
HAL Id: tel-03950386
https://hal.science/tel-03950386v1

Submitted on 22 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedded lattice-based cryptography
Simon Montoya

To cite this version:
Simon Montoya. Embedded lattice-based cryptography. Other [cs.OH]. Institut Polytechnique de
Paris, 2022. English. �NNT : 2022IPPAX089�. �tel-03950386�

https://hal.science/tel-03950386v1
https://hal.archives-ouvertes.fr

626

N
N

T
:

20
22

IP
PA

X
08

9

Embedded lattice-based cryptography
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à École polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de
Paris (EDIPP)

Spécialité de doctorat: Informatique, données, IA

Thèse présentée et soutenue à Palaiseau, le 12/10/2022, par

SIMON MONTOYA

Composition du Jury :

Alain Couvreur
Directeur de recherche, Centre de recherche INRIA Saclay Président

Louis Goubin
Professeur des universités, Université de
Versailles-St-Quentin-en-Yvelines Rapporteur

Laurent Imbert
Directeur de recherche, LIRMM Rapporteur
Cécile Dumas
Ingénieure de recherche, CEA de Grenoble Examinatrice
Francois-Xavier Standaert
Professeur, Université catholique de Louvain Examinateur
Alexandre Wallet
Chargé de recherche, INRIA Rennes Examinateur
Guénaël Renault
Professeur chargé de cours, École polytechnique, Agence
Nationale de la Sécurité des Systèmes d’Information Directeur de thèse

Aurélien Greuet
Docteur, IDEMIA France Co-encadrant

Remerciements

Je souhaite commencer ce manuscrit en remerciant Aurélien et Guénaël sans qui ce travail n’aurait pas
été possible. Pendant ces trois années vous avez été à l’écoute, vous m’avez conseillé et beaucoup appris.
Malgré les nombreuses relectures que je vous ai demandées, les nombreux rebondissements durant la thèse,
le Covid et bien d’autres aventures, vous avez toujours été là pour m’aider et me soutenir. Sans vous ces
lignes et toutes les suivantes n’auraient pas existé. Pour tout cela, Aurélien, Guénaël, je vous dis mille
mercis.

Je tiens sincèrement à remercier Louis Goubin et Laurent Imbert d’avoir accepté d’être rapporteurs
pour ma thèse. Mes remerciements vont également vers Alain Couvreur, Cécile Dumas, François-Xavier
Standaert et Alexandre Wallet qui ont accepté d’être examinateurs. Je remercie également Martin R. Al-
brecht et renouvelle mes remerciements à Alexandre Wallet de m’avoir relu et conseillé durant la soutenance
de mi-parcours.

Durant ces trois années, j’ai pu côtoyer deux superbes équipes. La première est l’équipe crypto
d’IDEMIA. J’ai énormément appris en votre compagnie et apprécié travailler avec chacun d’entre vous.
J’ai passé de formidables moments. Pour cela, Amaury, Aurélien, Clémence, Franck, Julien, Linda, Luk,
Matthias, Nathan, Rina, Roch et Stéphane je vous dis merci. Je remercie IDEMIA d’avoir financé cette
thèse et je souhaite bon courage aux (futurs) doctorants.

La seconde équipe que j’ai eu la chance de côtoyer est l’équipe GRACE du LIX. Malgré le fait que j’ai
été peu présent, venir vous voir a toujours été un grand plaisir. J’ai passé de très bons moments et pu
avoir des conversations très enrichissantes avec vous, merci.

Je tiens également à remercier l’ensemble de mes co-auteurs de l’ANSSI et de l’Université du Luxem-
bourg. Travailler avec vous a été un plaisir.

Depuis de longues années, je peux compter sur le soutien indéfectible de mes amis. Que ce soit mes
"bros" de Tours, mes amis de Bordeaux, de Rennes ou encore de Paris. J’ai passé de nombreuses soirées,
vacances et bien d’autres moments incroyables avec vous. Merci pour votre amitié et d’être toujours à mes
côtés.

Je tiens spécialement à remercier Maxime pour ces années de collocation. Bien qu’il y ait eu quelques
(nombreux) confinements, j’ai passé d’agréables moments en ta compagnie.

Je ne peux finir ces remerciements sans une pensée pour ma famille. Depuis toujours, je peux compter
sur leur soutien permanent. Je tiens à vous remercier profondément. Enfin, je souhaite remercier Anne-
Sophie d’être là pour moi. Ta bonne humeur et ton soutien au quotidien me sont d’une grande aide. Tout
l’amour que tu m’apportes m’a aidé à réaliser cette thèse.

Contents

1 Introduction 1
1.1 Problématiques . 2
1.2 Algorithmique des cryptosystèmes basés sur les réseaux euclidiens 2

1.2.1 Problème LWE et variantes . 2
1.2.2 La génération d’aléa . 3
1.2.3 Arithmétique modulaire de polynômes . 4
1.2.4 Contributions sur les optimisations des cryptosystèmes à l’aide des coprocesseurs

asymétriques existants . 5
1.3 Attaques physiques et contremesures des schémas basés sur les réseaux euclidiens 7

1.3.1 Attaques physiques . 8
1.3.2 Contremesures . 8
1.3.3 Contributions sur l’évaluation de la résilience des implémentations contre les attaques

physiques . 9
1.3.4 Contributions sur la sécurisation des implémentations contre les attaques physiques 10

1.4 Perspectives . 11
1.5 Organisation . 12

I On using RSA/ECC coprocessor for lattice-based cryptography 15

2 Arithmetic operation of ideal lattice-based schemes 17
2.1 Overview of ideal lattice-based schemes operations . 17

2.1.1 Polynomial multiplication . 17
2.1.2 Modular reduction . 18

2.2 Hardware accelerator for modular polynomial arithmetic . 18
2.2.1 Kronecker substitution . 19

3 Polynomial multiplication using RSA/ECC coprocessor 23
3.1 Algorithms . 25

3.1.1 Notation and preliminaries . 25
3.1.2 Polynomial multiplication using the structure . 25

3.2 Considerations on side-channel attacks . 28
3.3 Complexity . 29

3.3.1 Choice of ℓ . 29
3.3.2 Complexity estimates . 30
3.3.3 Time-memory trade-offs . 32
3.3.4 Polynomial subdivisions . 33

3.4 Assessment . 33
3.4.1 Context . 33

CONTENTS

3.4.2 From theory to practice: a methodology . 34
3.4.3 Experiments . 36

4 Modular polynomial multiplication using RSA/ECC coprocessor 39
4.1 Quotient Approximation Modular Reduction . 40

4.1.1 Context and background . 40
4.1.2 Quotient Approximation Reduction . 43
4.1.3 Application: CRYSTALS-Dilithium . 51

4.2 Modular polynomial multiplication using RSA/ECC coprocessor 54
4.2.1 Background . 54
4.2.2 Multiplication in N[X] using Kronecker substitution 56
4.2.3 Multiplication in Rq,δ using Kronecker substitution 57
4.2.4 Reducing coefficients modulo q . 61
4.2.5 Applications and Results . 65

II Physical security of lattice-based schemes 73

5 Physical attacks, countermeasures and probing model 75
5.1 Physical attacks . 75

5.1.1 Side-channel attacks . 76
5.1.2 Fault injection . 76

5.2 Countermeasures . 76
5.2.1 Masking . 76
5.2.2 Shuffling . 77
5.2.3 Code redundancy . 77
5.2.4 Random generation . 77

5.3 Probing model . 78
5.3.1 Security definitions: NI and SNI. 78
5.3.2 The SecAnd algorithm . 79
5.3.3 Secure multiplication modulo q . 79
5.3.4 Mask refreshing . 80

6 Safe-error analysis of post-quantum cryptography mechanisms 81
6.1 Framework description . 82

6.1.1 Attacker model . 82
6.1.2 Safe-error attack on lattice-based cryptography . 83
6.1.3 Security analysis of lattice-based cryptography . 83
6.1.4 Security estimation loss . 83

6.2 Application on post-quantum cryptography . 84
6.2.1 NTRU . 84
6.2.2 Saber . 86
6.2.3 Dilithium . 87
6.2.4 Kyber . 89

6.3 Countermeasures . 89

7 Exploiting physical attacks 91
7.1 Attack on LAC CPA key exchange in misuse situation . 93

7.1.1 Preliminaries . 93
7.1.2 Attack on LAC key exchange . 95

CONTENTS

7.1.3 Attack on LAC-256 key exchange . 101
7.2 Attack on LAC CCA key exchange using side-channel leakage 107

7.2.1 Physical attacks against LAC CCA key exchange . 107

8 High-order masking of lattice-based KEM 109
8.1 High-order table-based conversion and applications . 113

8.1.1 High-order table-based conversion algorithm . 113
8.1.2 Table-based high-order Boolean to arithmetic conversion 115
8.1.3 Table-based high-order arithmetic to Boolean conversion 117
8.1.4 Application to threshold function . 120
8.1.5 Application to binomial sampling . 126

8.2 High-order polynomial comparison . 127
8.2.1 High-order zero testing . 127
8.2.2 High-order polynomial comparison . 133

8.3 Fully masked implementation of Kyber . 138
8.3.1 The Kyber Key Encapsulation Mechanism (KEM) 138
8.3.2 Polynomial comparison for Kyber . 140
8.3.3 High-order masking of Kyber . 148

8.4 Fully masked implementation of Saber . 149
8.4.1 The Saber Key Encapsulation Mechanism (KEM) . 149
8.4.2 High-order masking of Saber . 150

8.5 Practical implementation . 151
8.5.1 Kyber . 151
8.5.2 Saber . 151

CONTENTS

Chapter 1

Introduction

La sécurité de la cryptographie à clé publique repose sur la difficulté de résoudre certains problèmes math-
ématiques. Parmi les plus connus, nous avons le problème de factorisation et du logarithme discret. La
difficulté de ces deux problèmes assure la sécurité de schémas cryptographiques tels que RSA ou ceux basés
sur les courbes elliptiques. En dépit des progrès dans le domaine arithmétique et informatique, ces prob-
lèmes garantissent toujours un haut niveau de sécurité. Cependant, dans les années à venir, l’avènement
d’un ordinateur quantique suffisamment puissant pourrait changer la donne. En effet, l’algorithme quan-
tique de Shor [Sho97] permet de résoudre le problème de la factorisation et du logarithme discret avec
une complexité polynomiale. Ainsi lorsqu’un tel ordinateur verra le jour, les cryptosystèmes asymétriques
actuellement déployés ne garantiront plus un niveau de sécurité suffisant. Néanmoins, un tel ordinateur
prendra plusieurs années à être construit. En effet, les meilleurs ordinateurs quantiques actuels manipulent
quelques dizaines de qubits alors que l’on estime que plusieurs milliers sont nécessaires pour pouvoir casser
les cryptosystèmes actuels [BSI20b]. En réponse à cette problématique, la communauté internationale
élabore des systèmes cryptographiques résistants à un attaquant disposant de la puissance de calcul quan-
tique: la cryptographie post-quantique. La sécurité de ces nouveaux schémas est assurée par la difficulté
de résoudre des problèmes mathématiques définis sur les réseaux euclidiens, les codes correcteurs d’erreurs,
etc. A l’heure actuelle, ces problèmes ne sont pas menacés par un algorithme quantique qui pourrait les
résoudre en temps polynomial.

Les agences gouvernementales ont commencé à étudier les schémas post-quantiques (e.g. [ANS; BSI;
Moo16; fCry18]) et ont initié des processus de standardisation pour ces schémas [Moo16; fCry18]. La stan-
dardisation la plus suivie par la communauté est celle du National Institute of Standards and Technology
(NIST), qui a été lancée en 2016 [Moo16]. L’objectif de cette standardisation est de réunir la communauté
scientifique afin de déterminer les futurs standards pour les Key Encapsulation Mechanisms (KEMs) et
les signatures. Depuis Juillet 2020, la standardisation du NIST en est à son troisième tour de sélection
avec sept finalistes restants [MAA+20]. Au sein de ces finalistes, cinq basent leur sécurité sur les réseaux
euclidiens. L’engouement autour des schémas basés sur les réseaux euclidiens est du à leur bon compromis
entre efficacité, sécurité et taille des clés. Cependant malgré les bonnes caractéristiques, ces schémas et de
manière générale les schémas post-quantiques, sont moins performants et/ou plus coûteux en mémoire que
les schémas actuels.

Les futurs schémas standardisés seront déployés dans de nombreux cas d’usages et de nombreux com-
posants. Parmi eux, il y aura les composants embarqués. Ces composants sont utilisés dans de nombreux
objets du quotidien: carte bancaire, passeport, IoT, etc. Cependant ces composants sont limités en terme
de RAM et de puissance de calcul. En effet, la fréquence de leur processeur se compte en méga hertz et
leur capacité de RAM en kilo octets alors que sur un ordinateur ces valeurs se comptent en giga. De part
leur faible puissance de calcul, ces composants embarquent généralement des coprocesseurs supplémentaires
conçus pour réaliser les opérations coûteuses de la cryptographie. De plus, les composants embarqués sont
exposés aux attaques physiques. Lors d’une attaque physique, un attaquant peut perturber le bon fonc-

1

CHAPTER 1. INTRODUCTION

tionnement de la puce ou sonder des valeurs physiques (la consommation de courant, le temps d’exécution,
etc.) afin d’apprendre de l’information sur les secrets manipulés. Ainsi dans certains contextes, les implé-
mentations embarquées doivent être sécurisées contre ce type d’attaque. Pour toutes ces raisons, déployer
la cryptographie post-quantique sur les composants embarqués est un véritable défi.

1.1 Problématiques

De part les limitations et les contraintes de sécurité des composants embarqués, deux axes majeurs de
recherche sont nécessaires pour le déploiement de la cryptographie post-quantique: l’optimisation de ces
cryptosystèmes et la sécurisation contre les attaques physiques. Nous pouvons décliner ces deux axes en
trois problématiques:

• Optimiser les cryptosystèmes post-quantiques pour les composants embarqués.

– Comment optimiser les cryptosystèmes post-quantiques avec les instructions CPU ?
– Comment réutiliser les coprocesseurs actuels pour optimiser les schémas post-quantiques ?
– Quelle architecture matérielle choisir pour les futurs coprocesseurs post-quantiques ?

• Sécuriser les implémentations post-quantiques contre les attaques physiques.

• Évaluer la résilience des implémentations post-quantiques contre les attaques physiques.

Dans cette thèse nous apportons des réponses à ces problématiques pour les cryptosystèmes post-
quantiques basés sur les réseaux euclidiens. Plus particulièrement, nous étudions les KEMs et les signatures
basés sur les réseaux euclidiens proposés lors de la standardisation du NIST [Moo16]. Nous nous sommes
focalisés sur les schémas basés sur les réseaux euclidiens car, comme dit précédemment, parmi les primitives
post-quantiques, ces cryptosystèmes présentent le meilleur compromis entre temps d’exécution, consom-
mation RAM et sécurité. Ainsi, pour des environnements restreints, les schémas basés sur les réseaux
euclidiens apparaissent comme des candidats prometteurs et donc à étudier en premier lieu.

Une première partie de cette thèse est consacrée à l’optimisation de ces schémas à l’aide de copro-
cesseurs dédiés. Plus précisément, nous modifions l’utilisation des coprocesseurs asymétriques existants
pour optimiser ces schémas. La réutilisation de ces coprocesseurs permet d’obtenir des optimisations ap-
plicables à de nombreux composants embarqués. La deuxième partie de cette thèse s’intéresse à la sécurité
de ces schémas contre les attaques physiques. En particulier, nous déterminons la résilience de plusieurs
schémas contre plusieurs types d’attaques physiques (canaux auxiliaires, injection de faute). De plus, nous
proposons des contremesures pour se prémunir de certaines de ces attaques.

1.2 Algorithmique des cryptosystèmes basés sur les réseaux euclidiens

La première partie de cette thèse s’intéresse à l’optimisation, sur les composants embarqués, des cryptosys-
tèmes basés sur les réseaux euclidiens. Pour cela, dans un premier temps, nous décrivons à haut niveau la
structure de ces schémas post-quantiques.

1.2.1 Problème LWE et variantes

L’un des problèmes fondateurs utilisés pour assurer la sécurité des schémas basés sur les réseaux euclidiens
est le problème Learning With Errors (LWE). Ce problème a été introduit par O. Regev dans l’article
[Reg09]. Soient Zq = Z/qZ, (ai, s) ∈ Zn×n

q , ei ∈ Zq, où ai est tiré uniformément dans Zn
q et chaque

coefficients de si et ei sont tirés selon une certaine distribution sur Zq. Soit bi ∈ Zq tel que bi =< ai, s > +ei.
Le problème de recherche LWE assure qu’il est difficile de retrouver s en connaissant plusieurs échantillons

2

CHAPTER 1. INTRODUCTION

(ai,bi). Initialement ce problème est utilisé pour construire des systèmes de chiffrement. La limitation
principale de ces schémas est l’utilisation de vecteurs de taille n pour chiffrer 1 bit de message. Ainsi si
nous voulons envoyer plusieurs bits de message, le système de chiffrement requiert des calculs matrice-
vecteur, ce qui est assez coûteux.

Par la suite, des variantes structurées du problème LWE ont été proposées afin de rendre les schémas plus
compacts et plus efficaces. Les objets mathématiques manipulés sont alors des anneaux ou des modules de
polynômes sur un corps fini [LPR13; LS15a]. Dans ce cas, nous parlons du problème Ring-LWE (RLWE)
ou Module-LWE (MLWE). Par exemple, dans la compétition du NIST, l’anneau de polynômes le plus
utilisé est Rq,1 = Zq[X]/(XN + 1) où q ≥ 2, N ≥ 1. Plus généralement, la majorité des schémas basés
sur les réseaux euclidiens du NIST sont basés sur les problèmes RLWE/MLWE ou sur une variante de ces
problèmes: RLWR/MLWR. Le problème LWR (Learning With Rounding) est une variante du problème
LWE où les vecteurs d’erreurs ei sont remplacés par des arrondis [BPR12].

Les schémas que nous étudions dans la suite de cette thèse ont ainsi leurs vecteurs définis dans des
anneaux/modules de polynômes sur un corps fini. A haut niveau, un système de chiffrement utilisant le
problème RLWE peut être décrit par les algorithmes 1, 2, 3.

Algorithm 1 Key gen RLWE
Output: Key pair (pk, sk)

1: a← aléatoire uniforme dans Rq,1
2: s, e← aléatoire avec une distrib. χ dans Rq,1
3: b← a · s+ e ∈ Rq,1
4: return (pk, sk) = ((a, b), s)

Algorithm 2 Encrypt RLWE(pk,m ∈ {0, 1}N)
Output: Ciphertext c = (c1, c2)

1: r, e1, e2 ← aléatoire avec une distrib. χ dans Rq,1

2: c1 ← ar + e1 ∈ Rq,1
3: c2 ← br + e2 + ⌊ q

2⌉m ∈ Rq,1
4: return c = (c1, c2)

Algorithm 3 Decrypt RLWE(sk = s, c = (c1, c2))
Output: Plaintext m

1: M ← c2 − (c1 · s) ∈ Rq,1
2: for i = 0 to N − 1 do
3: if q

4 ≤Mi <
3q
4 then mi ← 1 else mi ← 0

4: end for
5: return m

Pour ces trois routines l’arithmétique utilisée est une arithmétique modulaire de polynômes. Les opéra-
tions coûteuses sont:

• La génération d’aléa.

• La multiplication de polynômes.

De manière générale, les signatures et les KEMs de la standardisation du NIST utilisent de l’arithmétique
modulaire de polynômes. De plus, les opérations les plus coûteuses sont les mêmes que celles dans l’exemple
précédent.

1.2.2 La génération d’aléa

Dans les schémas de signature et les KEMs du NIST, les polynômes sont générés à partir d’une seed et
d’une eXtendable-Output Function (XOF) basée sur Keccak [BDP+15] (SHAKE128 ou SHAKE256). Une
XOF est une fonction cryptographique de hash qui peut retourner une sortie de taille arbitraire. La XOF
est alors utilisée comme un générateur de nombres pseudo-aléatoires.

3

CHAPTER 1. INTRODUCTION

Dans les schémas basés sur les réseaux euclidiens, la génération d’aléa a un impact significatif sur
les performances. Les opérations effectuées dans Keccak sont des opérations bit à bit ou des permuta-
tions. Ainsi, les optimisations possibles sont limitées. Une solution pour accélérer la génération d’aléa est
d’embarquer un coprocesseur Keccak dédié.

1.2.3 Arithmétique modulaire de polynômes

Comme décrit plus haut, les schémas basés sur les réseaux euclidiens utilisent de l’arithmétique modulaire
de polynômes. Les principales opérations sont l’addition, la soustraction et la multiplication de polynômes.
Cette dernière est l’opération arithmétique la plus coûteuse. En effet, naïvement, cette opération a une
complexité asymptotique en O(N2) alors que l’addition et la soustraction ont une complexité en O(N), où
N est le degré des polynômes.

Parmi les cryptosystèmes finalistes de la standardisation du NIST, certains spécifient l’utilisation
d’algorithmes de multiplications polynomiales avec une meilleure complexité asymptotique que la méth-
ode naïve. Ainsi certains cryptosystèmes utilisent dans leurs implémentations de référence l’algorithme de
Karatsuba, Toom-Cook ou encore la Number Theoretic Transform (NTT). Ce dernier possède la meilleure
complexité asymptotique qui est en O(N logN). Cependant, la complexité asymptotique ne reflète pas
nécessairement la réalité pratique. En effet, les paramètres des cryptosystèmes ne sont pas suffisamment
grands pour avoir des gains asymptotiques significatifs. De plus, en fonction du CPU, certains algorithmes
de multiplication peuvent être plus ou moins efficaces. Dans les systèmes embarqués, trois axes de recherche
se distinguent pour optimiser la multiplication polynomiale:

• Optimiser les algorithmes existants avec des instructions CPU spécifiques. Ces optimisations sont
destinées à des composants avec un jeu d’instructions CPU conséquent et rapide. Par exemple, celui
des CPU cortex-M3 et cortex-M4.

• Concevoir un coprocesseur dédié à l’arithmétique polynomiale. Les coprocesseurs conçus sont destinés
à de futurs composants et non ceux actuels.

• Ré-utiliser les coprocesseurs asymétriques RSA/ECC existants. Ces coprocesseurs effectuent de
l’arithmétique sur les entiers. Cette réutilisation permet d’obtenir des optimisations pour des com-
posants possédant un faible CPU. Dans la suite nous détaillons cet axe de recherche.

Dans cette thèse, nous nous intéressons à la réutilisation des coprocesseurs asymétriques existants afin
d’optimiser la cryptographie basée sur les réseaux euclidiens. Nous avons fait ce choix car, comme l’ont
indiqué plusieurs agences gouvernementales (ANSSI [ANS22], BSI [BSI20a]), les premiers déploiements
de la cryptographie post-quantique se feront de manière hybride. La cryptographie hybride consiste en
une combinaison de la cryptographie post-quantique et classique. Ainsi les communications sont à la fois
sécurisées:

• Contre les attaques quantiques grâce à la cryptographie post-quantique.

• Contre les attaques classiques, avec un niveau de sécurité au moins égal à celui apporté par la
cryptographie actuelle.

Le maintien de la cryptographie actuelle est nécessaire de par la jeunesse de la cryptographie post-quantique.
En effet, nous ne disposons pas d’assez de recul sur la cryptographie post-quantique pour être sûrs de sa
sécurité à long terme. Ainsi, en la combinant avec de la cryptographie classique, nous nous assurons de la
non-régression du niveau de sécurité actuel.

En réutilisant les coprocesseurs existants, nous embarquons un seul coprocesseur asymétrique pour
optimiser ces deux types de cryptographie. Ceci a un intérêt en terme de coût, de facilité de déploiement et
afin de proposer des optimisations qui s’appliquent à une large gamme de composants. La réutilisation des

4

CHAPTER 1. INTRODUCTION

coprocesseurs asymétriques existants, pour la cryptographie basée sur les réseaux euclidiens, a été initiée par
Albrecht et al. dans l’article [AHH+19]. Dans ce travail, les auteurs implémentent le KEM Kyber [BDK+18]
sur un composant embarqué ayant un coprocesseur asymétrique qui effectue de l’arithmétique sur les entiers.
Afin d’optimiser la multiplication polynomiale, ils utilisent la substitution introduite par Kronecker [Kro82]
qui permet de transformer une multiplication de polynômes en une multiplication d’entiers. Pour ce faire
cette substitution évalue les polynômes en un point afin d’obtenir des entiers. Par la suite ces entiers
sont multipliés. Enfin, le résultat de cette multiplication est converti en un polynôme. Afin de gagner
en performance, la multiplication d’entiers est effectuée avec le coprocesseur asymétrique. Dans l’article
[WGY20], les auteurs utilisent également la substitution de Kronecker avec un coprocesseur RSA/ECC
pour améliorer les performances du schéma Saber [BMD+21].

Par la suite dans l’article [BRvV22], les auteurs généralisent la substitution de Kronecker utilisée par
Albrecht et al. [AHH+19]. Cette généralisation permet des compromis entre le nombre de multiplications
d’entiers, la taille des entiers à multiplier et le nombre d’évaluations polynomiales. En fonction des spécifi-
cations du composant et du coprocesseur, cette généralisation permet d’obtenir des compromis permettant
d’avoir une multiplication polynomiale plus performante.

1.2.4 Contributions sur les optimisations des cryptosystèmes à l’aide des coprocesseurs
asymétriques existants

Dans cette thèse nous nous sommes concentrés sur l’optimisation des cryptosystèmes basés sur les réseaux
euclidiens, à l’aide des coprocesseurs asymétriques (RSA/ECC) actuels. Plus précisément, notre objectif
est d’optimiser la multiplication modulaire de polynômes à l’aide de ces coprocesseurs. Dans la majorité des
schémas basés sur les réseaux euclidiens, cette multiplication modulaire se fait sur l’anneau de polynômes
Rq,δ = Zq[X]/(XN + δ), où δ ∈ {−1, 1}. Comme dit précédemment, afin de réutiliser les coprocesseurs
existants pour la multiplication de polynômes, nous utilisons la substitution de Kronecker. En utilisant
cette substitution, la multiplication modulaire sur Rq,δ se divise en quatre étapes:

1. Évaluation des polynômes en un point d’évaluation bien choisi. Cette étape permet de transformer
les polynômes en entiers.

2. Multiplication modulaire des entiers obtenus. Dans les travaux précédents, uniquement cette étape
est effectuée en réutilisant les coprocesseurs existants.

3. Conversion du résultat de la multiplication d’entiers en un polynôme. L’étape 2 assure que le résultat
est réduit mod XN + δ. Dans la suite nous nommons cette étape la radix conversion.

4. Réduction des coefficients modulo q.

Nos contributions ont pour objectif d’améliorer l’ensemble de ces étapes à l’aide des coprocesseurs asymétriques
actuels. Dans la suite nous les présentons en trois parties.

Résumé des contributions

Contribution 1: Alternative à la multiplication d’entier lors de la substitution de Kronecker.
Dans ce travail nous optimisons la multiplication polynomiale de certains KEMs du NIST à l’aide des
coprocesseurs actuels. Plus particulièrement, nous introduisons deux variantes à la substitution de Kro-
necker: Kronecker substitution variant et Shift & Add. Ces variantes exploitent la structure particulière des
polynômes. Soient f(X), g(X) ∈ Rq,1 deux polynômes que l’on veut multiplier. Dans les KEMs du NIST,
f(X) a des coefficients uniformément distribués dans {0, . . . , q − 1} et g(X) a des coefficients proches de
0. Les variantes exploitent le fait que g(X) a des coefficients proches de 0.

5

CHAPTER 1. INTRODUCTION

Substitution de Kronecker:

1. Évaluation des polynômes f(X) et g(X).

2. Multiplication d’entiers entre les polynômes
évalués.

3. Radix conversion.

Variantes:

1. Évaluation du polynôme f(X). On obtient
alors un entier f ′.

2. Opérations sur f ′ dépendantes des coefficients
de g(X). Les opérations sont des shifts, addi-
tions, soustractions et des multiplications qui
sont réalisées avec le coprocesseur asymétrique.

3. Radix conversion.

Les opérations effectuées sur f ′ diffèrent d’une variante à l’autre. En fonction des spécifications du
composant, ces deux variantes peuvent être plus rapide que la substitution de Kronecker.

Dans ce travail nous proposons également une méthodologie pour qu’un développeur puisse choisir
rapidement entre la substitution de Kronecker et les variantes. Pour cela nous donnons, à chacun de
ces trois algorithmes, une complexité théorique en fonction d’opérations basiques telles que des additions,
shifts et multiplications. Ainsi un développeur, en regardant le coût de chacune de ces opérations dans la
spécification du coprocesseur, peut choisir rapidement quel algorithme utiliser.

Par la suite nous évaluons nos variantes, pour plusieurs paramètres de sécurité proposés lors de la
compétitions du NIST, sur un composant embarqué. Nous montrons alors que nos complexités théoriques
sont en accords avec les évaluations pratiques. De plus sur ce composant, au moins l’une de nos variantes
est plus efficace que la substitution de Kronecker.

Contribution 2: Réduction Modulaire Quotient Approximation. La réduction modulaire est une
opération cruciale pour beaucoup de cryptosystèmes, dont les schémas basés sur les réseaux euclidiens. En
effet, les polynômes sont définis sur Rq,δ, donc, après chaque opération arithmétique, nous devons réduire
l’ensemble des coefficients modulo q. Soient a, q ∈ N, tels que nous voulons calculer a mod q. Pour cela,
nous devons déterminer la valeur quo =

⌊
a
q

⌋
. Ainsi, nous obtenons a mod q = a − quo · q. Calculer quo

nécessite une division, ce qui est coûteux.
La réduction modulaire Quotient Approximation Reduction détermine une approximation de quo, nom-

mée quoapprox, en calculant une somme de shifts de a. A l’aide de cette approximation, nous obtenons une
réduction partielle a−quoapprox ·q = a mod q+ t ·q. Nous prouvons que t ≤∑ℓ−1

i=0

{
2i

q

}
où ℓ est la taille en

bits de a. Grâce à un algorithme standard de division, nous pouvons alors obtenir une réduction complète
de a avec au plus ⌊log(t)⌋+ 1 soustractions.

Comme nous venons de le voir, t est dépendant du module q et de la taille de la valeur à réduire a.
Pour certains paramètres utilisés dans les schémas basés sur les réseaux euclidiens, la valeur t est petite.
Cela permet alors d’avoir une réduction modulaire efficace.

L’algorithme Quotient Approximation Reduction permet une réduction partielle ou complète des coeffi-
cients à l’aide d’opérations basiques (additions, soustractions, shifts, multiplications). De plus, la réduction
partielle peut être ajustée pour réduire plus ou moins efficacement un coefficient. Cette flexibilité est très
intéressante dans le cas de la substitution de Kronecker et de la réutilisation des coprocesseurs existants.
Dans un autre travail, nous présentons comment utiliser cette réduction dans le cadre de la réutilisation
des coprocesseurs existants.

Contribution 3: Multiplication polynomiale modulaire à l’aide des coprocesseurs RSA/ECC.
Dans ce travail, avec un coprocesseur asymétrique actuel, nous effectuons l’ensemble des opérations arith-
métiques lors d’une multiplication polynomiale modulaire sur Rq,δ, où δ ∈ {−1, 1}. Effectuer l’ensemble
des opérations avec un coprocesseur a deux avantages:

6

CHAPTER 1. INTRODUCTION

• Optimiser la multiplication polynomiale pour les composants disposant d’un faible CPU.

• Éviter la manipulation des coefficients un à un. Ceci peut permettre d’éviter certaines attaques
physiques.

Pour pouvoir effectuer l’ensemble des opérations arithmétiques avec un coprocesseur, nous intervertissons
l’étape 3 et 4 de la multiplication polynomiale modulaire utilisant la substitution de Kronecker:

3. Réduction des coefficients modulo q. Ces réductions sont effectuées sur l’entier obtenu après la
multiplication d’entiers.

4. Radix conversion.

Dans les travaux précédant, les opérations arithmétiques effectuées lors de l’évaluation et la radix conversion
sont réalisées à l’aide du CPU. Les opérations à effectuer sont dues à certains polynômes qui ont des
coefficients représentés négativement sur Rq,δ. En effet, cela implique que lors de l’évaluation et de la radix
conversion, des retenues sont à propager. Dans ce travail, nous effectuons la propagation des retenues à
l’aide du coprocesseur RSA/ECC.

Dans l’état de l’art, les réductions modulaires modulo q sont effectuées après la radix conversion co-
efficient par coefficient. Dans ce travail, nous adaptons des algorithmes de réductions, tels que Barrett
ou Quotient Approximation Reduction, afin de réaliser ces réductions après la multiplication modulaire
d’entiers. Ainsi, les coefficients sont réduits simultanément modulo q à l’aide du coprocesseur.

Pour pouvoir réaliser l’ensemble de ces étapes, le coprocesseur doit pouvoir effectuer des additions/sous-
tractions, des shifts, des multiplications modulaires et non modulaires et des ET logiques. Cette dernière
opération est moins courante sur les coprocesseurs actuels. Cependant ajouter cette fonctionnalité à une
architecture existante est plus facile et moins coûteux que de concevoir un nouveau coprocesseur pour la
multiplication de polynôme.

1.3 Attaques physiques et contremesures des schémas basés sur les
réseaux euclidiens

La deuxième partie de la thèse s’intéresse à la sécurisation et l’évaluation de la résilience des cryptosystèmes
basés sur les réseaux euclidiens. Dans la suite, nous introduisons les notions en lien avec les attaques
physiques et les contremesures que nous présentons dans nos contributions.

Les composants embarqués sont menacés par les attaques physiques. Les premières recherches sur ce
sujet sont menés par Kocher et al. à partir de l’année 1996 [Koc96; KJJ99]. Nous distinguons deux types
d’attaques physiques:

• Les injections de fautes. Ces attaques ont pour but de perturber le bon fonctionnement d’un al-
gorithme. En étudiant le résultat obtenu après la perturbation, un attaquant peut apprendre de
l’information sur les secrets manipulés. Les premières injections de fautes sur des cryptosystèmes
datent de l’année 1997 [BDL97; BS97].

• Les attaques par canaux auxiliaires. Lors de ces attaques, l’attaquant sonde des grandeurs physiques
qui émanent du composant. En étudiant les valeurs obtenues, l’attaquant peut apprendre de l’infor-
mation sur les secrets manipulés. Les premières attaques par canaux auxiliaires sont celles menés par
Kocher et al. à partir de 1996 [Koc96; KJJ99].

La perturbation d’un algorithme ou l’écoute des grandeurs physiques sont dépendantes du composant
et/ou de l’implémentation. Ainsi, attaquer et sécuriser les cryptosystèmes basés sur les réseaux euclidiens
doit se faire au cas par cas. De par la diversité du domaine des attaques physiques, nous nous focalisons
dans la suite sur des travaux qui sont en lien avec les recherches effectuées au cours de la thèse.

7

CHAPTER 1. INTRODUCTION

1.3.1 Attaques physiques

Lors de la standardisation du NIST, les candidats ont été évalués contre différents types d’attaques par
canaux auxiliaires. Nous pouvons les ranger dans deux catégories:

• Les attaques non supervisées. L’attaquant a uniquement accès au composant qu’il attaque. Ainsi, il
ne peut pas faire d’apprentissage préalable sur un composant similaire.

• Les attaques supervisées. Dans ce cas, l’attaquant a accès à un composant similaire à la cible avec la
même implémentation du cryptosystème. L’attaquant peut complètement contrôler ce composant et
ainsi faire de l’apprentissage préalable. Par la suite, à l’aide de son apprentissage, l’attaquant réalise
son attaque sur le composant cible.

De nombreuses attaques par canaux auxiliaires ont été effectuées sur les candidats basés sur les réseaux
euclidiens du NIST. Les implémentations ciblées sont majoritairement celles de référence et donc sans
contremesure contre les attaques physiques. Cependant, comme le montrent les articles [HHP+21; NDJ21],
des attaques ont également été effectuées sur des implémentations sécurisées.

Les injections de fautes permettent d’altérer la bonne exécution d’un algorithme. Les principales
altérations qu’elles peuvent effectuer sont:

• Sauter une instruction.

• Mettre une valeur aléatoire dans un registre ou en RAM.

• Mettre l’ensemble des bits d’un registre ou d’une partie de la RAM à 1 ou 0.

• Inverser la valeur d’un bit.

Dans la suite, nous nous intéresserons plus particulièrement aux attaques par fautes safe-error. Ces attaques
exploitent le fait qu’une faute peut ou non modifier la sortie d’un algorithme et ainsi, nous apprendre de
l’information sur le secret. A notre connaissance, un seul travail de recherche s’intéresse aux attaques safe-
error contre les schémas basés sur les réseaux euclidiens. Dans cet article [PP21], les auteurs attaquent par
fautes le déchiffrement des KEMs Kyber [ABD+21] et Newhope [AAB+19]. Si la sortie du déchiffrement
n’est pas modifiée après l’injection, alors l’attaquant apprend de l’information sur le secret. L’attaque est
répétée plusieurs fois afin de retrouver l’ensemble des clés secrètes.

1.3.2 Contremesures

En fonction de l’utilisation et du contexte de déploiement, les implémentations embarquées doivent être
sécurisées contre les attaques physiques. Les contremesures les plus répandues sont:

• Le masquage. L’idée est de partager, en au moins deux parties, une donnée sensible s telle que
s = s0 + . . .+ sα−1. Chacun des si, 0 ≤ i < α, est appelé un share. Par la suite, chacun des shares est
manipulé séparément afin que l’attaquant n’apprenne de l’information que sur l’un d’entre eux à la
fois. Ainsi, pour pouvoir retrouver de l’information sur s, l’attaquant doit combiner de l’information
sur chacun des si. Plus le nombre de shares est important, plus la combinaison d’information est
compliquée. Cette contremesure est principalement utilisée pour se prémunir contre les attaques par
canaux auxiliaires.

• Le shuffling. L’idée de cette contremesure est de rendre aléatoire l’ordre d’exécution des opérations
manipulant une donnée sensible. Cette contremesure est principalement utilisée pour se prémunir
contre les attaques par canaux auxiliaires.

8

CHAPTER 1. INTRODUCTION

• La redondance de code. L’objectif est de dupliquer une opération sensible afin de vérifier la bonne
exécution de celle-ci. Par exemple lors d’un chiffrement symétrique d’un message m, le composant
peut vérifier le bon déroulement du chiffrement en déchiffrant le chiffré et comparer le résultat avec
m. Cette contremesure est utilisée pour se prémunir contre les attaques par fautes.

Chacune de ces contremesures a un surcoût. Pour le masquage, cela nécessite de stocker et de faire les
mêmes opérations α fois. De plus, le masquage nécessite un grand nombre de génération d’aléa. A l’instar
du masquage, le shuffling requiert de la génération d’aléa. D’autre part, l’utilisation du shuffling peut
empêcher l’utilisation de certaines optimisations. Enfin, la redondance de code duplique des opérations.
En raison des surcoûts, les contremesures implémentées dépendent du contexte de l’attaquant et de la
sécurité ciblée. Pour plus de détails sur ces contremesures, se référer à [MOP08].

Dans la suite de la thèse nous nous intéressons plus particulièrement au masquage de certains sché-
mas basés sur les réseaux euclidiens. Ces schémas possèdent une algorithmique commune, ce qui permet
d’appliquer les mêmes contremesures de masquage à plusieurs cryptosystèmes. Par exemple, la génération
d’aléa se fait sur des distributions similaires. Cependant, chaque cryptosystème utilise des fonctions qui
diffèrent, tels que les fonctions d’encodage, de compression, etc. ce qui demande, pour le masquage, des
adaptations au cas par cas. Pour prouver que les contremesures de masquage sont sûres, plusieurs modèles
théoriques existent. Celui que nous utiliserons est le probing model, introduit par Ishai, Sahai et Wagner
dans l’article [ISW03]. Ce modèle considère qu’un attaquant peut sonder au plus t valeurs d’un circuit
Booléen. Tout algorithme est traduit, après compilation, en un circuit Booléen. Ainsi dans cet article, les
auteurs montrent comment partager la donnée sensible en α = 2t+ 1 shares pour rendre le circuit sécurisé.
Par la suite, dans l’article [RP10], les auteurs améliorent le résultat précédant en sécurisant n’importe quel
circuit Booléen en partageant la donnée sensible en α = t+ 1 shares. Ces articles prouvent la sécurité du
circuit Booléen dans son entièreté. Donc, le moindre changement dans l’algorithme nécessite de prouver la
sécurité de l’entièreté du nouveau circuit. Dans l’article [BBD+16], les auteurs introduisent deux notions
de sécurité pour le probing model: Strong Non-Interference et Non-Interference. Ces notions permettent
de prouver la sécurité d’un algorithme par bloc et ainsi par composition en déduire la sécurité du circuit.
Dans la suite, lorsqu’un algorithme est sûr contre un attaquant qui peut sonder α − 1 valeurs, alors nous
dirons que cet algorithme est sûr à l’ordre α− 1.

Plusieurs finalistes, basés sur les réseaux euclidiens de la compétition du NIST, ont vu leurs cryptosys-
tèmes masqués et prouvés dans le probing model. En effet, les KEMs Kyber et Saber sont masqués dans
les articles [BGR+21; BDK+20], la signature Dilithium dans [MGT+19] et une variante de la signature
Falcon dans [EFG+21].

1.3.3 Contributions sur l’évaluation de la résilience des implémentations contre les
attaques physiques

A l’instar de la sécurisation des implémentations, l’évaluation de la résilience des implémentations contre
les attaques physiques dépend de beaucoup de paramètres. En effet, en fonction du modèle d’attaquant, de
l’implémentation et du composant ciblé, les résultats d’une attaque physique peuvent être différents. Dans
cette thèse nous évaluons la résilience de plusieurs cryptosystèmes contre des attaques physiques. Dans la
suite, nous présentons nos résultats en deux parties.

Résumé des contributions

Contribution 4: Attaque safe-error contre les schémas basés sur les réseaux euclidiens. Dans
ce travail, nous évaluons la résilience des cryptosystèmes Dilithium, Kyber, NTRU et Saber contre des
attaques safe-error. L’objectif est d’exploiter la distribution des coefficients des polynômes secrets. En
effet, les distributions utilisées impliquent que les polynômes secrets ont un nombre important de coefficients
égaux à 0.

9

CHAPTER 1. INTRODUCTION

Lors de nos attaques, nous ciblons par fautes des opérations impliquant les coefficients des polynômes
secrets. Ainsi, si la sortie n’est pas modifiée alors nous avons ciblé un coefficient valant 0. Afin de
retrouver l’ensemble des coefficients égaux à 0, nous répétons l’attaque de manière itérative sur l’ensemble
des coefficients secrets.

Pour évaluer la perte de sécurité entrainée par la connaissance de ces coefficients, nous utilisons l’outil
[DDG+20]. Cet outil nous permet de déterminer la sécurité théorique des cryptosystèmes avant et après
l’attaque. Excepté pour le KEM Kyber, ces attaques entrainent une perte significative de sécurité.

Contribution 5: Exploitation des attaques physiques contre le KEM LAC. LAC [XYD+19] est
un KEM présent jusqu’au deuxième tour de la standardisation du NIST. De plus, il est l’un des vainqueurs
de la standardisation post-quantique chinoise [fCry20a]. Ce KEM a deux versions qui ont une sécurité
sémantique différente [Sak11]:

• Une version IND-CPA (INDistinguishability under Chosen Plaintext Attack): Un schéma IND-CPA
est sûr contre les attaques à textes clairs choisis. Un KEM ayant uniquement cette propriété de
sécurité doit rafraichir ses clés de chiffrement à chaque encapsulation de clé.

• Une version IND-CCA (INDistinguishability under Chosen Ciphertext Attack): Un schéma IND-
CCA est sûr contre les attaques à chiffrés choisis. Cette notion de sécurité est plus robuste et est
nécessaire pour pouvoir utiliser les mêmes clés de chiffrement pour plusieurs encapsulations de clé.

Dans ce travail, dans un premier temps, nous attaquons la version IND-CPA du KEM. Pour cela,
nous supposons que l’encapsulation de clé est implémentée d’une mauvaise manière. Plus précisément,
l’implémentation réutilise la même clé secrète pour plusieurs encapsulations de clé. Ainsi, nous forgeons
des chiffrés tels que la clé de session établie nous apprend de l’information sur la clé secrète. Avec cette
attaque, nous retrouvons l’entièreté de la clé secrète en au plus 8192 encapsulations de clé.

L’attaque précédente ne s’applique que si l’implémentation IND-CPA réutilise la même clé secrète. La
version IND-CCA de LAC permet de conserver la même clé secrète pour plusieurs encapsulations sans être
menacée par l’attaque précédente. Ainsi dans une deuxième partie, nous expliquons comment combiner
l’attaque précédente et des attaques physiques afin de retrouver la clé secrète de la version IND-CCA.

1.3.4 Contributions sur la sécurisation des implémentations contre les attaques phy-
siques

La sécurisation des implémentations contre les attaques physiques est un vaste domaine. En effet, en
fonction du contexte d’utilisation, du modèle d’attaquant et du schéma à sécuriser, les contremesures à
appliquer peuvent être différentes. Dans cette thèse, nous nous sommes intéressés à des contremesures de
masquage contre un attaquant qui peut sonder α−1 variables. De plus, nous appliquons ces contremesures
aux KEMs Kyber et Saber. Enfin, ces contremesures sont prouvées sûres dans le probing model. Dans la
suite nous présentons nos résultats en deux parties.

Résumé des contributions

Contribution 6: Algorithme de conversion de masque sûr à l’ordre α−1. La sixième contribution
est une extension de l’algorithme de conversion par table introduit dans [CT03]. L’algorithme que nous
proposons permet de calculer pour n’importe quels groupes G et H, à l’aide de re-calcul de table, la fonction
f : G → H. Aucune propriété particulière n’est requise sur f . Supposons que nous avons une donnée x
partagée en α shares sur G:

x = x1 + . . .+ xα ∈ G
et que nous voulons la partager en α shares sur H. Avec notre algorithme nous pouvons calculer:

y1 + . . .+ yα = f(x1 + . . .+ xα) ∈ H

10

CHAPTER 1. INTRODUCTION

Dans cette contribution, nous prouvons que notre algorithme de re-calcul de table qui permet de calculer
la fonction f est sûr, dans le probing model, à l’ordre α− 1.

La complexité de cet algorithme dépend de la taille du groupe G: O(α2 · |G|). De plus, un surcoût
en mémoire est à prévoir. En effet, il faut stocker l’ensemble de la table, qui a |G| entrées de la taille des
éléments de H.

Par la suite nous donnons des cas d’utilisation de l’algorithme de conversion pour les KEMs Kyber et
Saber. Dans ce contexte, les groupes G et H sont de taille raisonnable. Ainsi, l’algorithme de conversion
de masque est efficace et a un surcoût mémoire faible.

Contribution 7: Masquage de Kyber et Saber à l’ordre α − 1. Dans un premier temps, nous
introduisons trois tests d’égalités à 0 prouvés sûrs à l’ordre α − 1. Ces tests ont pour objectif de vérifier,
de manière sécurisée, si une valeur partagée en α shares est égale à 0 modulo q. Cependant, ces tests ne
peuvent vérifier l’égalité que d’une valeur partagée. Or, dans le contexte des schémas basés sur les réseaux
euclidiens, nous avons besoin de vérifier, de manière sécurisée, l’égalité à 0 de l’ensemble des coefficients
partagés en α shares d’un polynôme. Ainsi, par la suite, nous adaptons ces tests d’égalités pour qu’ils
fonctionnent dans le cas polynomial. Les tests de comparaison de polynômes que nous introduisons nous
permettent d’avoir un gain en performance, par rapport à l’état de l’art, pour les schémas Kyber et Saber.

Dans un second temps, nous implémentons les applications de la contribution 6, les comparaisons de
polynômes et des algorithmes de masquage de l’état de l’art afin de proposer une implémentation sûre
à l’ordre α − 1 de Kyber et Saber. De plus, nous embarquons cette implémentation sur un composant
embarqué et nous en évaluons les performances.

1.4 Perspectives

Dans ce manuscrit, nous avons apporté des réponses aux problématiques énoncées. Cependant, nos
recherches n’apportent qu’un partie des réponses. Dans la suite, nous donnons des axes d’améliorations et
des suggestions de nouvelles pistes de recherche.

Optimisations de la multiplication polynomiale. Nos travaux se sont concentrés sur l’optimisation
de la multiplication polynomiale modulaire à l’aide des coprocesseurs existants RSA/ECC. La réutilisation
de ces coprocesseurs est intéressante pour un déploiement à court terme. A long terme, concevoir des com-
posants spécifiques à la cryptographie post-quantique pourrait être nécessaire. Ainsi, un axe de recherche
peut être la conception de composants dédiés à cette cryptographie. Quel type d’architecture CPU ou quel
coprocesseur choisir pour optimiser les schémas basés sur les réseaux euclidiens ?

Évaluation et sécurisation des implémentations contre les attaques physiques. Les évaluations
sécuritaires que nous avons menées se sont concentrées sur un nombre restreint de candidats et sur un
nombre limité d’attaques. Les travaux actuels peuvent être étendus à d’autres schémas et à d’autres types
d’attaques.

Dans cette thèse, la sécurité contre les attaques par canaux auxiliaires a été abordée par le masquage
dans le probing model. Plus précisément sur les KEMs Kyber et Saber. Des poursuites éventuelles à ces
travaux pourrait être:

• Masquer d’autres schémas dans le probing model.

• Évaluer la sécurité pratique de ces implémentations masquées en les soumettant à des attaques
physiques.

• S’intéresser à d’autres contremesures que le masquage.

11

CHAPTER 1. INTRODUCTION

Étendre les recherches aux autres primitives post-quantiques. Nos recherches se sont concentrées
sur la cryptographie basée sur les réseaux euclidiens. Cependant, d’autres primitives cryptographiques
sont très prometteuses. Nous pouvons penser à la cryptographie basée sur les codes, les isogénies, les
systèmes polynomiaux multivariés, etc. Ainsi une poursuite des recherches serait d’optimiser et sécuriser
ces cryptosystèmes dans le contexte de la cryptographie embarquée.

1.5 Organisation
Le manuscrit est divisé en deux parties. La première partie est consacrée à l’optimisation des schémas
basés sur les réseaux euclidiens à l’aide de coprocesseurs asymétriques actuels. Cette partie comporte trois
chapitres:

Chapitre 2: Ce chapitre introduit l’arithmétique polynomiale utilisée dans les schémas basés sur les
réseaux euclidiens. De plus, ce chapitre introduit la substitution de Kronecker qui permet de réutiliser les
coprocesseurs asymétriques actuels pour l’arithmétique de polynômes.

Chapitre 3: Ce chapitre introduit le travail sur les variantes de la substitution de Kronecker. Après la
présentation de ces algorithmes, nous détaillons la méthodologie pour choisir rapidement quel algorithme
est le plus efficace en fonction des spécifications du composant. Enfin, nous donnons des résultats pratiques
de nos implémentations.

Les résultats présentés viennent d’une collaboration avec Aurélien Greuet et Guénaël Renault. Ces
résultats ont mené à une publication [GMR21].

Chapitre 4: Ce chapitre, dans un premier temps, introduit la réduction modulaire Quotient Approxi-
mation Reduction. Par la suite, ce chapitre présente le travail sur la multiplication polynomiale modulaire
sur Rq,δ à l’aide des coprocesseurs asymétriques actuels. Plus précisément, nous adaptons l’évaluation
et la radix conversion afin d’effectuer ces opérations avec les coprocesseurs. Nous adaptons également la
réduction de Barrett et Quotient Approximation Reduction pour les utiliser dans ce contexte.

Les résultats présentés viennent d’une collaboration avec Aurélien Greuet et Clémence Vermeersch. Ces
résultats ont mené à deux pré-publications [GMV22a; GMV22b].

La deuxième partie du manuscrit est consacrée à l’évaluation et à la sécurisation des schémas basés sur
les réseaux euclidiens contre les attaques physiques. Cette partie comporte quatre chapitres:

Chapitre 5: Ce chapitre introduit les attaques physiques et les contremesures que nous allons utiliser
dans la suite. De plus, nous introduisons le probing model et certains algorithmes prouvés sécurisés dans
ce modèle. Enfin, de part le fait que les contremesures nécessitent beaucoup de génération d’aléa, nous
discutons de cette génération dans les systèmes embarqués.

Chapitre 6: Dans ce chapitre nous évaluons la résilience de plusieurs cryptosystèmes contre des attaques
safe-error. Plus précisement, nous nous intéressons aux cryptosystèmes Dilithium, Kyber, NTRU et Saber.

Les résultats présentés viennent d’une collaboration avec Luk Bettale et Guénaël Renault. Ces résultats
ont mené à une publication [BMR21].

Chapitre 7: Dans ce chapitre, nous proposons une attaque à chiffrés choisis contre une mauvaise im-
plémentation de la version IND-CPA du KEM LAC. Par la suite, en combinant cette attaque avec des
attaques physiques nous attaquons la version IND-CCA du KEM LAC.

Les résultats présentés viennent d’une collaboration avec Aurélien Greuet et Guénaël Renault. Ces
résultats ont mené à une publication [GMR20].

12

CHAPTER 1. INTRODUCTION

Chapitre 8: Ce chapitre présente le travail sur la sécurisation dans le probing model des KEMs Kyber
et Saber. Pour cela, nous introduisons un nouvel algorithme de conversion de masques basé sur le re-calcul
de table. Par la suite, nous introduisons plusieurs algorithmes de comparaison de polynômes sécurisés dans
le probing model. Enfin, en utilisant l’algorithme de conversion, ceux de comparaison et certains de l’état
de l’art, nous sécurisons les KEMs Kyber et Saber dans le probing model.

Les résultats présentés viennent d’une collaboration avec Jean-Sébastien Coron, François Gérard et
Rina Zeitoun. Ces résultats ont mené à une publication [CGM+21a] et une pré-publication [CGM+21b].

13

CHAPTER 1. INTRODUCTION

14

Part I

On using RSA/ECC coprocessor for
lattice-based cryptography

15

Chapter 2

Arithmetic operation of ideal
lattice-based schemes

Ideal lattice-based cryptography is believed to be a promising direction to provide efficient and secure
post-quantum schemes. Indeed, among the seven finalists of the NIST call for proposal, five are based on
ideal lattice-based or assimilated (NTRU) primitives. Moreover, these schemes provide the best trade-off
between efficiency, security and compactness than those based on other post-quantum primitives.

In this part we focus on optimizing the ideal lattice-based cryptosystems for the embedded devices.
More precisely, we repurpose existing hardware coprocessor in order to optimize modular polynomial mul-
tiplication, which is a core operation of the ideal lattice-based schemes.

2.1 Overview of ideal lattice-based schemes operations
Most of the ideal lattice-based schemes define a polynomial ring Rq,δ = Zq[X]/(XN + δ), where δ ∈
{−1, 1}. In this context the vectors manipulated are polynomials. Hence, these schemes perform polynomial
arithmetic like polynomial multiplication, polynomial addition, etc. and modular reductions.

2.1.1 Polynomial multiplication

Among the polynomial operations, the polynomial multiplication is the most expensive in terms of perfor-
mance. Indeed, the complexity of a schoolbook multiplication is O(N2), where N − 1 is the polynomial
degree. Fortunately, optimized polynomial multiplication like Karatsuba, Toom-cook and Number theo-
retic transform (NTT) algorithms have a better asymptotic complexity. For example, the NTT algorithm
has a asymptotic complexity O(N logN) [HvD21]. Most of the lattice-based cryptosystems of the NIST call
for proposal specify the use of one or more of these three algorithms to optimize polynomial multiplication.

Karatsuba & Toom-Cook. Originally Karatsuba and Toom-Cook [GG03] are algorithms to perform
fast integer multiplication. However, these algorithms can be straightforwardly adapted to polynomial
multiplication.

The idea of Karatsuba algorithm is to replace polynomial multiplication between two polynomials of
degree N by several polynomial multiplications and polynomial additions between polynomials of degree
N
2 . Let f(X) = fI(X) + fS(X)XN/2 and g(X) = gI(X) + gS(X)XN/2, where fI ,fS , gI and gS have degree
< N/2. Naively to multiply these two polynomials:

f(X)g(X) = fI(X)gI(X) + (fI(X)gS(X) + fS(X)gI(X))XN/2 + fS(X)gS(X)XN

However, this technique is less efficient than schoolbook polynomial multiplication. Indeed, this technique
requires

(
4×

(
N
2

)2
)

= N2 integer multiplications plus 3 polynomial additions whereas the schoolbook

17

CHAPTER 2. ARITHMETIC OPERATION OF IDEAL LATTICE-BASED SCHEMES

technique requires only N2 integer multiplications. Karatsuba performs fewer multiplications at the cost
of extra additions, subtractions and memory usage:

f(X)g(X) =fI(X)gI(X) + fS(X)gS(X)XN

+ [(fI(X) + fS(X))(gI(X) + gS(X))− fI(X)gI(X)− fS(X)gS(X)]XN/2

This technique can be called recursively. The asymptotic complexity is O(N1.58).
Toom-Cook algorithm is a generalization of Karatsuba. Instead of splitting the polynomials in two,

one can divide them in k. In the context of the NIST lattice-based cryptography, the most used value is
k = 3. In this case the asymptotic complexity is O(N1.42).

Number Theoretic Transform (NTT). NTT is an algorithm allowing to perform fast polynomial
multiplication in Rq,δ [Nus82]. Given a and b ∈ Rq,δ, a × b is computed as NTT−1 (NTT (a) ◦NTT (b)),
where ◦ is the coefficient-wise multiplication. Asymptotically, the complexity of the NTT is O(N logN),
where N − 1 is the polynomial degree.

Theoretically, NTT has the best asymptotic complexity for polynomial multiplication in Rq,δ. However,
this algorithm can be used only in a ring which contains n-th roots of unity, where N is a multiple of n.
This implies in Rq,δ, constraints on the parameters N and q. However, some of lattice-based finalists do
not use parameters compliant with the use of the NTT polynomial multiplication. Hence, NTT cannot be
used to speed-up all the lattice-based schemes.

2.1.2 Modular reduction

As mentioned previously, in the context of the NIST call of proposal, the polynomials are defined over a
modular ring Rq,δ. Therefore, the coefficients require a reduction modulo q and the polynomials require a
reduction modulo XN + δ, δ ∈ {−1, 1}.

The polynomial reduction modulo XN + δ is straightforwardly a subtraction or an addition of the
coefficients of degree greater or equal to N into the coefficients of degree lower than N .

Two cases are to be distinguished for the modular reduction modulo q:

• q is a power of two. Then, the modular reduction is performed with a logical AND between a mask
and the value to reduce.

• q is a prime number. In the context of NIST lattice-based cryptography, the most used algorithms
are Barrett [Bar86] or Montgomery [Mon85] reduction. In Chapter 4 Section 4.1 we present a new
modular reduction which finds applications in lattice-based cryptography.

2.2 Hardware accelerator for modular polynomial arithmetic

Constrained environments like smart cards can be very limited in terms of CPU frequency or amount of
RAM, especially when compared to regular computers. Moreover, the CPU instruction set can be limited.
For example some CPU do not have a native integer multiplication between two registers. Then despite
algorithms with good asymptotic complexities, the implementations can still be slow.

In order to accelerate the costly computations of symmetric and asymmetric cryptography, the con-
strained devices may embed dedicated hardware coprocessors. Most of the industrial coprocessors offer
security features (hardware and software countermeasures against faults and various leaks) and are Com-
mon Criteria EAL5+ or EAL6+ certified [Lom16]: they are not subject to "obvious" leaks, e.g. single trace
attacks without prior learning phase should be hard in practice.

Re-purposing these current coprocessors for the lattice-based schemes allows a faster and cheaper de-
ployment of the post-quantum cryptography. In addition, as several national agencies have stated (ANSSI

18

CHAPTER 2. ARITHMETIC OPERATION OF IDEAL LATTICE-BASED SCHEMES

[ANS22], BSI [BSI20a]), the first deployments of the post-quantum cryptography will be done in an hybrid
approach. This means that systems requiring cryptography must be able to perform classical asymmetric
cryptography (RSA/ECC) and post-quantum cryptography. Therefore, re-purposing current coprocessors
allows to have a single hardware accelerator for classical and post-quantum cryptography.

The current asymmetric coprocessor are designed to speed-up RSA or elliptic curves cryptosystems.
To do so, these components provide a range of (modular) integer operations like multiplication, modular
multiplication, addition, subtraction, shift, etc. Therefore, they are not directly adapted for lattice-based
cryptography.

In the following paragraph, we describe a well known technique coming from computer algebra that
allows to perform polynomial multiplication as integer multiplication. Therefore, as first shown by Al-
brecht et al. in [AHH+19], such technique allows to repurpose existing hardware to speed-up lattice-based
cryptography.

2.2.1 Kronecker substitution

The main idea of this substitution, introduced by Kronecker in [Kro82] and first applied in the univari-
ate polynomial context by Schönhage in [Sch82], is to transform polynomial multiplication to an integer
multiplication by evaluating the operands and to get back to the result using a radix conversion. More
precisely if f(X) = ∑N−1

i=0 fiX
i and g(X) = ∑N−1

i=0 giX
i are two polynomials with non-negative coefficients,

by considering the product of their evaluations at an integer B we obtain the integer

f̃ g̃ =
(

N−1∑
i=0

fiB
i

)(
N−1∑
i=0

giB
i

)
,

that can be expressed in the base B by radix conversion. Then one obtains the evaluation of fg at B,

f̃ g̃ =
2N−2∑
j=0

 j∑
i=0

figj−i

Bj ,where fi = 0, gj = 0 for i, j > N − 1

and thus deduces the value of each coefficient of the corresponding polynomial f(X)g(X). This radix
conversion is possible only if each of the resulting coefficients are smaller than B. The integer B is usually
chosen as a power bℓ where b is equal to 2 or 10 depending on the context. In all cases, ℓ has to be
chosen sufficiently large in order to make the radix conversion effective. More precisely, ℓ could be chosen
as the smallest integer such that bℓ is greater than the maximum size of the coefficients of the resulting
polynomial.

When some of the polynomial coefficients are negative, we have to adapt this reconstruction. In the
following algorithms, we present the evaluation process and the radix conversion for a general polynomial
of degree N −1. We take care of the sign of the coefficients by storing this information in a variable that is
given as one of the outputs of the first algorithm. We explain more precisely this procedure in the sequel.

In the following, we consider that the integers are represented in machine with their two’s complement.
Let a ∈ Z such that −2ℓ−1 ≤ a < 2ℓ−1 then the machine representation of a is 2ℓ + a mod 2ℓ.

The integer obtained after evaluation at 2ℓ of a polynomial of degree N − 1, can be viewed as the
concatenation of N integers of bitsize ℓ. In the following we denote f(2ℓ)i = (f(2ℓ) >> (iℓ))&(2ℓ − 1).

0
f(2ℓ)0

ℓ− 1
f(2ℓ)1

2ℓ− 1
f(2ℓ)2

3ℓ− 1
. . .

Evaluation Algorithm 4 always returns a non-negative integer. Indeed, if the highest degree coefficient
of a polynomial g(X) is negative then the algorithm returns the evaluation of −g(X). The parameter neg
indicates, for the latter radix conversion, if the evaluation algorithm returned the evaluation of g(X) or
−g(X).

19

CHAPTER 2. ARITHMETIC OPERATION OF IDEAL LATTICE-BASED SCHEMES

Algorithm 4 Evaluation
Input: f(X) ∈ Z[X] of degree N − 1, ℓ ∈ N
Output: (−1)neg × f(2ℓ), neg ∈ {0, 1}

1: borrow← 0
2: f(2ℓ)← 0
3: if fN−1 < 0 then
4: neg← 1 //Determine if the last coefficient is negative
5: else
6: neg← 0
7: end if
8: for i = 0 to N − 1 do
9: tmp← (−1)negfi + borrow mod 2ℓ

10: if tmp > 2ℓ−1 then
11: borrow← −1 //If the coeff is negative then a borrow is propagated to the next coeff
12: else
13: borrow← 0
14: end if
15: f(2ℓ)← f(2ℓ) + tmp× 2iℓ

16: end for

Radix conversion Algorithm 5 converts an integer to a polynomial. More precisely, this algorithm
supposes that the input integer comes from a polynomial evaluation. Then, it propagates back carries in
order to compensate the −1 added during the Evaluation. This ensures that f(X) = Radix conver-
sion(Evaluation(f(X), ℓ)).

Algorithm 5 Radix conversion
Input: r(2ℓ) = (r(2ℓ)0, r(2ℓ)1, . . . , r(2ℓ)N−1) and neg ∈ N
Output: r(X) = r0 + r1x+ . . .+ rN−1X

N−1 ∈ Z[X]
1: carry← 0
2: for i = 0 to N − 1 do
3: ri ← r(2ℓ)i + carry mod 2ℓ

4: if ri > 2ℓ−1 then
5: ri ← (−1)neg+1(2ℓ − ri) //Two’s complement representation to integer one
6: carry← 1 //Propagate back carries
7: else
8: ri ← (−1)negri

9: carry← 0
10: end if
11: end for

The following example presents Kronecker Substitution by using a decimal radix.

Example 1. Let f(X) = 8X2 + 3X + 2 and g(X) = −5X2 − 4X + 1. Note that the coefficients ri of the
result are such that −102

2 ≤ ri ≤ 102

2 . Hence, we evaluate f and g at 102 in order to compute f(X)× g(X)
using integer multiplication:

(f(102) = 080302, negf = 0)← Evaluation(f(X), 102)
(−g(102) = 050399, negg = 1)← Evaluation(g(X), 102)

20

CHAPTER 2. ARITHMETIC OPERATION OF IDEAL LATTICE-BASED SCHEMES

After this evaluation, these two integers can be multiplied:

r = f(102)× (−g(102)) = 080302× 050399 = 4047140498

Since the evaluation was done at 102, the resulting polynomial can be interpolated by reading the coefficients
2 digits by 2 digits. The two first digits are 98 ≥ 102

2 , that represents the negative number −(102−98) = −2
and propagates a carry for the next coefficient. After that, we got 4 < 50 plus the previous carry to obtain
5. And so on for the other coefficients. However, negg = 1, then reading the coefficients like this gives
−(f(X)g(X)).

−(f(X)× g(X)) = 40X4 + 47X3 + 14X2 + (4 + 1)X − (102 − 98)
= 40X4 + 47X3 + 14X2 + 5X − 2

f(X)× g(X) = −40X4 − 47X3 − 14X2 − 5X + 2 = Radix Conversion(r, negf ⊕ negg)

The Kronecker Substitution is described in Algorithm 6.

Algorithm 6 Kronecker Substitution
Input: f(X) ∈ Z[X], g(X) ∈ Z[X] and ℓ ∈ N
Output: r(X) = f(X)g(X) ∈ Z[X]

1: (f ′, negf), (g′, negg)← evaluation of f(X), g(X) at 2ℓ

2: r′ ← f ′g′

3: r(X)← radix conversion of (r′, negf ⊕ negg)

The integer multiplication at Line 2 can be performed with the asymmetric coprocessor.
The Algorithm 6 performs a polynomial multiplication in Z[X]. To obtain a polynomial result in

Rq,δ, the reduction modulo Xn + δ and modulo q can be performed on the output polynomial of the
Kronecker substitution. In [AHH+19; BRvV22], the reduction modulo Xn + δ is performed during the
integer multiplication at Line 2.

In Chapter 3, we introduce variants of the Kronecker substitution. These variants use the specific
structure of the secret polynomials of the lattice-based cryptosystems. Depending of the coprocessor
specification, our variants can be faster than the Kronecker substitution.

Afterwards in Chapter 4, we repurpose contemporary coprocessor to compute the evaluation and the
radix conversion. Moreover, we perform the modular reductions modulo q using such coprocessor.

21

CHAPTER 2. ARITHMETIC OPERATION OF IDEAL LATTICE-BASED SCHEMES

22

Chapter 3

Polynomial multiplication using
RSA/ECC coprocessor

Contents
3.1 Algorithms . 25

3.1.1 Notation and preliminaries . 25
3.1.2 Polynomial multiplication using the structure . 25

3.2 Considerations on side-channel attacks . 28
3.3 Complexity . 29

3.3.1 Choice of ℓ . 29
3.3.2 Complexity estimates . 30
3.3.3 Time-memory trade-offs . 32
3.3.4 Polynomial subdivisions . 33

3.4 Assessment . 33
3.4.1 Context . 33
3.4.2 From theory to practice: a methodology . 34
3.4.3 Experiments . 36

The results presented in this chapter are from a joint work with Aurélien Greuet and Guénaël Renault
in [GMR21].

In this chapter we pursue the seminal work of Albrecht et al. in [AHH+19] by introducing two algo-
rithms that perform polynomial multiplication using contemporary coprocessor. Moreover, we asses these
algorithms on a smart card component.

Motivation & previous works Polynomial multiplication is one of the most costly operation for ideal
lattice-based algorithms. A lot of research has been done on the design of efficient hardware to speed-
up polynomial multiplication, see e.g. [ZZY+20; DFA+20; SB20]. However, the transition period should
rely on hybrid mechanisms, mixing both classical and post-quantum asymmetric cryptography. Thus,
both large modular arithmetic and operations related with post-quantum cryptography, like polynomial
multiplication, have to be handled.

Nowadays, hardware accelerating large modular arithmetic are designed and deployed. Then, re-
purposing these coprocessors to optimize polynomial multiplication is relevant in terms of costs and ease
of deployment for an hybrid cryptography world.

The previous work of Albrecht et al. in [AHH+19] optimizes Kyber 1st round algorithm with a
RSA/ECC coprocessor, which handles large-integer arithmetic. They use and adapt techniques introduced

23

CHAPTER 3. POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

in [Har07] which transform polynomial multiplication to an integer multiplication using Kronecker substi-
tution. The work of Wang et al. in [WGY20] re-use the Kronecker substitution with such a coprocessor to
optimize Saber algorithm.

An independent work of Bos et al. in [BRvV22] introduced Kronecker+, a generalization of the Kro-
necker substitution used by Albrecht et al. in [AHH+19]. This generalization allows trade-off between num-
ber of integer multiplications, size of the integers and the number of polynomial evaluations. Depending on
the component and coprocessor specifications, Kronecker+ allows a faster polynomial multiplication than
Kronecker substitution. This article was published at the same time as our work. Therefore Kronecker+
is not compared with our algorithms.

Contribution. In this chapter we follow the approach initiated in [AHH+19] to improve polynomial
multiplication for lattice-based KEMs using a RSA/ECC coprocessor. Such coprocessors usually provide
a few basic operations on large integers: multiplication, addition, subtraction, right/left shift.

Our work focuses on the core operation: unreduced polynomial multiplication, i.e. without reduction
mod q or XN + 1. Indeed, optimizations for modular reductions can be used on top of any unreduced
polynomial multiplication.

More precisely, our work focuses on the unreduced polynomial multiplication when one of the operands
has small coefficients. To take advantage of this structure, we introduce a variant of Kronecker substitution
and an adaptation of the schoolbook multiplication, called Shift&Add. Both methods allow to handle
polynomial multiplication with operations on large integers.

Compared to Kronecker substitution, its variant replaces large integer multiplications with additions,
shifts and multiplications between a large integer and a coefficient. For small coefficients, the latter is
expected to be cheaper than a regular multiplication. Shift&Add handles polynomial multiplications
with only integer additions and shifts. With Shift&Add, the smaller the coefficients are, the fewer
operations are performed.

Thereafter, we propose a methodology to help the comparison between Kronecker substitution, its vari-
ant and Shift&Add, for a given KEM and a given coprocessor. To this end, we give theoretical complexity
estimates for the three algorithms, expressed in terms of basic operations like addition, multiplication, shift
and evaluation. Then, by measuring the performance of these basic operations, a developer can determine
the fastest algorithm without having to fully develop each algorithm.

Finally, we verify that practical results are in accordance with this methodology for seven parameter
sets from the NIST PQC process. In particular, we show that for a given secure comparable compo-
nent, Shift&Add and Kronecker substitution variant are faster than Kronecker substitution as used in
[AHH+19]. We also compare our results with reference software implementations for information purposes
only: it is not our aim to compare the efficiency of our implementation with algorithms using specific CPU
instructions set as one could find in e.g. [GKS20; CHK+20]. Hence, we are here interested by the challenge
to re-purpose secure certified coprocessor deployed in several real-life components for an hybrid transition
approach.

Organization. In Section 3.1 we introduce some notations and describe the two new algorithms that
we use to perform polynomial multiplication with a coprocessor. Section 3.2 is devoted to discuss the
side-channel aspects of the proposed algorithms. In Section 3.3, we show how to determine the evaluation
point and establish the complexity of our two algorithms plus the Kronecker substitution in terms of basic
coprocessor operations. Finally, in Section 3.4, we assess our algorithms with different set of parameters
and show that our practical results are consistent with our theoretical study.

24

CHAPTER 3. POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

3.1 Algorithms

In this section we present the algorithmic material used in this work. We first detail some notations and
well known algorithmic techniques that will be developed in our contributions presented at the end of this
section.

3.1.1 Notation and preliminaries

The arithmetic that we study comes naturally from the definition of the ideal lattice-based cryptography
and is given as follows.

Rings. For an integer q ≥ 1, let Zq be the residue class group modulo q such that Zq can be represented
as {0, . . . , q − 1}. We define Rq,1 being the polynomial ring Rq,1 = Zq[X]/(XN + 1).

Modular reduction. Let a, b ∈ N, we denote by a mod (+)b the unique integer a′ ≡ a mod b such that
0 ≤ a′ < b and a mod (−)b the unique integer a′ ≡ a mod b such that − b

2 ≤ a′ < b
2 . In the following, we

denote by a mod b = a mod (+)b

Polynomials A polynomial in Rq,1 is represented by a polynomial of degree at most (N − 1) with
coefficients in Zq. Given f ∈ Rq,1, we denote by fi the coefficient associated with the monomial Xi.

Polynomial representation. Polynomials are represented as byte strings. Let f(X) be a polynomial
of degree N − 1 with all its coefficients 0 ≤ fi ≤ β. Then, each coefficient is encoded on ⌊log2(β)⌋+ 1 bits.
The coefficients are packed as a string of size N(⌊log2(β)⌋+ 1) bits to represent f(X).

Let g(X) be a polynomial of degree N − 1 with all its coefficients − δ
2 ≤ gi ≤ δ

2 . Then, each coefficient
is encoded on ⌊log2(δ)⌋ + 1 such that it is represented as gi mod (+)2⌊log2(δ)⌋+1. As previously, all the
coefficients are packed as a string of size N(⌊log2(δ)⌋+ 1) bits to represent g(X).

Example 2. Let f(X) be a polynomial with non-negative coefficients lower or equal to q− 1 = 3328, then
each coefficient is encoded on ⌊log2(3328)⌋+ 1 = 12 bits:

0
f0

11
f1

23
f2

35
. . .

Large integer operations. In the remainder of this chapter , we introduce two algorithms: Kronecker
substitution variant (Alg. 7) and Shift&Add (Alg. 8). For these algorithms the integer operations (mul-
tiplication, addition, subtraction, shift) are implicitly performed on large integers and correspond to the
operations provided by a hardware coprocessor.

In the following Kronecker substitution or KS refer to the Algorithm 6.

3.1.2 Polynomial multiplication using the structure

The polynomials arising in ideal lattice based cryptosystems are structured (the coefficients follow a cen-
tered binomial distribution), we show in the sequel how to gain in efficiency by using them.

25

CHAPTER 3. POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Notations To perform an arithmetic operation using a hardware accelerator, the operands and an opcode
for the operation to perform must be set into the coprocessor. When the choice of the operation depends
on the value of a secret, we denote these sequences of instructions by c← Op (a, b), where Op ∈ {Add, Sub}
represents the opcode. This notation allows to simplify the constant-time implementation of an algorithm
(see Section 3.1.2 below).

In the following algorithm descriptions, @var denotes the address of the variable var. Given a pointer
ptr, *ptr stands for the value stored at address ptr. The bitwise exclusive-or is denoted by ⊕, the bitwise
logical and by & and a >> ℓ (resp. a << ℓ) stands for the logical right shift (resp. logical left shift) by ℓ
bits of the value a.

Kronecker substitution variant Classical Kronecker substitution multiplies two integers of length
bℓ × N , where bℓ is the evaluation point B and N − 1 the degree of the polynomials. As mentioned in
Section 2.2.1 page 19, ℓ is determined by the maximum coefficient value of the result. In this variant, N
multiplications are done on an integer of length bℓ ×N by an integer of length bk with k < ℓ.

A multiplication of two large integers is replaced by N multiplications of a large integer by a small
coefficient and N additions/subtractions and shifts. This technique is of interest when considering the
multiplication of a polynomial with small coefficients by a generic polynomial. Such multiplications are
used in some lattice-based key exchanges. Algorithm 7 multiplies two polynomials of degree N − 1 such
that (|fg(X)|)i < 2ℓ.

Algorithm 7 Kronecker substitution variant
Input: f(X) ∈ N[X], g(X) ∈ Z[X] and N, ℓ ∈ N
Output: r(X) = f(X)g(X)

1: (f(2ℓ), negf)← evaluation of f(X) at 2ℓ

2: for i = N − 1 to 0 do
3: if gi ≥ 0 then
4: Op← Add // Addition will be performed line 9
5: else
6: Op← Sub // Subtraction will be performed line 9
7: end if
8: c← |gi|
9: r(2ℓ)← Op

(
r(2ℓ), c× f(2ℓ)

)
10: r(2ℓ)← r(2ℓ) << ℓ
11: end for
12: r(X)← radix conversion of (r(2ℓ), negf)

Example 3. Let f(X) = 8X2 + 3X + 2 and g(X) = g2X
2 + g1X + g0 = 5X2 + 4X + 1.

Then, f(102)g(102) = (f(102)× g2)(102)2 + (f(102)g1)102 + f(102)g0

= (080302× 5)(102)2 + (080302× 4)102 + 080302× 1
= 4015100000 + 32120800 + 080302 = 4047301102

The resulting polynomial is recovered with radix conversion like in classical Kronecker.

Shift&Add We now present an adaptation of the schoolbook polynomial multiplication, denoted Shift&Add,
where polynomials are represented as integers, after a Kronecker-like evaluation. It relies only on additions
and left shifts. This technique is of interest when one of the operands has small coefficients.

The basic idea is explained in Example 4 while a full description is given in Algorithm 8.

26

CHAPTER 3. POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Example 4. Let f(X) = 9X2 + 8X + 3 and g(X) = g2X
2 + g1X + g0 = 2X2 − 1. Let r = 0. The

computation of f(X)× g(X) is done as follows:

Step 1. Evaluate f : f(103) = 009008003

Step 2. Since g2 = 2:

1. r ← r + f(103)×
(
103)2;

2. r ← r + f(103)×
(
103)2;

Step 3. Since g1 = 0, do nothing;

Step 4. Since g0 = −1, r ← r − f(103)×
(
103)0;

This leads to

f(103)g(103) = 2f(103)(103)2 − f(103)
= 2(009008003× (103)2)− 009008003 = 18015996991997

By radix conversion,

f(X)g(X) = 18X4 + (15 + 1)X3 − (103 − (996 + 1))X2 − (103 − (991 + 1))X − (103 − 997)
= 18X4 + 16X3 − 3X2 − 8X − 3

Algorithm 8 Shift&Add
Input: f(X) ∈ N[X], g(X) ∈ Z[X] with all gi ∈ {− δ

2 , . . . , 0, . . . ,
δ
2} and N, ℓ, q ∈ N

Output: r(X) = f(X)g(X)
1: (f(2ℓ), negf)← evaluation of f(X)
2: tmp← [] // dummy buffer for constant time implementation
3: for i = N − 1 to 0 do
4: if gi ≥ 0 then
5: Op← Add // addition will be done line 15
6: else
7: Op← Sub // subtraction will be done line 15
8: end if
9: for j = 0 to δ

2 − 1 do
10: if j < |gi| then
11: buff← @r(2ℓ) // Op in line 15 will be kept
12: else
13: buff← @tmp // Op in line 15 will be discarded
14: end if
15: *buff← Op

(
r(2ℓ), f(2ℓ)

)
16: end for
17: r(2ℓ)← r(2ℓ) << ℓ
18: end for
19: r(X)← radix conversion of (r(2ℓ), negf)

27

CHAPTER 3. POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Isochronous implementations. As it will be explained in Section 3.2, side-channel attacks must be
taken into consideration. Hence, Algorithms 7 and 8 are intended to be isochronous: the execution time
does not depend on a secret value. In the sequel we assume that for a given operands size, additions and
subtractions have same execution time.

At each loop iteration, the same number of additions or subtractions and shifts are performed. However,
the time taken to execute conditional assignments (lines 3 to 7 in Algo. 7, lines 4 to 8 and lines 10 to 14
in Algo. 8) can depend on the condition, that itself depends on a secret. Likewise, the computation of
absolute value (line 8 in Algo. 7 and line 10 in Algo. 8) must be handled carefully to be isochronous.

We show in Algorithm 9 how to achieve the pointer selection for lines 10 to 14 in Algorithm 8. This
pointer selection is done without branches and without table accesses. Thus, its execution time depends
neither on any secret value nor on cache access. Since Algorithm 9 computes an absolute value and performs
a conditional assignment, the same techniques can be used to make Algorithms 7 and 8 isochronous.

Algorithm 9 Isochronous pointers selection

Input: Coefficient gi ∈
{
− δ

2 , . . . ,
δ
2

}
encoded on k = ⌊log2(δ)⌋+1 bits, j ∈ N, R = bitsize of CPU registers.

Output: buff←
{

@r(2ℓ) if |gi| < j
@tmp else.

1: s← gi >> (k − 1) // 0 if gi ≥ 0, 1 else
2: t← (s⊕ 1)− 1 // 0 if gi ≥ 0, 2R − 1 = 0xFF...FF else
3: t← t &

(
2k − 1

)
// previous result on k bits

4: abs = (t⊕ gi) + s // |gi| = gi if gi ≥ 0, gi + 1 =
(
gi ⊕

(
2k − 1

))
+ 1 else

5: t←
(

(abs− j) >> (R− 1)
)
− 1 // 0 if |gi| < j, 2R − 1 = 0xFF...FF else

6: switch = @r(2ℓ)⊕ @tmp
7: buff = (switch & t)⊕ &r(2ℓ) // @r(2ℓ) if |gi| < j, @tmp else

3.2 Considerations on side-channel attacks

This work focuses on implementations on embedded devices, thus the side-channel aspect must be consid-
ered.

Simple Attacks. To avoid simple attacks like SPA, we make our multiplication algorithms isochronous:
the execution time does not depend on any secret. For most of the hardware accelerators, large-integer
arithmetic timings depend only on the operands size. Hence, we assume that the execution time of shift,
addition, subtraction and multiplication on large integers does not depend on the processed data. Moreover,
exploiting secure coprocessors leaks by SPA during their computation is hard in practice. Then, we assume
that an hardware addition cannot be distinguished from a hardware subtraction with a simple power
consumption or EM attack. In addition, in our experiments, the CPU is set to perform the multiplication
and division between registers in constant time. These instructions are used to compute modular reductions.

Under these assumptions, it is clear that a straightforward implementation of Kronecker substitution
does not have any operation depending on the manipulated data.

In addition, we explained in Section 3.1.2 and showed in Algorithm 7 and 8 how to compute isochronous
KSV and Shift&Add, based on techniques described in Algorithm 9. With such techniques and since
by assumption, addition cannot be distinguished from a subtraction, from an attacker point of view, the
execution of the same instructions are performed at each loop iteration in Algorithm 8 regardless of the
secret. Thus, SPA-like attack cannot reveal secret information.

28

CHAPTER 3. POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Differential/Correlation Attacks. Several physical attacks against post-quantum cryptosystems have
been studied [CCA+20]. Among them, some correlation attacks have been done on polynomial multiplica-
tion, see e.g. [EFG+17; OSP+18a] [RJH+18; RdCR+16; RRD+16] and references therein.

These attacks are based on the fact that power consumption or electromagnetic emissions are correlated
with the data being manipulated. Such attack targets an intermediate variable of the form s×m, where s
is a small part of the secret and m a known input, like a message or a public key. Since s is small and m
is known, the attacker can make a guess on s, compute s×m and predict, for a given leakage model, the
expected consumptions or emissions for a series of different m’s. Then, using physical measurements, like
power consumption traces, and statistical tools, the correct key guess can be found: it is likely to be the
one for which the correlation between predictions and real measurements is the strongest.

Masking is the classical countermeasure against such attacks [MOP08]. The sensitive data is split in
two shares, each share being manipulated individually. For multiplication in lattice-based cryptography,
the secret polynomial s has a structure, e.g. small coefficients, that can be exploited for performance
optimization. Hence, to keep this structure, one can split the known part: for a given public value m,
consider a random m1 and set m2 = m − m1. Then s × m can be computed as (s×m1) + (s×m2),
each (s×mi) being processed independently. Since m1 and m2 are unknown and appear to be uniformly
distributed, the computation of (s×mi) can not be correlated to s ×m, so that order 1 attacks will fail
[MOP08]. With this countermeasure, the overhead is roughly an extra polynomial addition and an extra
polynomial multiplication.

In [RdCR+16], the additively-homomorphic property of R-LWE schemes is used to mask, by adding
the encryption of a random message before the decryption process. This random message encryption can
be precomputed, so that the overhead is only an extra addition.

Recall that our goal is to determine, given a lattice-based scheme and a device, the fastest polynomial
multiplication. For both kind of masking, the overhead does not depend on the choice of the multiplication
algorithm: if unmasked multiplication A is faster than unmasked multiplication B, then the same result
holds for their masked versions. Then in the sequel, we focus on comparing the basic unmasked versions
of polynomial multiplication algorithms.

3.3 Complexity

This section is devoted to compare the performance of Kronecker substitution (KS), Kronecker substitution
variant (KSV) and Shift&Add when using an existing RSA/ECC hardware accelerator. Hence, the
complexity is given in terms of basic arithmetic operations performed by such accelerators: addition,
multiplication and multiplication by a power of 2 (left shift) on large integers. Moreover, the number of
evaluation differs between KS, KSV and Shift&Add. Then, the evaluation step is considered in the
following complexities. Since the cost of these operations depends on the operand sizes, we first determine
the minimal value for the parameter ℓ.

Our work is focused on lattice-based key exchange submitted to the NIST PQC standardization process.
The polynomial multiplication of these key exchanges is over Rq,1 = Zq[X]/(XN + 1). To compute such a
multiplication, we first multiply over Z[X]. The result is then reduced modulo XN + 1 and each coefficient
is reduced modulo q. Since this reduction step is the same for the three methods, its cost is not relevant for
a theoretical comparison between them. Hence, it is not included in the complexity computation. Likewise,
radix conversion step is the same and is not included in the complexity. However, these costs are considered
in the performance results of Section 3.4.

3.3.1 Choice of ℓ

As explained in Section 3.1, polynomial multiplication can be reduced to integer multiplication. To this
end, the polynomials are evaluated at a point such that the result can be recovered by radix conversion.

29

CHAPTER 3. POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

This evaluation point is determined by the maximum coefficient of the multiplication result.
In the following, we suppose that the polynomial evaluation is done by Algorithm 4. Then, each

evaluated polynomial is represented as a non-negative integer.

Proposition 1. Let f and g be polynomials of degree N−1 such that for all i ∈ {0, . . . , N − 1} , 0 ≤ fi ≤ β
and − δ

2 ≤ gi ≤ δ
2 . Then

• ∀i ∈ {0, . . . , 2N − 2} , |(f(X)g(X))i| < 2ℓ−1, where ℓ = ⌊log2(Nβδ)⌋+ 1.

• Each coefficient of f(X)g(X) is encoded on at most ℓ bits.

• log2(f(2ℓ)) < Nℓ and log2(
∣∣∣g(2ℓ)

∣∣∣) < Nℓ.

Proof. Let r(X) = f(X)g(X). Then r(X) is of degree 2N − 2 and its k-th coefficient is rk =
k∑

i=0
figk−i.

To prove the first assertion, we first consider the coefficients rk for k ≤ N − 1. Since for all i, 0 ≤ fi ≤ β
and |gi| ≤ δ/2, we get, for k ≤ N − 1:

|rk| =
∣∣∣∣∣

k∑
i=0

figk−i

∣∣∣∣∣ ≤
k∑

i=0
|fi| |gk−i| ≤

k∑
i=0

β
δ

2 ≤
N−1∑
i=0

β
δ

2 ≤ Nβ
δ

2 .

For k ≥ N , note that since f (resp. g) has degree N − 1, fi = 0 (resp. gi = 0) for i ≥ N . Hence,

|rk| =
∣∣∣∣∣

k∑
i=0

figk−i

∣∣∣∣∣ =
∣∣∣∣∣
N−1∑
i=0

figk−i +
k∑

i=N

figk−i

∣∣∣∣∣ =
∣∣∣∣∣
N−1∑
i=0

figk−i

∣∣∣∣∣ ≤ Nβ δ2 .
Thus, for k ∈ {0, . . . , 2N − 2} , |rk| ≤ Nβ δ

2 < 2⌊log2(Nβ δ
2)⌋+1 = 2ℓ−1. Each coefficient of the result is

−Nβ δ
2 ≤ rk ≤ Nβ δ

2 < 2ℓ−1, then to handle the negative case each coefficient of the result is at most
encoded on ℓ bits.

We prove now the third assertion.

f(2ℓ) =
N−1∑
i=0

fi2iℓ ≤ (2ℓ − 1)
N−1∑
i=0

2iℓ = (2ℓ − 1) 2Nℓ − 1
(2ℓ − 1) = 2Nℓ − 1 < 2Nℓ

Thus, log2

(
f(2ℓ)

)
≤ Nℓ. Likewise, log2

(∣∣∣g(2ℓ)
∣∣∣) ≤ Nℓ.

Remark 1. The previous proposition applies with polynomial f(X) with non-negative coefficients. In our
context, the negative coefficients of a polynomial in Rq,1 can be replaced with their non-negative equivalent
in {0, . . . , q − 1}.

3.3.2 Complexity estimates

In this section, we estimate the complexity of our multiplication algorithms. We express them in terms of
the following basic operations. Let E(N) be the evaluation complexity function for a polynomial of degree
N − 1. Let M(x, y) and A(x, y) be the multiplication and addition (or subtraction) of integers complexity
functions depending on the bitsize of the inputs.

Example 5. Let a and b be two integers, let x = ⌊log2(a)⌋ + 1 and y = ⌊log2(b)⌋ + 1. Then the cost of
computing a× b (resp. a+ b) is M(x, y) (resp. A(x, y)).

Likewise, S(x, s) denotes the shift complexity function where x is the bitsize of the integer to shift on
s bits.

30

CHAPTER 3. POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Kronecker Substitution (KS)

Proposition 2. Let f(X) and g(X) be two polynomials of degree N−1. Each coefficient of f(X) is defined
over N and each coefficient of g(X) is defined over Z. If for a given ℓ every coefficient |(f(X)g(X))i| is
lower than 2ℓ−1, then the multiplication complexity of f(X)g(X) with Kronecker substitution is 2E(N) +
M(Nℓ,Nℓ).

Proof. Let f(X) and g(X) be polynomials of degree N − 1. To compute f(X) × g(X) with Kronecker
substitution, the following steps are performed:

1. Evaluation of f(X) and g(X) at 2ℓ. According to Proposition 1, log2

(
f(2ℓ)

)
≤ Nℓ and log2

(∣∣∣g(2ℓ)
∣∣∣) ≤

Nℓ.

2. Multiplication of two integers of bitsize Nℓ.

3. Radix conversion of the coefficients. As mentioned above, this step is omitted in the complexity.

Then, Kronecker substitution complexity is 2E(N) +M(Nℓ,Nℓ).

Kronecker Substitution Variant (KSV)

Proposition 3. Let f(X) and g(X) be polynomials of degree N − 1. Each coefficient of f(X) are defined
over N and each coefficient of g(X) are defined over Z. If for a given ℓ every coefficient |(f(X)g(X))i| is
lower than 2ℓ−1 and all coefficients of g(X) fit on k bits, then the polynomial multiplication complexity of
f(X)g(X) with Kronecker substitution variant is E(N) +N(M(Nℓ, k) + S(Nℓ, ℓ) +A(Nℓ,Nℓ)).

Proof. Let f(X) and g(X) be polynomials of degree N − 1, such that each bit representation for gi fits on
k bits. Computing f(X)× g(X) with Kronecker substitution variant is done by doing:

1. The evaluation of f(X) at 2ℓ. Then, log2

(
f(2ℓ)

)
≤ Nℓ.

2. A "for" loop with N iterations, each step being:

• A multiplication between an integer of bitsize Nℓ and a coefficients of bitsize k,
• An addition or subtraction between two integers of size Nℓ,
• A ℓ-shift of an integer of bitsize Nℓ.

3. A radix conversion of the coefficients. As mentioned above, this step is omitted in the complexity.

Then the complexity of the multiplication using Kronecker substitution variant is E(N) +N(M(Nℓ, k) +
S(Nℓ, ℓ) +A(Nℓ,Nℓ)).

Shift&Add

Proposition 4. Let f(X) and g(X) be polynomials of degree N − 1 with coefficients in Z. If for a given ℓ
every coefficient |(f(X)g(X))i| is lower than 2ℓ−1 and all coefficients of g(X) belong to {− δ

2 , . . . , 0, . . . ,
δ
2},

then the polynomial multiplication in Shift&Add costs E(N) +N(S(Nℓ, ℓ) + δ
2A(Nℓ,Nℓ)).

Proof. Let f(X), g(X) be polynomials of degreeN−1. Algorithm Shift&Add computes the multiplication
as follow:

1. Evaluate f(X) at 2ℓ. Then, log2

(
f(2ℓ)

)
≤ Nℓ .

2. A "for" loop called N times, each step being:

31

CHAPTER 3. POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

• δ
2 additions or subtractions between two integers of size Nℓ.

• A ℓ-shift of an integer of bitsize Nℓ.

3. Radix conversion of the coefficients. As mentioned above, this step is omitted in the complexity.

Then Shift&Add complexity is E(N) +N(S(Nℓ, ℓ) + δ
2A(Nℓ,Nℓ)).

Complexities comparison Let f(X) and g(X) be polynomial of degree N − 1. Assume that the
coefficients of g(X) belong to {− δ

2 , . . . , 0, . . . ,
δ
2} and that for all i ∈ {0, . . . , 2N − 1} , |(f(X)g(X))i| ≤ 2ℓ−1.

To choose the most efficient algorithm for polynomial multiplication we need to compare the three following
complexities, depending on the component specification.

• Shift&Add: E(N) +N(S(Nℓ, ℓ) + δ
2A(Nℓ,Nℓ)).

• Kronecker substitution: 2E(N) +M(Nℓ,Nℓ).

• Kronecker substitution variant: E(N) +N(M(Nℓ, k) + S(Nℓ, ℓ) +A(Nℓ,Nℓ)).

In Section 3.4.2, we explain how to instantiate the different basic complexities in order to compare the
above estimations. We focus our study on the execution time and do not provide memory consumption
estimates.

3.3.3 Time-memory trade-offs

The amount of RAM in embedded devices can be very limited. However, some devices allow a larger RAM
consumption which can be utilized to speed-up our algorithms.

Polynomial representation. In Section 3.1 we describe our compact polynomial representation. This
representation is useful to optimize our memory consumption but not to access to the polynomial coeffi-
cients. The evaluation and radix conversion require a lot of accesses to the coefficients, thus representing
these coefficients as a machine word (e.g 32-bit) improves significantly the performance of these algorithms.
Moreover, for some components, using a machine word representation allows to replace shift by pointers
arithmetic.

Precomputation. In our context, polynomial multiplication is between f(X) which is a random poly-
nomial over Rq,1 and g(X) which has coefficients in {− δ

2 , . . . ,
δ
2}, where δ is close to 0. Then, we can

precompute δ
2 − 1 multiples of f(X): 2 × f(X), . . . , δ

2 × f(X) to reduce the number of operation to one
addition/subtraction and one shift of each iteration of Shift&Add loop "for".

Positive case. As mentioned above, one of the polynomials can have negative coefficients. That im-
plies to handle carry propagation during the evaluation, radix conversion or the subdivision. The carry
propagation requires an important amount of software implementation to be handled. However, KSV
and Shift&Add can perform the polynomial multiplication without negative coefficient and then without
carry propagation. Indeed, as the cost of a supplementary evaluation/storage of −f(X) mod q, which is
the computation q − fi for all the coefficients of f , KSV (resp. Shift&Add) multiplies (resp. add) f(X)
when the coefficient of g(X) is non-negative and −f(X) mod q when the coefficient is negative.

32

CHAPTER 3. POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

3.3.4 Polynomial subdivisions

RSA/ECC coprocessors perform large integers arithmetic with data in buffer whose size has a fixed limit. In
our algorithms, after polynomial evaluation, the resulting integer is generally too large to fit in these buffers.
In this case, a subdivision is performed on the polynomials before evaluation. Let f(X) = fI + fSX

N/2

and g(X) = gI + gSX
N/2, where fI ,fS , gI and gS have degree < N/2. We consider the following methods

to subdivide:

Naive: f(X)g(X) = fIgI + (fIgS + fSgI)XN/2 + fSgS

Karatsuba: f(X)g(X) = fIgI + ((fI + fS)(gI + gS)− fIgI − fSgS)XN/2 + fSgSX
N

Karatsuba performs fewer multiplications at the cost of extra additions, subtractions and memory
usage. Depending on the coprocessor specification, it can be slower than the naive subdivision.

Impact on ℓ Subdividing d times divides the value of N by 2d. However, for the naive subdivision it
does not reduce the value of ℓ = ⌊log2(Nβδ)⌋ + 1. Indeed, after recombination the result’s bitsize is the
same as a multiplication without subdivision.

Karatsuba requires the multiplication (fI + fS)(gI + gS), which increases the value of the evaluation
point by one. In fact, let fI , fS have coefficients in {0, . . . , β} and gI , gS have coefficients in {− δ

2 , . . . ,
δ
2}.

Then, (fI + fS) have coefficients in {0, . . . , 2β} and (gI + gS) have coefficients in {−δ, . . . , δ}. Thus,
ℓ′ = ⌊log2(N

2 · 2β · 2δ)⌋+ 1 = ℓ+ 1. More generally, if d subdivisions are required, then ℓ′ = ℓ+ d must be
used instead of ℓ.

Impact on the complexities Subdividing allows to perform a large integer multiplication by few multi-
plications, additions and subtractions on smaller integers. KS can require one more subdivision than KSV
and Shift&Add to avoid a lot of load, store and carry propagation done in software. Hence, to determine
the most efficient algorithm, with the requirement of d subdivisions for KSV and Shift&Add and d′

subdivisions for KS, we only need to compare the following complexities, depending on the component
specification.

• Shift&Add: E(N) + xd
(

y
xA(N

2d ℓ,
N
2d ℓ) + N

2d (S(N
2d ℓ, ℓ) + δ

2A(N
2d ℓ,

N
2d ℓ))

)
.

• Kronecker substitution: 2E(N) + xd′
(

y
xA(N

2d ℓ,
N
2d ℓ) +M(N

2d+1 ℓ,
N

2d+1 ℓ)
)
.

• Kronecker substitution variant: E(N) + xd
(

y
xA(N

2d ℓ,
N
2d ℓ) + N

2d [M(N
2d ℓ, k) + S(N

2d ℓ, ℓ) +A(N
2d ℓ,

N
2d ℓ)]

)
.

The values x and y are, respectively, the number of sub-multiplications and the number of additions (or
subtractions) required by the subdivision method. Hence, for the naive subdivision x = 4 and y = 3 and
for Karatsuba x = 3 and y = 6.

In this chapter we use the naive or Karatsuba to subdivide but the subdivision can be achieved with
other methods.

3.4 Assessment

3.4.1 Context

We evaluate three lattice-based algorithms: LAC, Kyber and Saber. They have been submitted to the
NIST PQC standardization [BMD+21; XYD+19; BDK+18]. Saber and Kyber passed the 2nd round and
they are finalists of the 3rd round. LAC did not pass the NIST 2nd round but is one of the winners of the
Chinese cryptographic competition and thus remains relevant to study.

33

CHAPTER 3. POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Parameters In the following, the Kyber 1st round specifications are considered for Kyber512R1 and
Kyber1024R1, in order to compare our results with the previous work in [AHH+19]. For the other schemes,
2nd round specifications are considered. However, Saber 3rd round parameters and the last two Kyber’s 3rd
round security levels parameters are the same as 2nd round. Our results come from a device with dedicated
hardware coprocessor for large-integer operations (multiplication, addition, subtraction, right/left shift).

In the following results we consider the multiplication of f(X) by g(X) over Rq,1 = Zq[X]/(XN + 1),
where:

1. f(X) is of degree N − 1 with coefficients in {0, . . . , q − 1}.

2. g(X) is of degree N − 1 with coefficients in
{

−δ
2 , . . . ,

δ
2

}
.

3. The evaluation point is 2ℓ, where the value of ℓ is given by Proposition 1.

Parameters for each candidate are represented in the following table.

Set/Param N q δ ℓ

Kyber512R1 256 7681 10 25
Kyber1024R1 256 7681 6 24

KyberR2 256 3329 4 22
Light Saber 256 213 10 25
Fire Saber 256 213 6 24

Lac128 512 251 2 18
Lac256 1024 251 2 19

Target Assessments are done on a smart card component. Due to intellectual properties reasons, the
component name or a detailed description cannot be given. However, details on our analysis are given,
allowing it to be reproduced on any component embedding a similar coprocessor designed for large integer
arithmetic. This component is used in real-life products like bank cards, passports, secure elements,
etc. It embeds hardware accelerators for asymmetric cryptography computations, including large-integer
arithmetic.

In the following, the chip is referred as "Component A".

Component A. The Component A is a ARM 32-bit architecture. Its asymmetric coprocessor can
handle 2048-bit operands. The addition of two 2048-bit integers is done in less than ten cycles, while the
multiplication takes several thousand cycles. Since the addition is several thousand times cheaper than the
multiplication, Shift&Add is expected to be faster than Kronecker substitution when one operand has
coefficients close to 0.

The coprocessor can also multiply a coefficient (of bit size lower than 32 bits) to a 2048-bit operand, that
is of interest with Kronecker substitution variant. Then, KSV is expected to be faster than Shift&Add
and Kronecker substitution when one operand has small coefficients but not too close to 0.

3.4.2 From theory to practice: a methodology

In this section, we propose a methodology to determine, with a minimal amount of implementation, which
polynomial multiplication algorithm is the fastest on a given component and for a given set of parameters.
This is done by measuring the timings of basic operations (integer multiplication, addition and subtraction,
shift and evaluation) and plugging them into the complexities from Section 3.3. Hence, this ease the
algorithm choice without coding all the multiplication algorithms. This can help a developer to quickly
decide which algorithm is the best choice.

34

CHAPTER 3. POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

We detail the methodology for Kyber512R1 parameters on component A. We focus on the compar-
ison between Kronecker substitution and Shift&Add and between Kronecker substitution variant and
Shift&Add.

Component A’s coprocessor can handle operands size of 2048 bits. For Kyber512R1 parametersN = 256
and ℓ = 25, the integers after polynomial evaluation are of size Nℓ = 6400 bits. Thus, we subdivide the
polynomial to perform our algorithms (see Section 3.3.4).

On this component, the naive subdivision is more efficient than Karatsuba. For Kronecker substitution
we subdivide until the result f(X)g(X) can fit in the coprocessor. That requires 3 subdivisions to get N

23 ℓ =
800 bitsize per operand. For Shift&Add and KSV, we subdivide until the subdivisions of polynomial
f(X) can fit in the coprocessor. That requires 2 subdivisions of size 1600-bit. Then, KS requires one more
subdivision than KSV and Shift&Add to avoid a lot of load, store and addition in software. Indeed, KS
result doubles the size of the operand while each iteration of KSV and Shift&Add increases only by ℓ
the result size, which can be handled without an important amount of software manipulation.

Naive subdivision transforms large arithmetic operations to 4d smaller arithmetic operations, where d
is the required depth. This leads to the following expressions for Shift&Add, KS and KSV complexities:

S&A : 42
(
N

22 [δ2A(1600, 1600) + S(1600, ℓ)]
)

+ 12A(1600, 1600) + E(N)

KS : 43M(800, 800) + 48A(1600, 1600) + 2E(N)

KSV : 42
(
N

22 [M(1600, ℓ) + S(1600, ℓ) +A(1600, 1600)]
)

+ 12A(1600, 1600) + E(N)

The value 12A(1600, 1600) and 48A(1600, 1600) are due to the recombination of the naive subdivision
but they are negligible. Let C(S&A) = N

22

(
δ
2A(1600, 1600) + S(1600, ℓ)

)
+ 3A(1600, 1600). We measure

the execution time corresponding to C(S&A) as a reference. Then we measure E(N), M(800, 800) and
M(1600, ℓ) + S(1600, ℓ) + A(1600, 1600) and express them in terms of C(S&A).These measurements are
obtained with an emulator. We get that:

E(N) ≃ 1.34× C(S&A)
M(800, 800) ≃ 0.20× C(S&A)

N

22 (M(1600, ℓ) + S(1600, ℓ) +A(1600, 1600)) ≃ 0, 86× C(S&A).

It follows the following estimations for Shift&Add, KS and KSV:

S&A: 42C(S&A) + E(N) ≃ 17.34× C(S&A)
KS: 43M(800, 800) + 2E(N) ≃ 15.48× C(S&A)

KSV: 42(0.86× C(S&A)) + E(N) ≃ 15.1× C(S&A)

Hence, in this configuration (Kyber512R1 parameters), KSV is expected to be the fastest algorithm for
these parameters.

Following this methodology, we get the expected ratios in Table 3.1 between Kronecker substitution
and Shift&Add and between KSV and Shift&Add, all measurements being obtained with emulators.

KS/S&A KSV/S&A KS/S&A KSV/S&A
Kyber512R1 0.89 0.87 Fire Saber 1.17 1.1
Kyber1024R1 1.17 1.1 Lac128 1.45 1.37

KyberR2 1.26 1.2 Lac256 1.41 1.42
Light Saber 0.89 0.87

Table 3.1: Expected ratio based on basic operations performances for component A

35

CHAPTER 3. POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

3.4.3 Experiments

In the sequel, assessments are done using an emulator and we measure the performance of the following:

• Algorithms relying on hardware coprocessors (KS, KSV, Shift&Add)

• Software implementation of schoolbook multiplication (Saber, Lac)

• Software implementation of NTT (Kyber)

The NTT implementation used for Kyber512R1 and Kyber1024R1 is detailed in [LN16]. For KyberR2, the
reference implementation of Kyber 2nd round is used [BDK+18]. We measure NTT performance with the
requirement of frequency transformations of both polynomials (w/ NTT(A)) or with only one frequency
transformation (w/o NTT(A)).

Our hardware polynomial multiplications consider that the inputs are not in the NTT domain. Hence,
in the case of a Kyber specification compliant implementation additional inverses NTT would have to be
performed, which implies that a slower hardware polynomial multiplication than a NTT one.

For LAC software naive multiplication, we report the result for a C implementation and an optimized
version in assembly (asm).

Software implementation results are given for information purposes and are not specifically optimized.
Indeed, our objective is to provide algorithms which can be applied on many as possible components using
a RSA/ECC coprocessors. Therefore, optimization for software polynomial multiplication using specific
instructions set is out of our scope.

Our results are obtained by computing a complete polynomial multiplication over Rq,1 with a compact
representation as mentioned in Section 3.1. The following timings take into account the computation done
by the CPU and the coprocessor. Moreover, any optimization of the reduction modulo q and XN + 1 are
done. For the same reason, we avoid any optimization which requires a specific software instructions set.
However, software optimization for modular reductions can be used on top of any polynomial multiplication
algorithm.

Param/Algo KS KSV S&A NTT (w / w/o NTT(A)) Naive
Kyber512R1 588k 556k 594k 1139k / 793k N/A
Kyber1024R1 572k 539k 500k 1139k / 793k N/A

KyberR2 535k 512k 441k 998k / 704k N/A
Light Saber 580k 546k 585k N/A 11691k
Fire Saber 563k 530k 493k N/A 11440k

Lac128 1594k 1586k 1285k N/A 15560k / 1683k (asm)
Lac256 6209k 6310k 4980k N/A 62340k / 7494k (asm)

Table 3.2: Polynomial multiplication over Rq,1 cycle count on component A

Practical results are given in Table 3.2. As expected for the component A regarding Table 3.1,
Shift&Add is the fastest algorithm for 5/7 parameter sets and KSV is the fastest algorithm for the
2 others. Hence, for this component and these parameters, Shift&Add or KSV are faster than the
hardware multiplication introduced in [AHH+19].

Note that the theoretical ratios from Table 3.1 are not the exact same ratios between the practical
results. This is because radix conversion and reduction overRq,1 are not taken into account in the theoretical
complexity (see Section 3.3), while these operations are part of the timings in Table 3.2. Nevertheless, the
fastest algorithm is always the expected one and proves that our methodology introduced in Section 3.4.2
is relevant.

36

CHAPTER 3. POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Positive time/memory trade-off. The positive time/memory trade-off is presented in Section 3.3.3.
This trade-off ensures that any carry propagation must be handled during polynomial multiplication, at cost
of a supplementary storage (Nℓ bits). However, this trade-off only applies to KSV and S&A algorithms.

The Table 3.3 shows the practical results obtained on component A, with the highest security param-
eters of Kyber, Saber and LAC. Furthermore, KSV≥0 (resp. S&A≥0) denotes the algorithm Kronecker
substitution variant (resp. Shift&Add) using the positive trade-off. For the three parameters sets, a sig-
nificant performance gain on hardware polynomial multiplication is achieved (at least 1.35), at cost of an
additional storage of Nℓ bits.

Param/Algo KSV≥0 S&A≥0 KSV/KSV≥0 S&A/S&A≥0
KyberR2 362k 326k 1.41 1.35

Fire Saber 363k 354k 1.46 1.39
Lac256 4437k 3455k 1.42 1.44

Table 3.3: Positive trade-off polynomial multiplication over Rq,1 cycle count on component A

37

CHAPTER 3. POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

38

Chapter 4

Modular polynomial multiplication using
RSA/ECC coprocessor

Contents
4.1 Quotient Approximation Modular Reduction . 40

4.1.1 Context and background . 40
4.1.2 Quotient Approximation Reduction . 43
4.1.3 Application: CRYSTALS-Dilithium . 51

4.2 Modular polynomial multiplication using RSA/ECC coprocessor 54
4.2.1 Background . 54
4.2.2 Multiplication in N[X] using Kronecker substitution 56
4.2.3 Multiplication in Rq,δ using Kronecker substitution 57
4.2.4 Reducing coefficients modulo q . 61
4.2.5 Applications and Results . 65

The results presented in this chapter are from joint works with Aurélien Greuet and Clémence Vermeer-
sch in [GMV22a; GMV22b].

In Chapter 3 and in the previous works mentioned in this chapter [AHH+19; WGY20; BRvV22], the
polynomial multiplication is performed using the Kronecker substitution or variants of this algorithm.
These algorithms allow to convert a polynomial multiplication to an integer one. Then, the operations are
performed on integers which allows to repurpose current asymmetric coprocessor. In Rq,δ = Zq[X]/(XN +
δ), where δ ∈ {−1, 1}, these algorithms can be summarized in four steps:

1. Convert polynomials in Rq,δ to integers in N of bit size bitsize. When polynomials have coefficients
with a negative representation, this conversion requires additional operations; see Section 2.2.1 page
19.

2. Modular integer multiplication modulo 2bitsize + δ of the obtained integers. The modular reduction
ensures that after Step 3 the polynomial result is reduced modulo XN + δ. In Chapter 3, we focus
on the integer multiplication without modular reduction. However, we claim that this reduction can
be done on top of the algorithms that we have introduced.

3. Convert back integer multiplication result to a polynomial in Z[X]/(XN + δ). Like Step 1, if the
initial polynomials have coefficients with a negative representation this conversion requires additional
operations; see Section 2.2.1 page 19.

4. Reduce the coefficients modulo q to have result over Rq,δ.

39

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

The previous works re-purpose the coprocessor only to optimize Step 2. All the other steps are imple-
mented in software without the use of coprocessor instruction.

In this chapter, we purse the previous works and we repurpose the coprocessor for most of the previous
operations. Our work focuses on three main contributions:

• Introduction of a new modular reduction (Quotient Approximation Reduction). This modular re-
duction finds application in lattice-based cryptography; see Section 4.1.

• Handle negative evaluation and radix conversion using RSA/ECC coprocessor (Step 1 and 3); see
Section 4.2.

• Perform modular reduction of the coefficients modulo q with a RSA/ECC coprocessor (Step 4); see
Section 4.2.

The last two improvements are possible only if the coprocessor can handle the following integer operations:
addition/subtraction, logical AND, logical shift, multiplication and modular multiplication. Except the
logical AND operation, most of current asymmetric coprocessors handle these operations. The logical AND
is less common on the current RSA/ECC coprocessor. However adding this operation to an existing
architecture is easier and cheaper than designing a new one for polynomial multiplication.

4.1 Quotient Approximation Modular Reduction

In this section we introduce a modular reduction named Quotient Approximation Reduction. For this,
in the following, we suppose that we want to reduce a coefficient modulo q. However, compared to the
previous chapter we are not in the context of repurposing the coprocessor. Later on in Section 4.2, we
adapt this reduction to be performed during the Kronecker substitution.

4.1.1 Context and background

Throughout this section, all integers are considered as non-negative ones.

Notations, definitions

Logical operations We denote by:

• ">>" the logical right shift operation: let a be an integer of bit-length ℓ, so that a =
ℓ−1∑
i=0

ai · 2i. Then

for 0 ≤ s ≤ ℓ− 1, (a >> s) =
ℓ−1∑
i=s

ai · 2i−s. If s ≥ ℓ, then (a >> s) = 0.

• "<<" the logical left shift operation.

• " & " the logical bitwise AND.

Integer and fractional parts Given a non-negative real number x, the integer part of x, that is the
largest integer ≤ x, is denoted by ⌊x⌋. Its fractional part x− ⌊x⌋ is denoted by {x}.

For the sequel, let q ≥ 2 be a fixed integer.

Modular Reduction Given a ∈ N, the modular reduction of amodulo q is the integer r ∈ {0, 1, . . . , q − 1}
such that a = ⌊a/q⌋ · q + r. It is denoted by a mod q.

40

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Partial Modular Reduction Given a > 2 · q, a partial reduction of a modulo q is an integer a′ such
that a′ < a and a′ mod q = a mod q.

Problem Statement and Motivations

We consider the following problems:

1. Given a fixed modulus q and a bound ℓ, compute a modular reduction of any input of bit-length ≤ ℓ.

2. Given a fixed modulus q and a bound ℓ, compute a partial reduction of any input of bit-length ≤ ℓ.

Solving efficiently these two problems is motivated by lattice-based post-quantum cryptography. In
these cryptosystems, polynomials with coefficients modulo q, where q is fixed and generally fits in a machine
word, are multiplied (see e.g. [BDK+18; BDL+21; BMD+21; CDH+19]). Hence, the modular multiplication
between coefficients is a core operation.

Most schemes work with a modulus q such that polynomial multiplication is computed using the
Number Theoretic Transform (see e.g. [PG12]). After a transformation to the NTT domain, polynomial
multiplication is handled by point-wise multiplication. Finally, the result is transformed back from the
NTT domain. In this setting, the conversion to and from Montgomery representation can be done for
free in the transformations to and from the NTT domain, see e.g. the reference implementations of
[BDK+18; BDL+21]. Thus, the point-wise modular multiplications are naturally handled with Montgomery
multiplication.

However, some specific devices like smartcards may have a slow CPU multiplication, while having a
coprocessor handling large integers multiplication. In this context, it can be faster to transform the polyno-
mial multiplication into a large integer one, thanks to the Kronecker substitution. Then, the large integer
arithmetic is handled by the coprocessor, as presented in [AHH+19; BRvV22; GMR21]. Nevertheless, it
computes the polynomial multiplication over the integers. Hence, each coefficient must be reduced modulo
q. Thus, solving efficiently Problem 1 is of interest in this context.

In general, only the final values have to be fully reduced. Then, it can be sufficient to just control the
size of intermediate values, to avoid overflows. In this case, efficient algorithms to solve Problem 2 are
adapted.

Contributions

Let a and q be non negative integers, let ℓ be an upper bound on the bit-length of a. We provide an
algorithm that computes an approximation of ⌊a/q⌋ as a sum of (a >> j)’s in Section 4.1.2.

A partial reduction modulo q is deduced from this algorithm in Section 4.1.2. Such a partial reduction
is a a mod q + t · q, for a non-negative integer t. We prove that t ≤∑ℓ−1

i=0

{
2i

q

}
.

In addition, a relaxed version is given in Section 4.1.2. It follows the same idea as the previous partial
reduction, with a lower accuracy, leading to a faster algorithm.

In Section 4.1.2, we show that a full reduction can easily be obtained from the partial ones, e.g.
by performing a standard division algorithm. A standard division algorithm leads to a mod q, from a
mod q + t · q, with at most ⌊log(t)⌋+ 1 subtractions.

Section 4.1.3 is devoted to a use case study. Coming from post-quantum cryptography, the modulus q is
such that ∑ℓ−1

i=0

{
2i

q

}
is small. We analyse the cost of our reduction and compare it to prior art algorithms.

State of the Art

The division is a costly operation on some CPU. In order to reduce the cost of this operation, the division
can be achieved by a multiplication with an integer constant. One of the first uses of this technique is done
by Jacobsohn in [Jac73] (1973) or Granlund and Montgomery in [GM94] (1994). In the context of modular
reduction, this techniques can be used to compute the required quotient or an approximation of it.

41

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

In [BSJ14] (Section 3.1) the authors introduce a modular reduction which approximates the quotient
using shifts and additions. This approximation is described for three use cases. The modular reduction
presented in this section is equivalent in terms of complexity. However, our work describes a generic
modular reduction. Then, our work can be viewed as a generalization.

In this part we present standard modular reduction algorithms. The first two work with any modulus.
The two others are designed for modulus with a special shape. For a more complete bibliography on
modular reduction, see [GG03; BZ10] and references therein.

Montgomery Reduction Montgomery Reduction is introduced in [Mon85]. Given a modulus q, a radix
R coprime to q and an integer 0 ≤ a < R · q to reduce, it computes ã = a · R−1 mod q. Montgomery
multiplication is a combination of a multiplication and a Montgomery Reduction.

To get a mod q from the Montgomery reduction ã, either a pre-computation (input a·R mod q instead
of a) or a post-computation (output ã ·R mod q instead of ã) has to be done.

When several Montgomery multiplications are performed, the relative cost of pre or post-computation
becomes negligible. In the context of NTT multiplication, even if only one multiplication by coefficient is
done, pre and post-computations can be mixed into the transformations to and from the NTT domain, so
that their cost becomes free.

However in our context, we assume that the value to reduce comes from a Kronecker substitution
followed by a large integer multiplication. Thus, only one reduction is performed, so that the cost of pre
or post-computation, that requires another reduction modulo q, remains significant. Hence, we consider
that Montgomery reduction and Montgomery multiplication are out of scope for this work.

Barrett Reduction Barrett reduction, introduced in [Bar86] and described in a more modern way in
[MVV18], is a partial reduction algorithm that does not require any assumption on the modulus. While it
is often presented assuming that the value to reduce modulo q is less than q2, we give here a more general
presentation.

Let q and a be integers, let k = bitlen (q). Barrett reduction computes a partial reduction of a modulo
q as follow: let ℓ be an integer such that 2k < a < 2ℓ and let m =

⌊
2ℓ/q

⌋
. Then a partial reduction of

a is given by a′ = a − ((a ·m) >> ℓ) · q. In addition, a′ is either the modular reduction a mod q or a
mod q + q.

During Barrett reduction, the computation a ·m can exceed the size of a register. Therefore, additional
operation are required to handle this temporary result on 2 registers. However, some variants of Barrett
algorithm allow to limit the size of temporary variables [MVV18; Kon10]. The idea is to perform Barrett
reduction using information only on the highest bits of a instead of the whole bits. To do so:

• The precomputed value: m =
⌊
2k+α/q

⌋
• Barrett reduction: a′ = a− q ·quo where quo = [(a >> (k+β)) ·m] >> (α−β) and α, β are integers.

This variant is a trade-off between temporary variables size and final subtraction requirement. Indeed, this
partial reduction requires at best one final subtraction at cost of a slight increase in bit size or several final
subtractions without increasing the bit size.

Generalized Mersenne Number Reduction Generalized Mersenne numbers are integers of the form
q = f

(
2k
)
, where f is a polynomial with small coefficients and low degree. A method to compute their

modular reduction is presented in [Sol99; Sol11].
It is not a general modular reduction algorithm. Instead, it allows to find, given a modulus q, a sequence

of operations leading to the modular reduction. These operations are logical shifts, logical AND, modular
additions and subtractions.

42

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

As an illustration, we instantiate the first example in [Sol99] with k = 5: the reduction of a < 230

modulo q = 215 − 25 + 1 is given by a mod q = T + S1 + S2 − D1 − D2, where + and − are modular
operations and T = a & 0x7FFF, S1 = (a >> 10) & 0x7FE0, S2 = (a >> 20) & 0x3E0, D1 = (a >> 15) and
D2 = (a >> 25).

We refer to [Sol99; Sol11] for the general presentation of the method.

Pseudo Mersenne Number Reduction Pseudo Mersenne Numbers are integers of the form q = 2k−c,
where c is "small". An algorithm to computhe their modular reduction is introduced by Crandall in the
patent [Cra27].

Let q = 2k − c, with c < 2k−1. This reduction relies on the identity 2k = c mod q: if a = a12k + a0
then a mod q = c× a1 + a0 mod q. Hence, a recursive computation of c× a1 + a0 is done, until the result
is fully reduced.

Algorithm 10 Crandall
Input: a, q = 2k − c

1: while a ≥ 2q do
2: a0 = a & (2k − 1)
3: a1 = a >> k
4: a = c× a1 + a0
5: end while
6: return a

In the following we present a modular reduction named Quotient Approximation Reduction and after-
wards we compare it complexity with the previous algorithms in the case of post-quantum cryptography.

4.1.2 Quotient Approximation Reduction

Overview

Let q and a be integers, let ℓ = bitlen (a), so that a =
ℓ−1∑
i=0

ai · 2i, where ai is the i-th bit of a.

The Quotient Approximation aims to compute efficiently a value close to ⌊a/q⌋. Since a mod q =
a− ⌊a/q⌋ · q, this is a first step to a partial reduction.

A first approximation is to compute
ℓ−1∑
i=0

ai ·
⌊

2i

q

⌋
rather than ⌊a/q⌋. This sum is expected to be "close"

to ⌊a/q⌋. Indeed,

⌊
a

q

⌋
=
⌊

ℓ−1∑
i=0

ai ·
2i

q

⌋
=
⌊

ℓ−1∑
i=0

ai ·
⌊

2i

q

⌋
+

ℓ−1∑
i=0

ai ·
{

2i

q

}⌋
=

ℓ−1∑
i=0

ai ·
⌊

2i

q

⌋
+
⌊

ℓ−1∑
i=0

ai ·
{

2i

q

}⌋
,

where by definition, for each i,
{
2i/q

}
< 1.

The sum
ℓ−1∑
i=0

ai ·
⌊

2i

q

⌋
is then computed replacing the computation of the

⌊
2i/q

⌋
’s with the computation

of some (a >> j)’s, in order to avoid divisions. The idea is that if bitlen (q) = k and q is "close to" a
power of two, then 2i/q is "close to" 2i >> k.

43

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Section 4.1.2 is devoted to the computation of ∑ ai ·
⌊
2i/q

⌋
as a sum of (a >> j)’s. Then, a partial

reduction algorithms relying on this quotient approximation are presented in Section 4.1.2. In Section 4.1.2,
two methods to get a modular reduction from the partial reduction are given. Finally, we present in
Section 4.1.3 some specific usecases where our method is more efficient than the state of the art.

Computing
∑
ai ·

⌊
2i/q

⌋
with shifts and adds only

Let q and a be integers, k = bitlen (q) and ℓ = bitlen (a). Since the computation of
⌊
2i/q

⌋
without

division is straightforward if q is a power of 2, we assume in the sequel that q is not a power of 2. Let
ai be the i-th bit of a, so that a = ∑ℓ−1

i=0 ai · 2i. Notice that for each j,
⌊
2j/q

⌋
is either 2 ·

⌊
2j−1/q

⌋
or

2 ·
⌊
2j−1/q

⌋
+ 1.

Let Jℓ be the set of integers Jℓ =
{
1 ≤ j ≤ ℓ− 1,

⌊
2j/q

⌋
= 2 ·

⌊
2j−1/q

⌋
+ 1

}
.

Remark 2. The smallest element of Jℓ is k = bitlen (q).

Lemma 1. Let i0, i1 such that]i0, i1] ∩ Jℓ = ∅. Then
⌊
2i1/q

⌋
= 2i1−i0 ·

⌊
2i0/q

⌋
.

Proof. Since]i0, i1] ∩ Jℓ = ∅, for any ℓ ∈]i0, i1],
⌊
2ℓ/q

⌋
= 2 ·

⌊
2ℓ−1/q

⌋
. Hence,

⌊
2i1/q

⌋
= 2 ·

⌊
2i1−1/q

⌋
= 22 ·

⌊
2i1−2/q

⌋
= · · · = 2i1−i0 ·

⌊
2i1−(i1−i0)/q

⌋
= 2i1−i0 ·

⌊
2i0/q

⌋
.

Proposition 5. Let Jℓ =
{
1 ≤ j ≤ ℓ− 1,

⌊
2j/q

⌋
= 2 ·

⌊
2j−1/q

⌋
+ 1

}
. For all a such that bitlen (a) ≤ ℓ,

ℓ−1∑
i=k

ai

⌊
2i/q

⌋
=
∑
j∈Jℓ

(a >> j) .

Proof. Let t be the cardinal of Jℓ and let j1 = k ≤ j2 ≤ · · · ≤ jt be its elements. We prove the following
statement by backward induction: for all 2 ≤ s ≤ t,

ℓ−1∑
i=js

ai

⌊
2i/q

⌋
=

ℓ−1∑
i=js

ai · 2i−js−1
⌊
2js−1/q

⌋
+

∑
j∈Jℓ, j≥js

(a >> j) . (4.1)

First, let’s prove the case s = t. Applying Lemma 1 with i0 = jt and i1 = i to
⌊
2i/q

⌋
leads to

ℓ−1∑
i=jt

ai ·
⌊
2i/q

⌋
=

ℓ−1∑
i=jt

ai · 2i−jt ·
⌊
2jt/q

⌋
.

Since jt ∈ Jℓ ,
⌊
2jt/q

⌋
= 2 ·

⌊
2jt−1/q

⌋
+ 1. Replacing in the above equation gives

ℓ−1∑
i=jt

ai ·
⌊
2i/q

⌋
=

ℓ−1∑
i=jt

ai · 2i−jt ·
(
2 ·
⌊
2jt−1/q

⌋
+ 1

)
=

ℓ−1∑
i=jt

ai · 2i−jt+1 ·
⌊
2jt−1/q

⌋
+

ℓ−1∑
i=jt

ai · 2i−jt . (4.2)

In the first term of the right-hand side,
⌊
2jt−1/q

⌋
can be replaced with 2jt−jt−1−1 ⌊2jt−1/q

⌋
, using

Lemma 1 with i0 = jt−1 and i1 = jt − 1.
In addition, the second term of the right-hand side is (a >> jt). Since jt is the greatest element in Jℓ,

(a >> jt) can be written
∑

j∈Jℓ, j≥jt

(a >> j).

44

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Reporting these equalities in Equation 4.2 leads to

ℓ−1∑
i=jt

ai ·
⌊
2i/q

⌋
=

ℓ−1∑
i=jt

ai · 2i−jt+1 · 2jt−jt−1−1
⌊
2jt−1/q

⌋
+

∑
j∈Jℓ, j≥jt

(a >> j)

=
ℓ−1∑
i=jt

ai · 2i−jt−1
⌊
2jt−1/q

⌋
+

∑
j∈Jℓ, j≥jt

(a >> j) ,

that proves the case s = t.

We now assume that the induction hypothesis (Equation 4.1) is true for a given s and we prove it also
holds for s− 1. We split the sum ∑ℓ−1

i=js−1
ai ·

⌊
2i/q

⌋
in two parts to get

ℓ−1∑
i=js−1

ai ·
⌊
2i/q

⌋
=

js−1∑
i=js−1

ai ·
⌊
2i/q

⌋
+

ℓ−1∑
i=js

ai ·
⌊
2i/q

⌋

=
js−1∑

i=js−1

ai ·
⌊
2i/q

⌋
+

 ℓ−1∑
i=js

ai · 2i−js−1
⌊
2js−1/q

⌋
+

∑
j∈Jℓ, j≥js

(a >> j)

 , (4.3)

where the second equality comes from the induction hypothesis.
Applying again Lemma 1, with i0 = js−1 and i1 = i, one gets

js−1∑
i=js−1

ai ·
⌊
2i/q

⌋
=

js−1∑
i=js−1

ai · 2i−js−1
⌊
2js−1/q

⌋
,

thus, replacing this expression in Equation 4.3,

ℓ−1∑
i=js−1

ai ·
⌊
2i/q

⌋
=

js−1∑
i=js−1

ai · 2i−js−1
⌊
2js−1/q

⌋
+

 ℓ−1∑
i=js

ai · 2i−js−1
⌊
2js−1/q

⌋
+

∑
j∈Jℓ, j≥js

(a >> j)

=

ℓ−1∑
i=js−1

ai · 2i−js−1
⌊
2js−1/q

⌋
+

∑
j∈Jℓ, j≥js

(a >> j) . (4.4)

Since js−1 ∈ Jℓ ,
⌊
2js−1/q

⌋
= 2 ·

⌊
2js−1−1/q

⌋
+ 1. Hence,

ℓ−1∑
i=js−1

ai · 2i−js−1
⌊
2js−1/q

⌋
=

ℓ−1∑
i=js−1

ai · 2i−js−1
(
2 ·
⌊
2js−1−1/q

⌋
+ 1

)

=
ℓ−1∑

i=js−1

ai · 2i−js−1+1 ·
⌊
2js−1−1/q

⌋
+

ℓ−1∑
i=js−1

ai · 2i−js−1

According to Lemma 1 applied with i0 = js−2 and i1 = js−1 − 1,
⌊
2js−1−1/q

⌋
= 2js−1−1−js−2

⌊
2js−2/q

⌋
,

thus above equation becomes

ℓ−1∑
i=js−1

ai · 2i−js−1
⌊
2js−1/q

⌋
=

ℓ−1∑
i=js−1

ai · 2i−js−1+1 · 2js−1−1−js−2
⌊
2js−2/q

⌋
+

ℓ−1∑
i=js−1

ai · 2i−js−1

=
ℓ−1∑

i=js−1

ai · 2i−js−2 ·
⌊
2js−2/q

⌋
+

ℓ−1∑
i=js−1

ai · 2i−js−1 .

45

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Replacing above equation in Equation 4.4 and noticing that
ℓ−1∑

i=js−1

ai · 2i−js−1 = a >> js−1, it comes

ℓ−1∑
i=js−1

ai ·
⌊
2i/q

⌋
=

ℓ−1∑
i=js−1

ai · 2i−js−2 ·
⌊
2js−2/q

⌋
+ (a >> js−1) +

∑
j∈Jℓ, j≥js

(a >> j)

=
ℓ−1∑

i=js−1

ai · 2i−js−2 ·
⌊
2js−2/q

⌋
+

∑
j∈Jℓ, j≥js−1

(a >> j) ,

that proves the backward induction step.

To conclude, we prove the statement of the proposition, starting from

ℓ−1∑
i=j1

ai ·
⌊
2i/q

⌋
=

j2−1∑
i=j1

ai ·
⌊
2i/q

⌋
+

ℓ−1∑
i=j2

ai ·
⌊
2i/q

⌋
. (4.5)

According to Lemma 1 applied with i0 = j1 = k and i1 = i, the first term of the right-hand side can be
written

j2−1∑
i=j1

ai ·
⌊
2i/q

⌋
=

j2−1∑
i=j1

ai · 2i−j1
⌊
2j1/q

⌋
.

The second term is re-written thanks to Equation 4.1 for s = 2, that is true from the previous backward
induction:

ℓ−1∑
i=j2

ai ·
⌊
2i/q

⌋
=

ℓ−1∑
i=j2

ai · 2i−j1
⌊
2j1/q

⌋
+

∑
j∈Jℓ, j≥j2

(a >> j) .

Replacing these two expressions in Equation 4.5 leads to:

ℓ−1∑
i=j1

ai ·
⌊
2i/q

⌋
=

j2−1∑
i=j1

ai · 2i−j1
⌊
2j1/q

⌋
+

ℓ−1∑
i=j2

ai · 2i−j1
⌊
2j1/q

⌋
+

∑
j∈Jℓ, j≥j2

(a >> j)

=
ℓ−1∑
i=j1

ai · 2i−j1
⌊
2j1/q

⌋
+

∑
j∈Jℓ, j≥j2

(a >> j)

Since j1 = k,
⌊
2j1/q

⌋
= 1, so that the first term of above right-hand side is

ℓ−1∑
i=j1

ai · 2i−j1 , that is (a >> j1).

This means that
ℓ−1∑
i=j1

ai ·
⌊
2i/q

⌋
= (a >> j1) +

∑
j∈Jℓ, j≥j2

(a >> j) =
∑

j∈Jℓ, j≥j1

(a >> j) =
∑
j∈Jℓ

(a >> j)

Proposition 5 allows to compute, without division, an approximation of the quotient ⌊a/q⌋. In the next
section, we deduce a partial reduction algorithm, based on this quotient approximation.

Partial Modular Reductions

Let q be a modulus of bit-length k, let ℓ be the maximum bit-length of the numbers to reduce. Let Jℓ be
the set of integers Jℓ =

{
1 ≤ j ≤ ℓ− 1,

⌊
2j/q

⌋
= 2 ·

⌊
2j−1/q

⌋
+ 1

}
.

46

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Quotient Approximation Partial Reduction. The following algorithm computes a partial reduction
modulo q of any input a of bit-length at most ℓ and such that a ≥ 2k.

Algorithm 11 QAPartialRed(a, q, Jℓ): Quotient Approximation Partial Reduction

Input: a = ∑ℓ−1
i=0 ai · 2i ≥ 2k, q, Jℓ defined as above

Output: r = a−
(∑ℓ−1

i=k ai ·
⌊
2i/q

⌋)
· q

1: quo_approx← 0
2: for each j ∈ Jℓ do
3: quo_approx← quo_approx + (a >> j)
4: end for
5: r ← a− quo_approx · q
6: return r

Proposition 6. Algorithm 11 is correct and it outputs a partial reduction of a modulo q, that is r < a and
r mod q ≡ a mod q.

Proof. It is clear that at the end of the inner loop, quo_approx =
∑
j∈Jℓ

(a >> j). According to Proposition 5,

∑
j∈Jℓ

(a >> j) =
ℓ−1∑
i=k

ai ·
⌊
2i/q

⌋
. Hence, at the end of the algorithm,

r = a−
(

ℓ−1∑
i=k

ai ·
⌊
2i/q

⌋)
· q,

so that it outputs the expected value.
In addition, quo_approx ̸= 0: since a ≥ 2k, at least one index i ≥ k is such that a’s i-th bit ai is not 0.

Thus, the sum quo_approx = ∑ℓ−1
i=k ai ·

⌊
2i/q

⌋
is necessarily non-zero. Hence, r = a− quo_approx · q < a.

As the subtraction of a and a multiple of q, r mod q ≡ a mod q, and r is a partial reduction of a modulo
q.

The following Proposition gives a bound on the difference between the modular reduction a mod q and
the partial reduction given by Algorithm 11.

Proposition 7. Let r be the output of Algorithm 11 for an input a of bit-length ℓ. Then

0 ≤ r − (a mod q) ≤
⌊

ℓ−1∑
i=0

{
2i

q

}⌋
· q.

Proof. Let a be a ℓ-bit integer and r the corresponding output of Algorithm 11. According to Proposition 6,
denoting by ai the i-th bit of a,

r = a−
(

ℓ−1∑
i=k

ai ·
⌊
2i/q

⌋)
· q. (4.6)

Moreover,⌊
a

q

⌋
=
⌊

ℓ−1∑
i=0

ai ·
2i

q

⌋
=
⌊

ℓ−1∑
i=0

ai ·
⌊

2i

q

⌋
+

ℓ−1∑
i=0

ai ·
{

2i

q

}⌋
=

ℓ−1∑
i=0

ai ·
⌊

2i

q

⌋
+
⌊

ℓ−1∑
i=0

ai ·
{

2i

q

}⌋

Or ∑l−1
i=0 ai ·

⌊
2i

q

⌋
= 0, then ⌊

a

q

⌋
=

ℓ−1∑
i=k

ai ·
⌊

2i

q

⌋
+
⌊

ℓ−1∑
i=0

ai ·
{

2i

q

}⌋
(4.7)

47

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Since a mod q = a− ⌊a/q⌋ · q, using it follows from Equations 4.6 and 4.7 that

r − (a mod q) =
(
a−

(
ℓ−1∑
i=k

ai ·
⌊
2i/q

⌋)
· q
)
− (a− ⌊a/q⌋ · q)

=
(
⌊a/q⌋ −

ℓ−1∑
i=k

ai ·
⌊
2i/q

⌋)
· q

=
(

ℓ−1∑
i=k

ai ·
⌊
2i/q

⌋
+
⌊

ℓ−1∑
i=0

ai ·
{

2i/q
}⌋
−

ℓ−1∑
i=k

ai ·
⌊
2i/q

⌋)
· q

=
⌊

ℓ−1∑
i=0

ai ·
{

2i/q
}⌋
· q ≤

⌊
ℓ−1∑
i=0

{
2i/q

}⌋
· q,

the last inequation holding because each ai is a bit, so that ai ≤ 1. It is also clear that
⌊∑ℓ−1

i=0 ai ·
{
2i/q

}⌋
≥

0, as a sum of non-negative elements, thus so is r − (a mod q).

Remark 3. Practically, when working with a fixed modulus, it is more efficient to "unroll" the loop in
Algorithm 11, as shown in the next toy example.
Example 6. Let q = 24 − 2 = 14, so that k = 4. Let ℓ = 10 be the maximum bit-length of the number to
reduce. The table

i 0 1 2 3 4 5 6 7 8 9⌊
2i/q

⌋
0 0 0 0 1 2 4 9 18 36{

2i/q
}

1/14 1/7 2/7 4/7 1/7 2/7 4/7 1/7 2/7 4/7

ensures that J8 = {4, 7}. Then, Algorithm 11 can be written:
• quo_approx← (a >> 4) + (a >> 7)

• return a− quo_approx · q

In addition, Proposition 7 ensures that for any 10-bit integer a, the corresponding result r is such that:

0 ≤ r − (a mod q) ≤
⌊10−1∑

i=0

{
2i

q

}⌋
· q =

⌊43
14 · q

⌋
= 3 · q.

Finally, we give the number of operations to perform the Quotient Approximation partial reduction.
Proposition 8. Let q be a modulus of bit-length k, let ℓ be the maximum bit-length of the numbers to
reduce. Let Jℓ be the set of integers Jℓ =

{
1 ≤ j ≤ ℓ− 1,

⌊
2j/q

⌋
= 2 ·

⌊
2j−1/q

⌋
+ 1

}
and let n = #Jℓ be its

cardinality. Then for all a of bit-length at most ℓ, QAPartialRed(a, q, Jℓ) is computed with
• n right shifts on ℓ-bit elements,

• n− 1 additions of (ℓ− k)-bit elements,

• 1 multiplication between an element of bit-length at most ℓ− k + 1 and one k-bit element,

• 1 subtraction between two elements of size at most ℓ.
Proof. The for loop computes the sum of n elements, each element being a (a >> j) with j ≥ k. Hence,
this can be done with n shifts on ℓ-bit elements and n − 1 additions on (ℓ − k)-bit elements. Since
quo_approx ≤ ⌊a/q⌋, it has bit-length at most ℓ− k + 1.

Thus, the final step a − quo_approx · q requires 1 multiplication between an element of bit-length at
most ℓ−k+1 and one k-bit element. Since the result is non-negative according to Proposition 7, the result
of the multiplication is necessarily of bit-length at most ℓ. The subtraction is then between two elements
of size at most ℓ.

48

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Quotient Approximation Partial Reduction Relaxed. The Algorithm 11 determines an approxi-
mation of the quotient by iterating over all the elements of Jℓ. However in some cases we do not need such
a precision for the approximated quotient. Hence, one can perform the Algorithm 11 in a subset of Jℓ.

Let Jℓ = J ′
ℓ ∪ J̄ ′

ℓ where J ′
ℓ ∩ J̄ ′

ℓ = ∅ and the first element of Jℓ is included in J ′
ℓ. The Algorithm 12

computes a partial reduction modulo q of any input a of bit-length at most ℓ such that a ≥ 2k and the
inner loop iterates in J ′

ℓ ⊂ Jℓ.

Algorithm 12 QAPartialRedRelaxed(a, q, J ′
ℓ): Quotient Approximation Partial Reduction Relaxed

Input: a = ∑ℓ−1
i=0 ai · 2i ≥ 2k, q, J ′

ℓ defined as above
Output: r = a−

(∑ℓ−1
i=k ai ·

⌊
2i/q

⌋
+∑

j∈J̄ ′
ℓ

⌊
(2ℓ − 1)/2j

⌋)
· q

1: quo_approx← 0
2: for each j ∈ J ′

ℓ do
3: quo_approx← quo_approx + (a >> j)
4: end for
5: r ← a− quo_approx · q
6: return r

Proposition 9. Algorithm 12 is correct and it outputs a partial reduction of a modulo q, that is r < a and
r mod q = a mod q.

Proposition 10. Let r be the output of Algorithm 12 for an input a of bit-length ℓ. Then

0 ≤ r − (a mod q) ≤

⌊ℓ−1∑
i=0

{
2i

q

}⌋
+
∑
j∈J̄ ′

ℓ

⌊
(2ℓ − 1)/2j

⌋ · q.
Proof. By definition Jℓ = J ′

ℓ ∪ J̄ ′
ℓ where J ′

ℓ ∩ J̄ ′
ℓ = ∅ and the first element of Jℓ is included in J ′

ℓ. Then,

∑
j∈J ′

ℓ

(a >> j) =
∑
j∈Jℓ

(a >> j)−
∑
j∈J̄ ′

ℓ

(a >> j) =
ℓ−1∑
i=k

ai ·
⌊
2i/q

⌋
−
∑
j∈J̄ ′

ℓ

⌊
a/2j

⌋
> 0 (4.8)

Hence at the end of Algorithm 12:

r = a−

ℓ−1∑
i=k

ai ·
⌊
2i/q

⌋
−
∑
j∈J̄ ′

ℓ

⌊
a/2j

⌋ · q ≤ a−
ℓ−1∑

i=k

ai ·
⌊
2i/q

⌋
−
∑
j∈J̄ ′

ℓ

⌊
(2ℓ − 1)/2j

⌋ · q (4.9)

Using equations 4.8 and 4.9, the proofs of Propositions 9 and 10 can be deduced from the proofs of
Propositions 6 and 7.

The Proposition 8 holds for the set J ′
ℓ. A use case of Algorithm 12 is described in Section 4.1.3.

From Partial Reduction to Modular Reduction

In this section, two methods are proposed to get a modular reduction from the Quotient Approximation
partial reduction.

49

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Partial Reduction Iterations. A first straightforward way to get a complete modular reduction is to
iterate the partial reduction algorithm until the result is < 2k. Up to a final subtraction with q, the result
is a full modular reduction. This leads to Algorithm 13.

Algorithm 13 QARed: Quotient Approximation Reduction
Input: a = ∑ℓ−1

i=0 ai · 2i, q, Jℓ

Output: r = a mod q
1: r ← a
2: J ← Jℓ

3: while r ≥ 2k do
4: r ← QAPartialRed(r, q, J)
5: J ← Jbitlen(r)
6: end while
7: if r ≥ q then
8: r ← r − q
9: end if

10: return r

Proposition 11. Algorithm 13 is correct.

Proof. Given r ≥ 2k, QAPartialRed(r) is a partial reduction modulo q according to Proposition 6. In
particular, QAPartialRed(r) < r. Thus, the while loop ends and r mod q = a mod q always holds.

In addition, if r < 2k, then either it is already less than q (and then already = a mod q) or it is between
q and 2 · q. Indeed, q has bit-length equal to k, so that 2 · q ≥ 2k > r. In the latter case, 0 ≤ r − q < q,
thus r − q = a mod q.

Remark 4. A closed-form formula for the complexity in the general case seems hard to get and outside
the scope of this work. However, for a fixed modulus q, the maximum number of iteration of the while loop
can be computed thanks to the bound given in Proposition 7.

Example 7 (Example 6 continued). In Example 6, after one iteration, r − (a mod q) ≤ 3 · q. Hence,
r ≤ (a mod q) + 3 · q ≤ 4 · q = 56 < 26 is at most 6-bit long.

Then for the second iteration, quo_approx = (r >> 4) and r ≤ (a mod q) ·q+
⌊∑6−1

i=0
{
2i/q

}⌋
·q ≤ 2 ·q,

thus it is at most 5-bit long.
For the third iteration, quo_approx = (r >> 4). If r was ≥ 24 before this third step, since it was

necessarily ≤ 2 · q < 25, then quo_approx = 1. In that case, the new r is r = r − q ≤ q < 24. In the other
case, quo_approx = 0 but r was < 24 already.

Finally, with the last subtraction, the full algorithm can be unrolled as follow:

1. quo_approx← (a >> 4) + (a >> 7)

2. r ← a− quo_approx · q

3. quo_approx← (r >> 4)

4. r ← r − quo_approx · q

5. quo_approx← (r >> 4)

6. r ← r − quo_approx · q

7. if r ≥ q then r ← r − q

8. return r

Division Algorithm. A second way to get a modular reduction from a Quotient Approximation partial
reduction is to perform a standard division algorithm until the full reduction is reached.

50

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Algorithm 14 QARedDiv: Quotient Approximation Reduction with Divisions
Input: a = ∑ℓ−1

i=0 ai · 2i, q, Jℓ

Output: r = a mod q
1: r ← QAPartialRed(a, q, Jℓ)
2: s← bitlen (r)
3: while s ≥ k do
4: if r − (q << (s− k)) ≥ 0 then
5: r ← r − (q << (s− k))
6: end if
7: s← s− 1
8: end while
9: return r

The correctness of Algorithm 14 is straightforward as it is QARedDiv followed by a standard binary
division algorithm, that computes the remainder of r in its division by q.

Likewise, according to Proposition 7, r ≤ (a mod q) +
⌊∑ℓ−1

i=0
{
2i/q

}⌋
· q, that is r = (a mod q) + δ · q,

where 0 ≤ δ ≤
⌊∑ℓ−1

i=0
{
2i/q

}⌋
. Then the while loop actually computes r−δ ·q, that is done with bitlen (δ)

iterations with a standard binary algorithm. Hence, at most bitlen
(⌊∑ℓ−1

i=0
{
2i/q

}⌋)
iterations of the while

loop are performed.

Remark 5. Practically, for a fixed modulus, the algorithm is unrolled, as shown in the following example.

Example 8 (Example 6 continued). In Example 6, after one iteration, r − (a mod q) ≤ 3 · q. Hence, a
mod q can be recovered from r with a most 2 subtractions. The unrolled algorithm is then:

1. quo_approx← (a >> 4) + (a >> 7)

2. r ← a− quo_approx · q

3. if r − (q << 1) ≥ 0 then r ← r − (q << 1)

4. if r − q ≥ 0 then r ← r − q

5. return r

4.1.3 Application: CRYSTALS-Dilithium

Dilithium [BDL+21] is a lattice-based signature, finalist of the NIST call for Post-Quantum Cryptography
[MAA+20]. It relies on multiplication of polynomials of degree 256, modulo q = 8380417 = 223 − 213 + 1.

Key Generation We first consider multiplications in Key Generation for Dilithium2. In this context,
2 polynomials of degree N = 256 are multiplied. The first one, says f , has coefficients in [0, q[while the
second one, say g, has coefficients in [−η, η], with η = 2. To deal with non-negative coefficients, one can
compute f · g as f · g+ − f · g−, where g+ has coefficients in [0, η], g− in]0, η] and g = g+ − g−.

Hence, without loss of generality, we consider the polynomial multiplication between f and a polynomial
with coefficients in [0, η]. Each coefficient a of the result is such that 0 ≤ a ≤ N · q · η < 232.

To apply Quotient Approximation reduction with ℓ = 32, we compute Jℓ = {23} and
⌊∑ℓ−1

i=0
{
2i/q

}⌋
=⌊

12574208
8380417

⌋
= 1. It follows that at most 1 subtraction by q is needed to get a mod q from QAPartialRed(a, q, Jℓ).

Hence, our modular reduction becomes:

51

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

1. quo_approx← (a >> 23)

2. r ← a− quo_approx · q

3. if r − q ≥ 0 then r ← r − q

4. return r

In the following we assess Quotient Approximation Reduction, a variant of Barrett, Crandall and Solinas
algorithms in the case of Dilithium parameters.

For the Barrett algorithm, we use the parameters α = 10, β = −2 and m =
⌊
233/q

⌋
. These parameters

ensure that the temporary variable fits in a register and at most one final subtraction is required.
For Crandall algorithm, the modular reduction is done with one iteration in the "while" loop and a final

subtraction.
For Solinas algorithm, the reduction of a < 232 modulo q = 223 − 213 + 1 is given by a mod q =

T + S1 + S2 −D, where + and − are modular operations and T = a & 7FFFFF, S1 = (a & 0x7FE0) >> 10,
S2 = (a & 0x3E0) >> 20, D = (a & 0x1ff800000) >> 15.

The Table 4.1 describes the operations count for each reduction algorithm. The result of the operations
fits in a register.

Operation on 32 bits
Mult. Add/Sub Shift AND Cond. Sub

Barrett10,−2 2 1 2 0 1
Solinas 0 2 2 3 1
Crandall 1 1 1 1 1
QARed 1 1 1 0 1

Table 4.1: Complexity of the reduction algorithms

In this context Quotient Approximation Reduction is more efficient than Barrett and Crandall algo-
rithms. The comparison between Solinas and QARed algorithms depends on the component. Indeed, if a
multiplication where both the result and each operand fit in a register costs less than 3 AND, 1 add and 1
shift, then Quotient Approximation Reduction is faster than Solinas. Otherwise Solinas is faster.

Signature In the Dilithium signature computation, one polynomial has coefficients in [0, q[. The other
one has coefficients in [0, 2γ1], where γ1 = 217 or 219. Hence, each coefficient a of the result is such that
0 ≤ a ≤ N · q · 2γ1 < 250.

Here, for ℓ = 50, we get Jℓ = {23, 33, 44, 45, 46} and
⌊∑ℓ−1

i=0
{
2i/q

}⌋
= 5. It follows that at most

bitlen (5) = 3 subtractions by q are needed to get a mod q from QAPartialRed(a, q, Jℓ):

1. quo_approx ← (a >> 23) + (a >> 33) +
(a >> 44) + (a >> 45) + (a >> 46)

2. r ← a− quo_approx · q

3. if r − (q << 2) ≥ 0 then r ← r − (q << 2)

4. if r − (q << 1) ≥ 0 then r ← r − (q << 1)

5. if r − q ≥ 0 then r ← r − q

6. return r

However, one can perform the modular reduction by firstly use QAPartialRedRelaxed and afterwards
use QAPartialRed. For ℓ = 50, we take Jℓ = {23, 33, 44, 45, 46} , J ′

ℓ = {23, 33} and J̄ ′
ℓ = {44, 45, 46}. First

we apply the algorithm r ← QAPartialRedRelaxed(a, q, J ′
ℓ):

1. quo_approx← (a >> 23) + (a >> 33)

2. r ← a− quo_approx · q

3. return r

52

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Due to Proposition 10 we got

r ≤

⌊ℓ−1∑
i=0

{
2i

q

}⌋
+
∑
j∈J̄ ′

ℓ

⌊
(2ℓ − 1)/2j

⌋ · q = 114 · q < 232

After this partial reduction our result is lower than 232. Then, we re-define Jℓ as Jℓ = {23, 33} and by
applying, like in the previous key generation example, QAPartialRed(r, q, Jℓ) and a final subtraction we got
the expected reduction. In the following we denote by QARedRelaxed the combination of these reductions.

As previously, we compare the Quotient Approximation Reduction Algorithm with the Barrett, Crandall
and Solinas modular reduction.

For Crandall algorithm, the modular reduction is done with three iterations in the "while" loop and a
final subtraction. After the second iteration, the result fits on 32 bits.

For the Barrett algorithm, we use the parameters α = 28, β = −2 and m =
⌊
251/q

⌋
. These parameters

ensure that the temporary variables are encoded on 58 bits rather than 50 bits but fits on 2 machine words.
The reduction requires at most one final subtraction.

For Solinas algorithm, the reduction of a < 250 modulo q = 223−213 +1 is given by a mod q = T+S1 +
S2 + S3 + S4 − (D1 +D2 +D3 +D4), where + and − are modular operations and T = a & 0x7fffff, S1 =
(a & 0x1ff800000) >> 10, S2 = (a & 0x7fe00000000) >> 20, S3 = (a & 0x7f80000000000) >> 30, S4 =
(a & 0x7c00000000000) >> 46, D1 = (a & 0x3fffff800000) >> 23, D2 = (a & 0x7c00000000000) >> 32,
D3 = (a & 0x3ffe00000000) >> 33, D4 = (a & 0x7f80000000000) >> 43. In practice, S4 and D4 are
computed as S4 = D2 >> 14, D4 = S3 >> 13. Most of the masks are sparse (especially lower bytes),
therefore operations can be done on one machine word instead of two.

The Table 4.2 describes the number of operations required for each reduction algorithm. The operations
are performed on a machine word (32 bits) or 2 machine words (64 bits). For the multiplication on 64 bits
we consider that we multiply two integers encoded on a word and the result is encoded on two machine
words.

Operation on 64 bits Operation on 32 bits
Mult. Add/Sub Shift And Mult. Add/Sub Shift And Cond. Sub

Barrett28,−2 2 1 2 0 0 0 0 0 1
Solinas 0 0 2 2 0 8 6 5 2
Crandall 1 1 2 0 2 2 1 3 1
QARed 1 1 1 0 0 4 4 0 3
QARedRelaxed 1 1 1 0 1 2 2 0 1

Table 4.2: Complexity of the reduction algorithms

In order to compare the reduction algorithms we convert all operations on 64 bits to ones on 32 bits.

• A multiplication with result on 64 bits requires 4 multiplications and 3 additions on 32 bits.

• Add/sub on 64 bits requires 2 add/sub on 32 bits (addition/subtraction of the carry/borrow and the
two most/least significant words can generally be performed with a single instruction, at the same
cost as a simple add/sub)

• A shift on 64 bits requires 2 shifts and 1 addition on 32 bits. Generally, a shift on 64 bits requires
2 additions on 32 bits rather than 1. However, in our context the shift operation ensures that the
result fits on a machine word. Therefore, only one addition is required.

• An AND on 64 bits requires 2 AND on 32 bits.

53

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

The complexities on 32 bits are described in Table 4.3.

Operation on 32 bits
Mult. Add/Sub Shift And Cond. Sub

Barrett28,−2 8 10 4 0 1
Solinas 0 10 10 9 2
Crandall 6 9 5 3 1
QARed 4 10 6 0 3
QARedRelaxed 5 8 4 0 1

Table 4.3: Complexity with machine word operations of the reduction algorithms

In this context Quotient Approximation Reduction (relaxed version) is more efficient than Barrett and
Crandall algorithms. The comparison between Solinas and QARed algorithms depends on the component.
Indeed, if 5 multiplications where both the result and each operand fit in a register costs less than 9 AND, 2
add, 1 conditional subtraction and 6 shifts, then Quotient Approximation Reduction is faster than Solinas.
Otherwise Solinas is faster.

4.2 Modular polynomial multiplication using RSA/ECC coprocessor

In this section we pursue the previous works in [AHH+19; WGY20; BRvV22] and in Chapter 3 to repurpose
existing RSA/ECC coprocessor to speed-up modular polynomial multiplication in Rq,δ. More specifically,
the contribution of this section is to:

• Handle negative evaluation and radix conversion using RSA/ECC coprocessor.

• Perform modular reduction of the coefficients modulo q with a RSA/ECC coprocessor.

These improvements are possible only if the coprocessor can handle the following integer operations: addi-
tion/subtraction, bitwise AND, logical shift, multiplication and modular multiplication. Except the logical
AND operation, most of current asymmetric coprocessors handle these operations. The logical AND is less
common on the current RSA/ECC coprocessor. However adding this operation to an existing architecture
is easier and cheaper than designing a new one for polynomial multiplication

For the sake of clarity, in this section we reintroduce some notations or some algorithms already pre-
sented in the previous chapters.

4.2.1 Background

Integers representation. Let a ∈ N such that 0 ≤ a < 2ℓ. In the following, we say that a is represented
over ℓ bits to mean that a is stored in a machine buffer of ℓ bits.

Let b ∈ Z such that −2ℓ′−1 < b < 2ℓ′−1. Let b̃ be the two’s complement representation of b over ℓ′ bits,
defined by:

b̃ = 2ℓ′ + b mod 2ℓ′ ∈ N

In the following, we say that b is represented over ℓ′ bits to mean that the two’s complement representation
of b is stored in a machine buffer of ℓ′ bits.

Let r be a Nℓ-bit natural number. We denote by ri the i-th digit of r in base 2ℓ. In other words,
r = ∑N−1

i=0 ri2iℓ with 0 ≤ ri < 2ℓ. We use the following notation r = (r0, r1, . . . , rN−1)ℓ.

54

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Polynomial representation. Let F (X) = f0 + f1X+ . . .+ fN−1X
N−1 ∈ Z[X] of degree at most N −1.

Let f̃i be a two’s complement representation of a coefficient fi.
Array representation. The usual machine representation of F (X) is an array where the i-th item is

f̃i. To ease the reading, we denote in the following fi or f [i] the coefficient associated to the i-th item.
Moreover, unless otherwise specified, a polynomial is represented as an array.

Packed integer representation. A packed integer representation of F (X) is the concatenation of all the
f̃i into a buffer.

f = f̃N−1| . . . |f̃1|f̃0 ∈ N
In this work, this representation is used to represent polynomials into a natural number. Afterwards, the
polynomial arithmetic is carried out with operations on this natural number.

Rings. Let q be an integer. Denote by Rq,δ the polynomial ring Zq [X]
(XN +δ) , where δ ∈ {−1, 1}. We represent

an element F (X) ∈ Rq,δ as a polynomial of degree at most N − 1 with coefficients in {0, . . . , q − 1}. R−
q,δ

denotes the elements of Rq,δ represented by a polynomial of degree at most N − 1 with coefficients in
{− q

2 − 1, . . . , q
2}.

Integer operations. In the sequel, the algorithms are described using the following notations. Their
purpose is to clarify the size of the manipulated operands.

• Let add(a,b,bitlen) (resp. sub(a,b,bitlen)) be the addition (resp. subtraction) between a and b.
The values a and b are represented over bitlen bits.

• Let lshift(a,k,bitlen) (resp. rshift(a,k,bitlen)) be the left (resp. right) shift a << k (resp.
a >> k) over bitlen bits.

• Let and(a,b,bitlen) be the AND operation a&b over bitlen bits.

• Let mult(a,b,bitlena,bitlenb) be the integer multiplication a × b where a (resp. b) is represented
on bitlena (resp. bitlenb) bits.

• Let modMult(a,b,bitlena,bitlenb,p) be the integer modular multiplication a × b mod p where a
(resp. b) is represented on bitlena (resp. bitlenb) bits.

Concatenation. Let (ℓ, k,N) ∈ N3 with ℓ ≤ k and m ∈ N represented over ℓ bits. In the following we de-
note by concat(m, k,N) the function that represents m on k bits and concatenates this new representation
N times. Formally:

concat(m, k,N) =
N−1∑
j=0

m2jk ∈ N

Example 9. Let m = 1 then concat(m, 8, 3) = 0x10101.

Integer to polynomial. Let (ℓ, k,N) ∈ N3, ℓ > k and F (X) = f0 + . . .+ fN−1X
N−1 ∈ Z[X]. For all i,

let f̃i be the two’s complement representation of fi over k bits. We denote by:

f = polyToN(F (X), k, ℓ) =
N−1∑
i=0

f̃i2iℓ, f ∈ N

Let g = (g0, g1, . . . , gN−1)ℓ ∈ N a Nℓ-bit number.

G(X) = NtoPoly(g, ℓ) =
N−1∑
i=0

giX
i

The obtained polynomial G(X) belongs to N[X] and its degree is at most N − 1.

55

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Example 10. Let F (X) = f2X
2 + f1X + f0 = 2X2 + 4X − 2. Let f̃0 = 0xE, f̃1 = 0x4, f̃2 = 0x2, be

representations of all fi over 4 bits. Then, f = polyToN(F (X), 4, 8) = 0x02040E and NtoPoly(f, 8) =
2X2 + 4X + 14

4.2.2 Multiplication in N[X] using Kronecker substitution

The Kronecker substitution was first introduced in [Kro82]. We give here the main steps of this substitution;
for more details see Section 2.2.1 page 19. The idea of this substitution is to transform a polynomial
multiplication to an integer one by evaluating the polynomials and get back to the result using a radix
conversion. In the context of embedded devices, this transformation is of interest to perform polynomial
multiplication by using the RSA/ECC coprocessor. Indeed, such coprocessor handles multiplication on
integers.

In this section we assume that our polynomials are defined over N[X].

Kronecker substitution

The Kronecker substitution multiplies two polynomials F (X) and G(X) using an integer multiplication.
This substitution can be summarized in three steps:

1. Evaluation of F (X) and G(X) at 2ℓ. The value ℓ is chosen such that all the coefficients after the
polynomial multiplication are lower than 2ℓ.

2. Integer multiplication r = F
(
2ℓ
)
G
(
2ℓ
)
, r ∈ N.

3. Get back to polynomial R(X) ∈ N[X] using radix conversion on r.

Evaluation. The first step of the Kronecker substitution is the polynomial evaluation at 2ℓ. Since F (X)
has coefficients in N represented over k bits:

Evaluation≥0(F (X), k, ℓ) := F
(
2ℓ
)

= polyToN(F (X), k, ℓ) (4.10)

Example 11. Let F (X) = 2X2 +X + 3 then F (28) = 0x020103 = Evaluation≥0(F (X), 2, 8)

Evaluation point. Let R(X) = F (X)G(X) where F (X), G(X) ∈ N[X] of degree at most N − 1. The
evaluation point 2ℓ is chosen such that for all i ≤ 2(N − 1):

ri ≤ max
j∈{0,...,N−1}

(fj) max
j∈{0,...,N−1}

(gj)N < 2ℓ

By the fact that all the coefficients are non-negative, this evaluation is only a representation of all the
fi over ℓ bits. Then in an implementation, the evaluation does not require arithmetic operations.

Radix Conversion. Radix conversion aims to transform an integer into a polynomial.
Let f = (f0, . . . , fN−1)ℓ ∈ N, then:

F (X) = f0 + . . .+ fN−1X
N−1 := Radix Conversion≥0(f) = NtoPoly(f, ℓ) (4.11)

Example 12. Let f = 0x020103 then F (X) = 2X2 +X + 3 = Radix Conversion≥0(f)

The radix conversion converts a packed integer representation to an array one. Like the evaluation
algorithm, in an implementation, the radix conversion does not require arithmetic operation.

56

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Example of Kronecker substitution.

Example 13. Let F (X) = 2X2 +X + 3 and G(X) = X2 + 1. Then,

F (28) = 0x020103 = Evaluation≥0(F (X), 2, 8), G(28) = 0x010001 = Evaluation≥0(G(X), 2, 8)

Afterwards we multiply the evaluated polynomials r = F (28)G(28) = 0x201050103. Finally we obtain
R(X) = Radix Conversion≥0(r) = 2X4 +X3 + 5X2 +X + 3.

4.2.3 Multiplication in Rq,δ using Kronecker substitution

In the previous section we perform polynomial multiplication as an integer one with polynomials in N[X].
However, in the lattice-based schemes some polynomials, mainly the secret ones, have coefficients with
a negative representation close to 0. Moreover, the reduction modulo XN + 1 can also bring negative
coefficients. Then in this section we focus on polynomial multiplication in Rq,δ = Zq[X]/(XN +δ). In Rq,δ,
the polynomial multiplication using Kronecker substitution is achieved as follows:

• Evaluation of polynomials considering negative coefficients.

• Integer multiplication modulo 2Nℓ + δ. The modular reduction ensures that after radix conversion
the polynomial result is reduced modulo XN + δ.

• Radix conversion to obtain a polynomial in Z[X]/(XN + δ).

• Reduction modulo q of the polynomial coefficients.

The Algorithms 4 and 5 in Chapter 2 already achieve the evaluation and the radix conversion with
negative coefficients. However, these algorithms are done using array representations. In this section we
describe a way to realize these algorithms when the coefficients are on a packed integer representation. The
main advantage of this representation is that it allows to repurpose existing coprocessor.

Negative representation. Our goal is to perform polynomial multiplication over Rq,δ. Then, a way to
avoid the negative coefficients is to represent them with a non-negative representation over Rq,δ. However,
the negative coefficients are close to 0, then the closest non-negative representation is nearby q. This
involves that the evaluation point must be higher and then the integer operations are done on much larger
integers; see Chapter 3 for more details on the impact on the evaluation point. Thus, for the sake of
efficiency we use, when possible, our algorithms with the negative representation.

Evaluation with negative coefficients.

Let F (X) = f0 + f1X + . . .+ fN−1X
N−1 ∈ R−

q,δ and f̃i be the two’s complement representation over k bits
of fi. Our goal is to evaluate F (X) at 2ℓ where ℓ > k, then for i = 0 to N − 1:

• If fi ≥ 0, then we only have to represent it on ℓ bits (as in Section 4.2.1).

• If fi < 0, then we have to represent it with a two’s complement over ℓ bits and propagate a borrow to
the next coefficient. To obtain a two’s complement representation from k bits to ℓ bits, we compute:

f̃i + (2ℓ − 2k) = 2k + fi + (2ℓ − 2k) = 2ℓ + fi

The Algorithm 15 computes the two’s complement representation of the polynomial evaluation when
the coefficients are in Z. More precisely, this evaluation is done using arithmetic operations on a packed
integers representation. To do so, we first represent the polynomial coefficients into a packed integers

57

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

form, as defined in Equation 4.10. Afterwards, we use arithmetic operations in order to convert the two
complement’s representation from k to ℓ bits and to propagate the required borrows.

Algorithm 15 Evaluation
Input: F (X) ∈ R−

q,δ, k, ℓ ∈ N where ℓ > k.
Output: f̃ ∈ N the two’s complement representation of F

(
2ℓ
)

mod 2Nℓ

1: mask← concat(1, ℓ,N) //Precomputed
2: f̃ ← polyToN(F (X), k, ℓ)
3: neg← rshift(f̃ , k − 1, Nℓ)
4: neg← and(neg, mask, Nℓ) // Detect negative coefficients
5: tmp←mult(neg, 2ℓ − 2k, Nℓ, 32)
6: f̃ ← add(f̃ , tmp, Nℓ) // Two’s complement representation of each coeff over ℓ bits
7: neg← lshift(neg, ℓ,Nℓ)
8: f̃ ← sub(f̃ , neg, Nℓ) // Borrow propagation
9: return f̃

Remark 6. The value mask is always the same for a fixed scheme. Then, this integer can be precomputed
and stored in Non-Volatile Memory (NVM).

Remark 7. The Evaluation (Algorithm 15) returns the two’s complement representation of F
(
2ℓ
)

mod 2Nℓ. This implies:

• If F
(
2ℓ
)
≥ 0, then the returned value is equal to F

(
2ℓ
)
.

• Otherwise, the returned value is not equal to F
(
2ℓ
)
. This case occurs when the latest non-zero

coefficient of F (X) is negative.

To obtain the expected result after the Kronecker Substitution, the last case requires additional operations
before the radix conversion. These additional operations are described in Section 4.2.3 paragraph Two’s
complement representation of the evaluated polynomial.

Example 14. Let F (X) = 3X2 − 2X + 2, where all the coefficients are encoded with a two’s complement
representation over k = 4 bits. Let N = 3 and ℓ = 8. The expected result is F (28) = 0x02FE02. This is
obtained with Evaluation(F (X), k, ℓ):

1. mask← concat(1, 8, 3) = 0x010101

2. f̃ ← polyToN(F (X), 4, 8) = 0x030E02

3. neg← rshift(f̃ , 4− 1, 3× 8) = 0x0061C0

4. neg← and(neg, mask, 3× 8) = 0x000100

5. tmp←mult(neg, 28 − 24, 3× 8, 32) = 0x00F000

6. f̃ ← add(f̃ , tmp, 3× 8) = 0x03FE02

7. neg← lshift(neg, 8, 3× 8) = 0x010000

8. F (28)← sub(f̃ , neg, 3× 8) = 0x02FE02

58

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Evaluation point. Let R(X) = F (X)G(X) where F (X), G(X) ∈ Rq,δ. The evaluation point 2ℓ is chosen
such that for all i ≤ 2(N − 1):

ri ≤ max
j∈{0,...,N−1}

(|fj |) max
j∈{0,...,N−1}

(|gj |)N < 2ℓ−1

Radix Conversion with negative coefficient representation.

As mentioned in [AHH+19] or in Chapter 2, the radix conversion has to be adapted since some coefficients
have negative representations. Two issues arise with the negative coefficients:

1. The evaluation and the integer multiplication propagate borrow between the polynomial coefficients.

2. The negative evaluation algorithm returns two’s complement representation over Nℓ bits.

Borrow between the coefficients. The evaluation converts a polynomial to a packed integers repre-
sentation. In the following of the Kronecker substitution, the obtained natural numbers are manipulated
regardless the original polynomial structure. Therefore, borrows can be propagated between the coeffi-
cients. However in order to retrieve the expected polynomial result, the radix conversion must compensate
the propagated borrows by propagating back carries.

Let r̃ = (r̃0, r̃1, . . . , r̃N−1)ℓ ∈ N be the integer that we want to convert to a polynomial, where for
all i, r̃i is a two’s complement representation over ℓ bits of an integer −2ℓ−1 < ri < 2ℓ−1. In order
to propagate back the carries, we transform the negative coefficients to non-negative ones by adding a
multiple of our modulus q: maxValue. More precisely, maxValue is the smallest multiple of q such that for
all i, −maxValue ≤ ri < maxValue. Moreover with the parameters that we use in Section 4.2.5, we have
maxValue < 2ℓ−1. Then, by adding maxValue we got:

• If ri < 0, then 2ℓ ≤ r̃i + maxValue = 2ℓ + ri + maxValue < 2ℓ+1. Therefore a carry is propagated to
r̃i+1.

• If ri ≥ 0, then r̃i + maxValue = ri + maxValue < 2ℓ.

After adding maxValue, the values ri are considered as natural numbers represented over ℓ bits. Then, the
expected polynomial is obtained by using the radix conversion algorithm defined in Equation 4.11 on r̃.

This negative to non-negative conversion is possible because the polynomial multiplication is done over
Rq,δ. Indeed after reduction modulo q, the added value maxValue is equal to 0.

Two’s complement representation of the evaluated polynomial. The second issue is due to the
two’s complement representation of the evaluated polynomial.

Let F (X) = f0 + . . . + fN−1X
N−1 ∈ R−

q,δ of degree N − 1 and ℓ ∈ N. Then Algorithm 15 returns the
integer f ← Evaluation(F (X), k, ℓ), that is the two’s complement representation of F

(
2ℓ
)

mod 2Nℓ.
Two cases are to be distinguished:

• fN−1 > 0, then f = F
(
2ℓ
)
∈ N.

• fN−1 < 0, then f = 2Nℓ + F
(
2ℓ
)

is the two’s complement of F
(
2ℓ
)

modulo 2Nℓ.

Only the second case will lead to a wrong result after the modular multiplication. Indeed, let g ∈ N and
f = 2Nℓ + F

(
2ℓ
)

we got:

r mod
(
2Nℓ + δ

)
= fg mod

(
2Nℓ + δ

)
= 2Nℓg+F

(
2ℓ
)
g mod

(
2Nℓ + δ

)
̸= F

(
2ℓ
)
g mod

(
2Nℓ + δ

)
Then in this case, before the radix conversion we must add or subtract g to r, depending on δ:

59

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

• δ = 1 : 2Nℓg mod
(
2Nℓ + 1

)
= −g mod

(
2Nℓ + 1

)
, then

r + g mod
(
2Nℓ + 1

)
= F

(
2ℓ
)
g mod

(
2Nℓ + 1

)

• δ = −1 : 2Nℓg mod
(
2Nℓ − 1

)
= g mod

(
2Nℓ − 1

)
, then

r − g mod
(
2Nℓ − 1

)
= F

(
2ℓ
)
g mod

(
2Nℓ − 1

)

Previously, we supposed that at most one polynomial can have negative coefficients. In case of lattice-based
schemes, this is always the case.

Algorithm 16 Radix Conversion
Input: r, g, maxValue ∈ N, and sign ∈ {0, 1}
Output: R(X) ∈ N[X]/(XN + δ)

1: max← concat(maxValue, ℓ,N) //Can be precomputed
2: if sign eq 1 then
3: if δ eq 1 then
4: r ← add(r, g,Nℓ) // To handle negative last coeff
5: else
6: r ← sub(r, g,Nℓ) // To handle negative last coeff
7: end if
8: else
9: if δ eq 1 then

10: dummy← add(r, g,Nℓ) // For isochrony
11: else
12: dummy← sub(r, g,Nℓ) // For isochrony
13: end if
14: end if
15: r ← add(r, max, Nℓ) // Add maxValue to each coefficient
16: R(X)← Radix Conversion≥0(r)

Multiplication in Rq,δ using coprocessor

The Sections 4.2.3 and 4.2.3 are used to obtain a polynomial multiplication algorithm in Rq,δ using, mainly,
a packed integer representation. More precisely, except for the modular reductions modulo q, the operations
are done using this representation.

All operations performed on the packed integers representation can be achieved with coprocessor as
defined in Section 4.2.1.

The Polynomial Multiplication in Rq,δ algorithm is described in Algorithm 17.

60

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Algorithm 17 Polynomial Multiplication in Rq,δ

Input: (F (X), G(X)) ∈ (R−
q,δ, Rq,δ) of degree N − 1. Let k, ℓ, q ∈ N where ℓ > k, and maxValue defined

as above.
Output: R(X) = F (X)G(X) ∈ Rq,δ

1: f ← Evaluation(F (X), k, ℓ)
2: G

(
2ℓ
)
← Evaluation≥0(G(X), k, ℓ)

3: r ←modMult(f,G
(
2ℓ
)
, Nℓ,Nℓ, 2Nℓ + δ)

4: b← sign(F [N − 1]) // if FN−1 < 0 then b = 1, otherwise b = 0.
5: R(X)← Radix Conversion(r,G

(
2ℓ
)
, maxValue, b)

6: R(X)← R(X) mod q // Any modular reduction
7: return R(X)

In the following section we determine how to perform modular reductions modulo q using packed
integers representation.

4.2.4 Reducing coefficients modulo q

In Section 4.2.3, we perform polynomial multiplication in Rq,δ. However, the reduction modulo q is done
after the radix conversion on a polynomial representation. In this section we show how to perform reduction
modulo q using packed integers representation. As mentioned previously, such representation allows to
repurpose existing RSA/ECC coprocessor.

Let r = (r0, . . . , rN−1)ℓ ∈ N. In our context, r is obtained after the two first steps of the Kronecker sub-
stitution: polynomial evaluation and modular integer multiplication. Moreover, we have added maxValue
like in Section 4.2.3. Then, each ri is such that for all i: 0 ≤ ri < 2maxValue.

In the following we denote by simultaneous reduction, the fact of reducing all the ri mod q by per-
forming operations on r.

Power-of-two modulus

Some of lattice-based schemes, like Saber [BMD+21] and NTRU [CDH+19], use a power-of-two modulus.
In this context, the simultaneous reduction is easy and fast. Indeed, the simultaneous reduction is achieved
by the computation:

r&concat(q − 1, ℓ,N)

Prime modulus

Kyber [BDK+18] and Dilithium [BDL+21] are lattice-based cryptosystems which perform polynomial mul-
tiplication over Rq,δ, where q is a prime number. In this section we adapt two modular reductions: Quotient
Approximation Reduction (cf. Section 4.1 page 40) and Barrett [Bar86], to perform simultaneous reduction.

Quotient Approximation Reduction

Quotient Approximation Reduction is introduced in Section 4.1 page 40. Let a ∈ N be an integer to
reduce modulo q ∈ N. Quotient Approximation Reduction computes an approximation quo of

⌊
a
q

⌋
and

then computes a′ = a − quo × q. The obtained result is a′ = a mod q + tq, where 0 ≤ t <
⌊

a
q

⌋
. A tight

upper bound of t is given in Section 4.1. The value t is expected to be close to 0. In order to finish the
reduction, several subtractions by q may be required.

61

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Let ℓ be the bit-length of a and Jℓ be the set of integers:

Jℓ = {1 ≤ j ≤ ℓ− 1, ⌊2j/q⌋ = 2⌊2j−1/q⌋+ 1}

Let J ′
ℓ ⊆ Jℓ, where at least the first element of Jℓ is in J ′

ℓ. The Quotient Approximation Reduction
algorithm is described in Algorithm 18.

Algorithm 18 Quotient Approximation Reduction
Input: a, q, J ′

ℓ defined as above.
Output: a′ = a mod q + tq where 0 ≤ t <

⌊
a
q

⌋
1: quo_approx← 0
2: for each j ∈ J ′

ℓ do
3: quo_approx← quo_approx + (a >> j)
4: end for
5: a′ ← a− quo_approx · q
6: return a′

Remark 8. The Algorithm 18 is named in 4.1 Quotient Approximation Reduction Relaxed.

Simultaneous modular reduction. Applying Algorithm 18 to an integer obtained with Kronecker
substitution is not sufficient to get a simultaneous reduction. Indeed, because of the shift at line 3, noise
coming from coefficient i + 1 can overflow on the coefficient i. We show in Algorithm 19 how to remove
this noise, by applying a bitmask.

Algorithm 19 Simult. Quotient Approximation Reduction
Input: r = (r0, . . . , rN−1)ℓ ∈ N , q ∈ N, J ′

ℓ defined as above.
Output: r′ = (r′

0, . . . , r
′
N−1)ℓ ∈ N, where all ri are reduced with Quotient Approximation Reduction

algorithm.
1: quo_approx← 0
2: for each j ∈ J ′

ℓ do
3: mask← concat(2ℓ−j − 1, ℓ,N)
4: tmp← rshift(r, j,Nℓ)
5: tmp← and(tmp, mask, Nℓ)
6: quo_approx← add(quo_approx, tmp, Nℓ)
7: end for
8: quo_approx←mult(quo_approx, q,Nℓ, 32) // Mult between a word and a large integer
9: return r′

Remark 9. The set J ′
ℓ is fixed for a given modulus. Then the values mask can be precomputed and stored

in NVM.

In our application context (cf. Section 4.2.5), the Algorithm 19 reduces the ri such that r′
i = ri

mod q + tiq, where ti ∈ {0, 1}. In order to completely reduce the r′
i modulo q, in Section 4.2.4 we explain

how to perform simultaneous conditional subtraction by q.

Barrett

The Barrett reduction is introduced in [Bar86]. The main idea is to precompute an approximation of a
division and use it to perform modular reduction. Let α, β ∈ Z and a ∈ N be an integer to reduce modulo

62

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

q ∈ N of bit-length k ∈ N. Barrett reduction precomputes m =
⌊

2k+α

q

⌋
and computes:

a′ = a− [((a >> (k + β)) ·m) >> (α− β)] q

A special case is when α = β, therefore the computation is

a′ = a− [a >> (k + β)] ·m · q

In this case, only one shift and one multiplication is performed (m · q is precomputed).
Depending on the parameters (α, β), a′ = a mod q + tq where 0 ≤ t <

⌊
a
q

⌋
. Further details on the

Barrett algorithms are given in [MVV18].

Simultaneous modular reduction. To adapt this reduction to simultaneous reduction we need to
perform logical AND after the shift operations. Indeed, like Quotient Approximation Reduction the shift
operations spread some noise between the coefficients. The Algorithm 20 describes the simultaneous Barrett
reduction.

Algorithm 20 Simult. Barrettα,β

Input: r = (r0, . . . , rN−1)ℓ ∈ N. Let q ∈ N of bit-length k and m =
⌊

2k+α

q

⌋
.

Output: r′ = (r′
0, . . . , r

′
N−1)ℓ ∈ N, where all ri are reduced with Barrett reduction.

1: mask← concat(2ℓ−α+β − 1, ℓ,N)
2: mask′ ← concat(2ℓ−k−β − 1, ℓ,N)
3: tmp← rshift(r, k + β,Nℓ)
4: tmp← and(tmp, mask′, Nℓ)
5: tmp←mult(tmp,m,Nℓ, 32) // Mult between a word and a large integer
6: tmp← rshift(tmp, α− β,Nℓ)
7: tmp← and(tmp, mask, Nℓ)
8: tmp←mult(tmp, q,Nℓ, 32) // Mult between a word and a large integer
9: r′ ← sub(r, tmp, Nℓ)

10: return r′

Remark 10. The values mask and mask′ can be precomputed.

In our application context (cf. Section 4.2.5), the Algorithm 20 reduces the ri such that r′
i = ri

mod q+ tiq, where ti ∈ {0, 1, 2}. In the following, we explain how to completely reduce simultaneously the
r′

i.

Final reduction

Using the simultaneous reduction Algorithms 19 and 20, the returned result r′ = (r′
0, . . . , r

′
N−1)ℓ ∈ N is

such that, for all i, r′
i = r′

i mod q + tiq. With the parameters sets that we use in Section 4.2.5, for all i,
ti ∈ {0, 1, 2}.

Let k and c such that q = 2k − c. Then r′
i ≥ 2q if and only if r′

i + 2c has its (k + 1)-th bit equal to
one. This fact is used in Algorithm 21 to detect and subtract q to coefficients ≥ 2q in a packed integers
representation.

63

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Algorithm 21 Simult. Conditional Subtraction
Input: r′ = (r′

0, . . . , r
′
N−1)ℓ with all 0 ≤ r′

i < 3q, where q = 2k − c, ℓ,N ∈ N.
Output: r′′ = (r′′

0 , . . . , r
′′
N−1)ℓ with all 0 ≤ r′′

i < 2q
1: (C, mask)← (concat(2c, ℓ,N), concat(1, ℓ,N)) //Precomputed
2: tmp← add(r′, C, Nℓ) //Raised the k + 1-th bit in each coeff
3: tmp← rshift(tmp, k + 1, Nℓ) // Move the k + 1-th bit to position 0 in each coeff
4: tmp← and(tmp, mask, Nℓ) // Detect the coeff ≥ 2q
5: tmp←mult(tmp, q,Nℓ, 32) // Mult between a word and a large integer
6: r′′ ← sub(r′, tmp, Nℓ) // Subtract q to each coeff ≥ 2q
7: return r′′

Remark 11. The values C and mask are fixed for a given scheme. Then, these integers can be precomputed
and stored in NVM.

After using the Algorithm 21, the r′′
i are bounded by 2q. In that case, this algorithm can be adapted

replacing 2c by c (line 1) and k + 1 by k (line 3). It follows that q is subtracted from each r′′
i ≥ q.

Afterwards, each r′′
i is necessary lower than q.

Modular polynomial multiplication using coprocessor

The Algorithm 22 performs polynomial multiplication in Rq,δ using operations on packed integers repre-
sentation. All operations performed on this representation can be achieved with coprocessor as defined in
Section 4.2.1.

The Modular Polynomial Multiplication Algorithm 22 works as follows:

1. Line 2: Polynomial evaluations defined in Equation 4.10 and Algorithm 15.

2. Line 3: Modular integer multiplication modulo 2Nℓ + δ of the evaluated polynomials.

3. Line 4 to 11: Handle the two’s complement representation of the evaluated polynomial; see Section
4.2.3.

4. Line 12: Convert the negative representation to non negative one; see Section 4.2.3. This operation
allows to perform simultaneous reduction mod q and radix conversion.

5. Line 13 to 19: Perform simultaneous reduction mod q. This ensures that the polynomial result has
coefficients reduced mod q.

6. Line 20: Radix conversion defined in Equation 4.11 to obtain a polynomial result.

64

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Algorithm 22 Modular Polynomial Multiplication
Input: (F (X), G(X)) ∈ (R−

q,δ, Rq,δ) of degree N − 1. Let k, ℓ, q ∈ N where ℓ > k, and maxValue defined
as above.

Output: R(X) = F (X)G(X) ∈ Rq,δ

1: max← concat(maxValue, ℓ,N) // Precomputed
2:
(
f,G

(
2ℓ
))
← (Evaluation(F (X), ℓ),Evaluation≥0(G(X), ℓ))

3: r ←modMult(f,G
(
2ℓ
)
, Nℓ,Nℓ, 2Nℓ ± δ)

4: b← sign(f [N − 1])
5: if b eq 1 then
6: if δ eq 1 then r ← sub(r,G

(
2ℓ
)
, Nℓ) // To handle negative last coeff

7: else r ← add(r,G
(
2ℓ
)
, Nℓ)

8: else
9: if δ eq 1 then dummy← sub(r,G

(
2ℓ
)
, Nℓ) // For isochrony

10: else dummy← add(r,G
(
2ℓ
)
, Nℓ)

11: end if
12: r ← add(r, max, Nℓ) //Negative to non negative representation for all r′

i

13: if q eq 2k then
14: mask′ ← concat(2k − 1, ℓ,N)
15: r ← and(r, mask′, Nℓ)
16: else
17: r ←Simult. QA Reduction(r) // Or Simult. Barrettα,β or a combination of them
18: r ← Simult. Conditional Subtraction(r, ℓ,N) // Can be applied twice if some ri ≥ 2q
19: end if
20: R(X)← Radix Conversion≥0(r)
21: return R(X)

4.2.5 Applications and Results

In this section, after some preliminaries, we present the component on which we performed our experiments
and the results obtained by implementing the Modular Polynomial Multiplication (MPM) Algorithm 22
and another polynomial multiplication depending of the evaluated scheme. The evaluated lattice-based
algorithms are: Kyber, Dilithium, NTRU, and Saber.

Background

NTT

NTT is an algorithm allowing to perform fast polynomial multiplication in Rq,1 [Nus82]. Given a and
b ∈ Rq,1, a× b is computed as NTT−1 (NTT (a) ◦NTT (b)), where ◦ is the coefficient-wise multiplication.

Theoretically, NTT has the best asymptotic complexity for multiplication in Rq,1. However, in con-
strained environments (e.g. smart cards), devices may have dedicated hardware to perform fast large-integer
arithmetic. In this context, NTT can be outperformed by an algorithm relying on integer arithmetic, even
if its theoretical complexity is worse than NTT.

Subdivision

RSA/ECC coprocessors perform integer arithmetic with data in buffer size has a fixed limit. In our context
after polynomial evaluation, the resulting integer is generally too large to fit in these buffers. In that case

65

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

we use multiple-precision arithmetic. This arithmetic consists of dividing the manipulated integers into
several smaller ones and then perform operations on these smaller integers.

In the case of integer multiplication we use two techniques to divide the integer multiplication into
smaller ones: Karatsuba and Schoolbook. Let f = fI + fS2Nℓ/2 and g = gI + gS2Nℓ/2, where fI , fS , gI , gS

are lower than 2Nℓ/2.

Schoolbook: fg = fIgI + (fIgS + fSgI)2Nℓ/2 + 2NℓfSgS

Karatsuba: fg = fIgI + ((fI + fS)(gI + gS)− fIgI − fSgS)2Nℓ/2 + 2NℓfSgS

These techniques can be applied recursively in order to obtain a targeted integer size. Later on when
presenting the results, we specify in a column named subdivision the multi-precision method that we use
for the integer multiplication.

Evaluation point. In our context the Karatsuba subdivision requires to increase the size of the eval-
uation point by 1 bit at each subdivision. It is due to the computation (fI + fS)(gI + gS). Indeed, this
computation is performed on integers of length twice as small but with values twice as large.

In the following results, the evaluation point is chosen to take into account the negative coefficients and
the Karatsuba subdivisions.

Polynomial distribution

The following polynomial multiplications are performed between a polynomial G(X) ∈ Rq,δ and F (X) ∈
R−

q,δ. More precisely, the coefficients of G(X) are sampled uniformly in {0, . . . , q − 1} and the coefficients
of F (X) are sampled in a distribution Dσ. Using a distribution Dσ, the coefficients are represented in
{−σ, . . . , 0, . . . , σ}.

Masked secret polynomial. Most of the time the polynomial using the distribution Dσ is the secret
polynomial. In some use cases, an embedded implementation must be strongly secured against side-channel
attacks. One way to do this is to mask the secret data. To do so, we split the sensitive data into shares
x = x1+x2 mod q, where x1, x2 belongs to {0, . . . , q−1}, and then we process the operations on each share
separately. In our context the value q is much larger than the secret distribution. Therefore, that implies
we will manipulate larger secret data and then it increases the evaluation point. For some assessments, in
order to consider this security requirement, we suppose that the polynomial F (X) is defined over Rq,δ and
its coefficients are sampled uniformly in {0, . . . , q − 1}. In the following results, we denote this case by Uq

distribution.
In the following results, we only specify the distribution of F (X).

Target

Assessments are done on a smart card component using a 32-bit architecture. In the following we refer
to this device as Component B. Due to intellectual properties reasons, the component name or a detailed
description cannot be given. Then, we only give the main characteristics of the component B:

• Standards 32-bit instructions (add, sub, shifts, bitwise and, xor, or, etc.).

• No CPU multiplication and division.

• A coprocessor which handles: logical AND, addition, subtraction, shifts, modular integer multiplication
and the non-modular one.

66

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

The following results take into account a complete modular reduction. Moreover like the previous works
[AHH+19; WGY20; BRvV22] or in Chapter 3, we assume that the inputs are already in the appropriate
machine representation. This implies that the inputs are in:

• Polynomial representation for NTT, Karatsuba and schoolbook polynomial multiplication.

• Packed integers representation for the MPM algorithm.

Kyber

Kyber [BDK+18] is a lattice-based KEM finalist of the NIST standardization. The polynomial ring defined
in Kyber is Rq,1 = Zq[X]/(XN + 1), where q = 3329 and N = 256. The polynomial multiplication
used in the specification is the NTT algorithm. In this context, we have implemented two polynomial
multiplications:

• A NTT multiplication. It is adapted from the reference implementation, in order to use the hardware
Montgomery multiplication. Tables of roots of unity have been recomputed to handle the Montgomery
arithmetic with R = 232, the smallest handled by the coprocessor, instead of R = 216. In addition,
the multiplication followed by a Montgomery reduction is replaced by a call to the coprocessor
Montgomery multiplication. In Table 4.4 we present timings from the NTT’s implementation.

NTT Pointwise NTT−1

Cycles 98k 40k 106k

Table 4.4: Kyber NTT cycles on Component B

• The modular polynomial multiplication (MPM) described in Algorithm 22. For this algorithm we
consider two distributions for the polynomial F (X):

– D3. In this case the modular reduction modulo q is done using Simult. Barrett11,0. In
order to completely reduce the coefficients we perform 2 final subtractions using the technique
described in Section 4.2.4.

– Uq. In this case the modular reduction modulo q is done using Simult.Barrett10,10 and then
an application of Simult. Barrett13,−2. Afterwards, a final subtraction is performed using
the technique described in Section 4.2.4.

In Table 4.5, we describe the parameters used for MPM algorithms. More precisely, we describe ℓ such that
the evaluation point is 2ℓ, the maximum value to convert negative coefficients to non-negative ones, the
subdivision used and the obtained cycles.

Distribution ℓ maxValue Subdivision Cycles MPM
D3 23 3qn None 50k
Uq 34 q2n 2 calls to Karatsuba 67k

Table 4.5: Parameters and cost of one multiplication in Rq,1 for Kyber parameters

Comparison. The previous results take into account one execution of MPM algorithm and each NTT
routine. In order to compare NTT and MPM algorithms, we must not only compare pointwise routine with
MPM algorithm. Indeed, we must also take into account calls to the NTT and NTT−1 routines. Then, in order
to compare the two polynomial multiplication methods we must determine how many times each algorithm
is called.

67

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

The Table 4.6 describes the number of calls to NTT, pointwise multiplication and NTT−1 during the
Key Generation, Encrypt and Decrypt routines. The number of calls depends on the Kyber’s security
parameters which are k = 2/3/4. Note that the number of pointwise matches the number of MPM calls.

NTT Pointwise/MPM NTT−1

Key Gen. 2k k2 0
Encrypt k k2 + k k + 1
Decrypt k k 1

Table 4.6: Number of call to NTT routines in Kyber

In order to fairly compare NTT and MPM algorithms we use:

• The official specification of Kyber for the NTT algorithm. The private and public keys are stored in
the NTT domain.

• A tweaked version of Kyber for the MPM algorithm. The private and public keys are not stored in the
NTT domain. Therefore, we do not need to apply NTT−1 to perform MPM algorithm.

The MPM algorithm is called with the Uq distribution parameters.

Total cycles NTT Total cycles MPM Ratio (NTT/MPM)
k = 2
Key Gen. 552k 268k 2
Encrypt 754k 402k 1.9
Decrypt 382k 134k 2.9
k = 3
Key Gen. 948k 603k 1.6
Encrypt 1198k 804k 1.5
Decrypt 520k 201k 2.6
k = 4
Key Gen. 1424k 1072k 1.3
Encaps 1722k 1340k 1.3
Decrypt 658k 268k 2.5

Table 4.7: Cycle count for all multiplications in Kyber for the Uq distribution parameters

Dilithium

Dilithium [BDL+21] is a lattice-based signature finalist of the NIST standardization. The polynomial
ring defined in Dilithium is Rq,1 = Zq[X]/(XN + 1), where q = 8380417 and N = 256. Like Kyber, the
specification specified the use of NTT polynomial multiplication. Therefore, we have implemented two
polynomial multiplications:

• A NTT multiplication. To this end, the reference implementation has been adapted. Tables of roots
of unity have been recomputed to get non-negative values. Moreover, multiplications followed by a
Montgomery reduction, in the reference code, are replaced by a call to the coprocessor Montgomery
multiplication.

68

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

NTT Pointwise NTT−1

Cycles 114k 15k 128k

Table 4.8: Dilithium NTT cycles on Component B

• MPM algorithm. For this algorithm, we consider two distributions for the polynomial F (X):

– D1. The polynomial sampled in this distribution is always not sensitive to side-channel attacks.
Therefore, we never need to mask it. The modular reduction modulo q is done by calling Simult.
Quotient Approximation Reduction with J ′

ℓ = {23} and a final subtraction is performed
using the technique described in Section 4.2.4.

– Uq. The modular reduction modulo q is done by calling Simult. Quotient Approximation
Reduction algorithm with J ′

ℓ = {23, 33} and afterwards by calling it twice with J ′
ℓ = {23}. A

final subtraction is performed using the technique described in Section 4.2.4.

Many other distributions are used in Dilithium. For the sake of clarity, we describe only the worst ones for
MPM algorithm.

Distribution ℓ maxValue Subdivision Cycles MPM
D1 32 60q None 48k
Uq 57 q2n 3 calls to Karatsuba 146k

Table 4.9: Parameters and cost of one multiplication in Rq,1 for Dilithium parameters

Comparison. Like Kyber, not every NTT-based multiplication uses all the three algorithms NTT, pointwise
and NTT−1.

The Table 4.10 presents the number of calls to NTT, pointwise multiplication and NTT−1 depending
on the Dilithium’s security parameters which are (k, l) = (4, 4)/(6, 5)/(8, 7). In this operation count we
suppose that during the sign algorithm there is no rejection sampling. Note that the number of pointwise
matches the number of MPM calls. The pointwise operations in boldface correspond to the polynomial
multiplication with one polynomial in D1.

NTT Pointwise/MPM NTT−1

Key Gen. l lk k

Sign 2l + 2k + 1 lk + l + 2k l + 3k
Verify l + k + 1 lk + k k

Table 4.10: Number of call to NTT routines in Dilithium

Like Kyber, in order to compare fairly NTT and MPM algorithms we use:

• The official specification of Dilithium for the NTT algorithm. The public key is stored in the NTT
domain.

• A tweaked version of Dilithium for the MPM algorithm. The public keys is not stored in the NTT
domain. Therefore, we do not need to apply NTT−1 to perform MPM algorithm.

Moreover, for the MPM algorithm, the multiplication in boldface implies a polynomial sampled in D1 and
the other ones are performed with a polynomial sampled in a Uq distribution.

69

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

Total cycles NTT Total cycles MPM Ratio (NTT/MPM)
(k, l) = (4, 4)
Key Gen. 1208k 2336k 0.5
Sign 4406k 2912k 1.5
Verify 1838k 2528k 0.7
(k, l) = (6, 5)
Key Gen. 1788k 4380k 0.4
Sign 6271k 5196k 1.2
Verify 2676k 4668k 0.6
(k, l) = (8, 7)
Key Gen. 2662k 8176k 0.3
Sign 8687k 9280k 0.9
Verify 3808k 8560k 0.4

Table 4.11: Cycle count for all multiplications in Dilithium for the Uq distribution parameters

In this context, MPM algorithm is almost less efficient than NTT. However, we can combine NTT and
MPM algorithms to obtain a faster Sign and Verify routines. Indeed, one can perform the multiplication
which implies a polynomial sampled D1 using the MPM algorithm and the others multiplication using NTT
algorithm. By combining these two multiplications, we avoid a lot of NTT and NTT−1 transformation
which ensures an efficient polynomial multiplication. Moreover, this combination is achieved without
changing the Dilithium specification.

In Table 4.12 the ratio is between the best algorithm in Table 4.11 (result in bold face) over the
combination of NTT and MPM algorithms.

Best in Table 4.11 Total cycles NTT + MPM Ratio
(k, l) = (4, 4)
Sign 2912k 1784k 1.6
Verify 1838k 1400k 1.3
(k, l) = (6, 5)
Sign 5196k 2604k 2
Verify 2676k 2076k 1.3
(k, l) = (8, 7)
Sign 8687k 3766k 2.3
Verify 3808k 3046k 1.25

Table 4.12: Cycle count for all multiplications in Dilithium using the Uq and D1 distribution parameters

Saber & NTRU

Saber. Saber [BMD+21] is a lattice-based KEM finalist of the NIST standardization. The polynomial
ring used in Saber is Rq,1 = Zq[X]/(XN +1), where N = 256 and q = 8192 = 213. In this work we consider
two distributions for the polynomial F (X):

• D5. Other distributions are used in Saber. However we only describe the worst one for the MPM
algorithm.

• Uq.
Since the modulus is a power of two, the reductions are achieved using a logical AND with the appropriate
mask.

70

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

NTRU. NTRU [CDH+19] is also a KEM finalist of the NIST competition. The polynomial ring used in
NTRU is Rq,−1 = Zq [X]

(XN −1) . The modulus q and the value N depends on the security parameters. In this
work we only consider NTRU HPS 1 parameters, where N = 509 and q = 2048 = 211.

The value of N does not allow to easily make subdivisions. To overcome this issue, we work on
polynomials with Ñ = 512 coefficients where the latest coefficients are equal to 0.

In this work, we consider only a Uq distribution. Since q is a power of two, the modular reductions are
performed with a logical AND.

Comparison. The Saber and NTRU MPM algorithms are compared with the polynomial multiplication
used in their reference implementations.

• Saber: A combination of a 4-way Toom-Cook and Karatsuba algorithms.

• NTRU: A schoolbook multiplication.

The polynomial multiplication of the reference implementations are achieved with the 32 bits copro-
cessor multiplication. The Table 4.13 describes the obtained results on Component B.

Distribution ℓ maxValue Subdivision Cycl.MPM Cycl. ref.
Saber
D5 25 5qn None 47k 1405k
Uq 36 q2n 2 calls to Karatsuba 61k 1405k
NTRU
Uq 34 q2n 3 calls to Karatsuba 173k 17256k

Table 4.13: Parameters and cost of one multiplication in Rq,δ for Saber and NTRU parameters

71

CHAPTER 4. MODULAR POLYNOMIAL MULTIPLICATION USING RSA/ECC COPROCESSOR

72

Part II

Physical security of lattice-based schemes

73

Chapter 5

Physical attacks, countermeasures and
probing model

Contents
5.1 Physical attacks . 75

5.1.1 Side-channel attacks . 76
5.1.2 Fault injection . 76

5.2 Countermeasures . 76
5.2.1 Masking . 76
5.2.2 Shuffling . 77
5.2.3 Code redundancy . 77
5.2.4 Random generation . 77

5.3 Probing model . 78
5.3.1 Security definitions: NI and SNI. 78
5.3.2 The SecAnd algorithm . 79
5.3.3 Secure multiplication modulo q . 79
5.3.4 Mask refreshing . 80

The embedded devices are threatened by physical attacks. These attacks are intended to learn about
secret information using the physical properties of the component which executes a code.

Cryptosystems are mathematically proven secure under hardness assumption of a problem. In the
case of lattice-based cryptography, the underlying problem is LWE [Reg09] or variants of this problem.
The security proofs do not take into account the potential physical perturbations or eavesdrops during an
execution. Hence, the physical attacks can be devastating.

Physical security can be approached from two point of views: offensive and defensive. Hence, in this
chapter, we firstly describe different kind of physical attacks. Afterwards, we present countermeasures
which mitigate these attacks. Finally, we describe a well-known theoretical model which allows to prove
that an algorithm is secure, in this model, against side-channel attacks.

5.1 Physical attacks

Physical attacks can be divided in two main categories: side-channel attacks and fault injection. The first
side-channel attacks against cryptosystems are carried out by Kocher et al. from the years 1996 [Koc96;
KJJ99]. One year later the first fault injections against cryptosystems are conducted [BDL97; BS97].

75

CHAPTER 5. PHYSICAL ATTACKS, COUNTERMEASURES AND PROBING MODEL

5.1.1 Side-channel attacks

The side-channel attacks use the fact that during an execution, a component uses power, produces elec-
tromagnetic emanations, heat, etc. These quantities are component dependent and are linked with the
executed algorithm. Therefore, by analyzing these physical quantities an attacker can learn information
about secret data. The most well-known physical quantities used are: timing, power consumption and
electromagnetic emanation. A side-channel attack can be summarized in two major steps:

1. Acquisition of one or multiple traces of the executed algorithms.

2. Analysis of these traces to deduce information. Statistical tools may be used for the analysis.

5.1.2 Fault injection

The fault injections use the fact that an electric current flow through the transistors during an algorithm.
The idea is to disrupt this flow to interfere with the good execution of the algorithm. Afterwards, by
analyzing the impact of the interference an attacker can learn information about secret data. The most
common alterations during fault injection are:

• Instruction skip. For example, an attacker can skip a verification done in a if statement.

• Randomize variable. The definition of variable depends on the CPU architecture and the attacker
model. For example a variable could be 8 bits or 32 bits.

• Stuck all the bits of a variable at 1 or 0.

• Bit flipping.

Performing a fault may alter the expected output which can leak information on the manipulated data.
In Chapter 6 we assess the security of some lattice-based cryptosystems against Safe-Error Attack

(SEA). Such attacks exploit the fact that a fault injection may or may not lead to a faulty output depending
on a sensitive data.

5.2 Countermeasures

In the following we describe three well-known countermeasures against some physical attacks [MOP08].

5.2.1 Masking

Side-channel attacks are based on the fact that physical measurements are correlated with the manipulated
sensitive data. Therefore, the idea of masking countermeasure is to split a sensitive data s into at least
two shares s = s1 + . . . + sα and the shares are manipulated separately. Moreover, the shares must be
uniformly distributed all along the algorithm which requires a significant amount of randomness.

The attacker must combine information on s1, s2 to sα to retrieve any information about s. However,
combining information is much more difficult than learning information about one variable. Then, the
more information there is to combine, the more difficult the attack is. However, splitting into α shares
multiplies at least by α the number of operations.

Therefore, a secure implementation using masking countermeasure must take into account the targeted
security and the targeted efficiency to select the best security/efficiency trade-off.

In Chapter 8 we generalize a masking countermeasures which apply for α shares and we implement it
in order to secure lattice-based key encapsulation mechanism.

76

CHAPTER 5. PHYSICAL ATTACKS, COUNTERMEASURES AND PROBING MODEL

5.2.2 Shuffling

Shuffling countermeasure aims to randomize the execution order of the manipulated secret data. Therefore,
it is more difficult for an attacker to deduce which part of the secret is manipulated.

An example is the polynomial multiplication which is a core operation of ideal lattice-based schemes.
Let s(X) = s0 + . . . + sN−1X

N−1 be a secret polynomial and f(X) be a public one. The schoolbook
multiplication computes in the following order: s0f(X), s1f(X)X, . . . , sN−1f(X)XN−1. Hence, an attacker
knows which coefficient is manipulated. A shuffled polynomial multiplication computes all sif(X)Xi in a
random order. The random order is modified at each execution.

Shuffling countermeasure requires a lot of random generation and can hinder arithmetic improvement.

5.2.3 Code redundancy

Code redundancy countermeasure duplicates a sensitive operation in order to verify the correct execution
of this operation. For example, a polynomial multiplication that implies a sensitive data can be computed
twice. Thus, by comparing the results we can detect if at least one of the polynomial multiplication has
been tampered. Such a countermeasure is used against fault injections.

5.2.4 Random generation

The masking and shuffling countermeasures require a significant amount of random generation. Hence, we
recall how the random generation works on embedded devices.

Embedded devices random generation. The micro-controllers may embed additional hardware to
perform sensitive or costly operation. Most of the embedded devices which performs cryptographic op-
erations have a TRNG (True Random Number Generation) hardware. This generator produces byte or
multiple bytes of uniformly random numbers (e.g. 32 bits of random). Moreover, the TRNG can be used
in combination with a Deterministic Random Number Generator (DRNG). A DRNG requires a random
seed, which is generated by the TRNG, to generate random numbers.

Random generation modulo q. In the following chapters we need to generate uniform random numbers
modulo q which is not a power of two. Hence, we explain our methodology to derive, from a k-bit random
number, a random number modulo q. The example q = 3329 corresponds to the modulo used in the
lattice-based KEM Kyber [BDK+18].

To generate a random integer in Zq, one can generate a k-bit random number, using the TRNG or
DRNG generator, where the gap 2k − i · q is small for some i. Until the random value is not in [0, i · q[
we reject it and we sample a new one. This step is called rejection sampling. Using the rejection sampling
technique we obtain a uniformly distributed integer modulo q, with rejection probability 1− i · q/2k. For
example, with q = 3329, one can take k = 16 and i = 19, with rejection probability 0.035.

In order to decrease the rejection probability, we can also use the trick described in [Lum13, Section
3]. It consists in generating a random integer modulo q2, which enables to extract two random integers
modulo q; we can of course use higher powers of q. As previously, we generate a k-bit random number such
that the gap 2k − i · q2 is small. The rejection probability is then 1− i · q2/2k.

For example, with q = 3329, we can use k = 25 and i = 3, and the rejection probability is 0.009, so we
are using 12.5 bits per random integer modulo q, with rejection probability 0.0046 per random integer. We
can also use k = 32 and i = 387, which gives 16 bits per random integer as previously, but with rejection
probability 0.0007 per random integer. We describe the pseudo-code below, to be run with parameters
(i, k, q) = (387, 32, 3329).

77

CHAPTER 5. PHYSICAL ATTACKS, COUNTERMEASURES AND PROBING MODEL

Algorithm 23 randomModq
Input: Parameters i, k, q such that i · q2 < 2k.
Output: r1, r2 uniformly distributed in Zq.

1: r := 2k

2: while r ≥ i · q2 do
3: r

$←− {0, 1}k
4: end while
5: r := r mod q2

6: return (r mod q, ⌊r/q⌋)

The random generation is also threatened by physical attacks. Then, the previous algorithm and the
k-bit random number generation must be securely implemented. In the sequel, we suppose that the random
generation is secured.

5.3 Probing model
The probing model is a theoretical view for protecting circuit against adversaries who can probe a number of
wires. More precisely, this model is introduced in [ISW03] by Ishai, Sahai and Wagner. They consider that
an adversary can probe at most t wires in a circuit. This means that the adversary can learn information
about t bits during the algorithm execution. Afterwards, they show how to transform any Boolean circuit
into a secure one by splitting the secret information into α = 2t+ 1 shares. Such a model can be used to
prove the security of an implementation against side-channel attacks. Indeed, the t wires can be seen as
the side-channel leakage points of the algorithm.

In the article [RP10], the authors explain that a wire can be extended over any field of characteristic 2.
Moreover the authors improve the previous result by showing that α = t+ 1 shares is enough to obtain the
targeted security. In the following we consider that an attacker can learn information about t variables.

Later on in [BBD+16] Barthe et al. the authors introduce, in the probing model, two security notions:
Strong Non-Interference (SNI) and Non-Interference (NI), which facilitate the security proofs. In the
following we describe the NI and SNI definitions.

5.3.1 Security definitions: NI and SNI.

The following definitions use the term gadget. A gadget is a probabilistic algorithm which means it is an
algorithm using a source of randomness during it execution. Moreover, the output depends on the sampled
random numbers. Examples of gadgets are described in Algorithms 24, 25, 26.

When a gadget is proven t-NI or t-SNI secure, then an attacker can learn information about the secret
only if he can probe at least t+ 1 variables. This means that any set of at most t intermediates variables is
independent from at least one share of the secret. In this case we say that the t variables can be perfectly
simulated.

Definition 1 (t-NI security). Let G be a gadget taking as input (xi)1≤i≤α and outputting the vector
(yi)1≤i≤α. The gadget G is said t-NI secure if for any set of t1 ≤ t intermediate variables, there exists a
subset I of input indices with |I| ≤ t1, such that the t1 intermediate variables can be perfectly simulated
from x|I .

Definition 2 (t-SNI security). Let G be a gadget taking as input α shares (xi)1≤i≤α, and outputting n
shares (zi)1≤i≤α. The gadget G is said to be t-SNI secure if for any set of t1 probed intermediate variables
and any subset O of output indices, such that t1 + |O| ≤ t, there exists a subset I of input indices that
satisfies |I| ≤ t1, such that the t1 intermediate variables and the output variables z|O can be perfectly
simulated from x|I .

78

CHAPTER 5. PHYSICAL ATTACKS, COUNTERMEASURES AND PROBING MODEL

The SNI definition is stronger than NI in that the number of input shares required for the simulation
only depends on the number of internal probes, and not on the number of output shares that must be
simulated. The main benefit of t-SNI security definition is that it allows proof by composition. Indeed, by
proving the t-SNI property of individual gadgets, we obtain that the full circuit is secure against t probes
using α = t+ 1 shares.

If a gadget only satisfies the NI definition, we can apply some SNI mask refreshing (like Algorithm
5.3.4) on the outputs and then the resulting gadget becomes SNI (see [BBD+16]). In the sequel all our
gadgets will be proven either NI or SNI.

In the following we describe three well-known gadgets that we use in the next chapters.

5.3.2 The SecAnd algorithm

The SecAnd Algorithm 5.3.2 enables to compute the logical AND between two Boolean masked values. Let
x = x1 ⊕ . . .⊕ xα and y = y1 ⊕ . . .⊕ yα. Then the SecAnd computes x&y using operation on the values xi

and yi.

Algorithm 24 SecAnd
Input: k ∈ N, x1, . . . , xα ∈ {0, 1}k, y1, . . . , yα ∈ {0, 1}k

Output: z1, . . . , zα ∈ {0, 1}k, with
α⊕

i=1
zi = (

α⊕
i=1

xi) ∧ (
α⊕

i=1
yi)

1: for i = 1 to α do zi ← xi ∧ yi

2: for i = 1 to α do
3: for j = i+ 1 to α do
4: r

$←− {0, 1}k

5: r′ ← (r ⊕ (xi ∧ yj))⊕ (xj ∧ yi)
6: zi ← zi ⊕ r
7: zj ← zj ⊕ r′

8: end for
9: end for

10: return z1, . . . , zα

This algorithm is a variant with k-bit words of the original ISW algorithm [ISW03]. Its asymptotic
complexity is O(α2) with a number of operations:

CSecAnd(α) = α(7α− 5)/2

Lemma 2 ([BBD+16]). The SecAnd algorithm is (α− 1)-SNI.

5.3.3 Secure multiplication modulo q

The SecMult Algorithm 5.3.3 computes a modular multiplication modulo a prime q between two arith-
metically masked integers. Let x = x1 + . . . + xα mod q ∈ Zq, y = y1 + . . . + yα mod q ∈ Zq, then
SecMult((x1, . . . , xα), (y1, . . . , yα)) = (z1, . . . , zα) where z1 + . . .+ zα mod q = xy mod q. This algorithm
is introduced in [SPO+19].

79

CHAPTER 5. PHYSICAL ATTACKS, COUNTERMEASURES AND PROBING MODEL

Algorithm 25 SecMult
Input: x1, . . . , xα ∈ Zq, y1, . . . , yα ∈ Zq

Output: z1, . . . , zα ∈ Zq such that ∑i zi = (∑i xi) · (
∑

i yi) mod q.
1: for i = 1 to α do zi ← xi · yi mod q
2: for i = 1 to α do
3: for j = i+ 1 to α do
4: r

$←− Zq

5: r′ ← (r + xi · yj mod q) + xj · yi mod q
6: zi ← zi − r mod q
7: zj ← zj + r′ mod q
8: end for
9: end for

Note that the number of operations of SecMult is α · (7α − 5)/2 by considering random generation in
Zq, addition and multiplication modulo q as a single operation.

Lemma 3 ([SPO+19]). The SecMult algorithm is (α− 1)-SNI.

5.3.4 Mask refreshing

The RefreshMasks Algorithm 26 allows to refresh the shares of a masked value over any finite field F. Let
a = a1 + . . .+ aα, RefreshMasks(a1, . . . , aα) = c1 + . . .+ cα where c1 + . . .+ cα = a. Such algorithm can be
used on the outputs of a NI gadget to make it SNI.

Algorithm 26 RefreshMasks
Input: a1, . . . , aα

Output: c1, . . . , cα such that ∑α
i=1 ci = ∑α

i=1 ai

1: For i = 1 to α do ci ← ai

2: for i = 1 to α do
3: for j = i+ 1 to α do
4: r

$←− F
5: ci ← ci + r
6: cj ← cj − r
7: end for
8: end for
9: return c1, . . . , cα

The asymptotic complexity of Algorithm 26 is O(α2), with a number of operations:

Crefresh(α) = 3α(α− 1)/2

Lemma 4 ([BBD+16]). The RefreshMasks algorithm is (α− 1)-SNI.

80

Chapter 6

Safe-error analysis of post-quantum
cryptography mechanisms

Contents
6.1 Framework description . 82

6.1.1 Attacker model . 82
6.1.2 Safe-error attack on lattice-based cryptography . 83
6.1.3 Security analysis of lattice-based cryptography . 83
6.1.4 Security estimation loss . 83

6.2 Application on post-quantum cryptography . 84
6.2.1 NTRU . 84
6.2.2 Saber . 86
6.2.3 Dilithium . 87
6.2.4 Kyber . 89

6.3 Countermeasures . 89

The results presented in this chapter are from a joint work with Luk Bettale and Guénaël Renault in
[BMR21].

In order to protect the implementations against side-channel attacks, the NIST asks for constant-time
implementation. This may be enough for implementations on a server, but insufficient for embedded
devices. Contrarily to cryptography deployed in a distant server, embedded devices can be physically
accessed by an attacker. The attacker could easily perform side-channel analysis [Koc96; KJJ99; BCO04],
or fault injection [BDL97; BS97] in order to recover the embedded secrets.

In this chapter we assess the security of some lattice-based schemes against safe-error attack.

Safe-error analysis of post-quantum cryptography mechanism.

Fault attacks have been very useful to break embedded cryptosystems. Many powerful fault attacks
have been described in the literature [JT12]. Safe-Error Attack (denoted SEA) [YJ00; BCG12; Cla12]
is a powerful way to exploit fault injection, especially on constant-time implementation such as the ones
proposed to the NIST. Such attacks exploit the fact that a specific fault may or may not lead to a faulty
output depending on a secret value.

Previous works. An independent work in [PP21] performs SEA during the decryption algorithm of
some lattice-based candidates (Kyber and Newhope). More precisely, they perform a fault injection during
the reconciliation step. If the outcome is not modified, then they learn information depending on the secret

81

CHAPTER 6. SAFE-ERROR ANALYSIS OF POST-QUANTUM CRYPTOGRAPHY MECHANISMS

key. By gathering such information they retrieve the entire secret key. Their SEA attack focuses on the
error distribution while our work focuses on the secret distribution. Our work proposes a different way of
performing SEA applied to more schemes than [PP21] and thus it is complementary.

To the best of our knowledge, no other public researches on fault attacks in the PQC context (e.g.
[KY11; KY13; VOG+18; VPR19; BBK16]) consider SEA. In the following we investigate the security of
PQC against such attacks.

Our contribution. In the Sequel we provide an overall analysis of the resilience of NIST lattice-based
finalist schemes (Dilithium, Kyber, NTRU, Saber) against safe-error attacks. More precisely, we describe
an attack path to retrieve the 0 coefficients of the secret keys using fault injection and we determine the
security impact of such knowledge.

6.1 Framework description

6.1.1 Attacker model

For a safe-error attack to be effective, an attacker has to know first how a specific fault impacts an
implementation. This knowledge is usually acquired by characterising his attack on a similar device as the
victim. To obtain the best characterisation possible, the attacker needs devices where he can know/set the
manipulated secrets. For example, this assumption could be obtained by using an open sample. Then, the
attacker has to find a fault that will lead to a faulty output only if some conditions on a secret value are
fulfilled.

Safe-error attacks are particularly useful against constant-time implementations that are designed to
resist timing side-channel attacks. A typical example is a regular implementation of a square-and-multiply
algorithm used for modular exponentiation in RSA:

Algorithm 27 Square and multiply

Input: m,N, d = ∑n−1
i=0 di 2i

Output: r = md mod N
1: for i = n− 1 to 0 do
2: r1 ← r2

1 mod N
3: rdi

← r1 ×m mod N
4: end for
5: return r1

The operation at line 3 is useful only if di equals 1. More precisely, it is just a dummy operation if di

equals 0 and does not contribute to the output computation. Thus, faulting line 3 will lead to a faulty
ciphertext only if di = 1. Hence, if a fault can skip this operation, the attacker can, step by step, detect
all the zeroes of the exponent d.

The fault has not to be necessarily an instruction skip. For instance, an attacker could modify a value
during a RAM access. In the previous example, if the attacker can set to 0 the value of di when it is read,
one obtains the same result.

Thus, throughout this section, we assume that the attacker can:

• Precisely set the fault to a target operation ;

• Skip an instruction or function call

• Or set a variable to 0.

82

CHAPTER 6. SAFE-ERROR ANALYSIS OF POST-QUANTUM CRYPTOGRAPHY MECHANISMS

To keep our assumptions closed from practical fault attacks, we do not suppose that the attacker can set
a variable to a chosen value different from zero.

We will see that in our PQC context, these assumptions are sufficient to let an attacker retrieve the
positions of all the null coefficients in a secret key.

6.1.2 Safe-error attack on lattice-based cryptography

The central operation in lattice-based cryptography is the polynomial multiplication. Such operation
usually involves a secret polynomial with coefficients close to 0. Such operation must be performed in a
timing-resistant manner to be secure against timing attacks. As described earlier, this context is usually a
perfect fit for safe-error attacks.

Moreover, most of the lattice-based NIST finalist candidates use a centered binomial distribution or a
uniform distribution in {−1, 0, 1} ensuring that 0-coefficients are numerous. Hence, fault injections setting
a secret coefficient to 0 at a precise operation, reveal information about secret 0-coefficients positions. Our
study focuses on the NIST lattice-based Key Exchange Mechanisms (denoted KEMs) and a signature.
Then, the fault injection is performed during a decryption or a signature algorithm. Therefore, if the
obtained plain text or signature is correct despite of a fault injection on a secret coefficient then, that
ensures this coefficient is a 0.

Finding the positions of the zeroes may not be enough to recover the key, but it surely reduce the
security of the scheme. In order to precisely measure the security loss, we need to use an estimation tool
and compare our result with the claimed security.

6.1.3 Security analysis of lattice-based cryptography

The NIST call for post-quantum safe cryptography has mentioned 5 security categories: 1 to 5. The
categories 1/3/5 corresponding to a claimed security equivalent, in terms of computational capabilities, of
key search on a block cipher AES-128/192/256. The categories 2/4 corresponding to a claimed security
equivalent, in terms of computational capabilities, of collision search on a 256/384-hash functions as SHA3-
256/384.

The main goal of these categories is to facilitate security comparison between all the PQC proposals.
However, some candidates under-estimate and others over-estimate these security categories. Then, the
security comparison between these algorithms is an arduous task. In the following, we refer to these
categories only to estimate how proposals securities downgrade due to safe-error attacks.

6.1.4 Security estimation loss

In the following, the attacker performs SEA during the execution of some lattice-based KEM or signatures
to learn some information about the secret key. To estimate the security loss, we use the toolkit introduced
in [DDG+20]. This tool is a security estimation framework for lattice-based schemes under lattice reduction
attack when an attacker obtains some "hints" about the secret key. The "hints" can be obtained from side-
channel attacks or, in our case, from fault injection.

Let s be a secret vector and v, l, k be parameters known by the attacker. This tools can handle 4 types
of hints:

• Perfect hints: ⟨s, v⟩ = l.

• Modular hints: ⟨s, v⟩ = l mod k.

• Approximate hints: ⟨s, v⟩ = l + e, where e is an error following a known distribution.

• Short vector hints: v ∈ Λ, where Λ is a lattice related to the secret s.

83

CHAPTER 6. SAFE-ERROR ANALYSIS OF POST-QUANTUM CRYPTOGRAPHY MECHANISMS

These hints can be used to estimate cryptosystems security relying on LWE, LWR and NTRU problems.
The security estimation is done using a unit called bikz, denoted by β. This unit corresponding to the BKZ-
β used to solve the Distorted Bounded Distance Decoding (DBDD) instance associated to the secret. As
mentioned in the toolkit article [DDG+20], there is no bikz-to-bit exact conversion. Then, in the following,
security estimations are done in terms of bikz β or NIST security categories.

To estimate the cryptosystems security, this tool requires to instantiate a DBDD instance related to
our secret vector. Hence, some parameters are required: the secret’s length and distribution (N,Dσ), the
error’s length and distribution (m,Dσe), and the modulo q. Our script using this toolkit is available at
[Monb].

In Sect. 6.2, we present an attack description as well as the required parameters to instantiate the tool.
We use it to provide a security loss estimation for each attacked cryptosystems.

6.2 Application on post-quantum cryptography

6.2.1 NTRU

NTRU [CDH+19] is a KEM based on the eponymous Nth degree Truncated Polynomial Ring Units problem
which is assimilated to a lattice-based one. The secret polynomial f has coefficients belonging to {−1, 0, 1}
uniformly distributed and the public polynomial h = (3gfq) mod (q, ϕ1ϕN) has coefficients modulo q,
where ϕ1 = X − 1, ϕN = (Xn − 1)/(X − 1). The polynomials manipulated in NTRU are defined in
Rq,−1 = Zq[X]/(XN − 1) with N ∈ {509, 677, 821, 701} and q ∈ {2048, 4096, 8192} depending on the
security level. In this proposal, we focus the decryption function:

Algorithm 28 NTRU Decryption

Input: ((f, fp, hq), c)
Output: r,m

1: if c ̸≡ 0 mod (q, ϕ1) return(0, 0, 1)
2: a← (c · f) mod (q, ϕ1ϕN)
3: m← (a · fp) mod (3, ϕN)
4: m′ ← Lift(m)
5: r ← ((c−m′) · hq) mod (q, ϕN)
6: if (r,m) ∈ Lr × Lm then
7: return (r,m, 0)
8: else
9: return (0, 0, 1)

10: end if

SEA application Our objective is to learn the zero coefficients positions of f during the computation
at line 2: a ← (c · f) mod (q, ϕ1ϕN). In the reference implementation, the secret coefficients are stored
in a 16-bit integer (uint16_t) and the polynomial multiplication is done with the algorithm described
hereafter:

84

CHAPTER 6. SAFE-ERROR ANALYSIS OF POST-QUANTUM CRYPTOGRAPHY MECHANISMS

Algorithm 29 NTRU Polynomial multiplication

Input: a, c, f {all a[i], c[i], f [i] are uint16_t}
Output: a

1: for k = 0 to N do
2: a[k]← 0
3: for i = 1 to N do
4: a[k]← a[k] + c[k + i]× f [N − i]
5: end for
6: for i = 0 to k + 1 do
7: a[k]← a[k] + c[k − i]× f [i]
8: end for
9: end for

10: return a

The fault injection is performed during the computation a[k] ← a[k] + c[k + i] × f [N − i]. If the
decryption succeeds then the coefficient N − i is equal to 0. This attack is performed during several
decryption procedures to recover all the coefficients of f that are equal to 0.

Security impact Using the tool introduced in Section 6.1 we can determine the security impact of this
knowledge.

The column "Classical" determines the security level in terms of "bikz β" of the NTRU cryptosystem
without any knowledge. The "Classical" NTRU DBDD instance is done with the following parameters:

• The length of f : N

• The distribution of f : coefficients uniform over {−1, 0, 1}

• The distribution for g (see NTRU article [CDH+19])
The column "Attacked" determines the security level of NTRU with the knowledge of N/3 secret

coefficients. Indeed, we suppose that the secret coefficients are well distributed, then f has N/3 coefficients
equal to 0. The "Attacked" NTRU DBDD instance is done with the following parameters:

• The secret vector length without the known coefficients: N = N −N/3.

• A uniform distribution over two elements.

• The same distribution for g.

Classical Attacked
NTRU HPS 1 Dim = 1018 Dim = 680

N = 509, q = 2048 β = 172.15 β = 95.53
NTRU HPS 2 Dim = 1354 Dim = 904

N = 677, q = 2048 β = 249.95 β = 146.20
NTRU HPS 3 Dim = 1642 Dim = 1096

N = 821q, q = 4096 β = 308.42 β = 183.35
NTRU HRSS Dim = 1402 Dim = 936

N = 701, q = 8192 β = 236.30 β = 135.96

In average the safe-error attack provides, in terms of bikz, a 42% security loss. The NTRU specifi-
cation [CDH+19] mentioned that the NTRU HPS 1 security is lower than an actual AES-128 security.
However, for all parameters the SEA brings the bikz security under NTRU HPS 1 original security. There-
fore, with this attack an attacker can reduce the security of NTRU cryptosystem under 2128 security bits
in a pre-quantum world and under 264 security bits in a quantum world.

85

CHAPTER 6. SAFE-ERROR ANALYSIS OF POST-QUANTUM CRYPTOGRAPHY MECHANISMS

6.2.2 Saber

Saber [BMD+21] is a MLWR lattice-based KEM. The secret vector S = (s1, . . . , sk), where si’s are polyno-
mials following a centered binomial distribution Dσ in Rq,1 = Zq[X]/(XN + 1). Depending on the security
level, the Saber parameters are: q = 213, p = 210, N = 256, σ ∈ {5, 4, 3} and k ∈ {2, 3, 4}. We focus the
decryption function for applying SEA.

Algorithm 30 Saber Decryption

Input: S, c = (cm, b
′)

Output: m′

1: v = b′T · (S mod p) ∈ Rp,1
2: m′ = ((v − 2ϵp−ϵT cm + h2) mod p) >> (ϵp − 1) ∈ R2,1
3: return m′

SEA application Our objective is to determine the positions of the zero coefficients in S. One way is
to perform a fault injection during the computation in line 1: v = b′T · (S mod p) ∈ Rp. However, as
the polynomial multiplication is computed with a 4 way Toom-cook algorithm, the secret coefficients are
combined between each other. This makes the attack difficult in practice.

To overcome this issue, the attack can be done during the conversion of the secret input. Indeed,
the coefficients of the secret polynomial are stored as a compact byte string and it is manipulated as
a polynomial structure which encodes each secret coefficients to an uint16_t. Our attack focus on the
byte-to-poly conversion.

Algorithm 31 Saber Byte-to-Poly function

Input: (uint8_t ∗ sk, uint16_t ∗ S)
Output: S

1: for j = 0 to j < N/8 do
2: os_sk, os_s = 13 j, 8 j
3: S[os_s] = sk[os_sk] | ((sk[os_sk + 1]&0x1F) << 8)
4: S[os_s + 1] = . . .
5: . . .
6: S[os_s + 7] = . . .
7: end for
8: return s

We present here, for the sake of clarity, only a sketch of the reference algorithm. The main idea is that
each coefficient of S is determined by multiple bytes from sk. Thus, the fault injection can be done during
this transformation. If the decryption algorithm succeeded then, the faulted coefficient is equal to 0. As in
NTRU, this attack is performed during several decryption procedure over different coefficients to recover
all the 0-coefficients positions.

Security impact Depending of the centered binomial distribution parameters σ, the secret vector has
more or less 0. As previously, we suppose that our secret is well distributed. Hence, for the three possible
values of σ (5,4 or 3 respectively), the ratio of secret coefficients equal to 0 is 24, 6%, 27, 3%, and 31, 25%
respectively.

The "Classical" LWR DBDD instance is done with the following parameters:

• The secret vector length: N ,

• The secret vector centered binomial distribution: Dσ,

86

CHAPTER 6. SAFE-ERROR ANALYSIS OF POST-QUANTUM CRYPTOGRAPHY MECHANISMS

• The length of the rounding: m = N .

The "Attacked" LWR DBDD instance is done with the following parameters:

• The secret vector length without the known coefficients: N = N − aN , where a is 0.246, 0.273 or
0.3125.

• The previous distribution without the 0-coefficients,

• The length of the rounding m (unchanged).

The following table shows the security impact of such knowledge using the tool introduced in Section 6.1.

Classical Attacked
Light Saber Dim = 1025 Dim = 900

N,m = 512, σ = 5 β = 404.38 β = 292.05
Saber Dim = 1537 Dim = 1328

N,m = 768, σ = 4 β = 648.72 β = 462.57
Fire Saber Dim = 2049 Dim = 1729

N,m = 1024, σ = 3 β = 892.21 β = 613.26

In average the safe-error attack provides, in terms of bikz, a 30% security loss. The SABER specification
[BMD+21] describes the security level in terms of AES-128/192/256. The following table present the
specified security and the obtained one after SEA:

Security claimed SEA security
Light Saber AES-128 ≤ AES-128

Saber AES-192 ≈ AES-128
Fire Saber AES-256 ≈ AES-192

Remark 12. The NTRU HPS 3 claimed an equivalent AES-192 security as Saber. However, the NTRU
HPS 3 value of β is 308.42 whereas Saber’s value of β is 648.72. This main difference is due to the secret
coefficients distribution. Indeed, NTRU cryptosystem underestimates the theoretical security by lake of
concrete attack, rather than Saber cryptosystem overestimate it.

6.2.3 Dilithium

Dilithium [BDL+21] is a lattice-based signature, based on the MLWE problem. The secret is given by
(S1, S2) two vectors of l and k polynomials respectively. Their polynomials have coefficients following
a centered binomial distribution Dσ in Rq,1 = Zq[X]/(XN + 1). Depending of the security level, q =
8380417, N = 256, σ ∈ {2, 4}, (k, l) ∈ {(4, 4), (6, 5), (8, 7)}

SEA attack The polynomial multiplication is performed with the NTT algorithm. However, for com-
pactness, the secret vectors are not stored in the NTT domain. One way to attack the secret coefficients,
is to perform fault injection during the NTT computation. However as for Saber, it is easier to attack the
secret coefficients during the unpacking process:

87

CHAPTER 6. SAFE-ERROR ANALYSIS OF POST-QUANTUM CRYPTOGRAPHY MECHANISMS

Algorithm 32 Dilithium unpack

Input: (uint8_t ∗ sk, uint16_t ∗ s, η)
Output: s

1: for j = 0 to j < N/8 do
2: s[8 i] = (sk[3 i] >> 3)&7
3: s[8 i+ 1] = (sk[3 i] >> 3)&7
4: . . .
5: s[8 i+ 7] = (sk[3 i+ 2] >> 5)&7
6: s[8 i] = η − s[8 i]
7: s[8 i+ 1] = η − s[8 i+ 1]
8: . . .
9: s[8 i+ 7] = η − s[8 i+ 7]

10: end for
11: return s

Here, the fault injection is performed as of line 6, depending of the targeted secret coefficient. For
example a fault injection at line 7 ensures that the 8 i + 1 coefficient is stored as a 0. The attack on the
previous algorithm is similar to the one on Saber. The fault injection is repeated on each coefficient during
several signature procedures. If the signature is not different than the original one, then the coefficient is
0. This attack is performed on S1 and S2.

Security impact The number of 0 depends on the value σ. Hence, for σ = 4 (resp. σ = 2), 27, 3% (resp.
37, 5%) of the secret coefficients of S1 and S2 are equal to 0. The following table shows the security impact
of such knowledge using the tool introduced in Sect. 6.1. The parameter N (resp. m) corresponds to the
number of coefficients in S1 (resp. S2). The "Classical" LWE DBDD instance is done with the following
parameters:

• The length of S1: N .

• The distribution of S1: centered binomial distribution Dσ.

• The length of S2: m,

• The distribution of S2: centered binomial distribution Dσ (same as S1).
The "Attacked" LWE DBDD instance is done with the following parameters:

• The length of S1 without the known coefficients: N = N − aN . where a = 0.273 or 0.375.

• The distribution of S1 and S2 without the 0-coefficients.

• The length of S2 without the known coefficients: m = m− am. where a is 0.273 or 0.375.
The following table shows the security impact of such knowledge using the tool introduced in Section 6.1.

Classical Attacked
Dilithium 1 Dim = 2049 Dim = 1281

(N,m) = (1024, 1024) β = 348.84 β = 192.84
σ = 2

Dilithium 2 Dim = 2817 Dim = 2049
(N,m) = (1280, 1536) β = 499.65 β = 340.06

σ = 4
Dilithium 3 Dim = 3841 Dim = 2401

(N,m) = (1792, 2048) β = 717.52 β = 411.13
σ = 2

88

CHAPTER 6. SAFE-ERROR ANALYSIS OF POST-QUANTUM CRYPTOGRAPHY MECHANISMS

Due to small centered binomial distributions, the security impact of SEA is consequent for Dilithium.
The Dilithium specification [BDL+21] describes security level in terms of equivalence of SHA3-256/AES-
192/AES-256. The following table presents the specified security and the one obtained after SEA:

Security claimed SEA security
Dilithium 1 SHA3-256 ≤ SHA3-256
Dilithium 2 AES-192 ≈ SHA3-256
Dilithium 3 AES-256 ≤ AES-192

6.2.4 Kyber

Kyber [BDK+18] is a MLWE lattice-based KEM. The secret vector S = (s1, . . . , sk), where, si is a poly-
nomial with coefficients following a centered binomial distribution Dσ in Rq,1 = Zq[X]/(XN + 1). In this
proposal q = 3329, N = 256, σ ∈ {3, 2} and k ∈ {2, 3, 4} depending of the security level. Again we focus
its decryption function:

Algorithm 33 Kyber Decryption

Input: sk, c
Output: Message m

1: u← Decompressq(Decode(c), du)
2: v ← Decompressq(Decode(c+ offset), du)
3: ŝ← Decode(sk)
4: c̃← v −NTT−1(ŝT ·NTT(u))
5: m← Encode(Compress(c̃), 1)
6: return m

However, in this scheme the secret coefficients of all the si’s are stored in the NTT domain. Then, the
structure of the binomial distribution cannot be exploited to perform a stuck-at 0 during the computation
of ŝT ◦ NTT(u). In fact, the NTT domain ensures that the coefficients are values in {0, . . . , q − 1} rather
than {−σ, . . . , σ}. Hence, by design, Kyber decryption algorithm is safe against our SEA at a cost of extra
memory storage.

6.3 Countermeasures
The lattice-based cryptosystems are vulnerable to safe-error attacks in general. Indeed, most of their
distribution are small and the null coefficients are numerous. Being able to determine their positions
provide an important advantage to an attacker.

One way to protect these schemes is to mask the distribution as in Kyber proposal. However, all the
lattice-based algorithm are not compliant with the NTT domain. Another way would be to mask the
secret coefficients by a uniform random in Zq. Then, the manipulated secret coefficients would be random
in {0, . . . , q} rather than in {−σ, . . . , σ}, where σ is close to 0. The main drawbacks of masking are the
extra storage for the coefficients, and the larger cost of the central operation: polynomial multiplication.

Another possible countermeasure would be the shuffling. Indeed, this countermeasure ensures, in theory,
that the positions of the null coefficients would not leak. However this technique requires a significant
amount of random generation.

89

CHAPTER 6. SAFE-ERROR ANALYSIS OF POST-QUANTUM CRYPTOGRAPHY MECHANISMS

90

Chapter 7

Exploiting physical attacks

Contents
7.1 Attack on LAC CPA key exchange in misuse situation 93

7.1.1 Preliminaries . 93
7.1.2 Attack on LAC key exchange . 95
7.1.3 Attack on LAC-256 key exchange . 101

7.2 Attack on LAC CCA key exchange using side-channel leakage 107
7.2.1 Physical attacks against LAC CCA key exchange 107

The results present in this chapter are from a joint work with Aurélien Greuet and Guénaël Renault in
[GMR20].

The lattice-based Key Encapsulation Mechanisms (KEMs) of the NIST standardization are proven
secure according two semantic security notions [Sak11]:

• INDinstiguishability under Chosen Plaintext Attack (IND-CPA).

• INDinstiguishability under Chosen Ciphertext Attack (IND-CCA).

Chosen plaintext attack considers that an attacker can choose plaintext to be encrypted and he can
obtain the corresponding ciphertext. The IND-CPA security notion ensures that an attacker cannot learn
information about the secret key using chosen plaintext attack. When a KEM is only proven IND-CPA
secure, then the key pair must be refreshed at each encapsulation.

Chosen cipher attack considers that an attacker can have access to plaintexts obtained by decryption
of chosen ciphertexts. The IND-CCA security notion ensures that an attacker cannot learn information
about the secret key using such attack. This security notion is stronger than the IND-CPA one. When a
KEM is IND-CCA secure, then the key pair can be used for several encapsulations.

In 1999 E. Fujisaki and T. Okamoto [FO99] introduce a transformation that allows to convert a CPA
secure cryptosystem to a CCA secure one. This transformation or variants of this one, are widely used in
the lattice-based schemes to convert a CPA secure KEM to a CCA secure one.

In this chapter we study the importance of Fujisaki Okamoto (FO) [FO99] transformation to ensure
CCA security of lattice-based schemes. More precisely we study this transformation in the context of LAC
[XYD+19], a lattice-based key encapsulation mechanism. In the following we evaluate the transformation
security in two scenarios:

• In a key misuse situation. We suppose that an implementer does not respect the CPA key exchange
implementation guideline such that he does not refresh the secret key at each key exchange. Therefore,
we mount an attack using forged ciphertext to retrieve the secret key. (Section 7.1)

91

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

• In a physical attack context. We suppose that the CCA key exchange is implemented without
countermeasure to protect the FO transformation. Therefore in order to apply the previous attack,
we determine which side-channel information an attacker needs. (Section 7.2)

LAC scheme and misuse situation. In this chapter we study LAC [XYD+19], a RLWE candidate to
the NIST standardization process until round 2. Moreover, it is a winner of the Chinese post-quantum
competition [fCry20b]. It differs from other RLWE KEMs by its small key and ciphertext sizes, for an
equivalent security level. Such small sizes can be an advantage, particularly in constrained environments
and embedded systems. We focus on LAC.KE, a KEM based on the CPA secure public-key cryptosystem
LAC.CPA. In constrained environments it’s interesting to determine the impact of key caching to evaluate
the requirement of random generation. Furthermore, the specification of CCA version of LAC uses a static
secret key due to security provided by the Fujisaki Okamoto (FO) transformation [FO99]. However, as
shown in [OSP+16; BGR+19] without a secure implementation of FO transformation, a physical attack
can bypass security provided by FO and modifies a CCA version to a CPA one with a static secret key.
Our study is inspired by previous works in [BGR+19; LZZ18; QCD19], which evaluate the resilience in a
misuse context offered by two other NIST KEM candidates. Here we propose to pursue this evaluation
with another NIST candidate to determine which one is the more resilient against this kind of attack.

Previous works. The seminal work of Menezes and Ustaoglu [MU10] paved the way for active attacks
on KE protocols. The idea of key mismatch attack on LWE based key exchange was first proposed by
Fluhrer in [Flu16; DFR18]. In a key mismatch attack, a participant’s secret key is reused for several
key establishments, and his private key can be recovered by comparing the shared secret key of the two
participants.

Some lattice-based KEM of the NIST competition were analysed in the key reused context using a key
mismatch oracle. In [BDH+19], Baetu et al. proposed a generic attack for several algorithms using the
same structure called meta-algorithm. However, most of the algorithms attacked in [BDH+19] did not
pass the first round of the submission, except Frodo-640 and NewHope512. However in [HV20], Huguenin-
Dumittan et al. pursue the work of generic attack for round 2 candidates. The security of NewHope1024
CPA algorithm in this misuse scenario is analyzed by Bauer et al. in [BGR+19] and an improvement is
proposed in [LZZ18]. More recently, in the same context, an attack on Kyber CPA KEM is proposed by
Ding et al. [QCD19].

In [GJY19], Guo et al. presented an attack against the CCA version of LAC. This attack is theoretically
stronger than ours since it does not rely on a misuse hypothesis but it requires 2162 pre-computations that
cannot be achieved in practice.

Our contribution. In Section 7.1, we investigate the resilience of the LAC KEM under a misuse case:
we assume that the same secret key is reused for multiple key establishment and we assume that an attacker
can use a key mismatch oracle as introduced in [BGR+19].

Since LAC uses encoding and compression functions different from a classical RLWE scheme, Fluhrer’s
attack [Flu16] cannot be applied directly. Furthermore, these functions are different from those used in
NewHope or Kyber, so we cannot apply straightforwardly the attacks described in [BGR+19; LZZ18;
QCD19]. A recent independent work in [HV20] attacks several round 2 candidates using the generic
structure of these schemes. Their attack is applied to the first security level of LAC but is focused on the
theoretical aspect. Our work complete this work by bringing a practical aspect and an extension to the
others security levels.

The main idea of these attacks is to send forged ciphertexts to a victim, ensuring that its decryption
will leak partial information of his static secret key. LAC algorithms use two encoding functions including
an error-correction code BCH that can correct a limited number of errors. If a message exceeds the number

92

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

of errors that the error-correction code can correct, then a decryption failure occurs. Thus, we propose to
use this failure to provide leaks about the static secret key.

More precisely, we propose a deterministic key mismatch attack on LAC KE for the first two security
levels: LAC-128 and LAC-192, which required at most 2 queries per coefficient of the secret key. Afterwards,
we adapt our attack to the highest security level LAC-256 which is still deterministic but we need at most
8 queries per coefficient of the secret key.

We experimented our attack with the reference and optimized implementation in C provided by the
LAC team [XYD+19] with parameters described in Section 7.1.1. The code of our attack is available in
[Mona].

In Section 7.2 we suppose that there is no misuse. Hence, due to the CCA security brings by the
Fujisaki-Okamoto transformation, the previous attack cannot applied straightforwardly . Therefore, we
analyze leakage points which can be exploited to mount a side-channel attack to thwart the FO security
and then retrieve secret coefficients.

7.1 Attack on LAC CPA key exchange in misuse situation

7.1.1 Preliminaries

Notation

Ring definition. For an integer q ≥ 1, let Zq be the residue class group modulo q such that Zq can be
represented as {0, . . . , q − 1}. We define Rq,1 being the polynomial ring Rq,1 = Zq[X]/(XN + 1).

Polynomial. A polynomial in Rq,1 is of degree at most (N − 1) with coefficients in Zq. Given P ∈
Rq,1, we denote by P [i] or Pi the coefficient associated with the monomial Xi. P can also be represented
as a vector with N coordinates. In the following, the notation (a)lv (lv ∈ N), where a is a vector (or a
polynomial) of dimension N > lv, means we keep the first lv coordinates of a.

Message space. Let the message space M be {0, 1}lm and the space of random seeds S be {0, 1}ls ,
where lm and ls are two integer values.

Random distribution. Let ψσ be the centred binomial distribution on the set {−1, 0, 1}. We denote
the centred binomial distribution for N independent coordinates by ψN

σ i.e. for a vector a of dimension N
each coefficient is sampled with the centred binomial distribution. In LAC algorithms we use:

1. ψ1 : Pr(x = 0) = 1
2 , Pr(x = −1) = 1

4 , Pr(x = 1) = 1
4

2. ψ 1
2

: Pr(x = 0) = 3
4 , Pr(x = −1) = 1

8 , Pr(x = 1) = 1
8

Given a set A, U(A) is the uniform distribution over A. We denote by H a hash function and Samp(D, seed)
an algorithm which samples a random variable according to a distribution D with a given seed.

Error correction code. We denote by [n′, k, d] a set of parameters of an error-correction code (in our
case a binary BCH code). n′ denotes the length of the codewords, k is the dimension and d is the minimal
Hamming distance of the code.

LAC

LAC is a Ring-LWE based public key encryption scheme over Rq,1. In order to balance performance and
size, LAC team chose q = 251, that fits on one byte. This choice of a small modulus implies a lower security
or a higher decryption error rate. To overcome these issues, an error-correction code is used, allowing to

93

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

keep a low decryption error rate and maintain the same security level than schemes using larger modulus.
Three security levels are proposed for LAC: LAC-128, LAC-192 and LAC-256. In this section, we describe
the four algorithms CPA.KeyGen, CPA.Encrypt, CPA.Decrypt, CPA.Decrypt256 of the CPA version of LAC,
the four subroutines BCHEncode, BCHDecode, Compress and Decompress and the CPA-KEM scheme.

Note that CPA.KeyGen and CPA.Encrypt are common to the three security levels. However, the de-
cryption depends on the security level: Algorithm 36 is the decryption process for LAC-128 and LAC-192.
The decryption routine for LAC-256 is described in Algorithm 37.

Algorithm 34
CPA.KeyGen

Output: Key pair (pk, sk)
1: seeda ←− U(S)
2: a← Samp(U(Rq,1), seeda)) ∈ Rq,1
3: s←− ψN

σ

4: e←− ψN
σ

5: b← a× s+ e ∈ Rq,1
6: return (pk, sk) = ((seeda, b), s)

Algorithm 35
CPA.Encrypt(pk,m, seed)
Output: Ciphertext c = (c1, c2)

1: (seeda, b)← pk

2: a← Samp(U(Rq,1), seeda) ∈ Rq,1
3: m̂← BCHEncode(m)∈{0, 1}lv
4: r ← Samp(ψN

σ , seed)
5: e1 ← Samp(ψN

σ , seed)
6: e2 ← Samp(ψlv

σ , seed)
7: c1 ← ar + e1 ∈ Rq,1
8: c2 ← (br)lv + e2 + ⌊ q

2⌉m̂ ∈ Zlv
q

9: if LAC-256
10: c2 ← c2||c2 //D2 encoding
11: end if
12: c2 ← Compress(c2)
13: return c = (c1, c2)

Algorithm 36
CPA.Decrypt(sk, c = (c1, c2))
Output: Plaintext m

1: c2 ← Decompress(c2)
2: M̂ ← c2 − (c1sk)lv ∈ Zlv

q

3: for i = 0 to lv − 1 do
4: if q

4 ≤ M̂i <
3q
4 then

5: m̂i ← 1
6: else
7: m̂i ← 0
8: end if
9: end for

10: m← BCHDecode(m̂)
11: return m

Algorithm 37
CPA.Decrypt256(sk, c = (c1, c2))
Output: Plaintext m

1: c2 ← Decompress(c2)
2: M̂ ← c2 − (c1sk)2lv ∈ Z2lv

q

3: for i = 0 to lv − 1 do //D2 Decoding
4: tmp1, tmp2 := M̂ [i], M̂ [i+ lv]
5: if tmp1 <

q
2

6: tmp1 ← q − tmp1
7: else if tmp2 <

q
2

8: tmp2 ← q − tmp2
9: end if

10: if tmp1 + tmp2 − q < q
2

11: m̂i ← 1
12: else
13: m̂i ← 0
14: end if
15: end for
16: m← BCHDecode(m̂)
17: return m

Subroutines

BCHEncode and BCHDecode. The function BCHEncode takes as input a message m of length lm, pads it
with (k − lm) zeros, where k is the dimension of the BCH code, and returns the corresponding value c on

94

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

the code. The function BCHDecode takes as input a message ĉ of length N − 1, retrieves the codeword c
closest to ĉ and returns m such that c = mG, where G is the generator matrix of the code.

Compress and Decompress. The function Compress takes as input a variable c = (c0, . . . , clenc) where
each coefficient ci is a 8-bits number and returns c′ = (c′

0, . . . , c
′
lenc

) where each c′
i is a 4 bits number

obtained by keeping the highest 4 bits of ci.
The function Decompress takes as input a variable c′ = (c′

0, . . . , c
′
lenc

) where each coefficient c′
i is a

4-bit number, and returns c̃ = (c̃0, . . . , c̃lenc) where each c̃i is a 8 bits number obtained by padding each
coefficient c′

i with 4 zero bits.

D2 encoding. D2 encoding duplicates the coordinate of a vector: D2Enc(c2) = (c2||c2). The use of this
encoding allows to decrease decoding errors.

Parameters Recall that LAC is a RLWE public-key encryption scheme on Rq,1 = Zq[X]/(XN +1), with
input messages of length lm.
LAC uses different parameters for its three algorithms:

Name N q Distrib lm lv Code(BCH) D2
[n′, k, d]

LAC-128 512 251 ψ1 256 lm + 144 [511, 367, 33] No
LAC-192 1024 251 ψ 1

2
256 lm + 72 [511, 439, 17] No

LAC-256 1024 251 ψ1 256 lm + 144 [511, 367, 33] Yes

The value lv depends on the BCH code. Let G be a generator matrix of the BCH code C. By the
construction of LAC, G is on systematic form G = (Idk|An′−k). In fact, we cannot keep only lv bits of a
codeword without this condition. The BCHEncode function takes as input a message m of length lm and
pads it with (k − lm) zeros. We obtain

(m1, . . . ,mlm , 01, . . . , 0k−lm)G = (m1, . . . ,mlm , 01, . . . , 0k−lm |mAn′−k) = c

We omit the (k − lm) zeros of c then lv = lm + (n′ − k).

LAC Key Exchange We describe the LAC Key Exchange introduced in [XYD+19], based on the CPA
version of the LAC public-key encryption scheme. In the following we denote the secret key sk by s.

Alice Bob
(pk, s)←− CPA.KeyGen

pk−→
r ←− U({0, 1}lm)
c←−CPA.Encrypt(pk, r)
KeyB ← H(pk, r) ∈ {0, 1}lk

c←−
r′ ← CPA.Decrypt(s, c)

KeyA ← H(pk, r′) ∈ {0, 1}lk

If Key Exchange succeeds then r′ = r and KeyB = KeyA.

7.1.2 Attack on LAC key exchange

We start by defining the attack scenario by introducing the oracle defined in [BGR+19].

95

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

Attack Model

Suppose that Alice does a misuse of the Key Exchange Mechanism by caching her secret s. More precisely:

Assumption 1. Alice keeps her secret key constant for several CPA key establishments requests.

Eve is a malicious active adversary who acts as Bob and can cheat and generate c that is not the
encryption of a random r. To mount the active attack, we suppose that Eve has access to a session key
mismatch oracle defined as follow.

Definition 3. A key mismatch oracle outputs a bit of information on the possible mismatch at the end of
the key encapsulation mechanism. In the LAC context, this oracle, denoted O, takes any message c and
any session key guess µ as input and outputs:

O(c, µ) =
{

1 if H(pk, CPA.Decrypt(s, c)) = µ
−1 otherwise

This oracle can also be used by Bob during an honest key exchange with Alice, when he verifies the
match between his session key and Alice’s one.

The idea of the attack mounted by Eve is to send forged ciphertexts to Alice to ensure that she obtains
information on some coefficients of Alice’s secret key. As Eve knows that c = (c1, c2) and s are used during
the decryption algorithms (s is multiplied by c1), she will mount an attack using this fact and following
four mains steps:

• Choose a session key µ.

• Construct c1 such that some coefficients of the secret key are exposed.

• Construct c2 depending of µ such that the result of Alice’s decryption can be monitored as a function
of the key guess.

• Call to the oracle O to obtain information about our key guesses.

The following section shows how to choose appropriate (c, µ) to retrieve information on s. We assume that
Eve has access to the oracle O.

Attack on LAC-128-KE and LAC-192-KE

First, we use a simplified version where we do not consider Compress and Decompress functions. We follow
the different steps of the decryption algorithm 36.

Simplified version In this first result, we show how one can forge a LAC ciphertext in order to impose
which plaintext will be obtained after decryption. To do so, we need to forge c such that the impact of the
secret key during the decryption is under our control.

Proposition 12. Assume that Eve forges c = (c1, c2) such that :

• c1 = −aXN−w where w is an integer 0 ≤ w < N and 0 ≤ a < q
4

• c2 = (α0, . . . , αlv−1) where αi = q
2 or 0 for all i in [0, lv − 1].

Then she can determine the plaintext m that Alice will obtain after decryption.

Proof. When Alice deciphers Eve’s ciphertext she:

1. Computes M̂ = c2 − (c1s)lv

96

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

2. Compares each coefficient of M̂ to q
4 and 3q

4 to define m̂

3. Retrieves m using BCHDecode algorithm on m̂

Let c1 = −aXN−w and s = s0 + s1X
1 + . . .+ sN−1X

N−1 then

c1s = asw + asw+1X + . . .+ asN−1X
N−w−1 − as0X

N−w − . . .− asw−1X
N−1

and the polynomial c1s can be represented as the vector (asw, . . . ,−asw−1).
During the computation of M̂ , two cases are possible:

• w < lv then M̂ = c2 − (c1s)lv = (α0 − asw, . . . , αw + as0, . . . , αlv−1 + asw+lv−1)

• w ≥ lv then M̂ = c2 − (c1s)lv = (α0 − asw, α1 − asw+1, . . . , αlv−1 − asw+lv−1)

After this computation each coefficient of M̂ is compared to q
4 ≤ M̂i <

3q
4 .

Recall that since s ←− ψN
σ , each of its coefficients belongs to {−1, 0, 1}. Let i be an integer such that

0 ≤ i < N and j ≡ N − w + i mod N .

If αi = q
2 one gets:

αi ∓ asj =

q∓2a

2 if sj = ±1
q
2 if sj = 0
q±2a

2 if sj = ∓1

If αi = 0 one gets:

αi ∓ asj =

±a if sj = ∓1
0 if sj = 0
∓a if sj = ±1

In the first case, the three possible values for αi ∓ asj lie in
[

q
4 ,

3q
4

[
if 0 ≤ a ≤ q

4 .
In the case αi = 0, the three possible values do not lie in

[
q
4 ,

3q
4

[
when 0 ≤ a < q

4 or 3q
4 ≤ a ≤ q.

Thus, Eve can choose a < q
4 and αi = q

2 or 0 to determine what Alice will obtain on the first lv
coordinates of m̂. Then, Eve can deduce, by applying BCH decoding, what Alice obtains at the end of the
decryption procedure.

The next example explains how one can use Proposition 12.

Example 15. Suppose that Eve wants that Alice will obtain, after decryption, the message
m =BCHDecode(1, 0, 1, 1, 0, . . . , 0). Then she forges c = (c1, c2) such that:

• c1 = − q
5X

N = q
5 on Rq,1. In fact Eve can take any c1 such that c1 = −aXN−w with 0 ≤ a < q

4

• c2 = (q
2 , 0,

q
2 ,

q
2 , 0, . . . , 0)

From c Alice first computes:

M̂ = c2 − (c1s)lv

=
(
q

2 , 0,
q

2 ,
q

2 , 0, . . . , 0
)
− q

5 (s0, s1, . . . , slv) , si belongs to {−1, 0, 1}

=
(
q

2 −
q

5s0,−
q

5s1,
q

2 −
q

5s2,
q

2 −
q

5s3,−
q

5s4, . . . ,−
q

5slv

)
Then, Alice compares each coefficients of M̂ to q

4 and 3q
4 . She obtains (see proof of Proposition 12):

m̂ = (1, 0, 1, 1, 0, . . . , 0)

At the end, Alice obtains m by applying BCHDecode algorithm to m̂. Thus, Eve had forged c such that Alice
has m = BCHDecode(1, 0, 1, 1, 0, . . . , 0).

97

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

With Proposition 12 we construct a ciphertext such that the secret key has no impact during decryption.
Now Eve needs to construct forged ciphertexts that allow a key guessing strategy in order to retrieve the
secret key. Thus, we need that the secret key has an impact during decryption if and only if we did a good
key guess.

Proposition 13. Let s′
w be a guess done by Eve on the w-th coefficient of the secret key s, where 0 ≤ w < N .

Assume sw = 1 or −1. If Eve forges c = (c1, c2) as given in Proposition 12 and modifies the first coordinate
of c2 such that:

• c2 = (as′
w, α1, . . . , αlv−1) with q

8 < a < q
4 .

Then she can verify her key guess from the plaintext computed by Alice from c.

Proof. Suppose that Eve wants to retrieve the w-th coefficient of s. When Alice will decipher Eve ciphertext
she first computes:

M̂ = c2 − (c1s)lv = (as′
w − asw, α1 − asw+1, . . .)

According to Proposition 12, Eve can determine what Alice will obtain for every coefficient different from
her guess s′

w. Let see what happens with this coefficient by analysing as′
w − asw.

as′
w − asw =

0 if s′

w = sw

2a if s′
w = 1 and sw = −1

−2a if s′
w = −1 and sw = 1

∓a if s′
w = 0 or sw = 0

Let q
8 < a < q

4 then q
4 < 2a < q

2 and −2a ≡ q − 2a mod q satisfies q
2 < q − 2a < 3q

4 .
The key guess is good (resp. wrong) when a 1 (resp. 0) is returned at the first coordinate of m̂.

Hence Eve can effectively determines what Alice obtained by applying BCHDecode algorithm to m̂ and thus
deterministically verifies her key guess from m̂.

Proposition 13 ensures that if Eve guessed the good key then Alice will obtains m = BCHDecode(1, . . .).
Otherwise, she will obtain m = BCHDecode(0, . . .). Computational details are given in the following exam-
ple.

Example 16. Suppose that Eve wants to learn information about the first bit of Alice’s secret key. Eve
forges c = (c1, c2) such that:

• c1 = − q
5X

N = q
5 on Rq,1.

• c2 =
(q

5s
′
0, 0, q

2 ,
q
2 , 0, . . . , 0

)
where s′

w is Eve’s key guess.

As in Example 15, Alice first computes M̂ = c2−(c1s)lv = (q
5s

′
0−

q
5s0, − q

5s1,
q
2 −

q
5s2,

q
2 −

q
5s3,− q

5s4, . . . ,− q
5slv)

where si belongs to {−1, 0, 1}. Then, Alice compares each coefficients of M̂ to q
4 and 3q

4 . She obtains (see
proof of Proposition 13):

m̂ = (1, 0, 1, 1, 0, . . . , 0) if s′
0 = −s0 and s0 ̸= 0

m̂ = (0, 0, 1, 1, 0, . . . , 0) otherwise

At the end, Alice obtains m by applying BCHDecode algorithm to m̂. Thus, Eve did the good key guess if
Alice gets m = BCHDecode(1, 0, 1, 1, 0, . . . , 0).

Proposition 13 already gives interesting information to Eve but it is not enough to mount an attack
since Eve needs a way to verify if Alice obtains:

98

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

• either m = BCHDecode(1, 0, 1, 1, 0, . . . , 0)

• or m = BCHDecode(0, 0, 1, 1, 0, . . . , 0)

without knowing m. Moreover, most of the time BCHDecode(1, 0, 1, 1, 0, . . . , 0) will not differ from
BCHDecode(0, 0, 1, 1, 0, . . . , 0).

To overcome these issues we need to instantiate precisely the oracle given in Definition 3 using Propo-
sition 13.

Instantiation of the Oracle. The oracle defined in Definition 3 gives information about the success
of a key session establishment between Alice and Bob. Eve can use such an oracle with the help of
Proposition 13 and the BCH code decryption failure to overcome issues mentioned above.

In the sequel, we show how Eve can practically mount an attack by forging specific inputs to this oracle
and deduce information on Alice’s secret key. The following theorem and its proof detail this construction.
The Algorithm 38 and Algorithm 39 formally describe the attack.

Theorem 1. Let s′
w ∈ {−1, 1} be the guessed value of sw (0 ≤ w < N) done by Eve. If Eve takes a session

key µs′
w

then she can forge cs′
w

= (c1, c2) depending of µs′
w

by using properties given in Proposition 13 such
that by calling O(cs′

w
, µs′

w
) with s′

w ∈ {−1, 1}, she retrieves the w-th coefficient of s. In consequence, Eve
needs at most 2 calls to the oracle in order to retrieve a coefficient of Alice’s secret key.

Proof. According to Proposition 13, Eve can monitor Alice’s decryption procedure if she does the good key
guess.

An error-correction code can correct at most d−1
2 errors (where d is the minimal Hamming distance of

the BCH code). The idea is that after comparison with q
4 and 3q

4 , m̂ is a codeword with d
2 errors if Eve did

the wrong key guess, causing a decoding error. Suppose Eve wants to retrieve the w-th coefficient of s:

1. Eve chooses a codeword called cdword with a 1 at the first coordinate such that cdword = mG where
G is the generator matrix of the BCH code

2. Eve injects d−1
2 errors to cdword at any coordinate except the first one

3. Eve chooses a verifying q
8 < a < q

4 according to Proposition 13

4. Eve constructs c1, c2 with her key guess at the first bit of c2: c2[0] = as′
w and such that after

comparison with q
4 and 3q

4 , Alice retrieves cdword with d−1
2 errors or cdword with d

2 errors

5. Eve sends c = (c1, c2) to Alice

With this construction, Alice obtains a codeword with d
2 errors if Eve provides a wrong key guess. At this

point, Eve’s session key is sessE = H(pk,m) and Alice’s session key sessA depends on Eve’s key guess.
Eve can verify whether she did the correct key guess with the oracle as follow:

If s′
w = 1 and O(c, sessE) = 1 then sw = −1 and sessA = sessE

Else If s′
w = −1 and O(c, sessE) = 1 then sw = 1 and sessA = sessE

Otherwise sw = 0

Algorithm 38 and Algorithm 39 are based on the construction described in the proof of Theorem 1.
Here, we fix the constant a to q

7 in the construction of c1.

99

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

Algorithm 38 forge(hyp,bit)
Output: Forge ciphertext c = (c1, c2)

1: c1 := − q
7X

N−bit

2: m := [0 : for i := 0 to 255]
3: m[0] := 1
4: codeword := (m||0..0)G
5: Add d−1

2 errors to codeword (but not on
codeword[0])

6: For i = 0 to Len(codeword) :
7: if i == 0 :
8: c2[0]← hyp× q

7
9: else if codeword[i] == 1 :

10: c2[i]← q
2

11: else
12: c2[i]← 0
13: end if
14: end for
15: Return(m, c = (c1, c2))

Algorithm 39 recoverOneBit(bit)
Output: A bit of s

1: m, c := forge(−1, bit)
2: If O(c,m) == 1 :
3: Return 1
4: end if
5: m, c := forge(1, bit)
6: If O(c,m) == 1 :
7: Return −1
8: end if
9: Return 0

Using Theorem 1, a key of length N can be fully recovered with at most 2×N requests to the oracle.
LAC-128 works with keys of length N = 512 and LAC-192 with length N = 1024.

Full version The subroutine Compress removes the 4 lowers bits of each coeff of c2. They are replaced
by 4 zero-bit when the subroutine Decompress is applied at the beginning of the decryption process. Thus,
each coefficient of c2 can be only equal to 16, 32, 64, 128 and any sum of theses values.
For c2 in our attack, we only consider the values q

7 , − q
7 and q

2 . In our implementation [Mona] we approximate
q
7 ≈ 32, − q

7 ≈ 128 + 64 + 16 = 210 and q
2 ≈ 128. Proposition 13 is still verified and we still retrieve s with

at most 2×N requests to the oracle by the Theorem 1.
In comparison of the recent work of Huguenin-Dumittan et al. in [HV20], our upper-bound for LAC128

is 2 times less than theirs. Indeed, they need at most 211 queries to retrieve the entire secret key, while we
need at most 210 queries.

Implementation results We have developed a C implementation of the attack (see [Mona]). To assess
its efficiency we use the reference code of LAC [XYD+19] as a target. In the following, we present practical
results on the average of 1000 attacks launched on 1000 random secret keys for LAC-128 and LAC-192.
Timing results have been evaluated on core i5-8350U at 1.90GHz.

Nb of coeff of sk Average oracle requests Average time
LAC-128 512 896 2, 94 ms
LAC-192 1024 1920 15, 53 ms

The size of LAC-192 secret key is 2 times larger than LAC-128 one, but the number of required request to
retrieve sk is more than 2 times larger. This is due to a different probability distribution between these
two levels of security.
In average we need 1, 75 × 512 oracle requests for LAC-128 and 1, 875 × 1024 requests for LAC-192. For
both cases, the practical result is less than the upper bound of 2×N where N = 512 or 1024.

100

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

7.1.3 Attack on LAC-256 key exchange

Attack on LAC-256 key exchange

Since LAC-256 encryption uses D2 encoding , the decryption procedure is slightly different. Let c = (c1, c2),
D2 encoding duplicates the coordinate of c2: c2 = (c2||c2). The use of this encoding allows to decrease
decoding errors.

In the attack on LAC-128/192 we forged c1 as a monomial to avoid linear combination between coeffi-
cients of s during computation of c1s. This allows to do key guess on only one coefficient of s. But, despite
the use of a monomial for c1, D2 encoding ensures that each coefficient of c1s is a linear combination of at
least 2 coefficients of s. It implies that we need to do key guesses on two coefficients of s. In this section,
we adapt our previous attack to allow to do two key guesses rather than one. The attack procedure is the
same as previously:

• Choose a session key µ.

• Construct c1 such that some coefficients of the secret key are exposed.

• Construct c2 depending of µ such that the result of Alice’s decryption can be monitored as a function
of the key guess.

• Call to the oracle O to obtain information about our key guesses.

CPA.Decrypt256 description The first step of the decryption it’s to compute M̂ = c2 − (c1s)2lv as
previously. However the comparison is different for LAC-256. The decryption algorithm considers two
cases:

Case 1. If M̂ [i] and M̂ [i + lv] < q
2 or M̂ [i] and M̂ [i + lv] ≥ q

2 then algorithm CPA.Decrypt256 checks
whether: M̂ [i]+M̂ [i+lv]

2 ∈] q
4 ,

3q
4 [

Case 2. If M̂ [i] < q
2 and M̂ [i + lv] ≥ q

2 or M̂ [i] ≥ q
2 and M̂ [i + lv] < q

2 then CPA.Decrypt256 checks
whether |M̂ [i]−M̂ [i+lv]|

2 ∈]0, q
4 [

In the following we notice when we are in the case 1 or 2.

Attack on LAC-256 key exchange simplified

As previously we first use a simplified version where we do not consider Compress and Decompress sub-
routines.

Proposition 14. Assume that Eve forges c = (c1, c2) such that:

• c1 = −aXN−w where w is an integer 0 ≤ w < (N − lv) and 0 ≤ a < q
4

• c2 = (α0, . . . , αlv−1, αlv , . . . , α2lv−1) where αi = q
2 or 0 for all i in [0, 2lv − 1]

Then she can determine the plaintext m that Alice obtains after decryption.

Proof. Assuming Alice receives c = (c1, c2) then she:

1. Computes M̂ = c2 − (c1s)2lv

2. Compares q
4 <

M̂ [i]+M̂ [i+lv]
2 < 3q

4 or 0 < |M̂ [i]−M̂ [i+lv]|
2 < q

4 for i = 0 to lv − 1 to define each coefficient
of m̂

101

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

3. Retrieves m using BCHDecode algorithm on m̂

Let c1 = −aXN−w and s = s0 + s1X
1 + . . .+ sN−1X

N−1 then

c1s = asw + asw+1X + . . .+ asN−1X
w − as0X

w−1 − . . .− asw−1X
N−1

c1s can be represented as a vector: (asw, . . . ,−asw−1). During the computation of M̂ two cases are
possible:

• w < 2lv then M̂ = c2−(c1s)2lv = (α0−asw, α1−asw+1, . . . , αw +as0, . . . , α2lv−1 +as(2lv−1+w mod N))

• w ≥ 2lv then M̂ = c2 − (c1s)2lv = (α0 − asw, α1 − asw+1, . . . , α2lv−1 − as(2lv−1+w mod N))

Recall that since s ←− ψN
σ , each of its coefficients belongs to {−1, 0, 1}. Let i be an integer such that

0 ≤ i < lv and j ≡ i+w mod N . For decryption there are the three following cases. (We cannot have the
case where M̂ [i] = αi + asj and M̂ [i+ lv] = αi+lv − asj+lv because that implies j + lv ≤ w + lv and w < j
with lv > 0 and j ≥ 0.)

1. M̂ [i] = αi − asj and M̂ [i+ lv] = αi+lv − asj+lv

If αi = q
2 one gets:

• If sj = sj+lv or sj + sj+lv = −1 we are in the Case 1 described in 7.1.3, where αi− asj = M̂ [i]. Then

αi = αi+lv = q

2 ,
(αi − asj) + (αi+lv − asj+lv)

2 =

q−2a

2 if sj = sj+lv = 1
q+2a

2 if sj = sj+lv = −1
q
2 if sj = sj+lv = 0
q+a

2 if sj + sj+lv = −1

These 3 values lie in
]

q
4 ,

3q
4

[
if 0 ≤ a < q

4 .

• Otherwise we are in the Case 2 described in Paragraph 7.1.3, where αi − asj = M̂ [i]:

αi = αi+lv = q

2 ,
|(αi − asj)− (αi+lv − asj+lv)|

2 =

a
2 if sj + sj+lv = 1
a if sj = −1, sj+lv = 1

or sj = 1, sj+lv = −1

These values lie in
[
0, q

4
[

if 0 ≤ a < q
4 .

Then for both cases, if c1 = −aXN−w with αi, αi+lv = q
2 , we can ensure that we have a 1 after comparison.

If αi = 0 then we are in the Case 1 described in Paragraph 7.1.3, where αi − asj = M̂ [i]:

(αi − asj) + (αi+lv − asj+lv)
2 =

a if sj = sj+lv = −1
0 if sj = −sj+lv or sj = sj+lv = 0
−a if sj = sj+lv = 1
±a

2 otherwise

Then these 3 values do not lie in] q
4 ,

3q
4 [for 0 ≤ a < q

4 .

2. M̂ [i] = αi + asj and M̂ [i + lv] = αi+lv + asj+lv . The proof is the same as above. We give here the
different decryption cases:

• If αi = q
2 then two cases are possible: if sj = sj+lv or sj + sj+lv = 1 then we are in the decryption

Case 1 otherwise in the Case 2.

• If αi = 0 then we are in the decryption Case 1.

102

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

3. M̂ [i] = αi − asj and M̂ [i + lv] = αi+lv + asj+lv . The proof is the same as above. We give here the
different decryption cases:

• If αi = q
2 then two cases are possible: if sj = −sj+lv or sj = 0, sj+lv = 1 or sj = −1, sj+lv = 0 then

we are in the decryption Case 1, otherwise in the Case 2.

• If αi = 0 then we are in the decryption Case 1.

Example 17. Suppose that Eve wants that Alice obtains, after decryption, the plaintext

m = BCHDecode(1, 1, 0, 1, 0, . . . , 0)

. Eve forges c = (c1, c2) such that:

• c1 = − q
5X

N = q
5 on Rq,1.

• c2 = (q
2 ,

q
2 , 0,

q
2 , 0 . . . , 0||

q
2 ,

q
2 , 0,

q
2 , 0 . . . , 0). The symbol || delimits the lv first part to the lv second part

of c2 (we duplicate c2 due to D2 encoding in Algorithm 35). The two parts are symmetric.

When Alice deciphers c, she computes M̂ = c2 − (c1s)2lv and uses the comparison procedure describes in
Algorithm 37 to obtain m̂ of length lv. If c1 and c2 are constructed according to Proposition 14, then (cf
Proof 7.1.3):

• If c2[i] = c2[i+ lv] = q
2 then m̂[i] = 1

• If c2[i] = c2[i+ lv] = 0 then m̂[i] = 0

Then, with our c2 = (q
2 ,

q
2 , 0,

q
2 , 0 . . . , 0||

q
2 ,

q
2 , 0,

q
2 , 0 . . . , 0) Alice obtains m̂ = (1, 1, 0, 1, 0, . . . , 0). Thus, Alice

retrieves m = BCHDecode(1, 1, 0, 1, 0, . . . , 0).

So Eve can choose a < q
4 and αi = q

2 or 0 to know what Alice obtains on the lv coordinates of m̂ and
then Eve can deduce what Alice obtains at the end of decryption for m. Eve needs to construct forged
ciphertexts which allow to verify her key guesses.

Proposition 15. Let s′
w and s′

w+lv
be guesses done by Eve on the w-th and w+ lv coefficients of the secret

key s. Assume sw, sw+lv = 1 or −1. If Eve forges c = (c1, c2) as given in Proposition 14 and modifies the
first and lv-th coordinates of c2 such that:

• c2 = (as′
w, α1, . . . , αlv−1, as

′
w+lv

, . . . , αlv−1) with q
8 < a < q

4 .

Then she can verify her key guesses from the plaintext computed by Alice from c.

Proof. According to Proposition 14 Eve can determine what Alice obtains at the end of the decryption
procedure for every coefficient different from the key guesses. Assume that Eve wants to retrieve the w-th
and (w + lv)-th coefficients of s. Let M̂ = c2 − (c1s)2lv , due to 0 ≤ w < (N − lv) the only case to consider
is M̂ [0] = as′

w − asw and M̂ [lv] = as′
w+lv

− asw+lv .
Let s′

w = s′
w = 1 and q

8 < a < q
4 , so we are in the Case 1 described in Paragraph 7.1.3. Let see what

happens with M̂0+M̂lv
2 = as′

w−asw+as′
w+lv

−asw+lv

2 :

a− asw + a− asw+lv

2 =

2a if sw = sw+lv = −1
0 if sw = sw+lv = 1
3a
2 if sw = 0, sw+lv = −1

or sw = −1, sw+lv = 0
a
2 otherwise

Then only the case a−asw+a−asw+lv
2 = 3a

2 can put a 1 to m̂0 if q
8 < a < q

4 .
With the same condition on a and with the same method Eve can have :

103

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

• If s′
w = s′

w+lv
= 1 and m̂0 = 1 then sw = sw+lv = −1

• If s′
w = s′

w+lv
= −1 and m̂0 = 1 then sw = sw+lv = 1

• If s′
w = 1, s′

w+lv
= −1 and m̂0 = 1 then sw = −1 and sw+lv = 1

• If s′
w = −1, s′

w+lv
= 1 and m̂0 = 1 then sw = 1 and sw+lv = −1

Example 18. Suppose that Eve wants to learn information about the first and the lv-th bit of Alice’s secret
key. Eve forges c = (c1, c2) such that:

• c1 = − q
5X

N = q
5 on Rq,1.

• c2 = (q
5s

′
0,

q
2 , 0,

q
2 , 0 . . . , 0||

q
5s

′
lv
, q

2 , 0,
q
2 , 0 . . . , 0) where s′

0 and s′
lv

are key guesses

When Alice deciphers c she computes M̂ = c2 − (c1s)2lv and uses the comparison procedure describes in
Algorithm 37 to obtain m̂ of length lv. If c1, c2, s′

0 and s′
lv

are constructed according to Proposition 15,
then (cf Proof 7.1.3):

• If s′
0 = −s0 and s′

lv
= −slv then m̂[0] = 1

• Else m̂[0] = 0

• The value of the others coefficients of m̂ are determined as in the previous example

If Eve does correct key guesses then Alice obtains m̂ = (1, 1, 0, 1, 0, . . . , 0). Otherwise, Alice obtains m̂ =
(0, 1, 0, 1, 0, . . . , 0)

Proposition 15 ensures that Eve can know what Alice obtains if Alice’s secrets coefficients are different
from 0. Let see what happens when one of the two coefficient is equal to 0.

Proposition 16. Let s′
w and s′

w+lv
be guesses done by Eve on the w-th and w+ lv coefficients of the secret

key s. Assume sw = 0 or sw+lv = 0. If Eve forges c = (c1, c2) as given in Proposition 14 and modify the
first and lv-th coordinates of c2 such that:

• c2 = (as′
w, α1, . . . , αlv−1, as

′
w+lv

, . . . , αlv−1) with q
6 < a < q

4 .

Then she can verify her key guesses from the plaintext computed by Alice from c.

Proof. Assume that Eve wants to retrieve the w-th and (w + lv)-th coefficients of s.
As Proof 7.1.3 the only case to consider is M̂ [0] = as′

w − asw and M̂ [lv] = as′
w+lv

− asw+lv . Suppose
q
6 < a < q

4 , s′
w = 1 and s′

w+lv
= 1. Let see what happens with M̂0+M̂lv

2 = as′
w−asw+as′

w+lv
−asw+lv

2 (Case 1
described in Paragraph 7.1.3):

a− asw + a− asw+lv

2 =

3a
2 if sw = −1 and sw+lv = 0

or sw = 0 and sw+lv = −1
a
2 if sw = 0 and sw+lv = 1

or sw = 1 and sw+lv = 0
a if sw = sw+lv = 0

With q
6 < a < q

4 then only the case where the result is 3a
2 can put a 1 to m̂w. However Eve needs to

determine if sw = −1 or sw+lv = −1.

Suppose a < q
4 , s′

w = −1 and s′
w+lv

= 1, sw = −1 and sw+lv = 0 or sw = 0 and sw+lv = −1. Here,
we need to consider the both decryption cases described in Paragraph 7.1.3. Let see what happens:

104

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

• If sw = −1 and sw+lv = 0 we are in Case 1 thus q
4 < a < 3q

4 .

• If sw = 0 and sw+lv = −1 we are in Case 2 thus 0 < |−a−2a|
2 < q

4 which implies 0 < a < 3q
8 .

However a < q
4 , then only one case can put a 1 to m̂0.

With the same condition on a and with the same method, Eve can retrieve the other values:

• If s′
w = 1, s′

w+lv
= 1 and m̂0 = 1 then sw = −1, sw+lv = 0 or sw = 0, sw+lv = −1

• If s′
w = −1, s′

w+lv
= 1 and m̂0 = 1 then sw = 0, sw+lv = −1 else sw = −1, sw+lv = 0

• If s′
w = −1, s′

w+lv
= −1 and m̂0 = 1 then sw = 1, sw+lv = 0 or sw = 0, sw+lv = 1

• If s′
w = 1, s′

w+lv
= −1 and m̂0 = 1 then sw = 0, sw+lv = 1 else sw = 1, sw+lv = 0

Proposition 16 works like Proposition 15 but for the case where one of the two targeted coefficient is
equal to 0. However, as previously, Proposition 15 and Proposition 16 are not enough to mount an attack
for the same reasons:

• Eve needs a way to verify what Alice obtains.

• A bit of difference on m̂ is corrected by the BCH code. Thus, at the end of the decryption procedure
Alice and Eve have the same plaintext.

Nonetheless, Eve can use Proposition 15 and Proposition 16, the BCH code decryption failure and the
oracle to overcome these issues.

Theorem 2. Let s′
w, s

′
w+lv

∈ {−1, 1} be the guessed values of sw and sw+lv done by Eve. If Eve takes a
session key µs′

w,s′
w+lv

then she can forge cs′
w,s′

w+lv
= (c1, c2) depending of µs′

w,s′
w+lv

by using properties given
in Proposition 13 such that by calling O(cs′

w,s′
w+lv

, µs′
w,s′

w+lv
) with s′

w, s
′
w+lv

∈ {−1, 0, 1}, she retrieves the
w-th and w + lv-th coefficients of s. In consequence, Eve needs at most 8× (N − lv) calls to the oracle in
order to retrieve two coefficients of Alice’s secret key.

Proof. The idea is the same as LAC-128 and 192, Eve takes c2 to ensure, after comparison in CPA.Decrypt256,
that m̂ is a codeword with d

2 errors if she did a wrong key guess. Since at most d−1
2 errors can be corrected,

a decoding errors occurs.
According to Proposition 15 and Proposition 16, Eve can monitor Alice’s decryption procedure if she does
the good key guess.
Suppose Eve wants to retrieve the w-th and the (w + lv)-th coefficients of s:

1. Eve chooses a codeword called cdword with a 1 at the first coordinate such that cdword = mG where
G is the generator matrix of the BCH code

2. Eve injects d−1
2 errors to cdword at any coordinate except the first one

3. Eve chooses a verifying q
8 < a < q

4 if she is on the case of Proposition 15 or q
6 < a < q

4 if she is on
the case of Proposition 16

4. Eve constructs c1 and c2 with her key guesses at the first and lv-th coefficient of c2: c2[0] = as′
w and

c2[lv] = as′
w+lv

and such that after comparison, Alice retrieves cdword with d−1
2 errors or cdword

with d errors

5. Eve sends c = (c1, c2) to Alice

105

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

With this construction Alice obtains a codeword with d
2 errors if Eve does a wrong key guess. At this

point, Eve’s session key is sessE = H(pk,m) and Alice’s session key sessA depends on Eve’s key guesses.
Eve can verify if she did a good key guess with the oracle.
First Eve determines if sw and sw+lv are different from 0 (see Proposition 15):

If s′
w = 1, s′

w+lv = 1 and O(c, sessE) = 1 then sw = −1 and sw+lv = −1
Else If s′

w = −1, s′
w+lv = −1 and O(c, sessE) = 1 then sw = 1 and sw+lv = 1

Else If s′
w = 1, s′

w+lv = −1 and O(c, sessE) = 1 then sw = −1 and sw+lv = 1
Else If s′

w = −1, s′
w+lv = 1 and O(c, sessE) = 1 then sw = 1 and sw+lv = −1

If the oracle does not return 1, then Eve determines which coefficient is equal to 0 (see Proposition 16):

If s′
w = 1, s′

w+lv = 1 and O(c, sessE) = 1 then sw = −1 and sw+lv = 0
or sw = 0 and sw+lv = −1

If s′
w = −1, s′

w+lv = 1 and O(c, sessE) = 1 then sw = 0 and sw+lv = −1
Else If O(c, sessE) = −1 then sw = −1 and sw+lv = 0

Else If s′
w = −1, s′

w+lv = −1 and O(c, sessE) = 1 then sw = 1 and sw+lv = 0
or sw = 0 and sw+lv = 1

If s′
w = 1, s′

w+lv = 1 and O(c, sessE) = 1 then sw = 0 and sw+lv = 1
Else if O(c, sessE) = −1 then sw = 1 and sw+lv = 0

Otherwise sw = 0 and sw+lv = 0

Eve can applies this procedure for 0 ≤ w < (N − lv) to retrieve the entire secret key.

To recover the entire key we need at most 8× (N − lv) requests to the oracle due to Theorem 2, where
lv = 400 and N = 1024.

Full version The subroutine Compress removes the 4 lowers bits of each coeff of c2. They are replaced
by 4 zero-bit when the subroutine Decompress is applied at the beginning of the decryption process. So
each coefficient of c2 can be only equal to 16, 32, 64, 128 and any sum of these values.

For c2 in our attack we choose a ≈ q
7 for Proposition 15 and a ≈ q

5 for Proposition 16. Then, we
only consider the values q

7 , − q
7 , q

5 , − q
5 and q

2 . In our implementation [Mona] we approximate q
7 ≈ 32,

− q
7 ≈ 128 + 64 + 16 = 210 or − q

7 ≈ 128 + 64 + 32 = 224 (we use two different values to compensate the
approximation), q

5 ≈ 16 + 32 = 48, − q
5 ≈ 128 + 64 = 192 and q

2 ≈ 128. Proposition 15 and Proposition 16
are still verified and we still retrieve s with at most 8× (N − lv) requests to the oracle by the Theorem 2.

Implementation results We assess our attack implementation [Mona] plug in the reference code of
LAC. Following results are the average of 1000 attacks launched on 1000 random secret keys for LAC-256.
Timing results have been evaluated on core i5-8350U at 1.90GHz.

Nb of coeff of sk Average oracle requests Average time
LAC-256 1024 3355 30, 31 ms

In average we need 5, 4×(1024−400) oracle requests that is much less than the upper bound of 8×(N− lv)
requests.

106

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

7.2 Attack on LAC CCA key exchange using side-channel leakage
In the previous section we have shown an attack on a misuse situation. Hence, with an implementation
complying the specification, this forgery attack is not effective. Most of the lattice based key encapsulation
mechanisms base their CCA security on the Fujisaki-Okamoto (FO) transformation. From the CPA version
of a scheme, this transformation puts additional checks to ensure CCA security. More precisely, the
transformation prevents chosen ciphertext attack during the decapsulation routine. The CCA decapsulation
can be summarized in three steps:

1. Decipher the received ciphertext c using the IND-CPA decrypt algorithm.

2. Encrypt the plaintext obtained at Step 1 to obtain a cipertext c′.

3. Compare c and c′. Accept if c = c′.
This transformation ensures the IND-CCA security thanks to the re-encryption and the verification. The
LAC specification states that the same secret key can be used for several CCA key exchanges. However,
the FO transformation supposes that an attacker does not have access to information during the three
steps. As mentioned in Chapter 5, embedded devices are threatened by physical attacks that allow to learn
information about intermediate values. In the following we determine which side-channel leakage or fault
injection allow to bypass the CCA security in order to apply the attack presented in Section 7.1.

7.2.1 Physical attacks against LAC CCA key exchange

The CCA.Decapsulation routine, described in Algorithm 40, manipulates the secret key during a CPA.Decrypt
or CPA.Decrypt256 routine like in Section 7.1. After the whole CPA computation the ciphertext is then
verified. Due to this verification the oracle instantiation of Definition 3 page 96 cannot be achieved. Then
in this section, we investigate new ways to instantiate the oracle using physical attacks.

For sake of clarity, in the following we suppose that the CCA.Decapsulation routine uses only CPA.Decrypt
algorithm. The following statements apply similarly to CPA.Decrypt256 algorithm.

Algorithm 40 CCA.Decapsulation(sk, c = (c1, c2))
Output: An encapsulated key K.

1: m← CPA.Decrypt(sk, c) or CPA.Decrypt256(sk, c)
2: H ← H(m, c)
3: seed← G(m)
4: c′ ← CPA.Encrypt(pk,m, seed)
5: if c′ ̸= c then
6: K ← H(H(sk), c)
7: end if
8: return K

Algorithm 41
CPA.Decrypt(sk, c = (c1, c2))
Output: Plaintext m

1: c2 ← Decompress(c2)
2: M̂ ← c2 − (c1sk)lv ∈ Zlv

q

3: for i = 0 to lv − 1 do
4: if q

4 ≤ M̂i <
3q
4 then

5: m̂i ← 1
6: else
7: m̂i ← 0
8: end if
9: end for

10: m← BCHDecode(m̂)
11: return m

In Section 7.1, we forge a ciphertext such that the key guess is validated or not by the first coordinate
of the plaintext. Therefore, in the following we determine the leakage points which can bring information
about this first coordinate.

Side-channel attacks inside CPA.Decrypt algorithm

Computation of M̂ . The forged ciphertext described in Section 7.1 ensures that during the computation
M̂ ← c2 − (c1sk)lv (Algorithm 41 Line 2), only one coefficient (two coefficients in the case of LAC 256) of

107

CHAPTER 7. EXPLOITING PHYSICAL ATTACKS

sk is implied in each coordinate of M̂ . Hence, the secret coefficients are more likely to leak in side-channel.
More precisely, an attacker can perform correlation power analysis (CPA) by sending various ciphertexts
to learn information about the secret coefficients.

Reconciliation step. The forged ciphertext is chosen such that the first coordinate of m̂i is equal to 1
if the attacker does the good key guess and 0 otherwise. Therefore, as previously, the attacker can send
various ciphertext in order to mount CPA attack which focuses on the reconciliation step (Line 3 to 9 of
Algorithm 41) to determine whether the first coefficient is equal to 1 or not.

BCH decoding. Another attack path is the BCH decoding algorithm. Indeed, if the attacker does the
wrong key guess this implies that the retrieved m̂ ensures a decoding failure. If the BCH decoding is not
implemented in constant time (see [WBB+19]) the attacker can determine whether he does the right key
guess or not.

Physical attacks outside CPA.Decrypt algorithm

Hash functions. In order to retrieve the first coefficient of the plaintext m the attacker can focus on the
hash functions which manipulate it. LAC’s reference implementation uses SHA-3 as a hash function, which
is based on Keccak. Single trace side channel attacks on Keccak have already been carried out [KPP20].
Such attacks allow the attacker to find the manipulated inputs. Then, such attacks can be mounted against
the hash operation at Line 2 and 3 of Algorithm 40 to learn information about m.

Fault injection against the verification. The previous attack paths focus on instantiate the oracle
describes in Section 7.1 using side-channel information. However, if an attacker can bypass the comparison
at Line 4 then the attacker can apply straightforwardly the CPA key exchange attack.

108

Chapter 8

High-order masking of lattice-based
KEM

Contents
8.1 High-order table-based conversion and applications 113

8.1.1 High-order table-based conversion algorithm . 113
8.1.2 Table-based high-order Boolean to arithmetic conversion 115
8.1.3 Table-based high-order arithmetic to Boolean conversion 117
8.1.4 Application to threshold function . 120
8.1.5 Application to binomial sampling . 126

8.2 High-order polynomial comparison . 127
8.2.1 High-order zero testing . 127
8.2.2 High-order polynomial comparison . 133

8.3 Fully masked implementation of Kyber . 138
8.3.1 The Kyber Key Encapsulation Mechanism (KEM) 138
8.3.2 Polynomial comparison for Kyber . 140
8.3.3 High-order masking of Kyber . 148

8.4 Fully masked implementation of Saber . 149
8.4.1 The Saber Key Encapsulation Mechanism (KEM) 149
8.4.2 High-order masking of Saber . 150

8.5 Practical implementation . 151
8.5.1 Kyber . 151
8.5.2 Saber . 151

The results presented in this chapter are from a joint work with Jean Sébastien-Coron, François Gérard
and Rina Zeitoun. The articles which refer to these results are [CGM+21a; CGM+21b].

In this chapter we are interested in protecting the lattice-based KEMs Kyber and Saber against side-
channel attacks. More precisely, we provide high-order masking countermeasures proven secure in the
probing model and we implement them in order to propose high-order secure decapsulation implementations
Kyber and Saber. The decapsulation routine can be described at a high level in three stages:

1. IND-CPA decryption of the ciphertext c to obtain a message m

2. Re-encryption of m into a ciphertext c′.

3. Polynomial comparison between c and c′.

109

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

To obtain a fully masked implementation, all three steps must be masked, otherwise this can lead to a
CCA attack.

Masking countermeasures require, most of the time, conversion algorithms to switch an arithmetic
masking to a Boolean one and conversely. This is notably the case for Kyber and Saber, which use arithmetic
and Boolean operations. Our first contribution is a generic high-order table-based conversion algorithm
which finds applications to protect Kyber and Saber. However, the conversion algorithm is not enough to
completely mask these schemes. Therefore, our second contribution is high-order polynomial comparisons
and the high-order implementations of Kyber and Saber.

In the following we provide a state of the art of the conversion algorithms and the masked implemen-
tations of Kyber and Saber.

First-order conversions algorithms.

The first conversion algorithms were proposed by Goubin in [Gou01], with security against first-order
attacks. The Boolean to arithmetic conversion is efficient and has an optimal complexity O(1). The
conversion from arithmetic modulo 2k to Boolean masking is less efficient as its complexity is O(k).

This was later improved to O(log k) in [CGT+15]; however in practice for k = 32 the number of
operations was similar.

A table-based conversion from arithmetic to Boolean masking was described in [CT03], for first-order
security only. For a small value of k, the conversion can be done by a simple table look-up, using a
pre-computed table. This is similar to the classical first-order randomized SBox table countermeasure
[CJR+99]. More precisely, the algorithm uses a randomized pre-computed table T : Z2k → {0, 1}k which
is initialized as follows. First, one generates a random mask r

$←− Z2k . As a second step, one computes
T [v] = (v + r) ⊕ r for all v ∈ Z2k . Then, given an arithmetically masked value A = x − r mod 2k, one
obtains a Boolean masking x′ of x by simply reading the table T at index A, i.e. x′ = T [A]; this gives
x′ = (A + r) ⊕ r = x ⊕ r as required. The same randomized table can be used multiple times; therefore
once the table has been initialized for all possible values in Z2k , each conversion is a simple table look-up.

The authors also showed how to extend the technique to convert variables of k = δ·ℓ bits, by propagating
the carry by blocks of ℓ bits. However there was a flaw in their algorithm: they computed the carry table
modulo 2ℓ only, instead of modulo 2k−ℓ; therefore the algorithm is incorrect for δ > 2; this mistake was
identified and corrected by Debraize in [Deb12]. In [Deb12], the author described multiple first-order
conversion algorithms, but one of them was recently found insecure in [BDV21], where two corrected
algorithms are described.

High-order conversion algorithms.

The first conversion algorithms secure against high-order attacks were described in [CGV14], with com-
plexity O(α2 · k) for α shares and k-bit variables. The authors described conversions algorithms in both
directions, with a security proof in the probing model. Using the technique from [CGT+15], the complexity
can be improved to O(α2 · log k) as in the first-order case, however in practice the number of operations for
k = 32 is also similar. The technique described in [CGV14; CGT+15] considers arithmetic masking modulo
2k. This was later extended in [BBE+18] to arithmetic masking modulo any integer q, in the context of
masking the GLP lattice-based signature scheme; the complexity is also O(α2 ·k) or O(α2 · log k) for a k-bit
integer q. More precisely, the authors provided the extension of [CGV14; CGT+15] to arbitrary modulus
with cubic complexity in α; the extension with quadratic complexity in α is provided in [SPO+19].

The approach used in [CGV14] to perform the Boolean to arithmetic conversion requires to first perform
an arithmetic to Boolean conversion. An alternative, more direct approach is described in [SPO+19], also
with complexity O(α2 · k). It also works with arithmetic masking modulo an arbitrary q. The technique
is based on a 1-bit Boolean to arithmetic masking conversion with complexity O(α2). Such 1-bit Boolean

110

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

to arithmetic conversion is interesting in the context of lattice-based cryptography, for masking the re-
encryption of the message, and for masking the binomial sampling.

Finally, a high-order Boolean to arithmetic conversion algorithm was described in [Cor17], and later
simplified in [BCZ18], with complexity O(2α); that is, the complexity is independent from the size of the
k-bit variable that must be converted. The technique can be seen as a high-order extension of the original
first-order Boolean to arithmetic algorithm from [Gou01]. Although the complexity is exponential in α, for
small values of α the algorithm is at least one order of magnitude faster than [CGV14; CGT+15]. However
for algorithms in [Cor17; BCZ18], the arithmetic masking is modulo 2k only; we do not know how to extend
the technique to any modulus q.

First and high-order implementations of Kyber and Saber.

In [BGR+21], the authors described the first completely masked implementation of Kyber, secure against
first-order and higher-order attacks. For the IND-CPA decryption (Step 1), the authors consider the
threshold function th(x) outputting 0 if x < q/2 and 1 otherwise. They show that

th(x) = x11 ⊕ (¬x11 · x10 · x9 · (x8 ⊕ (¬x8 · x7)))

where xi is the i-th bit of x; namely this corresponds to a binary comparison with the threshold ⌊q/2⌋.
This implies that the high-order computation of th(x) can be performed by first converting the masking
of x from arithmetic modulo q to Boolean, using [BBE+18]; then th(x) can be computed with high-order
secure implementations of the And and Xor gadgets. For the high-order polynomial comparison (Step 3),
the technique of [BGR+21] consists in performing the comparison with uncompressed ciphertexts. The
advantage of this approach is that the ciphertext compression from Kyber does not need to be explicitly
masked. Given the masked uncompressed polynomials obtained from re-encryption, the ciphertext compar-
ison requires to check that every coefficient belongs to a certain public range modulo q, instead of checking
for equality.

In [SPO+19], the authors described an efficient technique for high-order masking the binomial sampling
in the re-encryption of m at Step 2 above, based on a 1-bit Boolean to arithmetic conversion modulo q
with complexity O(α2); their technique is an extension of a first-order algorithm from [OSP+18b].

First contribution: high-order table-based conversion.

Our first contribution is to extend the table-based conversion algorithm between Boolean and arithmetic
masking of [CT03] from first-order to any order. For this we extend the high-order table recomputation
countermeasure from [Cor14]. Namely we observe that in [Cor14], the incremental shifting of the rows of
the table T can be performed according to any additive group G, not only for the xor operation in {0, 1}k.
For example we can work modulo 2k as input, which automatically gives a high-order conversion from
arithmetic to Boolean masking. Similarly, the α-encoding of the rows of T as output can be according to
any group law, not only for the xor in {0, 1}k. This implies that we can easily convert from Boolean to
arithmetic masking modulo any integer q, which is useful in the context of lattice-based cryptography (see
below).

More generally, our extended table recomputation countermeasure allows computing any function f :
G → H, for any group G as input and any group H as output. Given as input an α-sharing of x =
x1 + · · · + xα ∈ G, we can compute α outputs shares yi ∈ H such that y1 + · · · + yα = f(x1 + · · · + xα),
while being secure in the ISW probing model against t = α − 1 probes. By selecting the right groups G
and H, we can therefore obtain high-order secure conversion algorithms between Boolean and arithmetic
masking. To convert from Boolean to arithmetic masking modulo 2k, we take G = {0, 1}k and H = Z2k

and we obtain y1 + · · · + yα = x1 ⊕ · · · ⊕ xα mod 2k as required. Similarly for arithmetic modulo 2k to
Boolean conversion we take G = Z2k and H = {0, 1}k, and we obtain y1⊕· · ·⊕ yα = x1 + · · ·+xα mod 2k

as required.

111

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

The main advantage of the table-based approach for conversions is its flexibility, as we can choose any
groups G and H and any function f : G→ H. However the running time complexity is O(α2 · |G|). This
implies that for k-bit Boolean or arithmetic masking, the generic complexity is O(α2 · 2k).

Moreover, we show how to efficiently compute a threshold function th from arithmetic masking modulo
2k, whose result is a 1-bit Boolean masking. This corresponds to the decryption function in lattice-based
cryptosystems which is useful for Kyber and Saber. In that case, our optimization consists in putting
each column of the table in a single register; the resulting complexity is O(α2) only, assuming that we
have access to 2k-bit registers. In practice, for this optimization we obtain at least an order of magnitude
improvement compared to the techniques in [CGV14; BBE+18].

Second contribution: high-order masking of lattice-based encryption schemes.

Our second contribution is to provide a fully masked implementation of Kyber and Saber. To do so, we first
apply our table-based conversion algorithms to mask the IND-CPA encryption and decryption. Secondly,
we provide high order polynomial comparisons to fully mask the IND-CCA decryption.

We first consider the IND-CPA decryption of the ciphertext c (Step 1 page 109). For ring-LWE
encryption the ciphertext c = (c1, c2) is decrypted with the private key s using m = th(c1− s · c2), where th
is the threshold function th : Zq → {0, 1} where th(x) = 1 if x ∈ [q/4, 3q/4[and th(x) = 0 otherwise. The
threshold function is actually applied independently on each coefficient of the polynomial u = c1 − s · c2
modulo q. When the private key s is arithmetically masked modulo q with α shares, we obtain α shares
for u = u1 + · · · + uα mod q, and we must therefore convert from an arithmetically masked u modulo q
into a 1-bit Boolean masked m = m1 ⊕ · · · ⊕mα = th(u). For this one could use our generic table-based
approach with the function f = th and f : Zq → {0, 1}. However the complexity would be O(α2 · q),
which is prohibitive for large q. Therefore we describe an optimization in which we first perform a modulus
switching from masking modulo q to masking modulo 2k (for a small k), while maintaining a negligible
probability of decryption error, as required to achieve CCA-security [DNR04]. We can then convert from
arithmetic masking modulo 2k into 1-bit Boolean masking, which recovers the Boolean masked message
m. This optimization has complexity O(α2 · logα), instead of O(α2 log q) with [BBE+18]. In practice we
obtain an order of magnitude improvement in the IND-CPA decryption of Kyber.

We also consider the masking of re-encryption of m into a ciphertext c′, and the masking of the binomial
sampling (Step 2 page 109). To encrypt a Boolean masked message m ∈ {0, 1}, we can use our generic
table-based Boolean to arithmetic modulo q conversion algorithm.

In that case the complexity is O(α2) as in [SPO+19]. The same holds for the masking of the binomial
sampling, which is easily computed as the sum of independent 1-bit Boolean to arithmetic modulo q
conversions, as in [SPO+19]. In practice we obtain a similar level of efficiency as in [SPO+19], and an order
of magnitude improvement compared to [BBE+18].

Afterwards, we focus on the high-order polynomial comparison (Step 3 page 109). We consider several
techniques, firstly for zero testing a single coefficient, and then zero testing a set of polynomials at once.
As an application, we consider the high-order polynomial comparison in Kyber and Saber for IND-CCA
decryption.

Finally, we provide a detailed description of the masking of the full IND-CCA decryption of the Kyber
and Saber schemes at any order. We also describe the practical results of a C implementation of the full
high-order masking of Kyber and Saber. The source code is public and can be found at

https://github.com/fragerar/HOTableConv/tree/main/Masked_KEMs

112

https://github.com/fragerar/HOTableConv/tree/main/Masked_KEMs

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

8.1 High-order table-based conversion and applications

8.1.1 High-order table-based conversion algorithm

In this section we introduce our generic high-order table-based conversion algorithm, as an extension of
the table recomputation countermeasure from [Cor14]. We consider two additive groups G and H and
a function f : G → H. Our algorithm takes as input α shares x1, . . . , xα ∈ G and outputs α shares
y1, . . . , yα ∈ H such that:

y1 + · · ·+ yα = f(x1 + · · ·+ xα)

We stress that the function f does not need to have any special property, except being efficiently com-
putable. In particular it need not be a group homomorphism, as in general the groups G and H will not
be homomorphic. Note that the high-order SBox computation algorithm from [Cor14] is a particular case
with G = H = {0, 1}k and f(x) = S(x).

The algorithm consists in progressively shifting a randomized table T , using the input shares x1, . . . , xα−1
for the successive shifts. The randomized table T has |G| rows, and each row is a vector of α shares, which
encodes over H the function f(x), but progressively shifted by x1, . . . , xα−1 ∈ G. Eventually one reads the
table at index xα, which gives an α-sharing (yi) over H of f(x1 + · · ·+xα) as required. Between every shift,
the α shares of every row are refreshed using the same mask refreshing as in [RP10], but over the group
H. This mask refreshing is not SNI contrary to the one presented in Algorithm 26 (page 80). However, it
is more efficient and its lower security is enough for the security proof, see Theorem 3.

As we will see in more details in Section 8.1.2, for a Boolean to arithmetic conversion algorithm, one
will take G = {0, 1}k and H = Z2k . Then by identifying k-bit strings and integers modulo 2k and taking f
the identity function, we obtain y1 + · · ·+yα mod 2k = x1⊕· · ·⊕xα as required. Similarly, for an arithmetic
to Boolean conversion, one takes G = Z2k and H = {0, 1}k and obtains y1⊕· · ·⊕yα = x1 + · · ·+xα mod 2k

as required; see Section 8.1.3 for more details.

Algorithm 42 ConvertG,H,f

Input: x1, . . . , xα ∈ G
Output: y1, . . . , yα ∈ H such that y1 + · · ·+ yα = f(x1 + · · ·+ xα)

1: for all u ∈ G do T (u)←
(
f(u), 0, . . . , 0

)
∈ Hα

2: for i = 1 to α− 1 do
3: for all u ∈ G do T ′(u)← T (u+ xi)
4: for all u ∈ G do T (u)← RefreshH

(
T ′(u)

)
5: end for
6: (y1, . . . , yα)← RefreshH

(
T (xα)

)
7: return y1, . . . , yα

Algorithm 43 RefreshH

Input: x1, . . . , xα ∈ H
Output: y1, . . . , yα ∈ H such that y1 + · · ·+ yα = x1 + · · ·+ xα

1: yα ← xα

2: for j = 1 to α− 1 do
3: rj

$←− H
4: yj ← xj + rj

5: yα ← yα − rj

6: end for
7: return y1, . . . , yα

113

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

We provide a pseudocode description in Algorithm 42 above. The algorithm uses two temporary tables
T and T ′ in RAM, with |G| rows, where each row contains a vector of α elements in H. The table T is
initialized at Line 1 with T (u)←

(
f(u), 0, . . . , 0) ∈ Hα. Given an encoding v⃗ = (v1, . . . , vα) with α shares

in H, we denote by ∑
(v⃗) = v1 + · · ·+ vα

the encoded element in H. This implies that initially we have ∑(T (u)) = f(u) for all rows u ∈ G. For
the first index i = 1, the table is shifted at Line 3 by x1 into T ′, which gives ∑(T ′(u)) = f(u + x1) for
all u ∈ G. Note that the shift is performed according to the group law in G. The rows are then refreshed
at Line 4 using Algorithm 43, and we still have ∑(T (u)) = f(u + x1). More generally, after the shift by
x1, . . . , xi we obtain at Line 4: ∑

(T (u)) = f(u+ x1 + · · ·+ xi)

for all u ∈ G, and after all the input shares x1, . . . , xα−1 have been processed we have:∑
(T (u)) = f(u+ x1 + · · ·+ xα−1)

Therefore from the final look-up table (y1, . . . , yα)← RefreshH

(
T (xα)

)
, we obtain that∑(y⃗) = ∑(T (xα)) =

f(xα + x1 + · · · + xα−1). This gives y1 + · · · + yα = f(x1 + · · · + xα), which proves the correctness of the
algorithm.

Lemma 5. Let (yi)1≤i≤α be the input and let (zi)1≤i≤α be the output of RefreshH. Any subset of α − 1
output variables zi is uniformly and independently distributed in H.

Complexity. In this chapter we provide complexity for several algorithms. Complexities are used to
compare different algorithms asymptotically. Therefore, we only consider Boolean or arithmetic operation.
Moreover, we assume that a group operation in G and H takes unit time, as well as randomness generation
and table transfer. For α shares, the number of operations of RefreshH is 3α− 3. The time complexity of
Algorithm 42 is therefore:

Cconvert = |G| · (α+ (α− 1) · (1 + α+ 3α− 3)) + 3α− 3
= |G| · (4α2 − 5α+ 2) + 3α− 3 ≃ 4 · |G| · α2

The asymptotic complexity is therefore O(|G| · α2). The memory complexity is O(|G| · α). The algorithm
requires (α− 1) · (|G| · (α− 1) + 1) random elements.

Security. We prove that our algorithm achieves the t-SNI definition (Definition 2). One can therefore
use our algorithm inside a more complex construction and achieve security against t probes with α = t+ 1
shares.

Theorem 3 ((α − 1)-SNI of ConvertG,H,f). For any subset O ⊂ [1, α] and any t1 intermediate variables
with |O|+ t1 < α, the output variables y|O and the t1 intermediate variables can be perfectly simulated from
the input variables x|I , with |I| ≤ t1.

Proof. The proof of Theorem 3 is relatively similar to the proof of the table-based countermeasure in
[Cor14]. Given u ∈ G, we denote by T (u)[j] and T ′(u)[j] the j-th component of the vectors T (u) and T ′(u)
respectively, for 1 ≤ j ≤ α. We denote by Part i the computation performed within the main for loop,
that is between lines 2 and 5 of Algorithm 42, and by Part n the computation performed at line 6. We
describe hereafter the construction of two index sets I and J , both initially empty.

• For every probed input variable xi or any intermediate variable u+ xi (for any 1 ≤ i ≤ α), we add i
to I.

114

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

• For every probed intermediate variable T ′(u)[j] = T (u + xi)[j], or rj or yj in RefreshH (for any
1 ≤ i ≤ α) in Part i, or T (u)[j] in line 4 of Part i, we add i to I and j to J .

• For every output yj such that j ∈ O, we add j to J .

Since for every probed variable we added at most one index in I, we have |I| ≤ t1 as required. Similarly
for J we must have |J | ≤ |O|+ t1 < α.

We now show that any set of t1 variables and the output shares y|O can be perfectly simulated from
x|I . This is clear for the probed input variables xi and intermediate variables u + xi (for any 1 ≤ i ≤ α
and all u ∈ G), since by construction i ∈ I. It remains to perfectly simulate all probed variables of the
form T (u)[j], T ′(u)[j] and T (u + xi)[j], including the output variables y|O. We proceed by induction on
i. Namely we show that at the beginning of each part i, we can perfectly simulate all variables T (u)[j]
for all j ∈ J and all u ∈ G. This holds for the case i = 1, since at the beginning of Part 1, the vector
T (u) =

(
f(u), 0, . . . , 0

)
is publicly known. At the beginning of Part i, we distinguish two cases:

Case i ∈ I. If i ∈ I then knowing xi we can perfectly simulate all intermediate variables with column
index j ∈ J in Part i, as knowing xi we can propagate the simulation for all variables with column index j
and perfectly simulate T (u+xi)[j], T ′(u)[j] and the resulting T (u)[j] at Line 4, and similarly the variables
yj at Line 6 if i = α; in particular the rj variables within RefreshH are simulated exactly as in the RefreshH

procedure.

Case i /∈ I. If i /∈ I then no variable in Part i has been probed, including variables in RefreshH . Since
|J | < α, using Lemma 5 we can therefore perfectly simulate all intermediate variables T (u)[j] for j ∈ J
and u ∈ G at the output of RefreshH at Line 4, or similarly all yj for j ∈ J at the output of RefreshH at
Line 6 when i = α, simply by generating uniform and independent values.

As a conclusion, we have shown that for all i the induction step is verified, which means that all T (u)[j],
T ′(u)[j] and T ′(u+xi)[j] for j ∈ J can be perfectly simulated from x|I , including the output variables y|O.
Therefore all probes can also be perfectly simulated. This terminates the proof of Theorem 3.

8.1.2 Table-based high-order Boolean to arithmetic conversion

In this section we consider the case of Boolean to arithmetic conversion. We describe the straightforward
application of the generic table-based conversion algorithm from G to H from Section 8.1.1. In this section
we consider the easiest case with the conversion from Boolean to arithmetic masking. We consider the
other direction in Section 8.1.3.

Direct approach

We consider the straightforward application of Algorithm 42 to high-order Boolean to arithmetic conversion,
which can be used for small values of k. We consider an integer q. We identify k-bit strings with integers
in the interval [0, 2k[. Algorithm 44 below describes a Boolean to arithmetic masking conversion algorithm
such that given x1, . . . , xα ∈ {0, 1}k as input, we obtain y1, . . . , yα ∈ Zq as output, with, x1 ⊕ · · · ⊕ xα =
y1 + · · ·+ yα mod q. The (α− 1)-SNI security follows directly from Theorem 3.

115

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Algorithm 44 BooleanToArithmetic
Input: k ∈ Z and x1, . . . , xα ∈ {0, 1}k
Output: y1, . . . , yα ∈ Zq such that y1 + · · ·+ yα mod q = x1 ⊕ · · · ⊕ xα

1: for all u ∈ {0, 1}k do T (u)←
(
u mod q, 0, . . . , 0

)
2: for i = 1 to α− 1 do
3: for all u ∈ {0, 1}k do T ′(u)← T (u⊕ xi)
4: for all u ∈ {0, 1}k do T (u)← RefreshZq

(
T ′(u)

)
5: end for
6: (y1, . . . , yα)← RefreshZq

(
T (xα)

)
7: return y1, . . . , yα

Algorithm 45 RefreshZq

Input: x1, . . . , xα ∈ Zq

Output: y1, . . . , yα ∈ Zq such that y1 + · · ·+ yα = x1 + · · ·+ xα mod q
1: yα ← xα

2: for j = 1 to α− 1 do
3: rj

$←− Zq

4: yj ← xj + rj mod q
5: yα ← yα − rj mod q
6: end for
7: return y1, . . . , yα

Complexity. We do not take into account the reductions modulo q. The operation count is the same as
for Algorithm 42, with |G| = 2k, which gives:

CBA(k, α) = 2k · (4α2 − 5α+ 2) + 3α− 3 ≃ 2k+2 · α2

The memory complexity is O(2k · α). The algorithm requires (α − 1) · (2k · (α − 1) + 1) random elements
in Zq.

Comparison with existing techniques

1-bit Boolean to arithmetic modulo 2k conversion. The 1-bit Boolean to arithmetic conversion is
useful in the context of ring-LWE encryption. Here we use k = 13, since this corresponds to the binomial
sampling for Saber, which can be written as a sum modulo 2k of 1-bit Boolean to arithmetic modulo 2k

conversions, as in [SPO+19]. We see in Table 8.1 that our operation count is comparable to [SPO+19], both
methods having complexity O(α2). Our operation count is an order of magnitude faster than [CGV14],
which has complexity O(k · α2). Namely the approach in [CGV14] requires to perform an arithmetic to
Boolean conversion first, which has complexity O(k · α2), so one cannot really take advantage of the 1-bit
Boolean masking as input.

116

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

B → A mod 213 Security order t
1 2 3 4 5 6 8 10 12

Goubin [Gou01] 7
[BCZ18] 49 123 277 591 1 225 5 053 20 401 81 829
[CGV14] 1→ 13 884 1 605 2 837 4 261 5 859 10 037 15 476 21 839
[SPO+19] 1→ 13 39 71 112 162 221 366 547 764
Algorithm 44, 1→ 13 52 101 166 247 344 586 892 1 262

Table 8.1: Operation count for 1-bit Boolean to arithmetic modulo 2k conversion algorithms, up to security
order t = 12, with α = t+ 1 shares, for k = 13.

1-bit Boolean to arithmetic modulo q conversion. We use q = 3329, as this corresponds to the
encryption of Kyber, and to the binomial sampling of Kyber. For [BBE+18], we must use a word size k
such that 2q < 2k, so we take k = 13. As previously, our complexity is comparable to [SPO+19], and more
than an order of magnitude faster than [BBE+18].

B → A mod q
Security order t

1 2 3 4 5 6 8 10 12
[BBE+18] 1→ mod q 755 2 111 3 875 6 522 9 577 13 235 22 445 34 152 48 076
[SPO+19] 1→ mod q 16 39 71 112 162 221 366 547 764
Algorithm 44, 1→ mod q 19 52 101 166 247 344 586 892 1 262

Table 8.2: Operation count for 1-bit Boolean to arithmetic modulo q conversion algorithms, up to security
order t = 12, with α = t+ 1 shares, for prime q = 3329.

8.1.3 Table-based high-order arithmetic to Boolean conversion

Direct approach for arithmetic modulo q

We consider the direct application of Algorithm 42 to high-order arithmetic to Boolean conversion. Given
x1, . . . , xα ∈ Zq as input, we obtain y1, . . . , yα ∈ {0, 1}k as output, with x1 + · · ·+xα mod q = y1⊕· · ·⊕yα.
For this we have to assume that q ≤ 2k, since the sum x1 + · · ·+ xα mod q needs at least ⌈log2 q⌉ bits for
its representation. We provide the pseudocode description below.

Algorithm 46 ArithmeticToBoolean
Input: q ∈ Z and x1, . . . , xα ∈ Zq

Output: y1, . . . , yα ∈ {0, 1}k such that y1 ⊕ · · · ⊕ yα = x1 + · · ·+ xα mod q
1: for all u ∈ Zq do T (u)←

(
u, 0, . . . , 0

)
2: for i = 1 to α− 1 do
3: for all u ∈ Zq do T ′(u)← T (u+ xi mod q)
4: for all u ∈ Zq do T (u)← Refresh{0,1}k

(
T ′(u)

)
5: end for
6: (y1, . . . , yα)← Refresh{0,1}k

(
T (xα)

)
7: return y1, . . . , yα

117

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Algorithm 47 Refresh{0,1}k

Input: x1, . . . , xα ∈ {0, 1}k
Output: y1, . . . , yα ∈ {0, 1}k such that y1 ⊕ · · · ⊕ yα = x1 ⊕ · · · ⊕ xα

1: yα ← xα

2: for j = 1 to α− 1 do
3: rj

$←− {0, 1}k
4: yj ← xj ⊕ rj

5: yα ← yα ⊕ rj

6: end for
7: return y1, . . . , yα

The operation count is the same as for Algorithm 42, with |G| = q, which gives:

CAB(q, α) = q · (4α2 − 5α+ 2) + 3α− 3 ≃ 4q · α2

The memory complexity is O(q · α). The number of random elements is (α − 1) · (q · (α − 1) + 1). The
t-SNI security follows directly from Theorem 3.

Optimization with table in registers

We describe an optimization of Algorithm 46, where the j-th column of the table is stored in a single
register Rj for 1 ≤ j ≤ α. The cyclic shift of the rows of the table by input share xi then corresponds to
a simple rotation of each register Rj . In the following we consider the arithmetic to Boolean conversion
with k bits as input and 1 bit as output, as will be used in Section 8.1.4 for the IND-CPA decryption of
lattice-based encryption.

More precisely we consider the computation of a function f : Z2k → {0, 1}. One can consider for
example the threshold function f(x) = ⌊x/2k−1⌋. Given as input α arithmetic shares x1, . . . , xα ∈ Z2k , our
goal is to compute 1-bit Boolean shares y1, . . . , yα ∈ {0, 1} such that y1⊕· · ·⊕yα = f(x1 + · · ·+xα mod 2k).

Since we must store every column of the table with 2k rows in a single register, each register must have
2k bits. We denote by Rj [u] the u-th bit of register Rj , for 0 ≤ u < 2k and 1 ≤ j ≤ α. Then Line 1 of
Algorithm 46 becomes R1[u] = f(u) for 0 ≤ u < 2k, and Rj = 0 for 2 ≤ j ≤ α. The rotation of the table
at Line 3 becomes a rotation of all registers Rj by xi positions to the right. The refreshing of the rows
of the table at Line 4 becomes a mask refreshing of the shares (R1, . . . , Rα) with 2k-bit random elements.
Eventually we must read and refresh the row xα of the table (Line 6 of Algorithm 46), so we simply read the
xα-th bit of each register Rj . We refer to Algorithm 48 for a formal description. We denote by ROR[a](R)
the cyclic rotation of a 2k-bit register R by a bits to the right.

118

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Algorithm 48 ArithmeticToBoolean, register optimization (ABreg)
Input: x1, . . . , xα ∈ Z2k

Output: y1, . . . , yα ∈ {0, 1} such that y1 ⊕ · · · ⊕ yα = f(x1 + · · ·+ xα mod 2k)
1: for all u ∈ Z2k do R1[u]← f(u)
2: for all 2 ≤ j ≤ α do Rj ← 0.
3: for i = 1 to α− 1 do
4: for j = 1 to α do Rj ← ROR[xi](Rj)
5: for j = 1 to α− 1 do
6: r

$←− {0, 1}2k , Rj ← Rj ⊕ r, Rα ← Rα ⊕ r
7: end for
8: end for
9: (y1, . . . , yα)← Refresh{0,1}(R1[xα], . . . , Rα[xα])

10: return y1, . . . , yα

Operation count. We do not count the 2k operations of Line 1, since the value eventually stored in the
register R1 can be pre-computed. The number of operations is given by:

CABreg(α) = (α− 1)(α+ 3(α− 1)) + α+ 3(α− 1)
= 4α2 − 3 · α ≃ 4 · α2

Using 2k-bit registers, the complexity of the countermeasure is therefore O(α2), assuming that generating
a 2k-bit random also takes unit time1. The memory complexity is α+ 1 registers of 2k bits.

Obviously this optimization can only work for small values of k. In the comparison with existing
techniques (sections 8.1.3 and 8.1.4), we use the following more realistic estimate of operation count,
assuming a 32-bit processor. We assume that a register operation (or random generation) takes 1 operation
for 32-bit (k = 5), and more generally 2k−5 operations for 2k bits, for k ≥ 5. The time complexity then
becomes C′

ABreg(α, k) = 2k−5 · (4α2 − 3α). The number of 32-bit random elements is 2k−5 · (α− 1)2 +α− 1
for k ≥ 5.

For k = 5, the implementation only requires α + 1 registers of 32-bits. More generally, for k ≥ 5, the
memory complexity is (α+ 1) · 2k−5 registers of 32 bits.

Security. We prove below the (α− 1)-SNI property of Algorithm 48. We stress that we do not put two
shares from the same encoding into the same register. Otherwise the attacker could obtain information
from multiple shares of the same encoding using a single probe on a given register, which would break the
(α− 1)-SNI property.
Theorem 4 ((α − 1)-SNI of ABreg). For any subset O ⊂ [1, α] and any t1 intermediate variables with
|O|+ t1 < α, the output variables y|O and the t1 intermediate variables can be perfectly simulated from the
input variables x|I , with |I| ≤ t1.
Proof. The proof is essentially the same as the proof of Theorem 3. The only difference is that by probing
a register Rj , the adversary gets the full j-th column of the table, instead of a single cell only. Such probe
is simulated in the same way by putting the index j in J for every such probe.

Extensions. The technique is easily extended to arithmetic masking modulo any q as input, not only
q = 2k. In that case, one must perform two shifts for each register, instead of a single rotation for q = 2k.
Moreover, the technique is easily extended to k-bit Boolean masking as output, instead of 1-bit. In that
case, one must use registers of size k · 2k bits instead of 2k.

1Obviously, one must be careful when expressing complexities with registers of exponential size. For example, Shamir
described in [Sha79] an algorithm for factoring a k-bit RSA modulus in time O(k) only, but with exponentially large registers.

119

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Comparison with existing techniques

Arithmetic modulo 2k to 1-bit Boolean conversion, for small k. As we will see in Section 8.1.4,
arithmetic modulo 2k to 1-bit Boolean conversion is interesting in the context of ring-LWE IND-CPA
decryption, in order to compute the threshold function th : Z2k → {0, 1}, with th(x) = 1 if x ∈ [2k−2, 3·2k−2[
and th(x) = 0 otherwise.

Such threshold function th can be computed directly using our Algorithm 48 from the previous section,
since the algorithm works for any function f . Alternatively, to compute th with [CGV14], we write
th(x) = th′(x − 2k−2) where th′(x) = 1 if x ∈ [0, 2k−1[and 0 otherwise. Thus, th′(x) is the complement
of the most significant bit of x. Therefore we first subtract 2k−2 to the first arithmetic share of x, and
perform the arithmetic to Boolean conversion from [CGV14]. Finally we extract the most significant bit
of each Boolean share, and complement the first share. We see in Table 8.3 that for k = 6, we obtain a
significant improvement compared to [CGV14]. The value k = 6 is chosen such that our algorithm find an
application to Saber.

A mod 26 → B Security order t
1 2 3 4 5 6 8 10 12

Goubin [Gou01] 38
[CGV14] 6→ 1 226 411 786 1 207 1 663 2 895 4 531 6 416
Algorithm 48 20 54 104 170 252 350 594 902 1 274

Table 8.3: Operation count for arithmetic modulo 2k to 1-bit Boolean conversion algorithms, up to security
order t = 12, with α = t+ 1 shares and k = 6.

8.1.4 Application to threshold function

In order to mask the ring-LWE IND-CPA decryption, we must compute a threshold function th over
arithmetic shares modulo q, with 1-bit Boolean shares as output. Namely for Kyber we must compute the
threshold function th : Zq → {0, 1} with

th(x) =
{

0 if (x mod± q) ∈ [−q/4, q/4[
1 otherwise. (8.1)

More precisely, given as input arithmetic shares x1, . . . , xα ∈ Zq, we must compute 1-bit Boolean shares
y1, . . . , yα ∈ {0, 1} such that

y1 ⊕ · · · ⊕ yα = th(x1 + · · ·+ xα mod q)

The computation of the threshold function for Saber is similar.
For computing the threshold function th, we could apply our generic conversion algorithm from Section

8.1.1 with G = Zq, H = {0, 1} and the function f : Zq → {0, 1} with f = th. In that case, the time
complexity is O(q · α2), and the memory consumption is O(q · α). Both can be prohibitive for large q, for
example with q = 3329 in Kyber, or with q = 210 in Saber.

We describe in the following an optimized technique based on modulus switching to a smaller modulus
2ℓ, which enables to apply the fast table-based variant from Section 8.1.3. For this we slightly modify the
decryption algorithms of Kyber, with a negligible increase in the decryption failure probability. We explain
in the following why the security proof for Kyber remains perfectly valid. Namely the IND-CCA security
proof only depends on the decryption failure probability, and not on the specific decryption algorithm used.
In other words, one can use any decryption algorithm, as long as the decryption failure probability remains
negligible. We maintain a total decryption failure probability δ ≤ 2−128 to guarantee the same level of
security as in the original scheme, against both classical attacks and quantum attacks.

120

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Threshold arithmetic modulo q to 1-bit Boolean

Our goal is to compute the function th : Zq → {0, 1} given by (8.1) but this time we require a correct
computation of th(x) only for a large subset of Zq, not necessarily for the full Zq. More precisely, we require
correct computation only for values of x which are not too close to the thresholds ±q/4, by a relative factor
∆. More precisely we require correct decryption for x ∈ Rq,1,∆ with:

Rq,1,∆ =
{
x ∈ Zq, |x mod± q| < q ·

(1
4 −∆

)
or |x mod± q| > q ·

(1
4 + ∆

)}
(8.2)

This means that there will be a small subset of Zq for which the computation of the function th can
be incorrect. We will see that for lattice-based schemes such as Kyber and Saber, the probability that
x /∈ Rq,1,∆ is negligible for small enough ∆, and therefore the decryption error will remain negligible for
these two schemes.

Our goal is therefore to compute output shares b1, . . . , bα ∈ {0, 1}, such that when given input shares
x1, . . . , xα ∈ Zq such that x = x1 + · · ·+ xα ∈ Rq,1,∆, we are guaranteed to obtain a correct result, that is:

b1 ⊕ · · · ⊕ bα = th(x1 + · · ·+ xα)

For this our strategy is to first perform a modulus switching into an arithmetic masking modulo a smaller
2ℓ, and then to perform the (easier) conversion from arithmetic masking modulo 2ℓ to Boolean masking via
a threshold function f over Z2ℓ . More precisely, we first perform a modulus switching of all input shares
xi, by computing yi = ⌊xi · 2ℓ/q⌉ for all 1 ≤ i ≤ α. Note that this modulus switching can be computed by
writing

yi =
⌊
xi · 2ℓ

q
+ 1

2

⌋
=
⌊
xi · 2ℓ+1 + q

2q

⌋
and therefore yi is the quotient of the Euclidean division of xi · 2ℓ+1 + q by 2q. We obtain:

α∑
i=1

yi =
α∑

i=1

⌊
2ℓ · xi

q

⌉
=

α∑
i=1

2ℓ · xi

q
+ εi

where |εi| ≤ 1/2 for all 1 ≤ i ≤ α. This gives:

y =
α∑

i=1
yi = 2ℓ · x

q
+ ε mod 2ℓ, where |ε| ≤ α/2 (8.3)

Therefore we have obtained an arithmetic masking of y ∈ Z2ℓ where y = 2ℓ · x/q + ε mod 2ℓ and the
error ε ∈ R is such that |ε| ≤ α/2. In the second step, we apply the Convert Algorithm 42 page 113 with
G = Z2ℓ , H = {0, 1} and the function f : Z2ℓ → {0, 1} where

f(y) =
{

0 if (y mod± 2ℓ) ∈ (−2ℓ−2, 2ℓ−2)
1 otherwise.

Our algorithm is formally described in Algorithm 49 below.

Algorithm 49 Arithmetic modulo q to 1-bit Boolean conversion (ThresholdAtoB)
Input: x1, . . . , xα ∈ Zq

Output: b1, . . . , bα ∈ {0, 1} such that b1 ⊕ · · · ⊕ bα = th(x) for x = x1 + · · ·+ xα ∈ Rq,1,∆

1: for i = 1 to α do yi ←
⌊
xi · 2ℓ/q

⌉
2: (b1, . . . , bα)← ConvertZ2ℓ ,{0,1},f(y1, . . . , yα)
3: return b1, . . . , bα

121

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Correctness and complexity. The following lemma proves the correctness of Algorithm 49 when the
threshold function th(x) is computed on x ∈ Rq,1,∆, under the condition α ≤ 2ℓ+1 ·∆.

Lemma 6. Assume that α ≤ 2ℓ+1 ·∆. The output of Algorithm 49 is correct if x1 + · · ·+ xα ∈ Rq,1,∆.

Proof. Assume that x ∈ Rq,1,∆ and let represent x in]− q/2, q/2[. Assume that |x| < q · (1/4−∆). This
implies: ∣∣∣∣∣2ℓ

q
· x
∣∣∣∣∣ < 2ℓ−2 −∆ · 2ℓ ≤ 2ℓ−2 − α

2

From Equation (8.3), this implies that |y mod± 2ℓ| < 2ℓ−2 and therefore f(y) = th(x) = 0 as required.
Similarly, if |x| ≥ q·(1/4+∆), then |x·2ℓ/q| > 2ℓ−2+∆·2ℓ ≥ 2ℓ−2+α/2 and therefore |y mod± 2ℓ| > 2ℓ−2,

which implies f(y) = th(x) = 1 as required. This proves the correctness of Algorithm 49.

From Lemma 6, it suffices to select an intermediate modulus 2ℓ with

ℓ = ⌈log2(α/∆)⌉ − 1 (8.4)

to ensure correct computation of th(x) for x ∈ Rq,1,∆. The complexity of the arithmetic to Boolean
conversion at Line 2 is therefore O(2ℓ ·α2) = O(α3) using the generic conversion (Algorithm 46 page 117).

The memory complexity is O(α) Finally, using the optimization with table in registers from Section
8.1.3, the complexity is O(α2) only, assuming that operations on registers of size 2ℓ take unit time.

Security. The previous algorithm achieves the (α− 1)-SNI property, thanks to the (α− 1)-SNI property
of the Convert algorithm.

Application to ring-LWE IND-CPA decryption

In this section we show how to efficiently mask the IND-CPA decryption of ring-LWE schemes. We explain
how to tune the value ∆ used in the definition of Rq,1,∆ in (8.2) so that the decryption error remains
negligible for Kyber.

In order to mask the ring-LWE IND-CPA decryption, the secret-key s ∈ R is initially masked with
α shares using s = s1 + · · · + sα mod q where si ∈ Rq for all 1 ≤ i ≤ α. Given as input a ciphertext
(c1, c2), instead of computing u = c2 − s · c1 and then m = th(u) coefficient-wise, in the first step we
compute u1 = c2 − s1 · c1 and ui = −si · c1 for all 2 ≤ i ≤ α, which gives an arithmetic sharing of
u = u1 + · · ·+ uα ∈ Rq.

Therefore, in the second step, by applying Algorithm 49 coefficient-wise on the polynomial shares
ui ∈ Rq, we obtain α boolean shares mi of the message m = m1 ⊕ · · · ⊕mα such that m1 ⊕ · · · ⊕mα =
th(u1 + · · · + uα), as required. To ensure a negligible decryption error, we must therefore ensure that
all coefficients of u belong to the set Rq,1,∆ considered in the previous section, except with negligible
probability.

Application to Kyber. The authors of the Kyber submission provide a Python script computing
a tight upper bound on the decryption error probability δ. Following [HHK17], we say that PKE =
(KeyGen,Enc,Dec) is (1 − δ) correct if E[maxm∈M Pr[Dec(sk,Enc(pk,m)) = m]] ≥ 1 − δ, where the prob-
ability is over the randomness of Enc, and the expectation is over (pk, sk) ← KeyGen(). More precisely,
for an encryption of 0, the authors compute an upper-bound on the probability that any coefficient of
u = c2 − s⃗T · c⃗1 is greater than q/4 in absolute value. From the definition of the set Rq,1,∆ in (8.2), it
suffices to rerun the script with the bound q · (1/4 − ∆) instead, in order to obtain the new decryption
failure probability.

For our implementations, we choose to take ∆ = 0.02 for the recommended parameters of Kyber; this
gives a decryption failure probability δ′ = 2−137, instead of 2−164 originally (see Table 8.5). We argue in

122

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Section 8.1.4 that Kyber remains secure with this increased decryption failure probability. We provide in
Table 8.4 page 123 the value of the register size ℓ as a function of the number of shares α for ∆ = 0.02,
according to Condition (8.4).

α 2 3 4 5 6 7 8 9 10
ℓ 6 7 7 7 8 8 8 8 8

Table 8.4: Value of ℓ as a function of α with ∆ = 0.02 for Kyber and Saber.

Moreover, we show in Table 8.5 that the decryption failure probability is easily decreased by modifying
the compression parameters (du, dv), which does not affect the security analysis of Kyber2. More precisely,
by using the same compression parameters (du, dv) = (11, 5) as for Kyber1024, we obtain for ∆ = 0.02 a
decryption error probability δ′ = 2−192, that is smaller than originally in Kyber768.

N k q η1 η2 (du, dv) δ δ′

Kyber768 256 3 3329 2 2 (10,4) 2−164 2−137

Kyber768’ 256 3 3329 2 2 (11,5) 2−228 2−192

Table 8.5: Parameter set for Kyber, with the original failure probability δ, and the failure probability δ′

for ∆ = 0.020.

Application to Saber. For Saber, the original decryption failure probability is 2−136, and with ∆ = 0.02
the failure probability becomes 2−112. We can reach δ′ = 2−128 with ∆ = 0.007, but in that case there is no
performance improvement. However, we can slightly modify the scheme parameters to reach a decryption
failure probability δ′ ≤ 2−128, still with ∆ = 0.02. More precisely, we can increase the parameter T = 24 to
T = 26 as in the more secure FireSaber3. This enables to reach a decryption failure probability δ′ = 2−138

for ∆ = 0.02; see Table 8.6. In that case, we can use the same values as in Kyber for the register size ℓ as
a function of the number of shares α (see Table 8.4).

N l q p T µ δ δ′

Saber 256 3 213 210 24 8 2−136 2−112

Saber’ 256 3 213 210 26 8 2−164 2−138

Table 8.6: Parameter sets for Saber, with the original failure probability δ, and the failure probability δ′

for ∆ = 0.02.

Security impact for ring-LWE IND-CCA encryption

In this section we consider the security impact of increasing the decryption failure probability δ. Namely, as
illustrated in Table 8.5, for the Kyber768 parameters the decryption failure probability becomes δ′ = 2−137

instead of δ = 2−164, so we must explain why the Kyber scheme remains secure. For this we follow closely
the analysis from [ABD+21, Section 5.5].

2Namely, the classical and quantum core-SVP-hardness computed in the analysis script Kyber.py available at https:
//github.com/pq-crystals/kyber/tree/master/scripts/, do not depend on the compression parameters (du, dv).

3As for Kyber, the security level computed by the Python script provided in the submission package, does not depend on
the parameter T .

123

https://github.com/pq-crystals/kyber/ tree/master/scripts/
https://github.com/pq-crystals/kyber/ tree/master/scripts/

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Classical security. We recall the CCA security of Kyber against classical adversaries, based on the
Fujisaki-Okamoto transform, with a security bound that includes the decryption failure probability δ.

Theorem 5 (CCA security of Kyber [ABD+21]). Suppose XOF, H, and G are random oracles. For any
classical adversary A that makes at most qRO many queries to random oracles XOF, H and G, there
exist adversaries B and C of roughly the same running time as that of A such that Advcca

Kyber.CCAKEM ≤
2Advmlwe

k+1,k,η(B) + Advprf
PRF(C) + 4qRO · δ

We note that the above security bound does not depend on the specific decryption algorithm used.
This means that modifying the decryption algorithm (as we did in the previous section) does not invalidate
the security proof of Kyber, as long as the decryption failure probability δ remains negligible. From the
above security bound, with δ = 2−137, the best strategy to generate a decryption failure is to make ≃ 2137

decryption or random oracle queries. This makes a classical attack completely unpractical.

Quantum security and failure boosting. In the quantum random oracle model, the security bound
is non-tight and includes a term q2

RO · δ, see [ABD+21, Theorem 3]. Namely in the quantum setting the
search for a m provoking a decryption failure can be quadratically accelerated using Grover’s algorithm.
In [ABD+21], the authors consider a failure boosting attack strategy that uses Grover’s algorithm in an
offline phase to search for a polynomial pair (e⃗1, r⃗) with a larger norm, so that it is more likely to produce
a decryption error. Below we use the same reasoning to estimate the quantum complexity of the attack,
with decryption failure probability δ = 2−137 instead of 2−164.

The polynomial pair (e⃗1, r⃗) is seen as a vector in Z1536 distributed as a discrete Gaussian with standard
deviation σ =

√
η1/2 = 1. We have that a m-dimensional vector v⃗ under such distribution satisfies for any

κ > 1:
Pr[∥v⃗∥ > κ · σ

√
m] < κm · exp(m(1− κ2)/2)

Grover’s algorithm is used to search this space with a quadratic speed-up, so with complexity κ−m/2 ·
exp(m(κ2 − 1)/4). In the second step, a decryption failure occurs if ⟨z⃗, v⃗⟩ is large enough for the secret
vector z⃗. If z⃗ is distributed as a Gaussian with standard deviation σ′, then for any λ, we have Pr[⟨z⃗, v⃗⟩ >
λσ′∥v⃗∥] ≤ 2 exp(−λ2/2). For a vector v⃗ without the failure boosting, we therefore have δ ≃ 2 exp(−λ2/2),
which gives λ ≃ 13.8 for δ = 2−137. Thanks to the failure boosting, we get a v⃗ whose norm is larger by a
factor κ, so we can use λ′ = λ/κ instead of λ. The improved decryption failure probability after Grover’s
search then becomes 2 exp(−(λ/κ)2/2), which gives a total complexity κ−m/2 ·exp(m(κ2−1)/4+(λ/κ)2/2).
For δ = 2−137, this is minimized for κ = 1.1, with total complexity 2124 (instead of 2150 for δ = 2−164).
Therefore the attack remains completely unpractical. We refer to [ABD+21] for a discussion on the more
recent attacks based on decryption failure [BS20; DRV20]; their overall running time for Kyber are no
better than the above attack. In particular, the multi-target attack considered in [DGJ+19] is prevented
in Kyber by hashing the public key pk into r⃗ and e⃗1.

Comparison with existing techniques

We consider the computation of the threshold function th used in IND-CPA decryption for Saber and Kyber,
and we provide a comparison of the operation count of our new technique (Algorithm 49 page 121) with
existing techniques [BBE+18; BGR+21].

Threshold function mod 2k based on the A2B conversion algorithm from [CGV14]. We show
how to compute a threshold function th : Z2k → {0, 1} where th(x) = 0 if x ∈ [0, 2k−1 − 1] and th(x) = 1
otherwise, as used in Saber with k = 10. Note that th(x) is equal to the most significant bit of the k-
bit representation of x. Starting from x = x1 + · · · + xα mod 2k, we perform an arithmetic to Boolean
conversion of (xi)1≤i≤α ∈ Z2k into (zi)1≤i≤α ∈ {0, 1}k. We then let bi ∈ {0, 1} be the most significant bit of
zi for 1 ≤ i ≤ α. We obtain b1⊕ · · · ⊕ bα = th(x1 + · · ·+ xα) as required. The operation count is therefore:

124

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Cth(α, k) = CAB(α, k) + α

Threshold function modulo q, based on the A2B from [BBE+18]. We consider an integer q
such that q = 1 mod 4, as in Kyber with q = 3329. We show how to compute the threshold function
th : Zq → {0, 1} where th(x) = 0 if x ∈] − q/4, q/4[and th(x) = 1 otherwise, where x is represented in
[−(q+1)/2, (q−1)/2]. We first compute y = x+(q−1)/4 ∈ Zq and we consider the function th′(y) = th(x).
We obtain th′(y) = 0 if y ∈ [0, (q − 1)/2] and th′(y) = 1 otherwise, where y is represented in [0, q − 1].

We consider k such that q < 2k. We now consider y over Z with 0 ≤ y < q < 2k. We let z =
y − (q + 1)/2 mod 2k. If 0 ≤ y ≤ (q − 1)/2, then −2k−1 ≤ −(q + 1)/2 ≤ y − (q + 1)/2 < 0. In this case we
have z = y − (q + 1)/2 + 2k, which gives 2k−1 ≤ z < 2k, and therefore the most significant bit of z is 1.
Otherwise, if (q+ 1)/2 ≤ y < q, then 0 ≤ y− (q+ 1)/2 < (q− 1)/2 ≤ 2k−1, and therefore z = y− (q+ 1)/2,
which gives 0 ≤ z < 2k−1 and therefore the most significant bit of z is 0. Letting b be the most significant
bit of z, we have th(x) = ¬b.

Starting from x = x1 + · · ·+xα mod q, we compute y1 = x1 +(q−1)/4 ∈ Zq and yi = xi for 2 ≤ i ≤ α.
We then perform an arithmetic modulo q to Boolean conversion of (yi)1≤i≤α ∈ Zq into (ui)1≤i≤α ∈ {0, 1}k.
We then perform a SecAdd between (ui)1≤i≤α and (vi)1≤i≤α with v1 = 2k − (q + 1)/2 and vi = 0 for
2 ≤ i ≤ α. We obtain (zi)1≤i≤α and we let bi be the most significant bit of zi for 1 ≤ i ≤ α. We let
b1 ← ¬b1. Eventually we obtain b1 ⊕ · · · ⊕ bα = th(x1 + · · · + xα) as required. The operation count is
therefore:

CthModp(α, k) = CABModp(α, k) + CSecAdd(α, k) + α+ 2

The high-order threshold decryption technique from [BGR+21] for q = 3329 is based on computing:

Compresss
q(x) = x11 ⊕ (¬x11 · x10 · x9 · (x8 ⊕ (¬x8 · x7)))

where xi is the i-th bit of x. The number of operations is therefore.

CComp1(α) = CABModp(α, 12) + 4 · CSecAnd(α) + 2 · Crefresh(α) + 2α

Comparison. For our Algorithm 49, we use the register optimization (Algorithm 48 page 119) to perform
the arithmetic modulo 2ℓ to 1-bit Boolean conversion, according to the values of ℓ from Table 8.4. As in
Section 8.1.3, we assume that a register operation takes 1 operation for 32-bit (ℓ = 5), and 2ℓ−5 operations
for 2ℓ-bit, for ℓ ≥ 5.

We see in Table 8.7 that for Kyber, we obtain more than an order of magnitude improvement in IND-
CPA decryption compared to [BBE+18] and [BGR+21].

A mod q → 1-bit B Security order t
1 2 3 4 5 6 8 9

Saber
[Gou01] 58
[CGV14] 366 667 1 286 1 979 2 731 4 767 6 051
Algorithm 49 (Saber’) 26 117 220 355 1 026 1 421 2 403 2 990

Kyber [BBE+18] 511 1 515 2 792 4 783 7 047 9 765 16 642 20 801
[BGR+21] 395 1 267 2 362 4 121 6 103 8 489 14 552 18 229
Algorithm 49 26 117 220 355 1 026 1 421 2 403 2 990

Table 8.7: Operation count for arithmetic modulo q to 1-bit Boolean conversion algorithms, up to security
order t = 10, with α = t + 1 shares, for Kyber and Saber, with q = 3329 for Kyber and q = 210 for Saber.
For Algorithm 49, we use the values of ℓ from Table 8.4 corresponding to ∆ = 0.02.

125

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

8.1.5 Application to binomial sampling

In this section, we show that our techniques enable to efficiently mask the re-encryption of ring-LWE
encryption schemes. In the second step, under a simplified version of the FO transform for IND-CCA
decryption, the message m is re-encrypted using error polynomials (e1, e2, e3) = H1(m) to get a new
ciphertext c′. To encode a Boolean masked message m ∈ {0, 1} like in (Equation 8.9 page 138), we can use
our generic table-based conversion algorithm, with the function f : {0, 1} → Zq with f(x) = ⌊q/2⌉·x mod q.
In that case the complexity is O(α2) as in [SPO+19].

Consider a single error e, which we write e = H(m) for some hash function H; for simplicity we focus on
a single component e ∈ Z. The error e is actually computed using binomial sampling, with (α, β) = H(m)
and then e = h(α) − h(β), where α, β ∈ {0, 1}k and h is the Hamming weight function. The message m
is Boolean masked, and therefore the variables α and β are Boolean masked, while the error e must be
arithmetically masked modulo q.

To mask the binomial sampling we must therefore mask the Hamming weight computation, with
Boolean masking as input and arithmetic masking modulo q as output. Our approach is similar to
[SPO+19]: we start from our 1-bit Boolean to arithmetic masking modulo q algorithm from Section 8.1.2
(with k = 1), and for α ∈ {0, 1}k, the Hamming weight of α is computed as the sum of k independent
1-bit Boolean to arithmetic masking modulo q conversions. Starting from a Boolean masked message
m = m1⊕· · ·⊕mα, we then obtain an arithmetically masked ciphertext with α shares modulo q. Since our
table-based approach has a similar level of efficiency as the technique from [SPO+19] (see Table 8.2 page
117 for a comparison), for the binomial sampling we obtain a similar level of efficiency as in [SPO+19], and
an order of magnitude improvement compared to [BBE+18].

In the following, we describe in more details the technique to securely compute the Hamming weight
and the binomial sampling, and we show how to perform masked IND-CPA encryption.

Masked Hamming weight computation

We consider the Hamming weight function h : {0, 1}k → Z where h(x) is the sum over Z of the bits of
x, and the function hq : {0, 1}k → Zq where this sum is computed modulo q, that is hq(x) = h(x) mod q.
Given as input x1, . . . , xα ∈ {0, 1}k, our goal is to compute arithmetic shares a1, . . . , aα ∈ Zq such that:

a1 + · · ·+ aα = hq(x1 ⊕ · · · ⊕ xα) mod q

We let x = x1⊕· · ·⊕xα and we write x(j) the j-th bit of x for 0 ≤ j < k, which gives hq(x) = ∑k−1
j=0 x

(j).
We also denote by x(j)

i the j-th bit of each share xi. We obtain:

hq(x) =
k−1∑
j=0

α⊕
i=1

x
(j)
i mod q

We now perform an independent table-based Boolean to arithmetic conversion for each of the k variables
x(j), namely we write for each 0 ≤ j < k:

x(j) =
α⊕

i=1
x

(j)
i =

α∑
i=1

y
(j)
i mod q

This gives:

hq(x) =
k−1∑
j=0

α∑
i=1

y
(j)
i =

α∑
i=1

k−1∑
j=0

y
(j)
i mod q

and therefore letting ai := ∑k−1
j=0 y

(j)
i for all 1 ≤ i ≤ α, we obtain hq(x1 ⊕ · · · ⊕ xα) = a1 + · · ·+ aα mod q

as required. The algorithm is formally described in Algorithm 50 below. The complexity of the algorithm
is O(k · α2).

126

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

The (α − 1)-SNI property follows from the (α − 1)-SNI of each of the k independent table-based con-
versions (Theorem 3 page 114). Namely the corresponding output shares y(j)

i are combined independently
for each share index 1 ≤ i ≤ α.

Algorithm 50 Hamming weight
Input: x1, . . . , xα ∈ {0, 1}k
Output: a1, . . . , aα ∈ Zq such that a1 + · · ·+ aα = h(x1 ⊕ · · · ⊕ xα) mod q

1: for i = 1 to α do ai ← 0
2: for j = 0 to k − 1 do
3: for i = 1 to α do zi ← (xi ≫ j) & 1
4: (y(j)

1 , . . . , y
(j)
α)← BooleanToArithmetic(1, z1, . . . , zα)

5: for i = 1 to α do ai ← ai + y
(j)
i mod q

6: end for
7: return a1, . . . , aα

Application to binomial sampling and masked IND-CPA encryption

We consider the high-order masking of ring-LWE IND-CPA encryption, using error polynomials (e1, e2, e3) =
H1(m) from a message m ∈ R with binary coefficients:

c1 = a · e1 + e2

c2 = t · e1 + e3 + ⌊q/2⌉ ·m

We are given as input a Boolean masked message m = m1 ⊕ · · · ⊕ mα ∈ R and we must output an
arithmetically masked ciphertext modulo q. Applying our generic conversion algorithm with the function
f : {0, 1} → Zq with f(x) = ⌊q/2⌉ · x mod q on each coefficient separately, we obtain arithmetic shares
M1, . . . ,Mα ∈ Rq,1 such that:

m · ⌊q/2⌉ =
α∑

i=1
Mi mod q

Similarly, each component e ∈ Z of the error polynomials e1, e2, e3 is equal to e = hq(α)−hq(β) mod q,
where α, β ∈ {0, 1}k and hq is the Hamming weight function modulo q. Starting from α-shared Boolean
masking of α and β, we can therefore apply Algorithm 50 to generate α arithmetic shares for e modulo q.
Eventually, we obtain arithmetically masked error polynomials Eji ∈ Rq for j = 1, 2, 3 such that

ej =
α∑

i=1
Eji mod q

Finally, we can compute the α shares of the ciphertext:

c1,i = a · E1,i + E2,i

c2,i = t · E1,i + E3,i +Mi

and we have ∑α
i=1 c1,i = c1 mod q and ∑α

i=1 c2,i = c2 mod q as required. Therefore we have obtained a
masked ciphertext with α shares modulo q. The complexity is O(α2) for α shares.

8.2 High-order polynomial comparison

8.2.1 High-order zero testing

In the IND-CCA decryption of lattice-based schemes, according to the Fujisaki-Okamoto transform, we
must perform a comparison between the input ciphertext c̃, and the re-encrypted ciphertext c. In the

127

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

context of the masking countermeasure, the re-encrypted ciphertext c is masked with α shares, so we must
perform this comparison over arithmetic or Boolean shares. Moreover, the coefficients of the polynomials
c̃ and c must be compared all at once. Otherwise the leaking of partial comparison results can leak
information about the secret key, as demonstrated in [BDH+21].

In this section, for simplicity, we consider the zero-testing of a single coefficient. We will then show in
Section 8.2.2 how to test multiple coefficients at once. With arithmetic shares, comparing two individual
coefficients x and y in Zq is equivalent to zero testing x−y ∈ Zq. Similarly, with Boolean shares, comparing
two coefficients x, y ∈ {0, 1}k is equivalent to zero testing x⊕ y. Therefore, in the rest of this section, we
focus on zero-testing.

For a single coefficient x, we are therefore given as input the α Boolean shares of x = x1 ⊕ · · · ⊕ xα ∈
{0, 1}k, or the α arithmetic shares of x = x1 + · · · + xα mod q, and we must output a bit b, with b = 1 if
x = 0 and b = 0 if x ̸= 0, without revealing more information about x. This means that an adversary with
at most t = α− 1 probes will learn nothing about x, except if x = 0 or not.

From Boolean shares over {0, 1}k, one can perform a zero-test with complexity O(α2 · log k); we recall
the technique in ZeroTestBoolLog Algorithm 52). From arithmetic shares modulo q, the simplest technique
is to first perform an arithmetic to Boolean conversion, and then apply the zero-testing on the Boolean
share (ZeroTestAB Algorithm 53). However in our context, we have an arithmetic sharing modulo a prime
q. Hence, we describe a new zero-testing algorithm for such modulo: ZeroTestMult Algorithm 54. This
technique is based on converting from arithmetic masking to multiplicative masking, so that one can
distinguish between x = 0 and x ̸= 0 without revealing more information about x. We will see in Section
8.2.2 that for zero testing ℓ coefficients at once, this technique is much more efficient than arithmetic to
Boolean conversion. We refer to Table 8.8 for a summary.

Technique Masking Complexity
ZeroTestBoolLog Secure And Boolean O(α2 · log k)
ZeroTestAB A → B conversion mod q, 2k O(α2 · log k)
ZeroTestMult Mult. masking mod q O(α2)

Table 8.8: Complexities of zero testing a single value with α arithmetic shares, and a modulus 2k or a k-bit
prime q.

For the ciphertext comparison in Kyber, we will describe in Section 8.3.2 a hybrid approach in which
the first part of the re-encrypted ciphertext is arithmetically masked modulo q, while the remaining part
is Boolean masked. Therefore, we will use the ZeroTestBoolLog algorithm for the second part, and for the
first part ZeroTestMult. For Saber, the re-encrypted ciphertext is completely Boolean shared, so we will
use ZeroTestBoolLog. Finally, the ZeroTestAB algorithm will not be used in our constructions, but we keep
this algorithm anyway for comparison with the ZeroTestMult algorithms.

Boolean zero testing in {0, 1}k

We first consider the zero-testing of x ∈ {0, 1}k from its Boolean shares. We consider the k bits of
x = x(k−1) · · ·x(0). The zero-testing of x computes a bit b with b = 1 if x = 0, and b = 0 otherwise;
therefore:

b = x(k−1) ∨ · · · ∨ x(0) = x(k−1) ∧ · · · ∧ x(0)

Starting from the α Boolean shares of x = x1 ⊕ · · · ⊕ xα, the right-hand side of the above equation can be
computed by a sequence of k − 1 secure And. For simplicity we actually perform k iterations of SecAnd,
the first one being a SecAnd with encoded input 1, to avoid an explicit mask refreshing at the beginning.
The shares b1, . . . , bα are eventually recombined after a mask refreshing. We obtain Algorithm 51 below.

128

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Algorithm 51 ZeroTestBool
Input: k ∈ N and x1, . . . , xα ∈ {0, 1}k
Output: b ∈ {0, 1} such that b = 1 if ⊕xi = 0, and b = 0 otherwise.

1: (y1, . . . , yα)← (x1, x2, . . . , xα)
2: (b1, . . . , bα)← (1, 0, . . . , 0)
3: for j = 0 to k − 1 do
4: (b1, . . . , bα)← SecAnd(1, (b1, . . . , bα), ((y1 ≫ j) & 1, . . . , (yα ≫ j) & 1))
5: end for
6: (b1, . . . , bα)← RefreshMasks(b1, . . . , bα)
7: return b1 ⊕ · · · ⊕ bα

Theorem 6. The ZeroTestBool is (α− 1)-NI, when b is given to the simulator.

Proof. The ZeroTestBool algorithm up to Line 5 is (n − 1)-SNI since it is the composition of SecAnd
operations, which are (n − 1)-SNI. Thanks to the final RefreshMasks, the ZeroTestBool algorithm up
to Line 6 is (n − 1)-SNI. This implies that the full ZeroTestBool is (n − 1)-NI, when b is given to the
simulator.

Boolean zero-test with complexity O(α2 · log k)

Let x ∈ {0, 1}k and let x = x1⊕ · · · ⊕xα a Boolean sharing of x. We describe a procedure to zero-test x in
O(α2 · log k) operations on k-bit registers, instead of O(α2 · k) with the previous approach. The technique
is as follows. We write

x = x(k−1) · · ·x(0)

the k bits of x. Let m = ⌈log2 k⌉. If k is not a power of two, then we set the most significant bits of x to
1 until the next power of two, which is 2m. Let fi(x) = x ∧ (x≫ 2i). We prove below that we have:

x(k−1) ∧ · · · ∧ x(0) = LSB ((fm−1 ◦ · · · ◦ f0)(x)) (8.5)

Therefore to zero-test x, we can compute:

x(k−1) ∨ · · · ∨ x(0) = LSB ((fm−1 ◦ · · · ◦ f0)(x̄))

We describe in Algorithm 52 below the high-order computation of the previous equation with α shares,
using the SecAnd and RefreshMasks algorithms.

Algorithm 52 ZeroTestBoolLog
Input: k ∈ Z and x1, . . . , xα ∈ {0, 1}k
Output: b ∈ {0, 1} with b = 1 if ⊕α

i=1xi = 0 and b = 0 otherwise
1: m← ⌈log2 k⌉
2: y1 ← x1 or (22m − 2k)
3: for i = 2 to α do yi ← xi

4: for i = 0 to m− 1 do
5: (z1, . . . , zα)← RefreshMasks(y1 ≫ 2i, . . . , yα ≫ 2i)
6: (y1, . . . , yα)← SecAnd(m, (y1, . . . , yα), (z1, . . . , zα))
7: end for
8: (b1, . . . , bα)← RefreshMasks(y1 & 1, . . . , yα & 1)
9: return b1 ⊕ · · · ⊕ bα

Theorem 7 (Soundness). Given as input x1, . . . , xα ∈ {0, 1}k, the ZeroTestBoolLog algorithm outputs
b = 1 if ⊕α

i=1xi = 0 and b = 0 otherwise.

129

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Proof. We first consider the case where α = 1, that is x = x1 and y = y1 = x. For simplicity, we first
assume that k is a power of two, that is k = 2m. At Step 6 of the ZeroTestBoolLog algorithm, we compute
(fm−1◦· · ·◦f0)(y) where fi(y) = y∧(y ≫ 2i). To ease reading, we denote by Fi(y) the value (fi◦· · ·◦f0)(y).
In the following we prove by induction on i for i < m that the j-th bit of Fi(y) is

(Fi(y))(j) = y(j+2i+1−1) ∧ · · · ∧ y(j) , (8.6)

for j ≤ 2m − 2i+1.
For the base case i = 0, we have

(F0(y))(j) = (f0(y))(j) = ((y ≫ 1) ∧ y)(j) = (y ≫ 1)(j) ∧ y(j) = y(j+1) ∧ y(j)

which satisfies the induction hypothesis. Now we show that

(Fi+1(y))(j) = y(j+2i+2−1) ∧ · · · ∧ y(j) .

Indeed, we have

(Fi+1(y))(j) = (fi+1(Fi(y)))(j) = (Fi(y) ∧ ((Fi(y)≫ 2i+1)))(j) = (Fi(y))(j) ∧ (Fi(y))(j+2i+1) .

By using the induction hypothesis in Equation (8.6), we get

(Fi+1(y))(j) = (y(j+2i+1−1) ∧ · · · ∧ y(j)) ∧ (y((j+2i+1)+2i+1−1) ∧ · · · ∧ y(j+2i+1))

= y(j+2i+2−1) ∧ · · · ∧ y(j) ,

which terminates the recursive proof.
In particular, for i = m − 1, we can use Equation (8.6) for j ≤ 2m − 2i+1 = 0. Thus, by keeping only

the LSB part (that is j = 0) as done in Step 8 of Algorithm ZeroTestBoolLog, we have:

(Fm−1(y))(0) = LSB ((fm−1 ◦ · · · ◦ f0)(y)) = y(2m−1) ∧ · · · ∧ y(0) = y(k−1) ∧ · · · ∧ y(0) ,

as specified in equation (8.5). Note that this is also true in the case where k is not a power of two since
in this case, the most significant bits of y are initially set to 1. From y = x, we obtain as required:

LSB ((fm−1 ◦ · · · ◦ f0)(x̄)) = y(k−1) ∨ · · · ∨ y(0) = x(k−1) ∨ · · · ∨ x(0) .

Eventually, the result also holds for x = x1 ⊕ · · · ⊕ xα with α > 1, since the same operations are
performed on all shares, which proves the theorem.

Complexity. We have used Crefresh(α) = 3α(α− 1)/2 and TSecAnd(α) = α(7α− 5)/2

CZeroTestBoolLog(k, α) = 2 + ⌈log2 k⌉ · (α+ Trefresh(α) + CSecAnd(α)) + α+ Trefresh(α) + α− 1
≃ 5α2⌈log2 k⌉

Theorem 8. The ZeroTestBoolLog algorithm is (α− 1)-NI, when b is given to the simulator.

Proof. It is easy to see that the composition of steps 5 and 6 is (α − 1)-SNI secure, from the (α − 1)-SNI
security of SecAnd and RefreshMasks. Therefore, the ZeroTestBoolLog algorithm up to Line 7 satisfies the
(α− 1)-SNI property, and thanks to the last RefreshMasks, the full algorithm is (α− 1)-NI when b is given
to the simulator.

In our context we only need the NI property for the zero tests or the polynomial zero tests. Indeed,
the SNI property considers the outputs into the simulation. However, the comparison outputs are used in
an unmasked way. Then, the NI property is enough.

130

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Zero testing modulo q via arithmetic to Boolean conversion

We now consider the zero-testing of an element x ∈ Zq from its arithmetic shares. Given as input the α
arithmetic shares of x = x1 + · · · + xα mod q, we must output a bit b, with b = 1 if x = 0 and b = 0 if
x ̸= 0, without revealing more information about x. For q ≤ 2k, we first perform an arithmetic to Boolean
conversion, which gives the Boolean shares y1, . . . , yα ∈ {0, 1}k, with x = y1⊕ · · · ⊕ yα. We then apply the
Boolean zero-testing algorithm from the previous section. We obtain the pseudo-code below.

Algorithm 53 ZeroTestAB
Input: q ∈ Z, k ∈ Z with q ≤ 2k, and x1, . . . , xα ∈ Zq

Output: b ∈ {0, 1} with b = 1 if ∑i xi = 0 mod q and b = 0 otherwise
1: (y1, . . . , yα)← ArithmeticToBoolean(q, (x1, . . . , xα))
2: return ZeroTestBoolLog(k, (y1, . . . , yα))

The arithmetic to Boolean conversion step has complexity O(α2 · k) for q = 2k, using [CGV14] or the
table recomputation approach from Section 8.1. We can also obtain an improved O(α2 · log k) complexity
using the improved arithmetic to Boolean conversion from [CGT+15]. The technique actually works for
arithmetic masking modulo any integer q, since we can use [BBE+18; SPO+19] to convert from arithmetic
modulo q to Boolean masking, with complexity O(α2 · log log q). In the second step, one can use the
improved algorithm ZeroTestBoolLog with complexity O(α2 · log k). Therefore the overall complexity is
O(α2 · log k), where k = ⌈log2 q⌉, with a number of operations:

CZeroTestAB(k, α) = CAB(k, α) + CZeroTestBoolLog(k, α)

where CAB(k, α) is the complexity of the arithmetic to Boolean conversion for a k-bit modulus q.
Theorem 9. The ZeroTestAB algorithm is (α− 1)-NI, when b is given to the simulator.
Proof. The result follows from Theorem 6, with the ArithmeticToBoolean algorithm which is assumed to
be (α− 1)-NI.

Zero testing modulo a prime q via multiplicative masking

Our new technique works for prime q only. It is based on converting from arithmetic masking modulo q to
multiplicative masking. When the secret value x is 0, the multiplicatively masked value remains 0, whereas
for x ̸= 0, we obtain a random non-zero masked value. This enables to distinguish the two cases, without
leaking more information about x.

More precisely, given as input the shares xi of x = x1 + · · · + xα mod q, we convert the arithmetic
masking into a multiplicative masking. For this we generate a random u1 ∈ Z∗

q and we compute:

u1 · x = u1 · x1 + · · ·+ u1 · xα mod q

by computing the corresponding shares x′
i = u1 · xi mod q for all 1 ≤ i ≤ α. We then perform a linear

mask refreshing of the arithmetic shares x′
i. Such linear mask refreshing is not SNI, but it is NI and its

property is that any subset of α − 1 output shares is uniformly and independently distributed, as in the
mask refreshing from [RP10], see Algorithm 55.

We proceed similarly with the multiplicative shares u2, . . . , uα ∈ Z∗
q . Eventually we obtain an arithmetic

sharing (Bi)1≤i≤α satisfying:
u1 · · ·uα · x = B1 + · · ·+Bα mod q

Thanks to the α multiplicative shares ui, we can now safely decode the arithmetic sharing (Bi)1≤i≤α

without revealing more information about x. More precisely, we compute B = B1 + . . .+Bα mod q, and
we obtain:

u1 · · ·uα · x = B mod q

131

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Recall that ui ∈ Z∗
q for all 1 ≤ i ≤ α. Therefore if x ̸= 0, we must have B ̸= 0, and if x = 0, we have

B = 0. This gives a zero-test of x.
We provide below a pseudocode description of the ZeroTestMult algorithm taking as input the shares

xi of x = x1 + · · ·+ xα mod q and outputting a bit b with b = 1 if x = 0 and b = 0 otherwise.

Algorithm 54 ZeroTestMult
Input: x1, . . . , xα ∈ Zq for prime q.
Output: b ∈ {0, 1} with b = 1 if ∑i xi = 0 mod q and b = 0 otherwise

1: (B1, . . . , Bα)← (x1, . . . , xα)
2: for j = 1 to α do
3: uj

$←− Z∗
q

4: (B1, . . . , Bα)← (uj ·B1 mod q, . . . , uj ·Bα mod q)
5: (B1, . . . , Bα)← LinearRefreshMasks(q,B1, . . . , Bα)
6: end for
7: B ← B1 + · · ·+Bα mod q
8: if B = 0 then
9: return 1

10: else
11: return 0
12: end if

Algorithm 55 LinearRefreshMasks
Input: q ∈ Z and x1, . . . , xα ∈ Zq

Output: y1, . . . , yα ∈ Zq such that y1 + · · ·+ yα = x1 + · · ·+ xα mod q
1: yα ← xα

2: for j = 1 to α− 1 do
3: rj

$←− Zq

4: yj ← xj + rj mod q
5: yα ← yα − rj mod q
6: end for
7: return y1, . . . , yα

Note that as opposed to the techniques described in the previous sections, we obtain an unmasked bit
b. This means that when zero testing multiple coefficients at once, we can not keep an α-shared bit b and
high-order combine the results of individual zero-testing, as with the previous ZeroTestBool and ZeroTestAB
algorithms. Therefore, to test multiple coefficients at once, we will have to proceed differently (see Section
8.2.2).

Complexity. For simplicity we ignore the reductions modulo q in the operation count. The complexity
of LinearRefreshMask is 3(α− 1) operations. We obtain:

CZeroTestMult(α) = α · (1 + α+ 3(α− 1)) + α = α · (4α− 1) ≃ 4α2

The technique has therefore complexity O(α2) for a single coefficient. That is, as opposed to the previ-
ous techniques, the complexity is independent from the size of the modulus q, assuming that arithmetic
operations in Zq take unit time. We will see in Section 8.2.1 that for zero testing a single coefficient, the
technique is much faster than the other techniques.

132

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Theorem 10 ((α − 1)-NI of ZeroTestMult). The ZeroTestMult takes as input α arithmetic shares xi for
1 ≤ i ≤ α and outputs a bit b with b = 1 if ∑α

i=1 xi = 0 mod q and b = 0 otherwise. Any t probes can be
perfectly simulated from x|I and b, with |I| ≤ t.

Proof. We describe hereafter the construction of the set I ⊂ [1, α] of indices. Initially, I is empty. For
every probed input variable xi and for any probed intermediate variable Bi at Loop j between Steps 3 and
5, for 1 ≤ i ≤ α, we add index i to I. By construction of the set I, we have |I| ≤ t as required.

We now show that any t probes of Algorithm ZeroTestMult can be perfectly simulated from x|I and b.
Since the number of probes t is such that t < α, we deduce that at least one entire loop (Steps 3 to 5) has
not been probed. Let j⋆ be the index of this non-probed loop. For all probed variables Bi between Steps 3
and 5 in loop indices j < j⋆, we have i ∈ I and the simulation is straightforward from the input shares x|I .

It remains to simulate all probed variables between Steps 3 and 5 in loop indices j ≥ j⋆, and all probed
variables at Step 7. To this aim, we consider two cases whether the output b = 0 or b = 1 (recall that b is
given to the simulator).

If b = 1, then we know that ∑α
i=1Bi = 0 mod q at the end of each for loop. At the end of loop j⋆,

since LinearRefreshMasks has not been probed, we can perfectly simulate all variables Bi, by generating
random Bi’s for 1 ≤ i ≤ α such that ∑α

i=1Bi = 0 mod q.
Similarly, if b = 0, we use the fact that uj⋆ has not been probed and acts as a multiplicative one-time

pad in Z∗
q . This implies that the value encoded by the Bi’s is randomly distributed in Z∗

q . We can therefore
perfectly simulate all shares Bi for 1 ≤ i ≤ α at the end of loop j⋆ by generating random Bi’s under the
condition ∑α

i=1Bi ̸= 0 mod q.
In both cases, one can propagate the simulation until the end of the for loop, that is until j = α, and

from the knowledge of the Bi shares at the end of the for loop, one can compute all probed intermediate
variables at Step 7 as in the real algorithm. We therefore conclude that the ZeroTestMult algorithm is
(α− 1)-NI, when b is given to the simulator.

Comparison of zero-test algorithms

We provide a comparison of the 2 zero-test algorithms that work modulo q, with q = 3329 as in Kyber. We
see in Table 8.9 that for testing a single value, ZeroTestMult is more than one order of magnitude faster
than ZeroTestAB .

zero-testing mod q
Security order t

1 2 3 4 5 6 8 10 12
ZeroTestAB 439 1 393 2 593 4 514 6 681 9 289 15 913 24 386 34 428
ZeroTestMult 14 33 60 95 138 189 315 473 663

Table 8.9: Operation count for zero testing with arithmetic masking modulo q, with α = t+ 1 shares and
q = 3329.

8.2.2 High-order polynomial comparison

In this section we consider the zero-testing of multiple coefficients at once. For this we extend the zero-
testing techniques from Section 8.2.1 to multiple coefficients.

For Boolean masked coefficients (PolyZeroTestBool) the extension is straightforward: we can simply keep
the results of individual zero-testing in α-shared form (instead of recombining the shares), and high-order
compute an iterated And between those results; only at the end do we recombine the shares to output a bit
b. The approach is the same for zero testing multiple coefficients arithmetically masked modulo 2k, when
using arithmetic to Boolean conversion (PolyZeroTestAB). However, in the following we do not describe the
algorithm PolyZeroTestAB. Indeed in our context of prime modulo, ZeroTestAB is much less efficient than
ZeroTestMult therefore the polynomial version is also much less efficient.

133

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

When working modulo a prime q, it is very advantageous to first apply the technique from [BDH+21]
that reduces the zero-testing of ℓ coefficients to the zero-testing of κ≪ ℓ coefficients, with κ = ⌈λ/ log2 q⌉,
where λ is the security parameter, via random linear combinations. Namely the coefficients of the linear
combinations can be computed without being masked, and the complexity of this first step is only O(α)
instead of O(α2).

The remaining κ coefficients must then be zero tested all at once. When the zero-testing is based on
multiplicative masking (ZeroTestMult), we obtain the unmasked bit b of an individual zero-testing, so we
must proceed differently. Before applying the zero-testing, we first compute random linear combinations as
in [BDH+21], but this time the coefficients of the linear combination must be masked with α shares. For
each linear combination, we perform a zero-test of the result. If all coefficients are 0, the linear combination
will be 0, and the algorithm will return b = 1 as required. If at least one of the coefficients is non-zero,
the linear combination will be non-zero and the algorithm will return b = 0, except with error probability
1/q. As previously, by repeating the procedure κ times, we can decrease the error probability to 2−λ with
κ = ⌈λ/ log2 q⌉.

Polynomial comparison of Boolean masked coefficients

We are given as input a set of ℓ · α shares (x(j))i ∈ {0, 1}k for 1 ≤ j ≤ ℓ and 1 ≤ i ≤ α, corresponding to ℓ
coefficients:

x(j) = x
(j)
1 ⊕ · · · ⊕ x

(j)
α

and we must output a single bit b such that b = 1 if x(j) = 0 for all 1 ≤ j ≤ ℓ, and b = 0 otherwise. The
simplest approach is to perform a Boolean zero-test of each x(j) as in Section 8.2.1, keeping each resulting
bit b(j) in Boolean α-shared form, and then to perform a sequence of SecAnds between the bits b(j), and to
eventually recombine the shares into a bit b. The complexity of this approach is then O(ℓ · α2 · log k). A
slightly better approach is to high-order compute:

y =
∧ℓ

j=1
x(j) ∈ {0, 1}k

Then y = 0 iff x(j) = 0 for all 1 ≤ j ≤ ℓ, so we eventually perform a single zero-test of y. In this approach
we take advantage of computing the SecAnds over k bits instead of a single bit. The complexity is then
O(ℓ · α2 + α2 · log k). We obtain the pseudo-code below.

Algorithm 56 PolyZeroTestBool

Input: k ∈ Z, and (x(j)
i) ∈ {0, 1}k for 1 ≤ i ≤ α and 1 ≤ j ≤ ℓ.

Output: b ∈ {0, 1} with b = 1 if ⊕ix
(j)
i = 0 for all 1 ≤ j ≤ ℓ, and b = 0 otherwise

1: for j = 1 to ℓ do x
(j)
1 ← x

(j)
1

2: (y1, . . . , yα)← (1, 0, . . . , 0)
3: for j = 1 to ℓ do (y1, . . . , yα)← SecAnd(k, (y1, . . . , yα), (x1, . . . , xα))
4: y1 ← y1
5: Return ZeroTestBoolLog(k, y1, . . . , yα)

The number of operations is:

CPolyZeroTestBool(k, ℓ, α) = ℓ · (1 + CSecAnd(α)) + 1 + CZeroTestBoolLog(k, α)

The following theorem shows that the adversary does not learn more than the output bit b of the comparison.
The proof is obtained by composition of the SNI gadget SecAnd and the NI gadget ZeroTestBoolLog

Theorem 11. The PolyZeroTestBool algorithm is (α− 1)-NI, when b is given to the simulator.

134

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Polynomial comparison modulo prime q: reduction step

When working modulo a prime q, we can first apply the technique from [BDH+21] that efficiently reduces
the zero-testing of ℓ coefficients to the zero-testing of κ ≪ ℓ coefficients, with κ = ⌈λ/ log2 q⌉, where λ is
the security parameter. Given as input ℓ coefficients x(j) ∈ Zq with arithmetic shares x(j)

i , the technique
consists in computing κ linear combinations:

y(k) =
ℓ∑

j=1
akj · x(j) mod q (8.7)

for 1 ≤ k ≤ κ, with randomly distributed coefficients akj ∈ Zq. The above equation is actually high-order
computed using the arithmetic shares x(j)

i of each x(j), and we obtain the arithmetic shares y(k)
i of each

coefficient y(k). We obtain the pseudo-code below.

Algorithm 57 PolyZeroTestRed [BDH+21]

Input: q ∈ Z, a parameter κ and (x(j)
i) ∈ Zq for 1 ≤ i ≤ α and 1 ≤ j ≤ ℓ.

Output: (y(k)
i) ∈ Zq for 1 ≤ i ≤ α and 1 ≤ k ≤ κ.

1: for k = 1 to κ do
2: for i = 1 to α do y

(k)
i ← 0

3: for j = 1 to ℓ do
4: akj

$←− Zq

5: for i = 1 to α do y
(k)
i ← y

(k)
i + akj · x

(j)
i

6: end for
7: end for
8: return (y(k)

i)1≤k≤κ, 1≤i≤α

Now if x(j) = 0 for all 1 ≤ j ≤ ℓ, then y(k) = 0 for all 1 ≤ k ≤ κ. If x(j) ̸= 0 for some 1 ≤ j ≤ ℓ, then for
each 1 ≤ k ≤ κ, we have y(k) ̸= 0, except with probability 1/q. Therefore we must have y(k) ̸= 0 for some
1 ≤ k ≤ κ, except with error probability q−κ. We have therefore reduced the zero-testing of ℓ coefficients
to the zero-testing of κ≪ ℓ coefficients. To reach an error probability ≤ 2−λ for security parameter λ, one
must take κ = ⌈λ/ log2 q⌉.

We stress that after this reduction step we cannot zero-test the coefficients y(k) separately. Otherwise,
since the coefficients akj in Equation (8.7) are computed without mask, knowing that y(k) = 0 for some k
would leak an equation over the coefficients x(j), which would leak information about the x(j) with fewer
than α probes. Instead, the remaining κ coefficients y(k) must be zero-tested all at once. For this we
describe in the next sections two efficient techniques.

This reduction technique is quite efficient because the random coefficients akj in (8.7) are non-masked,
which implies that each multiplication akj · x(j) can be computed in time O(α) for α shares, instead of
O(α2) for a fully masked multiplication. The total complexity of this first step is therefore O(ℓ ·κ ·α), with
a number of operations:

TPolyZeroTestRed(κ, ℓ, α) = κ · ℓ · (2α+ 1)

Theorem 12 ([BDH+21]). The PolyZeroTestRed algorithm is (α− 1)-NI.

Polynomial comparison modulo q via multiplicative masking

As explained previously, when zero testing a value x modulo q using the multiplicative masking technique
(Section 8.2.1), we obtain the unmasked resulting bit b, so we cannot zero-test the coefficients iteratively
as in the previous techniques. Instead, we first compute a random linear combination of the individual

135

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

coefficients modulo q, and we then perform a zero-test of the result. This approach is similar to [BDH+21],
except that we must compute the coefficients a(j) in the linear combination in α-shared form, as otherwise
this can leak information on the coefficients x(j) and then leads to a CCA attack.

As previously, we consider as input an arithmetic masking of ℓ coefficients x(j), that is x(j) = x
(j)
1 +

· · · + x
(j)
α mod q for all 1 ≤ j ≤ ℓ. We first apply the reduction algorithm PolyZeroTestRed described

previously. In the second step, we must therefore zero-test the set of coefficients y(j) with arithmetic shares
y

(j)
i modulo q, that is y(j) = y

(j)
1 + · · ·+ y

(j)
α mod q for all 1 ≤ j ≤ κ.

For this, we generate random coefficients a(j) ∈ Zq, and we high-order compute the linear combination:

z =
κ∑

j=1
a(j) · y(j) mod q (8.8)

If y(j) = 0 for all 1 ≤ j ≤ κ, then z = 0. If y(j) ̸= 0 for some 1 ≤ j ≤ κ, then we have z ̸= 0, except with
probability 1/q. We can therefore perform a zero-test of z. The procedure can be repeated a small number
of times to have a negligible probability of error. Namely, for κ repetitions with randomly generated a(j),
the error probability becomes q−κ.

Equation (8.8) is high-order computed using the arithmetic shares y(j)
i of the coefficients y(j). Similarly

the random coefficients a(j) are generated via α random shares a(j)
i in Zq. This is the main difference with

the linear combination used in Section 8.2.2 for the reduction step, in which the coefficients akj in (8.7)
were computed without mask. We stress that this time, the coefficients a(j) must be computed in α-shared
form, and the multiplication a(j) · y(j) computed with SecMult, since otherwise an equation over the x(j)

could be leaked with fewer than α probes. From the high-order computation of (8.8), we obtain the α
shares zi of the linear combination z. We then apply the zero-test procedure from Section 8.2.1 on the
shares zi, which outputs a bit b such that b = 1 if z = 0 and b = 0 otherwise. The procedure is repeated κ
times, and if we always obtain b = 1 from the zero-test, we output 1, otherwise we output 0.

Algorithm 58 PolyZeroTestMult

Input: q ∈ Z, a parameter κ and (x(j)
i) ∈ Zq for 1 ≤ i ≤ α and 1 ≤ j ≤ ℓ.

Output: b ∈ {0, 1} with b = 1 if ∑i x
(j)
i = 0 mod q for all 1 ≤ j ≤ ℓ and b = 0 otherwise

1: (y(k)
i)1≤k≤κ, 1≤i≤α ← PolyZeroTestRed((x(j)

i)1≤j≤ℓ, 1≤i≤α)
2: b← 0
3: for k = 1 to κ do
4: for i = 1 to α do zi ← 0
5: for j = 1 to ℓ do
6: for i = 1 to α do a

(j)
i

$←− Zq

7: (z(j)
1 , . . . , z

(j)
α)← SecMult((a(j)

1 , . . . , a
(j)
α), (y(j)

1 , . . . , y
(j)
α))

8: for i = 1 to α do zi ← zi + z
(j)
i mod q

9: end for
10: bk ← ZeroTestMult(z1, . . . , zα)
11: b← b+ bk

12: end for
13: if b = κ then b← 1 else b← 0
14: return b

136

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

The complexity of the PolyZeroTestMult algorithm is

CPolyZeroTestMult(q, κ, ℓ, α) = CPolyZeroTestRed(κ, ℓ, α)+
κ · (κ · (CSecMult(α) + 2α) + CZeroTestMult(α)))

For security level λ, the error probability must satisfy q−κ ≤ 2−λ, so we can take κ = ⌈λ/ log2 q⌉ repetitions.
Therefore, the complexity of the second step is O(κ2α2). The total complexity is therefore O(κℓα+κ2α2).

Theorem 13 (Soundness). The PolyZeroTestMult outputs the correct answer, except with probability at
most q−κ.

Proof. We denote by PolyZeroTestMultLoop, one loop iteration on k of the PolyZeroTestMult algorithm,
namely, going from line 4 to 11. We start by showing that PolyZeroTestMultLoop computes the correct
answer bk, except with probability at most 1/q. Indeed, in PolyZeroTestMultLoop, one securely computes
the value z = ∑ℓ

j=1 a
(j) · y(j) mod q where the random values a(j) are uniformly distributed in Zq. Thus,

if z ̸= 0, then at least one coefficient y(j) is not zero and the output bk = 0 is always correct.
However, if z = 0, two cases arise: either all coefficients y(j) are null in which case the algorithm outputs

bk = 1 which is correct, or at least one coefficient y(j) is such that y(j) ̸= 0 but with ∑ℓ
j=1 a

(j) · y(j) = 0
mod q and the output bk = 1 in this case is incorrect. Since the a(j) values are uniformly distributed in
Zq, the result of the linear combination of the y(j) ̸= 0 with the values a(j) is also uniform in Zq. Therefore
the probability that ∑ℓ

j=1 a
(j) · y(j) = 0 mod q is 1/q for each iteration of PolyZeroTestMultLoop.

Hence by iterating PolyZeroTestMultLoop κ times with fresh random values a(j)
κ as done in PolyZe-

roTestMult, the probability that ∑κ
j=1 a

(j)
κ · y(j) mod q = 0 for all κ iterations, with at least one coefficient

y(j) ̸= 0, is (1/q)κ = q−κ.

Theorem 14. The PolyZeroTestMult algorithm is (α− 1)-NI, when b is given to the simulator.

Proof. As before, we denote by PolyZeroTestMultLoop, one loop iteration on k of the PolyZeroTestMult
algorithm (line 4 to 11). We write y(j) = ∑α

i=1 y
(j)
i mod q. We distinguish two cases: either y(j) = 0 for all

1 ≤ j ≤ ℓ, or y(j) ̸= 0 for some j. We show that the simulator can perform a perfect simulation in both
cases. Moreover, by assumption the simulator eventually receives the bit b. This means that the simulator
can distinguish the two cases, except with error probability at most q−κ. Therefore the error probability
of the simulator will be at most q−κ.

y(j) = 0 for all 1 ≤ j ≤ ℓ. This is the easy case. Namely in that case, we know that bk = 1 for all k. The
computation of the shares zi at Line 8 is (α− 1)-SNI. Knowing bk, the algorithm ZeroTestMult at Step 10
is (α− 1)-NI from Theorem 10. Therefore the global PolyZeroTestMultLoop algorithm remains (α− 1)-NI.

y(j) ̸= 0 for some 1 ≤ j ≤ ℓ. We consider a sequence of games.
Game0: we generate all variables as in the algorithm. We assume that we know all input shares y(j)

i . We
can therefore perform a perfect simulation of all probes. Moreover, we have that Pr[bk = 1] = 1/q for all
1 ≤ k ≤ κ, and the variables bk are independently distributed.
Game1: we modify the way the variables are generated. Instead of generating all variables a(j)

i uniformly and
independently, we first generate the bits bk independently with Pr[bk = 1] = 1/q. Then for each 1 ≤ k ≤ κ,
if bk = 1 then we generate the shares a(j)

i such that ∑ℓ
j=1 a

(j)y(j) = 0 mod q, where a(j) = ∑α
i=1 a

(j)
i mod q.

Otherwise, we generate the shares a(j)
i such that ∑ℓ

j=1 a
(j)y(j) ̸= 0 mod q. The distribution of the variables

is the same as in the previous game. Therefore, we can still perform a perfect simulation of all probed
variables.

137

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Game2: we show that we can still perform a perfect simulation as in Game1, but only with the input shares
y

(j)
|I for a subset |I| ≤ t. This will prove that the algorithm is (α− 1)-NI.

Firstly, from the (α− 1)-SNI property of SecMult and the (α− 1)-NI property of ZeroTestMult knowing
bk, the simulation of all probes can be performed from the knowledge of a subset y(j)

|I of the input shares
for |I| ≤ t, and a subset a(j)

|J of the shares of the values a(j), for |J | ≤ t ≤ α− 1. Secondly, the constraints
on ∑ℓ

j=1 a
(j)y(j) from Game2 can be satisfied by generating all shares a(j)

i for i ̸= i⋆ uniformly at random,
and by fixing a(j)

i⋆ , without changing the distribution of the shares a(j)
i , for some i⋆ /∈ J . Finally, since the

knowledge of a(j)
i⋆ is not needed for the simulation, we can perform a perfect simulation of all probes from

y
(j)
|I . This concludes the proof.

8.3 Fully masked implementation of Kyber

Kyber is a lattice-based encryption scheme and a finalist of the third round of the NIST competition
[BDK+18; ABD+21]. Its security is based on the hardness of the module learning-with-errors (M-LWE)
problem. The IND-CCA secure key establishment mechanism (KEM) is obtained by applying the Fujisaki-
Okamoto transform [FO99; HHK17]. The Kyber submission provides three parameters sets Kyber512,
Kyber768 and Kyber1024, with claimed security level equivalent to AES-128, AES-192 and AES-256 re-
spectively. The three parameter sets share the common parameters N = 256, q = 3329 and η2 = 2, while
the security level is defined by setting the module rank k = 2, 3, 4, and the parameters η1, dt, du and dv

(see Table 8.10).
In the following, we start with an overview of ring-LWE encryption [LPR10], and then recall the

definition of the Kyber scheme. We then describe the evaluation of the Kyber decapsulation mechanism,
secure at any order, using the techniques from the previous sections.

8.3.1 The Kyber Key Encapsulation Mechanism (KEM)

Ring-LWE IND-CPA encryption. LetR andRq denote the rings Z[X]/(XN +1) and Zq[X]/(XN +1)
respectively, for some N ∈ N and an integer q. Let a ∈ Rq,1 be a public random polynomial. Let χ be
a distribution outputting “small” elements in R, and let s, e ← χ. The public key is t = as + e ∈ Rq,
while the secret key is s. To CPA-encrypt a message m ∈ R with binary coefficients, one computes the
ciphertext (c1, c2) where

c1 = a · e1 + e2

c2 = t · e1 + e3 + ⌊q/2⌉ ·m
(8.9)

with e1, e2, e3 ← χ. To decrypt a ciphertext (c1, c2), one first computes u = c2 − s · c1, which gives:

u = (a · s+ e) · e1 + e3 + ⌊q/2⌉ ·m− s · a · e1 − s · e2

= ⌊q/2⌉ ·m+ e · e1 + e3 − s · e2

Since the ring elements e, e1, e2, e3 and s are small, and the message m ∈ R has binary coefficients, we
can recover m by rounding. Namely, for each coefficient of the above polynomial u, we decode to 0 if
the coefficient is closer to 0 than ⌊q/2⌉, and to 1 otherwise. More precisely, we decode the message m as
m = th(c2 − s · c1), where th applies coefficient-wise the threshold function th : Zq → {0, 1}:

th(x) =
{

0 if x ∈ [0, q/4]∪]3q/4, q[
1 if x ∈]q/4, 3q/4] (8.10)

138

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

The Kyber IND-CPA encryption. The Kyber scheme is based on the module learning-with-errors
problem (M-LWE) in module lattices [LS15b]. For a modulo rank k, we use a public random k× k matrix
A with elements in Rq. We set χη as the centered binomial distribution with support {−η, . . . , η}, and
extended to the distribution of polynomials of degree N with entries independently sampled from χη.
The public key is t = A · s + e ∈ Rk

q and the secret key is s, where s, e ← χk
η1 for some parameter η1.

To CPA-encrypt a message m ∈ R with binary coefficients, one computes (c1, c2) ∈ Rk
q × Rq such that

c1 = AT ·r+e1 and c2 = tT ·r+e2 +⌊q/2⌉ ·m, where r← χk
η1 , e1 ← χk

η2 and e2 ← χη2 , for some parameter
η2. To decrypt a ciphertext (c1, c2), one computes as previously:

u = c2 − sT · c1 = eT · r + e2 − sT · e1 + ⌊q/2⌉ ·m ≈ ⌊q/2⌉ ·m

Kyber instantiates the M-LWE-based encryption scheme above with N = 256 and a prime q = 3329;
see Table 8.10 for the other parameters. We recall the pseudo-code from [BDK+18] below. For simplicity
we omit the NTT transform for fast polynomial multiplication. The NTT is indeed a linear operation, so
it is easily masked with arithmetic masking modulo q.

Algorithm 59 Kyber.CPA.KeyGen()

1: ρ, σ $←− {0, 1}256

2: A← Rk×k
q := Sam(ρ)

3: s, e← χk
η1 × χ

k
η1 := Sam(σ)

4: t := Compressq,dt
(As + e)

5: return pk := (t, ρ), sk := s

Algorithm 60 Kyber.CPA.Dec(sk, c = (u⃗, v))
1: u⃗ := Decompressq,du

(u⃗)
2: v := Decompressq,dv

(v)
3: return Compressq,1(v − s⃗T u⃗)

Algorithm 61 Kyber.CPA.Enc(pk,m)

1: r $←− {0, 1}256

2: t := Decompressq,dt
(t)

3: A← Rk×k
q := Sam(ρ)

4: r, e1, e2 ← χk
η1 × χ

k
η2 × χη2 := Sam(r)

5: u⃗ := Compressq,du
(AT r + e1)

6: v := Compressq,dv
(tT r + e2 + ⌊q/2⌉ ·m)

7: return c := (u⃗, v)

The Kyber CCA-secure KEM. The Kyber scheme provides a CCA-secure key encapsulation mechanism,
based on the Fujisaki-Okamoto transform [FO99]. We recall the pseudo-code from [BDK+18] below. It
requires two different hash functions H and G. The main principle of the Fujisaki-Okamoto transform
is to check the validity of a ciphertext by performing a re-encryption with the same randomness (see the
variable r′ at Line 3 of Algorithm 63 below), and a comparison with the original ciphertext.

Note that the Kyber.Decaps algorithm does not output ⊥ for invalid ciphertexts, as originally in the FO
transform. Instead, it outputs a pseudo-random value from the hash of a secret seed z and the ciphertext c.
This variant of the FO transform was proven secure in [HHK17]. However, the variant remains secure even
if the adversary is given the result of the ciphertext comparison, under the condition that the IND-CPA
scheme is γ-spread, which essentially means that ciphertexts have sufficiently large entropy (see [HHK17]),
which is the case in Kyber. Therefore, in the high-order masking of Kyber, the bit b of the comparison can
be computed without mask (as in [BGR+21]), because for the simulation of the probes the bit b can be
given for free to the simulator.

Algorithm 62 Kyber.Encaps(pk)

1: m $←− {0, 1}256

2: (K̂, r) := G(H(pk),m)
3: c := Kyber.CPA.Enc(pk,m; r)
4: K = H(K̂,H(c))
5: return c,K

Algorithm 63 Kyber.Decaps(sk = (s⃗, z, t⃗, ρ), c =
(u⃗, v))

1: m′ := Kyber.CPA.Dec(s⃗, c)
2: (K̂ ′, r′) := G(H(pk),m′)
3: (u⃗′, v′) := Kyber.CPA.Enc((⃗t, ρ),m′; r′)
4: if (u⃗′, v′) = (u⃗, v) then

return K := H(K̂ ′, H(c))
5: else return K := H(z,H(c))139

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

8.3.2 Polynomial comparison for Kyber

In this section, we focus on the polynomial comparison in Kyber [BDK+18]. The parameters that we take
as examples are those of Kyber768. We made this choice because our experiments are done on this version.
However, all the following properties apply to the other Kyber parameters. The table Table 8.10 describes
all the parameters for the different security level.

Recall that computations in Kyber are performed in the ring Rq,1 = Zq[X]/(XN +1) with N = 256 and
q = 3329. To reduce the ciphertext size, the coefficients of the ciphertext are compressed from modulo q
to d bits using the function:

Compressq,d(x) :=
⌊
(2d/q) · x

⌉
mod 2d

and are decompressed using the function Decompressq,d(c) :=
⌊
(q/2d) · c

⌉
. For example according to the

Kyber768 parameters, d = du = 10 for the first part of the ciphertext and d = dv = 4 for the second part.
In the IND-CCA decryption based on the Fujisaki-Okamoto transform [FO99], we must perform a

polynomial comparison between two compressed ciphertexts: the input ciphertext c̃, and the re-encrypted
ciphertext c. The Compressq,d function is applied coefficient-wise, so for simplicity we first consider a single
coefficient. Let x be the re-encrypted coefficient modulo q before compression, and let c be the resulting
compressed coefficient, that is c = Compressq,d(x). We must therefore perform the comparison with the
input ciphertext c̃ modulo 2d:

c̃
?= Compressq,d(x) mod 2d (8.11)

There are two possible approaches to perform this comparison. The first approach consists in performing
the comparison as in (8.11). Since the re-encrypted coefficient x is arithmetically masked modulo q, we
show how to high-order compute Compressq,d(x) with arithmetically masked input modulo q, and Boolean
masked output in {0, 1}d. We can then perform the high-order polynomial comparison over Boolean shares,
using the technique from Section 8.2.2. We describe in Section 8.3.2 the high-order computation of the
Compress function.

A second approach is to avoid the computation of the Compress function, as already used in [BGR+21].
Namely instead of performing the comparison over {0, 1}d as in (8.11), one can equivalently compute the
set of candidates x̃i such that c̃ = Compressq,d(x̃i). One must then determine whether the re-encrypted
coefficient x is equal to one of the (public) candidates x̃i, using the α arithmetic shares of x modulo q.
Our contribution compared to [BGR+21] is to describe an alternative, faster technique when the number
of candidates x̃i is small, which is the case for d = du = 10 (see Section 8.3.2).

Finally, we argue that the best approach is hybrid: for the first ℓ1 = 768 coefficients of the ciphertext
with du = 10, we do not compute the Compress function and apply our faster technique with the small
number of candidates x̃i, and for the remaining ℓ2 = 256 coefficients with dv = 4, we high-order compute
the Compress function. We describe this hybrid approach in Section 8.3.2.

N k q η1 η2 (du, dv) δ

Kyber512 256 2 3329 3 2 (10,4) 2−139

Kyber768 256 3 3329 2 2 (10,4) 2−164

Kyber1024 256 4 3329 2 2 (11,5) 2−174

Table 8.10: Parameter sets for Kyber.

High-order computation of the Compress function

We provide the first description of the high-order computation of the Compress function of Kyber. Our
technique can be seen as a generalization of the first-order technique of [FBR+21], based on modulus

140

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

switching: it consists in first using more precision, so that the error induced by the modulus switching can
be completely eliminated, after a logical shift.

The Compress function is defined as:

Compressq,d(x) =
⌊

2d · x
q

⌉
mod 2d

We are given as input an arithmetic sharing of x = x1 + . . .+xα mod q and we want to compute a Boolean
sharing of y = Compressq,d(x) = y1 ⊕ · · · ⊕ yα ∈ {0, 1}d. We stress that in [BGR+21], the authors only
described the high-order masking of the Compress function with 1-bit output, which corresponds to the
IND-CPA decryption function of Kyber. Here we high-order mask Compress for any number of output bits
d (for example d = du = 10 or d = dv = 4 in Kyber768). For the special case d = 1 there are more efficient
techniques, see for example [BGR+21] and Section 8.1.

We proceed as follows. We first perform a modulus switching of the input coefficients xi but with more
precision; that is we work modulo 2d+α for some parameter α > 0 and compute:

z1 =
⌊
x1 · 2d+α

q

⌉
+ 2α−1 mod 2d+α, zi =

⌊
xi · 2d+α

q

⌉
mod 2d+α for 2 ≤ i ≤ α

The rounding can be computed by writing:⌊
xi · 2d+α

q

⌉
=
⌊
xi · 2d+α

q
+ 1

2

⌋
=
⌊
xi · 2d+α+1 + q

2q

⌋

which is the quotient of the Euclidean division of xi · 2d+α+1 + q by 2q.
We then perform an arithmetic to Boolean conversion of the arithmetic shares z1, . . . , zα, followed by

a logical shift by α bits. This can be done with complexity O((d + α) · α2) using [CGV14]. By definition
we obtain:

y1 ⊕ · · · ⊕ yα =
⌊(

α∑
i=1

zi

)
/2α

⌋
mod 2d (8.12)

and eventually we output the Boolean shares y1, . . . , yα. We show below that we indeed have Compressq,d(x) =
y1 ⊕ · · · ⊕ yα as required, under the condition 2α > q · α. This condition determines the number α of bits
of precision as a function of the number of shares α. We provide the pseudocode in Algorithm 64 below.

Algorithm 64 HOCompress
Input: x1, . . . , xα ∈ Zq

Output: y1, . . . , yα ∈ {0, 1}d such that y1 ⊕ · · · ⊕ yα = Compressq,d(x1 + · · ·+ xα)
1: α← ⌈log2 (q · α)⌉
2: z1 ← ⌊(x1 · 2d+α+1 + q)/(2q)⌋+ 2α−1 mod 2d+α

3: for i = 2 to α do zi ← ⌊(xi · 2d+α+1 + q)/(2q)⌋ mod 2d+α

4: (c1, . . . , cα)← ArithmeticToBoolean(d+ α, (z1, . . . , zα))
5: for i = 1 to α do yi ← ci ≫ α
6: return y1, . . . , yα

Theorem 15 (Soundness). Given x1, . . . , xα ∈ Zq as input for odd q ∈ N, the algorithm HOCompress
computes y1, . . . , yα ∈ {0, 1}d such that y1 ⊕ · · · ⊕ yα = f(x1 + · · ·+ xα) where f(x) = ⌊x · 2d/q⌉ mod 2d.

Proof. Given x ∈ Zq, we have:

f(x) =
⌊
x · 2d

q

⌉
mod 2d =

⌊
x · 2d

q
+ 1

2

⌋
mod 2d =

⌊
x · 2d+1 + q

2q

⌋
mod 2d

141

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

We write the Euclidean division x ·2d+1 + q = y · (2q) + δ with y, δ ∈ Z and 0 ≤ δ < 2q. Therefore f(x) = y
mod 2d. Moreover we must have δ ̸= 0, since otherwise x = 0 mod q, which gives y = 1/2, a contradiction.
Therefore 0 < δ < 2q.

We have for some |e| ≤ α/2:
α∑

i=1
zi =

α∑
i=1

⌊
xi · 2d+α

q

⌉
+ 2α−1 =

α∑
i=1

xi · 2d+α

q
+ 2α−1 + e mod 2d+α

= x · 2d+α

q
+ 2α−1 + e = 2α · x · 2

d+1 + q

2q + e mod 2d+α

= 2α ·
(
y + δ

2q

)
+ e = 2α · y + 2α

(
δ

2q + e · 2−α
)

mod 2d+α

From (8.12), if we ensure that 0 ≤ δ/(2q) + e · 2−α < 1, then we must have y = f(x) = y1 ⊕ · · · ⊕ yα

as required. Since 0 < δ < 2q, it is sufficient to ensure that e · 2−α < 1/(2q), and therefore a sufficient
condition is α · 2−α < 1/q. Therefore it is sufficient to ensure 2α > q · α.

Complexity of HOCompress. The number of operations of the HOCompress algorithm above is:

CHOComp(α, d, q) = 5α+ 1 + CAB(d+ α, α)

We refer to [CGV14] for the operation count of arithmetic to Boolean conversion, with CAB(d + α, α) =
O((d + α) · α2). With d < log2 q and α = ⌈log2(q · α)⌉, the total complexity of HOCompress is therefore
O(α2 · (log q + logα)).

Security. The following theorem shows that the HOCompress achieves the (α−1)-NI property. The proof
follows from the (α − 1)-NI property of the ArithmeticToBoolean algorithm, and the fact that the perfect
simulation of zi requires the knowledge of the input xi only.

Theorem 16 ((α− 1)-NI security). The HOCompress algorithm achieves the (α− 1)-NI property.

Polynomial comparison with Compress. Recall that we must perform the comparison c̃ ?= Compressq,d(x),
where for simplicity we consider a single coefficient c̃. By applying the HOCompress algorithm, we obtain
α Boolean shares such that c = c1⊕ · · ·⊕ cα. We must therefore zero-test the value (c1⊕ c̃)⊕ c2⊕ · · ·⊕ cα,
which can be done using the ZeroTestBool algorithm from Section 8.2.1.

For multiple coefficients, we apply the HOCompress algorithm separately on each coefficient x(j) of the re-
encrypted uncompressed ciphertext. We obtain the compressed ciphertext c masked with α Boolean shares.
As previously, we xor each coefficient of the input ciphertext c̃ with the first share of the corresponding
coefficient in c, and we apply the PolyZeroTestBool algorithm from Section 8.2.2 to perform the comparison.

Polynomial comparison for Kyber without Compress

In this section we describe an alternative technique for ciphertext comparison, already used in [BGR+21],
that performs the comparison on uncompressed ciphertexts, and avoids the high-order computation of
the Compressq,d(x) function. As previously, we first consider for simplicity a single polynomial coefficient.
Given a compressed input ciphertext c̃ and an uncompressed re-encrypted ciphertext x, we must check
that c̃ = Compressq,d(x), where x is arithmetically masked with α shares modulo q. For this we use the
equivalence:

c̃ = Compressq,d(x)⇐⇒ x ∈ Compress−1
q,d(c̃)

Given c̃ as input, we must therefore compute the list of candidates Compress−1
q,d(c̃), and check whether

x belongs to the set of candidates. Given 0 ≤ a < b < q, we denote by [a, b]q the discrete interval

142

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

{a, a+ 1, . . . , b}; similarly given 0 ≤ b < a < q, we denote by [a, b]q the discrete interval {a, a+ 1, . . . , q −
1, 0, 1, . . . , b}. In the following, we show that we always have Compress−1

q,d(c̃) = [a, b]q for some a, b.
We can then distinguish two cases. If the number of candidates is small, we can perform individual

comparisons. More precisely, letting {x̃1, . . . , x̃m} = Compress−1
q,d(c̃) be the list of candidates, we must test

that x = x̃i for some 1 ≤ i ≤ m. Recall that x is arithmetically masked with α shares modulo q. Therefore
we can high-order compute z = ∏m

i=1(x− x̃i) mod q and then apply a high-order zero-test of z modulo q.
Alternatively, for a large number of candidates, the authors of [BGR+21] describe a high-order algorithm
checking that x ∈ [a, b]q by performing two high-order comparisons. We describe the two methods in more
details in the next subsections.

Computing the set of candidates

Given a compressed coefficient c̃, we must compute the list of candidates Compress−1
q,d(c̃). From [BDK+18],

we know that for any x ∈ Zq such that c̃ = Compressq,d(x), letting the value y = Decompressq,d(c̃) we must
have:

|y − x mod± q| ≤ Bq,d :=
⌊

q

2d+1

⌉
Therefore the number of candidates is upper-bounded by 2Bq,d + 1. The following lemma shows that
there are always at least 2Bq,d− 1 candidates around the decompressed value y, with possibly 2 additional
candidates to test with Compress.
Lemma 7. Assume d < ⌈log2 q⌉. Let c̃ ∈ Z2d and let y = Decompressq,d(c̃). We have [y − Bq,d + 1, y +
Bq,d − 1]q ⊂ Compress−1

q,d(c̃) ⊂ [y −Bq,d, y +Bq,d]q.

Proof. We first show that if x ∈ Compress−1
q,d(c̃), then we must have |x − y mod± q| ≤ Bq,d, where y =

Decompressq,d(c̃). This will imply Compress−1
q,d(c̃) ⊂ [y − Bq, . . . , y + Bq]q. Namely in this case we have

c̃ = Compressq,d(x), and therefore we have

y = Decompressq,d(Compressq,d(x)) =
⌊
q

2d
·
(⌊

2d

q
· x
⌉

mod 2d

)⌉

We write
⌊
(2d/q) · x

⌉
= (2d/q) · x+ ε for some |ε| ≤ 1/2. We obtain:

∣∣x− y mod± q
∣∣ =

∣∣∣∣∣x−
⌊
q

2d
·
(⌊

2d

q
· x
⌉

mod 2d

)⌉
mod± q

∣∣∣∣∣
=
∣∣∣∣∣x−

⌊
q

2d
·
(

2d

q
· x+ ε mod 2d

)⌉
mod± q

∣∣∣∣∣
=
∣∣∣∣x− ⌊x+ q

2d
· ε mod q

⌉
mod± q

∣∣∣∣ =
∣∣∣∣⌊ q2d

· ε
⌉∣∣∣∣ ≤ Bq,d

Conversely, we show that if |x− y mod± q| ≤ Bq,d− 1, then we must have x ∈ Compress−1
q,d(c̃). This will

imply [y − Bq + 1, . . . , y + Bq − 1]q ⊂ Compress−1
q,d(c̃). Namely we write again

⌊
(2d/q) · x

⌉
= (2d/q) · x+ ε

for some |ε| ≤ 1/2, and we can write:∣∣∣c̃− Compressq,d(x) mod± 2d
∣∣∣ =

∣∣∣∣∣c̃−
(⌊

2d

q
· x
⌉

mod 2d

)
mod± 2d

∣∣∣∣∣
=
∣∣∣∣∣c̃−

(
2d

q
· x+ ε

)
mod± 2d

∣∣∣∣∣
= 2d

q
·
∣∣∣∣ q2d
· c̃− x− q

2d
· ε mod± q

∣∣∣∣

143

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

We write y =
⌊
(q/2d) · c̃

⌉
= (q/2d) · c̃+ ε′ for some |ε′| ≤ 1/2, which gives:

∣∣∣c̃− Compressq,d(x) mod± 2d
∣∣∣ = 2d

q
·
∣∣∣∣y − ε′ − x− q

2d
· ε mod± q

∣∣∣∣
≤ 2d

q
·
(
Bq,d − 1 + q

2d+1 + 1
2

)
< 1

For the last inequality we use Bq,d < q/(2d+1) + 1/2 for odd q. This implies c̃ = Compressq,d(x), which
proves the lemma.

Generating the list of candidates. From the above lemma, to generate the list of candidates Compress−1
q,d(c̃),

it suffices to consider the set [a, b]q with a = y−Bq,d and b = y+Bq,d and to test whether the two elements
at the border belong to the set, that is we check whether Compressq,d(a) = c and Compressq,d(b) = c. We
provide the pseudocode in Algorithm 65 below.

Algorithm 65 CompressInv
Input: c̃ ∈ Z2k

Output: a, b ∈ Z such that Compress−1
q,d(c̃) = [a, b]q.

1: Bq,d ←
⌊

q
2d+1

⌉
2: y ← Decompressq,d(c̃)
3: a← y −Bq,d mod q, b← y +Bq,d mod q
4: if Compressq,d(a) ̸= c̃ then a← a+ 1 mod q
5: if Compressq,d(b) ̸= c̃ then b← b− 1 mod q
6: return a, b

Number of candidates. We provide in Table 8.11 the value of the upper-bound 2Bq,d + 1 on the
number of candidates, and the maximum number of candidates Nmax, for q = 3329. We see that individual
comparisons are feasible only for d = 10, 11, while we must use range comparison for d = 4, 5. We describe
the two techniques in the next section.

d = 4 d = 5 d = 10 d = 11
2 ·Bq,d + 1 209 105 5 3
Nmax 209 105 4 2

Table 8.11: Upper-bound on the number of candidates, for q = 3329.

Individual comparison

Letting {x̃1, . . . , x̃m} = Compress−1
q,d(c̃) be the list of candidates, we must test whether x = x̃i for some

1 ≤ i ≤ m. For this, given an arithmetically masked x with α shares with x = x1 + · · · + xα mod q, we
high-order compute the value

z =
m∏

i=1
(x− x̃i) mod q (8.13)

and we have that z = 0 mod q if and only if x = x̃i for some 1 ≤ i ≤ m. We provide in Algorithm 66
the pseudocode description of the SecMultList algorithm, computing the α shares of z in (8.13), from the
input shares xi of x. For m candidates, the number of operations for high-order computing z is therefore
at most:

CSecMultList(d, α) = (2 ·Bq,d + 1) · CSecMult(α)

144

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

As a second step, one can apply a high-order zero-test of z modulo q, as the ZeroTestMult algorithm from
Section 8.2.1.

Algorithm 66 SecMultList
Input: x1, . . . , xα ∈ Zq s.t. ∑i xi mod q = x, a prime q, an index m and a1, . . . am ∈ Zq

Output: z1, . . . , zα ∈ Zq such that ∑α
i=1 zi = ∏m

i=1(x− ai) mod q
1: (z1, z2, . . . , zα)← (1, 0, . . . 0)
2: for i = 1 to m do
3: (z1, z2, . . . , zα)← SecMult((z1, . . . , zα), (x1 − ai mod q, x2, . . . , xα))
4: end for
5: return (z1, . . . , zα)

Theorem 17. The SecMultList algorithm is (α− 1)-SNI.

Proof. The SecMultList algorithm is (α−1)-SNI since it is the composition of m iterations of the (α−1)-SNI
secMult algorithm. We stress that the first multiplication by 1 (initialized in line 1) is here on purpose
since it is equivalent to an (α − 1)-SNI masks refreshing, which ensures the independence between both
subsequent inputs.

The above applies for a single coefficient x. In reality we must compare ℓ coefficients, so for each
coefficient x(j) whose compressed value must be compared to the coefficient c̃j of the input ciphertext c̃, we
compute the corresponding list of candidates from c̃j , and then the corresponding arithmetically masked
z(j). Then a polynomial zero-test is applied to the set of arithmetically masked z(j)’s modulo q, for example
the PolyZeroTestMult algorithm from Section 8.2.2.

Polynomial comparison with range test [BGR+21]

When the number of candidates in Compress−1
q,d(c̃) is too large (which is the case for d = 4, 5), we cannot

perform individual comparisons as in the previous section. Instead, we must test whether x ∈ [a, b]q =
Compress−1

q,d(c̃) by performing two high-order comparisons with the interval bounds a and b. We recall the
technique from [BGR+21].

We let k = ⌊log2 q⌋, so that 2k < q < 2k+1. We write ∆ := q− 2k − 1. For Kyber with q = 3329, we get
k = 11 and ∆ = 1280. We assume that the bounds of the interval [a, b]q satisfy b− a mod± q ≤ ∆. Recall
that we have the upper-bound b− a mod± q ≤ 2 ·Bq,d + 1 = 2 ·

⌊
q/2d+1

⌉
+ 1. Therefore the assumption is

satisfied for Kyber for d ≥ 2.
Taking as input the shares xi of x = x1 + · · · + xn mod q, we want to output a α-shared bit u such

that u = 1 if x ∈ [a, b]q and u = 0 otherwise. For this we use:

x ∈ [a, b]q ⇐⇒ ((2k + x− a mod q) ≥ 2k) ∧ ((x− b− 1 mod q) ≥ 2k) (8.14)

Namely we have using ∆ = q − 2k − 1:

((2k + x− a mod q) ≥ 2k)⇐⇒ x ∈ [a, a+ ∆]q
((x− b− 1 mod q) ≥ 2k)⇐⇒ x ∈ [b−∆, b]q

Since by assumption b − a mod± q ≤ ∆, we have [a, b]q ⊂ [a, a + ∆]q and similarly [a, b]q ⊂ [b − ∆, b]q.
Moreover from 2∆ < q we must have [b, a+∆]q∩[b−∆, a]q = ∅. This implies [a, b]q = [a, a+∆]q∩[b−∆, b]q,
which proves (8.14).

145

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

From (8.14), we perform a high-order arithmetic modulo q to Boolean conversion of the two values
2k + x− a and x− b− 1 modulo q using [BBE+18], and we perform a high-order And (with SecAnd) of the
most significant bit of the two results (using the Boolean shares). The number of operations is therefore:

Crange(k, α) = 2 · CAB(k + 1, α) + CSecAnd(α)

Algorithm 67 RangeTestShares
Input: x1, . . . , xα ∈ Zq for prime q with∑i xi = x mod q, k = ⌊log2 q⌋, bounds a and b s.t. b−a mod± q ≤

q − 2k − 1.
Output: u1, . . . , uα ∈ Zq with ∑i ui = 1 mod q if x ∈ [a, b]q and ∑i ui = 0 mod q otherwise

1: (A1, . . . , Aα)← (x1 + 2k − a mod q, x2, . . . , xα)
2: (B1, . . . , Bα)← (x1 − b− 1 mod q, x2, . . . , xα)
3: (y1, . . . , yα)← ArithmeticToBoolean(q, (A1, . . . , Aα))
4: (z1, . . . , zα)← ArithmeticToBoolean(q, (B1, . . . , Bα))
5: (u1, . . . , uα)← SecAnd(1, (MSB(y1), . . . ,MSB(yα)), (MSB(z1), . . . ,MSB(zα)))
6: return (u1, . . . , uα)

Ciphertext comparison in Kyber: hybrid approach

We first compare in Table 8.12 the efficiency of the approaches with and without Compress. For the
coefficients with compression to du = 10 bits, without using the Compress function, since the number of
candidates is small, we can use either the RangeTestShares algorithm from [BGR+21], or our SecMultList
algorithm. We see in Table 8.12 that the latter is significantly faster. It is also faster than applying
the Compress function with our HOCompress algorithm. On the other hand, for the coefficients with
compression to dv = 4 bits, without using the Compress function, one must use the RangeTestShares
algorithm from [BGR+21]. But we see that our HOCompress is nevertheless faster. Namely, it uses only a
single arithmetic to Boolean conversion with a power-of-two modulus, whereas RangeTestShares uses two
arithmetic to Boolean conversions modulo q, which is more costly than with a power-of-two modulus.

In summary, from Table 8.12, we deduce that for d = du = 10, our SecMultList approach without
Compress is faster, while for d = dv = 4, our HOCompress algorithm is faster. Therefore, to perform the
ciphertext comparison in Kyber, we use a hybrid approach, applying the Compress function only for the
last ℓ2 = 256 coefficients of the ciphertext, for which d = dv = 4.

Security order t
1 2 3 4 5 6 7 8 9

du = 10
RangeTestShares [BGR+21] 707 2 318 4 314 7 577 11 225 15 620 20 400 26 809 33 603
SecMultList 45 120 230 375 555 770 1 020 1 305 1 625
HOCompress 131 868 1 579 3 181 4 898 6 764 8 809 11 823 15 611

dv = 4 RangeTestShares [BGR+21] 707 2 318 4 314 7 577 11 225 15 620 20 400 26 809 33 603
HOCompress 101 658 1 195 2 431 3 740 5 162 6 721 9 015 12 041

Table 8.12: Comparison of the RangeTestShares, SecMultList and HOCompress algorithms, in number of
operations, for q = 3329 and d = du = 10 or d = dv = 4.

Procedure for ciphertext comparison. Recall that for masking the IND-CCA decryption of Kyber,
we must perform a comparison between the unmasked input ciphertext c̃, and the masked re-encrypted
ciphertext c. Moreover, with the Kyber768 parameters, a ciphertext consists of 4 polynomials with 256
coefficients each. The coefficients of the first 3 polynomials are compressed with du = 10 bits, while

146

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

the coefficients of the last polynomial are compressed with dv = 4 bits. Starting from the re-encrypted
uncompressed ciphertext cu which is masked modulo q, and given the input ciphertext c̃, we proceed as
follows:

1. For each of the first ℓ1 = 768 coefficients of cu, with compression parameter du = 10, we use the
individual comparison technique from Section 8.3.2 (Algorithm SecMultList). We obtain a set of
values z(j) arithmetically masked modulo q, that must all be equal to 0, for 1 ≤ j ≤ ℓ1.

2. For each of the last ℓ2 = 256 coefficients of cu, we apply the HOCompress algorithm with dv = 4 bits.
We obtain a set of ℓ2 coefficients c(j) for 1 ≤ j ≤ ℓ2, which are Boolean masked with α shares.

3. We xor each of the last ℓ2 coefficients of the input ciphertext c̃ to the first Boolean share of each of
the corresponding ℓ2 coefficients c(j). This gives a vector of ℓ2 coefficients x(j) for 1 ≤ j ≤ ℓ, which
are Boolean masked with α shares, and that must all be equal to 0.

4. We apply the PolyZeroTestBool algorithm (Alg. 56) to the set of ℓ2 coefficients x(j), but without
recombining the shares at the end of the ZeroTestBoolLog algorithm. That is, we obtain Boolean
shares bi for 1 ≤ i ≤ α, with b′ = b1⊕· · ·⊕ bα and b′ = 1 if the ℓ2 coefficients x(j) are zero, and b′ = 0
otherwise.

5. We take the complement of b′ by taking the complement of b1, and convert the result from Boolean
to arithmetic masking modulo q. We obtain an additional coefficient z(ℓ1+1) arithmetically masked
modulo q, and that must be equal to 0.

6. Finally, we perform a zero-test of the ℓ1 + 1 coefficients z(i) for 1 ≤ i ≤ ℓ1 + 1, using the PolyZe-
roTestMult algorithm. We obtain a bit b = 1 if the two ciphertexts are equal, and b = 0 otherwise, as
required.

The number of operations is then:

C = ℓ1 · CSecMultList(du, α) + ℓ2 · CHOComp(dv, α) + ℓ2 + CPolyZeroTestBool(13, ℓ2, α)+
CBA(1, α) + CpolyZT(q, ℓ1 + 1, α)

Operation count and concrete running time

We provide in Table 8.13 a comparison of the operation count for the ciphertext comparison in Kyber, first
using the approach from [BGR+21] without Compress, and the PolyZeroTestMult methods. We see that
the hybrid approach is significantly faster, especially for high security orders. We have also performed a
C implementation that confirms these results, see Table 8.14 below. We also provide in Table 8.15 the
number of 32-bit random values.

Polynomial comparison Security order t
in Kyber 1 2 3 4 5 6 7 8 9
Without Compress [BGR+21] 786 2 574 4 792 8 413 12 465 17 346 22 657 29 770 37 313
Hybrid, with PolyZeroTestMult 121 350 603 1 065 1 575 2 144 2 778 3 629 4 697

Table 8.13: Operation count for the three proposed methods to perform ciphertext comparison (with
Compress and without Compress using PolyZeroTestMult), in thousands of operations.

147

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Polynomial comparison Security order t
in Kyber 1 2 3 4 5 6 7 8
Without Compress [BGR+21] 1 395 3 722 6 230 9 619 14 517 19 206 24 783 33 675
Hybrid, with PolyZeroTestMult 185 410 562 966 1 731 2 046 2 829 3 842

Table 8.14: Running time in thousands of cycles for a C implementation on Intel(R) Core(TM) i7-1065G7,
for the three methods considered in Table 8.13.

Polynomial comparison in Kyber Security order t
1 2 3 4 5 6 7 8

Without Compress [BGR+21] 79 309 618 1 146 1 755 2 512 3 350 4 476
Hybrid, with PolyZeroTestMult 12 31 50 94 145 202 264 354

Table 8.15: Number of calls to the rand() function (outputting a 32-bit value), in thousands of calls,
rounded down to the closest thousand, for the three methods considered in Table 8.13.

8.3.3 High-order masking of Kyber

We describe the high-order masking of the Kyber.Decaps algorithm recalled in Algorithm 68, using the
techniques from the previous sections.

Algorithm 68 Kyber.Decaps(sk = (s⃗, z, t⃗, ρ), c =
(u⃗, v))

1: m′ := Kyber.CPA.Dec(s⃗, c)
2: (K̂ ′, r′) := G(H(pk),m′)
3: (u⃗′, v′) := Kyber.CPA.Enc((⃗t, ρ),m′; r′)
4: if (u⃗′, v′) = (u⃗, v) then

return K := H(K̂ ′, H(c))
5: else return K := H(z,H(c))

Algorithm 69 Kyber.CPA.Enc(pk,m)

1: r $←− {0, 1}256

2: t := Decompressq,dt
(t)

3: A← Rk×k
q := Sam(ρ)

4: r, e1, e2 ← χk
η1 × χ

k
η2 × χη2 := Sam(r)

5: u⃗ := Compressq,du
(AT r + e1)

6: v := Compressq,dv
(tT r + e2 + ⌊q/2⌉ ·m)

7: return c := (u⃗, v)

Keccak. The Kyber routines use hash functions based on keccak. Keccak algorithm performs linear
boolean operations expect the logical and. Therefore, to obtain a high-order secure implementation of
Keccak we only have to implement a secAnd algorithm as the one described in Algorithm 24 page 79.

1. We consider Line 1 of Algorithm 68, with the IND-CPA decryption as the first step. We assume
that the secret key s⃗ ∈ Rk is initially masked with α shares, with s⃗ = s⃗1 + · · · + s⃗α mod q, where
s⃗i ∈ (Rq)k for all 1 ≤ i ≤ α. Therefore, at Line 3 of the Kyber.CPA.Dec algorithm, we obtain a
value v− s⃗T u⃗ that is arithmetically α-shared modulo q. We must therefore compute the Compressq,1
function on this value, which is the same as the threshold function th from (8.10). For this we use the
modulus switching and table recomputation technique from Section 8.1.4, which outputs a Boolean
masked message m′ = m1 ⊕ · · · ⊕mα = th(v − s⃗T u⃗).

2. At Line 2 of Algorithm 68, starting from the Boolean masked m′, we use an α-shared Boolean
implementation of the hash function G, and obtain as output the Boolean α-shared values K̂ ′ and r′.

3. At Line 3 of Algorithm 68, we start with Line 4 of Algorithm 69 which is the masked binomial
sampling. Starting from the Boolean α-shared r′, we must obtain values r, e1 and e2 which are
arithmetically α-shared modulo q. For this we use the α-shared binomial sampling from Section

148

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

8.1.5, based on Boolean to arithmetic modulo q conversion (based on table recomputation). We use
the random generation modulo q described in Section 5.2.4.

4. We proceed with lines 5 and 6 of Algorithm 69. We obtain the values AT ·r+e1 and tT ·r+e2+⌊q/2⌉·m
arithmetically α-shared modulo q. In particular, the α-shared value ⌊q/2⌉ ·m is obtained using the
table-based Boolean to arithmetic modulo q conversion from Section 8.1.3.

5. At Line 6 of Algorithm 69, the α-shared value tT · r + e2 + ⌊q/2⌉ ·m is high-order compressed into
v′ using the HOCompress algorithm from Section 8.3.2. The value v′ is therefore Boolean α-shared in
{0, 1}dv . On the other hand, the vector u⃗′ at Line 5 is left uncompressed.

6. For the ciphertext comparison at Line 4 of Algorithm 68, we use the hybrid technique from Section
8.3.2 with the arithmetically masked modulo q uncompressed vector u⃗′, and the Boolean masked
compressed value v′. We obtain a bit b in the clear.

7. Finally, if b = 1, we use the Boolean α-shared K̂ ′ to obtain a Boolean α-shared session key K, using
an α-shared implementation of H. Similarly, if b = 0, we use the Boolean α-shared secret z to obtain
the Boolean α-shared session key K.

We describe in Section 8.5 the implementation results of the fully masked Kyber.Decaps.

8.4 Fully masked implementation of Saber
8.4.1 The Saber Key Encapsulation Mechanism (KEM)

Saber [BMD+21] is based on the hardness on the module learning-with-rounding (M-LWR) problem. The
difference with Kyber is that instead of explicitly adding error terms e, e1, e2 from a “small” distribution,
the errors are deterministically added by applying a rounding function mapping Zq to Zp with p < q. For
Saber, both p and q are powers of two; therefore the rounding function is a shift extracting the log2(p)
most significant bits of its input.

The Saber submission provides three parameters sets LightSaber, Saber and FireSaber with claimed
security level equivalent to AES-128, AES-192 and AES-256 respectively; see Table 8.16. We recall the
pseudocode below. The constants h1, h2 and h⃗ are needed to center the errors introduced by rounding
around 0. We write q = 2ϵq and p = 2ϵp .

Algorithm 70 Saber.CPA.KeyGen()

1: ρ, σ $←− {0, 1}256

2: A← Rk×k
q := Sam(ρ)

3: s← χk
µ := Sam(σ)

4: t := (AT s + h mod q)≫ (ϵq − ϵp) ∈ Rk
p

5: return pk := (t, ρ), sk := s

N k q p T µ

LightSaber 256 2 213 210 23 5
Saber 256 3 213 210 24 4
FireSaber 256 4 213 210 26 3

Table 8.16: Parameter set for Saber.

Algorithm 71 Saber.CPA.Enc(pk,m)

1: r $←− {0, 1}256

2: A← Rk×k
q := Sam(ρ)

3: r← χk
µ := Sam(r)

4: u⃗ := (Ar + h mod q)≫ (ϵq − ϵp) ∈ Rk
p

5: v′ := tT (r mod p) ∈ Rp

6: cm := (v′+h1−2ϵp−1m mod p)≫ (ϵp−ϵT) ∈ RT

7: return c := (u⃗, cm)

Algorithm 72 Saber.CPA.Dec(sk, c = (u⃗, cm))
1: v := u⃗T (s⃗ mod p) ∈ Rp

2: m := (v−2ϵp−ϵT cm +h2 mod p)≫ (ϵp−1) ∈ R2

3: return m

149

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

The Saber CCA-secure key encapsulation mechanism is similar to that of Kyber. We recall the pseu-
docode below.

Algorithm 73 Saber.Encaps(pk)

1: m $←− {0, 1}256

2: (K̂, r) := G(H(pk),m)
3: c := Saber.CPA.Enc(pk,m; r)
4: K = H(K̂, c)
5: return c,K

Alg. 74 Saber.Decaps(sk = (s⃗, z, t⃗, ρ), c)

1: m′ := Saber.CPA.Dec(s⃗, c)
2: (K̂ ′, r′) := G(H(pk),m′)
3: c′ :=Saber.CPA.Enc((⃗t, ρ),m′; r′)
4: if c = c′ then return K := H(K̂ ′, c)
5: else return K := H(z, c)

8.4.2 High-order masking of Saber

The high-order masking of Saber is quite similar to that of Kyber. The main difference is that we work with
power-of-two moduli. We describe the high-order masking of the Saber.Decaps algorithm recalled above
(Algorithm 74), using the techniques from the previous sections.

1. We consider Line 1 of Algorithm 74. As previously, we assume that the secret key s⃗ ∈ Rk
q is initially

arithmetically masked with α shares. By modular reduction, we obtain α shares in Rk
p. Therefore, at

Line 1 of the Saber.CPA.Dec algorithm, we obtain a value v that is arithmetically α-shared modulo p.
At Line 2, we obtain α Boolean shares of the message m by arithmetic to Boolean conversion modulo
p = 2ϵp using [CGV14], and taking the MSB of each share.

2. At Line 2 of Algorithm 74, starting from the Boolean masked m′, we use an α-shared Boolean
implementation of the hash function G, and obtain as output the Boolean α-shared values K̂ ′ and r′.

3. At Line 3 of Algorithm 74, we start with Line 3 of Algorithm 71 which is the masked binomial
sampling. Starting from the Boolean α-shared r′, we must obtain a value r which is arithmetically
α-shared modulo q. For this we use the α-masked binomial sampling from Section 8.1.5, based on
Boolean to arithmetic modulo q conversion (based on table recomputation).

4. We proceed with Line 4 of Algorithm 71. The vector Ar+h mod q is α-shared modulo q. We convert
from arithmetic to Boolean masking using [CGV14], and then perform a right shift of all Boolean
shares by ϵq − ϵp. The vector u⃗′ as output of Line 4 of Algorithm 71 is therefore Boolean masked
with α shares.

5. At Line 5, the value r⃗ is arithmetically masked modulo p by modular reduction modulo p of the
shares modulo q. The value v′ is therefore arithmetically masked modulo p. This enables to compute
the value v′ +h1−2ϵp−1m mod p at Line 6 with α shares modulo p. As previously the shift by ϵp− ϵT
bits is computed via arithmetic to Boolean conversion. At Line 3 of Algorithm 74, the vector u⃗′ and
the value c′

m of the ciphertext c′ = (u⃗′, c′
m) are therefore both in Boolean masked form.

6. For the ciphertext comparison at Line 4, we use the same technique as in Section 8.3.2 for the
ciphertext comparison of Kyber, for the second part of the ciphertext with the Compress function
(lines 3 and 4). Eventually we recombine the shares and we obtain a bit b in the clear, with b = 1 if
the two ciphertexts match.

7. Finally, as in Kyber, if b = 1, we use the Boolean α-shared K̂ ′ to obtain a Boolean α-shared session
key K, using an α-shared implementation of H. Similarly, if b = 0, we use the Boolean α-shared
secret z to obtain the Boolean α-shared session key K.

150

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

8.5 Practical implementation
We have implemented in C a high-order version of the Kyber.Decaps and Saber.Decaps algorithms, following
the description of sections 8.3.3 and 8.4.2 respectively. For both schemes, we have targeted the parameter
set corresponding to NIST security category 3 (parameters Kyber768 and Saber, see tables 8.10 and 8.16).
We have run our implementation on a laptop and an embedded component. We provide the source code
of the laptop implementation at:

https://github.com/fragerar/HOTableConv/tree/main/Masked_KEMs

For the embedded component, we have used a 100 MHz ARM Cortex-M3 architecture with 48k of
RAM, which also includes a hardware accelerator for secure 32-bit random generation. Such component is
used in real-life products like bank cards, passports, secure elements, etc.4 The embedded code is almost
the same as for the laptop implementation, except for the random generation which uses the hardware
accelerator. We have also performed some RAM optimization in order to reduce the number of temporary
variables without changing the number of operations.

We see that for both Kyber and Saber the performance gap between the unmasked and the order 1
versions is fairly large. This is because we have used generic gadgets only, with no optimization at order
1. In practice, for first-order security, a significantly lower penalty factor could be obtained via some
optimizations. In particular, all techniques based on table recomputation are much more efficient at order
1, since in that case the table can be randomized once and read multiple times.

8.5.1 Kyber

Our high-order implementation of Kyber.Decaps follows the description from Section 8.3.3. To generate
random integers modulo q, we use the technique described in Algorithm 23 (see Section 5.2.4), starting
from a 32-bit random number generator. The timings are summarized in Table 8.17. For the embedded
implementation, we can reach at most a security order of 3, due to RAM limitation.

Security order t
0 1 2 3 4 5 6 7

Intel i7 133 1 164 2 225 4 723 6 613 11 177 14 174 19 806
ARM Cortex-M3 3 173 21 492 39 539 69 348 - - - -

Table 8.17: Kyber.Decaps cycles counts on Intel(R) Core(TM) i7-1065G7 and ARM Cortex-M3, in thou-
sands of cycles.

8.5.2 Saber

Our high-order implementation of Saber.Decaps follows the description from Section 8.4.2. As for Kyber,
the embedded implementation can reach at most a security order 3, due to RAM limitation. The timings
are summarized in Table 8.18.

Security order t
0 1 2 3 4 5 6 7

Intel i7 100 352 933 1 585 2 828 4 208 5 621 7 251
ARM Cortex-M3 5 682 17 805 42 662 67 389 - - - -

Table 8.18: Saber.Decaps cycles counts on Intel(R) Core(TM) i7-1065G7 and ARM Cortex-M3, in thousands
of cycles.

4Due to intellectual properties reasons, the component name or detailed description cannot be given.

151

https://github.com/fragerar/HOTableConv/tree/main/Masked_KEMs

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

152

Bibliography

References
[AAB+19] Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio de la Piedra, Thomas Pöp-

pelmann, Peter Schwabe, and Douglas Stebila. NewHope, 2019. Available at https://csrc.
nist . gov / Projects / Post - Quantum - Cryptography / Round - 2 - Submissions (cited on
page 8).

[ABD+21] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Kyber
(version 3.02) – submission to round 3 of the NIST post-quantum project. Specification
document (update from August 2021). 2021-08-04. 2021 (cited on pages 8, 123, 124, 138).

[AHH+19] Martin R Albrecht, Christian Hanser, Andrea Hoeller, Thomas Pöppelmann, Fernando Vir-
dia, and Andreas Wallner. Implementing RLWE-based Schemes Using an RSA Co-Processor.
IACR Transactions on Cryptographic Hardware and Embedded Systems:169–208, 2019 (cited
on pages 5, 19, 21, 23, 24, 34, 36, 39, 41, 54, 59, 67).

[ANS] ANSSI. Technical position paper - ANSSI views on the Post-Quantum Cryptography tran-
sition. en. Available at https://www.ssi.gouv.fr/publication/anssi-views-on-the-
post-quantum\-cryptography-transition/ (cited on page 1).

[ANS22] ANSSI. ANSSI views on the post-quantum cryptography transition, 2022. url: https://
www.ssi.gouv.fr/en/publication/anssi-views-on-the-post-quantum-cryptography-
transition/#note17 (cited on pages 4, 19).

[Bar86] Paul Barrett. Implementing The Rivest Shamir And Adleman Public Key Encryption On A
Standard Digital Signal Processor. CRYPTO’ 86. CRYPTO 1986. Lecture Notes in Com-
puter Science, vol 263. Springer, Berlin, Heidelberg.:1156–1158, 1986 (cited on pages 18, 42,
61, 62).

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and type-directed higher-
order masking. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, October 24-28, 2016, pages 116–129, 2016. Publicly
available at https://eprint.iacr.org/2015/506.pdf. (cited on pages 9, 78–80).

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin Grégoire,
Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP lattice-based signature scheme at any
order. In Advances in Cryptology - EUROCRYPT 2018 - Proceedings, Part II, pages 354–
384, 2018 (cited on pages 110–112, 117, 124–126, 131, 146).

[BBK16] Nina Bindel, Johannes Buchmann, and Juliane Krämer. Lattice-based signature schemes
and their sensitivity to fault attacks. In 2016 Workshop on Fault Diagnosis and Tolerance
in Cryptography FDTC, pages 63–77. IEEE Computer Society, 2016 (cited on page 82).

153

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://www.ssi.gouv.fr/publication/anssi-views-on-the-post-quantum\ -cryptography-transition/
https://www.ssi.gouv.fr/publication/anssi-views-on-the-post-quantum\ -cryptography-transition/
https://www.ssi.gouv.fr/en/publication/anssi-views-on-the-post-quantum-cryptography-transition/#note17
https://www.ssi.gouv.fr/en/publication/anssi-views-on-the-post-quantum-cryptography-transition/#note17
https://www.ssi.gouv.fr/en/publication/anssi-views-on-the-post-quantum-cryptography-transition/#note17
https://eprint.iacr.org/2015/506.pdf

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

[BCG12] Alexandre Berzati, Cécile Canovas-Dumas, and Louis Goubin. A survey of differential fault
analysis against classical RSA implementations. In Marc Joye and Michael Tunstall, edi-
tors, Fault Analysis in Cryptography, Information Security and Cryptography. Springer, 2012
(cited on page 81).

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a leak-
age model. In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic Hardware
and Embedded Systems - CHES 2004, volume 3156, pages 16–29. Springer, 2004 (cited on
page 81).

[BCZ18] Luk Bettale, Jean-Sébastien Coron, and Rina Zeitoun. Improved high-order conversion from
boolean to arithmetic masking. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):22–45,
2018 (cited on pages 111, 117).

[BDH+19] Ciprian Băetu, F Betül Durak, Loïs Huguenin-Dumittan, Abdullah Talayhan, and Serge Vau-
denay. Misuse Attacks on Post-Quantum Cryptosystems. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 747–776. Springer, 2019
(cited on page 92).

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and Michiel Van
Beirendonck. Attacking and defending masked polynomial comparison for lattice-based cryp-
tography. Cryptology ePrint Archive, Report 2021/104, 2021. https://eprint.iacr.org/
2021/104 (cited on pages 128, 134–136).

[BDK+18] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS - kyber: A CCA-
secure module-lattice-based KEM. In 2018 IEEE European Symposium on Security and Pri-
vacy, EuroS&P 2018, London, United Kingdom, April 24-26, 2018, pages 353–367, 2018
(cited on pages 5, 33, 36, 41, 61, 67, 77, 89, 138–140, 143).

[BDK+20] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch, and
Ingrid Verbauwhede. A side-channel resistant implementation of SABER. IACR Cryptol.
ePrint Arch., 2020:733, 2020. url: https://eprint.iacr.org/2020/733 (cited on page 9).

[BDL+21] Shi Bai, Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS-Dilithium, 2021. Available at https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/Round-3-Submissions (cited on pages 41, 51, 61,
68, 87, 89).

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of checking
cryptographic protocols for faults. In Walter Fumy, editor, Advances in Cryptology - EURO-
CRYPT ’97, volume 1233, pages 37–51. Springer, 1997 (cited on pages 7, 75, 81).

[BDP+15] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. SHA-3 standard:
permutation-based hash and extendable-output functions. In 2015. url: https://keccak.
team/keccak_specs_summary.html (cited on page 3).

[BDV21] Michiel Van Beirendonck, Jan-Pieter D’Anvers, and Ingrid Verbauwhede. Analysis and com-
parison of table-based arithmetic to boolean masking. Cryptology ePrint Archive, Report
2021/067, 2021. https://eprint.iacr.org/2021/067 (cited on page 110).

[BGR+19] Aurélie Bauer, Henri Gilbert, Guénaël Renault, and Mélissa Rossi. Assessment of the Key-
Reuse Resilience of NewHope. In Cryptographers’ Track at the RSA Conference, pages 272–
292. Springer, 2019 (cited on pages 92, 95).

154

https://eprint.iacr.org/2021/104
https://eprint.iacr.org/2021/104
https://eprint.iacr.org/2020/733
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-3-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-3-Submissions
https://keccak.team/keccak_specs_summary.html
https://keccak.team/keccak_specs_summary.html
https://eprint.iacr.org/2021/067

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine van Vredendaal.
Masking Kyber: first- and higher-order implementations. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(4):173–214, 2021. https : / / eprint . iacr . org / 2021 / 483 (cited on
pages 9, 111, 124, 125, 139–143, 145–148).

[BMD+21] Andrea Basso, Jose Maria Bermudo Mera, Jan-Pieter D’Anvers, Angshuman Karmakar, Su-
joy Sinha Roy, Michiel Van Beirendonck, and Frederik Vercauteren. Saber: Mod-LWR based
KEM (round 3 submission), 2021. https://www.esat.kuleuven.be/cosic/pqcrypto/
saber/files/saberspecround3.pdf (cited on pages 5, 33, 41, 61, 70, 86, 87, 149).

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In
David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT
2012, pages 719–737, Berlin, Heidelberg. Springer Berlin Heidelberg, 2012. isbn: 978-3-642-
29011-4 (cited on page 3).

[BRvV22] Joppe W. Bos, Joost Renes, and Christine van Vredendaal. Post-Quantum cryptography with
contemporary Co-Processors: beyond kronecker, Schönhage-Strassen & nussbaumer, Boston,
MA, August 2022. url: https : / / www . usenix . org / conference / usenixsecurity22 /
presentation/bos (cited on pages 5, 21, 24, 39, 41, 54, 67).

[BS20] Nina Bindel and John M. Schanck. Decryption failure is more likely after success. In Post-
Quantum Cryptography - 11th International Conference, PQCrypto 2020, Paris, France,
April 15-17, 2020, Proceedings, pages 206–225, 2020 (cited on page 124).

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In Burton
S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO ’97, volume 1294, pages 513–525.
Springer, 1997 (cited on pages 7, 75, 81).

[BSI] BSI. Migration zu Post-Quanten-Kryptografie - Handlungsempfehlungen des BSI. de (cited
on page 1).

[BSI20a] BSI. Migration zu Post-Quanten-Kryptografie, 2020. url: https://www.bsi.bund.de/
SharedDocs/Downloads/DE/BSI/Krypto/Post- Quanten- Kryptografie.pdf (cited on
pages 4, 19).

[BSI20b] BSI. Status of quantum computer development, 2020. url: hhttps://www.bsi.bund.de/
SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_
Studie-V_1_2.html (cited on page 1).

[BSJ14] Ahmad Boorghany, Siavash Bayat Sarmadi, and Rasool Jalili. On constrained implemen-
tation of lattice-based cryptographic primitives and schemes on smart cards. Cryptology
ePrint Archive, Paper 2014/514, 2014. url: https://eprint.iacr.org/2014/514. https:
//eprint.iacr.org/2014/514 (cited on page 42).

[BZ10] Richard P. Brent and Paul Zimmermann. Modern computer arithmetic (version 0.5.1).
CoRR, abs/1004.4710, 2010. arXiv: 1004.4710. url: http://arxiv.org/abs/1004.4710
(cited on page 42).

[CCA+20] Sreeja Chowdhury, Ana Covic, Rabin Yu Acharya, Spencer Dupee, Fatemeh Ganji, and
Domenic Forte. Physical Security in the Post-quantum Era: A Survey on Side-channel Anal-
ysis, Random Number Generators, and Physically Unclonable Functions. arXiv preprint
arXiv:2005.04344, 2020. https://arxiv.org/abs/2005.04344 (cited on page 29).

[CDH+19] Cong Chen, Oussama Damba, Jeffrey Hoffstein, Andreas Hülsing, Joost Rijneveld, John
M. Schanck, Peter Schwabe, William Whyte, and Zhenfei Zhang. NTRU: algorithm speci-
fications and supporting documentation. Brown University and Onboard security company,
Wilmington USA, 2019 (cited on pages 41, 61, 71, 84, 85).

155

https://eprint.iacr.org/2021/483
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.usenix.org/conference/usenixsecurity22/presentation/bos
https://www.usenix.org/conference/usenixsecurity22/presentation/bos
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie.pdf
hhttps://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.html
hhttps://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.html
hhttps://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.html
https://eprint.iacr.org/2014/514
https://eprint.iacr.org/2014/514
https://eprint.iacr.org/2014/514
https://arxiv.org/abs/1004.4710
http://arxiv.org/abs/1004.4710
https://arxiv.org/abs/2005.04344

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

[CGT+15] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and Praveen Kumar Vadnala.
Conversion from arithmetic to boolean masking with logarithmic complexity. In Proceedings
of FSE 2015, pages 130–149, 2015 (cited on pages 110, 111, 131).

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala. Secure conver-
sion between boolean and arithmetic masking of any order. In Proceedings of CHES 2014,
pages 188–205, 2014 (cited on pages 110–112, 116, 117, 120, 124, 125, 131, 141, 142, 150).

[CHK+20] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor Seiler, Cheng-
Jhih Shih, and Bo-Yin Yang. Ntt multiplication for ntt-unfriendly rings. Cryptology ePrint
Archive, Report 2020/1397, 2020. https://eprint.iacr.org/2020/1397 (cited on page 24).

[CJR+99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound
approaches to counteract power-analysis attacks. In CRYPTO, 1999 (cited on page 110).

[Cla12] Christophe Clavier. Attacking block ciphers. In Marc Joye and Michael Tunstall, editors,
Fault Analysis in Cryptography, Information Security and Cryptography. Springer, 2012
(cited on page 81).

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. In Proceedings of EURO-
CRYPT 2014, pages 441–458, 2014 (cited on pages 111, 113, 114).

[Cor17] Jean-Sébastien Coron. High-order conversion from boolean to arithmetic masking. In Pro-
ceedings of CHES 2017, pages 93–114, 2017. Full version available at http://eprint.iacr.
org/2017/252 (cited on page 111).

[Cra27] Richard E. Crandall. Method and Apparatus for Public Key Exchange in a Cryptographic
System, US patent, 1992-10-27. https://patentimages.storage.googleapis.com/11/
9b/b8/75aa2cab01785d/US5159632.pdf (cited on page 43).

[CT03] Jean-Sébastien Coron and Alexei Tchulkine. A new algorithm for switching from arithmetic
to boolean masking. In Proceedings of CHES 2003, pages 89–97, 2003 (cited on pages 10,
110, 111).

[DDG+20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. Lwe with side informa-
tion: attacks and concrete security estimation. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology – CRYPTO 2020, pages 329–358, Cham. Springer Interna-
tional Publishing, 2020 (cited on pages 10, 83, 84).

[Deb12] Blandine Debraize. Efficient and provably secure methods for switching from arithmetic
to boolean masking. In Emmanuel Prouff and Patrick Schaumont, editors, Proceedings of
CHES 2012, volume 7428 of Lecture Notes in Computer Science, pages 107–121. Springer,
2012 (cited on page 110).

[DFA+20] Viet Ba Dang, Farnoud Farahmand, Michal Andrzejczak, Kamyar Mohajerani, Duc Tri
Nguyen, and Kris Gaj. Implementation and Benchmarking of Round 2 Candidates in the
NIST Post-Quantum Cryptography Standardization Process Using Hardware and Software/Hard-
ware Co-design Approaches. Cryptology ePrint Archive, Report 2020/795, 2020. https :
//eprint.iacr.org/2020/795 (cited on page 23).

[DFR18] Jintai Ding, Scott Fluhrer, and Saraswathy Rv. Complete Attack on RLWE Key Exchange
with Reused Keys, Without Signal Leakage. In Australasian Conference on Information
Security and Privacy, pages 467–486. Springer, 2018 (cited on page 92).

[DGJ+19] Jan-Pieter D’Anvers, Qian Guo, Thomas Johansson, Alexander Nilsson, Frederik Vercauteren,
and Ingrid Verbauwhede. Decryption failure attacks on IND-CCA secure lattice-based schemes.
In Public-Key Cryptography - PKC 2019 - 22nd IACR International Conference on Prac-
tice and Theory of Public-Key Cryptography, Beijing, China, April 14-17, 2019, Proceedings,
Part II, pages 565–598, 2019 (cited on page 124).

156

https://eprint.iacr.org/2020/1397
http://eprint.iacr.org/2017/252
http://eprint.iacr.org/2017/252
https://patentimages.storage.googleapis.com/11/9b/b8/75aa2cab01785d/US5159632.pdf
https://patentimages.storage.googleapis.com/11/9b/b8/75aa2cab01785d/US5159632.pdf
https://eprint.iacr.org/2020/795
https://eprint.iacr.org/2020/795

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption schemes from de-
cryption errors. In Advances in Cryptology - EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May
2-6, 2004, Proceedings, pages 342–360, 2004 (cited on page 112).

[DRV20] Jan-Pieter D’Anvers, Mélissa Rossi, and Fernando Virdia. (One) failure is not an option:
bootstrapping the search for failures in lattice-based encryption schemes. In Advances in
Cryptology - EUROCRYPT 2020 - Part III, pages 3–33, 2020 (cited on page 124).

[EFG+17] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi. Side-channel
attacks on BLISS lattice-based signatures: Exploiting branch tracing against strongswan and
electromagnetic emanations in microcontrollers. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 1857–1874, 2017 (cited on
page 29).

[EFG+21] Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira Takahashi,
Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Mitaka: a simpler, parallelizable, maskable
variant of falcon. Cryptology ePrint Archive, Report 2021/1486, 2021. https://ia.cr/2021/
1486 (cited on page 9).

[FBR+21] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick Karl, Thomas
Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked accelerators and instruction
set extensions for post-quantum cryptography. IACR Cryptol. ePrint Arch.:479, 2021. url:
https://eprint.iacr.org/2021/479 (cited on page 140).

[fCry18] Chinese Association for Cryptography Research. National cryptographic algorithm design
competition, 2018. Available at https://www.cacrnet.org.cn/site/content/838.html
(cited on page 1).

[fCry20a] Chinese Association for Cryptography Research. Lac won first prize of the national cryp-
tographic algorithm design competition, 2020. Available at https://m.cacrnet.org.cn/
site/content/854.html (cited on page 10).

[fCry20b] Chinese Association for Cryptography Research. Lac won first prize of the national cryp-
tographic algorithm design competition, 2020. Available at https://m.cacrnet.org.cn/
site/content/854.html (cited on page 92).

[Flu16] Scott Fluhrer. Cryptanalysis of ring-LWE based key exchange with key share reuse. Cryptol-
ogy ePrint Archive, Report 2016/085, 2016. Available at https://eprint.iacr.org/2016/
085 (cited on page 92).

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
pages 537–554, 1999 (cited on pages 91, 92, 138–140).

[GG03] Joachim Von Zur Gathen and Jurgen Gerhard. Modern Computer Algebra. Cambridge Uni-
versity Press, USA, 2nd edition, 2003. isbn: 0521826462 (cited on pages 17, 42).

[GJY19] Qian Guo, Thomas Johansson, and Jing Yang. A Novel CCA Attack using Decryption Errors
against LAC. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 82–111. Springer, 2019 (cited on page 92).

[GKS20] Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels. Compact dilithium
implementations on cortex-m3 and cortex-m4. Cryptology ePrint Archive, Report 2020/1278,
2020. https://eprint.iacr.org/2020/1278 (cited on page 24).

157

https://ia.cr/2021/1486
https://ia.cr/2021/1486
https://eprint.iacr.org/2021/479
https://www.cacrnet.org.cn/site/content/838.html
https://m.cacrnet.org.cn/site/content/854.html
https://m.cacrnet.org.cn/site/content/854.html
https://m.cacrnet.org.cn/site/content/854.html
https://m.cacrnet.org.cn/site/content/854.html
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2020/1278

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

[GM94] Torbjörn Granlund and Peter L. Montgomery. Division by invariant integers using multi-
plication. SIGPLAN Not., 29(6):61–72, June 1994. issn: 0362-1340. doi: 10.1145/773473.
178249. url: https://doi.org/10.1145/773473.178249 (cited on page 41).

[Gou01] Louis Goubin. A sound method for switching between boolean and arithmetic masking. In
Çetin Kaya Koç, David Naccache, and Christof Paar, editors, Cryptographic Hardware and
Embedded Systems - CHES 2001, Third International Workshop, Paris, France, May 14-16,
2001, Proceedings, volume 2162 of Lecture Notes in Computer Science, pages 3–15. Springer,
2001 (cited on pages 110, 111, 117, 120, 125).

[Har07] David Harvey. Faster polynomial multiplication via multipoint kronecker substitution, 2007.
arXiv: 0712.4046 [cs.SC] (cited on page 24).

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Theory of Cryptography - 15th International Conference, TCC
2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I, pages 341–371, 2017
(cited on pages 122, 138, 139).

[HHP+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas Scham-
berger, Silvan Streit, Emanuele Strieder, and Christine van Vredendaal. Chosen Ciphertext
k-Trace Attacks on Masked CCA2 Secure Kyber. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2021(4):88–113, 2021. doi: 10.46586/tches.v2021.i4.88-113. url: https://doi.
org/10.46586/tches.v2021.i4.88-113 (cited on page 8).

[HV20] Loïs Huguenin-Dumittan and Serge Vaudenay. Classical Misuse Attacks on NIST Round 2
PQC. In International Conference on Applied Cryptography and Network Security, pages 208–
227. Springer, 2020 (cited on pages 92, 100).

[HvD21] David Harvey and Joris van Der Hoeven. Integer multiplication in time O(n log n). Annals
of Mathematics, March 2021. doi: 10.4007/annals.2021.193.2.4. url: https://hal.
archives-ouvertes.fr/hal-02070778 (cited on page 17).

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: securing hardware against
probing attacks. In Advances in Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings,
pages 463–481, 2003 (cited on pages 9, 78, 79).

[Jac73] DH. Jacobsohn. A combinatoric division algorithm for fixed-integer divisors, 1973 (cited on
page 41).

[JT12] Marc Joye and Michael Tunstall, editors. Fault Analysis in Cryptography. Information Secu-
rity and Cryptography. Springer, 2012 (cited on page 81).

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael
J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, volume 1666, pages 388–397.
Springer, 1999 (cited on pages 7, 75, 81).

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96, volume 1109,
pages 104–113. Springer, 1996 (cited on pages 7, 75, 81).

[Kon10] Yinan Kong. Optimizing the improved barrett modular multipliers for public-key cryptogra-
phy, December 2010. doi: 10.1109/CISE.2010.5676912 (cited on page 42).

[KPP20] Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-trace attacks on keccak.
Cryptology ePrint Archive, Paper 2020/371, 2020. url: https://eprint.iacr.org/2020/
371. https://eprint.iacr.org/2020/371 (cited on page 108).

158

https://doi.org/10.1145/773473.178249
https://doi.org/10.1145/773473.178249
https://doi.org/10.1145/773473.178249
https://arxiv.org/abs/0712.4046
https://doi.org/10.46586/tches.v2021.i4.88-113
https://doi.org/10.46586/tches.v2021.i4.88-113
https://doi.org/10.46586/tches.v2021.i4.88-113
https://doi.org/10.4007/annals.2021.193.2.4
https://hal.archives-ouvertes.fr/hal-02070778
https://hal.archives-ouvertes.fr/hal-02070778
https://doi.org/10.1109/CISE.2010.5676912
https://eprint.iacr.org/2020/371
https://eprint.iacr.org/2020/371
https://eprint.iacr.org/2020/371

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

[Kro82] L. Kronecker. Grundzüge einer arithmetischen theorie der algebraischen grössen. (abdruck
einer festschrift zu herrn e. e. kummers doctor-jubiläum, 10. september 1881.). ger. Journal
für die reine und angewandte Mathematik, 92:1–122, 1882. url: http://eudml.org/doc/
148487 (cited on pages 5, 19, 56).

[KY11] Abdel Alim Kamal and Amr M. Youssef. Fault analysis of the ntruencrypt cryptosystem.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 94-A(4):1156–1158, 2011 (cited
on page 82).

[KY13] Abdel Alim Kamal and Amr M. Youssef. Strengthening hardware implementations of ntruen-
crypt against fault analysis attacks. J. Cryptogr. Eng., 3(4):227–240, 2013 (cited on page 82).

[LN16] Patrick Longa and Michael Naehrig. Speeding up the Number Theoretic Transform for Faster
Ideal Lattice-Based Cryptography. In International Conference on Cryptology and Network
Security, pages 124–139. Springer, 2016 (cited on page 36).

[Lom16] Victor Lomne. CHES Tutorial: Common Criteria Certification of a Smartcard: a Technical
Overview, 2016. https://iacr.org/workshops/ches/ches2016/presentations/CHES16-
Tutorial1.pdf (cited on page 18).

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Monaco / French
Riviera, May 30 - June 3, 2010. Proceedings, pages 1–23, 2010 (cited on page 138).

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning with
Errors over Rings. Journal of the ACM (JACM), 60(6):43, 2013 (cited on page 3).

[LS15a] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lat-
tices. Designs, Codes and Cryptography, 75(3):565–599, 2015 (cited on page 3).

[LS15b] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lat-
tices. Des. Codes Cryptogr., 75(3):565–599, 2015 (cited on page 139).

[Lum13] Jérémie O. Lumbroso. Optimal discrete uniform generation from coin flips, and applications.
CoRR, abs/1304.1916, 2013. arXiv: 1304.1916. url: http://arxiv.org/abs/1304.1916
(cited on page 77).

[LZZ18] Chao Liu, Zhongxiang Zheng, and Guangnan Zou. Key Reuse Attack on NewHope Key
Exchange Protocol. In International Conference on Information Security and Cryptology,
pages 163–176. Springer, 2018 (cited on page 92).

[MAA+20] Dustin Moody, Gorjan Alagic, Daniel C Apon, David A Cooper, Quynh H Dang, John M
Kelsey, Yi-Kai Liu, Carl A Miller, Rene C Peralta, Ray A Perlner, Angela Y Robinson,
Daniel C Smith-Tone, and Jacob Alperin-Sheriff. Status Report on the Second Round of
the NIST Post-Quantum Cryptography Standardization Process. Technical report, National
Institute of Standards and Technology, July 2020. url: https://nvlpubs.nist.gov/
nistpubs/ir/2020/NIST.IR.8309.pdf (cited on pages 1, 51).

[MGT+19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque. Masking Dilithium
- efficient implementation and side-channel evaluation. In Applied Cryptography and Network
Security - 17th International Conference, ACNS 2019, Bogota, Colombia, June 5-7, 2019,
Proceedings, pages 344–362, 2019 (cited on page 9).

[Mona] Simon Montoya. LAC attack. https : / / github . com / ayotnomis / LACAttack (cited on
pages 93, 100, 106).

[Monb] Simon Montoya. SEA PQC Script. https://github.com/paper16FDTC2021/SEAPQC (cited
on page 84).

159

http://eudml.org/doc/148487
http://eudml.org/doc/148487
https://iacr.org/workshops/ches/ches2016/presentations/CHES16-Tutorial1.pdf
https://iacr.org/workshops/ches/ches2016/presentations/CHES16-Tutorial1.pdf
https://arxiv.org/abs/1304.1916
http://arxiv.org/abs/1304.1916
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://github.com/ayotnomis/LACAttack
https://github.com/paper16FDTC2021/SEAPQC

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

[Mon85] Peter L Montgomery. Modular Multiplication Without Trial Division, 1985 (cited on pages 18,
42).

[Moo16] Dustin Moody. Post-Quantum Cryptography NIST’s Plan for the Future, 2016. Available
at https://csrc.nist.gov/CSRC/media/Projects/Post- Quantum- Cryptography/
documents/pqcrypto-2016-presentation.pdf (cited on pages 1, 2).

[MOP08] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks: Revealing
the Secrets of Smart Cards, volume 31. Springer Science & Business Media, 2008 (cited on
pages 9, 29, 76).

[MU10] Alfred Menezes and Berkant Ustaoglu. On Reusing Ephemeral Keys in Diffie-Hellman Key
Agreement Protocols. IJACT, 2(2):154–158, 2010 (cited on page 92).

[MVV18] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of Applied Cryp-
tography. CRC press, 2018 (cited on pages 42, 63).

[NDJ21] Kalle Ngo, Elena Dubrova, and Thomas Johansson. Breaking Masked and Shuffled CCA Se-
cure Saber KEM by Power Analysis. In Chip-Hong Chang, Ulrich Rührmair, Stefan Katzen-
beisser, and Debdeep Mukhopadhyay, editors, ASHES@CCS 2021: Proceedings of the 5th
Workshop on Attacks and Solutions in Hardware Security, Virtual Event, Republic of Ko-
rea, 19 November 2021, pages 51–61. ACM, 2021. doi: 10.1145/3474376.3487277. url:
https://doi.org/10.1145/3474376.3487277 (cited on page 8).

[Nus82] Henri J. Nussbaumer. Number Theoretic Transforms. In Fast Fourier Transform and Con-
volution Algorithms. Springer Berlin Heidelberg, Berlin, Heidelberg, 1982, pages 211–240.
isbn: 978-3-642-81897-4. doi: 10.1007/978-3-642-81897-4_8. url: https://doi.org/
10.1007/978-3-642-81897-4_8 (cited on pages 18, 65).

[OSP+16] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. Practical CCA2-
Secure and Masked Ring-LWE Implementation. Cryptology ePrint Archive, Report 2016/1109,
2016. https://eprint.iacr.org/2016/1109 (cited on page 92).

[OSP+18a] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. Practical CCA2-
Secure and Masked Ring-LWE Implementation. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems:142–174, 2018 (cited on page 29).

[OSP+18b] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. Practical CCA2-
secure and masked ring-lwe implementation. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(1):142–174, 2018 (cited on page 111).

[PG12] Thomas Pöppelmann and Tim Güneysu. Towards Efficient Arithmetic for Lattice-Based
Cryptography on Reconfigurable Hardware. In Alejandro Hevia and Gregory Neven, editors,
Progress in Cryptology – LATINCRYPT 2012, pages 139–158, Berlin, Heidelberg. Springer
Berlin Heidelberg, 2012. isbn: 978-3-642-33481-8 (cited on page 41).

[PP21] Peter Pessl and Lukas Prokop. Fault attacks on cca-secure lattice kems, 2021. https://ia.
cr/2021/064 (cited on pages 8, 81, 82).

[QCD19] Yue Qin, Chi Cheng, and Jintai Ding. An Efficient Key Mismatch Attack on the NIST Second
Round Candidate Kyber. IEEE, 2019 (cited on page 92).

[RdCR+16] Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Additively Homomorphic Ring-LWE Masking. In Post-Quantum Cryptography,
pages 233–244. Springer, 2016 (cited on page 29).

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 56(6), September 2009. issn: 0004-5411. doi: 10 . 1145 / 1568318 . 1568324. url:
https://doi.org/10.1145/1568318.1568324 (cited on pages 2, 75).

160

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/pqcrypto-2016-presentation.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/pqcrypto-2016-presentation.pdf
https://doi.org/10.1145/3474376.3487277
https://doi.org/10.1145/3474376.3487277
https://doi.org/10.1007/978-3-642-81897-4_8
https://doi.org/10.1007/978-3-642-81897-4_8
https://doi.org/10.1007/978-3-642-81897-4_8
https://eprint.iacr.org/2016/1109
https://ia.cr/2021/064
https://ia.cr/2021/064
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

[RJH+18] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay, and Shivam
Bhasin. Side-channel Assisted Existential Forgery Attack on Dilithium-A NIST PQC candi-
date. 2018. https://eprint.iacr.org/2018/821 (cited on page 29).

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. In
Cryptographic Hardware and Embedded Systems, CHES 2010, 12th International Workshop,
Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, pages 413–427, 2010 (cited on
pages 9, 78, 113, 131).

[RRD+16] Oscar Reparaz, Sujoy Sinha Roy, Ruan De Clercq, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Masking Ring-LWE. Journal of Cryptographic Engineering, 6(2):139–153, 2016
(cited on page 29).

[Sak11] Kazue Sako. Semantic security. In Encyclopedia of Cryptography and Security. Henk C. A.
van Tilborg and Sushil Jajodia, editors. Springer US, Boston, MA, 2011, pages 1176–1177.
isbn: 978-1-4419-5906-5. doi: 10.1007/978-1-4419-5906-5_23. url: https://doi.org/
10.1007/978-1-4419-5906-5_23 (cited on pages 10, 91).

[SB20] Sujoy Sinha Roy and Andrea Basso. High-speed Instruction-set Coprocessor for Lattice-based
Key Encapsulation Mechanism: Saber in Hardware. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(4):443–466, August 2020. doi: 10.13154/tches.
v2020.i4.443-466. url: https://tches.iacr.org/index.php/TCHES/article/view/
8690 (cited on page 23).

[Sch82] A. Schönhage. Asymptotically fast algorithms for the numerical multiplication and division
of polynomials with complex coeficients. In EUROCAM, 1982 (cited on page 19).

[Sha79] Adi Shamir. Factoring numbers in o(log n) arithmetic steps. Inf. Process. Lett., 8(1):28–31,
1979 (cited on page 119).

[Sho97] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer. SIAM J. Comput., 26(5):1484–1509, October 1997. issn:
0097-5397. url: https://doi.org/10.1137/S0097539795293172 (cited on page 1).

[Sol11] Jerome A. Solinas. Generalized mersenne prime. In Encyclopedia of Cryptography and Se-
curity. Springer US, Boston, MA, 2011, pages 509–510. isbn: 978-1-4419-5906-5. doi: 10.
1007/978-1-4419-5906-5_32. url: https://doi.org/10.1007/978-1-4419-5906-5_32
(cited on pages 42, 43).

[Sol99] Jerome A. Solinas. Generalized Mersenne Numbers. Technical report, Dept. of C&O, Uni-
versity of Waterloo, 1999. Available at https://cacr.uwaterloo.ca/techreports/1999/
corr99-39.pdf (cited on pages 42, 43).

[SPO+19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Efficiently masking
binomial sampling at arbitrary orders for lattice-based crypto. In Public-Key Cryptography
- PKC 2019 - 22nd IACR International Conference on Practice and Theory of Public-Key
Cryptography, Beijing, China, April 14-17, 2019, Proceedings, Part II, pages 534–564, 2019
(cited on pages 79, 80, 110–112, 116, 117, 126, 131).

[VOG+18] Felipe Valencia, Tobias Oder, Tim Güneysu, and Francesco Regazzoni. Exploring the vul-
nerability of R-LWE encryption to fault attacks. In John Goodacre, Mikel Luján, Giovanni
Agosta, Alessandro Barenghi, Israel Koren, and Gerardo Pelosi, editors, Proceedings of the
Fifth Workshop on Cryptography and Security in Computing Systems, CS2 2018, pages 7–12.
ACM, 2018 (cited on page 82).

161

https://eprint.iacr.org/2018/821
https://doi.org/10.1007/978-1-4419-5906-5_23
https://doi.org/10.1007/978-1-4419-5906-5_23
https://doi.org/10.1007/978-1-4419-5906-5_23
https://doi.org/10.13154/tches.v2020.i4.443-466
https://doi.org/10.13154/tches.v2020.i4.443-466
https://tches.iacr.org/index.php/TCHES/article/view/8690
https://tches.iacr.org/index.php/TCHES/article/view/8690
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1007/978-1-4419-5906-5_32
https://doi.org/10.1007/978-1-4419-5906-5_32
https://doi.org/10.1007/978-1-4419-5906-5_32
https://cacr.uwaterloo.ca/techreports/1999/corr99-39.pdf
https://cacr.uwaterloo.ca/techreports/1999/corr99-39.pdf

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

[VPR19] Felipe Valencia, Ilia Polian, and Francesco Regazzoni. Fault sensitivity analysis of lattice-
based post-quantum cryptographic components. In Dionisios N. Pnevmatikatos, Maxime
Pelcat, and Matthias Jung, editors, Embedded Computer Systems: Architectures, Modeling,
and Simulation SAMOS 2019, volume 11733. Springer, 2019 (cited on page 82).

[WBB+19] Guillaume Wafo-Tapa, Slim Bettaieb, Loic Bidoux, Philippe Gaborit, and Etienne Marcatel.
A practicable timing attack against hqc and its countermeasure. Cryptology ePrint Archive,
Report 2019/909, 2019. https://ia.cr/2019/909 (cited on page 108).

[WGY20] Bin Wang, Xiaozhuo Gu, and Yingshan Yang. Saber on ESP32. In Mauro Conti, Jiany-
ing Zhou, Emiliano Casalicchio, and Angelo Spognardi, editors, Applied Cryptography and
Network Security, pages 421–440, Cham. Springer International Publishing, 2020. isbn: 978-
3-030-57808-4 (cited on pages 5, 24, 39, 54, 67).

[XYD+19] Lu Xianhui, Liu Yamin, Jia Dingding, Xue Haiyang, He Jingnan, and Zhang Zhenfei. LAC:
Lattice-based Cryptosystems, 2019. Available at https://csrc.nist.gov/Projects/Post-
Quantum-Cryptography/Round-2-Submissions (cited on pages 10, 33, 91–93, 95, 100).

[YJ00] Sung-Ming Yen and Marc Joye. Checking before output may not be enough against fault-
based cryptanalysis. IEEE Trans. Computers, 49, 2000 (cited on page 81).

[ZZY+20] Yihong Zhu, Min Zhu, Bohan Yang, Wenping Zhu, Chenchen Deng, Chen Chen, Shao-
jun Wei, and Leibo Liu. A High-performance Hardware Implementation of Saber Based
on Karatsuba Algorithm. Cryptology ePrint Archive, Report 2020/1037, 2020. https://
eprint.iacr.org/2020/1037 (cited on page 23).

Contributions
[BMR21] Luk Bettale, Simon Montoya, and Guénaël Renault. Safe-error analysis of post-quantum

cryptography mechanisms - short paper-. In 18th Workshop on Fault Detection and Tolerance
in Cryptography, FDTC 2021, Milan, Italy, September 17, 2021, pages 39–44. IEEE, 2021
(cited on pages 12, 81).

[CGM+21a] Jean-Sebastien Coron, François Gerard, Simon Montoya, and Rina Zeitoun. High-order table-
based conversion alg. and masking lattice-based encryption, 2021 (cited on pages 13, 109).

[CGM+21b] Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun. High-order poly-
nomial comparison and masking lattice-based encryption. IACR Cryptol. ePrint Arch.:1615,
2021 (cited on pages 13, 109).

[GMR20] Aurélien Greuet, Simon Montoya, and Guénaël Renault. Attack on Lac Key Exchange In
Misuse Situation. In Cryptology and Network Security, CANS 2020. Springer, 2020 (cited on
pages 12, 91).

[GMR21] Aurélien Greuet, Simon Montoya, and Guénaël Renault. On using RSA/ECC coprocessor
for ideal lattice-based key exchange. In Shivam Bhasin and Fabrizio De Santis, editors, Con-
structive Side-Channel Analysis and Secure Design - 12th International Workshop, COSADE
2021, Lugano, Switzerland, October 25-27, 2021, Proceedings, volume 12910 of Lecture Notes
in Computer Science, pages 205–227. Springer, 2021 (cited on pages 12, 23, 41).

[GMV22a] Aurélien Greuet, Simon Montoya, and Clémence Vermeersch. Modular Polynomial Multipli-
cation Using RSA/ECC Coprocessor, 2022 (cited on pages 12, 39).

[GMV22b] Aurélien Greuet, Simon Montoya, and Clémence Vermeersch. Quotient approximation mod-
ular reduction. Cryptology ePrint Archive, Paper 2022/411, 2022. url: https://eprint.
iacr.org/2022/411 (cited on pages 12, 39).

162

https://ia.cr/2019/909
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://eprint.iacr.org/2020/1037
https://eprint.iacr.org/2020/1037
https://eprint.iacr.org/2022/411
https://eprint.iacr.org/2022/411

Titre: Cryptographie basée sur les réseaux euclidiens pour les systèmes embarqués

Mots clés: Cryptographie post-quantique, systèmes embarqués, coprocesseur, attaques physiques,
contremesures

Résumé: Un ordinateur quantique suffisamment
puissant pour exécuter l’algorithme de Shor pour-
rait voir le jour et ainsi menacer la sécurité ap-
portée par la cryptographie asymétrique actuelle-
ment déployée. En effet, un tel ordinateur pour-
rait casser l’ensemble de la cryptographie dont la
sécurité repose sur le problème de factorisation
ou du logarithme discret. Pour anticiper une telle
menace, les agences gouvernementales ont com-
mencé des processus de standardisation de cryp-
tosystèmes résistants à la puissance quantique:
la cryptographie post-quantique. La standardis-
ation la plus suivie par la communauté interna-
tionale est celle du National Institute of Stan-
dards and Technology (NIST) lancée en 2016.
Elle a pour objectif de définir les futurs stan-
dards post-quantiques en termes de Key Encapsu-
lation Mechanisms (KEMs) et de signatures. En
Juillet 2020, cette standardisation en est à son
troisième tour de sélection avec sept candidats fi-
nalistes restants. Parmi les candidats restants,
cinq basent leur sécurité sur des problèmes math-
ématiques reliés aux réseaux euclidiens. A l’heure
actuelle, les cryptosystèmes basés sur les réseaux
euclidiens présentent le meilleur compromis entre
efficacité, sécurité et taille des clés.
Les standards ont pour objectif d’être dé-

ployés massivement et dans différents composants.
Parmi eux, il y a les composants embarqués. Ces
composants sont très répandus mais limités en
terme de mémoire et de puissance de calcul. De
plus, ils sont menacés par des attaques physiques,
ce qui demande un ajout de sécurité supplémen-
taire. Ainsi, déployer les cryptosystèmes basés sur
les réseaux euclidiens dans les composants embar-
qués est un véritable défi.
Dans cette thèse, nous nous intéressons au
déploiement des cryptosystèmes basés sur les
réseaux euclidiens dans le contexte des systèmes
embarqués. Plus particulièrement, ceux présents
lors de la standardisation du NIST. Dans un
premier temps, nous optimisons ces schémas à
l’aide des coprocesseurs asymétriques existants.
Les optimisations proposées sont implémentées et
évaluées sur un composant embarqué. Par la
suite, nous nous intéressons à la sécurisation et
l’évaluation de la résilience contre les attaques
physiques de ces schémas. Nous proposons ainsi
des nouvelles contremesures de masquage applica-
bles à plusieurs KEMs. De plus, nous évaluons les
implémentations de certains cryptosystèmes con-
tre des attaques par injection de fautes et des at-
taques par canaux auxiliaires.

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

Title: Embedded lattice-based cryptography

Keywords: Post-quantum cryptography, embedded devices, coprocessor, physical attacks, counter-
measures

Abstract: A quantum computer powerful enough
to run Shor’s algorithm could emerge and thus
threaten the security provided by the currently
deployed asymmetric cryptography. Such a com-
puter can break the entire cryptography based on
the hardness of integer factorization or discrete
logarithm. In order to anticipate this threat, na-
tional agencies have initiated standardization pro-
cesses of quantum-safe cryptography: the post-
quantum cryptography. The most followed stan-
dardization by the international community is
the one of the National Institute of Standards
and Technology (NIST) launched in 2016. This
one aims to determine the future Key Encapsu-
lation Mechanisms (KEMs) and signatures stan-
dards. In july 2020, the third round of selection
of this standardization started with seven final-
ists cryptosystems remaining. Among these can-
didates, five are based on lattice problems. Cur-
rently, lattice-based cryptography provides the
best trade-off between efficiency, security and
compactness.
The future post-quantum standards will be de-

ployed on several devices, like the embedded ones.
These components are widely used but they are
very limited in terms of memory and computing
power. Moreover, they are threatened by phys-
ical attacks, which requires additional security.
Therefore, implement lattice-based cryptography
in such devices is a real challenge.
In this thesis we focus on the deployment of
lattice-based cryptography in embedded devices.
More precisely, we are interested in the lattice-
based cryptosystems introduced during the NIST
standardization. In a first step, we optimize these
schemes by re-purposing existing asymmetric co-
processors. Such optimizations are then imple-
mented and assessed on an embedded device. In a
second step, we investigate the security and the re-
silience of the lattice-based schemes against phys-
ical attacks. To do so, we introduce new masking
countermeasures which find applications to sev-
eral KEMs. Moreover, we assess the security of
several implementations against fault injection or
side-channel attacks.

164
Institut Polytechnique de Paris
91120 Palaiseau, France

CHAPTER 8. HIGH-ORDER MASKING OF LATTICE-BASED KEM

165

	Introduction
	Problématiques
	Algorithmique des cryptosystèmes basés sur les réseaux euclidiens
	Problème LWE et variantes
	La génération d'aléa
	Arithmétique modulaire de polynômes
	Contributions sur les optimisations des cryptosystèmes à l'aide des coprocesseurs asymétriques existants

	Attaques physiques et contremesures des schémas basés sur les réseaux euclidiens
	Attaques physiques
	Contremesures
	Contributions sur l'évaluation de la résilience des implémentations contre les attaques physiques
	Contributions sur la sécurisation des implémentations contre les attaques physiques

	Perspectives
	Organisation

	I On using RSA/ECC coprocessor for lattice-based cryptography
	Arithmetic operation of ideal lattice-based schemes
	Overview of ideal lattice-based schemes operations
	Polynomial multiplication
	Modular reduction

	Hardware accelerator for modular polynomial arithmetic
	Kronecker substitution

	Polynomial multiplication using RSA/ECC coprocessor
	Algorithms
	Notation and preliminaries
	Polynomial multiplication using the structure

	Considerations on side-channel attacks
	Complexity
	Choice of
	Complexity estimates
	Time-memory trade-offs
	Polynomial subdivisions

	Assessment
	Context
	From theory to practice: a methodology
	Experiments

	Modular polynomial multiplication using RSA/ECC coprocessor
	Quotient Approximation Modular Reduction
	Context and background
	Quotient Approximation Reduction
	Application: CRYSTALS-Dilithium

	Modular polynomial multiplication using RSA/ECC coprocessor
	Background
	Multiplication in N[X] using Kronecker substitution
	Multiplication in Rq, using Kronecker substitution
	Reducing coefficients modulo q
	Applications and Results

	II Physical security of lattice-based schemes
	Physical attacks, countermeasures and probing model
	Physical attacks
	Side-channel attacks
	Fault injection

	Countermeasures
	Masking
	Shuffling
	Code redundancy
	Random generation

	Probing model
	Security definitions: NI and SNI.
	The SecAnd algorithm
	Secure multiplication modulo q
	Mask refreshing

	Safe-error analysis of post-quantum cryptography mechanisms
	Framework description
	Attacker model
	Safe-error attack on lattice-based cryptography
	Security analysis of lattice-based cryptography
	Security estimation loss

	Application on post-quantum cryptography
	NTRU
	Saber
	Dilithium
	Kyber

	Countermeasures

	Exploiting physical attacks
	Attack on LAC CPA key exchange in misuse situation
	Preliminaries
	Attack on LAC key exchange
	Attack on LAC-256 key exchange

	Attack on LAC CCA key exchange using side-channel leakage
	Physical attacks against LAC CCA key exchange

	High-order masking of lattice-based KEM
	High-order table-based conversion and applications
	High-order table-based conversion algorithm
	Table-based high-order Boolean to arithmetic conversion
	Table-based high-order arithmetic to Boolean conversion
	Application to threshold function
	Application to binomial sampling

	High-order polynomial comparison
	High-order zero testing
	High-order polynomial comparison

	Fully masked implementation of Kyber
	The Kyber Key Encapsulation Mechanism (KEM)
	Polynomial comparison for Kyber
	High-order masking of Kyber

	Fully masked implementation of Saber
	The Saber Key Encapsulation Mechanism (KEM)
	High-order masking of Saber

	Practical implementation
	Kyber
	Saber

