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Abstract

A real-time system is a system whose correctness depends not only on the correctness of the values
it produces, but also on the time when it produces those values. The rate at which it must produce
values is defined by the environment it operates in.

When programming such a system, it is important that the programming language allows to reason
about the constraints introduced by this context. Synchronous languages [11] are well-adapted to the
programming of critical real-time systems thanks to their clean formal semantics and to their formally
defined compilation process. In this work, we will present extensions to the synchronous language
PRELUDE [67] to tackle two issues: Programming multicore systems predictably and handling system
reconfiguration during execution.

Multicore hardware platforms have the potential to increase the performance of real-time systems.
However, their architecture, especially the shared central memory, is prone to hard-to-predict delays,
outweighing the potential benefits. To address this issue, models such as PREM [71] and AER [32]
have been proposed. Our first contribution aims at producing AER-compliant multicore C code from
a high-level PRELUDE program. This shifts the responsibility of low-level implementation concerns
related to task communications onto the compiler, saving tedious and error-prone development efforts.

A multi-mode real-time system must respect different functional requirements during its execution.
A mode of execution represents a possible system configurations, for an aircraft control system these
may include take-off, cruise and landing. Mode change protocols define transitions to change safely
from one mode to another. Our second contribution proposes clock views to decouple the rate of tasks
and transitions. The resulting multi-mode support is both formally defined and generic enough to
allows programmers to choose the kind of protocol they need for their application. A clock calculus
based on refinement typing [39, 23] infers and checks the consistency of rates and views.



Résumé

Un systéme temps réel est un systéme dont la correction dépend non seulement de la correction des
valeurs qu’il produit, mais aussi du temps quand il les produit. Le rythme de production de ces valeurs
est défini par ’environnement dans lequel il opeére.

La programmation d’un tel systeme nécessite un langage de programmation permettant de résonner
sur les contraintes introduites par ce contexte. Les langages synchrones [11] sont bien adaptés pour
la programmation de systemes critiques temps réel de part leur sémantique et leur processus de
compilation formellement définis. Dans ce travail, nous présentons des extensions au langage synchrone
PRELUDE [(7] pour aborder deux problémes: La programmation de systémes multicoeur prédictibles
et la reconfiguration du systeme durant l’exécution.

Les plateformes matérielles multicceurs possedent un potentiel de performances accrues des systemes
temps réel. Cependant, leur architecture, en particulier la mémoire centrale partagée, est sujette a
des délais difficile a prédire, contrebalangant les gains potentiels. Les modéles tel que PREM [71] et
AER [32] remédient & cette limitation. Notre premiere contribution permet de produire du code mul-
ticceur en accord avec le modele AER a partir d’un programme haut-niveau PRELUDE. Ceci permet
de transférer la responsabilité des probléemes bas niveau liés aux communications inter-taches, évitant
des efforts de développement fastidieux et sujets aux erreurs.

Les exigences fonctionnelles d’'un systéme temps-réel multi-mode évoluent durant son exécution. Un
mode d’exécution représente une configuration possible du systéme, par exemple décollage, croisiére ou
atterrissage pour un systéme de contrdle d’avion. Les protocoles de changement de mode définissent
des transitions afin de changer de mode en sécurité. Notre seconde contribution propose les vues
d’horloge pour découpler le rythme d’exécution des taches de celui des transitions. Le mécanisme
multi-mode résultant est a la fois formellement défini et générique afin de permettre de choisir le type
de protocole approprié a application. Un calcul d’horloge basé sur le typage par raffinement [39, 53]
infere et vérifie la cohérence des rythmes et vues.
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Introduction



Chapter 1

Problem Statement

In this Chapter, we will detail the problems this thesis tackles. Together with the next Chapter, you
may understand it as an “extended abstract”.

1.1 Real-Time Systems

A real-time system is a system whose correctness depends not only on the correctness of the values it
produces, but also on the time when it produces those values. The rate at which it must produce values
is defined by the environment it operates in. A typical example is an aircraft controller which must
be able to react to external perturbations, such as a gust of wind, in a timely manner to guarantee
the aircraft’s safety.

This specific type of constraints results in an approach that is different from more “common”
general-purpose computing. In particular, real-time computing should not be confused with high-
performance computing. While a certain degree of computing speed is desired, once the system is
able to meet its deadlines, further speed gains are superfluous. Indeed, gains in system predictability
would be preferred over gains in speed once that point has been reached.

However, designers of real-time systems face the issue that modern computing platforms have an
ever increasing complexity. This results in an ever increasing difference between the worst-, average-
and best-case scenario. This is an issue for real-time systems as system designers must guarantee that
the system respects its deadlines even in the worst case.

The ANR project Corteva [2] aimed at addressing this high variability in next-generation real-time
systems by using sound and provably correct programming models. As part of this project, my thesis
goal was to extend a programming language to enable the implementation of predictable real-time
systems even on modern platforms.

1.2 Synchronous Languages for Real-time Systems

To address the complexity of designing real-time systems, it is important that the used programming
language allows to reason about the specific constraints introduced by this context. However, most
languages have no model of time, beyond the notion that earlier instructions execute before later
ones. Thus, this thesis will focus on the family of synchronous languages which have been proven to
be well-adapted to the programming of critical real-time systems.

Central to synchronous languages is the notion of logical time. Instead of considering time as
something continuous, a synchronous language assumes that time is a sequence of discrete clearly-

8



1.3. MULTICORE PLATFORMS 9

separated instants. Computations are assumed to happen instantaneously. In essence, logical time
assumes that the exact, “physical” time of computations does not matter as long as the frequency of
instants is sufficient and computations never execute across instants.

To guarantee the temporal consistency of a program, synchronous languages employ a clock cal-
culus. It is in essence a dedicated type system that tries to assign to each expression a clock. Clocks
characterize sequences of instants and thus allow to predict statically at which instants computations
are evaluated.

1.2.1 Prelude

The PRELUDE language is a synchronous dataflow language and the language we extend in this thesis.
A program defines a computational graph operating on infinite streams of values. The particularity of
the language is that it allows to express real-time constraints, most notably periodicity. This enables
the language to use tools both from synchronous languages and real-time literature. For instance, the
system designer can reason about a program using clocks, but then analyze its schedulability using a
classical schedulability analysis, or generate multi-task C code targeting a real-time OS.

1.3 Multicore Platforms

The first issue tackled in this thesis is the programming of real-time systems on multicore platforms.
Indeed, multicore platforms offer a potential for increasing system performances as cores might process
tasks in parallel. However, these platforms are characterized by a central memory that is shared
between cores. As cores can and must access this memory and the central memory can only answer a
limited amount of requests at a time, a core might suffer a delay whenever it tries to access the main
memory.

Accurately predicting these delays is difficult as it depends upon minute details within both hard-
ware and software, as well as their interaction. This forces system designers to assume overly pes-
simistic execution scenarios, even though these scenarios might be highly improbable or even impos-
sible.

Predictable multi-phase models have been proposed to address these issues. Intuitively, they divide
system execution into “execution” and “memory” phases. Execution phases perform the actual com-
putations required by the system tasks, while memory phases manage the unpredictability of memory
accesses for the execution phases. For instance, a memory phase might perform cache prefetches such
that the following execution phase never has to access the shared memory, all memory accesses being
answered by the cache.

However, manually implementing these multi-phase models is non-trivial as the underlying hard-
ware and software offers the illusion of an uniformly accessible memory. Thus, a deeply-nested function
call might alter the system state in an unpredictable way, breaking the assumptions of the multi-phase
model.

1.4 Multi-mode Systems

The functional requirements of a real-time system may evolve during its execution. For instance,
the requirements for an aircraft control system are not identical during take-off, cruise and landing.
Meeting all requirements at all times is obviously superfluous and just leads to over-provisioning the
system’s computing capacities.



10 CHAPTER 1. PROBLEM STATEMENT

A typical pattern in real-time systems is thus to design a system with multiple modes of execution.
Each mode handles a specific set of functional requirements and a mode change request triggers a
change from one mode to another.

The hardest challenge with this methodology is that while modes might be verified in isolation,
the transition from one mode to another requires additional care. Indeed, a system designer has to
choose a balance between promptness and system load during a mode change. A mode change with
maximal promptness would simply release all new-mode tasks immediately, but this could lead to
system overload as old- and new-mode tasks are competing for system resources. On the contrary,
delaying the mode change until a “safe” point in time guarantees that the system load remains low,
would have poor promptness as the worst-case time until such a point is reached is exponential with
the number of tasks within the system.

In addition, the state of the art regarding multi-mode real-time systems is divided between works
focusing exclusively on the temporal aspects and works focusing exclusively on functional aspects.
However, efficient design of real-time systems requires the ability of both. Ignoring functional aspects
would lead to design choices with questionable semantics and ignoring temporal aspects would limit
oneself to a restricted set of systems.



Chapter 2

Contribution

The tackled problems will be discussed in individual Parts. Handling multicore is related to the back
end of a compiler since it focuses on code-generation. In contrast, multi-mode behavior focuses on
the front end of the compiler, especially the clock calculus, a form of static analysis. This allows us
to consider improvements on all aspects of the language compiler.

2.1 Compiling Synchronous Languages on Multicore

Our contribution relies on an adaptation of the AER multi-phase model. It leverages the private
memories of cores (e.g. caches or scratchpads) as they are not subject to competition. Task execution
is divided into three phases: Acquisition, Execution, Restitution. The Acquisition- and Restitution-
phases are memory phases. Their role is to copy data respectively from shared to private memory and
from private to shared memory. Executing between those phases, the Execution phase thus does not
suffer from memory access delays.

In Part I11, the PRELUDE compiler is adapted to generate AER-compliant C code from a high-level
PRELUDE program. Thus, the responsibility of low-level implementation concerns related to memory
accesses are shifted onto the compiler. The automatic and systematic handling of these concerns by
the compiler saves tedious and error-prone development efforts. These extensions is implemented as
part of the main PRELUDE compiler .

2.2 Synchronous Semantics of Multi-mode systems

Our contribution builds upon the previous work of Synchronous State Machines for LUSTRE. State
Machines are an established formalism to reason about stateful, reactive systems. A system designer
defines states in which the system behavior is defined in isolation. Transitions allow to switch from
one state to another. An interesting property of these state machines, is that they are defined using a
transpilation. While the programmer writes programs in a surface language with state machines, the
compiler transparently translates them into programs in a core language where the state machines
have been replaced by lower-level language constructs.

A limitation of Synchronous State Machines is that have been defined for languages without
multiple real-time constraints. Thus, a direct transposition of this feature to PRELUDE would prevent

L As part of the ffort_aer branch, either available at the ONERA forge or my personal mirror.
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programmers from using a core aspect of the language. Indeed, this limitation arises from the lower-
level constructs used in the transpilation which PRELUDE directly inherits from LUSTRE.

Our contribution thus focuses on extending these language constructs. In essence, these extensions
allow us to decouple the rate of tasks from the rate of mode changes. This in turn required us to
change the clock calculus of the PRELUDE language. As the required modifications are quite profound,
these extensions resulted in a rewrite of the PRELUDE compiler 2.

2.3 Thesis Overview

This Section will detail what to expect from and how to read this document.

Part 11 will present the “Related Works” of this thesis. It presents established models and languages
used in the context of real-time systems which will serve as a basis for our contributions. Part III
will present the first contribution detailed in Section 2.1. Part IV will present the second contribution
detailed in Section 2.2. Finally, Part V will conclude this thesis and discusses perspectives for future
works.

While this document is readable from “beginning to end”, the contributions are mostly indepen-
dent. Thus, certain readers might prefer reading first towards one contribution and then towards the
second.

In all cases, Chapter 3, Chapter 6 and Chapter 7 are must-reads to get a proper understanding of
the contribution. Chapter 3 presents a base model for real-time systems which originated from pioneer
works in real-time scheduling [55]. However, this model is only suited for analyzing a posteriori an
existing system. Thus, Chapter 6 presents languages to actually program real-time systems. It will
in particular focus on synchronous languages [141]. Finally, Chapter 7 will present the synchronous
language PRELUDE [(7] upon which these contributions build.

For the contribution in Part III, one should read Chapter 4 to better understand the issues in-
troduced by multicore platforms in the context of real-time systems. If it isn’t already done, reading
Section 6.7 will also detail how these issues have been addressed from the point of view of programming
languages in the state of the art.

For the contribution in Part IV, one should read Chapter 5 and Section 6.6 to understand how
this issue has been tackled in the state of the art from the point of view of real-time scheduling and
programming languages.

2 Available here


https://gitlab.com/Fofeu/limusyn

Part 11

Background and Definitions
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Chapter 3

Simple Model for Real-Time Tasks

In this Chapter, we present an overview of real-time systems and a simple model for real-time tasks.
In the following, Chapters 4 to 5, this model will be expanded upon.

In essence, real-time systems are cyber-physical systems which simultaneously perceive and influ-
ence an environment. Their reactions must be provided at a rate that is adapted to the evolution rate
of the environment. A failure to do so would have critical consequences, e.g. deaths, high financial or
environmental damages. Readers looking for a more in-depth review may consult [21,22].

A real-time system is modeled as a directed acyclic graph (7, D) where T is a set of tasks 7, € T
and D is a set of data-dependencies between pairs of jobs (77, ij) eD.

3.1 Tasks

Each task 7; = (0, T;, D;, C;) € T releases a sequence of non-overlapping jobs where 77" denotes the
n-th job of 7;. The set of jobs is J. A task can be interpreted as an OS thread that executes an
infinite loop, while a job represents one execution of the loop. Figure 3.1 illustrates this simplified
view.

As alluded above, a task is defined as a tuple of real-time attributes. We consider the following
attributes.

Definition 1 (Offset). The offset O; denotes the date when the first job 70 of 7; is released.

void task_i (void)
{

// Start of task T

for(int n = 0; true; ++n)

{

// Wait for activation of job 7}

wait_activation();
// Perform computation associated to job

do_computation();

Figure 3.1: Simplified view of tasks and jobs

14



3.2. DATA-DEPENDENCIES 15

Definition 2 (Period). The period T; denotes the time interval between successive releases of jobs of
Ti, i.e. 7' is released at date r]' = O; + n = Tj.

Definition 3 (Deadline). The relative deadline D; denotes the maximum amount of time a job of
7; has after its release to finish its execution. A relative deadline D; is implicit, if D; = T;. In most
models, non-implicit deadlines are still constrained such that D; < T;. In certain models, different
jobs of the same task may have different relative deadlines.

The absolute deadline is the point in time at which 7" must have finished its execution. It is
d} =ri'+ D;.

Definition 4 (Execution time). The execution time ¢; denotes the amount of time a job requires to
compute. An important metric is the Worst-Case Ezecution Time (WCET) C; because of its use in
Scheduling Analysis (Section 3.4).

Definition 5 (Utilization). The system utilization is the total load of the system. It is defined as

C
’TiGT

Definition 6 (Hyperperiod). The hyperperiod of a task(sub)set is the least common multiple of the
task periods. We denote H the hyperperiod of the entire system and H; ; the hyperperiod of a pair
of tasks 7; and 7.

Definition 7 (Job begin). We denote begin(7]*) the date at which 7 starts executing (which may
be after r7") for a specific schedule.

Definition 8 (Job end). We denote end(r]") the date at which 7" stops executing (which may be
before d}') for a specific schedule.

Definition 9 (Schedule). A schedule is a possible execution trace of a real-time system. Scheduling
decisions, e.g. which job should execute at which point in time, are the responsibility of the scheduling
policy (Section 3.3). A schedule is valid, ift Y7]*.r* < begin(]") nend(7]*) < d7, i.e. all jobs terminated
before their deadline and started executing after their release.

3.2 Data-dependencies

Each data-dependency, also called communication, 7" — 7/* = (7/',7/") € D indicates that job 7"

produces data that is used by job 7. We assume that data-dependencies are causal.

Definition 10 (Causal data-dependencies). A causal data-dependency 1)* — 7" requires:
end(7;") < begin(7}")

For each data-dependency 7" — 7

]m, 7' produces its outputs at end(7;*) and T]m acquires its inputs
at begin(7]").

Moreover, to efficiently implement a real-time system, we only consider data-dependencies between
tasks that follow a predefined sequence. The data-dependency between tasks 7; and 7; is a tuple

D, ; = (DY} rel 1P ;ef D ‘;t, I ) where I; X is an interval length in time units, D;* " is a data-dependency

template pref indicates that it belongs to the prefix and pat indicates that it belongs to the pattern.
The prefix defines the data-dependencies between the two tasks at the start of the system between
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dates 0 and If? ;ef . Thus, Dﬁ ;ef contains data-dependencies between jobs active between date 0 and
If?;-ef. The pattern is a template that repeats after date Ifj;ef each Iﬁt time units.

Because of the cyclical nature of data-dependencies, we can define D by using Dﬁ ;ef for the first
Iy ;ef time units and then unrolling D} ‘;t each If ‘;t time units to obtain data-dependencies between

concrete job instances. For instance, the first iteration of Df: ‘;.t defines data-dependencies between dates

Iy ;ef and I ;ef + 17 ;-Lt. Data-dependency (7‘?,7';-)) e D ?t then indicates a data-dependency between

the first jobs of 7; and7; released within that interval (typically at date I} ;ef +I7 ?t)

Definition 11 (Data-dependencies by unrolling). Assuming an assignment of data-dependencies pre-
fixes and patterns (D} ;ef D} ';t) and their length (I} ;ef 7 ?t), the set of data-dependencies D is defined
as:

D = prref  prot

prel = | | ) Dt
7’7.7
Ti,’TjET
t t
DP¥ = {(TZP,TJQ) |keN, 7,7 €T, (7], 7]") € Df; ,
pref ret
=n+4+ 22— k2L
D T T
pref Pt
q T, T, }

3.3 Scheduling Policies

The pioneer works of the policies Rate-Monotonic (RM), Deadline-Monotonic (DM), and Earliest-
Deadline First (EDF) spawned a large field of research with dedicated conferences and journals.
Scheduling policies (and analysis) being out-of-scope for this work, we will focus on this short presen-
tation. Curious readers might consider the earlier cited references for more in-depth discussions [21,22].

Because jobs compete for accessing shared resources (most notably the CPU), a scheduling policy
is required to determine which job is to execute at each point in time, using real-time attributes to
guide its decisions. A real-time system is feasible under a policy, iff the decisions of the scheduling
policy guarantee that each job finishes executing before its absolute deadline. A policy is optimal for
a specific class of systems, iff it is able to produce a feasible schedule for a feasible systems within
that class.

DM belongs to the class of task-level static priority policies. All jobs of a task share the same
priority. Jobs with lower relative deadline have a higher priority. EDF belongs to the class of job-level
static priority policies. A job’s priority is determined by its absolute deadline. Jobs with an earlier
deadline have a higher priority. EDF is the more general policy: it is optimal on mono-processor
systems. DM is only optimal on mono-processor systems within the class of task-level static priority
policies.
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3.4 Schedulability Analysis

A schedulability analysis is a static analysis that verifies the feasibility of a real-time system. The
complexity of the schedulability analysis depends on the scheduling policy and the complexity of the
system. For a real-time system scheduled by EDF without data-dependencies and implicit deadlines,

the schedulability analysis is 27’ % < 1. Adding data-dependencies or non-implicit deadlines requires
Ti€

to verify that the demand-bound function [12] holds, i.e. Vte N. t = >, Cj = ([tfrij +1).
TET ‘

Example 1 (Real-time systems with and without data-dependencies). Let us consider the following
real-time system without data-dependencies.

7 | Oi | T; | D; | G
| 0 5 3 1
| 0 |10] 10 | 3
T3 | 2 6 6 2

Executing this system according to the Farliest Deadline First policy on a monocore platform
yields the following schedule shown as a timing diagram. The diagram indicates when a given task
executes. Each task has its own timeline. A grey box indicates that a task executes during that time
interval. Since tasks compete for access to the processor, only one may be active at a time. Arrows
pointing upwards indicate a job release, while arrows pointing downwards indicate that corresponding
job’s absolute deadline.
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A selection of attributes:

H =30 Hyy =10
r% =5 d% =38
begin(ty) = 1 end(t9) =7

Now, let us consider the same system with data-dependencies. The data-dependency patterns are
shown below.

DIy = {(11,2)} Iy =10
D{)g = {(7—{)’7-{?)7 (7—1177—31)7 (7_12’7_32)a (7{137_?::))7 (7-1577-??)} I{)Zt =30
Dg,%t = {(7—3’7-{?)7 (7—877—31)7 (7_21’7_31)a (7377§)7 (7377§)} Ig%t =30
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Executing this system according to the EDF policy, while respecting data-dependencies, yields the
following schedule.
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Chapter 4

Multicore Real-Time Systems

Multicore systems pose new issues for real-time systems. On the one hand, they offer a potential
for increasing system performances by allowing to execute one job per core simultaneously (i.e. of-
fering parallelism in addition to the inherent concurrency of real-time systems). On the other hand,
multicore systems are characterized by a global memory that is shared between cores via a bus. Ac-
cesses to this memory may be delayed if multiple cores try to access it simultaneously. These delays,
called contentions, have a high variability between their worst-case and average values because they
depend upon minute details within task codes, task interferences and the contention resolution mech-
anisms [72]. This in turn leads to an overly pessimistic WCET even though the conditions for the
actual worst-case are highly unlikely or even impossible.

4.1 Scheduling

Scheduling policies similar to those used in monocore exist in multicore. However, these policies exist
either as a partitioned or as a global variant. In a partitioned policy, tasks are assigned at system
design to a core and may only execute on that core. Thus, scheduling decisions need only to take
into account core-local properties. In a global policy, tasks may execute on any processor and a single
scheduler makes decisions for the whole system. These two variants are incomparable, meaning that
there exist real-time systems which are only feasible under partitioned scheduling and others which
are are only feasible under global scheduling.

4.2 Hardware model

To elaborate our hardware model, let us look at how a multicore system is composed. Such a system
is composed of processor cores which are connected via a bus to the RAM which is a shared central
memory. Thus, access to the RAM is subject to contentions. Each core also has access to private
memories which can only be accessed by that core and are not subject to contentions. The most
common are cache memories which can replicate content of the RAM for faster access. When accessing
a memory address, if the location is replicated in the cache, the processor can access it faster and
contention-free from there.

Certain embedded platforms also have scratchpad memories (SPM). These private memories have
the same timing properties as caches, but instead of implicitly replicating the shared memory, scratch-
pad memories possess their own memory space and must thus be manipulated explicitly.

19
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Figure 4.1: An example hardware component graph

Using those observations, we can see that the switch to multicore platforms requires to explicit
a hardware component graph. It also exists in monocore platforms, but represents trivial instance
of such a graph, i.e. accessing the central memory is trivial when there is only one processor/core
accessing it. The edges of this graph are either CPU cores p; € Il or memories M; € 9. The vertices
of this graph connect CPU cores to memory components and are annotated with access costs.

Figure 4.1 displays an example graph. Each core p; has access to its private memory M;, but
cannot access to another private memory. The access cost is constant in this example, 1 instruction
cycle, which is typical for scratchpads or caches. Each core can however access the central memory
M. The access cost in this case is however a function depending on the memory requests emitted
by all CPU cores.

4.3 PREM

To address the pessimism induced by contentions, one solution is to reduce the number of instruc-
tions they can impact. The PRedictable Execution Model (PREM) [71] achieves this by decoupling
contention-inducing (communication) phases from computation phases.

The idea is that most jobs in a real-time system will load values from a shared buffer or sensor,
perform computations and then write results back into a buffer or actuator. When writing code
without PREM-compliance in mind, one could mix those buffer accesses and computations, e.g. first
load a value and perform some computations with it before loading a second value. Worse, those
buffer accesses could be located deeply-nested within functions called by the task code.

To write with PREM-compliance in mind, contending accesses have to be isolated such that once
all such operations are completed, computations can execute without risking to produce contentions.
To do so, all required data and code should be located within memories that are guaranteed contention-
free, e.g. registers, private caches or scratchpad-memory.

Figure 4.2 shows a simple task code with and without PREM-compliance. Without PREM-
compliance in Figure 4.2a, the task is implemented using opaque subroutines where certain buffers are
accessed mid-execution. Figure 4.2b shows an implementation with PREM-compliance in mind. Three
distinct phases are visible. First, all necessary buffers are read in a contention-inducing communication
phase. Second, subroutines are called in a contention-free computation phase. Note that deeply-nested
buffer accesses are replaced by explicit parameters. Lastly, a new communication phase stores the
result in an output buffer.

4.4 AER

The AER [32] model is similar to the PREM model but further restricts the structure of tasks. Each
job 7" of task 7; must be divided into a sequence of 3 phases: Acquisition (A}'), Execution (E),
Restitution (R}'). In the Acquisition phase, data is copied into private memory from global memory.
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void g(int x) int g(int x, int y)
{ {
x = gl(x); x = gl(x);
int y = read2(); x = g2(x, y);
x = g2(x, y); return x;
write3(x); }
}
void do_computation() void do_computation()
{ {
//Reads buffer 1 int x = load_buf1()
int x = £Q) int y = load_buf2()
//Reads buffer 2 x = £f(x)
//Writes buffer 3 y = glx, y)
g(x) store_buf3(y)
} }
(a) Without PREM-compliance (b) With PREM-compliance

Figure 4.2: Job body with and without PREM-compliance

In the Execution phase, computations are executed contention-free using the private memory. Finally,
in the Restitution phase, results of the computation are copied from the private memory into the
global memory.

This declination is advantageous because it is close to the the model of synchrony (Section 7.4)
where computations (Execution phase) are assumed to execute without side-effects except input ac-
quisition (Acquisition phase) and output production (Restitution phase). Because of this, we will rely
on the AER model in this work.

Looking at Figure 4.2b, this example matches with the AER model. The calls to load_bufX()
are the Acquisition phase. The calls to £ and g are the Execution phase and store_buf3(y) is the
Restitution phase.

4.5 Related Works

The difficulty of predicting the timing properties of multicore real-time systems because of the minute
interactions between task codes, task interferences, and the contention resolution mechanisms, has
been identified in [72,73,85].

The PREM [71] and AER [32, 58] models have been proposed to address this issue. They both
divide task execution in memory phases which interact with the global memory and execution phases
which perform computations contention-free, i.e. with accessing the global memory. The main differ-
ence between those two is that the AER model is more explicit about the role of the different phases.
Unless stated otherwise, we will use PREM and AER interchangeably.

Both models have gained significant attention from the real-time scheduling community such that
numerous scheduling algorithms and schedulability analyses have been proposed [1—6,13,18,57,63,84,

,108,109].

Concrete applications of these models have been considered at different levels of the software-stack.
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4.5.1 OS-level support

At the lowest level, support for PREM can be introduced at the OS-level. This has been studied
in [90,93-95,105]. The system developers writes their task code using the provided OS primitives.
The compilation process will produce an OS image that will use the scratchpad memory as appropriate.

Similarly, others have studied the introduction of PREM-support using a hypervisor [51]. In [10],
such a technique is introduced to support mixed-criticality systems.

4.5.2 Source code refactoring

Many real-time systems are composed of legacy code, in general non-PREM-compliant C code. Refac-
toring this code to be PREM-compliant is non-trivial and requires a thorough understanding of the
code to be converted. Using memory profiling tools, Light-PREM [59] refactors legacy source code in
such manner that it is PREM-compliant.

4.5.3 Binary code generation

Another possibility is to modify the compiler, in this case the LLVM compiler, such that it produces
PREM-compliant code. In [71], a new predictable-block is introduced. Code within this block is
generated such that it is PREM-compliant. In [62], no new language construct is introduced, but the
compiler plugin is required to perform more advanced analyses and ILP-based scheduling. In [91], a
specialized LLVM plugin produces PREM-compliant code using SPM.

4.5.4 Predictable GPU-code

The problems of multicore-platforms that led to the development of the PREM-model, also exist on
platforms featuring integrated GPUs. Unlike dedicated GPUs which possess their own memory and
communicate with the main memory via a bus such as PCI-Express, integrated GPUs share their
memory with the CPU. To address this issue, solutions such as HePREM [37,38] and SiGamma [24]
have been proposed.



Chapter 5

Multi-Mode Real-Time Systems

One restriction of the model in Chapter 3 is that the task set T is statically defined at system design.
It is not possible to specify changing functional requirements throughout system execution. However,
certain real-time systems have a multi-moded behavior. A typical example would be an aircraft control
system with modes such as take-off, cruise and landing.

In this Chapter, we will discuss two ways to model real-time systems with the ability to perform
system reconfiguration during execution. Section 5.1 presents mode change protocols, a generic mech-
anism to switch between different modes. Section 5.2 presents mized-criticality systems, a special case
of mode change protocols where the current mode sets the minimum criticality of tasks allowed to
run.

5.1 Mode Change Protocols

When using Mode Change Protocols (MCP) [32], the system is defined as a set of distinct task sets.
Each task set represents a possible and valid system configuration with potentially different timing
constraints. The MCP is then responsible for switching from one task set (the old mode) to another
(the new mode) when a Mode Change Request (MCR) is emitted. During this transition phase, the
MCP must guarantee that jobs respect their deadlines.

Note that this approach asks different levels of detail for different aspects of the system. The
system designer (or the used tool) must define precisely each individual mode in its “pure” form, i.e.
how the mode executes ignoring the arrival of MCRs. However, beyond the choice of a specific mode
change protocol, there is little control over how the system behaves between the modes.

In this context, different protocols offer different advantages. We compare MCPs according to
two criteria: promptness and overload. The promptness of a MCP is its worst-case transition time.
The overload induced by a MCP is due to the transition phase. For certain MCPs, a dedicated
schedulability analysis is required.

A protocol with maximal promptness would start releasing all new-mode jobs immediately upon
receiving the MCR. This leads however to poor schedulability because the system would need to be
able to schedule both modes simultaneously during the transition phase.

A protocol with maximal schedulability would wait until no job of the old-mode is waiting to be
executed. In the worst case, this requires to wait until a date that is a multiple of the hyperperiod.
This protocol leads to no temporary overload and is easy to analyze. However the worst-case transition
time is exponential with the number of tasks.

23
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There is no best protocol and as a consequence, a system designer must choose a MCP that suits
their system. The real-time literature [32] classifies MCPs according to three criteria:

e OQuerlapping': When do the new-mode tasks start executing?
o Periodicity: Are unchanged tasks impacted by mode changes?

e Retirement: How long can old-mode tasks continue executing?

Non-overlapping protocols release the new-mode tasks only at the end of the transition phase.
Tasks of both modes thus never co-exist. Overlapping protocol allow new-mode and old-mode tasks
to be both executed during the transition phase. The potential overlap between modes allows for a
more prompt transition at the cost of a scheduling analysis specific to the transition phase.

Periodic protocols do not interfere with the execution of unchanged tasks, i.e. tasks which are
present both in the old- and the new-mode. Aperiodic protocols suspend unchanged tasks for the
duration of the transition phase.

Late-retirement protocols gracefully decommission old-mode tasks by continuing their execution for
a given amount of time, e.g. until they complete their current activation. Farly-retirement protocols
abort old-mode tasks as soon as the MCR is triggered.

One should note that this classification of multi-mode real-time systems [32] does not take into
account the semantics of the system. For instance, how do early-retirement or aperiodicity interact
with data-dependencies ? This issue will be addressed in our work.

Example 2 (Multi-mode real-time systems). Let us consider the following real-time system with the
modes A and B. For simplicity, we assume that all tasks have O; = 0.

i | T; | Di | C;
T1 | 5 3 1
T 120 20 | 4
5 |10 10 | 3 Ta = {71, 72,74}
|10 8 | 2 T = {71, 73, 74}

Data-dependencies within mode A are:
DYy = {(],73)} I{y =20
D5y = {(75, 7). (75, 74)} I{y = 20
Data-dependencies within mode B are:
t ¢
DYy = {(r),73)} 75 =10
t ¢
Dy = {(m3. 1)} e =12

Below we will show a transition from mode A to mode B using an overlapping, periodic protocol
with late-retirement. A MCR is emitted at date 10, which starts a transition phase (grey box). As
can be seen, during the transition period, tasks 7 and 73 co-exist during this period.

! Also called synchronicity [$2], we renamed it to avoid confusion with synchronous languages.
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The diagram below shows a similar, but non-overlapping, transition from mode B to mode A.
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5.1.1 Related Works

A survey [82] presents a good overview of real-time scheduling of multi-mode systems.

o The idle time protocol [98] waits for an idle time (i.e. an instant where no job is waiting to be

executed) to transition. The worst-case waiting time is the hyperperiod of old- and new-mode
tasks.

The mazimum-period offset protocol [9] waits for a time equal to the maximum of the old- and
new-mode task periods to transition.

The minimum single offset protocol [$1] interrupts the release of old-mode jobs upon reception
of an MCR and waits for the termination of currently running old-mode jobs;

The utilization-based protocol [36] keeps a ledger of the current system utilization. New-mode
tasks are added gradually as old-mode tasks finish executing, reclaiming the liberated utilization.
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o Tindell’s asynchronous protocol with periodicity [99] is late-retiring. Old-mode jobs finish their
current execution, but no new old-mode jobs are released. Unchanged tasks may have different
attributes between modes.

o Pedro’s asynchronous protocol without periodicity [70] behaves similarly. Breaking periodicity
allows however to schedule a greater number of task sets.

e The paper’s own protocol is a mixture of Tindell’s and Pedro’s protocol. It is an extension
of Tindell’s protocol that takes inspiration from Pedro’s protocol to improve promptness. By
default, it is a periodic protocol, but it can introduce aperiodicity to guarantee schedulability.

A limitation of this work is that it does not consider data-dependency. Instead, it considers
consistency of shared resources, i.e. mutexes, which is too simplified in our opinion.

Later work on real-time calculus [75—77,92], improves this by considering that tasks consume data
from a buffer. However, it is not considered how these buffers are filled.

Beyond this work, some work expanded upon the study of multi-mode systems for special cases such
as multicore systems [65, (6], high-performance multimedia systems [100] or systems with arbitrary
deadlines [61]. However, these papers do not solve this limitation.

5.2 Mixed-criticality systems

A special case of multi-mode systems are mixed-criticality systems [19,20, 102]. In the base model
of real-time systems, all tasks are considered equally critical: any deadline-miss is considered catas-
trophic. This is not the case in a mixed-criticality system. In its simplest form, each task has either
a high- (HI) or low-criticality (LO). LO tasks may execute in a degraded state, if this may allow HI
tasks to respect their deadlines.

The main motivation for mixed-criticality originates from software standards such as the avionics
standard DO-178C [30] where software has different levels of criticity. DO-178C defines Software
Levels from A “Catastrophic”, to E, “No Effect”. Failure in Software Level A could cause deaths, while
failure in Software Level E could not negatively impact safety, aircraft operation, or crew workload
(but could cause passenger discomfort). Mixed-criticality systems offer a way to execute software of
different levels on the same platform while guaranteeing that lower levels have no negative impact on
software of higher levels [20].

Example 3 (Mixed-criticality real-time systems). Let us consider the following, simplified, mixed-
criticality real-time system. It has two levels of criticality, LO and HI. In each mode, two tasks
execute, 79 and 7. Task 73 is a high criticality task that must be able to execute at any cost, while
task 7 is of lower criticality and may experience a decrease in quality of service.

Their real-time attributes are shown below. As can be seen, task period, deadline and WCET vary
between the LO- and HI-mode. Most notably, the WCET in the LO-mode is lower for both tasks.
This WCET-value is the “optimistic” WCET which upper-bounds the majority of execution traces.
On the other hand, the values for the HI-mode are the actual WCET values which upper-bound all
execution traces. The examples below will assume a semi-clairvoyant scheduler (see below) that is
able to increase task periods and deadlines during execution, but not abort jobs.

LO HI

Task Oz TLO DLO CLO THI DHI CHI
T0 0 ) 4 2 ) 4 3
sl 0 10 10 ) 20 20 7
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The timing diagram below illustrates a potential criticality change due to 7y requiring more execu-
tion time than COLO. This means that the absolute deadline of 7{ is delayed by 10 time units to reflect
the increase of T} and D; (orange doted line at date 10). In white, we indicate the time intervals 7
would use in case it too required more execution time.
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This second diagram illustrates a criticality change triggered by 7 this time. Again, white boxes
indicate time slices that would have been consumed in case jobs of 7y required their high-criticality
execution time.
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5.2.1 Related Works

A survey [20] presents a good overview of real-time mixed-criticality systems. It is regularly updated
which makes it a valuable resource.

The seminal work of mixed-criticality [102] presents the ground works of the mixed-criticality
model. While notions such as HI and LO tasks has been reused in further work, this paper presents
a simplistic model. Tasks have a set of real-time attributes for each criticality level. Thus, the
WCET value represents an execution time budget. The scheduler tracks the execution time of tasks.
When a tasks exceeds that budget, the scheduler changes the criticality level. Certain tasks would
have no period in the new mode, meaning they would be aborted immediately without taking into
consideration data-dependencies. Moreover, the paper defines no mechanism to return to a lower
criticality level.

In [19], it has been identified that mixed-criticality systems are a special case of multi-mode
systems. Reconsidering them under this optic allows us to reapply previous results. For instance,
returning to a lower criticality can be solved by re-using an existing mode change protocol.

Work on semi-clairvoyant scheduling for mixed-criticality systems [3, 1], addresses the issue of
the nebulous semantics in the original model. A semi-clairvoyant scheduler is able to know at job-
release (thus before any instruction is executed) certain properties about the job-execution. A semi-
clairvoyant scheduler can use a parametric WCET [10,23] to compute a more exact WCET value for
the current job execution. Thus it may potentially trigger a change in criticality mode.
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5.2.2 Link with Mode Change Protocols

As has been illustrated, mixed-criticality systems literature often lacks considerations for semantics.
Reconsidering them as multi-mode system could solve this issue. Our contribution (Part IV), offers
thus a way to program mixed-criticality systems with a formally sound basis.



Chapter 6

Synchronous Languages for Real-Time
Systems

In Chapters 3 to 5, the presentation of real-time systems was fairly abstract, it focused mostly on
the temporal properties of these systems. In this Chapter, we present synchronous languages that
have been designed for programming real-time systems. Moreover, we will also evaluate how these
languages tackle the problems of programming multicore and multi-mode systems.

6.1 Synchronous Languages

Synchronous languages are a family of programming languages that have been designed to tackle the
challenges of programming safety-critical real-time embedded systems [14]. They are characterized by
combining three properties:

1. Synchrony to abstract time as a sequence of discrete instants;
2. Deterministic concurrency via explicit language constructs;
3. Simple formal underlying models to make verification tractable.

Within that design space, different solutions emerged. In Sections 6.2 to 6.5, we will review these
solutions and later contributions. We will both consider the original designs and later contributions
that addressed the design of multicore and multi-mode systems.

6.2 Lustre

The LUSTRE programming language [12] is based on the formalism of control engineers who define a
system via equations or dataflow networks. Under this formalism, a system is a sequence of equations
xr = e where x is a variable that appears exactly once on the left side of an equation and e is an
expression describing the value of x at each point in time.

A LUSTRE program is thus structured around nodes rather than functions. The main difference
is that in a node variables represent dataflows, i.e. infinite sequences of values, instead of individual
scalar values. Instead of being composed of expressions or statements, the node-body is composed of
equations. Node equations can be understood like mathematical equations: They define one dataflow
by composition of other dataflows.

29
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The synchronous model of time in the LUSTRE language is structured around clocks. Each dataflow
has a clock and when a clock is present, i.e. “it produces a tick”, its associated dataflow is present.
A clock calculus [29] verifies the consistency of clocks within the program. In the case of LUSTRE, it
can be solved using techniques similar to Hindley-Milner typing.

A base clock base specifies the fastest possible rate, i.e. base is present at each instant. Externally,
the system designer can specify a period for the base clock, e.g. 1ms, but internally the language
operates purely on ticks of the base clock. The clock operator ck on C(c) produces a clock that is
present at each instant where ck is present and the dataflow ¢ (whose clock is ck) produces a value C.

An expression e when C(c) conditionally sub-samples the dataflow e by keeping only the values
of e at instants where dataflow c simultaneously produces the value C. The expression has clock
ck on C(c) while both e and ¢ have clock ck.

The expression merge(c, CO->e0, Cl->el) merges the complementary dataflows with respective
clocks ck on CO(c) and ck on C1(c), i.e. only one dataflow is present each instant and the union of their
instants is the instants of clock ck. The resulting dataflow has clock ck. For each instant, the merge
operator simply selects the currently present dataflow and produces its value for the current instant.
Another operator to manipulate dataflows with on operators is current. It accepts a dataflow with
clock ck on C(c) and returns a dataflow with clock ck. For each instant where ck on C(c) is not
present, the operator “fills the hole” by repeating the input dataflow’s last value. A limitation of this
operator is that, unlike the merge operator, it’s behavior is undefined is ck on C(c) is not present the
first time ck is present.

To relate logical time to physical time, a typical pattern is to define base as the fastest rate in the
system, e.g. a period of 10ms, and then define sub-samplings of this clock that define slower rates. For
instance, if dataflow each? is true only once each two successive instants, clock base on true(each2)
would represent a clock with a period of 20ms. However, this scheme has the limitation that it does
not compose well. For instance, the type system has no knowledge of how base on true(each2),
base on true(each3) and base on true(each6) relate to each other.

Example 4 (Lustre). The program below is a minimal LUSTRE program featuring a single node
main. This node has four inputs, i, j, k, and c, and one output, o. The first equation defines
the local dataflow x as the result of £(i, j) where f is a function over scalars that has been lifted
to operate on dataflows via point-wise application. For consistency reasons, such a lifted function
requires its arguments to be synchronous, i.e. that they possess the same clock. The next two
dataflows are conditional sub-samplings using the when operator. The resulting dataflows have the
respective clocks base on true(c) and base on false(c). Finally, the output o is the result of merging
the complementary dataflows together to obtain a new dataflow that has clock base.

node main(i,j,k,c) returns (o)
var x,y,z;

let

x = £(i, j);

y = x when true(c);

z = k when false(c);

o = merge(c, true->y, false->z);
tel

The timing diagram below illustrates a possible trace of this program. It illustrates the values
carried by the dataflows over time. Note that it views the values carried by the dataflow from the
point of view of logical time, i.e. computations are supposed to execute instantaneously.
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Inputs i and c have clock base and are thus present at each instant. Dataflow x is the result
of applying the scalar function f pairwise on the values of i and j. Since the input rate defines the
output rate, it also has clock base. Dataflows y and z are not present at each instant because they
are on clocks base on true(c) and base on false(c) respectively.

10 i1 12 i3 7 15
i i i i i i i
true false false true true true
i i i i i i c
fGio,jo)  flin,g1)  fliz,je)  flis,j3)  f(ia,ja)  f(is,55)
i i i i i i x = £(1,j)
f (o, jo) fis,g3)  flia,ja)  f(is, J5)
% % % % y = x when true(c)
k1 ko
i | z = k when false(c)
f (o, jo) kq ko fis,g3)  flia,ja)  f(is,J5)
% % % % % % o = merge(...)
6.3 Signal
The SIGNAL language [15,52,54] is a synchronous dataflow language similar to LUSTRE. However,

clocks are first-class objects in SIGNAL. Thus, it is possible to express polychronous systems, i.e.
systems where clocks do not form a single hierarchy. In contrast, LUSTRE is said to be endochronous.
Programmers can manipulate clocks the following ways:

1. Any boolean dataflow, called signal in the language’s lingo, can be lifted to a clock. In LUSTRE,
the right-hand side of a when expression is always a data constructor and a variable. The LUSTRE
expression e when C(c) is written in SIGNAL e when (C = c). More complicated expressions
such as e when (n >= 1) are also possible. The expression event e returns the clock of e, it
is a short-hand for true when (e=e).

2. In addition to dataflow equations v := e where v is a variable and e an expression, SIGNAL allows
for clock equations. An equation v "= e specifies that v and e have the same clock. Equation
x "=y ~+ zspecifies that the clock of x is the union of the clocks of y and z. Dataflow equations
themselves also introduce clock equations. For instance, equation v := e when c introduces the
equation v "< e, meaning v is at most as frequent as e.

To verify the clock consistency of a polychronous program, the clock calculus solves the set of
all clock equations. While decidable, solving such equations is NP-hard. To mitigate this, efficient
strategies have been proposed that trade-off completeness for efficiency [7,3%]. These strategies do not
accept all correct programs, but, for typical systems, the clock calculus efficiently verifies consistency.
In [97] an approach for basing the clock calculus of SIGNAL on refinement types has been proposed.

For real-time systems, affine clock transformations [38] are of particular interest. An affine clock
transformation is a tuple (n, ¢, d). Two clocks H and K are related by such a transformation, if there
is a clock P such that: 1. H "< Pand K “< P; 2. The ¢ — th instant of H is the n i — th instant of P;
3. The ¢ — th instant of K is the (d i+ ¢) —th of P. This form of clocks allows to express efficiently
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the relations between periodic tasks. However, this formalism does not directly relate instants to
physical time. Moreover, compilation of such a model to multi-task code has not been studied to our
knowledge.

Example 5 (Signal). Let us discuss the implementation of Example 4 in SIGNAL. It could be
implemented as shown below. Instead of defining a node, a SIGNAL program is a process defined via
the parallel composition of equations.

We already discussed the when construct. However, signal does not feature a merge expression.
Instead, the default operator performs deterministic merge of arbitrary expressions. Expression
y default z is the union of the values of y and z. In case both dataflows are present simultaneously,
y takes priority.

The clock equation added at the end of the example is not strictly required. We added it to guar-
antee that both examples exhibit the same behavior. Without it, the example becomes polychronous.
Variables i and j must have the same clock because of they are arguments of £, but beyond that,
variables may have unrelated clocks.

process main =
{ ? int i, j, k; bool ¢
! int o }
£(i, j)
X when c
k when (c
y default

i A=j =

false)

O O N < ™
]

~ N
)
]
(@]

The timing diagram below illustrates a possible execution trace of the program without the clock
equation. As can be seen, without added restriction, the output is not guaranteed to be as frequent
as the inputs.

20 11 ’iQ 13
i i i i i
ko k1 ko k3
i i % i k
true false false true false
i i i i i c
f(io, jo)  f(i1,51) iz, ja) f(is, j3)
i i i i x = £(i,j)
f (o, jo)
i y := X when c
]6(] k3
i | z := k when (c = false)
f (0, jo) ko k3
|

| | | o =y default z
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6.4 Prelude

As shown in Section 6.2 and Section 6.3, the previously presented dataflow languages possess some
limitations in their ability to directly express real-time constraints.

The PRELUDE language [30,67] solves this issue by introducing strictly periodic clocks. Using the
tagged-signal model [53], each instant has a tag corresponding to its date, i.e. the first instant has
tag/date 0, the second 1, etc. A strictly periodic clock (n,p) produces its i-th tag at date p + i * n.
Note that a clock (n,p) has its i-th tag when a task with 7'= n and O = p releases its i-th job. These
similarities allow for efficient implementation as a set of dependent real-time tasks [35].

To bridge the gap between dataflows of different clocks, the language defines rate-transition oper-
ators. The expression ex"k produces a dataflow that is k& times as fast as e by repeating each value
of e k times. If e has clock (n,p), e*"k has clock (n/k,p). In contrary, the expression e/ k produces
a dataflow that is k times slower than e by only preserving the first of k successive values. It has
clock (n = k,p). Note that rate-transition operators introduce new constraints. For instance, e*"k is
well-formed, iff n is a multiple of k. It is the role of the clock calculus to verify the consistency the
resulting dataflows.

A current limitation of the language that will be addressed in this thesis is that the operators
when and merge directly inherit their definition from LUSTRE. This implies two restrictions. First,
the arguments of a when or merge must all have the same clock. Second, it is not possible to apply a
rate-transition operator after applying a when.

Chapter 7 will provide an in-depth presentation of a base kernel of the PRELUDE language used
throughout this thesis.

Example 6 (Prelude). Let us discuss the implementation of Example 4 in PRELUDE. The language
reuses a syntax similar to LUSTRE for most syntactic constructs. To better illustrate the language, we
introduced multi-periodicity in our example. Dataflows i, c, o all have clock (10,0) (for ¢ and o it is
inferred by the clock calculus). Since j has clock (20,0), it cannot be applied directly as an argument
to £ with i. A rate-transition is applied first.

—-- Clocks inferred by the compiler:

: rate (10,0)

: rate (10,0)

: rate (10,0)

: rate (10,0) on true(c)

rate (10,0) on false(c)

node main(i: rate (10,0); j: rate(20,0); k: rate ( 5,0); c)
returns (o)

var x, y, Z;

|
|
N< X OO

let
x = £(i,j*72);
y = x when true(c);
z = (k/"2) when false(c);
o = merge(c, true->y, false->z);

tel
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6.5 Imperative synchronous languages

Instead of relying on a dataflow semantics, the ESTEREL language [1 7] relies on control-flow semantics.
A program is composed of parallel imperative threads that communicate via deterministic signals.
This paradigm is especially suited for systems that do not continuously sample their environment but
instead react to individual events.

Example 7 (Esterel). The program below illustrates the typical ABRO example. It implements an
ESTEREL module with three inputs, A, B, and C, and one output 0. The module implements an infinite
loop. The loops restarts when signal R is present, even if the loop body didn’t finish executing. In the
first instruction of the loop body, the program spawns two threads that respectively wait for A and B
to be present. The parallel construct terminates when all threads terminated executing. Both signals
need not be present within the same reaction of the system. When both signals have been present,
the module emits its output O.

module ABRO:

input A, B, R;

output 0;

loop
[ await A || await B 1;
emit O

each R

end module

The FOREC language [16,110] is a C-like language that introduces deterministic concurrency via
ESTEREL-constructs.
Recently, the model of Sequentially Constructive Concurrency [13,39] (SCC) has gained traction

as a conservative extension of control-flow semantics that is easier to reason about than the model
of ESTEREL, increasing the number of accepted programs. The language achieves this by allowing
concurrent read and write operations on the same variable. In non-synchronous languages, this would
lead to non-determinism and race conditions. In classical ESTEREL, the compiler would reject such a
program. In SCC, the language offers mechanisms to describe how these concurrent operations should
be resolved. In particular, SCCHARTS is of relevance to our work because of its ability to describe
multi-mode systems.

6.6 Related Works on Multi-Mode Systems

The need for multi-mode real-time systems has motivated language designers to conceive language
constructs for such systems. In this Section, we will discuss solutions proposed by these languages,
compare them to our contribution and describe their ability using the terminology introduced in Chap-
ter 5.

6.6.1 Lustre

In [28] a conservative extension of the LUSTRE and LUCID SYNCHRONE [25] languages introduces
Synchronous State Machines as a way to implement multi-mode systems. The extension relies on
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a transpilation' process that accepts programs in a surface language with automata and produces
programs in a core language without. In [27], a semantics for these automata has been provided that
does not rely on the translation process.

Our method relies on a fairly similar translation process. However, our contribution allows to
express systems with multiple rates of execution.

The mode change protocol offered by Synchronous State Machines is a non-overlapping, periodic,
late-retirement protocol. It is similar to a special case of the minimum single offset protocol where all
tasks share the same period.

Example 8 (State machines in Lustre). The automaton below implements a crossbar switch. It has
two inputs, 1 and j, and two outputs, o and p. The state of the automaton dictates to which output
the inputs are redirected. A switch from one state to another is triggered when c evaluates to true. In
state S1, this transition is strong, i.e. if c is true the switch is immediate. In state S2, this transition
is weak, i.e. the switch to the new mode is taken only in the next instant.

node switch(i, j, c) returns (o,p)

let
automaton
| S1 ->
unless ¢ then S2;
o =1i;
P =13
| S2 ->
o= 7;
p =1
until c¢ then S1;
end
tel

Below we have the result of the transpilation process. It introduces three variables s, ns and pns.
Variable s holds the current automaton state which dictates the equations to evaluate. Variable ns
holds the automaton’s next state, i.e. the state the automaton will enter into at the beginning of the
next instant. If a transition is triggered, it holds the destination state of that variable, otherwise it
holds the current state. The variable pns holds the previous next state, i.e. the value of ns at the
previous instant. This is thus the state the automaton should enter, if no strong transition is triggered.

The transpilation process guarantees that only one set of equations is evaluated by introducing
projected equations and then merging those partial dataflows. For instance, o is defined in state
S1 as o = i; and in state S2 as o = j;. The transpilation process thus introduces two equa-
tions 0_S1 = i when S1(s); and o_S2 = j when S2(s);. In each of those equations, a when is
applied to the inputs, i and j. Thus, equation o_S1 and o_S2 are only evaluated when the automa-
ton is in state S1 and S2 respectively. The dataflow o is then created by merging these equations
o = merge(s, S1->0_S1, S2->0_S2);.

node switch(i, j) returns (o,p)
let

'From trans- and compilation, a compilation process where both the input and output are “source” programming
languages.
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pns = S1 fby ns;
s = merge(pns, S1->s_S1, S2->s_S2);
ns = merge(s, S1->ns_S1, S2->s_S2);

o = merge(s, S1->0_S1, S2->0_S2);
p = merge(s, S1->p_S1, S2->p_S2);
s_S1 = if (c when S1(pns)) then S2 else S1;
s_S2 = S2;
ns_S1 = S1;
ns_S2 = if (c when S2(s)) then S1 else S2;
0_S1 = i when S1(s);
0_S2 = j when S2(s);
p_S1 = j when S1(s);
p_S2 = i when S52(s);
tel

6.6.2 Signal

In [96], an extension of SIGNAL with State Machines similar to [28] is provided. The mechanism is
polychronous in the sense that dataflows within the system may operate on unrelated clocks. How-
ever, the dataflow defining the automaton state is required to be present at each instant where the
automaton inputs are present.

Our contribution also allows for dataflows within states with different rates of execution. However,
our contribution requires that partial definitions of one dataflow to share the same clock across modes.

The mode change protocol implemented by Polychronous State Machines is also a non-overlapping,
periodic, late-retirement protocol similar to the minimum single offset protocol. This is due to the
fact that even tough SIGNAL is polychronous, it follows a strict definition of logical time similar to
LUSTRE: any computation started within an instant terminates before the next one. Strong transitions
are resolved before any computations are started within that instant such that the first non-transition
computation belongs to the new state. Weak transitions are resolved after all computations within
that instant terminated. Hence, the system is in the new state at the beginning of the next instant.

Example 9 (State machines in Signal). Let us illustrate this by implementing the switch example
in SIGNAL.

process switch =
{71, j, c

o, p }
(| init S1 : (l o=i Il p=3 1D
| S2: (lo=3lp=1il)

| ¢ => 81 ->> 82
| ¢ =>82 -> 81
)
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The first two lines implement the states S1 and S2. The lower two lines implement transitions.
An arrow ->> denotes a strong transition, while -=> denotes a weak transition.

No clock constraint exists between i, j and c. Thus, o can produce values at a different rate
between modes S1 and S2. This is not possible in our contribution. The clock calculus would require
i and j to have the same clock.

6.6.2.1 Prelude

Being similar to the LUSTRE programming language, the technique presented in [28] can be applied
to construct synchronous state machines in PRELUDE. However, the semantics of the when and merge
operators, borrowed from LUSTRE, do not allow to mix multi-periodicity with state machines. All
arguments of a when and merge must share the same clock. Furthermore, rate-transition operators
may not be applied on arguments whose clock feature an on.

Until this work, the issue of how multi-periodicity and mode changes interact in a synchronous
language had been identified, but not tackled [34]. Part IV of this work will tackle this problem in
detail.

6.6.2.2 Esterel

Historically, control-flow languages have been considered better suited to implement systems relying
on state machines until contributions such as [28]. State machines can be written fairly easily without
relying on explicit constructs, legacy code may in fact hide “implicit state machines” [56]. Specialized
constructs for state machines have been proposed for control-flow synchronous languages such as
SyncCharts [8] and SCCharts [104].

6.6.2.3 Non-synchronous languages

Statecharts This graphical language [11] describes multi-moded reactive systems. The language
does not directly target real-time systems, but certain features have been developed with such sys-
tems in mind. A statecharts program is a hierarchical and/or orthogonal composition of states. A
Statecharts observes events which trigger the transition from one state into another. Computations
performed by a statecharts program are only loosely defined via actions. An action can be performed
upon entry of, exit of, or throughout a state. Which data such actions consume or produce is not
specified. In general, the semantics was poorly defined. Leading to numerous contradictory implemen-
tations of Statecharts variants [103]. For instance, it is unclear how to handle instantaneous states,
i.e. how to handle when upon entering a state, another transition is possible. The original semantics
leave this unclear. In particular, the Argos language [60] introduces concepts of synchronous languages
to offer a well-formed semantics, e.g. forbidding instantaneous states and restricting transitions to a
finite number. Certain semantics however [19] impose no such constraint at all.

Giotto Multi-mode systems are at the core of Giotto [15]. The language relies on what is called
Logical Ezecution Time (LET). The LET model is similar to the model of synchronous languages.
However, it requires that jobs acquire their inputs when they are released and not when they start
executing. This means that all tasks need to communicate via buffers which are pre-filled with a
default value at the start of the system. This leads to poor data freshness in communication chains:
the n-th task in such a chain will have to wait its (n + 1)-th activation before it can compute a value
that depends upon the first sensor reading.
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The mode change protocol offered by Giotto is a non-overlapping, periodic, late-retirement pro-
tocol. Mode changes may be performed at multiples of the hyperperiod of the tasks affected by the
mode change.

Giotto also being a multi-periodic language, it is possible to draw some similarities with our
contribution. In the case where our clock calculus opted for the non-overlapping protocol, both
protocols are similar. However, the absence of forced communication delays and ability to perform
mode overlap are improvements over Giotto’s protocol.

AADL The “Architecture Analysis & Design Language” [10] is an architecture language that allows
to model the hardware and software components of an embedded real-time system. While it allows for
tasks of different periods within a single mode, its mode change protocol features poor promptness. To
guarantee soundness of communications, when a MCR is received, it first waits for a synchronization
point between the old-mode tasks, which takes in the worst-case a full hyperperiod. Then, the mode
transition begins which may take up to one hyperperiod to complete. This protocol is thus a non-
overlapping, periodic, late-retirement protocol.

The most notable property of this language is the poor promptness of the mode change protocol.
Requiring in the worst-case two hyperperiods to complete a mode change is not required in any of the
languages reviewed in this Section.

6.7 Related Works on Multicore Systems

6.7.1 Prelude

In [68] a compilation scheme for predictable execution of PRELUDE on a multicore platform is pre-
sented. However, their solution features design choices, such as offline computed non-preemptive
schedule and bare metal execution, that are specific to their targeted avionics platform. These design
choices are necessary to pass strict standards.

In comparison, our solution is not compatible with those standards, but allows to implement
real-time systems for less strict applications.

6.7.2 ForeC
The FOREC language [110] is C-like language extended with a synchronous semantics similar to Es-
TEREL. In [16], a compilation scheme for FOREC is proposed. It relies on a PREcision Timed (PRET)

architecture, i.e. an architecture designed to experience as little execution time variability as possible.
Access to the global memory is arbitraged via a Time-Division Multiple Access (TDMA) scheme.

As for the previous contribution, this contribution restricts itself to a very specific application
(PRET architecture with TDMA) which our contribution doesn’t.

6.7.3 OS-level solutions

With the OS-level approaches of [90, 93-95, |, we observe similarities between the RTOS API
exposed by a PREM-compliant OS and our proposed high-level language. However, we believe that
leveraging a high-level language brings advantages such as better static analysis tools via specialized
type systems.
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6.8 Summary

In this Chapter, we reviewed languages dedicated to real-time systems. In particular, we studied
synchronous languages which our contribution builds upon. Recall their key properties:

1. Synchrony to abstract time as a sequence of discrete instants;
2. Deterministic concurrency via explicit language constructs;

3. Simple formal underlying models to make verification tractable.



Chapter 7

A base synchronous language:
Definitions and reminders

In this Chapter, we will present the semantics of the synchronous language PRELUDE [67]. This lan-
guage should be understood as a core language that is manipulated by the compiler. The programmer
uses a surface language that is easier to manipulate and whose conversion into the core language is
fairly trivial (e.g. expressions converted in Normal Form).

We will use the following notations:

Definition 12 (Divisibility constraint). The relation x div y < y mod x = 0, reads “z divides y”.

Definition 13 (Sequences). A sequence s = hd.tl is composed of a head hd and a tail tI. The head
is a value, while the tail is another sequence. The | [ operator extends the . operator over ranges. For
2
instance, 4.7.10.13 = (H (44 3= Z)) 13.
i=0

If a total ordering of sequence elements is possible, e.g. for a sequence of strictly increasing instants,
we use a set-theoretic notation. For instance, we have s = 4.7.10.13 = {4 + 3xi | i e IN,0 < i < 3}
and 10 € s.

7.1 Clocks and Dataflows

In this Section, we will formally define clocks and dataflows which have been illustrated in Chapter 6.
Time is represented as a sequence of equidistant instants. Following the tagged-signal model [53],

we associate to each instant a tag corresponding to its date, i.e. the first instant has tag/date 0, the

second 1, etc. A clock is a sequence of instants. A clock ck is present at an instant ¢, iff ¢ € ck.
Timing constraints are specified using a specific class of clocks called strictly periodic clocks.

Definition 14 (Strictly Periodic Clock). A strictly periodic clock is denoted as a pair (n,p), with
ne Nt peN, and:

« The infinite sequence of tags generated by (n, p), denoted (n, p)*, is defined as follows: (n,p)* =
{i*n+p|ielN}.

e m((n,p)) = n is the period and ¢((n,p)) = p is the offset of (n,p).

40
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Clock operators allow to construct a strictly periodic clock from another. The acceleration operator
(ck =. k) produces a clock that is present k times for each instant where ck is present. The deceleration
operator (ck /. k) produces a clock that is present once for each k instants where ck is present. The
delay operator (ck —. k) produces a clock that is present k instants after ck. Note that clock operations
are only well-defined for certain clocks. For instance, ck = k is defined, iff k div w(ck).

Definition 15 (Periodic Clock Operators).

(ck k) = {t|t eck? ic[0.k[t=1 + i”(;k)} | if k div 7 (ck)
(ck k) = {t|teck?, ic[0.k[,t =n(ck)*kxi+ p(ck)}
(ck—. k)" ={t |t eck? t =t + k) L if o(ck) + k=0
(nvp) *'k:(n/k7p) (n,p)/.k:z(n*k‘,p) (n,p)—>.k=(n,n+k)
m(ck = k) = m(ck)/k o(ck = k) = ¢(ck)
m(ck [ k) = 7(ck) = k o(ck /. k) = p(ck)
7(ck —. k) = w(ck) o(ck —. k) = o(ck) + k

Example 10 (Periodic clocks). Below, we illustrate the resulting clocks of applying different periodic
clock operators to the clock (6,0). The timing diagram displays the instants where each clock is
present, each “clock tick” being annotated with the respective instant.

0 6 12 18 24 30

| | | | | —— (6,0)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

————t—+—+—+—+—+—+—+—F—F—F—F—F(6,0)x3=(2,0)

0 12 24

| | | (6,0) /2 = (12,0)
1 7 13 19 25 31

T T T T i (67 0) —.1= (67 1)

0 4 8 12 16 20 24 28 32
| | | | | | | | = (6,0) /2.3 = (4,0)

Clocks allow us to specify when things happen, but do not carry any meaning about what is
happening. Dataflows produce infinite sequences of tagged values. Meaning that they carry the
information at which date certain values are produced. We define them as follows.

Definition 16 (Dataflows). The dataflow s produces an infinite sequence of tagged values denoted
5% = (v,t).s'". Its head (v,t) is composed of the value v produced at tag ¢ and tail is s'#.

Because tags provide a total ordering over value-tag pairs, we can use a set-theoretic notation
for flows s = {(v,t) | (v,t) € s7}. We denote (vy,t,) the n-th value (according to the tag ordering
relation) v, of a flow produced at its n-th tag t,.

The clock of a dataflow s is its sequence of tags and denoted 3 = {t | (v,t) € s7}.

Intuitively, when a dataflow s produces a pair (v,t), the value v is the value carried by the flow
until date ¢t + 7(8). In the case where there is no conditional sub-sampling (Section 7.1.1), this is until
the next next value-tag pair is produced.
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7.1.1 Mono-Periodic Conditional Sub-Sampling

Conditional sub-sampling allows to sub-sample a clock such that it is only present when another
dataflow produces a specified value. We present here the mono-periodic definition of conditional sub-
sampling as used in existing synchronous languages, and also in PRELUDE prior to our work. The
multi-periodic definition will be presented in Part I'V.

Definition 17 (Mono-periodic conditional sub-sampling). A clock ck on C(c) denotes a clock ck that
is sub-sampled on condition dataflow c. It produces a tag ¢, iff ck produces that tag ¢t and dataflow ¢
produces at ¢ the value C.

(ck on C(e))* = {t | teck? A (C,t) e ™}

Example 11 (Mono-periodic conditional sub-sampling). Below, we illustrate some sub-samplings of
clock (6,0) according to different dataflows

0 6 12 18 24 30
i i i i i % (6,0)
true false false true true false
% % % % % % c rate (6,0)
0 18 24
% % | (6,0) on true(c)
6 12 30
% % % (6,0) on false(c)
true false true
i | | d rate (6,0) on true(c)
0 24
|
I

% (6,0) on true(c) on true(d)

7.2 Language Syntax

Figure 7.1 details the syntax of the PRELUDE language. A program is a collection of declarations,
either a type declaration, node import or user-defined node declaration.

A type declaration allows to define an enumeration type which is used by the when and merge
expressions (and will be used by automatons). A node is a synchronous dataflow language’s equivalent
of a function. Instead of operating on scalar values, it operates on streams of values. An imported
node lifts a function over scalar values from the target language (e.g. C) to flows by performing
a point-wise application of the function. A wuser-specified node defines via equations how local and
output variables are computed from input variables.

An equation of the form x = e; defines variable x as equal to expression e. Unlike statements in
imperative languages, equations are unordered.

An expression can be a variable (x), a constant (42), a node application (f(a,b)), a clock an-
notation (e rate (10,0)) or the result of the application of one of the following built-in operators
(assuming a has clock ck):

o a/ "k keeps the first out of k successive values of a and has clock ck /. k;

e ax*x"k repeats each value of a k times and has clock ck . k
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e a”>k delays each value of a by k and has clock ck —. k

e cst fby a produces the value cst followed by the values of a and has clock ck, effectively
delaying values of a by m(ck)

e cst::a produces the values of a prepended by the value cst and has clock ck —. — 7(ck)
e tail a skips the first value of a and has clock ck —. 7(ck)

e a when C(c) sub-samples a such that it produces values only if ¢ produces C. It has clock
ck on C(c). Note that without our contribution (Part IV), ¢ must have clock c.

e merge(c, CO->a_cO, Cl->a_cl) combines the complementary flows a_cO and a_cl with re-
spective clocks ck on C0(c) and ck on C1(c) and has clock ck.

(prog)y ::= {decly*
{decl) := {(nd) | (ind) | (tydecl)
{nd) ::= ‘node’ (id) ‘C {vars) ‘)’
‘returns’ ‘C (vars) ‘)’
(‘var’ (vars) ¢;’)?
‘let’ (eq)+ ‘tel’
{(ind) ::= ‘imported’ ‘node’ {id) ‘(" {vars) ‘)’
‘returns’ ‘(" {vars) )’
(indprop) ‘3’
(tydecly ::= ‘type’ (id)y ‘=" (‘1" {id)y)+
(eq) = Cid)(*,” Cid))+ =" (ewpr)

(expr) = {atom) | (id) ‘C {atom)(‘,” {atom))x )’ | {atom) ‘rate’ {(ck)
| (atom) * (int) | (atom) /" {int) | {atom) ‘~>’ {int)
| {const) ‘foy’ {atom) | {const) ‘::’ {atom) | ‘tail’ {atom)
| {atom) ‘when’ (id) ‘(" (id) ‘)’
| ‘merge’ ‘C (id) (‘,” (id) ‘=>" {atom))+ )’

{latom) ::= (id) | {const)

(vars)y ::= {var) | {var) *;’ {vars)

vary == Gd)y | Gd)y 27 {typ)? (‘rate’{ck))?
(typ) ::= ‘int’ | ‘bool’ | {typ) ‘[’ (inty ‘17| ...
{ek)y :=<C lint) ¢, (int) *)’ | {ck) ‘on’ (id) ‘C {(id) )’
(indprop) ::= (wcet)?
(weet) ::= ‘wcet’ {int)

Figure 7.1: Syntax of the PRELUDE language
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7.3 Running Example

In this Section, we will illustrate the running example used in this Chapter and in Part I1I, Part IV
will have dedicated examples.

The PRELUDE code below defines a system with two sensors, A and B, and one actuator, D. An
imported node C takes as input the rate-transitioned dataflows of these sensors, producing the dataflow
tmp. The dataflow provided to D is the result of up-sampling dataflow tmp.

imported node C(i,j: int) returns (o: int) wcet 2;
sensor A wcet 1;

sensor B wcet 1;

actuator D wcet 1;

node main(A: int rate (5,0); B: rate (6,0)) returns (D: int)

var tmp;

let
tmp = C(A/"2, Bx"3/7°5);
D = tmp *72;

tel

The PRELUDE compiler then produces the following real-time system from this program. Sec-
tion 7.6 will go into more detail how it is produced. For now note how only the following constructs
produce actual tasks:

¢ Node inputs produce sensor tasks;
¢ Node outputs produce actuator tasks;

¢ Imported node calls produce intermediate tasks.

i | O | T | Dy | Cy

] 01515 |1 t t
=106 6 1 Die = {(m2,78)} Iye =10
e 8 150 150 i DL = {(r5.70), (1. 7¢), (5, 78)}  Ih% = 30
L DEY = (79, 79), (73, 7)) I8y =10

7.4 Synchronous Kahn Networks

In this Section, we present the semantics of the core language based on synchronous Kahn networks [206,
]. The term o7 (sq, ..., s,) denotes the flow resulting from the application of the operator ¢ on flows
S0,---,8n. Operators fall into three categories: imported operators, rate-transition operators and
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conditional operators. The semantics for the first two categories remain as previously defined in [30]
and are recalled below.

An imported operator op™, is an operator op ¢ over scalars from the target language (e.g. C) that
has been lifted to operate on dataflows. Thus, it is the direct equivalent to the application of an
imported node in the source language.

Definition 18 (Kahn semantics of imported operators).

Op#(So, "'7Sn) = {(Opf(v()? "'7Un)7t) | (U()vt) € 8#7 sy (’Un,t) € 8#}

Rate-transition Kahn operators are directly equivalent to the rate-transition operators in the source
language.

Definition 19 (Kahn semantics of rate-transition operators).

N5, k) = {(v,t +ixm(3)/k) | (v,t) € s7,ie [0.k[}
/A#(Sak) ={(v.t) | (v,t) e s™ nte (5/k)")
~>%(s,k) = {(v,t + k) | (v,t) € s}
£by7 (v, 8) = {(v,t0)} U {(vis tir) | (vi 1), (visr,tinn) € 57
H#(v,5) = {(v,t)} U s , where t =ty € §—. — m(5)
tall#(s) = {(vi,ts) | (v5,t;) € 57,0 # 0}

The when” operator is a direct transposition of the on operator on flows. The merge® combines
flows that have complementary clocks.

Definition 20 (Kahn semantics of conditional operators).

when (s,¢,C) = {(v,t) | (v,t) € s,t € (5§ on C(c))"}

n
merge™ (€, 80,y 8n) = U Sfﬁ
=0

Example 12 (Synchronous Kahn Semantics).

o T T2 T3 Ty Ts5 Tg

% % % % % % % x rate (2,0)
Yo n Y2 Y3

% % % | y rate (4,0)
true false false true

i i i % c rate (4,0)
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o Z2 Tq Ze
% % % % /M (x,2)
Yo Yo n n Y2 Y2 Y3
% % % % % % % M (y,2)
Yo Y1 Y2
: : % ~>%#(y,3)
v i) I i) T3 T4 Is
: : : : : : : £oy# (v.x)
[ o I xI9 I3 T4 T5
% % % % % % b (v, ~>7(x, 3))
Y1 Y2 Y3
i i i tail®(y)
o + Yo T2 + Y1 Tq + Y2 Te + Y3
% % % % +7 (/M (x,2),y)
o Tg
% % when? (/"% (z,2), ¢, true)
n Y2
% % when? (y, c, false)
o Y1 Y2 Tg

y y y y merge™ (c,...,...)

7.5 Clock Calculus

Note that merge” is deterministic iff the merged flows are complementary, i.e. only one is present at
any given instant. Similarly, the imported node application requires arguments that are synchronous,
i.e. that have the same clock. Also, #"# (s, k) is defined iff k£ div 7(3). Finally, the semantics for
when?” and merge? require clock views, which are not specified by the program. Instead, they are
inferred by the compiler.

A clock calculus is required to infer and check these properties. Previously, PRELUDE used a clock
calculus based on Hindley-Milner typing extended with subtyping [78]. Readers may refer to [34,30]
for a presentation of this type system. Part IV will present a clock calculus based on refinement
typing [39,83] that supports our extensions.

7.6 Compiling Prelude Equations into Real-Time Tasks

The compilation target of a PRELUDE program is a set of real-time tasks [34,07] implemented in a
host language (e.g. C). The compiler operates in three steps: First it generates a task graph, second
it transforms it into a task set, finally it produces host language code to be integrated in the OS.

The task graph generation starts with a direct translation of equations. The vertices of the graph
are node inputs (future sensors), node outputs (future actuators) and operators and the edges are data-
dependencies. A graph reduction procedure then gradually removes rate-transition and conditional
operators from the vertices and replaces them by annotations on edges. The resulting task graph then
only features vertices for sensors, actuators and imported operators.

The goal of the task set construction is to obtain a system that can be scheduled according to a
classical scheduling policy such as EDF or DM. To obtain this, edges are replaced with non-blocking
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communication protocols which dictate for each task which instance reads/writes into their buffers.
Then, real-time attributes are adjusted such that the choices of the scheduling policy guarantee that
the executing system respects the semantics of the communication protocols.

Finally, this task set can be fairly easily translated into host language code. For each task, a
step function is generated. One execution of this function represents one job execution. Each step
function follows the same structure: 1. If dictated by the read protocol, read from the appropriate
buffers; 2. Call the user-provided function implementing the task functionality; 3. If dictated by the
write protocol, read from the appropriate buffers.

7.7 Summary
In this Chapter, we presented the synchronous language PRELUDE. To this effect we defined:
e A synchronous model of time using clocks and dataflows producing data according to a model;

e A syntax for the core language of PRELUDE;

e A formal semantics based on synchronous Kahn networks.

Upon this basis, we will be able to present our contributions in Part III and Part I'V.



Part 111

Compiling Synchronous Languages on
Multicore
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Chapter 8

Introduction

In this Part, we will address the issue of implementing the presented language on a multicore platform.

As a reminder, a multicore platform is a computing platform composed of multiple cores which
compete for access to a shared memory, the RAM. Because it is shared, multiple cores can attempt
to access it simultaneously. However, the memory can only answer a limited amount of requests
at a time. When there are more requests than the memory can serve, this is called a contention.
Contentions block the affected cores until they may access the memory.

These delays are hard to quantify because they depend upon minute details within task codes,
task interferences and the contention resolution mechanisms [72].

Multicore platforms also feature private memories. A private memory is accessible by only one pro-
cessor. Thus, it is never subject to contentions. However, it is limited in size. The most common form
of private memory is cache memory. It implicitly replicates the content of the global memory when
the processor performs memory accesses, bypassing the need for accessing the global memory if the
data is replicated in the cache. Certain embedded platforms also feature scratchpad memory (SPM).
In contrast to caches, this form of memory is explicit. It can be accessed using memory addresses just
like the RAM and must be managed by manual copy operations.

Tasks model such as PREM [71] and AER [32] advocate to decouple memory operations from
computation operations into distinct phases. During memory phases, data is copied between the
local and global memory. This allows the execution phase to execute using only the local memory,
preventing any contention from happening, greatly improving their execution time predictability.

We will focus on the AER model where each task 7; follows the sequence of phases Acquisition-
Execution-Restitution. During the Acquisition phase A; data is copied from local to global memory.
This allows to perform the Execution phase E; using only local memory. Finally, in the Restitution
phase R; results are copied back to global memory.

However, implementing these task models manually is tedious and error-prone. The goal of our
contribution is to propose a compilation scheme that accepts a high-level synchronous program and
produces multi-task AER-compliant task code. The generated code leverages scratchpad memories
with little additional programming effort.

8.1 Platform Description

In this Section, we will present the makeup of our targeted platform, both software and hardware.
We will also present the running example used throughout this Part.
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Figure 8.1: An example hardware component graph

8.1.1 Hardware

Similar to Section 4.2, we assume a platform with multiple cores, p; € II. Cores compete for access
to a shared memory M. Each core p; has access to a private scratchpad memory M;. Figure 8.1
displays an example hardware component graph of our kind of target platform. We assume the access
cost to private scratchpad memories is constant, 1. Accurately bounding the access cost is out of
scope of this work. Thus, we model access costs as a function f(reqs™,reqs*) > 1.

8.1.2 Software

Our platform features a real-time operating system (RTOS). The RTOS scheduler implements a
partitioned preemptive policy such as Deadline-Monotonic or Earliest-Deadline First. Moreover, the
RTOS offers mutexes and semaphores as primitives. The scheduler must handle them appropriately,
e.g. using priority inheritance [22,87] to prevent deadline misses. Mutexes and semaphores will be
used to handle data-dependencies in Chapter 9.

8.2 Running Example

Throughout this Part, we will reuse the running example from Chapter 7, shown below. Recall that
it defines a system with two sensors, A and B, and one actuator, D. An imported node C takes as input
the rate-transitioned dataflows of these sensors, producing the dataflow tmp. The dataflow provided
to D is the result of up-sampling dataflow tmp.

imported node C(i,j: int) returns (o: int) wcet 2;
sensor A wcet 1;

sensor B wcet 1;

actuator D wcet 1;

node main(A: int rate (5,0); B: rate (6,0)) returns (D: int)

var tmp;

let
tmp = C(A/"2, B*~3/7°5);
D = tmp *72;

tel

8.3 Contribution Goal

The goal of our contribution is to produce C code from a PRELUDE program in accordance with the
AER model. For our running example, this would result in a real-time system shown below. Mapping
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tasks to cores being out-of-scope of this work, we assume from here on that it is provided by the
developer, potentially from an external tool. For how such a mapping could be produced, readers may
refer to works such as [74,80].

po, T=5

p1, T=6

i |Oi | Ti | Di | G| m
| O 5 5 1 | p; . 0 o .

a a
w | 0 6 6 1 | p; Df,c = {(7a,7¢)} If,c =10
el 0 101102 e i = {(78,70), (5, 72), (78, 7)) 15 = 30
T 0 5 5 1 | po ¢ t
: Dty = {(7e, ), (7, 1)} Igy =10

We will present our contribution in Chapter 9. Section 9.1 will extend the PRELUDE model
with multi-phase communications. After discussing the monocore compilation process in Section 9.2,
Sections 9.3 to 9.4 will present the compilation process from PRELUDE source code into AER-compliant
C code.



Chapter 9

Code Generation

In this Chapter, we will present how code is generated for our multicore platform. We reuse notions
from previous work [67] and will thus focus on aspects specific to multicore.

9.1 Multi-phase Communications

In this Section, we will present how we adapt the model of data-dependencies to multi-phase commu-
nications in accordance to the AER model [32]. As stated above, data-dependencies are causal, i.e.

for all 7" — 77

o end(t]') < begin(Tfl);
o 7" produces its outputs at end(7]");

o 7/" acquires its inputs at begin(7;").

Recall from Section 7.6 that when a PRELUDE program is compiled, the compiler produces one
task per imported node call, main node input and output. However, to remain in accordance with
the AER model, the compiler will now have to generate phases instead of tasks.

9.1.1 Precedence Constraints

Data-dependencies describe communications, i.e. 7,* — 7" indicates that 7;* produces data consumed
by 7" A precedence constraint X' — Y™ describes that the Y phase of 7] cannot execute before
the X-phase of 7' terminates. Both notions are distinct, but related. A data-dependency describes
the semantics of a program, while a precedence constraint is a scheduling restriction to be complied
with in order to respect the program semantics.

Section 9.1.2 will provide a base definition of how to construct phases and precedence constraints
from a PRELUDE program. While this procedure is correct, we observed that it may be improved
upon. Thus, Section 9.1.3 will expand upon it to provide a semantics-preserving optimization of this
procedure. Our optimization will reduce the amount of shared memory accesses performed, at the
cost of increased use of the private memories.

9.1.2 Base Definition

Before defining the precedence constraints between phases, we must first define the construction of
our phases. In our base definition, we simply provide a A-, E- and R-phase for each job.
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Definition 21 (Phase set).
P={Al [ e Ty {E! |7 e Ty U {R} |7 e T}

With our phases defined, we can now define the precedence constraints that exist between those.
We distinguish between intra-job precedence constraints and inter-job precedence constraints. Intra-
job precedence constraints relate phases within the same job, while inter-job precedence constraints
relate phases of different jobs.

Definition 22 (Precedence constraints). The set of precedence constraints Ppye. is the union of
intra-job precedence constraints and inter-job precedence constraints.

Pprec = Pintra Y Pinter

For our implementation of the AER-model, the definition of Pj,srq is straight-forward. The A-
phase must execute before the E-phase and the E-phase must execute before the R-phase. Since each
job has all 3 phases, its definition is straight-forward.

Definition 23 (Intra-job precedence constraints).

Pintra = {A} — E' | A7, E' e P} u

7

{E — R} | E}', Ri' € P}

Between jobs of different tasks, certain data-dependencies impose redundant precedence con-

straints. In our running example, data-dependency 79 — 74 is redundant, because there is already

20, 40
c D
Thus, we introduce the notion of relevant data-dependencies. Non-relevant data-dependencies can

be safely ignored for the construction of Pjpter-

Definition 24 (Data-dependency relevance).

i
L

b .m'<m/\

relevant(r;" — 7/") < i —

/
!/
i -7 n<n

Using this notion of relevance, we then define inter-job precedence constraints.
Definition 25 (Inter-job precedence constraints).

n m n m n m n m
Pinter = {R;' = AT" | R}', AT € P, 7]' - 7" € D, relevant(r]" — 7]")}

Example 13 (Precedence constraints). In our running example, data-dependency 7¢ — 7 is not

relevant because of Tg — TDI. It is the only non-relevant data-dependency in this set. Thus, Pjuter is
defined from the following elements:

R} — A¢ Ry — A¢ Ry — Ag Ry — A% R — A}
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9.1.3 Phase Optimizations

The presented precedence constraints are sufficient to define a sound real-time system. However,
communicating via the global memory when tasks are on the same core is unnecessary. A data-
dependency 7;" — 7" is local, iff m; = m;, otherwise it is distant. We define thus improved inter-job
precedence constraints which use the global memory only if necessary, local communications are
handled inside the E-phase.

Thus, we review our definition of the phase set. In particular, there is no need to emit a A- or
R-phase, if a task has only local data-dependencies.

Definition 26 (Improved phase set).

77={Aln|Tfej,ﬁ“ﬂnﬂ/el),m;«ém}u
{Ei' | 7' e T} o

(R} |7 e J, 1" — 1" e D, m; # ;)

There is no need to change the definition of intra-job precedence constraints since by construction
these require both an A- and E-phase inside P. However, for inter-job precedence constraints, we
must distinguish local and distant communications.

Definition 27 (Improved inter-job precedence constraints).

n m n m n m n m
Pinter = {R} = AT | R}, AT € P, 7" — 7" € D, relevant(r]" — 7;"), m # m;j} U

{£; — B | Bl E]" € P,7;" — 7/ € D, relevant(r]" — 7;"), 7 = m;}
Example 14 (Improved precedence constraints). With these improvements, precedence constraint
RY — AY in Piner is replaced by EQ — EY:

Ry — Ag Ry — Ag Ry — Ag Ry — Ag Eg — By

9.2 Monocore Compilation

9.2.1 Compilation Process

Let us briefly discuss the compilation of PRELUDE as it is defined for monocore platforms. A PRELUDE
program is compiled into a single C file that contains one function per phase as well as all buffers. Some
files are not generated by the compiler. First, the code of imported nodes has to be provided by the
user. Second, the user must provide code that integrates the generated files into the final application.
These files can either be part of the PRELUDE distribution or written by the programmer. Finally,
and using those files, the compilation process produces a single binary.

9.2.2 Code Structure

In this Section, we will illustrate the generated code for monocore platforms. Figure 9.1 displays the
generated task code for tasks 7, 7¢.

If required, the compiler generates an instance counter that counts how often the tasks execute
(Line 7 and 18). It will be used below.
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static int A_C_buff[A_C_size]; void C_task()

=

static int B_C_buff[B_C_size]; 2 {
static int C_D_buff; 3 static int instance = 0;
4 static int A_C_idx = 0;
void A_task() 5 static int B_C_idx = 0;
{ 6
static int instance = 0; 7 wait_sem(sem_A_C);
static int A_C_idx = 0; 8 if (must_wait_B_C(instance))
9 wait_sem(sem_B_C);
const int a_loc = AQ); 10
11 const int a_loc = A_C_buff[A C_idx];
if (must_write_A_C(instance)) 12 const int b_loc = B_C_buff[B_C_idx];
A C buff[A C_idx] = a_loc; 13
14 A C idx = (A_C_idx + 1) % A_C_size;
if (must_post_A_C(instance)) 15 if (must_change_B_C(instance))
post_sem(sem_A_C) ; 16 B C idx = (B_.C_idx + 1) % B_C_size;
17
++instance; 18 const int c¢_loc = C(a_loc, b_loc);
} 19
20 C_D_buff = c_loc;
21
22 post_sem(sem_C_D) ;
23
24 ++instance;
25 }

Figure 9.1: Monocore task code of 7, and 7¢

For each data-dependency D, ;, a communication buffer is allocated (Lines 1-3). The sizes of
buffers are automatically computed and since C_D_buff is of size 1, a single value is allocated instead
of an array. A buffer index variable (Line 4) holds the buffer cell to be accessed for operations. The
compiler also generates code to compute the next value of that variable (Line 14). If only some
executions of the task must change the value of the index, the compiler generates a protocol function
(Line 15) to control when it is modified.

Working variables (Line 10 and 12) hold the current processed values of dataflows. They are
denoted _loc and are declared local and const since they are only used by that task.

Finally, the generated code also handles semaphores (Line 7 and 22). Similarly to communication
buffers, the compiler may generate protocol functions (Line 8 and 15).

9.3 Multicore Compilation Process

Figure 9.2 provides an overview for the code generation process. A PRELUDE program is compiled
and produces one C file per processor as well as one C file for the global data. The generated C code
contains one function per phase allocated to their respective core. Buffers for local communications
are defined inside the core-specific file. Buffers for distant communications are defined as global data.

As for monocore compilation, some files are not generated by our compiler. For imported nodes,
the compilation process expects one file per core that implements the relevant functions. Using those
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’ PRELUDE program ‘

iy iy
Imported Generated Global OS +
functions (C) files (C) data (C) integration (C)

" [binaries

Figure 9.2: Overview of the multicore compilation chain

files, the compilation process then produces one binary per core.

9.4 Multicore Code Structure

In this Section, we will illustrate the structure of our generated code. using Figure 9.3. It displays
the generated code for tasks 7¢c and 73. The compiler generates one function per phase.

Working variable are allocated in M,;. While certain variables (Line 28) are used only within a
single phase and are thus generated unchanged, others are used in multiple phases (Lines 2, 16, 28).
Thus, they are declared static.

Communication buffers are allocated differently whether the communicating tasks are co-located
or not. If they are, the buffer is allocated in private memory (Line 4) as a variable. Buffers residing
in global memory are accessed using opaque handles which are then passed to functions read_val and
write_val.

The code generation for protocol functions and semaphores is unchanged.
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// CPU 0

static int a_loc;
static int b_loc;
static int C_D_buff;

void C_AQ)

{
static int instance = 0;
static int A_C_idx = 0O;
static int B_C_idx = 0;

wait_sem(sem A _C);
if (must_wait_B_C(instance))
wait_sem(sem_B_C);

read_val(A_C_buff, A_C_idx);
read_val(B_C_buff, B_C_idx);

a_loc
b_loc

A C idx = (A C idx + 1) % A _C_size
if (must_change_B_C(instance))
B C idx = (B_C_idx + 1) % B_C_size;

++instance;

void C_E()

{
const int c¢_out = C(a_loc, b_loc);
C_D_buff = c_out;
post_sem(sem_C_D);

3

// CPU 1
static int a_loc;

void A_E(Q)
{

a_loc = AQ;
}

void A_R() {
static int instance = 0;
static int A_C_idx = 0;

if (must_write A C(instance))

write_val(A_C_buff, A_C_idx, a_loc);

if (must_post_A_C(instance))
post_sem(sem_A_C);

++instance;

Figure 9.3: Generated task code of 7, and 7¢
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Chapter 10

Evaluation

To evaluate our approach, we use the ROSACE [(9] case study. It implements a longitudinal flight
controller that measures the airspeed, vertical speed and altitude of the aircraft and controls the
aircraft accordingly. We simplified parts dedicated to environment simulation (which are not meant
to be embedded), so that corresponding tasks return dummy values. We implemented the case study
on a FPGA platform with two softcores running the ERIKA [33] OSEK-compliant RTOS. This allowed
us not only to change between AER compliant and AER non-compliant code generation, but also
between a scratchpad-based and cache-based memory architecture. Relying on an FPGA platform
allowed us to guarantee that the architectures differ only in the private memories and, not the least
important, that they used the same “silicon” budget.

10.1 Hardware Platform

In order to allow the comparison between different hardware architectures, we rely on an FPGA
development board, a Cyclone III by Altera with two NIOS-II softcores, depicted in Figure 10.1. The
data and instruction master ports connect the processor to the Awvalon Interconnect Fabric, a partial
crossbar with a master/slave behavior, which serves as a hub to access shared resources of the board.
In our case, only NIOS-II processors are masters, other devices connected to the crossbar are slaves.
Each master is only connected to a subset of slaves. Accesses from two masters to two different slaves
can execute simultaneously. Simultaneous accesses to the same slave are arbitrated with a round-robin
policy. Tightly-coupled data and instruction ports offer private contention-free access to processor-
dedicated on-chip memories. Each processor has access to a tightly-coupled memory for data and to
another for instructions. These memories serve as scratchpad memory (M;). Processors share access
to an on-chip shared RAM (M¢). On a real embedded board, the shared memory would be an external
component (e.g. SDRAM, SRAM), with typically longer access time. Therefore, our shared RAM
is controlled by an artificially slower clock which mimics these slower accesses. Finally, processors
are also connected to an on-chip mutex, on-board IOs and timers, through the master ports. We
use the mutex to implement synchronizations, because the processors do not have dedicated built-in
primitives.

In addition to the scratchpad architecture we just detailed, we implement an alternative cache-
based architecture. It features a cache on each master port, with access performances similar to the
scratchpads. The FPGA has tight space limitations (ERIKA is not available on more recent FPGA
boards), memory sizes are reported in Table 10.1. Space reserved for SPM in the scratchpad-based
architecture is instead reserved for the main memory in the cache-based architecture. As can be
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10
Timers || Timers E
CPU O || CPU 1 || Shared RAM || Mutex i
| | ; ; ;
Avalon Interconnect Fabric
Instr. I I Instr.
scratchpad 0_ NIOS NIOS _scratchpad 1
Data CPU 0 CPU 1 Data
scratchpad of | _scratchpad 1
Figure 10.1: The hardware design
Memory (SPM architecture) Size
Data SPM po: kB, p1: 4kB
Instruction SPM po: 12kB, py: 8kB
Main 2kB
Memory (cache architecture) Size
Data cache 2kB
Instruction cache 4kB
Main 29kB

Table 10.1: Size of memories for the experiments

seen, restricting both platforms to the same architecture reveals the “hidden cost” of cache platforms:
Mechanisms such as cache coherency required FPGA space which limited the amount of available
private memory.

10.2 OSEK-compliant code

ERIKA is an OSEK-compliant RTOS, so tasks must all be declared statically in an OIL configuration
file, which is generated by the PRELUDE compiler in our case. The OIL file is divided into several
sections, in particular:

o CPU.DATA sections, which describe the hardware processors (identifier, source files, Hardware
Abstraction Layer, stack address space, ...);

o TASK sections define the task set (CPU allocation, events to handle synchronizations, stack size,
...). In our case, each phase is declared as a separate TASK;

e EVENT sections which enable us to implement binary semaphores.

10.3 Measurements

To evaluate our modified PRELUDE compiler, we measured the response time of each task for dif-
ferent hardware/software configurations as shown in Figure 10.2. We measured the speedup of a
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AER-compliant scratchpad-based architecture with respect to a AER non-compliant cache-based ar-
chitecture with different global memory speeds. Under the different scenarios, the global memory
was:

1. as fast as private memory (red);
2. 4 times slower than the private memory ( )
3. 8 times slower than the private memory (blue).

The final value corresponds to observed latencies on external SRAM on similar boards.

We chose this metric because it best illustrates the impact of AER-compliance when the cost of
communications, i.e. the cost of A-/R-phases, changes. Scenario 3 represents the “typical” execution
context, while scenario 1 represents an exceptional case where shared memory is essentially as fast
as private memory. Varying other factors seemed of little interest. For instance, varying the size of
available SPM would simple be a “pass-fail” test, either the compiled code fits inside, or it doesn’t.

We provide mean results for 20 executions for each configuration (variance is very low). The
observed speedup is proportional to the RAM clock. When the shared RAM is the slowest, the
average speedup is 6.29 with a standard deviation of 2.19. When the shared RAM has the same clock
as the global clock, the SPM implementation barely outperforms the cache one. The average speedup
is 1.09 with a standard deviation of 0.31. This is likely due to the OS overheads of the AER-compliant
implementation, since each phase is implemented as a separate task.

10.4 Summary

This evaluation illustrates the advantages of our our approach. We could test and compare different,
competing hardware architectures and the necessary development efforts were limited to the integra-
tion of the generated C code with the RTOS. For the ROSACE case study, we could thus measure that
the AER-compliant variant relying on scratchpad memory outperforms the cache-based variant.
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Figure 10.2: Observed speedup (higher is better)
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Chapter 11

Introduction

In this Part, we tackle the problem of designing and programming a real-time system with multiple
modes of execution as well as multiple real-time constraints. A multi-mode real-time system, is
characterized by a set of modes. Each mode is defined by a different task set and the current mode
defines the task set to execute. A Mode Change Request (MCR) triggers the transition from one
mode to another. The transition is executed in accordance to a Mode Change Protocol (MCP).

As detailed in Section 6.6, Synchronous State Machines have been proposed in [28] for LUSTRE [12]
and LUCID SYNCHRONE [25] to tackle the problem of programming of such system using a formally de-
fined language. In these languages, an automaton state corresponds to a mode of execution. However,
these languages (and the automata by extension) only support mono-periodic systems.

This limitation arises from the mono-periodic semantics of these languages. The semantics of
Synchronous State Machines is defined via a translation semantics that relies on lower-level constructs
(when and merge) which are only defined for mono-periodic systems.

When looking at the PRELUDE language presented in Chapter 7, it is in essence mono-mode.
Imported and rate-transition operators do not allow to change the behavior of the system. Only
conditional sub-sampling operators offer a construct to perform a choice between dataflows at runtime.
However, their definition limits them to operands with the same period and offset. In addition, once a
conditional sub-sampling operator has been applied, it is not possible to apply further rate-transition
operators.

The main problem to tackle is the definition of a semantics for a system where the period of
Mode Change Requests (MCR) and the period of tasks within a mode are not all the same. Thus,
the semantics must define how to handle tasks which perceive MCRs differently. A language for
multi-mode systems must be able to ensure the soundness and determinism of the system under these
conditions.

This Part will present an extension of the language of Chapter 7 to support such systems. The
extension consists in transposing the Synchronous State Machines of [28] to PRELUDE.

11.1 Current Limitations

To understand why one cannot simply combine Synchronous State Machines with PRELUDE, one has
to look at how the Synchronous Kahn Semantics (Section 7.4) and Clocks (Section 7.1) interact. The
semantics define how a program behaves, but if we are unable to ascribe a clock to dataflows in our
semantics, we cannot guarantee the program has a well-defined semantics.
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Zo €2 T4 Te6 g
% % % % % s ((2,0))
true false true true false
% % % % % c ((2,0))
%0 xfl 116 s' = when? (s, c, true)
‘ ‘ ‘ ((2,0) on true(c))
i) i) T4 T4 Te L6
% % % % | % H(s,2) (777)
Zo Tyg T6
% % % AT (0 (81, 2),2) (772)
X0 T4
: % /A (s,2) (777)
o Zo Zq T4

| | | | (N (8,2),2) (777)

Figure 11.1: Applying a periodic clock operators after conditional sub-sampling

The first problem we encounter is that the semantics of the when” (s, ¢, C') operator do not define
the values of the program when s and ¢ have different clocks. For simple cases, such as harmonic
periods, one can easily imagine a sensible behavior. However, what should the program behavior be
if s=(7,0) and ¢ = (11,0) ?

The second problem we encounter is shown in Figure 11.1. Dataflows s and ¢ have the same clock.
While their semantics are not well-defined for dataflows whose clock feature a on operator, we can
follow the “intent” of the semantics. In our case, the *"# operator repeats each value k times, while
the / ~# operator skips values whose tags do not coincide with those of a clock slower by factor k.
Thus, after applying the when# operator, and we applied those periodic operators. We can see that
the order of operators yields incompatible dataflows whose clocks we can’t accurately describe. In
our case, dataflow "% (/"#(s',2),2) is present at instant 2, while dataflow /" (+"#(s',2),2) isn’t.
In [34], it was identified that such dataflows would have clocks similar to s on true(/"# (+"#(c, 2),2))
and s on true(="#(/"#(c,2),2)). Such an extension was however not pursued as it requires a complex
dependent type system, because clock conditions may be not just names, but arbitrary expressions.

Our contribution thus aims at defining a formal semantics for a multi-periodic when# operator
and clock system that allows to reason efficiently about such dataflows.

11.2 Overview

Chapter 12 presents clock views, our solution to decouple the rate of MCRs and tasks. Chapter 13
presents the extended language semantics, in particular of the when and merge operators. Chapter 14
illustrates the extended syntax to support Synchronous State Machines. Chapter 15 defines a clock
calculus able to reason about our extended clocks and operators.



Chapter 12

Clock views

In this Chapter, we will present our solution to the issues presented in Section 11.1. Recall that one of
the issues is that we cannot give a sound type to expressions such as x when true(c) *72 /°2 and
x when true(c) /°2 *72. Informally, the problem is that those expressions perceive the condition
c differently, but there is no way to express this difference using existing clocks.

We introduce clock views as an extension of conditional clocks to express this difference. Their
definition is given below.

Definition 28 (Multi-periodic conditional sub-sampling with clock views). A multi-periodic condi-
tional clock is denoted ck on C(c,w) where ck is a clock, C is a constant, ¢ is a condition dataflow,
and w is a strictly periodic clock called view.

The infinite sequence of tags generated by ck on C(c,w), denoted (ck on C(c,w))#, is defined as
follows:

(ck on C(e, (n,p))* = {t | t € k¥, 1" € (n,p)¥, (v,t") € ¢,
t'<t<t' +nat' =t +p()—prv=CY

A view is valid, iff
o m(ck) div m(w) A 7(¢) div m(w);

Moreover, we extend the m and ¢ operators:
m(ck on C(c,w)) = w(ck) @(ck on C(c,w)) = p(ck)

Intuitively, the view w delimits intervals where only a single value produced by c is perceived for
all tags produced by ck within that interval. Each interval starts whenever a tag of w is present and
ends when the next interval begins. If the observed value equals C, then ck on C(c,w) produces all
tags within that interval. Otherwise, it produces no tag within that interval.

Example 15 (Simple clock views). Let us first illustrate this extension on a mono-periodic program.
Thus, let us assume the following clocks and dataflows. In this case, the view could have the same
clock,(6,0). This clock then produces the same values as (6,0) on true(c).

0 6 12 18
% % % +— (6,0)
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true false false true
% % % % c (6,0)

0 18

% —— (6,0) on true(c, (6,0))

However, it is also possible to use a larger view. Chapter 13 and Chapter 15 will illustrate in more
detail why this is useful. It this example, the clock produces the tag 6, but not the tag 18. This is
because the view produces the tags 0, 12 and 24. Thus, all tags ¢ such that 0 < ¢ < 12 observe the
value of ¢ produced at instant 0 + 0 — 0 = 0 and all tags ¢ such that 12 < ¢ < 24 observe the value of
c produced at instant 12 + 0 — 0. Thus, both 0 and 6 observe the value true, while both 12 and 18

observe the value false.
0 6
% % (6,0) on true(c, (12,0))

Stepping up the complexity a little bit, we have the following possible dataflows. As can be seen, if
one clock has a period that is a multiple of another, we can use this clock for the view. If the condition
dataflow has the faster clock, we consider only the first of each value. If the condition dataflow has
the slower clock, it’s value is reused for consecutive tags.

true true false false false true true
% % % % % % % c2 (3,0)
0 18
| | (6,0) on true(c2,(6,0))
false true
: : c3 (12,0)
12 18

% | (6,0) on true(c3,(12,0))

If clocks have unrelated periods, we must provide a view with a period divisible by both the clock
and condition (Definition 28). Thus, the least-common multiple of periods is a period satisfying this

condition.
true false false
| | c4 (9,0)

|

T

0 6 12

% % % (6,0) on true(c3,(18,0))

Clock views allows us to give a clock (and thus a well-defined semantics) to dataflows such as
#"7 (when” (s, c, true, (12,0)),2). However, assuming 8 = ¢ = (6,0), the most precise clock we can
construct with the current Definition is ((6,0) on true(c, (12,0))) . 2. With increasing program sizes,
the size of clocks would increase too. Thus, we would like to simplify clocks such that we can safely
display a more readable clock expression. In our case, this would be (3,0) on true(c, (12,0)).

Property 1 below shows how we can apply periodic clock operators on clocks with clock views.
Note that some care has to be given because we have to take into account the impact of the operator
on clock views. For the % and / operator, the impact is straightforward. The * operator inserts
tags, but can’t create information about the condition ex nihilo. Thus, the view remains unchanged,
but the operator is applied recursively. For the / operator, we also apply the operator recursively.
However, applying this operator may or may not change the view as illustrated in Example 16. This
is reflected in the new view value.

For the —. operator, we must distinguish two cases to prepare the definition of our Synchronous
Kahn Semantics (Chapter 13). The ~># operator delays all values of a dataflow, while the tail#
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operator drops the first value. Without conditional sub-sampling, dropping the first value and delaying
each value by one period yields dataflows with the same clock, even though the produced values differ.
This is not the case with conditional sub-sampling. Thus, we differentiate between the =. operator that
delays both the conditioned clock and the view and the —. operator that delays only the conditioned
clock. Both are equivalent to —. in the absence of conditional sub-sampling.

Property 1 (Periodic Clock Operators and Clock Views).

((ck on C(c,w)) = k)¥ = ((ck k) on C(c,w))*
, if k div 7(ck on C(c,w))
((ck on C(c, (n,p))) k)™ = ((ck /. k) on C(c, (n(ck) * lem(n/x(ck), k), p)))*
,if (m(ck) = k) divn v n div (7(ck) = k)

((ck on C(c,w)) =. k)" = ((ck=.k) on C(c,w —. k))*
(ck on C(c,w) — k)* = ((ck —. k) on C(c,w))*
((n,p) = k)" = ((n,p) = k)*
((n,p) =~ k)* = ((n,p) = k)*

While the equivalences for =. and —. hold by construction, those for *. and /. must be proven.

Equivalence of Periodic Acceleration. Recall the definitions of . and on.

m(ck)
)
(ck on Clec, (n,p))* = {t |t € ck™,t' € (n,p)¥, (v,t") € ¥,
t<t<t' +nat'=t'+p)—prv=CY

(ck# k)" = {t|t eck? ie[0.k[,t =1t +i

Thus, we have

(ck on C(c, (n,p)) = k)*

= {t | to € (ck on C(c, (n,p)))*,i € [0, k[,
t=ty+i*m(ck on C(c,(n,p)))/k}

={t|toeck? t' e (n,p)”, (v,t") e i€ [0..Ek[,
t'<to<t'+nat'=t'+p(@)—prv=C
t=to+i*m(ck on C(c,(n,p)))/k}

={t|toeck? t' e (n,p)”, (v, t") e i€ [0..Ek[,
t'<to<t'+nat'=t'+p(@)—prv=C
t=to+i*mn(ck)/k}
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And

(ck . k) on C(c, (n,p))*
—{t|te (ck«k)" t' e (n,p)¥, (v,t") e’ ie]0,k[
t<t<t +nat'=t'+¢@)—prv=Ch
={t|tye ck¥ ' e (n,p)#, (v,t") € e [0, k[,
t =ty+ix*m(ck)/k,
t<t<t +nat'=t'+¢@)—prv=Ch
These equations differ only in one point:
(ck on C(c, (n,p)) = k)* (ck*. k) on C(c, (n,p))”
<to<t +n = V<t<t+n

Since m(ck) div n, we have i % 7(ck)/k < n. Thus, whatever the difference is between t and ¢y, it
is less than n, the minimal difference between two tags within (n,p). Thus, for a given value of tg its
derived ts, there exists only one t' that satisfies the constraints. O

Equivalence of Periodic Deceleration. Recall the definitions of /. and on.
(ck [ k)7 = {t|teck? iec[0.k[,t = m(ck)*k+i+ o(ck)}
(ck on Clc, (n,p)))* = {t | t € ck¥,t' € (n,p)¥, (v,1") € ¥,
t<t<t +nat=t'+p@)—prv=CY
Thus, we have

((ck on C(e, (n,p))) / k)"
= {t|te (ck on C(c, (n,p)))",ie [0.k[,
t = 7(ck on C(c,(n,p))) = k=+i+ p(ck)}
= {t|te (ck on C(c, (n,p))*,ie [0.k[,
t =m7(ck)*k=i+ p(ck)}
= {t|teck? ie[0. k[,
t =m(ck)*kx*i+ @(ck)
t<t<t +nat'=t'+9@)—prv=C)

And

((ck /. k) on C(c, (m(ck) = lem(n/m(ck), k), p)))¥
= {t|te (ck/k)# t € (n(n)*lem(n/n(ck), k),p)", (v,t") € ¢ ie NN,
t' <t <t + (m(n)xlem(n/m(ck), k) nt" =t + p(@) —pAv=C}
= {t|teck? t' e (n(n)*lem(n/m(ck),k),p)¥, (v,t") e ¢, ie N,
t' <t <t + (x(n)«lem(n/m(ck),k)) Ant" =t + (@) —prv=C
t =m7(ck)*k*i+ p(ck)}

We now distinguish 2 cases.



Case 1. w(ck) = k divn

Because of our assumption, we have n = w(ck) % k * a. Thus, we have

Returning to our set definitions, we have

{t|teck? t'e(np?, (v,t")ec” ieN,
t =m(ck) =k =i+ o(ck),
t<t<t' +nat'=t'+p@)—prv=Ch
—{t|teck? t' e (n(ck)*kx*a,p)?, (v,t")ec” ieN,
t =m(ck) =k =i+ o(ck),
t<t<t +m(ck)skxant' =t +pC) —prv=C)

And

{t|teck? t' e (n(ck)slem(n/m(ck), k), p)*, (v,t") € c¢*,ieN,
t' <t <t+ (n(ck) «lem(n/m(ck), k) at' =t + () —pArv=C,
t=m(ck)*k*i+ @(ck)}
= {t|teck? t' e (n(ck)*kx*a,p)?, (v,t")ec” ieN,
t<t<t' +m(ck)skxant’' =t +p(C) —pnrv=_C,
t=m(ck)*k*i+ @(ck)}

Case 2. n div w(ck) = k
Because of our assumption, we have

n =m(ck)*a
m(ck)xk=nxb
k=axb

Thus, we have

m(ck) = lem(n/m(ck), k)
= w(ck) = lem(mw(ck) = a/m(ck), a = b)
= m(ck) = lem(a,a = b)
=m(ck)*axb=m(ck)*k
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Returning to our set definitions, we have

{t|teck? t'e(np?, (v,t")ec, ieN,
t =m(ck) = k*i+ p(ck),
t<t<t'+nat'=t'+p@)—prv=CY
= {t|teck? t e (n(ck)*a,p)?, (v,t") e, ieN,
t =m(ck) *axbxi+ p(ck),
' <t<t +m(ck)xant’' =t +¢(C) —parv=C}

And

{t|teck? t' e (n(ck)*lem(n/m(ck), k), p)¥, (v,t") € ¢#,ieN,
t' <t <t+ (n(ck) = lem(n/m(ck),k)) At =t + (@) —pArv=C,
t=m(ck)*k*i+ @(ck)}
= {t|teck? t' e (n(ck)*axbp)?, (v,t")ec” ieN,
t<t<t' +m(ck)xaxbat' =t +¢(@) —prv=C,
t=mn(ck)*a=xbxi+ p(ck)}

Those set definitions are only different, iff

3t.t = m(ck) *axbxi+ o(ck) Athepore = T(ck) ¥ ax T 4+ p Aty g, = T(ck) xaxbss+pa
t?)efore St < t?)efore + W(Ck) A tafter St < tizfter + W(Ck) #a % b A t?)efore 7 t:zfter

This is proven as UNSAT by the program in Appendix A.

Example 16 (Periodic Clock Operators and Clock Views).
0 2 4 6 8 10 12

i i i i i i % (2,0)
true false false false true
| | | | i c rate (3,0)
0 2 4 12
— % (2,0) on true(c, (6,0))
o iz e 1213 ((2.0) on true(c, (6,0))) %2 =
e o (1,0) on true(c, (6,0))
0 12 (2,0) on true(c, (6,0)) /6 =
‘ ‘ (12,0) on true(c,(12,0))
! 6 12 (((2,0) on true(c, (6,0))) /. 6) .2 =
‘ ‘ ‘ (6,0) on true(c, (12,0))



(((2,0) on true(c, (6,0))) *.2) /.6 =

(6,0) on true(c,( 0))
14

|
I

(2,0) on true(c,(6,0))=.2 =

(2,2) on true(c7 6,2))

0

(
(2,0) on true(c, (6,0)) —
(2,2) on true(c7 (6,0))



Chapter 13

Extended Synchronous Kahn
Semantics

In this Chapter, we will present the extended Synchronous Kahn Semantics to support our clock
views. Many definitions are equivalent to those provided in Section 7.4. We will highlight the changed
definitions to improve clarity.

For the imported operators, there is no need to change the semantics, as we keep the requirement
that the arguments are synchronous.

Definition 29 (Extended Kahn semantics of imported operators).

op#(so, ey Sn) = {(opf(vo, ..., vn),t) | (vo,t) € s#, ey (Up, t) € sff}

For the rate-transition operators, we only need to change the definition of the ::# operator. Since
its definition relies on the —. operator, we must change its definition. In our case, this is the —.
operator, since we prepend a value to the dataflow without changing the rest of the dataflow.

Definition 30 (Extended Kahn semantics of rate-transition operators).

v,t+ixm(8)/k) | (v,t) e s? ie[0.k[}
v, t) | (v,t) e s” Ate(5/k)7)}

v,t+ k)| (v,t) e st}

v, to)} v {(vis tis) | (03 1), (Vigr, tiv1) € 7'}

v, t)fus , where t =tg € §—. — m(8)

—~ Y~ Y~

vity) | (vi,t;) € 87,0 # 0}

For the conditional operators, we must only change the definition of when?, to use the extended
on operator. The merge? operator remains unchanged, because we require the arguments so, ..., Sy
to have the same view. This guarantees that the merged dataflows are complementary, i.e. there is
never more than one value-tag pair present at any instant and their union results in a dataflow whose
clock has the last-level on dropped.
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Definition 31 (Extended Kahn semantics of conditional operators).
when™ (s,c,Cow) = {(v,t) | (v,t) € s, te(Son C’(c,w))# }

merge” (¢, 50, ..., 5n) = U s?
1=0

Example 17 (Extended Synchronous Kahn Semantics). See Example 12 for examples without the
when™ operator.

To T T2 T3 T4 Ts5 Tg
% % % % % % % x rate (2,0)
true false false false true
i i i i | c rate (3,0)
X0 X1 X9 Ze
% % % % y = when” (x, ¢, true, (6,0))
To To T1 T1 T2 T2 Ze
T % A (y, 2)
x0 Ze
% % /" #(y,6)
To T3 Tg
* * i (/"% (y,6),2)
) Te
% % /M (+2#(y, 2),6)
ZTo X1 T2 Te
% % % s ~>H(y, 2)
T Z2 T6
% % % tail®(y)
v Zo I ) I3 T4 T5

T T T T T 1 fby# (’U, y)



Chapter 14

Extended Language Syntax

In this, Chapter, we will present the syntax of our extended language supporting our Synchronous
State Machines. We reuse the same transpilation technique as [28]. Thus, we will first define a surface
language featuring state machines and then a core language without those. To improve clarity, we
will highlight changes in definitions which differ only slightly with those provided in Section 7.2.

14.1 Surface Language

Figure 14.1 illustrates the surface language the programmer uses. It is mostly similar to the language
defined in Figure 7.1. The notable differences are:

First, some minor cosmetic changes help with writing programs: Expressions need not be in
Administrative Normal Form, i.e. arguments of function and operator applications may be arbitrary
expressions, and one can define constants. The change from one form to another is trivial, however.

Second, a node body isn’t a sequence of equations, but of definitions. A definition is either an
equation or an automaton. Equations are unchanged from their previous definition.

The syntax of automata follows closely the one defined in [28]. Automata are composed of
states. Each state is composed of an unique identifier, optional strong transitions and mandatory
sub-definitions (i.e. automata may be hierarchical). The sub-definitions define how the dataflows are
computed within that state. A transition is composed of a boolean expression and a destination state.
When it evaluates to true, the automaton transitions to the destination state.

Note that we do not support weak transitions. The difference between a strong and a weak
transition lies in the instant when the automaton state changes. Transitions and the automaton state
are dataflows which all share the same rate. When a strong transition fires, the automaton state is
immediately updated. On the contrary, when a weak transition fires, the automaton state is only
updated the next time it is present. While strong transitions remain easy to grasp when combined
with clock views, the same cannot be said about weak transitions '. See Example 18 below for an
illustration of this issue.

As an additional restriction, we require that user-defined nodes have their rates manually annotated
by the programmer. This guarantees that we can infer the correct clocks in the Clock Calculus
(Chapter 15).

! As of time of writing, T may be the only person who is not confused and/or repulsed by this language feature, but
merely disappointed.
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Example 18 (Counter-intuitivity of weak transitions with clock views). Suppose an automaton state
with clock (10,0). State S1 has a strong transition to state S2 it has clock (10,0) on Si(state, (10,0)).
State S2 has a weak transition to state S1 it has clock (10,0) on S2(state,(10,0)). Thus, each
transition is only evaluated in its corresponding state and sees state changes immediately.

Suppose now that the automaton output o has clock (10,0) and view (30,0), i.e. S1_o and S2_0
have respective clocks (10,0) on Si(state, (30,0)) and (10,0) on S2(state, (30,0)).

Assume the automaton is in state S1 at some date t = 0 mod 30. If the strong transition fires
at date ¢, the state will change to S2 at date ¢t and o will observe the change immediately. If the
transition fires at dates ¢ + 10 or ¢ + 20, the dataflow state will change immediately too, but o will
only observe the change at date ¢t + 30. This can be easily derived from the views and repeats every
30 time units.

Assume now that the automaton is in state S2 at some date ¢ = 0 mod 30. If the weak transition
fires at date t, the state will change to S1 at date ¢ + 10 and o will thus only observe the change at
date t + 30. The same applies for date t + 10. However, if the transition fires at date ¢ + 20, the
automaton state changes at date t + 30 and thus o will observe the change without additional delay
at date t + 30.

In general, a weak transition is without additional delay if it is fired at date m(w) —7(s) mod m(w),
where w is the view clock and s is the state clock.

Example 19 (Example program in the surface language). The program below implements a simple
crossbar-switch in the surface language. It consists of a node with three inputs, i, j, and ¢, and two
outputs, o and p. When the automaton is in state S1, input i is directed to output o and input j is
directed to output p. When the automaton is in state S2, it is the opposite. However, we first apply
rate-transition operators such that rates match.

node main(i: int rate(10,0); j: int rate (20,0);
c: bool rate (15,0))
returns (o,p)

let
automaton
| S1 ->
unless c then S2;
o =1i;
P =173
| 82 ->
unless c¢ then S1;
o= ] *72;
p=1i/"2;
end
tel

14.2 Core Language

The core language illustrated in Figure 14.2 is syntactically identical to the one presented in Section 7.2.
Recall that for an atom a with clock ck:

e a/ "k sub-samples a by factor k and has clock ck / k;
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e ax"k up-samples a by repeating values k times and has clock ck *. k;
e a”>k delays each value of a by k and has clock ck =. k;

e cst fby a produces the value cst followed by the values of a and has clock ck, effectively
delaying values of a by 7(ck);

e cst :: a produces the values of a prepended by the value cst and has clock ck —. — 7(ck);
e tail a skips the first value of a and has clock ck —. 7(ck);

e a when C(c) sub-samples a such that it produces values only if ¢ as viewed by w produces C.
It has clock ck on C(c,w). Note that the view is not specified by the program, but instead
inferred by the compiler;

e merge(c, CO->a_cO, Cl->a_cl) combines the complementary flows a_cO and a_c1l with re-
spective clocks ck on C0(c,w) and ck on C1(c,w) and has clock ck.

14.3 Surface-to-Core Transpilation
Transpiling the surface to the core language is performed in three steps:

1. Replacing all constants by the appropriate literal
2. Transpiling automata into equations

3. Rewriting equations into ANF

Constant inlining and ANF transpilation are fairly straightforward. For the first, we simply substi-
tute names representing constants by the appropriate value. For the second, we must modify function
and operator applications. For each application argument, if it is not an atom (a constant or a
variable), we introduce a fresh variable and sustitute this argument by it. Then, we introduce an
equation whose left-hand side is the fresh variable and right-hand side the sustituted expression. If
this expression is itself not in ANF, we apply this procedure recursively.

14.3.1 Automata Transpilation

In [28], a transpilation process for a synchronous dataflow language is provided. To remain self-
contained, we will provide a similar definition in this Section. We chose the automaton transpilation
technique for our work because it is a well-established technique that illustrates well the expressivity
of clock views. Future work could study other language constructs or even enabling metaprogramming
to construct a library of mode changing facilities.

To flatten automata definitions into equations, we define a family of functions, flat, in Figure 14.3.
In addition, we define the function proj which “projects” an expression into an automaton state.

The first function flat4.r takes a definition and returns its flattened representation. Thus, for an
equation, it simply returns the equation. For an automaton, it returns the union of equations produced
by flat'®s, flatsts and flatdef ®. Note that the fresh integer 7 uniquely identifies this automaton.

auto? auto auto*
Function flat;¢%5 introduces the equations computing the automaton state. The dataflow ’i_s

holds the current automaton state which will be used by the actual equations of the automaton body.
Dataflow ’i_ps holds the previous value of ’i_s, i.e. the state it should enter if no transition fires.
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Let us illustrate how these dataflows interact. When the system starts, ’i_ps is initialised at
S0 because of the fby. That means that we assume that the automaton is supposed to enter state
S0. However, we must first verify whether or not transitions may be fired as these may change the
state immediately such that we never enter state SO0. The merge defining ’i_s evaluates the strong
transitions of the state we are supposed to enter, SO, and updates ’i_s as appropriate. Having
determined which state we are supposed to enter, this information can then be propagated to the
dataflows of the state such that they may be evaluated (more on this later). Now, the next time we
want to evaluate the automaton state, >i_ps holds the value computed for ’i_s the previous time.
However, we must first check if this state has some transitions which might fire. And thus the cycle
repeats.

Function flat$!%? returns the equations which actually compute the transitions. The expressions

auto

defining those dataflows are themself defined by flat""$. The programmer may provide multiple
transitions with different destination states. The notation [] denotes the empty list and x :: [y]
denotes a list whose head is x and tail is a list of ys. The semantics of our automata state that the
equation defined earlier in syntactic order have higher priority. Thus, we evaluate transitions as nested
if expressions. The expression evaluating a non-empty list of transitions is an if expression whose
condition is the projected transition guard of the head, the then-branch is the destination state and
the else-brach is the expression evaluating the tail of the list. The expression evaluating an empty
list of transitions is simply the current state.

Function flatdef * returns the flattened definitions of the automaton body. It is itself the result

auto
def

of mapping flatgff;o onto those definitions. Applying flat,,;, on an equation results into applyinng

flatsl, which produces a new equation with the left-hand side mangled such that there is no conflict
between equations with the same left-hand side accross modes and right-hand side projected into
the automaton state. Applying flatii{o on an automaton results in first applying flats.; onto that
automaton and then mapping the same mangling/projection function onto the resulting equations.
The projection function proj(e, S, c¢) in Figure 14.4 itself turns an expression e into an expression
which is only evaluated, iff the automaton, whose state dataflow is c, is within state S;. The most
important operation is that it applies a when Sj(s) on identifiers such that their dataflows are filtered

as appropriate. For the other cases, it simply applies itself recursively.

Example 20 (Automaton transpilation). The program below is the result of the automaton transpi-
lation of the example above (with some cosmetic improvements).

node main(i: int rate(10,0); j: int rate (20,0);
c: bool rate (15,0))
returns (o,p)
var s, ps;
let
s = merge(ps, S1->S1_s, S2->S2_s);
ps = S1 fby ns;
SO0_s = if c when S1(ps) then S2 else S1;
S1_s = if c when S2(ps) then S1 else S2;

o
p

merge(s, S1->S1_o, S2->S2_0);
merge(s, S1->81_p, S2->S2_p);

S1 o = i when S1(s);
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S2_o = j when S2(s);
S1 p = (j #72) when S1(s);
S2_p = (i /°2) when S2(8);

tel
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(prog)y ::= {decly*
{decl) := {(nd) | (ind) | (tydecl) | {constdef)
(nd) ::= ‘node’ (id) ‘C (vars) *)’
‘returns’ ‘C (vars) ‘)’
(‘var’ (vars) ;)7
‘let’ {def) + ‘tel’
(ind) ::= ‘imported’ ‘node’ (id) ‘(" {vars) )’

‘returns’ ‘C (vars) ‘)’

(indprop) ‘3’
(tydecly ::= ‘type’ (id)y ‘=" (‘1" {id))+
{constdef) ::= ‘const’ ‘=" {const)
{def) = {auto) | {eq)
{autoy := ‘automaton’ (state)+ ‘end’
(state) :=‘|" (id) ‘=>" (strans)x {(def)+ {wtrans)

(strans) := ‘unless’ {expr) ‘then’ {(id) ‘;’
(eq) = Gd)(*,’ (id))x *=" Leapr)s’
lexpr) == {atom) | (id) ‘C Lexpr) (‘,’ Lexpr) )= )’ | Lexpr) ‘rate’ (ck)
Cexpry ‘*x~' (int) | expr)y /7 (inty | Lexpr) ‘~> {int)
{atom) ‘tby’ {expr) | {atom) ‘::’ {expr) | ‘tail’ {expr)
(expr)y ‘when’ (id) ‘C {(id) ‘)’
‘merge’ ‘C (id) (*,’ (id) ‘=>"Lexpry )+ )’
(atom) ::= (id) | {const)
(vars)y = (var) | (var) *;’ {vars)
(var) == (d)y | Gid)y 27 {typ)? (‘rate’ (ck))?
(typy ::= ‘int’ | ‘bool’ | {typ) ‘[’ (inty ‘17| ...
(ck)y ::=C int) ¢, (int) )’ | {ck) ‘on’ (id) ‘C {id) )’
(indprop) = {wcet)?
{weety ::= ‘wcet’ {int)

Figure 14.1: Syntax of the PRELUDE language
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{prog)

(ind) ::

(tydecl) ::
(eq) =
{expr) :

(atom) ::
(vars) ::
(var) :
(typ)y
(ck)y
(indprop) ::
(weet) ::

CHAPTER 14.

= {decl)x*
{decl) ::
{(ndy ::

= (nd) | (ind) | {tydecl)
= ‘node’ (id) ‘(’ {vars) ‘)’

‘returns’ ‘(" {vars) )’

(‘var’ (vars) ;)7

‘let’ {eq)+ ‘tel’
‘imported’ ‘node’ (id) ‘(’ {vars) ‘)’

‘returns’ ‘C (vars) )’

(indprop) ¢;’
= ‘type’ (id)y ‘=" (‘1" (id)y)+
= (d)(*,” (id))= =" Cewpr)
= {atom) | (id) ‘C {atom)(*,” {atom))* )’ | {atom) ‘rate’ {ck)
| {atom) *~ (inty | {atom) /7 (int) | {atom) ‘>’ {(int)
| {const) ‘toy’ {atom) | {const) ‘::’ {atom) | ‘tail’ {atom)
| {atom) ‘when’ (id) ‘(C’ {id) )’
| ‘merge’ ‘C (id)y (‘,’ (id) ‘=>" {atom))+ )’
= {(id) | {const)
= (var) | {var) ‘;’ {vars)
= (idy | Gid)y 27 {typ)? (‘rate’{(ck))?
= ‘int’ | ‘bool’ | {typ) ‘[’ (inty ‘17| ...
=C Gnty *, Gnty )7 | {ck) ‘on’ (idy *C {(id) )’
{weet)?

‘weet’ (int)

Figure 14.2: Syntax of the core language

EXTENDED LANGUAGE SYNTAX
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flatgep(x = €;) = x = e;

flatgep(automaton So->sbg ... S,=>sb,) = flatyy;s(So U flatstes (S5, sp, 1))
d .
U fla tai{s Sjﬂsb?l))
Where i = fresh(int)
Fa (S . Sy i) =
'i_s = merge('i_pns, S0O->'i_SO_s, ... , Sn->'i_Sn_s)
'i_ns = merge('i_s, SO->'i_SO_ns, .. , Sn->'i_Sn_ns)
'i_pns = SO fby 'i_ns

flati (Sy, (ts, -, tw), i) =
'i_Sj_s —flatZ;%s(Sj,ts, 'i_pns)
'i_Sj_ns =flat"%"%(S;, tw, 'i_s)
flatllans(S;, (e, Sy) = [ts], if pmj(e Sj,c) then Sk else flat
flatgio®(Sj. ], ¢

¢) =
) =
Flatiels (S;, (L defs, ), 1)
)
) =

auto(

Sj,ts, c)

map(Adef. flatgl,(S;,def,i), defs)
flat

flatdef (Sj,x = e,i

auto

auto(Sj, % = e, '1_8j_s)
flatii{o(S],automaton auto, i) = map(Xeq. flaty!, (S, eq, 'i_Sj_s),eqs)
where eqs = flatger(automaton auto)
flatil, (S;,x = e,i)

'i_Sj_x = proj(e, Sj,c)

Figure 14.3: Automata flattening procedure
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proj(id, Sj,c) = id when Sj(c)
proj(const, S;,c) = const
proj(£(i),S;,¢) = £ (proj(i, Sj, c))

proj(e rate (n,p),Sj,c) = proj(e, S, ¢) rate (n,p) on Sj(c)
proj(e *°k,Sj,c) = proj(e,Sj,c) *"k
proj(e /°k,S;j,¢) = proj(e, S], c) /°k

proj(e “>k,8;,¢) = proj(e, S,¢) “>k
proj(const fby e, Sj,c) = const fby proj(e, Sj,c)
proj(const :: e,Sj,¢) = const :: proj(e,Sj,c)
proj(tail e, S;,¢) = tail proj(e,Sj,c)
proj(e when C(d),Sj,c) = proj(e,Sj,c) when C(d)
proj(merge(d, CO->e0, Cil->el),S;,c¢) =merge(d, CO->proj(e0,S;j,c), Ci->proj(el,S;,c))

Figure 14.4: Automata projection procedure



Chapter 15

Clock calculus

In this Chapter, we will present a clock calculus, that is able to ascribe a clock to programs in our
extended language. Most notably, it is able to reason about views. While the previous clock calculus
of the PRELUDE language relied on Hindley-Milner type inference extended with subtyping [78], this
clock calculus will rely on bidirectional refinement typing.

A note on terminology before talking in more detail about the clock calculus: Clocks (Chapter 12)
are elements of the synchronous Kahn semantics (Chapter 13), the operational semantics of the lan-
guage. Thus, they define the behavior of an abstract machine. The clock types of this Chapter are
their reconstruction from a program as done by the the clock calculus. When it is without ambiguity,
we use the terms clock and clock type interchangeably.

15.1 Bidirectional Typing

Our work relies on bidirectional typing [31] rather than Hindley-Milner (HM) type inference. Their
difference is best illustrated by the structure of their typing judgments. In HM type inference, the
judgment E | e : t associates to expression e the type ¢t under environment E. However, how this
information is obtained is unspecified. On the other hand in bidirectional typing, such a statement
could have any one of two forms, E' e <t or £ - e = t. The first states a type check, i.e. we verify
that ¢ is a valid type for e even though e might be associated to a different type u. The second states
a type synthesis, i.e. we construct a type t for e under the environment F.

While this distinction is of little use in the simply typed lambda calculus, HM type inference is
often undecidable for more complex type systems. This is because it may perform type checking or
type synthesis at any point. Type checking is decidable since the environment, expression and type
are all inputs and one must simply verify whether the relation holds. In type synthesis however,
the type is an output, making it potentially undecidable. Making the distinction explicit allows to
delimit which parts of the type system are decidable and thus where the type checker may infer types
automatically, and which are undecidable and thus require programmer input.

15.2 Refinement Typing

Refinement typing [39,83,101] is a typing discipline where types may be refined by logical predicates.
A refinement type is written {v:b | r}. It reads: “a base type b (e.g. int or bool list) is refined by a
boolean predicate r (e.g. v > 0 or length(v) < z) such that r is true for all values inhabiting {v : b | r}
and where the special variable v represent the value of the typed expression”.

83
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Let us illustrate refinement types. In more classical programming languages, the expression 4 would
have type int. In a language with refinement types, it would have type {v:int | v = 4}, meaning “an
int whose value is equal to 4”. Functions may also have refined types. The function (/) would
have type a:int — b:{v:int | v # 0} — {v:int | v = a/b}. This type describes a function taking an
argument a of type int and an argument b of type int whose value is not equal to 0, and returning
an int whose value is equal to a/b.

When typing an expression such as (/) a b, a refinement typer must perform two tasks. First,
it must verify the consistency of base types. This can be solved with classical techniques such as
HM typing [78], in our case bidirectional typing [31]. Second, it must verify the consistency of logical
predicates. Typically, a dedicated solver is used for this. Our work will rely on the Z3 SMT solver [(4]
to check the satisfiability of predicates.

The kind of constraints in a refinement type system is important too. Ideally, they should belong
to a decidable class of problems. A problem is decidable, iff there exists an effective method to solve
it [1]. A method is effective for solving a problem, if it consists of a finite number of instructions to
execute and these instructions can be followed rigorously without any form of ingenuity. For instance,
addition of integers is a decidable problem, because of the existence of effective methods as taught in
primary school.

For our clock calculus, we will use constraints belonging to the decidable logic of Quantifier-Free
Linear Integer Arithmetic (QFLIA), also called Presburger arithmetic [79]. “Linear” here means that
the only operation allowed between integer values are addition and subtraction, adding multiplication
or division would lead to undecidability. However, our formalization in Chapter 12 and Chapter 13
features multiplication and division. Luckily, a limited subset of multiplication and division is still
expressible in this logic. When submitting constraints to our SMT solver, we can use the following
properties which gives us sufficient expressivity to reason about our clocks. Assuming a and b are
variables and k is an explicit constant:

1. Multiplication: An expression a * k may be substituted by a + a + ... 4+ a where a is added to
itself k times;

2. Division: An expression a/k may be substituted by the fresh variable b and a new constraint
b * k = a where a is the dividend, k the divisor and b the quotient;

3. Divisibility: A constraint k£ div a is similar to division except that we only care that the
relation holds, the result is irrelevant, and thus the constraint may be substituted similarly by
the constraint b # kK = a where b is a fresh variable.

For a more in-depth review of refinement types, readers may either refer to the cited literature or
this excellent tutorial [17].

15.3 Overview

Our clock calculus is divided into three passes. This division is typical in type systems based on
refinement types [17] as it allows us to divide the complex typing problem into simpler individual
problems:

1. Structural Clock Calculus

2. Refinement Clock Calculus
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node main(i : int rate (10,0); j: int rate (45,0); c : bool rate (15,0))
returns (o : int rate (30,0))
var a,b,x,y,z;

let

a = i when true(c);

b =a /"3;

x =3 /72

y = x when false(c);

z =y *73;

o = merge(c, true->b, false->z);
tel

Figure 15.1: The running example

: (pck | 10, 0) j : (pck | 45,0)
c: (pck | 15,0) o: (pck | 30,0)
a: (pck on true (c, (pck | 90,0)) | 10, 0) b : (pck on true (c, (pck | 90,0)) | 30,0)
x : (pck | 90,0)
y : (pck on true (c, {pck | 90,0)) | 90,0) z : (pck on true (c, (pck | 90,0)) | 30,0)

Figure 15.2: The result of the clock calculus on the running example

3. View Closing

In the Structural Clock Calculus, only the structure of clocks is inferred. This pass is very similar
to a typical typing pass. Refinements are ignored and replaced by refinement holes, i.e. refinement
placeholders. Refinement holes are opaque and type checking them always succeeds in this pass. After
this pass, expressions and nodes are fully typed except for their refinements. In the Refinement Clock
Calculus, the actual refinements of clocks are verified. Finally, we delay view computation until the
last point, the View Closing pass. Before that, views only collect constraints without checking them.

15.4 Running Example

Throughout this Chapter, we will illustrate our clock calculus via the running example in Figure 15.1.
It features three sensors, i, j, and c, and one actuator o. We use c to conditionally sub-sample i and
j. We apply rate-transition operators before and after this sub-sampling and then merge the results
back together to produce the output o.

Figure 15.2 shows the clocks of different variables as determined by our clock calculus. Examples
will illustrate how this is determined.

15.5 Structural Clock Calculus

The goal of this pass is to infer the structure of clocks, that is to say clock types where refinements
are left unknown and represented by refinement holes. This means in particular that clock conditions



86 CHAPTER 15. CLOCK CALCULUS

are inferred during this pass, while periods and offsets are inferred during the following pass, the
refinement clock calculus.

The judgments of the structural clock calculus are the following. The S indicates that these are
judgments of the structural clock calculus.

. S .
e Synthesis H — x = o: Under environment H, a type o could be constructed for x;
. S . . .
e Checking H + x < o: Under environment H, type o is valid for z;

S
o Subtyping H o <: ¢’: Under environment H, type o is a subtype of o’;

o Well-formedness H + 2v'®: Under environment H, z is well-formed;
. S . . . .
o Instantiation H o = ¢’: Under environment H, type o can be instantiated into type o’;

. S . .
e Membership x € H: Environment H contains .

15.5.1 Clock Language

Figure 15.3 illustrates the clock system of the structural clock calculus. A clock type (o) is either a
polymorphic clock (Va.o) or a clock expression. A clock expression (cke) is either a dependent clock
function (x:ck, — cke), a tuple (cke x cke) or a refined clock. A refined clock (ck,) is a base clock
refined by a refinement hole ({v:cky | x}). A base clock (cky) is either a periodic clock (pck), a clock
variable («), a conditioned base clock (cky on C (¢, cky)), or the structural equivalent of a base clock
(C(Ckbv *))

An environment (H) is either empty or an environment extended by a variable binding (H; x:0),
a type (H;«), or a refinement hole (H;*).

Function definitions are always curried even though our semantics do not support partial applica-
tion. This allows us however to simplify the type checker: without curried functions, we would have
to define dependent tuples in addition to dependent functions.

Let us discuss the notion of structural equivalence. We focus on this type constructor in particular
as it is something unique to our work. As shown in Chapter 12, applying a periodic clock operator
on a clock changes not only the period and offset of the dataflow, but also the period and offset of
the views. Thus, the type system must also be able to reflect this. This is the role of the structural
equivalence type constructor (. If we take the “>k operator, its semantics states that it accepts a
dataflow whose clock features an arbitrary amount of on in it and returns a dataflow whose clock has
the same “structure”, i.e. the same amount of on applied to it, but whose offset and view offsets are
delayed by k.

In Section 15.6.3, its clock is shown to be Va.e:{v:a | xo} — {v:((c, *2) | x1}. Dissecting this clock
type, we see that it is a polymorphic function and thus indeed accepts any clock as input. For instance,
if we apply it to an argument i with clock type {v:pck on C(c, {v:pck | x3}) | x4}, we can instantiate
a following the instantiation rules (Section 15.5.5). However, we cannot reuse the same instantiated
clock for the output as obviously the offset of the output has changed and we must thus represent
this in the refinements. This is where the { operator becomes relevant. When instantiating such a
type, one has to follow the DESTINSTSEQ-1 and DESTINSTSEQ-2 rules (Figure 15.7). If a has been
instantiated to a pck, it is unchanged. However, if o has been instantiated to a on, the refinement
(hole) of the on has to be substituted by a new refinement (hole). This will allow us to accurately
describe the change a rate-transition operator applies to the views of its output. The formal definition
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o = Yoa.o|cke

cke = mick, — cke | cke X cke | cky

cky = {vicky | *}

cky == pck|a|cky,on C(c k)| ((cky,*)
H := g|H;zo|H;a|H;x

x : Variable

Figure 15.3: Declarative Structural Clock System

of ¢ relies on the instantiation rules in Section 15.5.5 (structural clock calculus) and Section 15.6.6
(refinement clock calculus).

15.5.2 Initial Environment

The initial environment of the structural clock calculus is shown in Figure 15.4. It contains the built-in
operators. As this is the structural clock calculus, most details are hidden away, but one can already
see the use of the ¢ operator.

15.5.3 Well-formedness Rules

The first kind of rule we will discuss are the well-formedness rules in Figure 15.5. Their role is to
verify that the clock types we manipulate are sound. In OCAML for instance, they distinguish sound
types such as int or (int -> bool) list, from unsound types such as 1ist or int int. The rules
are:

e DESTABSWEF': A polymorphic clock is well-formed, if the polymorphic type is sound within the
environment extended by the polymorphic variable;

e DESTFUNWE: A clock function is well-formed, if the input clock is well-formed and the output
clock is well-formed in the environment extended by the input clock, i.e. functional clocks are
dependent types;

e DESTTUPWEF': A clock tuple is well-formed, if the individual clocks are well-formed;

e DESTREFWF: A refined clock is well-formed, if both the base clock and refinement hole are
well-formed;

¢ DESTREHWEF': A refinement hole is well-formed, if it is part of the environment;

e DESTSEQWEF': A structurally equivalent clock is well-formed, if its constituents are well-formed;
e DESTPCKWF': A pck is always well-formed;

e DESTVARWE': A variable is well-formed, if it is part of the environment;

e DESTONWE: A on is well-formed, if it’s constituents are well-formed.



88 CHAPTER 15. CLOCK CALCULUS

e when C(c) :

Va.e{via | xo} — c{vil(a, *1) | x2} — {v:{(a, *3) on C (¢, {v:pck | *4}) | *5}
merge(c, CO->e0, Cl->el) :
Va.c{via | o} — e0:{v:((a,*1) on CO (¢, {v:pck | x2}) | *3} —

el:{v:((a on C1 (¢, {v:pck | x4}),*5) | *¢} — {v:{(c, *7) | *g}

ex"k:

Va.e{v:a | o} = {vi((a,*1) | *2}

e/ k:
Va.e:q{v:((a, xo) | x1} = {v:((a, *2) | x3}

C fby e

Va.e{v:a | o} — {v:((a, *1) | *2}

e >k :

Va.e{v:a | o} = {v:i((a, *1) | *2}

C::e:
Va.e{v:((a, %) | x1} — {v:((a, x2) | *3}

tail e:

Va.e{v:a | o} — {v:((a, *1) | *2}

e rate (n,p):

e{v:pck | o} — {vipck | *1}

Figure 15.4: Initial Declarative Structural Clock Environment
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DESTABSWF DESTFUNWF DESTTUPWF
Hoablov?® Ht ckyv?®  H,z:cky - ckev'® H\ ckev®  HEcklv®
H+Va.ov?® H + z:ck, — ckov'™® H+ ck. x ckés/s
DESTREFWF DEngEHWF DESTSEQWF
Hb ckyw®  HpE " xe H Hb ckyw®  HpE*v°

H - {vicky | x}v?° Hp *v?° H - ((cky, »)v®

DESTVARWF DESTONWE
DESTPCKWF wlH Hi ckyw®  Hp /"
H |- pcky® Hp av?® H - cky on C (¢, {v:pck | x}) v*

Figure 15.5: Declarative Structural Clock Well-Formedness

15.5.4 Subtyping Rules

A subtype relation H + t g: u states that under environment H, t is a subtype of w, meaning
that all values inhabiting ¢ also inhabit u. We didn’t define subtyping rules for clock functions and
polymorphic clocks as our semantics do not support this kind of dataflow. The rules are shown in
Figure 15.6:

e DESTSUBPCK: A pck is a subtype of itself;
e DESTSUBVAR: A clock variable is a subtype of itself;

e DESTSUBON: A conditional clock is a subtype of another, if their constructor and condition
are identical, and the first conditioned clocks is a subtype of the second, and the first view is a
subtype of the second;

o« DESTSUBREF: A refined clock is a subtype of another, if the first base clock is a subtype of the
second. Note that we do not check refinements;

e DESTSUBTUP: A tuple clock is a subtype of another, if their respective constituents are subtypes
of another.

15.5.5 Instantiation Rules

Instantiation rules describe how to construct (instantiate) an “abstract” clock into a more “concrete”
one. We use them for two cases. First, to construct a clock from the syntactic annotations of the
programmer (or the lack thereof). Second, when using expressions featuring polymorphic clocks. As
an expression with a polymorphic clock, such as a rate-transition operator or an imported node, must
obviously first be instantiated before being applied. The rules are shown in Figure 15.7:

o DESTDECLPCK: A strictly periodic rate annotation instantiates into a (well-formed) refined
pck;
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DESTSUBON
S S
DESTSUBPSCK DESTSUEVAR H b cky < ck{) Hi w2 o
H - pck <: pck Hrra<a 5
H - cky on C (c,w) <: cky, on C (c,w’)
DESTSUBREF DESTSUBTUP
S S S
H + cky <: ckj, Hck® <:ck?  H© ck! <:ckP
S S
H + {vicky | *} <: {vicky | «'} H - ck® x ck! <: ck? x ckB

Figure 15.6: Declarative Structural Subtyping Rules

o DESTDECLON: To instantiate a conditional rate annotation, first instantiate the clock declara-
tion without the conditional and then apply an on operator;

¢« DESTDECLEMPTY: An empty rate annotation can be instantiated into any well-formed refined
clock;

o DESTINSTPOLY: To instantiate a polymorphic clock, substitute each occurrence of the poly-
morphic clock by a well-formed base clock and then instantiate the resulting clock type;

o DESTINSTFUN: To instantiate a function, instantiate its components;

o« DESTINSTTUP: To instantiate a tuple, instantiate its components;

o« DESTINSTREF: To instantiate a refined clock, instantiate its base clock;

e DESTINSTSEQ-1: An instantiated structural equivalent of a pck, is a pck;

¢ DESTINSTSEQ-2: To instantiate the structural equivalent of a conditional clock, first instantiate
the structural equivalent of the conditioned clock and then reapply the on with a new view;

o DESTINSTPCK: A pck instantiates to itself;

o DESTINSTON: To instantiate an on, instantiate the conditioned clock and the view.

Example 21 (Structural Instantiation Rules). The structural instantiation rules are applied when-
ever a built-in operator is used. For instance, when instantiating the /"2 operator at Line 7 in
Figure 15.1, the following judgments are produced by the clock calculus. First (Equation (15.4)), the
rule DESTINSTPOLY states that to instantiate a polymorphic type, we substitute the type variable «
by a well-formed base clock. We must then recursively instantiate this clock type after performing the
substitution. Here, the constraints of the program require us to substitute o by pck. After this, the
recursive call requires us to apply rule DESTINSTFUN (Equation (15.3)). This rule simply requires
us to instantiate the input and output clock types. Continuing with the input type, this requires us
to apply rule DESTINSTREF (Equation (15.2)) which requires us to instantiate the base clock of the
refined clock. To instantiate this clock, we must follow rule DESTINSTSEQ-1 (Equation (15.1)) which
tells us how to instantiate a ¢ applied to a pck. Since there are no view refinements in a pck, the
instantiation is pck itself. After this, similar judgments are performed for the output type and the
clock calculus can conclude the instantiation of /~2.
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. (15.1)

H + ¢(pck, xg) => pck

S
H = ¢(pck, *0) =;> pck (15.2)
H + {v:((pck,*0) | 1} => {vipck | *1}
H  {v:{(pck, *o) | *1} N {vipck | *1} H = {v:((pck, *2) | *3} = {vipck | 3} (15.3)
H = e:{vi¢(pek, =) | %1} — {v:¢(pek, x2) | x3} = e{vpek | x1} — {vipck | +3}
H - pckv®

H k- ex{vi(a, %) | 1} — (v:¢(a, %) | x3}[a := pck] => e:{vipek | *1} — {vipek | x3} (15.4)

H - VYa.e{v:i((a,xo) | x1} — {v:{(a, *2) | *3} LA e{v:pck | 1} — {v:pck | *3}

Now, let’s look at an example featuring an on operator. At Line 9 in the running example,
operator *~3 is instantiated. Because it is applied to an argument featuring an on, we must substitute
a by pck on false (c,{v:pck | *4}) in rule DESTINSTPOLY (Equation (15.8)). We then apply rule
DESTINSTFUN (Equation (15.7)) similarly. This time however, the instantiation of the input clock
type is fairly straightforward and we don’t show it. However, when instantiating the output clock type,
we must apply rule DESTINSTSEQ-2 (Equation (15.6)) which replaces the refinement hole of the view
by a new one, indicating the change it produces wrt. the view of the input clock type. Finally, the
instantiation of the ¢ operator recurses and terminates with rule DESTINSTSEQ-1 (Equation (15.5)).

S (15.5)
H + ((pck, *4) => pck

H + ((pck, x4) EA pck H b x5v7°

(15.6)
H — {v:((pck on false (c,{v:pck | x4}),*1) | *2} 5 {v:pck on false (c,{v:pck | *5}) | *3}

H +~ {v:pck on false (c, {r:pck | *4}) | *o} =5 {v:pck on false (c,{v:pck | *4}) | *0}
H + {v:((pck on false (c,{vipck | x4}),*1) | *2} =X {v:pck on false (c, {v:pck | *5}) | *3}

H + e:{v:pck on false (c, {v:pck | x4}) | x0} — {v:((pck on false (c,{v:pck | *4}),*1) | *2} LA
e:{v:pck on false (c, {vipck | *4}) | *1} — {v:pck on false (c,{v:ipck | *5}) | *3}

(15.7)
H |- pck on false (c, {vipck | *4}) v*
H - ef{via | x0} = {v:((a, *1) | *2}[a := pck on false (c, {v:pck | x4})] =2
e:{v:pck on false (c, {v:pck | x4}) | x1} — {v:pck on false (c, {v:pck | *5}) | *3} (15.5)

S
H = VYa.e{v:((a, %) | x1} = {v:((a, *2) | *3} =>
e:{vipck on £alse (c, {vipck | +1}) | +1} — {vipck on alse (c, {vipck | +5}) | ]
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DESTDECLPCK
H - {vpck | *}v°

H |- rate (n,p) 5 {v:pck | x}

DESTDECLON s DESTDECLEMPTY
H - rate (ck) = {v:cky | *} H - {v:pck | */}\/S H - {vicky | %}v®
H + rate {ck)y on C(c) EA {vicky on C (c, {vpck | ¥'}) | *} Hin s {vicky | *}
DeSTINSTPOLY DEeSTINSTFUN
Hb ckywS  Hb ofa = cky)] => cke Hickl 2 ck,  Hi okl S ck,
H+—VYa.o N cke H + x:ckl. — ckl, N x:ck, — cke
DeSTINSTTUP DESTINSTREF
Hickd 2 ek Hr kP S okl H & ckl) 2> cky
H - ck? x ckB EA ck? x ckl H - {vicky | *} =2 {vicky | *}
DESTINSTSEQ-2
DESTINSTSEQ-1 H & C(ck), %) =S cky H +"v5
H + ((pck, ) LA pck H + ((cky on C (c, {v:pck | '}) , %) =2 cky on C (¢, {v:pck | +"})
DESTINSTON
DEeSTINSTPCK H  cky S ck H e w 2w
H - pck 5 pck H + cky on C (c,w) LA cky, on C (c,w')

Figure 15.7: Declarative Structural Clock Instantiation

15.5.6 Node Rules

Node rules describe how to verify the consistency of clocks inside the node body as well as describe
which type should be added to the environment afterwards. As stated above, in order to contain the
complexity of the clock calculus, we consider nodes to have curried function types, even though our
semantics do not support partial applications. The function currify(li,lou:) takes a list of input
types and a list of output types and returns a curried function type accepting the input types in order
and returning a tuple of the output types. Recall our notation for lists: [] is the empty list and = :: [y]
a list whose head is the element x and tail is a list of ys. The rules are:

e DESTIMPND: To construct the clock of an imported node, we first construct a clock for the first
argument v;,. Then, we construct a second type that is the structural equivalent of the first
type. Then, we construct a curried function type from the input and output types.

e« DESTND: To construct the clock of a user-defined node, we first instantiate the input, local and
output clocks, and then we verify the well-formedness of clocks within an environment extended
with the input, local and output clocks. The clock type of the node is a curried function
constructed of the input and output types.
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DESTIMPND
H;o - {v:a|*}v? {via| «} = ck, H;a+ {v:(a,+) | *"}\/S
{u:((a, *') | *”} = ck]. curri fy((vin, ckr) it [Vins, cki.], [Vout, ckl]) = cke

H + imported node N ((vip : tin) :: [Vins : tins]) Teturns ([vout : tout])s Y Yo.ck,

DESTND
H & [ckdeclin] = [ckin] — H - [ckdeclioe] 2> [chie] ~ H & [ckdeclow] = [chout]
H; [Uin : Ck'in]; [Uloc : Ckloc]; [Uout : Ckout] = eqs\/S currify ([Uim Ckin]’ [Uout7 Ckout]) = cke
H +~node N([vip : tin ckdecliy]) returns ([Vout : tour ckdecloyt]) var [vViee : tioe ckdeclioe] ;

S
let egs tel = cke

Figure 15.8: Declarative Structural Node Rules

DESTEQS ; DESTEQS
Hr-xz=o0 Hre=o Hl—eql/s Hl—qu\/S
Hrz=ev? H - eqiieqv®

Figure 15.9: Declarative Structural Equation Rules

15.5.7 Equation Rules

Equation rules are well-formedness rules which verify that equations are valid within the environment
of a node. The rules are:

« DESTEQ: A single equation is well-formed, if the left-hand side and the right-hand side both
synthesize the same type.

« DESTEQS: Multiple equations are well-formed, if the individual equations are well-formed.

15.5.8 Expression Rules

Expression rules are fairly straightforward rules as can be found in other refinement typing languages.
The rules are:

o DESTCHK: To check an expression e against a clock o, we must first synthesize a clock o’ for e
and then verify that ¢’ is a subtype of o;

e« DESTVAR: To synthesize a clock ck, for a variable z, we first fetch the clock ¢ bound to this
variable inside the environment and then instantiate it into clock cke;

e DESTCST: A constant can be lifted to a dataflow of any clock;

o DESTAPPL: When applying an expression to a node or built-in operator (a “function-like”),
we first synthesize a clock for our function-like and then check its argument against the input
clock and return a subtype of the the output type, i.e. the application has the same type upto
refinements.
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DESTCHK DESTVAR
S S
Hre2s Hrod 2o (x:0)eH Hb o= ck, DESTCST
Hl—e<S:a Hl—:cicke Hl—cga
DESTAPPL

S
He N2 gk, >cke HrEalck, Hickl <:cke
Hb N(a) 2 ck!

Figure 15.10: Declarative Structural Expression Rules

Example 22 (Structural Expression Rules). The inference below shows the judgments performed by
the structural clock calculus when synthesizing a clock for j /~2 (Line 7). First (Equation (15.9), rule
DESTAPPL states that we must instantiate a clock for this instance of /"2 (see Example 21). Then,
we must check j against the input clock, {v:pck | x4;}. Finally, the application has the output clock
of the function type with new refinements. To check j against the input type, we must apply rule
DESTCHK (Equation (15.10)). For this, we simply fetch the clock type of j from the environment and
verify that it is a subtype of the input clock. To verify the subtype check (Equation (15.11)), we apply
rule DESTSUBREF which states that the subtype base clock must be a subtype of the supertype base
clock. Recall, that refinement holes are ignored in this step of the clock calculus. As pck is a subtype
of itself, the subtyping check succeeds and we can synthesize clock {v:pck | *,} for our expression.

S
H v /2= e{vipck | x4} — {v:ipck | %40}
S S
H+ j < {vipck | *4i} H - {v:pck | %3} <: {v:pck | *4o}

! (15.9)
Htj /2= {v:pck | *,}
. 9 2
Hi- 32 {(vpck|*}  H {vipck | %} <: {vipck | %4} (15.10)
H - § £ {vpek | »ai)
H - pck %g ck
p ‘P (15.11)

S
H - {v:pck | xj} <: {v:pck | *q;}

Taking something slightly more complicated, let’s look at the judgments produced by the clock
calculus for a /3. The clock calculus starts as in the above example with rule DESTAPPL (Equa-
tion (15.12)). This time, the substitute for « features a on operator. Next, we apply rule DESTCHK
(Equation (15.13)) to check a against the input type. This means that we must synthesize a clock type
for a and then verify that it is a subtype of the input type. To verify this subtype check, we apply rule
DESTSUBREF (Equation (15.14)) which tells us to verify the subtype relation between the base types.
As the base types feature on operators, we apply rule DESTSUBON (Equation (15.15)). It requires to
verify the subtype relation of base types (which succeeds as both are pck) and the subtype relation of
views (which succeeds similarly as in Equation (15.11)). With this, the subtype check succeeds and
we can synthesize clock type {v:pck on true (c,{v:pck | xy0}) | *»} for our expression.



15.6. REFINEMENT CLOCK CALCULUS 95

Hi /32 e:{v:pck on true (c, {v:pck | *fyi}) | *i} — {v:pck on true (¢, {v:pck | *fuo}) | *fo}
H |- a<{v:pck on true (c, {v:pck | *py;}) | *f;}

S
H |- {v:pck on true (c, {v:pck | *,0}) | xp} <: {v:pck on true (c, {v:pck | *fuo}) | *fo}

Hra /32 {v:pck on true (c, {v:pck | *xuo}) | *»}

(15.12)
Hia2 {v:pck on true (c, {vipck | *ua}) | *a}
S
H |- {v:pck on true (c, {v:pck | *ya}) | *a} <: {v:pck on true (c, {v:pck | *fui}) | *fi} (15.13)
H |- a<={v:pck on true (c, {v:pck | *pyui}) | *fi} '
S
H |- pck on true (c, {v:pck | *yq}) <: pck on true (c, {v:pck | *fy}) (15.14)
S .
H  {v:pck on true (c, {v:pck | *uqe}) | *a} <: {v:pck on true (c, {v:pck | *fyui}) | *i}
H - pck <: pek H - {v:pck | * }&9{ K| *foi}
ck <: pc vipc :{v:pc ;
el Pt fun PeR P (15.15)

S
H - pck on true (c, {v:pck | *uq}) <: pck on true (c, {v:pck | *fy;})

15.6 Refinement Clock Calculus

The goal of this pass is to infer the refinements of clock types in place of the refinement holes. This
means in particular that other parts of clock types remain fixed.

The judgments of the refinement clock calculus are the following.

e Synthesis H — x = o: Under environment H, a type o could be constructed for x;
e Checking H + r<o0: Under environment H, type o is valid for x

e Subtyping H + o <: ¢’: Under environment H, type o is a subtype of o’;

o Well-formedness H  zv°: Under environment H, z is well-formed;

o Instantiation H — 0°=+ o=+ ¢’: Under environment H and using the structural type o°

guide, type o can be instantiated into type o”;

as a

e Membership o € H: Type o is part of environment H.

We assume that the results of the previous pass can be accessed freely, as if part of the environment.
In practice, they are stored as field of the datatypes produced by the structural clock calculus.
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15.6.1 Clock Language

Figure 15.11 illustrates the clock system of our clock calculus. A clock type (o) is either an polymorphic
clock (Va.o) or a clock expression. A clock expression (cke) is either a dependent clock function
(z:ck, — ck.), a tuple (ck. x ck.) or a refined clock. A refined clock (ck;) is a base clock refined by a
boolean refinement ({v:cky | 7}). A base clock (cky) is either a periodic clock (pck), a clock variable
(a), a conditioned base clock (cky on C (c,ck,)), or the structural equivalent of a base clock where
the refinements of views in ck; are substituted by refinement r ({(ckp,7)).

A refinement (r) is either the conjunction or disjunction of two refinements (r A r, r v r), the
equality or inequality between two arithmetic expressions (d = d, d > d, d < d), a divisibility

k
constraint (d div d), a divisibility constraint within a constant (d div d) or the boolean true.

An arithmetic expression (d) is either a constant (k), a clock property, the sum, difference, product,
or quotient of arithmetic expressions (d + d, d — d, d = d, d/k), or the least-common multiple of two
arithmetic expressions.

A clock property (p) references either the period (7) or the offset (¢) of a clock. The forms 7(v)
and ¢(v) reference the clock of the current refinement, i.e. the one whose v most closely bound.
For instance, in a clock {v:pck on C (¢, {v:pck | m(v) = 20 A w(v) = 10}) | 7(v) = 10 A o(v) = 0} is
the clock type of the clock (10,0) on C(c, (20,10)). The forms with subscript reference a clock at a
certain depth, either bound in the environment (7, (x), ¢, (z)), or within the hierarchy of a refined clock
(mn(v), pn(v)). If the depth-indicator is a constant k, it references a clock as defined in Section 15.6.2.
The special depth-indicator ¢ is used in conjunction with the constructor ¢ (see Section 15.6.6). When
instantiating a ((cky, ) clock type, occurrences of £ inside r are substituted by the current depth of
Ckb.

An environment (H) is either empty or an environment extended by a variable binding (H; z:0),
or a type (H;«).

k
Definition 32 (Divisible within k). The relation div called “divisible within k” is a special case of
the division relation div. While the relation a div b is a constraint stating 3z € N.a * = b, the

k
relation a div b adds a constraint « div kK A z > 1, i.e. & must be a product of prime factors of k.
This constraint has the advantage that it is linear, and thus decidable in more cases. The relation

k
a div b is linear iff a is an explicit constant. On the other hand, the relation a div b is linear iff k is
k
an explicit constant, a and b can be both variables. The translation of div into a linear constraint is

shown in Section 15.6.2.

The table below shows under which conditions the different forms of div and divk are linear. In
these examples, a, b and ¢ are all variables.
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o = Yoa.o|cke

cke = wick, — cke | cke X cke | cky

cky = {vicky|r}

cky == pck|a]|cky,on C(cck) | (cky,T)

k
rar|rvr|d=dir=d|r<d|ddivd|ddivd|true
klpld+d|d—d|dsk]|d/k|lem(d,d)

m(v) [ o) | (V) | en(v) | mn(z) | n(z)
k€
| Hyzio | Hy«

z : Variable k : Constant

m:ﬁ&ﬁ
[l

Figure 15.11: Declarative Refinement Clock System

Constraint | Linear Translated form

2 div 4 Yes dJrelN2sxx =4

2div b Yes JrelN2xx =0

adiv 4 No dreNagxxz =14

adivb No dreNaxz =05
1

2 div 8 Yes dJrelN2xx=8Aazxzdivdrz>1
1

2div e Yes dzeN2xz=crzdivdrzx>1
b

2 div 8 No dJrelN2xx=8Aaxdivbrz>1
b

2 div ¢ No dJrelN2xx=cArxzdivbrz>1
1

a div 8 Yes dJrelNaxz=8Anzdivd Az >1
1

adiv ¢ Yes dJreNax*z=cAnzxzdivd Az >1
b

a div ¢ No dreNaxz=cArxzdivbrxz>1

To retain brevity, we define a shorter notation for common types of refined clocks.

Definition 33 (Shorthands for Common Clocks).

(cky | d,d') = {vicky | m(v) =d r p(v) = d'}
(cky | -, d"y = {vicky | p(v) = d'}
(cky | d,d" | 1) = {vicky | 7(v) =d A o(v) =d AT}
C{cky | d,d") = ((ckp,m(v) =d n @v) =d)

15.6.2 Functions on Refinement Clocks

We define two functions on refinement clocks, the depth function and the lowering function | |.
The depth function determines the number of on operators applied to a ckp and this allows to
determine which clock is referenced by clock properties of the form m(e).
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The lowering function | | lowers elements of the clock language into the language of the SMT
solver. Lowering an environment is the conjunction of the lowered variable bindings. Lowering a
variable is the conjunction of the lowered refinements of the ck, and the lowered ck;. When lowering
the refinement of the ck, bound to z, substitute occurrences of v by x and occurrences of 7(v) and
¢ (v) by mo(z) and ¢ (x) respectively. When lowering the refinements of a view inside a cky, substitute
occurrences of v by x and occurrences of m(v) and ¢(v) by mi(x) and @y (z) respectively, where k is
the depth of the cky. The lowering of pck is simply true.

The lowering of refinements is as follows:

r A 7’: The lowering of the conjunction of refinements is the conjunction of the lowered refine-
ments;

e rvr’: The lowering of the disjunction of refinements is the disjunction of the lowered refinements;

e d=d,d>d,d<d: The lowering of an (in)equality between arithmetic expressions is the
(in)equality between the lowered arithmetic expressions;

o true: The lowering of true is itself;

o ddiv d’: The lowering of a divisibility constraint, is the constraint that the first lowered expres-
sion modulo the second lowered expression equals 0;

k
e ddiv d’: The lowering of a divisibility constraint is the disjunction of constraints stating that
the first lowered expression times a possible multiplier is equal to the second lowered constraint;

o mi(z), pr(x): The lowering of a clock property is simply the variable introduced to the SMT
solver to represent it;

e d+d,d—d, d=d, d/d: The lowering of a binary operation, is the same binary operation applied
to the lowered expressions;

e lem(d, k): The lowering of the least-common multiple between an expression and a constant is a
fresh variable to which the constraint lemgp;r forces it to be the least-common multiple of the
lowered expression and the constant;

k: The lowering of a constant is the constant.

Note that when lowering a dlicv the disjunction \V can be enumerated explicitly. For
k'e{z|z div k,z>1}
instance, |a d?v b is lowered into (a*2 =0) v (a*3 =b) v (a * 6 = b) which is linear and decidable,
even if a and b are both variables.
Note also that when lowering a lcm expression, we can do the same. The operator ite is the
“if-then-else” built-in of the SMT solver and has type Va.bool — o — o — «. Thus, |lem(a,6)] is
lowered into

ite (6 diva)(x = a)

(ite (6 div (a*2))(x = a = 2)
(ite (6div (a*3))(x =a*3)(x = a*6)))
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depth(pck) =0
depth(cky on C (c,w)) = depth(cky) + 1

|| = true
H;z:o =|H| A |o]*
H;a=|H|
[{wicky | P}F = ek [? A Lrl = 2, 7(0) = mo(2), 9(0) = ()]
[eky on C (e, {wpck | DI = |eaf? A [y 1= 2,7(v) = ma(2), () = ()]
where k = depth(cky) + 1
|pck|” = true
lr ar'| =|r| Al lr v '] =|r| v ||
|d=d|=(d| =|d]) |true| = true
ld=>d] = |d| > |d| ld<d]=|d| <|d|
\d div d'| = (|d'] mod |d] = 0) ddivd| = \/  (d«K = |d])
k' e{z|z div k,z>1}
|7k (x)] = x-k-period |ok(x)| = x-k-offset
ld+d| = |d| +|d] |d—d| = |d| —|d]
|d = d'] = |d] « |d] |d/d’] = |d]/|d']
|lem(d, k)| = $lcm-var , lemgyr($lem-var, |d], k)
k| =k

lemgpyr(x,v, k) =
(ite (k div v)(x = v)
(ite (k div (v =kg))(x = (v = ko))

(ite (kdiv (v ky))(x = (v ky))(x = (v=k))))
ki e{z |z div k,x > 1}

Figure 15.12: Functions on Refinement Clocks

99
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15.6.3 Initial Environment

The initial environment of the refinement clock calculus is shown in Figure 15.13. It contains the built-
in operators. Note that the clock types of the built-in operators rely heavily on Property 1. Recall that
this property allows us to simplify clocks featuring both periodic operators and conditional operators.
The Property pushes the periodic operator deeper into the clock hierarchy, potentially changing the
views of the on operators it encounters, until it reaches a periodic clock where it can be applied
according to Definition 15. Without this Property, we would have to layer refinement clock types on
top of each other to accurately describe the clocks of the program. An expression x /°2 ~>3 would
have to be of the form {v:{v:type of x | refinements of /~2} | refinements of >3} which not only
increases the complexity of the type system (refinement types may be arbitrarily nested), but also
greatly decreases the readability of clock types.
Let us go into more detail over the different operators. They all have polymorphic clocks:

e e when C(c): The function takes an argument e without restrictions and an argument ¢ whose
offset must be equal to the offset of e and whose views must have the same period and offset
than the views of e. The output has the same period and offset than e and an additional on
applied to its base clock. The view on this last-level on has an offset equal to the offset of e and
a period that is divisible by the periods of e and c.

e merge(c, CO->e0, Cl->el): The function takes 3 arguments. The first argument ¢ has no
restrictions. For the second argument e0, the refinement also state that there are no restrictions.
However, the base clock of this argument features two changes. First, the ( operator states
that whatever has been instantiated for «, we replace view refinements by true, i.e. there are
no requirements on the views of e0. Second, we apply an on operator afterwards where the
constructor is CO and condition c. This, simply enforces that the arguments we merge together
are indeed conditionally sub-sampled on the first argument ¢. The second argument el must
have the same period and offset than el, i.e. we can only merge dataflows with the same rate.
Its base clock features a ( operator. Here, it enforces that the views of el have the same period
and offset than the same-level views of €0, i.e. we can only merge dataflows which perceive the
condition c in the same way. The output has the last-level on removed, but apart from that the
same clock as e0.

e ex"k: The function takes an argument e whose period is divisible by k. The output has the
period of e divided by k, but the offset remains unchanged. The use of the { operator states
that views remain unchanged, as specified by Property 1.

e e/ k: The function takes an argument e without restrictions on its period or offset. However, the
¢ operator introduces requirements on the views of e. These requirements are the preconditions
defined in Property 1 encoded in a refinement. Thus, we require that each view must have a
period that either is divisible by the output period or that divides (within k) the output period.
The output has the period of e multiplied by k and an unchanged offset. The ( operator in the
output clock similarly, encodes in a refinement the right-hand side of Property 1. Offsets remain
unchanged.

e C fby e: The function takes an argument e without restrictions. Note that even though the
operator is syntactically binary, as one operand is a constant, we do not consider it during the
clock calculus. The output has the same period and offsets and views are also unchanged, since
the £by operator only delays values, but not the tags when the dataflow is present.
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e”>k: The function similarly takes an argument e without restrictions. The output has an
unchanged period, but an offset increased by k. The ( operator states that the views of the
output have the same period than the same-level views of e, but an offset that is delayed by
k compared to the input e. This is due to the fact that > delays the input by =. k and thus
Property 1 requires us to reflect this delay both in the offset and the views.

C::e: The function takes an argument e whose offset must be greater or equal than it’s period,
i.e. we can’t insert a value before the initial date 0. In addition, the { operator requires that
each view of e must be lower by at least a period compared to the offset of the dataflow, i.e. we
can’t insert a value before the first time the condition is present. The output has an unchanged
period, but an offset lower by one period. The ( of the output type states that views also remain
unchanged. This is because we inserted a value inside the dataflow, but did not change how the
condition is observed.

tail e: The function takes an argument e without restrictions. The output has an unchanged
period, but an offset delayed by one period. The ( operator inside the output type states that
the periods and offsets of views are unchanged wrt. the input e. Note the difference between
this operator and ~“>. Because this operator simply drops a value but does not change how the
remaining values of the dataflow perceive the condition, views are unchanged. However, because
~> shifts all values of the dataflow, this changes how the condition is perceived.

e rate (n,p): The function takes an argument e which matches exactly the clock (n,p) and
returns a value with the same clock.

15.6.4 Well-formedness Rules

The well-formedness rules of the refinement clock calculus in Figure 15.14 are fairly similar to those
of the structural clock calculus:

DEREABSWEF: A polymorphic clock is well-formed, if the polymorphic clock is well-formed
within the environment extended by the polymorphic variable;

DEREFUNWE: A clock function is well-formed, if the input clock is well-formed and the output
clock is well-formed in the environment extended by the input clock, i.e. functional clocks are
dependent types;

DERETUPWEF: A clock tuple is well-formed, if the individual clocks are well-formed;

DEREREFWEF': A refined clock is well-formed, if both the base clock and refinement are well-
formed;

DERERFPWF': A refinement is well-formed, if it has type bool within the environment (and
respects the grammar defined in Section 15.6.1);

DERESEQWEF': A structuraly equivalent clock is well-formed, if its constituents are well-formed;
DEREPCKWEF: A pck is always well-formed;
DEREVARWEF': A variable is well-formed, if it is part of the environment;

DEREONWEF: A on is well-formed, if it’s constituents are well-formed.
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e when C(c) :
Voace{v:a | true} — c: (((a | me(e), pe(e)) | - pole)) —
(C{a | me(e), pele)) on C(c, (pek | -, po(e) | mo(e) div m(v) A mo(c) div 7(v))) | mo(e), po(e))

merge(c, CO->e0, Cl->el):
Va.c{v:a | true} — e0:{v:((a, true) on CO (¢, {v:pck | true}) | true} —
el: (¢ (@ on C1 (¢, {v:pck | true}) | m¢(e0), pe(€0)) | mo(e0), po(e0)) —
(C e | me(€0), p¢ (€0)) | mo(€0), po(e0))

ex"k:

Vae{pia| kdiv a(v)} — (({a | me(e), ge(e)) | mole)/k; wole))

e/ k:

k
Va.e:{u:((a, (mo(v) * k) div w(v) v w(v) div mo(v) = k) | true} —

<C <a | mo(e) = lem <:§EZ§ k) pele )> | mo(e) * k,(pg(e)>

C fby e
Veer{via | true} — (¢ (a | me(e), 0e(e)) | mo(e), wole))

e >k :
Vo.e{v:a | true} — (¢ (o | me(e), pe(e) + k) | mo(e), pole) + k)

C::e:

Va.er{v:((e, o(v) < po(v) —mo(¥) | ¢(v) = m(v)} = (C{er | mele), wele)) | mo(e), pole) —m(v))

tail e:

Vawe:{via | true} — (¢ (o | me(e), pe(e)) | mo(e), po(v) + 7(1))

e rate (n,p):

e: (pek | n,p) — (pck | n,p)

Figure 15.13: Initial Declarative Refinement Clock Environment
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DEREABSWF DEREFUNWF DERETUPWF
Haoal o/ H W ck.v H,x:ck, + ckev Ht ckev H - cklv
HF+Ya.ov H+ x:ck, — ckev’ H - cke x cklLv
DEREREFWF DERERFPWF DERESEQWF
H + ckyv Hr-rv HF r:bool H+ ckyv Hrrv

H+ {vicky | r}v Hyrv H + ((cky, )V

DEREVARWF DEREONWEF
DEREPCKWE aeH Hbchyw  HiErv
H + pckv’ Ht av H + cky on C (¢, {v:pck | }) v

Figure 15.14: Declarative Refinement Clock Well-Formedness

15.6.5 Subtyping Rules

The subtyping rules in Figure 15.15 introduce in particular the DEREVERIF rule which handles the
satisfiability of the refinements:

DERESUBPCK: A pck is a subtype of itself;
DERESUBVAR: A clock variable is a subtype of itself;

DERESUBON: A conditional clock is a subtype of another, if their constructor and condition
are identical, and the first conditioned clocks is a subtype of the second, and the first view is a
subtype of the second;

DERESUBREF: A refined clock is a subtype of another, if the first base clock is a subtype of
the second and the first refinement implies the second;

DEREVERIF: A refinement implication is verified, if the SMT solver can prove that the lowered
implication of the refinements;

DERESUBTUP: A tuple clock is a subtype of another, if the constituents of the subtype are
subtypes of the respective constituent of the supertype.

Note that for decidability reasons, our implementation does not submit |H| A Yv.|r| — |r’| to the
SMT solver, but instead |H| A |r] A —|r']. This form allows us to verify the same property, if we
change how results have to be interpreted. Instead of verifying that “Within environment H, for all
values of v, if it respects r, it also respects 7’7, we verify “Within environment H, is there a value
of v, such that it respects r, but not r’ ?”. Thus, the subtyping relation holds, iff the query returns
UNSAT. When it returns SAT, the assignment to variables shows us a possible assignment of periods
and offsets where the subtyping relation does not hold.

15.6.6 Instantiation Rules

A specificity of the instantiation rules in Figure 15.16 is that the instantiated type must preserve the
same structure as the result of the previous pass. Thus, the structural clock type becomes an input
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DERESUBON
DERESUBPCK DERESUBVAR H - cky < ck{, Hew<:w
H — pck <: pck Hrraoa< a ; ;
H + cky on C (c,w) <: cky, on C (c,w’)
DERESUBREF DEREVERIF
H - cky <: ckj, Hrr—7r SAT(|H| A Vv e r| — |7])
H + {vicky | r} <: {vicky | r'} HiEr—1
DERESUBTUP

H - ck? <:ck?  H & ck! <:ckP
H - ck? x ck! <: ck:;f1 x ckP

Figure 15.15: Declarative Refinement Subtyping Rules

of the instantiation statement. Note that rule DEREINSTSEQ-2 is the rule responsible for replacing
the ¢ in ¢ and ¢¢(b) y a concrete k. The rules are:

e DEREDECLPCK: A strictly periodic annotation can be instantiated by simply replacing the
refinement hole by the appropriate refinement;

¢« DEREDECLON: A conditional clock annotation can be instantiated by instantiating the clock
without the highest-level on and instantiating the clock view from an empty annotation, and
then, re-applying the on operator;

e DEREDECLEMPTYPCK: An empty annotation of a refined pck can be instantiating by replacing
the the refinement hole by a well-formed refinement;

¢ DEREDECLEMPTYON: An empty annotation of a refined conditional clock, can be instantiated
by performing the instantiation recursively as in DEREDECLON;

¢ DEREINSTPOLY: To instantiate a polymorphic clock, substitute the polymorphic variable by a
base clock and instantiate this clock recursively;

« DEREINSTFUN: To instantiate a function, instantiate its components;
o DEREINSTTUP: To instantiate a tuple, instantiate its components;

« DEREINSTREF: To instantiate a refined clock, instantiate the base clock and replace the refine-
ment hole by the provided refinement;

e« DEREINSTSEQ-1: An instantiated structural equivalent of a pck is a pck

o DEREINSTSEQ-2: To instantiate the structural equivalent of a conditional clock, first instantiate
the structural equivalent of the conditioned clock and then reapply the on where the view
refinement has been replaced by the provided refinement where & has been replaced by the
depth of the clock;

¢ DEREINSTON: To instantiate an on, instantiate the conditioned clock and replace the view
refinement hole by the provided refinement;
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o DEREINSTPCK: A pck instantiates to itself.

Example 23 (Refinement Instantiation Rules). We will look at the instantiation of the same operators
as in Example 21.

To i