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R É S U M É

L’apprentissage machine et plus particulièrement l’apprentissage profond (deep learning) ont
un impact de plus en plus important dans notre société. En effet, ces approches sont dev-
enues prépondérantes dans de nombreux domaines tels que le traitement du langage naturel
avec la détection de contenu haineux, la synthèse de documents ou encore la vision par ordi-
nateur avec le diagnostic médical ou le développement des voitures autonomes. Le succès de
l’apprentissage profond est souvent associé à des architectures désormais emblématiques, comme
AlexNet [123], ResNet [94] ou GPT [155]. Ces succès ont également été alimentés par des procé-
dures d’optimisation bien conçues, qui néanmoins ne sont généralement pas au centre des préoc-
cupations. Pour la classification d’image, le challenge ImageNet [168] a été un accélérateur pour
le développement de nouvelles architectures mais aussi de nouvelles stratégies d’optimisation.

Dans cette thèse, nous discutons des interactions qu’il existe entre les architectures et les procé-
dures d’entrainement. Nous étudions plus spécifiquement l’architecture des Transformers [204],
appliqués à la vision par ordinateur, pour lesquels les procédures d’entrainement sont encore
peu explorées. Elles sont pourtant essentielles pour compenser l’absence de prior architectural
spécifique au traitement d’image. Nous proposons dans ce travail des procédures d’entraînement
capables d’obtenir des performances état de l’art pour des Transformers ou même pour des ar-
chitectures plus simples se rapprochant de perceptrons multi-couches. Plus précisément, nous
commençons par étudier la possibilité d’apprendre avec des étiquettes grossières par une modi-
fication de la procédure d’entrainement. Nous étudions ensuite différents types d’architectures
pour la vision par ordinateur. Nous analysons en particulier leurs caractéristiques, leurs avantages,
leurs inconvénients et la manière de les entraîner. Enfin, nous étudions l’impact des interactions
entre les architectures et les procédures d’entrainement. L’ensemble de nos approches sont éval-
uées en classification d’image sur ImageNet et en transfer. Nous nous évaluons également sur des
tâches annexes comme par exemple la segmentation sémantique.





A B S T R A C T

Nowadays, machine learning and more particularly deep learning have an increasing impact
in our society. This field has become prevalent, for instance in natural language processing where
it has led to concrete applications to hate speech detection and document summarization. Sim-
ilarly for computer vision, it enables better image interpretation, medical diagnosis, and major
steps towards autonomous driving. Deep learning success is often associated with emblematic
architectures, like AlexNet [123], ResNet [94] or GPT [155]. These successes were also powered by
well-designed optimisation procedures, which are usually not the main focus of discussions. In
image classification, the ImageNet [168] challenge was an accelerator for the development of new
architectures but also for new optimisation recipes.

In this thesis, we discuss the interactions between architectures and training procedures. We
study more specifically Transformers [204] architecture applied for visual understanding. Cur-
rently, transformers training procedures are less mature than those employed with convolutional
networks (convnets). However, training is key to overcoming the limited architectural priors of
transformers. For this reason, we focus on training procedures capable of obtaining interesting
performance for transformers or even simpler architectures close to the multi-layer perceptron.
We start by studying the possibility of learning with coarse labels through a modification of the
training procedure. We then study different kinds of architectures for computer vision. We study
their features, their advantages, their drawbacks and how to train them. Finally, we study the
impact of the interaction between architecture and training process. All our approaches are evalu-
ated in image classification on ImageNet and in transfer learning. We also evaluate our methods
on additional tasks such as semantic segmentation.
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I N T R O D U C T I O N

Computer vision is about understanding how to obtain a high-level representation of images
and videos. High-level representations are obtained by projecting the image into a vector space
with a certain structure that makes it easier to extract the information needed to interpret the
image. This allows complex tasks such as recognising concepts in an image or performing action
recognition in video. While it is easy for a human to recognise a given concept, it is hard to design
an algorithm that would do the same. Indeed, when we see a cat, we know quite easily that it is
a cat, but it is almost impossible to describe in an algorithmic way all the steps that lead us to
this conclusion. Early approaches were based on handcrafted image representations, i.e manually
designed and relying on expert knowledge. The most emblematic strategy is certainly the Bag-
of-Words (BoW) method, which encodes and pools local features on visual dictionaries. BoW
was the state-of-the-art approach for image classification in the 2000s. Inspired by information
retrieval [170], the pioneering work [138] introduced a BoW scheme for image representation
using a color dictionary, extended to Gabor feature dictionary by [74], and finally popularized
using SIFT features (Scale-Invariant Feature Transform [137]) for visual recognition [43, 179]. In
the 2010s, we then witnessed the emergence of deep learning methods, which gradually overtook
all traditional computer vision approaches.

The computer vision field includes many tasks such as image classification, detection or seg-
mentation (see Figure 1.1 for an illustration). Today, the gold standard approaches to solve these
tasks are based on deep learning. This thesis falls within this context. In the following, we detail
the basics of deep learning for vision and position our contributions.

1.1 Deep learning for image classification

1.1.1 Image classification

Application of deep learning for computer vision is quite old. For instance, the backprop-
agation algorithm commonly used to train deep learning models was introduced by Hinton,
Rumelhart and Williams [167] in 1986. Lecun et al. [126] used Convolutional neural network
trained with a backpropagation algorithm to perform digit recognition. However, this task re-

Image Classification Object Detection Semantic Segmentation Instance Segmentation

Figure 1.1 – Illustration of different tasks usually studied in computer vision. Credit Lin et al. Microsoft
COCO: Common Objects in Context.
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Figure 1.2 – Illustration of a multi-layers perceptrons (MLP). Credit: Martin Cenek, Researchgate.

mains a quite simple classification task with small black and white images and only 10 classes.
We had to wait until 2012 to see the first successes of deep learning on more complex image clas-
sification tasks, such as the ImageNet challenge [168]. This challenge with 1000 classes and over
1.28M images is quite complex. ImageNet is a problem that is representative of more real-world
use cases than digit recognition. Before 2012 the ImageNet challenge was won year after years by
approaches relying on handcrafted features. In 2012, Krizhevsky et al. [123] won the challenge by
a large margin over competing approaches by using the AlexNet convolutional neural network
(see Figure 1.3 for an illustration of the architecture) trained with backpropagation and data aug-
mentation. Following the success of AlexNet year after year, many new deep learning approaches
have in succession won this challenge, reaching today human level performances for this task.

Although the ImageNet challenge is not organized anymore, the ImageNet dataset is so core to
computer vision that it is still used as a benchmark to measure progress in image understanding.
The evolution of the state of the art on the ImageNet dataset [168] reflects the progress with con-
volutional neural network architectures and learning [123, 177, 187, 199, 200, 228]. Any progress
usually translates to improvements in other related tasks such as detection or segmentation.

The ImageNet example shows us the importance of large datasets for deep learning approaches.
Indeed, we need large amounts of data to reach good performance with deep architectures. Gener-
ally, we also need annotations which can be very expensive to obtain. For instance, for the image
classification task, it is sometimes necessary to have expert knowledge to be able to correctly label
some concepts. However, some approaches can partially overcome this problem as we will detail
later in this manuscript.

In addition to a large amount of data, the success of deep learning approaches relies on
two essential components. The architecture which defines the capacity of the model, (i.e. the
set of functions that can be approximated layer by layer) and the learning procedure, which
corresponds to all the methods used to learn the weights of the model. The learning process
allows a convergence of the model’s weights towards a certain function to solve a given task.
There are strong interactions between the architecture and the learning procedure as the design
has a direct influence on the gradient calculation (Which is used in the back propagation algorithm)
but also on the stability of the learning procedure. In this thesis, we study these two aspects and
their interaction.
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Figure 1.3 – Illustration of the convolutional neural network AlexNet. Credit: Krizhevsky et al. ImageNet
Classification with Deep Convolutional Neural Networks.

1.1.2 Deep Architectures Design

Multi-layer Perceptron (MLP), also called feedforward neural networks or deep feedforward
networks, is illustrated in Figure 1.2. The Perceptron was introduced by Rosenblatt [165] in 1958.
Cybenko [48] show that MLP are universal function approximators which explains their interest
in the Machine learning community. Some studies have shown that MLP are competitive with
convnets for the tasks of digit recognition [42, 176], keyword spotting [31] and handwriting
recognition [20]. Several works [130, 140, 201] have questioned if MLP are also competitive on
natural image datasets, such as CIFAR-10 [122]. More recently, d’Ascoli et al. [51] have shown
that a MLP initialized with the weights of a pretrained convnet achieves performance that are
superior than the original convnet. Neyshabur [143] further extends this line of work by achieving
competitive performance when training an MLP from scratch but with a regularizer that constrains
the models to be close to a convnet. Nevertheless, these studies have been conducted on small
scale datasets with the purpose of studying the impact of architectures on generalization in terms
of sample complexity [62] and energy landscape [116].

Convolutional neural networks (Convnet) were introduced by Fukushima et al. [76] and trained
with backpropagation by Lecun et al. [126]. Based on specific layer transforms that correspond
to convolution filters, convnet have been the main design paradigm for image understanding
tasks, as initially demonstrated on image classification tasks. Indeed, since 2012’s AlexNet [123],
convnets have dominated this benchmark and have become the de facto standard. The evolution
of the state of the art on the ImageNet dataset [168] reflects the progress with convolutional
neural network architectures and learning [123, 177, 187, 199, 200, 228]. For instance, the residual
connections allows one to train a deeper architecture as evidenced by ResNet [94]. This allows
for a more stable learning process and better performance. Many convnet architectures, but also
transformers have adopted this design with residual connections. Today in computer vision,
convnets hold many state-of-the-art results. However, transformers have become a more and more
viable alternative.

Transformers are a deep architecture introduced in 2017 by Vaswani et al. [204]. By leveraging
a global attention process between all features at every layer, they have become the default archi-
tecture in many domains like Natural Language Processing (NLP) where it still holds many state-
of-the-art results. Motivated by the success of attention-based models in Natural Language Pro-
cessing [56, 155, 205, 208], there has been increasing interest in architectures leveraging attention
mechanisms within convnets [107, 128, 241]. More recently several researchers have proposed hy-
brid architecture transplanting transformer ingredients to convnets to solve vision tasks [28, 174].
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Figure 1.4 – Illustration of the vision transformers architecture (ViT). credit: Dosovitskiy et al. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale.

Dosovitskiy et al. [61] introduced the Vision transformers (ViT) architecture (See Figure 1.4 for
illustrations). ViT is an architecture directly inherited from Natural Language Processing [205],
but applied to image classification with raw image patches as input. Transformers are now used
successfully in computer vision and gives excellent results in many tasks such as image classi-
fication, segmentation or detection. This architecture also has a strong potential in multimodal
approaches given its good performances in image processing but also in NLP.

MLP revisited. Following the success of transformers in computer vision MLPs have been used
recently in computer vision on more complex problem like large scale image classification but also
in NLP. These revisited MLPs adopt a residual architecture similar to that of the transformers and
a patch splitting of the image in order to decrease the complexity. The blocks of this architecture
correspond to classical MLPs as detailed in the first paragraph. Although their results are slightly
worse than transformers, their performances are very competitive given the relative simplicity of
these architectures.

1.1.3 Learning process

The learning process, although less emphasized than the architecture design, plays a central
role in the success of deep learning. Without a well-designed training regime the performance
of neural network approaches is generally poor. The first successes of deep learning in image
classification are related to new architectures but also to new training procedures. This is generally
the case for supervised learning tasks (i.e. when using the ground truth label in the learning
process) and also for self-supervised approaches (i.e. when the model learns by itself by comparing
different images or different augmentation of the same image). However, the interaction between
architecture and training procedure is still not studied extensively.

Data is an important component of deep learning approach. Indeed, it is necessary to have
enough data to be able to train deep architectures. However, having data is usually not enough.
Indeed, the available annotations will have an impact. Nevertheless, to be able to exploit correctly
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Figure 1.5 – Illustration of different data augmentation on an image with the label dog. The different data
augmentation don’t change the concept inside the image. Credit: Chen et al. A Simple Framework for Contrastive
Learning of Visual Representations.

the information at our disposal we have to adapt the learning process correctly. For image classifi-
cation the elements involved in the learning process are the data augmentation and the elements
related to optimisation procedure. We detail these concepts in the following paragraphs but for a
more detailed description we refer to Goodfellow et al. [84], Bishop et al. [19] and Hastie et al [91].

Data augmentation. For image classification, data augmentation amounts to applying transfor-
mations to the images [44, 57, 184, 237, 242], which do not change the class of the images (see
Figure 1.5 for illustrations). For example, if we want to classify images of dogs, we can apply
rotations because this does not change the content and being rotation invariant is a good property
here. On the other hand, if we want to do digit recognition, we don’t want to be rotation invariant
because we wouldn’t be able to distinguish between the 6’s and the 9’s. In this case, we use other
kinds of data augmentation such as colour variations. The purpose of the data augmentation is
to help to learn the right property for a given task. It also allows us to limit the overfitting by
artificially generating more images. Overfitting appears when the model adapts too much to the
training data and generalises poorly with new data. Underfitting is the opposite behavior when
the model is not able to give good results on training data.

Optimization. Optimization procedures are generally based on gradient descent approaches.
Gradient descent amounts to updating the weights of the model following the direction of the gra-
dient in order to minimize the cost function. The elements related to the optimization procedure
are diverse. For instance, the choice of the optimizer (i.e the algorithms that are used to update
the weights), the choice of the learning rate schedule (i.e the size of the steps in the gradient
direction) and all the regularization approaches. This has an impact on the way the model weights
are learned and the performance we can reach for a given task. The regularization refers here
to all the approaches adding constraints on the learning process of the model weights in order
to limit the risk of overfitting. There are many different optimization approaches, each with its
own advantages and disadvantages. These approaches are used according to the architecture
and the task we want to solve. Nevertheless, there is no well-established theory for the choice of
the training components. They are usually designed according to the intuition and experience
of the experimenters. Indeed, it is an experimental and mostly empirical process. However, the
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training design is important to find the right trade-off between overfitting and underfitting, each
regularization method and each optimizer potentially having different properties.

Training: trends. In the same way that there has been an evolution of architecture for image
classification tasks, there is an evolution of the training procedures. The training procedure used
in the AlexNet paper [123] was one of the first standard procedure for training deep learning
architecture for image classification. It uses 90 epochs with batch size 128 and step decay for
the learning rate by dividing the learning rate by 10 when the validation loss does not decrease
anymore. They use SGD optimizer with L2 regularization and dropout. For the data augmentation
they use: a random crop of size 224× 224 extracted in images of size 256x256, random horizontal
flip of images and perform PCA for altering the intensities of the image’s channels. GoogleNet
paper [184] subsequently introduces new components: label smoothing and random resized crop
instead of random crop. This paper also uses smoother learning rates (reduction of 4% every
8 epochs). The ResNet [94] paper re-used this component with a bigger batch size 256 allowed
by more powerful GPUs. Afterwards, the procedure often adopted by default is the procedure
proposed in the TorchVision library of PyTorch, which is similar to the one proposed by Goyal
et al. [85]. This training procedure is significantly inspired by the previous one. They use for the
data augmentation: Random resized crop, horizontal flip, colour jitter and a normalization of the
RGB channel. For the optimization they use SGD optimizer with batch size 512 and 90 epochs.
The learning rate is divided by 10 every 30 epochs. Nowadays, the default training procedure
has changed a lot and uses more data augmentation and regularization, which usually improves
the model performance. These new training procedures benefit to both the old and the new
architectures. However, some architectures benefit more from it.

These training improvements on ImageNet have translated into progress on other datasets
through transfer learning. Transfer learning in a two-stage procedure in which the first step it
to first pre-train a model on another dataset (generally ImageNet), and then re-trains the model
slightly on the new dataset. This generally gives better performance than approaches that do not
start from a pre-trained model, since it leverages more training data.

After this brief introduction of deep architectures and training procedures for computer vision,
we now detail the contributions of this PhD thesis.

1.2 Outline and Contributions

1.2.1 Learning fine-grained image representations with coarse labels

Being able to classify fine grained concepts is quite challenging. Indeed, it is generally neces-
sary to have a large amount of annotated data to be able to recognise a concept. With fine grained
concepts, the annotation is more difficult to obtain because you need expert knowledge to be
able to annotate precisely the images. However, it is for this kind of application that automatic
recognition approaches are even more useful. In Chapter 2, we tackle the problem of learning a
finer representation than the one provided by training labels. This enables fine-grained category
retrieval of images in a collection annotated with coarse labels only. Our network is learned with
a nearest-neighbour classifier objective, and an instance loss inspired by self-supervised learning.
By jointly leveraging the coarse labels and the underlying fine-grained latent space, it significantly
improves the accuracy of category-level retrieval methods. At the time of publication, this strategy
was outperforming all competing methods for retrieving or classifying images at a finer granu-
larity than that available at train time. It also improves the accuracy for transfer learning tasks to
fine-grained datasets.
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Outline. Chapter 2 introduces Grafit, a method for learning fine-grained image representation
with coarse labels. First, we present the Grafit method and the intuition behind the design. Then
we introduce different tasks designed for coarse-to-fine tasks in order to evaluate the method per-
formance. Lastly, we conduct extensive experiments on datasets with different levels of granularity
in order to validate our approach.

Publication. Chapter 2 is based on the paper “Grafit: Learning fine-grained image representations
with coarse labels”, Hugo Touvron, Alexandre Sablayrolles, Matthijs Douze, Matthieu Cord, Hervé
Jégou, ICCV 2021 (see Grafit paper [198]).

1.2.2 Transformers for computer vision

Transformers architecture, introduced by Vaswani et al. [205] for machine translation are cur-
rently the reference model for all natural language processing (NLP) tasks. Many improvements
of convnets for image classification are inspired by transformers. For example, Squeeze and Exci-
tation [107], Selective Kernel [128] and Split-Attention Networks [241] exploit mechanisms akin
to transformers self-attention (SA) mechanism. The Dosovitsky et al [61] vanilla transformer ar-
chitecture was shown to address image understanding tasks such as image classification. These
high-performing vision transformers are pre-trained on private dataset with hundreds of millions
of images not available and uses a large infrastructure, thereby limiting their adoption.

In Chapter 3, we produce competitive convolution-free transformers by training on ImageNet
only. We train them on a single computer in less than 3 days. Our reference vision transformer
(86M parameters) achieves top-1 accuracy of 83.1% (single-crop) on ImageNet with no external
data. We also introduce a teacher-student strategy specific to transformers. It relies on a distillation
token ensuring that the student learns from the teacher through attention. We show the interest of
this token-based distillation, especially when using a convnet as a teacher. This leads us to report
results competitive with convnets for both ImageNet (where we obtain up to 85.2% accuracy) and
when transferring to other tasks.

Moreover, we build and optimize deeper transformer networks for image classification as the
optimization of image transformers has been little studied so far. In particular, we investigate
the interplay of architecture and optimization of such dedicated transformers. We propose two
modifications that significantly improve the convergence and accuracy of deep transformers. This
leads us to produce models whose performance does not saturate early with more depth. For
instance we obtain 86.2% top-1 accuracy on ImageNet when training with no external data.

Outline. Chapter 3 shows for the first time that it is possible to have state of the art performance
with transformers on ImageNet without using hundreds of millions of images for pre-training.
First, we introduce a new training procedure for Vision transformers and then we introduce Layer
Scale and Class Attention, two methods for training deeper transformers.

Publication. Chapter 3 is based on the papers “Training data-efficient image transformers & distilla-
tion through attention”, Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, Hervé Jégou, ICML 2021 (see DeiT paper [193]) and “Going deeper with Image Transform-
ers”, Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, Hervé Jégou, ICCV
2021 (see CaiT paper [197]). The code is available at https://github.com/facebookresearch/
deit.

https://github.com/facebookresearch/deit
https://github.com/facebookresearch/deit
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1.2.3 Multi-layers perceptron for computer vision

After the success of transformers in computer vision we can question whether this success is
related to the self-attention process or whether it is more related to the training procedure and
patching of the input. Indeed, the training procedures and input splitting adopted by transformers
are quite different from those usually used for convnet. On the other hand, the attention process
allows long range interaction that is adapted to the input, whereas convnet allows more local and
input independent operations.

We further discuss these phenomena in Chapter 4. We introduce ResMLP, which is an architec-
ture entirely built upon multi-layer perceptron. It is a simple residual network that alternates (i) a
linear layer in which image patches interact, independently and identically across channels, and
(ii) a two-layer MLP network in which channels interact independently per patch. When trained
with our modern training strategy using heavy data augmentation and optionally distillation, it
attains surprisingly good accuracy/complexity trade-offs on ImageNet. We also train ResMLP
models in a self-supervised setup, to further limit priors from employing a labelled dataset.

Outline. Chapter 4 shows that it is possible to have good performance on computer vision
and NLP tasks with an MLP-like architecture. First, we introduce ResMLP, a pure residual MLP
architecture working on tokens without normalization process relying on data statistics. Then, we
validate our architecture on large scale experiments and provide extensive ablation in order to
understand the impact of each component.

Publication. Chapter 4 is based on the paper “ResMLP: Feedforward networks for image classification
with data-efficient training”, Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord,
Alaaeldin El-Nouby, Edouard Grave, Gautier Izacard, Armand Joulin, Gabriel Synnaeve, Jakob
Verbeek, Hervé Jégou, arXiv 2021, submitted to TPAMI (minor revision) (see ResMLP paper [192]).
The code associated is publicly available at https://github.com/facebookresearch/deit.

1.2.4 Revisiting convnet architecture

After studying transformers and MLP for computer vision, we adopt concepts from these ar-
chitectures to revisit the design of convnets. The aim is to have simpler models with the possibility
to obtain visualisations like those of transformers. In Chapter 5, we show how to augment any
convolutional network with an attention-based global map to achieve non-local reasoning. We
replace the final average pooling by an attention-based aggregation layer akin to a single trans-
former block, that ponders how the patches are involved in the classification decision. We plug
this learned aggregation layer with a simplistic patch-based convolutional network parametrized
by two parameters (width and depth). In contrast with a pyramidal design, this architecture family
maintains the input patch resolution across all the layers. It yields competitive trade-offs between
accuracy and complexity, in terms of memory consumption, as shown by our experiments on
various computer vision tasks: object classification, image segmentation and detection.

Outline. Chapter 5 revisits the design of convnets by taking inspiration from the works on
vision transformers. We first introduce the learn aggregation layer and analyse its interest for class
activation map visualization. Then we present the PatchConvnet architecture. Finally, we evaluate
it on different tasks in order to show that a simple architecture can be efficient on many tasks.

Publication. Chapter 5 is based on “Augmenting Convolutional networks with attention-based ag-
gregation”, Hugo Touvron, Matthieu Cord, Alaaeldin El-Nouby, Piotr Bojanowski, Armand Joulin,

https://github.com/facebookresearch/deit


1.2 outline and contributions 9

Gabriel Synnaeve, Hervé Jégou, arXiv 2021, under review NeurIPS 2022 (see PatchConvnet pa-
per [195]). The code is publicly available at https://github.com/facebookresearch/deit.

1.2.5 Architecture and training interaction

Architecture design is quite well studied for vision transformers. Many variants have been
introduced to reduce the cost of attention by introducing for example more efficient atten-
tion [66, 71, 134] or pooling layers [99, 134, 210]. Some papers re-introduce spatial biases specific
to convolutions within hybrid architectures [86, 218, 224]. However, training recipes seem to be
the key elements with general architectures like transformers. Indeed, with general architecture
the risk of overfitting is more important due to the flexibility of the architecture. If we find proper
training recipes we should be able to learn similar or better operation than the more specific
architectures. Recent works show that ViTs benefit from self-supervised pre-training, in particular
BerT-like pre-training like BeiT [11].

In Chapter 6, we revisit the supervised training of ViTs. Our procedure builds upon and
simplifies a recipe introduced for training ResNet-50. It includes a new simple data augmentation
procedure with only 3 augmentations, closer to the practice in self-supervised learning. Our
evaluations on Image classification (ImageNet-1k with and without pre-training on ImageNet-
21k), transfer learning and semantic segmentation show that our procedure outperforms by a
large margin previous fully supervised training recipes for ViT.

Outline. Chapter 6 revisits the training procedures for vision transformers and highlights the
interactions between training and architectures. We first introduce a new data augmentation for
vision transformers and then propose a new training procedure for the ViT architecture. We
evaluate our models on different tasks and compare the performance of our training recipes with
Bert like approach and discuss the interactions between training and architectures.

Publication. Chapter 6 is based on the papers “ResNet strikes back: An improved training proce-
dure in timm”, Ross Wightman, Hugo Touvron, Hervé Jégou, NeurIPS workshop 2021 (see RSB
paper [215]) and “DeiT III: Revenge of the ViT”, Hugo Touvron, Matthieu Cord, Hervé Jégou, ECCV
2022 (see DeiT III paper [194]). The corresponding code is available at https://github.com/
facebookresearch/deit and https://github.com/rwightman/pytorch-image-models.

https://github.com/facebookresearch/deit
https://github.com/facebookresearch/deit
https://github.com/facebookresearch/deit
https://github.com/rwightman/pytorch-image-models
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W I T H C O A R S E L A B E L S

Image classification now achieves a performance that meets many application needs [94, 123,
200]. However, in practice, datasets and labels available at training time do not necessarily cor-
respond to those needed in subsequent applications [50]. The granularity of the training-time
concepts may not suffice for fine-grained downstream tasks. This has encouraged the develop-
ment of specialized classifiers offering a more precise representation. Fine-grained classification
datasets [102] have been developed for specific domains, for instance to distinguish different
plants [41] or bird species [209]. Gathering a sufficiently large collection with fine-grained labels
is difficult by itself, as it requires to find enough images of rare classes, and annotating them
precisely requires domain specialists with in-domain expertise. This is evidenced by the Open
Images construction annotation protocol [125] that states that: “Manually labeling a large number
of images with the presence or absence of 19,794 different classes is not feasible”. For this reason they
resorted to computer-assisted annotation, at the risk of introducing biases.

To circumvent this issue, we propose in this chapter, a new strategy Grafit, to get strong
classification and image retrieval performance on fine concepts using only coarse labels at training.
Our work leverages two intuitions. First, in order to improve the granularity beyond the one
provided by image labels, we need to exploit another signal than just the labels. For this purpose,
we build upon the works [15, 227] that exploit two losses to address both image classification and
instance recognition, leveraging the “free” annotations provided by multiple data augmentations
of a same instance, in the spirit of self-supervised learning [21, 29, 34, 87]. The second intuition
is that it is better to explicitly infer coarse labels even when classifying at a finer granularity.
For this purpose, we propose a simple method that exploits both a coarse classifier and image
embeddings to improve fine-grained category-level retrieval. This strategy outperforms existing
works that exploit coarse labels at training time but do not explicitly rely on them when retrieving
finer-grained concepts [220].

By these ways our Grafit method is able to liberate the data collection process from the quirks
of a rigid fine-grained taxonomy, as previously discussed. To validate our strategy, we investigate
two challenging applications :

On-the-fly classification. For this task, the fine-grained labels are available at test time only, and
we use a non-parametric kNN classifier [220] for on-the-fly classification, i.e. without training on
the fine-grained labels.

Category-level Retrieval. Given a collection of images annotated with coarse labels, like a prod-
uct catalog, we aim at ranking these images according to their fine-grained semantic similarity to
a new query image outside the collection, as illustrated by Figure 2.3. We believe that this new
task better is more realistic than the on-the-fly classification setting.

This chapter is organized as follows. After reviewing related works in Section 2.1, we present
our Grafit method in Section 2.3. Section 2.4 compares our approach against baselines on various
datasets, and presents an extensive ablation.
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Publication. Chapter 2 is based on the paper “Grafit: Learning fine-grained image representations
with coarse labels”, Hugo Touvron, Alexandre Sablayrolles, Matthijs Douze, Matthieu Cord, Hervé
Jégou, ICCV 2021 [198].

2.1 Related work

Label granularity in image classification. In computer vision, the concept of granularity under-
lies several tasks, such as fine-grained [41, 102] or hierarchical image classification [55, 217, 231].
Some authors consider a formal definition of granularity, see for instance Cui et al. [46]. In this
chapter, we only consider levels of granularity relative to each other, where each coarse class is
partitioned into a set of finer-grained classes.

In some works on hierarchical image classification [68, 88, 163, 186], a coarse annotation is
available for all training images, but only a subset of the training images are labelled at a fine
granularity. In this chapter, we look at the case where no fine labels are available at training time.

Train-Test granularity discrepancy. A few works consider the case where the test-time labels are
finer than those available at training time and where each fine label belongs to one coarse label.
Approaches to this task are based on clustering [220] or transfer learning [110]. Huh et al. [110]
address the question: “is the feature embedding induced by the coarse classification task capable
of separating finer labels (which it never saw at training)?” To evaluate this, they consider the 1000

ImageNet classes as fine, and group them into 127 coarse classes with the WordNet [72] hierarchy.
Wu et al. [220] evaluate on the 20 coarse classes of CIFAR-100 [124] and on the same subdivision
of ImageNet into 127 classes. They evaluate their method, Scalable Neighborhood Component
Analysis (SNCA), with a kNN classifier applied on features extracted from a network trained
with coarse labels. Note that this work departs from the popular framework of object/category
discovery [37, 77, 106, 206, 207], which is completely unsupervised.

In our work we mainly compare to the few works that consider coarse labels at train time,
therefore SNCA [220] is one of our baselines. We adopt their coarse labels definition and evaluation
procedure for on-the-fly classification.

Unified embeddings for classes and instances. Similar to Wu et al. [220], several Distance
Metric Learning (DML) approaches like the Magnet loss [161] or ProxyNCA [141, 189] jointly
take into account intra- and inter-class variability. This improves transfer learning performance
and favors in some cases the emergence of finer hierarchical concepts. Berman et al. proposed
Multigrain [15], which simply adds to the classification objective a triplet loss that pulls together
different data-augmentations of a same image. Recent works on semi-supervised learning [16,
17, 180, 227, 232, 240] rely on both supervised and self-supervised losses to get information from
unlabelled data. For instance the approach of Xie et al. [227] is similar to Multigrain, except
that the Kullback-Leibler divergence replaces the triplet loss. Matching embeddings of the same
images under different data-augmentations is the main signal in current works on self-supervised
learning, which we discuss now.

Unsupervised and Self-Supervised Learning. In unsupervised and self-supervised approaches [29,
34, 80, 87, 115, 203] the model is trained on unlabeled data. Each image instance is considered as a
distinct class and the methods aim at making the embeddings of different data-augmentations of
a same instance more similar than those of other images. To deal with finer semantic levels than
those provided by the labels, we use an approach similar to BYOL [87]. BYOL only requires pairs
of positive elements (no negatives), more specifically different augmentations of the same image.
A desirable consequence is that this limits contradictory signals on the classification objective.
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Transfer Learning. Transfer learning datasets [23, 121, 144] are often fine grained and rely on a
feature extractor pre-trained on another set of classes. However, the fine labels are not a subset
of the pre-training labels, so we consider transfer learning as a generalization of our coarse-to-
fine task. It is preferable to pre-train on a domain similar to the target [47], e.g., pre-training on
iNaturalist [102] is preferable to pre-training on ImageNet if the final objective is to discriminate
between species of birds. The impact of pre-training granularity is discussed in prior works
[46, 233]. In Section 2.4.6 we investigate how Grafit pre-training performs on fine-grained datasets
with transfer learning task.

2.2 About granularity

Is it possible to create representations that discriminate between classes finer than the available
coarse labels? Considering that we have seen only coarse labels at training time, how can we
exploit the coarse classifier for fine-grained classification, if useful at all? In this section we discuss
these two questions and construct an experiment to analyze the role of the losses and of the coarse
classifier. We then provide empirical observations.

Practical setup. In the following two experiments, we consider the CIFAR-100 benchmark that
has two granularity levels with 20 and 100 classes (see Section 2.4.1).

We denote by f the Resnet-18 trunk mapping from the image space to an embedding space.
We train the neural network trunk f with three possible losses:

• Baseline: regular cross-entropy classification training LCE with coarse or fine classes;

• Triplet loss: training a triplet loss LTriplet to differentiate between image instances (does not
use the labels);

• LCE + LTriplet: sum of the two losses. This is intended to be a simple proxy of Grafit.

2.2.1 Experiment: separating arbitrary fine labels

This experiment is inspired both by the Rademacher complexity [24] and by the self-supervised
learning (SSL) literature [16]. In SSL, the standard way to evaluate the quality of a feature extractor
f is to measure the accuracy of the network after learning a linear classifier l for the target classes
on top of f . The Rademacher complexity measures how a class of functions (i.e. l ◦ f , with f fixed
and l learned) is able to classify a set of images with random binary labels.

For this experiment we train the trunk f jointly with a (coarse class) classifier with LCE using
coarse labels. We hope to improve the granularity of f , i.e. improve the network trunk such that a
(finer-grained) classifier l trained on top of f performs better at discriminating between instances
that have the same coarse label.

Random labels. We generate synthetic fine labels by the following process: for each coarse label,
we randomly and evenly split the training images into two subcategories, yielding 40 classes in
total. Inspired by the empirical Rademacher estimation, we sample 10 distinct splits of random
labels. For each split, we learn a linear classifier l on top of fi. We then compute the mean accuracy
(top-1, %) of l ◦ fi on the training examples for the three losses. By evaluating to what extent one
can fit a linear classifier l on top of f , this experiment measures how well the data are spread in
the representation spaces.
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Table 2.1 – Separability experiment on CIFAR-100. The trunk is trained with coarse labels only. Images with
the same coarse label are randomly grouped into two distinct fine-grain labels (40 distinct labels in total).
Then we fine-tune a linear classifier on the synthetic labels and measure the top-1 accuracy on fine-labels.
When conditioning, the estimator exploits the hierarchy: we first predict the coarse class and condition on it
to make the final prediction. We report results with three training losses.

Training Top-1 (%)
loss no cond. coarse cond.

LCE 53.7 ±0.3 54.5 ±0.3

LTriplet 26.4 ±0.3 —
LCE + LTriplet 57.1 ±0.2 58.5 ±0.3

Random network 8.7 ±0.3 —

Table 2.2 – Top-1 accuracy of a ResNet-18 on CIFAR-100 for different training schemes. We report the results
after finetuning of the linear classifier on the fine labels (see Section 2.2). The Triplet training is unsupervised,
therefore the results for the two columns are identical.

Method Train coarse Train fine

LCE 80.4 ±0.2 80.6 ±0.2

LTriplet 76.5 ±0.2 76.5 ±0.2

LCE + LTriplet 80.9 ±0.2 81.3 ±0.2

Impact of the loss terms. We report the results in Table 2.1. We can see that, to distinguish
between our synthetic fine labels, training with the triplet loss LTriplet in combination with the
classification loss LCE is essential: the sum of losses outperforms each individual loss.

Conditioning. We also measure the impact of conditioning on coarse classes: we first predict the
coarse label with the coarse classifier, and leverage its softmax output to classify the fine class. This
clearly improves the accuracy, which motivates our fusion strategy inspired by this conditioning
in Section 2.3.2.

2.2.2 Experiment: varying the training granularity

In this section we make empirical observations related to the training granularity in the
embedding space.

We train f with one of the three losses and either coarse or fine labels as supervision. In a
second stage, we train a linear classifier l on the Resnet-18 trunk with fine class supervision, and
evaluate its accuracy on the test set.

Accuracies. We first quantify the quality of the representation space. The accuracies are reported
in Table 2.2. We observe that the coarse labels are almost as good as the fine labels for pre-training.
The unsupervised LTriplet loss performs significantly worse, which concurs with our previous
separability experiment. Combining this loss with the LCE loss improves it, both with coarse and
fine supervisions.

Size of the representation space. We quantify the information content of embedding vectors by
computing their principal components analysis (PCA). This is a reasonable proxy for information
content given that the features are separated by linear classifiers afterwards. We observe the
cumulative energy of the PCA components ordered by decreasing energy. We assume that a more



2.3 grafit : fitting a finer granularity 15

1 2 5 10 20 50 100 200 500
Number of Eigenvalues used

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

g
e 

o
f 

th
e 

T
o
ta

l 
E
n
er

g
y

CE (fine)

CE + Triplet (fine)

CE (coarse)

CE + Triplet (coarse)

Triplet (unsupervised)

Figure 2.1 – Cumulative energy of the PCA decomposition of CIFAR-100 image embeddings, depending on
the granularity of the training labels (20 or 100 classes).

uniform energy distribution (and thus lower curves) means that the representation is richer, since
a few vector components cannot summarize it.

Figure 2.1 shows the results. When training with LCE loss, the most uniform distribution
for the principal components is obtained for the fine supervision. This is expected since it is a
finer-grain separation of entities and that can not be summarized with a subspace as small as the
one associated with a relatively small number of categories. Notice that the training granularity
(20 or 100 classes) can be read as an inflection point on the PCA decomposition curves. The loss
LTriplet is not very informative on its own but does improve the cross-entropy representation
when combined with it.

Discussion. This simple preliminary experiment shows that the label granularity has a strong
impact on very basic statistics of the embedding distribution. It is the basic intuition behind
Grafit: a rich representation can be obtained using just coarse labels, if we combine them with a
self-supervised loss.

2.3 Grafit: Fitting a finer granularity

Figure 2.2 depicts our approach at training time. In this section, we discuss the different
components and training losses. Then, we detail how we produce the category-level ranking, and
how we perform on-the-fly classification.

2.3.1 Training procedure: Grafit and Grafit FC

We first introduce an instance loss inspired by BYOL [87] that favors fine-grained recognition.
The Grafit model includes a trunk network fθ, to which we add two multi-layer perceptrons
(MLP): a “projector” Pθ and a predictor qθ. In the Grafit FC variant, Pθ is linear for a more direct
fair comparison with Wu et al. [220]’s projector. The learnable parameters are represented by the
vector θ. As in BYOL we define a “target network” fξ as an exponential moving average of the
main network fθ: the parameters ξ are not learned, but computed as ξ ← τξ + (1 − τ)θ, with a
target decay rate τ ∈ [0, 1].
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kNN
classifier

instance
recognition

Figure 2.2 – Illustration of our method at train time. The convnet trunk that receives gradient is fθ and
is used to update the target network fξ as a moving average. The database of neighbors is updated by
averaging embedding in each mini-batch with corresponding embeddings in the database.

Instance loss. Each image x is transformed by T data augmentations (t1, . . . , tT ). Denoting cos

the cosine similarity and gθ(x) = Pθ(fθ(x)), the instance loss is:

Linst(x) = −
∑

1≤i ̸=j≤T

cos
(
qθ ◦ gθ(ti(x)).gξ(tj(x))

T (T − 1)

)
, (2.1)

The instance loss allows the network to discriminate at the instance level, which is a finer
granularity than the class level. We give more insights about this loss in Section 2.2.

kNN loss. A parametric classifier with softmax yields a representation that does not generalize
naturally to new classes [220] and is not adapted for kNN classification. Therefore, inspired by the
neighborhood component analysis [83, 139, 169], Wu et al. [220] propose a loss function optimized
directly for kNN evaluation, that we adopt and denote by Lknn. Let xi be a training image with
coarse label yi and σ a temperature hyper-parameter. For each image xi we select xj(j ̸= i) as its
neighbor with probability pi,j , computed as

pi,j ∝ exp
(
cos(gθ(xi), gθ(xj))/σ

)
, (2.2)

where the pi,j are normalized so that
∑

j ̸=i pi,j = 1. The loss is then defined as:

Lknn(xi, yi) = − log
∑

j,yj=yi,j ̸=i

pi,j . (2.3)

We ℓ2-normalize after the Pθ projection. The Lknn scores all classes with Equation 2.3.

Memory of embeddings. One of the limitations of the kNN approach is that it requires to use
all the features of the training set. To avoid recomputing all the embeddings of the training set, we
use a memoryM = {m1, . . . ,mi, . . . }. It is updated as follows: when the image xi in the training
set is in the current mini-batch, we update its embedding mi as follows: mi ← 1

2 (mi + gθ(xi)). In
order to limit the memory space needed, we apply the Lknn loss on the space of the projected
features, which allows us to store smaller embedding and hence requires less memory. For instance
for ImageNet we have to store 1.2M training images. Without the projection with ResNet-50

architecture for fθ, the memory size is 2048× 1.2M but with a projection on a space of size 256

the memory size is 256× 1.2M what is ×8 smaller.
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Combined loss. Our method is summarized in Figure 2.2. The total loss at training time for an
image x with label y is:

Ltot(x) = Lknn(gθ(x), y) + Linst(x). (2.4)

Section 2.5 empirically shows that weighting differently the losses does not bring much difference.

Adapting the architecture at test-time. The training parameters include the model weights
(fθ, Pθ) and the parameters related to Linst (fξ, Pξ and qθ) as described previously. At test time we
remove the Linst branch, keeping only fθ and Pθ. In order to have consistent representations of
all the training images with the final weights, we re-compute mi = gθ(xi) for each training image
xi and store it inM.

2.3.2 Category-level retrieval

For a given test image x′ the task is to order by semantic relevance all images from the training
collection. In our coarse-to-fine case, a search result is deemed correct if it has the same fine label
as the query.

Cosine-based ranking. The standard strategy to order the images is to compute gθ(x′), and to
order all images xi in the collection by they cosine similarity score cos(gθ(xi), gθ(x

′)) to the query
(the gθ(xi) are pre-computed in M). The experiments in Section 2.4 show that the way Grafit
embeddings are trained already improves the ranking with that method.

Ranking conditioned by coarse prediction. Let x′ be a test image and x a training image with
coarse class y. Let pc(x, y) be the probability that the image x has coarse label y according to our
classifier. Our conditional score ψcond is a compromise between the embedding similarity and the
coarse classification, in spirit of the loss in Equation 2.4:

ψcond(x
′, x) = cos (gθ(x

′), gθ(x)) + log

(
pc(x

′, y)

1− pc(x′, y)

)
. (2.5)

Note that, in that case, we rely on the fact that the collection in which we search is the training
set, so that the coarse labels associated with the collection are known. In Section 2.4 we show that
ψcond improves the category-level retrieval performance in the coarse-to-fine context.

Conditional ranking: Oracle. If we assume that the coarse label of the query test image is known
(given by an oracle), then we can set pc(x′, y) = 1y=y′ with y′ the coarse class of the test image
x′. This boils down to systematically putting images with the same coarse class as the test image
first in the ranking. Experimentally, this shows the impact of test label prediction on the score,
and provides an upper bound on the performance of the conditional ranking strategy. It is also
relevant in practice in a scenario where the user provides this coarse labeling, for instance by
selecting it from an interface.

2.3.3 On-the-fly classification

In on-the-fly classification, a kNN classifier “knows” about the fine classes of the training
images only at test time [220]. Such a non-parametric classification does not require any training
or fine-tuning. Note this flexible classifier can handle settings with evolving datasets, including
dynamic add-ons of new classes, although such setups are outside the scope of this chapter.
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For a test image x we compute the embedding gθ(x) and compare it to the training image em-
beddings stored inM. We select the k embeddings maximizing the cosine similarity to the query,
(x1, ..., xk), with labels (y1, ..., yk). For a direct comparison with Wu et al. [220] and consistently
with Equation 2.3, we apply an exponentially decreasing neighbour weighting that computes the
probability that x belongs to class y as

pkNN(x, y) ∝
k∑

j=1,yj=y

exp (cos(gθ(x), gθ(xj))/σ) . (2.6)

We normalize the probabilities so that
∑

y pkNN(x, y) = 1.

2.4 Experiments
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Figure 2.3 – Category-level retrieval orders images based on their semantic similarity to a query. Our Grafit
method, although it has used only coarse labels (like ’pyrgus’) at training time, produces a ranking consistent
with fine-grained labels. Unsupervised learning is a particular case of this task, in which the set of coarse
labels is reduced to a singleton. Image credit: [2].

We consider evaluation scenarios where it is beneficial to learn at a finer granularity than that
provided by the training labels. The first two tasks are coarse-to-fine tasks (category-level retrieval
and on-the-fly classification), where we measure the capacity of the network to discriminate fine
labels without having seen them at training time. The third protocol is vanilla transfer learning,
where we transfer from Imagenet to a fine-grained dataset.

2.4.1 Datasets and evaluation metrics

We carry out our evaluations on public benchmarks, which statistics are detailed in Table 2.3.

CIFAR-100 [124] has 100 classes grouped into 20 coarse concepts of 5 fine classes each. For
instance the coarse class large carnivore includes fine classes bear, leopard, lion, tiger and wolf. In
all experiments, we use the coarse concepts to train our models and evaluate the trained model
using the fine-grained labels.

ImageNet [168] classes follow the WordNet [72] hierarchy. We use the 127 coarse labels defined
in Huh et al. [110] in order to allow for a direct comparison with their method.
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Table 2.3 – Datasets used for our different tasks. The four top datasets offer two or more levels of granularity,
we use them for all coarse-to-fine tasks. The bottom three are fine-grained datasets employed to evaluate
transfer learning performance.

Dataset Train size Test size #classes

CIFAR-100 [124] 50,000 10,000 20/100

ImageNet [168] 1,281,167 50,000 127/1000

iNaturalist 2018 [104] 437,513 24,426 6/. . . /8,142

iNaturalist 2019 [103] 265,240 3,003 6/. . . /1,010

Flowers-102 [144] 2,040 6,149 102

Stanford Cars [121] 8,144 8,041 196

Food101 [23] 75,750 25,250 101

iNaturalist-2018 offers 7 granularity levels from the most general to the most specific, that follow
the biological taxonomy: Kingdom (6 classes), Phylum (25 classes), Class (57 classes), Order (272

classes), Family (1,118 classes), Genus (4,401 classes) and Species (8,142 classes). We consider pairs
of (coarse,fine) granularity levels in our experiments. iNaturalist-2019 is similar to iNaturalist-2018

with fewer classes and images, and yields similar conclusions.

Flowers-102, Stanford Cars and Food101 are fine-grained benchmarks with no provided coarse
labelling. Therefore we can use them for the transfer learning task.

Evaluation metrics. For category-level retrieval we report the mean average precision (mAP),
as commonly done for retrieval tasks [8, 151]. For on-the-fly classification we report the top-1
accuracy in order to be directly comparable with prior work [220].

2.4.2 Baselines

We use existing baselines and introduce stronger ones:

Wu’s baselines [220] use activations of a network learned with cross-entropy loss, but evaluated
with a kNN classifier. Huh et al. [110] evaluate how a network trained on the 127 ImageNet coarse
classes transfers on the 1000 fine labels 1.

Our main baseline: we learn a network with cross-entropy loss, and perform retrieval or kNN-
classification with the ℓ2-normalized embedding produced by the model trunk. We point out that,
thanks to our strong optimization strategy borrowed from recent works [96, 187], this baseline
by itself outperforms all published results in several settings, for instance our ResNet-50 baseline
without extra training data outperforms on ImageNet a ResNet-50 pretrained on the large dataset
YFCC100M [232] (see Table 2.12).

SNCA. Wu et al. [220] proposed a SNCA, a model optimized with a loss suitable for knn
classification. In our implementation, we add a linear operator Pθ to the network trunk fθ when
training the supervised loss Lknn.

SNCA+. We improve SNCA with our stronger optimization procedure. The retrieval or kNN
evaluation uses features from a MLP instead of a simple linear projector, which means that its
number of parameters is on par with Grafit (and larger than Grafit FC).

1. They fine-tune a linear classifier with fine labels. We do not consider this task in the body of this chapter, but refer
to section 2.5.2: our approach provides a significant improvement in this case as well.
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Table 2.4 – Coarse-to-fine: comparison with the state of the art for category-level retrieval (mAP, %) and kNN
classification (top-1, %), with the ResNet50 architecture. We compare Grafit with the state of the art [220]
and our stronger baselines. We highlight methods that use more parameters (32.9M vs ∼23.5M), we refers
the reader to Table 2.7 for more details.

Method CIFAR-100 ImageNet-1k
kNN mAP kNN mAP

Baseline, Wu et al. [220] 54.2 _ 48.1 _
SNCA, Wu et al. [220] 62.3 _ 52.8 _
Baseline (ours) 71.8 42.5 54.7 22.7
ClusterFit+ 72.5 23.0 59.5 12.7
SNCA+ 72.2 35.9 55.4 31.8

Grafit FC 75.6 55.0 69.1 44.4
Grafit 77.7 55.7 69.1 42.9

ClusterFit+. Same as for SNCA, we improve ClusterFit [233] with our training procedure, and
cross-validate the number of clusters (15000 for Imagenet and 1500 for CIFAR-100). As a result
we improve its performance and have a fair comparison, everything being equal otherwise.

2.4.3 Experimental details

Architectures. Most experiments are carried out using the ResNet-50 architecture [94] except for
Section 2.4.6 where we also use RegNet [156] and ResNeXt [230].

Training settings. Our training procedure borrows from the bag of tricks [96]: we use SGD with
Nesterov momentum and cosine learning rates decay. We follow Goyal et al.’s [85] recommen-
dation for the learning rate magnitude: lr = 0.1

256 × batchsize. The data augmentation consists of
random resized crop, RandAugment [44] and Erasing [245]. We train for 600 epochs with batches
of 1024 images at resolution 224× 224 pixels (except for CIFAR-100: 32× 32). We set the tempera-
ture σ to 0.05 in all our experiments following Wu et al. [220]. We refer the reader to Section 2.5.1
for more training details.

For the on-the-fly classification task, the unique hyper-parameter cross-validated is k, with
experiment with k ∈ {10, 15, 20, 25, 30}.

2.4.4 Coarse-to-fine experiments

CIFAR and ImageNet experiments. Table 2.4 compares Grafit results for coarse to fine tasks
with the baselines from Section 2.4.2. On CIFAR-100, Grafit outperforms other methods by +5.5%
top-1 accuracy. On ImageNet the gain over other methods is +13.7%.

Grafit also outperforms other methods on category-level retrieval, by 13.2% on CIFAR and
11.1% on ImageNet. In the Table 2.4 we shows that Grafit not only provides a better on-the-fly
classification (as evaluated by the kNN metric), but that the ranked list is more relevant to the
query (results for mAP).

Coarse-to-Fine with different taxonomic ranks. We showcase Grafit on various levels of coarse
granularity by training one model on each annotation level of iNaturalist-2018 and evaluating on
all levels with kNN classification (Table 2.5) and retrieval (Table 2.6).
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Table 2.5 – kNN evaluation on iNaturalist-2018 with different semantic levels. The symbol ∅ refers to the
unsupervised case (a unique class). We compare with the best competing method according to Table 2.4.

Train→ ∅ Kingdom Phylum class Order Family Genus Species
↓Test / #classes→ 1 6 25 57 272 1,118 4,401 8,142

C
lu

st
er

Fi
t+

Kingdom 70.9 94.7 95.0 95.3 95.6 96.2 96.3 96.1
Phylum 48.8 87.4 90.3 90.7 91.1 92.6 92.6 92.2

Class 40.4 80.2 83.8 85.7 86.7 88.8 88.8 88.2
Order 17.1 54.5 59.0 61.4 70.8 73.9 74.3 72.3

Family 5.6 38.3 42.1 44.4 54.3 63.0 64.2 61.9
Genus 0.9 26.7 29.5 31.5 40.1 49.4 53.9 51.7

Species 0.3 21.8 23.7 25.2 32.7 40.3 44.7 43.4

G
ra

fit

Kingdom 95.5 98.1 98.2 98.2 98.2 98.2 98.4 98.3
Phylum 90.0 94.1 96.6 96.7 96.8 96.7 96.9 96.7

Class 82.2 87.5 90.9 94.5 94.9 94.9 95.0 95.0
Order 54.0 61.7 66.9 72.7 87.1 87.5 87.6 87.3

Family 33.7 42.1 48.7 55.1 70.9 81.8 82.4 82.1
Genus 20.5 27.0 33.5 39.5 54.2 64.6 75.6 75.5

Species 15.9 20.4 25.5 30.8 42.7 51.2 61.9 67.7

Table 2.6 – Category-retrieval evaluation (mAP, %) on iNaturalist-2018 with different semantics levels. We
compare with the best baseline according to Table 2.4.

Train→ Kingdom Phylum class Order Family Genus Species
↓Test / #classes→ 6 25 57 272 1,118 4,401 8,142

SN
C

A
+

Kingdom 97.6 83.3 75.9 59.2 56.0 54.9 55.0
Phylum 59.8 91.7 79.4 49.1 35.0 32.3 32.2

Class 41.3 73.1 89.9 49.2 28.1 23.6 23.0
Order 9.09 24.9 35.7 77.9 35.3 18.0 15.0

Family 2.24 6.43 11.2 35.7 68.4 29.1 21.7
Genus 0.39 2.47 5.03 18.1 36.6 60.5 46.0

Species 0.19 1.86 3.80 12.8 26.4 46.0 54.9

G
ra

fit

Kingdom 98.6 88.3 79.7 60.8 58.0 55.9 55.5
Phylum 67.8 97.2 82.1 50.9 38.9 34.2 33.0

Class 50.1 74.9 95.4 51.2 32.3 25.9 24.1
Order 17.7 30.7 42.7 88.3 42.3 21.1 16.2

Family 8.70 13.2 18.0 43.9 83.1 34.8 24.2
Genus 6.78 9.72 13.5 29.0 46.9 77.2 53.9

Species 6.45 9.02 12.1 23.6 35.6 55.4 70.0

Figure 2.4 presents results with retrieval and kNN classification for two of the most interesting
cases: when the train and test granularities are the same (left), and on the finest test level (Species)
with varying granularities at training time (right). On the left, the accuracy of all methods de-
creases as the granularity increases: this is expected as the task moves from coarse classification
to fine, as it is more difficult to discriminate amongst a larger number of classes.

We observe that the performance drop of Grafit for category-level retrieval is reduced in
comparison with other methods. On the right figures, the accuracy of all methods increases as the
level of annotation increases (keeping evaluation at Species). Grafit also stands out in this context,
outperforming other methods.

We report comprehensive results with Grafit and the baselines from Section 2.4.2 on iNaturalist-
2019 & 2018 in the section 2.5.3.

Visualizations. Figure 2.3 shows visual results for the category-level retrieval task with Grafit.
All the results for the baseline and Grafit have the correct coarse label, but our method is better at
a finer granularity. In Section 2.6 we show that the improvement is even more evident when the
granularity level at training time is coarser.

Figure 2.5 presents t-SNE visualizations [202] of the latent spaces associated with the baseline
and Grafit for images associated with a sub-hierarchy of iNaturalist-2018.
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Figure 2.4 – Evaluation on iNaturalist-2018 [104] with and left: train=test granularity right: test at finest
granularity (species). We compare our method Grafit, SNCA+, ClusterFit+ and Baseline. Top: on-the-fly kNN
classification (top-1 accuracy); bottom: category-level retrieval (mAP).

2.4.5 Ablation studies

Losses, architectural choice and conditioning. Table 2.7 presents a study on CIFAR-100 and
ImageNet-1k, where we ablate several components of our method. A large improvement stems
from the instance loss when it supplements the supervised kNN loss. It is key for discriminating
at a finer grain. The category-level retrieval significantly benefits from our approach, rising from
22.7% to 44.4% in the best case. Coarse conditioning also has a consistent measurable impact on
performance, yielding around 3 mAP points across the various settings.

Sanity check: training with coarse vs fine labels. Table 2.8 compares the performance gap of
several methods when training with coarse labels vs fine labels. The performance improvement of
Grafit over competing methods on Imagenet is quite sizable: with fine-tuning, Grafit with coarse
labels is almost on par with the baseline on fine labels. For on-the-fly classification, Grafit with
coarse labels reaches 69.1% performance on Imagenet, significantly decreasing the gap with fine-
grained labels settings. The kNN classification performance is 79.3%. This concurs with our prior
observations in Section 2.4.4 on iNaturalist-2018.

Overall, in this setting Grafit provides some slight yet systematic improvement over the base-
line. With a ResNet-50 architecture at image resolution 224×224 pixels, Grafit reaches 79.6% top-1
accuracy with a kNN classifier on ImageNet, which is competitive with classical cross-entropy
results published for this architecture. See Section 2.5 for a comparison (Table 2.12) and more
results on ImageNet-1k.
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Table 2.7 – Ablation study on CIFAR-100 and ImageNet with ResNet50 architecture. We report results both
for on-the-fly classification (kNN classifier, top-1 accuracy, %) and category-level retrieval (mAP, %). The
rows corresponding to the main baselines and methods discussed through this chapter are highlighted: our
baseline and improved SNCA+ in grey and red, and our two variants Grafit-FC and Grafit in blue. The

last row is the result that Grafit would obtain with a perfect coarse classification.

Loss knn head proj.
Pθ

coarse cond. CIFAR-100 ImageNet-1k

LCE Lknn Linst kNN mAP kNN mAP #Params

✓ _ _ _ _ 71.8 42.5 54.7 22.7 23.5M
✓ _ _ _ ✓ 71.8 43.1 54.7 24.4 23.5M
_ _ ✓ _ _ 54.3 14.3 41.7 3.47 23.5M
✓ _ ✓ _ _ 76.9 51.0 65.0 26.0 23.5M
_ ✓ _ FC _ 70.0 39.7 57.8 30.7 23.8M
_ ✓ ✓ FC _ 75.6 53.6 69.1 41.7 23.8M
_ ✓ ✓ FC ✓ 75.6 55.0 69.1 44.4 23.8M

_ ✓ _ MLP _ 72.2 35.9 55.4 31.8 32.9M
_ ✓ _ MLP ✓ 72.2 41.4 55.4 32.9 32.9M
_ ✓ ✓ MLP _ 77.7 52.9 69.1 39.4 32.9M
_ ✓ ✓ MLP ✓ 77.7 55.7 69.1 42.9 32.9M

_ ✓ ✓ MLP oracle 77.7 59.3 69.1 47.2 32.9M

Table 2.8 – We compare coarse-to-fine and fine-to-fine context with mAP (%), kNN (top-1, %) and fine-tuning
(FT) with fine labels (top-1, %) on ImageNet.

Method Train Coarse Train Fine
(with ResNet50) mAP kNN FT mAP kNN FT

Baseline 22.7 54.7 78.1 51.5 78.0 79.3
SNCA+ 31.8 55.4 77.9 72.0 79.1 77.4
Grafit FC 44.4 69.1 78.3 72.4 79.2 78.5
Grafit 42.9 69.1 77.9 71.2 79.6 78.0

2.4.6 Transfer Learning to fine-grained datasets

We now evaluate Grafit for transfer learning task on fine-grained datasets.

Settings. We initialize the network trunk with ImageNet pre-trained weights and fine-tune the
model. For our method, the network trunk fθ remains fixed and the projector Pθ is discarded. For
all methods we fine-tune during 240 epochs with a cosine learning rate schedule starting at 0.01

and batches of 512 images (details in Section 2.5.4).

Classifier. We experiment with two types of classifiers: a standard linear classifier (FC) and a
multi-layer perceptron (MLP) composed of two linear layers separated by a batch-normalization
and a ReLU activation. We introduce this MLP because, during training, both Grafit and SNCA+
employ an MLP projector, so their feature space is not learned to be linearly separable. In contrast,
the baseline is trained with a cross-entropy loss associated with a linear classifier.

Tasks. We evaluate on five classical transfer learning datasets: Oxford Flowers-102 [144], Stanford
Cars [121], Food101 [23], iNaturalist 2018 [104] & 2019 [103]. Table 2.3 summarizes some statistics
associated with each dataset.

Results. Table 2.9 compares a ResNet-50 pretrained on ImageNet with Grafit, SNCA+, Clus-
terFit [233] and our baseline on five transfer learning benchmarks. Our method outperforms all
methods. The table also shows the relatively strong performance of SNCA+.
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Table 2.9 – Comparison of transfer learning performance for different pre-training methods. All methods
use a ResNet-50 pre-trained on Imagenet. The training procedues are the same (except the result reported
for ClusterFit [233]). We report the top-1 accuracy (%) with a single center crop evaluation at resolution
224× 224. See Table 2.15 of Appendix 2.5.4 for additional results with other architectures.

Dataset Ba
se

lin
e

C
lu

st
er

Fi
t

[2
3

3
]

C
lu

st
er

Fi
t+

SN
C

A
+

G
ra

fit

G
ra

fit
FC

Flowers-102 96.2 _ 96.2 98.2 98.2 97.6
Stanford Cars 90.0 _ 89.4 92.5 92.5 92.7
Food101 88.9 _ 88.9 88.8 89.5 88.7
iNaturalist 2018 68.4 49.7 67.5 69.2 69.8 68.5
iNaturalist 2019 73.7 _ 73.8 74.5 75.9 74.6

Table 2.10 – State of the art for transfer learning with pretrained ImageNet-1k models. We report top-1
accuracy (%) with a single center crop. For Grafit we use the RegNetY-8.0GF [156] (39M params) with
resolution 384 × 384 pixels that is 4× faster than EfficientNet-B7 at inference. “Res” refer to the inference
resolution in pixels.

Best reported results (%) Grafit
Dataset State of the art # Params Res Top-1 Top-1

Flowers-102 EfficientNet-B7 [187] 64M 600 98.8 99.1
Stanford Cars EfficientNet-B7 [187] 64M 600 94.7 94.7
Food101 EfficientNet-B7 [187] 64M 600 93.0 93.7
iNaturalist 2018 ResNet-152 [40] 60M 224 69.1 81.2
iNaturalist 2019 – – – – 84.1

Table 2.10 compares Grafit with the RegNetY-8.0GF [156] architecture against the state of the
art, on the same benchmarks. Note that this architecture is significantly faster than the EfficientNet-
B7 and ResNet-152 employed in other papers, and that we use a lower resolution in most settings.

In Table 2.10 we consider models pre-trained on ImageNet with and fine-tuned on the fine-
grained target dataset. In each case we report results with Grafit (with a MLP for the projector Pθ)
and Grafit FC. See more detailed results in Section 2.5 Table 2.16.

In summary, Grafit establishes the new state of the art. We point out that we have used a
consistent training scheme across all datasets, and a single architecture that is more efficient than
in competing methods.

2.5 Additional experiments

This section details the training procedure and provides more experimental results.

2.5.1 Training settings

As described in the main part, our training procedure is inspired by Tong et al. [96]: we use
SGD with Nesterov momentum and cosine learning rates decay. We follow Goyal et al.’s [85]
recommendation for the learning rate magnitude: lr = 0.1

256 ×batchsize. The augmentations include
random resized crop, RandAugment [44] and Erasing [245]. We train for 600 epochs with batches
of 1024 images of resolution 224 × 224 pixels (except for CIFAR-100 where the resolution is
32× 32). For Grafit with Linst we use T = 4 different data-augmentations on ImageNet and T = 8
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Table 2.11 – Category-level (mAP, %) and one-the-fly kNN classification (top-1, %) performance in a coarse-to-
fine setting on CIFAR-100 with different loss weighting. Our total loss is defined as Ltot(x) = Lknn(gθ(x), y)+
λLinst(x) with λ being a real-valued coefficient.

λ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

mAP 35.9 46.3 49.6 51.4 52.4 52.9 52.8 52.4

kNN 72.2 70.0 73.2 74.8 75.8 77.7 77.4 77.7

Table 2.12 – Performance comparison (top-1 accuracy) with our ResNet-50 baseline and state of the art
ResNet-50 on ImageNet. All results are with single center crop evaluation with image resolution 224× 224.

Method Extra-data Top-1 (%)

ResNet-50 [94] PyTorch _ 76.2
RandAugment [44] _ 77.6
CutMix [237] _ 78.6
Noisy-Student [228] JFT-300M [228] 78.9
Billion Scale [232] YFCC100M [190] 79.1

Our Baseline _ 79.3

on CIFAR-100. For the supervised loss we use one data-augmentation in order to have the same
training procedure as our supervised baseline.

Weighting of the losses. We investigate the impact of weighting the losses Lknn and Linst. For
example, on CIFAR-100 classification, Table 2.11 shows that an equal weighting gives the best
or near-best results. Therefore, to avoid adding a hyper-parameter and in order to simplify the
method, we chose to not use weighting, i.e. we just sum up the two losses.

A strong Baseline. Our training procedure improves the ResNet-50 performance and thus is a
strong baseline against which we can compare Grafit. Therefore, Table 2.12 compares our baseline
on ImageNet with other ResNet-50 training procedures. We observe that our training procedure
gives better results than many other approaches. This makes it possible to isolate the contribution
of our improved training practices and that of the Grafit loss.

2.5.2 {coarse,fine}-to-{coarse,fine}: evaluation

We compare our main baselines and Grafit’s performance in the 4 following scenarios: coarse-
to-coarse, coarse-to-fine, fine-to-fine and fine-to-coarse. The evaluations are performed with two
classifiers: a kNN classifier (kNN) on top of the embeddings and a linear classifier with the
fine-tuned network (FT) with a cross-entropy loss.

The results in Table 2.13 show that Grafit training improves the accuracy in almost all settings,
including the fine-to-fine setting, which is just the regular image classification setting with the
usual ImageNet labels.

2.5.3 Coarse-to-Fine with different taxonomic rank

Datasets. We carry out evaluations on iNaturalist-2018 (iNat-18), and with iNaturalist-2019 [103](iNat-
19), which is a subset of iNaturalist-2018 [104] where classes with too few images have been
removed. iNaturalist 2019 dataset is thus composed of 268,243 images divided into 1,010 classes
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Table 2.13 – Performance comparison (top-1 accuracy) when learning and testing at different granularities
(ResNet50). For CIFAR-100, there are 100 fine and 20 coarse concepts. ImageNet covers 1000 fine and 127

coarse concepts. We report the results of both the kNN classifier and of a linear classifier fine-tuned with the
target granularity (FT).

Method ↓
Test

Train Coarse Train Fine
kNN FT kNN FT

C
IF

A
R

-1
0
0

Baseline
Coarse

89.3 ±0.1 89.4 ±0.2 90.3 ±0.1 90.5 ±0.2
SNCA+ 88.4 ±0.3 88.9 ±0.3 88.8 ±0.1 90.2 ±0.1
Grafit 90.6 ±0.1 90.6 ±0.1 90.6 ±0.3 90.9 ±0.2

Baseline
Fine

71.8 ±0.3 82.3 ±0.2 82.7 ±0.2 82.7 ±0.2

SNCA+ 72.2 ±0.3 82.0 ±0.4 81.7 ±0.1 82.9 ±0.1

Grafit 77.7 ±0.2 83.7 ±0.2 83.2 ±0.3 83.7 ±0.2

Im
ag

eN
et

-1
k Baseline

Coarse
87.0 ±0.1 87.6 ±0.1 87.4 ±0.1 87.9 ±0.1

SNCA+ 87.7 ±0.1 87.5 ±0.1 88.9 ±0.1 87.2 ±0.1
Grafit 88.4 ±0.1 87.3 ±0.1 89.2 ±0.1 87.7 ±0.1

Baseline
Fine

54.7 ±0.2 78.1 ±0.1 78.0 ±0.1 79.3 ±0.1
SNCA+ 55.4 ±0.2 77.9 ±0.1 79.1 ±0.1 77.4 ±0.1
Grafit 69.1 ±0.2 77.9 ±0.1 79.6 ±0.1 78.0 ±0.1

at the finest level. From the coarse to the finest level, we have 3 classes for Kingdom, 4 classes for
Phylum, 9 classes for Class, 34 classes for Order, 57 classes for Family, 72 classes for Genus and
1,010 classes for Species.

Results. We report exhaustive results with our two coarse-to-fine evaluation protocols with all
our baselines on iNaturalist-2018 [104] and iNaturalist-2019 [103] in Table 2.14.

We comment more specifically the kNN classification accuracy (left) because for retrieval,
Grafit outperforms all the baselines by a large margin. The table on the right is divided in 10

matrices each containing results for one combination of a method and a dataset (iNat-18 or 19).

The diagonal values in the matrices correspond to a traditional setting where the training and
the test granularity are the same. Even in this case, the Grafit descriptors outperforms the baseline
methods most often. On iNaturalist 2018, for Species, the finest and most challenging level, the
additional Grafit loss improves the top-1 accuracy by 7% absolute. The gain is more marginal
for iNaturalist 2019 (+0.9%), which shows that Grafit is especially useful for unbalanced class
distributions where some classes are in a low-shot training regime.

The lower triangle of each matrix reports the coarse-to-fine results, which is the setting in which
we focus in this chapter. Grafit obtains the best results for most combinations, with accuracy gains
of around 10 points with respect to the baseline and by a few points for ClusterFit+. It is interesting
to look at the ∅ column, which is the unsupervised case. In that case, the baseline training reduces
to a random network, but Grafit is able to extract signal from the kNN loss.

The upper triangle is the fine-to-coarse setting, where finer labels are available for the training
images than what is used at test time. This is obviously not the setting of this chapter but it is
worth discussing these results. A natural baseline for fine-to-coarse is to discard the fine labels
and train only with the coarse labels induced by the fine annotation. This would yield the same
accuracy as on the corresponding entry of the diagonal of the matrix. Irrespective of the method,
the fine-to-coarse training does not necessarily outperform this simple strategy.



2.5 additional experiments 27

Table 2.14 – Evaluation on iNaturalist-2018/2019 with all combinations of training / testing semantic levels.
Left: on-the-fly k-NN classification accuracy (top-1, %) Right: category-level retrieval (mAP, %). We highlight
the best and second-best result across methods for each train-test granularity combination. The diagonals
(test = train granularity) are in bold. Lower triangles are coarse-to-fine combinations, handled in this chapter.
Upper triangles (fine-to-coarse) are reported for reference but not formally addressed by our approach: better
strategies would exploit the hierarchy of concepts more explicitly.

Test \ Train ∅ King. Phyl. Class Order Fam. Gen. Spec.

iNaturalist-2018

# classes: 1 6 25 57 272 1118 4401 8142

Ba
se

lin
e

Kingdom 70.9 97.6 98.0 98.1 98.2 98.2 97.9 97.5
Phylum 48.8 88.0 96.3 96.4 96.6 96.7 96.2 95.2
Class 40.4 77.1 86.7 94.1 94.7 94.8 94.1 92.9
Order 17.1 43.6 55.0 61.0 85.6 86.6 85.5 82.6
Family 5.6 23.0 32.8 36.7 62.0 80.7 79.7 76.1
Genus 0.9 10.0 17.3 20.1 41.7 63.0 72.5 68.3
Species 0.3 6.3 11.5 13.6 31.2 51.3 61.6 60.2

SN
C

A
+

Kingdom 71.2 97.7 97.9 98.1 97.9 98.0 98.2 98.3
Phylum 48.0 68.7 96.1 96.4 96.4 96.5 96.7 96.7
Class 39.4 56.7 84.8 93.9 94.3 94.6 94.7 94.7
Order 16.2 23.3 47.4 59.0 85.4 86.2 86.7 86.7
Family 5.2 7.8 23.2 33.2 57.8 80.2 81.1 81.3
Genus 0.9 1.3 10.4 17.6 36.9 56.8 74.2 74.1
Species 0.3 0.5 6.3 11.9 26.2 42.4 58.9 64.6

C
lu

st
er

Fi
t+

Kingdom 70.9 94.7 95.0 95.3 95.6 96.2 96.3 96.1
Phylum 48.8 87.4 90.3 90.7 91.1 92.6 92.6 92.2
Class 40.4 80.2 83.8 85.7 86.7 88.8 88.8 88.2
Order 17.1 54.5 59.0 61.4 70.8 73.9 74.3 72.3
Family 5.6 38.3 42.1 44.4 54.3 63.0 64.2 61.9
Genus 0.9 26.7 29.5 31.5 40.1 49.4 53.9 51.7
Species 0.3 21.8 23.7 25.2 32.7 40.3 44.7 43.4

G
ra

fit
FC

Kingdom 91.1 97.8 98.1 98.4 98.3 98.4 98.5 98.4
Phylum 81.7 93.0 96.4 96.9 97.0 96.9 97.1 96.8
Class 71.9 86.0 90.7 94.8 95.0 95.1 95.3 95.0
Order 41.8 58.5 66.8 72.2 86.8 87.1 87.3 87.2
Family 22.4 38.8 48.4 54.4 70.4 81.1 81.6 81.7
Genus 11.4 24.6 33.1 38.6 53.0 63.9 73.8 74.2
Species 8.13 18.8 25.6 29.9 41.5 50.9 60.9 65.9

G
ra

fit

Kingdom 95.5 98.1 98.2 98.2 98.2 98.2 98.4 98.3
Phylum 90.0 94.1 96.6 96.7 96.8 96.7 96.9 96.7
Class 82.2 87.5 90.9 94.5 94.9 94.9 95.0 95.0
Order 54.0 61.7 66.9 72.7 87.1 87.5 87.6 87.3
Family 33.7 42.1 48.7 55.1 70.9 81.8 82.4 82.1
Genus 20.5 27.0 33.5 39.5 54.2 64.6 75.6 75.5
Species 15.9 20.4 25.5 30.8 42.7 51.2 61.9 67.7

iNaturalist-2019

# classes: 1 3 4 9 34 57 72 1010

Ba
se

lin
e

Kingdom 77.0 98.9 98.9 99.0 99.3 99.4 99.3 98.9
Phylum 73.8 97.1 98.7 98.9 99.2 99.2 99.2 98.7
Class 63.3 87.6 90.3 98.0 98.5 98.6 98.6 98.0
Order 17.9 49.6 56.4 70.8 95.6 95.5 96.0 95.2
Family 12.4 42.1 50.4 65.0 89.4 94.8 95.1 94.4
Genus 9.6 39.2 46.5 62.1 86.1 91.5 94.8 93.9
Species 1.5 9.8 13.5 20.6 34.5 39.9 42.4 75.0

SN
C

A
+

Kingdom 76.9 98.6 98.9 99.2 99.2 99.3 99.1 99.0
Phylum 73.3 87.1 98.8 99.1 99.1 99.1 98.9 99.0
Class 62.3 74.9 84.1 98.2 98.6 98.3 98.1 97.8
Order 17.6 19.7 30.2 55.4 95.3 95.2 95.2 94.2
Family 12.2 12.7 20.7 45.5 88.2 94.5 94.6 93.5
Genus 9.3 9.2 17.1 41.6 85.0 91.2 94.0 93.1
Species 1.3 1.0 1.8 10.4 36.0 40.8 42.3 74.7

C
lu

st
er

Fi
t+

Kingdom 77.0 96.4 96.1 95.8 95.7 95.7 95.4 97.0
Phylum 73.8 94.2 95.0 94.6 94.3 94.4 93.8 95.5
Class 63.3 88.7 90.1 91.3 90.1 90.9 90.6 93.5
Order 17.9 65.5 67.9 70.9 76.8 79.0 78.1 83.2
Family 12.4 59.5 62.0 65.4 71.7 75.6 75.3 80.4
Genus 9.6 56.9 59.3 62.7 68.7 72.6 73.9 78.6
Species 1.5 24.5 25.6 27.3 31.1 33.6 33.9 49.6

G
ra

fit
FC

Kingdom 93.1 98.9 99.0 99.2 99.2 99.4 99.4 99.2
Phylum 90.9 98.2 98.9 99.1 99.1 99.3 99.2 99.0
Class 82.6 94.9 96.4 98.2 98.3 98.7 98.7 98.3
Order 52.5 80.0 83.5 89.5 95.8 96.0 95.9 95.3
Family 45.3 74.6 78.9 86.0 93.4 95.2 95.4 94.7
Genus 41.7 71.7 76.3 84.0 91.7 93.4 95.0 94.3
Species 12.0 29.5 32.6 40.4 51.8 53.2 53.9 75.9

G
ra

fit

Kingdom 96.9 99.2 99.1 99.2 99.2 99.0 99.0 99.0
Phylum 96.4 98.8 98.9 99.0 99.0 98.9 98.9 98.7
Class 93.0 97.0 97.1 98.2 98.4 98.3 98.1 97.8
Order 81.3 89.0 89.3 91.2 95.9 95.3 95.3 94.5
Family 76.5 85.2 85.2 87.8 93.1 94.5 94.5 93.8
Genus 73.8 82.7 83.1 85.8 91.3 92.6 94.2 93.4
Species 31.0 41.6 41.4 46.0 51.8 53.5 55.3 75.3

Test \ Train King. Phyl. Class Order Fam. Gen. Spec.

iNaturalist-2018

# classes: 6 25 57 272 1118 4401 8142

Ba
se

lin
e

Kingdom 97.8 86.3 81.0 76.4 65.9 62.1 61.5
Phylum 64.2 96.6 82.1 63.1 45.9 39.8 38.1
Class 46.0 72.1 93.8 60.1 39.2 31.2 28.5
Order 12.2 24.1 34.3 74.5 35.4 20.1 15.6
Family 3.69 7.02 10.1 32.6 51.3 20.9 14.5
Genus 1.30 3.06 4.47 16.6 30.4 33.3 24.0
Species 1.18 2.63 3.63 12.8 25.7 31.4 27.9

SN
C

A
+

Kingdom 97.6 83.3 75.9 59.2 56.0 54.9 55.0
Phylum 59.8 91.7 79.4 49.1 35.0 32.3 32.2
Class 41.3 73.1 89.9 49.2 28.1 23.6 23.0
Order 9.09 24.9 35.7 77.9 35.3 18.0 15.0
Family 2.24 6.43 11.2 35.7 68.4 29.1 21.7
Genus 0.39 2.47 5.03 18.1 36.6 60.5 46.0
Species 0.19 1.86 3.80 12.8 26.4 46.0 54.9

C
lu

st
er

Fi
t+

Kingdom 55.5 55.5 55.7 56.4 57.0 57.6 57.7
Phylum 31.6 32.1 32.1 32.4 33.1 33.9 34.0
Class 21.0 21.6 22.0 22.2 23.0 23.7 23.8
Order 6.8 7.4 7.8 9.4 9.9 10.3 10.1
Family 2.9 3.5 3.9 5.5 7.8 7.9 7.3
Genus 3.6 4.3 4.8 7.1 10.8 13.3 12.0
Species 4.7 5.4 5.9 8.6 12.5 15.3 14.5

G
ra

fit
FC

Kingdom 98.5 88.3 80.6 61.6 57.7 56.0 56.0
Phylum 69.6 97.2 83.1 50.5 37.9 33.9 33.3
Class 52.4 75.8 95.7 51.3 31.3 25.5 24.5
Order 18.6 31.4 41.6 88.0 41.6 20.4 16.4
Family 7.68 12.9 17.7 44.7 82.4 33.4 23.6
Genus 4.97 8.82 11.9 27.3 45.0 75.5 52.2
Species 4.95 8.25 10.7 21.4 33.6 53.8 68.1

G
ra

fit

Kingdom 98.6 88.3 79.7 60.8 58.0 55.9 55.5
Phylum 67.8 97.2 82.1 50.9 38.9 34.2 33.0
Class 50.1 74.9 95.4 51.2 32.3 25.9 24.1
Order 17.7 30.7 42.7 88.3 42.3 21.1 16.2
Family 8.70 13.2 18.0 43.9 83.1 34.8 24.2
Genus 6.78 9.72 13.5 29.0 46.9 77.2 53.9
Species 6.45 9.02 12.1 23.6 35.6 55.4 70.0

iNaturalist-2019

# classes: 3 4 9 34 57 72 1010

Ba
se

lin
e

Kingdom 99.0 98.2 88.9 73.6 65.8 67.4 58.6
Phylum 87.1 98.9 90.8 71.7 59.8 61.6 51.7
Class 67.2 77.6 98.2 68.8 55.1 56.3 42.8
Order 15.1 21.1 33.7 94.8 68.6 57.6 26.2
Family 9.72 13.8 24.2 70.7 94.2 80.6 31.5
Genus 7.77 11.0 21.3 59.6 81.4 93.9 34.8
Species 1.09 1.55 3.60 10.8 14.8 16.6 57.0

SN
C

A
+

Kingdom 98.4 90.1 82.0 63.5 60.9 60.3 55.0
Phylum 84.1 97.7 87.7 62.6 55.9 55.3 49.3
Class 63.2 75.6 95.5 59.0 50.0 49.1 38.5
Order 11.5 17.2 32.4 83.0 64.3 54.4 15.7
Family 6.53 10.0 20.1 75.2 90.9 78.8 19.5
Genus 5.08 7.61 18.1 71.5 84.6 92.8 22.0
Species 0.40 0.65 2.11 15.4 17.1 18.6 72.3

C
lu

st
er

Fi
t+

Kingdom 55.1 55.0 54.7 54.4 54.5 54.6 55.5
Phylum 49.0 49.1 48.8 48.2 48.3 48.4 49.3
Class 36.8 36.9 37.1 36.3 36.4 36.5 37.6
Order 7.5 7.7 8.2 8.4 8.5 8.4 9.7
Family 5.6 5.9 6.4 6.8 7.4 7.3 8.9
Genus 4.9 5.2 5.8 6.1 6.8 6.9 8.6
Species 2.4 2.5 2.9 3.5 4.1 4.2 10.1

G
ra

fit
FC

Kingdom 99.2 93.2 86.5 63.8 62.3 62.2 56.1
Phylum 88.6 99.2 90.7 63.0 58.9 57.9 50.5
Class 70.4 80.9 98.5 61.6 53.9 52.5 39.9
Order 25.1 32.6 45.4 96.3 70.3 58.6 18.4
Family 20.8 26.7 38.2 84.5 95.8 82.2 23.0
Genus 18.9 24.7 34.0 78.3 88.4 95.7 25.7
Species 6.83 9.63 14.7 28.4 29.7 31.5 78.4

G
ra

fit

Kingdom 99.4 93.1 85.9 62.7 61.5 60.9 56.6
Phylum 88.8 99.2 90.2 62.6 58.4 57.2 51.0
Class 71.8 81.9 98.6 61.3 53.2 52.0 40.4
Order 30.7 36.6 48.1 96.4 69.3 58.3 19.1
Family 28.2 30.8 41.8 82.5 95.1 81.5 23.7
Genus 28.0 29.8 40.5 76.2 87.5 94.8 26.3
Species 18.7 18.9 21.8 32.5 33.3 34.7 77.5
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2.5.4 Transfer Learning Tasks

This section details the experimental settings for the transfer learning and reports more results
and comparisons.

Fine-tuning settings As described in Section 2.4.6 We initialize the network trunk with ImageNet
pre-trained weights and fine-tune the model.

For our method, we keep the pre-trained network trunk fθ. But the projector Pθ is discarded.
For all methods we fine-tune during 240 epochs with a cosine learning rate schedule starting at
0.01, and batches of 512 images.

For fine-tuning results in Table 2.10 we additionally use Cutmix [237] and FixRes [199] during
fine-tuning and we fine-tune with more epochs (1000 for Flowers [144] and Cars [121], 300 for
Food-101 [23] and iNat [104, 103]). These choices improve the performance for all the methods.

Results. Table 2.15 compares the performance obtained with Grafit for different architectures. We
report results with Grafit topped with either a multi-layer perceptron (MLP) or a linear classifier
(FC). The accuracy increases for larger models. This shows that, although ResNet-50 serves as
a running example architecture for Grafit, the method applies without modifications to other
architectures.

Table 2.16 compares the performances obtained with Grafit and baselines with MLP and FC
classifier. For all settings, the flexibility of the MLP is useful to outperform the linear classifier (FC).
The transfer learning results are better or as good for Grafit variants. The gap with the baseline
methods is higher for the iNaturalist variants. This is because the datasets are more challenging,
as evidenced by the relatively low accuracies reported.

2.6 Visualization

CIFAR. Figure 2.6 shows for a given test image in CIFAR-100 the 10 nearest neighbours in the
training according the cosine similarity in the embedding space. In Figure 2.6 models are trained
on the 20 CIFAR-100 coarse classes. The correct classes are indicated in green. For example, in
the first row, Grafit correctly identifies a butterfly query in 9 out of 10 results, while the baseline
method succeeds only 5 times. The second row is a relative failure case, because Grafit confuses a
van with a pickup truck. However, it correctly matches the colors of the vehicles.

iNaturalist. Figure 2.7, 2.8 and Figure 2.9 present similar results for three examples for iNaturalist-
2018, but with several levels of granularity for the training set, which allow one to vizualize the
importance of the training granularity as well. Each granularity level is identified with a color.
The frame color around the image indicates which at which granularity the match is correct: for
example, light orange means it is correct at the order level and green means that the result is
correct at the finest granularity (Species).

We can observe from the colors and the image content that the level at which Grafit is correct
is almost systematically better than the baseline 2. For example, the baseline model trained at the
genus granularity in Figure 2.7 matches the deer query with a moose (rank 3).

In Figure 2.8, the butterfly is matched relatively easily with other butterflies by both classi-
fiers, even when they are trained with coarse granularity. This is because butterflies have quite
distinctive textures. However, Grafit slightly outperforms the baseline for finer granularity levels.

2. These examples are representative of typical comparisons, as we have not cherry-picked to show cases where our
method is better.
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Table 2.15 – Transfer learning task with various architectures pretrained on ImageNet with Grafit. We report
the Top-1 accuracy (%) for the evaluation with a single center crop at resolution 224× 224.
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# Params 25M 25M 48M 21M 39M

Dataset FC MLP FC MLP FC MLP FC MLP FC MLP

Flowers-102 [144] 95.5 98.3 95.9 98.6 96.3 98.7 98.1 98.6 99.0 98.8
Stanford Cars [121] 91.6 92.9 88.7 93.3 90.9 93.8 93.3 92.7 94.0 93.4
Food101 [23] 89.6 89.9 90.2 90.3 90.9 91.1 91.2 91.3 92.1 92.4
iNaturalist 2018 [104] 67.7 71.2 68.9 72.4 71.4 74.4 73.8 74.2 76.4 76.8
iNaturalist 2019 [103] 75.3 76.3 75.8 77.6 77.8 78.7 78.1 77.9 79.8 80.0

Table 2.16 – Transfer learning with ResNet-50 pretrained on ImageNet. Comparison between different pre-
training methods and two different classifiers trained on the target domain (a linear FC or an MLP). We
report the top-1 accuracy (%) with a single center crop evaluation at resolution 224× 224.
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FC MLP FC MLP FC MLP FC MLP FC MLP

Flowers-102 [144] 96.2 95.7 94.3 98.2 96.2 96.1 97.6 98.2 94.3 97.6
Stanford Cars [121] 90.0 89.8 91.6 92.5 89.4 89.3 91.4 92.5 91.4 92.7
Food101 [23] 88.2 88.9 88.7 88.8 88.5 88.9 88.9 89.5 88.5 88.7
iNaturalist 2018 [104] 65.0 68.4 64.7 69.2 64.2 67.5 65.6 69.8 65.2 68.5
iNaturalist 2019 [103] 72.8 73.7 73.1 74.5 71.8 73.8 74.1 75.9 73.9 74.6

Figure 2.9 shows an orca query, which is quite distinctive with its black-and-white skin. The
baseline method is unable to distinguish it from other marine mammals, even when trained at
the finest granularity. Grafit is able to distinguish these textures more accurately, so it gets perfect
retrieval results even when trained at the genus granularity.



30 learning fine -grained image representations with coarse labels

Train granularity: Family Train granularity: Genus
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fit

Figure 2.5 – t-SNE representations of features from images of the family paridae, focusing on the genus
baeolophus (in blue). When trained with granularity Family, all depicted points have the same coarse label,
while granularity Genus means that the network has seen 7 distinct labels. Visually, Grafit offers a better
separation of the images than the baseline w.r.t. the two finest level ’Genus’ and ’Species’.

Baeolophus

Cyanistes
Lophophanes
Parus
Periparus
Poecile
Sittiparus

Baeolophus atricristatus
Baeolophus bicolor
Baeolophus inornatus
Baeolophus ridgwayi
Baeolophus wollwerberi

Family Paridae:
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Figure 2.6 – CIFAR-100: For given test images (top), we present the ranked list of train images most similar
with embeddings obtained with a baseline method (top) and our method (bottom) train with coarse labels.
Images in green indicate that the image belongs to the correct fine class; orange indicates the correct coarse
class but incorrect fine class. In this example, all results are correct w.r.t. coarse granularity.
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2.7 Conclusion

In this chapter, we have introduced Grafit, a method to learn image representations at a
finer granularity than the one offered by the annotation at training time. Inspired by recent self-
supervised learning approach, we carefully design a joint learning scheme integrating instance
and coarse-label based classification losses. For the latter one, we exploit a knn strategy but with
a dedicated process to manage the memory both at train-time and for inference at test-time.

We propose two original use-cases to deeply evaluate coarse-trained fine-grained testing eval-
uation, for which Grafit exhibits outstanding performance.

It improves the performance for fine-grained category retrieval within a coarsely annotated
collection. For on-the-fly kNN classification, Grafit significantly reduces the gap with a network
trained with fine labels. For instance, we improve by +16.3% the top-1 accuracy for on-the-fly
classification on ImageNet. This improvement is still +9.5% w.r.t. our own stronger baseline,
everything being equal otherwise. Grafit also improves transfer learning: our experiments show
that our representation discriminates better at a finer granularity. It also translates into better
transfer learning performance to fine-grained datasets, outperforming the current state of the art
with a more efficient network.
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Figure 2.7 – We compare Grafit and Baseline for different training granularity. We rank the 10 closest images
in the iNaturalist-2018 train set for a query image in the test set. The ranking is obtained with a cosine
similarity on the features space of each of the two approaches. See Table 7.1 for image copyrights.
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Figure 2.8 – We compare Grafit and Baseline for different training granularity. We rank the 10 closest images
in the iNaturalist-2018 train set for a query image in the test set. The ranking is obtained with a cosine
similarity on the features space of each of the two approaches. See Table 7.2 for image copyrights.
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Figure 2.9 – We compare Grafit and Baseline for different training granularity. We rank the 10 closest images
in the iNaturalist-2018 train set for a query image in the test set. The ranking is obtained with a cosine
similarity on the features space of each of the two approaches. See Table 7.3 for image copyrights.
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V I S I O N T R A N S F O R M E R S

Designing new deep architectures is an active research field in computer vision since the 2012’s
AlexNet [123]. Especially, attention-based models such as transformers have recently been intro-
duced for image classification. In this chapter, we propose two works related to this architecture:
DeiT for Data efficient image Transformers and CaiT for Class attention in image Transformers.

The chapter is organized as follows: we review related works in Section 3.1, and focus on
transformers for image classification in Section 3.2. We introduce our distillation strategy for trans-
formers in Section 3.3. The experimental section 3.4 provides analysis and comparisons against
both convnets and recent transformers, as well as a comparative evaluation of our transformer-
specific distillation. Section 3.4.5 details our training scheme. It includes an extensive ablation
of our data-efficient training choices, which gives some insight on the key ingredients involved
in DeiT. Section 3.6 introduces our second contribution, namely class-attention layers, that we
present in Figure 3.7. It is akin to an encoder/decoder architecture, in which we explicitly separate
the transformer layers involving self-attention between patches, from class-attention layers that
are devoted to extract the content of the processed patches into a single vector so that it can be
fed to a linear classifier. This explicit separation avoids the contradictory objective of guiding the
attention process while processing the class embedding. We refer to this new architecture as CaiT
(Class-Attention in Image Transformers). In the experimental Section 3.7, we empirically show the
effectiveness and complementary of our approaches. We provide visualizations of the attention
mechanisms in Section 3.7.2.5.

Publication. Chapter 3 is based on the papers “Training data-efficient image transformers & distilla-
tion through attention”, Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexan-
dre Sablayrolles, Hervé Jégou, ICML 2021 (see DeiT paper [193]) and “Going deeper with Image
Transformers”, Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, Hervé
Jégou, ICCV 2021 (Oral) (see CaiT paper [197]). The code is available at https://github.com/
facebookresearch/deit.

3.1 Related work

As detailed in chapter 1, Transformers have been introduced by Vaswani et al. [205].Many
improvements of convnets for image classification are inspired by transformers. For example,
Squeeze and Excitation [107], Selective Kernel [128] and Split-Attention Networks [241] exploit
mechanisms akin to transformer’s self-attention (SA).

Vision transformers (ViT) [61] close the gap with the state of the art on ImageNet, without using
any convolution. This performance is remarkable since convnet methods for image classification
have benefited from years of tuning and optimization [97, 214]. Nevertheless, according to this
study [61], a pre-training phase on a large volume of curated data is required for the learned
transformer to be effective.

https://github.com/facebookresearch/deit
https://github.com/facebookresearch/deit
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Knowledge Distillation (KD), introduced by Hinton et al. [100], refers to the training paradigm
in which a student model leverages “soft” labels coming from a strong teacher network. This is
the output vector of the teacher’s softmax function rather than just the maximum of scores, wich
gives a “hard” label. Such training improves the performance of the student model (alternatively,
it can be regarded as a form of compression of the teacher model into a smaller one – the student).
On the one hand the teacher’s soft labels will have a similar effect to label smoothing [236]. On
the other hand as shown by Wei et al. [213] the teacher’s supervision takes into account the
effects of the data augmentation, which sometimes causes a misalignment between the real label
and the image. For example, let us consider image with a “cat” label that represents a large
landscape and a small cat in a corner. If the cat is no longer on the crop of the data augmentation
it implicitly changes the label of the image. KD can transfer inductive biases [4] in a soft way in
a student model using a teacher model where they would be incorporated in a hard way. For
example, it may be useful to induce biases due to convolutions in a transformer model by using a
convolutional model as teacher. In this chapter, we study the distillation of a transformer student
by either a convnet or a transformer teacher. We introduce a new distillation procedure specific
to transformers and show its superiority.

Deeper architectures usually lead to better performance [94, 177, 184], however this complicates
their training process [181, 182]. One must adapt the architecture and the optimization procedure
to train them correctly. Some approaches focus on the initialization schemes [81, 94, 221], others on
multiple stages of training [164, 177], multiple losses at different depth [184], adding components
in the architecture [9, 243] or regularization [108].

3.2 Vision transformer: overview

In this section, we briefly recall preliminaries associated with the vision transformer [61, 205],
and further discuss positional encoding and resolution.

Multi-head Self Attention layers (MSA). The attention mechanism is based on a trainable
associative memory with (key, value) vector pairs. A query vector q ∈ Rd is matched against a
set of k key vectors (packed together into a matrix K ∈ Rk×d) using inner products. These inner
products are then scaled and normalized with a softmax function to obtain k weights. The output
of the attention is the weighted sum of a set of k value vectors (packed into V ∈ Rk×d). For a
sequence of N query vectors (packed into Q ∈ RN×d), it produces an output matrix (of size N×d):

Attention(Q,K, V ) = Softmax(QK⊤/
√
d )V, (3.1)

where the Softmax function is applied over each row of the input matrix and the
√
d term pro-

vides appropriate normalization.
In [205], a Self-attention layer is proposed. Query, key and values matrices are themselves com-
puted from a sequence of N input vectors (packed into X ∈ RN×D): Q = XWQ, K = XWK,
V = XWV, using linear transformations WQ,WK,WV with the constraint k = N , meaning that
the attention is in between all the input vectors.
Finally, Multi-head self-attention layer (MSA) is defined by considering h attention “heads”, ie h
self-attention functions applied to the input. Each head provides a sequence of size N ×d. These h
sequences are rearranged into a N × dh sequence that is reprojected by a linear layer into N ×D.

Transformer block for images. To get a full transformer block as in [205], we add a Feed-Forward
Network (FFN) on top of the MSA layer. This FFN is composed of two linear layers separated by
a GeLu activation [98]. The first linear layer expands the dimension from D to 4D, and the second
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layer reduces the dimension from 4D back to D. Both MSA and FFN are operating as residual
operators thanks to skip-connections, and with a layer normalization [7].

In order to get a transformer to process images, our work builds upon the ViT model [61]. It is
a simple and elegant architecture that processes input images as if they were a sequence of input
tokens. The fixed-size input RGB image is decomposed into a batch of N patches of a fixed size of
16× 16 pixels (N = 14× 14). Each patch is projected with a linear layer that conserves its overall
dimension 3× 16× 16 = 768.
The transformer block described above is invariant to the order of the patch embeddings, and thus
does not consider their relative position. The positional information is incorporated as fixed [205]
or trainable [78] positional embeddings. They are added before the first transformer block to the
patch tokens, which are then fed to the stack of transformer blocks.

The class token is a trainable vector, appended to the patch tokens before the first layer, that
goes through the transformer layers, and is then projected with a linear layer to predict the class.
This class token is inherited from NLP [56], and departs from the typical pooling layers used in
computer vision to predict the class. The transformer thus process batches of (N + 1) tokens of
dimension D, of which only the class vector is used to predict the output. This architecture forces
the self-attention to spread information between the patch tokens and the class token: at training
time the supervision signal comes only from the class embedding, while the patch tokens are the
model’s only variable input.

Fixing the positional encoding across resolutions. Touvron et al. [199] show that it is desirable
to use a lower training resolution and fine-tune the network at the larger resolution. This speeds
up the full training and improves the accuracy under prevailing data augmentation schemes.
When increasing the resolution of an input image, we keep the patch size the same, therefore
the number N of input patches does change. Due to the architecture of transformer blocks and
the class token, the model and classifier do not need to be modified to process more tokens. In
contrast, one needs to adapt the positional embeddings, because there are N of them, one for each
patch. Dosovitskiy et al. [61] interpolate the positional encoding when changing the resolution
and demonstrate that this method works with the subsequent fine-tuning stage.

3.3 Distillation through attention

In this section, we assume we have access to a strong image classifier as a teacher model.
It could be a convnet, or a mixture of classifiers. We address the question of how to learn a
transformer by exploiting this teacher. As we will see in Section 3.4 by comparing the trade-off
between accuracy and image throughput, it can be beneficial to replace a convolutional neural
network by a transformer. This section covers two axes of distillation: hard distillation versus soft
distillation, and classical distillation versus the distillation token.

Soft distillation [100, 213] minimizes the Kullback-Leibler divergence between the softmax of
the teacher and the softmax of the student model.

Let Zt be the logits of the teacher model, Zs the logits of the student model. We denote by τ
the temperature for the distillation, λ the coefficient balancing the Kullback–Leibler divergence
loss (KL) and the cross-entropy (LCE) on ground truth labels y, and ψ the softmax function. The
distillation objective is

Lglobal = (1− λ)LCE(ψ(Zs), y) + λτ2KL(ψ(Zs/τ), ψ(Zt/τ)). (3.2)
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Figure 3.1 – Our distillation procedure: we simply include a new distillation token. It interacts with the class
and patch tokens through the self-attention layers. This distillation token is employed in a similar fashion as
the class token, except that on output of the network its objective is to reproduce the (hard) label predicted by
the teacher, instead of true label. Both the class and distillation tokens input to the transformers are learned
by back-propagation.

Hard-label distillation. We introduce a variant of distillation where we take the hard decision of
the teacher as a true label. Let yt = argmaxcZt(c) be the hard decision of the teacher, the objective
associated with this hard-label distillation is:

LhardDistill
global =

1

2
LCE(ψ(Zs), y) +

1

2
LCE(ψ(Zs), yt). (3.3)

For a given image, the hard label associated with the teacher may change depending on the
specific data augmentation. We will see that this choice is better than the traditional one, while
being parameter-free and conceptually simpler: The teacher prediction yt plays the same role as
the true label y.

Note also that the hard labels can also be converted into soft labels with label smoothing [185],
where the true label is considered to have a probability of 1 − ε, and the remaining ε is shared
across the remaining classes. We choose ε = 0.1 in our all experiments that use true labels.

Distillation token. We now focus on our proposal, which is illustrated in Figure 3.1. We add
a new token, the distillation token, to the initial embeddings (patches and class token). Our
distillation token is used similarly as the class token: it interacts with other embeddings through
self-attention, and is output by the network after the last layer. Its target objective is given by the
distillation component of the loss. The distillation embedding allows our model to learn from the
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output of the teacher, as in a regular distillation, while remaining complementary and compatible
with the class embedding.

Interestingly, we observe that the learned class and distillation tokens converge towards dif-
ferent vectors: the average cosine similarity between these tokens equal to 0.06. As the class and
distillation embeddings are computed at each layer, they gradually become more similar through
the network, all the way through the last layer at which their similarity is high (cos=0.93), but
still lower than 1. This is expected since as they aim at producing targets that are similar but not
completely identical.

We verified that our distillation token adds something to the model, compared to simply
adding an additional class token associated with the same target label: instead of a teacher
pseudo-label, we experimented with a transformer with two class tokens. Even if we initial-
ize them randomly and independently, during training they converge towards the same vector
(cos=0.999), and the output embedding are also quasi-identical. This additional class token does
not bring anything to the classification performance. In contrast, our distillation strategy pro-
vides a significant improvement over a vanilla distillation baseline, as validated by our different
experiments in the Section 3.4.2.

Fine-tuning with distillation. We use both the true label and teacher prediction during the
fine-tuning stage at higher resolution. We use a teacher with the same target resolution, typically
obtained from the lower-resolution teacher by the method of Touvron et al [199]. We have also
tested with true labels only but this reduces the benefit of the teacher and leads to a lower
performance in the settings we considered.

Classification with our approach: joint classifiers. At test time, both the class or the distillation
embeddings produced by the transformer are associated with linear classifiers and able to infer
the image label. Yet our referent method is the late fusion of these two separate heads, for which
we add the softmax output by the two classifiers to make the prediction. We evaluate these three
options in Section 3.4.

3.4 DeiT experiments

This section presents a few analytical experiments and results. We first discuss our distillation
strategy. Then we comparatively analyze the efficiency and accuracy of convnets and vision
transformers for image classification task.

3.4.1 Transformer models

As mentioned earlier, our architecture design is identical to the one proposed by Dosovitskiy et
al. [61] with no convolutions. Our only differences are the training strategies, and the distillation
token. Also we do not use a MLP head for the pre-training but only a linear classifier. To avoid any
confusion, we refer to the results obtained in the prior work by ViT, and prefix ours by DeiT. If
not specified, DeiT refers to our referent model DeiT-B, which has the same architecture as ViT-B.
When we fine-tune DeiT at a larger resolution, we append the resulting operating resolution at the
end, e.g, DeiT-B↑384. Last, when using our distillation procedure, we identify it with an alembic
sign as DeiT⚗.

The parameters of ViT-B (and therefore of DeiT-B) are fixed as D = 768, h = 12 and d =

D/h = 64. We introduce two smaller models, namely DeiT-S and DeiT-Ti, for which we change
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Table 3.1 – Variants of our DeiT architecture. The larger model, DeiT-B, has the same architecture as the
ViT-B [61]. The only parameters that vary across models are the embedding dimension and the number of
heads, and we keep the dimension per head constant (equal to 64). Smaller models have a lower parameter
count, and a faster throughput. The throughput is measured for images at resolution 224×224.

Model ViT model embedding #heads #layers #params training throughput
dimension resolution (im/sec)

DeiT-Ti N/A 192 3 12 5M 224 2536

DeiT-S N/A 384 6 12 22M 224 940

DeiT-B ViT-B 768 12 12 86M 224 292

Table 3.2 – We compare on ImageNet [168] the performance (top-1 acc., %) of the student as a function of
the teacher model used for distillation.

Teacher Student: DeiT-B ⚗
Models acc. pretrain ↑384

DeiT-B 81.8 81.9 83.1

RegNetY-4GF 80.0 82.7 83.6
RegNetY-8GF 81.7 82.7 83.8
RegNetY-12GF 82.4 83.1 84.1
RegNetY-16GF 82.9 83.1 84.2

the number of heads, keeping d fixed. Table 3.1 summarizes the models that we consider in the
first part of this chapter.

3.4.2 Distillation

Our distillation method produces a vision transformer that becomes on par with the best con-
vnets in terms of the trade-off between accuracy and throughput, see Table 3.5. Interestingly, the
distilled model outperforms its teacher in terms of the trade-off between accuracy and through-
put. Our best model on ImageNet-1k is 85.2% top-1 accuracy outperforms the best Vit-B model
pre-trained on JFT-300M at resolution 384 (84.15%). For reference, the current state of the art of
88.55% achieved with extra training data was obtained by the ViT-H model (600M parameters)
trained on JFT-300M at resolution 512. Hereafter we provide several analysis and observations.

Convnets teachers. We have observed that using a convnet teacher gives better performance than
using a transformer. Table 3.2 compares distillation results with different teacher architectures.
The fact that the convnet is a better teacher is probably due to the inductive bias inherited by
the transformers through distillation, as explained in Abnar et al. [4]. In all of our subsequent
distillation experiments the default teacher is a RegNetY-16GF [156] (84M parameters) that we
trained with the same data and same data-augmentation as DeiT. This teacher reaches 82.9% top-1
accuracy on ImageNet.

Comparison of distillation methods. We compare the performance of different distillation strate-
gies in Table 3.3. Hard distillation significantly outperforms soft distillation for transformers, even
when using only a class token: hard distillation reaches 83.0% at resolution 224×224, compared to
the soft distillation accuracy of 81.8%. Our distillation strategy from Section 3.3 further improves
the performance, showing that the two tokens provide complementary information useful for
classification: the classifier on the two tokens is significantly better than the independent class
and distillation classifiers, which by themselves already outperform the distillation baseline.
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Table 3.3 – Distillation experiments on ImageNet with DeiT, 300 epochs of pre-training. We report the results
for our new distillation method in the last three rows. We separately report the performance when classifying
with only one of the class or distillation embeddings, and then with a classifier taking both of them as input.
In the last row (class+distillation), the result correspond to the late fusion of the class and distillation

classifiers. This late fusion corresponds to the average of classifiers outputs.

Supervision ImageNet top-1 (%)
method ↓ label teacher Ti 224 S 224 B 224 B↑384

DeiT– no distillation ✓ ✗ 72.2 79.8 81.8 83.1
DeiT– usual distillation ✗ soft 72.2 79.8 81.8 83.2
DeiT– hard distillation ✗ hard 74.3 80.9 83.0 84.0

DeiT⚗: class embedding ✓ hard 73.9 80.9 83.0 84.2
DeiT⚗: distil. embedding ✓ hard 74.6 81.1 83.1 84.4
DeiT⚗: class+distillation ✓ hard 74.5 81.2 83.4 84.5

Table 3.4 – Disagreement analysis between convnet, image transformers and distillated transformers: We
report the fraction of sample classified differently for all classifier pairs, i.e., the rate of different decisions. We
include two models without distillation (a RegNetY and DeiT-B), so that we can compare how our distilled
models and classification heads are correlated to these teachers.

groundtruth no distillation DeiT⚗ student (of the convnet)
convnet DeiT class distillation DeiT⚗

groundtruth 0.000 0.171 0.182 0.170 0.169 0.166

convnet (RegNetY) 0.171 0.000 0.133 0.112 0.100 0.102

DeiT 0.182 0.133 0.000 0.109 0.110 0.107

DeiT⚗– class only 0.170 0.112 0.109 0.000 0.050 0.033

DeiT⚗– distil. only 0.169 0.100 0.110 0.050 0.000 0.019

DeiT⚗– class+distil. 0.166 0.102 0.107 0.033 0.019 0.000

The distillation token gives slightly better results than the class token. It is also more correlated
to the convnets prediction. This difference in performance is probably due to the fact that it
benefits more from the inductive bias of convnets. We give more details and an analysis in the
next paragraph. The distillation token has an undeniable advantage for the initial training.

Agreement with the teacher & inductive bias? As discussed above, the architecture of the
teacher has an important impact. Does it inherit existing inductive bias that would facilitate the
training? While we believe it difficult to formally answer this question, we analyze in Table 3.4
the decision agreement between the convnet teacher, our image transformer DeiT learned from
labels only, and our transformer DeiT⚗.

Our distilled model is more correlated to the convnet than with a transformer learned from
scratch. As to be expected, the classifier associated with the distillation embedding is closer to the
convnet that the one associated with the class embedding, and conversely the one associated with
the class embedding is more similar to DeiT learned without distillation. Unsurprisingly, the joint
class+distil classifier offers a middle ground.

Number of epochs. Increasing the number of epochs significantly improves the performance of
training with distillation, see Figure 3.2. With 300 epochs, our distilled network DeiT-B⚗ is already
better than DeiT-B. But while for the latter the performance saturates with longer schedules, our
distilled network clearly benefits from a longer training time.



44 vision transformers

⚗↑
⚗

Figure 3.2 – Distillation on ImageNet [168] with DeiT-B: performance as a function of the number of training
epochs. We also provide the performance without distillation but it saturates after 400 epochs.

3.4.3 Efficiency vs accuracy: a comparative study with convnets

In the literature, the image classificaton methods are often compared as a compromise between
accuracy and another criterion, such as FLOPs, number of parameters, size of the network, etc.

We focus in Figure 3.3 on the tradeoff between the throughput (images processed per second)
and the top-1 classification accuracy on ImageNet. We focus on the popular state-of-the-art Effi-
cientNet convnet, which has benefited from years of research on convnets and was optimized by
architecture search on the ImageNet validation set.

Our method DeiT is slightly below EfficientNet, which shows that we have almost closed the
gap between vision transformers and convnets when training with ImageNet only. These results
are a major improvement (+6.3% top-1 in a comparable setting) over previous ViT models trained
on ImageNet-1k only [61]. Furthermore, when DeiT benefits from the distillation from a relatively
weaker RegNetY to produce DeiT⚗, it outperforms EfficientNet. It also outperforms by 1% (top-1
acc.) the Vit-B model pre-trained on JFT300M at resolution 384 (85.2% vs 84.15%), while being
significantly faster to train.

Table 3.5 reports the numerical results in more detail and additional evaluations on ImageNet
V2 and ImageNet Real, that have a test set distinct from the ImageNet validation, which reduces
overfitting on the validation set. Our results show that DeiT-B⚗ and DeiT-B⚗ ↑384 outperform,
by some margin, the state of the art on the trade-off between accuracy and inference time on GPU.

3.4.4 Transfer learning: Performance on downstream tasks

Although DeiT perform very well on ImageNet it is important to evaluate them on other
datasets with transfer learning in order to measure the power of generalization of DeiT. We
evaluated this on transfer learning tasks by fine-tuning on the datasets in Table 3.6. Table 3.7
compares DeiT transfer learning results to those of ViT [61] and state of the art convolutional
architectures [187]. DeiT is on par with competitive convnet models, which is in line with our
previous conclusion on ImageNet.
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image throughput ImNet Real V2

Network #param. size (image/s) top-1 top-1 top-1

Convnets

ResNet-18 [94] 12M 2242 4458.4 69.8 77.3 57.1
ResNet-50 [94] 25M 2242 1226.1 76.2 82.5 63.3
ResNet-101 [94] 45M 2242 753.6 77.4 83.7 65.7
ResNet-152 [94] 60M 2242 526.4 78.3 84.1 67.0

RegNetY-4GF [156]⋆ 21M 2242 1156.7 80.0 86.4 69.4
RegNetY-8GF [156]⋆ 39M 2242 591.6 81.7 87.4 70.8
RegNetY-16GF [156]⋆ 84M 2242 334.7 82.9 88.1 72.4

EfficientNet-B0 [187] 5M 2242 2694.3 77.1 83.5 64.3
EfficientNet-B1 [187] 8M 2402 1662.5 79.1 84.9 66.9
EfficientNet-B2 [187] 9M 2602 1255.7 80.1 85.9 68.8
EfficientNet-B3 [187] 12M 3002 732.1 81.6 86.8 70.6
EfficientNet-B4 [187] 19M 3802 349.4 82.9 88.0 72.3
EfficientNet-B5 [187] 30M 4562 169.1 83.6 88.3 73.6
EfficientNet-B6 [187] 43M 5282 96.9 84.0 88.8 73.9
EfficientNet-B7 [187] 66M 6002 55.1 84.3 _ _

EfficientNet-B5 RA [44] 30M 4562 96.9 83.7 _ _
EfficientNet-B7 RA [44] 66M 6002 55.1 84.7 _ _

KDforAA-B8 87M 8002 25.2 85.8 _ _

Transformers

ViT-B/16 [61] 86M 3842 85.9 77.9 83.6 _
ViT-L/16 [61] 307M 3842 27.3 76.5 82.2 _

DeiT-Ti 5M 2242 2536.5 72.2 80.1 60.4
DeiT-S 22M 2242 940.4 79.8 85.7 68.5
DeiT-B 86M 2242 292.3 81.8 86.7 71.5

DeiT-B↑384 86M 3842 85.9 83.1 87.7 72.4

DeiT-Ti⚗ 6M 2242 2529.5 74.5 82.1 62.9
DeiT-S⚗ 22M 2242 936.2 81.2 86.8 70.0
DeiT-B⚗ 87M 2242 290.9 83.4 88.3 73.2

DeiT-Ti⚗ / 1000 epochs 6M 2242 2529.5 76.6 83.9 65.4
DeiT-S⚗ / 1000 epochs 22M 2242 936.2 82.6 87.8 71.7
DeiT-B⚗ / 1000 epochs 87M 2242 290.9 84.2 88.7 73.9

DeiT-B⚗ ↑384 87M 3842 85.8 84.5 89.0 74.8

DeiT-B⚗ ↑384 / 1000 epochs 87M 3842 85.8 85.2 89.3 75.2

Table 3.5 – Throughput on and accuracy on ImageNet [168], ImageNet Real [18] and ImageNet V2 matched
frequency [159] of DeiT and of several state-of-the-art convnets, for models trained with no external data. The
throughput is measured as the number of images that we can process per second on one 16GB V100 GPU.
For each model we take the largest possible batch size for the usual resolution of the model and calculate
the average time over 30 runs to process that batch. With that we calculate the number of images processed
per second. Throughput can vary according to the implementation: for a direct comparison and in order to
be as fair as possible, we use for each model the definition in the same GitHub [214] repository.
⋆ : Regnet optimized with a similar optimization procedure as ours, which boosts the results. These networks serve as
teachers when we use our distillation strategy.
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Figure 3.3 – Throughput and accuracy on ImageNet of our methods compared to EfficientNets, trained on
ImageNet-1k only. The throughput is measured as the number of images processed per second on a V100

GPU. DeiT-B is identical to VIT-B, but the training is more adapted to a data-starving regime. It is learned in
a few days on one machine. The symbol⚗ refers to models trained with our transformer-specific distillation.
See Table 3.5 for details and more models.

Table 3.6 – Datasets used for our different tasks.

Dataset Train size Test size #classes

ImageNet [168] 1,281,167 50,000 1000

iNaturalist 2018 [104] 437,513 24,426 8,142

iNaturalist 2019 [103] 265,240 3,003 1,010

Flowers-102 [144] 2,040 6,149 102

Stanford Cars [121] 8,144 8,041 196

CIFAR-100 [124] 50,000 10,000 100

CIFAR-10 [124] 50,000 10,000 10

Comparison vs training from scratch. We investigate the performance when training from
scratch on a small dataset, without ImageNet-1k pre-training. We get the following results on the
small CIFAR-10, which is small both w.r.t. the number of images and labels:

Method RegNetY-16GF DeiT-B DeiT-B⚗
Top-1 98.0 97.5 98.5

For this experiment, we tried we get as close as possible to the ImageNet pre-training coun-
terpart, meaning that (1) we consider longer training schedules (up to 7200 epochs, which cor-
responds to 300 ImageNet epochs) so that the network has been fed a comparable number of
images in total; (2) we re-scale images to 224× 224 to ensure that we have the same augmentation.
The results are not as good as with ImageNet pre-training (98.5% vs 99.1%), which is expected
since the network has seen a much lower diversity. However they show that it is possible to learn
a reasonable transformer on CIFAR-10 only.
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Table 3.7 – We compare Transformers based models on different transfer learning task with ImageNet
pre-training. We also report results with convolutional architectures for reference.

Model ImageNet CIFAR-10 CIFAR-100 Flowers Cars iNat-18 iNat-19 im/sec

Grafit ResNet-50 [198] 79.6 _ _ 98.2 92.5 69.8 75.9 1226.1
Grafit RegNetY-8GF [198] _ _ _ 99.0 94.0 76.8 80.0 591.6
ResNet-152 [40] _ _ _ _ _ 69.1 _ 526.3
EfficientNet-B7 [187] 84.3 98.9 91.7 98.8 94.7 _ _ 55.1

ViT-B/32 [61] 73.4 97.8 86.3 85.4 _ _ _ 394.5
ViT-B/16 [61] 77.9 98.1 87.1 89.5 _ _ _ 85.9
ViT-L/32 [61] 71.2 97.9 87.1 86.4 _ _ _ 124.1
ViT-L/16 [61] 76.5 97.9 86.4 89.7 _ _ _ 27.3

DeiT-B 81.8 99.1 90.8 98.4 92.1 73.2 77.7 292.3
DeiT-B↑384 83.1 99.1 90.8 98.5 93.3 79.5 81.4 85.9
DeiT-B⚗ 83.4 99.1 91.3 98.8 92.9 73.7 78.4 290.9
DeiT-B⚗ ↑384 84.4 99.2 91.4 98.9 93.9 80.1 83.0 85.9

3.4.5 Training details & ablation

In this section we discuss the DeiT training strategy to learn vision transformers in a data-
efficient manner. We build upon PyTorch [150] and the timm library [214] 1. We provide hyper-
parameters as well as an ablation study in which we analyze the impact of each choice.

Initialization and hyper-parameters. Transformers are relatively sensitive to initialization. After
testing several options in preliminary experiments, some of them not converging, we follow the
recommendation of Hanin et al. [90] to initialize the weights with a truncated normal distribution.

Table 3.9 indicates the hyper-parameters that we use by default at training time for all our
experiments, unless stated otherwise. For distillation we follow the recommendations from Cho
et al. [36] to select the parameters τ and λ. We take the typical values τ = 3.0 and λ = 0.1 for the
usual (soft) distillation.

Data-Augmentation. Compared to models that integrate more priors (such as convolutions),
transformers require a larger amount of data. Thus, in order to train with datasets of the same size,
we rely on extensive data augmentation. We evaluate different types of strong data augmentation,
with the objective to reach a data-efficient training regime.

Auto-Augment [45], Rand-Augment [44], and random erasing [245] improve the results. For
the two latter we use the timm [214] customizations, and after ablation we choose Rand-Augment
instead of AutoAugment. Overall our experiments confirm that transformers require a strong data
augmentation: almost all the data-augmentation methods that we evaluate prove to be useful.
One exception is dropout, which we exclude from our training procedure.

Regularization & Optimizers. We have considered different optimizers and cross-validated
different learning rates and weight decays. Transformers are sensitive to the setting of optimiza-
tion hyper-parameters. Therefore, during cross-validation, we tried 3 different learning rates
(5.10−4, 3.10−4, 5.10−5) and 3 weight decay (0.03, 0.04, 0.05). We scale the learning rate according
to the batch size with the formula: lrscaled = lr

512 × batchsize, similarly to Goyal et al. [85] except
that we use 512 instead of 256 as the base value.

1. The timm implementation already included a training procedure that improved the accuracy of ViT-B from 77.91%
to 79.35% top-1, and trained on Imagenet-1k with a 8xV100 GPU machine.
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none: DeiT-B adamw adamw ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 81.8 ±0.2 83.1 ±0.1

optimizer SGD adamw ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 74.5 77.3
adamw SGD ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 81.8 83.1

data
augmentation

adamw adamw ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 79.6 80.4
adamw adamw ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 81.2 81.9
adamw adamw ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ 78.7 79.8
adamw adamw ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ 80.0 80.6
adamw adamw ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ 75.8 76.7

regularization

adamw adamw ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ 4.3* 0.1
adamw adamw ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ 3.4* 0.1
adamw adamw ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ 76.5 77.4
adamw adamw ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 81.3 83.1
adamw adamw ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ 81.9 83.1

Table 3.8 – Ablation study on training methods on ImageNet [168]. The top row ("none") corresponds to our
default configuration employed for DeiT. The symbols ✓ and ✗ indicates that we use and do not use the
corresponding method, respectively. We report the accuracy scores (%) after the initial training at resolution
224×224, and after fine-tuning at resolution 384×384. The hyper-parameters are fixed according to Table 3.9,
and may be suboptimal.
* indicates that the model did not train well, possibly because hyper-parameters are not adapted.

The best results use the AdamW optimizer with the same learning rates as ViT [61] but with a
much smaller weight decay, as the weight decay reported in the ViT paper hurts the convergence
in our setting.

We have employed stochastic depth [108], which facilitates the convergence of transformers,
especially deep ones [69, 70]. For vision transformers, they were first adopted in the training proce-
dure by Wightman [214]. Regularization like Mixup [242] and Cutmix [237] improve performance.
We also use repeated augmentation [15, 101], which provides a significant boost in performance
and is one of the key ingredients of our proposed training procedure.

Exponential Moving Average (EMA). We evaluate the EMA of our network obtained after
training. There are small gains, which vanish after fine-tuning: the EMA model has an edge of is
0.1 accuracy points, but when fine-tuned the two models reach the same (improved) performance.

Fine-tuning at different resolution. We adopt the fine-tuning procedure from Touvron et
al. [200]: our schedule, regularization and optimization procedure are identical to that of Fix-
EfficientNet but we keep the training-time data augmentation (contrary to the dampened data
augmentation of Touvron et al. [200]). We also interpolate the positional embeddings: In principle
any classical image scaling technique, like bilinear interpolation, could be used. However, a bilinear
interpolation of a vector from its neighbors reduces its ℓ2-norm compared to its neighbors. These
low-norm vectors are not adapted to the pre-trained transformers and we observe a significant
drop in accuracy if we employ use directly without any form of fine-tuning. Therefore we adopt
a bicubic interpolation that approximately preserves the norm of the vectors, before fine-tuning
the network with either AdamW [136] or SGD. These optimizers have a similar performance for
the fine-tuning stage, see Table 3.8.
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Methods ViT-B [61] DeiT-B

Epochs 300 300

Batch size 4096 1024

Optimizer AdamW AdamW
learning rate 0.003 0.0005× batchsize

512
Learning rate decay cosine cosine
Weight decay 0.3 0.05

Warmup epochs 3.4 5

Label smoothing ε ✗ 0.1
Dropout 0.1 ✗
Stoch. Depth ✗ 0.1
Repeated Aug ✗ ✓
Gradient Clip. ✓ ✗

Rand Augment ✗ 9/0.5
Mixup alpha. ✗ 0.8
Cutmix alpha. ✗ 1.0
Erasing prob. ✗ 0.25

Table 3.9 – Ingredients and hyper-parameters for our method and ViT-B.

image throughput ImageNet-1k [168] Real [18] V2 [159]
size (image/s) acc. top-1 acc. top-1 acc. top-1

1602 609.31 79.9 84.8 67.6
2242 291.05 81.8 86.7 71.5
3202 134.13 82.7 87.2 71.9
3842 85.87 83.1 87.7 72.4

Table 3.10 – Performance of DeiT trained at size 2242 for varying finetuning sizes on ImageNet-1k, ImageNet-
Real and ImageNet-v2 matched frequency.

By default and similar to ViT [61] we train DeiT models with at resolution 224 and we fine-
tune at resolution 384. We detail how to do this interpolation in Section 3.2. However, in order to
measure the influence of the resolution we have finetuned DeiT at different resolutions. We report
these results in Table 3.10.

Training time. A typical training of 300 epochs takes 37 hours with 2 nodes or 53 hours on a
single node for the DeiT-B.As a comparison point, a similar training with a RegNetY-16GF [156]
(84M parameters) is 20% slower. DeiT-S and DeiT-Ti are trained in less than 3 days on 4 GPU.
Then, optionally we fine-tune the model at a larger resolution. This takes 20 hours on a single
node (8 GPU) to produce a FixDeiT-B model at resolution 384×384, which corresponds to 25

epochs. Not having to rely on batch-norm allows one to reduce the batch size without impacting
performance, which makes it easier to train larger models. Note that, since we use repeated
augmentation [15, 101] with 3 different augmentation as in Touvron et al. [199], we only see one
third of the images during a single epoch 2.

2. Formally it means that we have 100 epochs, but each is 3x longer because of the repeated augmentations. We prefer
to refer to this as 300 epochs in order to have a direct comparison on the effective training time with and without repeated
augmentation.
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3.5 Going deeper with vision transformers

So far in this chapter, we have introduced DeiT, which are image transformers that do not
require very large amount of data to be trained, thanks to improved training and in particular a
novel distillation procedure.

However, in DeiT works, there is no evidence that depth can bring any benefit when training
on Imagenet only: the deeper ViT architectures have a low performance, while with DeiT we only
considered transformers with 12 blocks of layers. In our early experiments, we observe that Vision
Transformers become increasingly more difficult to train when we scale architectures. Depth is
one of the main source of instability. For instance with our DeiT procedure we fail to properly
converge above 18 layers without adjusting hyper-parameters. Large ViT [61] models with 24 and
32 layers were trained with large training datasets, but when trained on Imagenet only the larger
models are not competitive. In the rest of this chapter, we study more specifically how to train
deeper image transformers.

Residual architectures are prominent in computer vision since the advent of ResNet [94]. They
are defined as a sequence of functions of the form

xl+1 = gl(xl) +Rl(xl), (3.4)

where the function gl and Rl define how the network updates the input xl at layer l. The function
gl is typically the identity, while Rl is the main building block of the network: many variants in the
literature essentially differ on how this residual branch Rl is constructed or parametrized [156, 187,
230]. Residual architectures highlight the strong interplay between optimization and architecture
design. As pointed out by He et al. [94], residual networks do not offer better representational
power. They achieve better performance because they are easier to train: shortly after their seminal
work, He et al. discussed [95] the importance of having a clear path both forward and backward,
and advocate setting gl to the identity function.

The vision transformers [61] instantiate a particular form of residual architecture: after casting
the input image into a set x0 of vectors, the network alternates self-attention layers (SA) with
feed-forward networks (FFN), as

x′l = xl + SA(η(xl))

xl+1 = x′l + FFN(η(x′l)) (3.5)

where η is the LayerNorm operator [7]. This definition follows the original architecture of Vaswani
et al. [204], except the LayerNorm is applied before the block (pre-norm) in the residual branch, as
advocated by He et al. [95]. Child et al. [35] adopt this choice with LayerNorm for training deeper
transformers for various media, including for image generation where they train transformers
with 48 layers.

How to normalize, weigh, or initialize the residual blocks of a residual architecture has received
significant attention both for convolutional neural networks [26, 25, 95, 243] and for transformers
applied to NLP or speech tasks [9, 109, 243]. In Section 3.5.1, we revisit this topic for transformer
architectures solving image classification problems. Examples of approaches closely related to
ours include Fixup [243], T-Fixup [109], ReZero [9] and SkipInit [53].

Following our analysis of the interplay between different initialization, optimization and ar-
chitectural design, we propose an approach that is effective to improve the training of deeper
architecture compared to current methods for image transformers. Formally, we add a learnable
diagonal matrix on output of each residual block, initialized close to (but not at) 0. Adding this
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Figure 3.4 – Normalization strategies for transformer blocks. (a) The ViT image classifier adopts pre-
normalization like Child et al. [35]. (b) ReZero/Skipinit and Fixup remove the η normalization and the
warmup (i.e., a reduced learning rate in the early training stage) and add a learnable scalar initialized
to α= 0 and α= 1, respectively. Fixup additionally introduces biases and modifies the initialization of the
linear layers. Since these methods do not converge with deep vision transformers, (c) we adapt them by
re-introducing the pre-norm η and the warmup. Our main proposal (d) introduces a per-channel weighting
(i.e, multiplication with a diagonal matrix diag(λ1, . . . , λd), where we initialize each weight with a small
value as λi = ε.

simple layer after each residual block improves the training dynamic, allowing us to train deeper
high-capacity image transformers that benefit from depth. We refer to this approach as LayerScale.

3.5.1 Deeper image transformers with LayerScale

Our goal is to increase the stability of the optimization when training transformers for image
classification especially when we increase their depth.

Figure 3.4 depicts the main variants that we compare for helping the optimization. They cover
recent choices from the literature: as discussed in the introduction, the architecture (a) of ViT
and DeiT is a pre-norm architecture [61, 193], in which the layer-normalisation η occurs at the
beginning of the residual branch. Note that the original architecture of Vaswani et al. [204] applies
the normalization after the block, but in our experiments the DeiT training does not converge
with post-normalization.

Fixup [243], ReZero [9] and SkipInit [53] introduce learnable scalar weighting αl on the output
of residual blocks, while removing the pre-normalization and the warmup, see Figure 3.4(b). This
amounts to modifying Eqn. 3.5 as

x′l = xl + αl SA(xl)

xl+1 = x′l + α′
l FFN(x′l). (3.6)

ReZero simply initializes this parameter to α = 0. Fixup initializes this parameter to α = 1 and
makes other modifications: it adopts different policies for the initialization of the block weights,
and adds several weights to the parametrization. In our experiments, these approaches do not
converge even with some adjustment of the hyper-parameters.

Our empirical observation is that removing the warmup and the layer-normalization is what
makes training unstable in Fixup and T-Fixup. Therefore we re-introduce these two ingredients so
that Fixup and T-Fixup converge with DeiT models, see Figure 3.4(c). As we see in the experimental
section, these amended variants of Fixup and T-Fixup are effective, mainly due to the learnable
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parameter αl. When initialized at a small value, this choice does help the convergence when we
increase the depth.

Our proposal LayerScale is a per-channel multiplication of the vector produced by each residual
block, as opposed to a single scalar, see Figure 3.4(d). Our objective is to group the updates of the
weights associated with the same output channel. Formally, LayerScale is a multiplication by a
diagonal matrix on output of each residual block. In other terms, we modify Eqn. 3.5 as

x′l = xl + diag(λl,1, . . . , λl,d)× SA(η(xl))

xl+1 = x′l + diag(λ′l,1, . . . , λ
′
l,d)× FFN(η(x′l)), (3.7)

where the parameters λl,i and λ′l,i are learnable weights. The diagonal values are all initialized
to a fixed small value ε: we set it to ε = 0.1 until depth 18, ε = 10−5 for depth 24 and ε = 10−6

for deeper networks. This formula is akin to other normalization strategies ActNorm [118] or
LayerNorm but executed on output of the residual block. Yet we seek a different effect: ActNorm
is a data-dependent initialization that calibrates activations so that they have zero-mean and unit
variance, like batchnorm [113]. In contrast, we initialize the diagonal with small values so that
the initial contribution of the residual branches to the function implemented by the transformer
is small. In that respect our motivation is therefore closer to that of ReZero [9], SkipInit [53],
Fixup [243] and T-Fixup [109]: to train closer to the identity function and let the network integrate
the additional parameters progressively during the training. LayerScale offers more diversity in the
optimization than just adjusting the whole layer by a single learnable scalar as in ReZero/SkipInit,
Fixup and T-Fixup. As we will show empirically, offering the degrees of freedom to do so per
channel is a decisive advantage of LayerScale over existing approaches. In Section 3.5.3, we present
other variants or intermediate choices that support our proposal, and a control experiment that
aims at disentangling the specific weighting of the branches of LayerScale from its impact on
optimization procedure.

Formally, adding these weights does not change the expressive power of the architecture since
they can be integrated into the previous matrix of the SA and FFN layers without changing the
function implemented by the network.

3.5.2 LayerScale main experiments

Experimental setting. Our implementation is based on the timm library [214]. Unless specified
otherwise, for this analysis we make minimal changes to hyper-parameters compared to our initial
DeiT training scheme. In order to speed up training and optimize memory consumption we have
used a sharded training provided by the Fairscale library 3 with fp16 precision.

In the following, we analyse various ways to stabilize the training with different architectures.
At this stage we consider a Deit-Small model 4 during 300 epochs to allow a direct comparison
with our preliminary results with DeiT training. We measure the performance on the ImageNet-
1k [54, 168] classification dataset as a function of the depth.

Adjusting the drop-rate of stochastic depth. The first step to improve convergence is to adapt
the hyper-parameters that interact the most with depth, in particular Stochastic depth [108]. This
method is already popular in NLP [69, 70] to train deeper architectures. The per-layer drop-rate
depends linearly on the layer depth, but in our experiments this choice does not provide an
advantage compared to the simpler choice of a uniform drop-rate dr. In Table 3.11 we show that

3. https://pypi.org/project/fairscale/
4. https://github.com/facebookresearch/deit

https://pypi.org/project/fairscale/
https://github.com/facebookresearch/deit
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Table 3.11 – Improving convergence at depth on ImageNet-1k. The baseline is DeiT-S with uniform drop
rate of d = 0.05 (same expected drop rate and performance as progressive stochastic depth of 0.1). Several
methods include a fix scalar learnable weight α per layer as in Figure 3.4(c). We have adapted Rezero, Fixup,
T-Fixup, since the original methods do not converge: we have re-introduced the Layer-normalization η and
warmup. We have adapted the drop rate dr for all the methods, including the baseline. The column α = ε
reports the performance when initializing the scalar with the same value as for LayerScale. †: failed before the
end of the training.

depth baseline scalar α weighting LayerScale
dr = 0.05 adjust [dr] Rezero T-Fixup Fixup α = ε

12 79.9 79.9 [0.05] 78.3 79.4 80.7 80.4 80.5
18 80.1 80.7 [0.10] 80.1 81.7 82.0 81.6 81.7
24 78.9† 81.0 [0.20] 80.8 81.5 82.3 81.1 82.4
36 78.9† 81.9 [0.25] 81.6 82.1 82.4 81.6 82.9

the default stochastic depth of DeiT allows us to train up to 18 blocks of SA+FFN. After that
the training becomes unstable. By increasing the drop-rate hyper-parameter dr, the performance
increases until 24 layers. It saturates at 36 layers (we measured that it drops to 80.7% at 48 layers).

Comparison of normalization strategies. We carry out an empirical study of the normalization
methods discussed in Section 3.5.1. As previously indicated, Rezero, Fixup and T-Fixup do not
converge when training DeiT off-the-shelf. However, if we re-introduce LayerNorm 5 and warmup,
Fixup and T-Fixup achieve congervence and even improve training compared to the baseline DeiT.
We report the results for these “adaptations” of Fixup and T-Fixup in Table 3.11.

The modified methods are able to converge with more layers without saturating too early.
ReZero converges, we show (column α = ε) that it is better to initialize α to a small value
instead of 0, as in LayerScale. All the methods have a beneficial effect on convergence and they
tend to reduce the need for stochastic depth, therefore we adjust these drop rate accordingly per
method. Figure 3.5 provides the performance as the function of the drop rate dr for LayerScale. We
empirically use the following formula to set up the drop-rate for the CaiT-S models derived from
Deit-S: dr =min(0.1 × depth

12 − 1, 0).This formulaic choice avoids cross-validating this parameter
and overfitting, yet it does not generalize to models with different d: We further increase (resp.
decrease) it by a constant for larger (resp. smaller) working dimensionality d.

Fixup and T-Fixup are competitive with LayerScale in the regime of a relatively low number
of blocks (12–18). However, they are more complex than LayerScale: they employ different initial-
ization rules depending of the type of layers, and they require more changes to the transformer
architecture. Therefore we only use LayerScale in subsequent experiments. It is much simpler and
parametrized by a single hyper-parameter ε, and it offers a better performance for the deepest
models that we consider, which are also the more accurate.

3.5.3 Layerscale: Analysis and variations.

Statistics of branch weighting. We evaluate the impact of Layerscale for a 36-blocks transformer
by measuring the ratio between the norm of the residual activations and the norm of the activations
of the main branch ∥gl(x)∥2/∥x∥2. The results are shown in Figure 3.6. We can see that training a
model with Layerscale makes this ratio more uniform across layers, and seems to prevent some
layers from having a disproportionate impact on the activations. Similar to prior works [9, 243] we

5. Bachlechner et al. report that batchnorm is complementary to ReZero, while removing LayerNorm in the case of
transformers.
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Figure 3.5 – We measure the impact of stochastic depth on ImageNet with a DeiT-S with LayerScale for
different depths. The drop rate of stochastic depth needs to be adapted to the network depth.

Table 3.12 – Performance when increasing the depth. We compare different strategies and report the top-1
accuracy (%) on ImageNet-1k for the DeiT training (Baseline) with and without adapting the stochastic depth
rate dr (uniform drop-rate), and a modified version of Rezero with LayerNorm and warmup. We compare
different initialisation of the diagonal matrix for LayerScale. We also report results with 0 initialization,
Uniform initialisation and small constant initialisation. Except for the baseline dr = 0.1, we have adapted
the stochastic depth rate dr .

depth baseline baseline ReZero LayerScale [ε]
dr = 0.1 [dr] α = 0 λi = 0 λi = U [0, 2ε] λi = ε

12 79.9 79.9 [0.05] 78.3 79.7 80.2 [0.1] 80.5 [0.1]
18 80.1 80.7 [0.10] 80.1 81.5 80.8 [0.1] 81.7 [0.1]
24 78.9† 81.0 [0.20] 80.8 82.1 82.1 [10−5] 82.4 [10−5]
36 78.9† 81.9 [0.25] 81.6 82.7 82.6 [10−6] 82.9 [10−6]

hypothetize that the benefit is mostly the impact on optimization. This hypothesis is supported
by the control experiment that we detail in section 3.5.3.

Variations on LayerScale init. For the sake of simplicity and to avoid overfitting per model, we
have chosen to do a constant initialization with small values depending on the model depth. In
order to give additional insight on the importance of this initialization we compare in Table 3.12

other possible choices.

LayerScale with 0 init. We initialize all coefficients of LayerScale to 0. This resembles Rezero, but
in this case we have distinct learnable parameters for each channel. We make two observations.
First, this choice, which also starts with residual branches that output 0 the beginning of the
training, gives a clear boost compared to the block-wise scaling done by our adapted ReZero.
This confirms the advantage of introducing a learnable parameter per channel and not only per
residual layer. Second, LayerScale is better: it is best to initialize to a small ε different from zero.

Random init. We have tested a version in which we try a different initial weight per channel, but
with the same average contribution of each residual block as in LayerScale. For this purpose we
initialize the channel-scaling values with the Uniform law (U [0, 2ε]). This simple choice ensures
that the expectation of the scaling factor is equal to the value of the classical initialization of
LayerScale. This choice is overall comparable to the initialization to 0 of the diagonal, and inferior
to LayerScale.
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Figure 3.6 – Analysis of the contribution of the residual branches (Top: Self-attention ; Bottom: FFN) for a
network comprising 36 layers, without (red) or with (blue) Layerscale. The ratio between the norm of the
residual and the norm of the main branch is shown for each layer of the transformer and for various epochs
(darker shades correspond to the last epochs). For the model trained with layerscale, the norm of the residual
branch is on average 20% of the norm of the main branch. We observe that the contribution of the residual
blocks fluctuates more for the model trained without layerscale and in particular is lower for some of the
deeper layers.

Re-training. LayerScale makes it possible to get increased performance by training deeper mod-
els. At the end of training we obtain a specific set of scaling factors for each layer. Inspired by the
lottery ticket hypothesis [75], one question that arises is whether what matters is to have the right
scaling factors, or to include these learnable weights in the optimization procedure. In other terms,
what happens if we re-train the model with the scaling factors obtained by a previous training?

In this experiment below, we try to empirically answer that question. We compare the per-
formance (top-1 validation accuracy, %) on ImageNet-1k with DeiT-S architectures of different
depths. Everything being identical otherwise, in the first experiment we use LayerScale, i.e. we
have learnable weights initialized at a small value ε. In the control experiment we use fixed scaling
factors initialised at values obtained by the LayerScale training.

Depth→ 12 18 24 36

LayerScale 80.5 81.7 82.4 82.9
Re-trained with fixed weights 80.6 81.5 81.2 81.6
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We can see that the control training with fixed weights also converges, but it is only slightly
better than the baseline with adjusted stochastic depth drop-rate dr. Nevertheless, the results are
lower than those obtained with the learnable weighting factors. This suggests that the evolution
of the parameters during training has a beneficial effect on the deepest models.

3.6 Specializing layers for class attention

In this section, we introduce the CaiT architecture, depicted in Figure 3.7 (right). This design
aims at circumventing one of the problems of the ViT architecture: the learned weights are asked
to optimize two contradictory objectives: (1) guiding the self-attention between patches while (2)
summarizing the information useful to the linear classifier. Our proposal is to explicitly separate
the two stages, in the spirit of an encoder-decoder architecture, see Section 3.1.

Later class token. As an intermediate step towards our proposal, we insert the so-called class
token, denoted by CLS, later in the transformer. This choice eliminates the discrepancy on the
first layers of the transformer, which are therefore fully employed for performing self-attention
between patches only. As a baseline that does not suffer from the contradictory objectives, we also
consider average pooling of all the patches on output of the transformers, as typically employed
in convolutional architectures.

3.6.1 CaiT: A simple encoder-decoder for image classification

Our CaiT network consists of two distinct processing stages visible in Figure 3.7:

1. The self-attention stage is identical to the one used in Vision transformer, but with no class
embedding (CLS).

2. The class-attention stage is a set of layers that compiles the set of patch embeddings into a
class embedding CLS that is subsequently fed to a linear classifier.

This class-attention alternates in turn a layer that we refer to as a multi-head class-attention
(CA), and a FFN layer. In this stage, only the class embedding is updated. Similar to the one fed
in ViT and DeiT on input of the transformer, it is a learnable vector. The main difference is that, in
our architecture, we do not copy information from the class embedding to the patch embeddings
during the forward pass. Only the class embedding is updated by residual in the CA and FFN
processing of the class-attention stage.

Multi-head class attention. The role of the CA layer is to extract the information from the set
of processed patches. It is identical to a SA layer, except that it relies on the attention between (i)
the class embedding xclass (initialized at CLS in the first CA) and (ii) itself plus the set of frozen
patch embeddings xpatches. We discuss why we include xclass in the keys in Section 3.6.3.

Considering a network with h heads and p patches, and denoting by d the embedding size,
we parametrize the multi-head class-attention with several projection matrices, Wq,Wk,Wv,Wo ∈
Rd×d, and the corresponding biases bq, bk, bv, bo ∈ Rd. With this notation, the computation of
the CA residual block proceeds as follows. We first augment the patch embeddings (in matrix
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Figure 3.7 – In the ViT transformer (left), the class embedding (CLS) is inserted along with the patch
embeddings. This choice is detrimental, as the same weights are used for two different purposes: helping
the attention process, and preparing the vector to be fed to the classifier. We put this problem in evidence by
showing that inserting CLS later improves performance (middle). In the CaiT architecture (right), we further
propose to freeze the patch embeddings when inserting CLS to save compute, so that the last part of the
network (typically 2 layers) is fully devoted to summarizing the information to be fed to the linear classifier.

form) as z = [xclass, xpatches] (see Section 3.6.3 for results when z = xpatches). We then perform the
projections as follows:

Q =Wq xclass + bq, (3.8)

K =Wk z + bk, (3.9)

V =Wv z + bv. (3.10)

The class-attention weights are given by

Attention(Q,K) = Softmax(Q.KT /
√
d/h ) (3.11)

where Q.KT ∈ Rh×1×p. This attention is involved in the weighted sum Attention(Q,K) × V to
produce the residual output vector

outCA =Wo Attention(Q,K)V + bo, (3.12)

which is in turn added to xclass for subsequent processing.

The CA layers extract the useful information from the patches embedding to the class embed-
ding. In preliminary experiments, we empirically observed that the first CA and FFN give the
main boost, and a set of 2 blocks of layers (2 CA and 2 FFN) is sufficient to cap the performance.
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Table 3.13 – Variations on CLS with Deit-Small (no LayerScale): we change the layer at which the class
embedding is inserted. In ViT and DeiT, it is inserted at layer 0 jointly with the projected patches. We
evaluate a late insertion of the CLS, as well as our design choice to introduce specific class-attention layers.

depth: SA+CA insertion layer top-1 acc. #params FLOPs

Baselines: DeiT-S and average pooling

12: 12 + 0 0 79.9 22M 4.6B
12: 12 + 0 n/a 80.3 22M 4.6B

Late insertion of class embedding

12: 12 + 0 2 80.0 22M 4.6B
12: 12 + 0 4 80.0 22M 4.6B
12: 12 + 0 8 80.0 22M 4.6B
12: 12 + 0 10 80.5 22M 4.6B
12: 12 + 0 11 80.3 22M 4.6B

DeiT-S with class-attention stage (SA+FFN)

12: 9 + 3 9 79.6 22M 3.6B
12: 10 + 2 10 80.3 22M 4.0B
12: 11 + 1 11 80.6 22M 4.3B

13: 12 + 1 12 80.8 24M 4.7B
14: 12 + 2 12 80.8 26M 4.7B
15: 12 + 3 12 80.6 27M 4.8B

In the experimental section, we denote by 12+2 a transformer when it consists of 12 blocks of
SA+FFN layers and 2 blocks of CA+FFN layers.

Complexity. The layers contain the same number of parameters in the class-attention and self-
attention stages: CA is identical to SA in that respect, and we use the same parametrization for
the FFNs. However the processing of these layers is much faster: the FFN only layers processes
matrix-vector multiplications.

The CA function is also less expensive than SA in term of memory and computation because it
computes the attention between the class vector and the set of patch embeddings: Q ∈ Rd means
that Q.KT ∈ Rh×1×p. In contrast, in the “regular self-attention” layers SA, we have Q ∈ Rp×d

and therefore Q.KT ∈ Rh×p×p. In other words, the initially quadratic complexity in the number
of patches becomes linear in our extra CaiT layers.

3.6.2 Preliminary analysis with late insertion and class-attention layers

In Table 3.13 we study the impact on performance of the design choices related to class
embedding. We depict some of them in Figure 3.7. As a baseline, average pooling of patches
embeddings with a vanilla DeiT-Small achieves a better performance than using a class token.
This choice, which does not employ any class embedding, is typical in convolutional networks,
but possibly weaker with transformers when transferring to other tasks [65].

Late insertion. The performance increases when we insert the class embedding later in the
transformer. It is maximized two layers before the output. Our interpretation is that the attention
process is less perturbed in the 10 first layers, yet it is best to keep 2 layers for compiling the
patches embedding into the class embedding via class-attention, otherwise the processing gets
closer to a weighted average.
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Table 3.14 – CaiT models with and without distillation token. All these models are trained with the same
setting during 400 epochs.

Distillation token
Model ✗ ✓

XXS-24Υ 78.4 78.5
M-24Υ 84.8 84.7

Our class-attention layers are designed on the assumption that there is no benefit in copying
information from the class embedding back to the patch embeddings in the forward pass. Ta-
ble 3.13 supports that hypothesis: if we compare the performance for a total number of layers
fixed to 12, the performance of CaiT with 10 SA and 2 CA layers is identical to average pooling
and better than the DeiT-Small baseline with a lower number of FLOPs. If we set 12 layers in the
self-attention stage, which dominates the complexity, we increase the performance significantly
by adding two blocks of CA+FFN.

3.6.3 Ablation: Design of the class-attention stage

In this subsection we report some results obtained when considering alternative choices for
the class-attention stage.

Not including class embedding in keys of class-attention. In our approach we chose to insert
the class embedding in the class-attention: By defining

z = [xclass, xpatches], (3.13)

we include xclass in the keys and therefore the class-attention includes attention on the class
embedding itself in Eqn. 3.9 and Eqn. 3.10. This is not a requirement as we could simply use a
pure cross-attention between the class embedding and the set of frozen patches.

If we do not include the class token in the keys of the class-attention layers, i.e., if we define
z = xpatches, we reach 83.31% (top-1 acc. on ImageNet1k-val) with CaiT-S-36, versus 83.44% for
the choice adopted by default in the chapter. This difference of +0.13% is likely not significant,
therefore either choice is reasonable. In order to be more consistent with the self-attention layer
SA, in the sense that each query has its key counterpart, we have kept the class embedding in the
keys of the CA layers as stated in this chapter.

Remove LayerScale in Class-Attention. If we remove LayerScale in the Class-Attention blocks in
the CaiT-S-36 model, we obtain a top-1 accuracy of 83.36% on ImageNet1k-val, versus 83.44% with
LayerScale. The difference of +0.08% is not significant enough to conclude on a clear advantage.
For the sake of consistency we have used LayerScale after all residual blocks of the network.

Distillation with class-attention. We report results with hard distillation, which in essence
replaces the label by the average of the label and the prediction of the teacher output. This is the
choice we adopted in our main experiments, since it provides better performance than traditional
distillation as shown earlier in this chapter.

In Table 3.14 we report the results obtained when inserting a distillation token at the same
layer as the class token, i.e., on input of the class-attention stage. In this case we do not observe
an advantage of this choice over hard distillation when using class-attention layers. Therefore we
have only considered the hard distillation.
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Table 3.15 – CaiT models: The design parameters are depth and d. The mem columns correspond to the
memory usage. All models are initially trained at resolution 224 during 400 epochs. We also fine-tune these
models at resolution 384 (identified by ↑384) or train them with distillation (Υ). The FLOPs are reported for
each resolution.

CAIT depth d #params FLOPs (×109) Top-1 acc. (%): Imagenet1k-val
model (SA+CA) (×106) @224 @384 @224 ↑384 @224Υ ↑384Υ

XXS-24 24 + 2 192 12.0 2.5 9.5 77.6 80.4 78.4 80.9
XXS-36 36 + 2 192 17.3 3.8 14.2 79.1 81.8 79.7 82.2

XS-24 24 + 2 288 26.6 5.4 19.3 81.8 83.8 82.0 84.1
XS-36 36 + 2 288 38.6 8.1 28.8 82.6 84.3 82.9 84.8

S-24 24 + 2 384 46.9 9.4 32.2 82.7 84.3 83.5 85.1
S-36 36 + 2 384 68.2 13.9 48.0 83.3 85.0 84.0 85.4
S-48 48 + 2 384 89.5 18.6 63.8 83.5 85.1 83.9 85.3

M-24 24 + 2 768 185.9 36.0 116.1 83.4 84.5 84.7 85.8
M-36 36 + 2 768 270.9 53.7 173.3 83.8 84.9 85.1 86.1

Table 3.16 – Hyper-parameters for training CaiT models: The only parameters that we adjust per model are
the drop rate dr of stochastic depth and the LayerScale initialization ε.

CAIT model XXS-24 XXS-36 XS-24 XS-36 S-24 S-36 S-48 M-24 M-36 M-48

hparams dr 0.05 0.1 0.05 0.1 0.1 0.2 0.3 0.2 0.3 0.4
ε 10

−5
10

−6
10

−5
10

−6
10

−5
10

−6
10

−6
10

−5
10

−6
10

−6

3.7 Our CaiT models

In this section, we report our experimental results related to CaiT with our DeiT training. We
present our models in Subsection 3.7. Section 3.7.1 details our results on ImageNet and Transfer
learning. We provide an ablation of hyper-parameter and ingredients in Section 3.7.2.

Our CaiT models are built upon ViT: the only difference is that we incorporate LayerScale
in each residual block (see Section 3.5.1) and the two-stages architecture with class-attention
layers described in Section 3.6. Table 3.15 describes our different models. The design parameters
governing the capacity are the depth and the working dimensionality d. In our case d is related
to the number of heads h as d = 48 × h, since we fix the number of components per head to
48. This choice is a bit smaller than the value used in DeiT. We also adopt the crop-ratio of 1.0
optimized for DeiT by Wightman [214]. Table 3.21 and 3.22 in the ablation section 3.7.2 support
these choices.

We incorporate talking-heads attention [173] into our model. It increases the performance on
ImageNet of DeiT-Small from 79.9% to 80.3%.

The hyper-parameters are identical to those provided in DeiT [193], except mentioned otherwise.
We use a batch size of 1024 samples and train during 400 epochs with repeated augmentation [15,
101]. The learning rate of the AdamW optimizer [136] is set to 0.001 and associated with a cosine
training schedule, 5 epochs of warmup and a weight decay of 0.05. We report in Table 3.16 the
two hyper-parameters that we modify depending on the model complexity, namely the drop rate
dr associated with uniform stochastic depth, and the initialization value ε of LayerScale.

Fine-tuning at higher resolution (↑) and distillation (Υ). We train all our models at resolution
224, and optionally fine-tune them at a higher resolution to trade performance against accuracy [61,
193, 199]: we denote the model by ↑384 models fine-tuned at resolution 384×384. We also train
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models with distillation (Υ) as suggested by Touvron et al.. [193]. We use a RegNet-16GF [156] as
teacher and adopt the “hard distillation” [193] for its simplicity.

3.7.1 Results

3.7.1.1 Performance/complexity of CaiT models

Table 3.15 provides different complexity measures for our models. As a general observation, we
observe a subtle interplay between the width and the depth, both contribute to the performance
as reported by Dosovitskiy et al.. [61] with longer training schedules. But if one parameter is too
small the gain brought by increasing the other is not worth the additional complexity.

Fine-tuning to size 384 (↑) systematically offers a large boost in performance without changing
the number of parameters. It also comes with a higher computational cost. In contrast, leveraging
a pre-trained convnet teacher with hard distillation as suggested by Touvron et al. [193] provides
a boost in accuracy without affecting the number of parameters nor the speed.

3.7.1.2 Comparison with the state of the art on ImageNet

Our main classification experiments are carried out on ImageNet [168], and also evaluated
on two variations of this dataset: ImageNet-Real [18] that corrects and give a more detailed
annotation, and ImageNet-V2 [159] (matched frequency) that provides a separate test set. In
Table 3.17 we compare some of our models with the state of the art on ImageNet classification
when training without external data. We focus on the models CaiT-S36 and CaiT-M36, at different
resolutions and with or without distillation.

On ImageNet-1k val, CaiT-M48↑448Υ achieves 86.5% of top-1 accuracy, which is a significant
improvement over DeiT (85.2%). It is the state of the art, on par with a recent concurrent work
[25] that has a significantly higher number of FLOPs. Our approach outperforms the state of the
art on ImageNet with reassessed labels, and on ImageNet-V2, which has a distinct validation set
which makes it harder to overfit.

3.7.1.3 Transfer learning

We evaluated our method on transfer learning tasks by fine-tuning on the datasets in Table 3.18.

Fine-tuning procedure. For fine-tuning we use the same hyperparameters as for training. We
only decrease the learning rates by a factor 10 (for CARS, Flowers, iNaturalist), 100 (for CIFAR-
100, CIFAR-10) and adapt the number of epochs (1000 for CIFAR-100, CIFAR-10, Flowers-102 and
Cars-196, 360 for iNaturalist 2018 and 2019). We have not used distillation for this finetuning.

Results. Table 3.19 compares CaiT transfer learning results to those of EfficientNet [187], ViT [61]
and DeiT [193]. These results show the excellent generalization of the transformers-based models
in general. Our CaiT models achieve excellent results, as shown by the overall better performance
than EfficientNet-B7 across datasets.

3.7.2 Ablation and visualization

In this section we provide different sets of ablation, in the form of a transition from DeiT
to CaiT. Then we provide experiments that have guided our hyper-parameter optimization. As



62 vision transformers

Table 3.17 – Complexity vs accuracy on ImageNet [168], ImageNet Real [18] and ImageNet V2 matched
frequency [159] for models trained without external data. We compare CaiT with DeiT [193], Vit-B [61],
TNT [89], T2T [235] and to several state-of-the-art convnets: Regnet [156] improved by Touvron et al. [193],
EfficientNet [44, 187, 226], Fix-EfficientNet [200] and NFNets [25]. Most reported results are from correspond-
ing papers, and therefore the training procedure differs for the different models. For ImageNet V2 matched
frequency and ImageNet Real we report the results provided by the authors. When not available (like NFNet),
we report the results measured by Wightman [214] with converted models, which may be suboptimal. The
RegNetY-16GF is the teacher model that we trained for distillation. We report the best result in bold and the
second best result(s) underlined.

nb of nb of image size ImNet Real V2

Network param. FLOPs train test top-1 top-1 top-1

RegNetY-16GF 84M 16.0B 224 224 82.9 88.1 72.4

EfficientNet-B5 30M 9.9B 456 456 83.6 88.3 73.6
EfficientNet-B7 66M 37.0B 600 600 84.3 _ _

EfficientNet-B5 RA 30M 9.9B 456 456 83.7 _ _
EfficientNet-B7 RA 66M 37.0B 600 600 84.7 _ _

EfficientNet-B7 AdvProp 66M 37.0B 600 600 85.2 89.4 76.0

Fix-EfficientNet-B8 87M 89.5B 672 800 85.7 90.0 75.9

NFNet-F0 72M 12.4B 192 256 83.6 88.1 72.6
NFNet-F1 133M 35.5B 224 320 84.7 88.9 74.4
NFNet-F2 194M 62.6B 256 352 85.1 88.9 74.3
NFNet-F3 255M 114.8B 320 416 85.7 89.4 75.2
NFNet-F4 316M 215.3B 384 512 85.9 89.4 75.2
NFNet-F5 377M 289.8B 416 544 86.0 89.2 74.6
NFNet-F6+SAM 438M 377.3B 448 576 86.5 89.9 75.8

Transformers

ViT-B/16 86M 55.4B 224 384 77.9 83.6 _
ViT-L/16 307M 190.7B 224 384 76.5 82.2 _

T2T-ViT t-14 21M 5.2B 224 224 80.7 _ _

TNT-S 24M 5.2B 224 224 81.3 _ _
TNT-S + SE 25M 5.2B 224 224 81.6 _ _
TNT-B 66M 14.1B 224 224 82.8 _ _

DeiT-S 22M 4.6B 224 224 79.8 85.7 68.5
DeiT-B 86M 17.5B 224 224 81.8 86.7 71.5
DeiT-B↑384 86M 55.4B 224 384 83.1 87.7 72.4
DeiT-B↑384Υ 1000 epochs 87M 55.5B 224 384 85.2 89.3 75.2

Our deep transformers

CaiT-S36 68M 13.9B 224 224 83.3 88.0 72.5
CaiT-S36↑384 68M 48.0B 224 384 85.0 89.2 75.0
CaiT-S48↑384 89M 63.8B 224 384 85.1 89.5 75.5

CaiT-S36Υ 68M 13.9B 224 224 84.0 88.9 74.1
CaiT-S36↑384Υ 68M 48.0B 224 384 85.4 89.8 76.2
CaiT-M36↑384Υ 271M 173.3B 224 384 86.1 90.0 76.3
CaiT-M36↑448Υ 271M 247.8B 224 448 86.3 90.2 76.7
CaiT-M48↑448Υ 356M 329.6B 224 448 86.5 90.2 76.9
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Figure 3.8 – We represent FLOPs and parameters for our best CaiT ↑384 and ↑448Υ models trained with
distillation. They are competitive on ImageNet-1k-val with the sota in the high accuracy regime, from XS-24

to M-48. Convolution-based neural networks like NFNets and EfficientNet are better in low-FLOPS and
low-parameters regimes.

Table 3.18 – Datasets used for our different tasks.

Dataset Train size Test size #classes

ImageNet [168] 1,281,167 50,000 1000

iNaturalist 2018 [104] 437,513 24,426 8,142

iNaturalist 2019 [103] 265,240 3,003 1,010

Flowers-102 [144] 2,040 6,149 102

Stanford Cars [121] 8,144 8,041 196

CIFAR-100 [124] 50,000 10,000 100

CIFAR-10 [124] 50,000 10,000 10

mentioned, we use the same hyperparameters as in DeiT [193] everywhere except stated otherwise.
We have only changed the number of attention for a given working dimension (see Section 3.7.2.2),
and changed the crop-ratio (see Section 3.7.2.3).

3.7.2.1 Step by step from DeiT-Small to CaiT-S36

In Table 3.20 we present how to gradually transform the Deit-S [193] architecture into CaiT-36,
and measure at each step the performance/complexity changes. One can see that CaiT is comple-
mentary with LayerScale and offers an improvement without significantly increasing the FLOPs.
As already reported in the literature, the resolution is another important step for improving the
performance and fine-tuning instead of training the model from scratch saves a lot of computation
at training time. Last but not least, our models benefit from longer training schedules.

3.7.2.2 Optimization of the number of heads

In Table 3.21 we study the impact of the number of heads for a fixed working dimensionality.
This architectural parameter has an impact on both the accuracy, and the efficiency: while the
number of FLOPs remain roughly the same, the compute is more fragmented when increasing this
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Table 3.19 – Results in transfer learning. All models are trained and evaluated at resolution 224 and with a
crop-ratio of 0.875 in this comparison (see Table 3.22 for the comparison of crop-ratio on ImageNet).
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EfficientNet-B7 84.3 98.9 91.7 98.8 94.7 _ _ 37.0B

ViT-B/16 77.9 98.1 87.1 89.5 _ _ _ 55.5B
ViT-L/16 76.5 97.9 86.4 89.7 _ _ _ 190.7B

Deit-B 224 81.8 99.1 90.8 98.4 92.1 73.2 77.7 17.5B

CaiT-S-36 224 83.4 99.2 92.2 98.8 93.5 77.1 80.6 13.9B
CaiT-M-36 224 83.7 99.3 93.3 99.0 93.5 76.9 81.7 53.7B

CaiT-S-36 Υ 224 83.7 99.2 92.2 99.0 94.1 77.0 81.4 13.9B
CaiT-M-36 Υ 224 84.8 99.4 93.1 99.1 94.2 78.0 81.8 53.7B

Table 3.20 – Ablation: we present the ablation path from DeiT-S to our CaiT models. We highlight the
complementarity of our approaches and optimized hyper-parameters. Note, Fine-tuning at higher resolution
supersedes the inference at higher resolution. See Table 3.11 for adapting stochastic depth before adding
LayerScale. †: training failed.

Improvement top-1 acc. #params FLOPs

DeiT-S [d=384,300 epochs] 79.9 22M 4.6B

+ More heads [8] 80.0 22M 4.6B
+ Talking-heads 80.5 22M 4.6B
+ Depth [36 blocks] 69.9† 64M 13.8B
+ Layer-scale [init ε = 10−6] 80.5 64M 13.8B
+ Stch depth. adaptation [dr=0.2] 83.0 64M 13.8B
+ CaiT architecture [specialized class-attention layers] 83.2 68M 13.9B
+ Longer training [400 epochs] 83.4 68M 13.9B
+ Inference at higher resolution [256] 83.8 68M 18.6B
+ Fine-tuning at higher resolution [384] 84.8 68M 48.0B
+ Hard distillation [teacher: RegNetY-16GF] 85.2 68M 48.0B
+ Adjust crop ratio [0.875→ 1.0] 85.4 68M 48.0B
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Table 3.21 – Deit-Small: for a fixed 384 working dimensionality and number of parameters, impact of the
number of heads on the accuracy and throughput (images processed per second at inference time on a singe
V100 GPU).

# heads dim/head throughput (im/s) GFLOPs top-1 acc.

1 384 1079 4.6 76.80

2 192 1056 4.6 78.06

3 128 1043 4.6 79.35

6 64 989 4.6 79.90

8 48 971 4.6 80.02

12 32 927 4.6 80.08

16 24 860 4.6 80.04

24 16 763 4.6 79.60

Table 3.22 – We compare performance with the defaut crop-ratio of 0.875 usually used with convnets, and
the crop-ratio of 1.0 [214] that we adopt for CaiT.

Network Crop Ratio ImNet Real V2

0.875 1.0 top-1 top-1 top-1

S36
✓ _ 83.4 88.1 73.0
_ ✓ 83.3 88.0 72.5

S36↑384
✓ _ 84.8 88.9 74.7
_ ✓ 85.0 89.2 75.0

S36Υ
✓ _ 83.7 88.9 74.1
_ ✓ 84.0 88.9 74.1

M36Υ
✓ _ 84.8 89.2 74.9
_ ✓ 84.9 89.2 75.0

S36↑384Υ
✓ _ 85.2 89.7 75.7
_ ✓ 85.4 89.8 76.2

M36↑384Υ
✓ _ 85.9 89.9 76.1
_ ✓ 86.1 90.0 76.3

number of heads and on typical hardware this leads to a lower effective throughput. Choosing 8

heads in the self-attention offers a good compromise between accuracy and speed. In Deit-Small,
this parameter was set to 6.

3.7.2.3 Adaptation of the crop-ratio

In the typical (“center-crop”) evaluation setting, most convolutional neural networks crop a
subimage with a given ratio, typically extracting a 224× 224 center crop from a 256× 256 resized
image, leading to the typical ratio of 0.875. Wightman et al. [214] notice that setting this crop
ratio to 1.0 for transformer models has a positive impact: the distilled DeiT-B↑ 384 reaches a
top1-accuracy on ImageNet-1k val of 85.42% in this setting, which is a gain of +0.2% compared
to the accuracy of 85.2% reported with DeiT in Table 3.5.

Our measurements concur with this observation: We observe a gain for almost all our models
and most of the evaluation benchmarks. For instance our model M36↑384Υ increases to 86.1%
top-1 accuracy on ImageNet-1k val.



66 vision transformers

3.7.2.4 Longer training schedules

As shown in Table 3.20 , increasing the number of training epochs from 300 to 400 improves
the performance of CaiT-S-36. However, increasing the number of training epochs from 400 to 500

does not change performance significantly (83.44 with 400 epochs 83.42 with 500 epochs). This is
consistent with the observation of DeiT, which notes a saturation of performance from 400 epochs
for the models trained without distillation.

3.7.2.5 Visualizations

Attention map In Figure 3.9 we show the attention maps associated with the individual 4 heads
of a XXS CaiT model, and for the two layers of class-attention. In CaiT and in contrast to ViT, the
class-attention stage is the only one where there is some interaction between the class token and
the patches, therefore it conveniently concentrates all the spatial-class relationship. We make two
observations:

• The first class-attention layer clearly focuses on the object of interest, corresponding to the
main part of the image on which the classification decision is performed (either correct or
incorrect). In this layer, the different heads focus either on the same or on complementary
parts of the objects. This is especially visible for the waterfall image;

• The second class-attention layer seems to focus more on the context, or at least the image
more globally.

Illustration of saliency in class-attention In figure 3.10 we provide more vizualisations for a XXS
model. They are just illustration of the saliency that one may extract from the first class-attention
layer. As discussed previously this layer is the one that, empirically, is the most related to the
object of interest. To produce these visual representations we simply average the attention maps
from the different heads (depicted in Figure 3.9), and upsample the resulting map to the image
size. We then modulate the gray-level image with the strength of the attention after normalizing
it with a simple rule of the form (x − xmin)/(xmax − xmin). We display the resulting image with
cividis colormap.

For each image we show this saliency map and provides all the class for which the model
assigns a probability higher than 10%. These visualizations illustrate how the model can focus on
two distinct regions (like racket and tennis ball on the top row/center). We can also observe some
failure cases, like the top of the church classified as a flagpole.
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Head 1 ↓ Head 2 ↓ Head 3 ↓ Head 4 ↓

Figure 3.9 – Visualization of the attention maps in the class-attention stage, obtained with a XXS model. For
each image we present two rows: the top row correspond to the four heads of the attention maps associated
with the first CA layer. The bottom row correspond to the four heads of the second CA layer.
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fountain (57%)

American alligator (77%)
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barbershop (84%)

soap dispenser (40%), lavabo (39%)

70 % volcano

racket (73%), tennis ball (10%)

golf ball (71%)

African elephant (57%), water buffalo (15%)

viaduct (87%)

baboon (22%), black bear (17%), hyena (16%)

convertible (27%), taxi (15%), sport car (12%), wagon (11%)

catamaran (61%)

barrow (50%), plow (26%)

monarch butterfly (80%)

minibus (21%), recreational vehicle (18%)

cup (43%), notebook computer (19%)

airliner (83%)

lakeside (24%), coral fungus (16%), coral reef (10%)

plate (50%), carbonara (18%)

flagpole (14%), dam (11%)

television (69%)

Figure 3.10 – Illustration of the regions of focus of a CaiT-XXS model, according to the response of the first
class-attention layer.
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3.8 Conclusion

In this chapter, we have shown how to train transformer-based image classification neural
networks with Imagenet-1k data only. With our Data-efficient image Transformers (DeiT), we
report large improvements over previous results, see Figure 3.3. Our ablation study details the
hyper-parameters and key ingredients for a successful training, such as repeated augmentation.
We show that our neural networks that contain no convolutional layer can achieve competitive
results against the state of the art on ImageNet with no external data. They are learned on a
single node with 4 GPUs in three days (we can accelerate the learning of the larger model DeiT-B
by training it on 8 GPUs in two days). Our two new models DeiT-S and DeiT-Ti have fewer
parameters and can be seen as the counterpart of ResNet-50 and ResNet-18.

We address another question: how to distill these models? We introduce a token-based strategy,
specific to transformers and denoted by DeiTΥ, and show that it advantageously replaces the usual
distillation procedure. Interestingly, with our distillation, image transformers learn more from a
convnet than from another transformer with comparable performance.

We propose LayerScale that significantly facilitates the convergence and improves the accuracy
of image transformers at larger depths. It adds a few thousands of parameters to the network
at training time (negligible w.r.t. the total number of weights). Our specific class-attention de-
sign offers a more effective processing of the class embedding. In addition, this simplifies the
visualisation of attention maps.

After studying the transformers architecture for computer vision we will try to understand
the importance of attention in the next chapter.
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As shown in the chapter 3, the transformer architecture [204], adapted from its original use
in natural language processing with only minor changes, has achieved performance competitive
with the state of the art on ImageNet-1k [168] when pre-trained with a sufficiently large amount
of data [61]. Retrospectively, this achievement is another step towards learning visual features
with less priors: Convolutional Neural Networks (CNN) had replaced the hand-designed choices
from hard-wired features with flexible and trainable architectures. Vision transformers further
remove several hard decisions encoded in the convolutional architectures, namely the translation
invariance and local connectivity.

This evolution toward less hard-coded priors in the architecture has been fueled by better train-
ing schemes [61, 193]. In this chapter, we push this trend further forward by showing that a purely
multi-layer perceptron (MLP) architecture, called Residual Multi-Layer Perceptrons (ResMLP), is
competitive on image classification. ResMLP is designed to be simple and encoding little prior
knowledge about images: it takes image patches as input, projects them with a linear layer, and
sequentially updates their representations with two residual operations: (i) a cross-patch linear
layer applied to all channels independently; and (ii) a cross-channel single-layer MLP applied inde-
pendently to all patches. At the end of the network, the patch representations are average pooled,
and fed to a linear classifier.

The ResMLP architecture is strongly inspired by the vision transformers (ViT) [61], yet it is
much simpler in several ways: we replace the self-attention sublayer by a linear layer, resulting in
an architecture with only linear layers and GELU non-linearity [98]. We observe that the training of
ResMLP is more stable than ViTs when using the same training scheme as in Chapter 3, removing
the need for batch-specific or cross-channel normalizations such as BatchNorm, GroupNorm or
LayerNorm. We speculate that this stability comes from replacing self-attention with linear layers.
Finally, another advantage of using a linear layer is that we can still visualize the interactions
between patch embeddings, revealing filters that are similar to convolutions on the lower layers,
and longer range in the last layers.

We further investigate if our purely MLP based architecture could benefit to other domains
beyond images, and particularly, with more complex output spaces. In particular, we adapt our
MLP based architecture to take inputs with variable length, and show its potential on the problem
of Machine Translation. To do so, we develop a sequence-to-sequence (seq2seq) version of ResMLP,
where both encoder and decoders are based on ResMLP with cross-attention between the encoder
and decoder [10]. This model is similar to the original seq2seq Transformer with ResMLP layers
instead of Transformer layers [204]. Despite not being originally designed for this task, we observe
that ResMLP is competitive with Transformers on the challenging WMT benchmarks.

The chapter is organised as follows: We first detail the related work, We outline our ResMLP
architecture in Figure 4.1 and detail it further in Section 4.2. In section 4.3 we conduct image
classification, semantic segmentation and machine translation experiments with our ResMLP
architecture. Section 4.4 concludes the chapter.
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Publication. Chapter 4 is based on the paper “ResMLP: Feedforward networks for image classification
with data-efficient training”, Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord,
Alaaeldin El-Nouby, Edouard Grave, Gautier Izacard, Armand Joulin, Gabriel Synnaeve, Jakob
Verbeek, Hervé Jégou, arXiv 2021 (see ResMLP paper [192]). The code associated is available at
https://github.com/facebookresearch/deit.

4.1 Related work

We review the research on applying Fully Connected Network (FCN) for computer vision.

Fully-connected network for images. Many studies have shown that FCNs are competitive
with convnets for the tasks of digit recognition [42, 176], keyword spotting [31] and handwriting
recognition [20]. Several works [130, 140, 201] have questioned if FCNs are also competitive on
natural image datasets, such as CIFAR-10 [122]. More recently, d’Ascoli et al. [51] have shown
that a FCN initialized with the weights of a pretrained convnet achieves performance that are
superior than the original convnet. Neyshabur [143] further extend this line of work by achieving
competitive performance by training an FCN from scratch but with a regularizer that constrains
the models to be close to a convnet. These studies have been conducted on small scale datasets
with the purpose of studying the impact of architectures on generalization in terms of sample
complexity [62] and energy landscape [116]. In our work, we show that, in the larger scale setting
of ImageNet, FCNs can attain surprising accuracy without any constraint or initialization inspired
by convnets.

Finally, the application of FCN networks in computer vision have also emerged in the study
of the properties of networks with infinite width [145], or for inverse scattering problems [117].
More interestingly, the Tensorizing Network [146] is an approximation of very large FCN intend-
ing to remove prior by approximating even more general tensor operations, i.e., not arbitrarily
marginalized along some pre-defined sharing dimensions. However, their method is designed to
compress the MLP layers of a standard convnets.

Other architectures with similar components. A fully connected layer is equivalent to a con-
volution layer with a 1× 1 receptive field, and several work have explored convnet architectures
with small receptive fields. For instance, the VGG model [177] uses 3×3 convolutions, and later,
other architectures such as the ResNext [229] or the Xception [38] mix 1×1 and 3×3 convolutions.
In contrast to convnets, interactions between patches may be obtained via a linear layer that is
shared across channels, and rely on absolute rather than relative positions.

4.2 ResMLP

In this section, we describe our architecture, ResMLP, as depicted in Figure 4.1. ResMLP is
inspired by ViT and this section focuses on the changes made to ViT that lead to a purely MLP
based model. We refer to Dosovitskiy et al. [61] for more details about ViT.

The overall ResMLP architecture. Our model, denoted by ResMLP, takes a grid of N×N non-
overlapping patches as input, where the patch size is typically equal to 16×16. The patches are
then independently passed through a linear layer to form a set of N2 d-dimensional embeddings.

The resulting set of N2 embeddings are fed to a sequence of Residual Multi-Layer Perceptron
layers to produce a set of N2 d-dimensional output embeddings. These output embeddings are

https://github.com/facebookresearch/deit
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Figure 4.1 – The ResMLP architecture. After linearly projecting the image patches into high dimensional
embeddings, ResMLP sequentially processes them with (1) a cross-patch linear sublayer; (2) a cross-channel
two-layer MLP. The MLP is the same as the FCN sublayer of a Transformer. Each sublayer has a residual
connection and two Affine element-wise transformations.

then averaged (“average-pooling”) as a d-dimension vector to represent the image, which is fed
to a linear classifier to predict the label associated with the image. During the training we use the
cross-entropy loss.

The Residual Multi-Perceptron Layer. Our network is a sequence of layers that all have the
same structure: a linear sublayer applied across patches followed by a feedforward sublayer
applied across channels. Similar to the Transformer layer, each sublayer is paralleled with a skip-
connection [94]. The absence of self-attention layers makes the training more stable, allowing us
to replace the Layer Normalization [7] by a simpler Affine transformation:

Affλ,β(x) = Diag(λ)x+ β, (4.1)

where λ and β are learnable weight vectors. This operation only rescales and shifts the input
element-wise. This operation has several advantages over other normalization operations: first,
as opposed to Layer Normalization, it has no cost at inference time, since it can be absorbed in
the adjacent linear layer. Second, as opposed to BatchNorm [112] and Layer Normalization, the
Aff operator does not depend on batch statistics. The closer operator to Aff is the LayerScale
introduced by Touvron et al. [197], with an additional bias term. For convenience, we denote by
Aff(X) the Affine operation applied independently to each column of the matrix X.

We apply the Aff operator at the beginning (“pre-normalization”) and end (“post-normalization”)
of each residual block. As a pre-normalization, Aff replaces LayerNorm without using channel-
wise statistics. Here, we initialize λ = 1, and β = 0. As a post-normalization, Aff is similar to
LayerScale and we initialize λ with the same small value as in [197].

Overall, our Multi-layer perceptron takes a set of N2 d-dimensional input features stacked in
a d×N2 matrix X, and outputs a set of N2 d-dimension output features, stacked in a matrix Y

with the following set of transformations:

D = X+ Aff
(
(A · Aff

(
X)⊤

)⊤)
, (4.2)

Y = D+ Aff (C · GELU(B · Aff(D))) , (4.3)

where A, B and C are the main learnable weight matrices of the layer. Note that Eq (4.3) is the
same as the feedforward sublayer of a Transformer with the ReLU non-linearity replaced by a
GELU function [98]. The dimensions of the parameter matrix A are N2×N2, i.e., this “cross-patch”
sublayer exchanges information between patches, while the “cross-channel” feedforward sublayer
works per location. Similar to a Transformer, the intermediate activation matrix D has the same
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dimensions as the input and output matrices, X and Y. Finally, the weight matrices B and C have
the same dimensions as in a Transformer layer, which are 4d×d and d×4d, respectively.

Differences with the Vision Transformer architecture. Our architecture is closely related to the
ViT model [61]. However, ResMLP departs from ViT with several simplifications:

• no self-attention blocks: it is replaced by a linear layer with no non-linearity,

• no positional embedding: the linear layer implicitly encodes information about patch positions,

• no extra “class” token: we simply use average pooling on the patch embeddings,

• no normalization based on batch statistics: we use a learnable affine operator.

Class-MLP as an alternative to average pooling. We propose an adaptation of the class-attention
token introduced in CaiT [197]. In CaiT, this consists of two layers that have the same structure
as the transformer, but in which only the class token is updated based on the frozen patch
embeddings. We translate this method to our architecture, except that, after aggregating the
patches with a linear layer, we replace the attention-based interaction between the class and patch
embeddings by simple linear layers, still keeping the patch embeddings frozen. This increases the
performance, at the expense of adding some parameters and computational cost. We refer to this
pooling variant as “class-MLP”, since the purpose of these few layers is to replace the average
pooling operation.

Sequence-to-sequence ResMLP. Similar to Transformer, the ResMLP architecture can be applied
to sequence-to-sequence tasks. First, we follow the general encoder-decoder architecture from
Vaswani et al. [204], where we replace the self-attention sublayers by the residual multi-perceptron
layer. In the decoder, we keep the cross-attention sublayers, which attend to the output of the
encoder. In the decoder, we adapt the linear sublayers to the task of language modeling by
constraining the matrix A to be triangular, in order to prevent a given token representation to
access tokens from the future. Finally, the main technical difficulty from using linear sublayers
in a sequence-to-sequence model is to deal with variable sequence lengths. However, we observe
that simply padding with zeros and extracting the submatrix A corresponding to the longest
sequence in a batch, works well in practice.

4.3 Experiments

In this section, we present experimental results for the ResMLP architecture on image classifi-
cation and machine translation. We also study the impact of the different components of ResMLP
in ablation studies. We consider three training paradigms for images:

• Supervised learning: We train ResMLP from labeled images with a softmax classifier and cross-
entropy loss. This paradigm is the main focus of our work.

• Self-supervised learning: We train our ResMLP architecture with the DINO method of Caron et
al. [30] that trains a network without labels by distilling knowledge from previous instances of
the same network.

• Knowledge distillation: We employ the knowledge distillation procedure proposed in chapter 3

to guide the supervised training of ResMLP with a convnet.
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Table 4.1 – Comparison between architectures on ImageNet classification. We compare different architec-
tures based on convolutional networks, Transformers and feedforward networks with comparable FLOPs
and number of parameters. We report Top-1 accuracy on the validation set of ImageNet-1k with different
measure of complexity: throughput, FLOPs, number of parameters and peak memory usage. All the models
use 224×224 images as input. By default the Transformers and feedforward networks uses 14×14 patches
of size 16×16, see Table 4.3 for the detailed specification of our main models. The throughput is measured
on a single V100-32GB GPU with batch size fixed to 32. For reference, we include the state of the art at the
time of publication for models trained with ImageNet training only.

Arch. #params throughput FLOPS Peak Mem Top-1
(×106) (im/s) (×109) (MB) Acc.

State of the art CaiT-M48↑448Υ [197] 356 5.4 329.6 5477.8 86.5
NfNet-F6 SAM [25] 438 16.0 377.3 5519.3 86.5

Convolutional networks

EfficientNet-B3 [187] 12 661.8 1.8 1174.0 81.1
EfficientNet-B4 [187] 19 349.4 4.2 1898.9 82.6
EfficientNet-B5 [187] 30 169.1 9.9 2734.9 83.3
RegNetY-4GF [153] 21 861.0 4.0 568.4 80.0
RegNetY-8GF [153] 39 534.4 8.0 841.6 81.7
RegNetY-16GF [153] 84 334.7 16.0 1329.6 82.9

Transformer networks
DeiT-S [193] 22 940.4 4.6 217.2 79.8
DeiT-B [193] 86 292.3 17.5 573.7 81.8
CaiT-XS24 [197] 27 447.6 5.4 245.5 81.8

Feedforward networks
ResMLP-S12 15 1415.1 3.0 179.5 76.6
ResMLP-S24 30 715.4 6.0 235.3 79.4
ResMLP-B24 116 231.3 23.0 663.0 81.0

4.3.1 Experimental setting

Datasets. We train our models on the ImageNet-1k dataset [168], that contains 1.2M images
evenly spread over 1,000 object categories. In the absence of an available test set for this benchmark,
we follow the standard practice in the community by reporting performance on the validation
set. This is not ideal since the validation set was originally designed to select hyper-parameters.
Comparing methods on this set may not be conclusive enough because an improvement in perfor-
mance may not be caused by better modeling, but by a better selection of hyper-parameters. To
mitigate this risk, we report additional results in transfer learning and on two alternative versions
of ImageNet that have been built to have distinct validation and test sets, namely the ImageNet-
real [18] and ImageNet-v2 [159] datasets. We also report a few data-points when training on
ImageNet-21k. Our hyper-parameters are mostly adopted from chapter 3.

Hyper-parameter settings. In the case of supervised learning, we train our network with the
Lamb optimizer [234] with a learning rate of 5 × 10−3 and weight decay 0.2. We initialize the
LayerScale parameters as a function of the depth by following CaiT [197]. The rest of the hyper-
parameters follow the default setting used in Chapter 3. For the knowledge distillation paradigm,
we use the same RegNety-16GF [156] as in Chapter 3 with the same training schedule. The
majority of our models take two days to train on eight V100-32GB GPUs.

4.3.2 Main Results

In this section, we compare ResMLP with architectures based on convolutions or self-attentions
with comparable size and throughput on ImageNet.
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Table 4.2 – Self-supervised learning with DINO [30].Classification accuracy on ImageNet-1k val.ResMLPs
evaluated with linear and k-NN evaluation are on par with convnets but inferior to ViTs.

Params. FLOPS ImNet-val top-1 acc.
Models (×106) (×109) Linear k-NN

ResNet-50 25 4.1 75.3 67.5
ViT-S/16 22 4.6 77.0 74.5
ViT-S/8 22 22.4 79.7 78.3
ViT-B/16 87 17.5 78.2 76.1
ResMLP-S12 15 3.0 67.5 62.6
ResMLP-S24 30 6.0 72.8 69.4

Supervised setting. In Table 4.1, we compare ResMLP with different convolutional and Trans-
former architectures. For completeness, we also report the best-published numbers obtained with
a model trained on ImageNet alone. While the trade-off between accuracy, FLOPs, and throughput
for ResMLP is not as good as convolutional networks or Transformers, their strong accuracy still
suggests that the structural constraints imposed by the layer design do not have a drastic influence
on performance, especially when training with enough data and recent training schemes.

Self-supervised setting. We pre-train ResMLP-S12 using the self-supervised method called
DINO [30] during 300 epochs. We report our results in Table 4.2. The trend is similar to the
supervised setting: the accuracy obtained with ResMLP is lower than ViT. Nevertheless, the per-
formance is surprisingly high for a pure MLP architecture and competitive with Convnet in k-NN
evaluation. Additionally, we also fine-tune a model pre-trained with self-supervision on ImageNet
using the ground-truth labels. Pre-training substantially improves performance compared to a
ResMLP-S24 solely trained with labels, achieving 79.9% top-1 accuracy on ImageNet-val (+0.5%).

Knowledge distillation setting. We study our model when training with the knowledge distilla-
tion approach of Touvron et al. [193]. In their work, the authors show the impact of training a ViT
model by distilling it from a RegNet. In this experiment, we explore if ResMLP also benefits from
this procedure and summarize our results in Table 4.3 (Blocks “Baseline models” and “Training”).
We observe that similar to DeiT models, ResMLP greatly benefits from distilling from a convnet.
This result concurs with the observations made by d’Ascoli et al. [51], who used convnets to
initialize feedforward networks. Even though our setting differs from theirs in scale, the problem
of overfitting for feedforward networks is still present on ImageNet. The additional regularization
obtained from the distillation is a possible explanation for this improvement.

4.3.3 Visualization & analysis of the linear interaction between patches

In Figure 4.2, we show in the form of squared images, the rows of the weight matrix from cross-
patch sublayers at different depths of a ResMLP-S24 model. The early layers show convolution-like
patterns: the weights resemble shifted versions of each other and have local support. Interestingly,
in many layers, the support also extends along both axes; see layer 7. The last 7 layers of the
network are different: they consist of a spike for the patch itself and a diffuse response across
other patches with different magnitude; see layer 20.

Measuring sparsity of the weights. The visualizations described above suggest that the linear
communication layers are sparse. We analyze this quantitatively in more detail in Figure 4.3.
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Layer 1 Layer 7 Layer 10 Layer 20

Figure 4.2 – Visualisation of the linear layers in ResMLP-S24. For each layer we visualise the rows of the
matrix A as a set of 14× 14 pixel images, for sake of space we only show the rows corresponding to the 6×6

central patches. We observe patterns in the linear layers that share similarities with convolutions.
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Figure 4.3 – Sparsity of linear interaction layers. For each layer (linear and MLP), we show the rate of
components whose absolute value is lower than 5% of the maximum. Linear interaction layers are sparser
than the matrices involved in the per-patch MLP.
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Figure 4.4 – Top-1 accuracy on ImageNet-V2 vs. ImageNet-val. ResMLPs tend to overfit slightly more under
identical training method. This is partially alleviated with by introducing more regularization (more data or
distillation, see e.g., ResMLP-B24/8-distil).

We measure the sparsity of the matrix A, and compare it to the sparsity of B and C from the
per-patch MLP. Since there are no exact zeros, we measure the rate of components whose absolute
value is lower than 5% of the maximum value. Note, discarding the small values is analogous to
the case where we normalize the matrix by its maximum and use a finite-precision representation
of weights. For instance, with a 4-bits representation of weight, one would typically round to zero
all weights whose absolute value is below 6.25% of the maximum value.

The measurements in Figure 4.3 show that all three matrices are sparse, with the layers imple-
menting the patch communication being significantly more so. This suggests that they may be
compatible with parameter pruning, or better, with modern quantization techniques that induce
sparsity at training time, such as Quant-Noise [70] and DiffQ [64]. The sparsity structure, in par-
ticular in earlier layers, see Figure. 4.2, hints that we could implement the patch interaction linear
layer with a convolution. We provide some results for convolutional variants in our ablation study.
Further research on network compression is beyond the scope of this chapter, yet we believe it
worth investigating in the future.

Communication across patches. If we remove the linear interaction layer (linear→ none), we ob-
tain substantially lower accuracy (-20% top-1 acc.) for a “bag-of-patches” approach. We have tried
several alternatives for the cross-patch sublayer, which are presented in Table 4.3 (block “patch
communication”). Amongst them, using the same MLP structure as for patch processing (linear
→ MLP).The simpler choice of a single linear square layer led to a better accuracy/performance
trade-off – considering that the MLP variant requires compute halfway between ResMLP-S12 and
ResMLP-S24 – and requires fewer parameters than a residual MLP block.

The visualization in Figure 4.2 indicates that many linear interaction layers look like convo-
lutions, the kernels being increasingly larger closer to the output layer. Hence in our ablation,
we replaced the linear layer with different types of 3×3 convolutions. The depth-wise convolu-
tion does not implement interaction across channels – as our linear patch communication layer
– and yields similar performance with a comparable number of parameters and FLOPs. While
full 3×3 convolutions yield best results, they require roughly double the number of parameters
and FLOPs. Interestingly, the depth-separable convolutions combine accuracy close to that of full
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Table 4.3 – Ablation. Our default configurations are presented in the three first rows. By default we train
during 400 epochs. The “old-fashioned” is similar to what was employed for ResNet [94]: SGD, 90-epochs
waterfall schedule, same augmentations up to variations due to library used.

Ablation Model Patch Params FLOPs Variant top-1 acc. on ImageNet
size ×106 ×109 val real [18] v2 [159]

ResMLP-S12 16 15.4 3.0 12 layers, working dimension 384 76.6 83.3 64.4
Baseline models ResMLP-S24 16 30.0 6.0 24 layers, working dimension 384 79.4 85.3 67.9

ResMLP-B24 16 115.7 23.0 24 layers, working dimension 768 81.0 86.1 69.0

Normalization ResMLP-S12 16 15.4 3.0 Aff→ Layernorm 77.7 84.1 65.7

Pooling ResMLP-S12 16 17.7 3.0 average pooling→ Class-MLP 77.5 84.0 66.1

Patch
communication

ResMLP-S12 16 14.9 2.8 linear→ none 56.5 63.4 43.1
ResMLP-S12 16 18.6 4.3 linear→ MLP 77.3 84.0 65.7
ResMLP-S12 16 30.8 6.0 linear→ conv 3x3 77.3 84.4 65.7
ResMLP-S12 16 14.9 2.8 linear→ conv 3x3 depth-wise 76.3 83.4 64.6
ResMLP-S12 16 16.7 3.2 linear→ conv 3x3 depth-separable 77.0 84.0 65.5

Patch size
ResMLP-S12/14 14 15.6 4.0 patch size 16×16→14×14 76.9 83.7 65.0
ResMLP-S12/8 8 22.1 14.0 patch size 16×16→8×8 79.1 85.2 67.2
ResMLP-B24/8 8 129.1 100.2 patch size 16×16→8×8 81.0 85.7 68.6

Training

ResMLP-S12 16 15.4 3.0 old-fashioned (90 epochs) 69.2 76.0 56.1
ResMLP-S12 16 15.4 3.0 pre-trained SSL (DINO) 76.5 83.6 64.5
ResMLP-S12 16 15.4 3.0 distillation 77.8 84.6 66.0
ResMLP-S24 16 30.0 6.0 pre-trained SSL (DINO) 79.9 85.9 68.6
ResMLP-S24 16 30.0 6.0 distillation 80.8 86.6 69.8
ResMLP-B24/8 8 129.1 100.2 distillation 83.6 88.4 73.4
ResMLP-B24/8 8 129.1 100.2 pre-trained ImageNet-21k (60 epochs) 84.4 88.9 74.2

3×3 convolutions with a number of parameters and FLOPs comparable to our linear layer. This
suggests that convolutions on low-resolution feature maps at all layers is an interesting alternative
to the common pyramidal design of convnets, where early layers operate at higher resolution and
smaller feature dimension.

4.3.4 Ablation studies

Table 4.3 reports the ablation study of our base network and a summary of our preliminary
exploratory studies.

Control of overfitting. Since MLPs are subject to overfitting, we show in Fig. 4.4 a control
experiment to probe for problems with generalization. We explicitly analyze the differential
of performance between the ImageNet-val and the distinct ImageNet-V2 test set. The relative
offsets between curves reflect to which extent models are overfitted to ImageNet-val w.r.t. hyper-
parameter selection. The degree of overfitting of our MLP-based model is overall neutral or slightly
higher to that of other transformer-based architectures or convnets with same training procedure.

Normalization & activation. Our network configuration does not contain any batch normaliza-
tions. Instead, we use the affine per-channel transform Aff. This is akin to Layer Normalization [7],
typically used in transformers, except that we avoid to collect any sort of statistics, since we do
no need it it for convergence. In preliminary experiments with pre-norm and post-norm [95], we
observed that both choices converged. Pre-normalization in conjunction with Batch Normalization
could provide an accuracy gain in some cases.

We choose to use a GELU [98] function. We also analyze the activation function: ReLU [82]
also gives a good performance, but it was a bit more unstable in some settings. We did not manage
to get good results with SiLU [98] and HardSwish [105].
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Table 4.4 – Evaluation on transfer learning. Classification accuracy (top-1) of models trained on ImageNet-1k
for transfer to datasets covering different domains. The ResMLP architecture takes 224×224 images during
training and transfer, while ViTs and EfficientNet-B7 work with higher resolutions, see “Res.” column.

Architecture FLOPs Res. CIFAR10 CIFAR100 Flowers102 Cars iNat18 iNat19

EfficientNet-B7 [187] 37.0B 600 98.9 91.7 98.8 94.7 _ _
ViT-B/16 [61] 55.5B 384 98.1 87.1 89.5 _ _ _
ViT-L/16 [61] 190.7B 384 97.9 86.4 89.7 _ _ _
Deit-B/16 [193] 17.5B 224 99.1 90.8 98.4 92.1 73.2 77.7
ResNet50 [198] 4.1B 224 _ _ 96.2 90.0 68.4 73.7
Grafit/ResNet50 [198] 4.1B 224 _ _ 97.6 92.7 68.5 74.6

ResMLP-S12 3.0B 224 98.1 87.0 97.4 84.6 60.2 71.0
ResMLP-S24 6.0B 224 98.7 89.5 97.9 89.5 64.3 72.5

Pooling. Replacing average pooling with Class-MLP, see Section 4.2, brings a significant gain for
a negligible computational cost. We do not include it by default to keep our models more simple.

Patch size. Smaller patches significantly increase the performance, but also increase the num-
ber of flops (see Block "Patch size" in the ablation Table 4.3). Smaller patches benefit more to
larger models, but only with an improved optimization scheme involving more regularization
(distillation) or more data.

Training. Consider the Block “Training’ in Table 4.3. ResMLP significantly benefits from modern
training procedures such as those used in Chapter 3. For instance, the Chapter 3 training proce-
dure improves the performance of ResMLP-S12 by 7.4% compared to the training employed for
ResNet [94] 1. This is in line with recent work pointing out the importance of the training strategy
over the model choice [13, 156]. Pre-training on more data and distillation also improve the per-
formance of ResMLP architecture, especially for the bigger models, e.g., distillation improves the
top-1 accuracy of ResMLP-B24/8 by 2.6%.

Other analysis. In our early exploration, we evaluated several alternative design choices. As in
transformers, we could use positional embeddings mixed with the input patches. In our exper-
iments we did not see any benefit from using these features.This observation suggests that our
cross-patch sublayer provides sufficient spatial communication, and referencing absolute positions
obviates the need for any form of positional encoding.

Transfer learning We evaluate the quality of features obtained from a ResMLP architecture
when transferring them to other domains. The goal is to assess if the features generated from a
feedforward network are more prone to overfitting on the training data distribution. We adopt
the typical setting where we pre-train a model on ImageNet-1k and fine-tune it on the training
set associated with a specific domain. We report the performance with different architectures on
various image benchmarks in Table 4.4, namely CIFAR-10 and CIFAR-100 [122], Flowers-102 [144],
Stanford Cars [121] and iNaturalist [103]. We refer the reader to the corresponding references for
a more detailed description of the datasets.

We observe that the performance of our ResMLP is competitive with the existing architectures,
showing that pretraining feedforward models with enough data and regularization via data
augmentation greatly reduces their tendency to overfit on the original distribution. Interestingly,
this regularization also prevents them from overfitting on the training set of smaller dataset during
the fine-tuning stage.

1. Interestingly, if trained with this “old-fashion” setting, ResMLP-S12 outperforms AlexNet [123] by a margin.



4.4 conclusion 81

4.3.5 Machine translation

We also evaluate the ResMLP transpose-mechanism to replace the self-attention in the encoder
and decoder of a neural machine translation system. We train models on the WMT 2014 English-
German and English-French tasks, following the setup from Ott et al. [149]. We consider models
of dimension 512, with a hidden MLP size of 2,048, and with 6 or 12 layers. Note that the current
state of the art employs much larger models: our 6-layer model is more comparable to the base
transformer model from Vaswani et al. [204], which serves as a baseline, along with pre-transformer
architectures such as recurrent and convolutional neural networks. We use Adagrad with learning
rate 0.2, 32k steps of linear warmup, label smoothing 0.1, dropout rate 0.15 for En-De and 0.1
for En-Fr. We initialize the LayerScale parameter to 0.2. We generate translations with the beam
search algorithm, with a beam of size 4. As shown in Table 4.5, the results are at least on par with
the compared architectures.

Table 4.5 – Machine translation on WMT 2014 translation tasks. We report tokenized BLEU on newstest2014.

Models GNMT [219] ConvS2S [79] Transf. (base) [204] ResMLP-6 ResMLP-12

En -De 24.6 25.2 27.3 26.4 26.8
En -Fr 39.9 40.5 38.1 40.3 40.6

4.3.6 Semantic Segmentation

We perform semantic segmentation experiments on the ADE20k [248] datasets with ResMLP
models pre-trained on ImageNet. We adopt the classical UperNet [222] setting with the ×3 sched-
ule [12, 67]. We finetune for the semantic segmentation task at resolution 224× 224 and evaluate
the network with the usual resolution by adopting a sliding window. We report results in Ta-
ble 4.6 and compare ResMLP with DeiT with the same setting. In that case ResMLP is used as
backbone in order to extract features before the UperNet part. At training time we resize images
at resolution 896× 224 and apply RandomResizeCrop in order to have an image of size 224× 224.
ResMLP obtains interesting results, but note that vision transformers remain better. One of the
main limitations is the fixed spatial linear layer which makes it more difficult to adapt the ResMLP
architecture at different resolutions. Indeed, the size of the linear layer applied to the spatial di-
mension is fixed and can only be used with a certain image size. It is possible to interpolate the
weights to adapt to other resolutions but this does not allow a very good adaptability.

Table 4.6 – Semantic segmentation results on ADE20K dataset with UperNet and ×3 settings. All architec-
tures are trained with crop of size 224× 224

Model DeiT-S DeiT-B ResMLP-12 ResMLP-24 ResMLP-36 ResMLP-B24

mIoU (%) 40.5 42.3 35.9 39.1 39.1 42.5

4.4 Conclusion

In this chapter, we have shown that a simple residual architecture, whose residual blocks
consist of a one-hidden layer feed-forward network and a linear patch interaction layer, achieves
high performance on ImageNet classification benchmarks, provided that we adopt a modern
training strategy such as those described in chapter 3 for transformer-based architectures. Thanks
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to their simple structure, with linear layers as the main mean of communication between patches,
we can vizualize the filters learned by this simple MLP. While some of the layers are similar to
convolutional filters, we also observe sparse long-range interactions as early as the second layer
of the network.

In summary, the main contributions are the following:

• We propose a drastically simplified design for neural network, namely ResMLP, whose main
difference compared to a MLP is the residual design borrowed from earlier convolutional
neural network architectures;

• Albeit simple, ResMLP reaches surprisingly decent accuracy/complexity trade-offs when
trained on ImageNet-1k only;

• These models benefit significantly from distillation methods introduced in chapter 3 and are
easily combined with modern self-supervised learning methods based on data augmentation,
such as DINO [30];

• A seq2seq ResMLP achieves competitive performances compared to a seq2seq Transformers
on the WMT benchmark for Machine Translation.

Our model with less of spatial prior gives interesting perspectives to design new networks
with less inductive bias than most of convolutional neural networks.

In the next chapter, we study how to revisit convnet architectures with elements inherited
from transformers and MLP architectures like patch splitting.
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In transformers, the so-called “class token” correlates with the patches most related to the
classification decision. Therefore, the softmax in the self-attention blocks, especially in the last
layers, can be used to produce attention maps showing the interaction between the class token
and all the patches. Such maps have been employed for visualization purposes [30, 61]. It gives
some hints on which regions of a given image are employed by a model to make its decision.
However, the interpretability remains limited: producing these maps involves some fusion of
multiple softmax in different layers and heads.

In this chapter, we investigate similar vizualization properties for convnets: we augment
convnets with an attention map. More precisely, we replace the usual average pooling layer by an
attention-based layer. Indeed, nothing in the convnets design precludes replacing their pooling
by attention [111, 14]. We design our attention-based pooling layer such that it explicitly provides
the weights of the different patches. Compared to ViT, for which the aggregation is performed
across multiple layers and heads, our proposal offers a single weight per patch, and therefore a
simple way to interpret the attention map: it is the respective contribution of each patch in the
weighted sum summarizing the images.

We introduce a simple patch-based convolutional architecture that keeps the input resolution
constant throughout the network. This design departs from the historical pyramidal architectures
of LeNet [126], AlexNet [123] or ResNet [94, 95], to name only a few. Their pyramidal design was
motivated by the importance of reducing the resolution while increasing the working dimension-
ality. That allowed one to maintain a moderate complexity while progressively increasing the
working dimensionality, making the space large enough to be separable by a linear classifier. In
our case, we simplify the trunk after a small pre-processing stage that produces the patches. We
adopt the same dimensionality throughout all the trunk, fixing it equal to that of the final layer,
e.g. our aggregation layer. We refer to it as PatchConvNet.

This chapter is organised as follows: we first detail the related work. In section 5.2, we describe
our architecture PatchConvNet and present the training recipes. In section 5.3, we conduct image
classification and semantic segmentation experiments.

Publication. Chapter 5 is based on the submission “Augmenting Convolutional networks with
attention-based aggregation”, Hugo Touvron, Matthieu Cord, Alaaeldin El-Nouby, Piotr Bojanowski,
Armand Joulin, Gabriel Synnaeve, Hervé Jégou, arXiv 2021, under review NeurIPS 2022 (see Patch-
Convnet paper [195]). The code is available at https://github.com/facebookresearch/deit.

5.1 Related work

Attention-based architectures for vision. Early works have introduced attention into convnets [14,
158, 175, 212, 216], but it is only recently that a fully attention-based architecture, the vision trans-
former [61] (ViT), has become competitive with convnets on ImageNet [61, 193]. The particularity
of this model is that it processes images as a set of non-overlapping patches, without any convolu-

https://github.com/facebookresearch/deit
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tional or downsampling layers. Nevertheless, several works have recently proposed to re-introduce
convolutions and downsampling into this architecture. For example, some architectures [86, 225]
leverage convolutional layers in the first layers of the vision transformer architecture, while others,
such as Swin [134], LeViT [86], or PiT [99] exploit a pyramid structure to gradually reduce the
spatial resolution of the features.

The pyramid-based methods are more compatible with prior detection frameworks, and aim
at improving the computational efficiency (FLOPs). As a downside, the pyramidal approaches
dramatically reduce the resolution of the last layers, and hence the quality of their attention maps,
making their predictions harder to interpret. Another shortcoming is their relatively high memory
usage [171]. In chapter 3, we adopt a few layers in one decoder using class-attention instead of
self attention. Other works [111, 114, 127] propose this type of attention to aggregate features at
the end of the network or at intermediate levels. Our learned attention-based pooling is more
simple and offers a better interpretability than these approaches.

MLP and other patch-based approaches. Architectures based on patches [132] have been pro-
posed beyond transformers, in particular, based on Multi-Layer Perceptron (MLP) layers such
as MLP-Mixer [191] and the work chapter 4. Most related to our work, the ablation study of
chapter 4 shows the potential of patch-wise convolution over MLPs in terms of performance. In
line with the ConViT model [52], CoatNet [49] is a patch-based architecture with blocks yielding
local-interactions followed by transformer blocks. Concurrently, replacing self-attention layers
with convolution layers has been explored in the ConvMixer paper [6].

Explainability of the classification decision. There are many strategies to explain the classi-
fication decision of a network [160, 238], and most notably by highlighting the most influential
regions that led to a decision [178, 246, 73]. Grad-cam methods [172, 32] are certainly the most
used methods to give explanation about network decision. Inspired by the CAM [246] principle,
they exploit the gradients from the network decision to identify specific object locations that
can be backprojected onto the image. These methods act as general external probes that project
the network activity back into the image space, even though [148, 63] have shown evidence that
convnet features contain rough information about the localization of objects. Unlike these external
approaches, the self-attention layers of vision transformers offer a direct access to the location of
the information used to make classification decisions [61, 193, 197, 30]. Our built-in class attention
mechanism shares the same spirit of interpretable by design computer vision models [166]. However,
unlike our mechanism, self-attention layers do not distinguish between classes on the same image
without additional steps [33].

5.2 Attention-based pooling with PatchConvNet

16x16 pixels patches (196 for 224x224)
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Figure 5.1 – Detail of the full model, with the convolutional stem on the left, the convolutional main block in
the middle, and here toppled with multi-class attention-based pooling on the right.
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The learned aggregation layer is best associated with a high-resolution feature map. There-
fore, while it can be combined with any convolutional architecture like a regular ResNet-50, our
suggestion is to combine it with an architecture that maintains the resolution all across the lay-
ers. Some works exist, however they offer underwhelming trade-offs [191, 192]. To remedy that
problem, we introduce PatchConvNet. This design, which illustrated in Figure 5.1, is intended to
concentrate most of the compute and parameters in the columnar trunk. The architecture family
is parametrized by the embedding dimension d, and the number of repeated blocks in the trunk
N . Below, we describe the architecture and its training in more details.

5.2.1 Architecture design

The convolutional stem is a light-weight pre-processing of the image pixels whose role is to
segment and map an image into a set of vectors. In ViT, this exactly corresponds to the patch
extraction step [61]. Therefore, we refer to the vectors resulting from this pre-processing as patches.
Recent papers [86, 66] have shown that it is best to adopt a convolutional pre-processing, in
particular for stability reasons [224]. In our case, we borrow the convolutional stem from LeVit [86]:
a small ConvNet that is applied to the image of size W ×H × 3 and produces a vector map of
W/16 ×H/16 × d. It can be viewed as a set of k non-overlapping d-dimensional patches. In our
experimental results, except if mentioned otherwise, we use a convolutional stem consisting of
four 3× 3 convolutions with a stride of 2× 2, followed by a GELU non-linearity [98]. We illustrate
the convolutional stem in Figure 5.1.

The column, or trunk, is the part of the model which accounts for most of the layers, parameters,
and compute. It consists of N stacked residual convolutional blocks as depicted in Figure 5.1.
The block starts with a normalization, followed by a 1× 1 convolution, then a 3× 3 convolution
for spatial processing, a squeeze-and-excitation layer [107] for mixing channel-wise features, and
finally a 1×1 convolution right before the residual connection. Note that we can interpret the 1×1

convolutions as linear layers. A GELU non-linearity follows the first two convolutions. The output
of this block has the same shape as its input: the same number of tokens of the same dimension d.

Using BatchNorm [113] often yields better results than LayerNorm [7], provided the batches
are large enough. As shown in Section 5.3, we also observe this for our model family. However,
BatchNorm is less practical when training large models or when using large image resolutions
because of its dependency on batch size. In that setup, using BatchNorm requires an additional
synchronization step across multiple machines. This synchronization increases the amount of
node-to-node communication required per step, and in turn, training time. In other situations,
like for detection and segmentation, the images are large, limiting the batch size and possibly im-
pacting performance. Because of all those reasons, unless stated otherwise, we adopt LayerNorm.

Attention-based pooling. At the output of the trunk, the pre-processed vectors are aggregated
using a cross-attention layer inspired by transformers. We illustrate this aggregation mechanism
in Figure 5.1. A query class token attends to the projected patches and aggregates them as a
weighted summation. The weights depend on the similarity of projected patches with a trainable
vector (CLS) akin to a class token. The resulting d-dimensional vector is subsequently added to
the CLS vector and processed by a feed-forward network (FFN). As opposed to the class-attention
decoder by Touvron et al.[197] we use a single block and a single head. This drastic simplification
has the benefit of avoiding the dilution of attention across multiple channels. Consequently, the
communication between the class token and the pre-processed patches occurs in a single softmax,
directly reflecting how the pooling operator weights each patch.
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We can easily specialize the attention maps per class by replacing the CLS vector with a k × d
matrix, where each of the k columns is associated with one of the classes. This specialization
allows us to visualize an attention map for each class, as shown in Figure 5.6. The impact of the
additional parameters and resulting FLOPS is minimal for larger models in the family. However,
this design increases peak memory usage and makes the optimization of the network more
complicated. We typically do that in a fine-tuning stage with a lower learning rate and smaller
batch size to circumvent these issues. By default, we use the more convenient single class token.

5.2.2 Discussion: analysis & properties
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Below we discuss several properties of our convolutional trunk augmented with the proposed
attention-based aggregation stage.

1. Simple parametrization. Our main models are fully defined by width and depth. See Figure 5.2
for results obtained with these models at two different resolutions (224 and 384). Following
the same convention as in previous work on vision transformers and vision MLPs [61, 193,
192], we refer by S the models with an vector size of d=384 per patch, by B when d=768,
and by L for d=1024. We use the S60 model for most of our ablations and comparisons
since it has a similar number of parameters and FLOPs as a ResNet-50.

2. Visualization. Our model allows to easily visualize the network activity. Saliency maps are
directly extracted from our network without any post-processing.

3. Constant resolution across the trunk. The patch-based processing leads to a single processing
resolution in the trunk. Therefore the activation size is constant across the whole network.
The memory usage is (almost) constant at inference time, up to the pre- and post-processing
stage, which are comparatively less demanding. Compared to traditional ConvNets, the
network has a coarser processing in the early stages, but a finer resolution towards the
output of the trunk.
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4. Linear scaling with image size. This is a key difference with Vision Transformers. Pyramidal
transformers such as LeVit [86], SwinTransformer [134] or MViT [71] partly solve the problem
by breaking the quadratic component by rapidly down-scaling the image. However, they
don’t avoid the memory peaks happening with very large images. As a consequence of that
constant memory usage and linear scaling, our model smoothly scales to larger resolutions,
as shown in Figure 5.3 where we report the Peak Memory usage at inference time as a
function of the image size.

5. Easy change of resolution. We do not require any positional encoding, as the relative patch
positions are handled by the convolutions. In that respect our approach is more flexible than
most approaches that needs to be fine-tuned or trained from scratch for each possible target
resolution. In Figure 5.4 we show that the properties of our models are quite stable under
relatively significant resolution changes.

6. No pooling. There is no pooling or other non-reversible operator in our architecture. Formally
the function implemented by the trunk is bijective until the aggregation stage. We do not
exploit this property, but it may be useful in contexts like image generation [58, 119].

5.2.3 Training recipes

Like many other works (see Liu et al. [133], Table I), our training algorithm inherits from the
Chapter 3 procedure for training transformers. We adopt the Lamb optimizer [234] (a variant of
AdamW [136]) with a half-cosine learning schedule and label smoothing [185]. For data augmen-
tation, we include the RandAugment [44] variant by Wightman et al. [215], Mixup [242] (α = 0.8)
and CutMix [237] (α = 1.0). Notably, we include Stochastic Depth [108] that is very effective for
deep transformers [197], and for which we observe the same effect with our deep PatchConvNet.
We adopt a uniform drop rate for all layers, and we cross-validate this parameter on ImageNet1k
for each model.We also adopt LayerScale [197] introduced in Chapter 3. For the deepest models,
the drop-rate hyper-parameter (often called “drop-path”) can be set as high as 0.5, meaning that
we can potentially drop half of the trunk. A desirable byproduct of this augmentation is that it
accelerates the training. Note that we do not use gradient clipping, Polyak averaging, or erasing
to keep our procedure simple enough.

We now detail some context-dependent adjustments, based on datasets (ImageNet1k or Ima-
geNet21k), and training (from scratch or fine-tuned). Note that, apart our sensivity study, we use
the same Seed 0 for all our experiments [215] to prevent picking a “lucky seed” [152] that would
not be representative of the model performance.

Training on ImageNet1k. We train during 400 epochs with a batch size of 2048 and a learning
rate fixed at 3.10−3 for all models. Based on early experiments, we fixed the weight decay to
0.01 for S models and 0.05 for wider models, but practically we observed that the stochastic
depth parameter had a preponderant influence and the most important to adjust, similar to prior
observations with ViT et al. [197]. We use repeated augmentation [15] only when training with
this dataset.

Fine-tuning at higher resolutions. We fine-tune our models at higher resolutions in order to
correct the train-test resolution discrepancy [199], and to analyze the behavior of our models at
higher resolutions. This can save a significant amount of resources because models operating at
larger resolutions are very demanding to train. For fine-tuning, we use a smaller batch size of
1024 in order to compensate for the larger memory requirements. We fix the learning rate to 10−5,
the weight decay to 0.01, and fine-tune during 10 epochs for all our models.
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Training on ImageNet21k. We train during 90 epochs as in prior works [61, 134]. We trained
with a batch size of 2048 with a learning rate of 3.10−3 and weight decay of 0.01, or when possible
with a batch size of 4096 in order to accelerate the training. In that case we adjust the learning
rate to 4.10−3.

Fine-tuning from ImageNet21k to ImageNet1k is a more involved modification of the network
than just fine-tuning across resolutions because one needs to re-learn the classifiers. In that case,
we adopt a longer fine-tuning schedule of 100 epochs along with a batch size of 1024 and an initial
learning rate of 5.10−4 with a half-cosine schedule.

5.3 Main experimental results

This section presents our main experimental results in Image classification, detection and
segmentation. We also include an ablation study. Our code depends on the PyTorch [3] and timm
libraries [214]. Model weights and implementation of our main models are open-source.

5.3.1 Class activation

In Figure 5.5, we show the attention maps extracted from ViT by using a visualization as
in [30]. It involves some post-processing as there are multiple layers and heads providing patch
weights. Then we show a "ResNet-50" augmented by adding our attention-based aggregation
layer. Its hierarchical design leads to a low-resolution attention map with artefacts: We need an
architecture producing a higher-resolution feature maps in order to better leverage the proposed
attention-based pooling.

5.3.2 Classification results

We first compare our model with competing approaches on the validation set of ImageNet-1k
(Imnet-val / Top-1) and ImageNet-v2 in Table 5.1. We report the compute requirement as reflected
by FLOPs, the peak memory usage, the number of parameters, and a throughput at inference time
measured for a constant batch-size of 256 images.

We compare with various models, including classic models like ResNet-50 [94] revisited with
modern training recipes such as the one recently proposed by [215]. Note however that different
models may have received a different optimization effort, therefore the results on a single criterion
are mostly indicative. That being pointed out, we believe that the PatchConvNet results show that
a simple columnar architecture is a viable choice compared to other attention-based approaches
that are more difficult to optimize or scale.

Higher-resolution. There is a fine interplay between model size and resolution when it comes
to the specific optimization of FLOPs and accuracy. We refer to the findings of [13] who discussed
some of these relationships, for instance the fact that small networks are better associated with
smaller resolution. In our work, we did not specifically optimize the Pareto curve. Since this
trade-off is only one out of multiple criteria depending on the context, we prefer to report most
of our results at the 224 and 384 resolutions. Table 5.1 shows that our model significantly benefits
from larger resolution images. See also Figures 5.3 and 5.4 where we analyze PatchConvNet as
a function of the image size. Table 5.2 we analyze PatchConvNet pre-trained on ImageNet-21k
with different fine-tuning resolution. All networks are pre-trained on ImageNet-21k during 90



5.3 main experimental results 89

Original ViT-S “ResNet-50” S60 S60
†

Figure 5.5 – We augment convolutional neural networks with a learned attention-based aggregation layer.
We visualize the attention maps for classification for diverse models. We first extract attention maps from a
regular ViT-S [61, 193]. Then we consider convnets in which we replace the average pooling by our learned
attention-based aggregation layer. Unlike ViT, this layer directly provides the contribution of the patches in
the weighted pooling. This is shown for a “ResNet-50 [94]”, and with our new simple patch-based model
(S60) that we introduce to increase the attention map resolution. We can specialize this attention per class,
as shown with S60†.

epochs at resolution 224, finetuned on ImageNet-1k at resolution 384 and then fine-tuned at bigger
resolution.

Transfer Learning experiments We evaluate our architecture on 6 transfer learning tasks. The
datasets used are summarized Table 5.4. For fine-tuning we used the procedure used in Chapter 3.
Our results are summarized Table 5.5. We can observe that our architecture achieves competitive
performance on transfer learning tasks.

5.3.3 Segmentation results and detection

Semantic segmentation We evaluate our models with semantic segmentation experiments on
the ADE20k dataset [247]. This dataset consist of 20k training and 5k validation images with labels
from over 150 categories. For the training, we adopt the same schedule as in Swin: 160k iterations
with UPerNet [222]. At test time we evaluate with a single scale similarly to XciT and multi-scale
as in Swin. As our approach is not pyramidal we only use the final output of our network in
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Original Top-1 Top-2 Top-3

grocery store (46.7%) orange (6.0%) Granny Smith (4.9%)

volcano (86.6%) lakeside (0.4%) valley (0.2%)

loggerhead turtle (66.4%) coral reef (15.2%) leathery turtle (1.3%)

Figure 5.6 – We provide three images for which the attention-based aggregation stage is specialized so as
to provide one attention map per ImageNet classes. We display the attention for the top-3 classes w.r.t. the
model prediction.

UPerNet. Unlike concurrent approaches we only use the final output of our network at different
levels in UPerNet which simplifies the approach.

Our results are reported in Table 5.3. We can observe that our approach although simpler is
at the same level as the state-of-the-art Swin architecture and outperforms the XCiT architecture
w.r.t. FLOPs-mIoU trade-off.

Detection & instance segmentation We have evaluated our models on detection and instance
segmentation tasks on COCO [129]. We adopt the Mask R-CNN [93] setup with the commonly
used ×3 schedule. Similar to segmentation experiments, as our approach is not pyramidal, we
only use the final output of our network in Mask R-CNN [93]. In Table 5.6, our results show that
PatchConvNet is on par with Swin [134] and XCiT [66] in terms of FLOPs-AP tradeoff.

5.3.4 Ablations

All our ablation have been carried out with “Seed 0”, i.e., we report only one result without
handpicking. For this reason one must keep in mind that there is a bit of noise in the performance
measurements: On ImageNet-1k val, we have measured with the seeds 1 to 10 a standard deviation
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Figure 5.7 – Trade-offs for ImageNet-1k top 1 accuracy vs. FLOPs requirement and peak memory require-
ments (for a batch of 256 images). Non-hierarchical architectures are comparatively inferior w.r.t. the accuracy-
FLOPs trade-off than hierarchical ones, but offer better operating points in terms of accuracy-memory com-
promise at inference time.

of ±0.11% in top-1 accuracy for a S60 model, which concurs with measurements done on ResNet-
50 trained with modern training procedures [215].

Stochastic depth. Our main parameter is the stochastic depth, whose effect is analyzed in Fig.
5.8. This regularization slows down the training, yet with long enough schedules, higher values of
the drop-path hyperparameter lead to better performance at convergence. We train with the values
reported in Table 5.8. When fine-tuning at higher resolutions or from ImageNet-21k, we reduce
this drop-path by 0.1.

Architectural ablation. In Table 5.7, we have conducted various ablations of our architecture with
the S60 model. We compare the impact of class attention vs. average-pooling. Average-pooling is
the most common aggregation strategy in ConvNet while class attention is only used with trans-
formers [197]. We compare also convolutional stem vs. linear projection for the patch extraction
in the image, LayerNorm vs. BatchNorm and Multi-head class attention as used in CaiT [197]
vs. single-head class attention. Our single-head design reduces the memory consumption and
simplifies attention map visualization.

LayerNorm vs BatchNorm. LayerNorm is the most used normalisation in transformers while
BatchNorm is the most used normalisation with ConvNets. For simplicity we have used Layer-
Norm as it does not require (batch) statistics synchronisation during training, which tends to slow
the training, especially on an infrastructure with relatively high synchronisation costs.

In Table 5.8 we compare the effects of LayerNorm with those of BatchNorm. We can see that
BatchNorm increases the PatchConvNet top-1 accuracy. This difference tends to be lower for the
deeper models.

Attention-based pooling with ConvNets. Interestingly, our learned aggregation stage increases
the performance of a very competitive ResNet model. When adopting the recent training recipe
from Wightman et al. [215], we obtain 80.1% top-1 accuracy on ImageNet-1k by adding a learned
pooling to a ResNet50. This is an improvement of +0.3% to the corresponding 300-epoch baseline
based on average pooling. The class attention only slightly increases the number of FLOPs of the
models: 4.6B vs 4.1B.
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Table 5.1 – Classification with ImageNet-1k training. We compare architectures based on convolutional
networks [6, 25, 94, 156, 187]), Transformers [193, 134] and feedforward networks [191, 192] with comparable
FLOPs and number of parameters. All models are trained on ImageNet-1k only without distillation nor self-
supervised pre-training. We report Top-1 accuracy on the validation set of ImageNet-1k and ImageNet-V2

with different measures of complexity: throughput, FLOPs, number of parameters and peak memory usage.
The throughput and peak memory are measured on a single V100-32GB GPU with batch size fixed to 256

and mixed precision. For ResNet [94] and RegNet [156] we report the improved results from [215]. Note that
different models may have received a different optimization effort. ↑R indicates that the model is fine-tuned
at the resolution R.

Architecture nb params throughput FLOPs Peak Mem Top-1 V2

(×106) (im/s) (×109) (MB) Acc. Acc.

“Traditional” ConvNets
ResNet-50 25.6 2587 4.1 2182 80.4 68.7

RegNetY-4GF 20.6 1779 4.0 3041 81.5 70.7
RegNetY-8GF 39.2 1158 8.0 3939 82.2 71.1
RegNetY-16GF 83.6 714 16.0 5204 82.9 72.4

EfficientNet-B4 19.0 573 4.2 10006 82.9 72.3
EfficientNet-B5 30.0 268 9.9 11046 83.6 73.6

NFNet-F0 71.5 950 12.4 4338 83.6 72.6
NFNet-F1 132.6 337 35.5 6628 84.7 74.4

Vision Transformers and derivatives

ViT: DeiT-S 22.0 1891 4.6 987 80.6 69.4
ViT: DeiT-B 86.6 831 17.5 2078 81.8 71.5

Swin-T-224 28.3 1109 4.5 3345 81.3 69.5
Swin-S-224 49.6 718 8.7 3470 83.0 71.8
Swin-B-224 87.8 532 15.4 4695 83.5 _

Vision MLP
Mixer-L/16 208.2 322 44.6 2614 71.8 56.2
Mixer-B/16 59.9 993 12.6 1448 76.4 63.2
ResMLP-S24 30.0 1681 6.0 844 79.4 67.9
ResMLP-B24 116.0 1120 23.0 930 81.0 69.0

Patch-based ConvNets
ResMLP-S12 conv3x3 16.7 3217 3.2 763 77.0 65.5
ConvMixer-768/32 21.1 271 20.9 2644 80.2 _
ConvMixer-1536/20 51.6 157 51.4 5312 81.4 _

Ours-S60 25.2 1125 4.0 1321 82.1 71.0
Ours-S120 47.7 580 7.5 1450 83.2 72.5
Ours-B60 99.4 541 15.8 2790 83.5 72.6
Ours-B120 188.6 280 29.9 3314 84.1 73.9

We point out that we have not optimized the training recipes further (either without or with
class-attention). This result is reported for a single run (Seed 0) in both cases.

Patch pre-processing. In the vanilla patch-based approaches as vision transformers [61, 193]
and MLP-style models [191, 192], the images patches are embedded by one linear layer. Recent
works [86, 225] show that replacing this linear patch pre-processing by a few convolutional layers
allows to have a more stable architecture [225] with better performance. So, in our work we choose
to use a convolutional stem instead of pure linear projection. We provide in Table 5.7 an ablation
of this component.
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Table 5.2 – ImageNet-21k pre-training: Comparison
of PatchConvNet fine-tuned at different resolutions
on ImageNet-1k. We report peak memory (MB) and
throughput (im/s) on one GPU V100 with batch size
256 and mixed precision. Larger resolution provides
classification improvement with the same model,
but significantly increase the resource requirements.
[italic: results obtained with a longer training].

Model GFLOPs Peak throughput Res Imnet-val
Mem (im/s) top-1 Acc

S60 4.0 1322 1129 224 82.9 [83.5]
S60 6.6 2091 692 288 84.0 [84.4]
S60 11.8 3604 388 384 84.6 [84.9]
S60 20.9 6296 216 512 85.0 [85.4]

B60 15.8 2794 547 224 85.0 [85.4]
B60 26.1 4235 328 288 85.7
B60 46.5 7067 185 384 86.1 [86.5]

L60 28.1 3913 394 224 85.6
L60 46.4 5801 237 288 86.1
L60 82.5 9506 132 384 86.4

B120 29.8 3313 280 224 86.0
B120 49.3 4752 169 288 86.6
B120 87.7 7587 96 384 86.9

L120 53.0 4805 204 224 86.1
L120 87.5 6693 123 288 86.6
L120 155.5 10409 68 384 87.1

Table 5.3 – ADE20k semantic segmentation per-
formance using UperNet [223] (in comparable set-
tings [59, 66, 134]). All models are pre-trained on
ImageNet-1k except models with † symbol that are
pre-trained on ImageNet-21k (Swin-B at resolution
640× 640).

Backbone

UperNet

#params FLOPs Single Multi
scale scale

(×106) (×109) mIoU mIoU

ResNet50 66.5 _ 42.0 _
DeiT-S 52.0 1099 _ 44.0
XciT-T12/16 34.2 874 41.5 _
XciT-S12/16 54.2 966 45.9 _
Swin-T 59.9 945 44.5 46.1
Ours-S60 57.1 952 46.0 46.9

XciT-M24/16 112.2 1213 47.6 _
XciT-M24/8 110.0 2161 48.4 _
Swin-B 121.0 1188 48.1 49.7
Ours-B60 140.6 1258 48.1 48.6
Ours-B120 229.8 1550 49.4 50.3

Swin-B†
121.0 1841 50.0 51.6

CSWin-B†
109.2 1941 51.8 52.6

Ours-S60
†

57.1 952 48.4 49.3
Ours-B60

†
140.6 1258 50.5 51.1

Ours-B120
†

229.8 1550 51.9 52.8
Ours-L120

†
383.7 2086 52.2 52.9

Table 5.4 – Datasets used for our transfer learning tasks.

Dataset Train size Test size #classes

iNaturalist 2018 [104] 437,513 24,426 8,142

iNaturalist 2019 [103] 265,240 3,003 1,010

Flowers-102 [144] 2,040 6,149 102

Stanford Cars [121] 8,144 8,041 196

CIFAR-100 [124] 50,000 10,000 100

CIFAR-10 [124] 50,000 10,000 10



94 revisiting convnet architecture

Table 5.5 – Results in transfer learning.
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ResNet-50 [215] 98.3 86.9 97.9 92.7 _ 73.9 4.1B
Grafit [198] _ _ 98.2 92.5 69.8 75.9 4.1B

EfficientNet-B7 [187] 98.9 91.7 98.8 94.7 _ _ 37.0B

ViT-B/16 [61] 98.1 87.1 89.5 _ _ _ 55.5B
ViT-L/16 [61] 97.9 86.4 89.7 _ _ _ 190.7B
DeiT-B [193] 99.1 90.8 98.4 92.1 73.2 77.7 17.5B
CaiT-S-36 [197] 99.2 92.2 98.8 93.5 77.1 80.6 13.9B
CaiT-M-36 [197] 99.3 93.3 99.0 93.5 76.9 81.7 53.7B

Ours-S60 99.2 91.4 98.8 94.0 72.9 78.1 4.0B
Ours-B120 99.2 91.1 99.0 94.4 74.3 79.5 29.9B

Ours-S60 @ 320 99.1 91.4 98.9 94.5 76.8 81.4 8.2B
Ours-B120 @ 320 99.1 91.2 99.1 94.8 79.6 82.5 60.9B

Table 5.6 – COCO object detection and instance segmentation performance on the mini-val set. Backbones [66, 94, 134,
229, 211, 244] are all pre-trained on ImageNet-1k, use Mask R-CNN [93] and the same 3× train schedule.

Backbone #params GFLOPs APb APb
50 APb

75 APm APm
50 APm

75

ResNet50 44.2M 180 41.0 61.7 44.9 37.1 58.4 40.1
ResNet101 63.2M 260 42.8 63.2 47.1 38.5 60.1 41.3
ResNeXt101-64 101.9M 424 44.4 64.9 48.8 39.7 61.9 42.6

PVT-Small 44.1M _ 43.0 65.3 46.9 39.9 62.5 42.8
PVT-Medium 63.9M _ 44.2 66.0 48.2 40.5 63.1 43.5
XCiT-S12/16 44.4M 295 45.3 67.0 49.5 40.8 64.0 43.8
XCiT-S24/16 65.8M 385 46.5 68.0 50.9 41.8 65.2 45.0
ViL-Small 45.0M 218 43.4 64.9 47.0 39.6 62.1 42.4
ViL-Medium 60.1M 294 44.6 66.3 48.5 40.7 63.8 43.7
ViL-Base 76.1M 365 45.7 67.2 49.9 41.3 64.4 44.5
Swin-T 47.8M 267 46.0 68.1 50.3 41.6 65.1 44.9
Ours-S60 44.9M 264 46.4 67.8 50.8 41.3 64.8 44.2
Ours-S120 67.4M 339 47.0 69.0 51.4 41.9 65.6 44.7

Table 5.7 – Ablation of our model: we modify each time a single architectural characteristic in our Patch-
ConvNet model S60, and measure how it affects the classification performance on ImageNet-1k. Batch-
normalization improves the performance a bit. The convolutional stem is key for best performance, and the
class-attention brings a slight improvement in addition to enabling attention-based visualisation properties.

↓ Modification to the architecture Top-1 acc.

none 82.1
class-attention → average pooling 81.9

conv-stem → linear projection 80.0
layer-normalization → batch-normalization 82.4

single-head attention → multi-head attention 81.9
a single class-token → one class-token per class 81.1
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Figure 5.8 – Effect of stochastic depth on the performance for varying training duration for a PatchConvNet-
B120 model trained @ resolution 224. The corresponding hyper-parameter (drop-path) is selected among 0.3,
0.4 or 0.5 in that case, which means that we randomly drop up to half of the layers. Smaller values of the
drop-rate converge more rapidly but saturate.

Table 5.8 – Comparison of PatchConvNet with Layer-Normalization and Batch-Normalization: Performance
on ImageNet-1k val after pre-training on ImageNet-1k train only. The drop-path parameter value is obtained by
cross-validation on ImageNet-1k for each model. Batch-Normalization usually provides a slight improvement
in classification, but but with large models the need for synchronization can significantly slow down the
training (in some cases like training a B120 model on AWS, it almost doubled the training time). Therefore
we do not use it by default in this chapter.

ImageNet-val Top-1 acc.

Model drop-path LayerNorm BatchNorm

S20 0.0 78.7 78.8
S36 0.05 80.7 81.2
S60 0.15 82.1 82.4
S120 0.2 83.2 83.4
B36 0.2 82.8 83.5
B60 0.3 83.5 83.9
B120 0.4 84.1 84.3
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5.4 Conclusion

In this chapter, we introduced an attention-based pooling layer which offers visualization
properties and interpretability by design. In addition, we proposed a full patch-based ConvNet
with no pyramidal structure design in order to better exploit our pooling layer. We demonstrated
its interest on several computer vision tasks: classification, segmentation, detection.

In summary, we make the following contributions:

• We revisit the final pooling layer in convnets and introduce a simple learned, attention-based
pooling, which provides a direct visualization and interpretability of the decision;

• We propose a slight adaptation of our attention-based pooling in order to have one attention
map per class, offering an interpretability of the predictions per class;

• We propose an architecture, PatchConvNet, with a simple patch-based design (two param-
eters: depth and width), which we design so that it offers better visualizations of the class
attention maps (see Figure 5.5) by maintaining a relatively high resolution across all layers.

After studying different architectures for computer vision and in particular for image classifi-
cation, we will study the interaction between the architecture and the training procedure.
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After their vast success in NLP, transformer models [204] and their derivatives are increasingly
popular in computer vision. Because they incorporate as priors only the co-localisation of pixels
in patches, transformers have to learn about the structure of images while optimizing the model
such that it processes the input with the objective of solving a given task. This can be either
reproducing labels in the supervised case, or other proxy tasks in the case of self-supervised
approaches. Nevertheless, despite their huge success, there has been only few works in computer
vision studying how to efficiently train vision transformers, and in particular on a midsize dataset
like ImageNet-1k. Since the work of Dosovistky et al. [61], the training procedures are mostly
variants from the proposal of DeiT (Chapter 3) and Steiner et al. [183]. In contrast, multiple works
have proposed alternative architectures by introducing pooling, more efficient attention, or hybrid
architectures re-incorporating convolutions and a pyramid structure. These new designs, while
being particularly effective for some tasks, are less general. One difficult question to address is
whether the improved performance is due to a specific architectural design, or because it facilitates
the optimization as suggested it is the case for convolutions with ViTs [224].

Recently, self-supervised approaches inspired by the popular BerT pre-training have raised
hopes for a BerT moment in computer vision. There are some analogies between the fields of NLP
and computer vision, starting with the transformer architecture itself. However, these fields are
not identical in every way: The modalities processed are of different nature (continuous versus dis-
crete). Computer vision offers large annotated databases like ImageNet [168], and fully supervised
pre-training on ImageNet is effective for handling different downstream tasks such as transfer
learning [147] or semantic segmentation. Without further work on fully supervised approaches on
ImageNet it is difficult to conclude if the intriguing performance of self-supervised approaches
like BeiT [11] is due to the training, e.g. data augmentation, regularization, optimization, or to an
underlying mechanism that is capable of learning more general implicit representations.

In this chapter, we propose to revisit the training procedure for vanilla ViT architectures.
We investigate how to fully exploit the potential of transformers and discuss the importance of
BerT-like pre-training. Our work builds upon the recent state of the art on fully supervised and
self-supervised approaches, with new insights regarding data-augmentation. We propose new
training recipes for vision transformers on ImageNet-1k and ImageNet-21k. The whole procedure
is called DeiT III.

This chapter is organised as follows: first, we describe the related work. Then, we detail
our training strategies with our new training components. In section 6.3, we provide image
classification and semantic segmentation experiments.

Publication. Chapter 6 is based on the papers “ResNet strikes back: An improved training proce-
dure in timm", Ross Wightman, Hugo Touvron, Hervé Jégou, NeurIPS workshop 2021 (see RSB
paper [215]) and "DeiT III: Revenge of the ViT”, Hugo Touvron, Matthieu Cord, Hervé Jégou, ECCV
2022 (see DeiT III paper [194]). The code associated is publicly available at https://github.com/
facebookresearch/deit and https://github.com/rwightman/pytorch-image-models.

https://github.com/facebookresearch/deit
https://github.com/facebookresearch/deit
https://github.com/rwightman/pytorch-image-models
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6.1 Related work

Training procedures: The first procedure proposed in the ViT paper [61] was mostly effective
for larger models trained on large datasets. In particular the ViT were not competitive with
convnets when trained from scratch on ImageNet. Chapter 3 showed that by adapting the training
procedure, it is possible to achieve a performance comparable to that of convnets with Imagenet
training only. After this Data Efficient Image Transformer procedure (DeiT), only few adaptations
have been proposed to improve the training of vision transformers. Steiner et al. [183] published
a complete study on how to train vision transformers on different datasets by doing a complete
ablation of the different training components. Their results on ImageNet [168] are slightly inferior
to those of DeiT but they report improvements on ImageNet-21k compared to Dosovitskiy et
al. [61]. The self-supervised approach referred to as masked auto-encoder (MAE) [92] proposes
an improved supervised baseline for the larger ViT models.

BerT pre-training: In the absence of a strong fully supervised training procedure, BerT [56]-like
approaches that train ViT with a self-supervised proxy objective, followed by full finetuning on the
target dataset, seem to be the best paradigm to fully exploit the potential of vision transformers.
Indeed, BeiT [11] or MAE [92] significantly outperform the fully-supervised approach, especially
for the largest models. Nevertheless, to date these approaches have mostly shown their interest
in the context of mid-size datasets. For example MAE [92] report its most impressive results
when pre-training on ImageNet-1k with a full finetuning on ImageNet-1k. When pre-training on
ImageNet-21k and finetuning on ImageNet-1k, BeiT [11] requires a full 90-epochs finetuning on
ImageNet-21k followed by another full finetuning on ImageNet-1k to reach its best performance,
suggesting that a large labeled dataset is needed so that BeiT realizes its best potential. A recent
work suggests that such auto-encoders are mostly interesting in a data starving context [65], but
this questions their advantage in the case where more labelled data is actually available.

Data augmentation: For supervised training, the community commonly employs data augmen-
tations offered by automatic design procedures such as RandAugment [44] or Auto-Augment [45].
These data augmentations seem to be essential for training vision transformers [193]. Nevertheless,
papers like TrivialAugment [142] and Uniform Augment [131] have shown that it is possible to
reach interesting performance levels when simplifying the approaches. However, these approaches
were initially optimized for convnets. In our work, we propose to go further in this direction and
drastically limit and simplify data augmentation: we introduce a data augmentation policy that
employs only 3 different transformations randomly drawn with uniform probability. That’s it!

6.2 Revisit training & pre-training for Vision Transformers

We present our training procedure for vision transformers and compare it with existing ap-
proaches. We detail the different ingredients in Table 6.1. Building upon Wightman et al. [215]
and Touvron et al. [193], we introduce several changes that have a significant impact on the final
model accuracy.

6.2.1 Regularization & loss

Stochastic depth is a regularization method that is especially useful for training deep networks.
We use a uniform drop rate across all layers and adapt it according to the model size [197].
Table 6.14 (6.3.6) gives the stochastic depth drop-rate per model.
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Table 6.1 – Summary of our training procedures with ImageNet-1k and ImageNet-21k. We also provide
DeiT [193], Wightman et al [215] and Steiner et al. [183] baselines for reference. Adapt. means the hparams is
adapted to the size of the model. For finetuning to higher resolution with model pre-trained on ImageNet-1k
only we use the finetuning procedure from Chapter 3 see section 6.3.6 for more details.

Previous approaches Ours

Procedure→ ViT Steiner DeiT Wightman ImNet-1k ImNet-21k
Reference [61] et al. [183] [193] et al. [215] Pretrain. Finetune.

Batch size 4096 4096 1024 2048 2048 2048 2048

Optimizer AdamW AdamW AdamW LAMB LAMB LAMB LAMB
LR 3.10−3 3.10−3 1.10−3 5.10−3 3.10−3 3.10−3 3.10−4

LR decay cosine cosine cosine cosine cosine cosine cosine
Weight decay 0.1 0.3 0.05 0.02 0.02 0.02 0.02

Warmup epochs 3.4 3.4 5 5 5 5 5

Label smoothing ε 0.1 0.1 0.1 ✗ ✗ 0.1 0.1
Dropout ✓ ✓ ✗ ✗ ✗ ✗ ✗
Stoch. Depth ✗ ✓ ✓ ✓ ✓ ✓ ✓
Repeated Aug ✗ ✗ ✓ ✓ ✓ ✗ ✗
Gradient Clip. 1.0 1.0 ✗ 1.0 1.0 1.0 1.0

H. flip ✓ ✓ ✓ ✓ ✓ ✓ ✓
RRC ✓ ✓ ✓ ✓ ✓ ✗ ✗
Rand Augment ✗ Adapt. 9/0.5 7/0.5 ✗ ✗ ✗
3 Augment (ours) ✗ ✗ ✗ ✗ ✓ ✓ ✓
LayerScale ✗ ✗ ✗ ✗ ✓ ✓ ✓
Mixup alpha ✗ Adapt. 0.8 0.2 0.8 ✗ ✗
Cutmix alpha ✗ ✗ 1.0 1.0 1.0 1.0 1.0
Erasing prob. ✗ ✗ 0.25 ✗ ✗ ✗ ✗
ColorJitter ✗ ✗ ✗ ✗ 0.3 0.3 0.3

Test crop ratio 0.875 0.875 0.875 0.95 1.0 1.0 1.0

Loss CE CE CE BCE BCE CE CE

LayerScale. We use LayerScale [197] introduced in Chapter 3. As previously mentioned, this
method was introduced to facilitate the convergence of deep transformers. With our training
procedure, we do not have convergence problems, however we observe that LayerScale allows
our models to attain a higher accuracy for the largest models. In Chapter 3, the initialization of
LayerScale is adapted according to the depth. In order to simplify the method we use the same
initialization (10−4) for all our models.

Binary Cross entropy. Wigthman et al. [215] adopt a binary cross-entropy (BCE) loss instead of
the more common cross-entropy (CE) to train ResNet-50. They conclude that the gains are limited
compared to the CE loss but that this choice is more convenient when employed with Mixup [242]
and CutMix [237]. For larger ViTs and with our training procedure on ImageNet-1k, the BCE loss
provides us a significant improvement in performance, see an ablation in Table 6.4. We did not
achieve compelling results during our exploration phase on Imagenet21k, and therefore keep CE
when pre-training with this dataset as well as for the subsequent fine-tuning.

The optimizer is LAMB [234], a derivative of AdamW [136]. It includes gradient clipping by
default in Apex’s [1] implementation.

6.2.2 Data-augmentation

Since the advent of AlexNet, there has been significant modifications to the data-augmentation
procedures employed to train neural networks. Interestingly, the same data augmentation, like
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Data-Augmentation ImageNet-1k
ColorJitter Grayscale Gaussian Blur Solarization Val Real V2

0.3 ✗ ✗ ✗ 81.4 86.1 70.3
0.3 ✓ ✗ ✗ 81.0 86.0 69.7
0.3 ✓ ✓ ✗ 82.7 87.6 72.7
0.3 ✓ ✓ ✓ 83.1 87.7 72.6
0.0 ✓ ✓ ✓ 83.1 87.7 72.0

Table 6.2 – Ablation of the components of our data-augmentation strategy with ViT-B on ImageNet-1k.

RandAugment [44], is widely employed for ViT while their policy was initially learned for con-
vnets. Given that the architectural priors and biases are quite different in these architectures, the
augmentation policy may not be adapted, and possibly overfitted considering the large amount
of choices involved in their selection. We therefore revisit this prior choice.

3-Augment: We propose a simple data augmentation inspired by what is used in self-supervised
learning (SSL). We consider the following transformations:

• Grayscale: This favors color invariance and give more focus on shapes.

• Solarization: This adds strong noise on the colour to be more robust to the variation of
colour intensity and so focus more on shape.

• Gaussian Blur: In order to slightly alter details in the image.

For each image, we select only one of these data-augmentations with a uniform probability over
3 different ones. In addition to these 3 augmentation choices, we include the common color-jitter
and horizontal flip. Figure 6.1 illustrates the different augmentations used in our 3-Augment
approach. In Table 6.2 we provide an ablation on our different data-augmentation components.

6.2.3 Cropping

Random Resized Crop (RRC) was introduced in the GoogleNet [184] paper. It serves as a
regularisation to limit model overfitting, while favoring that the decision done by the model is
invariant to a certain class of transformations. This data augmentation was deemed important on
Imagenet1k to prevent overfitting, which happens to occur rapidly with modern large models.

This cropping strategy however introduces some discrepancy between train and test images
in terms of the aspect ratio and the apparent size of objects [199]. Since ImageNet-21k includes
significantly more images, it is less prone to overfitting. Therefore we question whether the benefit
of the strong RRC regularization compensates for its drawback when training on larger sets.

Simple Random Crop (SRC) is a much simpler way to extract crops. It is similar to the original
cropping choice proposed in AlexNet [123]: We resize the image such that the smallest side
matches the training resolution. Then we apply a reflect padding of 4 pixels on all sides, and
finally we apply a square Crop of training size randomly selected along the x-axis of the image.

Figure 6.2 vizualizes cropping boxes sampled for RRC and SRC. RRC provides a lot of diversity
and very different sizes for crops. In contrast SRC covers a much larger fraction of the image
overall and preserve the aspect ratio, but offers less diversity: The crops overlaps significantly. As
a result, when training on ImageNet-1k the performance is better with the commonly used RRC.
For instance a ViT-S reduces its top-1 accuracy by −0.9% if we do not use RRC.
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Figure 6.1 – Illustration of the 3 types of data-augmentations used in 3-Augment.

RRC SRC

Figure 6.2 – Example of crops selected by two strategies: Resized Crop and Simple Random Crop.
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SRC RRC SRC RRC SRC RRC

Figure 6.3 – Illustration of Random Resized Crop (RRC) and Simple Random Crop (SRC). The usual RRC
is a more aggressive data-augmentation than SRC: It has a more important regularizing effect and avoids
overfitting by giving more variability to the images. At the same time it introduces a discrepancy of scale and
aspect-ratio. It also leads to labeling errors, for instance when the object is not in the cropped region (e.g.,
train or boat). On Imagenet1k this regularization is overall regarded as beneficial. However our experiments
show that it is detrimental on ImageNet-21k, which is less prone to overfitting.
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However, in the case of ImageNet-21k (×10 bigger than ImageNet-1k), there is less risk of
overfitting and increasing the regularisation and diversity offered by RRC is less important. In
this context, SRC offers the advantage of reducing the discrepancy in apparent size and aspect
ratio. More importantly, it gives a higher chance that the actual label of the image matches that of
the crop: RRC is relatively aggressive in terms of cropping and in many cases the labelled object
is not even present in the crop, as shown in Figure 6.3 where some of the crops do not contain
the labelled object. For instance, with RRC there is a crop no zebra in the left example, or no train
in three of the crops from the middle example. This is more unlikely to happen with SRC, which
covers a much larger fraction of the image pixels. In Table 6.5 we provide an ablation of random
resized crop on ImageNet-21k, where we see that these observations translate as a significant gain
in performance.

6.3 Experiments

This section includes multiple experiments in image classification, with a special emphasis on
ImageNet-1k [54, 159, 168]. We also report results for downstream tasks in fine-grained classifica-
tion and segmentation. We include a large number of ablations to better analyze different effects,
such as the importance of the training resolution and longer training schedules. We provide
additional results in the appendices.

6.3.1 Baselines and default settings

The main task that we consider in this chapter for the evaluation of our training procedure
is image classification. We train on ImageNet-1k train and evaluate on ImageNet-1k val, with
results on ImageNet-V2 to control overfitting. We also consider the case where we can pretrain
on ImageNet-21k, Finally, we report transfer learning results on 6 different datasets/benchmarks.

ImageNet-1k ImageNet-21k
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Figure 6.4 – Comparison of training recipes for (left) vanilla vision transformers trained on ImageNet-1k
and evaluated at resolution 224×224, and (right) pre-trained on ImageNet-21k at 224×224 and finetuned on
ImageNet-1k at resolution 224×224 or 384×384.
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Figure 6.6 – Transfer learning performance on 6

datasets with different test-time crop ratio. ViT-B pre-
trained on ImageNet-1k at resolution 224.

Default setting. When training on ImageNet-1k only, by default we train during 400 epochs
with a batch size 2048, following prior works [197, 224]. Unless specified otherwise, both the
training and evaluation are carried out at resolution 224 × 224 (even though we recommend to
train at a lower resolution when targeting 224× 224 at inference time).

When pre-training on ImageNet-21k, we pre-train by default during 90 epochs at resolution
224× 224, followed by a finetuning of 50 epochs on ImageNet-1k. In this context, we consider two
fine-tuning resolutions: 224× 224 and 384× 384.

6.3.2 Ablations

6.3.2.1 Impact of training duration

In Figure 6.5 we provide an ablation on the number of epochs, which shows that ViT models
do not saturate as rapidly as the Chapter 3 training procedure [193] when we increase the number
of epochs beyond the 400 epochs adopted for our baseline.

For ImageNet-21k pre-training, we use 90 epochs for pre-training as in a few works [134, 195].
We finetune during 50 epochs on ImageNet-1k [195] and marginally adapt the stochastic depth
parameter. We point out that this choice is mostly for the sake of consistency across models: we
observe that training 30 epochs also provides similar results.

6.3.2.2 Data Augmentation

In Table 6.3 we compare our handcrafted data augmentation 3-Augment with existing learned
augmentation methods. With the ViT architecture, our data augmentation is the most effective
while being simpler than the other approaches. Since previous augmentations were introduced
on convnets, we also provide results for a ResNet-50. In this case, previous augmentation policies
have similar (RandAugment, Trivial-Augment) or better results (Auto-Augment) on the validation
set. This is no longer the case when evaluating on the independent set V2, for which the Auto-
Augment better accuracy is not significant.
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Method Learned augm. # Nb of Model ImageNet-1k
methods DA Val Real V2

Auto-Augment [45] ✓ 14

ResNet50 79.7 85.6 67.9
ViT-B 82.8 87.5 71.9
ViT-L 84.0 88.6 74.0

RandAugment [44] ✓ 14

ResNet50 79.5 85.5 67.6
ViT-B 82.7 87.4 72.2
ViT-L 84.0 88.3 73.8

Trivial-Augment [142] ✗ 14

ResNet50 79.5 85.4 67.6
ViT-B 82.3 87.0 71.2
ViT-L 83.6 88.1 73.7

ResNet50 79.4 85.5 67.8
ViT-B 83.1 87.7 72.63-Augment (Ours) ✗ 3

ViT-L 84.2 88.6 74.3

Table 6.3 – Comparison of some existing data augmentation methods with our simple 3-Augment proposal
inspired by data augmentation used with self-supervised learning.

Model Loss LayerScale Data Aug. Epochs ImageNet-1k
val real v2

V
iT

-S

CE ✗ RandAugment 300 79.8 85.3 68.1
BCE ✗ RandAugment 300 79.8 85.9 68.2
BCE ✓ RandAugment 300 80.1 86.1 69.1
BCE ✓ RandAugment 400 80.7 86.0 69.3
BCE ✓ 3-Augment 400 80.4 86.1 69.7

V
iT

-B

CE ✗ RandAugment 300 80.9 85.5 68.5
BCE ✗ RandAugment 300 82.2 87.2 71.4
BCE ✓ RandAugment 300 82.5 87.5 71.4
BCE ✓ RandAugment 400 82.7 87.4 72.2
BCE ✓ 3-Augment 400 83.1 87.7 72.6

V
iT

-L

BCE ✗ RandAugment 300 83.0 87.9 72.4
BCE ✗ RandAugment 400 83.3 87.7 72.5
BCE ✓ RandAugment 400 84.0 88.3 73.8
BCE ✓ 3-Augment 400 84.2 88.6 74.3

Table 6.4 – Ablation on different training component with training at resolution 224× 224 on ImageNet-1k.
We perform ablations with ViT-S, ViT-B and ViT-L. We report top-1 accuracy (%) on ImageNet validation set,
ImageNet real and ImageNet v2.

Crop. LS Mixup Aug. #Imnet21k finetuning Imagenet-1k val top-1 Imagenet-1k v2 top-1
policy epochs resolution ViT-S ViT-B ViT-L ViT-S ViT-B ViT-L

RRC ✗ 0.8 RA 90 224
2

81.6 84.6 86.0 70.7 74.7 76.4
SRC ✗ 0.8 RA 90 224

2
82.1 84.8 86.3 71.8 75.0 76.7

SRC ✓ 0.8 RA 90 224
2

82.4 85.0 86.4 72.4 75.7 77.4
SRC ✓ ✗ RA 90 224

2
82.3 85.1 86.5 72.4 75.6 77.2

SRC ✓ ✗ 3A 90 224
2

82.6 85.2 86.8 72.6 76.1 78.3
SRC ✓ ✗ 3A 240 224

2 83.1 85.7 87.0 73.8 76.5 78.6

SRC ✓ ✗ 3A 240 384
2 84.8 86.7 87.7 75.1 77.9 79.1

Table 6.5 – Ablation path: augmentation and regularization with ImageNet-21k pre-training (at resolution
224×224) and ImageNet-1k fine-tuning. We measure the impact of changing Random Resize Crop (RRC)
to Simple Random Crop (SRC), adding LayerScale (LS), removing Mixup, replacing RandAugment (RA)
by 3-Augment (3A), and finally employing a longer number of epochs during the pre-training phase on
ImageNet-21k. All experiments are done with Seed 0 with fixed hparams except the drop-path rate of
stochastic depth, which depends on the model and is increased by 0.05 for the longer pre-training. We report
2 digits top-1 accuracy but note that the standard standard deviation is around 0.1 on our ViT-B baseline.
Note that all these changes are neutral w.r.t. complexity except in the last row, where the fine-tuning at
resolution 384×384 significantly increases the complexity.
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Model epochs Resolution ImageNet top-1 acc
Train. FT Train. FT val real v2

ViT-B

400
20

128× 128

224× 224

83.2 88.1 73.2
160× 160 83.3 88.0 73.4
192× 192 83.5 88.0 72.8

_ 224× 224 83.1 87.7 72.6

800
20

128× 128

224× 224

83.5 88.3 73.4
160× 160 83.6 88.2 73.5
192× 192 83.8 88.2 73.6

_ 224× 224 83.7 88.1 73.1

ViT-L

400
20

128× 128

224× 224

83.9 88.8 74.3
160× 160 84.4 88.8 74.3
192× 192 84.5 88.8 75.1

_ 224× 224 84.2 88.6 74.3

800
20

128× 128

224× 224

84.5 88.9 74.7
160× 160 84.7 88.9 75.2
192× 192 84.9 88.7 75.1

_ 224× 224 84.5 88.8 75.0

ViT-H

400
20

126× 126

224× 224

84.7 89.2 75.2
154× 154 85.1 89.3 75.3
182× 182 85.1 89.2 75.4

_ 224× 224 84.8 89.1 75.3

800
20

126× 126

224× 224

85.1 89.2 75.6
154× 154 85.2 89.2 75.9
182× 182 85.1 88.9 75.9

_ 224× 224 84.9 89.1 75.6

ViT-H-52 400 20 126× 126 224× 224 84.9 89.2 75.6

ViT-H-26×2 400 20 126× 126 224× 224 84.9 89.1 75.3

Table 6.6 – We compare ViT architectures pre-trained on ImageNet-1k only with different training resolution
followed by a fine-tuning at resolution 224 × 224. We benefit from the FixRes effect [199] and get better
performance with a lower training resolution (e.g resolution 160 × 160 with patch size 16 represent 100

tokens vs 196 for 224× 224. This represents a reduction of 50% of the number of tokens).

6.3.2.3 Impact of training resolution

In Table 6.6 we report the evolution of the performance according to the training resolution.
We observe that we benefit from the FixRes [199] effect. By training at resolution 192×192 (or
160×160) we get a better performance at 224 after a slight fine-tuning than when training from
scratch at 224×224.

We observe that the resolution has a regularization effect. While it is known that it is best
to use a smaller resolution at training time [199], we also observe with the training curves that
using smaller resolution reduces the overfitting of the larger models. This is also illustrated by our
results Table 6.6 with ViT-H and ViT-L. This is especially important with longer training, where
models overfit without a stronger regularisation. This smaller resolution implies that there are less
patches to be processed, and therefore it reduces the training cost and increases the performance.
In that respect it effect is comparable to that of MAE [92]. We also report results with ViT-H 52

layers and ViT-H 26 layers parallel [196] models with 1B parameters. Due to the lower resolution
training it is easier to train these models.
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6.3.2.4 Comparison with previous training recipes for ViT

In Figure 6.4, we compare training procedures used to pre-train the ViT architecture either
on ImageNet-1k and ImageNet-21k. Our procedure outperforms existing recipes with a large
margin. For instance, with ImageNet-21k pre-training we have an improvement of +3.0% with
ViT-L in comparison to the best approach. Similarly, when training from scratch on ImageNet-1k
we improve the accuracy by +2.1% for ViT-H compared to the previous best approach, and by
+4.3% with the best approach that does not use EMA. See also detailed results in our appendices.

6.3.3 Image Classification

ImageNet-1k. In Table 6.7 we compare ViT architectures trained with our training recipes on
ImageNet-1k with other architectures. We include a comparison with the recent SwinTransform-
ers [134] and ConvNeXts [135].

ImageNet-21k. In Table 6.8 we compare ViT architecture pre-trained on ImageNet-21k with our
training recipe then finetuned on ImageNet-1k. We can observe that the findings are similar to
what we obtained on ImageNet-1k only.

Comparison with BerT-like pre-training. In Table 6.9 we compare ViT models trained with
our training recipes with ViT trained with different BerT-like approaches. We observe that for an
equivalent number of epochs our approach gives comparable performance on ImageNet-1k and
better on ImageNet-v2 as well as in segmentation on Ade. For BerT like pre-training we compare
our method with MAE [92] and BeiT [11] because they remain relatively simple approaches with
very good performance. As our approach does not use distillation or multi-crops we have not
made a comparison with approaches such as PeCo [60] which use an auxiliary model as a psycho-
visual loss and iBoT [249], which uses multi-crop and an exponential moving average of the model.

6.3.4 Significance of measurements

In this subsection we study first the Significance of measurements with ResNet-50 architec-
tures and A2 training strategy from Wigthman et al. [215] We then extend this study to the ViT
architecture with our new training procedure.

Seed experiments For a fixed set of choices and hyper-parameters, there is some inherent vari-
ability on the performance due to the presence of random factors in several stages. It is the case
for the weight initialization, but also for the optimization procedure itself. For instance the order
in which the images are fed to the network through batches depends on a random generator. This
variability raises the question of the significance of accuracy measurements. For this purpose, we
measure the distribution of performance when changing the random generator choices. This is
conveniently done by changing the seed, as previously done by Picard [152], who concludes to
the existence of outliers significantly outperforming or underperforming the average outcome of
a training procedure. In Figure 6.7, we report several statistics on the performance with the A2

training [215] procedure and ResNet50 architecture when considering 100 distinct seeds (from 1

to 100, note that we have used seed=0 in all other experiments). In these experiments, we focus
on the performance reached at the end of the training: we do not select the maximum obtained by
intermediate checkpoints in the last epochs. This would have a similar effect as a seed selection,
but the measures would not be IID and less disentangled from the training duration itself.
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Table 6.7 – Classification with ImageNet-1k training. We compare architectures with comparable FLOPs and
number of parameters. All models are trained on ImageNet1k only without distillation nor self-supervised
pre-training. We report Top-1 accuracy on the validation set of ImageNet1k and ImageNet-V2 with different
measure of complexity: throughput, FLOPs, number of parameters and peak memory usage. The throughput
and peak memory are measured on a single V100-32GB GPU with batch size fixed to 256 and mixed precision.
For ResNet [94] and RegNet [156] we report the improved results from Wightman et al. [215]. Note that
different models may have received a different optimization effort. ↑R indicates that the model is fine-tuned
at the resolution R and -R indicates that the model is trained at resolution R.

Architecture nb params throughput FLOPs Peak Mem Top-1 V2

(×106) (im/s) (×109) (MB) Acc. Acc.

“Traditional” ConvNets
ResNet-50 [94, 215] 25.6 2587 4.1 2182 80.4 68.7
ResNet-101 [94, 215] 44.5 1586 7.9 2269 81.5 70.3
ResNet-152 [94, 215] 60.2 1122 11.6 2359 82.0 70.6

RegNetY-4GF [156, 215] 20.6 1779 4.0 3041 81.5 70.7
RegNetY-8GF [156, 215] 39.2 1158 8.0 3939 82.2 71.1
RegNetY-16GF [156, 193] 83.6 714 16.0 5204 82.9 72.4

EfficientNet-B4 [187] 19.0 573 4.2 10006 82.9 72.3
EfficientNet-B5 [187] 30.0 268 9.9 11046 83.6 73.6

EfficientNetV2-S [188] 21.5 874 8.5 4515 83.9 74.0
EfficientNetV2-M [188] 54.1 312 25.0 7127 85.1 75.5
EfficientNetV2-L [188] 118.5 179 53.0 9540 85.7 76.3

Vision Transformers derivative

PiT-S-224 [99] 23.5 1809 2.9 3293 80.9 _
PiT-B-224 [99] 73.8 615 12.5 7564 82.0 _
Swin-T-224 [134] 28.3 1109 4.5 3345 81.3 69.5
Swin-S-224 [134] 49.6 718 8.7 3470 83.0 71.8
Swin-B-224 [134] 87.8 532 15.4 4695 83.5 _
Swin-B-384 [134] 87.9 160 47.2 19385 84.5 _

Vision MLP & Patch-based ConvNets
Mixer-B/16 [191] 59.9 993 12.6 1448 76.4 63.2
ResMLP-B24 [192] 116.0 1120 23.0 930 81.0 69.0
PatchConvNet-S60-224 [195] 25.2 1125 4.0 1321 82.1 71.0
PatchConvNet-B60-224 [195] 99.4 541 15.8 2790 83.5 72.6
PatchConvNet-B120-224 [195] 188.6 280 29.9 3314 84.1 73.9
ConvNeXt-B-224 [135] 88.6 563 15.4 3029 83.8 73.4
ConvNeXt-B-384 [135] 88.6 190 45.0 7851 85.1 74.7
ConvNeXt-L-224 [135] 197.8 344 34.4 4865 84.3 74.0
ConvNeXt-L-384 [135] 197.8 115 101.0 11938 85.5 75.3

Our Vanilla Vision Transformers

ViT-S 22.0 1891 4.6 987 81.4 70.5
ViT-S↑384 22.0 424 15.5 4569 83.4 73.1
ViT-B 86.6 831 17.5 2078 83.8 73.6
ViT-B↑384 86.9 190 55.5 8956 85.0 74.8
ViT-L 304.4 277 61.6 3789 84.9 75.1
ViT-L↑384 304.8 67 191.2 12866 85.8 76.7
ViT-H 632.1 112 167.4 6984 85.2 75.9
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Table 6.8 – Classification with ImageNet-21k training. We compare architectures with comparable FLOPs
and number of parameters. All models are trained on ImageNet-21k without distillation nor self-supervised
pre-training. We report Top-1 accuracy on the validation set of ImageNet-1k and ImageNet-V2 with different
measure of complexity: throughput, FLOPs, number of parameters and peak memory usage. The throughput
and peak memory are measured on a single V100-32GB GPU with batch size fixed to 256 and mixed precision.
For Swin-L we decrease the batch size to 128 in order to avoid out of memory error and re-estimate the
memory consumption. ↑R indicates that the model is fine-tuned at the resolution R.

Architecture nb params throughput FLOPs Peak Mem Top-1 V2

(×106) (im/s) (×109) (MB) Acc. Acc.

“Traditional” ConvNets
R-101x3↑384 [120] 388 _ 204.6 _ 84.4 _
R-152x4↑480 [120] 937 _ 840.5 _ 85.4 _

EfficientNetV2-S↑384 [188] 21.5 874 8.5 4515 84.9 74.5
EfficientNetV2-M↑480 [188] 54.1 312 25.0 7127 86.2 75.9
EfficientNetV2-L↑480 [188] 118.5 179 53.0 9540 86.8 76.9
EfficientNetV2-XL↑512 [188] 208.1 _ 94.0 _ 87.3 77.0

Patch-based ConvNets
ConvNeXt-B [135] 88.6 563 15.4 3029 85.8 75.6
ConvNeXt-B↑384 [135] 88.6 190 45.1 7851 86.8 76.6
ConvNeXt-L [135] 197.8 344 34.4 4865 86.6 76.6
ConvNeXt-L↑384 [135] 197.8 115 101 11938 87.5 77.7
ConvNeXt-XL [135] 350.2 241 60.9 6951 87.0 77.0
ConvNeXt-XL↑384 [135] 350.2 80 179.0 16260 87.8 77.7

Vision Transformers derivative

Swin-B [134] 87.8 532 15.4 4695 85.2 74.6
Swin-B↑384 [134] 87.9 160 47.0 19385 86.4 76.3
Swin-L [134] 196.5 337 34.5 7350 86.3 76.3
Swin-L↑384 [134] 196.7 100 103.9 33456 87.3 77.0

Vanilla Vision Transformers

ViT-B/16 [183] 86.6 831 17.6 2078 84.0 _
ViT-B/16↑384 [183] 86.7 190 55.5 8956 85.5 _
ViT-L/16 [183] 304.4 277 61.6 3789 84.0 _
ViT-L/16↑384 [183] 304.8 67 191.1 12866 85.5 _

Our Vanilla Vision Transformers

ViT-S 22.0 1891 4.6 987 83.1 73.8
ViT-B 86.6 831 17.6 2078 85.7 76.5
ViT-B↑384 86.9 190 55.5 8956 86.7 77.9
ViT-L 304.4 277 61.6 3789 87.0 78.6
ViT-L↑384 304.8 67 191.2 12866 87.7 79.1
ViT-H 632.1 112 167.4 6984 87.2 79.2
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Pretrained Model Method # pre-training # finetuning ImageNet
data epochs epochs Val Real V2

INET-1k

ViT-B

BeiT 300 100(1k) 82.9 _ _
800 100(1k) 83.2 _ _

MAE⋆
1600 100(1k) 83.6 88.1 73.2

400(1k) 20(1k) 83.5 88.0 72.8
Ours

800(1k) 20(1k) 83.8 88.2 73.6

ViT-L

BeiT 800 30(1k) 85.2 _ _

MAE
400 50(1k) 84.3 _ _
800 50(1k) 84.9 _ _
1600 50(1k) 85.1 _ _

MAE⋆
1600 50(1k) 85.9 89.4 76.5

400(1k) 20(1k) 84.5 88.8 75.1
Ours

800(1k) 20(1k) 84.9 88.7 75.1

INET-21k

ViT-B
BeiT 150 50(1k) 83.7 88.2 73.1

150 + 90(21k) 50(1k) 85.2 89.4 75.4

90(21k) 50(1k) 85.2 89.4 76.1
Ours

240(21k) 50(1k) 85.7 89.5 76.5

ViT-L
BeiT 150 50(1k) 86.0 89.6 76.7

150 + 90(21k) 50(1k) 87.5 90.1 78.8

90(21k) 50(1k) 86.8 89.9 78.3
Ours

240(21k) 50(1k) 87.0 90.0 78.6

Table 6.9 – Comparison of self-supervised pre-training with our approach. As our approach is fully su-
pervised, this table is given as an indication. All models are evaluated at resolution 224 × 224. We report
Image classification results on ImageNet val, real and v2 in order to evaluate overfitting. (21k) indicate a
finetuning with labels on ImageNet-21k and (1k) indicate a finetuning with labels on ImageNet-1k. ⋆ design
the improved setting of MAE using pixel (w/ norm) loss.

The standard deviation is typically around 0.1 on ImageNet-val, see Figure 6.7. This concurs
with statistics reported in the literature for ResNet and other convnets [156]. The variance is higher
on ImageNet-V2 (std=0.23), which consists of a smaller set (10000 vs 50000 for -val) of images not
present in the validation set. The mean 79.72% shows that our main weights (seed 0) overestimates
the average performance by about +0.13%.

Peak performance and control of overfitting To prevent to over-estimate too much the accuracy
on validation, during our exploration process we have selected only the final checkpoint and
we use relatively coarse grid for hyper-parameters search to prevent introducing an additional
seed effect. However optimizing over a large number of choices typically leads to overfitting. In
Figure 6.7, we observe that the maximum (or peak performance) is close to 80.0% with the A2

training procedure. Note, Figure 6.8 provides the distribution of accuracy as an histogram;

One question is whether this model is intrinsically better than the average ones, or if it was
just lucky on this particular measurement set. To attempt to answer this question, we measure
how the performance transfers to another measurement dataset: we compute for all the seeds
the couples (ImageNet-val top-1 acc., ImageNet-V2 top-1 acc.), and plot them as a point cloud
in Figure 6.7. We observe that the correlation between the performance on ImageNet-val and
-V2 is limited. Noticeably the best performance is not achieved by the same seed on the two
datasets. This observation suggests some significant measurement noise, which advocates to
report systematically the performance on different datasets, and more particularly one making a
clear distinction between validation and test.
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dataset ↓ mean std max min seed 0

ImageNet-val 79.72 0.10 79.98 79.50 79.85

ImageNet-real 85.37 0.08 85.55 85.21 85.45

ImageNet-V2 67.99 0.23 68.69 67.39 67.90

Figure 6.7 – Top ↑: Statistics for ResNet-50 trained with A2

and 100 different seeds. The column "seed 0" corresponds
to the weights that we take as reference. Its performance is
+0.13% above the average top-1 accuracy on Imagenet-val.

← Left: Point cloud plotting the ImageNet-val top-1 accu-
racy vs ImageNet-V2 for all seeds. Note that the outlying
seed that achieves 68.5% top-1 accuracy on ImageNet-V2

has an average performance on ImageNet-val.

Variability along epochs and discussion on early stopping. Figure 6.9 shows how the perfor-
mance variability evolves along epochs, where we observe the variance of the score is very high
until the last 100 epochs. In Figure 6.10, we additionally measure the performance early in the
training and compare it to the final performance. It is only towards the end of the training that one
can determine the most interesting seeds. We conclude that we can not apply an early stopping
rule based on early results.

Comparing architectures and training procedures: a show-case of contradictory conclusions
In this paragraph we case how difficult it is to compare two architectures, even under the same
training procedure, or conversely how it is difficult to compare different procedures with a single
architecture. We choose ResNet-50 and DeiT-S. The latter [193] is essentially a ViT parameterized
so that it has approximately the same number of parameters as a ResNet-50. For each architec-
ture, we have put a significant effort in optimizing the procedure to maximize the performance
on Imagenet-val with the same 300 epochs training schedule and same batch size. Under this
constraint, the best training procedure that we have designed for ResNet-50 is A2. We denote by
T2 the corresponding training procedure for DeiT-S. Note that this training procedure achieves a
significantly better performance on Imagenet-val than the one initially proposed for DeiT-S (80.4%
versus 79.8% in the original paper).

test set→ ImageNet-val ImageNet-v2

↓ architecture training→ A2 T2 A2 T2

ResNet-50 79.9 79.2 67.9 67.9
DeiT-S 79.6 80.4 68.1 69.2

As one can see, by choosing the procedure optimized for any of the two architectures, one
may conclude that this architecture is better based on ImageNet-val accuracy: with A2 training,
ResNet50 is better than DeiT-S, with T2 training, DeiT-S is better than ResNet50. The measurements
on ImageNet-v2 would lead to a different conclusion, as DeiT-S is better for both procedure. But
even in that case, by focusing on A2 one may conclude that the difference between ResNet-50

and DeiT-S with A2 training is not statistically significant: 67.9% vs 68.1%. Conversely, if the goal
is to compare A2 to T2, we could draw different conclusions on ImageNet-val if considering a
single architecture. This highlights the difficulty of comparing two architectures in a fair way. The
training procedure has interactions with the choice of architecture. It is completely possible to
overfit an architecture on a training procedure.
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Figure 6.8 – Distribution of the performance on ImageNet-
val with the A2 procedure. It is measured with 100 different
seeds. We also depict the Gaussian-fit of this distribution.
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Figure 6.9 – We show how the mean, standard deviation, minimum and maximum of the top-1 accuracy
on ImageNet-val evolves during training with the A2 procedure (ResNet-50 architecture). (Left) For all 300

training epochs. (Right) Same but for the last epochs. We note that the variance in accuracy is high at the
beginning, see for instance at epoch 100, where the difference in performance can be as large as 10% in
accuracy. Towards the end of the training, most of the networks converge to similar values and the range
significantly decreases in the last 50 epochs. Credit: this figure and experiment was inspired by Picard [152].
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Figure 6.10 – Final accuracy @ Epoch 300 versus accuracy at epochs 150, 250 and 290, for 100 networks
trained with A2 training. It is only close to the end of the training that we start observing a correlation
between temporary and final performance. We can therefore not apply early stopping rules based on an
early validation accuracy.
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Figure 6.11 – Generalization experiment: top-1 accuracy on ImageNet-1k val versus ImageNet-v2 for models
in Table 6.7 and Table 6.8. We display a linear interpolation of all points in order to compare the generalization
capability (or level of overfitting) for the different models.

After highlighting the interest of overfitting control with the ResNet50 and the training proce-
dure of Wightman et al [215]. we study it with our training procedure and the ViT architecture.

Overfitting evaluation with DeiT III The comparison between ImageNet-val and -v2 is a way
to quantify overfitting [200], or at least the better capability to generalize in a nearby setting
without any fine-tuning 1. In Figure 6.11 we plot ImageNet-val top-1 accuracy vs ImageNet-v2

top-1 accuracy in order to evaluate how the models performed when evaluated on a test set
never seen at validation time. Our models overfit significantly than all other models considered,
especially on ImageNet-21k. This is a good behaviour that validates the fact that our restricted
choice of hyper-parameters and variants in our recipe does not lead to (too much) overfitting.

6.3.5 Downstream tasks and other architectures

6.3.5.1 Transfer Learning

Dataset Train size Test size #classes

iNaturalist 2018 [104] 437,513 24,426 8,142

iNaturalist 2019 [103] 265,240 3,003 1,010

Flowers-102 [144] 2,040 6,149 102

Stanford Cars [121] 8,144 8,041 196

CIFAR-100 [124] 50,000 10,000 100

CIFAR-10 [124] 50,000 10,000 10

Table 6.10 – Datasets used for our different transfer-learning tasks.

In order to evaluate the quality of the ViT models learned through our training procedure
we evaluated them with transfer learning tasks. We focus on the performance of ViT models

1. Caveat: The measures are less robust with -V2 as the number of test images is 10000 instead of 50000 for ImageNet-val.
This translates to a higher standard deviation (about 0.2%).
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Table 6.11 – We compare Transformers based models on different transfer learning tasks with ImageNet-1k
pre-training. We report results with our default training on ImageNet-1k (400 epochs at resolution 224×224).
We also report results with convolutional architectures for reference. For consistency we keep our crop ratio
equal to 1.0 on all datasets. Other works use 0.875, which is better for iNat-19 and iNat-18, see Figure 6.6.

Model CIFAR-10 CIFAR-100 Flowers Cars iNat-18 iNat-19

Grafit ResNet-50 [198] _ _ 98.2 92.5 69.8 75.9
ResNet-152 [40] _ _ _ _ 69.1 _

ViT-B/16 [61] 98.1 87.1 89.5 _ _ _
ViT-L/16 [61] 97.9 86.4 89.7 _ _ _

ViT-B/16 [183] _ 87.8 96.0 _ _ _
ViT-L/16 [183] _ 86.2 91.4 _ _ _

DeiT-B 99.1 90.8 98.4 92.1 73.2 77.7

Ours ViT-S 98.9 90.6 96.4 89.9 67.1 72.7
Ours ViT-B 99.3 92.5 98.6 93.4 73.6 78.0
Ours ViT-L 99.3 93.4 98.9 94.5 75.6 79.3

pre-trained on ImageNet-1k only at resolution 224 × 224 during 400 epochs on the 6 datasets
shown in Table 6.10. Our results are presented in Table 6.11. In Figure 6.6 we measure the impact
of the crop ratio at inference time on transfer learning results. We observe that on iNaturalist
this parameter has a significant impact on the performance. As recommended in the paper Three
Things [196] we finetune only the attention layers for transfer learning experiments on Flowers,
this improves performance by 0.2%.

6.3.5.2 Semantic segmentation

We evaluate our ViT baselines models (400 epochs schedules for ImageNet-1k models and 90

epochs for ImageNet-21k models) with semantic segmentation experiments on ADE20k dataset [247].
This dataset consists of 20k training and 5k validation images with labels over 150 categories. For
the training, we adopt the same schedule as in Swin: 160k iterations with UperNet [223]. At test
time we evaluate with a single scale and multi-scale. Our UperNet implementation is based on the
XCiT [66] repository. By default the UperNet head uses an embedding dimension of 512. In order
to save compute, for small and tiny models we set it to the size of their working dimension, i.e. 384

for small and 192 for tiny. We keep the 512 by default as it is done in XCiT for other models. Our
results are reported in Table 6.12. We observe that vanilla ViTs trained with our training recipes
have a better FLOPs-accuracy trade-off than recent architectures like XCiT or Swin.

6.3.5.3 Training with others architectures

In Table 6.13 we measure the top-1 accuracy on ImageNet-val, ImageNet-real and ImageNet-v2

with different architecture train with our training procedure at resolution 224×224 on ImageNet-1k
only. We can observe that for some architectures like PiT or CaiT our training method will improve
the performance. For some others like TNT our approach is neutral and for architectures like Swin
it decreases the performance. This is consistent with the findings of Wightman et al. [215] and
illustrates the need to improve the training procedure in conjunction to the architecture to obtain
robust conclusions. Indeed, adjusting these architectures while keeping the training procedure
fixed can probably have the same effect as keeping the architecture fixed and adjusting the
training procedure. That means that with a fixed training procedure we can have an overfitting of
an architecture for a given training procedure. In order to take overfitting into account we perform
our measurements on the ImageNet val and ImageNet-v2 to quantify the amount of overfitting.
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Table 6.12 – ADE20k semantic segmentation performance using UperNet [223] (in comparable settings [59,
66, 134]). All models are pre-trained on ImageNet-1k except models with † symbol that are pre-trained on
ImageNet-21k. We report the pre-training resolution used on ImageNet-1k and ImageNet-21k.

Backbone Pre-training UperNet

resolution #params FLOPs Single scale Multi-scale
(×106) (×109) mIoU mIoU

ResNet50 224× 224 66.5 _ 42.0 _
DeiT-S 224× 224 52.0 1099 _ 44.0
XciT-T12/16 224× 224 34.2 874 41.5 _
XciT-T12/8 224× 224 33.9 942 43.5 _
Swin-T 224× 224 59.9 945 44.5 46.1
Our ViT-T 224× 224 10.9 148 40.1 41.8
Our ViT-S 224× 224 41.7 588 45.6 46.8

XciT-M24/16 224× 224 112.2 1213 47.6 _
XciT-M24/8 224× 224 110.0 2161 48.4 _
PatchConvNet-B60 224× 224 140.6 1258 48.1 48.6
PatchConvNet-B120 224× 224 229.8 1550 49.4 50.3
MAE ViT-B 224× 224 127.7 1283 48.1 _
Swin-B 384× 384 121.0 1188 48.1 49.7
Our ViT-B 224× 224 127.7 1283 49.3 50.2
Our ViT-L 224× 224 353.6 2231 51.5 52.0

PatchConvNet–B60
† 224× 224 140.6 1258 50.5 51.1

PatchConvNet-L120
† 224× 224 383.7 2086 52.2 52.9

Swin-B† (640× 640) 224× 224 121.0 1841 50.0 51.6
Swin-L† (640× 640) 224× 224 234.0 3230 _ 53.5
Our ViT-B† 224× 224 127.7 1283 51.8 52.8
Our ViT-B† 384× 384 127.7 1283 53.4 54.1
Our ViT-L† 224× 224 353.6 2231 53.8 54.7
Our ViT-L† 320× 320 353.6 2231 54.6 55.6

6.3.6 Experimental details

Fine-tuning at higher resolution When pre-training on ImageNet-1k at resolution 224× 224 we
fix the train-test resolution discrepancy by finetuning at a higher resolution [199]. Our finetuning
procedure is inspired by the Chapter 3 finetuning procedure, except that we adapt the stochastic
depth rate according to the model size [197]. We fix the learning rate to lr = 1× 10−5 with batch-
size=512 during 20 epochs with a weight decay of 0.1 without repeated augmentation. Other
hyper-parameters are similar to those employed in Chapter 3 fine-tuning.

Stochastic depth We adapt the stochastic depth drop rate according to the model size. We report
stochastic depth drop rate values in Table 6.14.

6.4 Additional Ablations

Number of training epochs In Table 6.15 we provide an ablation on the number of training
epochs on ImageNet-1k. We do not observe a saturation when the increase of the number of
training epochs, as observed with BerT like approaches [11, 92]. For longer training we increase
the weight decay from 0.02 to 0.05 and we increase the stochastic depth drop-rate by 0.05 every
200 epochs to prevent overfitting.
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Model Params Flops ImageNet-1k
(×106) (×109) orig. val real v2

ViT-S [193] 22.0 4.6 79.8 80.4 86.1 69.7
ViT-B [61, 193] 86.6 17.6 81.8 83.1 87.7 72.6

PiT-S [99] 23.5 2.9 80.9 80.4 86.1 69.2
PiT-B [99] 73.8 12.5 82.0 82.4 86.8 72.0

TNT-S [89] 23.8 5.2 81.5 81.4 87.2 70.6
TNT-B [89] 65.6 14.1 82.9 82.9 87.6 72.2

ConViT-S [52] 27.8 5.8 81.3 81.3 87.0 70.3
ConViT-B [52] 86.5 17.5 82.4 82.0 86.7 71.3

Swin-S [134] 49.6 8.7 83.0 82.1 86.9 70.7
Swin-B [134] 87.8 15.4 83.5 82.2 86.7 70.7

CaiT-B12 [197] 100.0 18.2 _ 83.3 87.7 73.3

Table 6.13 – We report the performance reached with our training recipe with 400 epochs at resolution
224× 224 for other transformers architectures. We have not performed an extensive grid search to adapt the
hyper-parameters to each architecture. Our results are overall similar to the ones achieved in the papers where
these architectures were originally published (reported in column ’orig.’), except for Swin Transformers, for
which we observe a drop on ImageNet-val.

Model # Params FLOPs Stochastic depth drop-rate
(×106) (×109) ImageNet-1k ImageNet-21k

ViT-T 5.7 1.3 0.0 0.0
ViT-S 22.0 4.6 0.0 0.0
ViT-B 86.6 17.5 0.1 0.1
ViT-L 304.4 61.6 0.4 0.3
ViT-H 632.1 167.4 0.5 0.5

Table 6.14 – Stochastic depth drop-rate according to the model size. For 400 epochs training on ImageNet-1k
and 90 epochs training on ImageNet-21k. See section 6.4 for further adaption with longer training.

Model epochs ImageNet top1 acc.
val real v2

ViT-S

300 79.9 86.1 68.8
400 80.4 86.1 69.7
600 80.8 86.7 69.9
800 81.4 87.0 70.5

ViT-B

300 82.8 87.6 72.1
400 83.1 87.7 72.6
600 83.2 87.8 73.3
800 83.7 88.1 73.1

ViT-L

300 84.1 88.5 74.1
400 84.2 88.6 74.3
600 84.4 88.6 74.6
800 84.5 88.8 75.0

ViT-H 300 84.6 89.0 74.9
400 84.8 89.1 75.3

Table 6.15 – Impact on the performance of the number of training epochs on ImageNet-1k.
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6.5 Conclusion

This chapter makes a simple contribution: it proposes improved baselines for vision transform-
ers trained in a supervised fashion that can serve (1) as a comparison basis for new architectures;
(2) for other training approaches such as those based on self-supervised learning.

To summarize the main ingredients are as follows:

• We build upon the work of Wightman et al. [215] introduced for ResNet50. In particular
we adopt a binary cross entropy loss for ImageNet-1k training. We adapt this method by
including ingredients that significantly improve the training of large ViT [197], namely
stochastic depth [108] and LayerScale [197], explained in chapter 3.

• 3-Augment: is a simple data augmentation inspired by that employed for self-supervised
learning. It works better than the usual automatic/learned data-augmentation employed to
train vision transformers like RandAugment [44].

• Simple Random Cropping is more effective than Random Resize Cropping when pre-
training on a larger set like ImageNet-21k.

• A lower resolution at training time. This choice reduces the train-test discrepancy [199] but
has not been much exploited with ViT. We observe that it also has a regularizing effect for
the largest models by preventing overfitting. For instance, for a target resolution of 224×224,
a ViT-H pre-trained at resolution 126 × 126 (81 tokens) achieves a better performance on
ImageNet-1k than when pre-training at resolution 224 × 224 (256 tokens). This is also less
demanding at pre-training time, as there are 70% fewer tokens. From this perspective it
offers similar scaling properties as masked-autoencoders [92].

Our “new” training strategies do not saturate with the largest models, making another step
beyond the Data-efficient image Transformer (DeiT) introduced in chapter 3. As a result, we
obtain a competitive performance in image classification and segmentation, even when compared
to recent popular architectures such as SwinTransformers [134] or modern convnet architectures
like ConvNext [135]. Below we point out a few interesting outcomes.

• We leverage models with more capacity even on midsize datasets. For instance we reach
85.2% in top-1 accuracy when training a ViT-H on ImageNet1k only, which is an improve-
ment of +5.1% over the best ViT-H with supervised training procedure reported in the
literature at resolution 224×224.

• Our training procedure for ImageNet-1k allows us to train a billion-parameter ViT-H (52

layers) without any hyper-parameter adaptation, just using the same stochastic depth drop-
rate as for the ViT-H. It attains 84.9% at 224×224, i.e., +0.2% higher than the corresponding
ViT-H trained in the same setting.

• Without sacrificing performance, we divide by more than 2 the number of GPUs required
and the training time for ViT-H, making it effectively possible to train such models with a
reduced amount of resources. This is thanks to our pre-training at lower resolution, which
reduces the peak memory.

• For ViT-B and ViT-L models, our supervised training approach is on par with BerT-like
self-supervised approaches [11, 92] with their default training setting and when using the
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same level of annotations and less epochs, both for the tasks of image classification and of
semantic segmentation.

• With this improved training procedure, a vanilla ViT closes the gap with recent state-of-the
art architectures, often offering better compute/performance trade-offs. Our models are also
comparatively better on the additional test set ImageNet-V2 [159], which indicates that our
trained models generalize better to another validation set than most prior works.

• An ablation on the effect of the crop ratio employed in transfer learning classification tasks.
We observe that it has a noticeable impact on the performance but that the best value
depends a lot on the target dataset/task.

We hope that this very strong baseline will stimulate the discussion about good practice to
learn huge foundation models. Our experiments have also gathered a few insights on how to
train ViT for larger models with reduced resources without hurting accuracy, allowing us to train
a one-billion parameter model with 4 nodes of 8 GPUs.
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We summarise in the following our main contributions:

Grafit. In the coarse-to-fine representation learning context presented in Chapter 2, we make
the following contributions: We propose Grafit, a method to learn image representations at a
finer granularity than the one offered by the annotation at training time. Inspired by the recent
self-supervised BYOL [87] instance learning approach, we carefully design a joint learning scheme
integrating instance and coarse-label based classification losses. For the latter one, we exploit a knn
strategy but with a dedicated process to manage the memory both at train-time and for inference
at test-time. We propose two original use-cases to deeply evaluate coarse-trained fine-grained
testing evaluation, for which Grafit exhibits outstanding performance. For instance, we improve
by +16.3% the top-1 accuracy for on-the-fly classification on ImageNet. This improvement is still
+9.5% w.r.t. our own stronger baseline. Grafit also improves transfer learning: our experiments
show that our representation discriminates better at a finer granularity.

Transformers: DeiT & CaiT. In Chapter 3 we show how to train transformer-based image
classification neural networks on ImageNet only. With DeiT, we report large improvements over
previous ViT [61] results. We introduce a novel distillation procedure based on a token-based
strategy. With CaiT, we propose a new method to train deeper models called LayerScale and a
new architecture designed to extract the information inside the architecture called class atten-
tion. In Chapter 6 we revisit the training strategy for vision transformers. We propose a new
data-augmentation approach called 3Augment. We adapt the cropping approach according to the
datasets size. We called our whole training procedure DeiT III, with which we achieve competitive
performance on image classification and semantic segmentation with vanilla vision transformers.
We show the importance of the interaction between architecture and training procedure by com-
paring our approach with BerT like pre-training and discussing the performance of DeiT III when
applied to different architectures. We have also proposed additional improvements (not detailed
in Chapter 6) for the ViT architectures in our last paper Three things everyone should know about
Vision Transformers, we refer to the publication for more details.

ResMLP & PatchConvnet. We further investigate patch-based residual architectures, alternating
feed-forward blocks and linear patch interaction layers. Thanks to modern training strategies
similar to ours proposed for transformers, we achieve an unexpectedly high performance on
ImageNet classification benchmarks. In Chapter 5, we introduce an attention-based pooling layer,
which offers visualization properties and interpretability by design. In addition, we propose a
full patch-based ConvNet with no pyramidal structure design to best exploit our pooling layer.
We demonstrate its interest on several computer vision tasks: classification, segmentation and
detection.

In this thesis, we have studied the training procedures and architectures that can be used in
computer vision, mostly for image classification. We have shown that it is possible to achieve
a competitive performance in image classification with transformer architectures without using
hundreds of millions of annotated images. We also showed that a MLP-like architecture could
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Figure 7.1 – Illustration of transformers with retrieval mechanisms as in used in the Retro transformers.
Credit: Borgeaud et al. "Improving language models by retrieving from trillions of tokens".

obtain reasonable performance on different computer vision tasks and on NLP tasks. We have
highlighted the impact of the interactions between the training procedures and the architectures,
and thus the need to revisit the baselines with modern procedures to get consistent conclusions.

Perspectives. With a proper training procedure [183, 193, 215], Transformers achieve interest-
ing performance/complexity trade-offs. Although we have studied the training procedures (see
Chapter 3 and 6), much remains to be done. Transformers seem more efficient than convnet when
we have a large dataset (like JFT-300M or JFT-3B) as shown by Dai et al. [49]. Although there are
some studies interested in the scaling of vision transformers [49, 162, 239], we are still far from
obtained effective models with more than 100B parameters as it is the case in NLP [27, 39, 157].
BerT-like approaches [11, 92] also seem very promising for training bigger models. Indeed, the
masking task seems to be less prone to overfitting, which is essential for this kind of models. Let
us mention two challenging use-cases:

• Vision transformers by retrieving from trillions of tokens. Transformers exploiting an
extra token base with retrieval in its attention process as illustrated in Figure 7.1 with the
retro method [22], are very successful approaches in NLP. This kind of approach is not yet
used in vision. However, this could have many advantages, for example, for classification
tasks with non-fixed classes. Indeed, using an external memory allows the model to include
parts that are non-parametric (as in Chapter 2). This allows the behaviour of the network to
be modified without the need to re-train the weights. Indeed, it is only necessary to update
the external database. This also has the advantage of not having to encode all the useful
information in the weights of the network, which can be difficult if we have few data for
certain concepts we want to encode.

• Vision & language joint representation. Since Radford et al. [154] (see Figure 7.2) joint
models for vision and language become more and more popular. Indeed, since transformers
have become very powerful in vision, using this architecture together in vision and language
seems very promising. Being able to align text and vision representations allows to exploit
new properties by contextualising the output of the model in some way thanks to the text.
Models combining vision and language appear to be able to handle different tasks without
requiring a complete fine tuning as illustrated in the Flamingo [5] paper. These approaches
are thus very promising given the different tasks they can handle. However, this field is
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Figure 7.2 – Illustration of the Clip method. Credit: Radford et al. "Learning Transferable Visual Models From
Natural Language Supervision".

quite new, and the architectures and training procedures are far from being fully understood.
Having a better knowledge of how to scale these models, as well as finding the right way
to design these architectures and the way to train them, seems to be a very important
aspect. Indeed, as we have highlighted in Chapter 6, the interaction between architecture
and training should plays a key role in the performance of such models.
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Table 7.3 – Author and Creative Commons Copyright notice for images in Figure 2.9.

slsfirefight: CC BY-NC 4.0, J. Maughn: CC BY-NC 4.0, Tim Hite: CC BY 4.0, Mikael Behrens: CC BY-NC 4.0, colinmorita: CC BY-NC 4.0, Mary Joyce: CC
BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, icosahedron: CC BY 4.0, Donna Pomeroy: CC BY-NC 4.0, tnewman: CC BY-NC 4.0, phylocode: CC BY-NC
4.0, Marisa or Robin Agarwal: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Tom Benson: CC BY-NC-ND 4.0, tam
topes: CC BY-NC 4.0, James Maughn: CC BY-NC 4.0, Mark Rosenstein: CC BY-NC-SA 4.0, Marisa or Robin Agarwal: CC BY-NC 4.0, Donna Pomeroy: CC
BY-NC 4.0, Robin Agarwal: CC BY-NC 4.0, slsfirefight: CC BY-NC 4.0, Thomas Koffel: CC BY-NC 4.0, Chris Evers: CC BY-NC 4.0, jaliya: CC BY-NC 4.0,
Chris Evers: CC BY-NC 4.0, Victor W Fazio III: CC BY-NC-ND 4.0, Chris Evers: CC BY-NC 4.0, J. Maughn: CC BY-NC 4.0, Andrew Cannizzaro: CC BY 4.0,
116916927065934112165: CC BY-NC-ND 4.0, gyrrlfalcon: CC BY-NC 4.0, kolasafamily: CC BY-NC 4.0, summermule: CC BY-NC 4.0, Donna Pomeroy: CC
BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Robin Agarwal: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Robin Agarwal: CC BY-NC 4.0, Robin Agarwal:
CC BY-NC 4.0, David R: CC BY-NC-ND 4.0, summermule: CC BY-NC 4.0, slsfirefight: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, petecorradino: CC
BY-NC 4.0, Mike Leveille: CC BY-NC 4.0, greglasley: CC BY-NC 4.0, tegmort: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Tom Benson: CC BY-NC-ND
4.0, flyfisherking: CC BY-NC 4.0, Jean-Lou Justine: CC BY 4.0, Judith Lopez Sikora: CC BY-NC 4.0, kolasafamily: CC BY-NC 4.0, nudibranchmom: CC BY-NC
4.0, Robin Agarwal: CC BY-NC 4.0, R.J. Adams: CC BY-NC 4.0, monicamares: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, nudibranchmom: CC BY-NC
4.0, Donna Pomeroy: CC BY-NC 4.0, Mike Leveille: CC BY-NC 4.0, nudibranchmom: CC BY-NC 4.0, slsfirefight: CC BY-NC 4.0, J. Maughn: CC BY-NC 4.0,
Donna Pomeroy: CC BY-NC 4.0, Tom Benson: CC BY-NC-ND 4.0, JJ Johnson: CC BY-NC 4.0, James Maughn: CC BY-NC 4.0, petecorradino: CC BY-NC
4.0, summermule: CC BY-NC 4.0, pfaucher: CC BY-NC 4.0, Amy: CC BY-NC 4.0, enzedfred: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, BJ Stacey: CC
BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Robin Agarwal: CC BY-NC 4.0, Robin Agarwal: CC BY-NC 4.0, Ken-ichi Ueda:
CC BY-NC 4.0, Robin Agarwal: CC BY-NC 4.0, Robin Agarwal: CC BY-NC 4.0, Brian Gratwicke: CC BY 4.0, slsfirefight: CC BY-NC 4.0, Robin Agarwal:
CC BY-NC 4.0, Robin Agarwal: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, summermule: CC BY-NC 4.0, KK: CC BY-NC 4.0, John Karges: CC BY-NC
4.0, Donna Pomeroy: CC BY-NC 4.0, Javier Solís: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Mike Leveille: CC BY-NC 4.0, Ken-ichi Ueda: CC BY-NC
4.0, J. Maughn: CC BY-NC 4.0, Robin Agarwal: CC BY-NC 4.0, David J Barton: CC BY-NC 4.0, James Maughn: CC BY-NC 4.0, greglasley: CC BY-NC 4.0,
Donna Pomeroy: CC BY-NC 4.0, Robin Agarwal: CC BY-NC 4.0, James Maughn: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, slsfirefight: CC BY-NC
4.0, Donna Pomeroy: CC BY-NC 4.0, John Karges: CC BY-NC 4.0, 104623964081378888743: CC BY-NC-ND 4.0, Judith Lopez Sikora: CC BY-NC 4.0, Amy:
CC BY-NC 4.0, Marisa or Robin Agarwal: CC BY-NC 4.0, summermule: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, Jennifer Rycenga: CC BY-NC 4.0,
David J Barton: CC BY-NC 4.0, thylacine: CC BY-NC 4.0, greglasley: CC BY-NC 4.0, J. Maughn: CC BY-NC 4.0, Javier Solís: CC BY-NC 4.0, redhat: CC BY-NC
4.0, timputtre: CC BY-NC 4.0, icosahedron: CC BY 4.0, rbbrummitt: CC BY-NC 4.0, icosahedron: CC BY 4.0, David J Barton: CC BY-NC 4.0, slsfirefight: CC
BY-NC 4.0, 104623964081378888743: CC BY-NC-ND 4.0, Ken-ichi Ueda: CC BY-NC-SA 4.0, Donna Pomeroy: CC BY-NC 4.0, sakuraisomi: CC BY-NC 4.0,
Donna Pomeroy: CC BY-NC 4.0, Donna Pomeroy: CC BY-NC 4.0, J. Maughn: CC BY-NC 4.0, kestrel: CC BY-NC 4.0, BJ Stacey: CC BY-NC 4.0, summermule:
CC BY-NC 4.0, thylacine: CC BY-NC 4.0, icosahedron: CC BY 4.0, KK: CC BY-NC 4.0, James Maughn: CC BY-NC 4.0, Javier Solís: CC BY-NC 4.0, rbbrummitt:
CC BY-NC 4.0, J. Maughn: CC BY-NC 4.0, greglasley: CC BY-NC 4.0, greglasley: CC BY-NC 4.0, timputtre: CC BY-NC 4.0.
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