, Testing Software and Systems, pages 162–178, Berlin,

Heidelberg, 2011. Springer Berlin Heidelberg.

[PYvB96] Alexandre Petrenko, Nina Yevtushenko, and Gregor von Bochmann. Fault

models for testing in context. In Reinhard Gotzhein and Jan Bredereke, ed-

itors, Formal Description Techniques IX: Theory, application and tools, IFIP

TC6 WG6.1 International Conference on Formal Description Techniques IX /

Protocol Specification, Testing and Verification XVI, Kaiserslautern, Germany,

113

8-11 October 1996, volume 69 of IFIP Conference Proceedings, pages 163–

178. Chapman & Hall, 1996.

[RT15] M. N. Rabe and L. Tentrup. CAQE: A certifying QBF solver. In Proceedings

of International Conference on Formal Methods in Computer-Aided Design

(FMCAD), pages 136–143, 2015.

[San05] Sven Sandberg. Homing and synchronizing sequences. In Model-Based

Testing of Reactive Systems: Advanced Lectures, pages 5–33. Springer

Berlin Heidelberg, 2005.

[Sas93] (Editor) Tsutomu Sasao. Logic Synthesis and Optimization. The Kluwer In-

ternational Series in Engineering and Computer Science. Springer, Boston,

MA, 1993.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic

tape complexities. J. Comput. Syst. Sci., 4(2):177–192, 1970.

[SD88] Krishan Sabnani and Anton Dahbura. A protocol test generation procedure.

Computer Networks and ISDN Systems, 15(4):285–297, 1988.

[SEY07] Natalia Spitsyna, Khaled El-Fakih, and Nina Yevtushenko. Studying the sepa-

rability relation between finite state machines. Softw. Test. Verification Reliab.,

17(4):227–241, 2007.

[SV18] Hanan Shabana and Mikhail V. Volkov. Using sat solvers for synchronization

issues in non-deterministic automata. CoRR, abs/1801.05391, 2018.

[SV19] Hanan Shabana and Mikhail V. Volkov. Using SAT solvers for synchroniza-

tion issues in partial deterministic automata. In Proceedings of International

Conference on Mathematical Optimization Theory and Operations Research

(MOTOR), pages 103–118, 2019.

[TB73] B.A. Trakhtenbrot and Ya.M. Barzdin’. Finite Automata: Behavior and Synthe-

sis. North-Holland, Amsterdam, 1973.

[TEY18] Aleksandr Tvardovskii, Khaled El-Fakih, and Nina Yevtushenko. Deriving

tests with guaranteed fault coverage for finite state machines with timeouts.

In Inmaculada Medina-Bulo, Mercedes G. Merayo, and Robert M. Hierons,

editors, Testing Software and Systems - 30th IFIP WG 6.1 International Con-

ference, ICTSS 2018, Cádiz, Spain, October 1-3, 2018, Proceedings, vol-

ume 11146 of Lecture Notes in Computer Science, pages 149–154. Springer,

2018.

114

[Tra20] A. N. Trahtman. Cerny-starke conjecture from the sixties of XX century.

CoRR, abs/2003.06177, 2020.

[Tre96] Jan Tretmans. Test generation with inputs, outputs and repetitive quiescence.

Softw. Concepts Tools, 17(3):103–120, 1996.

[Tri16] Stavros Tripakis. Fundamental algorithms for system modeling, analysis, and

optimization. https://ptolemy.berkeley.edu/projects/embedded/

eecsx44/lectures/02-discrete-systems.pdf, 2016.

[TY20] A. S. Tvardovskii and N. V. Yevtushenko. Deriving homing sequences for finite

state machines with timed guards. Model. Anal. Inform. Sist., 27(4):376–395,

2020.

[Vas73] M. P. Vasilevskii. Failure diagnosis of automata. Cybernetics, 9(4):653–665,

1973.

[vB75] Gregor von Bochmann. Communication protocols and error recovery proce-

dures. ACM SIGOPS Oper. Syst. Rev., 9(3):45–50, 1975.

[vBP94] Gregor von Bochmann and Alexandre Petrenko. Protocol testing: Review of

methods and relevance for software testing. In Thomas J. Ostrand, editor,

Proceedings of the 1994 International Symposium on Software Testing and

Analysis, ISSTA 1994, Seattle, WA, USA, August 17-19, 1994, pages 109–

124. ACM, 1994.

[VKBS97] Tiziano Villa, Timothy Kam, Robert K. Brayton, and Alberto L. Sangiovanni-

Vincentelli. Explicit and implicit algorithms for binate covering problems. IEEE

Trans. on CAD of Integrated Circuits and Systems, 16(7):677–691, 1997.

[VKBSV97] Tiziano Villa, Timothy Kam, Robert K. Brayton, and Alberto Sangiovanni-

Vincentelli. Synthesis of Finite State Machines. Springer, 1997.

[Vol08] Mikhail V. Volkov. Synchronizing automata and the cerny conjecture. In Car-

los Martín-Vide, Friedrich Otto, and Henning Fernau, editors, Language and

Automata Theory and Applications, Second International Conference, LATA

2008, Tarragona, Spain, March 13-19, 2008. Revised Papers, volume 5196

of Lecture Notes in Computer Science, pages 11–27. Springer, 2008.

[VTdlH+05] Enrique Vidal, Franck Thollard, Colin de la Higuera, Francisco Casacuberta,

and Rafael C. Carrasco. Probabilistic finite-state machines-part I. IEEE Trans.

Pattern Anal. Mach. Intell., 27(7):1013–1025, 2005.

115

https://ptolemy.berkeley.edu/projects/embedded/eecsx44/lectures/02-discrete-systems.pdf
https://ptolemy.berkeley.edu/projects/embedded/eecsx44/lectures/02-discrete-systems.pdf

[VYB+12] T. Villa, N. Yevtushenko, R. Brayton, A. Mishchenko, A. Petrenko, and

A. Sangiovanni-Vincentelli. The Unknown Component Problem - Theory and

Applications, chapter 2, 3, pages 9–72. Springer, 2012.

[WGL+16] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey

on software fault localization. IEEE Trans. Software Eng., 42(8):707–740,

2016.

[ZJM21] H.-T. Zhang, J.-H. R. Jiang, and A. Mishchenko. A circuit-based sat solver for

logic synthesis. In Proceedings of the 30th International Workshop on Logic

& Synthesis (IWLS), 2021.

[ZKVM12] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Au-

tomatic test packet generation. In Proceedings of the 8th International Con-

ference on Emerging Networking Experiments and Technologies, pages 241–

252, 2012.

116

	Introduction
	Motivation, context and research challenges
	Major contributions
	Structure of the manuscript

	Preliminaries
	MBT and monitoring; fault models, and guaranteed fault coverage
	Finite State Machines and Automata

	State id. in MBT, formal verif. and monitoring
	Reachability and distinguishability in FSM based testing and monitoring
	`Gedanken' experiments: problem statement and related work
	Initial and Final State id.
	Deriving preset and adaptive homing, distinguishing, synchronizing experiments for nondeterministic FSMs/Automata
	Evaluating the length of state identification sequences and the complexity of related problems

	Making it more practical – possibilities to reduce the complexity, discussing particular cases
	Nondeterministic FSMs with `good' projections
	Probabilistic approach for test suite minimization against nondeterministic specifications

	Testing against logic circuits
	Background: logic circuits for describing combinational and sequential behavior
	Novel results in testing logic circuits
	Test generation based on logic circuit verification
	(Novel) fault models when testing against the logic circuits and correlation between them

	Testing and verification of dynamic and programmable networks
	Application areas: dynamic networks and SDN
	Verifying the topologies and requests in dynamic and programmable networks
	MBT for SDN enabled switches
	MBT for SDN frameworks and related fault models
	Formal verification for pro-active testing when detecting SDN races

	Conclusions
	Some concluding remarks
	Future / current work and perspectives

