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Résumé: Cette thèse vise à identifier théorique-
ment et concrètement comment l’analyse vi-
suelle peut aider les historiens dans leur proces-
sus d’analyse de réseaux sociaux. L’analyse de
réseaux sociaux est une méthode utilisée en his-
toire sociale qui vise à étudier les relations so-
ciales au sein de groupes d’acteurs (familles, in-
stitutions, entreprises, etc.) en reconstruisant
les relations du passé à partir de documents his-
toriques, tels que des actes de mariages, des actes
de naissances, ou des recensements. L’utilisation
de méthodes visuelles et analytiques leur permet
d’explorer la structure sociale formant ces groupes
ainsi que de relier des mesures structurelles à des
hypothèses sociologiques et à des comportements
individuels. Cependant, l’encodage et la modélisa-
tion des sources menant à un réseau finalisé don-
nent souvent lieu à des erreurs, des distorsions
et des problèmes de traçabilité, et les systèmes
de visualisation actuels présentent souvent des dé-
fauts d’utilisabilité et d’interprétabilité. En con-
séquence, les historiens ne sont pas toujours en
mesure d’aboutir à des conclusions approfondies
à partir de ces systèmes : beaucoup d’études se
limitent à une description qualitative d’images de
réseaux, surlignant la présence de motifs d’intérêts
(cliques, îlots, ponts, etc.). Le but de cette thèse
est donc de proposer des outils d’analyse visuelle
adaptés aux historiens afin de leur permettre une
meilleure intégration de leur processus global et
des capacités d’analyse guidées. En collaboration
avec des historiens, je formalise le processus d’une
analyse de réseau historique, de l’acquisition des
sources jusqu’à l’analyse finale, en posant comme
critère que les outils utilisés dans ce processus de-
vraient satisfaire des principes de traçabilité, de
simplicité et de réalité documentaire (i.e., que
les données présentées doivent être conformes aux
sources) pour faciliter les va-et-vient entre les dif-
férentes étapes et la prise en main par l’utilisateur,

et ne pas distordre le contenu des sources. Pour
satisfaire ces propriétés, je propose de modéliser
les sources historiques en réseaux sociaux bipartis
multivariés dynamiques avec rôles. Ce modèle in-
tègre explicitement les documents historiques sous
forme de nœuds, ce qui permet aux utilisateurs
d’encoder, de corriger et d’analyser leurs données
avec les mêmes outils. Je propose ensuite deux
interfaces d’analyse visuelle permettant, avec une
bonne utilisabilité et interprétabilité, de manipuler,
d’explorer et d’analyser ce modèle de données. Le
premier système ComBiNet offre une exploration
visuelle de l’ensemble des dimensions du réseau à
l’aide de vues coordonnées et d’un système de re-
quêtes visuelles permettant d’isoler des individus
ou des groupes et de comparer leurs structures
topologiques et leurs propriétés. L’outil permet
également de détecter des motifs inhabituels et
ainsi de déceler les éventuelles erreurs dans les
annotations. Le second système, PK-Clustering,
est une proposition d’amélioration de l’utilisabilité
et de l’efficacité des mécanismes de clustering
dans les systèmes de visualisation de réseaux so-
ciaux. L’interface permet de créer des regroupe-
ments pertinents à partir des connaissances a priori
de l’utilisateur, du consensus algorithmique et de
l’exploration du réseau dans un cadre d’initiative
mixte. Les deux systèmes ont été conçus à par-
tir des besoins et retours continus d’historiens, et
visent à augmenter la traçabilité, la simplicité et la
réalité documentaire des sources dans le processus
d’analyse de réseaux historiques. Je conclus sur la
nécessité d’une meilleure intégration des systèmes
d’analyse visuelle dans le processus de recherche
des historiens. Cette intégration nécessite des out-
ils plaçant les utilisateurs au centre du processus
avec un accent sur la flexibilité et l’utilisabilité,
limitant ainsi l’introduction de biais et les barrières
d’utilisation des méthodes quantitatives, qui sub-
sistent en histoire.



Title: Visual Analytics for Historical Social Networks: Traceability, Exploration, and Analysis
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Abstract: This thesis aims at identifying theo-
retically and concretely how visual analytics can
support historians in their social network analy-
sis process. Historical social network analysis is
a method to study social relationships between
groups of actors (families, institutions, companies,
etc.) through a reconstruction of relationships of
the past from historical documents, such as mar-
riage acts, migration forms, birth certificates, and
censuses. The use of visualization and analyti-
cal methods lets social historians explore and de-
scribe the social structure shaping those groups
while explaining sociological phenomena and indi-
vidual behaviors through computed network mea-
sures. However, the inspection and encoding of
the sources leading to a finalized network is in-
tricate and often results in inconsistencies, errors,
distortions, and traceability problems, and current
visualization tools typically have usability and in-
terpretability issues. For these reasons, social his-
torians are not always able to make thorough his-
torical conclusions: many studies consist of quali-
tative descriptions of network drawings highlight-
ing the presence of motifs such as cliques, com-
ponents, bridges, etc. The goal of this thesis is
therefore to propose visual analytics tools inte-
grated into the global social historians’ workflow,
with guided and easy-to-use analysis capabilities.
From collaborations with historians, I formalize the
workflow of historical network analysis starting at
the acquisition of sources to the final visual anal-
ysis. By highlighting recurring pitfalls, I point out
that tools supporting this process should satisfy
traceability, simplicity, and document reality prin-
ciples to ease bask and forth between the different
steps, provide tools easy to manipulate, and not
distort the content of sources with modifications
and simplifications. To satisfy those properties, I
propose to model historical sources into bipartite

multivariate dynamic social networks with roles as
they provide a good trade-off between simplicity
and expressiveness while modeling the documents
explicitly, hence letting users encode, correct, and
analyze their data with the same abstraction and
tools. I then propose two interactive visual inter-
faces to manipulate, explore, and analyze this data
model, with a focus on usability and interpretabil-
ity. The first system ComBiNet allows an inter-
active exploration leveraging the structure, time,
localization, and attributes of the data model with
the help of coordinated views and a visual query
system allowing users to isolate interesting groups
and individuals, and compare their position, struc-
tures, and properties. It also lets them highlight
erroneous and inconsistent annotations directly in
the interface. The second system, PK-Clustering,
is a concrete proposition to enhance the usability
and effectiveness of clustering mechanisms in so-
cial network visual analytics systems. It consists in
a mixed-initiative clustering interface that lets so-
cial scientists create meaningful clusters with the
help of their prior knowledge, algorithmic consen-
sus, and interactive exploration of the network.
Both systems have been designed with continu-
ous feedback from social historians, and aim to
increase the traceability, simplicity, and document
reality of visual analytics supported historical so-
cial network research. I conclude with discussions
on the potential merging of both tools, and more
globally on research directions towards better in-
tegration of visual analytics systems on the whole
workflow of social historians. Systems with a focus
on those properties—traceability, simplicity, and
document reality—can limit the introduction of
bias while lowering the requirements for the use
of quantitative methods for historians and social
scientists which has always been a controversial
discussion among practitioners.
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1 Introduction
“My claim rests on the assumption that [...] researchers can learn the truth about
social processes. At a minimum, they can distinguish between totally inadequate
and less inadequate representations of social processes, thus opening the way to
increasingly reliable knowledge.”

-Charles Tilly, [244]

The goal of this thesis is to characterize and produce visual analytics tools that can sup-
port social historians conducting research on their sources—particularly when using network
methods—with a focus on exploration, analysis, traceability, and usability. Historical Social
Network Analysis (HSNA) is a method—sometimes referred to as a paradigm [260]—followed
by social historians to study sociological phenomena through the observation of relationships
of actors of the past, modeled into a network. The usage of networks as an abstraction to
represent and study social relationships—such as friendships, kinship, or business ties—grew in
popularity in the last 40 years [87, 238] and constitutes a powerful metaphor, especially in our
time when many of our digital connections and interactions use an explicit network structure1.
This approach has first been formalized in sociology under the term Social Network Analysis
(SNA) [87] and is now widely used in anthropology [171], geography [22,211], and history [136].
Historians leverage historical documents—which are at the core of their profession [149]—to
extract relationships between actors of interest that they model with networks constructed
from nodes and links that respectively represent actors (often persons) and relationships (like
kinship). Using social network visualization techniques and leveraging network measures and
computations, they can then test hypotheses they have and gain insight on the structural as-
pect of the relational phenomena they are studying [136,258]. This approach has been followed
successfully to study various subjects such as kinship [106], entrepreneurship [212], maritime
routes [150], political power [189], political oppositions [188], and persecution [168]. Yet, his-
tory is considered by many as a literary and qualitative science, and many criticisms emerged
from the history community concerning quantitative and network methods [103,132,155,158],
pointing to problems such as the leading to trivial conclusions, anachronisms, simplifications,
and mismatches between network and historical concepts. Moreover, quantitative and network
analysis are complex processes, and demand much effort in data collection, encoding, modifi-
cation, and processing before being able to make efficient observations. This thesis considers
the whole workflow of social historians to better support it with visual analytics.

Social historians have to make many annotation (sometimes called encoding) and modeling
decisions, concerning what to model from their sources into a network, and how to model
it [53,66], i.e., should the information of interest be represented as a node, a link, an attribute,
or not reflected in the network at all, and what format should be used. Practically, they

1This analogy goes to the point that the term “social network” can refer both to the sociologicalmetaphor for social relationships and to the social media platforms such as Facebook.
1



2 1.1. Social History and Historical Social Network Analysis

typically use ad hoc processing and analysis scripts to transform historical documents into
analyzable networks, which is time-consuming, sometimes to end up with trivial or hard-to-
interpret results [5]. Still, HSNA led to many highly regarded studies with thorough conclusions,
such as the study of families of power in Florence by Padgett and Ansell where they explained
the rise of the Medici family through its central position in the economic, political, and trading
networks of powerful families [189] or Gribaudi and Blum work on the social and professional
shift during the 19th century in France [101].

The usage of visualization to graphically display networks is common in SNA2 as it allows
the unfolding of the structure of networks to the eyes, thus letting social scientists confirm
hypotheses they had when collecting and exploring their data as well as gaining new insight
through the discovery of interesting patterns and trends [54]. Images of networks also con-
stitute an efficient means of communication, especially in scientific productions [86]. Many
visualization techniques and software have thus been developed since the beginnings of SNA,
but most popular tools are usually not designed for historians specifically, meaning that they do
not regard on the provenance and process leading to the network, and focus on analysis aspects
only. Moreover, they typically enforce simple network models without proposing exploration
mechanisms, beyond allowing looking at the network structure and computed measures. As a
result, many HSNA studies show a plot of their network and describe it qualitatively, often by
identifying the central actors—sometimes with the help of centrality—but do not go beyond
that [156]. In this thesis, I, therefore, investigate how visualization can support social historians
in their work, first during the pre-analysis process and secondly during the analysis step, with
the right levels of expressiveness, usability, and traceability.

1.1 Social History and Historical Social Network Analysis

Social history has continuously evolved since its beginnings in the 1930s, especially with
the rise of quantitative and network methods based on the development of computer science
during the end of the 20th century. If these computer-supported methods are now widely used
and accepted in history [136,193], they stirred much debate and attracted many criticisms from
the start—some of which are still relevant today.

We can trace back the birth of social history with the formation of the “Annales School”
in the 1930s, where historians gained interest in socio-economic questions and started to rely
heavily on the exhaustive extraction and analysis of historical documents coming from archives
[26, 199]. Beforehand, history was mainly political and event-centered, as the majority of
work consisted in narrating and characterizing specific events—such as wars and diplomatic
alliances—while eliciting their causes and consequences, and describing the lives of historical
figures, such as sovereigns [199]. Social history shifted the focus by aiming to link together
sociological, economic, and political issues and by placing individuals at the center of these

2Historians and sociologists following network analyses typically use similar techniques andtools for analyzing their data. The differences between SNA and HSNA hence come from theprovenance and process leading to the construction of the network. I, therefore, use the SNAacronym for practices common in both fields and the HSNA acronym for history specificities.
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questions [243]. Later on in the 1960s, with the development of computer science, historians
started to use quantitative methods to analyze data extracted from historical documents and
make conclusions grounded in statistical results, in various subjects such as demographics [114]
and economics [96]. Around the same time, the use and study of networks started to become
popular in various disciplines to study real-world relational phenomena based on mathematical
computations and measures, especially in sociology and anthropology [40]. A network is an
abstraction based on graph theory concepts that can be used to model phenomena based on
relationships (called links) between entities (called nodes).

Sociologists appropriated this concept to model social relationships between agents of in-
terest, allowing them to study the sociological structure of groups of interest—such as families,
institutions, and companies—and concepts like friendship, oppression, and diffusion using real-
world observation and mathematical computations. This SNA approach allows analysts to
ground results in formal network measures and metrics based on real observations instead of
relying on traditional social categories such as age, job, and gender [87]. This shift in the
object of study from traditional social classes and aggregates to the observation of relationships
of individuals reminds the microhistory movement [92] which theorized that following the life
of single individuals and small groups enable the making of higher-level conclusions about the
social structures they live in. Social historians followed this tradition and started to appropriate
network concepts to study relational aspects of the past and formalized it under the term His-
torical Network Research or Historical Social Network Analysis [258]. However, historians do
not have the possibility to run surveys or directly observe interactions of the past and are thus
constrained by the information contained in historical documents they find in archives. These
documents can be anything mentioning social relationships between actors of interest, such as
marriage acts, birth certificates, census, migration acts, business transactions, and journals.
After selecting a corpus of documents, they typically read and inspect in depth several docu-
ments while taking notes to have a deeper insight into the content of the sources, which allows
them to start eliciting hypotheses. Following this exploration phase, they manually annotate
each document and encode the desired information—the mention of persons and their social
relationships in the case of a network analysis. This is a long and tedious process that can
result in small to large networks that they analyze using network measures to make conclusions
on the structure of social groups or social behaviors of individuals of interest. Figure 1.1 shows
for example an original business document of the 17th century from Nantes (France). The his-
torian has to inspect these documents in depth, extract useful information, and cross-reference
the sources to do her quantitative analysis afterward. The investigation and reading of the
historical documents is therefore an exploratory process, where historians start to generate so-
ciological hypotheses from the continuous extraction of insight and revelations of this process,
similar to the grounded theory [94]. Once they have finalized a network, they can test their
hypotheses using qualitative or quantitative methods—based on statistical and network mea-
sures. Lemercier and Zalc write “Although history is not an exact science, counting, comparing,
classifying, and modeling are nevertheless useful methods for measuring our degree of doubt or
certainty, making our hypotheses explicit, and evaluating the influence of a phenomenon.” [156]
Social historians, therefore, have hypotheses about their subject of study, that they can back
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Figure 1.1 – Business contract originated from Nantes (France) during the 17thcentury. See [67] for more detail on the historian process to analyze her sources.

up or refute with the help of quantitative and network results, in a way similar to the compet-
ing hypotheses workflow of Intelligence Analysis [62]. By pointing to evidence supporting or
refuting hypotheses, they can give insight into the level of the plausibility of different claims.

1.2 Visualization and Visual Analytics

Visualization has been said to be a central part in the development of SNA [86, 264]—
as it the case for many scientific fields3. Social scientists now widely use visual and analytical
methods and tools to unfold and comprehend the structures shaping networks they are studying,
allowing them to confirm or deny hypotheses, or follow exploratory analysis.

Visualization is the process of displaying data visually to leverage the human visual system
and enhance cognition to gain insight into data [43]. Using visual abstractions (such as size,
color, and position) to display abstract data allows us to rapidly see structure and patterns
otherwise hidden in raw text and numbers. As data keeps growing in size with time due to
the increase of hardware and storage capabilities, visualization is a powerful tool to gain insight
into the underlying structure of various complex datasets.

3the historian Alfred Crosby went as far as claiming that visualization is one of the two factors—with measurement—that led to the development of modern science [57].
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Visualization has traditionally been used for confirmatory and communication purposes,

particularly in empirical sciences [227]. By showing data visually, analysts are able to confirm
or refute hypotheses and communicate their findings in scientific productions.

However, visualization can also be used for exploration, which can help to understand
the underlying structure of data and generate new hypotheses. Tukey defined this process as
exploratory data analysis in the 1960s [248], as a procedure to gain insight into the structure
of the data by identifying outliers, trends, and patterns with the usage of visualization and
statistical measures. Social network visualization is used for the communication of findings in
the field, but is also often following this exploration process as showing the network visually
allows social scientists to reveal the structure of their data. As Freeman writes “Images of
social networks have provided investigators with new insights about network structures and
have helped them to communicate those insights to others” [86]. Social scientists very often
represent their data using node-link diagrams, that we find in every production of reference in
the field [35, 152,238,256], as they are easy to comprehend.

Figure 1.2 shows a node-link representation of the network constructed by Padgett and
Ansell in their work on the Medici. At that time, diagrams were often drawn by hand, a
practice that has now been replaced by automatic layout algorithms. Most used visual softwares
for SNA such as Gephi [17], Pajek [179], NodeXl [232], Tulip [11], or Ucinet [129] are based
on this representation and allow an exploration of the data with the help of basic interaction
mechanisms and the computation of network measures. The detection of patterns and trends
can also be facilitated with automatic methods coming from data mining and machine learning
fields, directly implemented in the visual analysis loop. This coupling of visual exploration and
automatic data mining algorithms has been coined as Visual Analytics (VA) and is defined as
the process of using interactive visualizations, transformations, and models of the data in an
interactive analysis workflow to create knowledge [134].

Figure 1.3 illustrates the schematic process of VA: the coupling of visualization and data
mining models operated by the user through interaction leads to the generation of knowledge
“extracted” from the data. If the most widely used visual interfaces for HSNA do not yet provide
complex interactions or high data mining capabilities, more recent tools are oriented towards
VA, as the combination of automatic knowledge extraction with interaction and exploration
can be a powerful support for social scientists to gain insight on the structure of their network,
especially that the data they study keep growing in size and complexity [131].

1.3 Visual Analytics Supported Historical Network Research

Most visual tools for SNA are designed for the analysis of already curated networks, without
taking into account the context in which those networks have been produced, where they come
from, and the workflow that led to their creation. Moreover, many practitioners have trouble
using current computer-supported tools, due to misconceptions in their encoding and modeling
process or usability problems [5]. VA should therefore support social historians in the entirety
of their process, with a focus on usability and simplicity.

Currently, social historians spend a long time in their data acquisition, processing, encoding,
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Figure 1.2 – Marriage, partnership, trading, banking, and real estate networks ofthe powerful families of Florence from [189]. We can see the central position inthe network of the Medici Family.
and modeling steps which lead them to the construction of a network [67,157]. They typically
visualize and analyze their network at the end of this process, first to verify hypotheses they
formulated during the inspection of their sources, then to gain a better view of the structure of
the network, allowing them to potentially generate new hypotheses [155]. However, research
showed that all the steps preceding the analysis can introduce errors and misconceptions, espe-
cially since social scientists are often not trained in computer science and data science [5,156].
Social scientists usually visualize their network using SNA tools like Gephi, Pajek, and NodeXl
which encompass basic interactions, node-link visualization, SNA measure computations, and
clustering algorithms. Once they visualize their data, they typically notice errors and inconsis-
tencies in the data, such as duplication of the same entities, merging of different entities, or
geolocation errors [5, 64].
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Figure 1.3 – Abstraction of the VA process. It is characterized by continuous in-teractions between the data, visualizations, models, and knowledge. Image from[134].

Practitioners also have to decide on a network model [53] (see §2.3.4 for more details) when
encoding their documents, which sometimes do not match the final analysis goals. Simple mod-
els typically oversimplify the relationships contained in the sources [155], and too complicated
models are hard to manipulate [187]. They, therefore, have to go back and forth between the
visualization software and the encoding process which can be tedious, especially since it can be
complicated to trace back the entities of the data model back to the original documents for
correction. VA tools that encompass the whole process of social historians should therefore be
beneficial for the flow of their work and could help detect and correct errors, or analysis plans
way before the visualization of a finalized network. Proposing how to design such interfaces
with proofs-of-concept is one of the goals of this thesis.

Furthermore, several historians highlighted the fact that many social history studies leverag-
ing network methods simply use networks in a metaphorical sense, in what Rollinger calls “soft
SNA” or “informal network research” [207]. Such studies typically show one—or a couple—
node-link diagram(s) which they describe with qualitative terms [156] to refer to the global
structure of the network (dense, sparse, connected, etc.), the place of actors (central, distant),
or interesting patterns (cliques, bridges, communities). In the case of dense networks, such
descriptions become obsolete, as diagrams start to look like what has been called a “spaghetti
monster” [49, 156] i.e., an unreadable image due to the high level of cluttering. Figure 1.4
shows for example a medieval social network of peasants’ proximity relationships between 1250
and 1350, extracted from agrarian contracts. The graphic does not convey much information,
especially since the links represent a constructed notion of proximity without indicating the
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types of mentions in which people were mentioned in the contracts.

Figure 1.4 – Node-link diagram showing the social proximity between peasants ofthe Middle Ages, produced with a force-directed layout, commonly used in SNAsoftwares. The picture is not very informative and only reveals a semblance ofcommunity structure. Image from [32].
The lack of use of network analytical methods—which are numerous in modern SNA soft-

wares4—have been in part explained by “math anxiety” [191]: it takes long effort to learn
the mathematical concepts behind network measures and algorithms, and their relationships
to sociological concepts [207], especially for practitioners without formal computer science and
mathematical training. My claim is that current HSNA tools do not support social scientists

4See for example the long technical manuals of Pajek [179] and Ucinet [130]
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enough in their analysis due to 1) the lack of interaction, direct manipulation, and exploration
mechanisms in current interfaces and 2) the lack of network measures and algorithm inter-
pretations and explainability. For example, clustering algorithms are often included in such
systems, letting social scientists partition networks into groups, but many algorithms exist in
the literature, potentially giving diverse results. Scientists often run several algorithms until
finding a satisfying enough partition, which can bias the result of an analysis [195]. Usability
and traceability of the results are therefore primordial in VA interfaces aimed at supporting
social historians in their analysis.

VA could therefore help social historians in their use of network methods, first by providing
guidance and continuous feedback on the inspection, encoding, modification, and modeling
process from the sources, and by providing complex exploration and analysis mechanisms sup-
ported by data mining capabilities. For this, such interfaces should 1) be simple enough to
manipulate, 2) model the original documents and annotations without distortions, and 3) let
historians trace back their network entities to the original sources and analytical results in ex-
plainable frameworks. In other terms, they should satisfy simplicity , document reality , and
traceability principles. I discuss and explain those principles more in depth in chapter 3.

1.4 Contributions and Research Statement

The goal of this thesis is to characterize how VA can support social historians in their HSNA
process and present proofs of concepts of tools supporting it. Most social network visualization
tools are agnostic to the process of social historians leading to a polished network, even though it
has a high impact on the network model and structure. Using visualization only at the end of the
process often reveals potential errors, inconsistencies, or mismatches between the network model
and analysis goals [5]. Moreover, due to a lack of usability and interaction mechanisms, social
historians often simply visualize their network statically and partially describe their structure,
leading to conclusions that would have been easier to reach with simpler methods [75]. VA
could therefore 1) assist social historians in their overall workflow, starting at the documents’
acquisition to the final analysis step, with the help of data mining and interaction mechanisms
in the data acquisition, encoding, and modeling steps, and 2) provide exploration and analysis
mechanisms to answer complex historical questions, beyond simply plotting the network with a
node-link diagram.

The goal of this thesis is hence to give answers to the high-level question “How can VA
support social historians in their entire HSNA process?”. To answer this question, I first char-
acterize the HSNA process from start to finish from discussions and collaborations with social
historians, with the goal of identifying pitfalls that regularly arise and characterizing social his-
torians’ needs. From this, I give answers and directions—illustrated by proofs-of-concept—to
three questions concerning the modeling aspect of HSNA and how VA and automatic tools
can support social historians in different parts of their process while satisfying traceability ,
document reality , and simplicity properties:

Q1: How to model historical documents into analyzable networks with the right balance
between expressiveness and simplicity?
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Q2: What representations and interactions would allow social historians to answer complex
historical questions—with a focus on usability?

Q3: How to design VA tools and interactions that leverage algorithmic power but keep histo-
rians in control of their analyses and biases?

In chapter 3, I start by describing the HSNA workflow and identify recurring pitfalls we
encountered in our collaborations with historians and answer Q1 by proposing a network model
for modeling historical documents. In the following chapter 4, I give answers to Q2 by providing
a VA interface to explore bipartite multivariate dynamic networks, with queries and comparison
interactions with the aim of letting historians find errors easily, transform their network data,
answer their questions, and generate interesting hypotheses. Finally, in chapter 5, I propose
PK-Clustering, a mixed-initiative clustering technique for social scientists based on their prior
knowledge, algorithmic consensus, and traceability of results, as a concrete example of a system
addressing Q3.



2 Related Work

Contents
2.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Information Visualization . . . . . . . . . . . . . . . . . . . 12

2.1.2 Visual Analytics . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Quantitative Social History . . . . . . . . . . . . . . . . . . . . 15

2.2.1 History, Social History, and Methodology . . . . . . . . . . . 16

2.2.2 Quantitative History . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Digital Humanities . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Historical Social Network Analysis . . . . . . . . . . . . . . . . 20

2.3.1 Sociometry to Social Network Analysis . . . . . . . . . . . . 21

2.3.2 Methods and Measures . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Historical Social Network Analysis . . . . . . . . . . . . . . . 24

2.3.4 Network Modeling . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Social Network Visualization . . . . . . . . . . . . . . . . . . . 27

2.4.1 Graph Drawing . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Social Network Visual Analytics . . . . . . . . . . . . . . . . 29

Social historians rely on textual historical documents to study social groups through their
structures and socio-economic characteristics in societies of the past [39, 243]. They read and
analyze documents they can find from a period and subject of interest, and make their con-
clusions through deep inspection and cross-referencing of the information they found. Several
methods have been developed in history to extract and analyze the information contained in
the documents in a methodical way [244], based on qualitative or quantitative methods—
among which HSNA is now widely popular [207]. HSNA is a method consisting in modeling
the relational information mentioned in the documents—such as family, business, or friendship
ties—in a network, to be able to characterize and explain social behaviors through the descrip-
tion of the network’s structure [136, 258]. This approach is directly inspired by SNA, which is
a well-known method that sociologists theorized to understand and describe real-world social
relationships modeled as networks [87,219]. Historians appropriated this method, by extracting
relationships from historical documents. The specifics of HSNA in contrast to its sociology
counterpart is, therefore, the modeling of the network from the historical documents—which
are at the core of the historical work [199]—and the integration of the temporal dimension
which is often disregarded in traditional SNA but central in history. Once they successfully

11
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constructed a network—which is a long and tedious process—they typically use network mea-
sures and visualization techniques to confirm or generate new hypotheses [155]. Visualization
let them unfold the structure of their data, revealing potentially interesting social patterns be-
tween actors and groups of actors. Analytics and visualization systems for SNA typically allow
the exploration of such data with the help of interaction, network measures, and data mining
capabilities such as clustering directly implemented in the interfaces. Yet, most HSNA studies
only give a qualitative description of their network—which Rollinger calls “soft” or “informal”
network research [207]—probably due to usability and formalism issues [5]. The coupling of
visualization and data mining through interaction to support the generation of knowledge has
been described as VA and can therefore provide support to social historians for their network
construction, but also to go beyond simple qualitative description of their data. In this chapter,
I first present a general overview of the field of visualization in §2.1 to share its utility and po-
tential for social history. Then, I present the social history discipline with its use of quantitative
methods in §2.2, before describing how network analysis has been applied in the field in §2.3.
Finally, I present in §2.4 how visualization and VA have been used in the context of HSNA,
along with the most popular systems currently used by social scientists and their limitations.

2.1 Visualization

Visualization is often defined as “the use of computer-supported, interactive, visual repre-
sentations of data to amplify cognition” [43]. Graphically displaying data allows us to leverage
our visual system to gain a better acquisition of knowledge, leading to better decision-making,
communication, and potential discoveries. The field of visualization can be split into three sub-
domains: Scientific visualization focuses on visualizing continuous physically based data such
as weather, astrophysics, and anatomical data, sometimes produced with simulations whereas
Information Visualization is centered around the visualization of discrete abstract data points,
often multidimensional. Visual Analytics emerged later from Information Visualization by mix-
ing data mining and more complex analysis process with traditional information visualization
displays. I focus in this thesis on the two latter branches of visualization, as social scientists
can use both information visualization and VA systems to gain insight into the structure of the
networks they are studying.

2.1.1 Information Visualization
Information Visualization focuses on displaying abstract data to amplify cognition and gain

insight into real-world phenomena [43]. History is filled with classical examples of visual data
displays which helped understand better specific events, such as Minard’s map of Napoleon’s
march in Russia [89] highlighting the high count of human losses in the french army, or Snow’s
dot map of cholera cases in London which showed the proximity between street pumps and
cholera infections [233]. If several examples of information visualization can be found thorough
history, it mainly developed as a scientific field in the 1960s with Tukey’s work on data analysis
and visualization [247] and Bertin’s publication of Semiology of graphics [24].

In this foundational work, Bertin described and organized the different visual elements
usable in graphical information displays, and linked them to data features and relations types.
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Figure 2.1 – Categorization of visual variables which can be used to represent net-work data, resulting in many different network representations. Image from [24].
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Figure 2.2 – Anscombequartet. The four datasets have the samedescriptive statis-tics (mean, variance, correlation coefficient, linear regression line) but very differ-ent structures. Image from [8].

An illustration of this work of categorization for network data is illustrated in Figure 2.1.
Michael Friendly writes “To some, this appeared to do for graphics what Mendeleev had done
for the organization of the chemical elements” [90]. The development of computer science and
the rise of hardware capabilities at the same time created a big need for data visualization.
The amount of data stored increased exponentially [116] and descriptive statistics were not
enough to understand the underlying structure of the amount and diversity of produced data.
Visualization, leveraging the human visual system, enabled to rapidly see the hidden structure
of a dataset and detect interesting and unexpected patterns very often unseen with classical
statistical methods. One classical illustration of this is Anscombe’s quartet [8] which consists of
four datasets of 11 points in ℝ2 with the same statistical measures (mean, variance, correlation
coefficient, etc.) but with very different structures, that are immediately revealed when plotting
the data. The four datasets are illustrated in Figure 2.2.

A large number of visualization techniques emerged to make sense of the diversity of data
produced, such as multidimensional, temporal, spatial, or network data [225]. Instead of using
taxonomies classifying graphics into categories such as histograms, pie charts, and stream
graphs, some theorized how to describe graphics in a more systematic and structural way. In
1993, Wilkinson extended Bertin’s work and proposed the Grammar of Graphics [262] as a way
to describe the deep structure unifying every possible graphic, thus allowing to characterize
and create graphics using common terms and rules. In this framework, a graphic can be
defined as a function of six components: data (a set of data points and attributes from a
dataset), transformations (statistical operations modifying the original data, e.g., mean and
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rank transformations), scales (e.g., linear and log scales), coordinate systems (e.g., cartesian
and polar), elements (graphical marks such as rectangular or circular marks, and their aesthetics,
e.g., color, and size), and guides (additional information such as axes and legend). Many well-
known visualization toolkits are now based on this framework, such as vega [215] and ggplot
[261], as it enables a greater expressiveness and reusability for graphic creation. Visualization
allows to gain insight into the structure of a given dataset and has traditionally been used for
confirmation and communication purposes [227], for example, to verify hypotheses on empirical
sciences, and later on to communicate findings, first to scientific peers, and nowadays to broader
audiences for example through the means of data journalism [34].

2.1.2 Visual Analytics
VA consists of the coupling of visualization and data mining techniques to better support

users in their knowledge generation process through continuous interaction with the data and
statistical models [241]. It draws inspiration from exploratory visualization, interaction, and data
mining. The process of exploratory visualization to gain new insights on the general structure
of the data and potentially generate new hypotheses has been characterized by Tukey in 1960
as exploratory data analysis [248]. It consists in trying to characterize the structure of a dataset
with the help of continuous visualization and statistical measurements of different dimensions of
the data. Visual exploration is enhanced by direct manipulation interfaces through interaction
and usually follows the information-seeking mantra formalized by Shneiderman: “Overview first,
zoom and filter, then details-on-demand” [225]. It allows users to first have a visual overview of
the data and get an idea of its overall structure, to then change the point of focus to highlight
interesting patterns with the help of filtering, querying, sorting, and zooming mechanisms. As
the average size of datasets keeps growing, exploratory tools are often needed to make sense
of large datasets and generate pertinent hypotheses.

More recent visual exploration interfaces also incorporate automatic analytical tools along
with graphical displays, letting users apply data mining algorithms directly in the exploratory
loop. This coupling of visualization and analytical methods such as data mining has been
defined as VA and is still a very active research field. Keim et al. define it as “a combination
of automatic and visual analysis methods with a tight coupling through human interaction in
order to gain knowledge from data” [134].

VA consists of the generation of knowledge using visualizations and statistical models of the
data, that the user can explore using interaction. Such systems have been developed in various
empirical domains, such as biology, astronomy, engineering, and social sciences, to explore
various data types: multidimensional, temporal, geolocated, or relational (i.e., modeled into a
network). Figure 2.3 shows the TULIP system, an example of a VA system developed for the
analysis of network data. I discuss the uses of VA specifically for SNA in §2.4.2.

2.2 Quantitative Social History

Social History is a branch of history that aims at studying socio-economic aspects of past
societies, with a focus on groups instead of specific individuals only. Charles Tilly writes that
its goal is to “(i) documenting large structural changes, (2) reconstructing the experiences of
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Figure 2.3 – The TULIP software is designed for application-independent networkvisual analytics [11]. The view shows a dataset among multiple interactive coordi-nated views. Datamining algorithms can be applied to reveal interesting patterns.

ordinary people in the course of those changes, and (3) connecting the two” [243]. If the purpose
of social history remained the same across time, methods and formalisms have evolved since
its beginning in the 1930s. Specifically, the rise of computer science led to the development
of quantitative history methods in the 1960s—now often referred to as digital humanities—
which brought new ways of grounding results in formalisms and quantitative models, instead of
solely relying on qualitative inspection of historical documents [110]. I discuss in this section
the evolution of social history from the context of its beginning to the use of more recent
quantitative approaches.

2.2.1 History, Social History, and Methodology

The concept of history is hard to define as its practice and codes highly evolved through
time. Prost writes “history is what historians do. The discipline called history is not an eternal
essence, a Platonic idea. It is a reality that is itself historical, i.e. situated in time and space,
carried out by men who call themselves historians and are recognized as such, received as history
by various publics [199].” Retrospectively, history of a given time can thus be characterized by
the different historical work produced at that time. Nevertheless, History can be characterized
as the collection and study of historical documents in the aim of retrieving facts about past
societies people living in them. As Langlois and Seignobos write, “The search for and the
collection of documents is thus a part, logically the first and most important part, of the
historian’s craft” [149]. History emerged as a field with its own rules, conventions, and journals
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in the 1880s from faculties of letters, to counterbalance previous history works which were judged
as too “literary” [184]. At that time and until now, two facets characterize the field, which are
sometimes overlapping: one is political whereas the other one is methodological. The former
aspect of history serves to create a shared story for countries and a sense of unity among citizens.
Antoine Prost says for example that “it’s through history than France thinks itself” [199]. The
latter aspect of history constitutes a methodology to describe the past through methodical
inspection of historical sources, with the aim of inferring dated facts about the past and trying
to minimize possible bias. Historical documents are thus at the core of the work of historians
and having to cite historical documents and previous peers’ work for new claims is primordial to
be considered rigorous History work. However, methodological and epistemological facets (how
historians should read and analyze their sources, how to cite them, what to report/not report,
and what is the status of proof) of History have not been studied and discussed for a long
time, until the end of the 1980s [199]. Some historians were interested in historiography [42],
but none were going to philosophical and epistemological debates on the History discipline. For
Lucien Fèbvre, philosophizing was even constituting a “capital crime” [78].

Retrospectively, we can still observe shifts in the objects of study of historians through
time, and their relation to sources. History was at first mainly event-centered and was focusing
on characterizing central figures of the past like rulers and artists or shedding light on central
events like wars or political crises. This narrative approach to history has been criticized for its
open interpretation of historical documents, which can introduce bias from the authors [33]. In
the 1930s, March Bloch and Lucien Fèbvre detached from traditional history by creating the
“Annales School” (École des Annales) which aimed at placing humans as a component of a
broader sociological, political, and economic system with influences on each other [39]. They
strongly advised exhaustively searching from archives, to ground historical results in documents,
texts, and numbers. This new way of studying past events and societies became successful in a
profession in crisis, by bringing a new lens of study on various societal subjects more grounded
in sources and with better intelligibility. This school of thought can be seen as one of the
biggest milestones for social history, which focuses on the socio-economical aspects of societies
and their changes through time, rather than an event-centric view of history. For example,
in his thesis, Ernest Labrousse—a well-known figure in social history—tries to describe and
explain the economic crisis of France at the end of the “Ancien Régime”1 through the evolution
of the economic power of different social groups such as farmers, workers, property owners,
etc., instead of solely describing memorable facts about the period, connected in a global
narrative [147]. Social history continued to evolve since the 1930s, introducing new methods
and concepts, but always with the goal to describe periods and historical facts through a
sociological lens and with a strong focus on sources and traceability.

2.2.2 Quantitative History

With the development of statistical methods and computer science, quantitative approaches
to history emerged in the 1960s with the goal of analyzing numerical data directly extracted

1The “Ancien Régime” is a historical period of France which starts from the beginning of thereign of the Bourbon house at 1589 until the Revolution in 1789.
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from historical documents. Economists led this first wave of quantification by studying past
events using economical concepts and data. This approach called “new economic history” or
“cliometrics” was popularized by Fogel’s study on the economic impact of the development
of railroads in America [81] and Fogel and Engerman’s controversial work on the economy of
slavery [83]. In the latter study, they extracted numbers of a sample of 5000 bills of slave sales
from New Orleans to support the controversial claims that slavery was economically viable and
that slaves had a decent material life, which brought up heated debate among the scientific
community and the broader audience [259]. Despite the controversy, these kinds of approaches
rapidly started to be used in other related domains such as demography, social history, and
political history, sometimes rebranded as “new social history” and “new political history” [157].
Using computer-supported methods, historians were able to store data extracted from historical
documents and make conclusions based on computational methods such as linear regression
and statistical testing. Many saw the future of social sciences in computer programming after
seeing the first results of those methods, as Le Roy-Ladurie who wrote in 1968 “The historian
of tomorrow will be a programmer, or he will not exist” [156].

However, quantitative methods started to be criticized in the 1980s with a wave of disillu-
sionment, for several reasons. Stone was the first to raise his voice in 1979, after participating
himself in several of those ambitious projects: “It is just those projects that have been the most
lavishly funded, the most ambitious in the assembly of vast quantities of data by armies of
paid researchers, the most scientifically processed by the very latest in computer technology,
the most mathematically sophisticated in presentation, which have so far turned out to be
the most disappointing” [236]. First, many researchers of this first wave dispensed themselves
with source criticism, leading to simplification, anachronisms—such as using modern analytical
categories and indices like the GDP—and taking the numeric data from historical documents
as objective. These problems could be in part explained by the fact that the work process
was highly divided, meaning that the people analyzing the data did not necessarily inspect
and read the original historical documents in depth. Indeed, “new history” projects often re-
lied on a high division of labor among researchers, assistants, and students who operated with
punch card operators [148], since extracting the data from raw documents and uploading it to
computers—which were shared among whole departments—was very time-consuming at that
time. Secondly, the popularity of these methods made practitioners forget about the many
biases inherent to statistics, such as the sampling bias, or the fact that historical data is es-
sentially incomplete data. This resulted in the computation of long data series and aggregates
which were sometimes nonsensical given the gaps in the sources [156]. Finally, many histo-
rians raised their voices against the study of long-term trends instead of focusing on specific
events and individuals. They challenged aggregation procedures and their assumptions, trying
to go back to a more complex history by pointing out that phenomena have to be studied
and understood through several scales [246]. Indeed, computing correlations and aggregates at
a national level greatly simplify complex phenomena and misses specific group and individual
related behaviors. Still, if their adoption remains slow and sometimes criticized among histo-
rians, quantitative methods provide tools to store, explore, and analyze historical documents
systematically if used appropriately (i.e. not trying to bias the analysis, and not losing the trace
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of the original sources), especially that those methods highly evolved since the 1960s.

2.2.3 Digital Humanities
Digital Humanities is sometimes described as the second wave of computational social sci-

ences [156]. The term has gained popularity since the 2010s and refers to “research and teaching
taking place at the intersection of digital technologies and humanities. Digital Humanities aims
to produce and use applications and models that make possible new kinds of teaching and
research, both in the humanities and in computer science (and its allied technologies). Digital
Humanities also studies the impact of these techniques on cultural heritage, memory institu-
tions, libraries, archives and digital culture” [240]. If the first wave of computational social
sciences focused a lot on statistical methods such as regression models, correlation testing,
and descriptive measures (mean, median, and variance) to make conclusions, digital human-
ities focuses also on the use of digital tools for exploration, teaching, and communication of
humanities concepts and data, leveraging design, infographics, and interactive systems [38]. In
the context of historical research, the term digital history has been coined as “an approach to
examining and representing the past that works with the new communication technologies of
the computer, the Internet network, and software systems. On one level, digital history is an
open arena of scholarly production and communication, encompassing the development of new
course materials and scholarly data collections. On another, it is a methodological approach
framed by the hypertextual power of these technologies to make, define, query, and annotate as-
sociations in the human record of the past. To do digital history, then, is to create a framework,
an ontology, through the technology for people to experience, read, and follow an argument
about a historical problem” [47]. Research that labels itself as digital history pivots around the
curation and digitization of historical archives, the identification of historical concepts through
computational and exploration methods, and also their communication to the general audience
through digital technologies. Many Digital History projects are thus multidisciplinary by essence
and involve several teams of researchers, such as the Mapping the Republic of Letters project
which consisted of digitizing, storing, and exploring letters of scholars across the world in the
17th and 18th centuries, in a common hub and using shared visualization tools [72]. It resulted
in the elaboration of curated datasets and visualizations concerning the correspondence of var-
ious scholars such as Voltaire, Benjamin Franklin (see Figure 2.4), and John Locke, accessible
in the same place by researchers and the general audience. With modern technologies and in-
frastructures, it also becomes possible to study large historical databases—often labeled under
the term “big data”—as with the Venice Time Machine project [131] which aims at digitizing
and analyzing thousands of documents from the archives of Venice to understand the political,
geographical, and sociological dynamics of the cities across generations and centuries. Yet,
some social scientists raised concern about this type of project, fearing that it could rapidly
bring the same type of issues encountered during the first wave of quantification, especially for
large projects involving many actors and highly ambitious goals [156, 186]. Guildi and Aritage
went as far as criticizing the decrease of interest of historians working in archives [103], since
many historical dataset are now directly available online through archives portal on the web.

Many projects which claim themselves as digital history also leverage new methods compared
to the 1960s and 1970s, such as the use of network concepts [3]. Examples are the Viral
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Figure 2.4 – Correspondence letters of Benjamin Franklin and his close relation-ships, visualized with a map and a histogram, from the republic of letter web-site [72].

Texts [52] and Living with Machines [10] projects which respectively study nineteenth-century
newspapers and the industrial revolution by translating their sources into analyzable networks.
I discuss more in detail the related work of network analysis for historical research in §2.3.

2.3 Historical Social Network Analysis

Historians started to use network analysis to study relational structures and phenomena of
past societies in the 1980s, using similar methods developed by sociologists under the label of
SNA. SNA can be defined as an “approach grounded in the intuitive notion that the patterning of
social ties in which actors are embedded has important consequences for those actors. Network
analysts, then, seek to uncover various kinds of patterns. And they try to determine the
conditions under which those patterns arise and to discover their consequences” [87]. the use
of networks emerged in response to traditional sociology methods using pre-defined taxonomies
and social categories to understand and explain sociological behaviors and phenomena, which
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could introduce bias [219]. By modeling real observed social relationships and interactions with
networks and by using mathematical and statistical methods to study those, sociologists have
been able to explain sociological phenomena and describe sociological interactions through their
direct observation modeled as networks. SNA is now a well-praised methodology in sociology
and has been extended to historical research to study relational concepts such as kinship,
friendships, and business, through the characterization of groups of past societies. Social
historians leverage their documents to extract relationships between entities—often persons—
that they model into networks. Leveraging network measures and visualization, they can make
conclusions through structural observations of such networks.

2.3.1 Sociometry to Social Network Analysis

One of Sociology’s main goals is to study social relationships between individuals and find
recurrent patterns and structures allowing us to generalize on how social relations operate, and
what are the social specificity of specific groups and individuals [219]. Traditional methods
try to answer those questions using classical social classifications such as age, social status,
profession, and gender, typically collected from surveys and interviews. Criticism pointed out
that this type of division is often partially biased and comes from predefined categories which
are not always grounded in reality [87] and that using random sampling of individuals with
such methods remove them from their sociological context. The sociologist Allen Barton wrote
in this regard “For the last thirty years, empirical social research has been dominated by the
sample survey. But as usually practiced, using random sampling of individuals, the survey is a
sociological meatgrinder, tearing the individual from his social context and guaranteeing that
nobody in the study interacts with anyone else in it” [16]. Sociometry is considered one of the
bases of SNA and had the goal of redefining social categories through the lens of real social
interactions and ties between persons, which sociologists wanted to observe in real conditions.
It is in the 1930s that Moreno started to develop this new method by trying to depict real social
interactions as a way to understand how groups and organizations were socially structured [176].
He developed sociograms to visually show friendships between people with the help of circles
representing persons and lines modeling friendships. Figure 2.5 shows one of Moreno’s original
sociograms to depict friendships in a class of first grades (left).

Sociometry tremendously helped disseminate the metaphor of networks to model and un-
derstand social structures and phenomena, but was not using any formalization of network
concepts and computation yet.

It was around the same time, in the 1930s, that graph theory developed as a field2. In
the 1950s, mathematicians such as Harary and Roberts started using their findings on graphs
to study sociological questions [107]. In the following decades, many sociologists and anthro-
pologists codified SNA using networks3 and computations [40, 87], while mathematicians were

2The first book on graph theory was published in 1936 by König [140].3Graphs and networks refer to the same thing but are often used in different contexts. Theterm graph is preferred in a mathematical and abstract setting, while the term network is mostlyused when modeling real-world phenomena. We talk about nodes and links for networks andvertices and edges for graphs.
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Figure 2.5 – Moreno’s original sociogram of a class of first grades from [175] (left).The diagram shows 21 boys (triangles) and 14 girls (circles). The same sociogramusingmodern practices generated fromGephi from [97] (right). The color encodesthe number of incoming connections.
studying in parallel the mathematical properties of graphs, such as Erdős with his work on
random graph models [73].

Typically, a graph is noted
G = (V, E) (2.1)

with V a set of vertices representing the actors of interest—typically persons—and E ⊆ V2 a set
of edges modeling social relationships. This simple model, which does not take into account the
diversity and extent of social relationships, still allows the characterization of the sociological
structure of groups and institutions—which is the primary focus of SNA [87,219]. More complex
network models have been proposed with time to better take into account concrete properties
of social relationships. I discuss those more in depth in §2.3.4. Graph theory brought a panoply
of concepts and methods to characterize the structure of networks, that sociologists such as
Coleman started to codify to use in a sociology setting [48]. The use of network measures
lets sociologists explain the structure shaping a social network and specific social phenomena
through the formal description of real observations of relationships modeled as networks. I
describe commonly used methods and measures in the following subsection.

2.3.2 Methods and Measures
Many measures and algorithms have been proposed in the SNA literature to characterize

the structure of simple networks as defined in Equation 2.1 and relate it to social behaviors
and phenomena [219, 238]. Network measures are either global or local, which allows one to
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Figure 2.6 – All possible graphlets of size 2 to 5 for undirected graphs.
either make high-level conclusions on the general structure of social relationships constituting
the network or individual behaviors. Widely used global measures include, for example, the
density and the diameter, which give insight into the sparsity of the network and how distant,
on average, two random pairs of nodes are. Conversely, local measures give information on
the structural position of a node compared to the rest of the network. Centrality—probably
the most used local measure—allows to formally compute a measure of how important or
central individuals are in the network [180]. As the definition of what is an important node
can vary, several types of centrality have been proposed, such as the degree, betweenness, and
closeness centrality, which respectively measure the number of connections, how nodes connect
to different groups, and how close the nodes are compared to the rest of the network.

More generally, sociologists aim to identify recurring patterns of sociability between actors
and link them to other behaviors, measures, or qualitative knowledge. These patterns can, for
example, be small unconnected components, cliques, or bow-tie structures [256]. Groups of
nodes similarly located (central or distant) and having similar shapes are sometimes referred
to as “structurally equivalent” [155]. Instead of observing complex shapes, network scientists
have also been interested in studying relationships at the lowest possible scale, i.e., observing
relations between sets of 2 and 3 nodes at once, also called dyads and triads [256]. This reflects
Simmel’s formal sociology, where he already referred to dyads and triads as the primal form
of sociability [229]. More recently, graphlet analysis extended this concept to every pattern of
N-entities [200].

Graphlets are defined as small connected induced, non-isomorphic subgraphs composing
any network [172]. In an induced subgraph, two vertices linked in the original graph remain
linked in the subgraph. For instance, if the original graph is a triangle we can only induce
the simple edge or triangle subgraph (graphlet). The path of length 2 has all vertices
of the original graph but misses an edge and is, therefore, not a possible graphlet.

Figure 2.6 shows all graphlets of size 2 to 5, for undirected networks. Graphlets counting
shows that graphlets are not found in a uniform distribution in social networks [45], thus reveal-
ing that social networks do not have the same structure that random networks do. Precisely,
entities in real-world networks tend to agglomerate into groups (also called clusters) where en-
tities in the same groups interact more between them than with entities from other groups [93].
From a sociological perspective, it means that people tend to interact and socialize in groups
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and interact more rarely with other people from outside groups. These groups are often referred
to as communities, and many algorithms have been proposed to find these automatically [85].

However, network concepts, measures, and algorithms have not been used only to study
groups, organizations, and societies but also to focus on separate specific individuals. Indeed,
two distinct methodologies emerged through the history of SNA: the structuralists and the
school of Manchester [75,87,100].

Structuralists are interested in observing the relational structures and patterns forming a
network to make parallels between them and the social behaviors of actors in real life [152].
Accordingly, sociologists in this school usually study organizations and specific groups—such
as institutions, companies, and families—and want to explain their functioning through the
description of the internal shapes and structures of the networks. Thus, they try to construct
networks that exhaustively model all the interactions between the actors constituting the groups,
as missing links would misrepresent the reality of interactions.

In contrast, the school of Manchester constituted by anthropologists, focuses on studying
specific individuals and all their interactions in the different facets of their lives and through
time. They typically want to explain certain behaviors and social characteristics of individuals
by their relationships and interactions in all their complexity and highlight the influence of
different social aspects between them in one’s life. One famous example is Mayer’s study on
austral African rural migrants going to cities [165] where he showed that the integration of urban
mores and customs was directly correlated to the persons’ relationships networks in the city.
Xhosa4 people still interacting with rural people of their village in the city were less changing
their customs. This school of thought typically relies on the concept of ego and multiplex
networks [75]. Ego networks are networks modeling all the direct relations of one central
node—in this case, a person—including the relations existing between the persons of this small
network. They typically try to model the different types of relationships of a person, like their
family, work, and friendship ties, and study them through time. By studying the ego network
structure of someone, sociologists of this school try to leverage explanations on other social
aspects of the person like their social status, job, and gender. It is also common to compare
several ego networks to make correlations between the social relationships of individuals and
other interesting social categories [45].

These two methodologies of SNA are often not exclusives, and current studies are typically
inspired by those two traditions. This is especially true in history where even if historians
may want to describe exhaustively a group or institution of the past, they are almost always
interested in specific individuals they study in depth.

2.3.3 Historical Social Network Analysis
History started to use concepts and methods from SNA in the 1980s [258] in response

to quantitative history, and to develop historical approaches—like Microstoria [92]—that fo-
cus on the study of individuals and small groups through the lens of their interactions and
relationships directly extracted from historical documents. Beforehand, historians were already
describing and studying relational structures such as families and organizations with qualitative

4Xhosa people are an ethnic group living in South Africa who speak the Xhosa language.
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methods and with classical taxonomies, without necessarily studying the relational aspect of
these structures. Network research allowed them to model those relational entities more thor-
oughly using networks, hence allowing them to make new observations that it was not possible
to make without taking into account the relational aspect of these entities [53]. Since then,
HSNA—a term coined by C. Wetherell in 1998 [258]—has been applied by historians to study
multiple types of relationships, like kinship [105], political mobilization [160], and administra-
tive/economic patronage [178]. If these approaches fall under some of the same criticism as
quantitative history [155] like leading to trivial conclusions, it still led to classical work and
interesting discoveries, such as the study of the rise of the Medici family in Florence in the 15th
century by Padgett & Ansell [189], or Alexander & Danowski study on Cicero’s personal com-
munications [4]. In the latter work, they modeled the communication of Cicero into a network
using 280 letters written by him between 68 B.C. and 42 B.C. It allowed them to study the
relationships between knights and senators—which is a subject of interest in Roman history—
and concluded that knight-knight interactions were very rare compared to senator-senator and
senator-knight interactions. Cicero communication network is illustrated in Figure 2.7.

Several historians are using and continuously reflecting on HSNA methods [53, 155] which
can be very effective to study relational historical phenomena [136]. However, contrary to
sociologists and anthropologists who base their networks on direct observations of the real
world, historians first have to go through a deep inspection, encoding, and modeling of their
sources.

2.3.4 Network Modeling
Constructing a network from historical documents, which can vary tremendously in their

formats and structures, is not a trivial task [5]. The most straightforward and well-known
approach consists in using simple graphs such as in Equation 2.1, where the nodes refer to
the persons mentioned in the documents and links refer to one type of social relationship or a
notion of proximity constructed from appearance in common documents [32,155].

This enables to have simple networks to visualize and analyze, but it does not always reflect
the sociological complexity of information contained in the documents. HSNA network models
have evolved over time to better take into account concrete properties of social networks, such
as the importance of actors or relations with weighted networks, multiple relationships with
multiplex networks, and dynamics of relationships with dynamic networks.

Weighted networks model the importance of relations, with a weight w attributed to each
edge e = (u, v, w), with u, v ∈ V, e ∈ E, and w > 0. Multiplex networks allow the modeling
of multiple kinds of relationships between actors, such as spouses and witnesses relations for a
historical network constructed from marriage acts. In that case, each edge e = (u, v, d) of the
graph

G = (V, E, D) (2.2)
have a type d ∈ D which characterize the relation. In the example of marriages, D =
{spouse, witness}. Most relations extracted from historical documents also often contain time
information, which can be modeled into dynamic networks. Many dynamic network models
have been proposed [208], depending if the time is encoded in the nodes, the links, or both,
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Figure 2.7 – Cicero’s personal communication network represented with a node-link diagram. All the people corresponding with Cicero only in the data are shownat the top of the diagram together. Image from [4].
and if it is modeled as discrete or interval values. As it is often hard to infer the end of social
relationships from the trace of historical documents, I only consider in this thesis models which
give a timestamp to either nodes or edges, such that a dynamic graph

G = (V, E, T) (2.3)
have vertices consisting of tuples (u, t) and/or edges of the form (u, v, t), with t ∈ T, where T
corresponds to a set of discrete timestamps, such as calendar dates.

Bipartite networks have been proposed to model relations between two types of entities,
such as organizations and employees where the relations link employees to organizations but
not employees to employees or organizations to organizations [29]. Each node of the graph

G = (V, E, B) (2.4)
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have a type b ∈ B, with card(B) = 2. For each edge e = (u, v) ∈ E, the types bu and bv
of u and v are not equal: bu ≠ bv. Many social situations or documents can be modeled in
these terms (affiliation lists or co-authoring). Multivariate networks, i.e., graphs, where vertices
and edges can be assigned multiple “properties” or “attributes”, are less used in SNA. These
attributes are often considered secondary, the emphasis of SNA being on the topology of the
network, its features, measures, and evolution.

Historians, demographers, sociologists, and anthropologists have also been designing spe-
cific data models for their social networks, based on genealogy or more generally kinship [106].
For genealogy, the standard GEDCOM [108] format models a genealogical graph as a bipartite
graph with two types of vertices: individuals and families. This format also integrates an “event”
object but it is diversely adapted in genealogical tools. The Puck software [105] has extended
its original genealogical graph with the concept of “relational nodes” to adapt the data model
to more family structures and to integrate other social relationships—such as marriage, birth,
and mobility events—for anthropology and historical studies.

When creating a network, sociologists and anthropologists can use direct observations of
the real world, which is not the case for historians who only have access to biased and partial
sources. Indeed, the documents historians inspect are often produced by the political and
economical elite of the time, and include the subjective view of the authors, especially for
literary sources (letters, journals, books, etc.). Historians, therefore, need to take a critical
view of the sources by acknowledging the position of the authors of the documents compared
to the rest of the society and include it in the analysis [156]. Furthermore, the partiality of the
sources often does not allow to have access to all possible relationship types of individuals. For
example, if many formal relations can be extracted from official documents such as marriage
acts and censuses, informal relations such as friendships can exist without leaving any written
trace [155]. Even for official relationships such as parents and witnesses, there are high chances
for missing documents, which do not allow to make too general and finite claims, such as “X
is always the case” or “XX is never the case” [4]. Social historians, therefore, have to take
into account the partiality and ambiguity of their sources in their analysis, in order to avoid
including the bias inherent to their data in their high-level historical conclusions.

2.4 Social Network Visualization

Practitioners of SNA and HSNA have always visually depicted their network data for valida-
tion, exploration, and communication, mostly using node-link diagrams. With the use of more
complex network models and the increase in average network size and density, new visualization
techniques have been proposed to represent the diversity of studied networks. Moreover, new
visualization interfaces now often propose interaction mechanisms and data mining capabilities,
allowing social scientists to follow complex exploration of their data and to generate interesting
hypotheses backed-up by algorithmic results.

2.4.1 Graph Drawing
Sociologists rapidly saw the potential of graphically showing relationships between individu-

als, to better comprehend the underlying social structure and communicate their findings [86].
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Figure 2.8 – Different criteria are proposed to enhance node-link diagram read-ability, such as the level of node overlap, the alignement of nodes, or the numberof edge crossings. Image from [143].

Moreno elaborated sociograms to visually show friendships among schoolchildren with circles
and lines to respectively show children and friendships ties [175]. This type of representation—
commonly called node-link diagram—is the most widely used in social sciences, as it is rapidly
understandable and effective for small to medium-sized networks which are predominant in the
field. Finding an optimal placement for the nodes is however not that simple as several metrics
can be optimized depending on the desired drawing, such as the number of edge crossings, the
variance of edge length, the orthogonality of edges, etc [54, 143]. Figure 2.8 shows some of
these metrics, synthesized by Kosara et al. [143]. In Figure 2.5 we can see the difference in
readability between the original manual layout drew by hand (left) and an automatic one com-
puted by a force-directed layout algorithm (right). Automatic layouts which aim at optimizing
readability metrics give clearer diagrams. The number of edge crossings is often considered
the most important measure, but finding a drawing with the optimal number of crossings is an
NP-Hard problem, meaning that heuristics are needed for most real-world use cases. A large
number of algorithms have been designed such as force-directed ones [19], modeling the nodes
as particles that repulse each other and are attracted together when connected with a link using
a string analogy. Other visual techniques have been proposed to represent networks such as
matrices, circular layouts, and arcs, but are less used in social sciences [167]. Still, Matrices
have been shown to be more effective than node-link diagrams for several tasks such as finding
cluster-related patterns, especially for medium to large networks [1, 91].

As social scientists are using more complex network models such as bipartite or temporal net-
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works, more sophisticated representations are needed. The visualization community developed
new representations for other network types such as dynamic hypergraphs with PAOHVis [249],
clustered graphs with NodeTrix [115] (illustrated in Figure 2.9), geolocated social networks with
the Vistorian [221], and multivariate networks with Juniper [183]. However, these new network
representations take time to be adopted by social scientists who rarely use them.

Figure 2.9 – The NodeTrix system showing a scientific collaboration social networkwith clusters. Each cluster is represented as a matrix, Image from [115].

2.4.2 Social Network Visual Analytics
Social scientists use visualization and analytical tools to gain insight into the structure

of their finalized network data. The most widely used tools are Gephi [17], Pajek [179],
Ucinet [129], and NodeXl [232], which provide node-link diagrams, implementations of net-
work measures, algorithms, and clustering capabilities. Other SNA visualization tools have
been proposed in the past such as Visone [21]. However, those tools often have usability issues
as they do not include interaction and direct manipulation mechanisms, making the analysis
more tedious for social historians. In contrast, the Vistorian [221] let social historians visual-
ize their network with multiple coordinated views (node-link, matrice, arc-diagram, and map),
filters and direct manipulation, but do not integrate analytical options. Figure 2.10 shows the
Vistorian interface used to explore a historical social network. I propose a qualitative classifica-
tion of all those tools in 2.1 which ranks them according to their visualization, SNA measures
and modes, clustering, filtering, and interaction capabilities. It illustrates that the most used
tools are analytical-oriented (Pajek, Ucinet, Gephi, NodeXl) without proposing many visualiza-
tion and direct manipulation capabilities, while the Vistorian is an interactive visualization tool
with many views and interaction options but without any analytical method integration. None
of those systems therefore fully correspond to the VA definition strictly speaking [134].

If analytical methods such as the computation of network measures, triad computation,
and clustering provide a good framework to describe the structure of a network and link it to
sociological explanations [219, 256], many social scientists, such as historians, are not trained
in computer science and mathematical methods, and, therefore, have trouble to 1) use those
methods without guidance and without high usability [5, 207], and 2) interpret their results.
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Figure 2.10 – The Vistorian interface [221] used to explore a historical social net-work of business trades in the 17th century, with a coordinated node-link diagramand a matrice visualization.
Visualizations SNA Measuresand Models Clustering Filtering Interaction andDirect ManipulationPajek [179] ▪▫▫ ▪▪▪ ▪▪▫ ▪▫▫ ▫▫▫Ucinet [129] ▪▫▫ ▪▪▫ ▪▫▫ ▫▫▫ ▫▫▫Gephi [17] ▪▪▫ ▪▫▫ ▪▫▫ ▪▫▫ ▪▫▫NodeXl [232] ▪▫▫ ▪▫▫ ▪▪▫ ▪▫▫ ▫▫▫Vistorian [12] ▪▪▪ ▫▫▫ ▫▫▫ ▪▪▪ ▪▪▪

Table 2.1 – Comparison table of most widely used visualization and analytical toolfor SNA. Visualizations: number of different visualization techniques, and layouts.SNA Measures and Models: number of proposed SNA measures and algorithms.Clustering: Number of proposed clustering algorithms. Filtering: Possibilities offiltering according to various criteria. Interaction/Direct Manipulation: Number ofpossible interaction mechanisms directly applicable to the visualizations.

This is particularly the case for black-box algorithms such as for clustering tasks: they typically
end up trying several algorithms until they stumble upon a satisfactory enough solution [195].

Moreover, preparing and importing the data into visual and analytical software is compli-
cated, as the annotation and network modeling processes have not been globally formalized,
and every historian uses different methods, formats, and models. Many users do not succeed
in importing their data into those systems without concrete help and guidance [5, 221] due to
mismatches with data models, formats, or data inconsistencies (null values, white spaces, etc.).
If they succeed in visualizing their data, it often shows them these inconsistencies or errors such
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as duplications of entities or wrong attribute values. In other cases, they realize the network
does not allow them to answer their sociological questions [155]. It leads to continuous back
and forth between their analysis process inside the analysis tool they are using, and their an-
notation/modeling process, to correct errors or modify annotations. Interestingly, the network
model choice plays a crucial role, as a simple network model representing only the persons
(as is often the case) makes it harder to trace back to the original documents containing the
annotations from the network entities. Yet the majority of SNA systems enforce simple network
models, making this retroactive process harder.

Some interfaces not primarily designed for social scientists incorporate data models encapsu-
lating document representations, such as Jigsaw [234] which is a VA system originally developed
for intelligence analysis. It allows an analysis of the textual documents and their mentions of
entities (persons, locations, institutions, etc.) through multiple coordinated views. Using such
a model allows us to rapidly see errors and inconsistencies in the document annotations that
the user can directly correct, while still following complex analyzes.

Finally, more work is still to be done on social network VA tools, to provide more guidance
and power to social scientists while doing their analysis, and to help them to do easier back and
forth between the annotation, correcting, modeling and analysis steps, as errors and inconsis-
tencies can cause high variations in the network structure and hence the analysis results [64].
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I describe in this chapter a formalization of the HSNA workflow followed by social histori-
ans, to shed light on their process and summarize recurring pitfalls to identify how VA could
support them in this workflow. Most HSNA practitioners report on their findings concerning
the network they constructed from their sources, but few highlight the process which led to
these conclusions from the raw historical documents, even though they have to make several
encoding, modification, and modeling decisions that deeply influence the final analysis [5].
Specifically, social historians can model documents and their content through various network
models which have been proposed in the literature. I discuss this step in depth as it impacts the
annotation and analysis possibilities, and I give an answer to our first research question Q1 by
proposing to model this type of data with bipartite multivariate dynamic networks. This model
satisfies simplicity , document reality , and traceability properties, which we define as critical
for social history work from our joint collaborations with social historians and current critics of
HSNA [72,155,157].

33
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This chapter is an updated version of an article presented at the VIS4DH workshop of the
IEEE VIS: Visualization & Visual Analytics Conference 2022, which has been published in
IEEE Explore [196]. It was a collaboration with Nicole Dufournaud, Pascal Cristofoli, and my
supervisors Christophe Prieur and Jean-Daniel Fekete. I have been leading the discussions,
elaboration of concepts, and writing of the paper.

3.1 Context

Tools for social network visualization tend to ignore the context in which the networks are
produced, where they come from, and the workflow that led from their origin (e.g., documents,
polls, interviews, web scraping) to their network form. Yet, practitioners of social history need
to inspect and encode their sources in depth using ad hoc methods to generate a network, and
sometimes end with errors or simple networks which do not fit their analysis goals [156]. In this
chapter, after describing and characterizing the workflow of HSNA [258] from our collaborations
with social historians, I explain why and how effective tools for supporting this process should
model social networks in multiple steps to support three essential principles: traceability , docu-
ment reality , and simplicity . These principles emerged from joint experiences as historians and
computer scientists were collaborating on multiple projects, and aim at simplifying the HSNA
process while enhancing exploration and analysis options and replicability.

Social historians’ goal is to characterize socio-economic phenomena and their dynamics in
a restricted period and place of interest, and to characterize how individual people of that
time lived in those social structures and through social changes [243]. For this, they rely
on historical documents that they inspect in depth to extract qualitative and quantitative
information allowing them to answer their research questions.

To study relational social structures where individuals influence each other such as fami-
lies, companies, and institutions, historians rely on HSNA by modeling the social relationships
between a set of entities—usually individuals—into a network. However, the process leading
to the final network from the raw documents is often linear, and it is common that, when vi-
sualizing their network, historians spot errors and inconsistencies in the network structure that
they could have fixed if the process was more iterative [5]. Moreover, historical documents
are often complex, meaning that the annotation and modeling process can be done in many
different ways, concerning what to annotate from the documents [157] and how to model the
annotation in a network [53]. Several network models have been proposed ranging from simple
and specific ones like co-occurrence networks to more general and complex ones such as mul-
tilayer networks and knowledge graphs. Simple models allow answering specific questions and
are easy to manipulate but are often too simplistic and may distort the information contained
in the documents. Moreover, they often break the traceability from the analysis to the original
documents, making the communication of findings less reproducible and the process of mod-
ifying/correcting annotations complicated. Indeed, errors and mismatches often occur in the
annotation process, for example, due to entity disambiguation problems [64]. On the contrary,
too complex models are complicated to visualize and analyze, and historians do not always
have the tools to create them properly. In this chapter, I answer Q1 (how to model historical
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documents into analyzable networks with the right balance between expressivity and simplicity)
by proposing to model historical documents as bipartite multivariate dynamic networks, where
both persons and documents are modeled as nodes with attributes and the links represent both
individuals’ mentions in the documents and their social roles in the event witnessed by the
documents (such as witness in a marriage act). While this model is simple enough for creation
and inspection, it allows tracing back the entities of the network to the original sources for a
continuous annotation process and still accurately models the social relationships mentioned
in the documents. Historians can therefore use this model to simultaneously find errors and
inconsistencies in their annotation process—allowing them easier back and forth between the
annotation and analysis steps—while starting a first analysis and exploration of the data to
answer their sociological questions. The traceability to the original sources also makes the
communication of findings more replicable and transparent.

3.2 Related Work

Since I already elaborated on the related work of SNA, network modeling, and social network
visualization in chapter 2, I only discuss in this section the related work concerning historians’
methodology and workflows.

3.2.1 History Methodology
The essence of the historical discipline is based on a critical approach to sources and involves

considering peers’ work. Traditional approaches to history often focus on the construction
of a narrative, without necessarily adopting a systematic and problematized approach to the
exploitation of an exhaustive set of historical documents [244]. With the development of social
and quantitative history, historians now have a panoply of methods to exhaustively extract
quantitative data from their sources and analyze it to ground their results in verifiable claims.
Many historians criticized this computational aspect of history [15, 82, 158], pointing out that
it would lead to errors and missing the core content of historical sources. However, using
quantitative approaches and formalisms is not exclusive to having a deep understanding of the
documents and their context, nor building a narrative on top of their quantitative analysis.
Good historical work can in fact be described as a combination of the two [132], as Tilly says
“Formalisms play their parts in the space between the initial collection of archival material and
the final production of narratives. In my own historical research, formalisms figure prominently
from early in the ordering of evidence to late in its analysis; [ . . . ] As it happens, many other
historians rush from sources to reasoned narratives without pausing to employ formalisms, or
even to reflect very self-consciously on the logical structure of their arguments, hence on what
the evidence should show if their arguments are correct” [244]. Historians have a panoply of
methods and formalisms they can leverage to ground their narratives in concrete comparable
results, such as serial analysis, tabular analysis, classical statistical treatments, and network
analysis.

However, formalisms have to be used wisely and with a critical vision of the documents and
their context, so as to not fall into simplifications, anachronisms, and errors which are pertinent
critics of quantitative history [156, 157]. Most historical work leverage several methods in the
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same study to support their claims through different qualitative and quantitative results [193].
The level of the plausibility of a claim increase or decrease depending on if the different evidence
point to similar results or not. Similarly, historians often work on small populations or specific
individuals—as it is the case with microhistory studies [92]—which can result in complications
for generalization. Only after studying several similar individuals or groups, historians are able
to generalize and point to exceptions. For example, by comparing several Jewish commercial
communities in Europe during the first half of the 18th century, Trivellato has been able to
generalize what is common to those groups (they have been trading between them and with
outer ethnic groups) and what is specific to each (such as their business strategies) [246].

3.2.2 Historian Workflows
Many quantitative methods and formalisms are available for historians to inspect their

sources with the aim of making historical conclusions. Several textbooks describe and explain
to social scientists and students who do not have a formal computer science training in what
consist these methods (statistical regression, Chi-squared test, network analysis, etc.) and
how to practically use those with softwares and programming language [9, 80]. However, the
process leading from the sources to the numeric artifacts (a table, a network, a timeline)
has not been described thoroughly in the literature, especially with concrete examples, and is
often not presented in scientific publications of concrete use cases. Yet, the process leading
from the documents to analyzable data requires social historians to make several annotations,
encoding, and modeling decisions, concerning what to extract from the source and how to
encode it. This process is tedious and requires data acquisition, annotation, encoding, and
modification with continuous back and forth between the different steps [5]. This is a critical
process as it can lead to simplifications, anachronism, distortion, or data that do not allow
to answer original or new hypotheses [132, 156]. Lemercier et al. give guidelines on how
to encode information from historical documents to prevent introducing bias, by having a
critical view of the documents [157]. They emphasize the importance of the input phase of
research and advise copying the first documents by hand while characterizing them in the
most exhaustive and factual way, without imposing categorization. This explorative step lets
historians familiarize themselves with the content of the document, leading to a better view of
what to encode to answer their research questions and sometimes to the formulation of new
hypotheses. For example, in their project on the social and geographical trajectories of Jews in
Lubartów [230], a village in Poland, the team encoded the mean of writing inside the register
documents (pen, pencil, ink, etc.) they were inspecting. This information allowed them to
conclude that the inscription “expelled” written in pencil was probably added during World War
II by Germans to denote exported Jews in the extermination camps. When applying network
analysis, historians often create specific person-to-person networks which allow them to answer
precise research questions, but often lose this type of document-related information. Cristofoli
discusses the network modeling problem when following a network analysis and highlights the
fact that the same historical documents can be modeled in different ways [53], which can result
in mismatches between the network shape and the research questions. Dufournaud presents
her quantitative and network workflow when studying the economic role of women during the
16th and 17th centuries in the city of Nantes, which she splits into three steps: data collection,
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data processing, and data analysis [67].

3.3 Historical Social Network Analysis Workflow

From the literature and our own projects of HSNA we conducted during the last three
years in collaborations with social historians, I propose a formalization of the HSNA workflow
divided into 5 steps: textual sources acquisition, digitization, annotation, network creation, and
finally, visualization and analysis. I start by describing the sources and research questions of
the different collaborations in §3.3.1, then explain each step of the workflow in §3.3.2, and
characterize three properties VA systems supporting this workflow should satisfy in §3.3.3.

3.3.1 Examples
We discussed with four experienced social historians collaborators at different steps of their

HSNA workflow about their process: how they inspect and annotate their sources, what network
representation they plan to use, and what are their research questions. They all work on semi-
structured historical documents, mentioning complex relationships. I provide more details in
the following:
1. Analysis of the social dynamics from construction contracts in Italy in the 18th cen-

tury [55, 182]. The corpus is made of contracts for different types of constructions in the
Piedmont area in Italy. People are typically mentioned under three different construction
roles: Associates who are in charge of the construction, Guarantors who bring financial
guarantees, and Approvers, who vouch for the guarantors. Documents contain information
about the building sites, the types and materials of constructions, and the origins of people.
Historians working on this project were interested in characterizing the social structure un-
derlying those contracts, if there were specializations in types of construction, and describing
the life trajectory of certain people.

2. Analysis of migrations from the genealogy of a French family between the 17th–20th

centuries [unpublished work]. The corpus is made of family trees referring to several docu-
ment/event types: birth and death certificates, marriage acts, military records, and census
reports. The social historian wants to characterize the main migrations of individuals and
families in France, according to time and place. She is also interested in studying specific
families, with theories that, in some areas, people were moving places in a circular fashion
over the years. Finally, she is interested in the average social mobility of individuals across
the years.

3. Analysis of marriage acts in Buenos Aires in the 17–19th centuries [127, 177]. The
corpus is made of summaries of marriage records that mention the spouses and the witnesses
of the wedding. The origin, date of birth, and parents’ names are specified for both spouses.
The historian is mainly interested in characterizing the relationships between witnesses and
spouses—if they are typically from the same family, and if being a witness is sometimes used
to ask favors in exchange.

4. Socio-political analysis of Germans ethnic migration from communist Romania to
West Germany in the 20th century (ongoing work) [65]. The corpus is made of
administrative forms that mention persons requesting to migrate, along with the persons
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Figure 3.1 – HSNA workflow is split into five steps: textual sources acquisition, dig-itization, annotation, network creation, and network visualization/analysis. Prac-titioners typically have to do back and forth during the process. I list potentialpitfalls for each step.
they want to join, and the administrative persons of the ministry in charge of the forms.
The family members of the aspiring migrants are also mentioned in the forms, with their
respective dates of birth. Our historian collaborator is interested in characterizing the socio-
economical profile of migrants and the types of family members they are typically joining in
Germany.
Each historian planned to follow a network analysis. They typically first read and inspect

their sources in depth, before encoding their content with the aim of constructing a network.
They plan to use analytical and visualization tools to then explore the structure of the relation-
ships, and answer their questions.

3.3.2 Workflow
I formalize the HSNA workflow of social historians from our collaborations (§3.3.1) but

also the literature, and informal discussions with other social historians. We can divide it
into 5 steps: textual sources acquisition, digitization, annotation, network creation, and finally,
visualization and analysis. For each step, I present recurring pitfalls which occurred during our
collaborations, or that are discussed in the literature [53, 64, 154]. A diagram of the workflow
is presented in Figure 3.1.
Textual Sources Acquisition Historians’ first step is gathering a set of textual historical
documents mentioning people with whom they will have social ties. For this, they usually
take documents from a specific source—such as a folder from a national or local archive—and
restrict them to a period and place that they want to study. They also often restrict themselves
to one document type—such as marriage or notary acts—to focus the analysis on one or a
few types of social relationships that they want to understand in depth. However, one rule
of the historian’s method is to crosscheck from multiple sources, so an initial corpus is often
extended with another set of related sources. Once they restricted their search to a set of
documents, a time, and a geographic area, they try to exhaustively find all the documents
matching the desired properties, as missing documents can result in uncertainty in the
network structure and, therefore, the sociological conclusions (P1).
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Digitization Digitization consists in converting the sources into a digital format. This step can
be skipped for the most recent periods where many documents have been produced digitally
or can be scanned and well digitized through optical character recognition (OCR), allowing
tremendous ease in the storage, indexation, and annotation of the documents. However, before
mid 20th century, most historical primary sources are stored in archives in paper format and
need human work to be digitized. However, most historical primary sources originated before
mid 20th century are stored in archives in paper format and need human work to be digitized.
Mismatches between the original documents and the transcription can occur for old
and recent documents (P2). However, if OCR tools are more and more efficient in English
and highly used languages, historians can work with old documents written in old or extinguished
languages and with atypical writings (e.g., Fraktur handwriting and typefaces for German in the
early 20th century). Therefore, OCR tools are often unusable in social history, and digitization
remains an expensive and sometimes highly skilled process.

Annotation Annotation (often called encoding) is the process of finding and extracting use-
ful information from the documents concerning the persons, their social ties, and any useful
information for the historian. This extra information can concern the persons (their age, pro-
fession, sex, ethnicity, etc.) and their social relationships (type, date, place). It encompasses
named-entity recognition as well as their resolution. Historians also sometimes annotate in-
formation on other entities mentioned in the documents, such as art objects or administrative
entities. Usually, historians have a first idea of what they want to annotate in the data as they
already explored the documents beforehand and have knowledge of their subject of study, with
hypotheses they want to explore. It is, however, common they change their mind through the
annotation process, by reflecting on what they found in the documents. Unfortunately, this
can produce missing annotations (P3) and inconsistent annotations (P4) at the end of
the process if annotators are not careful. This task can also be challenging, and the choice of
annotations has an impact on the final network. Historians also face ambiguity in the process,
as several persons and entities (like cities) can have the same name (homonyms), refer to a
place name that has disappeared (street name or city), or to an ambiguous person (e.g., John
Doe). They, therefore, have to follow a NER and resolution/disambiguation process to identify
entities in the sources and disambiguate them across several documents. Entity resolution has
always been a problem in social history—as it is more generally in text analysis, where typical
groundwork consists in crossing information about the same entities from different heteroge-
neous sources. However, errors in the disambiguation process can lead to important distortions
in the final network structure and properties [64], e.g, people connected to the wrong “John
Doe”. Historians usually carry out this process manually but can also use automated methods
and refine the results themselves later. Unfortunately, errors are common in this step as
automated methods do not provide perfect accuracy, nor do doing it manually given
the lack of global information (P5).
The Text Encoding Initiative (TEI) [50] is an XML vocabulary and a set of guidelines typi-
cally used to encode and annotate documents, and the events happening in these documents
(unclear parts, gaps, mistakes, etc.). It is also used for historical texts and to generate social
networks [68, 221]. Unfortunately, the guidelines are not meant to define a canonical anno-
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tation, and different persons can interpret the guidelines in different ways, leading again to
inconsistent annotations of corpora (P4) and to errors or distortions in social networks derived
from these annotations.
Network Creation Historians construct one or multiple networks from the annotations of the
documents. Typically, all persons mentioned are annotated and are transformed into network
nodes (vertices). Additional information, such as their age, profession, and gender, can be
stored as node attributes. How the network’s links are created is not as trivial and can vary
from project to project [5]. The most straightforward approach is to create a link between every
pair of persons mentioned in one document, thus forming a clique motif. This is a simplistic
heuristic as social relationships can be quite complex, involving more than two persons who can
have different roles in the relationship. The choice of the network model has a major impact
on the future analysis and may add bias if chosen loosely (P6), such as the creation of
network structural artifacts when using network projections [53]. More complex models have
been proposed in the literature, such as weighted, dynamic, bipartite, and layered networks, but
can be hard to manipulate and visualize. I discuss them more in detail in §3.4.
Network Analysis and Visualization Once historians have constructed a satisfactory network,
they start exploring and analyzing it with visualization and quantitative methods. The final goal
of HSNA is to find interesting patterns and link them to social concepts to gain high-level socio-
historical insights [87,258]. Usually, historians start to visualize their network to visually confirm
information they know and to potentially gain new insight with exploration. Representations
need to be chosen wisely given the network as lots of techniques and tools exist for social
network visualization. Some insight may be seen only with some specific visualization
technique (P7). To test or create a new hypothesis, historians typically rely on algorithms and
network measures. Lots of network measures have been developed, like modularity, centrality,
and clustering coefficient, that social scientists can leverage to make conclusions [219]. Similarly,
social scientists can use data mining algorithms to highlight interesting and potentially hidden
structures in the network, e.g., by using clustering algorithms revealing group structures [36].
However, they have to interpret the results carefully (P8) as some algorithms act as
black boxes and some measures are hard to interpret, with unclear sociological meaning (e.g.,
centrality). Typically, particular patterns and measure values in the network could have different
potential sociological meanings. If we take as an example betweenness centrality which measures
the number of times a node appears in the shortest path of every pair of existing nodes,
individuals with high values usually highlight positions of power as they communicate with
different groups. However, it can also be interpreted as a position of vulnerability in other
contexts, such as during periods of wars and repressions, as in the study of Polish social
movements in the 20th century by Osa [188], where she shows persons with high betweenness
centrality values are more targeted for repression in certain periods. Social scientists, therefore,
have to be careful when interpreting network measures and take into account the globality of
their sources when interpreting the network they constructed.

3.3.3 Visual Analytics Supported Historical Social Network Analysis
Social historians typically follow the workflow described in §3.3.2 linearly, meaning that at

the end of the process, they can realize that the analysis and visualization of the network do not
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allow them to answer their research questions [155]. This can, in part, be explained by the fact
that visualization and analytical SNA tools are only focused on the last part of the process. To
fully support social historians, VA interfaces should therefore provide assistance and guidance
on the whole process, from the acquisition of the documents (since archives now provide digital
collections that can be explored through visualization [84,242]) to the final analysis. Specifically,
from discussions with our collaborators, we identify three properties that VA interfaces should
satisfy for good integration into the historians’ workflow and to limit the recurring pitfalls we
identified in §3.3.2: traceability , document reality , and simplicity . First, Traceable systems

Traceability

Document Reality

Simplicity

● Replicability of results
● Transparency
● Easier back and forth

● No information loss
● No duplication of information
● No distortion

● Interpretable and 
easy-to-use models

● High usability systems

Figure 3.2 – Three properties essential to VA systems supporting the social histo-rians workflow: traceability, document reality, and simplicity.
enable to do easier back and forth between the different annotation, modification, modeling,
and analysis steps and provide a transparent chain of operations leading from the acquisition of
the sources to the high-level socio-historical conclusions. Traceability should be operated during
the annotation and modeling process (for example to see why two mentions of persons have been
given the same identifier, and to trace back network entities to the documents’ annotations)
but also during exploration. Seeing every low-level operation (filter, selection, group-by, etc.)
leading to the generation of insight leads to better transparency and replication [41, 266].
Second, the digitization, encoding, modeling, and analysis/visualization steps should always
reflect the textual reality of the documents i.e., the document reality1, in order to reduce
the introduction of bias, simplification, and anachronisms in the analysis [132, 156]. Indeed,

1We chose the term “document reality” over simply “reality” after a conversationwith a historianto highlight the fact the historical documents do not describe factually the reality but reflect thesubjective bias of the context in which the people of that time wrote them [132]. The content ofthe documents, therefore, has to bemodeled by taking into account this context, which can revealinteresting behaviors and structural patterns. See [157] for specific examples.
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encoding and modeling the data with abstraction and constructed concepts2 such as the concept
of families or “social proximity”, often result in distortions (simplification or modifications),
duplication, and loss of information contained in the documents. Specifically, the choice of the
network model embodies how the content of the sources is manipulated and abstracted with
the goal of making historical conclusions and deeply influences the annotation/encoding and
analysis/visualization steps. I discuss network models more in depth in the next §3.4. Finally,
as discussed in §1.3, social scientists often have trouble importing their data in SNA tools [5]
and often perform “soft SNA” [207] only due to usability problems and “Math anxiety” [191].
VA tools should therefore focus on simplicity through the use of simple and comprehensible
models and high usability systems. The three properties and their effects on the workflow are
summarized in Figure 3.2.

3.4 Network Modeling and Analysis

Historians typically construct one or several networks from their annotated documents that
they visualize and analyze to validate or find new hypotheses. As the processing steps of
the workflow are often not transparent (digitization, annotation, network modeling), it can be
difficult for the reader of an HSNA study to understand how the network has been constructed,
what it represents, and to trace back the network entities to the original sources [67]. Moreover,
visualizing the network very often highlights errors and artifacts of the annotations, along with
potential mismatches between the network model and the analysis goals. Historians then have
to correct or change their annotations, even though it is a very tedious and demanding process
to repeatedly switch back and forth between the network and the annotated documents. Several
network models make the task harder as they do not directly represent the documents, and it
is thus difficult to relate a network entity to a specific document and annotation. Therefore,
I believe that more VA tools should support social scientists in annotating and modeling their
documents to make the HSNA process less linear by allowing easier back and forth between the
annotation, modeling, and visualization steps. Network models satisfying traceability , document
reality , and simplicity properties would mitigate those problems by allowing to navigate more
easily between the network and the documents while still modeling well the social relationships
mentioned in the sources and being easy enough to visualize and manipulate for analytical and
data modification goals.

The choice of the network model to represent the social relationships mentioned in historical
documents deeply influence the annotation and visualization/analysis processes. Many network
types have been proposed in the literature. While simple ones—which are widely used—are
easy to manipulate, they very often break traceability—the network entities are not traceable
to direct annotations, and sometimes correspond to constructed concepts—and the reality of
the documents. On the contrary, complex models are often hard to manipulate and visualize.
I present the most widely used network models in the HSNA literature in §3.4.1 and present
bipartite multivariate dynamic networks as a model satisfying those three properties in §3.4.2.

2In anthropology, the terms emics and etics refer respectively to intrinsic phenomena relatedto observation and constructed categories and abstractions [111].
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3.4.1 Network Models

Currently, historians use various network models depending on their knowledge of network
science, the content of their documents, the schema of their annotations, and the analysis
they plan to make. By “model” I refer to a mapping from the historical documents to a graph
mathematical model and its semantic, i.e., what the network entities represent in terms of
sociological concepts (for example simple networks and co-occurrence networks have the same
simple graph model G = (V, E) but with different semantics). I describe here the most used
network models in HSNA along with more recent ones:
• Simple networks [258]: According to their research hypotheses, historians select and merge
document information to build a specific relationship between individuals. They analyze
this simple network structure with SNA tools and produce network indicators and node-link
visualizations. It is often difficult to connect the results to the original sources. Moreover, it
does not take into account the diversity of social relationships, as every link is identical.

• Co-occurrence networks [213]: Only the persons are represented as nodes, and two persons
are connected with a link when they are mentioned in the same document (or section). This
can be a useful model to detect community-related patterns, but the constructed notion of
“proximity” represented by the links simplifies and hide the diversity of social relationships.

• Multiplex Unipartite Networks [74]: Only the persons are represented as nodes, and
links model social ties between two persons. Links can have different types representing
different types of social relationships. It allows the modeling of more complex social relations
where people can have various social ties e.g. as parents, friends, and business relationships.
However very often several possible representations for the same data exist as projections are
often applied to the original documents to get this type of model.

• Bipartite/two-mode networks3 [105] : Nodes can have two types: persons and documents
in this network model. A link refers to a mention of a person in a document and can thus
only occur between a person and document nodes. Usually, links are not typed and only
encode mentions. More recent analyses in HSNA encode the roles of the persons in the
documents as link types [55]. This network model is more aligned with the original sources
and allows following an analysis through the original documents themselves and not through
concepts. It can also be used to represent constructed concepts, like the GEDCOM format
which introduces the concept of “family” that ties together a husband, spouse, and children
with different link types. The concept of family can have different meanings across time and
cultures, meaning that GEDCOM adds a conceptual layer instead of grounding the network
to concrete traceable documents and events (e.g., no marriage but birth certificates).

• Multilayer networks [166]: In these networks, each node (vertex) is associated with a
layer l and becomes a pair (v, l), allowing to connect vertices inside a layer or between layers.
These advanced networks have received attention from sociologists [56] and historians [251],
but they are complex. The meaning of a layer varies from one application to another; it
can be time (years), type of documents, the origin of sources, etc. They, therefore, offer

3Bipartite refers to the mathematical property that nodes of the network are split between twosets without any links between two nodes of the same sets, while the term two-mode refers tonetworks modeling two types of entities.
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many (too many) options for modeling a corpus, and visualizing it, with no generic system
to support historians for taming their high complexity.

• Knowledge graphs [117]: they represent knowledge as triples (S, P, O) where S is a
subject, P is a predicate, and O is an object. Everything is encoded with these triples using
controlled vocabularies of predicates and rules known as ontologies. Knowledge Graphs are
popular for encoding knowledge on the web, including historical knowledge. However, it is
notoriously complex to encode documents using knowledge graphs due to the complexity
of the format and the wide choice of possible ontologies. Most historians are unable to
understand knowledge graphs and even less to use them for annotating a corpus. Since
knowledge graphs are generic, they need complex transformations to be visualized, with no
generic system to support historians in taming their high complexity.

Currently, most digital history projects use one-mode networks (simple, co-occurrence, and
multiplex) that are simple and allow answering specific questions, but they do not capture all
the complexity of the documents, resulting in simplifications and distortions of the structural
patterns. I compare what would be the resulting networks for these models and the bipartite
model of our three collaboration use cases (the example #4 is still in the phase of data acqui-
sition), with additional information from the documents encoded as node and link attributes. I
do this for one given document for each dataset. The results are shown in Table 3.1.

As shown by Cristofoli [53], we can clearly see the co-occurrence model removes the com-
plexity of the social relationships and only show an abstract “proximity” between individuals.
Unipartite multiplex networks allow producing meaningful networks which model well the diver-
sity of relations that can link several people. It especially models simple relationships well, such
as parenting ones as in example #2. However, it produces distortions for more complex relation-
ships involving more than two persons, as in example #1 where people can either be mentioned
as associates, guarantors, and approbators in the documents. Associates should probably be
linked together with associate links, but the guarantors and approbators relationships are more
complex to model. Approbators could be linked to the associates, the guarantors, or both.
The three ways of modeling this type of relationship make sense but can lead to very different
network shapes and analysis results. Historians thus have to decide on a transformation among
several possibilities, which will probably distort the social reality of the relationships.

These examples also show that when working with multivariate networks, using projections
to create unipartite networks brings a duplication of information. Indeed, if a document men-
tions information like a date that we model as an attribute, we can store it as a document
node attribute using a bipartite model. However, when projecting the network, this information
appears in the links as many times as there are persons mentioned in the document minus one
and often more. For example, in the example #1 in Table 3.1, the time of the construction is
stored in

∑4
i=1 i = 10 links in the co-occurrence model and in 9 links in the multiplex unipartite

model, while it is only stored once as a document node attribute in the bipartite model.

Both co-occurrence and unipartite multiplex models thus do not satisfy the document
reality property by introducing constructed concepts—such as abstract notions of “proximity”—
or inferring one-to-one social relationships from mentions in a document mentioning more than
two actors. Moreover, projections add ambiguity in retrospect of the original documents, as it
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Original Document Co-occurrence UnipartiteMultiplex Bipartite
1712: Construction of a church in Torino. As-
sociates: Bellotto G, Bello P.M, Bello G. Guar-
antor: Astrano G.A. Approbator: Corte A.
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Dudix-neuf fevrier mil huit cent quatre-vingt quatre,
à six heures du soir. Acte de naissance de
Dufournaud Alexis, enfant de sexe masculin
né le dix-neuf février, à deux heures dusoir au village de Grudet, commune de Saint
Symphorien, des mariés Dufournaud Alexis ,
cultivateur colon, âgé de trente ans ,
et Marie Pardonnaud,
sans profession, agée de vingt-six ans ,
demeurant au village de Grudet, ditecommune de Saint-Symphorien. [...]
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20-4-1659 :
Capitán Alonso MUÑOZ de GADEA , con
Da. Francisca CABRAL LEAL de AYALA .
Ts.: Agustín Gayoso , y
Juan Guerrero. Al margen: "fue Oficial Real" ,
(f. 9v).
Husband Wife Witness
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Table 3.1 – Resulting networks using differentmodels produced by one documentof the examples detailed in §3.3.1: co-occurrence, unipartite and bipartite mod-els. The first column shows the partial transcription of real documents (simplifica-tion for collaboration #1). Colors represent annotations concerning the personsmentioned, their roles, and their attributes. Underlines refer to information re-lated to the events andwhich can be encoded as document/event attributes. Onlytime is represented for simplification, but other attributes would follow the sameschema. H: Husband, W: wife, T: Witness, M: Marriage, AN: Associate, G: Guaran-tor, Ap: Approbator, C: Construction, F: Father, M: Mother, C: Child.

becomes impossible to trace back one link to one specific document, as the same link could
potentially refer to several ones [53], i.e., they do not satisfy the traceability principle.

More complex models, such as multilayer networks and knowledge graphs, could satisfy
document reality and traceability principles (depending on the modeling choices, as these
models are very expressive and do not enforce specific data schemas) but are complex to
manipulate and visualize, especially for social scientists. In contrast, the bipartite model satisfies
the document reality and traceability properties through the representation of documents as
nodes, and individuals’ mentions as links encoding their roles. This model is simple enough
to manipulate according to the number of SNA studies leveraging it [61, 161, 185, 223] and
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the development of SNA bipartite measures and algorithms [29, 105, 151]. Yet, most HSNA
studies are based on the network topology and often do not leverage attributes, including
time and location. We, therefore, claim that bipartite multivariate dynamic networks model
historical documents with traceability , document reality , and simplicity properties. I formalize
and describe this model in the next §3.4.2.

3.4.2 Bipartite Multivariate Dynamic Social Network
Historical documents are well modeled by bipartite multivariate dynamic networks with

roles, that can be formalized as

G = (V, E, B, R, T, L) (3.1)
where V is the set of vertices, E the set of edges, and B = {person, document} the set of

node types. Each node u ∈ V is defined as

u = (idu, bu, au) (3.2)
where idu corresponds to the unique identifier of u, bu ∈ B is the type of the node and au

is a tuple of the attributes (or properties) values of u. If bu = person, then

au = (ai, … , aN) (3.3)
with ai, … , aN the attributes values of the node u of the N attributes defined on person

nodes, defined on their domains Ai, … , An. Document nodes always have a time and location
such that for a document node v ∈ V with bv = document then

av = (t, l, ai, … , aM) (3.4)
with t ∈ T is the time of the event witnessed by the document, l ∈ L its location, and

ai, … , aM the attributes values of the node v of the M attributes defined on document nodes
(other than time and location), defined on their domains Ai, … , AM. Similarly, each edge e ∈ E
is defined as

e = (u, v, r, ae) (3.5)
with u, v the vertices connected by e such that bu ≠ bv, r ∈ R the role of the person

mentioned in the document and ae the attributes tuple of e such that

ae = (ai, … , aO) (3.6)
with ai, … , aO the attributes values of the edge e of the O edge attributes defined on their

domains Ai, … , AO.
The model has, therefore, the following properties:

Bipartite: There are two types of nodes, persons and documents (or events). An event,
such as a marriage, is most of the time witnessed by a document, and we refer to them
interchangeably as events and documents. Events considered in the network can be of the
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same sub-type, such as contracts, or of multiple subtypes, e.g., for genealogy: birth certificates,
death certificates.
Links and Roles: A link models the mention of a person in a document. Each link has a
type corresponding to the role of the person in the document. For a marriage act, the
roles include wife, husband, and witness. This is a key aspect of our model since it clarifies the
relationship between the persons within an event. In contrast, Jigsaw [234] does not consider
the roles.
Multivariate: Each entity of the model can have attributes, that give additional information.
Person nodes are referenced by a key that reflects the disambiguation process. They can have
general information (standardized name, gender, birth date). Documents are also identified
by a key, e.g., an archive reference. The associated event can have a date, a location,
and potentially other information. Links can also carry information to describe contextual
properties (activity, residence, etc.).
Geolocated: Events should have a location when it makes sense, ideally with the longitude
and latitude.
Dynamic: Events are always dated. We rely on this date since it encodes the social dynamics
of the network.

One of the main benefits of this model is that the document nodes represent both the
physical documents and the events the documents refer to. For example, concerning marriage
acts, the document nodes represent both the physical documents with their texts but also
the marriage events with their characteristics modeled as attributes (time, location, etc.).
Therefore, social historians can use this model to store, process, and annotate their original
documents and follow an analytical workflow with the same representation. This model is simple
enough to manipulate and visualize for historians and allows tracing back every entity of the
network to the documents according to the traceability principle. Still, the network preserves
the document reality of the social relationships mentioned in the sources as no projection or
transformation is applied.

Visualization tools using this model can focus on the topology of the network, and/or
the attributes which I express here in the format of tuples, commonly used by databases and
visualization systems [235]. However, it has to be taken into account that if the attributes
extracted from the historical documents are related to vertices and edges independently to the
topology of the network, it can be appropriate to compute vertices and edges measures—such as
the centrality—and store them similarly to the other attributes, especially so that visualization
systems can leverage the same interactions for both. In that case, these types of attributes are
directly dependent on potential topology changes in the network (for example after subgraph
extraction or network modification interactions).

3.5 Applications

Several tools have been designed for visualizing dynamic bipartite networks that can also
be considered dynamic hypergraphs [192, 249], but few incorporate attributes. Moreover, the
vast majority of visual analytics tools are solely focused on the analytical part of the data,
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meaning that the link between the original documents and the hypergraph abstraction is often
broken. Social scientists, therefore, always have to do many back and forth between the
visual analytics tools and their original documents and the annotation/modeling processes.
More visual analytical tools should thus incorporate the textual documents in their data model
similarly to Jigsaw [234], as it would allow tracing the entities of the network back to the
original documents more easily. Mechanisms to modify the annotations and reflects on the
network modeling process directly in the analytical environment could also ease the social
scientists’ workflow loop. It would allow them to directly correct errors and inconsistencies in
the annotations and propagate them in the visual analysis workflow. I propose in chapter 4 and
chapter 5 two proof-of-concept interfaces leveraging bipartite multivariate dynamic networks
as a representation of social historians sources with the aim of analysis, network modeling,
and reflection on the encoding process, with a focus on traceability , document reality , and
simplicity .

3.6 Discussion

Most tools for social network visualization focus solely on the visualization and analysis
steps, without considering the whole historical data analysis process, preventing researchers
from going back to the original source, and supporting the social analyst in the annotation
and modeling steps. I think visual analytics tools helping social scientists annotate and model
their data with document reality , traceability , and simplicity principles in mind are essential to
conducting socio-historical inquiries with limited friction, realistic training, and scientific trans-
parency. Concerning the network modeling step, bipartite multivariate dynamic networks model
well the majority of structured historical documents such as marriage acts, birth certificates,
and business contracts as these documents refer to specific events (birth, marriage, transaction,
etc.). The two-mode structure enables the representation of both the persons and the docu-
ments/events, without any simplification or distortion of the social reality of the documents and
their annotations, compared to the classical one-mode representation4. The document nodes
represent both the textual documents and the specific events. This dual representation works
well for semi-structured documents but could be more limiting for other more literary docu-
ments. Moreover, structured documents can also provide information about other relationships
not directly linked to the main event. For example, marriage acts sometimes refer to the place
and date of birth of the spouses with the names of the parents. This information relates to
the birth of the spouses and not the marriage specifically. In that case, social historians can
either ignore this type of information in the annotation process or encode it with specific roles
( for example husband’s father and wife’s father), thus turning the network into a model of
the documents only, and not events. We show what would look like the resulting networks

4Another approach proposed by Everett and Borgatti is to have a dual-projection of this two-mode network to manipulate simultaneously two linked one-mode networks [76] (in our caseperson-person and document-document). The Detangler visualization system successfully pro-posed such an approach [204].
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Figure 3.3 – bipartitemultivariate dynamic networkmodeling for two cases ofmar-riage acts of example #3. Somemarriage actsmention the parents of the spouses,which is a relationship different than the marriage in itself. This case can be mod-eled using a document model (a) or an event model (c) by splitting the documentinto several different event nodes. The other case refers to documents that donot mention the parents (b), and in that case, the network represents both thedocuments and the events with the same model. M: Marriage, H: Husband, W:Wife, T: Witness, (H/W)(M/F): Husband/Wife Mother/Father. Yellow links refer toparenting mentions/relationships.

Figure 3.3for the two cases where marriage acts mention birth information and the case where
only marriage-related information is present in the document.

3.7 Conclusion

HSNA is a complex process that starts by collecting historical documents and ends with
elaborating high-level sociological conclusions. Historians support their conclusions by model-
ing individuals’ social relationships extracted from the documents and analyzing them through
network visualization and analysis methods. Most historical work do not provide details on how
they constructed their final network, even though it is a complicated and tedious process that
can result in many biases and distortions if not done carefully [5]. We shed light on this process
by dividing it into five steps and describing recurrent pitfalls we encountered in our projects
and collaborations. More importantly, I explain why this process should be done following the
principles of traceability , document reality , and simplicity to avoid biasing the analysis, allow-
ing to go back to the original source at any point of the workflow for easier corrections and
replicability, and using models and methods simple and powerful enough for social scientists.
Visual analytics software designed for HSNA should consider those principles to provide tools
allowing to follow non-biased and reproducible analysis starting from the raw documents while
supporting historians in going back and forth more easily between the annotation and anal-
ysis/visualization steps. I discussed the network modeling process in depth and claimed that
bipartite multivariate dynamic networks satisfy those three core principles, letting historians
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both wrangle their data and characterize sociological phenomena using a common model and
visual representation, thus answering Q1. Using this model, VA interfaces could help social
scientists manage and analyze their data, starting at the data acquisition and annotations steps
instead of focusing on the analysis only while providing efficient representations of the data for
analysis and exploration. We explore what could be such VA interfaces in the next two chapters.



4 ComBiNet: Visual Query and
Comparison of Bipartite Dy-
namic Multivariate Networks
with Roles

Contents
4.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Graphlet Analysis . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Visual Graph Querying . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Visual Graph Comparison . . . . . . . . . . . . . . . . . . . 55

4.2.4 Provenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Task Analysis and Design Process . . . . . . . . . . . . . . . . . 56

4.3.1 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Tasks Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 ComBiNet System . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.2 Query Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1 Construction Sites in Piedmont (#1) . . . . . . . . . . . . . . 72

4.5.2 French Genealogy (#2) . . . . . . . . . . . . . . . . . . . . . 73

4.5.3 Marriage Acts in Buenos Aires (#3) . . . . . . . . . . . . . . 76

4.5.4 Sociology Theses in France . . . . . . . . . . . . . . . . . . . 77

4.6 Formative Usability Study . . . . . . . . . . . . . . . . . . . . . 78

4.6.1 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . 81

51



52 4.1. Context

In the previous chapter chapter 3, I showed that bipartite multivariate dynamic networks
constitute a good modeling choice for historical documents in regard of traceability , document
reality , and simplicity properties. However, no visual tools currently exist to specifically explore
and manipulate this type of data. In this chapter, I propose a VA interface aimed at exploring
historical documents modeled as bipartite multivariate dynamic networks, for historians to be
able to reflect on their data and encoding and to follow in depth-analysis. I answer Q2 by
analyzing tasks and questions historians have on their data and providing interaction mech-
anisms that would allow them to apply specific views and extraction, find errors and reflect
on the annotations, and answer their high-level historical questions through visual queries and
comparison.

This chapter is an extended version of an article currently being published in the journal Com-
puter Graphics Forum (CGF) [198] and a poster presented at the conference EuroVis 2022 [197].
It was a joint work with my advisors Christophe Prieur and Jean-Daniel Fekete. I developed
the interface and led the discussions, evaluation, and writing of the paper.

4.1 Context

Social scientists such as historians aim to characterize the structure and dynamics of social
groups of interest, in a region and period of time they focus on [243]. Their work essentially
relies on documents—such as marriage acts, census records, surveys, and business contracts—
to gather information about the life of important actors that they explore in-depth, or to draw
conclusions on social aspects of groups in the society of that period and place. Instead of
drawing conclusions from their gathered knowledge and interpretations of the documents, a
more systematic approach consists in constructing a social network from the documents and
following a network analysis approach [258]. For this, they need to encode their documents to
extract the persons and any other useful information in the text and transfer it into a structured
file or a database. Social scientists can then explore, validate, or refute their hypotheses
by visualizing and analyzing the network structure and the connectivity patterns between the
entities of the resulting network.

Currently, social scientists often model their datasets as simple networks where the nodes
are the persons mentioned in the documents (see chapter 3). Usually, Two persons are then
connected together in the network when they appear in shared documents. This representation is
easy to visualize and analyze but simplifies and distorts the information by hiding the documents
that witness the relationships between the persons. Thus, another approach consists in modeling
the data as bipartite networks, where both the documents and the persons are represented as
nodes and are connected together when a document mentions a given person [98,210,223].

In addition, historical documents include time and geospatial information corresponding
to the date and location of the events they refer to, and potentially additional information
on the mentioned individuals, such as their gender, profession, and date of birth. These are
often essential to understanding underlying social phenomena, as time, space, and classical
social categories play an important role in sociological structures and dynamics [155]. For these
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reasons, as we discussed in chapter 3, historical sources and the underlying social events they
refer to can be modeled well by bipartite with roles, multivariate dynamic networks. Bipartite
means that both persons and documents (or events, that are often witnessed by physical
documents) are modeled as typed nodes. Multivariate means that the nodes and links can
carry additional attributes. Dynamic means that time is a mandatory attribute of documents.
Furthermore, a link created between a person’s node and a document’s node (when the person
is mentioned in the document), has an associated link type that models the role of the person
in the document/event. Additionally, documents can optionally carry a geographical location.
This model unifies several social network models and allows the representation of historical
documents with simplicity , traceability , and document reality , i.e., the relationships appear as
they are mentioned in the documents without distortions implied by projections [53].

More complicated models exist, such as knowledge graphs [187], which are very expressive
but hard to manipulate, especially for social scientists. In contrast, most visual and analytics
tools widely used by social scientists such as Gephi [17] and NodeXL [232] enforce too simplistic
network models and only provide limited interactions for exploring the network data, even if they
provide the computation of several network measures. This results in many social historians
ending their analysis by plotting the network using a node-link diagram—which is hard to read
with dense networks—, and identifying the most important actors with the help of centrality
measures [156]. Lemercier et al. describe this phenomenon the following: “Network graphs
of the ‘spaghetti monster’ variety are a case in point. Often, in historical papers, they are
used to show that a network is dense (and that the author has mastered the new technology).
The narrative then comments on the individuals identified as central in the network. This
approach can indeed be quite interesting, but it is hardly the only possible use for network
analysis. [156]”. VA tools guiding social scientists towards more complex exploration with the
help of interaction mechanisms, high usability, and interpretability are therefore needed. For
example, some visualization techniques such as the Simmelian backbones [181] have been
proposed to filter large networks and only show the most important structure in the aim of
reducing clutter.

In this chapter, I present a VA system to explore and analyze Bipartite Multivariate Dynamic
Social Networks, with the aim of supporting more complex historical analysis based on easy-
to-use interactions, but also potential data correction. I elaborated the tool based on four
collaborations with social scientist colleagues. I first collected important questions they each
had on their data and transcribed them from a network analysis perspective. The majority of
the questions raised consisted in either finding specific patterns in the network—corresponding
to specific groups or individuals exhibiting intriguing behaviors—or in comparing several subsets
of the network, in terms of network measures, attribute distributions, and their overlaps. I hence
focus on three high-level tasks: exploration, queries, and comparison of this type of network.
Users can explore the data using two layouts: a node-link bipartite view showing the sociological
structure of the network, and a map layout based on the geolocation of documents. I designed
and implemented a new visual graph query system that allows us to build both topological and
attribute constraints, based respectively on a node-link interactive representation, and dynamic
widgets. By easy-to-create queries, social historians are able to 1) detect erroneous patterns and
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reflect on their encoding process and 2) find relevant patterns which can answer their historical
questions. For this, I rely on the Neo4j graph database [170] and its query language, Cypher.
Most visualization systems offer dynamic queries to hide the complexity of query languages.
However, using a rich data model, some queries are easier to refine using scripting than dynamic
queries. I implemented dynamic queries that also show the translated Cypher queries, and
inversely, can translate textual queries into visual queries. With that interface, social scientists
can start building their queries with simple widgets and, if needed, complement them by editing
the query, alone or with the help of power users. Furthermore, they can export their query, the
associated results, and its history at any point to share it with someone else or to start an analysis
session from a previous result. ComBiNet also implements subgraph comparison techniques,
allowing the comparison of networks, network-related measures, and attribute distributions
between the entities returned by the queries. I validate ComBiNet with the description of four
real-world use cases showing the system can be used to answer socio-historical questions while
reflecting on the annotation/encoding process, and a formative usability study demonstrating
the system can be used smoothly by social historians.

After the related work section, I describe our design process in §4.3, present the system
ComBiNet in §4.4 with the design of the visual query and comparison features, and present
four use cases demonstrating the utility of the system in §4.5 showing it can be used to explore
complex historical data and allowing historians to answer several of their questions using queries
and comparisons while reflecting on their annotation/encoding process. I finish with the results
of the formative usability study and the feedback of practitioners in §4.6.

4.2 Related Work

As I already discussed the related work on network modeling and social network visualization
in chapter 2, I only discuss in this section the related work on graphlet analysis, visual graph
querying, visual graph comparison, and provenance.

4.2.1 Graphlet Analysis
One of the inspirations for this project came after participating in the 2020 VAST challenge1

where our team used graphlets to measure the similarity between several networks [245].
Graphlets are small connected induced, non-isomorphic subgraphs composing any network

(see §2.3.2 for more details). They were first introduced by Milo et al. [172] to explore the
structural differences between biological networks, but they are now used in several disciplines
involving networks such as sociology [45]. Some interfaces have been proposed to visually
highlight graphlets with high frequencies [217].

One of the aims of the VAST 2020 challenge was to compare several multivariate networks.
However, by using graphlets, we realized that 1) it was not very efficient to compare several

1This is a challenge organized in the context of the IEEE Visual Analytics Science and Technol-ogy (VAST) conference. The challenge consisted of a series of analytical questions united underan overarching cyber threat scenario. We participated in the Mini-Challenge 1 which asked partic-ipants to identify a group of people that accidentally caused an internet outage. To identify thisgroup, we were given a network profile and a large multi-variate social network to search in.
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networks in contrast to other measures, and 2) the interpretation of all graphlets patterns
that are found in a network is complicated given the fact that one specific pattern can have
various interpretations given the nodes involved and their positions in the network [124]. This
is especially true that the number of potential graphlets grows exponentially as we increase the
number of nodes considered2 but also if we add complexity to the network model, for example
by using directed links or multiple node and link types [205].

Instead of counting every graphlet occurrence and interpreting them with sociological mean-
ings, it appeared more efficient to let social scientists find specific patterns to answer questions
they already ask themselves on the data.

4.2.2 Visual Graph Querying
Social scientists have for a long time described local structures of social networks with the

aim of revealing interesting behaviors [118]. Graph pattern matching consists in finding a sub-
graph of interest automatically in a larger graph [77], and allows social scientists to find patterns
of interest that they could have missed visually. Several scripting languages, such as R [239] and
Python [250] have been extended to support the exploration of social networks using special-
ized libraries such as igraph [58] and NetworkX [104], and provide functions for graph pattern
matching. Graph databases are another technology allowing the storage and manipulation of
network data with the use of query languages, such as the Cypher language for Neo4j [170].
However, social scientists are often challenged to use scripting/query languages and program-
ming, as they often do not have formal training in those skills. To lower the complexity barrier
of their usage, several visual graph query systems such as QUOGGLES [119] and VIGOR been
developed, which show the query that has been written in a visual form, enabling analysts to
reflect on their constructed queries and explore the results more easily. Other systems such
as GRAPHITE [46], Intuinet3, and VERTIGo [59] hide the query language and allow users to
directly construct their queries visually with node-link diagrams and interaction. Shadoan and
Weaver [222] use a similar concept with hypergraphs to filter multidimensional data. All these
visual query systems are limited to topological queries with constraints on the vertex and edge
types and do not allow to make constraints on other dimensions, such as attributes and time
associated with vertices and edges.

4.2.3 Visual Graph Comparison
Gleicher et al. [95] propose a taxonomy of visual comparison designs for complex objects.

They claim any visual comparison system can be classified into one (or a mix) of the three
following categories: juxtaposition, superposition, or explicit design. Yet, few visual systems
support comparison tasks for social networks.

Andrews et al. [7] describe a technique to compare several networks, using a combination
of juxtaposition and superposition techniques. The two candidate networks are shown side by
side, along with a third view composed of a fusion network highlighting both the shared nodes
along with the non-shared nodes with different colors.

2There are 6 graphlets of size 4, 21 graphlets of size 5, and 11716571 graphlets of size 10 forexample [231].3See https://intuinet.fr

https://intuinet.fr
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Freire et al. [88] describe the ManyNets system to compare many networks by using a table
where each describes one graph, and each column shows graph measures in terms of small
visualizations, from simple bars to distributions, allowing the comparison of a large number of
graphs. However, ManyNets does not visualize the networks per se (no layout shown) and do
not take into account attributes, node types, or time.

Hascoët and Dragicevic [109] describe a system to match and compare graphs using su-
perposition, focusing on the topology, not taking into account attributes or time. Tovanich et
al. [245] propose a visual analytics tool to compare multivariate, sometimes bipartite, dynamic
networks and find common structures. However, the tool does not handle roles and is designed
for the specific task of matching a subgraph into a larger network.

4.2.4 Provenance
Provenance in the context of VA consists in the logging of the sequence of actions of users

on an interactive visualization system during analysis sessions. Collecting provenance informa-
tion has proven to benefit users by providing them with action recovery (undo) plus collaborative
and reproducibility capabilities [201]. For example, the VisTrails system allows users to repro-
duce their visual analyses by providing an executable history graph of their actions [41], while
GraphTrail provides provenance tools to ease collaborative analysis [70]. Provenance can also
be beneficial for visualization designers and researchers, as it gives them a tool to understand
users’ behaviors [20,30] and evaluate/improve visualization systems [203]. All the reasons and
concrete implementations of provenance are discussed in depth in Xu’s survey [266].

4.3 Task Analysis and Design Process

I designed the ComBiNet tool in collaboration with social historians who wanted to follow
a network analysis on their historical semi-structured documents, that are well modeled by
bipartite multivariate dynamic networks. I first collected questions they had about their data
and what they wanted to see in a visual interface. By analyzing the questions, we leveraged
tasks and requirements that I used to design and implement the interface, with continuous
feedback from our collaborators.

4.3.1 Scenarios
We elaborated this interface from the collaborations with historians I described in §3.3.1.

These collaborations involved regular meetings and multiple discussions over three years. All
these datasets are textual corpora constituted of historical documents mentioning people with
complex relationships, which are well modeled with bipartite multivariate dynamic networks.
We give more details about the datasets of these collaborations in this section, along with our
collaborators’ main questions with the associated network queries to answer them. The full
answers involve visualizations of the query results and attribute summaries that I describe in
the next section. We categorized the questions according to four dimensions: global (G)/local
(L) (do they want to categorize a group of nodes or retrieve specific persons/documents), if
the question can be answered using the topology (T), and/or the attributes (A), and finally if
a comparison (C) using several filters is needed or not (N).
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1. Analysis of the social dynamics from construction contracts in Italy in the 18th

century (141 documents, 272 persons) [55]. The corpus is made of contracts
(manuscript documents) for different types of constructions in the Piedmont area in
Italy. People are mentioned in three different roles: Associates, who participate in the
construction; Guarantors, who bring financial guarantees; and Approbators, who vouch
for the guarantors. Along with the time and location of the construction site, documents
have a construction type (military, religious, and civil), work type (big work, small work,
reparation, transportation, etc.), and material (wood, stone, metal). People also have
an origin attribute (the place they come from), manually extracted from the original
documents.

Question 1 Do approbators act as bridges compared to associates and guarantors? (G, T, C)

Query 1.1 Request all approbators occurrences.

Query 1.2 Request all associates and guarantors occurrences.

Question 2 Are there pairs of people mutually guarantors to each other in different contracts?
(G, AT, N)

Query 2.1 Select pairs of people connected each to the two same documents, with a guarantor
role and any other role.

Question 3 Who are the persons of the extended Zo family? (G, AT, N)

Query 3.1 Request all the persons of the Zo family and their N+2 ego network.

Question 4 Compare the Menafoglio and Zo families in terms of contracts and activities. (G,
AT, C)

Query 4.1 Request all the persons of the Menafoglio family and the documents that mention
them.

Query 4.2 Request all the persons of the Zo family and the documents that mention them.

Question 5 Who are the persons having the 3 roles? (G, AT, N)

Query 5.1 Select persons with an associate, guarantor, and approbator role in 3 different
documents.

Question 6 What are the differences between Torino (Turin) and Torino surroundings according
to the contracts? (G, AT, C)

Query 6.1 Request all documents located in Torino, with the persons mentioned.

Query 6.2 Request all documents located in the Torino area, with the persons mentioned.

2. Analysis of migrations from the genealogy of a french family between the 17th–20th

centuries (2053 events, 957 persons from a private source). The corpus is made
of family trees referring to several document/event types: birth and death certificates,
marriage acts, military mobilizations, and census reports. The roles are different for each
event type and consist of children, father, mother for the birth events, deceased for the
death event, spouse and witnesses for the marriages, and family members for the census
events.

Question 7 What is the trajectory of life for a given specific individual (birth, living, marriage,
death)? (L, A, N)

Query 7.1 Select one person and all her/his documents (to use the mentioned places).

Question 8 What is the trajectory of life for a family? (L, A, N)
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Query 8.1 Select birth certificates with the child, parents, and birthplace.

Question 9 Where are located the main migrations, and at which time do they occur? (G, A,
N)

Query 9.1 Select persons with a geolocated birth and death certificate.

Question 10 Are there differences in volume and location between migrations in the 18th and
19th centuries? (G, A, C)

Query 10.1 Select persons with a geolocated birth and death certificate from the 18th century.

Query 10.2 Select persons with a geolocated birth and death certificate from the 19th century.

Question 11 In the Haute-Vienne and Côtes-d’Armor administrative areas, are there cycles in
living places every 10/20 years? (G, A, N)

Query 11.1 Select persons with their census reports located in Côtes-d’Armor and Haute-
Vienne.

Question 12 In the 19th century, was there an overall decrease in the social status and profes-
sions of persons in the dataset? (G, A, C)

Query 12.1 Select persons in the first half of the 19th century with a profession mentioned.

Query 12.2 Select persons in the second half of the 19th century with a profession mentioned.

3. Analysis of migrations from Spain to Argentina through the marriage acts at Buenos
Aires in the 17–19th centuries (1381 acts, 6659 persons) [177]. The corpus is
made of acts that mention the spouses and the witnesses of the wedding, which are the
roles modeled by the links. The origin, date of birth, and parents’ names are specified
for both spouses.

Question 13 How are spouses and witnesses linked in their family network? (G, T, N)

Query 13.1 Select marriages with spouses and witnesses, where one of the spouses and a
witness have the same parents.

Query 13.2 Select marriages with spouses and witnesses, where one of the spouses and a
witness have the same grandparents.

Question 14 Who are the persons with 2 marriages with a long delay? (L, A, N)

Query 14.1 Select persons in 2 marriages as husband or wife. Put a constraint on the differ-
ence of time in the marriages.

Question 15 Where are the persons marrying in Buenos Aires coming from? (G, A, N)

Query 15.1 Select persons with a birth certificate located not in Buenos Aires.

4. Socio-political analysis of migration of ethnic Germans from communist Romania
to West Germany in the 20th century (ongoing work) [65]. The corpus is made of
administrative forms that mention persons requesting to migrate, along with the persons
they want to join, and the administrative persons of the ministry in charge of the forms
(3 roles). The family members of the aspiring migrant are also mentioned in the forms,
with their respective dates of birth. The historian also has access to other documents
mentioning the prices people have to pay to get their migration requests approved.

Question 16 What members of their family do emigrants typically join? (G, AT, N)

Query 16.1 Select all migration documents with the emigrant and the person they are joining.

Question 17 What price does the emigrant have to pay, given their socio-economic profiles?
(G, A, C)

Query 17.1 Select people who are mentioned in a budget and a migration document.
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4.3.2 Tasks Analysis

Most of the questions we collected from our collaborators could be answered by isolating a
subgroup of entities and analyzing them in the context of the whole network, or by comparing
two subgraphs, in terms of their entities, structure, and attribute distributions. From discussions
with our collaborators and the analysis of their questions on their data, we elaborated a list of
requirements for the visual interface, split into three main parts: 1) Exploration of the data,
2) Queries, and 3) Comparisons. The elaboration of the tasks was an iterative process, as
we showed the interface to our collaborators several times in the development phase to get
feedback. The tasks are described here and summarized in Table 4.1:

1. Exploration of bipartite multivariate dynamic networks. The visual interface must
allow exploration of this specific type of network, using every aspect of the data, i.e.,
its topology (T1.1), node attributes (T1.2), roles (T1.3), geolocation of the docu-
ments/events (T1.4) and time (T1.5). Common interactions such as selection and
zooming are also needed for the exploration.

2. Applying filters. To answer their questions, users need to be able to apply filters to
the data, to isolate specific groups of entities having specific behaviors or characteristics.
To answer the diversity of questions, they should be able to put constraints on every
aspect of the data, i.e. the topology, the roles (T2.1), and the attributes (including time
and geolocation) (T2.2). Access to provenance information can also help them in their
query construction, by going to previous states and exploring different paths more easily
(T2.3). Once they are satisfied with their query, they want to explore the results, usually
in the context of the whole network (T2.4).

3. Comparison of several subgraphs. Users should be able to compare several subgraphs
isolated after applying filters, to see the similarities and differences between groups of
entities of interest. The system should be able to easily see the common and shared
entities of the two subgraphs (T3.1), their respective place in the network, their structural
differences (T3.2), and their different attribute distributions (T3.3).

4.4 ComBiNet System

ComBiNet is designed to visualize, explore, and analyze social networks encoded as bipartite
multivariate dynamic network. Some other systems exist to explore bipartite social networks
such as Jigsaw and Puck, but do not encode every aspect of historical documents historians
are interested in. Table 4.2 shows a comparison of their data model compared to ComBiNet.

When started, ComBiNet dynamically collects the node types, roles, sub-types, and at-
tributes when reading the network from the database. The interface is constituted of four main
panels, split into different views as shown in Figure 4.1: the query and comparison panel (V6,
V7, V8, and V9), the bipartite visualization panel (V1), the map visualization panel (V2), and
the query results panel (V3, V4, V5). I present in the following the different views, according to
their visualization or query functions. Comparison features are incorporated in the same views
with different comparison mechanisms.
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Main Tasks Subtasks Views Constraints

Bipartite Graph Exploration
T1.1 Overview of the network V1 A node-linkrepresentationis expected.The geolocationof events hasto be doneaccording tothe historicalperiod.

T1.2 Overview of nodes attributevalues and distributions V1,V2,V4
T1.3 Show the persons’ roles inthe documents they appear in V1
T1.4 Show the location ofthe different documents V2
T1.5 Show the time ofthe documents V1,V2,V4

Apply filters to isolate subgraphs
T2.1 Filter on topolog-ical patterns V6, V8 Constraintsmust be easy toset and visual.T2.2 Filter on attribute values V7,V8T2.3 Show the prove-nance of filters V9
T2.4 Show the subgroups aloneor in the network’s context V1, V2

Compare several subgroups T3.1 Show the shared andexclusive entities V1/V2
T3.2 Compare the nodeattribute distributions V4
T3.3 Compare the sub-graph measures V3

Table 4.1 – Tasks to support during exploration, according to our expert collabo-rators, are split into 3 main high-level tasks.
Bipartite Node Attributes Links Attributes Dynamic GeolocatedJigsaw 3 Only some 7 3 3Puck 3 7 7 3 7ComBiNet 3 3 Encode roles 3 3

Table 4.2 – Comparison of the data model of several VA systems aimed at explor-ing bipartite social networks.

4.4.1 Visualizations

ComBiNet presents a social network with multiple visualizations and views highlighting
different aspects of the data. The views are linked when it makes sense so that interactions
such as selection done on one propagate to other views.

V1: Bipartite Node-Link View The bipartite node-link visualization panel shows the network
using the DrL force layout from igraph [58] with overlap removal using D3 [31]. Node-link
representations are very common in social sciences [17,54,179,232] and were a specific request
from our collaborators. In the context of our bipartite model, the persons are represented as
circles and the documents/events as squares, while the roles are encoded as link colors. A link
models the mention of a person in a document. This view provides an overview of the data
by showing the structure of the network (T1.1) and the roles of the persons in their different
documents (T1.2). The view also provides pan & zoom and selection interactions for effective
navigation. Nodes’ labels are displayed (names of persons and ids of documents by default) on
the canvas with an occlusion-free mechanism that hides nodes with a low degree when two or
more nodes’ labels overlap.
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Comparison

A B

V6

V7

V8

V1 V2
V9

V3

V4 V5

Figure 4.1 – The ComBiNet system was used to compare two subgroups of a so-cial network of contracts from [55], extracted with dynamic visual queries. (A)and (B) show the two visual queries created by the user in the query panel usingan interactive node-link diagram editor (V6), dynamic query widgets (V7), and theequivalent Cypher script (V8). The right part shows ComBiNet’s global interfacein comparison mode: (V1) Network visualization panel, (V2) Map of the geolocal-ized nodes, (V3) Table of persons, (V4) Graphmeasures comparison, (V5) Attributedistribution plots, and (V9) Provenance tree. The two visual queries on the left,translated into Cypher queries below, select the “Menafoglio” family on the left,and the “Zo” family on the right, along with their construction contracts and closecollaborators.

V2: Map View The map visualization panel on the right shows an event-centric view, displaying
only the geolocalized event nodes on a map. By default, only event nodes are shown, but users
can select a threshold to show links between nodes when they share at least a given number
of persons in their mentions. Persons are not directly shown in this view as they do not have a
unique location. This map view presents a transformation of the bipartite network, focused on
the geospatial information that is very important to social scientists (T1.3).

As we collaborate with historians who study different periods, we cannot use modern map
backgrounds such as the default one provided by OpenStreetMap or Google Maps since many
features are anachronistic (e.g., roads, administrative areas, borders). We, therefore, provide a
map background with only these non-administrative features: elevation, lakes, rivers, and types
of environment. We also show the most important cities as most of them existed in the past
and provide landmarks. The map uses Natural Earth tiles and vector data [71].

The map has the same interaction mechanisms as the bipartite node-link view. The two
views are also coordinated: selecting/hovering an event node in the graph view highlights it on
the map and vice versa, while hovering a person node highlights all its corresponding documents
on the map, rapidly showing the person’s events’ locations.
V3: Entities Tables All the persons and the documents of the loaded dataset are listed in two
separate tables, showing the attributes of the entities (person or document). This way, users



62 4.4. ComBiNet System

can order the entities according to any attribute they want (T1.2). The tables are linked to the
visualizations, meaning that selecting a row highlights the respective entity in the visualizations
and vice-versa. Selecting a node hence highlights the corresponding row and pushes it to the
top of the table. Tables in social network visualization systems have been proven to be efficient
and useful for social scientists when exploring their data [25] and are a feature that has been
asked by our collaborators. It allows them to link the visualization to the network entities more
easily, and dive deeper into one entity’s attribute values after selecting it in the network. For
example, if the visualization reveals an intriguing person connected to two distant components
through two documents, the user can rapidly see the information of this person and documents
on the tables, to see if this could be an error from the annotations or an interesting person he
or she could investigate more in depth in the original sources. It also makes ranking entities
according to various criteria easier and more straightforward. Finally, the tables are exportable
in CSV, pdf, or directly in the clipboard, which was a request to our collaborators.

V4: Graph Measures The Graph Measures view shows measures related to the network and
gives insights into its structure to users (T1.1). We report simple measures like the number of
persons, documents, links, and components, and more sophisticated bipartite network measures
asked by our users, that they can report for their analysis: the bipartite density, bipartite average
clustering coefficient, and bipartite average redundancy [151]. These measures are updated in
real time when filters and comparisons are applied.

V5: Attributes View All the attributes in the network are shown as buttons in the bottom
right of the interface, sorted by their associated node type (person, document, and “All” for
both types). They can be quickly visualized by hovering over the button, producing two effects:
it colors all the nodes on the two views according to their attribute values, and it shows a
plot of the distribution of the selected attribute. Figure 4.2 shows the construction dataset
of collaboration #1 where the user selected the _year attribute, coloring the document nodes
with their year in the node-link diagram (left) and the map view (right), revealing for example
that most construction occurring in 1714 occurred in Torino and Torino’s surroundings. By
clicking on the button, the visual encoding and the distribution plot remain selected. This
interaction is inspired by the x-ray technique of the Vizster system [113]. Users can follow a
first exploration of their data by visually detecting correlations between attribute values and
some groups of persons or between attribute values and some specific areas in the map view
(T1.2, T1.4, T1.5).

4.4.2 Query Panel

The query panel allows users to rapidly build queries visually, with topological and attribute
constraints. The visualization of the query is synchronized with the Cypher query sent to the
database. Modifying one representation update the other, allowing users to build a query visually
and refine it in Cypher when appropriate. Experts users who know the Cypher language can
also start to construct their query textually and modify it visually later on. In this subsection,
I describe all the features and interactions allowing ComBiNet to build a query and illustrate
them with questions 2 and 6 of our collaboration #1. Our collaborator wants to find the
persons who are mutually guarantors to each other in separate contracts (2) and to know how
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Figure 4.2 – ComBiNet interface with the dataset of collaboration #1. The userselected the _year attribute, showing the distribution of document years with ahistogram (bottom right), and coloring the documents node on the bipartite view(left) and map view simultaneously (right).

Torino and Torino’s surroundings differ according to their contracts (6). Figure 4.4 (left) shows
the final queries, but first, I explain how to create them. ? V6: Node-Link Dynamic Query

The interactive node-link diagram allows the construction of a subgraph query graphically,
that represents a topological constraint (T2.1). The query subgraph is built and edited inter-
actively. At each modification, the visual query is converted into a Cypher query and run in the
database which returns the results. All the matches are displayed in the entities tables (V3)
and highlighted in the main visualization views (V1, V2). Three modes of interaction are avail-
able through the top-right menu: selection, addition, and deletion. The selection mode allows
dragging the nodes in the panel, while the addition and deletion modes allow the following
actions:

Node Creation: In addition mode, clicking on an empty area creates a new node. The node
will be of the selected type from the legend on the right (Person or Document).

Node Deletion: In deletion mode, clicking on a node deletes it and its links.
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Change Node type: In selection mode, clicking on a node opens a menu allowing to change
its type.

Link Creation: In addition mode, clicking on a node and dragging the mouse to another node
will connect the two with a link. Its type (color) will be the link type selected on the
legend.

Link Deletion: In deletion mode, clicking on a link deletes it.

Change link type: In selection mode, clicking on a link opens a menu to change its type.

Users build concrete subgraphs with the same representation as in the bipartite network
view: a visual query is a network template with additional attribute constraints. Each role (link
type) is rendered using a color (Figure 4.3 left). Users can also create untyped links using the
Any value, which will match all the existing link types (Figure 4.3 left). Created links can be
matched by different selected link types, by checking several possible types for one link. These
links are represented by a dashed line with the colors of the possible types (Figure 4.3 middle
right). Several links with different types can also be created among two nodes to query a person
with more than one role in the same event (Figure 4.3 right). When a node or link is created
in the query, it is given an identifier starting with per for a person, doc for a document, link
for a link, followed by a number. These identifiers are used in the attribute constraint panels
and the textual query and can be changed through their textual representations.

per

doc

per

doc

per

doc

per

doc

OR AND

Figure 4.3 – All link creation possibilities: Any link type (left), one selected link type,here guarantor (middle left), the union of several link types (middle right), severallinks with different types (right).
To find persons who are mutually guarantors in our collaboration #1, we first create one

person and two documents using the addition mode and by clicking on the canvas. We then
link the person node to the first document with a link that is not typed (Figure 4.3 left),
and link it to the second document with a guarantor link (Figure 4.3 middle left). We then
create a second person node and link it to the two documents with opposite link types. The
resulting visual query is presented in Figure 4.4 (a). To answer question 6 (comparing Torino
and Torino’s surroundings), we start to request all the links in the graph, no matter the type,
as shown in Figure 4.4 (b). The database then returns all the links in the graph with their
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(a) (b)
Figure 4.4 – Visual queries created to answer questions 2 and 6 of our collabora-tion #1. (a) The visual query retrieves individuals who are mutually guarantors toeach other in separate construction contracts. (b) The two visual queries retrievethe documents—along with the signatories—of Torino (Turin in french) (left) andof Torino’s surroundings (Turin Territoire and Piemont) (right).
attached nodes. Putting attribute constraints on the location of the contracts will then let us
answer the question.
V7: Attribute Constraint Widgets Users can also add attribute constraints (T2.2) on the
created nodes with the help of interactive widgets. An input button is created for each node and
link identifier from the node-link query panel. It allows the creation of a dynamic query widget
for any of its attributes. The widget design varies according to the three possible attribute
types: numeric, categorical, and nominal, as in the original dynamic queries formalization by
Shneiderman [226]:

1. Numeric constraints are modeled as range sliders, allowing the selection of lower and
upper bounds to the filter.

2. Categorical constraints are modeled as a set of checkboxes. Each possible value has a
corresponding checkbox.

3. Nominal constraints are modeled as text input, where the user can write any desired
value. All the possible values are shown at the same time and filtered as the user writes.

For the categorical and nominal widgets, selecting several values corresponds to the union
of the filters. The three widget types are shown in Figure 4.5.

To answer our collaborator’s second question (how do Torino and Torino’s surroundings
differ according to their contracts? ), we first filter the documents which are located in Torino
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Figure 4.5 – Widget designs for the different attribute types: checkboxes for cat-egorical attributes (top), text input for nominal attributes (middle), and a dou-ble slider for numerical attributes (bottom). The categorical attribute exampleshows the inputs letting users create new constraints for other attributes andother nodes.

(Turin). For this, we select the whole dataset by linking a person and document node with
an untyped link. Then, we select the id doc1 of the document of our visual node-link query,
and the region attribute. It initializes a categorical widget including all the values found in the
dataset for this attribute with associated checkboxes. We check the region of interest “1-Turin
Ville” to select all the documents from this region. The first widget of Figure 4.5 illustrates the
created constraint. To select the documents of Torino’s surroundings, we can simply uncheck
the “1-Turin Ville” value for the region attribute and check the two other values “2-Turin
Territoire” and “3-Piemont” which are areas corresponding to the surroundings of Torino. Both
queries are represented in Figure 4.4 (b).

V8: Cypher Editor Users can build or modify a query using the Cypher query language, with
the Cypher text editor. This allows users to start creating a query visually and refining it by
text for complex constraints which can not be represented by a visual form easily. The parts of
the Cypher query which are not visually expressible appear in Cypher widgets next to the other
widgets. The editor supports autocompletion e.g., to help to discover and spell the attribute
names. The visual and textual representations are synchronized, meaning that modifying one
update the other and return the results in the visualizations, tables, and attribute distributions.

Query Results
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Each modification of the query, whether from the node-link dynamic query, the widgets, or

the Cypher text box, update the two visualization panels (V1, V2), the entities tables (V3), the
network measures view (V5), and the attribute plots (V6). The nodes and links that do not
match (are not retrieved by the query) are grayed out in V1 and V2 and are removed from the
persons and documents tables (V3). A third table shows every occurrence found of the created
pattern that we call the occurrence table. The occurrence table for question 1 of collaboration
#1 is shown in Figure 4.6 (a). It tells us that the occurrence has been found 72 times, meaning
that the pattern exists 36 times in the network by taking into account the symmetry of the
subgraph query. Users can switch between the three tables in the table view using the tabs.
The network measures are computed on the new subgraph formed by the union of all patterns
found and updated on the network measures view (V5). Figure 4.6 (b) (left) shows to the
user the different graph measures of the subgraph induced by the patterns found. Since some
measures can be long to compute, the values are computed iteratively in the backend and shown
progressively [79] to avoid blocking the interface. The distribution plots in the attributes view
(V6) are updated, showing the values of the entities of the latest constructed query, next to
the global distributions.

Attributes Visualization When users select an attribute in the attributes view (V5), its distri-
bution is visualized for the queried entities and the whole network with a histogram. However,
these plots show the aggregated values and we lose the potential value transitions between
the query nodes. For example, Figure 4.7 shows a query to list the persons with the role of
“approbator” (green) in a contract after being a “guarantor” (blue) in another contract (using
a time constraint). We may want to see if the locations or types of the two contracts are
the same or if they change, case by case. Unfortunately, we lose this information with the
aggregated plots. By checking the “Sankey” option on top of the distribution visualization, the
plots are transformed into Sankey diagrams, giving information on how the attribute values
relate between the nodes (person or event) of the same query. A Sankey diagram showing
the attribute distributions is particularly useful for queries where nodes have a relationship in
regard to time, such as birth certificates, marriage, or death certificates, where we know the
order in which these events occurred. It is also useful for queries with user-defined time order
constraints as in Figure 4.7.

The attribute plots are exportable in SVG, while the tables are exportable in CSV, PDF,
or directly in the clipboard. This was a demand of our collaborators, so they can export their
results easily for another analysis or for communication purposes.

The graph measures and attributes views for the results of question 2 of collaboration #1
are shown in Figure 4.6. The Sankey view of the origin attribute shows that mutual guarantors
come from 4 regions only and that usually, people have mutual guarantor relationships only
with persons of the same origin. This is especially true for persons from Milano, and with some
reciprocal links between persons from Bioglio and the Comune di Ro.

V9: Provenance Tree Each change in the query panel is saved with the computed results
so that the history of the query construction can be shown in the form of a provenance tree
(T2.4), managed with the Trrack library [60]. Each node of the tree represents a query change,
with a descriptive label such as “New Link”. It enables to rapidly visualize the succession of
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(a)

(b)
Figure 4.6 – Results of question 2 of collaboration #1: (a) shows a subset of thetable view with every occurrence of the pattern found. (b) shows the summarypanel, with the graph measures and the attributes view with the origin attributeselected and the Sankey option checked. It allows us to see the attribute distri-bution of the persons included in the pattern and see if there is a relationshipbetween persons who are mutually guarantors and their origin.

filters applied with their refinements. At any moment, users can rename a tree node or click on
it to go back to the previous state; allowing them to explore different query possibilities easily
and iteratively. Hovering over a node shows a tooltip with the query panel associated with the
selected query state. It lets users rapidly see what query is associated with each node of the
tree If a new change is made on the query from a previous state, a new branch is created on the
tree, permitting to revisit and refine explorations. Figure 4.8 shows the provenance tree made to
answer question 2, split into 2 branches, with the tooltip showing one of the node query states.
The whole provenance tree is exportable and importable in JSON format, allowing to 1) start
a session from a previous exploration and not from scratch, 2) share exploration sessions and
results with others, and 3) provide a trace of the exploration leading to a potentially interesting
result, hence providing traceability in the results.

4.4.3 Comparison

In addition to comparing the results of a query to the whole graph, ComBiNet allows
comparing the results of two queries. Users can select two query states in the provenance
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Figure 4.7 – Two ways of showing the distribution of “type chantier” (type ofworks), a categorical attribute with three possible values “religious”, “military”, and“civilian”. (a) A querymatching the contractsmade by the same person (per1) as an“approbator” (green link to doc2) after being a “guarantor” (blue link to doc1) usingthe constraint (doc2._year > doc1._year). (b) Stacked bar chart for thematches,the earlier contract (doc1), the older contract (doc2), and (c) Sankey diagram withthe early values on the left and the last on the right. The Sankey diagram revealsthe value changes between the two documents: the guarantor who worked ini-tially on religious work switched to military work.

tree and mark them either as “A” or “B”. Clicking on the button “Compare State A and B”
compares them. The interface changes to comparison mode. Several buttons appear on top of
the provenance tree: A, B, A − B, B − A, A ∩ B, and A ∪ B for exploring the combinations of
the two results of A and B in the two visualizations panels.

To answer several of the questions raised by our collaborators, we need to compare two
subsets of the network.

In question 6 of collaboration #1, we want to compare the constructions in Torino with
the ones in Torino surroundings. For this, we can rename the provenance tree nodes which
correspond to the two queries we made previously retrieving the works located in Torino and in
Torino surroundings, with explicit names such as “Torino” and “Surroundings”. We then mark
them as A and B using the appropriate buttons. Clicking on the “Compare State A and B” will
make the interface compare the two query results.

Topological Comparison In comparison mode, users can rapidly switch between the visual
filters of (A) and (B) by hovering over their respective buttons on the comparison menu and
thus compare the structure of the two resulting subgraphs (T3.1). Similarly, different boolean
comparison operations are available by hovering their respective buttons (Figure 4.1 top of
V9), such as the intersection, union, and differences between the two filters. Moreover, the
graph measures view (V4) allows comparing the different graph measures of the two subgraphs
by showing them side by side (T3.3). Figure 4.9 shows the comparison table for the queries
returning the subgraph of Torino (A) and Torino’s surroundings (B). Comparing these measures,
such as the number of matched documents or the densities, is crucial for SNA. For example,
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Figure 4.8 – Provenance tree to answer question 2 of collaboration #1: left branchleads to Torino documents (the node is labeled as A) while right branch leads tosurrounding documents (the node is labeled as B). The user hovers over one node,revealing a tooltip that shows the visualization of the node’s query.
the table indicates that the density is two times higher for Torino, suggesting that fewer persons
participate in the same construction compared to Torino’s surroundings.

Figure 4.9 – Comparison table of the network measures for Torino subgraph (A)and Torino’s surroundings subgraph (B).
Attribute-Based Comparison The comparison of one or several attribute distributions between
(A) and (B) is also useful for answering the historical questions of our users. In the attribute view
(V5) of the results panel, hovering or clicking on an attribute name will show the distribution
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of this attribute in four contexts: the nodes of the whole graph, the queries (A), (B), and
the currently selected Boolean operator (e.g., intersection or union) if one is selected. This
allows users to compare attribute distributions between several subsets of interest (T3.2). For
example, we can compare the attributes between the contracts of Torino and the ones of its
surroundings. We can also compare the persons who worked in Torino, in Torino’s close territory,
and in both areas, by selecting the intersection operator. Figure 4.10 illustrates the comparison
plots for different attributes. The first plot indicates that the types of construction sites differ
between the two regions: the city of Torino clearly has a lot of military sites compared to
the surroundings of Torino, which has almost none. This is the opposite for the number of
religious sites, which are almost all localized in the surroundings of Torino. If we now look at
the year distribution of the contracts, we can see a difference in the distributions. The years
of Torinos’s construction contracts were steady between 1711 and 1717 with a little spike in
1713, while the constructions were more scarce in the surroundings before 1716. We can see
a big spike in construction in 1717. This is interesting to our users, as it shows the dynamic
of the construction in the area: the center of the city started to be constructed before other
constructions arose in the surroundings.

We can also compare the profiles of persons who collaborated at Torino and Torino’s sur-
roundings by selecting the intersection of those two queries. One of the questions the historian
had was to know if those persons were a group with specific attributes and characteristics, or
were inseparable from other persons working in the two areas. If we look at the betweenness
centrality, on average, the values are higher for this group of people, meaning that the per-
sons who work on the construction site at Torino and Torino’s territory are clearly two distinct
groups, and the persons collaborating in the two areas act as bridges between these groups.
This visual demonstration was convincing and revealing for our users.
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Figure 4.10 – Distribution of the type of constructions, the years, and the between-ness centrality for the documents and signatories of Torino (A), Torino’s surround-ings (B), and the whole graph (top).
4.4.4 Implementation

ComBiNet4 is made of three components: a visual web interface, a python server, and a
Neo4j [170] graph database instance. The client interface is written in JavaScript using D3 [31],

4The web application and source code are available at https://www.aviz.fr/Research/
Qcompnet

https://www.aviz.fr/Research/Qcompnet
https://www.aviz.fr/Research/Qcompnet
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Vega [215], and the Trrack library [60]. The python server is written in Flask and interacts
with the Neo4j instance for query processing before sending the results to the frontend. We
implemented the Cypher parser with the ANTLR parser generator [190]. The abstract syntax
tree of the Cypher query is used as a representation of the query. Modifying the query visually
updates the tree, which is translated into Cypher in the textual query panel. Similarly, a manual
change in the Cypher query updates the abstract syntax tree which is translated into a visual
query.

4.5 Use Cases

In this section, I describe how our system has been able to specifically answer questions
from three of our collaborators and one other use case. The tool was mostly operated by the
developers working side by side with the collaborators to test the expressiveness of the queries
and the value of the results visualizations. The tool was refined as needed along the way.

4.5.1 Construction Sites in Piedmont (#1)
One of the main questions of our collaborator was to compare two families which he knew

played a big role in the structure of the network: the Menafoglio and Zo families (question 4).
Specifically, he was interested in knowing if there were differences in specialization in the type
of contracts and area of work for the core members of these families, and to what extent the
two families were collaborating. Moreover, he was very interested in characterizing the group
of people collaborating with both families.

To answer those questions, we first selected the core members of the Menafoglio family, by
checking the people known by the historian, and their close neighbors. Looking at the bipartite
view (see Figure 4.11 (a), we can see that the group is pretty dense with people collaborating
a lot between them. Looking at the map, we can clearly see that the family has been mostly
active in Piedmont outside of Torino and Torino’s close territory. We also have a first view
of the attribute distribution of the persons in the group and their contracts. We then do the
same query for the Zo family. We keep the same topological filter and replace the name filters
with the core members of the Zo family known by the historian. We see on the graph view
(Figure 2 of the supplementary material) that the group is smaller and is in a different area in
the graph. The map enriched with a selection of the region attribute shows that, contrary to
the Menafoglio, the Zo family has been more active in Torino and Torino territory (a very close
area of the city). The two groups can be compared using the comparison mode by selecting
the two queries in the provenance tree. This opens the comparison menu to quickly navigate
between the visual selection of (A), (B), and the set A ∩ B that interests our collaborator.
The table showing the graph measures of the two subsets confirms what is shown visually: the
Menafoglio group is more populated but less dense than the Zo family.

Our user is then interested in comparing the distribution of several attributes between the
two groups. We can clearly see in Figure 4.12 (top right) that the Menafoglio family is more
specialized in military (mil) sites, while the Zo family is doing more civil (civ) constructions.
This is confirmed by the material distribution that shows that the contracts of the Menafoglio
are often using stones (pierres), whereas it is never the case for Zo constructions. Finally,
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(a)

(b)
Figure 4.11 – Menafoglio (a) and Zo (b) families were retrieved with queries andhighlighted in the bipartite node-link and map views.
the persons collaborating in the two groups have a betweenness centrality higher on average
(bottom right, middle chart). This makes sense as they act as bridges linking the two families.

4.5.2 French Genealogy (#2)
We describe how ComBiNet allowed us to answer an important question of the use case #2:

to detect the largest migrations across several generations, in which areas, and at what time
they occurred (question 9 of collaboration #2). The map view shows at a glance (Figure 4.13)
that the majority of events have taken place in three specific regions: west (Britany), mid-north
(Paris), and mid-south (Limousin).

To find patterns of migrations within families, we first make a query representing a simple
family by linking a person node to a birth event, connected to the parents using a link of father
or mother type. We repeat the process to the new parent node to add another generation.
Finally, we connect the latest generation child with a death event, to have another date and
location to compare to (see Figure 4.14a). This query returns every person with their parents
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Figure 4.12 – Attributes distributions plots between the whole graph, the
Menafoglio family (A), the Zo family (B), and A ∩ B, for the region, type_chantier,
material type.

and grandparents, along with their respective birth and death data for the latest person. We
also create a constraint on the department attribute on the documents to only retrieve the
events that have a non-null associated location. This request returns a subgraph of 64 persons
and 88 documents. The user can now select the department attribute to create a Sankey
diagram that shows the change of departments across the different generations of families.
Figure 4.14b shows that the majority of families are from Haute-Vienne (which can easily be
confirmed by checking the map), and do not move much across generations. Our collaborator
however detected interesting patterns of people moving from the department Creuse to Haute-
Vienne across two generations. She refined the query by adding an attribute filter on this
specific department using a widget. The table view then showed her who these migrants were
and when it occurred. The bipartite visualization panel allowed exploring more in-depth this
specific group of people.

Afterward, we answered question 10, i.e., is there a significant difference in the migrations
between the 18th and 19th centuries. She thought people started moving in the 19th century
and wanted to confirm it. To answer this, we first created a query to retrieve the people with
birth and death certificates from a specified department. We then applied a time filter on
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Figure 4.13 – Map of the migrations in France which occurred across several gen-erations.

(a) Visual query to find all 3-generation families.
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(b) Sankey diagram showing the birth and deathplaces of people across generations.
Figure 4.14 – Migrations across departments over three generations.

the death certificate node, first for the 18th century and then the 19th century, compared the
two query results using the comparison mode, and looked side by side at the Sankey graphs
related to departments (Figure 4.15). We can clearly see that people do not move at all in the
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18th century, while in the 19th century even if the majority of people stayed in the same place
from their birth to their death, many individuals moved of departments. It thus confirms the
hypothesis of our collaborator.
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Figure 4.15 – Sankey diagrams showing the migration of people in the 18th (left)and 19th (right) centuries, extracted from their birth and death places.

4.5.3 Marriage Acts in Buenos Aires (#3)

I present in this subsection how ComBiNet has been used to detect erroneous encoding dur-
ing the annotation process of the marriage acts of our collaboration #3. The 1381 documents
mention 6659 individuals, who can have the same name, especially between fathers and sons
in this period and region as specified by our collaborator. During the annotation process, the
historian and his collaborators gave identifiers to the persons mentioned in the documents—
which is typically part of the annotation procedure. However, in the case of homonyms, it can
be hard to know if some mentions between different documents refer to the same or different
persons. Historians cross the information contained in the different documents to disambiguate
the persons [263], but errors can easily be made, i.e., giving the same identifier to different
persons or giving different identifiers to the same person. I used ComBiNet in collaboration
with researchers of this project to detect erroneous patterns and help them refine their encoded
data. For this, we can find the persons mentioned in two acts either as husband, wife, or
witness with a time difference of 70 years or more. Such person nodes in the network represent
with almost full certainty two different persons who lived in different generations. We con-
structed a request to find this pattern with the visual query view and added the time constraint
between the two marriage acts with the Cypher textual input. Figure 4.16 shows the visual
query constructed (left), the bipartite view with the persons and documents matching the query
highlighted (middle), and the table listing all the documents having mentions of people with
erroneous identifiers (bottom right). The table permits to browse through all person nodes
(29 have been found) that correspond in fact to more than one person and to the documents
which contain the wrongly given identifiers. Using the exporting capabilities, our collaborator
has exported the occurrence table indicating the pairs of documents (with their identifiers)
mentioning two different persons who have been given the same identifier. Using this table, he
has been able to rapidly correct those errors in his annotation framework.
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Figure 4.16 – ComBiNet used to request persons appearing as husband, wife, orwitness in two marriages that occurred 70 years apart or more.

4.5.4 Sociology Theses in France

I describe in this fourth use case how ComBiNet can be used to answer questions about
theses defended in France between 2016 and 2022. Indeed, some sociological datasets made
of documents can also be well modeled as bipartite multivariate dynamic networks, like theses
dissertations: a thesis is a document with specific attributes such as the subject, the doctoral
school, the domain, the university, and the date of defense, and mention several peoples who
are socially connected through the thesis defense with different roles: author (auteur in french),
director(s) (directeur), reviewers (rapporteur), and jury president (président de jury). I present
here an exploration of the data using ComBiNet. A first look at the network measures tells us
that 896 theses have been defended in sociology in France between 2016 and 2021 in France,
with 2453 persons included in the defenses (see Figure 4.17 bottom). The bipartite node-link
view shows us an overview of the network but is hard to parse due to the network’s size.
Zoom actions though allow us to center the view on specific parts of the network. The map
view reveals that theses have been defended all around France, even though the majority are
defended in Paris. This is confirmed by a look at the distribution of the cities (Figure 4.17
bottom right): around half of the defenses are in Paris, compared to the rest of the country
which is more or less homogeneous. By setting the threshold to link creation to one (meaning
that a link is created between two documents if they mention at least one common person),
a lot of links are created as seen in Figure 4.17 (right). It means that a lot of thesis defenses
include reviewers and juries from different cities.

Let’s now try to answer an interesting question: “Do reviewers and jury presidents often ask
thesis directors to be reviewers and jury presidents in their turn for another thesis where they
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Figure 4.17 – ComBiNet used for exploring theses of sociology defended in Francebetween 2016 and 2021. The bipartite and map views show an overview of twovisions of the network. The user selects the region attribute, showing the geo-graphical distribution of the defended thesis.
are directors ?”. For this, we can construct a visual query representing this pattern by creating
two person nodes and two document nodes, and by connecting them with two president links
and two reviewers or jury director links in a symmetrical way, as shown in Figure 4.18 (right).
The occurrence table tells us that this pattern has been found 76 times in the network, meaning
that this is a recurrent behavior. We are now interested in characterizing the theses occurring
in this pattern, by their geolocations. We can look at the city attribute distribution for this
thesis by selecting it in the attribute view as shown in Figure 4.18 (bottom right). We can first
see on the map that this pattern occurs mainly in the biggest cities of the country. By selecting
the Sankey view option, we can investigate if this pattern occurs between the thesis defended
in different regions or if it occurs mainly in the same ones. We learn that it depends mainly on
the regions: in Bourgogne-Fanche-Comté 26 out of 29 theses are connected with the thesis of
another region. On the contrary, in Occitanie it is the case for only 4 out of 17. On average,
we can see that this pattern occurs a lot for theses of the same region. In Ile-de-France, it is
the case for around half of the thesis (28/50). This exploratory analysis shows that ComBiNet
can be used to explore and gain insight into this type of sociological dataset.

4.6 Formative Usability Study

I performed a formative usability study with two historians and one expert in visualization.
I had 3 meetings with each and gave them control of the tool to see if they could use it to
explore their data—the visualization expert used the interface with the dataset of construction
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Figure 4.18 – Sociology thesis dataset explored with ComBiNet. The user con-structed a visual query to see if there are symmetrical relationships between the-sis directors and reviewers (or jury directors). The region attribute is selected withthe Sankey option, letting the user see if there are correlations between the re-gions of the thesis found in this pattern.

contracts #1—and performed queries and comparisons. At the first meeting, I explained to
them the panels of the system and each feature. During each session, they were free to explore
the data as they wanted. If they were stuck using one feature, I helped them by explaining
how to use it. If they seemed to not know what to do next, I asked them to answer a specific
question on the data (for example “can you find the persons who collaborated in more than two
contracts between 1711 and 1714 in Torino”). At each meeting, I asked them to speak aloud,
commenting on their aims and actions. At the end of each session, they reported their general
feedback, what they did not like or understand, and what other features they would like to have
to explore their data.

I improved the system and made the changes asked by the users before setting up new
appointments. This usability study led to the redesign of some core features, like the activation
of the comparison mode which is now started by first marking the state nodes in the provenance
tree. It also led to the implementation of new features, such as the person and document tables
(which are updated after each query), the persistent selection of nodes across the two views
and the tables, and the undo feature for visual queries. At the final meetings, the three users
were able to perform exploration, queries, and comparisons to answer socio-historical questions
by themselves.
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4.6.1 Feedback

All three users liked the table views and were exploiting them to study in depth who were the
person and documents found in their specific queries. Both historians liked the Sankey diagram
of the attributes, allowing them to see the evolution of distributions and answering several of
their questions. Our collaborator of the use case #2 was making sense of it by linking the
migration patterns she was seeing in the Sankey diagram with specific persons of the dataset
she knew in depth. She was also curious about other migration patterns she was not aware of
and wanted to know who these persons were, the system allowing her to select them and follow
a deeper exploration. One other historian outside of our direct collaborators liked the overlay
of node attributes on the bipartite and map views, and the distribution plots. She said: “With
this data model, even if historians realize the structure of their network does not allow them to
answer their research questions, they can still visualize and compare attributes of documents
and persons using the visualizations, which is always useful in quantitative history”.

4.7 Discussion

I discuss in this section several points of potential limitation for the system.

Query Expressiveness. The visual query system currently allows finding occurrences of at-
tributed subgraphs, with potential union operations on constraints (links and node attribute
values can be set at one value or as a set of values). Being able to express attribute con-
straints (other than for labels and ids) and unions is new compared to other visual graph query
systems. More complex constraints are then expressible using the Cypher editor, such as de-
pendent constraints, e.g., if one node attribute value has to be greater or lower than another
attribute value. The visual query system could be extended by introducing more complex time
constraints capabilities, such as in [174].

Network Modeling In chapter 3, I claimed that VA interfaces for HSNA should not only focus
on answering high-level analysis questions but also support social historians in their annotation
(step 3) and modeling process (step 4). I showed that ComBiNet can be used to reflect on the
annotations and detect erroneous patterns (precisely in §4.5.3.), leveraging data modeled as
bipartite multivariate dynamic networks. Concerning the modeling step, bipartite multivariate
dynamic networks model the sources in all their complexity, and analysts may want to project
the network to have a specific vision of the data to answer a precise question. ComBiNet allows
focusing on specific parts of the network (one type of role, the time, the locations, or specific
attributes) with the help of filters, which return subgraphs highlighting certain aspects of the
data. However, it does not allow to make more complex projections—such as representing only
the persons in a projected network—in part due to the limitations of Neo4j [170].

Scalability. We assess the scalability in network size (number of nodes and links) concerning the
cluttering and readability of the network visualizations. Our biggest dataset from #3 comprises
7212 nodes (4886 persons and 2326 events) and 7790 links, after splitting the documents into
birth and marriage event nodes. The system allows the exploration of networks of this size with
a decent frame rate. ComBiNet allows navigating relatively large sparse graphs (thousands of
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nodes) with the node-link visualization using zoom & pan and filtering with the query system.
It lets users focus on subsets of the data, one or two at a time.

Generalizability. The system has been designed specifically for bipartite multivariate dynamic
networks, which models well a diversity of historical sources we encountered via our collabo-
rations: marriage acts, birth/death certificates, construction/work contracts, census, and mi-
grations forms. Moreover, bipartite multivariate dynamic network can also be used to model
other similar data types, such as scientific publications or thesis data. However, other kinds of
historical textual data exist where documents can mention each other, such as in private letters
for example. The model and interface would need to be slightly modified to take into account
document-to-document links for these datasets. Bipartite networks are also used in various
other disciplines, such as biology [137] and chemistry [142]. ComBiNet could be extended to
these other application domains, in particular by modifying the map view to show other location
data related to the entities of the network, or removing it altogether if it makes no sense for a
particular domain.

4.8 Conclusion and Future Work

I presented in this chapter ComBiNet, a VA system for exploring social networks modeled
from historical textual sources, primarily aimed at social historians. It relies on modeling docu-
ments as bipartite, multivariate, dynamic, geolocated social networks where persons are linked
to documents or events using typed links that express roles. With this data model, ComBi-
Net lets historians explore a concrete representation of their annotated documents (i.e., the
model expresses the reality of the documents, without the use of projections or distortions)
with traceability to the original sources and simplicity . Historians can hence reflect on their
encoding process (step 3 of the HSNA workflow as described in chapter 3) and answer their
socio-historical questions using 1) dynamic queries on the network structure and attributes to
highlight groups of interests (step 4 of the HSNA) or erroneous patterns, and 2) visual com-
parisons to contrast selected groups according to their structure, location, time, or any other
attribute. The results can be visualized as a bipartite node-link diagram, a geographical map,
graph measures, and distributions of values for the attributes. I have shown that complex explo-
rations and analyses were easy to perform—hence giving a proof-of-concept answer for Q2—,
and validated our approach by first describing four use cases among several other projects we
are collaborating with and by performing a formative usability study showing that after many
improvements the system is usable by social scientists.

By specifying a unifying data model and novel high-level visual and interactive mechanisms
for comparing topology, attributes, and time, social scientists were able to correct their data
more easily with exploration and querying error-induced patterns. Thanks to the document-
centered model, it was easy for them to trace back the errors and inconsistencies to the sources
for corrections. With the same representation, they were able to operate explorations and
analyses using easy-to-use interactions implemented in ComBiNet such as coordinated views,
visual querying, and comparison. Using these mechanisms, social scientists performed visual
exploratory analyses of their network based on topological and attribute descriptions and com-
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parisons of subgroups of interests—between them or the overall network. This methodology
allows them to either ground or refute their hypotheses in network measures and attribute dis-
tributions, or to generate new ones from new insight revealed thanks to the exploratory and
interaction mechanisms.

We believe ComBiNet leads the way toward a new generation of highly interactive explo-
ration tools applicable to wrangle and analyze a wide variety of real social networks modeled
from textual sources, with a focus on the reality of the documents, traceability of the network
and results, and simplicity of use, which are essential for historical work.

For future work, ComBiNet could be extended to support more SNA measures and com-
putations such as clustering; it would create a new attribute containing a cluster identifier.
The interface currently proposes two layouts based on the topology and the geolocations of
the entities. Providing more layout options could be interesting, especially one to highlight the
time better, similar to the PAOHvis technique [249]. Finally, the interface could in the future
make suggestions on the query construction process based on frequent subgraphs similar to
VERTIGo [59], and within a mixed-initiative perspective [164].

In the next chapter, I present a visual interface following this mixed-initiative framework
for network clustering, to answer Q3 and show that such approaches can help social scientists
use data mining tools while controlling their biases—with the condition of explicit results’
traceability.
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As discussed in chapter 1, most SNA tools propose the computation of network measures
and data mining algorithms such as clustering. Yet, social scientists are not always in a position
to use them efficiently due to interpretability issues and can become frustrated with automatic
results if they do not match their prior knowledge. In this chapter, I address Q3 by proposing a
mixed-initiative approach for network clustering based on the prior knowledge of social scientists,
the consensus of algorithms, and exploration capabilities. In this framework, social historians are
able to leverage algorithmic power in support of their analysis through interaction while limiting
the introduction of bias with reports of actions leading to the final clustering. The system focus
on traceability, simplicity, and document reality principles, by respectively reporting the choices
leading to the constructed clusters, simple interaction mechanisms, and by leveraging bipartite
multivariate dynamic networks as a data model.

This chapter is an extended version of an article published in IEEE Transactions on Visualization
and Computer Graphics (TVCG) 2020. It was a joint work with my collaborators Paolo Buono,
Catherine Plaisant, Jean-Daniel Fekete, and Paola Valdivia. I led the development of the
interface and the evaluation, and participated actively in the discussion and writing of the
paper.

5.1 Context

In contrast to the belief that most data is easily available on the Web, as of today, most
social scientists spend a long time collecting data, to construct social networks, based on
documents or surveys, in order to create and carefully validate medium-sized networks (see
chapter 3). Before the start of the cluster analysis, a great deal of effort goes into analyzing
other data and gathering knowledge—which I refer to under Prior Knowledge (PK) in the
rest of the chapter. Social scientists study in great detail the network entities (most of the
time people), and the social ties they weave together, as it is the unit brick with which they
can make historical or social hypotheses and conclusions. When the network is small, with
less than 30–50 nodes, it is possible to remember most of the relations and persons, and
visualization directly helps to show groups, hubs, disconnected entities, outliers, and other
interpretable motifs. When the network grows larger, with hundred entities or millions of them,
it becomes impossible to perform the visual analysis only at the entity level. The graph has to
be summarized, and typically social scientists want to organize it in social communities. A large
number of algorithms are available today to compute clusters of entities from a graph, with the
assumption that the computed clusters faithfully represent the social communities. However,
most social scientists are not familiar with all of the available algorithms and are challenged
to choose which algorithm to run, with which parameters, and how to reconcile the computed
clusters with their prior knowledge. Furthermore, the clusters computed by the algorithms do
not always align with the concept of community from the social scientists.

Typically, social scientists select an analysis tool based on their familiarity with the tool and
the level of local or online support they can access. Therefore, they most often use popular
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systems such as R [239], Gephi [17], Python with NetworkX [104], or Pajek [179]. To compute
clusters, they follow a strained process: they select and run algorithms provided in the tool and
then try to make sense of the results (see Figure 5.1 left). When they are not satisfied or unsure,
they iteratively tweak the parameters of the algorithms at hand, run them again, and hope to
get results more aligned with their prior knowledge. This analysis process is unsatisfactory for
three main reasons:

1. it forces them to try a sometimes large number of black-box algorithms one by one,
tweaking parameters that often do not make sense to them;

2. even when a parameter makes sense to them, such as the number of clusters to compute,
k in k-means clustering, they have no clue of what value would generate good results,
and are left with trial and error;

3. even if they could painstakingly evaluate the results of all clustering algorithms according
to their prior knowledge, no existing system allows users to do so easily, leading users to
give up and blindly accept the results of one of the first algorithms they try.

Moreover, clustering is an ill-defined problem: for one dataset, there is no ground truth,
and several partitions can be considered good according to the metric chosen to evaluate the
results [139]. In SNA, this means, for example, that the same social network where links
represent a global notion of proximity could be clustered to find families, friend groups, or
business relationships. One partition is not necessarily better than another one but depends on
the purpose of the analysis. This issue increases the need for interactive tools, which let the
user specify which type of partition is expected.

To address those issues we propose a novel approach, called PK-Clustering, which allows
social scientists to iteratively construct and validate clusters using both their prior knowledge
and consensus among clustering algorithms. A prototype system illustrates such an approach,
and provides a concrete example of a solution to Q3 in the context of social network clustering:
how to design VA tools and interactions that leverage algorithmic power but keep historians in
control of their analyses and biases?

The proposed approach includes three main steps (see Figure 5.1 right):
1. Specify Prior Knowledge (PK). Users introduce their prior knowledge of the domain by

defining partial clusters. The tool then runs all available clustering algorithms.
2. Consolidate expanded PK-clusters. Users review the list of algorithms, ranked according

to how well they match the prior knowledge. They compare results and consensus, then
accept or ignore suggestions to expand the prior knowledge clusters

3. Consolidate extra clusters. The tool suggests extra clusters on unassigned nodes. The
user reviews the consensus on each proposed cluster and then accepts or rejects sugges-
tions.

The output of the process is, using a direct quote from a social scientist providing feedback
on the prototype: “a clustering that is supported by algorithms and validated, fully or partially,
by social scientists according to their prior knowledge”. According to the need to combine
data mining with visualizations [227] and inspired by the idea of letting the user collaborate
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Figure 5.1 – Process of traditional clustering (left) and our PK-Clustering approach(middle and right). The output of traditional clustering is a possible clustering, us-ing an algorithm among many choices. The output of PK-Clustering is a clusteringsupported by algorithms’ consensus and validated (fully or partially) according tothe user’s PK.
with the machine to reach specific goals [122], the proposed approach follows a user-initiated
mixed-initiative [122] visual analytics process.

In our case, users focus on the results that expand on their PK, filter out the most implausible
results, but can readjust when they realize that several algorithms are consensual despite not
matching the prior knowledge (hinting at other possible meaningful structures). Our mixed-
initiative approach allows social scientists to seed the clustering process with a small set of
well-known entities that will be quickly and robustly expanded into meaningful clusters (details
in §5.3.1).

Contrary to a current trend [173], we do not aim to improve the interpretability of algo-
rithms but to improve the interpretation of the results of black-box algorithms in light of prior
knowledge, provided by the user. Every day, we use complex mechanisms that we do not fully
understand, like motorbikes, cars, or electric vehicles using various kinds of engines, shifts, and
gears, but we are still able to choose which one best fits our needs according to their external
utility and not by understanding their complex internal machinery. In addition, it is usually
more important to social scientists to find an algorithm that provides useful results than to
understand why another algorithm failed to do so. PK-Clustering constitutes a new approach
for social network clustering, that I demonstrate with a concrete prototype and validate with
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two case studies.

5.2 Related Work

PK-Clustering relies on several families of clustering methods and the visualization and
exploration of their results. I first describe a brief overview of clustering for graphs, as well
as semi-supervised methods, then several works in the literature related to VA: interactive
clustering, groups in network visualization, and ensemble cluster visualization.

5.2.1 Graph Clustering
One of the main properties of social networks is their community structure [93] which

reveals group relationships between nodes, known as communities or clusters, which have a
higher density of edges compared to the rest of the graph. Similar characteristics or roles
are often shared between nodes of the same community. In social networks, a community
can mean a lot of things like families, workgroups, or friend groups. There is abundant and
growing literature on clustering methods to find these communities for social networks. The
majority of the research is made only on topological algorithms, i.e., algorithms that use only
the structure of the network to find clusters. [85] proposes a description and a classification
of various algorithms, such as divisive, spectral, and dynamic algorithms, or methods, such
as modularity-based, statistical inference, to cite a few. In contrast, many multidimensional
clustering algorithms use a distance function as a parameter, but graph clustering algorithms
mainly rely on the structure of the graph instead.

Even if the majority of studies are based on simple graphs, real-world phenomena are often
best modeled with bipartite graphs, also known as 2-mode networks. It is the case for social
historians, who often build their networks from raw documents containing mentions of people,
as discussed in chapter 3. Several algorithms exist for bipartite graph community detection [6].

Moreover, recent new approaches try to use the attributes of the nodes [267] and the
dynamic aspect of the networks [208] to find more relevant communities. Some toolkits offer
a large number of algorithms; for example, the Community Discovery Library (CDLIB) [209]
implements more than 30 clustering methods with variations inspired by 67 references.

5.2.2 Semi-supervised Clustering
In semi-supervised clustering, the user integrates the data mining task with additional

information to improve the clustering quality in terms of minimizing the error in assigning the
cluster to each data of interest.

Semi-supervised clustering can be divided into constraint-based and seed-based clustering.
The former includes must-link (ML) and cannot-link (CL) constraints [18, 253]. ML(x, y)
indicates that given two items x and y, they must belong to the same cluster, while CL(x, y)
means that x and y must belong to different clusters.

Seed-based clustering requires a small set of seeds to improve the clustering quality. Sev-
eral works addressing seed-based clustering have been proposed in the literature, such as:
k-means [18], Fuzzy-CMeans [23], hierarchical clustering [27], Density-Based Clustering [153],
and graph-based clustering [253]. Shang et al. [224] use a seeding then expanding scheme to
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discover communities in a network. Their clustering method considers links as documents and
nodes as terms.

Swant and Prabukumar [216] review graph-based semi-supervised learning methods in the
domain of hyperspectral images. Vertices of the graph represent items that may be labeled,
while the edges are used to specify the similarity among the items. The technique classifies
unlabelled items according to the weighted distance from the labeled items.

5.2.3 Mixed-Initiative Systems and Interactive Clustering
Introduced by Horviz [122], mixed-initiative systems are “interfaces that enable users and

intelligent agents to collaborate efficiently”. Several Visual Analytics systems are based on
mixed-initiative interactions, e.g. [51, 164, 254, 268]. This reflects the work on human-guided
search proposed by Klau et al. [138] where they developed visual interfaces to guide optimization
processes.

PK-Clustering is specifically an interactive clustering system. A review by Bae et al [14]
shares our concerns: “Real-world data may contain different plausible groupings, and a fully
unsupervised clustering has no way to establish a grouping that suits the user’s needs because
this requires external domain knowledge.” Interactive clustering systems aim at producing
visual tools that let users interact and compare several clustering results with their parameter
spaces, making it easier to find a satisfactory algorithm for a particular application. Several
such systems exist (e.g. [44, 162]) but few deal with network data. These systems adapt one
algorithm to become interactive using some type of constraints. Instead, our approach applies
ML/CL constraints on a wide variety of existing algorithms, providing richer algorithms and
control than the reviewed systems.

5.2.4 Groups in Network Visualization
To assess the quality of clusters in networks, the clusters should be visualized. A state-of-

the-art report (STAR) on the visualization of group structures in graphs is proposed by Vehlow
et al. [252]. Several strategies exist to display group information on top of node-link diagrams.
Jianu et al. evaluated four of them: node coloring, LineSets, GMap, and BubbleSets [128]. They
show that BubbleSets is the best technique for tasks requiring group membership assessment.
But, displaying group information on a node-link diagram can reduce the accuracy by up to
25 percent when solving network tasks. Another finding is that the use of GMap of prominent
group labels improves memorability. Saket et al. evaluated the same four strategies [214], using
new tasks assessing group-level understanding.

Pivots graphs have been proposed to visualize groups in networks, as they highlight clearly
the amount and type of relations between the groups [257]. This type of visualization, however,
removes specific node-level information.

Holten [120] proposes edge bundling on compound graphs. He bundles together adjacent
edges, making explicit group relationships at the cost of losing the detailed relationships. A
good example of manual grouping and tagging is SandBox, which allows users to organize bits of
information and their provenance in order to conduct an analysis of competing hypotheses [265].
A lot of work has also been done on the visualization of categorical variables in tabular data
[99,144], which is similar to the notion of groups in networks.
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5.2.5 Ensemble Clustering

In the context of machine learning, an ensemble can be defined as “a system that is con-
structed with a set of individual models working in parallel whose outputs are combined with a
decision fusion strategy to produce a single answer for a given problem” [255]. Several strate-
gies exist for combining multiple partitions of items in a clustering setting [237]. Concerning
visualization research, Kumpf et al. [146] consider ensemble visualization as a sub-field of un-
certainty visualization, for which some surveys exist [28,163]. They describe a novel interactive
visual interface that shows the structural fluctuation of identified clusters, together with the
discrepancy in cluster membership for specific instances and the incertitude in discovered trends
of spatial locations. They aim at identifying ensemble members that can be considered similar
and propose three different compact representations of clustering memberships for each mem-
ber. Our system provides a consensus-based interactive strategy that takes into account users’
prior knowledge instead of relying on mathematically defined optimal assignments only.

5.2.6 Summary
The community detection problem in graphs has been studied in a lot of different settings.

We can classify it this way from the user’s perspective:
Standard clustering. One algorithm is picked with a set of parameters and the user checks
if the results are consistent with his prior knowledge, which is not represented in the process.
Ensemble clustering. Many algorithms run with potentially many parameters, and a final
partition is obtained by trying to merge optimally the partitions. At the end of the process,
one clustering is given to the user who has to check if it is consistent with the prior knowledge,
which is not used either.
Semi-supervised clustering. The user provides the prior knowledge and lets the algorithm
propose a final solution using this information in its computation. The results should be good
by design, regarding the knowledge of the user.

The aim of our proposed framework is to combine these three approaches, to integrate users
in the analysis loop and allow them to have a better impact on the final community detection
result.

5.3 PK-clustering

We present a new approach, inspired by the three types of clustering methods described
in §5.2.6: Standard clustering, Ensemble clustering, and Semi-supervised clustering. It runs a
set of algorithms, then highlights those that best match the prior knowledge provided by the
domain expert. The user then reviews and compares the results of the selected algorithms, in
order to consolidate a satisfactory and consensual partition.

PK-Clustering is not tied to any specific network representation technique and could be
used to augment any of them. Our prototype is implemented in the PAOHVis tool [249]
which illustrates how users can view their networks as PAOH (Parallel Aggregated Ordered
Hypergraph) or traditional Node Link diagrams. PK-Clustering relies heavily on having a list of
nodes, so the PAOH representation is naturally adapted to PK-Clustering and will be used in
all the figures.
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After a general overview of the process, I describe each step in more detail, illustrated with
screen samples taken during the analysis of a small fictitious network.

5.3.1 Overview
In PK-Clustering the user and the system take turns to construct and validate clusters. The

process involves three main steps, each with several activities (see Figure 5.1 right). The blue
boxes describe the user activities while the yellow boxes describe the system activities. After
loading the dataset, the process is as follows:
(1) Specify Prior Knowledge (PK).
1. The domain experts interactively specify the PK by defining groups, i.e., naming groups

and assigning entities to them. Typically, an expert would assign a few items (1-3) to a
few groups (2-5), thus creating a set of partial clusters.

2. All available clustering algorithms are run. Algorithm parameters (e.g., number of clusters)
may also be varied manually or automatically using a grid search or a more sophisticated
strategy, resulting in additional results. Depending on the type of algorithm, topology
and/or data attributes are used. The specified PK can also be used in the computation of
semi-supervised clustering algorithms.

(2) Consolidate expanded PK-clusters.
3. Users review the ranked list of algorithms. They can see if the algorithm results match the

PK completely, partially, or not at all. Information about the number of clusters generated
by each algorithm is also provided. Users select the set of N algorithms they think are the
most appropriate.

4. The consensus between the selected algorithms is computed and visualized next to the
graph visualization (in the PAOHVis display in our prototype)

5. Users review and compare the suggestions made by the algorithms to expand the PK-
groups, i.e., the groups defined by the PK, into larger clusters and examine consensus
between algorithms.

6. Users accept, ignore, or change the cluster assignments. This consolidation phase is crucial,
as users take into account their knowledge of the data, the network visualization, and the
results of the clustering algorithms to make their choices.

(3) Consolidate extra clusters.
7. The system proposes extra clusters using nodes that have not been consolidated yet and

remain unassigned. Users can select any algorithm and see the extra clusters it suggests.
8. For each proposed cluster, users can see if other algorithms have found similar clusters and

then consolidate again by accepting, ignoring, or changing the suggestions for all the nodes
in the proposed cluster. This step is repeated with other clusters until the user is satisfied.
At any point, users can go back, select different algorithms, or even change the PK spec-

ification to add new partial clusters. Users can also opt not to specify any PK at all, and
accept all consensual suggestions without reviewing them in detail. This gives users control
over how much they want to be involved in the process. Similarly, users are not required to
assign every single node to a cluster, as it often happens that social scientists do not have a
strong opinion about whether individuals belong to a group. By specifying the PK in the first
phase, before running the algorithms, users avoid being influenced by the first clustering results
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they encounter. The process leads to algorithms whose results match the PK, but it also allows
the review of results that contradict it.

We believe that PK-clustering addresses the important problems identified in the introduc-
tion: it helps users decide which algorithm(s) to use, and facilitates the review of the results
taking into consideration both the consensus between algorithms and the knowledge users have
of their data. We will now review each step in more detail.

5.3.2 Specification of Prior Knowledge
Users start the process by expressing their PK as a set of groups. Each group contains the

node(s) that the expert is confident belong to the defined group. In the case of Figure 5.2, each
of the two prior knowledge groups contains two nodes, and it specifies that the user is expecting
to see at least two clusters, with the first two people in a blue cluster A, and the other two in a
red cluster B. This representation expresses must-link and cannot-link constraints described in
§5.2.2 in a simple visual and compact form. It is not required to specify all binary constraints
because the information is derived from the prior knowledge groups.

Figure 5.2 – Prior Knowledge specification, the user-defined two groups composedof two members.

5.3.3 Running the Clustering Algorithms
The prototype includes 11 algorithms taken from three families:

Attribute based algorithms. Graph nodes can have intrinsic or computed attributes that
can be used for grouping, such as gender, family name, and age. Some community detection
algorithms use those attributes alone or together with the topology to partition the graph.
A clustering algorithm considers attributes according to their type. For categorical attributes
(e.g., male/female) it finds matching attributes and merges them if necessary. For numeri-
cal attributes (e.g., income) the algorithm seeks to define intervals that can be adjusted for
propagating clusters. Algorithms in this family can also use multiple attributes together.
Topology-based algorithms. Most of the clustering algorithms consider only the graph
topology and optimize a topological measure such as modularity [36]. Those algorithms only
use the connections between the people to find groups. Their aim is to find groups of nodes
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such that the density of edges is higher between nodes of the same group compared to the rest
of the graph.
Propagation/Learning-based algorithms. Semi-supervised machine learning algorithms
learn from incomplete labeling and use it to classify the rest of the data. They represent a
class of machine learning methods, also called label propagation methods, which can take into
account users’ PK groups in its clusters computation. By design, this type of algorithm will
always provide a perfect match with the PK, even if the PK does not make much sense.

Our prototype implements 2 attribute-based algorithms (one for numerical attributes and
the other for categorical attributes), 7 topology-based algorithms, and 2 propagation based.
Since we often deal with hypergraphs, 2 of the topology-based algorithms are bipartite node
clustering algorithms: Spectral-co-Clustering [63] and Bipartite Modularity Optimisation [102].
Since the majority of community detection algorithms are for unipartite graphs, the system
performs a projection into a one-mode network. Basically, each pair of nodes that are in the
same hyperedge are connected together in the resulting graph, with a weight being the number
of shared hyperedges [102].

Some algorithms require parameters to be specified. We do not force the user to specify
values for all the parameters, when possible, we infer them from the PK-groups. For instance,
instead of using an arbitrary default for the number of expected clusters k in k-means clustering,
we run the algorithm several times with a value of k from the number of specified PK-groups
to this number plus two. The strategy of using several parameter combinations for the same
algorithm is often used in ensemble clustering to increase the number of different clusterings.
However, the number of parameter combinations can be extremely high. The research field
of visual parameter space exploration (see e.g., [220]) is devoted to exploring this space of
parameter values in a sensible way; we currently address the problem only for simple cases.

Once all the algorithms finish the computation, the resulting clusterings are matched with
the PK and ranked by how interesting their results are likely to be for the user.

5.3.4 Matching Clustering Results and Prior Knowledge
Once a clustering is computed, we want to know how well it is compatible to the PK, and

if possible, match every PK-group with a specific cluster. We use the edit distance to measure
this matching, as its computation allows us to directly link each PK-group to a specific cluster.
Given two partitions, the edit distance is the number of single transitions to transform the first
partition into the second one. For example, the edit distance between the two partitions of 4
nodes P1 = {{1, 2, 3}, {4}} and P2 = {{1, 2}, {3, 4}} is 1 because moving the node 3 from the first
to the second set of P1 would transform it into P2. A clustering can be seen as a partition since
every node has a label, but the PK can only be seen as a partial partition because only some
nodes are labeled. We say that the edit distance between the PK and a clustering is 0 if every
group of the PK is a subset of an exclusive cluster, i.e., if every person of a PK-group is retrieved
in the same cluster, with no overlaps. Thus, we define the edit distance as the number of node
transitions between the groups of the PK to get to the state where each group is a subset of an
exclusive cluster. More formally, we can express this as a maximum weight bipartite matching
problem [141], where the PK PK = P1, … , Pn and a given clustering C = C1, … , Cn constitute
the bipartition (PK, C) of a bipartite graph G = (V, E). A link is created if a PK-group and a
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cluster share nodes, with a weight equal to the number of shared nodes, giving the following
weight function:

w(PKi, Ci) = card(PKi ∩ Ci) (5.1)
We then need to find a matching M of maximum weight w, with

w(M) =
∑

e∈M
w(e) (5.2)

This can be done with the Hungarian method [145]. The Matching gives the correspondence
between the PK-groups and the clusters computed by a given algorithm, and the edit distance
ED is given by the number of nodes specified in the PK minus the total weight of the matching:

ED =
n∑

i
card(PKi) − w(M) (5.3)

Figure 5.3 – Red edges represent the prior knowledge matching.
For example, given a clustering of 12 nodes N = 1, 2, … , 12, the clusters C1 = [1, 2, 3, 4],

C2 = [7, 9, 10, 12] and C3 = [5, 6, 8, 11] and a PK composed of 3 groups PK1 = [1, 2], PK2 = [5]
and PK3 = [3, 7], the maximum-weight matching is given by the edges (PK1, C1), (PK2, C3)
and (PK3, C2). This is illustrated in Figure 5.3. The edges of the matching correspond to
the matching between the PK-groups and the clusters. The edit distance is then equal to the
sum of all the weights of the bipartite graph minus the sum of the weights of the maximum
matching (in red), thus equaling 5 − 4 = 1. In other words, we only have to move the node 3
from PK3 to PK1, for every PK-group to be a subset of a unique cluster, with no overlap.

In the end, we hope to find matches linking every PK-group to one specific cluster, with
no overlaps. This is not always the case and sometimes two or more PK-groups are subsets of
the same cluster. In that case, it is not possible to link all these PK-groups to the same cluster
since we want one unique cluster for each group. Thus, we say that the algorithm failed to
match the prior knowledge and we do not summarize it visually.
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5.3.5 Ranking the Algorithms
The algorithms are ranked by their degree of matching with the PK, using the edit distance.

We also introduce a parsimony criterion if there is a tie between two or more algorithms. The
algorithm with the smaller number of other clusters will be shown first, as the results are easier
to interpret. Moreover, the number of specified PK groups is expected to be close to the final
number of clusters the user wants to retrieve, as social scientists often have a good knowledge
of their data.

To complement the parsimony rule, we also consider that the family of propagation/learning-
based clustering algorithms is more complex than the two previous families (attribute or
topological-based clustering), in the sense that they are more difficult to explain. If a sim-
ple and a complex algorithm match the prior knowledge, the simpler one is presented first. For
example, if grouping by the attribute “profession” provides a perfect match, then it is ranked
higher than a propagation-based method achieving the same perfect match.

Semi-supervised methods will always provide a perfect match by definition. But if all the
other algorithms (topological and attribute-based) do not give a match, it means that the PK
does not align well with the data. This would signal users to reconsider their PK, as it does
not match the data encoded in the network.

5.3.6 Reviewing the Ranked List of Algorithms
Once the clustering algorithms have been matched with the PK, users can review the list

of algorithms, ranked by how well their results match the PK. Figure 5.4 shows two modalities
to visualize the ranked list (individual nodes and aggregate representation). I will describe in
detail the first modality, which shows individual nodes as small colored circles:

Each row is an algorithm, and the algorithms are grouped by family. On the right of the
name of the algorithm, there is a representation of the clusters that best match each of the
PK-groups. Figure 5.4 shows first the cluster which best matches the blue PK-group, and then
the cluster which best matches the red PK-group. In each cluster, we see colored dots for each
person that matches, and dark gray dots with an X for no match. Additional nodes in the
cluster are represented as white dots with a number next to it. On the right we see how many
other clusters (if any) have been found by the algorithm—also represented as white dots with
a number next to them.

For example, the second algorithm fluid_k3 has a blue cluster that matches the blue PK-
group plus one extra node, a red cluster that matches the red PK-group plus five nodes, and
one extra cluster. The top four algorithms match the PK perfectly, while the following one
fluid_k4 has a partial match. At the bottom, an algorithm (label-propagation) has no match.

The alternate modality of representing the matches (shown at the bottom of Figure 5.4)
uses bars to aggregate the nodes and show the proportion of matching, non-matching, and
other nodes in each cluster. This is more useful when dealing with larger networks because it
allows users to see the results in a more compact way.

Once users have reviewed the list of algorithms, they can review the results of a single
algorithm, or review and compare the results of all the selected algorithms. By default, only the
top algorithms are selected for inspection, but users can select any set of algorithms according
to different criteria: the degree of matching (i.e., they can choose to look at algorithms with no
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Figure 5.4 – Two different modalities for the ranked list of algorithms. Top: per-sons are shown as circles. Bottom: aggregated view. Colors indicate thematchinggroup. Gray indicates no match. White indicates extra nodes or clusters.

match to challenge their prior knowledge); the algorithm type (the user may prefer an attribute-
based algorithm, rather than one based on topology); the size of the matched clusters; or the
number and size of other clusters found by the algorithm.

PK-Clustering expresses its prior knowledge through must-link and cannot-link constraints.
However, at this stage, the user can decide to use this expressive power as strong constraints—
only selecting algorithms that match all of them—or as weak constraints—to explore clustering
results that support most or some of them. Our historian colleagues have used both, either
to cluster a well-understood dataset with strong constraints or to generate hypotheses on less
known ones.

5.3.7 Reviewing and Consolidating Final Results

To consolidate the final results, several approaches are possible. Applying mixed-initiative
principles users can rapidly accept labels from a specific algorithm (which is particularly useful
for large datasets), review consensus between selected algorithms then accept only consensual
suggestions, dig in manually to review labels one by one, override labels when appropriate, or
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leave certain nodes unlabeled. The tool generally guides users to focus first on the PK-clusters,
then other clusters. The notion of prior knowledge can evolve during the exploration, and the
process can be iterated from the beginning when new knowledge is gained, thus giving new
algorithm matches. Therefore, the approach is not linear but can be iterative.

Reviewing Results of a Single Algorithm

By clicking on an algorithm name the results of that algorithm are displayed in the PAOHVis
view (see Figure 5.5). In this view, each line corresponds to a person in the graph, and each
vertical line represents a hyperedge connecting them [249], in a way visually similar to the UpSet
representation [159] but semantically different. Alternative graph representations are available
as well—such as node-link diagrams—but the PAOHVis view is well adapted to PK-Clustering.

Names are grouped by the proposed clusters. Clusters that match the prior knowledge are
at the top, colored by their respective colors. Black borders around labels highlight nodes that
belong to the PK, making them easy to find. All the other (non PK) clusters are initially
regrouped in a single group labeled Others. A click on the Others label expands the group into
the additional clusters defined by the selected algorithm. Users can rename the clusters, and
change which algorithm is used for grouping and coloring the nodes.

Comparing Multiple Algorithm Results

From the ranked list of algorithms, users can select a set of algorithms and click the large green
button to review and compare the selected algorithms in the PAOHVis view (see Figure 5.5
By default, the PAOHVis view groups the names using the clusters of the 1st algorithm, but
on the left of the node names now appears complementary information about the results of all
the selected algorithms.

On the far left, the consensus distribution appears as a horizontal stacked bar chart. The
size of bar segments corresponds to the number of algorithms that associate the specific node
to the cluster having the same color. On the right of the stacked bar chart, first appears the
prior knowledge (with square icons). Icons and names of PK nodes have a black border. Further
right is shown the individual algorithms’ results, represented by diamonds, one for each node
and algorithm. When the node is classified in one of the clusters matching a PK-group the
diamond is colored with the color of that group.

For each node, the horizontal pattern of colored diamonds quickly tells users if there is
agreement among the algorithms. If all algorithms agree the line of diamonds is of a single
color. Conversely, if they disagree diamonds will vary in color. If a node does not match any
PK-group then no icon is displayed in this phase.

In Figure 5.5 PK_louvain is selected as the base algorithm for the grouping of names in
the list. We see that there is a very good consensus on the red cluster, but in the blue cluster,
only 4 out of 7 algorithms see Joseph as belonging to it. Others see him as belonging to the
red cluster. In Others, 4 algorithms consistently disagree by assigning 3 more nodes to the
blue cluster. There are clearly many ways to cluster data, and users must decide on the more
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Figure 5.5 – Reviewing and comparing results of multiple algorithms. One algo-rithm is selected to order the names and group them, but icons show how otheralgorithms cluster the nodes differently, summarized in the consensus bar on theleft.
meaningful one, based on their deep knowledge of the people in the network before validating
clusters, possibly by re-reading source documents or gathering more.

Consolidating the prior knowledge clusters

Next, using their knowledge and the consensus of the algorithms, users validate clusters that
expand the prior knowledge groups. We call the validated data consolidated knowledge. It is
kept in an additional column on the right of the algorithms, left of the names. The tool provides
several ways to consolidate knowledge and keeps track of the decisions:
Partial Copy. By clicking on one of the icons or dragging the cursor down on a set of icons,
users validate the suggestion(s) of an algorithm, adding colored squares in the consolidation
column. Once this validation is done, the squares do not change color anymore and represent the
user’s final decision (unless changed manually again). Figure 5.6 shows how a user drag-selects
a set of diamonds in the column PK_fluid_k4. They are connected by a yellow line, which
appears while dragging over the icons. When done the status of the nodes in the Consolidated
Knowledge column (rightmost) will change to square.
Consensus slider. Users can set the consensus slider to a certain value (for example 4)
to automatically select all nodes that have been classified in the same cluster by at least 4
algorithms. While the slider is being manipulated, circles appear in the consolidated column.
Then users can validate the suggestions by clicking or dragging on the circles, or by using the
consolidate suggestions button which will validate all suggestions at once.
In summary, diamonds represent suggestions from one algorithm, circles temporary choices,

and squares represent the knowledge validated by the user.
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Figure 5.6 – The user quickly drags on consecutive icons (in yellow) representingthe suggestions made by one algorithm to validate node clustering. Once thecursor is released the validatednodes appear as squares icons in theConsolidatedKnowledge column.
Direct tagging. At any time, users can manually overwrite the association of a node to a
cluster by right-clicking on the node in the consolidated knowledge column and selecting a
cluster from a menu. When no clear decision can be made users can leave nodes unassigned,
and no shape is displayed in the consolidated knowledge column.

Consolidating extra clusters

The last step of PK-Clustering aims to find new clusters for the nodes that have not been
validated yet, based on the consensus of the selected algorithms. The suggestions are made
from the point of view of one clustering algorithm that users can change along the process.
First, the user selects one algorithm in the PAOHVis view, and the nodes are grouped by the
clusters found by the algorithm. The PK-clusters are displayed at the top, followed by Others,
which contains everyone else. When users click on Others, the other clusters are displayed
ordered by consensus. Since the number of clusters can be high, all new clusters appear in gray
to avoid the rainbow effect. A secondary matching process matches the clusters of the current
algorithm with those of all the other algorithms, one by one (similar to the matching process
described in §5.3.4). Once the matching is done, the consensus of one cluster is computed as
the sum of the cardinalities of the intersections between the cluster and all the other clusters
of the other algorithms matched with it, divided by the number of nodes of the cluster.

When users hover over one cluster name, a new color is given to that cluster (e.g., green)
and new (green) diamonds appear for each algorithm that matches the cluster and for each
node that is assigned to the cluster (Figure 5.7). Users can therefore see if the selected
cluster is consensual, and with which algorithms. The top part of Figure 5.7 shows the mouse
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pointer before hovering on cluster 2. The bottom part shows that hovering the mouse pointer
over cluster 2 changes the labels to green and creates green diamonds on the columns where
algorithms found similar results to the one currently selected.

Figure 5.7 – The suggestion of extra clusters. The two PK-groups (red and blue)are validated (nodes in the consensus column are all squared). One extra clusteris proposed by the Louvain algorithm, labeled as 2. Hovering over cluster 2, theconsensus is displayed by the green diamonds. This feedback is also visible in thegraph.
The evaluation of the best cluster for a node can be done using multiple encodings. The

suggested clusters appear in the consensus bar chart, in the set of algorithm output, and when
hovering over the node. A click on the color will validate the node in the cluster having that
color. If users are satisfied with the association proposed by the current algorithm, they can
validate it by clicking on the cluster name. This will create a new group, so the user can classify
the nodes into this new group, as seen before (§5.3.7): using the consensus slider, copying an
algorithm result, or through manual labeling. This process is repeated for the other clusters
until there are no unlabeled nodes or the user is satisfied with the partial clustering. An example
of a fully consolidated dataset is shown in Figure 5.8.

5.3.8 Wrapping up and Reporting Results
At any stage of the process, the user can finish instantaneously, either by not labeling unde-

cided nodes, selecting and validating the results of a single algorithm—as traditional approaches
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Figure 5.8 – The dataset has been fully consolidated. The persons are groupedand colored by the consolidated knowledge. The user decided to assign Claude,Guillaume, Madeleine, and Renexent to clusterC, by taking into account the graphand the consensus of the algorithms.

do, or by using a specified threshold of consensus and not labeling the remaining entities. The
appropriateness of the choice is up to the user and should be documented in the publication.

In addition to the consolidated clustering, the output of PK-clustering consists of prove-
nance information in the form of a table and a summary report. The table provides, for each
node, the consolidated label, along with the labels produced by all the selected algorithms,
and a description of the interaction that has led to the consolidation, such as “selected from
algorithm x”, “consensus >= 5”, or “override” when manually selected by the user instead of
selected from an algorithm. The summary provides counts of how many nodes were labeled
using the different interaction methods and can be used in a publication.

Clustering results can thus be reviewed in a more transparent manner (according to the
traceability principle), revealing the decisions taken. In contrast, traditional reporting in the
Humanities rarely questions or discusses how choices were made and merely mentions the
algorithm and parameters used.

5.4 Case Studies

I describe two case studies using realistic scenarios where the clustering has no ground truth
solution but has consequences, scientific or practical. I also report on the feedback received
from practitioners.

5.4.1 Marie Boucher Social Network
I asked one of our historian colleagues for her prior knowledge on her network about the

trades of Marie Boucher [69], composed of two main families: Antheaume and Boucher. Family
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Figure 5.9 – Two main phases of PK-clustering. On the left, the user has specifiedthe Prior Knowledge (PK) groups (top left) and then reviews the list of algorithmsranked according to how well they match the PK. On the right, the user comparedthe detailed results of selected algorithms and consolidated the results. Fromthe initial specification of three groups and three people, 4 relevant clusters wereobtained with 37 people in total, plus one unclassified node (Others group).

ties were important for merchants, but could not scale above a certain level. Marie Boucher
expanded her trade network far beyond that limit. She then had to connect to bankers, investors,
and foreign traders, far outside her family and yet connected to it indirectly. As hinted in her
article, Dufournaud believes that the network can be split into three clusters: one related to
the Boucher family, one to the Antheaume family, and the third to the Boucher & Antheaume
company. Using standard visualization tools, she could see different connection patterns over
time, but she wanted to validate her hypothesis using more formal measures and computational
methods.

So she specified her hypotheses as PK and started the analysis. Figure 5.9 (top left)
shows the three PK groups: Marie Boucher for the Boucher family, Hubert Antheaume for the
Antheaume family, and the Boucher & Antheaume corporation alone for the company.

After running the algorithms, 9 algorithms produced a perfect match out of the 13 executed
(see Figure 5.9 - left.) with the first algorithm listed as an attribute-based algorithm that
uses the time attribute in its computation. That summary alone was found very interesting
because the 3 clusters seemed very consensual among all the 9 algorithms, and furthermore,
they appeared explainable by time alone.

In the PAOH view, she started by consolidating the 3 PK-groups using the amount of
consensus among the algorithms as well as the network visualization and her own knowledge
of the persons. At the end of this step, the Boucher, Antheaume, and Boucher & Antheaume
groups were consolidated, but there were still several persons not labeled on the consolidated
knowledge. She decided to review in more detail the clustering results using the ilouvain_time
algorithm because of its reliance on the time attribute, and also because its results seemed
good in the matching view. After clicking on the virtual group Others, the four other clusters
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computed by ilouvain_time appeared and were reviewed by hovering the mouse on the names
of these new groups. She selected only one cluster she was confident about and consolidated
it.

The final validated partition of the dataset is represented in Figure 5.9 (right). The persons
are colored and grouped by the consolidated knowledge. We can see that the final grouping
makes sense in the PAOH visualization on the right. Only one person is not part of any group:
Jacques Souchay. It is not unusual in historical sources to have persons mentioned without any
information on them.

Our historian colleague can now publish a follow-up article validating her hypotheses. The
summary report (illustrated in Figure 5.10) will help document where the final grouping came
from, increasing trust with regard to her claims.

2020-07-23Prior Knowledge: 3 groups, 3 personsFinal: 4 groups, 37 persons (out of 38 visible) consolidated as follows:12 (32.4%) using the consensus:10 (27.0%) with an agreement of 8 algorithms2 (5.4%) with an agreement of 5 algorithms18 (48.6%) using the result of 1 algorithm:18 (48.6%) with PK_ilouvain_time4 (10.8%) manually consolidated0 (0.0%) by clicking on the group distribution13 algorithms considered9 algorithms reviewed and compared

Figure 5.10 – Summary report of the consolidated knowledge for the MarieBoucher case study.

5.4.2 Lineages at VAST

In the second case study, I take the role of Alice, a VAST Steering Committee (SC) member,
who participates in an SC meeting to validate the Program Committee proposed by the VAST
paper chairs for the next conference. This case study illustrates the utility of PK-Clustering
for finding relevant clusters in a social network modeled through documents (here scientific
publications), similarly to historical sources. One of the many problems that all conference
organizers face is to balance the members of the Program Committee according to several
criteria. The InfoVis Steering Committee Policies FAQ states that the composition of the
Program Committee should consider explicitly how to achieve an appropriate and diverse mix
[123] of: • academic lineages • research topics • job (academia, industry) • geography (in
rough proportion to the research activity in major regions) • gender. Most of these criteria
are well understood, except academic lineage which is not clearly defined. Alice will use the



Chapter 5. PK-Clustering: Integrating Prior Knowledge in Mixed-Initiative Social NetworkClustering 103

Figure 5.11 – Computing the Lineages of VAST authors: Prior Knowledge fromAliceand results of the clusterings matching it.

“Visualization Publications Data” (VisPubData [125]) to find out if she can objectify this concept
of lineage to check the diversity of the proposed Program Committee accordingly.

Using PK-Clustering, Alice loads the VisPubData, filtered to only contain articles from the
VAST conference, between 2009–2018. Only prolific authors can be members of the program
committee, but highly filtering the co-authorship network would change its structure and dis-
connect it. Thus, she will use the unfiltered network of 1383 authors to run the algorithms and
perform the matching (step 1 of the process), even if at the end only 113 authors with more
than 4 articles will be consolidated (steps 2 and 3).

Alice starts the PK-Clustering process by entering her prior knowledge, which is partial and
based on two strategies: her knowledge of some areas of VAST, and the name of well-known
researchers who have developed their own lineage. She runs the algorithms (Figure 5.11) and 5
algorithms produce a perfect match, acknowledging her knowledge of some areas of VAST. She
then shows the results to other members of the SC who will help her consolidate the lineage
clusters.

Her initial PK-clusters are quickly consolidated, using Internet search to validate some less
known authors. She then decides to create as many additional clusters and lineage groups
as she can. For some authors, she decides to override the consensus of the algorithms. For
example, she decides, and her colleagues agree, that Gennady and Natalia Andrienko should be
in their own lineage group and not in D. Keim’s (Figure 5.12). The history of VAST in Europe,
very much centered around D. Keim and the VisMaster project [135], has strongly influenced
the network structure and some external knowledge is required to untangle it.

Using the PK_louvain algorithm as a starting point, Alice creates new groups and achieves
a consensus among the experts on a plausible set of lineages for VAST. She then checks with
the list proposed by the program committee by entering it in on a spreadsheet with the names
and affiliations. She adds the groups and their color, and sorts the list by group. Alice can
now report her work to the whole steering committee, which can check the balance of lineages
according to this analysis, and decide if some lineage groups are over or under-represented. By
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keeping the affiliations in the list, the SC can also check the balance of affiliations that are not
always aligned with the lineages. Figure 5.12 shows a subset of the final results.

Using partitioning clustering (although with outliers) forces the algorithms or experts to
make strong decisions related to lineages. But using a soft clustering (or overlapping partitions),
while providing a more nuanced view of lineages, would not be as simple to interpret as coloring
spreadsheet lines and sorting them; in the end, the final selection only uses the lineage criterion
among many others. Still, PK-Clustering can provide a partial but concrete answer to the
problem of defining what the scientific lineages are.

Figure 5.12 – Four consolidated groups in the VAST dataset: C North, RVAC, An-drienko, and London.
5.4.3 Feedback from Practitioners

We showed the system to three practitioners and asked for their feedback through video-
conferencing systems, sharing video demonstrations, and sharing our screen.

They all acknowledged the pitfalls of existing systems providing clustering algorithms as
black boxes with strange names and mysterious parameters. They also agreed that the current
process for clustering a social network was cumbersome when they wanted to validate the groups
and compare the results of different algorithms. None of the popular and usable systems provide
easy ways to compare the results of the clusterings. Usually, the analyst needs to try a few
algorithms, remembering the groups that seemed good in some of the algorithms, sometimes
printing the clustered networks to keep track of the different options. Still, they all confirmed
that they usually stop after trying 2 to 3 algorithms because of a lack of time and support from
the tools. Evaluation of clusterings is long and tedious.
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They were intrigued by the idea of entering the prior knowledge into the system but ac-

knowledged that it was easy to understand and natural for them to think in terms of well-known
entities belonging to groups. They felt uneasy thinking that this prior knowledge could bias the
results of the clustering and of the analysis. However, after a short discussion, they also agreed
that the traditional process of picking in a more or less informed way two or three algorithms
to perform a clustering was also probably priming them and adding other biases. Still, they
said that they would need to explain the process clearly in their publications and that some
reviewers could also stress the risks.

They all agreed that the process was clear and made sense, but they also felt it was
complicated and that they would need time to master it. They said that it was more complicated
than pressing a button, but that the extra work was worth it.

One historian who spends a lot of time analyzing her social networks and finding information
about all the people was shocked by the idea that you could want to use an algorithm that
did not match fully the prior knowledge. For us, it matters if the prior knowledge is given as
constraints or preferences, but we did not want to introduce these notions in the user interface
so analysts are free to interpret the prior knowledge as one or the other.

One other historian from the collaboration #1 described in §3.3.1 used the system in a
particular way. After entering his PK on core members of families of interest and selecting algo-
rithms matching the PK, he inspected the clustering consensus without creating a consolidated
partition. He was particularly interested in non-consensual individuals that were highlighted by
the colored consensus bar—particularly persons with similar numbers of algorithms classifying
them into two distinct groups. He induced that those persons acted as bridges linking several
different communities, here families. Instead of creating consolidated communities, he created
a new group where he manually tagged all those persons acting as bridges, which was a behavior
of interest to him.

They also identified some issues with the prototype. It was not managing disconnected
networks at all when we showed the demo, and they stressed the fact that real networks always
have disconnected components. They were also asking about structural transformations, such
as filtering by attribute or by node type. We chose not to support these functions at this stage,
but they can be done through other standard network systems.

They were also interested in getting explanations about the algorithms, and why some would
pick the right groups and others would not. Our system is not meant to provide explanations
and works with black box algorithms. We wished we could help them but that would be another
project. Still, when an attribute-based algorithm matches the prior knowledge, we believe that
attribute-based explanations are more understandable, e.g., groups based on time, or income.

5.5 Discussion

As presented in §5.2.6, the existing approaches to creating clusters in social networks con-
sider three options: standard clustering, ensemble clustering, and semi-supervised clustering.
The proposed PK-Clustering approach combines aspects of the three options in order to give
more control to users in the analysis loop, and allow them to have more say in the final results.
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Proponents of automatic methods may argue that PK-Clustering gives users too much
influence on the final result as they can change the cluster assignments at will. On the other
hand, social scientists are rarely satisfied with current clustering methods, in part because they
run on network data that rarely represent all the knowledge they have of the social network, so
providing user control to correct mistakes is critical.

Traditional methods push users to believe the results of the first algorithms and parameter
selection they try (typically chosen randomly). Using PK-Clustering, users can still follow blindly
the results of one algorithm if they want but the system provides a more systematic approach. It
allows users to compare results, review consensus, think at each phase, and reflect on decisions.
Instead of passively accepting what the algorithms propose, users provide initial hypotheses—
which limits the chances of being primed by an algorithm, and explicitly validate the cluster
assignment of nodes, therefore performing a critical review of the automated results, yet with
fast interaction to accept many suggestions at once when appropriate.

This new approach allows users to discover alternative views. For example, when algorithms
do not match the PK, it is an indication that the PK is being challenged and may not be correct.
Users actively participate in the process of assigning, a requirement for social scientists. The
report produced at the end of the analysis adds transparency by recording where the results
come from for each node so decisions can be reviewed. Ultimately, social scientists remain
responsible for reporting and justifying their choices and interventions in their publications.

Bias issues are complex and the absence of ground truth limits researchers’ ability to measure
those biases. No approach solves all issues yet, but I believe that PK-Clustering offers a fresh
perspective on those issues and will lead to results that are more useful to social scientists.

5.5.1 Limitations
Many more clustering algorithms exist and could be added. Moreover, expanding the ex-

ploration of parameter spaces for clustering algorithms seems needed. Another limitation of the
current prototype is that some algorithms do not work well with disconnected components of the
graph. Unfortunately, social scientists’ datasets typically have many disconnected components.
This issue can be mitigated by separating components into a set of connected components,
run the algorithms on them, and merge the results. The prototype runs both with node-link
and PAOH representations, but it is better tuned to the PAOH representation because of its
highly readable nodes list and table format which makes the review of consensus easier. Better
coordination of the table with node-link diagrams and other network visualizations is needed.
Further case studies could also help us improve the utility of the tool as well as the provenance
table and summary.

5.5.2 Performance
The performance of PK-clustering strongly depends on the clustering algorithms. The

prototype implements fast algorithms to have acceptable computation times. Currently, a cut-
off automatically removes algorithms that have not produced a clustering after 10 seconds of
computation. We ran a benchmark of the performance on the two datasets of the case studies
with a laptop equipped with an Intel Core i7-8550U CPU 1.80GHz × 8 and 16 Gigabytes of
memory. For the full Marie Boucher social network described in §5.4.1, composed of 189 nodes
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and 58 hyperedges (1000 edges after the unipartite projection) it took 0.6 seconds to run all
our implemented algorithms and produce the matching. For the network of §5.4.2 about the
VisPubData of the VAST conference, made of 1383 nodes and 512 hyperedges (4554 edges
after projection), one algorithm (the Label Propagation algorithm) took 11.37 seconds to finish
and was abandoned because deemed too computationally expensive. Those two datasets are
representative of the many medium size datasets historians and social scientists carefully curate
(i.e., 50–500 nodes).

In order to improve computational scalability, progressive techniques can help to deal with
larger sizes [79]. The current user interface design for PK-Clustering1 would allow the ranked
list of algorithms to be progressively updated, and users to review a few individual algorithms
first while other algorithms are still running. Of course, visual scalability is also an issue with
larger datasets, as the list of people also grows. PAOHVis allows groups (like clusters) to
be aggregated or expanded, so we expect that users would expand clusters one by one to
review and consolidate them, while also being able to review the connections between the
proposed clusters. Users can also use the automated features of PK-Clustering to consolidate
the nodes (e.g., selecting one algorithm based on the ranking, or using the consensus slider
to consolidate all the nodes at once). Pixel-oriented visualizations [133] would facilitate the
review of consensus for a large number of nodes and clusters. Classic techniques like zooming
or fisheye views [126,202] would help as long as names remain readable, which is critical to our
users.

5.6 Conclusion

In this chapter, I introduced a new approach, called PK-Clustering, to help social scientists
create meaningful clusters in social networks. It is composed of three phases: 1) users specify
the prior knowledge by associating a subset of nodes to groups, 2) all algorithms are run and
ranked, and 3) users review and compare results to consolidate the final clusters.

This mixed-initiative approach is more complex than a traditional clustering process where
users simply press a button and get the results, but it provides social scientists with an oppor-
tunity to correct mistakes and infuse their deep knowledge of the people and their lives in the
results. With simple actions such as moving a slider, or dragging over icons, users are able to
interactively perform complex tasks on many nodes at once. The output of PK-Clustering is—
using a direct quote from a social scientist providing feedback on the prototype: “a clustering
that is supported by algorithms and validated, fully or partially, by social scientists according to
their prior knowledge”. Two case studies illustrated the benefits of the approach.

PK-Clustering follows traceability , simplicity , and document reality properties discussed in
chapter 1 and chapter 3, by respectively providing a summary report of the actions leading to the
final clustering, simple interactions, and the usage of bipartite multivariate dynamic networks
as a data model. This approach is a concrete proof-of-concept solution to Q3 in the context
of clustering, as it provides a framework for social scientists, specifically historians, to follow a

1The web application and source code are available at https://www.aviz.fr/Research/
Pkclustering

https://www.aviz.fr/Research/Pkclustering
https://www.aviz.fr/Research/Pkclustering
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clustering analysis supported by algorithmic power but always in control of the decision process,
through easy-to-use interactions. Clustering and social network analysis remain challenging
tasks, typically without ground truth to formally evaluate the results. If PK-Clustering limits
bias inherent to traditional clustering (priming bias and lack of control), the high influence
of users on the decision-making may introduce other types of bias. Still, I believe that PK-
Clustering offers a fresh perspective on the process of clustering social networks and gives users
the opportunity to report their results in a transparent manner.



6 Discussion and Conclusion

Contents
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1 Summary

In this thesis, I addressed the high-level question of how VA can help social historians
conduct network analysis, in their entire process, from the collection of documents to the
final analysis and visualization of constructed networks. Indeed, social historians currently use
visual and analysis tools to generate insights from curated networks, but the process they use is
tedious and error-prone, which can result in simplification, distortions, errors, and inconsistencies
[5, 155]. Moreover, current tools typically lead to qualitative descriptions of the network data
[207] instead of a deep understanding of the global and local network structure supported by
computation, mostly due to usability and interpretability issues. VA could therefore support
historians in 1) their data preparation process, and 2) the final analysis of curated networks.
Figure 6.1 shows a schematic representation of the potential place of VA in the HSNA process.
From continuous discussions with social historians, I identified three principles VA interfaces
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Figure 6.1 – Potential place of VA in the HSNA workflow defined in chapter 3.
should follow: traceability , simplicity , and document reality , to respectively ease the back
and forth between the different process steps while assuring reproducibility of analyses, have
expressive representations and tools that are simple enough to manipulate for social scientists,
and ground results in the concrete reality of the documents, hence limiting the introduction
of bias and distortion. More precisely, I tried to answer three questions with respect to those
properties:

Q1: How to model historical documents into analyzable networks with the right balance
between expressiveness and simplicity?
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Q2: What representations and interactions would allow social historians to answer complex
historical questions—with a focus on usability?

Q3: How to design VA tools and interactions that leverage algorithmic power but keep histo-
rians in control of their analyses and biases?

In chapter 3, I formalized the HSNA process from collaborations with social historians,
into five steps: textual sources acquisition, digitization, annotation, network creation, and
network visualization/analysis (see Figure 6.1); I identified recurring pitfalls for each step, such
as wrongly chosen network models or named entity recognition errors. The use of VA on the
whole process could limit the introduction of such pitfalls by allowing historians to reflect on
the annotation, encoding, and modeling processes through visualization, interaction, and data
mining mechanisms. For example, outlier detection and named entity disambiguation algorithms
could be applied to highlight wrong annotations and mentions which are likely referring to the
same entity to practitioners in their annotation process. Concerning the network creation step
(Q1), I proposed to model historical documents as bipartite multivariate dynamic networks to
have a good balance between expressiveness and simplicity , while satisfying traceability and
document reality properties. Since documents are explicitly represented as nodes in this model,
the network entities are directly traceable to the original sources, thus enabling to reflect on
the annotations while following socio-historical analyses with the same tools.

Leveraging the proposed network model, I presented the ComBiNet system in chapter 4
as a proof-of-concept to address Q2. By proposing easy-to-use exploration, visual querying,
and comparison interactions on a model encoding all different dimensions of the content of
historical documents (roles, social structure, location, time, other attributes), social historians
were able to 1) reflect on their annotation process and potentially detect errors, while 2)
answering complex historical questions on the specificities and differences of individuals and
groups of interest. Finally, I proposed PK-Clustering in chapter 5, a new method for clustering
based on the prior knowledge of social scientists, the consensus of automatic algorithms, and
interactions for exploration. This system gives a concrete proposition to addressQ3 by providing
a good balance between user control and data mining automatic capabilities while maintaining
traceability , simplicity , and document reality properties, through detailed reports of interactions
leading to the clustering, simple interactions mechanisms, and the use of bipartite multivariate
dynamic networks as a data model. These two systems demonstrate that VA tools can support
social historians in their overall workflow, and increase the traceability and control of the
process while leveraging complex representations and algorithmic power. While ComBiNet and
PK-Clustering have several limitations that I discuss in §6.2, I believe they lead the way towards
better integration of VA tools to support social historians in their overall workflow, with a better
level of simplicity and usability than state-of-the-art systems. Below, I discuss the perspective
of new VA tools for HSNA, social history, and more globally the future of Digital Humanities
in §6.3.

6.2 Discussion

I discuss in this section different limitations of my work:
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Network modeling. I proposed with my collaborators to model historical documents using
bipartite multivariate dynamic networks, as it allows to satisfy traceability , simplicity , and doc-
ument reality properties. However, this type of modeling has some limitations in 1) the type
of sources it can model, 2) how persons are represented in the network, and 3) how uncer-
tainty is managed. We elaborated this model from collaborations with several social historians
who study semi-structured documents, such as marriage acts, birth certificates, business con-
tracts, construction documents, census, and migration forms. These types of documents have
a consistent structure and mention people in a restricted number of relationships (spouses and
witnesses for marriages, parents and children for birth certificates, etc.) that can be encoded
as roles in a consistent manner. However, other types of textual documents can be leveraged
by historians, which can be less structured or without any predefined structure at all. One ex-
ample is correspondence letters, which is a type of document often studied in history [72,206].
The content of letters is more verbose and varies from one to another, making the process of
defining a set of relationships to encode more difficult. Bipartite multivariate dynamic networks
would therefore not necessarily be an efficient model to encode this type of data, and other
network models may be a better fit (such as directed networks). Moreover, in the proposed
model, if documents are concretely represented as one type of nodes, person nodes constitute
a construction made of the integration of several mentions of the same person from different
sources. Historians, therefore, have to follow a named-entity recognition and disambiguation
process to give identifiers to the different persons mentioned in the documents and merge the
information from several sources into one node. In one of my discussions with a historian, she
mentioned that, in this model, “document nodes can be considered as emic and person nodes
etic entities1.”

Historians hence have to make decisions, especially when there is ambiguity in the identity
of persons, and when potentially contradicting information is written on the same individuals
(concerning age, origin, profession, etc.). This process raises a problem that is widespread in
quantitative social history, but also in most empirical science, which is the handling of ambiguity
and uncertainty. Practitioners typically dismiss the uncertainty inherent to most textual data
when constructing networks and encoding specific entities, thus removing it in the making of
final conclusions. This is particularly true in history, where many mentions are ambiguous and
not always precise [66]. Some work has been done on the handling of uncertainty in network
models [2] and visualizations [218], but on simple network structures and not in the specific
context of social history.
Temporality. The time is key information for historians, as they want to contextualize the
phenomena they study in a period, relative to other events. This is why we encode time in
our suggested model of bipartite multivariate dynamic networks through the time mentioned

1Emic and etic are two distinct approaches used in anthropology [111] that are based either onthe inner perspective of the insider culture (emic), or from an observer perspective (etic), whichis the one of the scientist. In our case, historical documents are produced by the people of theperiod of study and their content is hence based on an “insider” perspective. In that regard, doc-ument nodes can be considered as emic. Conversely, person nodes must be constructed from anencoding process of the historian, following a deep inspection and cross-referencing of differentsources. They can thus be considered an an etic concept.
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in historical documents, so historians can explore and analyze this dimension of their data.
However, dynamic graphs are complex to visualize and analyze. In ComBiNet, if users can
explore the dynamic aspect of the data through time distribution, overlays, and dynamic filters,
it currently does not propose a layout unfolding the time structure. It may therefore be harder to
detect time-related patterns compared to topological and geolocated ones (even if possible with
interactions). PK-Clustering visualize the data through a static or dynamic layout. However,
the current prototype considers only static clustering, which can be seen as a simplification of
the real-world groups which can often evolve with time [208]. Indeed, persons can often meet
new people, change affiliations, or move places, leading groups to merge, split, and disappear.
PK-Clustering is already a complex process for static clustering but could be extended to the
building of dynamic groups with the use of time-dependent prior knowledge and dynamic graph
clustering algorithms.

HSNA and Social History. HSNA is now a widely used method in quantitative history to
study relational structures and phenomena of the past [136,193,258]. The formalisms and tools
proposed in this thesis aim at improving the workflow of historians following this type of method.
Yet, historians usually have heterogeneous and various documents when they are researching
an area and era of interest, and usually apply different methods at the same time to make their
historical conclusions [189, 193]. The core of their work consists in extracting knowledge from
rigorous inspection and cross-referencing of historical documents. If providing VA tools for their
HSNA analysis from start to finish is useful to them, other types of analysis methods should
also be implemented in their work environments to give them a larger set of options to make
socio-historical conclusions. This includes methods like text analysis, correlations, and statistical
testing [156]. History is also often considered a qualitative process, meaning that historians
often make conclusions and hypotheses based on the reading of other sources and the qualitative
analysis of their documents. VA tools that aim to encompass the whole historical workflow
should be able to support this type of analysis, for example by managing textual annotation
management on digital documents, similar to Jigsaw’s feature for intelligence analysis [234].
Some quantitative methods can also let users express some of their qualitative knowledge to
influence the results. For example, Bayesian statistics and semi-supervised machine learning
methods are based on the expression of prior knowledge which will influence the computational
results. Similarly, With PK-Clustering, historians can express their prior knowledge and use it
as a start to find meaningful clusters, by seeing how the diversity of algorithms matches their
qualitative knowledge of the data. VA tools for social history should therefore let users follow
both qualitative and quantitative inspection of their documents, from data collection to final
analysis, with combinations of several methods and prior knowledge expression.

Globality of the HSNA workflow. The key point of this thesis is to show that VA tools should
support the overall HSNA workflow of historians. VA can be used to help them from data col-
lection to their final analysis in the same environment, to ease back and forth between the steps,
allowing easier exploration of different analysis goals, and better traceability/reproducibility for
the overall analysis. By modeling historical documents into bipartite multivariate dynamic net-
works (see chapter 3), we represent the documents and their content as a network, allowing
traceability between the network entities and the original documents. If historians find errors
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in the network, they can rapidly trace it back from which document the errors come from,
and correct it either directly in the visual interface, or in their annotation software using the
unique identifier of the document. This modeling choice is a first step towards better integra-
tion of the different steps into the same VA loop. Moreover, with ComBiNet, social scientists
can apply filters to study specific visions of the network and follow multiple analysis paths on
different dimensions of the data. ComBiNet, therefore, allows a better integration of the anno-
tation/encoding, modeling, and analysis/visualization steps, using the same interface. However,
it does not allow complex network transformations (such as creating simple unipartite networks
from projections) or creating new annotations in the texts of the documents. Historians still
need to use ad-hoc methods for data collection and encoding and need to make their own
scripts for complex network transformations. No tool currently exists which encompasses the
whole workflow of historians, from the collection of documents to the final analysis.

6.3 Perspectives

I list in this section how this work could be extended, and interesting research directions for
social history VA applications.

Uncertainty models. As discussed in §6.2, historical sources are filled with ambiguity and
imprecise information. Practitioners have to disambiguate mentions of homonyms to know
if they refer to different persons or not. They also have to deal with potential surnames or
plain errors in the writing of names. Similar problems arise for other entities’ mentions such as
locations since many places in the world have the same name or have changed names with time.
With non-contemporary documents, location mentions can also have inconsistent resolution and
refer to places with non-defined borders, such as “county of XX”, or “kingdom of XX”, which do
not exist anymore. Moreover, historians can find contradictory information in several sources,
for example concerning persons and events. When encoding their sources, practitioners hence
have to make decisions on all this ambiguous information, by cross-referencing the documents,
and using their common sense and intuition, to decide what seems the most probable choices.
However, we could think about encoding schemes and data models which encapsulate the
uncertainty inherent to historical data, to ground analysis results in a less biased and more
realistic vision of the sources. I think this is a promising research direction, which has not
stirred a lot of interest until now.

Dynamic Layouts and Clustering. As discussed in §6.2, temporality is one of the key dimen-
sions of historical networks modeled as bipartite multivariate dynamic networks. Several layouts
have been proposed to show the time aspect of dynamic graphs [13,37] and bipartite dynamic
graphs (which can be seen as dynamic hypergraphs), such as PAOHVIS [249], on which the
layout of PK-Clustering is based. However, this type of layout does not allow us to see the
attributes of persons and documents, nor the geolocation of entities. Moreover, most proposed
layouts do not scale beyond approximately one hundred nodes. One way to solve this scalability
problem is to aggregate the network, for example using dynamic clustering. Several dynamic
clustering algorithms have been developed for dynamic networks, but they often struggle to
take into account the complex dynamics of clusters, such as merging, splitting, or commu-
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nity drifting. Furthermore, no layout currently exists to visually display dynamic communities
specifically for dynamic hypergraphs. More work can thus still be done in this space, to vi-
sualize the dynamic aspect of bipartite multivariate dynamic networks, and visualize dynamic
communities. I started to develop a prototype to visualize the dynamic aspect of bipartite
multivariate dynamic networks, with a focus on the document. Figure 6.2 shows the prototype.
Each column corresponds to a timeslot and each square to a document. Persons mentioned in
documents are displayed in the document nodes as smaller rectangles, colored by their roles.
For one person, all its mentions are linked through arcs inside one timestep, and splines through
different timeslots. The splines are optimized to be of minimum size between each timestep.
This representation should allow revealing the community structure of this type of data, by
placing documents sharing many persons nearby. It also enables one to rapidly see properties
associated with documents, for example by encoding the document nodes with color, as shown
in Figure 6.2 (bottom).

This layout prototype could serve as a base to develop a process similar to PK-Clustering,
but for creating meaningful dynamic groups, based on the consensus of dynamic clustering
algorithms, prior knowledge of social historians, and exploration capabilities.

Machine Learning, automation, and agency. Machine learning went through rapid progress
in the last 10 years, mainly due to the increase in data storage, computing power, and the
rise of deep learning architectures. It has been applied to various tasks such as automatic
driving, fraud detection, computer vision, and medical diagnostics. In the context of SNA,
machine learning methods have been used to automatically extract knowledge through tasks
such as node classification, clustering, and link prediction [169]. More broadly, it has also been
used for historical document digitization [194]. If machine learning can give state-of-the-art
accuracy on many of those tasks, it also poses issues with the explainability and reliability
of the results in real-world applications. It can be particularly frustrating in the context of
social history, as historians need to be able to understand and explain the structure of their
networks, as discussed in chapter 5. Several methods and approaches now focus on trying to
explain the outputs of these black-box algorithms to the end user [121]. Similarly, research
is done on how to design interactive systems which leverage machine learning algorithms to
guide and advise users, which are at the center of the decision-making process. This concept
of utilizing artificial intelligence power to support human decision-making through interactive
systems has been coined as “agency” [112] and “human-centered artificial intelligence” [228].
PK-clustering is based on the core idea that machine learning should support users while not
removing their decision-making process, by providing automatic suggestions through clustering
results, while letting social historians decide. ComBiNet could also be extended with machine
learning suggestions, for example, to suggest social scientists recurring subgraphs in the data,
that could be interesting to them. Over-represented subgraphs could be a query start that
the users would refine through the easy-to-use visual query system. This idea of human-
centered artificial intelligence could be applied not only to the analysis part but also to the
data preparation workflow, for example in document transcription, named entity recognition,
and disambiguation, all tasks that machine learning is efficient at.

A common workflow interface. Currently, most social scientists have to use a lot of different
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Figure 6.2 – Prototype of a document-centered dynamic layout for bipartite mul-tivariate dynamic networks, showcased with construction contracts in Piedmont(see collaboration #1 in chapter 3). The layout can show the mentions of personsencoded with their roles as color (top) or a focus on the documents if a property isselected (bottom). Here, the region attribute is selected, hence coloring construc-tion contracts depending on their locations.
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pieces of software, files, and ad-hoc processes to follow quantitative analyses. I provided two
VA interfaces to help historians analyze their data and ease back and forth between the different
steps of their analysis. Both interfaces use the same data format to lower the time cost to
switch between them. However, historians still have to collect and annotate/encode their
data manually with ad-hoc methods and may have to convert their data to various formats
when using several visual analysis tools. All these operations usually break the traceability and
reproducibility of their analyses, and make their process tedious, especially since it often requires
the writing of conversion scripts, which they do not necessarily have the programming skills to
do. I, therefore, argue there is a need for visual interfaces which integrate the whole workflow
of social scientists, from the data collection to the formulation of high-level conclusions. If all
the processes they do is integrated into the same visual environment, it would ease the flow of
the analysis, increase the traceability and replicability of the actions and results, and allow them
to take several exploration paths more easily. ComBiNet and PK-Clustering could for example
be integrated into the same environment, with added possibilities of managing documents
in the same place, applying annotations/encoding, and seeing in real time the creation of
networks and transformations from the annotation process instead of having to do many back
and forth. This constitutes an interesting research direction as it would allow social historians
to collect, annotate, apply transform, analyze, and visualize their historical documents in the
same environment, with easy-to-use interactions and artificial intelligence support.

6.4 Conclusion

To conclude, the goal of this thesis was to provide answers and directions towards the
question of how VA, and more globally computer science, can help and support historians in
the analyses they want to make. Towards this goal, I first formalized the current HSNA pro-
cess from collaborations and discussions, defined three properties tools supporting this process
should satisfy (traceability , simplicity , and document reality , and proposed two interfaces show-
casing visualization and interactions mechanisms to support social historians in their workflow,
leveraging historical documents modeled as bipartite multivariate dynamic networks. This net-
work model explicitly represents the documents and the persons as nodes, thus enabling the
representation of complex social relationships as they are mentioned without distortion and the
tracing of networks’ entities back to the documents, while keeping a good level of simplicity
in regard to more complex models. ComBiNet allows users to explore this data model, and,
therefore, reflect on their annotations, reveal specific facets of the data, and globally high-
light and compare specific groups and behaviors to either detect erroneous patterns or answer
socio-historical questions. PK-Clustering aims at integrating better the clustering task in the
social historians’ workflow, by providing a mixed-initiative approach for clustering on bipartite
multivariate dynamic networks, leveraging the prior knowledge of practitioners, the consensus
of automatic algorithms, and exploration capabilities. Both systems have been validated with
real use cases, and aim at providing simple-to-use yet expressive tools, which let historians at
the center of the analysis loop. Indeed, the use of quantitative methods in history and more
globally the humanities has led to many expectations in the last 50 years, but also many dis-
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appointments due to usability and interpretability issues. More recently, with the rise of the
popularity of machine learning, many propositions are made towards automatic inspection, ex-
traction, and analysis of historical data based on artificial intelligence. Yet, similar criticisms of
the beginnings of quantitative history emerged towards those methods, as they can easily lead
to disembodied work in regard of the complexity of the content of historical documents.

Moreover, historians actually regard highly the inspection process of the sources. As one his-
torian mentioned, “What many people promoting artificial intelligence to automatically read and
inspect historical sources do not understand, is that this part is actually the most fun aspect of
the historical work, and why many of us do it.” Computer-supported tools for digital humanities
should therefore support practitioners with interactive visualizations and quantitative-supported
suggestions, instead of only providing automatic hard-to-interpret results.

It is the responsibility of the computer science community to focus on usability and users’
control to produce tools adopted by the wide and diverse audience of social sciences. In
contrast, social scientists still have to do the work for learning basic computer-science concepts
and techniques such as file formats, data models, data encoding, and types (strings, integers),
to be able to format their data at least basically to import them in computer-supported tools,
and have more thorough discussions with computer scientists on their needs. To support the
adoption of such tools by the humanities, both communities have to connect in meetups,
allowing social scientists to share their workflows, research questions, and technical issues, and
computer scientists to guide them on the preparation, managing, and computational analysis
of their data. I think this collaborative vision constitutes a fertile ground for the production of
computer-supported systems with low entry barriers which place social scientists at the center
of the analysis loop by providing data-supported suggestions through visualization and easy-to-
use interaction mechanisms. Propositions of this work aim in this direction, which I think is
where lies the most difficult yet the most relevant area of the future of digital humanities as a
field. Indeed, even though many methods and tools already exist to follow deep and complex
analyses of sociological data, these are mostly only used by practitioners who claim themselves
as digital humanists and not by the majority of social scientists who often get frustrated when
using computer-supported tools and often need the help of computer scientists on the side.
I think the only way to provide tools that truly empower the wider humanities’ audience, is
by creating the most flexible, expressive, and usable tools possible, which needs continuous
discussions between the two communities (computer scientists and social scientists).
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Résumé
Cette thèse vise à identifier théoriquement et concrètement comment l’analyse visuelle peut

aider les historiens dans leur processus d’analyse de réseaux sociaux. L’analyse de réseaux so-
ciaux est une méthode utilisée en histoire sociale qui vise à étudier les relations sociales au sein
de groupes d’acteurs (familles, institutions, entreprises, etc.) en reconstruisant les relations du
passé à partir de documents historiques, tels que des actes de mariages, des actes de naissances,
des contrats commerciaux ou des recensements. L’utilisation de méthodes visuelles et analy-
tiques leur permet d’explorer la structure sociale formant ces groupes ainsi que de relier des
mesures structurelles à des hypothèses sociologiques et des comportements individuels. Cepen-
dant, l’encodage et la modélisation des sources menant à un réseau finalisé donnent souvent
lieu à des erreurs, des distorsions et des problèmes de traçabilité, et les systèmes de visualisation
actuels présentent souvent des défauts d’utilisabilité et d’interprétabilité. En conséquence, les
historiens ne sont pas toujours en mesure d’aboutir à des conclusions approfondies à partir de
ces systèmes : beaucoup d’études se limitent à une description qualitative d’images de réseaux,
surlignant la présence de motifs d’intérêts (cliques, îlots, ponts, etc.). Le but de cette thèse
est donc de proposer des outils d’analyse visuelle adaptés aux historiens afin de leur permettre
une meilleure intégration de leur processus global et des capacités d’analyse guidées. En col-
laboration avec des historiens, je formalise le processus d’une analyse de réseau historique, de
l’acquisition des sources jusqu’à l’analyse finale, en posant comme critère que les outils utilisés
dans ce processus devraient satisfaire des principes de traçabilité, de simplicité et de réalité doc-
umentaire (i.e., que les données présentées doivent être conformes aux sources) pour faciliter
les va-et-vient entre les différentes étapes du processus et la prise en main par l’utilisateur, ainsi
que pour ne pas distordre ou simplifier le contenu des sources. Pour satisfaire ces propriétés, je
propose de modéliser les sources historiques en réseaux sociaux bipartis multivariés dynamiques
avec rôles. Ce modèle intègre explicitement les documents historiques sous forme de nœuds
dans le réseau, ce qui permet aux utilisateurs d’encoder, de corriger et d’analyser leurs don-
nées avec les mêmes outils. Je propose ensuite deux interfaces d’analyse visuelle permettant,
avec une bonne utilisabilité et interprétabilité, de manipuler, d’explorer et d’analyser ce modèle
de données. Le premier système ComBiNet offre une exploration visuelle de l’ensemble des
dimensions du réseau à l’aide de vues coordonnées et d’un système de requêtes visuelles perme-
ttant d’isoler des individus ou des groupes et de comparer leurs structures topologiques et leurs
propriétés à l’aide de visualisations et d’interactions adaptées. L’outil permet également de
détecter des motifs inhabituels et ainsi de déceler les éventuelles erreurs dans les annotations.
Le second système, PK-Clustering, est une proposition d’amélioration de l’utilisabilité et de
l’efficacité des mécanismes de clustering dans les systèmes de visualisation de réseaux sociaux.
L’interface permet de créer des regroupements pertinents à partir des connaissances a priori de
l’utilisateur, du consensus algorithmique et de l’exploration du réseau dans un cadre d’initiative
mixte. Les deux systèmes ont été conçus à partir des besoins et retours continus d’historiens,
et visent à augmenter la traçabilité, la simplicité et la réalité documentaire des sources dans
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le processus d’analyse de réseaux historiques. Je conclus sur la nécessité d’une meilleure in-
tégration des systèmes d’analyse visuelle dans le processus de recherche des historiens. Cette
intégration nécessite des outils plaçant les utilisateurs au centre du processus avec un accent
sur la flexibilité et l’utilisabilité, limitant ainsi l’introduction de biais et les barrières d’utilisation
des méthodes quantitatives, qui subsistent en histoire.
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