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Abstract

This thesis aims to give a broad coverage of central concepts and prin-
ciples of causation and in particular the ones involved in the emerging
approaches to causal discovery from time series.

After reviewing concepts and algorithms, we first present a new ap-
proach that infers a summary causal graph of the causal system under-
lying the observational time series while relaxing the idealized setting of
equal sampling rates and discuss the assumptions underlying its valid-
ity. The gist of our proposal lies in the introduction of the causal tempo-
ral mutual information measure that can detect the independence and the
conditional independence between two time series, and in making an ap-
parent connection between entropy and the probability raising principle
that can be used for building new rules for the orientation of the direction
of causation. Moreover, through the development of this base method, we
propose several extensions, namely to handle hidden confounders, to in-
fer a window causal graph given a summary causal graph, and to consider
sequences instead of time series.

Secondly, we focus on the discovery of causal relations from a statis-
tical distribution that is not entirely faithful to the real causal graph and
on distinguishing a common cause from an intermediate cause even in the
absence of a time indicator. The key aspect of our answer to this problem is
the reliance on the additive noise principle to infer a directed supergraph
that contains the causal graph. To converge toward the causal graph, we
use in a second step a new measure called the temporal causation entropy
that prunes for each node of the directed supergraph, the parents that are
conditionally independent of their child. Furthermore, we explore com-
plementary extensions of our second base method that involve a pairwise
strategy which reduces through multitask learning and a denoising tech-
nique, the number of functions that need to be estimated.

We perform an extensive experimental comparison of the proposed al-
gorithms on both synthetic and real datasets and demonstrate their promis-
ing practical performance: gaining in time complexity while preserving
accuracy.
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Résumé

Cette thèse a pour but d’expliquer les concepts et principes centraux de la
causalité. Nous nous intéresserons particulierement à la découverte cau-
sale à partir de séries temporelles, domaine émergent aujourd’hui avec,
notamment, les données industrielles de capteurs. Dans les deux premiers
chapitres, nous présentons les concepts puis les algorithmes existants dans
ce domaine.

Ensuite, nous présentons une nouvelle approche qui infère un
graphe récapitulatif du système causal sous-jacent aux séries temporelles
tout en assouplissant le cadre idéalisé de fréquences d’échantillonnage
égaux, tout en discutant ses hypothèses et sa validité. La principale
nouveauté dans cette méthode réside dans l’introduction de la me-
sure d’information mutuelle temporelle causale qui permet de détecter
l’indépendance et l’indépendance conditionnelle entre deux séries tempo-
relles, et l’établissement d’un lien apparent entre l’entropie et le principe
d’augmentation de la probabilité d’un effet sachant sa cause, lien qui peut
être utilisé pour construire de nouvelles règles pour l’orientation de la di-
rection de la causalité. De plus, à travers le développement de la première
méthode, nous proposons plusieurs extensions qui permettent de gérer les
causes communes cachées, de déduire un graphe causal temporel à partir
d’un graphe récapitulatif et de pouvoir s’adapter aux données ordonnées
(pas nécessairement temporelles).

Puis, nous nous concentrons sur la découverte de relations causales
à partir d’une distribution statistique qui n’est pas entièrement fidèle au
graphe causal réel et sur la distinction entre une cause commune et une
cause intermédiaire même, en absence d’indicateur de temps. L’aspect
clé de notre réponse à ce problème est le recours au principe du bruit
additif pour déduire un supergraphe dirigé contenant le graphe causal.
Pour converger vers le graphe causal, nous utilisons l’entropie de causa-
lité temporelle qui élague pour chaque nœud du supergraphe dirigé, les
parents qui en sont conditionnellement indépendants. En outre, nous ex-
plorons des extensions complémentaires de notre deuxième méthode qui
impliquent une stratégie par paires et une stratégie multitâche.

Nous effectuons une comparaison expérimentale approfondie des al-
gorithmes proposés sur des ensembles de données à la fois synthétiques et
réels et nous montrons leurs performances pratiques prometteuses : gain
en complexité temporelle tout en préservant la précision.
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Chapter 1

Introduction

I would rather discover one
causal relation than be king of
Persia.

Democritus
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In this chapter, we first give a brief intuitive introduction of the con-
cept of causation and show why it is crucial for intelligent systems, while
building toward the importance of the topic of causal discovery. Through-
out the discussion, we introduce causal graphs and its associated subrou-
tines related to time series which are crucial for this thesis, and finally we
outline the problems raised in this thesis.

1.1 Causation

Causality takes root in the center of our universe. Humankind has long
been aware of causation, as it was mentioned in the ancient Hindu scrip-
tures: “Cause is the effect concealed, effect is the cause revealed” [Ivance-
vic and Ivancevic, 2007]. It was also defined in a medical context in an-
cient Greece: “We consider the causes of each condition to be those things
which are such that, when they are present, the condition necessarily oc-
curs, but when they change to another combination, it ceases” [Nutton,
1980]. Even Democritus famously proclaimed that he would rather dis-
cover a causal relation than be the king of presumably the wealthiest em-
pire of his time. But what is causation? There is not a universal answer,
as causation received many definitions. On the one hand, causation is re-
garded as a primitive concept that indicates how the world progresses,
so basic a concept that it is more apt as an explanation of other concepts
than as something to be explained by others more basic. On the other
hand, causation is regarded as derivative and an abstraction. Either way,
it seems that without a doubt our intelligence is based on it and that a leap
of intuition may be needed to grasp it. So in its most intuitive form, causa-
tion is regarded as the influence by which a cause (one event, process, etc.)
contributes to the production of the effect (another event, process, etc.)
where the cause is partly responsible for the effect and the effect is partly
dependent on the cause and can, in turn, be a cause of many other effects.
Accordingly, causality is implicit in the logic and structure of ordinary lan-
guage and it is embedded in our understanding mechanism that pushes
humans to invoke why questions. Why is it dark? Where do babies come
from? Why is the sea salty? What is the effect of exercise on heart rate?
What is the effect of industrial pollution on the environment? What’s the
source of the cholera disease [Snow, 1855]? And so, as already advocated
by Spirtes, Glymour and Scheines, in attempting to answer such ques-
tions, both the baby and the scientist try to turn observation into causal
knowledge [Spirtes et al., 2000].
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1.2 Why causality?

From the perspective of artificial intelligence (AI), causality is crucial
for explanatory AI, since an effect is usually explained as a subset of its
causes [Miller, 2019], while it is also necessary for invariant predictive sys-
tems. If the judgments of machines are to be of any use to us, we need them
to distinguish between causal relations and mere correlations. Causality
makes things invariably predictable and explainable, whereas correlation
is a powerful tool to predict with no insurance about invariability and
which is not sufficient to explain. Commercial and research work in AI
is currently exploding everywhere, and investments in AI are accelerat-
ing at an unprecedented rate. Progress in certain fields like game playing
and computer vision has been extraordinary: using learning techniques, a
machine can distinguish objects in images, recognize speech, and beat hu-
mans in old Atari games and board games like Go. Nevertheless, despite
these impressive achievements, the usage of machine learning methods in
industry is lagging far behind. Industrial organizations still have many
concerns about deploying AI systems, and these concerns are well justi-
fied. The first main concern relates to explainability [Spreeuwenberg et al.,
2019]. Nowadays, in the field of AI, there is a clear tension between perfor-
mance (predictive accuracy) and explainability. Often the best-performing
methods such as deep learning are black boxes, meaning that they lack
transparency and provide no explanation. In practical cases, intelligent
systems need to collaborate with humans to solve complex problems, and
like any efficient collaboration, this requires good communication, trust,
clarity, and understanding [Ribeiro et al., 2016]. But how can we trust
such a system if it does not provide us with an explanation? In addition,
to be integrated with high-risk applications, these systems need to be held
accountable for their own actions. Imagine a world in which self-driving
cars replaced other means of transportation; in such a world, how can we
determine who is responsible for a car crash? Was it a technical error or
a human error? It is evident that a black box system would not be useful
in such investigations. Lastly, intelligent systems have shown prejudice
in terms of gender (promoting men for job offers) and ethnicity. Thus,
fairness is an important condition that these systems should fulfill before
conquering the industry. But if the decision-making processes are not ex-
plained, how can we easily verify whether the model discriminates based
on gender, political affiliation, or race? As an example, risk assessment
software in the US sentenced a convict to a six-year imprisonment. Since
the software was unable to provide an explanation for the verdict, the pris-
oner’s right to a decision based on accurate information had been violated
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[Završnik, 2019]. The second main concern is linked to robustness [Peters
et al., 2016]. Currently, machine learning techniques excel at classifying
objects, but it could be duped or confounded by novel situations: a highly
efficient neural network trained to classify animals could easily categorize
a dog as a fish if the dog was swimming (supposing that the training data
illustrated multiple scenarios of fish swimming in water, and no scenarios
of dogs in water); or simple disruptions on a highway that are hardly no-
ticed by humans can cause state-of-the-art deep learning systems to mis-
classify road signs [Eykholt et al., 2018]. A small change in the distribution
can have severe consequences on the performance of current AI systems,
and many scholars are blaming deep learning by pointing to their black
box nature and alchemy [Darwiche, 2018]. Furthermore, an AI system
laboriously trained to carry out one task (e.g., identifying cats) has to be
taught all over again to do something else (e.g., identifying dogs). Transfer
learning methods have been introduced to tackle such problems, but with
these methods, the intelligent system is liable to lose some of the exper-
tise gained in the original task. To use the old knowledge acquired from
learned tasks to help learn a new task, it is first necessary to distinguish
between relevant transportable predictors and irrelevant noisy informa-
tion.

These shortcomings have something in common: they exist because
intelligent systems do not understand causation [Pearl and Mackenzie,
2018]. While they can see that some events are associated with others,
they are unable to ascertain which things directly cause others to happen.
Indeed, machine learning systems perform well when learning connec-
tions between input data and output predictions, although they find it
difficult to reason about cause-effect relations and adapt to environmental
changes. Machine learning models that can capture causal relationships
will be more explicable, generalizable, robust, and transportable. Indeed,
machine learning systems based on causes and effects are explicable by
construction, since the explanation is usually a subset of the causes [Miller,
2019]. In such systems, robustness is ensured, since causality models in-
terventional distribution, making it immune to distribution changes and
easily transported [Pearl and Bareinboim, 2011]. Causality allows us to
easily find and transfer predictors from one domain to another: accidents
are correlated with black cars in the Netherlands but perhaps with red
cars in the US. Using color as a predictor does not generalize, but a causal
factor such as male testosterone levels will generalize easily. In addition,
causality would open doors to new horizons that machine learning could
not explore. Armored with causality, intelligent systems will acquire the
ability to perform new crucial tasks: answering causal questions. Many
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statistical attempts have been made to answer such questions, but they are
often confronted with Simpson’s Paradox or Berkson’s paradox [Pearl and
Mackenzie, 2018]. Simpson’s paradox relates to confounder bias, which
implies that an association in an overall population can disappear or even
change direction in subpopulations, that is, when it is conditioned by a
relevant variable, typically a grouping variable. For example, in Figures
1.1a and 1.1b, the response time of servers for a given product, which was
upgraded at time 17h, is plotted against time; in the former all points have
the same color, while in the latter, points are distinguished by different
colors depending on the their server type. In Figure 1.1a, the update did
not change the response time of the servers. But by looking at the response
time of each server individually in Figure 1.1b, we seem to have a different
conclusion: the update did change the response time of the servers. Which
is the right conclusion? Intuitively this question is simple and naive. But
statistically speaking, a model cannot decide which conclusion is the right
one, therefore in statistics, such problems are considered a paradox (for
an example of Simpson’s paradox relating to Covid-19, see von Kügel-
gen et al. [2020]). Berkson’s paradox relates to selection bias. For exam-
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Figure 1.1 – Example of Simpson’s paradox: the upgrade appears to be
beneficial in one of the servers but ineffective over all servers.

ple, as shown in Figure 1.2, during World War II, the Royal Air Force lost
many planes to anti-aircraft fire, so they decided to armor them. But where
should the armor be put? The data told them that bullet holes are always
on the wings and in the middle of the planes, so it seemed obvious that the
extra armor should be put in these places. However, this was incorrect, be-
cause the data did not contain all the information. Indeed, airplanes with
bullets in other places never returned. The data therefore misled them,
because they did not take the unknown data into account. They did not
ask themselves why or engage in counterfactual thinking, which is usually
of the sort: “What would have happened if ...?”. Fortunately, the mathe-
matician Abraham Wald was able to do so [Wald and for Naval Analyses ,
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Figure 1.2 – The damaged parts (in red) of returning airplanes show loca-
tions where they can support damage and still return home.

U.S.].
One of the main reasons why causal notions were non existent in most

of the machine learning literature, is that causal questions cannot be ex-
pressed through mathematical equations. Consequently, a concrete re-
search effort began in the last few decades, and introduced a causal cal-
culus known as do-calculus [Pearl, 2000] (for more details see Chapter
2 Section 2.8), that permits the generation of probabilistic formulas for
the effect of interventions in terms of the observed probabilities, i.e., turn
causal questions into statistical equations that can be estimated from the
data. To enable a machine to use do-calculus efficiently, one needs to put
at its disposal a causal structure that represents the causal relations of the
system. Causal structures are often explicitly represented in terms of a
directed graphs. Unlike other graphs with directed or undirected edges,
which merely represent an independence structure, causal graphs support
a very strong interpretation formalized as follows:

Definition 1 (Causal graph). A graph G = {V, E} with a set of nodes V =
X1, · · · , Xd and set of edges E, is causal, if for any directed edge Xp → Xq in E,
Xp is a direct cause of Xq relative to nodes in V.

It means that even if you randomize all other variables in V\{Xp, Xq},
thereby breaking any causal connection between Xp and Xq through these
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Figure 1.3 – Causal graph showing that server type is a mediator between
the update and response time. R: response time, S: server type, U: update.

other variables, Xp still has a causal effect on Xq. The above definition
allows for cyclic causal relations. In contrast with the typical assumption
in the causal discovery literature, we do not assume here that the true
causal graph is necessarily a Directed Acyclic Graph (DAG).

Using the graphical notation and do-calculus, causal questions can be
treated by a machine. For the sake of illustration let’s go back to the Simp-
son paradox example (Figure 1.1). Assume that the causal graph of the
system is the one presented in Figure 1.3; the server type is a mediator be-
tween the update and the response time. Then, by simple causal reason-
ing, the answer becomes clear. To remove the confounding bias, we should
condition on the common cause. The do-calculus is a tool that enables ma-
chines to do the exact same reasoning as we just did. The do-calculus
allows an analysis of the effect of interventions or distribution changes
without actually requiring a physical intervention by drawing conclusions
from a causal graph. The prerequisite of this process is knowing the un-
derlying causal graph. But what happens when we do not have a causal
graph at our disposal?

1.3 Problem statement

Sometimes it is possible to construct a causal graph with the help of
a human expert. But in complex systems, human experts are not always
capable of providing such graphs. Another possibility involves identi-
fying causal relations in an experimental setting, such as a randomized
controlled trial where each individual in the experiment is randomly as-
signed to either the treatment or control group. Naturally, the interven-
tional aspect of these procedures raise many concerns, starting from the
ethical concerns, the expense, and the feasibility, namely when the data-
generating process is unavailable [Spirtes and Zhang, 2016]. In such case,
the only possibility left is to try to discover causal relations from observa-
tions, known as causal discovery and which denotes the inverse problem
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Causal Graph Knowledge

Causal Reasoning

Causal Discovery

Figure 1.4 – The relationships between the causal knowledge and causal
graphs, and between causal discovery and causal reasoning.

to causal reasoning (as summarized in Figure 1.4). However, causal rela-
tions are not features that can be directly read off from the data but have to
be inferred. The field of causal discovery is concerned with the inference
of a causal structure from its empirical implications and the assumptions
that support it. It has drawn much attention in several fields, and propos-
als have been presented for various types of data: independent identically
distributed (i.i.d.) data [Spirtes et al., 2000, Hoyer et al., 2009], time series
[Peters et al., 2013, Runge et al., 2019] and images [Lopez-Paz et al., 2017].
In this thesis we mainly focus on observational 1 time series.

Time series arise as soon as observations, from sensors or experiments,
for example, are collected over time. They are present in various forms
in many different domains, as healthcare (through, e.g., monitoring sys-
tems), Industry 4.0 (through, e.g., predictive maintenance and industrial
monitoring systems), surveillance systems (from images, acoustic signals,
seismic waves, etc.) or energy management (through, e.g. energy con-
sumption data) to name but a few.

For time series, the causal graph G = (V, E) with V the set of vertices
and E the set of edges is called a full time causal graph (also called infinite
dynamic causal graph in [Malinsky and Spirtes, 2018]) and represents a com-
plete graph of the dynamic system, through infinite vertices.

Definition 2 (Full time causal graph). Let X be a multivariate discrete-time
stochastic process and G = (V, E) the associated full time causal graph. The
set of vertices in that graph consists of the set of components X1, . . . , Xd at each
time t ∈ Z. The edges E of the graph are defined as follows: variables Xp

t−i and
Xq

t are connected by a lag-specific directed link Xp
t−i → Xq

t in G pointing forward
in time if and only if Xp causes Xq at time t with a time lag of i ≥ 0 for p ̸= q

1. In observational time series, the value of a variable is always determined by its
causes, hence it is never set through an intervention.
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(b) Window causal graph
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Figure 1.5 – Different causal graphs that one can infer from three time se-
ries: full time causal graph (1.5a), window causal graph (1.5b), and sum-
mary causal graph (1.5c). Note that the first one gives the more infor-
mation but cannot be inferred in practice, the second one is a schematic
viewpoint of the full behavior, whereas the last one gives an overview and
can be deduced from the window causal graph.

and with a time lag of i > 0 for p = q.

In practice, inferring an infinite graph is unfeasible. However, it is very
likely that causal relations between two time series will hold throughout
time as such relations are generally associated with underlying physical
processes. One thus relies on the so-called Consistency throughout time (also
referred to as causal stationarity) assumption.

Definition 3 (Consistency throughout time). A causal graph G = (V, E) for
a multivariate time series X is said to be consistent throughout time if all the
causal relationships remain constant in direction throughout time, i.e., for two
time series Xp and Xq, if Xp

t−i causes Xq
t then Xp

t−i−j causes Xq
t−j for all j.

Under this assumption, and given a window size τ that can capture all
causal relations that can be present in the system, the full time causal
graph can be contracted to give a finite graph which we call window causal
graph, with τ nodes for each time series [Runge et al., 2019].

Definition 4 (Window causal graph). Let X be a multivariate discrete-time
stochastic process and G = (V, E) the associated window causal graph for a
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window of size τ. The set of vertices in that graph consists of the set of components
X1, . . . , Xd at each time t, . . . , t + τ − 1. The edges E of the graph are defined
as follows: variables Xp

t−i and Xq
t are connected by a lag-specific directed link

Xp
t−i → Xq

t in G pointing forward in time if and only if Xp causes Xq at time t
with a time lag of 0 ≤ i < τ for p ̸= q and with a time lag of 0 < i < τ for
p = q.

It is a representation of the causal graph through a time window which
contains all lags relating time series in the full time causal graph. Figure
1.5b illustrates a window causal graph derived from the full time causal
graph given in Figure1.5a with consistency throughout time. This graph
summarizes the following causal relations: Xr causes Xp with a lag equal
to 1 and Xq with a lag equal to 2, and Xp causes Xr with a lag equal to
1. In practice, it is often sufficient to know the causal relations between
time series as a whole, without necessarily knowing the time delay be-
tween the cause and the effect. In that case, one can further compress the
causal graph in a summary causal graph (also called unit graph in [Chu and
Glymour, 2008]) that represents causal relation within and between time
series without any time information and without referencing lags [Peters
et al., 2013].

Definition 5 (Summary causal graph). Let X be a multivariate discrete-time
stochastic process and G = (V, E) the associated summary causal graph. The
set of vertices in that graph consists of the set of components X1, . . . , Xd. The
edges E of the graph are defined as follows: variables Xp and Xq are connected if
and only if there exists some time t and some time lag i such that Xp

t−i causes Xq
t

at time t with a time lag of 0 ≤ i < τ for p ̸= q and with a time lag of 0 < i < τ
for p = q.

An example of such a graph is given in Figure 1.5c. Note that since a
summary causal graph is a summary of the full time causal graph, it can
contain cycles, whereas window causal graph is always acyclic assuming
that the full time causal graph is acyclic. Summary causal graphs are less
sensitive to possible variations in time and errors in estimating time lags
compared to full time and window causal graphs. Addressing the prob-
lem of learning summary causal graphs, without first resorting to window
causal graphs, can be beneficial. For example, root cause analysis in mon-
itoring systems mainly requires knowing what are the potential causes of
a given time series metric without necessarily knowing the time delay be-
tween the cause and effect. In addition, it seems that in some complex
systems (where we observe only a macro version of the real physical com-
ponents or we simply don’t have access to all variables), the summary
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causal graph represents a more robust representation of causal relations
compared to the full time causal graph, because time delays can vary
whereas the causal relations themselves are immune to such variations.
Moreover, it seems that expert can easily validate summary causal graphs
as it provides a simple and efficient view on the causal relations that exist
between time series.

Regardless of which type of graph a causal discovery algorithm seeks
to infer, it will always be confronted with certain difficulties regarding
temporal data, such as the timing and the frequency. To avoid these diffi-
culties, causal discovery algorithms usually assume same timing and fre-
quency for all time series. Although the first condition has its merits in
the context of causation, the second has not. The condition that time series
have the same sampling rates with identical timestamps is not necessarily
met, so should be relaxed. This will be particularly an important indus-
trial usage, where this kind of assumption is easily violated. For instance,
in a monitoring system, not all metrics are collected with the same time
gap. Some metrics are more important than others in respect to the main-
tenance of the system and so should be collected instantly, while others
are of less importance to maintenance, thus, collecting them would imply
a low return on investment.

Given the notion of true causal graph, full time causal graph, maximal
lag γmax = τ − 1, summary causal graph, and different sampling rate, we
can now formulate the main problem of this thesis.

Problem 1. Given a maximal lag γmax and an observational time series X1, · · · , Xd

with potentially different sampling rates, infer the underlying summary causal
graph corresponding to the true full time causal graph.

The approach we take to solve Problem 1 fits well within the well-
known constraint-based framework which was initially presented for non
temporal data. Under some assumptions (which will be discussed in depth
later), the approaches that belong to this framework can identify the causal
graph from non temporal data up to a Markov equivalence class 2. Natu-
rally, temporal data provide additional information regarding causation
as it is common to suppose that a cause proceeds its effect, so for tempo-
ral data, the identification of causal graph is not restricted by the Markov
equivalence class. However, in practice, in observational studies, the as-
sumption that the cause proceeds the effect does not seems to hold, simply

2. At this point we do not need to define what is a Markov equivalence class. We just
need the reader to know that constraint based approaches do not guarantee to find the
true graph, instead they guarantee to find a graph that belongs to the same class of the
true graph and which is known as the Markov equivalence class

11



because the lag between the cause and effect might be too small compared
to the sampling frequency. This means that instantaneous causal relations
are possible and they need to be taken into account in the process of dis-
covering causal relations, but their symmetry with respect to time, restrict
their discovery by constraint-based approaches to the Markov equivalence
class. Thus, the best we can do regarding Problem 1 in the context of the
constraint-based framework is to provide a partial solution which consists
in discovering all lagged causal relations and only instantaneous relations
that belong to the Markov equivalence class. So, another problem that we
take into consideration in this thesis is the following:

Problem 2. Given a maximal lag γmax and an observational time series X1, · · · , Xd,
infer the underlying summary causal graph corresponding to the true full time
causal graph without restricting instantaneous relations to the Markov equiva-
lence class.

We stress that inferring a causal graph is an arduous task. Most algo-
rithms, if not all, rely on assumptions that are often violated in practice.
So causal discovery should be interpreted carefully. In this thesis, we con-
sider it as a tool that assists the expert or the researcher and facilitates the
search of the causal relations with respect to the given observational vari-
ables in a given system.

1.4 Thesis outline

As we saw in the previous Section, so far, artificial intelligence has ded-
icated its learning to finding correlations and associations from observa-
tional data, which makes it incapable of interpreting causes and effects,
or understanding why these associations and correlations exist. This, in
turn, limits artificial intelligence from being able to generalize its learning
and to excel at tasks that involve explanation, imagination, reasoning, and
planning. One way to tackle these problems would be to go beyond curve
fitting and give machines the ability to discover and understand causal
relations. Larry Wasserman once said that ”using fancy tools like neural
nets without understanding basic statistics is like doing a brain surgery
before knowing how to use a band-aid”, and analogically we think that
using fancy tools like causal discovery methods or causal reasoning meth-
ods without understanding basic concept of causation is like doing a brain
surgery without knowing why we need to make the surgery in the first
place. Unfortunately, the concept of causation is not uniquely defined as
it received different interpretations over time, from antiquity until today.
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So to help researchers in the domain of artificial intelligence to gain some
perspective regarding the concepts of causation, Chapter 2 offers a chrono-
logical review of the different philosophical views around causation [As-
saad] 3.

Chapter 3 reviews and summarizes the most known existing techniques
for discovering causal relations between time series and which are grouped
into three families of methods: Granger causality, constraint-based ap-
proaches, and noise-based approaches. For each family of methods, it
identifies the key assumptions, advantages and limitations [Assaad et al.,
b] 4.

Chapter 4 addresses the problem of learning a summary causal graph
on time series with potentially different sampling rates. To do so, we
first propose a new temporal mutual information measure defined on a
window-based representation of time series. We then show how this mea-
sure relates to an entropy reduction principle that can be seen as a special case
of the probabilistic raising principle. We finally combine these two ingredi-
ents in a PC-like algorithm to construct the summary causal graph [Assaad
et al., a] 5. Finally, we discuss how to extend our algorithm to handle hid-
den common causes and selection variables, how to infer a window causal
graph from a summary causal graph, how to apply the algorithm on se-
quences, and how the main algorithm can be simplified if we consider a
less compact version of the summary causal graph that explicitly differen-
tiate between lagged and instantaneous relations Assaad et al. [c] 6. The
algorithm and its extensions are suited to discover lagged causal relations
and instantaneous relations that fall in Markov equivalent class (for more
details on Markov equivalence see Chapter 3).

Chapter 5 addresses the problem of learning instantaneous relations
that do not fall in the Markov equivalent class, alongside lagged relations
and instantaneous relations that fall in Markov equivalent class. To ad-
dress the problem of learning such relations, we propose a hybrid method
that combines the well-known constraint-based framework for causal graph
discovery and the noise-based framework that gained much attention in
recent years. Our method is divided into two steps. First, it uses a noise-
based procedure to find the potential causes of each time series. Then, it

3. Charles K. Assaad. A brief history of causality’s principle. submitted.
4. Charles K. Assaad, Emilie Devijver and Eric Gaussier. A Survey on Causal Discovery

for Time Series. submitted.
5. Charles K. Assaad, Emilie Devijver and Eric Gaussier. Entropy-based Discovery of

Summary Causal Graphs in Time Series. submitted.
6. Charles K. Assaad, Emilie Devijver and Eric Gaussier. Discovery of Extended Sum-

mary Graphs in Time Series. submitted.
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uses a constraint-based approach to prune all unnecessary causes. A ma-
jor contribution of this study is to extend the standard causation entropy
measure to time series to handle lags bigger than one time step [Assaad
et al., 2021] 7 and [Assaad et al., 2019] 8.

Chapter 6 is dedicated to numerical experiments. Our algorithms are
evaluated on several datasets that shows both its efficacy and efficiency
and compared with the state of art algorithms which are presented in
Chapter 3.

Chapter 7 concludes the thesis by giving an overview of the results of
the thesis and discusses the contributions with several remarks for future
directions of research.

7. Charles K. Assaad, Emilie Devijver, Eric Gaussier and Ali Aı̈t-Bachir. A Mixed
Noise and Constraint Based Approach to Causal Inference in Time Series. Machine Learning
and Knowledge Discovery in Databases. Research Track, pages 453–468, Cham, 2021.
Springer International Publishing.

8. Charles K. Assaad, Emilie Devijver, Eric Gaussier and Ali Aı̈t-Bachir. Scaling Causal
Inference in Additive Noise Models. Volume 104 of Proceedings of Machine Learning Re-
search, pages 22-23, Anchorage, Alaska, USA, 05 Aug 2019. PMLR.
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Chapter 2

A brief history of causality’s
principles

We think we have knowledge of
a thing only when we have
grasped its cause and we think
we do not have knowledge of a
thing until we have grasped its
why, that is to say, its cause.

Aristotle
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2.1 Introduction

Throughout the history of philosophy and science, many great names
explored (epistemologically or metaphysically) causal mechanisms, includ-
ing Aristotle, Bacon, Galileo, Descartes, Hobbes, Hume, Kant, and Sup-
pes, to name but a few. The studies conducted by these pioneers laid
out diverse accounts of causation. Figure 2.1 presents what may be called
the causation timeline: a brief non-exhaustive chronological overview 1 of
these accounts and their most influential pioneers. The causation time-
line is a story that began in antiquity, when Aristotle identified four types
of causes that respond to the question why. The timeline then travels
through the centuries while passing, among others, by Bacon, Galileo, and
Descartes who criticize Aristotle’s account while developing their own
views about causation. For instance, by recognizing that nothing comes
out of nothing, Descartes elaborated the causal adequacy principle, which
is a perfect illustration of the deterministic way of thinking that emerged
in the 18th century. After the so-called age of determinism, the causa-
tion timeline dives into Hume’s regularity theory of causation, which is
based on three main aspects: temporal priority, contiguity in time and
space, and a constant conjunction between causes and effects. This the-
ory influenced the majority of later thinkers. For example, Mill, inspired
by Bacon and Hume, presented five methods to discover causal relations
based on observations, while Mackie formulated the insufficient but non-
redundant part of an unnecessary but sufficient (INUS) conditions. After
Hume, for a certain period, only a few thinkers continued the search for
causes and effects: Peirce (1839-1914) and Jastrow (1863-1944) used ran-
domization in experiments in 1885 to eliminate bias and permit a valid test
of significance, although the practice was not continued until Fisher de-
veloped randomized controlled trials in 1909. Wright introduced the first
graphical tool (later extended to causal graphs) to address a causal ques-
tion. However, aside from these few exceptions, most researchers became
weary of seeking causes. Despite the undeniable importance of causality,
causal notions seem strangely absent from the fundamental sciences. The
main reasons are that causal relations are perceived to be too vague for a
mathematically precise science and that causation is asymmetric, whereas
classical mathematical operations are symmetric. Several scientists even
argued that causality should be completely removed from the philosoph-
ical and scientific vocabulary. However, many scientific discoveries con-
firmed that such claims are absurd, as causation is one of the main pillars

1. For a complementary overview, see Drouet [2007]
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Figure 2.1 – Causation timeline. Accounts are in bold, and pioneers in
italics (accounts are positioned by the date of their appearance and pio-
neers are positioned by their date of birth). RCT: randomized controlled
trials; INUS: insufficient but non-redundant part of an unnecessary but
sufficient condition; CMC: causal Markov condition; MC: Minimality Con-
dition; FC: Faithfulness Condition.
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of acquiring scientific knowledge alongside probability. Accordingly, the
causation timeline proceeds with the probability theory of causation in
which Reinchinbach and Suppes drew on the probability raising principle
and respectively elaborated the common cause principle and the prima-
facie cause. The timeline then turns to the decision-making theories of
causation, namely the counterfactual theory of causation that allows us
to imagine potential worlds, and the intervention theory of causation. Fi-
nally, the timeline makes a special tribute to the do-calculus, the causal
Markov condition (a generalization of the common cause principle), the
minimality condition, faithfulness, and the causal hierarchy, which ren-
dered the concept of causation accessible and made it clearer.

This chapter describes several prominent versions of causality theories
advocated by philosophers and scientists alike, drawing attention to their
limitations.

2.2 Principle of four causes

Aristotle (384-322 BCE) viewed science through the lens of observation;
as a result, he was convinced that the truth can only be sought via obser-
vations. Aristotle formulated a causal investigation, which, in his view, is
the pursuit of a response to the question why. He claimed that “we do not
think we have knowledge of each thing until we have grasped the why of
it, which is to grasp its cause” Aristotle and Reeve [2018]. And since the
word cause has several meanings, it follows that the same thing can have
several types of causes (for more details, see Section 2.9 below). Aristotle
thus recognized four types of causes that can be given in response to the
why question Aristotle and Reeve [2018]:

— material cause (“that out of which”): the material of which some-
thing is made. For example, ivory is a material cause of a billiard
ball;

— formal cause (“what a thing is”): the form or properties of something
that makes it what it is. For example, roundness is a formal cause of
a billiard ball;

— efficient cause (“primary source of the change or rest”): the proximal
mechanism that provokes something to change. For example, the
billiard ball manufacturer is an efficient cause of a billiard ball;

— final cause (“the end, that for the sake of which a thing is done”): the
goal of something. For example, being used in billiards games is a
final cause of a billiard ball.
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According to Aristotle, everything in the empirical world, including the
empirical world itself, is a subject to these four causes. And he believed
that the final cause is the most significant explanation of everything, since
the final cause reflects the final why. Why does the billiard ball exist? It
exists to play billiard. He also found a clear association between causation
and necessity. When the cause acts, the effect is acted on out of necessity.

The identification of the final cause is subject to much debate, since it
necessitates an external judge. People perceive things in different ways,
and perception is subjective, not universal. Thus, while one person may
identify being used in billiards games as the final cause of a billiard ball,
another may consider it to be the act of moving another billiard ball. Fur-
thermore, Aristotle conceived a world in which everything has a goal as
its final cause. Consider the case of a stone that fell from a roof onto some-
one’s head, leading to their death. Did the stone have the goal of killing
this individual? Or was it a mere accident? Based on Darwin’s theory of
natural selection, we now know that nothing has a true purpose, which
means that nothing has a goal. Things come into existence by chance, and
so most philosophers now agree that the final cause is superfluous [Mum-
ford and Anjum, 2013].

Aristotle’s principle of four causes seems plausible at first glance, but
it turned out to be flawed. It was consistent with human logic at the time
of Aristotle, but after the scientific discoveries of the last centuries, it has
become outdated. However, it is still interesting that it was applied to
conceive the empirical world, making a connection between causality and
necessity.

Despite their agreement regarding this connection, Aristotle and other
Greek philosophers, including Plato, left room for free will. Their theory
thus suited the many religions that subsequently adopted it: given the
existence of free will, the gods are not responsible for all the evil in the
world. If humans are free to make decisions, then they have moral re-
sponsibilities that make them accountable for their actions. This explains
why the free will theory was more acceptable and attractive than the one
that excluded it. This idea dominated most scientific views until the time
of Bacon, Galileo, Descartes, and Spinoza.

2.3 Determinism

Since the beginning of time, humans have tried to find patterns in na-
ture. They accidentally discovered how to control fire and have since used
this skill in their daily lives. They thought that they could count on knowl-
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edge acquired in the past with a high degree of certainty: they thus be-
lieved that every time they needed fire, they would be able to create it
[Harari, 2015]. For the most part of our history, without even knowing
it, we understood deterministic causality mostly as an issue of regularity,
which reflects the determination of effects by their causes. This leads us
to think that causality occurs in the realm of determinism based on the
idea that the past determines the future. Determinism can be defined as
follows:

Definition 6 (Determinism [Hoefer, 2016]). The world is governed by deter-
minism if and only if, given a specific way that things are at time t, the way things
go thereafter is fixed as a matter of natural law.

Among the first to defend determinism were Leucippus (5th century
BCE) and his associate Democritus (460 -370 BCE), the first to theorize the
existence of atoms [Taylor, 1998]. To our knowledge, they were convinced
that nothing happens by chance and that everything has a cause. Yet their
point of view remained overshadowed by free will until the 17th century.

Francis Bacon’s (1561-1626) main goal was to gain control over Nature.
He considered the effect and its cause to be interchangeable: whenever
the cause is present, the effect is also present, and whenever the effect is
present, its cause is present too. He looked for causes that are necessary
and sufficient for their effects. He agreed with Aristotle that causality can
be accessed through empirical studies, although he disagreed with him on
the degree of patience while conducting these studies. For Bacon, obser-
vations are necessary to uncover the concept of causes, but they are not
sufficient. According to Bacon, discovering causal knowledge would en-
tail studying the essence of events: if a first event causes a second event,
then there is a logical relation that can be discovered by studying the
essence of the first and the second. Furthermore, Bacon rejected Aristo-
tle’s principle of four causes on the grounds that the distribution into ma-
terial, formal, efficient, and final causes is inadequate, since physics deals
with material and efficient causes, whereas metaphysics deals with formal
and final causes. In addition, he also believed that Aristotle’s emphasis
on final causes only serves to promote verbal disputes and slow down the
progress of science, so he rejected it and banished all references to a di-
vine purpose in the universe from scientific and philosophical discourses,
and defined science as a search of causes. He systematically articulated
a method to help find causes by scientifically observing regularities in
the world. His method consists of systematically making and recording
observations about the phenomenon of interest (natural and controlled),
then classifying the observations according to a conceptual scheme, and
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finally, by means of eliminating false causal hypotheses, inferring the true
causal claim that governs the observed phenomenon. To test a potential
cause-effect relation, Bacon suggested setting up experiments to manip-
ulate nature and attempted to prove that the potential cause-effect rela-
tion is wrong. However, he never stated that his method is perfect, as he
explicitly acknowledged that all methods of causal inference are fallible.
Given that many different causes might be missed by our perception, Ba-
con stressed that these experiments must be consistently repeated before
the truth can be known where possible. With Galileo, he forged the way to
conduct controlled experiments as a means of gaining knowledge about
nature by controlling different factors while fixing others.

Galileo Galilei (1564-1642) focused more on how than on why and viewed
the explanation of causality only in the motion of the atoms. Furthermore,
he identified God as the first atom: the force that constructed the world
out of nothing. He thus rejected the final cause but added a first efficient
cause, which led to the existence of nature and humans in the form of an
immutable mathematical system. As a result, mathematical methods can
access scientific knowledge independently of the first cause [Burtt, 1926].

René Descartes (1596-1650) distinguished between bodies and spirits.
He accepted free will as part of the spiritual realm but denied its existence
in the physical world, which was instead constrained by natural laws. Un-
like Aristotle, Descartes thought that everything was inert and entirely
rejected Aristotle’s idea of final causes. For Descartes, people could not
derive any explanations of nature that come from God, since they are un-
able to understand God’s plan. His idea depended on the causal adequacy
principle.

Definition 7 (Causal adequacy principle [Descartes et al., 1983]). There
must be at least as much reality in the cause as in the effect of that cause.

By pointing out that there is nothing in the effect that is not in the cause, he
concluded that something cannot come from nothing. As he put it: “if we
admit that there is something in the effect that was not previously present
in the cause, we shall also have to admit that this something was produced
by nothing” [Descartes, 1985]. Consequently, he devised the transference
model of causality, which states that when a first event causes a second
event, a property of the first is communicated to the second, which in Aris-
totle’s vocabulary means that the first event is an efficient cause of the sec-
ond event. At present, Descartes’ theory of separation between spirit and
body (dualism) is outdated. We now know that consciousness is a function
of brain activity and that the brain follows rigid laws of nature. For exam-
ple, to understand why a person makes certain choices, we simply have
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to look at how the brain functions, not at some spirit bubble connected to
the body [Dehaene, 2014]. Nevertheless, aspects of Descartes’ concept of
causation can still be valid.

Thomas Hobbes (1588-1679) rejected the formal and final causes of
Aristotle and introduced the notion of entire causes, which are always in-
terpreted in terms of particular motions of particular bodies. Technically,
the entire causes are the combination of material and efficient causes: the
material cause represents the receptor of the agent’s activity and the ef-
ficient cause represents the properties required by the agent for the pro-
duction of the effect. Hobbes also associated necessity with the entire
cause, which involves both the agent and the patient. Moreover, Hobbes
argued that a sufficient cause should occur simultaneously with its effect:
“in whatsoever instant the cause is entire, in the same instant the effect is
produced. For if it be not produced, something is still wanting, which is
requisite for the production of it; and therefore the cause was not entire, as
was supposed.” [Hobbes, 1656].

In 1677, a new definition of human freedom distinct from free will
emerged. According to Baruch Spinoza (1632-1677), being free does not
mean being able to act as we please, but rather recognizing why we act as
we do given the nature of reality. Being free means understanding what
causes our actions, i.e., understanding the causal mechanisms. So human
freedom can be achieved by knowing the causes that determine our de-
sires and affections. He defined servitude as the state of ignorance of the
causes that determined our desires. He described freedom as the state of
someone who is capable, through reason and knowledge, of understand-
ing the causes that determine his desires. So freedom is not an exemption
from causality, and it does not contradict determinism. However, Spinoza
supported Aristotle on the relation between causation and necessity, writ-
ing “From a definite cause an effect follows; and if no definite cause be
granted, it is impossible that an effect can follow.” (Axiom III) [Spinoza,
1677]. In other words, given a cause, the effect follows out of necessity,
and without it, the effect does not follow. In addition, he linked neces-
sity to determinism “In nature there is nothing contingent, but all things
have been determined from the necessity of the divine nature to exist and
produce an effect in a certain way.” [Spinoza, 1677, Curley, 1992].

Isaac Newton’s (1643-1727) mathematical approach to natural philoso-
phy is often deemed to have shifted the focus of science from causal expla-
nation to pure description. For instance, he offered no assumption about
the cause of gravity, but simply identified the phenomenon of gravity and
described it with mathematical precision. In this sense, one could say that
Newton adopted the formal causes of Aristotle as the only true objects
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of science. However, in his interpretation and application of the laws of
motion, his ideas of causality differed. Newton perceived a world consist-
ing of material bodies at rest or in motion and interacting according to his
three famous laws of motion [Isaac Newton et al., 1999]:

— every object in a state of uniform motion will remain in that state of
motion unless an external force acts on it;

— force equals mass times acceleration (F = m a);
— for every action there is an equal and opposite reaction.

By causes, he meant the forces impressed on a body, which drives it to
move differently than it would have done without them [Rynasiewicz,
2008]. Regarding the laws of motion, this means that Newton thought
in terms of efficient causes.

During this period, mechanical principles came to the fore. Conser-
vation laws tell us that the quantity of energy in a system is stable, and
subsequently, the concept of causality was reduced to a transfer of en-
ergy. It is true that the transfer of energy implies the existence of causal
relations in the system: for example, when billiard ball A with an initial
momentum hits billiard ball B at rest, ball A will transfer some of its mo-
mentum to ball B, thus forcing it to move. However, this does not inform
us about the direction of the cause. The transfer of energy can be seen in
two ways; according to Newton’s third law, there must be an equal but op-
posite force from the second object that cancels the applied force: hence,
ball B at rest transfers its zero energy to the moving ball A, thus forcing
it to stop. In addition, causality does not necessarily imply the existence
of a transfer of energy, because not every cause-effect relation can be ex-
plained through energy transfer. For example, when Louis touched Elsa’s
hand, she blushed. His touch caused the blushing, but where is the trans-
fer of energy in this scenario? Some might argue that the touching implies
some physical explanation relating to the mechanical principles. In an-
other example, Elsa who lived in France blushed when Louis who was on
vacation in Germany texted her and said that he loved her. Elsa’s touch-
ing the phone to read the message had nothing to do with the blushing
nor did her reading the structured alphabets. The idea of Louis loving her
caused her to blush. Regardless of whether the news came from a text, a
call, or the touch of his hand, she would have blushed. And this could not
be explained by mechanical principles (to understand how causation can
deal with such an example, see Section 2.7). However, rejecting causal-
ity as a concept of energy transfer does not imply the rejection of causal
determinism, which was emphasized by Pierre-Simon de Laplace (1749-
1827), who observed that the world follows fundamental laws, and thus
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by knowing these laws, everything in the world is determined (Laplace
demon) [Laplace, 1814], i.e., every event is determined by an antecedent
event along with conditions concordant with the laws of nature.

Causation thus remained heavily dependent on determinism until the
analysis of David Hume who dismissed the connection between causation
and necessity.

2.4 Hume’s regularity theory

Impressed by Newton’s work and experimental philosophy, David Hume
(1711-1776) believed that the foundation of our knowledge derives from
our experience of the world. He thus endeavored to understand how the
mind works through observation [Hume, 1738, 1748]. He supposed that
contiguity in time and space are essential for cause-effect relations. For the
moving billiard ball A to be the cause of the movement of another billiard
ball B after colliding with it, ball A and ball B need to touch, which means
being contiguous in time and space. He argued that no direct causes can
operate from a distance. Even if two distant objects seem to be causally re-
lated in nature, they are usually linked to causal chains. Furthermore, he
challenged Hobbes by opposing the idea of contemporary causal relations,
instead claiming that all causes, even sufficient ones, temporally precede
their effects in which we formalize as follows:

Definition 8 (Temporal Priority). If Xp
t is the cause of Xq

t′ , then t < t′.

Returning to the example of the billiard ball, the movement of ball B
(i.e., effect) happened after ball A touched it (i.e., cause). However, in his
analysis, noting that causation cannot simply be an affair of contiguity and
temporal priority, Hume added regularity to the equation. His refusal to
give conceptual status to unobserved phenomena led him to base his con-
clusions about causation 2 solely on the observation of prior associations
between variables. Thus, according to this interpretation, causation can-
not be represented by single events; it can only arise through constantly
conjoined events (in time and space). Hume agreed that causes necessitate
their effect, but in his view, necessity is something imposed by humans.
Necessity arises from within the human mind, conditioned by the obser-
vation of regularities in nature to form an expectation of the effect when

2. There are many interpretations of Hume’s work; in this section, we focus on the
most widespread. For other interpretations, see Strawson [2014].
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the cause is present. This means that causality is a philosophical disposi-
tion; it does not exist in nature 3, but only in our mind, and the sole way
to detect it is through regularities. When we repeatedly observe an event
followed by a second event, we will believe that first event causes the sec-
ond, even though the only evidence is our observation of the same event
multiple times. Returning to the billiard ball example, we need to repeat-
edly see the movement of the first ball, followed by the collision of the
two balls and the movement of the second ball before inferring the causal
relation between them. But why does Hume not suppose that regularity
can imply necessity? The answer can be derived from his famous theory
of induction which tells us that the assumption that a regularity will con-
tinue to be repeated in the future is circular and based on the principle
of uniformity in nature which is not a priori true. More formally, Hume
defined causation as follows:

Definition 9 (Regularity theory of causation [Hume, 1748]). We may de-
fine a cause to be an object precedent and contiguous to another, and where all
the objects resembling the former are placed in like relations of precedency and
contiguity to those objects that resemble the latter.

Immanuel Kant (1724-1804) attempted to respond to Hume [Kant, 1997].
He believed that we have innate ideas, and from birth, our mind is filled
with certain concepts. For Kant, objective events are not simply given;
instead, they are formed by the organizing activity of the mind and espe-
cially by the imposition of the principle of causality to phenomena. Conse-
quently, the principle of causality is, for Kant, an a priori principle; causal-
ity occurs in the mind with the aim to acquire knowledge, independently
of the process of observation. Kant agreed with Hume that the necessity of
causal sequences cannot be observed in the sequences themselves, as they
are rather projected onto the world by the mind. However, he viewed
all sequences to be a consequence, whereas Hume considered all conse-
quences to be a mere sequence.

As Arthur Schopenhauer (1788–1860) noted (in his criticism of Hume
and Kant), it is absurd to conceive all sequences as consequences: the tones
of a musical composition follow each other in a certain objective order, yet
it would be absurd to say that they follow each other according to the law
of causality [Schopenhauer, 1889]; the night always follows the day, but it
would be absurd to say that they follow each other according to the law

3. Other interpretations suggest that Hume believed that humans are capable of form-
ing a causal concept in the mind but are incapable of accessing the true causes that exist
in nature.
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Pasta Salad Seafood Sick
Elsa No Yes Yes Yes

Louis Yes No Yes Yes
Paul Yes Yes Yes Yes

(a)
Pasta Salad Seafood Sick

Paul Yes Yes Yes Yes
Germaine Yes Yes No No

(b)

Table 2.1 – Illustration of Mill’s methods. We report the food eaten at din-
ner by a group (a) and a group (b).

of causality. Apparently, regularity can exist without causality. And like-
wise, it appears that causality can exist without regularity. This is the case
when one event causes another to happen without this particular (singu-
lar) sequence of events falling under a regularity. In nature, even though
some events occur only once, we are capable of establishing their cause-
effect relations: the big bang caused the existence of the universe; the de-
sign flaws of the RBMK reactor and the incompetence of worker caused
Chernobyl’s nuclear reactor disaster; and the assassination of Archduke
Franz Ferdinand was the main immediate cause of World War I. How-
ever, there are debates surrounding these types of causation. Some call
this singular causality or actual causality, which is more fundamental than
general causality, which is discussed here. Actual causality focuses on
specific events, whereas general causality arises from many instances of
actual causality (for more details about actual causality see Section 2.7 or
[Cartwright, 1989, Drouet, 2007, Halpern, 2016]). Hume did not consider
the metaphysics of causality, but like Kant, he ended up with a loose no-
tion of causality. His theory was the subject of much debate and continued
to be amended.

John Stuart Mill (1806-1873) defended most of Hume’s regularity view
of causality except the part concerning necessity. Mill claimed that an ef-
fect invariably follows from the cause and that the cause should be taken to
be the whole conjunction of the conditions that are sufficient and necessary
for the effect. Inspired by Bacon’s logic, Mill also defined four methods to
discover causal regularities [Mill, 1843]. The first is defined as follows:

Method 1 (agreement). To find a cause of an effect, one should find a single
factor common to several occurrences of the effect. If the common factor is present
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in all cases where the effect is present, we can infer it to be a cause of the effect.

For illustrative purposes, let us consider the example given in Table 2.1 (a).
Here we have a group of people dining together. The next day all of them
have food poisoning. Assuming we know in advance that the food eaten
at dinner was the source of the food poisoning, we can apply the method
of agreement to identify the exact cause. Looking at Table 2.1 (a), the only
common food (common factor) is seafood which stands out as the cause
of the food poisoning. Mill’s second method is defined as follows:

Method 2 (difference). To find a cause of an effect, one should find a single
factor present in all occurrences of an effect and absent from all occurrence of the
absence of the effect.

Now let us look at Table 2.1 (b). Here two people, Paul and Germaine,
dined together, but only Paul got food poisoning. As can be seen, the only
food that Paul consumed but Germaine did not is seafood, which suggests
that seafood is the cause of the food poisoning. Mill’s third method is a
combination of the first two methods:

Method 3 (agreement and difference). To find a cause of an effect, one should
find a single factor that is present in multiple occurrences in which the effect in
question is present and absent from multiple occurrences in which the effect is
absent.

To illustrate this method, consider a combination of Table 2.1 (a and b)
with four people dinning together. As can be seen, everyone who con-
sumed seafood got sick (agreement), while all those who did not eat it
did not get sick (difference). Mill’s fourth method is a deductive method
defined as follows:

Method 4 (residue). To find a cause of an effect, one should separate from a
group of causally connected conditions and events those that are known to be
cause-effect relations, leaving the required causal connection as the residue. We
identify what is left as the cause of the remaining effect.

Suppose that there was a bottle of wine on the dinning table, and we want
to know who finished the bottle. Consider that Elsa is pregnant and can-
not drink alcohol, while Louis and Germaine had their fill after the first
glass was served at the beginning of the dinner. Here we can deduce that
Paul is the residue, inferring that he finished the rest of the bottle. As
seen here, Mill’s first four methods examine cause and effect in qualitative
terms. An effect either occurs or does not occur. A cause is either absent
or present. Taking into account the quantitative terms, Mill introduced his
fifth method for discovering causes:
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Method 5 (concomitant variation). To find a cause of an effect, one should
identify a causal connection between two conditions by matching variations in
one condition with variations in another. So, if across a range of situations that
lead to a certain effect, we find that a certain property of the effect varies with a
factor that is common to those situations, we can infer that factor to be the cause.

Now suppose that four people dined together (Elsa, Louis, Paul, and Ger-
maine): Elsa ate a whole dish of seafood and is violently sick; Louis had
half a dish of seafood and is fairly ill; Paul had one bite of seafood and
felt a little queasy; and Germaine ate no seafood and did not get sick. It
therefore appears that there is a direct association between the degree of
seafood consumption and the severity of sickness. By the method of con-
comitant variation, seafood is the cause of the poisoning. Mill’s methods
can only help us identify causes when the potential candidates are already
known. Thus, they are not capable of examining all possible interactions,
which make them erroneously judge the potential cause of an event. Ad-
ditionally, with these methods, we can only look for a single cause. They
presuppose that from the list of factors under consideration, only one is
the unique cause of the effect.

More recently, John Leslie Mackie (1917-1981) updated Hume’s theory
to allow for causes and effects with multiple components. According to
Mackie, it is incorrect to say that striking a match causes it to light. Strik-
ing the match was not the only cause for the match to light: oxygen was
present, the match was dry, there was little wind, and so on. An event
can be necessary for another event to occur, but alone it may be insuffi-
cient. And the entire set of conditions (striking the match, oxygen, dry
match, no wind, etc.) may not be necessary, because there may be an-
other set of conditions that would light the match. Based on these insights,
Mackie introduced the INUS conditions for identifying causes that are an
insufficient but non-redundant part of an unnecessary but sufficient con-
dition [Mackie, 1980]. By insufficient, he meant that a cause (e.g., striking
a match) can not produce the effect without the presence of other factors
(e.g., oxygen, dry match, no wind). By non-redundant, he meant that the
cause should add something uniquely different from what the other fac-
tor adds. By unnecessary but sufficient condition, he meant that the cause
should belong to a set of factors that can, if all active, light the match,
although they are unnecessary in the sense another set of factors may pro-
duce the same effect.

Definition 10 (INUS conditions [Mackie, 1980]). Xp is a cause of event Xq if
and only if:

— there is a set of events XR that is sufficient but not necessary for Xq;
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— XR is minimal, i.e., no subset of XR is sufficient for Xq;

— Xp is included in XR.

In other words, Mackie searched for causes that are only valid under
specific circumstances. In this respect, his approach is similar to Roth-
man’s sufficient component causal model [Rothman, 1976].

In the traditional interpretation of Hume, causation is mind-dependent
and there is no more to it than regularity. Hence, causation does not ex-
ist in an individual case. According to this interpretation, Hume may be
considered to be a reductive realist, who jumped from the claim that we
have no idea of necessary connection (epistemological claim) to the claim
that there is no necessary connection (metaphysical claim). Galen Straw-
son (1952-present) argues that Hume would not have made a metaphysi-
cal claim, because such a claim would go against his skeptical belief that
we are ignorant of the world, independently of our ideas about it. On
this basis, Strawson gives a new interpretation that supports only Hume’s
first claim (epistemological) but not his second (metaphysical) [Strawson,
2014]. The new interpretation disagrees that causation is reductive to reg-
ularity, and consider it real and mind-independent. This suggests that
causation is a real force. When the first billiard ball hits the second, there
is a power, a force, a necessary connection that is independent of anything
else that happened. Necessary connections are not representative; they are
theoretical ideas. Thus, causation is the theoretical idea that lies behind
regularity. Causation is an intrinsic 4 (not an extrinsic 5) relation. This in-
terpretation is interesting, although it is not accepted by all philosophers.
Some argue that even with this interpretation, the only possible evidence
for causal relations can come from regularities. For this reason, there is
perhaps little point in insisting that causation is something different [Bee-
bee, 2009].

Going back to the initial interpretation, Hume considered that causal
representations are important, as we cannot advance very far in the world
without them. But this does not mean that we must believe in a richly
metaphysical idea of causal powers that produce or bring about causal
regularities. Hence, with Hume’s skepticism and Newton’s reductionist
view about causation, it was almost impossible to prevent what would
happen next.

4. Meaning an extremely important and inherent characteristic of a person or thing.
5. Meaning from the outside or not related to something.
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2.5 Looking the other way

Until the 20th century, causality was still associated with necessity and
determinism, and since determinism was no longer an object of science,
researchers began to lose interest in causality. This was the main reason
why philosophers looked the other way. They also argued that causality
was neither an element of reality nor an element of our reflection on real-
ity, which is the first subject of science, and they therefore concluded that
causality is not a subject of science. It is rather an epistemological obstacle
and a superfluous and undesirable concept. Scientists also tended to re-
fute the concept of causation, claiming that if it is unobservable, how can it
be measured? And if it is unmeasurable, how can it be put into equations?

Shortly after Charles Darwin expounded his theory of evolution, his
cousin Sir Francis Galton (1822-1911) began to draw out the implications
of these ideas: if we have evolved, then mental faculties like intelligence
must be hereditary. He also argued that if such faculties are hereditary,
and some people have it in a greater degree than others, then our ability
to choose our fate is not free but rather depends on our biological inher-
itance, which means that the laws of inheritance are the causes of every-
thing that we do. In 1877, Galton started to express the need for causal
claims and went on to pursue causation. He ended up discovering the
concept of correlation, which Karl Pearson (1857-1936) later used to derive
a formula for the slope of the regression line, known as the correlation co-
efficient. This discovery convinced Pearson that the concept of cause and
effect is unscientific, since it is neither mathematically clear not precise.
He made his point abundantly clear when he wrote: “Beyond such dis-
carded fundamentals as matter and force lies still another fetish amidst
the inscrutable arcana of even modern science, namely, the category of
cause and effect” [Pearson, 1911]. Moreover, he claimed: “That a certain
sequence has occurred and reoccurred in the past is a matter of experience
to which we give expression in the concept causation; that it will continue
to recur in the future is a matter of belief to which we give expression
in the concept probability. Science in no case can demonstrate any inher-
ent necessity in a sequence, nor prove with absolute certainty that it must
be repeated.” [Pearson, 1900]. Thus, Pearson agreed with Hume that the
concept of cause and effect was nothing more than an affair of regularities,
arguing that the entire concept should be abandoned in favor of his revolu-
tionary correlation coefficient that is capable of summarizing regularities.
Furthermore, he stated that “the ultimate scientific statement of descrip-
tion of the relation between two things can always be thrown back upon
such a contingency table...” [Pearson, 1911]. Thus, Pearson categorically
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denied the concept of causal relation beyond correlation and stated that
all the knowledge required can be found in the contingency table. Since
he belonged to the philosophical school of positivism, it is unsurprising
that he defined science purely in terms of actual data [Pearl and Macken-
zie, 2018]. And his enthusiasm and dominance made it impossible for his
colleagues to contradict his ideas [Yule, 1936].

At that time, the field of statistics was not alone in opposing causation.
The basic laws of physics (distinct from higher-level statistical generaliza-
tions such as the laws of thermodynamics) also appear to be time sym-
metric. If a certain process is allowed under the basic laws of physics, a
video of the same process played backward will also depict a process that
is permitted by the laws. Since cause and effect play no fundamental role
in physics, some scientists argued that causality should be completely re-
moved from the philosophical and scientific vocabulary. For example, in
1912, Bertrand Russell notoriously proclaimed that “the law of causality,
like much that passes muster among philosophers, is a relic of a bygone
age, surviving, like the monarchy, only because it is erroneously supposed
to do no harm.” [Russell, 1912].

To sum up, most of the scientific community considered that causality
was not worthy of being treated as a scientific object. They even suggested
banning the term causality from scientific discourse. However, the second
law of thermodynamics rectified this problem, as it proved the existence
of the arrow of time by demonstrating that not all processes are reversible,
that is, everything evolves with time to have total entropy (i.e., a maxi-
mum disorder).

2.6 Probabilistic theory of causation

Heisenberg’s uncertainty principle states that it is impossible to define
with precision the behavior of a particle due to the presence of an observer.
Many concluded from this principle that a particle does not know the po-
sition that it will occupy until an observer appears. But recent discoveries
showed that it is absurd to think so. One of the most known counterex-
amples showing the absurdity of this idea is Schrodinger’s cat. In fact, the
principle never mentioned a non-deterministic world; it simply stated that
it is not determinable according to the observer. It therefore seems that the
world is deterministic but indeterminable. And the explanation resides
in the chaos theory, which tells us that small alterations can have severe
consequences (i.e., small causes can have huge effects), which makes the
world indeterminable. Assuming that everything is determined, but ev-
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erything is indeterminable, the best that we can aim for is to infer with a
degree of certainty. Thus, to study causal inference, the notion of proba-
bility is needed. In addition, interpreting causation as deterministic rela-
tions may lead to undesired results (mainly in systems without access to
all variables), because some cause-effect relations might not always occur,
although the cause increases the chance of the effect happening. Smok-
ing causes cancer, but not every person who smokes will necessarily de-
velop cancer. Thus, while the deterministic approach requires a sufficient
or complete cause, the probabilistic approach requires an increase in the
probability of the effect given the cause.

Definition 11 (Probability raising [Hitchcock, 2018]). If Xp is a cause of Xq,
then Pr(Xq | Xp) > Pr(Xq).

Hans Reichenbach (1891-1953) was one of the first to connect causality
with probability. Indeed, correlation does not imply causation (see Freed-
man [1999] for an illustration), but Reichenbach noticed that correlation
might give a certain indication about causal relations. In his view, proba-
bilistic correlations are ultimately derived from causal relationships. Two
events Xp and Xq are correlated (i.e., Pr(Xp ∩ Xq) > Pr(Xp)Pr(Xq)), be-
cause one of these events causes the other, or because an event Xr com-
monly causes Xp and Xq, as shown in Figure 2.2a, or because Xp causes
event Xr (an intermediate), which in turn causes event Xq, as shown in Fig-
ure 2.2b. Hence, Reinchenbach introduced the common cause principle,

Xp Xr Xq

(a)

Xp Xr Xq

(b)

Figure 2.2 – Two causal structures in which Xp is screened off from Xq by
Xr.

which states that a correlation between two events Xp and Xq indicates
that a causal relation exists between Xp and Xq (Xp → Xq or Xq → Xp) or
that Xp and Xq have a common cause Xr (Xp ← Xr → Xq) [Reichenbach,
1956].

Definition 12 (Common cause principle [Reichenbach, 1956]). Xr is a com-
mon cause of Xp and Xq if

— Pr(XpXq) > Pr(Xp)Pr(Xq);

— Pr(XpXq | Xr) = Pr(Xp | Xr)Pr(Xq | Xr);
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— Pr(XpXq |∼ Xr) = Pr(Xp |∼ Xr)Pr(Xq |∼ Xr);

— Pr(Xp | Xr) > Pr(Xp |∼ Xr);

— Pr(Xq | Xr) > Pr(Xq |∼ Xr).

The first condition ensures that Xp and Xq are unconditionally dependent.
The next two conditions express that when the presence (or absence) of
the common cause is taken into account (by conditioning), the correlated
events Xp and Xq are rendered probabilistically independent. In Reichen-
bach’s terminology, Xr screens Xp off from Xq. The last two conditions
describe the probability raising of the effect given their causes. Reichen-
bach left open the question as to whether the causal relations occurs at the
population or individual level (general or actual causality, respectively).
His work inspired many thinkers who followed in his wake. For exam-
ple, Irving J. Good (1916-2009) introduced a causal calculus based on com-
mon causes to construct causal nets and attempted a quantitative charac-
terization of the strengths of these nets [Good, 1961]. Wesley C. Salmon
(1925-2001) used the combination of screening off and the common cause
principle to offer a solid basis for causal explanation, although he later re-
vised his position by recognizing another type of common cause, known
as the interactive fork [Salmon, 1984]. The interactive fork depicts causal
interactions whose effects remain correlated even in the presence of the
common cause, which contradicts the common cause principle. However,
Peter Spirtes (1952-present), Clark Glymour (1942-present), and Richard
Scheines (1957-present) studied Salmon’s position and postulated that in-
teractive forks do not exist [Spirtes et al., 2000] (at least in the macroscopic
world). As can be seen, Reichenbach avoided references to time in his
analysis of causality. However, this avoidance was not unintentional: he
excluded it, because he wanted to analyze time in terms of causality. He
nevertheless failed to achieve this goal, because, as he postulated, the in-
termediate causes would also screen off two dependent variables. Con-
sequently, Spirtes, Glymour, and Scheines showed that Reichenbach erro-
neously focused on common causes and intermediate causes while disre-
garding unshielded colliders 6, which seems to be the key to determining
the direction of the cause between two variables [Spirtes et al., 2000, Pearl,
2000]. An unshielded collider gives rise to distinctive probabilistic rela-
tionships compared to a common cause and intermediate cause. A collider
creates dependency through conditioning, while a common cause and an

6. The treatment of colliders can be traced back to Arthur Cecil Pigou [Pigou, 2017].
A collider is unshielded if there is no direct causal relation between the direct causes of
the collider variable. Otherwise, it is shielded.
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intermediate cause remove the dependency. An example of an unshielded
collider is provided in Figure 2.3.

Definition 13 (Unshielded Collider). Xp and Xq cause Xr if Xp |= Xq and
Xp ̸ |= Xq | Xr.

Xp Xr Xq

Figure 2.3 – Unshielded collider

After Reichenbach, Patrick Suppes (1922-2014) presented one of the
most known theories of probabilistic causality. He agreed with Hume, that
causes must, by definition, precede their effects in time, and in this way, he
opposed Reichenbach’s approach. Nevertheless, like Reichenbach, Suppes
did not attempt to introduce any quantitative measures of causal strength,
instead framing his definitions in terms of measures of probability. He
noticed that the probability raising of Pr(Xq | Xp) is necessary but insuffi-
cient to claim that Xp causes Xq. Thus, he started by defining a prima-facie
cause that encodes temporal priority and probability raising along with
the stipulation that the cause has a nonzero probability.

Definition 14 (Prima facie cause [Suppes, 1970]). An event Xp
t′ is a prima

facie cause of Xq
t when the following conditions hold:

— t′ < t;

— Pr(Xp
t′) > 0;

— Pr(Xq
t |X

p
t′) > Pr(Xq

t ).

The first condition in the definition is the temporal priority introduced
by Hume (see Section 2.4). The second condition is a safe requirement
that the prima facie cause has some nonzero probability of occurring. The
third condition requires for the conditional probability of the effect, given
the prima facie cause, to be greater than the probability of the uncondi-
tioned effect (probability raising). A prima facie cause does not need to
be a genuine cause. And the above definition alone cannot differentiate
when it is a genuine or a spurious cause. To strengthen his theory, Suppes
offered another definition that allows for the detection of spurious causes:

Definition 15 (Spurious cause [Suppes, 1970]). An event Xp
t−i is a spurious

cause of Xq
t if and only if Xp

t−i is a prima facie cause of Xq
t and there is an event

Xr
t−i−j that occurs prior to than the prima facie cause and the effect such that
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— Pr(Xp
t−i, Xr

t−i−j) > 0;

— Pr(Xq
t | Xp

t−i, Xr
t−i−j) = Pr(Xq

t | Xr
t−i−j);

— Pr(Xq
t | Xp

t−i, Xr
t−i−j) ≥ Pr(Xq

t | Xp
t−i).

According to this definition, Xp is a spurious cause of event Xq if it is a
prima facie cause of Xq and it is screened off from Xq by an event Xr (or
partition of events XR) that precede Xp. And thus a prima facie cause
is genuine if it is not spurious, that is, if no earlier event undermines its
effectiveness. Suppes also introduced another version of this definition
by dropping the last condition. Under this setting, a prima facie cause is
genuine, if it is not spurious, that is, given prior events, the knowledge of
the prima facie cause remains predicatively informative.

Definition 16 (Indirect cause [Suppes, 1970]). An event Xp
t−i−j is an indirect

cause of Xq
t if and only if Xp

t−i−j is a prima facie cause of Xq
t and there is an event

Xr
t−i that occurs between the prima facie cause and the effect such that

— Pr(Xp
t−i−j, Xr

t−i) > 0;

— Pr(Xq
t | Xp

t−i−j, Xr
t−i) = Pr(Xq

t | Xr
t−i);

— Pr(Xq
t | Xp

t−i−j, Xr
t−i) ≥ Pr(Xq

t | Xp
t−i−j).

Suppes also extended his framework to quantitative causal relations. And
in a similar manner, Granger proposed a probabilistic concept of causal-
ity that is defined in terms of the incremental probability of a time series
[Granger, 1980].

Instead of seeking single causes that better explain the effect, and par-
titioning it into genuine/spurious causes, Ellery Eells (1953-2006) consid-
ered a quantity to denote how significant each cause is for its effect [Eells,
1991]. In other words, in his approach, he did not seek to find any single
more powerful cause, but rather to measure, overall, how well the cause
predicts the effect. First, to address the influence of common confounders,
Eells defined the set of causal background contexts that constitute a subset
of possible factors relevant to the effect and occurring at any time prior
to the effect (unlike Suppes who only considered those occurring prior
to the potential cause). Eells then defined the average degree of causal
significance as the average difference of the probability in each context,
weighted by the probability of that background context occurring.
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Definition 17 (Average degree of causal significance [Eells, 1991]). The av-
erage degree of causal significance of a factor Xp on a factor Xq is given by:

∑
i

Pr(XRi)(Pr(Xq | XRi , Xp)− Pr(Xq |∼ Xp, XRi)),

where XRi is the causal background context appropriate for assessing Xp’s causal
role for Xq.

Nancy Cartwright (1944-present), observed that causal laws are irre-
ducible to laws of association, weather probabilistic or deterministic. Sta-
tistical or probabilistic analyses of causality, which typically require for the
cause to increase or alter the probability of the effect, cannot succeed, be-
cause causes increase the probability of their effects only in situations that
exhibit causal homogeneity with respect to that effect [Cartwright, 1979].
In addition, such approaches cannot deal with actual causation, that is,
the type of causation that affects individuals based on how events actu-
ally play out. Eells suggested a probabilistic account to address this issue
[Eells, 1991]. However, as we shall see in the next section, the dominant
approach used for actual causation necessitates a whole new concept.

2.7 Counterfactuals theory

Hume’s regularity theory can be summed up by his words: “We may
define a cause to be an object followed by another, and where all the ob-
jects, similar to the first, are followed by objects similar to the second.”
[Hume, 1748]. Hume then continues by stating “Or, in other words, where,
if the first object had not been, the second never had existed.” [Hume,
1748]. Even though he seems to take the two definitions as equivalent, it
seems that they are not. The first definition tells us that causation is based
on regularity, while the second states that causation implies a necessary
connection defined in terms of counterfactuals. A counterfactual account
of causation would tell us that to prove that an event causes another, we
need to prove that if former would not have existed, the latter would not
have happened.

For a certain time, only a few thinkers followed the footsteps of Hume’s
second definition to develop an account of causation based on counterfac-
tuals because counterfactuals themselves were unclear. The true poten-
tial of the counterfactual approach to causation did not become clear until
counterfactual conditionals became properly understood through the de-
velopment of possible worlds semantics by Rudolph Carnap [Carnap, 1949]
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in 1949. Along with the semantics came a consistent set of propositions
that allow measuring the similarity between possible worlds. For instance,
there should be a weak ordering of the worlds in which a possible world is
closer to actuality than another if it resembles the actual world more than
the other possible worlds, whereas the actual world should be the closest
to actuality, as it resembles itself more than any other world does. In the
light of this understanding of counterfactuals, we can define counterfac-
tual dependence as follows:

Definition 18 (Counterfactual dependence [Lewis, 1973]). An event coun-
terfactually depends on another if and only if, if the latter were not to occur, the
former would not occur.

Furthermore, counterfactual dependence was considered to be useful
for detecting causation. For example, Figure 2.4 shows two different sce-
narios: in Figure 2.4a a brick blocks the main path of ball A, and in Figure
2.4b, it does not. Straight black lines represent the actual paths of balls A
and B, while dashed red lines represent the path that ball A would have
taken in the absence of ball B [Gerstenberg et al., 2014]. Here, the causal
question relates to whether ball B caused ball A to go through the gate.
In the first scenario (a), the answer is yes, because in the imagined world
where ball B did not exist, ball A would have continued its main trajectory
and crashed into the block. In the second scenario (b), the answer is no,
because in the imagined world where ball B did not exist, ball A would
have continued its main trajectory and continued straight to its goal.

A1 A2 A3A3

B1
B2

(a)

A1 A2 A3

B1
B2

(b)

Figure 2.4 – Two illustrations of counterfactual reasoning. Straight black
lines illustrate what actually happened, whereas dashed red lines illustrate
what would have happened in the absence of ball B. The index on balls A
and B represents the time index.

However, counterfactual dependence alone could not form a theory
of causation, because it is sufficient but unnecessary for causation. Two
events can be causally related without one counterfactually depending on
the other, mainly because a cause might sometimes be accompanied by
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backups, which can bring about the effect in the absence of the cause. This
type of problem usually involves early preemption, which occurs when
the process running from the preempted alternative is cut short before the
main process running from the preempting cause can be completed. This
is illustrated in Figure 2.5, which shows an example similar to that pre-
sented in Figure 2.4a with one distinction. In this case, a third ball C would
have bumped into ball A in the absence of ball B, because the existence of
ball B interrupted the alternative process in which C would have been the
cause. In this scenario, ball B is a preempting cause of A reaching the goal,
although ball A would have reached the goal even if ball B did not exist
because of the preempted backup ball C.

A1 A2 A3A2

B1
B2

C1

C2

Figure 2.5 – An illustration of early preemption. Straight black lines rep-
resent what actually happened, whereas dashed red lines represent what
would have happened if B did not exist. The index on balls A, B, and C
represents the time index.

Many solutions have been proposed to the problem of necessity be-
tween causation and counterfactual dependence [Lyon, 1967]. However,
the most famous account is that of David Lewis (1941-2001) who solved it
by defining causation in terms of chains of counterfactual dependence.

Definition 19 (Causation in terms of chains of counterfactual dependence
[Lewis, 1973]). An event causes another if and only if, there is a chain of coun-
terfactual dependence leading back from the latter to the former.

Returning to our example, a chain of counterfactual dependence exists be-
tween ball B bumping into A and ball A reaching the goal. Supposing t is
the time when A reached the goal and t− i the time when ball B bumped
into ball A, we can thus say that ball A would not have changed trajectory
at time t− i if ball B had not existed, A would not have been in the same
position as it was at time t− i + ϵ if ball B had not existed, and so on un-
til reaching the goal. However, there is no such chain leading back from
ball A reaching the goal to ball C bumping into A. The main issues with
this approach are late preemption [Lewis, 1986] and trumping preemption
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[Schaffer, 2000]. On the one hand, late preemption occurs when the pro-
cess running from the preempted cause is cut short by the main process
running to completion and bringing about the effect before the preempted
potential cause has the opportunity to do so. For illustrative purposes, let
us consider the same example as in Figure 2.5 but now suppose that ball
B bumps into ball A, and a split second later, ball C bumps into ball A
without changing its new trajectory. The chain of counterfactual depen-
dencies leading back from ball B bumping into ball A is matched by the
chain of counterfactual dependencies leading back from ball C bumping
into ball A. On the other hand, trumping preemption occurs when the
process running from the preempted cause happens at the same time as
the main process running to completion and bringing about the effect, but
the preempted potential cause has no influence on the effect relative to
the real cause. To understand this, let us take an example analyzed by
Lewis himself: a major and a sergeant simultaneously shout “Advance”
to a group of soldiers. The soldiers hear them both and advance. Since the
soldiers obey the superior officer, they advance because the major orders
them to do so, not because of the sergeant. Thus, the major’s command
preempts or trumps that of the sergeant. To overcome these difficulties,
Lewis amended his counterfactual theory [Lewis, 2000] by introducing the
notion of alteration.

Definition 20 (Alteration [Lewis, 2000]). An event that is identical to another
except that it occurs at a slightly different time, place or in a slightly different
manner.

And by means of the notion of alteration, Lewis defined influence as fol-
lows:

Definition 21 (Counterfactual influence [Lewis, 2000]). An event causes an-
other if and only if there is a chain of stepwise influence (alteration) leading back
from latter to the former.

Returning to the late preemption example, if an alteration of ball B bump-
ing into ball A occurred, then an alteration of ball A reaching the goal
would occur. But an alteration of ball C bumping into ball A would have
no effect on ball A reaching the goal. Using the major and sergeant ex-
ample, altering only the major’s command would correspondingly alter
the response of the soldiers. By contrast, altering only the sergeant’s com-
mand would make no difference as the soldiers would continue to obey
the major.

Although Lewis’ new approach addressed the problems of early pre-
emption, late preemption, and trumping preemption, it was not immune
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to criticism. The fact that causation is represented by a chain suggests that
it is transitive. If causation is transitive, then it can infinitely propagate
back to the beginning of time. Using the transitivity of stepwise influence,
we can argue that the big bang might be the cause of ball A reaching the
goal. Thus, it seems that this theory will produce too many causes for each
effect. In response to these attacks, Lewis along with Donald Davidson
(1917-2003) highlighted the importance of distinguishing causation from
explanation. There is no explanation without causation, although there is
causation without explanation. Causation does not depend on us: if hu-
mans disappear, explanation will cease to exist, but this is not the case with
causation. Despite the existence of causes going back to the beginning of
time, only a few of them are adequate to provide an explanation.

Two alternative counterfactual approaches to causation (in parallel to
Lewis’ theory) emerged in applied fields. The first started when Jerzy
Neyman (1894-1981) [Splawa-Neyman et al., 1990, Rubin, 1990] sought to
solve a problem about the best variety of crops to plant in a given field.
With such problems, experimentation is possible but inefficient, since crop
planting depends on the season. For each plot, there can only be one entry,
which means that the problem at hand generates a sparse matrix, where
all the zeros can be referred to as counterfactuals. This led Donald Rubin
(1943-present) to view causal inference as a missing data problem [Rubin,
1974] and formalize it as the potential outcome framework. The main idea
is about figuring out what is the causal effect of some treatment on some
outcome. By treatment, we refer to something that you might be exposed
to whether it happens to be in the environment or whether it is something
that a clinician would give you as an actual formal treatment. By outcome,
we refer to what we would have observed under each possible treatment
option. The second counterfactual framework finds its origin in the work
of Sewall Wright (1889-1988) [Wright, 1921], who introduced a method
known as path analysis to explain the patterns of inheriting different color
markings in guinea pigs. His method attempts to measure the direct in-
fluence of each correlation and find the degree to which the variation of
a given effect is determined by each particular cause. For this purpose,
diagrams of variables connected by arrows are constructed, showing the
different correlations within the system. Based on these diagrams and the
correlations observed between variables, equations are constructed and
then solved. The coefficients (also known as path coefficients) represent
the direct effects of the variables on each other. The work of Wright was
later generalized by Judea Pearl (1936-present) and other pioneers in the
domain of causality [Pearl, 2000] who subsequently introduced the frame-
work of structural causal models. The potential outcome framework and
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the structural causal models framework are not exclusive, as it was proven
that one can be theoretically translated to the other [Pearl, 2010]. However,
we will focus on the framework of structural causal models here.

Structural causal models combine features of structural equation mod-
els used in the social sciences, the graphical models, and the counterfactual
account of causation. They deal with examples of late preemption using
a certain procedure to test the existence of a causal relation. This proce-
dure involves searching for an intrinsic process that connects the potential
cause and effect and then suppresses the influence of their extrinsic sur-
roundings by fixing them as they actually are. Finally, a counterfactual
test is applied the potential cause. For the example given in Figure 2.5, the
system can be described using the following set of variables:

— BE = 1 if ball B exists, 0 otherwise;

— BA = 1 if B bumps into ball A, 0 otherwise;

— CE = 1 if ball C exists, 0 otherwise;

— CA = 1 if C bumps into ball A, 0 otherwise;

— BG = 1 if ball A reaches the goal, 0 otherwise.

To test whether B bumping into ball A caused ball A to reach the goal,
we should examine the process running from BE through BA to BG while
fixing variable CA (extrinsic to this process) to its initial value, and then
changing the value of variable BE to see weather it changes the value of
BG. The last steps involve evaluating the counterfactual statement that “if
ball B had not bumped into ball A and if ball C had not bumped into ball
A, then ball A would not have reached the goal”. It is easy to see that this
counterfactual is true. By contrast, when we apply a similar procedure to
test whether ball C bumping into ball A caused ball A to reach the goal,
we are required to consider the counterfactual statement “if ball C had
not bumped into ball A and if ball B had bumped into ball A, then ball A
would not have reached the goal”. This counterfactual is false. The dif-
ference in the truth value of these two counterfactual statements explains
that ball B bumping into ball A, and not ball C bumping into ball A, caused
ball A to reach the goal.

2.8 Manipulability and intervention theory

Peter Menzies (1953–2015) and Huw Price (1953-present) developed
the manipulability theory of causation (also known as the agency theory of
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causation 7) [Menzies and Price, 1993], which considers free human action
to be the model for understanding causation, both in everyday life and in
experimental analysis.

Definition 22 (Causation by manipulation [Menzies and Price, 1993]). An
event is a cause of a distinct event in the case that bringing about the occurrence
of the first would be an effective means by which a free agent could bring about
the occurrence of the second.

This approach tends to be reductionist and circular, thus leading to a
subjective conception of causation. It is reductionist, because it grounds
causation in non-causal human manipulation. It is circular, because the
notion of bringing about is itself a causal notion. Finally, it is subjective,
because it is only related to human agents. In addition, manipulation, as
defined in this theory, cannot be conducted in the entire range of applica-
tions, since not all causal knowledge is manipulable by a normal agent.

According to James Woodward (1941-present), the concept of agency
is not independent of the notion of causation. However, they lack a spe-
cial connection with the notion of human agency. Woodward argued that
there is nothing logically special about human action or agency. Human
interventions can be regarded as nothing more than events in the natural
world. He thus introduced the intervention theory of causation [Wood-
ward, 2003], which is an evolution of the manipulability theory. An inter-
vention is a causal process that acts in a surgical, targeted, and exogenous
manner. Given a cause Xp and its effect Xq, the intervention on Xp must
completely disrupt the causal relationship between Xp and its previous
causes so that the value of Xp is set entirely by the intervention. In addi-
tion, the intervention must not directly cause Xq via a route that does not
go through Xp. Furthermore, the intervention itself should not be caused
by any cause that affects Xq via a route that does not go through Xp. Fi-
nally, the intervention should leave unchanged the values taken by any
causes of Xq except those on the direct path from Xp to Xq (should this
exist) unchanged. Given these requirements, Xp causes Xq when some
possible intervention on Xp changes the value of Xp along with an associ-
ated regular change in the value of Xq.

Definition 23 (Causation by intervention [Woodward, 2003]). A necessary
and sufficient condition for Xp to be a direct cause of Xq with respect to some
variable set V is that there is a possible intervention on Xp that will change Xq

7. The early version of the agency theory of causation was developed by von Wright
in 1971.
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(or the probability distribution of Xq) when all other variables are kept fixed at
some value by interventions.

According to Pearl, to be able to give optimal solutions to causal ques-
tions, we need to discover how to include interventions in equations. He
thus argues that the entire enterprise of probabilistic causation has been
misguided from the very beginning, because the central notion that a cause
raises the probability of its effect cannot be expressed in the language
of probability theory [Pearl, 2000]. In particular, the inequality Pr(Xq |
Xp) > Pr(Xq), which philosophers invoked to define causation as well as
its many variations and nuances, fails to capture the intuition behind prob-
ability raising, which is inherently a manipulative or counterfactual notion.
Figure 2.6 shows that the statistical implications of the structures repre-
sented in Figure 2.2 are inherited from intervention. For common and
intermediate causes, when we intervene on C, we remove the dependency
between A and B. However, for the collider (Figure 2.3), when we inter-
vene on C, we do not create a dependency between A and B as in the case
of conditioning on C. To rectify the mistakes of the past, Pearl introduced

Xp Xq

Xr

Xp Xq

Xr

(a)

Xp Xq

Xr

Xp Xq

Xq

(b)

Xp Xq

Xr

Xp Xq

Xr

(c)

Figure 2.6 – The consequence of an intervention on Xr in the case of a com-
mon cause (a), an intermediate cause (b), and an unshielded collider (c).
Dashed lines represent correlations, and red crosses denote interventions.

a new type of algebra based on causal relationships [Pearl, 2000, Pearl and
Bareinboim, 2011]: the do-calculus. Its main purpose is to integrate in-
terventions into mathematical equations. This consists of three inference
rules that allow us to map the interventional and observational distribu-
tions whenever certain conditions hold in the causal graph G. Thus, ac-
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cording to Pearl, the correct formulation of probability raising should read:
Pr(Xq | do(Xp)) > Pr(Xq | Xp).

In parallel with the development of do-calculus, Spirtes, Glymour, and
Scheines developed a similar approach to causality [Spirtes et al., 2000]
in which they certainly consider interventions as an important part of it.
However, their work contains less of an emphasis on the calculus of inter-
ventions and focuses more on finding bridge principles that allow to infer
causation from observation. Reinchenbach’s common cause principle told
them that if a common cause (for example, Xr in Figure 2.2a), was not ob-
served, one would infer a spurious correlation and thus a causal relation
between its effects (Xp and Xq in Figure 2.2a) as these latter variables are
independent only when conditioned on their common cause (Xr in Fig-
ure 2.2a). To avoid such spurious correlations, they started by assuming
that all common causes are measured and observed; this assumption is
known by causal sufficiency.

Definition 24 (Causal sufficiency). A set of variables is said to be causally
sufficient if all common causes of all variables are observed.

As a consequence, if one wants to focus on a few variables, one needs to
make sure that all their common causes are also taken into account. To rep-
resent causal relations, similarly to Pearl, Spirtes, Glymour, and Scheines
used graphical notions. However, for large graphs, it is not obvious how
to conclude that two nodes are conditionally independent. Thus, they
used d-separation (previously introduced by Pearl [1988]), a tool that al-
lows an algorithmic check of conditional independencies in the graph; i.e.,
d-separation introduce the probability distributions into the graph, which
describes the set of independencies in a DAG G in terms of whether, for
two vertices Xp and Xq, there is some set of vertices Xr blocking connec-
tions between them. Formally speaking:

Definition 25 (d-connection and d-separation). If G is a directed graph in
which Xp, Xq and Xr are disjoint sets of vertices, then Xp and Xq are d-connected
by Xr in G if and only if there exists an undirected path U between some vertex
in Xp and some vertex in Xq such that for every collider Xc on U, either Xc or a
descendant of Xc is in Xr, and no non-collider on U is in Xr. Otherwise, Xp and
Xq are d-separated given Xr.

One statistical consequence can be drawn out from d-separations and
d-connections: if Xr d-separates Xp and Xq then we can say that Xr ren-
ders Xp and Xq statistically independent Xp |= Xq | Xr in any distribu-
tion that factorizes according to G. Nevertheless, if taken no further, d-
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Figure 2.7 – Faithful vs unfaithful graphs.

separation alone is just mathematics connecting DAGs and probability dis-
tributions and need not involve causation at all. To make a bridge between
d-seperation and causation, Spirtes, Glymour, and Scheines developed the
causal Markov condition [Spirtes et al., 2000], a generalization of Reichen-
bach’s common cause principle, which was first introduced by Harri Ki-
iveri and Terry Speed [Kiiveri and Speed, 1982]. The causal Markov con-
dition states that information about a variable is found only in its direct
causes and not in its effects or any indirect causes.

Definition 26 (Causal Markov condition). A causal graph G = (V, E) with
its probability distribution P is said to satisfy the causal Markov condition if
every vertex in G is independent with respect to P of its nondescendents given its
parents.

Under this assumption, d-separation becomes the correct connection
between causal structure and probabilistic independence. But what about
probabilistic dependence? Consider two DAGs G and G ′, such that G is
a supergraph of G ′, i.e., G and G ′ have the same vertices, and the set of
arrows in G ′ is a subset of the set of arrows in G. In such case, if the proba-
bility distribution P is Markov to a DAG G ′, then P is Markov to G. Hence,
the causal Markov condition alone cannot differentiate between the two
DAGs. To tackle this problem, the minimality condition 8 was introduced.

Definition 27 (Minimality condition). A DAG G compatible with a probability
distribution P is said to satisfy the minimality condition if P is Markov to G
but not Markov to any proper subgraph of G.

The causal Markov condition alone puts no constraint on the distribu-
tions that the structure could produce, so independencies that cannot be
explained by the causal Markov condition or d-separation can be obtained.
This limits the possibility to infer a causal graph from probabilities alone.
Adding the minimality condition is also not sufficient to restrict the set of

8. Here we use the definition introduced by Spirtes et al. [2000], not the one intro-
duced by Pearl [2000].
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possible causal structures. To see that, let us assume that we have the fol-
lowing (conditional) independence and dependence relations between the
three variables Xp, Xq, and Xr:

Xp |= Xr, Xq ̸ |= Xp, Xq ̸ |= Xr, Xp ̸ |= Xr|Xq, Xq ̸ |= Xr|Xp, Xq ̸ |= Xp|Xr.

The two graphs given in Figure 2.7 are compatible with the probability
distribution given above as P(Xp, Xq, Xr) factorizes in both cases as

P(Xp)(Xr)(Xq|Xp, Xr).

They furthermore satisfy the minimality condition as removing any edge
on one of the two graphs changes the factorization of the joint probabil-
ity. This said, the graph in Figure 2.7b states that Xp and Xr are uncon-
ditionally dependent whereas the probability distribution states they are
unconditionally independent. This can be seen as problematic and we say
in such a case that the graph is unfaithful according to the following defi-
nition.

Definition 28 (Faithfulness ([Spirtes et al., 2000])). We say that a graph G
and a compatible probability distribution P are faithful to one another if all and
only the conditional independence relations true in P are entailed by the Markov
condition applied to G using d-separation.

The faithfulness condition serves as a methodological tool to infer causal
graphs and, in many studies, one aims at inferring faithful graphs with
respect to the (conditional) independence relations observed in the data.
Two causal consequences can be drawn out from d-separations and d-
connections when assuming the causal Markov condition and faithfulness:
if Xr d-separates Xp and Xq then Xr is not a collider of Xp and Xq accord-
ing to G; and if Xr d-connects Xp and Xq then Xr is a collider Xp and Xq

according to G. Given these assumptions and assuming and no temporal
information is available, the causal structure can be retrieved from data
up to a Markov equivalent class. Two DAGs are called Markov equivalent
if they encode the same independence relationships between the observa-
tional variables, i.e., same structure and same colliders.

This main theory 9 presented by Spirtes, Glymour, and Scheines is based
on DAGs which are easily interpretable but lack the tools to entail knowl-
edge about hidden confounders or selection variables as illustrated in Fig-
ure 2.8: by neglecting the hidden confounder L, a causal dependence be-
tween Xq and Xr might appear, and by neglecting the selection variable

9. Pearl also contributed to this theory.
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Figure 2.8 – Illustration of hidden confounder (L) and selection bias (S): on
the left when observing all the variables, and on the right its representation
in a MAG.

S, Xp has a spurious influence on Xr. However, they encountered this
problem by using maximal ancestral graphs ([Richardson and Spirtes, 2002],
MAGs 10) which enable one to focus on the independence structure over
the observational variables that results from the presence of latent vari-
ables and selection bias without explicitly including them in the graph.
Permitting bi-directed edges (←→) in the graph allows one to graphically
represent the existence of an unobserved common cause of observational
variables, and permitting undirected edges (−) allows to represent un-
observed selection variables that have been conditioned on rather than
marginalized over, as illustrated in Figure 2.8. MAGs are maximal in the
sense that no additional edge may be added to the graph without changing
the independence model [Richardson and Spirtes, 2002]. However, this is
not enough to infer causal relations with the absence of causal sufficiency
because d-separation is only adapted to DAGs. A natural extension of
d-separation that can be applied to ancestral graph has been introduced,
namely the m-separation. Since the notion of collider and non collider
now include bi-directed edges and undirected edges, m-separation can be
defined as follows:

Definition 29 (m-separation). Let G be a maximal ancestral graph in which
Xp, Xq and Xr are disjoint sets of vertices. Xp and Xq are m-connected given
Xr if there exists an undirected path U between some vertex in Xp and some
vertex in Xq such that every collider on U is an ancestor of a vertex in Xr, and no
non-collider on U is in Xr. Otherwise, Xp and Xq are m-separated given Xr.

10. In contrast to DAGs, MAGs cannot be trivially be used for causal reasoning
[Meganck et al., 2007, Zhang, 2008b]
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Using these notions, Spirtes, Glymour, and Scheines introduced two al-
gorithms PC and FCI (which are still the most known algorithms in causal
discovery), that can discover causal relations from non temporal data up
to a Markov equivalence class, under the assumption of causal sufficiency
for PC, and without the causal sufficiency assumption for FCI. These two
algorithms will be further discussed in the next chapter.

2.9 Pluralism and hierarchy

Causation is used in verbal discussions in several senses. So why limit
causality to one account? This idea goes back to Aristotle. Striking a match
caused it to light, one billiard ball caused another to move, Louis caused
Elsa to blush, the big bang caused the universe to exist, design flaws of
the RBMK reactor and the incompetence of workers caused Chernobyl’s
nuclear reactor disaster, and so on. As seen in every account of causation,
we were able to find an example to challenge it. So perhaps a universal law
of causation does not exist. Elizabeth Anscombe (1919-2001) [Anscombe,
1993] argued that a general account of causality is impossible. Maybe it is
too much to expect that one theory can encompass all notions of causality.
It could be that causation is a general account of different instances with
their own laws. Just as many species constitute a genus, perhaps many
types of causality constitute universal causality.

Alternatively, Pearl provided an interesting insight unveiled by the
logic of causal reasoning. It involves a classification of causal informa-
tion in terms of the types of questions that each class can answer. This
classification forms a three-level hierarchy known as the Pearl causal hi-
erarchy (PCH), which was recently proven to be hierarchically correct
(Bareinboim et al, 2020, to be published) in the sense that questions at
level i (i = 1, 2, 3) can only be answered if information from level j (j ≥ i)
is available. The three-levels are association, intervention, and counterfac-
tual.

Association involves purely statistical relationships defined by obser-
vational data. For instance, observing a phone freezing makes it more
likely that its messaging system will fail. This association can be inferred
directly from the observational data using conditional expectation. Since
this layer does not require causal information, it is placed at the bottom
of the hierarchy. This process can refer to seeing, observing, or detecting
regularities and patterns. All machine learning applications (prediction,
clustering, etc.) belong to this level, which can respond to the following
questions: “What happens if I see ...?”, “How are the variables related?”,
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“How would an event change my belief in another event?”, “What does
the increase in CPU tell us about the RAM?”, “What does a symptom tell
me about a disease?”, or “What does a survey tell me about the election
results?”.

Intervention involves not only seeing what is but changing what we
see by acting on the system. A typical question at this level would be:
“What happens if we intentionally break the messaging system?”. Such
questions cannot be answered from monitoring data alone, because they
involve a change in system behavior in response to the intentional inter-
vention. The freezing of the phone under this intervention may differ sub-
stantially from what happened in the past. It can refer to doing or inter-
vening. Other questions that can be answered at this level take the form of
“What happens if I do ...?”, “How can I make an event happen?”, “If I shut
down the server, will the system stabilize?”, “If I take an aspirin, will my
headache go away?”, or “What will happen if we ban cigarettes?”. There
is an obvious distinction between intervention and conditioning. When
we intervene on a variable, we fix its value and thus change the system; as
a result, the values of the other variables might change. When we condi-
tion on a variable, we change nothing; we merely narrow our focus to the
subset of cases in which the variable takes the value of interest. In the case
of conditioning, our perception about the world changes, not the world,
but in the case of intervening, the world itself changes. If Xp is the cause
of Xq, then Pr(Xq | do(Xp)) is equivalent to Pr(Xq | Xp), since the new
world refers to a subset of the world in which we find ourselves.

In counterfactual, in addition to seeing and changing what we see,
there is imagining: namely, imagining what would happen (also known
as retrospecting and understanding). This level can answer the following
types of questions: “What if I had done ...?”, “Why?”, “Was it ball B that
caused ball A to move?”, “What if ball B had not occurred?”, “What if
I had acted differently?”, “Would the frozen phone unfreeze if the mes-
saging system worked?”, “Was it the aspirin that stopped my headache?”,
“Would Kennedy still be alive if Oswald had not killed him?”, or “What if
I had not smoked for the last 2 years?”.

2.10 Conclusion

In this chapter, we provided a brief chronological overview of the cau-
sation principle, starting in Ancient Greece, passing through the Renais-
sance, and ending in the contemporary period. In the last two centuries,
many scientists have reflected on the subject, but most were too skepti-
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cal to take it seriously. However, in the last few decades, enlightening
progress has been made to understand causation as well to infer it under
certain conditions. Among others, we focused on the probability raising
principle, the prima-facie cause, the causal Markov condition, minimality,
and faithfulness which constitute the building block of this thesis.
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Chapter 3

A survey on causal discovery for
time series

Resemblance, Contiguity and
Causation are the only ties of
our thoughts, they are really to
us the cement of the universe,
and all the operations of the
mind must, in a great measure,
depend on them.

David Hume
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3.1 Introduction

In recent years, causal discovery from statistical data has attracted in-
creasing interest [Hoyer et al., 2009, Mooij et al., 2009, Kalainathan et al.,
2018, Bloebaum et al., 2018]. This chapter consists of a review of existing
methods that infer causal discovery from time series data and which can
be divided into three categories: Granger causality that considers that a
cause has unique information about the future values of its effect Granger
[1969]; constraint-based approaches that filter unwanted associations via
independence test [Spirtes et al., 2000, Pearl, 2000]; and noise-based ap-
proaches that as the name suggests, use noise to infer causal relations
Hoyer et al. [2009].

Compared to causal inference from static data, the temporal informa-
tion present in time series serves as a strong constraint for deciding the
direction of a causal relation as ”a cause precedes its effects” (see Defini-
tion 8). This said, the consideration of time series induces new difficulties
as the relations between time series can occur across different time lags.
Furthermore, observations in time series are often strongly correlated with
the recent history of the time series, which may induce spurious correla-
tions. We review in this chapter the most known families of methods that
detect causal relations between time series and we describe several algo-
rithms from each family.

In the remainder, we consider d-variate time series X where, for a fixed
t, each Xt is a vector (X1

t , · · · , Xd
t ) in which each variable Xp

t represents a
measurement of the p-th time series at time t.

3.2 Granger causality

Granger causality is one of the oldest concepts in causal inference,
based on a statistical version of Hume’s regularity theory [Hume, 1738]
which states that causal relations can be inferred by the experience of con-
stant conjunctions between a cause that precedes its effects. Probabilis-
tic versions of Hume’s regularity theory, based on the probability rais-
ing principle (conditioning on a cause increases the probability for the ef-
fect to appear), have been investigated by different authors, among which
one can cite Reichenbach [1956], Suppes [1970] and Eells [1991]. Granger
[1969] proposed a statistical version that can be stated as:

Definition 30 (Granger Causality [Granger, 1980]). A time series Xp Granger-
causes Xq if past values of Xp provide unique, statistically significant information
about future values of Xq.
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For a given effect, the unique information contained in its causes and
not in other variables allows to optimally forecast the effect from its causes
only. As such, Granger causality assumes causal sufficiency (see Def. 24).
In addition, the temporal precedence constraints it relies on prevents one
from inferring the direction of ”instantaneous” causal relations. Indeed,
modifying Granger causality by regressing Xq

t using the past values of
Xq and Xp, as well as Xp

t to take into account instantaneous effects, does
not allow to decide which variable is the cause and which the effect, as
already noted by Granger [1988]. Please bear in mind that instantaneous
effects in this context are due to the fact that, with discrete time stamps,
small temporal differences between a cause and its effect are observed as
being instantaneous.

However, despite these downsides, Granger causality is generally con-
sidered as a valuable tool that can improve the performance of predic-
tion and was proven to be effective in many fields such as econometrics
[Hiemstra and Jones, 1994], neuroscience [Brovelli et al., 2004, Ding et al.,
2006], climate analysis [Papagiannopoulou et al., 2017, Zhang et al., 2011]
to name but a few.

We provide below a more detailed description of standard Granger
causality and its recent extensions.

3.2.1 Standard PairWise Granger causality

In its simplest version, under the assumption of stationary linear sys-
tems and to assess whether Xp Granger-causes Xq, one considers the fol-
lowing autoregression model:

Xq
t = aq,0 +

γo

∑
i=1

aq,iXq
t−i + ξ

q
t , (Mres)

and its augmented version:

Xq
t = aq,0 +

γo

∑
i=1

aq,iXq
t−i +

γo

∑
i=1

ap,iXp
t−i + ξ

q
t , (Mfull)

where (ξ
q
t )t are uncorrelated random variables with zero mean and vari-

ance σ2, (aq,i)1≤i≤γo and (ap,i)1≤i≤γo are real coefficients, and γo corre-
sponds to the optimal lag value. The model (Mres) is an autoregressive
model and is called the restricted model. It uses only past values of Xq to
predict its current value. The model (Mfull) is an augmented version of the
autoregressive model and is called the full model. It uses both past values
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of Xq and Xp to predict the current value of Xq. If the full model is signif-
icantly more accurate than the restricted model, one can conclude that Xp

Granger-causes Xq. From a statistical viewpoint, a statistical test such as
the F-test can be used to determine whether the full model is significantly
better than the restricted one, the null hypothesis stating that Xp does not
Granger-cause Xq. In practice, the optimal lag γo can be estimated using
any information criterion, as the Akaike or Schwartz information criteria
(γo ∈ {1, · · · , γmax}).

In a multivariate setting, a pairwise analysis can be performed using
the bivariate approach. This approach does however not fully capture
Granger’s original ideas which assume that all relevant information is in-
cluded in the analysis [Eichler, 2008]. Furthermore, a pairwise approach
may lead to ambiguous results in terms of differentiating direct from me-
diated causal relations [Ding et al., 2006], detecting for example a spurious
correlation in a chaining of three time series, which can be removed by
conditioning on the common dependencies. To address these problems, a
direct extension of Granger causality to multivariate time series has been
proposed.

3.2.2 MultiVariate Granger causality

To overcome the problem of common confounders, all relevant infor-
mation needs to be included in the analysis. Let X = (X1, X2, · · · , Xd) be
a d-dimensional time series. The multivariate Granger causality, or con-
ditional Granger causality [Geweke, 1982, Chen et al., 2004, Barrett et al.,
2010], makes use of the following restricted and full models, both based
on a vector autoregressive extension of the autoregressive model of the
pairwise case:

Xq
t = aq,0 +

d

∑
r=1
r ̸=p

γmax

∑
i=1

ar,iXp
t−i + ξ

q
t , (mvMres)

Xq
t = aq,0 +

d

∑
r=1

γmax

∑
i=1

ar,iXr
t−i + ξ

q
t , (mvMfull)

where (ξ
q
t )t are uncorrelated random variables with zero mean and vari-

ance σ2, (ar,i)1≤i≤γmax, 1≤r≤d and aq,0 are real coefficients, and γmax is as be-
fore the optimal lag. Here the full model (mvMfull) uses all observational
time series whereas the restricted model (mvMres) uses all time series ex-
cept Xp. Analogously to the bivariate case, if the full model is significantly
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more accurate than the restricted model (through a statistical test), one
concludes that Xp Granger-causes Xq. If the conditional Granger causality
is sound and usually yields better results for inferring a causal graph from
observational multivariate time series, its computation overload is such
that in practice many studies rely on the pairwise version.

Many proposals, extended Granger causality to non-linear relations
among which and not surprisingly, several investigated the use of deep
networks. The temporal causal discovery model TCDF represents such an
attempt. Because of the popularity of deep neural networks, we detail it
below.

3.2.3 A deep-learning method to detect Granger causality

The temporal causal discovery framework (TCDF), introduced by Nauta
et al. [2019], learns complex non linear causal relations between time series
using deep neural networks. It is based on an attention mechanism within
dilated 1 depthwise 2 convolutional networks. It consists of d independent
attention-based CNNs (Nq)1≤q≤d, all with the same architecture but with
a different target time series Xq as illustrated in Figure 3.1. Along with the
prediction of the target, each neural network outputs its attentions scores
and its kernel weights which allow a causal interpretation of the results:
high attention on a time series Xp while forecasting a time series Xq indi-
cates that the former contains relevant information that helps forecasting
better the latter.

For 1 ≤ q ≤ d, the attention scores (aq,p)1≤p≤d of the attention mech-
anism indicate which time series contains the most valuable information
for prediction, and detect which ones are potentially causally associated
with the target time series Xq. To interpret the attention scores causally,
the softmax function σ is applied and followed by a straightforward semi-
binarization that truncates all attention scores that fall below a thresh-
old sq. To determine sq, TCDF starts by ranking the attention scores from
high to low and then searches for the largest gap 3 between two adja-
cent attention scores. The threshold sq is then equal to the biggest atten-
tion score associated with that gap. To distinguish causality-based from
correlation-based attention, a causal validation step is applied: potential

1. A dilated convolution applies a kernel over an area while skipping values with a
certain step size. This step size increases exponentially from a hidden layer to another
depending on a chosen dilation coefficient c.

2. A depthwise convolution is a type of convolution where a single convolutional
filter is applied for each input channel. In this case, each channel is a time series.

3. Additional constraints can be added; for more details see Nauta et al. [2019].
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Figure 3.1 – Neural network associated to TCDF: d independent CNNs
(Nq)1≤q≤d, all having time series X1 · · ·Xd of length T as input. For
1 ≤ q ≤ d, the network Nq predicts Xq by X̂q, and also outputs the ker-
nel weights (Wq,p,k)1≤p≤d,1≤k≤K (where K represents the kernel size) and
attention scores (aq,p)1≤p≤d. After attention interpretation, causal valida-
tion, and delay discovery, a temporal causal graph is constructed.
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Figure 3.2 – How TCDF deals with hidden confounders. A red edge (a) indi-
cates a wrong causal relation discovered by TCDF, whereas a green double
edge (b) indicates that a true causal relation is discovered. Numbers cor-
respond to delays.

causes are validated if the loss of a network, when removing the chronicity
of a time series using permutation, increases significantly when a variable
is permuted. Once all causal relations have been established for time se-
ries Xq, TCDF detects their time delays by interpreting the kernel weights
(Wq,p,k)1≤p≤d,1≤k≤K which consist of d rows and K columns (where K is
the kernel size). Each row is associated to one input time series and each
column shows the importance of each time delay of associated time series.

As can be seen in Figure 3.1, TCDF can learn self-causation since it in-
cludes the past of Xq when fitting Nq for 1 ≤ q ≤ d. It is also able to detect
hidden confounders if they have equal delays to their effects with no addi-
tional cost by simply assuming causal relations cannot be instantaneous.
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For example, TCDF is able to detect the presence of hidden confounder in
Figure 3.2 (b) but not in Figure 3.2 (a).

One of the main drawbacks of TCDF is the number of hyperparame-
ters it relies on (number of hidden layers, kernel size, dilation coefficient,
number of epochs, loss function, and learning rate) and the difficulty to
set them. In addition, unlike other methods, there is no direct way to set
the maximum number of lags as increasing the number of hidden layers
(or the kernel size or the dilation coefficient) leads to an increase in the
number of time steps seen by the sliding kernel, and so to an increase in
the maximum delay.

3.3 Constraint-based approaches

Constraint-based approaches exploit conditional independencies to build
a skeleton between variables. This skeleton is then oriented according to
a set of rules that define constraints on admissible orientations. Central
to these approaches is the notion of v-structures, or colliders, as these are
the only structures which can be oriented without ambiguity (an exam-
ple of a v-structure is given in Figure 2.3, page 34). We first cover here
the main algorithms assuming causal sufficiency, corresponding to situa-
tions when all possible causes are observed, then we deal with situations
without causal sufficiency, i.e., with hidden causes.

3.3.1 With causal sufficiency

The goal here is to exploit conditional independencies, obtained from
observational data, to construct the underlying causal graph which is typ-
ically represented by a directed acyclic graphs (DAGs) in causally suffi-
cient situations. The underlying causal graph is however not unique as
several DAGs can be used to represent the same set of conditional inde-
pendencies. For example, the models in Figure 3.3, borrowed from Verma
and Pearl [1991], all represent the same independence relation ”Xp is in-
dependent from Xq given Xr” (Xp |= Xq|Xr). This leads to the notion of
Markov equivalence class which corresponds to a set of DAGs that encode
the same set of conditional independencies. Verma and Pearl [1991] have
shown that two DAGs are Markov equivalent if and only if they have the
same skeleton and the same v-structures. This notion of equivalence only
relies on the orientation of compelled edges, that is edges participating to v-
structures or whose change in orientation would lead to new v-structures
and can be represented by partially directed acyclic graphs (PDAGs), in
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which some edges are not oriented 4. Given an equivalence class of DAGs,
Andersson et al. [1997] and Chickering [2002] introduce the completed
PDAG (CPDAG) as the PDAG that consists of a directed edge for every
compelled edge in the equivalence class, and an undirected edge for all
other edges. It turns out that a CPDAG uniquely represents a Markov
equivalence class. Thus, the goal of constraint-based, causal discovery al-
gorithms can finally be formulated as: construct, from observational data,
the CPDAG that represents the Markov equivalence class of a true causal
graph.

Xp

Xr

Xq Xp

Xr

Xq Xp

Xr

Xq

Figure 3.3 – Three Markov equivalent structures.

One of the oldest constraint-based algorithms is the SGS algorithm
[Spirtes et al., 1990], which has been proved to be consistent under i.i.d.
observations assuming causal sufficiency. SGS starts with a full undirected
graph connecting all variables. For each pair of vertices (Xp, Xq), it finds
(if possible) some subset of vertices that makes them conditionally inde-
pendent (the smallest such subset is referred to as Sepset(Xp, Xq)) removes
the edge between them if it is the case. It then orients undirected edges
by subsequently employing orientation rules to derive causal conclusions.
The main drawback is that the number of conditional independencies that
needs to be tested in a fully connected graph grows exponentially with the
number of variables, which makes SGS not usable in practice. The Peter-
Clark (PC) algorithm was introduced [Spirtes et al., 2000] to address this
issue.

4. This extension is particularly useful when dealing with situations in which it is
difficult, or even impossible, to decide on an orientation. For example, one cannot in
general determine the direction of causality between two non-temporal variables solely
from their observations.
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Peter-Clark algorithm for non-temporal data

The PC algorithm aims at optimizing the number of computations nec-
essary to assess whether two variables are conditionally independent or
not by considering conditioning variables that are likely to be parents of
the two variables. Even if it grows exponentially with the maximal de-
gree of the graph, large sparse graphs can be easily inferred using the PC
algorithm.

Starting with a complete undirected graph G, the algorithm checks the
dependency for all pairs of vertices and removes or keeps links according
to whether or not the two vertices are considered to be independent. Then
it checks the conditional independencies between dependent vertices by
first computing it for each adjacent pair Xp and Xq in G and for each vertex
Xr (other than Xp) adjacent to Xq in G. If Xr is able to remove the depen-
dency between Xp and Xq then the algorithm removes the edge between
them and adds Xr to their separation set Sepset(p, q). Then, it gradually
increases the number of variables to condition on, and proceeds as above
till a conditional independence is found or all sets of vertices adjacent to
Xq have been considered for the conditioning.
Once the skeleton has been constructed, the algorithm applies series of
rules [Spirtes et al., 2000, Colombo and Maathuis, 2014a], starting by iden-
tifying v-structures using the so-called origin of causality.

PC-Rule 0 (Origin of causality). For every triple Xp − Xr − Xq such that Xp

and Xq are not adjacent and Xr /∈ Sepset(p, q), orient the triple as Xp → Xr ←
Xq.

Triples of the form Xp − Xr − Xq such that Xp and Xq are not adjacent
are usually referred to as unshielded triples in the causality literature. We
do not use this term here so as to remain as simple as possible in our ex-
position of the PC algorithm but will use it in the remainder of the thesis.

When all v-structures have been identified using the above rule, the PC
algorithm orients as many of the remaining undirected edges as possible,
by repeating the following rules until no other changes can be made.

PC-Rule 1. In a triple Xp → Xq − Xr such that Xp and Xr are not adjacent,
orient Xq − Xr as Xq → Xr.

PC-Rule 2. If there exist a direct path from Xp to Xq and an edge between Xp

and Xq, then orient Xp → Xq.

PC-Rule 3. Orient Xp − Xq as Xp → Xq whenever there are two paths Xp −
Xr → Xq and Xp − Xs → Xq.
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A different orientation in PC-Rule 1 would lead to new v-structures,
which is not possible as the origin of causality should identify all v-structures.
A different orientation in PC-Rule 2 would lead to a cycle, whereas a dif-
ferent orientation in PC-Rule 3 would lead to either a cycle or a new v-
structure when orienting the remaining undirected edges.

From a theoretical viewpoint, the above procedure is correct, sound
and complete [Meek, 1995, Andersson et al., 1997] in the set of Markov
equivalence graphs.

Theorem 1 (Theorem 5.1 in [Spirtes et al., 2000]). Let the distribution of V be
faithful to a DAG G = (V, E) and assume that we are given perfect conditional
independence information about all pairs of variables (Xp, Xq) in V given subset
XS ⊆ V \ {Xp, Xq}. Then, the output of the PC-algorithm is the CPDAG that
represents G.

Consistency of the PC algorithm has been discussed in Spirtes et al.
[2000], Robins et al. [2003]: if the model is only faithful, uniform consis-
tency cannot be achieved, but pointwise consistency can. Kalisch and
Bühlmann [2007], Zhang and Spirtes [2002] provide assumptions which
render the PC-algorithm uniformly consistent, for a number of nodes and
neighbors increasing in a limited way with respect to the sample size

The main weakness of the original PC algorithm is that it is order de-
pendent and thus not stable. To tackle this issue, Colombo and Maathuis
[2014a] proposed to measure all conditional independencies for a given
cardinal before removing links in the undirected graph. This simple mod-
ification renders the main procedure order-independent.

In the following, we detail three popular methods for time series based
on PC algorithms. Other methods, as for example FASK [Sanchez-Romero
et al., 2019], have also been proposed using different orientation rules.
They are however beyond the scope of the current survey.

Temporal Extension with Momentary Conditional Independence Tests

The PCMCI algorithm [Runge et al., 2019] is able to detect time lagged
causal relations in a window causal graph (see Section 1.3). The method
is divided into three steps. First, a partially connected graph G is con-
structed, such that all pairs of nodes (Xp

t−i, Xq
t ) are directed as Xp

t−i → Xq
t

if i > 0. The second step removes all unnecessary edges based on condi-
tional independencies, as done in PC, and takes into account the assump-
tion of consistency through time to remove homologous edges: for each
edge Xp

t−i → Xq
t removed, all edges included in Hom(Xp

t−i, Xq
t , G) are re-

moved as well, where Hom(Xp
t−i, Xq

t , G) represents the set of instants ho-
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mologous to Xp
t−i and Xq

t , i.e., instants in Xp and Xq shifted by a lag of
i from p to q (see Section 1.3). As the conditioning is based only on the
parents of Xq

t , it does not control false positives correctly for large auto-
correlation in Xp

t−i. Thus, the third step takes into account those autocor-
relations by using the momentary conditional independence test (MCI).
MCI conditions on the parents of Xq

t and the parents of Xp
t−i while testing

Xp
t−i → Xq

t . It is defined as follows:

MCI(Xp
t−i; Xq

t ) = I
(
Xp

t−i; Xq
t
∣∣Par(Xq

t )\{X
p
t−i}, Par(Xp

t−i)
)

,

and estimates an interpretable notion of causal strength as it quantifies the
causal effect of a hypothetical perturbation in Xp

t−γmax
on Xq

t . Thus, the
value of the MCI statistics allows to rank causal links in large-scale set-
tings. The method depends on the significant rate α, which can be selected
using Akaike information criterion or cross validation. The computational
time is polynomial in the number d of time series and the maximum lag
γmax.

PCMCI has been shown to be consistent [Runge et al., 2019]. Note that
both stages of PCMCI can be flexibly combined with any kind of conditional
independence tests. We rely in our experiments (Chapter 6) on two mea-
sures used in Runge et al. [2019], namely the partial correlation and the
mutual information.

Instantaneous causal relations 5, which were not supported in the ini-
tial algorithm, have been integrated in Runge [2020] by conducting sep-
arately the edge removal for lagged conditioning sets and instantaneous
conditioning sets. Lagged relations are treated as in PCMCI and instanta-
neous relations are inferred using the PC-rules.

Temporal extension using transfer entropy

Even if PC-based methods optimize the number of conditional inde-
pendencies to be computed, the conditioning sets might go up to the size
of the entire network. In this respect, regardless of the dimensionality
of the sample space, the combinatorial search itself can be computation-
ally infeasible for moderate to large networks. One way to overcome this

5. The difference in time between two events associated with two time series may not
be observed if the sampling frequencies of the time series are small. It is thus possible
that two events that occurred at different time instants will be seen as instantaneous in
the observational time series. Instantaneous causal relations, sometimes called contem-
poraneous causal relations, correspond to causal relations between causes and effects that
occur at different time instants yet appear instantaneous.
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issue would be to use an asymmetric measure such as transfer entropy
[Schreiber, 2000], which can be defined as follow:

TE(Xp → Xq) = h(Xq
t+1 | Xq

t )− h(Xq
t+1 | Xq

t , Xp
t )

where h(. | .) denotes the conditional entropy. However, this metric is lim-
ited to pairwise relations and assumes that nodes are self causal. There-
fore, Sun et al. [2015] introduced the causation entropy (CE), a generaliza-
tion of the conditional transfer entropy to multivariate time series which
relaxes the self causation assumption. Causation entropy from a set of
nodes P to the set of nodes Q conditioned on the set of nodes R is defined
as:

CE(XP → XQ | XR) = h(XQ
t+1 | XR

t )− h(XQ
t+1 | XR

t , XP
t ),

where P, Q, R are all subsets of {1, · · · , d}. Sun et al. [2015] proved that the
set of nodes that directly causes a given node is the unique minimal set of
nodes that maximizes causation entropy. They propose the oCSE (optimal
causation entropy) algorithm, to find, for each node Xp

t , the smallest set
that maximizes the causation entropy. As they detect only causation rela-
tions with time-lag of size 1, they consider stationary first-order Markov
processes with the following dynamics:

Xq
t = fq(a1X1

t−1, a2X2
t−1, · · · , adXd

t−1, ξ
p
t ),

where for all p ∈ {1, . . . , d}, ap is the weight of the link from Xp to Xq.
Note that the parents of Xq

t can only be attributed to the time t− 1, known
as the temporally Markov assumption: for all t, Pr(Xt | Xt−1, Xt−2, · · · ) =
Pr(Xt | Xt−1). oCSE starts by identifying nodes that form a superset of
the causal parents (including indirect and spurious causal connections):
iteratively, it adds the node with the largest CE, conditioning on the set
of parents (which recursively increases). Then, the second step consists in
eliminating from the set of parents the ones deemed insignificant. This al-
gorithm strikes a tradeoff between computational cost and data efficiency.

The second stage of the algorithm is order dependent so results might
vary depending on which of the potential parents is treated first.

3.3.2 Without causal sufficiency

As explained in Chapter 2, hidden confounders and unobserved selec-
tion variables can be represented by maximal ancestral graphs (MAGs).
They play the role of DAGs in situations when not all variables are ob-
served. As shown in Figure 2.8, page 47, the fact that two variables are
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related through a common confounder is represented in a MAG by a dou-
ble arrow, whereas the dependence between two variables induced by
an unobserved selection variable is represented by an undirected edge.
The equivalence between MAGs is slightly more complex than the one
between DAGs and makes use of the notion of discriminating paths.

Definition 31 (Discriminating path). In a MAG, a path U between Xp and
Xq is a discriminating path for Xr if U includes at least three edges, Xr is a
non-endpoint vertex and is adjacent to Xq, Xp is not adjacent to Xq, and every
vertex between Xp and Xr is a collider and a parent of Xq.

Ali et al. [2005] and Zhang [2007] showed that two MAGs are Markov
equivalent if and only if they have the same adjacencies, the same un-
shielded colliders, and if a path U is a discriminating path for a vertex Xr

in both graphs, then Xr is a collider on the path in one graph if and only if
it is a collider on the path in the other. As shown in Richardson [1996], a
Markov equivalent class of MAGs can be described by a partially ancestral
graph (PAG) which can contain up to six types of edges: undirected (−),
single arrow (→ or ←), double arrow (←→), undirected on one side and
undetermined on the other (−◦ or ◦−), directed on one side and undeter-
mined on the other (◦→ or←◦), and undetermined on both sides (◦−◦). In
MAGs, the separation subset that ensures independence between two ver-
tices Xp and Xq can include vertices that are neither parents of Xp nor of
Xq. This leads to the notion of possible d-separation sets, in short Possible-
Dsep, introduced in Spirtes et al. [2000]. We introduce here a symmetric
version of Possible-Dsep sets that may lead to a slower algorithm than the
one based on the original asymmetric version of Spirtes et al. [2000] but
that simplifies the exposition of the overall procedure.

Definition 32 (Possible-Dsep [Spirtes et al., 2000, Zhang, 2008a]). The Possible-
Dsep set of two time series Xp and Xq is the set of time series Xr that are such
that Xp ̸= Xr (or Xq ̸= Xr) and there is an undirected path U between Xp and
Xr (or between Xq and Xr) such that for every subpath < Xv, Xs, Xw > on U,
either Xs is a collider on the subpath or Xv and Xw are adjacent.

In the graph presented in Figure 3.4, which displays two hidden com-
mon causes (L1, L2) between Xp and Xq and Xv and Xw, the set {Xq, Xr, Xu, Xv}
is a Possible-Dsep set for Xp and Xw. It separates these two time series.
Note that Xq or Xv alone does not separate Xp and Xw as there is still a
path relating Xp and Xw. Xq and Xv together neither separate Xp and
Xw as conditioning on Xq creates a dependence between Xr and Xp, and
similarly for Xv and Xw, so that Xp and Xw become dependent.
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L1

Xp Xq Xr Xs Xu Xv

L2

Xw

Figure 3.4 – Causal graph with two hidden common causes.

We now present the standard causal inference algorithm for non-temporal
data without causal sufficiency, referred to as FCI for fast causal inference,
prior to describing extensions to time series.

Fast causal inference algorithm for non-temporal data

FCI starts, as the PC algorithm, by initializing the skeleton with all
possible edges and by removing the edges that are either independent or
conditionally independent, first when conditioning with Sepsets and then
with Possible-Dsep sets. Ten orientation rules, described in, e.g., Zhang
[2008a], are applied recursively 6. As in PC, all colliders are first identified
by Rule 0. One then orients as many of the remaining undirected edges as
possible, by repeating Rules 1 to 4.

FCI-Rule 0 (Origin of causality). For each unshielded triple Xp ∗−◦Xr ◦−∗Xq,
if Xr /∈ Sepset(p, q), then orient the unshielded triple as a collider: Xp∗→ Xr ←
∗Xq.

FCI-Rule 1. In an unshielded triple Xp∗→ Xr ◦−∗ Xq, if Xr ∈ Sepset(p, q)
then orient the unshielded triple as Xp∗→ Xr∗→ Xq.

FCI-Rule 2. If there exists a triple Xp → Xr∗→ Xq or a triple Xp∗→ Xr → Xq

with Xp ∗−◦ Xq, then orient the pair as Xp∗→ Xq.

FCI-Rule 3. If there exists an unshielded triple Xp∗→ Xr ←∗Xq and an un-
shielded triple Xp ∗−◦Xs ◦−∗Xq, and Xs ∗−◦Xr then orient the pair as Xs → Xr.

FCI-Rule 4. If there exists a discriminating path between Xp and Xq for Xr, and
Xr ◦−∗ Xq; then orient Xr ◦−∗ Xq as Xr → Xq ; otherwise orient the triple as
Xs ←→ Xr ←→ Xq.

6. In stating the 10 orientation rules, the meta-symbol −∗ is used as a wildcard that
may stand for all three possible edge marks: −,→,−◦.
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The remaining rules make use of the notions of uncovered path, potentially
directed path, and circle path. An uncovered path is a path in which every
consecutive triple is unshielded. A potentially directed path of length l is
a path, which we assume to be represented, after re-indexing the vertices,
as X1, · · · , Xl, that is such that an edge between two consecutive vertices
Xi−1 and Xi has no arrow on Xi−1’s side and has either an arrow or a
circle on Xi’s side. A circle path is a potentially directed path in which
every edge on the path is of the form ◦−◦.

If selection bias is considered, FCI-Rules 5 to 7 are applied recursively
to discover selection variables. Then, FCI-Rules 8 to 10 are applied recur-
sively to pick up directed edges missed by FCI-Rules 0 to 4.

FCI-Rule 5. For every remaining Xp ◦−◦ Xq, if there is an uncovered circle path
U = ⟨Xp, Xr, · · · , Xs, Xq⟩ between Xp and Xq such that Xp and Xs are not
adjacent and Xq and Xr are not adjacent, then orient Xp ◦−◦ Xq and every edge
on U as undirected edges (-).

FCI-Rule 6. If Xp − Xr ∗−◦ Xq (Xp and Xq are not necessarily adjacent), then
orient the triple as Xp − Xr −∗Xq .

FCI-Rule 7. If Xp −◦Xr ◦−∗ Xq, and Xp and Xq are not adjacent, then orient
the triple Xp −◦Xr −∗Xq.

FCI-Rule 8. If Xp → Xr → Xq or Xp−◦Xr → Xq, and Xp◦→ Xq, then orient
Xp → Xq .

FCI-Rule 9. If Xp◦→ Xq, and U is an uncovered potentially directed path from
Xp to Xq such that Xq and Xr are not adjacent, then orient the pair as Xp → Xq

.

FCI-Rule 10. Suppose Xp◦→ Xq, Xr → Xq ← Xs, U1 is an uncovered poten-
tially directed path from Xp to Xr, and U2 is an uncovered potentially directed
path from Xp to Xs . Let µ be the vertex adjacent to Xp on U1 (µ could be Xr),
and ω be the vertex adjacent to Xp on U2 (ω could be Xs). If µ and ω are distinct,
and are not adjacent, then orient Xp◦→ Xq as Xp → Xq.

From a theoretical viewpoint, FCI is correct, sound, complete [Zhang,
2008a] and consistent [Colombo et al., 2012]. One of the disadvantages of
FCI, however, is that the conditional independence tests given subsets of
Possible-Dsep sets can become very large even for sparse graphs. RFCI
[Colombo et al., 2012] was introduced to solve this problem. This algo-
rithm avoids searching for Possible-Dsep sets by performing additional
tests. The number of these additional tests and the size of their condition-
ing sets remain reasonable for sparse graphs, making RFCI much faster
than FCI for sparse graphs.
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Temporal extension through window representations and VAR

Entner and Hoyer [2010] adapted FCI to time series by transforming
the original time series Xt = (X1

t , · · · , Xd
t )1≤t≤N into a sample of random

vectors with a sliding window of size τ. This leads to the consideration
of (N − τ + 1) vectors of length τd on which the FCI algorithm can be
applied. Additionally, one makes use of temporal priority and consistency
throughout time (time invariance) to orient edges and restrict conditioning
sets. Unlike FCI, this procedure, called tsFCI, neither considers selection
variables nor instantaneous relations.

Recently, Malinsky and Spirtes [2018] adapted this idea in a new algo-
rithm called SVAR-FCI that is based on FCI for multivariate time series and
that allows instantaneous causal relations and arbitrary latent confound-
ing. Stationarity is further used to remove additional edges. The data gen-
eration process is a structural vector autoregression (SVAR) model with
latent variables.

3.4 Noise-based approaches

We focus now on a class of causal models called functional causal mod-
els (FCM) (sometimes also called structural equation models, [Wright, 1921,
Pearl, 2000]) which describe a causal system by a set of equations, where
each equation explains one variable of the system in terms of its direct
causes and some additional noise. For example, if Xp is a cause of Xq,
then there exists a function f q that relates Xp to Xq with some additional
noise ξq: Xq = f q(Xp, ξq).

Statistical noise is often considered as a nuisance that one has to live
with, and is even thought to mask causal relations. However, recent dis-
coveries showed that not only noise does not obscure causal relations,
but it can be a valuable source of insight. To understand why noise can
be helpful to identify causal relations, let us start with a simple exam-
ple borrowed from Climenhaga et al. [2019] and let us consider two ran-
dom variables Xp and Xq such that Xp → Xp with the underlying rela-
tion Xq = 2Xp + ξq, where ξq represents some noise. Given enough ob-
servations, one can detect the correlation between Xp and Xq. However,
without additional information, it is not possible to distinguish between
Xp ← Xq and Xp → Xq as the model can either be Xq = 2Xp + ξq or
Xp = Xq/2 + ξ p. Nevertheless, if one assumes that the noise follows, say,
a uniform distribution on {−1, 0, 1}, then one can decide between those
two models. Indeed, by computing the error terms ξq = Xq − 2Xp and
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ξ p = Xp − Xq/2 over the observations, we can easily check which of the
two causal structures is compatible with the distribution assumption we
made on the noise, as shown in Table 3.1.

It turns out that similar conclusions can be reached if one replaces the
strong assumption on the noise distribution by the assumption of inde-
pendence of mechanisms, which is more realistic and can be applied in an
agnostic scenario, and if one uses additional assumptions on the underly-
ing model.

Principle 1 (Independent Mechanisms [Peters et al., 2017]). The causal gen-
erative process of a system’s variables is composed of autonomous modules that
do not inform or influence each other. In the probabilistic case, this means that
the conditional distribution of each variable given its causes (i.e., its mechanisms)
does not inform or influence the other conditional distributions. In case we have
only two variables, this reduces to an independence between the cause distribution
and the mechanism producing the effect distribution.

The consequences of this principle are three-folds:
1. The underlying equations are assumed to be autonomous with re-

spect to any external change in one equation. In other words, changes
in the generating process of one variable does not imply changes in
the generating process of the other variables.

2. The mechanism generating an effect from its cause contains no in-
formation about the mechanism generating the cause (although the
effect contains information about its cause). This can also be inter-
preted as an independence between the cause and the noise of the ef-
fect. Back to our example, it is easy to check that Xp |= ξq but Xq ̸ |= ξ p

and so the real causal direction is identifiable.
3. Noises associated with different variables are mutually independent.

In the remainder, we focus on FCM models of the form Xq = f q(Xp, ξq)
with Xp |= ξq.

Xp Xq ξq = Xq − 2Xp ξ p = Xp − Xq/2
1 2 0 ∈ {−1, 0, 1} 0 ∈ {−1, 0, 1}
3 6 0 ∈ {−1, 0, 1} 0 ∈ {−1, 0, 1}
4 9 1 ∈ {−1, 0, 1} −0.5 ̸∈ {−1, 0, 1}

Table 3.1 – Toy example to illustrate the use of the noise to detect causality.
We observe data and compute the two possible noise ξ p and ξq coming
from the models Xq = 2Xp + ξq and Xp = Xq/2 + ξ p. As we have as-
sumed that the noise’s support is {−1, 0, 1}, only one model is feasible.
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It turns out that, in general, one cannot identify the underlying model
solely from observations of the joint distribution of the two variables, as
stated in the following proposition.

Proposition 1 (Non-uniqueness of graph structures [Peters et al., 2017]).
For every joint distribution of two real-valued variables Xp and Xq, there is an
FCM Xq = f q(Xp, ξq), where Xp is independent from ξq, and where f q is a
measurable function and ξq is a real-valued noise variable.

However, several studies have shown that, with additional assump-
tions on the models relating causes and effects, one can identify the direc-
tion of the causal relation. We review here two such cases which have led
to extensions for time series.

3.4.1 Vector autoregressive models

Shimizu et al. [2006] proposed a method for uniquely identifying causal
structures based on purely observational, continuous-valued data with
the assumptions that the structural equation model is linear, acyclic, with
non-Gaussian error terms (LiNGAM). When considering two variables,
LiNGAM is of the form:

Xp = ξ p;
Xq = ap,qXp + ξq with Xp |= ξq;

where ξ p and ξq are non-Gaussian.
Assuming that there are no hidden confounders and all (or all but one)

of the error terms are non-Gaussian, the full generating model can be iden-
tified in the limit of an infinite sample (a property known as asymptotic
consistency).

Theorem 2 (Identifiability of linear non-Gaussian models [Peters et al.,
2017]). Assume that the joint distribution of Xp and Xq admits the linear model

Xq = ap,qXp + ξq, with Xp |= ξq,

with continuous random variables Xp, ξq, and Xq. Then, there exist aq,p ∈ R

and a random variable Xp such that

Xp = aq,pXq + ξ p, with Xq |= ξ p,

if and only if ξ p and Xq are Gaussian.
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To detect causal relations, LiNGAM proceeds as follows. First of all,
from the equation X = AX + ξ, one obtains X = Bξ with B = (I −A)−1.
LiNGAM uses a standard independent component analysis algorithm to
obtain an estimate of the mixing matrix B and uses it to compute the ma-
trix A. Furthermore, Shimizu et al. [2011] proposed an algorithmic im-
provement of their original method that converges to the correct solution
in a controlled number of steps depending on the number of variables.
The main idea is to find the causal order by constructing a regression
model and by checking whether residuals and predictors are independent
or not. This step is done recursively by first identifying the predictor that
is the most independent from the residuals of its target variables, i.e. all
variables except the predictor. The same analysis is then performed recur-
sively on those residuals, which ensures to remove the effects of the pre-
viously identified predictors. One can then construct a strictly lower tri-
angular matrix A by following the ordering obtained above. The strength
of the connections Ai,j are estimated using some conventional covariance-
based regression, such as least squares. To get sparse causal models, one
can further prune A by applying Adaptive Lasso [Zou, 2006], which pe-
nalizes connections with an ℓ1 penalty.

We now present an extension of LiNGAM to time series.

Using linear non-gaussian acyclic model

Hyvärinen et al. [2010] introduced a temporal extension of LiNGAM,
called VarLiNGAM, based on a structural vector autoregressive model of the
form:

Xt =
γmax

∑
i=0

AiXt−i + et, (SVAR)

where the influences can be either instantaneous (i = 0) or lagged, with
a maximum time-delay of γmax. This model can be rewritten as a vector
autoregressive model without instantaneous effect, with i > 0:

Xt =
γmax

∑
i=1

MiXt−i + et. (VAR)

The basic idea is to use the least-squares estimation of the autoregressive to
obtain residuals of the prediction of Xt. Then conduct a LiNGAM analysis
on those residuals leading to the estimation of the instantaneous causal
model A0. Finally, (Ai)i>0 are deduced by a reparametrization of (Mi)i>0:

Ai = (I −A0)Mi for all i ∈ {1, · · · , d}.
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3.4.2 Additive noise model

Hoyer et al. [2009] showed that if the underlying causal structural equa-
tions are based on an additive noise model (ANM) with nonlinear func-
tions and that if the causal minimality condition holds, then the true causal
structure can in general be identified from the probability distribution of
the observational data, as stated in Theorem 3. This theorem makes use of
the notion of smooth ANM, i.e. an ANM of the form:

Xp = ξ p,
Xq = f q(Xp) + ξq with Xp |= ξq.

such that ξq and Xp have strictly positive three times differentiable densi-
ties pξq and pXp , and f q is three times differentiable as well.

Theorem 3 (Identifiability of ANMs [Peters et al., 2017, Hoyer et al., 2009]).
Assume that the conditional distribution of Xq | Xp admits a smooth ANM, and
that there exists xq ∈ R such that, for almost all xp ∈ R,

(log pξq)′′(xq − f q(xp)) f q′(xp) ̸= 0.

Then, the set of log densities log pX for which the obtained joint distribution
PXp ,Xq admits a smooth ANM from Xq to Xp is contained in a 3-dimensional
affine space.

In the bivariate case, one can regress two models, one of Xq on Xp and
another of Xp on Xq, and test the independence with residuals to infer the
causal direction. For the multivariate case, one can adopt a pairwise strat-
egy or use an adapted algorithm that can handle more than two variables
[Mooij et al., 2009].

We now introduce a well-known method based on ANM for time se-
ries.

Times serie model with independent noise

A class of restricted FCM called time series models with independent
noise TiMINo is studied in Peters et al. [2013]. For a multivariate time series
X whose finite dimensional distributions are absolutely continuous with
respect to a product measure, we say that the time series satisfies a TiMINo

if there exists γmax > 0 such that for all Xp ∈ V there are sets Par(Xp
0 ) ⊆

V\Xp, Par(Xp
k ) ⊆ X for 1 ≤ k ≤ γmax such that for all t:

Xp
t = f p(Par(Xp

t )t−γmax , . . . , Par(Xp
t )t−1, Par(Xp

t )t, ξ
p
t ), (TiMINo)
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where ξ i
t are jointly independent over i and t and, for each i, i.i.d. in

t. These models include nonlinear and instantaneous effects, but the full
time causal graph is required to be acyclic. Under some particular form of
f p (nonlinear function with additive Gaussian noise, linear function with
additive non-Gaussian noise, joint distribution faithful with respect to the
full time causal graph, and acyclicity of the summary causal graph), the
summary causal graph can be recovered from the joint distribution of X.
To infer the causal graph in the additive noise model case, statistical tests
are conducted to look for independence between residuals and nodes so
as to order the variables by parenting relations. Then, spurious links are
removed. Note that several fitting methods can be considered (e.g., lin-
ear model, generalized additive model and Gaussian process regression
are considered in the initial paper) as well as several independence tests
(e.g., cross-correlations or HSIC). Note that if the data does not satisfy the
model assumption, TiMINo falls into an agnostic state instead of drawing
wrong causal conclusions. In the case of two time series, an agnostic state
can be interpreted as a possible detection of hidden confounders.

3.5 Conclusion

The problem of estimating the causal relations for time series is not
solved, but there is progress in understanding how to deal with these
problems in various families of methods. The main difficulties are that
the generating process may be non-linear, the data acquisition rate may be
much slower than the underlying rate of changes, there may be measure-
ment error, the probability distributions of variables conditional on their
causes may change, the causal relations may change (known as causal
non-stationary), and there may be unmeasured confounding causes.

As we saw, there already exist several approaches to discover causal
relations from time series. Some infer directly a summary causal graph
and some infer a window causal graph. Some of them treat lagged non
linear relations but leave instantaneous relations untreated. Others take
into account instantaneous relations but only in the linear case. TCDF
and TiMINo, simultaneously solved the problems of non linearity, lagged
relations, and instantaneous relations, however, they are as well as most
methods presented here, very sensitive to the sampling rate.

In the next chapter, we present a new approach that directly detects
the summary causal graph, with non linear, lagged, and instantaneous
relations, which can also handle different sampling rate.
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Chapter 4

Entropy-based discovery of
summary causal graphs in time
series

There is no logical necessity for
the existence of a unique
direction of total time; whether
there is only one time direction,
or whether time directions
alternate, depends on the shape
of the entropy curve plotted by
the universe.

Hans Reichenbach
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4.1 Introduction

This chapter addresses the central problem of this thesis, namely: given
a maximal lag γmax and an observational time series X1, · · · , Xd with po-
tentially different sampling rates, infer the underlying summary causal
graph corresponding to the true full time causal graph.

An important aspect of real-world time series is that different time
series, as they measure different elements, usually have different sam-
pling rates. Despite this, the algorithms that have been developed so far
to discover causal structures from temporal observations [Granger, 1969,
Hyvärinen et al., 2010, Moneta et al., 2013, Peters et al., 2013, Runge et al.,
2019, Nauta et al., 2019] rely on the idealized assumptions that all time
series have the same sampling rates with identical timestamps 1.

We introduce in this chapter two causal inference algorithms that can
be applied to discrete time series with continuous values and different
sampling rates. Both algorithms belong to the constraint-based family of
causal algorithms [Spirtes et al., 2000] and the former can be used in situ-
ations where all common causes are observed and the latter can be used
in situations in which some common causes are unobserved. The skeleton
construction (as well as the orientation of instantaneous relations) of the
former is similar to the PC algorithm [Spirtes et al., 2000], but adapted to
time series; the skeleton construction (as well as the orientation of instanta-
neous relations) of the latter is similar to the FCI algorithm [Spirtes et al.,
2000]. For orienting lagged relations, both algorithms call upon an en-
tropic reduction principle which is inspired by the work of Suppes [1970]
(for more details on Suppes’ work, see Chapter 2 Section 2.6). At the core
of these algorithms lie (in)dependence measures, to detect relevant depen-
dencies, which are based here on an information theoretic approach.

Since their introduction [Shannon, 1948], information theoretic mea-
sures have become very popular due to their non parametric nature, their
robustness against strictly monotonic transformations, which makes them
capable of handling nonlinear distortions in the system, and their good
behavior in previous studies on causal discovery [Affeldt and Isambert,
2015]. However, their application to temporal data raises several prob-
lems related to the fact that time series may have different sampling rates,
be shifted in time; and have strong internal dependencies. Many studies
have attempted to re-formalize mutual information for time series. Galka
et al. [2006] considered each value of each time series as different random

1. Assuming identical timestamps in the case of identical sampling rates seems rea-
sonable as one can shift time series so that they coincide in time.
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variables and proceeded by whitening the data, such that time dependent
data will be transformed into independent residuals through a paramet-
ric model. However, whitening the data can have severe consequences
on causal relations. Schreiber [2000] proposed a reformulation of mutual
information, called the transfer entropy (later generalized in Sun et al.
[2015]), that represents the information flow from one state to another and
thus is asymmetric. Inspired by Kraskov et al. [2004], Frenzel and Pompe
[2007] proposed a formulation where time series are represented by vec-
tors, and estimated the mutual information assuming that all vectors are
statistically independent. This said, time series are still assumed to have
equal sampling rates. Closer to our proposal is the time delayed mutual
information proposed in Albers and Hripcsak [2012] that aims at address-
ing the problem of non uniform sampling rates. The computation of the
time delayed mutual information relates single points from a single time
series (shifted in time) but does not consider potentially complex relations
between time stamps in different time series, as we do through the use
of window-based representations and compatible time lags. The time de-
layed mutual Information can be seen as a special case of the temporal
mutual information we introduce in the next section, by considering win-
dows of size 1 and a single time series. The measure we propose is more
suited to discover summary causal graph as it can consider potentially
complex relations between timestamps in different time series through
the use of window-based representations and compatible time lags, and
is more general as it can consider different sampling rate.

The remainder of the chapter is organized as follows: Section 4.2 intro-
duces the (conditional) mutual information measures we propose for time
series and the entropy reduction principle that our method is based on.
Section 4.3 presents the PC-like causal discovery algorithm we have de-
veloped on top of these measures. Section 4.4 presents the FCI-like causal
discovery algorithm we have developed on top of these measures. Fur-
thermore, we provide respectively in Section 4.5 and Section 4.6, a method-
ology to use to construct a window causal graph given a summary causal
graph, and an adaptation of our method to sequences. Finally, Section 4.8
concludes the chapter.
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4.2 Information measures for causal discovery in
time series

We present in this section a new mutual information measures that op-
erate on a window-based representation of time series to assess whether
time series are (conditionally) dependent or not. We then show how this
measure is related to an entropy reduction principle that is a special case
of the probabilistic raising principle [Suppes, 1970].

We first assume that all time series are aligned in time, with the same
sampling rate, prior to show how our development can be applied to time
series with different sampling rates. Without loss of generality, time in-
stants are assumed to be integers. Lastly, as done in previous studies
[Schreiber, 2000], we assume that all time series are first-order Markov
self-causal (any time instant is caused by its previous instant within the
same time series).

4.2.1 Causal temporal mutual information

Let us consider d univariate time series X1, · · · , Xd, and their observa-
tions (vp

1 , · · · , vp
Np
) (1 ≤ p ≤ d), where vp

t (1 ≤ t ≤ Np) is the value for
the p-th time series at time index t and Np is the length of Xp. Through-
out this section, we will make use of the following example, illustrated in
Figure 4.1, to discuss the notions we introduce.

Example 1. Let us consider the following two time series defined by, for all t,

Xp
t = Xp

t−1 + ξ
p
t ,

Xq
t = Xq

t−1 + Xp
t−2 + Xp

t−1 + ξ
q
t ,

with (ξ
p
t , ξ

q
t ) ∼ N (0, 1).

One can see in Example 1 that, in order to capture the dependencies
between the two time series, one needs to take into account a lag between
them, as the true, causal relations are not instantaneous. Several studies
have recognized the importance of taking into account lags to measure
(conditional) dependencies between time series; for example, Runge et al.
[2019] uses pointwise mutual information between time series with lags to
assess whether they are dependent or not.
In addition to lags, Example 1 also reveals that a window-based represen-
tation may be necessary to fully capture the dependencies between the two
time series. Indeed, as Xq

t−1 and Xq
t are the effects of the same cause (Xp

t−2),
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Xp
t−2 Xp

t−1 Xp
t Xp

t+1

Xq
t−2 Xq

t−1 Xq
t Xq

t+1

Figure 4.1 – Why do we need windows and lags? An illustration with
two time series where Xp causes Xq in two steps (circles correspond to
observed points and rectangles to windows). The arrows in black are dis-
cussed in the text.

it may be convenient to consider them together when assessing whether
the time series are dependent or not. For example, defining (overlapping)
windows of size two for Xq and one for Xp with a lag of 1 from Xp to
Xq, as in Figure 4.1, allows one to fully represent the causal dependencies
between the two time series.

Definition 33. Let γmax denote the maximum lag between two time series Xp

and Xq and let λmax = 2γmax + 1. The window-based representation, of size
0 < λpq ≤ λmax < Np, of the time series Xp with respect to Xq, which will
be denoted X(p;λpq), simply amounts to considering (Np − λpq + 1) windows:

w(p;λpq)
t = (vp

t , · · · , vp
t+λpq−1), 1 ≤ t ≤ Np − λpq + 1. The window-based

representation, of size 0 < λqp ≤ λmax < Nq, of the time series Xq with respect
to Xp is defined in the same way. A temporal lag γpq ∈ Z compatible with λpq

and λqp relates windows in X(p;λpq) and X(q;λqp) in such a way that the starting
time of the related windows are separated by γpq. We denote by C(p,q) the set of
window sizes and compatible temporal lags.

Based on the above elements, we define the causal temporal mutual in-
formation between two time series as the maximum of the standard mu-
tual information over all possible compatible temporal lags and windows,
conditioned by the past of the two series. Indeed, as we are interested
in obtaining a summary causal graph, we do not have to consider all the
potential dependencies between two time series (which would be neces-
sary for inferring a window causal graph). Using the maximum over all
possible associations is a way to summarize all temporal dependencies
which ensures that one does not miss a dependency between the two time
series. Furthermore, conditioning on the past allows one to eliminate spu-
rious dependencies in the form of auto-correlation, as in transfer entropy
[Schreiber, 2000]. We follow this idea here and, as in transfer entropy, con-
sider windows of size 1 and a temporal lag of 1 for conditioning on the
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past, which is in line with the first-order Markov self-causal assumption
mentioned above.

Definition 34. Consider two time series Xp and Xq. We define the causal tem-
poral mutual information between Xp and Xq as:

CTMI(Xp; Xq) = (4.1)

max
(λpq ,λqp ,γpq)∈C(p,q)

I(X(p;λpq)
t ; X(q;λqp)

t+γpq
|X(p;1)

t−1 , X(q;1)
t+γpq−1)

=∆ I(X(p;λ̄pq)
t ; X(q;λ̄qp)

t+γ̄pq
|X(p;1)

t−1 ; X(q;1)
t+γ̄pq−1),

where I represents the mutual information. In case the maximum can be obtained with
different values in C(p,q), we first set γ̄pq to its largest possible value. We then set λ̄pq to
its smallest possible value and finally λ̄qp to its smallest possible value. γ̄pq, λ̄pq, and λ̄qp
respectively correspond to the optimal lag and optimal windows.

In the context we have retained, in which dependencies are constant
over time, CTMI satisfies standard properties of mutual information, namely
it is nonnegative, symmetric and equals to 0 iff time series are indepen-
dent. Thus, two time series Xp and Xq such that CTMI(Xp; Xq) > 0 are
dependent. Setting γ̄pq to its largest possible value allows one to get rid
of instants that are not crucial in determining the mutual information be-
tween two time series. The choice for the window sizes, even though arbi-
trary on the choice of treating one window size before the other, is based
on the same ground, as the mutual information defined above cannot de-
crease when one increases the size of the windows. Indeed:

I(X(p;λpq)
t ; X(q;λqp)

t+γpq
| X(p;1)

t−1 , X(q;1)
t+γpq−1)

= I((X(p;λpq−1)
t , X(p;1)

t+λpq−1); X(q;λqp)
t+γpq

| X(p;1)
t−1 , X(q;1)

t+γpq−1)

= I(X(p;λpq−1)
t ; X(q;λqp)

t+γpq
| X(p;1)

t−1 , X(q;1)
t+γpq−1)

+ I(X(p;1)
t+λpq−1; X(q;λqp)

t+γpq
| X(p;1)

t−1 , X(q;1)
t+γpq−1, X(p;λpq−1)

t )

≥ I(X(p;λpq−1)
t ; X(q;λqp)

t+γpq
| X(p;1)

t−1 , X(q;1)
t+γpq−1). (4.2)

The last inequality is due to the fact that mutual information is positive.
It is also interesting to note that CTMI does not necessarily increase sym-
metrically with respect to the increase of λpq and λqp. For an illustration
see Figure 4.2.
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t−1, Xq

t−1) > 0

Xp
t−1 Xp

t Xp
t+1

Xq
t−1 Xq

t Xq
t+1

(b) I(X(p;2)
t , Xq

t | Xp
t−1, Xq

t−1) = I(Xp
t , Xq

t | Xp
t−1, Xq

t−1)

Xp
t−1 Xp

t Xp
t+1

Xq
t−1 Xq

t Xq
t+1

(c) I(Xp
t , X(q;2)

t | Xp
t−1, Xq

t−1) > I(Xp
t , Xq

t | Xp
t−1, Xq

t−1)

Xp
t−1 Xp

t Xp
t+1

Xq
t−1 Xq

t Xq
t+1

(d) I(X(p;2)
t , X(q;2)

t | Xp
t−1, Xq

t−1) > I(Xp
t , X(q;2)

t | Xp
t−1, Xq

t−1)

Figure 4.2 – Illustration of the asymmetric increase of CTMI with the in-
crease of the window sizes. The mutual information (conditioned on the
past) increases when increasing only the window size of the effect or when
increasing simultanesly the window sizes of the effect and the cause (it
does not increase when increasing only the window size of the cause).
Dashed lines are for correlations which are not causations, and bold ar-
rows correspond to causal relations between the window representations
of time series.
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Example 2. Consider the structure described in Example 1, and assume that
λmax = 3. First, we have for the standard mutual information

I(X(p;1)
t ; X(q;1)

t | X(p;1)
t−1 , X(q;1)

t−1 ) = 0.

We also have that any γpq < 0 have a zero mutual information because condition-

ing on the past of X(p;1)
t ; X(q;1)

t (namely X(p;1)
t−1 ; X(q;1)

t−1 ) is closing all paths from

X(q;1)
t−i to X(p;1)

t for all i > 0. For γpq > 0 starting by γpq = 1,

I(X(p;1)
t ; X(q;1)

t+1 | X(p;1)
t−1 , X(q;1)

t ) > 0.

Similarly for γpq > 2. Now any increase of λqp alone or of λpq and λqp, will
generate an increase in the mutual information as long as the difference between
the last time point of the window of Xp (the cause) and the last time point of the
window of Xq is less or equal to γpq as

I(X(p;λpq−1)
t ; X(q;λpq−1−γpq)

t+γpq
| X(p;1)

t−1 , X(q;1)
t+γpq−1)

= I(X(p;λpq)
t ; X(q;λpq−1−γpq)

t+γpq
| X(p;1)

t−1 , X(q;1)
t+γpq−1)

because

I(X(p;1)
t+λpq−1; X(q;λpq−1−γpq)

t+γpq
| X(p;1)

t−1 , X(q;1)
t+γpq−1, X(p;λpq−1)

t ) = 0,

where γpq ≥ 1 (1 is the minimal lag that generates a correlation that cannot be
removed by conditioning on the past of Xp and Xq). For λmax = 3 the optimal
window size λ̄pq is equal to 2 as Xp has no other cause than itself; λ̄qp is equal to
2 as Xp causes only (except itself) Xq

t+1 and Xq
t . Furthermore, γ̄pq = 1 and

CTMI(Xp; Xq) = I((Xp
t , Xp

t+1); (Xq
t+1, Xq

t+2) | Xp
t−1, Xq

t )

= I(Xp
t ; (Xq

t+1, Xq
t+2) | Xp

t−1, Xq
t )

+ I(Xp
t+1; (Xq

t+1, Xq
t+2) | Xp

t−1, Xq
t , Xp

t )

= I(Xp
t ; Xq

t+1 | Xp
t−1, Xq

t ) + I(Xp
t ; Xq

t+2 | Xp
t−1, Xq

t , Xq
t+1)

+ I(Xp
t+1; Xq

t+1 | Xp
t−1, Xq

t , Xp
t )

+ I(Xp
t+1; Xq

t+2 | Xp
t−1, Xq

t , Xp
t , Xq

t+1)

= 2I(Xp
t ; Xq

t+1 | Xp
t−1, Xq

t ) + I(Xp
t ; Xq

t+2 | Xp
t−1, Xq

t , Xq
t+1)

= 3 log(3)/4.
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4.2.2 Entropy reduction principle

Interestingly, CTMI can be related to a version of the probabilistic rais-
ing principle (PRP, Suppes [1970]) that states that a cause, here a time se-
ries, raises the probability of any of its effects, here another time series,
even when the past of the two time series is taken into account, meaning
that the relation between the two time series is not negligible compared to
the internal dependencies of the time series. In this context, the following
definition generalizes to window-based representations of time series the
standard definition of prima facie causes for discrete variables.

Definition 35 (Prima facie cause for window based time series). Let Xp

and Xq be two time series with window sizes λpq and λqp and let Pt,t′ = (X(p;1)
t−1 , X(q;1)

t′−1 )

represent the past of Xp and Xq for any two instants (t, t′). We say that Xp is a
prima facie cause of Xq with delay γpq > 0 iff there exist Borel sets Bp, Bq and
BP such that one has:

P(X(q;λqp)
t+γpq

∈ Bq|X
(p;λpq)
t ∈ Bp, Pt,t+γpq ∈ BP) >

P(X(q;λqp)
t+γpq

∈ Bq|Pt,t+γpq ∈ BP).

We now introduce a slightly different principle based on the causal
temporal mutual information which we refer to as the entropy reduction
principle (ERP).

Definition 36 (Entropic prima facie cause). Using the same notations as in
Definition 35, we say that Xp is an entropic prima facie cause of Xq with delay

γpq > 0 iff I(X(p;λpq)
t ; X(q;λqp)

t+γpq
|Pt,t+γpq) > 0.

Note that considering that the above mutual information is positive is
equivalent to considering that the entropy of Xq when conditioned on the
past reduces when one further conditions on Xp. One has the following
relation between the ERP and PRP principles.

Property 1. With the same notations, if Xp is an entropic prima facie cause of
Xq with delay γpq > 0, then Xp is a prima facie cause of Xq with delay γpq > 0.
Furthermore, if CTMI(Xp; Xq) > 0 with γ̄pq > 0 then Xp is an entropic prima
facie cause of Xq with delay γ̄pq.

Proof. Let us assume that Xp is not a prima facie cause of Xq for the delay

γpq. Then, for all Borel sets Bp, Bq and BP one has P(X(q;λqp)
t+γpq

∈ Bq|X
(p;λpq)
t ∈
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t
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t
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t
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t
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t
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Figure 4.3 – Examples of conditional independence between dependent
time series. Dashed lines are for correlations which are not causations,
and bold arrows correspond to conditioning variables.

Bp, Pt,t+γpq ∈ BP) ≤ P(X(q;λqp)
t+γpq

∈ Bq|Pt,t+γpq ∈ BP). This translates, in
terms of density functions denoted f , as:

∀(xp
t , xq

t+γpq
, pt,t+γpq), f (xq

t+γpq
|xp

t , pt,t+γpq) ≤ f (xq
t+γpq
|pt,t+γpq),

which implies that H(X(q;λqp)
t+γpq

∈ Bq|X
(p;λpq)
t ∈ Bp, Pt,t+γpq ∈ BP) is greater

than H(X(q;λqp)
t+γpq

∈ Bq|Pt,t+γpq ∈ BP) so that Xp is not an entropic prima facie
cause of Xp with delay γpq. By contraposition, we conclude the proof of
the first statement. The second statement directly derives from the defini-
tion of CTMI.

4.2.3 Conditional causal temporal mutual information

We now extend the causal temporal mutual information by condition-
ing on a set of variables. In a causal discovery setting, conditioning is
used to assess whether two dependent time series can be made indepen-
dent by conditioning on connected time series, i.e. time series which are
dependent with at least one of the two time series under consideration.
Figure 4.3 illustrates the case where the dependence between Xp and Xq is
due to spurious correlations originating from common causes. Condition-
ing on these common causes should lead to conditional independence of
the two time series. Of course, the conditional variables should precede in
time the two time series under consideration. This leads us to the follow-
ing definition of the conditional causal temporal mutual information.
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Definition 37. The conditional causal temporal mutual information be-
tween two time series Xp and Xq such that γ̄pq ≥ 0, conditioned on a set
XR = {Xr1 , · · · , XrK} is given by:

CTMI(Xp; Xq | XR) (4.3)

=I(X(p;λ̄pq)
t ; X(q;λ̄qp)

t+γ̄pq
|(X(rk;λ̄k)

t−Γ̄k
)1≤k≤K , X(p;1)

t−1 , X(q;1)
t+γ̄pq−1),

In case the maximum can be obtained with different values, we first set Γ̄k to its
largest possible value. We then set λ̄k to its smallest possible value. (Γ̄1, . . . , Γ̄K)
and (λ̄1, · · · , λ̄K) correspond to the optimal conditional lags and window sizes
which minimize, for Γ1, . . . , ΓK ≥ −γ̄pq:

I
(

X(p;λ̄pq)
t ; X(q;λ̄qp)

t+γ̄pq
|(X(rk;λk)

t−Γk
)1≤k≤K , X(p;1)

t−1 , X(q;1)
t+γ̄pq−1

)
.

By considering the minimum over compatible lags and window sizes,
one guarantees that if there exist conditioning variables which make the
two time series independent, they will be found. Note that the case in
which γ̄p,q < 0 correspond to CTMI(Xq; Xp | XR) where γ̄q,p > 0.

Figure 4.3 illustrates the above on two different examples. On the left,
Xp

t−1 is correlated to Xq
t as Xr

t−2 is a common cause with a lag of 1 for
Xp and a lag of 2 for Xq. Conditioning on Xr

t−2 removes the dependency
between Xp and Xq. Note that all time series have here a window of size 1.
On the right, Xr1 and Xr2 are common causes of Xp and Xq: Xr1 causes Xp

and Xq with temporal lag of 1, which renders Xp and Xq correlated at the
same time point, while Xr2 causes Xp and Xq with temporal lag of 1 and
2 respectively, which renders Xp and Xq correlated at lagged time points.
The overall correlation between Xp and Xq is captured by considering a
window size of 2 in Xq. All other time series have a window size of 1. By
conditioning on both Xr1 and Xr2 , Xp and Xq become independent.

4.2.4 Estimation and testing

In practice, the success of CTMI approach (and in fact, any entropy-
based approaches) depends crucially on reliable estimation of the relevant
entropies in question from data. This leads to two practical challenges.
The first one is based on the fact that entropies must be estimated from
finite time series data. The second is that to detect independence, we need
a statistical test to check if the temporal causation entropy is equal to zero.
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Here, we rely on the k-nearest neighbor method [Frenzel and Pompe,
2007] for the estimation of CTMI. The distance between two windows con-
sidered here is the supremum distance, i.e., the maximum of the absolute
difference between any two values in the two windows.

d((X(p;λ̄pq)
t , X(q;λ̄pq)

t+γ̄p,q
)i,(X(p;λ̄pq)

t , X(q;λ̄pq)
t+γ̄pq

)j)

= max
0≤ℓ<λp , 0≤ℓ′<λq

(|(X(p;λ̄pq)
t )i+ℓ − (X(p;λ̄pq)

t )j+ℓ′ |,

|(X(q;λ̄qp)
t )i+ℓ′ − (X(q;λ̄qp)

t )j+ℓ′ |).

In case of the causal temporal mutual information, we denote by ϵik/2 the
distance from

(X(p;λ̄pq)
t , X(q;λ̄pq)

t+γ̄pq
, Xp

t−1, Xq
t+γ̄pq−1)

to its k-th neighbor, n1,3
i , n2,3

i and n3
i the numbers of points with distance

strictly smaller than ϵik/2 in the subspace

(X(p;λ̄pq)
t , Xp

t−1, Xq
t+γ̄pq−1), (X(q;λ̄pq)

t+γ̄p,q
, Xp

t−1, Xq
t+γ̄pq−1), and (Xp

t−1, Xq
t+γ̄pq−1)

respectively, and nγpq ,γqp the number of observations. The estimate of the
causal temporal mutual information is then given by:

̂CTMI(Xp; Xq) = ψ(k) +
1

nγpq ,γqp

nγpq ,γqp

∑
i=1

ψ(n3
i )− ψ(n1,3

i )− ψ(n2,3
i )

where ψ denotes the digamma function.
Similarly, for the estimation of the conditional causal temporal mutual

information, we denote by ϵik/2 the distance from

(X(p;λ̄pq)
t , X(q;λ̄pq)

t+γ̄pq
, Xp

t−1, Xq
t+γ̄pq−1, (X(rk;λ̄k)

t−Γ̄k
)1≤k≤K)

to its k-th neighbor, n1,3
i , n2,3

i and n3
i the numbers of points with distance

strictly smaller than ϵik/2 in the subspace

(X(p;λ̄pq)
t , Xp

t−1, Xq
t+γ̄pq−1, (X(rk;λ̄k)

t−Γ̄k
)1≤k≤K),

(X(q;λ̄pq)
t+γ̄pq

, Xp
t−1, Xq

t+γ̄pq−1, (X(rk;λ̄k)
t−Γ̄k

)1≤k≤K), and

(Xp
t−1, Xq

t+γ̄pq−1, (X(rk;λ̄k)
t−Γ̄k

)1≤k≤K)
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respectively, and nγrp ,γrq the number of observations. The estimate of the
conditional causal temporal mutual information is then given by:

̂CTMI(Xp; Xq | XR) = ψ(k) +
1

nγrp ,γrq

nγrp ,γrq

∑
i=1

ψ(n3
i )− ψ(n1,3

i )− ψ(n2,3
i )

where ψ denotes the digamma function.
To detect independencies through CTMI we rely on the following per-

mutation test:

Definition 38 (Permutation test of CTMI). Given Xp, Xq and XR, the p-value
associated to the permutation test of CTMI is given by:

p =
1
B

B

∑
b=1

1 ̂CTMI((Xp)b;Xq|XR)≥ ̂CTMI(Xp;Xq|XR)
, (4.4)

where (Xp)b is a permuted version of Xp and follow the local permutation scheme
presented in Runge [2018].

The advantage of the scheme presented in Runge [2018] is that it pre-
serves marginals by drawing as much as possible without replacement
and it performs local permutation which insure that by permuting Xp, the
dependence between Xp and Xr is not destroyed.

Note that Definition 4.4, is applicable to the causal temporal mutual in-
formation (when R is empty) and to the conditional causal temporal mu-
tual information.

4.2.5 Extension to time series with different sampling rates

The above development readily applies to time series with different
sampling rates as one can define window-based representations of the two
time series as well as a sequence of joint observations.
Indeed, as one can note, Definition 33 does not rely on the fact that the
time series have the same sampling rates. Figure 4.4 displays two time
series Xp and Xq with different sampling rates where, while λpq = 2 and
λqp = 3, the time spanned by each window is the same. The joint sequence
of observations, relating pairs of windows from Xp and Xq in the form

S = {(w(p;λpq)
1p

, w(q;λqp)
1q

), · · · , (w(p;λpq)
np , w(q;λqp)

nq )}, should however be such

that for all index i of the sequence one has: s(w(q;λqp)
iq ) = s(w(p;λpq)

ip
) +

γpq, where s(w) represents the starting time of the window w, and γpq is
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Figure 4.4 – Illustration for constructing sequences of windows for two
time series with different sampling rates.

constant over time. This is not the case for the first example, but is true for
the second one, which is a relevant sequence of observations.

If the two time series are sufficiently long, there always exists a correct
sequence of joint observations. Indeed, if the window sizes λpq and λqp

are known, let γpq = s(w(q;λqp)
1 )− s(w(p;λpq)

1 ). Furthermore, let Np and Nq
denote the number of observations per time unit 2. Then, λpq, λqp and γpq
are compatible through the set of joint observations S with

s(w(p;λpq)
ip

) = s(w(p;λpq)
1 ) + (ip − 1)LCM(Np, Nq)

and

s(w(q;λqp)
iq ) = s(w(q;λqp)

1 ) + (iq − 1)LCM(Np, Nq),

with LCM the lowest common multiple.

4.3 PC based on causal temporal mutual infor-
mation

We present in this section a new method for causal discovery in time
series based on the causal temporal mutual information introduced above

2. Time unit corresponds to the largest (integer) time interval according to the sam-
pling rates of the different time series. For example, if a time series has a sampling rate
of 10 per second and another a sampling rate of 3 per 10 minutes, then the time unit is
equal to 10 minutes.
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to construct the skeleton of the causal graph. This skeleton is then ori-
ented on the basis of the entropy reduction principle and the PC algorithm.
Our method assumes both the causal Markov condition and faithfulness
of the data distribution, which are classical assumptions for causal discov-
ery within constraint-based methods.

4.3.1 Skeleton construction

We follow the same steps as the ones of the PC algorithm [Spirtes et al.,
2000] which assumes that all variables are observed. It aims at building
causal graphs by orienting a skeleton obtained, from a complete graph, by
removing edges connecting independent variables. The summary causal
graphs considered are directed acyclic graphs (DAG) in which self-loops
are allowed to represent temporal dependencies within a time series.

Starting with a complete graph that relates all time series, the first step
consists in computing CTMI for all pairs of time series and removing edges
if the two time series are considered independent. Once this is done, one
checks, for the remaining edges, whether the two time series are condition-
ally independent (the edge is removed) or not (the edge is kept). Starting
from a single time series connected to Xp or Xq, the set of conditioning
time series is gradually increased untill either the edge between Xp and
Xq is removed or all time series connected to Xp and Xq have been consid-
ered. We will denote by Sepset(p, q) the separation set of Xp and Xq, which
corresponds to the smallest set of time series connected to Xp and Xq such
that Xp and Xq are conditionally independent given this set. Note that
we make use of the same strategy as the one used in PC-stable [Colombo
and Maathuis, 2014a], which consists in sorting time series according to
their CTMI scores and, when an independence is detected, removing all
other occurrences of the time series. This leads to an order-independent
procedure.

The following theorem states that the skeleton obtained by the above
procedure is the true one.

Theorem 4. Let G = (V, E) be a summary causal graph, and assume that we are
given perfect conditional independence information about all pairs of variables
(Xp, Xq) in V given subsets S ⊆ V\{Xp, Xq}. Then the skeleton previously
constructed is the skeleton of G.

Proof. Let us consider two time series Xp and Xq. If they are indepen-
dent given XR, then CTMI(Xp; Xq|XR) = 0 as otherwise the conditional
mutual information between Xp and Xq would be non nul and the two
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time series would not be conditionally independent as we are given per-
fect information. By the causal Markov and faithfulness conditions, there
is no edge in this case between Xp and Xq in the corresponding skele-
ton, as in the true one. Conversely, if CTMI(Xp; Xq|XR) = 0 for any XR,
then the two time series cannot be dependent conditioned on XR. In-
deed, if this was the case, as we are given perfect conditional informa-
tion, there would exist a lag γ and two window sizes λpq and λpq such

that I(X(p;λpq)
t ; X(q;λqp)

t+γ |XR) > 0 with 0 < λpq, λqp ≤ γ. In this case, the
two windows of size λmax centered on time point t in both Xp and Xq

contain the windows of size λpq and λpq separated by a lag γ in Xp and
Xq as λmax = 2γmax + 1. Thus, CTMI(Xp; Xq|XR) would be positive as

this quantity cannot be less than I(X(p;λpq)
t ; X(q;λqp)

t+γ |XR), which leads to a
contradiction. Finally, as we test all necessary conditioning sets in the con-
struction of the skeleton, we have the guarantee to remove all unnecessary
edges.

4.3.2 Orientation

Once the skeleton has been constructed, one tries to orient as many
edges as possible using the standard PC-rules (see Section 3). As we are us-
ing here the standard PC rules, we have the following theorem, the proof
of which directly derives from results on PC [Spirtes et al., 2000].

Theorem 5 (Theorem 5.1 of Spirtes et al. [2000]). Let the distribution of V be
faithful to a DAG G = (V, E), and assume that we are given perfect conditional
independence information about all pairs of variables (Xp, Xq) in V given subsets
XR ⊆ V\{Xp, Xq}. Then the skeleton constructed previously followed by PC-
Rules 0, 1, 2, and 3 represents the CPDAG of G.

In addition to the PC orientation rules, we introduce two new rules
which are based on the notion of possible spurious correlations and the mu-
tual information we have introduced. The notion of possible spurious cor-
relations captures the fact that two variables may be correlated through
relations that do not only correspond to direct causal relations between
them. It is formalized as follows:

Definition 39 (Possible spurious correlations). We say that two nodes Xp −
Xq have possible spurious correlations if there exists a path between them that
neither contains the edge Xp − Xq nor any collider.

Interestingly, when two connected variables do not have possible spu-
rious correlations, one can conclude on their orientation using CTMI.
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Property 2. Let us assume that we are given perfect conditional independence in-
formation about all pairs of variables (Xp, Xq) in V given subsets S ⊆ V\{Xp, Xq}.
Then every non oriented edge in the CPDAG obtained by the above procedure
corresponds to a prima facie cause and by, causal sufficiency, to a true causal
relation between the related time series. Furthermore, the orientation of an un-
oriented edge between two nodes Xp and Xq that do not have possible spurious
correlations is given by the ”direction” of the optimal lag in CTMI(Xp, Xq), as-
suming that the maximal window size is larger than the longest lag γmax between
causes and effects.

Proof. The first part of Prop. 2 directly derives from Prop. 1. As we assume
that we are given perfect conditional information, the skeleton is the true
one from Theorem 4. Thus, if two variables do not have possible spurious
correlations, the only correlations observed between them correspond to a
causal relation. We now need to prove that the optimal lag can be used to
orient edges between any pair of variables Xp and Xq.

Without loss of generality, let us assume that Xp causes Xq
t , for any time

t, via the K time instants {t − γ, t − γ1, · · · , t − γK−1} with 0 < γK−1 <
· · · < γ1 < γ. First, let us consider a window of size 1 in Xq, and a window
of arbitrary size λ in Xp with a lag γpq set to γ′ ≥ 0. As γ′ ≥ 0, there

is no cause of Xq
t in the window X(p;λ)

t+γ′ . Furthermore, the only observed
correlations between Xp and Xq correspond to causal relations. We thus
have:

I(X(q;1)
t ; X(p;λ)

t+γ′ |X
(q;1)
t−1 , X(p;1)

t+γ′−1) = 0,

as Xq
t and all variables in X(p;λ)

t+γ′ are independent of each other. One the
contrary, for the same window size in Xp and a lag γpq set to −γ with
γ > 0, one has:

I(X(q;1)
t ; X(p;γ)

t−γ |X
(q;1)
t−1 , X(p;1)

t−γ−1) ≥ I(X(q;1)
t ; X(p;1)

t−γ |X
(q;1)
t−1 , X(p;1)

t−γ−1) > 0.

The first inequality derives from Inequality 4.2. The second inequality is
due to the fact that Xp

t−γ is a true cause of Xq
t and the fact that we are given

perfect information. Thus, when considering a window of size 1 for Xq,
the optimal lag given by CTMI will necessarily go from Xp to Xq, which
corresponds to the correct orientation.

We now consider the case where we have a window of arbitrary size λ′

in Xq. Let us further consider a window of arbitrary size λ in Xp with a lag
γpq set to γ′ ≥ 0. If λ′ < γ′ + γK−1, there is no causal relations between

elements in X(q;λ′)
t and elements in X(p;λ)

t+γ′ and the mutual information be-
tween these two windows is 0. Otherwise, one can decompose this mutual
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information as:

I(X(q;λ′)
t ; X(p;λ)

t+γ′ |X
(q;1)
t−1 , X(p;1)

t+γ′−1)

= I(X(q;γ′+γK−1)
t ; X(p;λ)

t+γ′ |X
(q;1)
t−1 , X(p;1)

t+γ′−1)

+ I(X(q;λ′−γ′−γK−1)
t+γ′+γK−1

; X(p;λ)
t+γ′ |X

(q;1)
t+γ′+γK−1−1, X(p;1)

t+γ′−1),

as the conditioning on X(q;γ′+γK−1)
t and X(q;1)

t−1 amounts to condition on the

instant X(q;1)
t+γ′+γK−1−1 due to the first-order Markov self-causal assumption.

As there are no causal relations between elements in X(q;γ′+γK−1)
t and

elements in X(p;λ)
t+γ′ the first term in the right-hand side is 0. Using a similar

decomposition in order to exclude elements at the end of X(p;λ)
t+γ′ which do

not cause any element in X(q;λ′)
t , one obtains:

I(X(q;λ′)
t ; X(p;λ)

t+γ′ |X
(q;1)
t−1 , X(p;1)

t+γ′−1)

= I(X(q;λ′−γ′−γK−1)
t+γ′+γK−1

; X(p;min(λ,λ′−γK−1−γ′))
t+γ′ |X(q;1)

t+γ′+γK−1−1, X(p;1)
t+γ′−1).

Let us now consider the window in Xp of size λ′ with a lag γpq set to
−γK−1. Using the same reasoning as before, one obtains:

I(X(q;λ′)
t ; X(p;λ′)

t−γK−1
|X(q;1)

t−1 , X(p;1)
t−γK−1−1)

= I(X(q;γ′+γK−1)
t ; X(p;λ′)

t−γK−1
|X(q;1)

t−1 , X(p;1)
t−γK−1−1)

+ I(X(q;λ′−γ′−γK−1)
t+γ′+γK−1

; X(p;λ′)
t−γK−1

|X(q;1)
t+γ′+γK−1−1, X(p;1)

t−γK−1−1), (4.5)

with:

I(X(q;λ′−γ′−γK−1)
t+γ′+γK−1

; X(p;λ′)
t−γK−1

|X(q;1)
t+γ′+γK−1−1, X(p;1)

t−γK−1−1)

≥ I(X(q;λ′−γ′−γK−1)
t+γ′+γK−1

; X(p;min(λ,λ′−γK−1−γ′))
t+γ′ |X(q;1)

t+γ′+γK−1−1, X(p;1)
t+γ′−1),

as the window X(p;λ′)
t−γK−1

contains the window X(p;min(λ,λ′−γK−1−γ′))
t+γ′ . In ad-

dition, the first term in the right-hand side of Eq. 4.5 is strictly positive as
all the elements in X(q;γ′+γK−1)

t have causal relations in X(p;λ′)
t−γK−1

. Thus, the
mutual information obtained with the negative lag −γK−1 is better than
the one obtained with any positive lag,

I(X(q;λ′)
t ; X(p;λ′)

t−γK−1
|X(q;1)

t−1 , X(p;1)
t−γK−1−1) > I(X(q;λ′)

t ; X(p;λ)
t+γ′ |X

(q;1)
t−1 , X(p;1)

t+γ′−1);
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meaning that the optimal lag given by CTMI will necessarily go from Xp

to Xq, which corresponds to the correct orientation.

The following orientation rule is a direct application of the above prop-
erty.

ER-Rule 0 (Entropy Reduction - γ ). In a pair Xp − Xq, such Xp and Xq do
not have a possible spurious correlations, if γ̄pq > 0, then orient the edge as:
Xp → Xq.

Furthermore, we make use of the following rule to orient additional
edges when the optimal lag γ̄pq is null based on the fact that CTMI in-
creases asymmetrically with respect to the increase of λpq and λqp (Fig-
ure 4.2). This rule infers the direction of the cause by checking the differ-
ence in the window sizes as the window size of the cause cannot be greater
than the window size of the effect.

ER-Rule 1 (Entropy Reduction - λ). In a pair Xp − Xq, such Xp and Xq do
not have a possible spurious correlations, if γ̄pq = 0 and λ̄pq < λ̄qp then orient
the edge as: Xp → Xq.

Algorithm 1 represents the pseudo-code of PCTMI. Adj(Xq, G) repre-
sents all adjacent nodes to Xq in the graph G and sepset(p, q) is the sepa-
ration set of Xp and Xq.

Finally, given the graph G inferred with the above procedure, one can
verify for each node Xq in G if it is self causal by checking if for all t,
CTMI(Xq

t ; Xq
t−1 | Par(Xq

t )) in G.
In practice, we also apply ER-Rule 0 before PC-Rules, because experi-

mentally we found that ER-Rule 0 is more reliable than PC-Rule 0 in de-
tecting lagged unshielded colliders, especially in the case of low sample
size.

4.4 FCI based on causal temporal mutual infor-
mation

When unobserved variables are causing a variable of interest, the PC
algorithm is no longer appropriate and one needs to resort to the FCI al-
gorithm introduced in Spirtes et al. [2000] which infers a PAG (partial an-
cestral graph). We extend here the version of this algorithm presented in
Zhang [2008a] and described in Section 3.3, without the selection bias.

From the skeleton obtained in Section 4.3.1, unshielded colliders are
detected using the FCI-Rule 0 in Section 3.3. From this, Possible-Dsep sets
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Algorithm 1 PCTMI

Require: X a d-dimensional time series of length T, γmax ∈ N the maxi-
mum number of lags, α a significance threshold
Form a complete undirected graph G = (V, E) with d nodes
n = 0
while there exists Xq ∈ V such that card(Adj(Xq, G)) ≥ n + 1 do

D = list()
for Xq ∈ V s.t. card(Adj(Xq, G)) ≥ n + 1 do

for Xp ∈ Adj(Xq, G) do
for all subsets XR ⊂ Adj(Xq, G) \ {Xp} such that card(X(R)) = n
and (Γrp ≥ 0 or Γrq ≥ 0) for all r ∈ R do

yq,p,R = CTMI(Xp; Xq | XR)

append(D, {Xq, Xp, XR, yq,p,R}))
end for

end for
end for
Sort D by increasing order of y
while D is not empty do
{Xq, Xp, XR, y} = pop(D)
if Xp ∈ Adj(Xq, G) and XR ⊂ Adj(Xq, G) then

Compute z the p-value of CTMI(Xp; Xq | XR) given by Eq. (4.4)
if test z > α then

Remove edge Xp − Xq from G
Sepset(p, q) = Sepset(q, p) = XR

end if
end if

end while
n=n+1

end while
for each triple in G do apply PC-Rule 0
while no more edges can be oriented do

for each triple in G do apply PC-Rules 1, 2, 3
end while
for each connected pair in G do apply ER-Rules 0, 1
Return the summary causal graph G

can be constructed. As elements of Possible-Dsep sets in a PAG play a
role similar to the ones of parents in a DAG, additional edges are removed
by conditioning on the elements of the Possible-Dsep sets, using the same
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strategy as the one given in Section 4.3.1. All edges are then unoriented
and the FCI-Rule 0 is again applied as some of the edges of the unshielded
colliders originally detected may have been removed by the previous step.
Then, as in FCI, FCI-Rules 1, 2, 3, 4, 8 9 and 10 are applied. Note that
we have not included FCI-Rules 5, 6 and 7 from Zhang [2008a] as these
rules deal with selection bias, a phenomenon that is not present in the
datasets we consider. Including these rules in our framework is neverthe-
less straightforward. Finally as in PCTMI, we orient additional edges using
the ER-Rules.

The overall process, referred to as FCITMI, is described in Algorithm 2.

4.5 Extension to window causal graph

In this chapter, we presented our method for the discovery of a sum-
mary causal graph. While in many applications the knowledge of sum-
mary causal graphs is sufficient, in some particular cases, one may need
window causal graphs. Here, we present a procedure, that allows infer-
ring a window causal graph given a summary causal graph. This method
can be decomposed into two steps: time-adaptation and temporal skeleton
separation. First, information from the summary causal graph is trans-
ferred into a window-based graph, which is done by taking all inferred
relations in the previous steps and representing them in a time-fashioned
graph. The second step captures all confounders of all pairs of all points
of time series.

We use the same set of assumptions as in PCTMI and assume that the
summary causal graph G is given (obtained using PCTMI). We start with
constructing a window causal graph T G, where the window have size
of γmax + 1. For each oriented edge Xp → Xq in the summary causal
graph G, we add Xp

t → Xq
t+k in T G for all the time points k in the defined

window. For the non-oriented edges Xp − Xq in G, we add all possible
corresponding edges in T G, i.e., we add both Xp

t → Xq
t+k and Xq

t → Xp
t+k

in T G for all the time points k. This process is illustrated in Figure 4.5, with
simple summary causal graph G (a) and derived window causal graph
T G (b). The causal relation Xr → Xp in G (Figure 4.5 (a)) is transferred
into directed edges from time point Xr

t−2 to time points (Xp
t−2, Xp

t−1, Xp
t )

and from Xr
t−1 to time points (Xp

t−1, Xp
t ) (Figure 4.5 (b)). The non-oriented

edge between Xr and Xq in G is transferred into directed edges from all
lagged relations from Xr to Xq and from Xq to Xr, and into undirected
edges from the remained instantaneous relations Xr

t−2 and Xq
t−2, Xr

t−1 and
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Figure 4.5 – Time adaptation result for two nodes related by a counfounder
for γmax = 2.

Xq
t−1, and Xr

t and Xq
t .

Then, similarly to PC algorithm, non causal relations are removed from
graph T G through conditional independence tests. In particular, for each
pair of nodes (Xq

t , Xp
t+k), we compute their mutual information I(Xq

t , Xp
t+k)

and test through a permutation test if they are independent. In case of
independence we remove the edge between them. Then we check if two
nodes (Xq

t , Xp
t+k) are conditionally independent by conditioning on all pos-

sible sets XR
T of size 1, which are connected to Xq

t or Xp
t+k. We calculate

conditional mutual information I(Xq
t , Xp

t+1 | XR
T ) for evaluating condi-

tional independence of nodes (Xq
t , Xp

t+k) and remove an edge in case of
conditional independence. We repeat this procedure iteratively increasing
the size of set XR

T until edge between (Xq
t , Xp

t+k) is removed or all condi-
tioning sets are considered. We use the same procedure as in PCTMI al-
gorithm for ranking conditional independence, thus this method is also
order-independent.

4.6 Extension to sequences

A time series is a sequence observed at successive equally spaced points
in time but sequential data, however, is any kind of data where the order
matters and is not necessarily temporal (the time stamp is irrelevant), for
example, DNA sequence, text, and trajectories. In this section, we claim
that sometimes reducing a time series to a sequence can be beneficial es-
pecially in the case of temporal misalignment.

Many real-world time series data sets are subject to temporal misalign-
ment, i.e., the time periods defining the data points are not the same across
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different or the same series. Temporal misalignment becomes a problem
when multiple irregularly spaced time series are considered together es-
pecially for causal discovery algorithms who rely on time to infer the di-
rection of the cause. This phenomenon is illustrated in Figure 4.6 which
shows two time series Xp and Xq such that Xp cause Xq with a lag of one.
In Figure 4.6b we can see the corresponding data point of the dynamic
system is faithful to the real time order. Given these data points, a causal
discovery algorithm for time series, namely PCTMI would infer the correct
causal relation with γp,q = 1. Now suppose that the same time series
at the moment of the data collect which produced a misalignment: Xp is
shifted back by 1 point and Xq is shifted forward by 1 point as plotted
in Figure 4.6c. In this case, PCTMI (and probably every causal discovery
algorithm suited for time series) would fail.

Here we provide a simple modification of PCTMI to encounter the prob-
lem of misaligned time series, and we conjuncture that this modification
can also be used to other types of sequences. First, in the estimation of con-
ditional CTMI, one should drop the conditions on Γ. Formally speaking,
in case of misalignment between time series, the conditional causal tem-
poral mutual information between two time series Xp and Xq conditioned
on a set XR = {Xr1 , · · · , X(rK)} is given by:

CTMI(Xp; Xq | XR) (4.6)

=I(X(p;λ̄pq)
t ; X(q;λ̄qp)

t+γ̄pq
|(X(rk;λ̄k)

t−Γ̄k
)1≤k≤K , X(p;1)

t−1 , X(q;1)
t+γ̄pq−1),

where (Γ̄1, . . . , Γ̄K) and (λ̄1, · · · , λ̄K) correspond to the optimal conditional
lags and window sizes which minimize, for Γ1, . . . , ΓK ∈ Z:

I
(

X(p;λ̄pq)
t ; X(q;λ̄qp)

t+γ̄pq
|(X(rk;λk)

t−Γk
)1≤k≤K , X(p;1)

t−1 , X(q;1)
t+γ̄pq−1

)
.

Moreover, one should avoid using the ER-Rules, since their main pur-
pose is to find the direction of causation through the direction of associ-
ations with respect to time which is now corrupted due to the misalign-
ment. Finally, in the third for loop of the algorithm, while searching for
the separation sets, the conditions on γ should be dropped, namely, the
condition: γrp ≥ 0 or γrq ≥ 0.

Interpretation: If a graph G is inferred using the adapted version of
PCTMI for misaligned time series, and if there exists a causal relation Xp →
Xq in G such that γpq < 0 then one can conclude that time series Xp and
time series Xq are misaligned in a way that violates the temporal priority
assumption (Definition 8).
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Figure 4.6 – Misaligned time series. Xp
t is sampled from a normal distri-

bution and Xq
t+1 is Xp

t divided by 2.

4.7 Extension to extended summary causal graphs

In this section, consider a less compact version of the summary causal
graph that explicitly differentiate between lagged and instantaneous rela-
tions which we denote as extended summary causal graphs. In extended
summary causal graphs, past instants are conflated in a past slice and present
instants represented in a present slice as illustrated in Figure 4.7. Effects
in extended summary graphs are variables in the present slice, whereas
causes are variables in both the past and present slices, in other words,
extended summary causal graphs can represent two types of relations:
from the past (represented for a time series Xp by Xp

t−) to the present (rep-
resented for a time series Xp by Xp

t ) and instantaneous relations in the
present slice. Note that if Xr

t− causes Xp
t in an extended summary causal

graph (as in Figure 4.7b) then there exists a strictly positive lag γ such
that Xr

t−γ causes Xp
t in the window causal graph (which makes it compact

version of the window causal graph). However, if Xr
t causes Xp

t in an ex-
tended summary causal graph (as in Figure 4.7b) then this simply means
that Xr causes Xp instantaneously in the window causal graph. Lastly, as
the underlying full-time graph is acyclic, similarly to the window causal
graphs, the extended summary causal graphs is also acyclic. This is not
necessarily the case for summary causal graphs.

Under this graphical representation, the discovery of causal relation
becomes easier in the sense that we no longer need to find neither the opti-
mal lag and neither the optimal window. Instead, we can simply estimate
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the conditional independence between nodes in the extended summary
causal graph. Thus the CTMI(Xp, Xq | XR) can be replaced by a simpler
expression. Since the causal relation between a cause Xp and its effect Xq

is captured through the relation between Xq
t and its direct causes in Xp (Xp

t
or/and Xp

t−), then one can conclude that Xp
t does not directly cause Xq

t if
one has,

I(Xq
t ; Xp

t ) = 0, (4.7)

and one can conclude that Xp
t− does not directly cause Xq

t if one has,

I(X(p,γmax)
t−γmax

; Xq
t ) = 0. (4.8)

The above two statements can of course be extended by conditioning on
any subset of past instants of any set of time series.

In consequence, for extended summary causal graphs, the causal dis-
covery procedure will start by initializing a partially oriented graph such
that all nodes in the past slice have a directed edges towards nodes in
the present and nodes in the present slice have undirected edges between
each others. To find the skeleton, one can use a PC-like procedure using
the conditional version of Equation 4.7 for instantaneous relations and the
conditional version of Equation 4.8 for lagged relations in order to find
conditional independence. After that, PC-Rules should be used to find
unshielded colliders and some other orientations. However, in this case,
the ER-Rules are not needed since all relations from past to present are
oriented by construction using temporal priority and all instantaneous re-
lations that is supposed to be oriented using ER-Rule 1, are oriented using
PC-Rule 0.

4.8 Conclusion

We have addressed in this chapter the problem of learning a summary
causal graph on time series with equal or different sampling rates. To do
so, we have first proposed a new temporal mutual information measure
defined on a window-based representation of time series. We have then
shown how this measure relates to an entropy reduction principle that can
be seen as a special case of the probabilistic raising principle. We have fi-
nally combined these two ingredients in a PC-like algorithm to construct
the summary causal graph. Then we extended the main algorithm to han-
dle hidden common causes analogous to the FCI algorithm. Finally, we
showed how can a window causal graph be inferred given a summary
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Figure 4.7 – Example of a summary causal graph (4.7a) and an extended
summary causal graph (4.7b).

causal graph and we provided an intuitive adaptation of our main algo-
rithm to sequences and to extended summary causal graphs. The main
limitation of our method is that it is restricted to the Markov equivalence
class in case of instantaneous relations. In the next chapter, we will see
how we can overcome this issue.
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Algorithm 2 FCITMI

Require: X a d-dimensional time series of length T, γmax ∈ N the maxi-
mum number of lags, α a significance threshold
Form a complete undirected graph G = (V, E) with d nodes
n = 0
while there exists Xq ∈ V such that card(Adj(Xq, G)) ≥ n + 1 do

D = list()
for Xq ∈ V s.t. card(Adj(Xq, G)) ≥ n + 1 do

for Xp ∈ Adj(Xq, G) do
for all subsets XR ⊂ Adj(Xq, G) \ {Xp} such that card(X(R)) = n
and (γrp ≥ 0 or γrq ≥ 0) for all r ∈ R do

yq,p,R = CTMI(Xp; Xq | XR)

append(D, {Xq, Xp, XR, yq,p,R}))
end for

end for
end for
Sort D by increasing order of y
while D is not empty do
{Xq, Xp, XR, y} = pop(D)
if Xp ∈ Adj(Xq, G) and XR ⊂ Adj(Xq, G) then

Compute z the p-value of CTMI(Xp; Xq | XR) given by Eq. (4.4)
if test z > α then

Remove edge Xp − Xq from G
Sepset(p, q) = Sepset(q, p) = XR

end if
end if

end while
n=n+1

end while
for each triple in G do apply FCI-Rule 0
using Possible-Dsep sets, remove edges using CTMI
Reorient all edges as ◦−◦ in G
for each triple in G do apply FCI-Rule 0
while edges can be oriented do

for each triple in G apply FCI-Rules 1,2, 3, 4, 7, 9, 10
for each connected pair in G do apply ER-Rules 0, 1.

end while
Return the summary causal graph G
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Chapter 5

A mixed noise and entropy based
approach to causal inference in
time series

Not only does noise not obscure
causal relations, it is an
invaluable source of insight
regarding them.

Nevin Climenhaga, Lane
DesAutels, and Grant Ramsey
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5.1 Introduction

In the previous chapter, we introduced a new algorithm, called PCTMI,
which is entirely affiliated to the constraint-based family of methods. Like
other constraint-based methods, PCTMI relies on conditional independen-
cies and assume faithfulness, which states that the joint distribution P over
V is faithful to the true causal Directed Acyclic Graph (DAG) G over V
in the sense that every conditional independence statement satisfied by P
is entailed by G [Spirtes et al., 2000]. Moreover, in general, using such
approaches, graphs can only be recovered up to Markov equivalence 1

classes. However, since PCTMI uses the notion of time, it can go be-
yond the Markov equivalence class only for lagged relations [Runge et al.,
2019], i.e. instantaneous relations are always limited to the Markov equiv-
alence class. Alternatively, noise-based approaches present full indenti-
fiabilty of the causal graphs if all assumptions are met. These methods
usually assume causal Markov condition and the minimality condition,
which is a weaker assumption than faithfulness, in addition to a restric-
tion to the model class (for more details, see Section 3.4). The main draw-
backs are that such methods usually do not scale well [Glymour et al.,
2019] and might need a large sample size [Malinsky and Danks, 2018],
and in practice, they do not achieve good performance compared to con-
straint based approaches. To overcome, the limitation of PCTMI that is
mentioned above, we propose, a hybrid method, that takes benefit of the
two approaches: noise based and constraint based. Thus it is not limited
to a Markov equivalence class and provides a specific graph, scales better
and needs a smaller sample size.

Our contribution is two-fold. We first use a well known noise-based
procedure to infer a causal ordering between the time series which can be
interpreted as an oriented graph which contain the true graph and which
reduce the space of search compared to a fully non oriented connected
graph. Then we introduce a new measure of dependence between two
time series called the temporal causation entropy, which is an extension
of the standard causation entropy measure [Sun et al., 2015] to time se-
ries to handle instantaneous relations and lags bigger than one and it is
a asymmetric version of the temporal mutual information introduced in
Chapter 4. This new measure is used in a PC-like algorithm to prune un-
necessary arrows by looking at possible confounders and therefore end-up
with only genuine cause. Remarkably, this is to our knowledge the first

1. Two DAGs are Markov equivalent if and only if they have the same skeleton and
the same v-structures [Verma and Pearl, 1991].

102



algorithm hybrid between constraint-based and noise-based methods for
time series.

The remainder of the chapter is organized as follows: Section 5.2 in-
troduces the main causal discovery algorithm, called NBCB. It relies on
weak assumptions that are reminded first, and on the temporal causation
entropy that is also introduced. Finally, Section 5.4 concludes the chapter.

5.2 Weakening faithfulness and going beyond the
Markov equivalence class

The faithfulness assumption is difficult to check in practice, and it has
been debated for a long time. It assumes that there are no accidental con-
ditional independence relations in the true distribution, that is, no condi-
tional independence relations unless entailed by the true causal structure.
The faithfulness assumption is mainly used in constraint-based methods,
where it is used at two different stages (skeleton construction and orien-
tation phase), so it can be decomposed into two assumptions as proposed
in Ramsey et al. [2006], namely Adjacency faithfulness (Definition 40) and
Orientation faithfulness (Definition 41).

In PC-like algorithm, the skeleton is inferred in the first step, by look-
ing at the adjacency of each pair (Xp, Xq) considering conditional indepen-
dences. This step relies on the adjacency faithfulness assumption which is
defined as follow:

Definition 40 (Adjacency faithfulness [Ramsey et al., 2006]). For every Xp, Xq ∈
V, if Xp and Xq are adjacent in G, then they are not conditionally independent
given any subset of V\{Xp, Xq}.

In the second step, PC-like algorithm finds all unshielded colliders by
considering that every unshielded triple Xp − Xr − Xq is a collider if and
only if Xr is not in the separation set of Xp and Xq. This step relies on the
Orientation faithfulness assumption which is defined as follow:

Definition 41 (Orientation faithfulness [Ramsey et al., 2006]). For every
Xp, Xq, Xr ∈ V such that Xp − Xr − Xq is an unshielded triple in G:

— If the triple Xp, Xr, Xq is a collider, i.e., Xp → Xr ← Xq in G, then Xp

and Xq are not conditionally independent given any subset of V\{Xp, Xq}
that includes Xr.

— Otherwise, Xp and Xq are not conditionally independent given any subset
of V\{Xp, Xq} that excludes Xr.
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We follow Ramsey et al. [2006], who relax the standard faithfulness
assumption and still have provably correct and informative causal graph
discovery procedures. The approach we propose discover causal relations
from time series under the causal Markov condition, the causal minimal-
ity condition (needed in the causal ordering, when using the noise-based
method) and adjacency faithfulness (needed in the pruning step, when
using the constraint-based method). We also assume that the summary
causal graph is acyclic. Our approach is a hybrid based method which is
decomposed into two parts. The first part, a noise-based approach, is de-
scribed in Algorithm 3. It is similar to Peters et al. [2013], but we extend
the theoretical framework. A Gaussian process maps the past of the time
series to the present, and a dependency measure between its input and its
residuals is used to infer which time series potentially causes the other.
The second part, a constraint-based approach, is described in Algorithm
4: considering the set of potential parents, the graph is pruned to remove
spurious causes. The two parts are detailed below.

5.2.1 Causal ordering through noise

The first step relies on noise-based approaches, which were initially
introduced for i.i.d. data. However, they gained much attention in recent
years [Hoyer et al., 2009, Mooij et al., 2009, 2016, Assaad et al., 2019], and
have also been extended for time series [Peters et al., 2013].

In this chapter, we focus on Additive Noise Models (ANMs) as defined
in the following:

Xq
t = f q(Par(Xq

t )t−γmax , . . . , Par(Xq
t )t−1, Par(Xq

t )t, ξ
q
t ), (5.1)

where f q is a potentially nonlinear function, Par(Xq
0) ⊆ XV\q, Par(Xq

k) ⊆
X, (ξq

t )q,t are jointly independent, for each q, ξ
q
t are identically distributed

in t and the finite dimensional distributions for the time series (Xq)1≤q≤d
are absolutely continuous w.r.t a product measure. Remark that this model
allows instantaneous relations. ANMs are identifiable, as they belong to
the identifiable functional model class (IFMOC) [Peters et al., 2011], even
in case of non-faithful causal models, for which conditional independence-
based methods, as constraint-based, usually fail [Peters et al., 2011].

First we focus on the causal ordering. Similarly to the bivariate case
[Hoyer et al., 2009, Mooij et al., 2016], independence between signal and
residuals allow to detect the most potential cause from a set of variables
through the following principle.
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Algorithm 3 NBCB Part I: noise-based approach to order causes

Require: X a d-dimensional time series, γmax ∈N the maximum number
of lags
G an empty graph with nodes {X1, . . . , Xd}
S = {1, . . . , d}
while length(S) > 1 do

for q ∈ S do
Learn f̂ q : {(X(p;γmax+1)

t−γmax
)p∈S,p ̸=q, (X(q;γmax)

t−γmax
)} 7→ Xq

t
Deduce ξ̂

q
t and compute cq from Eq. (5.2)

end for
Choose q∗ = argmin cj
S = S\q∗
for s ∈ S do

Add Xs → Xq∗ in G
end for

end while
Return G

Principle 2 (Multivariate additive noise principle). Suppose we are given a
joint distribution P(X1, · · · , Xd). If it satisfies an identifiable Additive Noise
Model defined in (5.1) such that {(X(p;γmax+1)

t−γmax
)1≤p ̸=q≤d, (X(q;γmax)

t−γmax
)} → Xq

t ,

then it is likely that {(X(p;γmax+1)
t−γmax

)1≤p ̸=q≤d, (X(q;γmax)
t−γmax

)} precedes Xq
t in the causal

order.

Similarly to Mooij et al. [2016], when considering a suitable regression
estimator and a suitable dependency estimator, the true causal order will
be inferred. If we consider the fully connected graph given by this causal
ordering (an edge between each node and its parents), it yields to a graph
that contains the real graph: all true causal relations are in the inferred
graph.

In practice, we first estimate for all q ∈ {1, . . . , d},

f̂ q : {(X(p;γmax+1)
t−γmax

)1≤p ̸=q≤d, (X(q;γmax)
t−γmax

)} 7→ Xq
t

by a Gaussian Process and deduce the residuals

ξ̂
q
t = Xq

t − f̂ q{(X(p;γmax+1)
t−γmax

)1≤p ̸=q≤d, (X(q;γmax)
t−γmax

)}.

The last place in the causal ordering (which belongs to the most probable
effect of all other time series) is given to the time series which yields the
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Figure 5.1 – Wrong causal relations potentially inferred in the first step of
our algorithm. Dashed lines represents wrong causal relations. On the
left, we show a spurious cause, whereas on the middle and on the right,
we provide two indirect causes.

residuals that are more independent to the other time series. The depen-
dency between the residuals and the input is estimated with

cq = C
(
(X(p;γmax+1)

t−γmax
)1≤p ̸=q≤d, (X(q;γmax)

t−γmax
), ξ̂

q
t

)
, (5.2)

where C is a dependence measure 2. We then compare values of depen-
dencies (or associated p-value if one wants to use statistical test).

However, this method is not capable of detecting independence be-
tween two time series, and thus it is susceptible to treat indirect causes
as direct causes. To remove indirect causes or detect independencies, we
complement this procedure with a second step that prunes spurious rela-
tions from the graph. It necessitates an exact estimation of the lag between
two time series whereas for now we were content in using all possible lags.

5.2.2 Pruning using temporal causation entropy

Knowing the list of potential parents of each time series, as detected
in the previous step, one way to prune the causes that are not genuine is
to conduct conditional independence tests between time series. Indeed,
suppose Xp is a potential cause of Xq but Xp and Xq are conditionally
independent, then we can conclude that Xp is not a cause of Xq. This is
illustrated in Figure 5.1.

In order to capture the dependencies (and conditional dependencies)
between two time series, one needs to take into account the lag between
them, as the true causal relations might be not instantaneous. Several stud-
ies have acknowledged the importance of taking into account lags to mea-
sure (conditional) dependencies between time series [Granger, 2004, Sun

2. As motivated in Peters et al. [2013], we use the partial correlation to measure the
dependence, but one can generalize our procedure with any measure.
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et al., 2015]. Causation entropy, introduced in Sun et al. [2015], is an asym-
metric measure that detects the uncertainty reduction of the future states
of Xq as a result of knowing the past states of Xp given that the past of
XR is already known, where R is a subset of {1, · · · , d}. However, it only
considers causation with lag of size one, whereas it can take any values in
practice.

In addition to lags, a window-based representation may be necessary
to fully capture the dependencies between the two time series. So it may
be convenient to consider them together when assessing whether the time
series are dependent or not. We thus introduce the temporal causation
entropy, that extends the causation entropy to general lags and window
representation of time series.

Definition 42 (Temporal causation entropy). We first define the optimal lag
γ̄pq between time series Xp and Xq and (λ̄pq, λ̄qp) the optimal windows of time
series Xp regarding Xq and of time series Xq regarding Xp respectively as:

γ̄pq, λ̄pq, λ̄qp = argmax
γpq≥0,λpq ,λqp

h(X(q;λqp)
t | X(p;1)

t−γpq−1, X(q;1)
t−1 )− h(X(q;λqp)

t | X(p;λpq+1)
t−γpq−1 , X(q;1)

t−1 ),

where h denotes the entropy. The temporal causation entropy from time series
Xp to time series Xq conditioned on a set XR = {Xr1 , · · · , XrK} is given by:

TCE(Xp → Xq | XR) = min
Γri≥0, 1≤i≤K

h(X(q;λ̄qp)
t | (Xri

t−Γri
)1≤i≤K , X(p;1)

t−γ̄pq−1, X(q;1)
t−1 )

− h(X(q;λ̄qp)
t | (Xri

t−Γri
)1≤i≤K , X(p;λ̄pq+1)

t−γ̄pq−1 , X(q;1)
t−1 )

=∆ h(X(q;λ̄qp)
t | (Xri

t−Γ̄ri
)1≤i≤K , X(p;1)

t−γ̄pq−1, X(q;1)
t−1 )

− h(X(q;λ̄qp)
t | (Xri

t−Γ̄ri
)1≤i≤K , X(p;λ̄pq+1)

t−γ̄pq−1 , X(q;1)
t−1 ),

where (Γ̄r1 , · · · , Γ̄rK) are the optimal lags between XR and Xq.

First, the lag between Xp and Xq is detected by maximizing the de-
pendency between Xp and Xq. As we measure the amount of information
brought by the observations of one variable on the observations of another
variable, taking the maximum ensures that one does not miss any possible
information contributing to relating the two time series. In a second step,
we find the lags between (Xp, Xq) and XR that minimize the conditional
dependency between Xp and Xq conditioned on XR. Taking the minimum
ensures that we search for the lags that break the maximal dependence.
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Algorithm 4 NBCB part II: constraint-based approach for pruning

Require: X a d-dimensional time series, γmax ∈N the maximum number
of lags, α a significance threshold, G a causal graph
n = 0
while there exists Xq ∈ V such that card(Par(Xq, G)) ≥ n + 1 do

D = list()
for Xq ∈ V such that card(Par(Xq, G)) ≥ n + 1 do

for Xp ∈ Par(Xq, G), XR ⊂ Par(Xq, G) \ {Xp} with card(XR) = n
do

yq,p,R = TCE(Xp; Xq | XR)

append(D, {Xq, Xp, XR}))
end for

end for
Sort D by increasing order of y
while D is not empty do
{Xq, Xp, XR} = pop(D)
if Xp ∈ Par(Xq, G) and XR ⊂ Par(Xq, G) then

Compute z the p-value of TCE(Xp; Xq | XR) given by Eq. (5.3)
if z > α then

Remove edge Xp → Xq from G
end if

end if
end while
n=n+1

end while
Return G

Following the temporal priority principle, which states that causes pre-
cede their effects in time, we also ensure while finding only nonnegative
lags that Xp as well as the conditional variables should precede in time
Xq. If γ̄pq = 1 and λ̄pq = λ̄qp = 1, then the temporal causation entropy is
equivalent to causation entropy.

As for CTMI (Section 4.2 of Chapter 4), to estimate TCE, we rely on
the knn estimator introduced in Frenzel and Pompe [2007]. We denote by
ϵik/2 the distance from

(X(p;λ̄pq+1)
t−γ̄pq−1 , X(q;λ̄qp+1)

t−1 , (Xri
t−Γ̄ri

)1≤i≤K)

to its k-th neighbor, n1,3
i , n2,3

i and n3
i the numbers of points with distance
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strictly smaller than ϵik/2 in the subspace

(X(p;λ̄pq+1)
t−γ̄pq−1 , X(q;1)

t−1 , (Xri
t−Γ̄ri

)1≤i≤K),

(X(p;1)
t−γ̄pq−1, X(q;λ̄qp+1)

t−1 , (Xri
t−Γ̄ri

)1≤i≤K)

and
(X(p;1)

t−γ̄pq−1, X(q;1)
t−1 , (Xri

t−Γ̄ri
)1≤i≤K)

respectively, and nγrp ,γrq the number of observations. The estimate of the
temporal causation entropy is then given by:

T̂CE(Xp → Xq | XR) = ψ(k) +
1

nγrp ,γrq

nγrp ,γrq

∑
i=1

ψ(n3
i )− ψ(n1,3

i )− ψ(n2,3
i )

where ψ denotes the digamma function.
Again, as for CTMI (Section 4.2 of Chapter 4), to test independencies

through TCE, we rely on the following permutation test (with the permu-
tation scheme presented by Runge [2018]):

Definition 43 (Permutation test of TCE). Given Xp, Xq and XR, the p-value
associated to the permutation test of TCE is given by:

p =
1
B

B

∑
b=1

1T̂CE((Xp)b→Xq|XR)≥T̂CE(Xp→Xq|XR)
, (5.3)

where (Xp)b is a permuted version of Xp and follow the local permutation scheme
presented in Runge [2018].

The method is the following, detailed in Algorithm 4. Starting with
a fully directed graph (with one sided edges coming from a causal or-
dering), the first step consists of removing arrow between nodes that are
unconditionally independent: for each pair of nodes, a test of TCE is com-
puted and the edge is removed if their dependency is insignificant given
the threshold α. Once this is done, the algorithm checks, for the remaining
oriented edges, whether two time series are conditionally independent or
not given a set of parents of the arrow side node: in the first iteration the
set of parents is of size one and then it gradually increases until either the
edge between Xp and Xq is removed or all subsets of parents of Xq have
been considered. Note that we make use of the same strategy as the one
used in PC-stable [Colombo and Maathuis, 2014b], which consists in sort-
ing time series according to their TCE scores and, when an independence
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is detected, removing all other occurrences of the time series. This leads to
an order-independent procedure.

The following theorem states that the graph obtained by the above pro-
cedure is the true one.

Theorem 6. Given the true ordering of the causal process, Algorithm 4 is com-
plete.

Proof. Similarly to PC, Algorithm 4 prunes all unnecessary edges by re-
moving edges that are conditionally independent given a subset XS. Thanks
to the causal order, the possible subsets space is reduced. By removing
all links that are conditionally independent, by causal Markov condition,
adjacency faithfulness and causal sufficiency we are left with links that
are directly causal and which are orientated with respect to causal order-
ing.

Finally, similarly to PCTMI, given the graph G inferred with the above
procedure, one can verify for each node Xq in G if it is self causal by check-
ing if there exists a γ > 0 such that for all t, Xq

t ̸ |= X
q
t−γ | Par(Xq) in G.

5.3 Toward a pairwise strategy

As presented in Section 5.2, a multivariate approach can be used to
detect causal ordering which was already proven to indentify the right
order [Peters et al., 2013] and which would serve well our purpose. But
since the presented procedure uses a regression function estimator, it is
subject to the curse of dimensionality when d is too large compared to N.
So we also consider a pairwise version of the procedure which consists on
estimating for each pair of time series (Xq, Xp) two regression functions

f q : {(X(p;γmax+1)
t−γmax

), (X(q;γmax)
t−γmax

)} 7→ Xq
t

f p : {(X(q;γmax+1)
t−γmax

), (X(p;γmax)
t−γmax

)} 7→ Xp
t .

Then we compare the dependency of the residuals of those two func-
tions with their inputs, and as before the potential cause is the one that is
mapped by the function that yields the higher dependency, i.e., we choose
the causal direction that satisfies the most a bivariate ANM. We do not
guarantee that the theory presented in Section 5.2 hold for this approxi-
mation, and do not prove that the inferred graph contains the real one.
Nevertheless, we conjecture that such strategy might be useful in practice.
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5.3.1 Time complexity reduction through multitask learn-
ing and denoising

In what follows, we focus on the pairwise strategy. Another issue rises
from using regression function: they might be computationally expensive.
So here we present a way to reduce the number of functions that have to
be learned. First, we present a version of our proposal in an i.i.d. setting
and then we apply it for time series.

In case of i.i.d. data

Here, X represents a set of random variables.
As shown in Section 3.4, in case of i.i.d. data, ANMs simply consider,

in the bivariate case, that the effect is a function of its cause plus a noise
term independent of the cause. No further assumption is made regarding
the function relating the cause to the effect. The corresponding structural
causal model is given by:

Xp := ξ p

Xq := f q(Xp) + ξq, Xp |= ξq.

An important property of ANMs is that they are usually identifiable ex-
cept for some specific distributions contained in a 3-dimensional affine
space [Hoyer et al., 2009]. Recall that within ANMs, the direction of the
causal relation is determined according to the lowest dependence between
the potential cause and its residual when predicting the potential effect. In
the case where, we have many causal relations to find and we rely on a
pairwise strategy, ANM computes regression functions between all pairs
of variables, which is of course problematic when the number of variables
is important but also when the number of observations is important as
each regression function will take more time to be estimated in this case.
We specifically address these problems here and introduce a procedure
that dispenses with training many regression functions. Intuitively, one
can use an autoencoder to estimate the relations between all variables and
mask (in a sense described below) some of the inputs and outputs of this
autoencoder to obtain regressors between subsets of variables. By doing
so, one dispenses with computing many different regressors. In addition,
the regressors obtained are simple and scale well wrt the number of vari-
ables and observations.

Let us assume two bivariate data sets, Dn := (xp
i , xq

i )
n
i=1, and D′n :=

(xp′

i , xq′

i )
n

i=1, both consisting of i.i.d. observations from PXp ,Xq and let xp
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denote the set of values (xp
1 , · · · , xp

n) (xq, xp′ , ... are defined in the same
way). The causal ordering procedure [Mooij et al., 2016] for identifying
bivariate causal graphs in ANMs can be summarized as follows:

1. Using Dn, learn f̂ q (resp. f̂ p), an estimator of the regression function
which maps xp (resp. xq) to E(Xq|Xp = xp) (resp. E(Xp|Xq = xq));

2. On D′n, compute residuals êq′ = xq′ − f̂ q(xp′) and êp′ = xp′ − f̂ p(xq′);

3. Output Xp → Xq if Ĉ(xp′ , êq′) < Ĉ(xq′ , êp′) and Xq → Xp if Ĉ(xq′ , êp′) <

Ĉ(xp′ , êq′), where Ĉ is an estimator of the dependence between the
two variables (as measured through sets of values).

If the regression functions f̂ q and f̂ p are suitable (i.e. the mean squared
error between true and predicted residuals vanishes asymptotically in ex-
pectation) and if the score estimator Ĉ is consistent, then the above infer-
ence procedure is consistent.

As mentioned before, we want to use an autoencoder to estimate the
relations between variables and then mask some of its inputs and outputs
to obtain regressors between subsets of variables. The autoencoders we
consider in this study are based on multilayer perceptrons (MLP) with
only one hidden layer. Assuming a linear function at the output layer and
a non-linear, squashing function σ at the input layer 3, the class of such
MLPs takes the form:

Fn =

{
kn

∑
i=1

ci,jσ(ai
Tu + bi) + c0,j : 1 ≤ j ≤ d′, kn ∈N,

(ai, u) ∈ Rd, bi ∈ R,
kn

∑
i=1

d′

∑
j=1
|ci,j| ≤ βn

} (5.4)

with d (resp. d′), kn and βn corresponding respectively to the dimension of
the input (resp. output) of the MLP, to the number of hidden units and to a
constraint on output weights. This class of function is weakly universally
consistent:

Theorem 7 (extension of Theorem 16.1 of Györfi et al. [2002] for d′ > 1).
Let Fn be the class of neural networks defined in (5.4), f̂mlp(.;Dn) be the network
that minimizes the empirical L2 risk in Fn. If kn and βn satisfy, for n → +∞:
kn → +∞, βn → +∞, and knβ4

n log(knβ2
n)/n → 0, then f̂mlp(.; .,Dn) is

weakly universally consistent for all distributions of input and output variables

3. In practice, we consider a more general class of functions.
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(U, V) with, for all 1 ≤ j ≤ d′, E(V2
j ) < ∞:

lim
n→∞

E

∫
|| f̂mlp(u;Dn)−E(V|U = u)||22du = 0.

Therefore, by Lemma 19 of Mooij et al. [2016], u 7→ f̂mlp(u;Dn) is a
suitable function. Let us now consider the case where U = V = (Xp Xq)T

and where the MLP considered is a denoising autoencoder [Vincent et al.,
2008] that will be denoted by f̂ae(.;Dn). In our denoising autoencoder, one
variable, randomly chosen, is arbitrarily set to 0 in the input, but not in
the output, at each iteration during training, which enables to reconstruct
a corrupted version of the data. One thus considers different types of in-
puts, corresponding to whether or not a variable has been set to 0. We
further denote by f̂ q

ae (resp. f̂ p
ae) the value predicted by the autoencoder for

the output corresponding to Xq (resp. Xp). Then, from Theorem 7, as all
expectations are positive, one has:

lim
n→∞

E

∫
( f̂ q

ae(u;Dn)−E(Xq|U = u))2du = 0, (5.5)

and similarly for f̂ p
ae.

Focusing first on variable Xq, we denote by u|xq=0 the situation in which
the input variable Xq has been set to 0 and by u|xq ̸=0 the situation in which
it has not been changed. One can decompose the expectation in Eq. 5.5
according to these two cases:∫

( f̂ q
ae(u;Dn)−E(Xq|U = u))2du

=
∫
( f̂ q

ae(u|xq=0;Dn)−E(Xq|U = u|xq=0))
2du|xq=0

+
∫
( f̂ q

ae(u|xq ̸=0;Dn)−E(Xq|U = u|xq ̸=0))
2du|xq ̸=0.

(5.6)

Hence, exploiting again the fact that all quantities are positive in the right-
hand side of Eq. (5.6) and that the left-hand side of Eq. (5.5) is equal to zero
for n→ ∞, one obtains:

lim
n→∞

E

∫
( f̂ q

ae(u|xq=0;Dn)−E(Xq|U = u|xq=0))
2du|xq=0 = 0,

and similarly for f̂ p
ae and u|xp=0.

Thus, the function u 7→ f̂ q
ae(u|xq=0;Dn), regressing Xq on Xp and ob-

tained by setting the input Xq of the denoising autoencoder considered
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above to 0, is weakly universally consistent. By Lemma 19 of Mooij et al.
[2016], this function is also suitable, and so is the function u 7→ f̂ p

ae(u|x=0;Dn)
regressing Xp on Xq.

This leads us to the following consistency result:

Theorem 8. Let Xp, Xq be two real-valued random variables with joint distribu-
tion PXp ,Xq that either satisfies an ANM Xp → Xq, or Xq → Xp, but not both.
Suppose we are given a training data set Dn and a test data set D′n in the data
splitting scenario. Let k : R×R → R be a bounded non-negative Lipschitz-
continuous kernel. Then, the causal ordering procedure in which Ĉ is consis-
tent, f̂ q(xp) = f̂ q

ae(u|xq=0;Dn) and f̂ p(xq) = f̂ p
ae(u|xp=0;Dn) is a consistent

procedure for estimating the direction of the ANM.

The proof of Theorem 8 directly parallels the proof of Corollary 21 of
Mooij et al. [2016] and exploits the consistency of Ĉ and the suitability of
the regression functions considered.

In case of time series

Returning to time series, we reduce the number of functions to con-
sider, as in the case of i.i.d., however, here we do not need to fully rely
on an autoencoder, since only a partial amount of the input needs to be
encoded and decoded. When considering time series, we propose to map
the past and the present (t − γmax, · · · , t) of the two time series to their
present (t). Then masking one of the two points at time t of its inputs (the
points that correspond to the partial amount that needs to be encoded and
decoded), for example Xp

t (resp. Xp
t ), and one of its outputs, for example

Xp
t (resp. Xq

t ), to obtain specialized regressors i.e. an approximation of the
regression that maps (X(p;γmax+1)

t−γmax
, X(q;γmax)

t−γmax
) to Xq

t and an approximation of

the regression that maps (X(p;γmax)
t−γmax

, X(q;γmax+1)
t−γmax

) to Xp
t . Formally, given two

time series Xp and Xq, we estimate:

f̂ pq : (X(p;γmax+1)
t−γmax

, X(q;γmax+1)
t−γmax

) 7→ E(Xp
t , Xq

t , |X(p;γmax+1)
t−γmax

, X(q;γmax+1)
t−γmax

),

where one of Xp
t and Xp

t of the input (but not in the output) is set arbitrary
to 0 during training. Once the regression function is learned, we compute
the residuals: for l ∈ {p, q},

ξ l = X̂l
t − f̂ pq((X(p;γmax+1)

t−γmax
, X(q;γmax+1)

t−γmax
)|xl

t=0)l. (5.7)
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Algorithm 5 NBCBk Part I: Noise based approach to order causes with
knock in kock out
Require: X a d-dimensional time series, γmax ∈N the maximum number

of lags
G an empty graph with nodes ={X1, . . . , Xd}
for each pair of nodes (Xp, Xq) in G do

Learn f̂ q : {(X(p;γmax+1)
t−γmax

), (X(q;γmax+1)
t−γmax

)} 7→ (Xp
t , Xq

t )

for l ∈ {p, q} do
Compute ξ l from Eq. (5.7)

end for
Compute cp from Eq. (5.8)
Compute cq from Eq. (5.9)
if cp > cq then

Add Xp → Xq to G
end if

end for
Return G

Then, to estimate the dependency between the residuals and the input,
we compute

cp = Ĉ((X(p;γmax)
t−γmax

, X(q;γmax+1)
t−γmax

), ξ
p
t ) (5.8)

cq = Ĉ((X(p;γmax+1)
t−γmax

, X(q;γmax)
t−γmax

), ξ
q
t ) (5.9)

where Ĉ is an estimator of a dependence measure. Finally, the inference
rule is the following: if cp > cq then Xp → Xq and if c2 > c1 then Xq → Xp.

5.4 Conclusion

We have addressed in this study the problem of learning a summary
causal graph on time series without being restricted to the Markov equiva-
lent class even in the case of instantaneous relations. To do so, we followed
a hybrid strategy. First we used a noise-based method to find the causal
ordering between the time series under the assumption of additive noise
models. Second, we used a constraint-based method to prune unneces-
sary parents and therefore ending up with an oriented causal graph. The
second step heavily relies on a new temporal causation entropy measure
that generalizes the causation entropy by removing the restriction of one
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time lag. Finally we made a pairwise extension of our algorithm which in-
volved an introduction of a regression technique that permits in a bivariate
case to use one regressor instead of two.
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Chapter 6

Experiments

Development of Western
Science is based on two great
achievements, the invention of
the formal logical system (in
Euclidean geometry) by the
Greek philosophers, and the
discovery of the possibility to
find out causal relationships by
systematic experiment
(Renaissance).

Albert Einstein
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In this chapter, the causal discovery methods introduced in this thesis
is studied experimentally on several datasets. We propose first an exten-
sive analysis on simulated data, generated from basic causal structures;
then we perform an analysis on real world datasets. First, we describe the
evaluation measures, the different settings of methods we compare with,
the datasets, and then we describe the results.

6.1 Evaluation measures

To assess the quality of causal inference, we use three different mea-
sures of accuracy: the F-score regarding adjacencies in the graph (F1), the
F-score regarding directed edges in the graph (

−→
F1), and the F-score regard-

ing self loops in the graph (F̊1). Firstly, F1 regarding adjacencies in the
graph is computed as follows:

F1 = 2TA/(2TA + FA + FNA),

where TA is the true adjacency, which refers to the correct inference of the
existing edges between nodes. FA and FNA are respectively discovery of
edges between nodes that does not exist (false adjacency) and false infer-
ence of the absence of the edges between the nodes, when the nodes are
adjacent (false non adjacency). The F-score regarding directed edges in the
graph is defined as:

−→
F1 = 2TC/(2TC + FC + FNC),

where TC, FC and FNC respectively refers to correct inference of the true
direct cause, the false inference of the direct cause in a case of absence of
the direct cause between the nodes, and the false inference of the absence
of the direct cause, when the direct cause is present. The scores F1 and

−→
F1

do not consider self loops, while the following metric F̊1 is introduced to
measure the accuracy regarding self loops. This metric is defined as:

F̊1 = 2TS/(2TS + FS + FNS),

where TS is a related to correct inference of the self loop, FS refers to false
detection of self loop, FNS relates to false inference of absence of self loop
in case when self loop exists.

Those criteria are computed for the summary causal graph. We dis-
tinguish the case of self caused variables for the summary causal graph,
as some algorithms are assuming self causes, some are assuming no self
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causes, and some are estimating also those self causes, and it can drasti-
cally change the performance. Finally, we also have a look at the adjacency
of the summary causal graph, focusing on the edges, to validate the skele-
ton.

6.2 Methods and their use

In PCTMI and FCITMI introduced in Chapter 4, we fix the number of
nearest neighbor to k = 10 for the causal temporal mutual information.
NBCB introduced in Chapter 5 and its pairwise version denoted pwNBCB

are fitting a Gaussian Process with zero mean and squared exponential
covariance function. The hyper-parameters are automatically chosen by
marginal likelihood optimization. For pwNBCBk, we consider a neural net-
work composed of 5 hidden layers: the first two contain 10 neurons each
with linear activation functions, the third is a sequential convolution that
uses a Relu as an activation function with kernel size K = 5 and a padding
P = 2. The last two hidden layers are similar to the first two. Adam
optimizer is used with a learning rate 0.01 and 1000 epochs. The par-
tial denoising sub neural network is set to denoise an observation with
a probability 0.5. In case of denoising, one chooses one variable at ran-
dom and forces its value to 0, while the others are left untouched. Here
also we fix the number of nearest neighbor to k = 10 for the temporal
causation entropy. The Python code of all our methods is available at
https://github.com/ckassaad/causal_discovery_for_time_series.

From the Granger family, we compare the pairwise implementation
with the multivariate one (respectively GCPW and GCMV). Statistically, the
full model is compared to the restricted model using a F-test. We im-
plement the pairwise version, and use for GCMV the code available there:
http://www.sussex.ac.uk/sackler/mvgc/. We also use TCDF through the
implementation available at https://github.com/M-Nauta/TCDF. Some
hyper parameters have to be defined: we use a kernel of size 4, a dilation
coefficient 4, one hidden layer, a learning rate of 0.01, and 5000 epochs.

From the constraint-based family, we run PCMCI using either the par-
tial correlation (PCMCI-PC) or the mutual information (PCMCI-MI) to mea-
sure the dependence, both provided in the implementation available at
https://github.com/jakobrunge/tigramite. We also use oCSE, which
we implement. In all those methods, the mutual information is estimated
using k-nearest neighbour [Runge, 2018] which we also fix the number
of nearest neighbor to k = 10. Since the output of those measures are
necessarily positive given finite sample size and finite numerical preci-
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sion, we uses a significance permutation test. Finally, we compare FCITMI

with tsFCI, provided at https://sites.google.com/site/dorisentner/
publications/tsfci, where independence or conditional independence
are tested respectively with tests of zero correlation or zero partial corre-
lation.

Among the noise-based approaches, we run VarLiNGAM and TiMINo,
which are respectively available at https://github.com/cdt15/lingam and
http://web.math.ku.dk/~peters/code.html. For VarLiNGAM, the regular-
ization parameter in the adaptive Lasso is selected using BIC, and no sta-
tistical test is performed as we use the value of the statistic. TiMINo uses
a test based on cross-correlation that can be derived from [Brockwell and
Davis, 1986, Thm 11.2.3.].

For all the methods, we use γmax = 5 and when doing a statistical test,
we use a significance level of 0.05.

A Python routine to use all the methods introduced here is available at
https://github.com/ckassaad/causal_discovery_for_time_series.

6.3 Dataset

To illustrate the behavior of the causal inference algorithms we rely on
both artificial and real-world datasets.

6.3.1 Simulated data

We first test our causal sufficient methods (PCTMI, NBCB, pwNBCB, pwNBCBk)
on simulated data generated from four different causal structures: fork, v-
structure, mediator and diamond. To evaluate the performance of the in-
ference with respect to the length of time series, we consider several time
stamps, from 125, 250, 500, and 1000. To test FCITMI we consider the struc-
ture 7TS2H which represents a nine nodes structure introduced in Spirtes
et al. [2000]; seven nodes correspond to observational time series and two
to hidden common causes, represented by double arrows). The structures
are presented in Table 6.1. For each benchmark and for each length of time
series, we generate randomly 10 data set available at https://dataverse.
harvard.edu/dataverse/basic_causal_structures_additive_noise. The
data generating process is the following: for all q, Xq

0 = 0 and for all t > 0,

Xq
t = aqq

t−1Xq
t−1 + ∑

(p,γ)

Xp
t−γ∈Par(Xq

t )

apq
t−γ f (Xp

t−γ) + 0.1ξ
q
t ,
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Table 6.1 – Structures of simulated data. A → B means that A causes B
and A ←→ B represents the existence of a hidden common cause between
A and B.

v-structure Fork Mediator Diamond 7TS2H

X1

X2

X3 X1

X2

X3

X1

X2

X3

X1

X2 X3

X4

X1

X2 X3

X4

X5X6

X7

where γ ≥ 0, ajq
t are random coefficients chosen uniformly in U ([−1;−0.1]∪

[0.1; 1]) for all 1 ≤ j ≤ d, ξ
q
t ∼ N (0,

√
15) and f is a non linear function

chosen at random uniformly between absolute value, tanh, sine, cosine.
To highlight the limitations of constraint-based methods including PCTMI

and FCITMI we provide a more complicated configuration of the simula-
tion of 10 data sets with 1000 time stamps of the structures: fork, medi-
ator, and diamond. In this setting we consider a fork structure which is
not unique in its Markov equivalence class, as all relations are instanta-
neous, so time reference is not useful to differentiate between common
cause and intermediate cause. In the mediator and diamond structures
we violate the assumption of faithfulness by considering linear relations
and fixing coefficients in such a way that different causal path eliminate
each other. Both structures are without self cause, and all relations are in-
stantaneous. For the mediator structure, we consider a13 = −a12a23 and
following Zhalama et al. [2016], for diamond structure we set the coeffi-
cient a34 = −a12a23/a13.

6.3.2 Real data

Three different real datasets are considered in this study. We detail the
performance of each method in the following paragraphs, but the results
are summarized in Table 6.5.

Temperature

This bivariate time series available at https://webdav.tuebingen.mpg.
de/cause-effect/, of length 168 is about indoor Xin and outdoor Xout

measurements. We expect that there is the following causal link: Xout →
Xin.
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Dairy

This dataset available at http://future.aae.wisc.edu, provides 10
years (from 09/2008 to 12/2018) of monthly prices for milk Xm, butter
Xb and cheddar cheese Xc, so the three time series are of length 124. We
expect that the price of milk is a common cause of the price of butter and
the price of cheddar cheese.

BOLD FMRI

The last real-world dataset benchmark is about FMRI (Functional Mag-
netic Resonance Imaging) that contains BOLD (Blood-oxygen-level depen-
dent) datasets [Smith et al., 2011] for 28 different underlying brain net-
works. It measures the neural activity of different regions of interest in
the brain based on the change of blood flow. There are 50 regions in total,
each with its own associated time series. Since not all existing methods
can handle 50 time series, datasets with more than 10 time series are ex-
cluded. In total we are left with 26 datasets containing between 5 and 10
brain regions. The original data is available at https://www.fmrib.ox.ac.
uk/datasets/netsim/index.html, and a preprocessed version is available
at https://github.com/M-Nauta/TCDF/tree/master/data/fMRI.

6.4 Numerical results

6.4.1 Simulated data

With causal sufficiency

We provide in Figure 6.1 the performance of the methods on simulated
data. We compare summary causal graphs for 12 methods on the causal
sufficient structures (first four structures in Table 6.1) using F1,

−→
F1, and F̊1

metrics.
First, in the left column of Figure 6.1, we provide the F1 score of the ad-

jacency matrix of the summary causal graph, so we focus on the skeleton.
Overall, for all tested structures the performance is high and comparable
for all the methods, except VarLiNGAM and TCDF that have lower perfor-
mance. We know that VarLiNGAM is not adapted to this dataset as it infers
linear relations, whereas the generation process is not linear for two differ-
ent time series and linear for self caused time series. Moreover, we remark
that results for v-structure and fork are very variable, with a high vari-
ance. Particularly for fork (and in some extent for v-structure), results are
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Figure 6.1 – Adjacency (F1), external causation (
−→
F1) and self causation

(F̊1) in the summary causation graph for all the methods on 4 simulated
datasets (mean ± standard deviation). Results are computed for various
time grid sizes, from 125 to 1000. A log-scale is used in abscissa.
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also erratic, with no convergence for large time point observations. For
all the tested structures constraint-based methods (PCMCT-MI, PCMCI-PC,
and oCSE) and our methods (PCTMI, NBCB, pwNBCB, pwNBCBk) have similarly
high performance, except the mediator structure, where the performance
is high for most methods. All our methods have good results, and they
are outperformed only by oCSE method. In particular, among our meth-
ods NBCB has the best results. Algorithm oCSE consistently performs better
than the others.

Secondly, in the middle column of Figure 6.1 we consider the
−→
F1 score

to detect direct causal relations external to the time series. In compari-
son to the left column, the overall performance for all methods is slightly
lower and more variable. As before VarLiNGAM and TCDF have lowest
performance among other methods for all structures and also VarLiNGAM

performs worse than in skeleton case. We can note similar erratic be-
havior, with no convergence for large time point observations for fork
and v-structure. Same as in the left column, constraint-based methods
(PCMCT-MI, PCMCI-PC, and oCSE) and our methods (PCTMI, NBCB, pwNBCB,
pwNBCBk) have high performance, except for the mediator structure, where
NBCB methods have relatively low performance compared to constraint
based methods and to TiMINo, and the performance of PCTMI deteriorate
with the increase of the size of the time series. The behavior of PCTMI

on mediator is expected since in theory PCTMI cannot orient any edge in
a mediator structure. In practice the few orientation that are made are
due to some mistakes in the skeleton construction phase. In general, our
methods have good results when good results is expected, and they are
outperformed only by oCSE method. In contrast to the NBCB in adjacency
case, the best method for external causation among our methods is PCTMI
and it outperforms oCSE for fork structure. Algorithm oCSE has the best
performance, for all structures, except fork.

Finally, we provide a distinction between external causations and self
causations (when it is estimated) and present results for self causation
in the right column of Figure 6.1. Some methods always consider that
there is self causation, whereas some of them are estimating those links:
TCDF, PCMCI, oCSE, VarLiNGAM and all our methods (PCTMI, NBCB, pwNBCB,
and pwNBCBk). Performance for self causation for these methods are good,
except for TCDF. Overall good performance is not surprising, because the
relations in self causation case are linear.

Results illustrated in Figure 6.1 confirm the good performance of our
methods. Focusing on results for external causality, which is more rele-
vant to the problem statement of this thesis, our method PCTMI has better
results than the others for fork structure and outperformed only by oCSE
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for other structures (except for mediator). High performance of oCSE is re-
lated to strong assumptions used by this method namely that a cause rela-
tions is necessary 1-order Markov. In general constraint based approaches
perform best for these simulated data, because the assumptions in which
they are build upon are met, however, it is not the case for unfaithful data.

Unfaithful

Table 6.2 – Results obtained on the unfaithful simulated data for the differ-
ent structures with 1000 observations. We report the mean and the stan-
dard deviation of the F1 score. The best results are in bold.

Fork unfaith. Mediator unfaith. Diamond
F1

−→
F1 F1

−→
F1 F1

−→
F1

PCTMI 0.83± 0.16 0.07± 0.19 0.77± 0.11 0.27± 0.18 0.91± 0.36 0.34± 0.18
NBCB 0.87± 0.15 0.45± 0.34 0.8± 0.0 0.56± 0.26 0.93± 0.08 0.5± 0.31

pwNBCB 0.91± 0.15 0.49± 0.31 0.84± 0.08 0.46± 0.23 0.91± 0.09 0.39± 0.22
pwNBCBk 0.85± 0.15 0.41± 0.29 0.82± 0.06 0.4± 0.29 0.92± 0.06 0.45± 0.25

GCPW 0.12± 0.24 0.05± 0.15 0.28± 0.37 0.12± 0.27 0.32± 0.28 0.14± 0.23
GCMV 0.15± 0.3 0.1± 0.3 0.33± 0.21 0.16± 0.28 0.32± 0.14 0.16± 0.28
TCDF 0.39± 0.42 0.34± 0.37 0.74± 0.12 0.4± 0.22 0.48± 0.21 0.33± 0.17

PCMCI-MI 0.28± 0.29 0.07± 0.019 0.27± 0.29 0.05± 0.15 0.41± 0.25 0.20± 0.22
PCMCI-PC 0.41± 0.36 0.31± 0.27 0.44± 0.31 0.21± 0.21 0.25± 0.22 0.11± 0.18

oCSE 0.18± 0.28 0.12± 0.24 0.05± 0.15 0.05± 0.15 0.12± 0.18 0.08± 0.16
VarLiNGAM 0.6± 0.42 0.05± 0.15 0.98 ± 0.06 0.0± 0.0 0.94± 0.04 0.02± 0.06

TiMINo 0.67± 0.23 0.45± 0.15 0.95± 0.15 0.64± 0.08 0.78± 0.06 0.49± 0.03

Table 6.2 shows the results of applying different methods on data with
a fork structure, that is not unique in its Markov equivalent class and on
the unfaithful simulated data (see description in Section 6.3). We remind
that in these simulations we do not have self causes (self loops), so we
consider only F1 and

−→
F1 metrics.

For the fork structure in the left column of Table 6.2 we can see that
the results for the different methods significantly differ from each other
and overall their performance is better for F1 than for

−→
F1. Most of the

constraint-based approaches have low performance for the adjacency F1-
score. Interestingly, oCSE, which was the best for faithful data, shows al-
most the worst result here. However, our method PCTMI, which is too
related to the constraint based family, has good performance. But the best
results are achieved by our hybrid methods NCBC, pwNBCB, pwNBCBk. For

−→
F1
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metric, constraint-based approaches, including PCTMI, show poor perfor-
mance. Our methods NBCB, pwNBCB and pwNBCBk perform better in compar-
ison to all other methods for the

−→
F1 metrics, along with the noise-based

algorithm TiMiNo. Interestingly, pwNBCB yields the best accuracy.
For both unfaithful structures (the middle and the right columns of

Table 6.2) we see the same pattern we saw with the fork structure: the
results are highly variable. NBCB, pwNBCB, pwNBCB in addition to TiMiNo

perform best, and constraint-based approaches perform poorly. For the
mediator structure TiMiNo worked best, while on the diamond structure,
NBCB has the best accuracy.

Among all our methods NBCB is the best method for both the mediator
and the diamond structures, while pwNBCB is the best for the fork struc-
ture. We also see that TCDF has relatively good results while having mod-
erate performance on the fork structure and low performance for faithful
data. Good results for noise-based method TiMiNo and our hybrid meth-
ods NBCB, pwNBCB, and pwNBCBk are not surprising because these methods
are not restricted to the Markov equivalence class nor to orientation faith-
fulness which is violated in the last two structures. At the same time,
another noise-based method VarLiNGAM has a high F1 score, but fails to
detect direct causes. Another important observation from Table 6.2 is that
PCTMI manages to keep a good F1 score, which means that even though
it did not detect the true causal relations, it succeeded in estimating the
structure correctly.

Different sampling rate

Table 6.3 – Results obtained by PCTMI with different sampling rates on the
four structures: fork, v-structure, mediator, and diamond. We report the
mean of the F1 score and the standard deviation for the two measures.

v-structure Fork Mediator Diamond
F1 0.63± 0.23 0.80± 0.31 0.80± 0.29 0.71± 0.26
−→
F1 0.56± 0.30 0.80± 0.31 0.58± 0.31 0.66± 0.24
F̊1 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

We also assessed the behavior of PCTMI when the time series have dif-
ferent sampling rates. We present here results only for PCTMI because other
methods are not applicable to the data with different sampling rates.

The results for faithful data with four structures: fork, v-structure, me-
diator, and diamond are presented in Table 6.3. As one can see, its perfor-
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mance is close to the ones obtained with equal sampling rates (Figure 6.1),
the degradation being not really surprising as one has less data to rely on.
This method has the best performance for the mediator structure and the
worst one for the v-structure.

Without causal sufficiency

Table 6.4 – Results obtained by FCITMI and tsFCI on 7TS2H with 1000 ob-
servations. We report the mean of the F1 score and the standard deviation.
The best results are in bold.

F1
−→
F1 F̊1

FCITMI 0.90± 0.05 0.44± 0.11 1.0± 0.0
tsFCI 0.77± 0.06 0.37± 0.09 1.0± 0.0

The inference of causal graph in the presence of hidden confounders
is a difficult but an important problem, seldom exploited. Our FCITMI al-
gorithm that addresses this problem is compared with tsFCI on data with
hidden common causes. From Table 6.4 we can note that both methods
have reasonable performance, while FCITMI performs remarkably better
for all metrics.

6.4.2 Real data

We provide in Table 6.5 the results for Temperature, Dairy and FMRI
for all the methods. Since we do not know if self causation exist in the
causal mechanisms that’s behind these datasets, we only report the F1 and
the
−→
F1 metrics.

Temperature

VarLiNGAM and TCDF wrongly infers no causal relation, GCPW and GCMV

infer a bi-directed arrow and TiMINo remains undecided. PCMCI-PC, PCMCI-MI,
oCSE, PCTMI, NBCB, pwNBCB and pwNBCBk correctly infer Xout → Xin.

Dairy

VarLiNGAM wrongly infers Xb as common cause of Xm and Xc, GCPW and
GCMV wrongly infers Xm ↔ Xb → Xc → Xm and TiMINo only infers one
wrong causal relation Xc → Xm. TCDF infers no causal relation. PCMCI-PC

127



and PCMCI-MI wrongly infer the causal chain Xm → Xc. PCTMI infers one
correct causal relation Xc → Xm → Xb oCSE, NBCB, pwNBCB, and pwNBCBk

correctly infer the causal relations but also add a wrong causal Xc → Xb.

BOLD FMRI

PCTMI, pwNBCBk and VarLiNGAM clearly outperforms other methods. All
other methods are comparable, except TCDF which performs very poorly.
Interestingly, PCMCI-PC performs better than PCMCI-MI, and VarLiNGAM out-
performs TiMINowhich suggests the possibility of existence of linear causal
relations.

Table 6.5 – Results for real datasets. We report the mean and the standard
deviation of the F1 score. The best results are in bold.

Temperature Dairy FMRI
F1

−→
F1 F1

−→
F1 F1

−→
F1

PCTMI 1 1 0.67 0.67 0.47± 0.31 0.32± 0.17
NBCB 1 1 0.8 0.8 0.76± 0.16 0.40± 0.21

pwNBCB 1 1 0.8 0.8 0.78± 0.13 0.39± 0.21
pwNBCBk 1 1 0.8 0.8 0.85± 0.06 0.44± 0.15

GCPW 1 0.66 0.8 0.28 0.47± 0.24 0.31± 0.17
GCMV 1 0.66 0.8 0.33 0.56± 0.18 0.24± 0.18
TCDF 0 0 0 0.0 0.13± 0.21 0.07± 0.13

PCMCI-MI 1 1 1 0.5 0.38± 0.23 0.22± 0.18
PCMCI-PC 1 1 1 0.5 0.44± 0.22 0.29± 0.19

oCSE 1 1 0.8 0.8 0.25± 0.26 0.16± 0.20
VarLiNGAM 0 0 0.5 0.0 0.74± 0.27 0.49± 0.28

TiMINo 0 0 0.67 0.0 0.55± 0.21 0.32± 0.11

6.5 Complexity analysis

Our proposed methods benefits from a smaller number of tests com-
pared to constraint-based methods that infer the full temporal graph. In
the worst case, the complexity of PC in a temporal graph is bounded by:

(dγmax)2(dγmax − 1)k−1

(k− 1)!
,

where k represents the maximal degree of any vertex and γmax is the maxi-
mum number of lags. Each operation consists in conducting a significance
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test on a conditional independence measure. Algorithms adapted to time
series, as PCMCI [Runge et al., 2019], rely on time information to reduce
the number of tests. Indeed, with this information, the complexity can be
divided by 2 (when instantaneous relations are not taken into account).
PCTMI and NBCB infer a summary causal graph, which limits the number of
decisions that need to be taken. Indeed, PCTMI’s complexity in the worst
case (when all relations are instantaneous) is bounded by:

d2(d− 1)k−1

(k− 1)!
,

whereas NBCB’s complexity in the worst case is bounded by:

d2 f (n, d) +
d2(d− 1)k−1

(k− 1)!
,

where f (n, d) is the complexity of the user-specific regression method.

v-structure Fork Mediator Diamond
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Figure 6.2 – Time computation (in seconds) for PCTMI, NBCB, PCMCI-MI and
oCSE.

Figure 6.2 provides an empirical illustration of the difference in com-
plexity of the two approaches on the four structures (v-structure, fork, me-
diator, diamond), sorted according to their number of nodes, their maxi-
mal out-degree and their maximal in-degree. The time is given in seconds.
As one can note, both PCTMI and NBCB are always faster than PCMCI-MI and
oCSE, the difference being more important when the structure to be in-
ferred is complex.

6.6 Conclusion

In this chapter, we validated our algorithms experimentally on simu-
lated and real datasets. Most of the obtained results are expected. On the
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faithful data constraint-based methods have the best results, including our
PCTMI algorithm. Importantly, proposed hybrid methods (NBCB, pwNBCB,
pwNBCBk) perform sometimes on par with the best performing methods.
On the unfaithful simulated data and the fork structure, that is not unique
in its Markov equivalent class, we can see the drop in performance for
constraint-based methods, while the noise-based methods work better. In
this case our hybrid methods have high performance and in some exper-
iments outperform the noise-base methods. On the real data, our meth-
ods have the best overall performance. In particular, on the FMRI dataset,
PCTMI have the second best accuracy after the VarLinGAM. At the same time
VarLinGAM algorithm have poor performance on other real datasets and on
both types of simulation datasets. For the temperature data, all our meth-
ods inferred the correct causal relation. Finally, on the diary dataset our
hybrid methods (NBCB, pwNBCB, pwNBCBk) along with oCSE have the best ac-
curacy.

For some specific data types, we showed that our methods perform
well and could be used in practice. In particular, our results of the PCTMI

algorithm on time series with different sampling rate, confirm the practical
value of the method. In case of non causal sufficient data our proposed
method FCITMI performs better then state-of-the-art method.

To conclude, PCTMI proved to work well when some specific assump-
tions are held and with small time complexity in comparison with similar
approaches that use mutual information. The above experiments demon-
strated that for each type of data, NBCB, pwNBCB, and pwNBCBk performed
almost as well as the best method specific for that type of data, which
makes them the best performing overall.
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Chapter 7

Conclusion

Why? Causal inference is all
about taking this question
seriously.

Judea Pearl
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Conclusion and future works In this thesis, we focused on discover-
ing causal relations from observational time series. We have shown how
summary causal graphs can be inferred without truly building a full-time
causal graph nor a window causal graph. As a first contribution, we con-
sidered the problem of inferring a summary causal graph in which only
instantaneous relations are restricted to the Markov equivalent class and
while relaxing the assumption that different time series should have an
equal sampling rate. Our proposition relies on the constraint-based ap-
proaches for causal discovery and the entropy reduction principle as well
as on the new causal temporal mutual information measure which can be
used to assess the mutual information between time series. Taking ad-
vantage of the additive noise principle, we also tackled the problem of
instantaneous causal relations that do not belong to the Markov equiva-
lent class. The elaboration of this method necessitated the introduction of
the temporal causal entropy which can be used to asymmetrically assess
the mutual information. We highlight that we extended the base approach
into a pairwise direction and we systematically introduced a method that
uses multitask learning and a denoising technique to accelerate the esti-
mation of two regression functions. Our findings regarding the pairwise
extension in time series should be regarded as initial results rather than a
full theoretical answer.

The correctness of our base algorithms was proved theoretically and
illustrated experimentally. The experiments conducted on different simu-
lated and real benchmark datasets, showed both the efficacy and efficiency
of our approaches compared to other methods. Table 7.1 summarizes the
characteristics of all algorithms presented in this thesis with respect to the
problems we wanted to solve. The columns in the Table show whether
the algorithm can infer a summary causal graph without necessarily go-
ing through a time consuming inference of a window causal graph and
if it can discover instantaneous and time delayed causal relations as well
as self causes. The table also tells us which algorithm can handle observ-
able counfounder and hidden counfounder. In addition, we can see which
algorithms are not restricted to the Markov equivalence class, do not as-
sume orientation faithfulness and can handle different sampling rate. Fur-
thermore, some methods can handle no-linear relations but others do not.
Regardless of their strengths and weaknesses, we stress that all these al-
gorithms including the ones presented in this thesis should be used with
care. They can only infer causal relations relative to the set of observable V
and to a set of assumptions. Any change in the former will lead to differ-
ent causal structure and any change in the latter might lead to substantial
decrease in performance. So in other words, these algorithms are not tools
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to answer why questions, instead they are tools that assist the expert or the
researcher in his quest of taking the question why seriously.

Future works Many different adaptations, tests, and experiments have
been left for the future (i.e. the experiments with real data are usually
very time consuming). Among others, future work will concern deeper
analysis of particular extensions of base methods. Fo instance, we have
provided a reference to a motivation for the question estimating a graph
from sequences, namely, misaligned time series which should be regarded
as intuitive guidance for future research. Although it seems trivial to adapt
the FCITMI algorithm for selection bias (by using Rules 5, 6 and 7), an
investigation and an experimental validation is needed to check whether
or not the these rules work well in time series framework.

Concerning the imperfectness of time series in real application, aside of
different sampling rate, the field of causal discovery between time series
still face tremendous challenges such as missing data and non-stationarity.
In addition, sometimes the informative part of a time series is negligible
compared to the size of the time series, in such cases most current causal
discovery algorithms are bound to fail. So further research is needed to
investigate the possibility of searching for informative parts of time series
and maybe conducting local discoveries.

Obviously, in this thesis we only focused on one type of time series:
time series with continuous values and discrete time, in other words on
quantitative data. However, causal mechanisms can be embodied in the
form of events as much as they can be embodied in the form of processes.
Some causal discovery algorithms (for example, the constraint-based ap-
proaches including PCTMI) can be easily adapted to qualitative data. In
the case of PCTMI, we only need to find another estimator of the mutual
information or the conditional mutual information that handle qualitative
data. However, multivariate complex systems rarely contain data of the
same type. For example the net flow constantly causes the CPU usage and
the CPU usage causes the system to slow down only after reaching a cer-
tain threshold. In such a system we would want a discovery algorithm that
supports causal mechanisms based on both events and processes, quanti-
tative and qualitative variables.

Finally, we also think that future works should also consider collabora-
tive causal discovery algorithms; collaborative in the sense that the algo-
rithm should collaborate with the expert or the researcher in order to infer
underlying causal graph of a given system.
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Table 7.1 – Summary of the methods introduced in this thesis, and their
main assumptions.
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New methods PCTMI ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓

FCITMI ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

NBCB ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓

pwNBCB ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓

pwNBCBk ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓

Granger GCPW ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

GCMV ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗

TCDF ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Constraint-based PCMCI-MI ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓

PCMCI-PC ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

oCSE ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓

tsFCI ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓

Noise-based VarLiNGAM ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗

TiMINo ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓
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Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference
by using invariant prediction: identification and confidence intervals.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78
(5):947–1012, 2016. doi: https://doi.org/10.1111/rssb.12167.

Jonas Peters, D. Janzing, and B. Schölkopf. Elements of Causal Inference:
Foundations and Learning Algorithms. MIT Press, Cambridge, MA, USA,
2017.

Arthur C. Pigou. Alcoholism and Heredity. International Journal of Epidemi-
ology, 12 2017. ISSN 0300-5771. doi: 10.1093/ije/dyw340. dyw340.

Joseph Ramsey, Peter Spirtes, and Jiji Zhang. Adjacency-faithfulness and
conservative causal inference. In Proceedings of the Twenty-Second Con-
ference on Uncertainty in Artificial Intelligence, UAI’06, page 401–408, Ar-
lington, Virginia, USA, 2006. AUAI Press. ISBN 0974903922.

Hans Reichenbach. The Direction of Time. Dover Publications, 1956.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i
trust you?”: Explaining the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, page 1135–1144, New York, NY, USA, 2016.
Association for Computing Machinery. ISBN 9781450342322. doi: 10.
1145/2939672.2939778.

Thomas Richardson. A discovery algorithm for directed cyclic graphs. In
Proceedings of the Twelfth International Conference on Uncertainty in Artifi-
cial Intelligence, UAI’96, pages 454–461, San Francisco, CA, USA, 1996.
Morgan Kaufmann Publishers Inc. ISBN 1-55860-412-X.

Thomas Richardson and Peter Spirtes. Ancestral graph markov models.
Ann. Statist., 30(4):962–1030, 08 2002.

James M. Robins, Richard Scheines, Peter Spirtes, and Larry Wasserman.
Uniform consistency in causal inference. Biometrika, 90(3):491–515, 2003.
doi: 10.1093/biomet/90.3.491.

Kenneth J. Rothman. Causes. American Journal of Epidemiology, 104(6):587–
592, 12 1976. ISSN 0002-9262. doi: 10.1093/oxfordjournals.aje.a112335.

Donald B. Rubin. Estimating causal effects of treatments in randomized
and nonrandomized studies. Journal of Educational Psychology, 66(5):688–
701, 1974.

144



Donald B. Rubin. [on the application of probability theory to agricultural
experiments. essay on principles. section 9.] comment: Neyman (1923)
and causal inference in experiments and observational studies. Statisti-
cal Science, 5(4):472–480, November 1990.

Jakob Runge. Conditional independence testing based on a nearest-
neighbor estimator of conditional mutual information. In Amos Storkey
and Fernando Perez-Cruz, editors, Proceedings of the Twenty-First Inter-
national Conference on Artificial Intelligence and Statistics, volume 84 of
Proceedings of Machine Learning Research, pages 938–947, Playa Blanca,
Lanzarote, Canary Islands, 09–11 Apr 2018. PMLR.

Jakob Runge. Discovering contemporaneous and lagged causal relations
in autocorrelated nonlinear time series datasets. In Jonas Peters and
David Sontag, editors, Proceedings of Machine Learning Research, volume
124, pages 1388–1397. PMLR, 2020.

Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino
Sejdinovic. Detecting and quantifying causal associations in large non-
linear time series datasets. Science Advances, 5(11), 2019.

Bertrand Russell. On the notion of cause. Proceedings of the Aristotelian
Society, 7:1–26, 1912.

Robert Rynasiewicz. Newton’s views on space, time, and motion. In Ed-
ward N. Zalta, editor, Stanford Encyclopedia of Philosophy, pages 8–12. The
Metaphysics Research Lab, 2008.

Wesley C. Salmon. Scientific Explanation and the Causal Structure of the
World. Princeton University Press, 1984.

Ruben Sanchez-Romero, Joseph D. Ramsey, Kun Zhang, Madelyn R. K.
Glymour, Biwei Huang, and Clark Glymour. Estimating feedforward
and feedback effective connections from fmri time series: Assessments
of statistical methods. Network Neuroscience, 3(2):274–306, 2019. doi:
10.1162/netn\ a\ 00061.

Jonathan Schaffer. Trumping preemption. Journal of Philosophy, 97(4):165,
2000. doi: 10.2307/2678388.

Arthur Schopenhauer. Two Essays by Arthur Schopenhauer: I. on the Fourfold
Root of the Principle of Sufficient Reason, II. on the Will in Nature: a Literal
Translation. London : G. Bell, 1889.

145



Thomas Schreiber. Measuring information transfer. Physical review letters,
85:461–4, 2000.

Claude Elwood Shannon. A mathematical theory of communication.
The Bell System Technical Journal, 27(3):379–423, 1948. doi: 10.1002/j.
1538-7305.1948.tb01338.x.

Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvärinen, and Antti Kerminen.
A linear non-gaussian acyclic model for causal discovery. Journal of Ma-
chine Learning Research, 7:2003–2030, 2006. ISSN 1532-4435.

Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Aapo Hyvärinen,
Yoshinobu Kawahara, Takashi Washio, Patrik O. Hoyer, and Kenneth
Bollen. Directlingam: A direct method for learning a linear non-
gaussian structural equation model. Journal of Machine Learning Research,
12:1225–1248, 2011. ISSN 1532-4435.

Stephen M. Smith, Karla L. Miller, Gholamreza Salimi Khorshidi,
Matthew A. Webster, Christian F. Beckmann, Thomas E. Nichols, Joseph
Ramsey, and Mark W. Woolrich. Network modelling methods for fmri.
NeuroImage, 54:875–891, 2011.

J. Snow. On the Mode of Communication of Cholera. John Churchill, 1855.

Baruch Spinoza. The ethics. 1677. doi: 10.2307/2215962.

Peter Spirtes and Kun Zhang. Causal discovery and inference: concepts
and recent methodological advances. Applied Informatics, 3(1):3, 2016.
ISSN 2196-0089. doi: 10.1186/s40535-016-0018-x.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction,
and Search. MIT press, 1st edition, 1990.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction,
and Search. MIT press, 2nd edition, 2000.

Jerzy Splawa-Neyman, D. M. Dabrowska, and T. P. Speed. On the appli-
cation of probability theory to agricultural experiments. essay on prin-
ciples. section 9. Statistical Science, 5(4):465–472, 1990. ISSN 08834237.

S. Spreeuwenberg, P. Henao, and K. Hiroi. AIX: Artificial Intelligence Needs
EXplanation: Why and how Transparency Increases the Success of AI Solu-
tions. CB, 2019. ISBN 9789081556842.

146



Galen Strawson. The Secret Connexion: Causation, Realism, and David Hume:
Revised Edition. Oxford University Press UK, 2014.

Jie Sun, Dane Taylor, and Erik Bollt. Causal network inference by optimal
causation entropy. SIAM Journal on Applied Dynamical Systems, 14(1):
73–106, 2015. doi: 10.1137/140956166.

Patrick Suppes. A Probabilistic Theory of Causality. Amsterdam: North-
Holland Pub. Co., 1970.

C.C.W. Taylor. Leucippus (5th century bc). 1998. doi: 10.4324/
9780415249126-A064-1.

Thomas Verma and Judea Pearl. Equivalence and synthesis of causal mod-
els. In Proceedings of the Sixth Annual Conference on Uncertainty in Artificial
Intelligence, UAI ’90, pages 255–270, New York, NY, USA, 1991. Elsevier
Science Inc. ISBN 0-444-89264-8.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-
zagol. Extracting and composing robust features with denoising au-
toencoders. In Proceedings of the 25th International Conference on Machine
Learning, ICML ’08, pages 1096–1103, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-205-4. doi: 10.1145/1390156.1390294.
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