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Résumé

Contexte

Cette thèse étudie la recherche de vulnérabilités de type 1-jour dans des systèmes de
fichiers arbitraires.

Définition. Une vulnérabilité 1-jour est une vulnérabilité pour laquelle un correctif pu-
bliquement disponible existe depuis au moins 1 jour.

L’identification des vulnérabilités dans les logiciels représente un des piliers sécuritaires
pour protéger les systèmes d’information. Malgré un travail de recherche continu effectué
par les communautés scientifiques et industrielles, de nouvelles failles sont régulièrement
identifiées. Par exemple, la National Vulnerability Database liste plus de 18 000 CVEs
pour l’année 2020 et la tendance n’est pas à la baisse. De plus, la lutte entre attaquant·e·s
et défenseur·e·s est fondamentalement asymétrique, puisqu’une erreur sur une ligne de
code dans un projet pouvant en contenir des millions peut résulter en une compromission
totale.

Après l’identification d’une faille sur un logiciel (ou un matériel), ses responsables
peuvent proposer un correctif corrigeant la vulnérabilité. Une vulnérabilité pour laquelle
un correctif est disponible cesse alors d’être une vulnérabilité 0-jour et devient une
vulnérabilité 1-jour. En revanche, on observe un temps de propagation entre le moment
où le correctif est disponible et celui où il est appliqué sur l’ensemble des systèmes ; il
est donc utile de déterminer si un correctif est présent sur un système pour établir son
exposition à un risque.

Ce problème se décompose en deux parties complémentaires, la première, comment
identifier si un correctif a été appliqué sur un système et la seconde, comment caractéri-
ser ce correctif. Le problème de l’identification (matching) a été étudié dans la littérature
notamment sous l’aspect de la recherche d’artefacts équivalents. Le problème de carac-
térisation d’un correctif est plus nouveau, et relativement peu exploré.
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Il faut néanmoins noter que l’absence d’un correctif sur un système n’implique pas que
ce dernier soit vulnérable. En effet, il est possible que la portion de code concernée ne soit
pas utilisée, ou que d’autres contre-mesures soient en place pour empêcher l’exploitation.
De même, la présence d’un correctif n’est pas suffisante pour déterminer la sécurité d’un
système : ce correctif peut-être incomplet en laissant ouvert des chemins d’exploitation,
ou plus simplement inapproprié.

Contributions
Les contributions de cette thèse se déclinent en quatre axes.

La première contribution est la formalisation du problème de la recherche de correctifs
dans un système de fichier arbitraire, dénommé le FMP. Cette formalisation étend la no-
tion de test de présence de correctif (patch presence test) établie par Zhang et al. [143] à
l’échelle d’un système. Cette contribution est complétée par l’établissement d’une stra-
tégie en trois étapes pour résoudre ce problème à l’aide de signatures de correctifs. Cette
stratégie, la F-S-M (pour Filtrage-Sélection-Matching) réduit par couches successives
l’espace de recherche, permettant une résolution efficace du problème dans des systèmes
de fichiers contenant des milliers de programmes.

Nous proposons également une mise en oeuvre de cette stratégie à travers un outil
que nous avons développé : QSig. Cet outil est constitué de deux composants. Un pre-
mier, le générateur, crée la signature d’un correctif en analysant automatiquement les
différences entre deux programmes binaires. Le second, le détecteur, applique des signa-
tures générées précédemment à un système de fichiers, en utilisant la F-S-M . Comme
elles sont utilisées à chaque étape, les signatures de correctifs sont donc des éléments cru-
ciaux de la résolution du FMP. Celles que nous proposons sont fondées sur des invariants
sémantiques du code binaire.

Pour évaluer QSig, nous introduisons un nouveau de jeu de données utilisant les bul-
letins de sécurité publiés tous les mois par Google pour le système Android. Ces bulletins
précisent notamment l’identifiant du commit corrigeant une vulnérabilité, permettant à
notre jeu de données d’être précis à cette granularité. Comme la recherche de vulnéra-
bilités est également effectuée sur du code binaire, nous proposons une sous-partie de
ce dataset sous forme d’artefacts précompilés via une méthode automatique. Ce jeu de
données a été publié pour être accessible à la communauté.

Finalement, notre dernière contribution est la construction de graphes de dépendances
unifiés (formalisés par Fan et al. [40]) utilisant le système de construction de l’Android
Open Source Project pour établir les dépendances entre différentes cibles de compilation
statiquement. Ces liens de dépendances sont ensuite exploités pour adapter QSig à la
détection de correctifs dans des bibliothèques statiquement compilées sur le système
Android.



Toutes nos contributions participent à la création d’un ensemble logiciel permettant de
rechercher efficacement des correctifs de vulnérabilités sur des systèmes de fichier. Nous
montrons également que l’approche choisie est pertinente et efficace en la comparant à
différents travaux de l’état de l’art.
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Chapter 1
Introduction

Contents
1.1 Motivating Example: CVE-2018-9506 . . . . . . . . . . . . . . . 5
1.2 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Information systems are a key component of modern world and are used in most
economic fields. Tasked with an ever-growing set of demands and supported by ever-
improving hardware, they have evolved from simple and large devices (mainframes) to
complex machines. Indeed, computer systems range from well-known general-purpose
devices, like smartphones or desktops to specialized objects, called embedded systems,
like routers, industrial systems, or household appliances.

The missions handled by such devices may be critical for the safety and security of
many users. For example, the ransomware epidemic severely disrupted hospitals over
the last years [18]. These attacks were even responsible for real-life casualties with the
first report of a death directly attributed to one of them [65]. Countries also rely on
their cyber infrastructure security and physical actions are now with a cyber part. For
example, a cyberattack took down satellite communications in Ukraine in the hours
before the 2022 invasion. Journalists in Western states have attributed this attack to
Russia [110].

Cyberattacks usually exploit a bug in a codebase. We define bugs with security im-
plications with regard to a security model as vulnerabilities (Section 2.1). Codebases
are composed of internal components and external dependencies. Indeed, to reduce de-
velopment costs and improve delivery speed, developers of new software often borrow
or use external components. However, using someone’s else code requires trusting their
third-party authors. These problematics are now called supply chain issues. Indeed,
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CHAPTER 1. INTRODUCTION

from an attacking point of view, a bug location, within the main code or inside a depen-
dent component, does not matter. For instance, the Log4j vulnerability [69] affected a
common logging library and spread to hundreds of projects. Several strategies exist to
battle software vulnerabilities. We detail some of them below, but this list is far from
exhaustive.

• Focus on the security aspects during the software development cycle using a Secure
Software Development Framework (SSDF). The best option to prevent vulnerabil-
ities is to avoid their introduction. It is worth considering security during the
design process and before the device release. Indeed, a defect found afterward in a
component not upgradable is impossible to fix. For example, Positive Technologies
discovered a vulnerability affecting a read-only memory in Intel CSME which was
unfixable [101]. The suggested mitigation strategy was to disable the feature1.

• Using a Host-based Intrusion Detection System (HIDS) [96] to monitor the host
internals and the network interfaces to prevent exploitation attempts from reaching
applications. By monitoring system activity [79], a defense system can block mali-
cious activity and protect vulnerable applications without modifying them. Legacy
applications with discontinued support can be protected using this strategy.

• Apply available updates to each software. Most vendors provide support for their
software using updates. These updates may add functionalities, but also fix (secu-
rity) bugs. Some fast-evolving software like web browsers provides an automated
update mechanism. However, this behavior is not suitable in contexts where each
update must be vetted to ensure it maintains backward compatibility. Moreover,
embedded devices may either lack an update mechanism or it may require manual
intervention which makes fleet-wide upgrades more complex. Finally, updates may
not be available for a device as vendors only provide support for a limited time.

These strategies are complementary, and stakeholder should consider them together
(Swiss cheese model) because the layer multiplication reduces the residual risk. Tackling
the full spectrum of vulnerability defenses would be impracticable for a single work.
While the research of defenses against new vulnerabilities (0-day) draws massive atten-
tion from the community, the study of known vulnerabilities is much less explored. Still,
a patch fixing a security issue is not immediately deployed to each instance running the
software. Hence, studying vulnerabilities with existing patches, denoted 1-day vulnera-
bilities, is needed. Chapter 2 provides a more detailed definition of 1-day vulnerabilities.

Detecting whether a software is patched against a known 1-day vulnerability is crucial
for assessing system exposures to known threats. Companies managing fleets of devices
using heterogenous firmware versions are impacted by this problem. Indeed, knowing
whether commercial firmwares they rely on are properly patched against known vulner-
abilities is crucial for their security posture. It can also be used as a security baseline:

1Arguably, a problem when the feature is needed.
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before managing company secrets, a device must have at least the patches for a vulner-
ability set. Of note, detecting patches can also be valuable from an attackers point of
view (e.g. nation state, penetration testing companies). Tasked to extract information
from a device, knowing that the patch for a vulnerability is missing could pave the way
for a potential compromise.

Overwhelming attacks also exploit 1-day vulnerabilities. For instance, the infamous
WannaCry ransomware weaponized a 1-day, Eternal Blue [90]. Even if Microsoft released
patches2, the worm spread across unpatched systems. Cyence estimated the cost of the
hack at $4 billion [61].

1-day vulnerabilities affect every software and the ones running on embedded devices
are no exceptions. Their firmware, a software specifically tailored for embedded de-
vices [82], is usually written in low-level languages facilitating hardware control. Because
these languages (C, C++, or proprietary ones) allow the developer a fine-grained control
over memory, they require a greater discipline to prevent coding issues. On the opposite,
higher-level counterparts use mechanisms abstracting the memory management from the
user, offering stronger safety guarantees3. The extensive control of the underlying hard-
ware offered by low-level languages comes with a drawback: programming errors can
quickly have serious security impacts.

Unfortunately, the embedded systems security state is subpar [24], and even high-end
devices may lack some elementary countermeasures [1]. Assessing the security of such
devices creates new challenges compared to traditional software. Indeed, the device
diversity, the numerous architectures, and the interactions between hardware and soft-
ware complicate analyses, even straightforward. Additionally, challenges arise for even
accessing and extracting the device firmware. We consider this problem out of this work
scope.

We summarize the problem for finding whether a patch has been applied to a device
in Figure 1.1. The black box represents the missing link for answering this question. Of
note, it is crucial to remember that probing the patch presence will only answer on the
patch presence.

“Not finding a patch on a device is insufficient to conclude that a device is
vulnerable to a particular vulnerability.”

For example, the device may not use the vulnerable code or even be shipped with
it (Table 1.1). With this restriction in mind, the terms missing and not found are
used interchangeably in this manuscript when referring to patches. Moreover, patches

2And provided patches for end-of-life systems.
3But at the cost of relying on their toolchain.
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Patches found

Patches missing

Embedded
System

Patch

Information

Figure 1.1: Main Problem Illustrated

Patch Found Device Status

Yes Not Vulnerable
No Unable to conclude
Partially Probably Vulnerable

Table 1.1: Possible Answers to the Patch Presence Test on a Device

for vulnerabilities are not atomic objects. For example, they can spread over multiple
functions. If a patch is only partially found on a device, we conclude that the device
remains vulnerable to the vulnerability because we consider that a fix must be complete
to be effective.

The most common embedded system is the smartphone and its Operating System
(OS) distribution is a duopoly. Apple with iOS represents 28% of the worldwide market
share, and Android from Google the remaining 71% [115]. While both systems share the
same objectives, their conception is different. Apple develops both the hardware and
the software while keeping iOS closed. On the contrary, Android has an open-source
core: Google develops the software and provides licenses to various OEM to drive its
adoption4. This model resembles Microsoft’s for Windows. Because Android runs on
heterogeneous devices, it is a representative use case to study embedded systems. We
detail the reasons supporting our choice in Chapter 2.

Android devices are often lacking patches due to discontinued support from vendors.
Moreover, even if a device is at its latest version, vendors may miss patches. In 2008,
SRLabs demonstrated the hidden patch gap prevalence in the Android ecosystem [112]:
in their study, most vendors were missing at least one patch included in the claimed
Security Patch Level (SPL). On another hand, some vendors also backport security fixes

4Google is also a manufacturer with the Pixel line.
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[rsp+0xd8], ebx

...

mov

...

...

cmp

jnz

...

eax, 2

loc_182C89

lea

mov

mov

xor

xor

call

...

rsi, a111803925 ; "111803925"

edi, 0x534e4554

edx, 0xffffffff

ecx, ecx,

r8d, r8d

__android_log_error_write

...

movzx

cmp

jnz

ebp, [r14+2]

ebp, 2

loc_182CEB

ecx, [r14+2]

...

movzx

...

[rsp+0xd8], ebx

...

mov

...

(a)

w3, [x23, #2]

...

ldrh

...

....

w0, #0x4554

x1, x1, #a111803925; "11803925"

w0, #0x534e, LSL#16

w2, #0

...

.__android_log_error_write

...

movz

add


movk

movn


...

bl

adrl

...

x9, x8

...

w22, [sp, #0xE0]

...

strb

...

ldrh

subs

b.hi

w6, [x23, #2]

wzr, w6, #2

loc_1E89C0

...

sybs

b.ne

...

wzr, w8, #2

loc_1e8950

(b)

Figure 1.2: CVE–2018–9506 associated CFG for x64 (a) and aarch64 (b)

to their devices. Detecting the program version is thus insufficient to assess whether the
program is patched [144].

1.1 Motivating Example: CVE-2018-9506

Listing 1.1 CVE–2018–9506 Patch Extract
@@ -660,6 +662,13 @@
msg.browse.p_browse_pkt = p_pkt;

} else {
+ if (p_pkt->len < AVRC_AVC_HDR_SIZE) {
+ android_errorWriteLog(0x534e4554, "111803925");
+ [ ... skip ...]
+ return;
+ }

msg.hdr.ctype = p_data[0] & AVRC_CTYPE_MASK;

CVE–2018–9506 [92] fixes a possible out-of-bound read in Android’s bluetooth stack.
An extract of the vulnerability patch adding a length check is listed in Listing 1.1. The
Control Flow Graph (CFG) represents all paths that might be traversed by a program
through its execution [131]. Both the x64 and aarch64 versions are shown in 1.2a
and 1.2b. While the CFG of both versions is similar on the excerpt, the number of
blocks varies between the two functions (167 and 154 basic blocks). Moreover, the
mnemonics used are architecture dependent, and creating a mapping from one set to
another is rather impractical.
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Google fixed the vulnerability in the Android Security Bulletin from October 2018
(SPL 2018-10-01) before any exploitation attempt was reported. Nonetheless, device
manufacturers may not have updated every device to fix this vulnerability, either by
installing the newer SPL, or backporting the fix. This delay opens an exploitation
window for attackers. Thus, it is valuable to elaborate a strategy for detecting whether
this patch (or others) was applied to a device.

The main objective of this thesis is to construct a solution reducing this patch to its
main characteristics, then devise a strategy allowing to search it efficiently and accurately
on a complete filesystem.

1.2 Thesis Objectives

The growing number of vulnerabilities requires constant attention from stakeholders
to develop and provide patches to affected users. Deploying these patches is a necessary
step for ensuring a device safety. However, due to the patch propagation delay, end users
are vulnerable within this patching window and might remain vulnerable permanently
if the patch is not propagated.

This thesis objective is to delve into how to automate the research of 1-day vulner-
abilities in embedded systems. An idea that first comes to mind when talking about
automation in cyber security, and more broadly in computer science, is to consider ma-
chine learning algorithms. First coined in 1959 [109], this term and its associated domain
have seen a large expansion since the 2000’ with new techniques and an increase in com-
putational power. If the study of techniques, their underlying statistics models, and
inner workings are out of scope for this work, we highlight that most algorithms used
today require a vast amount of data to work.

Another objective of this thesis is characterizing 1-day vulnerabilities. A formal defi-
nition is given in Chapter 2, but it does not cope well with automated analysis. Elabo-
rating a precise overview of 1-day vulnerabilities is a first step before searching them in
systems. Current research on 1-day characterization has either considered them on too
high granularity (e.g. at a function-level) [3] or as taxonomies, which are not suitable
for automated research [12].

A final objective of this research work is to elaborate, from the characteristics of 1-day
vulnerabilities, a mechanism to store them and retrieve them in real-world firmwares.
This work could enhance the security of embedded systems as it would give end users
the list of vulnerabilities unpatched on their system along with an explanation of the
induced risks.

6



1.3. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

1.3 Contributions
In this thesis, we tackle the challenges of detecting 1-day vulnerabilities patches in
filesystems. For doing so, we present four contributions to reach our objectives:

• We propose a formalization of the Firmware Matching Problem (FMP) which aims
to detect whether a patch has been applied to a firmware.

• We introduce a three-step solution, F-S-M , for Filtering-Selecting-Matching based
on successive pruning stages to solve the Firmware Matching Problem.

• We improve the State of the Art by providing an implementation of our solution
inside QSig, an open-source system developed to answer FMP.

• QSig is extensively tested using a large dataset we constructed from Android’s
vulnerabilities. We also provide this dataset in open-source for broader usage
within the community.

• Finally, we extend our approach to detect 1-day in statically embedded code by
designing a specialized filtering step for the Android platform. It also demonstrates
our approach modularity in various workflows.

Publications

Parts of this work have been published in academic conferences, listed below.

• Exploitation du graphe de dépendance d’AOSP à des fins de sécurité in Symposium
sur la sécurité des technologies de l’information et des communications (SSTIC
’21), June 2–4, 2021, Rennes, France.

• Building a Commit-level Dataset of Real-world Vulnerabilities in Proceedings of the
Twelveth ACM Conference on Data and Application Security and Privacy (CO-
DASPY ’22), April 24–27, 2022, Baltimore, MD, USA.

• (submitted) Patch Detection using Binary Only Semantic Signatures in 27th Eu-
ropean Symposium on Research in Computer Security (ESORICS) 2022.

1.4 Thesis Outline
This thesis is organized into seven chapters. The present one introduces the manuscript

and the next one presents the necessary background to understand the context of this
work (Chapter 2).

Chapter 3 starts with a major patch analysis study on Android and formalizes the
Firmware Matching Problem. It then introduces our solution, F-S-M , solving the patch
presence test at a firmware scale. Finally, it presents our open-source system, QSig,
which implements the F-S-M .
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Patch

Signatures

QSig

Generator

PatchCarac

Chapter 4: 

Vulnerability

Dataset Precise at
a Commit Level

Chapter 6: 

Static Build

Dependencies for
AOSP

Chapter 3: Firmware Matching Problem

Chapter 5: Patch Detection Evaluation

Filtering

Matching

Selecting

QSig

Detector

Unified Dependency
Graph

BGraph

Android Device

Roy

Source Patches

Data

Binary Patches

Data

AOSPBuilder

Android Open Source
Project

Android Security
Bulletins

Patches
missing

Patches
found

Figure 1.3: Thesis Outline and Contributions

In Chapter 4, we introduce a vulnerability dataset, precise at a commit level, to help
the community create an accurate testing ground for vulnerability research applications.

We use this dataset for the patch analysis presented in Chapter 3, and to conduct the
QSig evaluation which is presented in Chapter 5.

To follow compilation dependency chains, we develop our Build Graphs in Chapter 6.
Applied to the Android Open Source Project (AOSP), these graphs allow us to solve
the Firmware Matching Problem filtering step, presented in Chapter 3, and to find
vulnerabilities affecting statically embedded libraries.

Eventually, we conclude the thesis in Chapter 7 and give an outlook on the future of
the patch presence test for generic devices.

To help the reader understand the articulations between these works and replace them
in the final objective context, we use the schema presented in Figure 1.3 as a thread.
The clouds on it represent the different components mentioned across the chapters.
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This chapter introduces key concepts used in this thesis and helps the comprehension of
this manuscript. It starts with reminders on the security issues management in software
information systems in Section 2.1. Section 2.2 presents generalities on embedded systems
and firmwares, and Section 2.3 focuses on Android. Finally, we discuss various code
representation techniques in Section 2.4.

2.1 Security Issues in Software Information Systems

Every running information system is susceptible to bugs, a deviation from the ex-
pected behavior. Some of them introduce security risks for the program users and they
are therefore classified as security bugs. A threat actor exploits a weakness, called vulner-
ability, to compromise a system [124]. While the most common vulnerabilities stem from
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security bugs, other vectors are possible (e.g. hardware, humans), but we do not consider
them in this work. Hence, for the remaining of this document, the terms vulnerability,
and security bugs are used interchangeably.

2.1.1 Vulnerability Taxonomy

Identifying vulnerabilities in both software and hardware stacks is a critical part of
the current global security edifice foundation. Despite a continuous research effort,
from academic and industrial communities, new critical vulnerabilities are discovered
regularly. For example, the National Vulnerability Database (NVD) [120] reported more
than 30,000 Common Vulnerabilities and Exposures (CVE) for the year 2021 alone (more
than 83 per day), and the trend is not slowing (93 per day in 2022). The fight between
attackers and defenders is fundamentally asymmetric: a mistake in a single line of code
from a project which may contain millions of them could result in a complete system
compromise.

The search of new vulnerabilities, denoted as 0-day, is attracting constant attention
and resources from security practitioners. Indeed, such vulnerabilities are highly mar-
ketable (Spectre [68], Meltdown [77], Hertzbleed [130]) and used in security conferences
as a measure of success. They also have monetary value. A company may offer a bug
bounty program rewarding researchers reporting security issues, and 0-day-brokers pro-
vide a gray market to sell (weaponized) vulnerabilities. Payouts can reach millions of
dollars [104], supporting a complete ecosystem within the cybersecurity world. As al-
ready mentioned in the previous chapter, let us not forget that vulnerabilities are also
used as cyber weapons (i.e. WannaCry).

A 0-day is associated with a defined software and a version (or a range of versions).
This stems directly from the research itself because an attacker is usually looking at a
target. However, due to code reuse across projects and the usage of open-source compo-
nents, two projects may share a portion of their codebase. Thus, a vulnerability affecting
the former could also affect the latter. While the research towards finding new 0-day is
massive, the study of their impact is much less explored. The deployed systems’ expo-
sition, the patch propagation delay, or their extension towards other contexts (different
versions, hardwares, . . . ) are important pillars for the whole ecosystem security.

2.1.2 Reporting Security Defects Using CVEs

Common Vulnerabilities and Exposures (CVE) is the de facto standard for publishing
advisories on vulnerabilities. The program’s mission is to identify, define, and catalog
publicly disclosed cybersecurity vulnerabilities [81]. This program is led by the Mitre
Corporation since 1999, and financed by the U.S. Department of Homeland Security.
Mitre does not issue every CVE. Their partners, CVE Numbering Authority (CNA),
are also allowed to create new CVE within their scope. In May 2022, Mitre listed
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216 partners ranging from well-known companies (e.g. Airbus, Google), Open-Source
foundations (e.g. Debian, Fedora), or national agencies (e.g. from Spain or Switzerland).

Each CVE entry abides by a schema. Its last version (5), available on the organiza-
tion’s GitHub repository1, is presented below. Only some fields are required:

• dataType: always CVE_RECORD;

• dataVersion: the current version of the standard;

• cveId: the CVE-ID, a unique identifier;

• assignerOrgId: the organization to which the CVE was originally assigned;

• state: either PUBLISHED or REJECTED.

• cnaPublishedContainer: information on the CNA publishing the advisory.

Every other field is optional, but the ones below are usually filled:

• description: summary of the vulnerability in plain text;

• reference: complimentary resources to understand the vulnerability;

• datePublished: the record date.

As of May 2022, the CVE database contained more than 234,000 vulnerability entries.
The first is CVE–1999-0001 in 1999 and the last was CVE–2022–30114. A CVE entry
does not mean a vulnerability is fixed, but only that it is disclosed to a CNA.

To assess the severity of a vulnerability, the NVD created the Common Vulnerabil-
ity Scoring System (CVSS), an open framework to grade vulnerabilities. Scores range
from 0 to 10 and increase with the vulnerability severity. This scoring system consid-
ers exploitability metrics (e.g. attack vector, the need of user interaction), and impact
metrics (e.g. on integrity, availability, confidentiality) to compute the final score. This
score cannot be computed automatically as it depends on the analyst’s interpretation of
the vulnerability. Therefore, CVSS’s scores are updated to reflect discoveries or better
understandings of the vulnerability impact.

2.1.3 Security Patches and Patch Propagation Delay

Definition 2.1. A software patch is a set of changes between two versions [129].

1https://github.com/CVEProject/cve-schema
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Figure 2.1: Vulnerability Lifecycle

Patches are natural in a software lifecycle. They can add features, remove unneeded
parts, or fix bugs. Security patches address bugs with security implications: vulner-
abilities. In versioning systems (e.g. git), each commit is considered as a patch. A
commit represents a modification of the program state and can modify multiple files.
In this thesis, we only consider security patches and use the terms patches or security
patches equally. As software code is organized in functions, we provide a more tractable
definition of patches below, which will be used in the next chapters.

Definition 2.2. A patch is a finite collection of function changes.

Definition 2.3. A 1-day is a vulnerability for which a patch has been released.

A vendor may be notified of a vulnerability, either by an external party through bug
bounties or through a coordinated disclosure, by internal or external audits, or through
public advisories. After their notification, some vendors may release a patch fixing the
bug and mitigating the risk [46]. While in a best-case scenario, all reported vulnerabilities
are fixed, a vendor may choose to ignore the notification as its interests are not always
aligned with those of its users.

A vulnerability, for which there exists a patch, ceases to be a 0-day and becomes a
1-day, as at least 1 day has passed since the patch release. The literature also uses the
term n-days, with n the number of days since the patch. In this manuscript, we prefer to
use 1-day for every vulnerability associated with an existing patch, because the number
of days is irrelevant to our work.

The existence of a patch is a necessary, but insufficient, step to ensure every instance
of the program is corrected. Indeed, several reasons (software incompatibility, time con-
straints) prevent stakeholders from applying a patch promptly. The delay between a
patch release and its application to every impacted software is called the patch propa-
gation delay. During this time window, end users are at risk because their software is
vulnerable to a publicly known issue. The different steps of a vulnerability life are listed
in Figure 2.1.
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2.1.4 Defenses Strategies Against 1-day Vulnerabilities

A prerequisite for building and maintaining an appropriate security posture is to
know the different components of an information system. Executive Order 14,028 in the
United States [54] mandates every purchaser of a software to require a Software Bill of
Materials (SBOM), listing all the components (and their versions) used in the product.
This requirement helps customers establish their software and hardware inventory used
in their information systems.

The first line of defense against 1-day vulnerabilities is to regularly update software.
However, this task is far from trivial. Clément Elbaz identified three main obstacles
when deploying a security patch [38]:

• The inherent difficulty in establishing the list of software deployed in the current
installation.

• The need to understand whether the deployed software is indeed vulnerable to a
vulnerability.

• The compatibility between the update and the usage of the software.

The 1-day exposition problem must still be addressed when applying software updates
is impracticable. In such cases, positioning the defense at a higher level (e.g. system,
network) is also a valid option. Intrusion Detection Software (IDS), either based on
signatures or behavior can be placed on the host or on the network, to analyze and
detect malicious activity before reporting or blocking it. Nonetheless, relying solely on
those tools is not ideal as they may hinder regular user activity or fail to detect an
attack.

2.2 Embedded Systems

For years, vulnerability research was mostly focused on desktop systems such as Win-
dows, macOS, and Linux. However, the rise of mobile systems has shifted the focus
towards mobile platforms and embedded devices (routers, VoIP phones, cameras, house-
hold appliances) that are even more numerous.

2.2.1 Internet of Things Ubiquity

Embedded devices are omnipresent in every modern life aspect. They are used in
most complex systems, like transportation (e.g. cars, planes, rockets), wearable devices
(e.g. watches, armbands), household appliances (e.g. fridges, dishwashers), network de-
vices (e.g. routers, gateways), or healthcare (e.g. insulin pumps, hearing aids). Nowa-
days, the prefix smart can be used together with almost any object, as long as it uses
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Figure 2.2: Firmware Overview

some intelligence2. A precise definition of an embedded device is thus complex to estab-
lish.

Embedded systems are often insecure [24, 123]. This problem may stem from the short
time-to-market cycle for products where security is not a selling factor. It discourages
manufacturers from investing time and resources in this area. Therefore, they represent
valuable targets for attackers because they are often connected and less supervised [5]
than regular devices.

To perform their tasks, embedded devices run some software called firmware. Firmware
is different from general-purpose software as they are (1) tightly coupled with the under-
lying hardware, and (2) installed by the manufacturer instead of the user [82]. If some
devices are running a well-known OS (e.g. Linux), flat firmware are also used, where the
whole code comes as a binary blob.

Some embedded devices have reached unprecedented adoption levels in history: smart-
phones. In 2021, Odea reported more than 6 billion smartphone subscribers [95]. We
decided to use phone devices OS, and specifically, Android, as a representative example
for embedded devices analyses.

2.2.2 Android

Android3 is today the most common OS in the world [94]. It runs on various devices
of all forms factors from smartphones to household appliances, televisions, cars, and

2Or even just some digital features.
3https://www.android.com/
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numerous smart objects. The heart of Android, AOSP, developed by Google, is based
on a Linux kernel and is openly available. AOSP is described in Section 2.3. This
heart is insufficient to power every device, as Google cannot include drivers for every
hardware configuration. Therefore, OEM extend the base image of the system to their
needs. These modifications can modify the system even deeply to create a customized
user experience, usually called Android ROMs.

The freedom for vendors to modify and adapt Android to all devices is a double-
edged sword. On one hand, it helped to grow one of the largest mobile ecosystems by
allowing manufacturers to compete on the hardware level while outsourcing the software
to Google. The model chosen by Google for Android resembles the one established by
Microsoft on the desktop. Both manufacturers simply license4 their system and do not
manufacture hardware. The line is finally blurring as Google has become a manufacturer
with its Pixel line (and the acquisition of Nest)5. Google’s model contrasts with Apple’s
model, as Apple controls both the software (iOS) and the hardware of their mobile
devices.

On the other hand, one of the biggest challenges for Android security resides in this
version fragmentation. To differentiate from other manufacturers and increase their
market share, vendors are offered few choices. They can either modify the hardware (new
optics, bigger screens, . . . ) or customize the user interface to propose new functionalities.
These changes may be deeply interleaved with code owned by Google and increase the
difficulty of updating a device, or simply may be adding new vulnerabilities as uncovered
by Project Zero [63].

The update process of Android is tedious as multiple parties are involved. The up-
date is created by Google and released as a new Android version. Then, the chipset
manufacturer, the vendor, and sometimes, the carrier, validate that the update does not
break the device. To reduce friction, Google acts in two ways. First, through the An-
droid Compatibility Definition Document (CDD), which lists the requirements needed
for a device to use the brand Android. The CDD is distributed with the Compatibility
Test Suite (CTS), a suite of unit tests to verify automatically that the device meets the
requirements and serves as a guide for device manufacturers. By enforcing that every
device abides by the CDD rules, Google enforces a common baseline for its OS. Second,
Google limits the risk induced by Original Equipment Manufacturer (OEM) modifica-
tions by drawing a clear boundary between the code under their control and the one
of other stakeholders. Since Android 8, the project Treble [58] creates a new interface
between vendor components and generic AOSP code. However, Treble is still relatively
recent, and its requirements are neither always well implemented nor checked [102].

4The license is only required to run the Google Mobile Services (GMS) who are not required for
Android per se.

5The analogy remains valid as Microsoft also launched a Surface product line.
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Figure 2.3: Repartition of AOSP Projects

2.3 Deep Dive Inside AOSP

AOSP is not monolithic: it is composed of about 2,200 projects6, ranging from well-
known open-source projects (e.g. Linux, curl) to more specific ones (e.g. device descrip-
tions, Dalvik). AOSP is an information security goldmine, and this section describes its
inner workings.

2.3.1 Overview

AOSP is led by Google, which maintains and develops Android. Although Android is
open-source, each version is first developed privately by Google (with its partners) before
being opened for a yearly release. This organization allows Google to steer Android
development towards its choices, handle confidential information shared by OEM, and
focus public attention on the latest released Android version.

As previously stated, AOSP is an aggregation of projects which repartition is depicted
in Figure 2.3. A large majority of them come from external sources. For example, the
copy of chromium, some Python packages (i.e. numpy, requests), Rust crates, and many
others are embedded directly inside AOSP. The external projects live independently from
their upstream parent. Google regularly propagates upstream changes. However, this
process creates a delay, and every dependency is not always up to date in AOSP root
tree. For example, in March 2022, curl’s AOSP version was behind the official one7 by
one minor version.

6As of March 2022
7https://curl.se/
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AOSP is almost fully self-contained, and the requirements for building the system
are low. This is possible due to the presence of prebuilt packages to perform the build.
For instance, a binary version of Python is directly versioned in the source tree. The
packages ensemble gathers all initial APK. Not all of them end up on end-user devices
as OEM are keen to replace them with their variants.

2.3.2 Terminology, Manipulation, and Usage

Android releases are sanctioned by versions. The first releases were named after
treats (Gingerbread, Lollipop) but since Android 10, they just have incremental numbers
(Android 10, Android 12). Each version is associated with an Application Programming
Interface (API) level. It determines the list of features available for external developers.
Finally, each build for a device is associated with a unique build ID. This identifier
includes the Android version, the build date, an individual increment, and the SPL
number.

Some build IDs are also named as tags (e.g. android-12.0.0_r32 )8. As tags are asso-
ciated with a device, multiple ones coexist at the same time, even for different versions.
The tag order is also to be considered with caution, as a higher tag number does not
necessarily mean it was released after. For example, android-10.0.0_r1 was released in
September 2019 while android-9.0.0_r61 was released in October 2020.

A tag is associated with a list of projects. Before July 2021, this list was stored in a
Manifest, an XML file associating each project with its path in the Android repository.
The precise version of each sub project is determined by the release tag (e.g. AOSP’s
curl has an android-12.0.0_r31 tag). Since July 2021, Google has started a migration
to superprojects that use git superprojects and submodules. This migration is still a
work-in-progress and Google keeps the backward compatibility between the two methods.
Thus, the transition is transparent for the user.

The Manifest lists all projects used by a version. However, manipulating and syn-
chronizing each project individually is tedious. Therefore, to ease the usage, Google
released repo9, a tool abstracting the inner workings of AOSP. It prepares the build
layout for further manipulation. In consequence, the changes induced by superprojects
may deprecate repo in the coming years.

2.3.3 A Huge Scale Project: AOSP by the Numbers

AOSP sources are contained in its mirror, which encompasses all the git repositories
used at least once in the project. The mirror weighed about 1 TB in March 2022
and is ever-growing. It is composed of 2204 different git projects. Half of this space

8This is not the case for every build ID, and some are missing from the official list.
9https://gerrit.googlesource.com/git-repo/
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Figure 2.4: Key Figures in AOSP

(417 Gb) is used to store device data (notably kernels) for various devices. The most
common are the Google ones (the Pixel line), but some for Asus or Motorola10 also lie in
this repository. More interestingly, kernels for generic devices are also available. They
can run on every hardware compatible with Treble and help developers to test their
applications with the newer Android release. Another sizeable chunk in the mirror is
the prebuilts one, where most build dependencies for AOSP are stored. This allows to
bootstrap the project easily as compilers, Software Development Kit (SDK), and build
generators are already present as pre-compiled binaries.

Working with the full mirror is rather impracticable. Most of the time, a user is
only interested in a single version (e.g. tag) of Android. The last version, android-
12.0.0_r32 weights 90 Gb and contains ≈990,000 files. Numerous languages coexist in
AOSP: C/C++ (about 27% of the files), Java (10%), LLVM IR (4%), Python (3.5%),
Go (1.5%), or Rust (1%). All languages with more than 1 million lines are listed in
Figure 2.5. Each project contains the information needed to build itself using AOSP
build system Soong (detailed in Chapter 6).

Building an Android version from the source code is straightforward but is lengthy:
about 30 minutes on a 56 cores machine11. The build output weights around 70 addi-
tional gigabytes. The output is immediately usable with an emulator for testing pur-
poses, and flashable on a device using fastboot12.

2.3.4 AOSP as a Typical Complex Embedded System

As Android mostly powers embedded devices (e.g. smartphones, watches, cars, . . . ), it
is an appropriate starting point for looking at embedded systems generally. Nonetheless,

10Previously owned by Google.
11While the size of Android version increase, the compilation time seems to decrease.
12Part of the Android platform-tools https://developer.android.com/studio/releases/

platform-tools
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Figure 2.5: Languages With More Than 1 million Code Lines

multiple differences exist between Android and generic embedded systems. The most
notable of these are:

• Android is based on Linux and provides a filesystem abstraction.

• Android runs on multiple hardwares and implements a Hardware Abstraction Layer
(HAL).

• Android is extensible with applications and offers external developers an SDK.

Nonetheless, Android and AOSP display similarities with embedded systems:

• Android powers mobile devices with limited power.

• Android is connected through various mediums (i.e. WiFi, cellular data, Bluetooth,
NFC).

Moreover, using Android to study embedded systems offers some advantages. With
2,200 projects and close to 1 million files, AOSP is a gigantic open-source codebase. For
example, its size allows studying how an analysis scales on a large codebase.

The ecosystem around Android also makes working with the project scale manageable.
Google developed a tools suite to download, search, and build AOSP. For example, the
build system allows compiling both old Android versions and newer ones on the same
system. Although this tooling was initially created for the platform developers and not
for security analysis, it is adaptable for various needs. Android’s ecosystem vitality
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makes the imminent disappearance of the current tooling unlikely. On the other hand,
it is challenging to keep up with the rapid pace of change.

Finally, from a security viewpoint, Google’s handling of security reports is compelling,
especially for 1-day vulnerability research. The monthly SPL lists all the vulnerabilities
fixed during the last update and it is achievable to leverage this information to construct
a dataset from this data. Our research on this aspect is detailed in Chapter 4.

Because Android is a modified Linux system, it uses a filesystem abstraction. Thus,
the analyses we develop work not only on Android but also on any system offering this
abstraction level. For example, the patch detection system introduced in Chapter 5
could work on Windows. However, this can represent a limitation because it is not
transposable for smaller devices using flat binaries.

2.4 Representation of Code

To reason about programs, the scientific community uses various code representations.
While providing a complete overview of these representations would be interesting, it is
not relevant for the remaining of our work. Instead, we briefly present the Code Property
Graph (CPG) introduced by Yamaguchi et al. in 2014 [141], because it is used in the
following chapters.

CPG are a combination of several code representations that we detail below:

• An Abstract Syntax Tree (AST).

• A Control Flow Graph (CFG).

• A Program Dependency Graph (PDG).

Abstract Syntax Tree

An Abstract Syntax Tree (AST) is an ordered tree representing the code syntax. This
intermediate representation is generally built early by code parsers to encode how code
expressions and statements are nested. They are distinguished from concrete syntax trees
because they no longer represent syntax artifacts irrelevant to the code comprehension
(i.e. grouping parentheses). AST are not only used to derive other code representations,
but also to perform code comparison [27], evolution [84], and summarization [21].

Control Flow Graphs

A Control Flow Graph represents a single procedure code as a directed graph, where
the nodes are the basic blocks and the edges the jumps. CFG are the standard code
representation in disassemblers (e.g. IDA [55]) and have been used for various applications
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like code similarity [117] or malware signatures [15]. In a CFG, each edge is labeled with
the jump predicate, either True, False, or Unconditional. CFG examples are listed in
Figure 1.2a and 1.2b.

Program Dependency Graph

Definition 2.4. A Program Dependency Graph (PDG) represents a program as
a graph in which nodes are statements and predicate expressions, and the edges repre-
sent both the data values on which the node’s operation depends, as well as the control
conditions on which the execution of the operation depends[43].

The PDG is a code representation introduced by Ferrante et al. [43]. Because it
explicitly represents both data and control dependencies, the graph can be used to
detect parallelism or perform program slicing [28]. It has also been used to detect
software vulnerabilities [74] and detect code clones [4].

Code Property Graph

Finally, a Code Property Graph is a property graph combining the three previous
representations inside a single graph. The definition proposed by Yamaguchi et al. is as
follows:

Definition 2.5. A Code Property Graph G = (V,E, λ, µ) is a directed edge-labeled
attributed multigraph constructed from the AST A, the CFG C and the PDG P :

• V is the set of nodes and V = VA.

• E is the set of directed edges and E = EA ∪ EC ∪ EP

• λ : E → Σ is an edge labeling function and λ = λA ∪ λC ∪ λC

• µ : (V ∪ E) × K → S with K a set of properties keys and S the set of property
values is a function to assign properties to nodes or edges.

This model can be used to search for new vulnerabilities, and more broadly, to reason
about specific program properties. The main tool to manipulate CPG is graph traversals,
which are chainable functions used to iterate over the graph’s nodes.

Definition 2.6. A traversal is a function T : P(V )→ P(V ) that maps a set of nodes
to another set of nodes according to a property graph G, where P is the power set of
V [141].

Traversals are used to encode semantic queries inside the graphs. For instance, it
is possible to write a query that searches every function having at least one condition.
In Chapter 5, we use CPG to characterize AOSP patches by looking at the differences
between the CPG generated from a project vulnerable and the one generated from a
fixed version.
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Listing 2.1 Exemplary Code Sample (from [141])
void foo()
{

int x = source();
if (x < MAX)
{

int y = 2 * x;
sink(y);

}
}

UncENTRY Unc
Dx

Dx

DECL True

False

Ctrue

Ctrue

PRED
Unc
Dy

DECL UncCALL EXIT

int =

x CALL

source

<

x MAX

sink ARG

y

int =

y *

x2
PDG Edge
AST Edge

CFG Edge

Figure 2.6: Example of CPG (adapted from [141])
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To illustrate a CPG, we reproduce in Figure 2.6 the CPG derived from the code in
Listing 2.1.
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Figure 3.1: How to Find Patches in Android Devices

As highlighted in Chapter 1, detecting if a piece of software is patched against 1-day
vulnerabilities is crucial to assess system’s exposure to known threats. Indeed, because
of the patch propagation delay or discontinued support, recurrent security patches are
insufficient to prevent these vulnerabilities.

This chapter answers the two main questions illustrated in Figure 3.1. First, it starts
with a survey of existing works on the patch presence test [143]. We conduct an extensive
state-of-the-art review before exposing the remaining open challenges to improve this
problem solution.

A necessary step for researching generic patches on systems is to define patches and
their main characteristics. Section 3.2 leverages a CPG diffing approach for character-
izing AOSP patches. This study allows establishing patches’ common traits that could
be leveraged in a patch probing system.

Then, we introduce a formalization of the FMP and its generalization to the Firmware
Patch Matching Problem (Ξ−FMP) which extends the patch presence test at a firmware
scale (Section 3.3). We also devise a strategy, F-S-M , to solve the FMP in three consec-
utive steps. We continue this chapter by discussing how to build signatures adapted to
F-S-M . Finally, in Section 3.5, we describe our system, QSig, implementing the F-S-M
to solve the Ξ− FMP.

3.1 State of the Art

3.1.1 Introduction

Definition 3.1. The patch presence test checks whether a specific patch has been
applied to an unknown target, assuming the knowledge of the affected function(s) and
the patch itself [143].
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SPAIN [139] ’17 Check Static BinDiff Check Times Times

FIBER [143] ’18 Check Check Static N/A Check Times Check

1dVul [98] ’19 Check Hybrid BinDiff Check Times Times

Patchecko [116] ’20 Check Hybrid N/A Check Check Times

BinXRay [138] ’20 Check Static
Custom

(basic blocks) Check Times Times

BScout [29] ’20 Check Check Static N/A N/A Check Times

PDiff [60] ’20 Check Check Static N/A Check Times Times

Viva [135] ’21 Check Static
Custom

(basic blocks) Check Times Times

QuickBCC [59] ’21 Check Static diaphora Times Times Check

PMatch [70] ’21 Check Check Static diaphora Check Check Times

P1OVD [72] ’22 Check Check Static N/A Check Times Times

Table 3.1: Survey of Various Patch Presence Works.

The main approach to overcome vulnerabilities is patching. However, it is challenging
to ensure that patch propagation follows the code propagation, especially in a timely
manner. Hence, known unpatched vulnerabilities, 1-day vulnerabilities, are a serious
threat. Thus, solutions need to accurately scan complete codebases and perform a patch
presence test [143].

Intuitively, the first idea is to perform a vulnerable code search using techniques search-
ing for unpatched code on source code [66, 75, 134], at an image level [8, 35], or on binary
code [31, 56, 42]. As differences between patched and vulnerable code are often subtle,
these tools cannot distinguish between vulnerable and fixed code and are unreliable to
answer the patch presence.

Table 3.1 surveys works addressing the patch presence problem and lists their main
characteristics. In the following paragraphs, we detail each of these characteristics in
the following paragraphs.
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3.1.2 Inputs: Binaries Only or with Source
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Table 3.2: Inputs Types

Approaches listed in Table 3.1 derive a signature from each patch. A first option is to
use information gathered from the source code to generate this signature, even if the final
objective is to search for patches in binaries [29, 70, 60, 72, 143]. This helps to precisely
pinpoint the changes induced by the patch but asks to also identify the source-to-binary
mapping: how a specific source code line is translated to assembly.

P1OVD [72] uses this approach. It generates a PDG for both source and binary code
and creates a mapping for each node of the former to the latter. After identifying root
instructions, a notion formalized by Zhang et al. [143], the authors perform a function
symbolic execution and extract the AST for each root instruction. Their patch presence
test is two-fold: first, a structural matching is performed to check AST similarities,
and secondly an equation matching is performed verifying condition equivalences using
Z3 [32].

PDiff [60] uses the patch source code information: it compiles the kernel with and
without the patch with debug symbols. They detect the affected function names by
parsing the patch file and use the symbols to detect the function at the binary level.
Then, they generate a patch summary by extracting digests from patch-affected paths
and comparing these digests for the patch presence test.

Relying on the source code for patches restricts the solution’s applicability to vulner-
abilities in open-source components. However, it allows targeting more specific changes.
It is also possible to generate signatures directly from the difference between two bina-
ries [98, 116, 135, 59, 138].
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3.1.3 Static or Hybrid Approaches
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Table 3.3: Approach Types

Binary analysis techniques are divided into two main categories: static and dynamic.
While the frontier between the two types is blurry, we define a technique as static if it
does not directly execute the binary code. Finally, we define an approach as hybrid if it
combines both static and dynamic techniques.

Most works presented in Table 3.1 are static. Indeed, static analyses are easier to
bootstrap because they do not require configuring an execution environment. However,
both 1dVul [98] and Patchecko [116] leverage hybrid approach.

1dVul [98] target-oriented input generation combines fuzzing [49] and symbolic execu-
tion [67] to generate an input crashing the vulnerable program. A candidate is labeled
as patched only if it does not crash when fed the generated input.

Patchecko [116] also uses a hybrid approach. It starts with a deep neural network
to determine whether two candidate functions are similar. Then, it validates its findings
using a dynamic analysis checking if the two traces are semantically equivalent.

While more accurate, dynamic methods are slower and require additional work to set
up an execution environment for unknown code. Moreover, executing code for embedded
devices firmwares without the hardware is an open problem [83].
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3.1.4 Diffing Approaches
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Table 3.4: Diffing Solutions

When starting with two binaries, one of the first tasks to generate a signature for a
patch is detecting within the binary where the patch is located. This can be reduced to
a binary diffing problem in a simplified case: both binaries are similar and differ only in
a few locations. Moreover, most approaches use debug symbols because generating the
signature is an offline process [70, 116].

Thus, the diffing problem resolution is often offloaded to other specialized tools like
BinDiff [147] in Spain [139] and 1dVul [98], or diaphora [62] in QuickBCC [59] and
PMatch [70].

Another approach is to implement a customized diffing approach. For instance,
BinXRay [138] generates a one-to-one basic block mapping between the fixed and vul-
nerable versions. It uses the mapping to recover basic block traces that changed between
the two versions and store them inside a signature. BinXRay detector checks whether
the traces found in the target binary are closer to the fixed or vulnerable trace sets.

Viva [135] also implements a customized algorithm to perform the diffing. To generate
a mapping of blocks from the vulnerable to the fixed binary, it uses a context-sensitive
hash-based algorithm. Then, Viva uses a program slicing technique to build traces that
contain the vulnerability execution path. Of note, Viva follows function calls when
generating a trace to defeat function inlining.
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3.1.5 Signatures Types
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Table 3.5: Signatures Types

SPAIN [139] starts by diffing two binaries. However, it then searches for security
changes within the difference. For such changes, SPAIN summarizes the patch pattern
using semantic traces containing the newly added instructions data flow. Thus, their
signatures are not patch signatures per se, but patch pattern signatures that find similar
patches in other codebases.

Contrary to the other approaches presented here, BScout [29] checks for the presence
of a whole patch in Java executable without generating a signature. It directly uses the
patch and measures the patch line proportion present in the target. However, BScout
only works on Java executable.

Other approaches presented in Table 3.1 generate signatures for each searched patch.

3.1.6 Usage of Machine Learning
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Table 3.6: Usage of Machine Learning

Machine Learning is used for numerous tasks in computer science. Because it shows
promising results for the binary diffing problem [80], several approaches leverage this
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tool for the patch presence problem [29, 70, 116].

PMatch [70] leverages an unsupervised Natural Language Processing (NLP) algorithm
to generate the binary code semantic representation. More precisely, it computes an
embedding from the normalized disassembly using a continuous bag of words neural
network. The Smooth Inverse Frequency (SIF) [6], a sentence embedding technique,
transforms the instruction embedding into a block embedding. Then, they use the
similarity score between the target and fixed embeddings as a patch detector.

3.1.7 Architectures Support
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Table 3.7: Intermediate Representation and Architecture Support

Methods targeting binary code must consider the multiple assembly languages. Two
main architectures coexist, Intel x86, mostly used for desktops and servers, and ARM,
for mobile and embedded devices. Historically, they both used 32-bit address size, but
the hardware evolution has now led to 64-bit address size. A solution for the patch
presence problem can be generic or tailored to a specific architecture.

Another option is to generate a signature on an Intermediate Representation (IR).
Using an IR allows developing methods that work for every architecture supported by
the IR. Moreover, it entails writing optimizations or normalizations passes only once. In
Fiber [143], Zhang et Qian identify root instructions as Data Flow Graph (DFG) leaves
and use them in their signature. Since they perform their analyses on Vex, the IR from
Valgrind [85], their design is architecture agnostic from the start.

QuickBCC [59] generates its signature by hashing Vex IR instructions strands that
changed between the two vulnerable and fixed versions of the binary. The similarity
is performed using n-gram similarity metrics on the removed and added instructions
strands sets. In their work, they also leverage Vex static single assignment property to
reduce the strand generation algorithm complexity.

All other approaches listed in Table 3.1 work directly on the assembler language. Thus,
they often support only a single architecture.

32



3.2. PATCH CHARACTERIZA-
TION

CHAPTER 3. FMP

3.1.8 Conclusion

In this section, we established a survey of the current State of the Art in the patch
presence test domain. Multiple approaches have been presented over the last years using
different techniques. However, multiple challenges remain open such as:

• How to perform a cross-architecture matching?

• How to extend the patch presence test to complete firmware?

3.2 Patch Characterization

Understanding what security fixes are made of is important to identify them in other
workflows (e.g. on silent fix detection, or in patch signature generation). Little research
has been made to formalize and characterize such changes on source trees. In this section,
we introduce a taxonomy of vulnerability fix commits profiles.

3.2.1 Formalization

Let define a project P as a sorted sequence of commits.

P = {c0, c1 . . . , ci−1, ci, . . .}
∆i = P i−1..P i

where ci is a commit with parent ci−1. We denote P i the project state after commit i
and ∆i the difference between P i−1 and P i. This model is simplified and, for example,
ignores branching mechanisms. Yet, it remains sufficient for our needs.

In the CPG (defined in Chapter 2) of a project P , some vertices represent the program
functions f . If we extract the CPG induced by a function root node, we denote it Gf

P .
This is a slight notational abuse1 but it simplifies the following formalization.

While Gf
P is also a CPG, let us only consider V its set of vertices. Let us denote

the node types as Φ = {String, Constant, Call...} and define ψ, a labeling function
associating a type to a node.

ψ : V −→ Φ

v 7−→ {String,Constant, ...}

Let us assume a vulnerability fixed in P by the commit ci. We denote Gfix the graph
GP i , i.e. the CPG of project P right after the application of ci. Thus, GP i−1 corresponds
to a vulnerable state of P regarding this vulnerability, and will be denoted Gvuln.

1We should construct the collection of subgraphs {Gf
P : f function in GP }
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Figure 3.2: Computing N, R and D

We are now interested in the difference between Gvuln and Gfix. To express this
difference formally we consider, for each function f in GP , the following set

Df =
{
(add, ψ(v)) : v a vertice in Gf

fix \G
f
vuln

}
∪
{
(del, ψ(v)) : v a vertice in Gf

vuln \G
f
fix

}
where the first subset corresponds to function f nodes added during the commit ci and
the second one to the deleted ones. Note that this set is empty when no change appears
for f in ci. To be exhaustive, we also consider cases where functions are added or
removed and define the two following sets:

N = {f : f ∈ Gfix \Gvuln} , R = {f : f ∈ Gvuln \Gfix} .

To summarize, the changes of P between ci−1 and ci are represented by the tuple
(N,R,D) for the new (N), removed (R), and changed (D) functions where D = {Df : f ∈
Gfix ∩Gvuln and Df 6= ∅}.

3.2.2 Patch Analysis using a Code Property Graph

To analyze a patch using the method described in the section above, the first step is
generating two CPG [141] for the project: one for the vulnerable state and another one
for the fixed state.

The second step is computing the tuple (N,R,D). Computing the first two elements is
straightforward as illustrated in Figure 3.2, but the third needs more attention. To check
whether the two graphs are equal, a possible method is to compute a graph isomorphism
between them. However, in the generic case, the problem is NP-complete. Since we are
using this step for filtering, we bound the computation time and consider the timeout
as a marker of change.
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Finally, the third and last step considers every function marked as changed. For each
of those, we compute the Df by labeling each new node using ψ. By only considering
node types Φ and not their specific value (i.e. a constant), we lose some information on
the patch but keep part of its semantics. The types Φ are determined using the heuristics
based on the features listed in Table 3.8.

3.2.3 Results Analysis

We use the CVE dataset presented in Chapter 4 as testing data to understand more
deeply the security changes nature in AOSP.

Feature Pertinence At least one occurrence of the features listed in Table 3.8 is found
in more than 99% of the patches. We manually reviewed patches not reporting any of
those and found some unusual changes. For example, the patch for CVE–2016–2464 [88]
only changes a comparison sign from ≥ to >. This modification does not fallback in any
of our features. Yet, this feature set is precise enough to characterize almost all patches.

Patch Locality The correction for a vulnerability is typically local. 76% of the patches
in the dataset are only modifying a single file and 94% are modifying fewer than 5
different files (Figure 3.4). This locality is preserved at the function level as depicted
in Figure 3.5. 58% of the patches change a single function, and this percentage rises
to 85% when we consider patches modifying fewer than 5 functions. These results are
unsurprising, and they align with Li and Paxson [71]. As a security patch aims at fixing
a defect in the program behavior, it can be pinpointed to a specific location (e.g. adding
a missing bound check). However, changes required to fix a vulnerability may be large
in certain cases. For instance, the patch for CVE–2016–3839 [89] changes 100 distinct
functions because it wraps calls to API functions.
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Feature Explanation Example

CAST Cast of a variable (long) x

ASSIGNMENT Assignment of a variable int x = 2

CONDITION Condition x >= 5

CONSTANT Constant 0b1

CALL Call to a function printf()

GOTO Goto statement goto label

STRING Program string "foo"

LOOP Loop structure for ()

SWITCH Switch structure switch {}

Table 3.8: Details of PatchAnalysis features

1
(77%)

2
(13%)2 < x <= 5

(6%)

>5
(4%)

Figure 3.4: Number of Files Affected by a Patch

1
(58%)

2
(15%)

2 < x <= 5
(12%)

>5
(15%)

Figure 3.5: Number of Functions Affected by a Patch
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Patch Shape In our dataset, 99% of patches modify at least one function. This change
is associated with the creation of new functions in 19% of the patches. However, none
of the patches were only deleting code. The results are highlighted in Figure 3.6.

Patch Classification We classify each patch according to the additions and deletions
they display. The results are depicted in Figure 3.7 and Figure 3.8. For 66% of the
patches, the fix included at least a new call. This is, by far, the most common addition
to fix a vulnerability. Following the calls, new conditions (42%), new assignments (36%),
and new constants (34%) are the most frequent changes. An interesting category is the
prevalence of string addition in patches for Android. For 20% of the patches, a new string
is added. This is a specificity of Android as the string often represents a bug identifier
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Listing 3.1 CVE–2020–0101 Patch Extract
1 @@ -264,8 +264,12 @@
2 CHECK_INTERFACE(ICrypto, data, reply);
3 - uint8_t uuid[16];
4 - data.read(uuid, sizeof(uuid));
5 + uint8_t uuid[16] = {0};
6 + if(data.read(uuid, sizeof(uuid)) != NO_ERROR) {
7 + android_errorWriteLog(0x534e4554,"144767096")
8 + reply->writeInt32(BAD_VALUE);
9 + return OK;

10 + }

and is used by SafetyNet2. The categories in Figure 3.7 are not mutually exclusive as
a patch may comprise multiple additions. The Listing 3.1 displays such a case. In this
example, the patch adds two constants, two calls, and one condition.

In this section, we analyzed the difference induced by the patch at a source level and
found patterns that could help classify most patches. However, the source code is often
missing for a firmware and binary only patch characterization could still be useful.

3.3 Firmware Matching Problem

Due to the patch propagation delay or discontinued support, recurrent security patches
are insufficient to prevent 1-day vulnerabilities on end user devices. Finding which
patches are missing is crucial to assess a system’s exposure to known security threats.
In this section, we introduce and formalize the Firmware Matching Problem (FMP) and
expose our strategy to design an efficient solution.

2https://developer.android.com/training/safetynet/
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3.3.1 Problem Layout

In this section, a firmware W is defined as a finite collection W = {P0, . . . , Pn} of
programs where a program P is abstracted as a collection P = {f0, . . . , fm} of functions.
Clearly, firmwares are composed of more than binary programs such as configuration or
data files. However, these do not impact our analyses, and therefore are safely ignored
in this rest of this chapter.

Definition 3.2. The Firmware Matching Problem (FMP) is stated as follows. For a
given firmware W and a function specific version fs, find the largest subset P ⊂ W such
that ∀P ∈ P, fs ∈ P . The problem also asks to identify precisely the function fs positions
in P .

If the function specific version of Definition 3.2 is a function after the patch application,
the FMP can be extended as a patch presence test systemization to a firmware. Thus,
with a slight notation simplification, we consider the FMP in this context and search if
a function is patched.

To solve this problem, we will need some clues to determine the presence of a specific
function version. More precisely we define the following:

Definition 3.3. For a given function specific version fs, a corresponding signature S
is a collection of artifacts that could identify fs among a large set of functions.

The practical definition of signatures is central to answer the FMP. Indeed, they repre-
sent the patch fingerprint, and they are the only element used to assess a patch presence.
To guide the patch probing on a system, the signatures should contain information on
both the patch itself but also on the patch surroundings. In the following example, we
present some possible signature artifacts.

Example 3.1. For a given function fs, artifacts could be:

• its enclosing binary name (to find candidate binaries);

• the function name itself or the calls to external libraries (to find candidate functions
within a binary);

• a set of constants used by a function (to determine its version)

3.3.2 F-S-M: Filtering, Selecting, and Matching

A naive process for solving the FMP would test every function in every program
in the given firmware W. Such an approach is impracticable for a firmware containing
thousands of binaries. We thus introduce another strategy addressing the problem which
relies on three consecutive steps (Filtering, Selecting, and Matching), named F-S-M and
described hereafter, pruning successively the search space. The strategy is depicted in
Figure 3.9.
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Figure 3.9: F-S-M : Solving the FMP in Three Steps

Filtering The filtering is our first step for solving the FMP. It aims at identifying
the programs containing the target function fs in a given firmware. This step is crucial
to efficiently address the FMP because fs is present in, at most a few programs of W.
This step is straightforward when the vulnerability affects a function in an executable
or a shared library but requires additional work when it affects a static library (e.g.
CVE–2018–9497).

This filtering step is formalized in Equation 3.1. It takes as input (W,S) where
S is the signature corresponding to fs that has to be identified in W. The filtering
function returns a set P ⊂ P listing the candidate binaries. Thus, a signature must hold
information about the program containing the function to complete this step. Of note,
2P represents the power set of P.

Filtering : W× S −→ 2P

(W,S) 7−→ P = {P0, . . . , Pn}
(3.1)

Selecting The selecting stage is our solution’s second step. For each of the binaries
Pi ∈ P filtered by the first step, it selects a binary function subset for the final matching
step. Within the programs set ∪P∈PP , the selector searches the target function fs. Thus,
by denoting F as the set of all the functions, this step is formalized in (3.2) where the
output is a set F of candidate functions.

Selecting : 2P × S −→ 2F

(P,S) 7−→ F = {f0, . . . , fm}
(3.2)

Because at this stage, the function version is still unknown, the selector must contain
function invariants that remain valid for any function version. Designing this part is
delicate because missing the target functions yields inconclusive matching results. Con-
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Figure 3.10: Typical Patch Breakdown

versely, selecting too many functions increases the likelihood of getting false positive
results.

Matching The final FMP stage is performing the matching step. From the functions
selected at the selecting step, the matcher determines whether the candidate function
is patched. This last phase is the core of a solution to the FMP thus various strategies
have been used to address it in the literature. If we denote the result set as R then the
matching can be described as the function (3.3). Recall that a result R is not only a
boolean but some information concerning the functions fs localization in the Pi.

Matching : 2F × S −→ R
(F ,S) 7−→ R

(3.3)

In conclusion, our process can be synthesized by the application of the three steps in
Equation 3.4. As one can see again, the signature importance is reflected in its use at
every step of our proposal.

Matching(Selecting(Filtering((W,S),S),S)) (3.4)

3.3.3 Firmware Patch Matching Problem

Definition 3.4. A patch is a finite collection of function changes. They can span over
multiple binary files.

The FMP focuses on matching a single function in a firmware. Nevertheless, patches
for real-world vulnerabilities are more complex and may require changes in multiple
functions over multiple files. A generic patch breakdown is presented in Figure 3.10.
Thus, the underlying problem is to find a patch on a given firmware.

Definition 3.5. We define the Ξ−FMP for a firmwareW and a patch F = {fs1 , . . . , fsk}.
It finds the largest subset P = {P0, P1, . . . Pn} ⊂ W such that ∀P ∈ P, ∃f ∈ F such that
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Listing 3.2 Solving FPMP from FMP
def solve_FPMP(W, F):

for ft in F:
list_P_f = Filtering(W, Sft)
for P in list_P_f:

sel = Selecting(P, Sft)
for f in sel:

sol = sol + Matching(P, Sft)

f ∈ P . The problem also asks to identify precisely the targeted functions fsi positions in
the corresponding programs P .

The Ξ − FMP is a generalization of the FMP. Thus, we establish a strategy to solve
the Ξ − FMP by applying our FMP solution to each patch function. This algorithm is
described in Listing 3.2 where Sf denote the signature corresponding to a function in F .

3.3.4 State of the Art and the FMP

The patch presence test is a well-studied problem in literature. At the beginning of
this chapter, we surveyed several state-of-the art studies. However, none of them fully
tackle neither the Ξ − FMP problem nor FMP. Table 3.9 displays each work position
on the challenges raised by the two problems. Thus, additional work is still required to
provide a complete solution to the problem.

3.4 Vulnerability Signature

Signatures are involved in every step of our procedure to solve the Ξ − FMP. Their
design is paramount for our algorithm efficiency. The following section describes their
implementation. We illustrate how to build signatures for a Ξ − FMP solution in a
practical context with the CVE–2018–9506 [92], already used as the motivating example
in Chapter 1.

3.4.1 Semantic Function Invariants

To be relevant in various syntactic contexts (e.g. different architectures, compilers. . . ),
a signature should consider changes resilient across syntactic transformations. Table 3.10
lists various target features at a binary level and their associated resilience through
various binary transformations. For illustration, the call graph is stable between different
compilers (unless a function is inlined). On the contrary, the number of basic blocks is
compiler and architecture dependent but remains when stripping the binary from its
symbols.
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FMP FPMP

Filtering Selecting Matching Multiple
Functions

SPAIN [139] Times Check Check Check

FIBER [143] Times Times Check Times

1dVul [98] Times Times Check N/A*
Patchecko [116] Times Check Check Times

BinXRay [138] Times Check Check Times

BScout [29] Times Check Check Check

PDiff [60] Times Times Check Check

Viva [135] Times Check Check Times

QuickBCC [59] Times Check Check Times

PMatch [70] Times Times Check Times

P1OVD [72] Times Check Check Times

QSig Check Check Check Check

Table 3.9: FMP in the State of the Art

*1dVul generates a crashing input.

Compiler
Static

Dynamic Arch. Stripped

Strings Check Check Check Check

Constants
≈

(spilling) Check
≈

(splitting) Check

Call Graph
≈

(inlining) Check Check Check

Conditions Check Check Check Check

Names (exports) Check Times Check Check

Addresses Times Times Times Check

# Basic Blocks Times Check Times Check

# Instructions Times Check Times Check

Function names Check Check Check Times

Table 3.10: Reliability of Selected Features Through Various Binary Transformations
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The features listed in Table 3.10 presents some resemblance with the features described
in Section 3.2. Indeed, we reuse all features that translate from the source code to the
binary code. However, some features (e.g. cast) are challenging to distinguish at the
binary level since variable types are lost during the compilation. We also consider binary
only features (e.g. the number of basic blocks) that do not exist at the source level.

The term semantic refers to the meaning of language constructs, as opposed to their
form (i.e. syntax). While the features described above do not utterly understand the
construct meanings, they are syntax agnostic. Thus, with a slight notation abuse, we
call them semantic features.

3.4.2 Signature Layout

To tackle the Ξ−FMP using the F-S-M solution, we need to store in a signature the
information to solve each step. Thus, the signature structure is nested and can be seen
as matryoshka dolls for each abstraction level as depicted in Figure 3.11.

For the outmost layer, the patch level, the signature includes data on how to solve
the filtering step, i.e. identifying whether the candidate binary is valid. For the file layer
used in the selecting step, the signature contains function invariants that are identical
in both target function versions (the vulnerable and fixed one). Finally, at the function
layer, the information to solve the matching step is stored.

3.5 QSig: An Implementation Solving the FMP

We implement our proposal solution to solve the Ξ − FMP in QSig. This section
overviews this two-fold tool, describes the signature content, and details its relevant
implementation particularities. QSig is open-sourced and available on GitHub [19].

Definition 3.6. A target binary T is a candidate binary for a signature S.
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Figure 3.12: QSig Architecture

Definition 3.7. A target function f is a candidate function within a target binary.

In summary, QSig performs the following algorithm. A signature is generated from
the difference between a function in a vulnerable state fv and fixed state fp. While
applying a signature S on a target binary T , we first try to find f among the functions
in T and then assess the state of f to verify whether the patch has been applied.

3.5.1 Tool Architecture and Overview

QSig is a system composed of two complementary components depicted in Figure 3.12.
The first one, the generator, takes as input two binaries, the same program in a vulnerable
and patched version, and generates a signature from the difference between the two. The
second component, the detector applies the F-S-M solution on a firmware.

As our features are based on the patch semantic, it is possible to generate a signature
from an architecture (e.g. x64) and to match a binary on another one (e.g. aarch64).
Adding other architectures requires little engineering effort and our tool already supports
x86, x64, ARM, and aarch64.

3.5.2 Filtering Binaries

The signature includes data on how to solve the outmost layer: the filtering step which
identifies whether a candidate binary is suitable. Our default filtering algorithm is simple
yet effective: it only considers the name and the target binary type. In general, using
the target name is enough for the filtering part. For instance, if an analyst searches a
patch for a curl vulnerability, probing for the curl binary presence on the firmware is
usually sufficient.
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Feature Explanation

NAME Function name (if present)
INDEX Function index in the binary
SIZE Function size
STRINGS Strings used
CONSTANTS Constant profile
LIBRARY CALLS List of calls to external libraries

Table 3.11: Features to Locate a Function Inside A Binary

However, this straightforward process fails when the patch affects a static vulnerability
(Chapter 6). In such case, a name-based filtering step does not work because the static
library and final target names differ. QSig’s modular system allows us to change it for
Android’s phone firmwares and to use BGraph (Section 6.7).

3.5.3 Selecting Functions

Before identifying whether a target function f has been patched, the first step is
to locate this function inside a binary. Recall that the binaries we are dealing with
are usually without symbols, so the function names are missing and cannot be used.
However, we can leverage similar invariants as those used in the matching part. We also
add the following ones, described hereafter.

• NAME: The function name is an accurate marker of a function but is only present
for exported functions.

• INDEX: A compiler has no reason to reorder the code during the compilation so the
index (i.e. its position inside the binary) should remain stable.

• SIZE: A function size is a rough estimate of its complexity and only marginally
changes when functions are slightly updated.

• LIBRARY CALLS: calls to external libraries represent a good estimate of function
behavior and are effortless to recover.

Precisely identifying the function location inside a binary is paramount for the final
results. Missing the target function in this step leads to incorrect results at the end of
the process. On the contrary, selecting too many functions increases the risk of false
positives matches since QSig’s signatures are somewhat generic.
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Listing 3.3 Small Difference Function
def small_difference(x: int, y: int) -> float:

"""Returns a number between [0, 1]"""

if x == y:
return 1.0

else:
return min(abs(x), abs(y)) / max(abs(x), abs(y))

The features used by the selector are divided into three categories based on their
return value type. Each return type is handled differently to produce a similarity score
for this specific feature.

• When the return type is a number (i.e. function size, index), we use the small_difference
method displayed in Listing 3.3.

• When the return type is a string (e.g. function name), we compute the score for
the feature using a Levenshtein distance.

• For features returning sets of values, we use an inclusion index.

For every function, each feature is evaluated and assigned a score in the [0, 1] interval
using one of the three functions presented and then aggregated. This yields a final score
for each function and the n highest ranked are selected. The algorithm is described
in Listing 3.4. We discuss the features pertinence along with the choice of n, i.e. the
number of selected functions, in the Evaluation Section 5.2.

3.5.4 Matching a Function Version

Intuitively, a characteristic representing the function semantics remains across compi-
lation transformation. For example, the newly added call to android_errorWriteLog
is present in both CFG (Figure 3.13). We leverage those invariants to create a signature
and detect whether a target binary is patched.

QSig uses the features underlined in Table 3.10. To pick QSig features, we leverage
the patch analysis results at the source code level presented in Section 3.2. Recall that
the most frequent changes were the additions of calls (66%), conditions (42%), variable
assignments (36%), and constants (34%). If new strings were found in only 20% of the
patches, they are effortlessly recoverable in binary code and thus make an uncomplicated
addition. Of note, these features are also relevant for our use case because they are
resilient against most natural binary transformations.
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Listing 3.4 Selecting Algorithm
def selector(target: Function, candidate: Program, n: int) -> list[Function]:

"""Select the *n* highest ranked functions in candidate"""

# Iterate over every function in candidate
scores = {}
for function in candidate:

scores[function] = (
inclusion_index(function.strings, target.strings)
levenshtein(function.name, target.name)
inclusion_index(function.calls, target.calls)
inclusion_index(function.constants, target.constants)
small_difference(function.size, target.size)
small_difference(function.index, target.index)

)

# Sort the functions by score (highest first)
scores = sorted(scores.items(), key=itemgetter(1), reverse=True)

# Select the n first
selected_functions = []
for function, _ in scores[:n]:

selected_functions.append(function)

return selected_functions
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Figure 3.13: CVE–2018–9506 associated CFG for x64 (a) and aarch64 (b)
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General

Binary libbluetooth.so
Functions 9,322

All constants

Functions 7,288
Unique profile 5,468
Percentage 75%

(0x1000, 0xEFFF)

Functions 1,889
Unique profile 1,774
Percentage 93%

Table 3.12: Constant Prevalence in Binary Code

Strings

Strings are a common code characteristic and are recoverable easily in binary code.
While they can be obfuscated in some adversarial settings, our application domain does
not consider this threat.

Finding the difference between the strings in fv and fp is immediate from the disas-
sembly. To increase the search efficiency, utilities (e.g. strings) can also find the strings
used by a binary program without disassembling.

QSig’s signature for the string feature contains the strings present only in the fixed
version. For the example in Figure 3.13a, it would be the string "111803925" which is
added by the patch.

Limits. Overall, this feature is stable and resilient. However, it fails when a patch
adds a string already contained in the vulnerable function. Indeed, it may be impossible
to count them as the new occurrence may be merged with the previous one as a compiler
optimization.

Constants

Binary code uses constants extensively. Table 3.12 illustrates the constant distribution
in a typical binary. Moreover, they are resilient against most of the binary transforma-
tions listed in Table 3.10. However, there is an issue when considering constants from
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ARM. Since the assembly has fixed length instructions, constants may be split into two
parts and then reconstructed. An example of such behavior is displayed in Figure 3.13b,
where the constant 0x534e4554 is loaded in two parts. The first part loads the lower
16 bits with movz and the second part uses movk with a left shift. To circumvent this
limitation and to still recover constants across architectures, we normalize every 32 bits
constant in two 16-bit parts.

Another limit while searching and finding constants is the prevalence of small constants
(e.g. close to 0 or 0xFFFF). Indeed, lower constants are used for syntactic reasons such as
resetting a register, allocating space on the stack or shifting values. In those contexts,
they do not convey enough information to be used for matching purposes. The constants
unique profile rate represents the percentage of functions in a binary having a unique
signature for their constant distribution. When considering all constants (e.g. from 0 to
0xFFFF), this rate is at 75% as illustrated in Table 3.12. However, when restricted to the
smaller interval, the rate reaches 93%.

For each normalized constant present in either fv or fp, QSig signature contains a
tuple with:

• its value, i.e. 0x1234

• its occurrence count in fv;

• its occurrence count in fp.

Listing 1 displays the algorithm to match constants. It uses the normalize function
splitting 32 bits constants into 16 bits constants.

Algorithm 1 Procedure to Match Constants

def match_constants(f, S):
# Mapping of constants with occurrence
counter = Counter(cst for cst in normalize(fconstants))

for (cst, countvuln, countfix) in S:
# Constant added in fix
if countvuln == 0:

r = counter[cst] > 0
else: # When found in both version

r = countvuln < counter[cst] <= countfix

if r is False:
return False

return True
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Calls

A binary Call Graph (CG) [108] is a directed acyclic graph representing inter-procedural
relationships. The graph nodes represent functions and an edge from A to B exists only
if A calls B. Thus, for each node, we define an in-degree (resp. out degree) which is its
number of predecessors (resp. successors). Multiple calls towards B from within A do
neither change the function degrees nor the graph.

The call feature highlights changes made to the call graph during a patch and we store
information about each newly called function. Recall that we do not have the binary
symbols to help the identification of callee functions. To retrieve those, we leverage the
features presented in 3.5.3.

Matching of new calls raises two main problems. The first one appears when the patch
adds a call to a function previously called in the same function. Sometimes, two distinct
calls will appear in the binary code, but compilers may merge them. The second one
is to deal with thunk (small functions used as trampolines). Indeed, since we store the
degrees of a function, a thunk will have an out degree of 1 towards its target. To cope
with this issue, we consider the degrees of the underlying function (by dereferencing the
thunk function).

QSig signature contains a tuple for each new call containing:

• the callee information;

• the in-degree of the callee function;

• the out degree of the callee function;

• the caller count, i.e. the number of times this function is called by the caller.

Listing 2 displays the algorithm to match calls in QSig. The get_degrees function is
a helper function to retrieve the degrees of a function.

Conditions

Definition 3.8. We call a condition a comparison between two elements, themselves
called the condition terms. The second term may be implicit (e.g. 0).

If the syntax of conditions varies across different assembly languages, the compared
element types are themselves a semantic invariant. For example, in the diff presented
in Chapter 1 (Listing 1.1), the condition if (p_pkt->len < AVRC_AVC_HDR_SIZE) compares
a function argument (p_pkt) with a constant (AVRC_AVC_HDR_SIZE). The assembly code
generated by this code keeps the same properties, i.e. cmp ebp, 2 compares the value of
ebp, a value set from r14 which is a function argument, and 2, a constant.
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Algorithm 2 Procedure to Match Calls

def match_calls(f, S):
all_degrees = {(targetin, targetout) for target in fcalls}
calls_count = {fcalls.count(target) for target in fcalls}

for callee in Scalls:
if (calleein, calleeout) not in all_degrees

and calleecount not in calls_count:
return False

return True

We consider four origin types for the terms.

• CONSTANT: A constant value.

• CALL: A call return value.

• ARGUMENT: A function argument.

• UNKNOWN: Default origin if not enough information is available.

To distinguish between different called functions, constant values, and arguments, each
origin type is kept with a value. Moreover, a term may be tainted by several sources.
For example, the addition of a call return value with a function parameter. Thus, a term
origin label is a sequence of origin types.

Let us use Figure 3.14 which depicts a CFG for the start of a function, as a support
for our examples.

• Comparison (1) compares the return value of the call to func_2 with a hard-coded
constant. Therefore, the labels associated with this comparison will be {(CALL
0), (CONSTANT 10)}.

• Comparison (2) compares the value of two registers. Analyzing the data flow of
these two registers unveils their link to the function arguments, held into edi and
esi register. Therefore, the labels are {(ARGUMENT 0), (ARGUMENT 1)}.

• Comparison (3) compares eax and a memory cell. As the content of this cell is
unknown, we are unable to determine this term’s origin. Therefore, the labels are
{(CALL 0), (UNKNOWN)}.

To recover the origin of an element, we developed a relaxed and unsound Abstract
Interpretation (AI) framework which is detailed in 3.5.5.
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ebx, ecx
al
eax, al
eax, 3

cmp
setnl

movzx
add

push
push
mov
mov
call
cmp
jg

rbp
rbx
rbx, edi
rcx, esi
func_2
eax, 0Ah
short loc_1149

eax, [rbp+0x100]
al
eax, al
short loc_1146

cmp
setnle
movzx

jmp

(1)

(2) (3)

Figure 3.14: CFG Annotated with Origin-tainting

QSig signature contains a tuple with the following information for each new condition:

• the first term origin and value;

• the second term origin and value;

• the number of conditions of the same type.

Listing 3 displays the algorithm to match conditions. It starts by trying to find an ap-
propriate mapping from signature labels to target function labels (function yield_mapping).
This function is needed because it allows to also tackle patches adding a function argu-
ment or where the calls order is different.

3.5.5 A Relaxed Abstract Interpretation Framework

Abstract Interpretation (AI) is a general purpose static analysis framework [26] lever-
aging data flow analysis to propagate domain informations on program locations. These
domains encode arbitrary properties (i.e. sign, intervals). By design, AI computes a se-
mantic invariant of a program on such domains3. We decided to use an AI framework to
leverage its efficient data flow fixpoint algorithm that we needed for our origin tainting
system. By relying on a semantic solution, we thwart the syntactic-based approaches’
limitations using name pattern recognition.

3Defining precisely AI is out of this work scope.
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Algorithm 3 Procedure to Match Conditions

def match_conditions(f, S):
sig_counter = Counter(cond for cond in Sconditions)
for mapping in yield_mapping(flabels, Slabels):

counter = Counter()

for sig_cond in sig_counter:
for target_cond in fconditions:

if equal(sig_cond, target_cond, mapping):
counter[sig_cond] += 1

if is_included(counter, sig_cond):
return True

return False

Implementing an AI framework from scratch is a tremendous task. Thus, QSig uses
the off-the-shelf BinCAT4 [11], a mature and maintained framework. However, AI strives
for soundness: a result is guaranteed to be correct. It will quickly discard information,
using a widening operator, to accelerate convergence.

On the other hand, we wish our tainting algorithm to work with partial information.
Moreover, our signature detection system is opportunistic and does not need to abide by
safety constraints used in critical industries. On a side note, as both parts of the system,
the generator, and the detector, use the AI framework, an error is not problematic if
repeated.

At the top of existing algorithms, we performed the following relaxations tailored for
our needs, using the tool mechanisms. They might break soundness but improve the
coverage and efficiency of the algorithm for our purposes.

• Skip function calls and only taint the return value: this relaxation allows scaling
the system because the execution time of the algorithm is now linear with the
instructions count. This is implemented using the fun_skip mechanism in BinCAT.

• Avoid following backward edges and immediately widen the state: AI deals with
loops by trying to find a fixed point. However, it is not always feasible and thus a
widening (e.g. taking an upper bound) may be required, at the cost of precision.
This could have been implemented using the unrolling mechanism already present
in the framework, but was performed using a new function has_ip.

• Ignore silently non-decoded instructions: an AI framework does not necessarily
implement every instruction in the set, and some may be left undecoded or unim-

4With minor modifications.
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plemented. We decide to simply skip these instructions to improve coverage. This
relaxation needed additional work as the skip mechanism present in the frame-
work needs to be configured before the execution. We modified the framework to
recover from a failed decoding instruction, and advance the instruction pointer to
the next one. For architectures with variable length instructons, this process is
optimistic.

For QSig, we use the tainting domain of BinCAT containing 5 elements (⊥, U, S ofT,>),
where:

• U is Untainted;

• S ofT is a set of possible tainting sources;

• ⊥ is bottom;

• > is top.

Each program location (memory cell and register) is initially untainted and may end
up tainted by multiple sources.

Our algorithm starts by creating a tainting source [25] for every function argument
location. We then create an initial state fully unconstrained (every value set at >) to
reach all possible states. The target function is then fully emulated using the relaxation
aforementioned.

3.6 Conclusion
This chapter introduced our thesis first two key contributions. The first one is a

formalization of the Firmware Matching Problem along with a strategy to solve it, the
F-S-M . The second one is our system presentation, QSig, which implements the F-S-M
to tackle the problem at a firmware scale using semantic patch signatures.

If we complete Figure 3.1 with the developments presented in this chapter, we obtain
Figure 3.15 where QSig’s two parts and the PatchAnalysis have been added.

However, to assess QSig strengths, we need to run experiments on sufficient data. To
this extent, we introduce in the following chapter our dataset based on AOSP vulnera-
bilities.
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Figure 3.15: Finding Patches Using QSig
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To test the approach developed in the previous chapter and benchmark state-of-the-
art, we need exhaustive and representative data to conduct experiments. This chapter
starts by exploring solutions used in the literature to assess source and binary security
research before exposing the remaining open challenges. Then, we introduce how to
create a common base leveraging Android Security Bulletins at the source level and
precise at a commit granularity to tackle them. Finally, we extend this source-code
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Figure 4.1: Creating a Dataset for 1-day Detection

information into binary artifacts to allow binary only testing.

In the context of this thesis, the dataset is used both to gather enough information
for understanding drawing a typical patch identity card from real-world vulnerabilities,
and to test QSig’s pertinence and applicability.

4.1 Vulnerability Datasets

Definition 4.1. A dataset is a structured artifact collection of data aimed at helping
to solve a set of problems.

Vulnerability research or detection requires a representative dataset of vulnerabilities
for validating their approach and estimating its pertinence1. Contrary to the Com-
puter Vision field where the MNIST dataset [33] is a standard, there exists no universal
benchmark in the information security domain.

Datasets are multipurpose projects. On one hand, they allow researchers to check
how their hypotheses react in real but controlled settings. On the other hand, they also
permit benchmarking various solutions to compare them to the same baseline. In this
section, we discuss several approaches available to a security practitioner.

4.1.1 Standard Tests Suites

The National Institute of Standards and Technology (NIST) Software Assurance Met-
rics And Tool Evaluation (SAMATE) project is dedicated to improve software assurance.
The Juliet Test Suite [14, 13] is a collection of synthetic test cases for C/C++, Java, and
C# built by the National Security Agency (NSA) and part of the SAMATE initiative.

1Conan Doyle wrote “It is a capital mistake to theorize before one has data.”
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CWE 118
Variants 1,327
Test files 46,747
C LoC 4,969,879
C++ LoC 3,487,852

Table 4.1: Juliet 1.3 Breakdown

The tests cover over a hundred Common Weakness Enumeration (CWE). Originally de-
veloped for security vendors, its usage has also spread to academia [45, 125] as a baseline
for static analysis tools comparison.

To comprehend the scale of Juliet dataset, we list some figures in Table 4.1. Each
CWE contains multiple test cases, subdivided themselves into variants. In each test,
both the good (i.e. correct) and bad (i.e. incorrect) behavior coexist. It is possible to
use Juliet test cases with Static Application Security Testing Tools (SAST), but also to
compile them and use binary only tools.

Using test suites has several advantages over using code from natural sources:

• The dataset includes every problem instance under consideration.

• The ground truth is perfectly known in the beginning and creates a baseline. It
requires no further processing for understanding if the match is a false positive.

• Since the tests are crafted, the flaw locations are known. Thus, it is possible to
report a miss even if all tools failed.

However, test suites still suffer from important limitations. Due to their synthetic
nature, the authors knowledge limits the test suite exhaustivity. If they forget about
a vulnerability class, the test suite cannot cover it. More importantly, defects may not
represent real problems. For instance, in one of the test cases displayed in Listing 4.1, the
integer overflow impact could be disputed since the result is only printed. Finally, the
test suite cases are necessarily short and cannot be representative of real-world software
complexity that can reach millions of code lines.

4.1.2 Synthetic Datasets

To test and compare bug finding works, another approach has been to inject artificial
bugs into real-world programs. This approach corrects a major limitation of test suites
where programs are unrealistic. By injecting them deep inside the control flow and
making them hard to trigger, it ensures that they are only discoverable by design and
not accidentally.
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Listing 4.1 Excerpt of
CWE190_Integer_Overflow__int64_t_fscanf_square_17
for(j = 0; j < 1; j++)
{

{
/* POTENTIAL FLAW: if (data*data) > LLONG_MAX,
this will overflow */
int64_t result = data * data;
printLongLongLine(result);

}
}

A prominent work using this approach is Lava [34]. They find an execution point
where a user-controlled input (e.g. a buffer) is used by a potential attack point (e.g. a
call to memcpy). By altering the original code line, they can inject a bug that can only be
triggered using a determined precondition. Their approach applies to various bug types
although they only implement one (out-of-bound memory accesses).

Magma [53] enhances this approach and addresses Lava’s limitations by forward
porting bugs from older to newer software versions. This allows to increase the bug
density and diversity because they come from real sources. Magma covers 118 bugs
from seven programs but lacks Proof of Vulnerabilities (PoV) for 55% of them, making
it hard to use as a ground truth for experiments.

The Cyber Grand Challenge (CGC) [30] was a Defense Advanced Research Project
Agency (DARPA) challenge to create Cyber Reasoning System (CRS) to automatically
identify software flaws, formulate patches, and deploy them on a network in real-time. Its
corpus represented realistic programs for a simplified Linux system. Darpa distributed
each challenge with an input crashing the program (Proof of Vulnerability (PoV)). After
the challenge final, this corpus served as a ground truth for several experiments [142,
111, 73, 127]. However, because crafted only for a simpler OS, its programs are suc-
cinct. Thus, they represent an excellent first step, yet insufficient to bridge the gap for
Commercial-Off-The-Shelf (COTS) binaries.

4.1.3 Using Real Vulnerabilities

To create a ground truth for experiments, a potential solution is to convert a vulner-
ability list into a dataset. All works presented in this section share this approach and
start with the CVE database from NVD, a project supported by the NIST.

Akram and Ping [3] highlighted in 2020 the need to develop a vulnerability benchmark
to "help users and developers to have a deep understanding of the security flaws and
weaknesses in software systems". They parse the CVE list, and for each entry, search
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for a link to a fixing commit. If they find a link to a supported platform, they analyze
the page to retrieve the patch. Their approach has several advantages. Most notably,
it is language agnostic and encompasses every project using CVE to report defects.
However, the published dataset only contains vulnerable files, affected by a CVE but
not the corrected file and is only partially published 2.

CVEFixes [10] listen to JSON vulnerability feeds from NVD server to monitor new
vulnerabilities. Its authors process each entry with a link toward its patch to associate it
with its CWE. A database stores the approach’s results and is freely reproducible from
their GitHub3. While language agnostic, they require information on the fixing commit
which limits their project. This also stands for Akram and Ping work.

These automated methods rely on the processed data quality. On the other side,
Ponta et al. [100] manually curated a dataset of 624 public vulnerabilities, affecting
205 open-source Java projects used by SAP. By manually selecting and verifying each
vulnerability, they ensure a high-quality dataset that suppresses the inconsistencies in
the NVD feed.

The CVE benchmark from the Open Security Software Foundation [9] not only manu-
ally selects vulnerabilities but also annotate each source code to pinpoint the responsible
line that caused the vulnerability. This manual process is tedious and not always feasi-
ble: it is easier to pinpoint the place of a buffer overflow than the code causing a race
condition. The initial release only supported Javascript and TypeScript vulnerabilities,
but they are extending it to other languages (C, C++, . . . ).

Finally, in PatchDB, Wang et al. [129] not only collect patch information from NVD
metadata, but also develop several methods to increase their dataset size. Their first
which relies on a nearest link search algorithm on patch features. It classifies every
patch as security or non security and a security expert manually reviews the candidates
to include them in their dataset. Their second method uses an oversampling algorithm
to generate artificial patches at the source code level.

4.1.4 Conclusion

This section has presented approaches that considered how to systemize testing new
security experiments. These approaches are either synthetic or natural, on source code,
binaries, or both, and with an explicit ground truth or a constructed one. However, they
either lack exhaustivity, target specific languages, or are challenging to maintain over
time. We present our approach solving these issues in the next section.

2https://github.com/znd15/file_level_granularity
3https://github.com/secureIT-project/CVEfixes
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Type Categories example

General Framework, Media Framework, System, . . .
SoC Qualcomm Model, MediaTek Kernel, . . .
Linux Kernel ALSA, Kernel USB, . . .

Table 4.2: Components Examples from Bulletins

4.2 Rationale of Using AOSP for a Dataset

In the previous section, we described existing vulnerability datasets. However, they
all suffer from limitations, which are addressed with our Commit Level Dataset, like
synthetic code, handcrafted vulnerabilities, small size. . .

Using AOSP and the Android Security Bulletins offers several advantages compared
to previous works to build a vulnerability dataset.

• AOSP is the heart of a largely entirely open-source OS and the bulletins cover
most of its components. Notably, it creates a coherent vulnerability set because
each of them affects the same system.

• Billions of users use Android, and vulnerabilities fixed in each version potentially
affect millions of customers. This code runs in the real-world contrary to synthetic
datasets where vulnerabilities are artificially created.

• Moreover, the vulnerabilities in AOSP are de facto representative because re-
searchers discover them in the codebase. Thus, they are neither more complex
nor simpler.

• Finally, as Android Security Bulletins are published regularly, vulnerabilities in
our dataset are always up to date and will automatically contain examples for new
vulnerabilities classes if they affect the system.

4.3 Android CVE Data Aggregation

This section details the architecture developed to build Androids CVE list. While all
the needed information is already available online, our work focuses on automatically
aggregating data present in numerous locations to expose them in a structured manner.

4.3.1 Android’s Security Bulletin

Since August 2015, Google publishes advisories on issues fixed in the last Android
release, through the Android Security Bulletin Monthly Release. Initially called Nexus
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CVE References Type Severity

Updated
AOSP
Version

CVE-2021-0640 A-123455677 EoP High 9, 10, 11
CVE-2021-0645 A-123455677 EoP High 11
CVE-2021-0646 A-123455677 EoP High 8.1, 9, 10, 11

Table 4.3: August 2021 Bulletin Extract

Security Bulletin and only targeting Nexus devices4, they have been renamed as An-
droid Security Bulletins in May 2016. Google’s bulletins are usually divided into two
SPL, themselves divided into categories to facilitate their understanding. Examples of
categories are listed in Table 4.2. Finally, each category contains a list of vulnerabilities.
A list entry contains the following information:

• the CVE identifier, e.g. CVE–2021–0640;

• the vulnerability type, e.g. Elevation of Privilege;

• the severity, e.g. High;

• the updated AOSP versions, e.g. 11;

• a direct link to the fixing commit if the component is open-source.

Table 4.3 shows an August 2021 bulletin extract.

Google is not the only OEM publishing monthly security bulletins, and various man-
ufacturers also publish similar bulletins (e.g. Samsung, LG, Oppo). For example, LG’s
bulletins contain the monthly Android Security Bulletin, and add information on vul-
nerabilities fixed for their devices with some details. Oppo bulletins only list CVE
identifiers.

4.3.2 Crawling Security Bulletins

We created Roy to crawl Android Security Bulletins. Its architecture is depicted in
Figure 4.2. For each new bulletin since the last run, Roy recovers the new vulnerabilities
list. If a link towards a fix commit exists, Roy also parses the changes provided by the
commit (e.g. changed files). To reduce the workload, Roy works in an incremental
process: an already parsed bulletin is never reanalyzed. Thus, the parser complexity
remains stable over time because we solely need to maintain one for the last bulletin
version.

4Google-branded devices but built by other manufacturers.
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Figure 4.2: Roy’s Architecture

While thorough, bulletins are not complete, and we can augment the data with addi-
tional information, available from other sources. For example, using, CVE-Search [37],
an open access CVE database, it is possible to augment the data for each entry.

Crawling web pages is challenging as they are not primarily designed for automated
consumption. The main predicament lies in the ever-changing bulletin format. Keeping
the parser up to date requires a regular maintenance effort. Furthermore, the bulletin
data is unstable, and fields are subject to change, usually just restricting the available
information. For instance, bulletins after June 2017 remove the discovered date field.
To keep our entries consistent, we use additional sources to retrieve the information.

4.4 Generating Binary Artifacts

Not all the code running on a device is open-source, and vulnerabilities equally affect
closed source components. Therefore, developing and testing solutions (e.g. Dynamic
Application Security Testing Tools (DAST), SAST or CVE-checkers) working in binary
only environments is paramount. This section describes how we use the commit precise
dataset to build a binary level dataset.

Thanks to the Android Security Bulletins, we know the precise commit in which a
vulnerability is fixed. We assume that before this fixing commit, the project is in a
vulnerable state, and in a fixed state starting from the commit application in the tree.
This is depicted in Figure 4.3. To be more precise, the project is in a vulnerable state only
during the time between the commit introducing the vulnerability and the commit fixing
it. Since automatically detecting whether a project is vulnerable is tedious, we assume
here that the project is at least vulnerable since the previous version. This assumption
is reasonable, as we are only considering vulnerabilities with a CVE identifier affecting
released projects.
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Let us consider two arbitrary points of a project life, one during the vulnerable state
and one during the fixed state. If we compute the difference between these two program
states, the vulnerability patch will be among the changes. However, extracting from a
larger change set the modifications fixing the vulnerability is tedious. To overcome this
issue, we choose to take our points closer to the fixing commit: one direct parent of the
commit for the vulnerable state, and the fixing commit itself for the fixed state. This
allows to precisely pinpoint the changes at the binary level coming from the vulnerability
patch.

4.4.1 Automated AOSP Building

AOSP is a target well suited to provide pre-compiled binaries for the vulnerabilities.

• The project is open-source, and provides a documented build system.

• Thanks to Roy and the Android Security Bulletins, we have vulnerability infor-
mation, precise to a commit level.

• AOSP targets multiple architectures, allowing the generation of multiple binaries
for a single vulnerability.
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To automate the process, we developed a solution, named AOSPBuilder whose
workflow is depicted in Figure 4.4. It compiles the binaries at the commits just before
and just after the vulnerability fix. The inputs to AOSPBuilder is a fixing commit
hash, obtained from Roy. Then, it builds the project both with the fixing commit, and
without it. Finally, we only keep the binaries that differ between the two builds. To
reduce noise introduced by compiler optimizations, we keep the same settings between
the two builds.

Building AOSP at a Specific Commit

Building AOSP at a specific commit is challenging. First, building past project states
(i.e. not versions) is demanding. To be successful, we need to reconstruct the whole de-
pendency chain needed by the project (compiler version, libraries used. . . ) at that time.
Even if AOSP is self-contained, for both its toolchain and all its project dependencies,
this remains challenging. As we need to identify the correct version of each built project
dependency. A second problem arises from either bogus commits preventing the project
compilation, or fixes applied to former development branches. In this case, we cannot
obtain binaries differing by precisely one commit, and we use other strategies detailed in
the following paragraph. Finally, even a single Android version in AOSP remains huge.
Building parts of it repeatedly is costly in time, computational power, and space.

Build Diffing

After building the project twice, for the fixed version and for the vulnerable one,
we search for the changes between the two versions in the compilation artifacts. For
this, we leverage a common build system optimization designed to spare resources: a
target is only recompiled if one of its dependencies has changed. By rebuilding in
place, we leverage this property for our build diffing system. We describe its algorithm
in Listing 4 where Pvuln (resp. Pfix) represent the program artifacts built with the
vulnerable commit (resp. fixing commit). These two sets are a superset of the project
binaries as AOSP interdependent projects make it necessary to compile multiple ones to
obtain the expected target.

Vulnerability Building Strategies

We use two strategies to build the binaries of a project in both the vulnerable and
fixed versions. The first is to checkout the project at a vulnerable commit, e.g. a fix
commit parent, build the project, then checkout to the fix commit itself and rebuild
the project. This is the preferred strategy since it is the most precise. However, it is
unsuited if the project compilation fails in its vulnerable state. The second strategy uses
the opposite approach. It builds the project at the version state (one from Android),
and then reverts the fixing commit on the project before compiling again in a vulnerable
state. If reverting the commit succeeded, this strategy fixes the problem of the first
strategy.

66



4.5. DATASET OVERVIEW
AND ANALYSIS

CHAPTER 4. VUL-
NERABILITY DATASET

Algorithm 4 Build Diffing Algorithm
1: procedure BuildDiff(P )
2: Build Pvuln

3: Hvuln ← {(f, hash(f)) |∀f ∈ Pvuln}
4: Build Pfix

5: Hfix ← {(f, hash(f)) |∀f ∈ Pfix}
6: for all f in Hfix ∪Hvuln do
7: if Hfix[f ] 6 Hvuln[f ] then
8: Save fvuln and ffix
9: end if

10: end for
11: end procedure

The success rate of compiling vulnerabilities is around 65%. Indeed, the multiple
problems listed above are not always solvable automatically and would require manual
intervention. Nonetheless, it helped us to create a large dataset we detail in the following
paragraphs.

Dataset Artifacts

For each vulnerability, we consider the build process to be complete, if it produces
the relevant binaries in both forms (fixed and vulnerable) for each of the four archi-
tectures (x86, x86_64, arm, arm64). We also keep the binaries with debug symbols
(i.e. unstripped) if they are available.

Finally, we use heuristics relying on the source code using ctags universal [107] to guess
the names of every function affected by a patch. While these heuristics are unreliable for
edge cases (e.g. a change in a macro, or incomplete support of C++ templates), they give
a baseline for further analyses. More importantly, compiler optimizations (e.g. function
inlining, tail call) may change the function layout and merge affected functions inside
others at the binary level. To improve the identification of functions changed between
the two builds, we also use BinDiff [147]. Because we are close to a perfect setting,
BinDiff results allow to precisely identify the changes inside the binaries.

Figure 4.5 presents an artifact extract for a precompiled vulnerability. We prefix every
file by its SHA256 hash to prevent name collisions.

4.5 Dataset Overview and Analysis

In this section, we detail our datasets, both at a source level and at the binary level.
We also discuss some of their usages and limitations.
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CVE-2017-0738 
(1d919d737)

X86 X86_64Arm ARM64

FixVuln FixVuln FixVuln FixVuln

6e6d6c2[...]_libbundlewrapper.so

ae4c026[...]_libbundlewrapper.so
 

7e8e7da[...]_libbundlewrapper.so

fd9556f0[...]_libbundlewrapper.so
 

functions.json

Figure 4.5: Extract of Artifacts for CVE-2017-0738

4.5.1 At Source Level

The source-level dataset contains the 3,903 CVE listed in the bulletins between August
2015 and March 2022. Their repartition is detailed in Figure 4.6. The closed source
vulnerabilities affect Qualcomm’s, NVIDIA’s, or Google’s components. We retrieved
the fix commit id for 1,359 open-source vulnerabilities (64%). We support gitiles [50],
the platform used by Google for the AOSP’s versioning, while other platforms such as
GitHub, kernel.org, or CodeAurora would need additional engineering effort. 35% of the
vulnerabilities present in our dataset have a CVSS score of at least 9.0. Their CVSS
score cumulative distribution is presented in Figure 4.7.

Figure 4.8 shows the CVE distribution over the years. While the bulletins start in 2015,
we considered the Published Date entry for each CVE. As they are fixed in subsequent
patches, some earlier CVE are nonetheless listed. The report numbers decrease for closed
source projects after 2017-2018, explaining the drop on the graph. The data for 2022 is
shown until March 2022 Android Security Bulletin.

A single commit is enough to fix most vulnerabilities, as illustrated in Figure 4.9.
This is the case for 84% of the dataset. However, a patch may be split into numerous
commits. The one for CVE-2015-3873 [87] affecting libstagefright in Android reports
20 fixing commits.

4.5.2 At Binary Level

To provide a set of binaries to the community, we managed to precompile hundreds
(612) of vulnerabilities. Complementary to our source-level dataset, this helps practi-
tioners bootstrap their research for binary only works or cross-architecture experiments.
This dataset is also available on GitHub.

68



4.5. DATASET OVERVIEW
AND ANALYSIS

CHAPTER 4. VUL-
NERABILITY DATASET

CVE

3903

Closed
source

1800

With
commit

1359

Without
commit


744

Unknown

46

Java

377

C/C++

936

Open
Source

2103

Figure 4.6: Vulnerability Dataset Repartition

2 4 6 8 10
0

1000

2000

3000

# 
C

V
Es

Figure 4.7: Cumulative CVSS Scores

69



4.5. DATASET OVERVIEW
AND ANALYSIS

CHAPTER 4. VUL-
NERABILITY DATASET

2015 2016 2017 2018 2019 2020 2021 2022*
0

200

400

600

800

1000

CVEs with commit CVEs without commit

# 
of

 C
V

E

Figure 4.8: CVE Evolution Over Time

1746

269

48
19
21

1 2 3 4 >=5

Figure 4.9: Fixing Commits per Vulnerability

70



4.5. DATASET OVERVIEW
AND ANALYSIS

CHAPTER 4. VUL-
NERABILITY DATASET

Category Mean Median Standard dev.

Unstripped 12.3 MiB 2.7 MiB 40.2 MiB
Stripped 17.7 MiB 623.8 KiB 128.2 MiB

Table 4.4: Binaries Sizes in Dataset

Name Count

libbluetooth.so 953
bluetooth.default.so 748
libnfc-nci.so 650
libstagefright.so 421
net_test_btif 417
net_test_stack 299
hevcdec 268
libaudioflinger.so 242
libbinder.so 234
libmedia.so 229

Table 4.5: Most Common Binaries

Based on file extensions, our dataset contains shared libraries (35%), object files (37%),
and executables (13%). The largest file is libv8 (1.6 Gb), the static library of v8, a
JavaScript engine. Several metrics are also listed in Table 4.4.

Table 4.5 lists the top 10 most common files found in the dataset. They mostly repre-
sent complex OS parts (e.g. wireless communications, and media management), partic-
ularly targeted by attackers. For instance, the most common file is libbluetooth.so,
found 953 times.

4.5.3 Potential Usages

We provide this dataset, both at the source and binary level to support data driven
software security research. In the following paragraphs, we list several types of research
that could benefit from such a dataset. Although not exhaustive, we believe it is still
relevant to illustrate its applicability.
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Patch Characterization Our vulnerability dataset lists issues affecting various com-
ponents of the same OS. It enables to conduct research aiming at characterizing what
a common patch looks like and drawing an identity card. For example, Farhang [41]
or Li [71] could have benefited from our data. We also presented in, Section 3.2, our
experiment to characterize patches using CPG.

Silent Fix Detection Not all security patches are labeled as so. A frequent practice
is to silently fix a vulnerability without an explicit notice [128, 145]. While appeal-
ing to vendors to avoid bad publicity or to delay the development of 1-day exploits,
silent patches create security risks for dependent projects. Indeed, keeping an up-to-
date dependency chain is hard, and project managers must prioritize between all the
dependencies updates. By not labeling an update as security related, the update can
be overlooked and thus leaving end users at risk. Our dataset enables training solutions
both using the commit message (e.g. using Natural Language Processing algorithms) or
analyzing the commit impact on the code to better detect hidden security fixes.

Cross-architecture Binary Diffing/Matching An important and common task for
reversers is to understand what changed between two versions of a binary or to port anal-
ysis results from one architecture to another. As our dataset contains the same binaries
in different architectures, it enables research on cross-architecture binary matching [137,
140], where an application maps two code snippets from different architectures together
if they have the same semantics. Because they are compiled from the same source code,
two binaries for the same vulnerability share their semantics. Moreover, some binaries
in our dataset are present multiple times in different versions. They are interesting
examples for cross-architecture binary diffing [78, 36], where the objective is to find a
mapping between functions in the first binary to the second one. These applications are
an interesting extension of our dataset because they are not using the fact that some
binaries are vulnerable while others are fixed.

Patch Detection Finally, our dataset creates a base to test tools aiming at solving the
patch presence problem [66, 143, 138]. By isolating the difference between the vulnerable
and fixed version of the same binary, it enables the creation of signatures to detect if a
target binary has been patched. This is one of the main usages of this dataset, and we
provide in Chapter 5 an explanation on how to use it in this context.

Decompilation To improve decompilation, approaches have been made to treat it as
a NLP problem [47, 64]. However, these neural networks require huge datasets for their
training which are not always available. Using ours for addressing these problems is
attainable, as both source code and binaries are available.
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4.5.4 Dataset Limitations

Component Diversity The main limitation of our dataset stems from the compo-
nents used: they are all open-source. While numerous components are open, some parts
(e.g. low-level firmware code, and drivers for specific hardware) remain closed, and are
thus not considered in our dataset. This blind spot may lead to a lack of examples for
complete classes of vulnerabilities.

Single Point of Failure Our dataset exclusively relies on Google’s commitment to
regularly publishing Android Security Bulletins. If Google stops the publication of new
bulletins, or restricts their accessibility, our dataset will stop growing because as that
prevent us from updating it with the latest vulnerabilities. Thus, our data relevancy
would slowly fade as it would become outdated. Nonetheless, the current dataset and
until the potential last Google bulletin, will remain usable.

Data Quality Our dataset implies that the commit referenced as a vulnerability fixing
commit is complete, i.e. completely fixes the vulnerability, and minimal, i.e. it does not
fix any other problem nor add functionalities. Detecting if both assertions hold is left
unchecked, as orthogonal to this research. Automated patch verification is a different
subject that could leverage studies on Automatic Exploit Generation [16, 57, 136].

4.6 Conclusion
None of the limitations hamper our approach validity. On the contrary, our dataset

could serve as a baseline for building future works to overcome these limitations. For
instance, our data are extensible by analyzing other bulletin providers or considering the
CVE feed from the NVD.

Constructed from the interaction between AOSP and the Android Security Bulletins,
our dataset features about 3,900 different vulnerabilities, with more than 1,300 associated
with their fixing commit. This is one of the world’s largest vulnerability datasets and it
is effortless usable for various researches in multiple contexts.

In the context of this thesis, the work presented in this chapter serves two objectives.

1. It lets us gather a large ensemble of patches at both the source and binary level.
This allows conducting an extensive study on real-world patches for vulnerabilities
affecting most of an OS already presented in Chapter 3.

2. It permits us to generate some signatures for 1-day patches and we use them as
inputs for our QSig patch probing system.

Thus, the final work schema is upgraded in Figure 4.10 with the two new components
developed in this chapter: Roy and AOSPBuilder.
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QSig, a semantic patch signature detection system, was introduced in Chapter 3. This
system is composed of two components: a signature generator generating a signature
from the difference between two binaries and a detector applying a signature onto a
filesystem using the F-S-M strategy also presented in Chapter 3.

In this chapter, we discuss how QSig’s parameters can be tuned, and the default
settings used by the system. Then, we assess the pertinence of QSig’s features, the
system accuracy and efficiency by comparing it to various other approaches from the
literature. Notably, we demonstrate QSig’s ability to truly considering the patch se-
mantic by working in a cross-architecture setting: signatures generated on x64 are used
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Figure 5.1: Patch Detection Evaluation

This chapter does not improve the schema presented in Figure 5.1 because it only
evaluates the solution presented before.

5.1 Parametrization

QSig is a modular system, and its hyperparameters are adjustable to different con-
texts. We discuss in this section our default choices.

5.1.1 Selector Parameter

The selector selects n functions from a target binary as candidates for the final match-
ing step. If n = |{f ∈ T}|, i.e. we select all functions, the correct one is certainly in the
selected ones. However, QSig matching signatures are not specific enough to only trig-
ger on the correct candidate (e.g. several functions may exhibit a comparison between
their first argument and a specific constant). On the contrary, if n = 1, the chance of
missing the correct function increases. Thus, we need to carefully choose n.

To help us choose the selector default parameters, we used the dataset presented in
Section 5.2.2. It consists of vulnerabilities detected in a Pixel 4 phone firmware image1.

1A more precise description of the dataset is available in Section 5.2.2.
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When n = 1, the selected function is correct for 95% of the signature, and we have a
few false positives (FP).By selecting 50 functions in each binary, the correct function is
in the selected set in 100% of the cases, but 126 false positives occurs also. Therefore,
we chose n = 3 in the evaluation. In this example, the correct one is always selected,
and we only have 7 FP as illustrated in Figure 5.2.

A potential improvement for QSig would be to consider a dynamic n that changes
with the binary function count or the signature expressivity. Intuitively, selecting fewer
functions in a smaller binary and more when the signature expresses characteristics for
all features would potentially improve QSig accuracy. This is not yet developed but will
be integrated into a future iteration of QSig.

5.1.2 Matchers Parameters

QSig matcher uses the four features underlined in Table 3.10 (strings, calls, constants,
conditions) but patches may only exhibit a subset of them. If the running example
presented in Figure 1.2 shows a complete patch to illustrate the features choices, it is
not typical.

The analysis presented in Section 3.2 showed that 79% of the patches in AOSP had
at least one of these features at a source level which hints the features’ pertinence. For
the 5772 vulnerabilities considered, QSig finds a difference and generates a signature

2See Section 5.1.5
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Figure 5.3: Feature Types

Function Valid Invalid
Success

Rate

any 25 1 96%
majority 21 5 81%
all 7 19 27%

Table 5.1: Choice Function Selection for Matcher

for 74% of the cases. The most common change signed is the CALL difference, which is
present in 81% of the signatures as depicted in Figure 5.3.

Only a subset of AOSP patches exhibits the four features. Only 55% of the signatures
exhibit strictly more than one feature. The exact distribution is depicted in Figure 5.4.

5.1.3 Matcher Results Combination Choice Function

QSig uses four features in the matching phase. However, they are not always all
present. Thus, QSig considers each feature as an independent test function, and aggre-
gates the results afterward. This strategy allows considering contradictory results, when
the test results for two features are contradictory.

We evaluate three aggregation strategies:

• any: accepts a result if any feature reported a positive match;
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• all: accepts a result if all features reported a positive match;

• majority: accepts a result if at least half features reported a positive match.

Table 5.1 displays the results of the experiment on a dataset part. A result is valid
if the match result using this strategy was the expected one. The best combination
function is any. If our features are hard to detect and may have changed (e.g. a compiler
may have decremented a constant used by a condition), the presence of at least one is a
sufficient indicator of the patch presence.

5.1.4 Complete Patch Presence Test

A vulnerability patch may spread over multiple functions, in different binaries. 21%
(309) of the signatures generated in Section 5.1.5 affect at least two binaries. 645 of the
2,109 impacted files present modifications in at least two functions. The CVE–2016–2412
patch includes 81 functions modifications.

While QSig inner matcher works at a function level, its objective is to assess whether
a firmware is fully patched for a vulnerability. Thus, if a patch is made of multiple
functions, to assess the end user security, we need to find the change in every affected
function. Therefore, we combined function matcher results with the all strategy at a
patch level.

5.1.5 Signature Generation

To validate QSig, we generate a signature on all 612 vulnerability signatures compiled
in Chapter 4. The first step is to identify which functions have changed at the binary
level. For this task, we use BinDiff [147], which resolves the binary alignment problem
by comparing the call graphs of two executables [44].
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Architecture CVE Signatures Functions Success Rate

X86 377 1072 61%
X64 371 1273 60%
ARM 401 1069 65%
ARM64 339 938 55%

Unique 459 1652 74%

Table 5.2: Signature Generation

For each compiled vulnerability, we search for changed functions with BinDiff. Since
we have the symbols on the vulnerable and fixed binary, we only look at functions
matched with a high confidence but a similarity score strictly below one. Using BinDiff,
we found differences in 85% of the vulnerabilities (577).

Finally, we generate one signature for each architecture in a vulnerability. The gener-
ation results are presented in Table 5.2. In this experiment, QSig generated signatures
for 74% of the vulnerabilities for which BinDiff reported a difference.

5.2 QSig Evaluation

To assess the usability of QSig for real-world scenarios, we test it in various contexts.

• On the CGC dataset for comparing it against 1dVul [98].

• On unmodified Pixel 4 firmware images.

• On a Debian Live image, a test case used by QuickBCC [59].

• On a stock AOSP version compiled for x86, the only architecture supported by
PMatch [70].

This also demonstrates QSig versatility and adaptability to different use-cases.

5.2.1 Precision

QSig aims at distinguishing vulnerable from patched functions. Since 1dVul [98]
uses the CGC binaries [30] for their work evaluation, we also use it for assessing QSig
precision.
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Correct Incorrect Success
Percentage

Patched functions 250 3 99%
Vulnerable functions 212 41 84%

Total 462 44 91%

Table 5.3: QSig’s Accuracy

Total QSig 1dVul Increase

Changed functions 348 253 209 +21%
Patch detected 348 250 130 +92%

Table 5.4: Comparison of QSig and 1dVul

In the CGC dataset, a binary is present in both a vulnerable and in a patched version.
We check the match result between our signature and the two versions. A result is
correct if the two following statements are true.

1. The signature matches the patched version.

2. The signatures do not match the vulnerable version.

Table 5.3 shows the test results. QSig’s signatures are correct in 91% of the cases
and only 3% of patched functions are not found.

QSig uses a static and semantic approach to solve the FMP. On the opposite, 1dVul [98]
leverages a dynamic solution to answer the same problem. We compare both approaches’
result on 1dVul’s dataset as their tool is not available.

The 1dVul authors report generating 209 target branches for the dataset, from the 126
binaries on the 348 functions changed at a binary level. QSig generates a signature for
253 functions (21% improvement) demonstrating our approach’s effectiveness. Moreover,
1dVul only generates an input for 130 targets to detect a patch where QSig finds 250
of them (92% more). These results are summarized in Table 5.4.

Not only QSig outperforms 1dVul, it also demonstrates that QSig’s static approach
is more effective to answer the patch presence test.
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Before 2020.01 CVE–2018–9547 CVE–2018–9506 CVE–2019–1996 CVE–2019–2009
CVE–2019–2133 CVE–2019–2134 CVE–2019–2179 CVE–2019–2187
CVE–2019–2202 CVE–2019–2220 CVE–2020–0006 CVE–2020–0007

After 2020.01 CVE–2020–0018 CVE–2020–0037 CVE–2020–0070 CVE–2020–0072
CVE–2020–0105 CVE–2020–0256 CVE–2020–0257 CVE–2020–0385

Table 5.5: Vulnerabilities List

Feature TP TN FP FN Pr. Rec. NA

Strings 22 12 - - 1 1 9
Constants 19 3 - - 1 1 21
Calls 10 3 4 15 0.71 0.40 11
Conditions 1 2 - - 1 1 40

Match 28 12 1 2 0.97 0.93 -

Table 5.6: QSig’s Matching Results (aarch64 to aarch64)

TP: True Positive TN: True Negative FP: False Positive FN: False Negative
Pr.: Precision Rec.: Recall NA: Not Applicable

5.2.2 Assessing Android Phone Firmware

We assess QSig adequation for real-world workloads with the following experiment:
we search 40 patches on a Google Pixel 4 with an off-the-shelf firmware version.3. We
split those 40 patches from 20 vulnerabilities into two groups:

• Group 1: Patches expected to be on the firmware.

• Group 2: Control group composed of patches posterior at the update.

The vulnerabilities used are listed in Table 5.5.

Table 5.6 and Table 5.7 presents the matching results for both same and cross ar-
chitecture settings. It validates QSig’s approach to find patches with great accuracy.
Moreover, the results are similar in the two settings and QSig maintains precision for
cross architecture matching (0.97 vs. 0.81).

The test results for the call features are below the three other ones. Indeed, recovering
the changes in the call graph is tedious. We can only rely on the functions in and out

3QQ1D.200105.002, Jan 2020
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Feature TP TN FP FN Pr. Rec. NA

Strings 21 12 - 1 1 0.95 14
Constants 13 3 - 1 1 0.93 31
Calls 2 6 3 23 0.40 0.08 14
Conditions 2 4 - 4 1 0.33 38

Match 21 13 5 9 0.81 0.70 -

Table 5.7: QSig’s Matching Results (x64 to aarch64)

TP TN FP FN Pr. Rec.

QSig 21 13 5 9 0.81 0.70
PMatch 4 12 0 26 1.0 0.13

Table 5.8: QSig’s Matching vs PMatch

degrees and we must also identify the source or targets of these calls to accurately match
them which is error prone in our context.

Moreover, we also compare QSig results with PMatch [70] using the default settings
provided by PMatch authors’ implementation using the same patches as the previous
test. Since PMatch only supports x86 assembly code, we compile the Pixel 4 Android
version for this architecture. To provide a fair comparison, we implement the PMatch
filtering and selecting steps ourselves and only draw a comparison on the matching
stage. The results are displayed in Table 5.8. PMatch only discovers 4 patches while
QSig discovers 21 of them. However, PMatch has a better precision because it does not
yield any false positive results.

5.2.3 QSig’s Efficiency

Another key point to consider when developing a solution is to reduce the friction for
end users. In our use case, reducing the feedback delay when assessing whether a device
is fully patched is crucial. For this experiment, we compare QSig with QuickBCC [59],
another tool for finding patches. Since their code is not available, we reproduce their
experiment and search for 5 patches in a Debian 9 live image and list the results in
Table 5.9. Scanning the Debian 9 live ISO image for 5 vulnerabilities takes about 3 min
on a single core4 without caching any results. Our results are three magnitudes faster
than QuickBCC [59]. For the dry run, QuickBCC needed 533 minutes to match their

4Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz
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Dry Run Cached

QuickBCC QSig QuickBCC QSig

Run Time 8h 53m 34s 3m 09s 3m 24s 2m 11s
Preprocessing time 8h 53m 19s 1m 9s 1m 34s 8s
Preprocessing time
(per file in ms)

5,692 13 19 1

Matching time (s) 15 108 110 117
Matching time (per
file in ms)

3 20 3 21

Matching time (per
signature in ms)

0.01 3.95 0.01 4

Table 5.9: Comparison of QSig’s and QuickBCC Efficiency

signatures on 5,500 binaries from Debian 9 live image while QSig only needed 3 min.

Disassembling using IDA Pro [55] takes about half (52%) of the total time. This time
is paid only once and the disassembly for subsequent runs is cached. Still, QSig is
approximately 50% faster than QuickBCC after caching the preprocessing.

Nonetheless, QuickBCC generates one more signature than does QSig. CVE–2018–19841’s
patch [91] modifies how an array is accessed. Because this change is subtle in binary
code and undetected by QSig features, our system cannot generate a signature for this
patch. Thus, the results in Table 5.9 only consider 5 vulnerabilities.

5.2.4 Results Stability Over Time

To demonstrate QSig stability over time, we select a vulnerability from each bulletin
between October 2019 and March 2020 and generate their respective signature. We then
download the six Google Pixel 4 images for the same period (October to March) and try
to match all signatures for each of them. We report in Table 5.10 a match with a check
and the absence of a match with a circle. The color indicates if the answer is correct.
QSig’s results are perfect. It does not find a patch before its application and finds them
in every subsequent version after the patch release.
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2019 2020

Oct. Nov. Dec. Jan. Feb. Mar.
CVE–2019–2187

(Oct. 2019) Check Check Check Check Check Check
CVE–2019–2202

(Nov. 2019) ○ Check Check Check Check Check
CVE–2019–2220

(Dec. 2019) ○ ○ Check Check Check Check
CVE–2020–0006

(Jan. 2020) ○ ○ ○ Check Check Check
CVE–2020–0018

(Feb. 2020) ○ ○ ○ ○ Check Check
CVE–2020–0037

(Mar. 2020) ○ ○ ○ ○ ○ Check

Table 5.10: QSig’s Results Over Time

5.3 Limitations and Discussion

5.3.1 Threats to Validity

Adversarial Transformations

In Table 3.10, we consider only the features’ resilience against natural function trans-
formations that are not specifically forced but due to different software versions or regular
software evolution. Adversarial transformations, specifically targeted towards hiding the
features QSig searches, would vastly undermine QSig’s utility.

It is uncomplicated to create such transformations. For instance, encoding the strings
in the binary is enough to break the string feature. However, we dismiss this limitation
by stating that vendors have no interest in hiding their patches.

Signature

QSig’s signatures rely on four binary semantic invariants and the system generates
a signature when a change is reported for at least one of them. This is the case for
74% of the vulnerabilities in our dataset. Naturly, when QSig does not find differences,
it does not generate a signature. For instance, CVE–2016–2464 [88] patch modifies a
comparison sign from ≥ to >. This change can be translated in multiple ways at a
binary level (e.g. a mnemonic change, a constant decrement) and is not supported by
QSig’s features.

To cover the remaining patches where QSig was unable to generate a signature, ad-
ditional features must be developed. This is the main axis for QSig improvements and
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a path for future works.

Tainting Algorithm

The tainting algorithm we developed is a substantial improvement over a syntactic
approach like VIVA [135] because it follows the instruction semantics.

However, the algorithm only analyzes a single function, and ignores calls during the
execution. This relaxation improves the algorithm performance. Nonetheless, this yields
incorrect results in some cases. For example, in a call to memcpy(*dest, *src, n), the taint
should be propagated from the src to the dst argument. Failing to propagate the taint
results in an important loss of information.

To partially solve this problem, a solution would implement a stub library to propagate
taint results for widely used functions (e.g. the libc).

Patch Completeness

While QSig assesses a patch presence, it cannot draw any conclusion about the vul-
nerable status of the analysis target. Finding a patch is insufficient to conclude that the
target is not vulnerable. Indeed, the correction may not completely fix the vulnerabil-
ity [71]. On the contrary, not finding the patch does not prove the system’s vulnerability.
For instance, the patch may affect an unused or removed code portion.

This patch validity problem is orthogonal to this research. Hybrid approaches like
1dVul [98] check if they manage to crash the candidate binary with their generated PoV.
However, they require extensive settings to execute real-code in a controlled environment.

5.4 Conclusion
In this chapter, we discussed QSig parametrization choices and evaluated them against

various approaches in the literature. QSig is faster than other approaches while yielding
more accurate results than other works. We also demonstrated it truly captured the
patch semantic by performing seamlessly cross architecture matching.

QSig is a versatile system and can be adapted to specific workflows. In this chapter,
we successfully applied it for three OS: Linux, Android, and Decree. In the follow-
ing chapter, we introduce a novel filtering step to improve the detection of patches on
Android devices. Finally, QSig is open-source and available on GitHub5.

5https://github.com/quarkslab/qsig
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AOSP’s build system, Soong [52], allows analyzing component interdependencies by
constructing and using Unified Dependency Graph (UDG) [40]. Considered from a se-
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Figure 6.1: Build Dependencies for the Patch Detection Problem

curity perspective, these dependencies enable understanding vulnerabilities propagation
through the system. This chapter describes the challenges faced during this graph con-
struction and its potentials usages.

In the context of this thesis, we use these Build Graphs to enhance the filtering step
of QSig when searching for patches in Android devices. Providing this information to
QSig allows the system to also detect patches applied to statically embedded libraries.
This use case is depicted in Figure 6.7 and detailed in Section 6.7.

6.1 Build Graphs

Modern software and large projects resort using build systems. Build systems au-
tomate not only the creation of software binaries but also sibling processes such as
packaging or running tests. They offer an abstraction for developers for cumbersome
and error prone tasks. The historical first build system was the GNU Autotools with
the make command. Several other tools were adapted for various workflows over the
years: either generalist tools such as Bazel or tools tailored to specific languages such
as Gradle for Java. In this manuscript, we are interested in exploiting the build scripts
to understand the dependencies in large systems.

To drive these build systems, developers write build scripts in the appropriate format
(i.e. Makefile). However, developing these build scripts is substantial and error-prone
and bugs in build scripts are common. In Seo et al. study [113], dependency issue was
the most common build failure reason (50% of C++ build-errors). Debugging these
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Listing 6.1 Extract of a Compilation Database
[

{ "directory": "/home/user/llvm/build",
"arguments": ["/usr/bin/clang++", "-Irelative", "-DFOO=bar", "-c", "-o",

"file.o", "file.cc"],↪→

"file": "file.cc"
},

{ "directory": "/home/user/llvm/build",
"command": "/usr/bin/clang++ -Irelative -DFOO=bar -c -o file.o file.cc",
"file": "file2.cc" },

]

errors is tedious, as they stem from inconsistencies between declared dependencies and
actual dependencies [40]. Thus, techniques to help developers have been introduced.

6.1.1 Compiler Builtins

Analysis tools based on the C/C++ AST need full information on how to parse the
source code. During the compilation, a compiler will generate this information, but it is
not easily extractable by other tools. To improve reusability, compiler engines or build
systems may generate a compilation database, a record of which compile options are
used to build the files in a project. For instance, this option is available in CMake
since version 2.8.5 or in Ninja since version 1.2. An extract of a compilation database is
presented in Listing 6.11.

A compilation graph is not a Unified Dependency Graph (UDG), and it requires
further post processing to transform the former into the latter. Nonetheless, it already
provides the information required to recover the dependencies between build targets and
source files. However, generating a compilation database using an unsupported toolchain
is demanding. Therefore, additional techniques, not relying on this file, have also been
proposed in the literature.

6.1.2 Static Dependency Graph

Another option to recover build dependencies is to analyze the content of the build
scripts. This approach is implemented in SYMake [118], which uses a symbolic evalu-
ation algorithm to create a symbolic dependency graph. SYMake allows users to detect
code smells and improve their confidence while refactoring some codebase parts. How-
ever, since SYMake only analyze Makefile, it is to only finding declared dependencies
and cannot reason about missing ones.

1Example from https://clang.llvm.org/docs/JSONCompilationDatabase.html.
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Parsing soundly build definitions is not always feasible. For example, Makefile rules
can be dynamic (e.g. depending on an unknown input set) or non-deterministic (e.g. de-
pending on another command output). Furthermore, it implies writing a parser for each
supported build system. SYMake is the sole work statically analyzing build scripts.
Every other approach used either dynamic or hybrid techniques.

6.1.3 Dynamic Dependency Graph

As analyzing statically build scripts is tedious, other approches instrumented the
building environment. Makao [2] uses the build script output to recover every target
dependency before converting them to a graph but its definition is not formalized. This
approach scales well because Makao generates a graph for an entire Linux kernel build
but is tailored for make output.

Licker and Rice [76] infer a dependency graph by tracing system calls. Their approach
works for any build system because any persistent data must be used as an argument to
a system call. However, their implementation has some limitations. For example, Java
build systems use the compiler as a library and not in a separate process. Thus, every
project source file is an input and every generated artifact an output of the same node.
It therefore creates an under constrained graph.

6.1.4 Hybrid Dependency Graph

Detecting missing or redundant dependencies between the declared definitions and the
real build system requires analyzing both parts statically and dynamically.

Sotiropoulos et al. [114] build on the ideas of Licker and Rice [76] and instrument calls
to library functions using strace. Their approach is tailored for Puppet, a configuration
management tool. Their approach detects faults such as Missing Ordering Relationships
when a resource is accessed before its creation or Missing Notifier when a dependency
link is missing between a configuration file and its configured service. Their detection
system searches for discrepancies between the instrumentation results and the build
definitions parsing.

Another hybrid approach is from Fan et al. [40]. They formalize the UDG and imple-
mented its creation in a tool named VeriBuild. An UDG is defined as follows:

Definition 6.1. A Unified Dependency Graph (UDG) is a directed graph UDG = (V,E)
where V is the set of nodes and E is the set of edges.

• V = VT t VF where

– VT is the target node set (e.g. libraries, binaries);
– VF is the file node set (e.g. source and headers files).
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• E = ESD t ESS t EDA t EDS

– ESD (Static Dependency): specified in build scripts
– ESS (Static Spawn): output files for a target
– EDA (Dynamic Access): files accessed during the build
– EDS (Dynamic Spawn): files built during the build

The tool works in two successive steps. Step one analyzes the build scripts to generate
a dependency graph. In step two, this graph is then augmented by the build instrumen-
tation output. Mixing these two techniques allows them to detect whether a dependency
link is not present both statically and dynamically.

6.1.5 Conclusion

In this section, we introduced several works to generate build dependency graphs.
While compilation databases could have served as a baseline, they were not used by the
works in the literature which usually instrumented the build system to recover the build
dependency graph. However, if the byproduct of the compilation is not needed, this
process has several flaws.

• Large project compilation usually takes time2.

• The artifacts generated by a compilation take disk-space.

• Compiling a project requires preparing a valid build environment with all the
project’s dependencies.

6.2 Definitions

Definition 6.2. A compilation target (or unit) is the output of a non-default rule in
Soong (e.g. an executable, a shared library, a static library. . . ).

Definition 6.3. A compilation unit dependency chain is composed of the set of all
compilation targets and source files used to build the unit.

Definition 6.4. A compilation target is affected by a source file if this source file is
present in the target compilation dependency chain.

Given a source file, knowing which compilation targets it affects allows establishing
the impact of a vulnerability affecting this source file. On the other side, knowing a
source file is used in multiple easily reachable components could justify an additional
security assessment during an audit.

2https://xkcd.com/303/
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The dependency chain for a compilation target is not necessarily complex. For exam-
ple, if a single source file is enough to generate an executable, it is effortless to recover
the chain. Dependencies induced by static libraries are much harder to detect. While
it is possible to determine them manually by looking at each module dependency, this
approach is both tedious and not scalable. Another approach is to instrument the build
system or to analyze debug symbols at the compilation termination. These two options
have a common prerequisite: they need to perform the compilation first, which takes
time, and which implies an appropriate build environment is available.

Thus, the problem is to find an automated solution to establish build dependencies
without compiling them. In 2020, Fan et al. [40] formalized the notion of a Unified
Dependency Graph (UDG), which we refine below.

Definition 6.5. A simplified Unified Dependency Graph is a directed graph UDG =
(V,E) where:

• V is the set of nodes such that V = VT t VF with VT the compilation targets set
and VF the source files set.

• E is the set of dependency links directed from dependency to dependent.

Fan et al. definition distinguished various edge dependency types. However, due to the
Soong particularities, our study only considers static dependencies3. Thus, we simply
consider the edges as directed links between two nodes.

Fan et al.’s method [40], VeriBuild, analyzed Makefile for various open-source projects.
However, Android’s build system, Soong, is unique and the techniques to build the UDG
must be adapted.

6.3 Android Build System: Soong

6.3.1 A Build System Tailored for AOSP

Since Android 7 (Nougat), the Android build system is named Soong [52]. It replaces
the previous system based on GNU autotools and Makefile. While adaptable to other
contexts, only AOSP uses this build system now. Note that Soong is not the only build
system currently developed by Google: it is also actively developing Bazel.

Soong is a Go program and is part of AOSP4. It implements all the build logic com-
plexity and orchestration in its modules. Soong bootstraps itself: the information to

3Indeed, in Soong, runtime dependencies must be explicitly stated in the module definition.
4https://android.googlesource.com/platform/build/soong
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GNU autotools Soong

File Makefile blueprint
Syntax "Makefile" "JSON-like"
Compilation unit rule module
Imports Childrens Manual Automatic
External calls Yes No

Table 6.1: Comparison Between GNU autotools and Soong

Soong

Kati

Android.bp
build.ninja ninja

Android.mk

Figure 6.2: AOSP Build System

build Soong is also described in a blueprint file. The Soong output is not an Android
image, but a ninja [39] file that will then be used to perform the actual compilation5.

During the build systems transition, all remaining Makefiles are read with Kati6, a
make clone developed by Google to improve its performance in Android context. As
expected, Kati outputs also a ninja file that is combined with the one generated by
Soong before building the system. The process is illustrated in Figure 6.2.

5ninja is a small build system originally developped to improve Google Chrome compilation speed.
It is driven by ninja files that are not supposed to be hand written but generated by a build generator
like CMake.

6https://android.googlesource.com/platform/build/kati
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Listing 6.2 Inheritance in Soong
1 cc_defaults {
2 name: "dexlayout-defaults",
3 defaults: ["art_defaults"],
4 host_supported: true,
5 shared_libs: [
6 "libbase",
7 ],
8 }
9

10 art_cc_binary {
11 name: "dexlayout",
12 defaults: ["dexlayout-defaults"],
13 srcs: ["dexlayout_main.cc"],
14 shared_libs: [
15 "libdexfile",
16 "libprofile",
17 "libartbase",
18 "libart-dexlayout",
19 ],
20 }

6.3.2 Blueprints

Blueprint files contain Soong’s compilation directives. The name comes from blueprint7,
a now-retired build system framework developed by Google. Soong’s blueprints are un-
complicated because Soong handles most build logic. Their syntax resembles a mix
between JSON and Protocol buffers [51] and is close to Bazel BUILD files. To help
the reader understand the terminology, we draw a parallel in Table 6.1 between GNU
autotools and Soong.

Lines 1 and 10 in Listing 6.2 define the module type. This will be used by Soong to
select the appropriate building rules. Soong implements many types, either based on
the source language (e.g. sh, python), the target destination (e.g. source or host), or the
build system configuration.

Each module in Soong must have a unique name (Lines 2 and 11). It is used to
derive the module output final name and to reference them in other modules. For
instance, on a Linux platform, the module displayed in Listing 6.4 will generate the
library libpldump.so.

Soong offers an inheritance mechanism for blueprints writers with the defaults keys.
If a module defines defaults, Soong initializes the child with the parents information and
replaces or merges those overwritten in the child definition. In Listing 6.2, the dexlayout

7https://github.com/google/blueprint
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Listing 6.3 Maps for Conditionals Expressions in Soong
cc_library_static {

name: "libc_common_static",
arch: {

x86: {
srcs: ["arch-x86/static_function_dispatch.S"],

},
arm: {

srcs: ["arch-arm/static_function_dispatch.S"],
},

},
...

}

Listing 6.4 Module Definition in Soong
1 cc_library_shared {
2 name: "liblpdump",
3 defaults: ["lp_defaults"],
4 shared_libs: [ "libbase", "liblog", "liblp"],
5 static_libs: ["libjsonpbparse"],
6 srcs: ["lpdump.cc",
7 "dynamic_partitions_device_info.proto"]
8 }

target will have the libbase as a dependency because it inherits from dexlayout-
defaults. Of note, it is possible to chain defaults, and to specify multiple defaults for
a single module.

Soong offers a variable pattern that works similarly to the C preprocessing macro: the
variable content is replaced before its usage. Variables are immutable8. While they can
be used for various purposes (e.g. configuration), their usage in AOSP is limited: 500
occurrences in the 3,643 blueprints for Android 10.

Finally, because the build complexity is handled by the engine with high-level language
constructs, conditionals are not possible in blueprints. Instead, they are converted to map
properties as illustrated by Listing 6.3 when the source files are architecture dependent.

6.3.3 Dependencies in Soong

Listing 6.4 displays a blueprint extract defining the rule to compile liblpdump.

8With one exception: they can be appended before their first reference.
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A blueprint module definition lists all runtime dependencies. In Listing 6.4, the module
defines three dynamically linked library with the shared_libs key (Line 4). On a compiled
binary, it is possible to list these dependencies (i.e. by using ldd). Statically linked
library are enumerated with the static_libs key (Line 5). However, this information is
not easily recoverable on the final binary.

The only external prerequisite for statically analyzing a blueprint is the file system
layout. Indeed, Android.bp files use the glob operator to list files. However, the file
content is superfluous, and the file list is sufficient. In Listing 6.4, the source dependencies
are listed Line 6.

6.4 BGraph Construction

6.4.1 From UDG to BGraph

Our UDG applied to AOSP is called BGraph, for Build-Graph. It represents depen-
dency links between compilation targets. As for a regular UDG, nodes are compilation
targets and source files. The edges represent relations between two nodes and are di-
rected in the usage direction: from the dependency to the dependent. Because all AOSP
components use Soong, the BGraph represents system-wide component dependencies.

As runtime dependencies must be explicit in Soong, we are confident that the graph
created from the blueprint analysis is complete. This allows working statically, and
avoids the build complexity environment and the source code itself. Indeed, we only
require build files.

Using a graph representation allows us to extract the information using standard
algorithms developed on this data structure. For instance, the potential targets of a
source file are the node set for which there exists a path in the graph. Figure 6.3 shows
the Listing 6.4 as a graph.

To generate the UDG for AOSP, we parse every build file (e.g. Android.bp), recover
their module definitions, and add an edge between modules listed in each dependency
keys.

6.4.2 Results

As previously stated, the migration to Soong has only started in Android 7 (2016).
We decided to generate BGraph for every tag in AOSP since. It represents about 350
versions from 7.0.0_r1 to 11.0.0_r31. We build a new graph for each version as the
dependencies are tied to a version. Moreover, this allows us to understand the differences
between the two versions.
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dynamic_partitions_device_info.proto

liblpdump

libbase

libjsonpbparse liblp

liblog

lpdump.cc

Figure 6.3: Listing 6.4 as a Graph

This migration remains a work in progress. For example, in android-12.0.0_r32,
there are still 1,170 Android.mk files for 7,740 Android.bp. Our tool does not analyze the
latter and ignores dependencies defined in such files. However, the precision of BGraph
will only increase as much as the migration progress.

The compilation target repartition for Android 11 is depicted in Figure 6.4. The most
common type is test because tests are present as companions for most targets. Worth
noticing, about 5% of the targets build code for the host, i.e. the computer building
AOSP.

6.5 BGraph: A Tool to Create and Query Graphs

BGraph9 is the tool we developed to generate and query dependency graphs for AOSP
(also named BGraph). It is an open-source Python module, with both a Text User
Interface (TUI) and an API.

6.5.1 Creating One (or More) Graph

To create a graph, BGraph needs access to an AOSP mirror. While the method is
applicable to every codebase using Soong, we tailor our implementation for AOSP. After
selecting a version, BGraph will automatically download the blueprints for every project.
Downloading only the blueprints allows saving valuable disk space (125 Mb instead of 80
Gb). Finally, each blueprint is analyzed, their content combined, and then transformed
into a graph.

9https://github.com/quarkslab/bgraph
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Figure 6.4: Compilation Target Repartition in Android 11

6.5.2 Query a Graph

BGraph TUI implements a query command to retrieve information inside the graph.
Two main types of queries are pre-implemented, other types need to be performed using
the API. The first query searches for every dependent target from a source file. And
the second one performs the inverse operation, looking for the source files used by a
target. Both query complexity is linear in the number of nodes in the graph. To ease
reusability and integration into other toolchains, BGraph outputs the result in various
formats (JSON, DOT, text).

6.6 Use Cases

6.6.1 Diffusion of CVE–2020–0471

CVE–2020–0471 [93] was fixed into January 2021 Android Security Bulletin. This flaw
allowed an attacker to inject packets inside a Bluetooth connection and could lead to an
Elevation of Privilege (EOP). Commit ca6b0a2110 fixed the vulnerability by changing
the file packet_fragmenter.cc. We will not perform a vulnerability in-depth analysis,
but only consider its potential impact in AOSP.

packet_fragmenter.cc is used while building the static library libbt-hci. Since
static libraries are not visible in the imports of a binary, a classical dependency system
would be limited in its analysis. However, using BGraph allows circumventing this
limitation because it also resolves static dependencies.

10https://android.googlesource.com/platform/system/bt/+/ca6b0a211eb39ba85eed60ea740c85d1122fc6bc

98

https://android.googlesource.com/platform/system/bt/+/ca6b0a211eb39ba85eed60ea740c85d1122fc6bc


6.6. USE CASES CHAPTER 6. BUILD GRAPHS

Listing 6.5 Example of BGraph Query
1 % bgraph query graphs/android-11.0.0_r31.bgraph ––src 'packet_fragmenter.cc'
2 Dependencies for source file
3 packet_fragmenter.cc
4

5 Target | Type | Distance
6 =============|===================|==========
7 libbt-hci | cc_library_static | 1
8 libbluetooth | cc_library_shared | 2
9 libbt-stack | cc_library_static | 2

10 Bluetooth | android_app | 3

Listing 6.5 displays this request. In the command output, we observe that only the
shared library libbluetooth.so (line 8) is an entry point on the system. Moreover, the
Bluetooth application in AOSP also uses the library, and thus the vulnerable code. If
in this case, the dependency relationship seems trivial, BGraph allows performing such
requests automatically, and to verify every impacted binary.

6.6.2 Looking for Interesting Targets

In this example, we show how to use BGraph to list the most used files in AOSP, and
in fine, which target would be interesting to analyze more thoroughly.

Target # Nodes Description

libbase 3025 Classical functions
fmtlib 3027 Alternative to stdio and iostreams
liblog 3340 Log library

Table 6.2: Most Used Dependencies in AOSP

By using BGraph API, we can compute the graph size induced by each source file in
AOSP. The graph size scales with the number of targets using this file. A large graph
means that a file is deeply intricate within AOSP. Table 6.2 lists the three most used
libraries in AOSP. Someone looking for a code review could prioritize these libraries as
the impact of a vulnerability in one of them could be disastrous. For example, the Log4J
vulnerability [22] affected a widely used logging library in Java and had a tremendous
impact.

While giving already interesting and exploitable results, it is also possible to refine
this query to exclude modules targeting the host or to filter the target languages.

99



6.7. DETECTING PATCHES IN
STATICALLY-LINKED CODE

CHAPTER 6. BUILD GRAPHS

Listing 6.6 Function to Check If a Vulnerability Is Static
def is_static_lib_vuln(

graph: bgraph.BGraph, vuln: Cve
) -> bool:

# Find the first target in the graph
_, targets = bgraph.viewer.find_target(

graph, vuln.file, radius=1
)

# Resolve node types
node_types = set(

bgraph.viewer.get_node_type(
graph.nodes[targets[0]], all_types=True

)
)
return 'cc_library_static' in node_types

6.7 Detecting Patches in Statically-Linked Code

6.7.1 Finding Vulnerabilities in Static Libraries

Definition 6.6. A static vulnerability is a vulnerability affecting a library that will
be statically embedded.

To illustrate one of BGraph strengths, and to create the dataset for one of the experi-
ment in Chapter 5, we want to list every static vulnerability in AOSP. Static vulnerabil-
ities are usually challenging to patch, because they require a dependency management
process.

To find every AOSP static vulnerability, we devise the following strategy:

1. List AOSP vulnerabilities.

2. For each vulnerability, find affected source files.

3. For each affected source file, list the immediate children in their BGraph. These
children represent direct inclusion links: from a source to a binary target.

4. Accept the CVE if one of the children is a static library.

Thanks to the work presented in Chapter 4, we already have an exploitable list of all
vulnerabilities affecting AOSP along with the list of changed files for each patch. The
immediate children are listed with the find_target method in Listing 6.6 and the radius
parameter restrict the induced graph size. The module type defines the compilation
target types. Thus, we search whether one of them represents a static library.
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Feature TP TN FP FN Pr. Rec. NA

Strings 19 60 - 3 1 0.86 48
Constants 25 64 2 8 0.93 0.76 31
Calls 9 61 6 29 0.60 0.24 25
Conditions 6 15 1 - 0.86 1 108

Match 35 70 5 20 0.88 0.64 -

Table 6.3: Detection in Static Libraries

The query returns 351 vulnerabilities, affecting mostly the Media Framework, the Me-
dia Server, and the System components. The results are depicted in Figure 6.5. The
vulnerability number remains stable over the years (except in 2017). This is explained
because the number of vulnerabilities reported in 2017 is much higher as seen in Fig-
ure 4.8.

6.7.2 Detection of Patches in Static Libraries

Detecting patches in statically embedded libraries is challenging and left aside by other
works in the literature. The main issue stems from finding in which targets the library
has been included. Nonetheless, they are prevalent but less updated than standalone
components.

We implement in QSig a filtering step using BGraph. A candidate binary is accepted
by the filter using a similar procedure as the one presented in Listing 6.6. To demonstrate
QSig effectiveness at finding such patches, we searched in six shared libraries from
Android11 84 vulnerabilities patches. Of those 84, the target version contains 35 of them
and 49 are posterior to the release. The 84 vulnerability patches relate to 130 functions.
The results are reported in Table 6.3. QSig detects the patch with a precision of 87%
while maintaining recall at 64%.

This result is only achievable because QSig implements the F-S-M strategy and each
component is easily customizable.

11Version 8.1.0_r23
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6.8 Discussion

6.8.1 Limitations

Build System Exhaustivity

BGraph’s results rely on the Soong build system exhaustivity. However, this assertion
does not entirely hold. AOSP’s components using the old GNU autotools implementation
are omitted in the UDG. Thus, a vulnerability affecting a file of such component would
not be tractable across the system. This limitation will be progressively erased with the
migration completion.

Incomplete Blueprint Support

Blueprint files implement a complete language albeit not complex. Still, some language
features are currently unsupported in our implementation. For example, the support of
mapping is missing in our implementation. Mappings are used to tailor the file selection
for a specific architecture. This could be solved with additional engineering effort.

Combining with Other Approaches

Finally, combining BGraph with other approaches based on Makefile is unfeasible since
the detail level is too disparate. For instance, the target type is implicit in a Makefile
and usually guessed using the target extension but explicit in Soong.

6.8.2 Conclusion

The work presented in this chapter introduced a new solution to solve the dependency
propagation problem: finding in which compilation target will end up a source file. In
AOSP context, our BGraph creates a UDG statically from build file definitions and uses
it for answering user defined queries.

Of note, BGraph is an open-source tool and is available on Quarkslab’s GitHub [20].

The Figure 6.7 is updated the BGraph usage as a filtering step for QSig.
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Chapter 7
Conclusion & Perspectives

In this closing chapter, we conclude this thesis by summarizing its contributions. Then,
we present opportunities opened by our work.

7.1 Conclusion

This thesis focused on a particular spot of the information systems defense: how to
ensure a system is protected against known threats? To answer this question, security
teams must know which vulnerabilities are affecting their system and the defenses already
in place. Indeed, due to the patch propagation delay, a patch availability is not enough
to ensure its presence in a system.

These vulnerabilities are called 1-day vulnerabilities, because at least one day has
passed after the patch release. To understand this vulnerability class, we conducted an
extensive study of their common traits, and their associated patches. We characterized
them by reducing their patch as a set of change types. This work helped us to find the
most common changes performed by developers to fix a vulnerability. We leveraged this
information to create patch signatures.

To understand a system’s exposure to 1-day vulnerabilities, the next step is to perform
a patch presence test: detecting which patches have been applied to a system, down at
the binary level. Indeed, relying on reported version numbers is insufficient to detect
the security level. Thus, this is a challenging problem, and we established a three-step
strategy, the F-S-M , to solve it swiftly and efficiently.

Because our work was conducted in an industrial context, a theoretical approach
is unsuited to tackle the problem in a real-world assignment. Thus, we proposed an
implementation of our solution in our open-source system QSig. QSig searches patches
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on any filesystems using patch signatures based on semantic invariants derived from our
patch analysis.

In Chapter 5, we extensively tested QSig performances for real-world workloads using
a vulnerability dataset we created. This dataset provides vulnerability information at
two levels: a first one at the source level, with commit precise information, and a second
one with precompiled binaries in multiple architectures. While we use the dataset to
generate patch signatures and assess QSig results, it is independent of our work and
allows multiple security workflows. Hence, we open-sourced it.

Finally, to improve the state of the art at detecting patches applied to statically
embedded libraries, we developed a novel filtering step based on build dependencies
graph for Android devices. This demonstrated both the pertinence of our three-step
strategy and the extensibility of QSig.

Community Contributions

The works presented in this thesis are often accompanied by various open-source tools
or resources. We list them below.

• BGraph (https://github.com/quarkslab/bgraph)
BGraph is a tool designed to generate dependencies graphs from Android.bp Soong
files.

• QSig (https://github.com/quarkslab/qsig)
QSig generates semantic patch signatures from the difference between two binaries
and applies them onto a filesystem.

• Dataset (https://github.com/quarkslab/aosp_dataset)
Large Commit Precise Vulnerability Dataset based on AOSP CVEs.

• Quokka (https://github.com/quarkslab/quokka)
A Fast and Efficient Binary Exporter for IDA.

7.2 Perspectives

In this section, we discuss some perspectives our work opens.

7.2.1 Extending our Vulnerability Dataset

Our dataset relies on Google’s commitment to provide regular and accurate security
bulletins because it is our dataset’s main information source. While they steadily pub-
lished bulletins for the last seven years, nothing prevents them from stopping their effort.
To improve our dataset resilience, a potential improvement would be to monitor other
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security bulletins, either from different manufacturers (i.e. Samsung) or for different sys-
tems (i.e. Debian). This would require additional engineering effort but would increase
the dataset representativeness of security vulnerabilities.

Moreover, to provide precompiled binaries, we developed a build automation protocol
around AOSP’s build system. Nonetheless, this protocol is laborious and error-prone.
However, Google provides an open access to Android’s Continuous Integration (CI)1. It
presents the result of every AOSP compilation and offers to download the compilation
artifacts.

With additional engineering efforts and a better understanding of the CI interface, it
should be possible to obtain the binaries required for our dataset directly from Google’s
server. This would avoid the compilation and project synchronization burden while still
providing accurate results.

7.2.2 From Filesystems to Raw Firmwares

Analyzing generic embedded devices is challenging for numerous reasons. The work
presented in this thesis focused on filesystems analysis. This requirement was adapted
for Android devices as they run modified Linux systems. However, smaller and heavily
specialized devices may leave out this abstraction level and only run flat firmware. To
handle such firmwares, an analyst requires a proper disassembly which is one of the
substantial tasks listed by Wright et al. [133]. For instance, even finding the base address
requires adapted tooling and techniques analysis [103, 146].

Moreover, analyzing a COTS device usually requires extracting the firmware. While
in Android case, the firmware is usually accessible, Vasile et al. [121] survey existing
techniques to perform this task on more generic devices. These techniques range from
finding the firmware or an update on the manufacturer’s website to physical attacks
by using debug protocols (USART, JTAG). Thus, they are hard to automate and scale,
which is an additional challenge when performing a security assessment of heterogeneous
device fleets.

In QSig’s context and to broaden its applicability, the remaining tasks would be to
remove the filtering part as it is not adapted to flat firmware and to extend the toolchain
to handle the architectures used by the devices under analysis.

7.2.3 Towards Semantic Queries

Our method to detect 1-day patches on binaries detects artifacts presence in binaries.
Our most advanced feature, the condition term tracking, goes one step further and

1https://ci.android.com/
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reasons on the dataflow graph. However, newer code representations are generating a
more accurate and complete representation of the code semantics.

CodeQL [48] and Joern [141] work in two phases, they first generate a code database.
Then, they provide an interface to query this database23. Nonetheless, these tools bear
a constraint: they work only at the source code level.

By extending one of them to handle binary code (either directly or through an IR),
it should be possible to encode the patch presence test for a vulnerability as a query
on the code representation. For instance, we could encode the fix for the vulnerability
presented in Chapter 1 (Listing 1.1) as a request. This request would check if the field at
offset 2 in the structure p_pkt is compared with the constant 2. Such an approach would
allow writing more precise queries on the patch semantic but present some research
challenges. The first one is to obtain a code representation precise enough to propagate
type information or value inference. The second one would be to understand how to
generate such queries automatically.

7.2.4 Patch Application and Device Security

Detecting 1-day in systems is insufficient to evaluate the end users security completely.
First, the patch presence test only answers whether a patch is present, but its absence
does not necessarily induce a risk on a device (e.g. it may not use the vulnerable code).
Moreover, the information that a vulnerability is present only helps stakeholders to make
an informed decision. Our work provides information that must be acted upon. Indeed,
knowing its presence does not prevent exploitation attempts and additional steps are
required to protect a device. These remediation steps could range from non-technical
options (i.e. avoiding using a vulnerable device) to more technical ones (i.e. network
exploitation protection systems, code firewalling, or sandboxing) and in straightforward
scenarios, applying an update containing the missing patch.

Finally, even finding a patch does not necessarily ensure that a device is protected
against a vulnerability. Indeed, patches may only partially correct a flaw in a pro-
gram [71], and additional work is required to ensure a patch is completely fixing a vul-
nerability. Automatic exploit generation approaches [136, 7] could be a starting point:
generating an exploit from the vulnerable code and applying it to a fixed binary to en-
sure it is properly patched, extending the approach in 1dVul [98]. However, this is a
challenging problem because the exploit must reliably trigger the bug and fail only when
the vulnerability is fixed.

2CodeQL’s queries are written in QL and Joern’s in Scala.
3Other solutions such as Semgrep [106] or weggli [132] skip the database generation but performs

pattern matching on the AST and do not reason on the code semantic.
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Final Words

The common best practice is to consider that security vulnerabilities should be fixed
as soon as possible to protect a system. However, patching hinders a project maintain-
ability [105] because it adds complexity to a codebase, and mitigation can reduce the
performances of critical applications. Moreover, developers’ time is a scarce resource
and the time spent on fixing issues is not allocated elsewhere. Before jumping on an
immediate fallacy, a more thorough study on the security vulnerability and fix impact
should be conducted. Sometimes, the best option is probably not to fix the vulnerability
and accept the risk.
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Glossary

Ξ− FMP Firmware Patch Matching Problem.

0-day A vulnerability publicly announced for which there exist no patch.

1-day A vulnerability for which there exist a patch.

AI Abstract Interpretation.

AOSP the Android Open Source Project.

API Application Programming Interface.

APK Android Package Kit.

AST Abstract Syntax Tree.

CDD Android Compatibility Definition Document.

CFG Control Flow Graph.

CG Call Graph.

CGC Cyber Grand Challenge.

CI Continuous Integration.

CLI Command Line Interface.

CNA CVE Numbering Authority.

COTS Commercial-Off-The-Shelf.

CPG Code Property Graph.

CRS Cyber Reasoning System.
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CTS Compatibility Test Suite.

CVE Common Vulnerabilities and Exposures.

CVSS Common Vulnerability Scoring System.

CWE Common Weakness Enumeration.

DARPA Defense Advanced Research Project Agency.

DAST Dynamic Application Security Testing Tools.

DFG Data Flow Graph.

EOP Elevation of Privilege.

FMP Firmware Matching Problem.

GMS Google Mobile Services.

HAL Hardware Abstraction Layer.

HIDS Host-based Intrusion Detection System.

IDS Intrusion Detection Software.

IR Intermediate Representation.

NIST National Institute of Standards and Technology.

NLP Natural Language Processing.

NSA National Security Agency.

NVD National Vulnerability Database.

OEM Original Equipment Manufacturer.

OS Operating System.

PDG Program Dependency Graph.

PoV Proof of Vulnerability.

SAMATE Software Assurance Metrics And Tool Evaluation.

SAST Static Application Security Testing Tools.
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SBOM Software Bill of Materials.

SDK Software Development Kit.

SIF Smooth Inverse Frequency.

SPL Security Patch Level.

SSDF Secure Software Development Framework.

TUI Text User Interface.

UDG Unified Dependency Graph.
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Appendix A
Quokka

In this appendix, we expose the motivations that led us to develop a binary exporter
and present the tool itself. The tool is open-sourced and available on GitHub1.

A.1 Motivation

Analyzing binary programs often requires disassembling them: it is a core component
of multiple works from malware analysis to code similarity measurement. For instance,
in the work presented in Chapter 5, both QSig’s signature generation step and the
matching step are using as inputs disassembled binaries. Security practitioners have
developed numerous tools and frameworks over the years both open-source [126, 17,
119, 86] or commercial [55, 122, 99]

Correctly disassembling is challenging [97]. Indeed, it is insufficient for a disassem-
bler to convert a sequence of bytes into meaningful assembly instructions. It also needs
to recover references between code and data, functions boundaries, typical language
structures (i.e. jumps or virtual tables) or CFG reconstruction. While studying a dis-
assembler inner workings is out of this work scope, we highlight that disassemblers are
complex software that combine both algorithms (i.e. linear sweep, recursive descent) and
heuristics to perform their tasks.

However, disassemblers are inadequate to either perform heavy custom analyses on
a disassembled binary and to analyze multiple binaries at the same time. Indeed, a
disassembler instance running in the background may use few hundreds of megabytes in
RAM effectively wasting resources if their functionalities are not used anymore. More-
over, their API may be complicated to use. If only the output of the disassembler is
needed for further analysis, and it should be possible to extract this result to run offline
queries using a binary export.

1https://github.com/quarkslab/quokka
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APPENDIX A. QUOKKA

Disassembler Exporter Description

IDA
BinExport Exporter from Zynamics

Ghidra-IDA Official Ghidra plugin to export a project from
IDA to Ghidra

McSema Exporter for McSema lifter

Ghidra
BinExport BinExport port for Ghidra

Ghidra Built-in exporter from Ghidra

Table A.1: List of Different Binary Exporters

Definition A.1. A binary export is defined as a file which stores data on the disas-
sembled binary which is usable outside the disassembler.

A.2 Existing Binary Exporters Review

We survey in Table A.1 various existing exporters. The most common one in BinEx-
port [23], a binary exporter created by Zynamics and used for BinDiff [147]. It supports
two backends, both IDA and Ghidra and generates a binary file in a Protobuf format. It
exports most information but lacks support for most data fields (i.e. type, size, content).

Ghidra provides an official exporter plugin for IDA. The plugin generates an XML file
to extract some information from IDA and to import the project in Ghidra to continue
the analysis. Because the objective is to reuse the result in another disassembler, the
export does not contain any data on the instruction themselves.

Finally, McSema is an executable lifter: it translates native machine code to LLVM IR.
The first step uses IDA to disassemble the target binary and generates a Protobuf with
the information extracted from the disassembler. However, as the tool final objective
is to generate LLVM bitcode, it uses a second tool to translate instructions. Thus, the
first export does not contain information on the instruction themselves other than their
address.

None of the existing exporters completely answer the following properties.

• Exhaustivity: It must export as much data from the disassembly process as possi-
ble.

• Efficiency: An exporter must be fast to be usable even if it is a one-step process.

• Compactness: It should be compact to save some disk space.
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Thus, there exist a need to create a solution solving the three problems. However,
it necessarily involves tradeoff: the most compact exporter would not export anything
and the most exhaustive one would not be as efficient as another exporting fewer data.

A.3 Quokka: A Fast and Exhaustive Binary Exporter
Quokka is an IDA Plugin developed to address the limitations observed in other binary

exporters. It aims at being fast while thorough. We first list the exported features before
briefly discussing its architecture.

A.3.1 Exported Features

The features exported by Quokka listed in Table A.2 are compared with both BinEx-
port and Ghidra builtin export. On a general point of view, Quokka’s export is more
exhaustive than the two other tools: it exports every item exported by at least one of
them.

A.3.2 Quokka’s Architecture

Quokka is an IDA plugin composed of about 3,500 C++ LoC which targets IDA’s last
two versions. Its inner component is a state machine which iterates over the binary
address space to generate a Protobuf file [51].

To keep the export size minimal, we used the following principles through the plugin
development:

• Data deduplication: no data should be stored twice. For instance, mnemonics are
stored in a list and referenced by their index in this list.

• Integers should be stored as offsets. For instance, addresses are always referenced
as offsets to the program base address.

• Most common values should be set at a non-writable value. Protobufs never write
on the wire some values (0, false).

A.4 Evaluation

A.4.1 Dataset

To compare Quokka with BinExport, we select typical binaries present on our systems
at the time of the writing with properties listed below:

• We consider multiple architectures as the exporter should be architecture agnostic.

• We want to consider various binary file formats to test their support.
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Bi
nE

xp
or

t

G
hi

dr
a

X
M

L

Q
uo

kk
a

Metadata

Name Check Check Check
Architecture Check Check Check
ISA Check Check Check
Compiler Check Check Check

Layout Segments Check Check Check
Code Layout ≈ Check Check

Symbols
Name Check Check Check
Value Check Check Check
Type Times Check Check

Data

Address Check Check Check
Type Times Check Check
Size Times Check Check
Name Times Check Check

Graphs Call Graph Check Times Check
Control Flow Graph Check Times Check

Comments
Address Check Check Check
Type Check Check Check
Content Check Check Check

Functions
Name Check Check Check
Type Check Check Check
# Arguments Times Check Check

Instruction

Mnemonic Check Times Check
Operand Check Times Check
Operand Type Times Times Check
Bytes Check Times Check
Address Check Times Check
Expressions Check Times Check
Xref (code, data) Check Times Check

Basic Block

Address Check Times Check
Instructions Check Times Check
Type Times Times Check
Content Check Check Check

Strings Address Check Check Check
Content Check Check Check

Data Structures Structures Times Check Check
Enumeration Times Check Check

Table A.2: Comparison of Exporter Features
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Binary Name Architecture Format Binary size
MachO-OSX-x86-ls x86 MachO 34.86 kB
pe-Windows-x86-cmd x86 PE 294.50 kB
elf-Linux-x86-bash x86 ELF 792.14 kB
elf-Linux-lib-x86.so x86 ELF 1.08 MB
delta_generator x86 ELF 16.49 MB
wpa_supplicant x86 ELF 21.64 MB
MachO-OSX-x64-ls x86_64 MachO 38.66 kB
pe-Windows-x64-cmd x86_64 PE 337.00 kB
x64_delta_generator x86_64 ELF 15.28 kB
elf-Linux-x64-bash x86_64 ELF 904.82 kB
elf-Linux-lib-x64.so x86_64 ELF 1.09 MB
ctags x86_64 ELF 4.59 MB
ts3server x86_64 ELF 7.73 MB
mdbook x86_64 ELF 10.67 MB
llvm-opt x86_64 ELF 33.83 MB
clang-check x86_64 ELF 46.83 MB
crackmips MIPS-32 ELF 25.54 kB
busybox-mips MIPS-32 ELF 352.48 kB
elf-Linux-Mips4-bash MIPS-32 ELF 882.38 kB
HelloWorld-MachO-2 armv7 MachO 89.64 kB
HelloWorld-MachO armv7, armv8 MachO 299.06 kB
elf-Linux-ARMv7-ls armv7 ELF 88.68 kB
elf-Linux-ARM64-bash armv8 ELF 827.54 kB
busybox-powerpc PPC-32 ELF 1.10 MB
dex38.dex - DEX 11.48 kB
classes.dex - DEX 3.53 MB

Table A.3: Datasets Binaries
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Figure A.1: Samples Sizes
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Figure A.2: Duration: Quokka vs BinExport

As the export time and result size is a factor of the initial binary size, we select binaries
from 25 kB and up to 46 MB. In Figure A.1, we illustrate the binary sizes of the samples
we use in the next experiments.

A.4.2 Efficiency

We first assess Quokka’s efficiency by looking at the difference on the export dura-
tion between BinExport and Quokka for our samples. While exporting more features,
Quokka’s optimizations are successful as the exporter is faster: 63% improvement for
the largest binary and a median 54% improvement for the dataset. Figure A.2 displays
the improvement percentage between Quokka and BinExport.
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Figure A.3: Size: Quokka vs BinExport

The extensive comparison of the exported files for elf-Linux-ARMv7-ls did not yield
to any conclusive explanation for the duration difference.

A.4.3 Compactness

We also assess Quokka’s export compactness. Recall that Quokka exports strictly
more data than BinExport. However, thanks to the optimization on size presented in
the previous section, Quokka manages to be more compact for most binaries. Indeed,
the median improvement is 22%.

Quokka export files are smaller for each sample except the two DEX files. This is
explained by two reasons. First, Quokka exports the layout (i.e. if a region is used for
code or data) which change often for DEX, requiring multiple objects. Second, Quokka
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also exports data structure wich takes up to 4.8 MB in classes.dex, explaining the 5
MB difference between the two formats.

A.5 Conclusion
Quokka is a fast and complete binary exporter for IDA Pro. It timely generates compact

binary file containing most IDA intelligence and allows reusing the result in an offline
setting.

Quokka is used extensively in Chapter 5. Indeed, the signature is generated on the
exported disassembly. We load the two exports at the same time to iterate on both
programs at the same time and uncover their differences. The matching is also performed
on the exported disassembly. This allows writing complex queries on the call graph or
the function’s content seamlessly.

While thorough, Quokka still lacks the export of some features listed below.

• Type information: IDA allows users to define types and to apply type information
onto the disassembly. This information helps the reverser understanding the data
flow inside the binary and can be used for other tools to perform analyses (pointer
analysis, liveness analysis). Thus, it could be valuable to expose them outside the
disassembler.

• Decompilation output: IDA’s SDK offers an API to manipulate the decompilation
output, i.e. a C code generated from the disassembly. Exporting the decompiled
code would broaden the usage possibilities of Quokka.

As IDA already offer API to manipulate and query such data, exporting these elements
only require further engineering work. However, working with the disassembler API is
time-consuming.

At the moment, Quokka is an IDA plugin. Another improvement for the tool would be
to also accept other backends (such as Ghidra or Binary Ninja). Thus, it could act as
an IR where an analyst query workflow could be written once, and the backend changed
depending on the disassembly selected.
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Appendix B
Using QSig

We introduced QSig in Chapter 3 and developed its evaluation in Chapter 5. However,
we did neither describe the tool internals nor how to use it. We address this shortcoming
in this appendix.

B.1 Usage

QSig is usable both as a command-line tool and as a library. In this section, we detail
both usages.

B.1.1 As a Command Line Tool

Using QSig with its Command Line Interface (CLI) interface is best when performing
simple queries on a supported Android device or on a single binary. Listing B.1 displays
its help message. The tool offers five subcommands described below.

• The detect command applies a single signature onto a unique file. This command
is useful to run tests or to quickly check if a target binary is patched against a
vulnerability. Listing B.2 displays a command usage example.

• The detector command is QSig detector main command. It applies a list of
signatures on a complete file system.

• The next two commands generate and generate-multiple are self-explanatory:
they generate patch signatures from vulnerabilities. While the first one only pro-
cesses a single vulnerability, the second one generates a signature for every vulner-
ability in a user-specified folder.

• Finally, the last command, info displays information on previously generated sig-
natures. This allows to quickly inspect a signature set. info output is displayed
in Listing B.3.
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Listing B.1 QSig Command Line Interface
$ python -m qsig –help
Usage: qsig [OPTIONS] COMMAND [ARGS]...

QSIG CLI - Use to generate signature or match firmwares images

Options:
-d, –debug Activate debug output [default: False]
-q, –quiet Silence output [default: False]
-b, –bench Activate benchmark output [default: False]
–install-completion Install completion for the current shell.
–show-completion Show completion for the current shell, to copy it or

customize the installation.

–help Show this message and exit.

Commands:
detect Apply a signature onto a file.
detector Detect if a patch has been applied to a firmware

image...
generate Generate a signature based on a CVE directory
generate-multiple Generate signature for every CVE found in a directory.
info Dump info on the signatures.

Listing B.2 detect Command Example
$ python -m qsig detect libbluetooth.so CVE-2018-9506.sig
INFO: libbluetooth.so was matched with the signature

(using ['strings', 'constants'])
INFO: Complete chunk match for libbluetooth.so
INFO: CVE Match for CVE-2018-9506 on libbluetooth.so

Listing B.3 info Command Example
$ python -m qsig info CVE-2019-2134.sig
INFO: Signature CVE-2019-2134 (bfa3d8) :

File phNxpExtns_MifareStd (OBJECT):
Chunk : STRINGS CONSTANTS CALLS

File libnfc_nci_jni (LIBRARY):
Chunk : STRINGS CONSTANTS CALLS CONDITIONS
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Listing B.4 Custom Detector
from firmextractor.fs import ExecutableFile
from qsig.detector import Detector

def get_strings(fw_file: ExecutableFile) -> set[str]:
"""Returns `fw_file' strings"""
...

class MyDetector(Detector):
"""Simple File Detector to assess whether a candidate

has a specific string.
"""
def __init__(self, match_string: str):

"""Constructor"""
self.match_string = match_string

def accept(self, fw_file: ExecutableFile) -> bool:
"""Check whether `fw_file' is accepted"""
return True

def match(self, fw_file: ExecutableFile) -> bool:
"""Perform the match."""
return self.match_string in get_strings(fw_file)

B.1.2 As a Library

QSig interface is insufficient to answer every query, and a user may want to change
some of QSig’s behavior more deeply. Thus QSig is also available as a library. However,
its usage is more complex.

Listing B.4 demonstrates how to implement a custom detector for QSig. While this
one only searches a string inside the program ones, it is possible to add more complex
ones.

Listing B.5 Custom Detector
from pathlib import Path
from firmextractor.fs import FileSystem

def search_string(file_system: Path, string: str):
file_system = FileSystem(file_system)
detector = MyDetector(string)

for exec_file in file_system.elf_files():
if detector.accept(exec_file):

print(f"Match Result: {cve_detector.match(exec_file)}")
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Using this new detector is straightforward and Listing B.5 shows how to instantiate
and use it on a filesystem1.

B.2 Code Internals

B.2.1 Code Layout

QSig is written in Python and its core composed of 4,637 LoC divided into three
modules. Figure B.1 displays the code layout and we briefly describe the role of each
module below.

• sig: This module is responsible for storing and retrieving the signatures, both
for the generator and the detector. Notably, it manages the serialization using
Protobuf. Finally, it also handles the BinCAT integration: it generates the config
file required by the AI framework and retrieves the results.

• generator: As expected, this module handles the signature generation. It takes
as input a list of tuples (vulnerable_binary, fixed_binary) from an architecture,
and generates a signature from the difference between each pair. The module is
organized in three files, one at the CVE level, one at the file level and one for the
function level.

• detector: Finally, the detector module handles the detection part in QSig. A
Detector is a class responsible for matching a signature. It is possible to instantiate
multiple Detector at the same time to search for multiple patches in a single batch.
Of note, the Detector also follows the signature layout and is divided into three
parts.

B.2.2 Dependencies

As specified in Chapter 3, QSig offloads part of its workflow to internal and external
tools:

• IDA for the disassembling and Quokka to manipulate the resulting disassembly.

• A modified BinCAT to perform the condition’s term taint tracking.

• Probotuf to store the signatures.

• BGraph for the filtering step on Android phone firmwares.

B.3 Conclusion
This appendix briefly presented how to use QSig and some of its internals. The code

itself is open-source and available on Quarkslab’s GitHub [19] with some documentation.
1We removed the error handling on the listing to lighten it.
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├── detector


│   ├── detector.py


│   ├── file.py
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Figure B.1: QSig’s Code Layout
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Résumé:
Pour maintenir la sécurité des systèmes d’infor-
mation, déployer les mises-à-jour proposées dès
qu’elles sont disponibles est une bonne pratique
encouragée par l’ensemble des acteurs de la sécu-
rité informatique. Effectivement, l’exploitation
des vulnérabilités de type 1-jour (dénommées
ainsi car il en existe un correctif depuis au moins
1 journée), peut être dévastatrice comme Eternal-
Blue ou Shellshock ont pu l’illustrer.
L’objectif de cette thèse est de proposer des méth-
odes et leur application pratique pour détecter
si ces correctifs sont bien appliqués au plus bas
niveau, i.e. dans le code binaire. Ceci est indis-
pensable pour avoir une vision fiable de la protec-

tion d’un système.
Pour atteindre cet objectif, nous avons établi
plusieurs jalons. Le premier consiste en une étude
approfondie d’un correctif type, avant de for-
maliser un cadre de recherche de ces derniers à
l’échelle d’un système complet.
Nous proposons ensuite l’implémentation d’une
solution logicielle construisant automatiquement
des signatures sémantiques de correctifs de vul-
nérabilités et cherchant ces signatures dans des
systèmes de fichiers.
Finalement, nous testons cette solution en con-
ditions réelles (i.e. détection de correctifs dans
des images du système d’exploitation Android) et
montrons la pertinence de cette solution.
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Abstract:
To maintain the security of information systems,
deploying the proposed updates as soon as they
are available is a good practice encouraged by
all the computer security actors. Indeed, the ex-
ploitation of 1-day vulnerabilities (so called be-
cause a patch has been available for at least 1
day) can be devastating as EternalBlue or Shell-
shock have illustrated.
The objective of this thesis is to propose methods
and their practical application to detect if these
patches are well applied at the lowest level, i.e. in
the binary code. This is essential to have a reli-
able view of a system protection.

To achieve this goal, we have established sev-
eral milestones. The first one consists in an in-
depth study of a typical patch, before formalizing
a framework for searching for them at the scale of
a complete system.
We then propose the implementation of a soft-
ware solution that automatically builds semantic
signatures of vulnerability patches and searches
for these signatures in filesystems.
Finally, we test this solution in real conditions
(i.e. detection of patches in images of the Android
operating system) and show the relevance of our
approach.
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