. In the 2010s, we then witnessed the emergence of deep learning methods, which gradually overtook all traditional computer vision approaches.

R É S U M É

L'apprentissage machine et plus particulièrement l'apprentissage profond (deep learning) ont un impact de plus en plus important dans notre société. En effet, ces approches sont devenues prépondérantes dans de nombreux domaines tels que le traitement du langage naturel avec la détection de contenu haineux, la synthèse de documents ou encore la vision par ordinateur avec le diagnostic médical ou le développement des voitures autonomes. Le succès de l'apprentissage profond est souvent associé à des architectures désormais emblématiques, comme AlexNet [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF], ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] ou GPT [START_REF] Radford | Language models are unsupervised multitask learners[END_REF]. Ces succès ont également été alimentés par des procédures d'optimisation bien conçues, qui néanmoins ne sont généralement pas au centre des préoccupations. Pour la classification d'image, le challenge ImageNet [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] a été un accélérateur pour le développement de nouvelles architectures mais aussi de nouvelles stratégies d'optimisation.

A B S T R A C T

Nowadays, machine learning and more particularly deep learning have an increasing impact in our society. This field has become prevalent, for instance in natural language processing where it has led to concrete applications to hate speech detection and document summarization. Similarly for computer vision, it enables better image interpretation, medical diagnosis, and major steps towards autonomous driving. Deep learning success is often associated with emblematic architectures, like AlexNet [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF], ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] or GPT [START_REF] Radford | Language models are unsupervised multitask learners[END_REF]. These successes were also powered by well-designed optimisation procedures, which are usually not the main focus of discussions. In image classification, the ImageNet [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] challenge was an accelerator for the development of new architectures but also for new optimisation recipes.

In this thesis, we discuss the interactions between architectures and training procedures. We study more specifically Transformers [START_REF] Vaswani | Attention is all you need[END_REF] architecture applied for visual understanding. Currently, transformers training procedures are less mature than those employed with convolutional networks (convnets). However, training is key to overcoming the limited architectural priors of transformers. For this reason, we focus on training procedures capable of obtaining interesting performance for transformers or even simpler architectures close to the multi-layer perceptron. We start by studying the possibility of learning with coarse labels through a modification of the training procedure. We then study different kinds of architectures for computer vision. We study their features, their advantages, their drawbacks and how to train them. Finally, we study the impact of the interaction between architecture and training process. All our approaches are evaluated in image classification on ImageNet and in transfer learning. We also evaluate our methods on additional tasks such as semantic segmentation.

The computer vision field includes many tasks such as image classification, detection or segmentation (see Figure 1.1 for an illustration). Today, the gold standard approaches to solve these tasks are based on deep learning. This thesis falls within this context. In the following, we detail the basics of deep learning for vision and position our contributions.

Deep learning for image classification

Image classification

Application of deep learning for computer vision is quite old. For instance, the backpropagation algorithm commonly used to train deep learning models was introduced by Hinton, Rumelhart and Williams [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF] in 1986. Lecun et al. [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF] used Convolutional neural network trained with a backpropagation algorithm to perform digit recognition. However, this task re-

Image Classification

Object Detection Semantic Segmentation Instance Segmentation mains a quite simple classification task with small black and white images and only 10 classes. We had to wait until 2012 to see the first successes of deep learning on more complex image classification tasks, such as the ImageNet challenge [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF]. This challenge with 1000 classes and over 1.28M images is quite complex. ImageNet is a problem that is representative of more real-world use cases than digit recognition. Before 2012 the ImageNet challenge was won year after years by approaches relying on handcrafted features. In 2012, Krizhevsky et al. [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF] won the challenge by a large margin over competing approaches by using the AlexNet convolutional neural network (see Figure 1.3 for an illustration of the architecture) trained with backpropagation and data augmentation. Following the success of AlexNet year after year, many new deep learning approaches have in succession won this challenge, reaching today human level performances for this task.

Although the ImageNet challenge is not organized anymore, the ImageNet dataset is so core to computer vision that it is still used as a benchmark to measure progress in image understanding. The evolution of the state of the art on the ImageNet dataset [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] reflects the progress with convolutional neural network architectures and learning [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF][START_REF] Tan | EfficientNet: Rethinking model scaling for convolutional neural networks[END_REF][START_REF] Touvron | Fixing the train-test resolution discrepancy[END_REF][START_REF] Touvron | Fixing the train-test resolution discrepancy: Fixefficientnet[END_REF][START_REF] Xie | Self-training with noisy student improves imagenet classification[END_REF]. Any progress usually translates to improvements in other related tasks such as detection or segmentation.

The ImageNet example shows us the importance of large datasets for deep learning approaches. Indeed, we need large amounts of data to reach good performance with deep architectures. Generally, we also need annotations which can be very expensive to obtain. For instance, for the image classification task, it is sometimes necessary to have expert knowledge to be able to correctly label some concepts. However, some approaches can partially overcome this problem as we will detail later in this manuscript.

In addition to a large amount of data, the success of deep learning approaches relies on two essential components. The architecture which defines the capacity of the model, (i.e. the set of functions that can be approximated layer by layer) and the learning procedure, which corresponds to all the methods used to learn the weights of the model. The learning process allows a convergence of the model's weights towards a certain function to solve a given task. There are strong interactions between the architecture and the learning procedure as the design has a direct influence on the gradient calculation (Which is used in the back propagation algorithm) but also on the stability of the learning procedure. In this thesis, we study these two aspects and their interaction. 

Deep Architectures Design

Multi-layer Perceptron (MLP), also called feedforward neural networks or deep feedforward networks, is illustrated in Figure 1.2. The Perceptron was introduced by Rosenblatt [START_REF] Rosenblatt | Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms[END_REF] in 1958. Cybenko [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF] show that MLP are universal function approximators which explains their interest in the Machine learning community. Some studies have shown that MLP are competitive with convnets for the tasks of digit recognition [START_REF] Claudiu Cireşan | Deep big multilayer perceptrons for digit recognition[END_REF][START_REF] Simard | Best practices for convolutional neural networks applied to visual document analysis[END_REF], keyword spotting [START_REF] Chatelain | Extraction de séquences numériques dans des documents manuscrits quelconques[END_REF] and handwriting recognition [START_REF] Bluche | Deep neural networks for large vocabulary handwritten text recognition[END_REF]. Several works [START_REF] Lin | How far can we go without convolution: Improving fully-connected networks[END_REF][START_REF] Decebal | Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science[END_REF][START_REF] Urban | Do deep convolutional nets really need to be deep and convolutional[END_REF] have questioned if MLP are also competitive on natural image datasets, such as CIFAR-10 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF]. More recently, d'Ascoli et al. [START_REF] Stéphane D'ascoli | Finding the needle in the haystack with convolutions: on the benefits of architectural bias[END_REF] have shown that a MLP initialized with the weights of a pretrained convnet achieves performance that are superior than the original convnet. Neyshabur [START_REF] Behnam Neyshabur | Towards learning convolutions from scratch[END_REF] further extends this line of work by achieving competitive performance when training an MLP from scratch but with a regularizer that constrains the models to be close to a convnet. Nevertheless, these studies have been conducted on small scale datasets with the purpose of studying the impact of architectures on generalization in terms of sample complexity [START_REF] Simon S Du | How many samples are needed to estimate a convolutional neural network?[END_REF] and energy landscape [START_REF] Shirish Keskar | On large-batch training for deep learning: Generalization gap and sharp minima[END_REF].

Convolutional neural networks (Convnet) were introduced by Fukushima et al. [START_REF] Fukushima | Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[END_REF] and trained with backpropagation by Lecun et al. [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF]. Based on specific layer transforms that correspond to convolution filters, convnet have been the main design paradigm for image understanding tasks, as initially demonstrated on image classification tasks. Indeed, since 2012's AlexNet [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF], convnets have dominated this benchmark and have become the de facto standard. The evolution of the state of the art on the ImageNet dataset [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] reflects the progress with convolutional neural network architectures and learning [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF][START_REF] Tan | EfficientNet: Rethinking model scaling for convolutional neural networks[END_REF][START_REF] Touvron | Fixing the train-test resolution discrepancy[END_REF][START_REF] Touvron | Fixing the train-test resolution discrepancy: Fixefficientnet[END_REF][START_REF] Xie | Self-training with noisy student improves imagenet classification[END_REF]. For instance, the residual connections allows one to train a deeper architecture as evidenced by ResNet [START_REF] He | Deep residual learning for image recognition[END_REF]. This allows for a more stable learning process and better performance. Many convnet architectures, but also transformers have adopted this design with residual connections. Today in computer vision, convnets hold many state-of-the-art results. However, transformers have become a more and more viable alternative.

Transformers are a deep architecture introduced in 2017 by Vaswani et al. [START_REF] Vaswani | Attention is all you need[END_REF]. By leveraging a global attention process between all features at every layer, they have become the default architecture in many domains like Natural Language Processing (NLP) where it still holds many stateof-the-art results. Motivated by the success of attention-based models in Natural Language Processing [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF][START_REF] Radford | Language models are unsupervised multitask learners[END_REF][START_REF] Vaswani | Attention is all you need[END_REF][START_REF] Vyas | Fast transformers with clustered attention[END_REF], there has been increasing interest in architectures leveraging attention mechanisms within convnets [START_REF] Hu | Squeeze-and-excitation networks[END_REF][START_REF] Li | Selective kernel networks[END_REF][START_REF] Zhang | Resnest: Split-attention networks[END_REF]. More recently several researchers have proposed hybrid architecture transplanting transformer ingredients to convnets to solve vision tasks [START_REF] Carion | End-to-end object detection with transformers[END_REF][START_REF] Shen | Global self-attention networks for image recognition[END_REF]. Dosovitskiy et al. [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] introduced the Vision transformers (ViT) architecture (See Figure 1.4 for illustrations). ViT is an architecture directly inherited from Natural Language Processing [START_REF] Vaswani | Attention is all you need[END_REF], but applied to image classification with raw image patches as input. Transformers are now used successfully in computer vision and gives excellent results in many tasks such as image classification, segmentation or detection. This architecture also has a strong potential in multimodal approaches given its good performances in image processing but also in NLP.

MLP revisited. Following the success of transformers in computer vision MLPs have been used recently in computer vision on more complex problem like large scale image classification but also in NLP. These revisited MLPs adopt a residual architecture similar to that of the transformers and a patch splitting of the image in order to decrease the complexity. The blocks of this architecture correspond to classical MLPs as detailed in the first paragraph. Although their results are slightly worse than transformers, their performances are very competitive given the relative simplicity of these architectures.

Learning process

The learning process, although less emphasized than the architecture design, plays a central role in the success of deep learning. Without a well-designed training regime the performance of neural network approaches is generally poor. The first successes of deep learning in image classification are related to new architectures but also to new training procedures. This is generally the case for supervised learning tasks (i.e. when using the ground truth label in the learning process) and also for self-supervised approaches (i.e. when the model learns by itself by comparing different images or different augmentation of the same image). However, the interaction between architecture and training procedure is still not studied extensively.

Data is an important component of deep learning approach. Indeed, it is necessary to have enough data to be able to train deep architectures. However, having data is usually not enough. Indeed, the available annotations will have an impact. Nevertheless, to be able to exploit correctly the information at our disposal we have to adapt the learning process correctly. For image classification the elements involved in the learning process are the data augmentation and the elements related to optimisation procedure. We detail these concepts in the following paragraphs but for a more detailed description we refer to Goodfellow et al. [START_REF] Goodfellow | Deep Learning[END_REF], Bishop et al. [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF] and Hastie et al [START_REF] Hastie | The Elements of Statistical Learning[END_REF].

Data augmentation. For image classification, data augmentation amounts to applying transformations to the images [START_REF] Ekin | RandAugment: Practical automated data augmentation with a reduced search space[END_REF][START_REF] Devries | Improved regularization of convolutional neural networks with cutout[END_REF][START_REF] Szegedy | Going deeper with convolutions[END_REF][START_REF] Yun | CutMix: Regularization strategy to train strong classifiers with localizable features[END_REF][START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF], which do not change the class of the images (see Figure 1.5 for illustrations). For example, if we want to classify images of dogs, we can apply rotations because this does not change the content and being rotation invariant is a good property here. On the other hand, if we want to do digit recognition, we don't want to be rotation invariant because we wouldn't be able to distinguish between the 6's and the 9's. In this case, we use other kinds of data augmentation such as colour variations. The purpose of the data augmentation is to help to learn the right property for a given task. It also allows us to limit the overfitting by artificially generating more images. Overfitting appears when the model adapts too much to the training data and generalises poorly with new data. Underfitting is the opposite behavior when the model is not able to give good results on training data.

Optimization. Optimization procedures are generally based on gradient descent approaches. Gradient descent amounts to updating the weights of the model following the direction of the gradient in order to minimize the cost function. The elements related to the optimization procedure are diverse. For instance, the choice of the optimizer (i.e the algorithms that are used to update the weights), the choice of the learning rate schedule (i.e the size of the steps in the gradient direction) and all the regularization approaches. This has an impact on the way the model weights are learned and the performance we can reach for a given task. The regularization refers here to all the approaches adding constraints on the learning process of the model weights in order to limit the risk of overfitting. There are many different optimization approaches, each with its own advantages and disadvantages. These approaches are used according to the architecture and the task we want to solve. Nevertheless, there is no well-established theory for the choice of the training components. They are usually designed according to the intuition and experience of the experimenters. Indeed, it is an experimental and mostly empirical process. However, the training design is important to find the right trade-off between overfitting and underfitting, each regularization method and each optimizer potentially having different properties.

Training: trends. In the same way that there has been an evolution of architecture for image classification tasks, there is an evolution of the training procedures. The training procedure used in the AlexNet paper [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF] was one of the first standard procedure for training deep learning architecture for image classification. It uses 90 epochs with batch size 128 and step decay for the learning rate by dividing the learning rate by 10 when the validation loss does not decrease anymore. They use SGD optimizer with L2 regularization and dropout. For the data augmentation they use: a random crop of size 224 × 224 extracted in images of size 256x256, random horizontal flip of images and perform PCA for altering the intensities of the image's channels. GoogleNet paper [START_REF] Szegedy | Going deeper with convolutions[END_REF] subsequently introduces new components: label smoothing and random resized crop instead of random crop. This paper also uses smoother learning rates (reduction of 4% every 8 epochs). The ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] paper re-used this component with a bigger batch size 256 allowed by more powerful GPUs. Afterwards, the procedure often adopted by default is the procedure proposed in the TorchVision library of PyTorch, which is similar to the one proposed by Goyal et al. [START_REF] Goyal | Accurate, large minibatch sgd: Training imagenet in 1 hour[END_REF]. This training procedure is significantly inspired by the previous one. They use for the data augmentation: Random resized crop, horizontal flip, colour jitter and a normalization of the RGB channel. For the optimization they use SGD optimizer with batch size 512 and 90 epochs. The learning rate is divided by 10 every 30 epochs. Nowadays, the default training procedure has changed a lot and uses more data augmentation and regularization, which usually improves the model performance. These new training procedures benefit to both the old and the new architectures. However, some architectures benefit more from it.

These training improvements on ImageNet have translated into progress on other datasets through transfer learning. Transfer learning in a two-stage procedure in which the first step it to first pre-train a model on another dataset (generally ImageNet), and then re-trains the model slightly on the new dataset. This generally gives better performance than approaches that do not start from a pre-trained model, since it leverages more training data.

After this brief introduction of deep architectures and training procedures for computer vision, we now detail the contributions of this PhD thesis.

Outline and Contributions

Learning fine-grained image representations with coarse labels

Being able to classify fine grained concepts is quite challenging. Indeed, it is generally necessary to have a large amount of annotated data to be able to recognise a concept. With fine grained concepts, the annotation is more difficult to obtain because you need expert knowledge to be able to annotate precisely the images. However, it is for this kind of application that automatic recognition approaches are even more useful. In Chapter 2, we tackle the problem of learning a finer representation than the one provided by training labels. This enables fine-grained category retrieval of images in a collection annotated with coarse labels only. Our network is learned with a nearest-neighbour classifier objective, and an instance loss inspired by self-supervised learning. By jointly leveraging the coarse labels and the underlying fine-grained latent space, it significantly improves the accuracy of category-level retrieval methods. At the time of publication, this strategy was outperforming all competing methods for retrieving or classifying images at a finer granularity than that available at train time. It also improves the accuracy for transfer learning tasks to fine-grained datasets.

Outline. Chapter 2 introduces Grafit, a method for learning fine-grained image representation with coarse labels. First, we present the Grafit method and the intuition behind the design. Then we introduce different tasks designed for coarse-to-fine tasks in order to evaluate the method performance. Lastly, we conduct extensive experiments on datasets with different levels of granularity in order to validate our approach.

Publication. Chapter 2 is based on the paper "Grafit: Learning fine-grained image representations with coarse labels", Hugo Touvron, Alexandre Sablayrolles, Matthijs Douze, Matthieu Cord, Hervé Jégou, ICCV 2021 (see Grafit paper [START_REF] Hugo Touvron | Grafit: Learning fine-grained image representations with coarse labels[END_REF]).

Transformers for computer vision

Transformers architecture, introduced by Vaswani et al. [START_REF] Vaswani | Attention is all you need[END_REF] for machine translation are currently the reference model for all natural language processing (NLP) tasks. Many improvements of convnets for image classification are inspired by transformers. For example, Squeeze and Excitation [START_REF] Hu | Squeeze-and-excitation networks[END_REF], Selective Kernel [START_REF] Li | Selective kernel networks[END_REF] and Split-Attention Networks [START_REF] Zhang | Resnest: Split-attention networks[END_REF] exploit mechanisms akin to transformers self-attention (SA) mechanism. The Dosovitsky et al [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] vanilla transformer architecture was shown to address image understanding tasks such as image classification. These high-performing vision transformers are pre-trained on private dataset with hundreds of millions of images not available and uses a large infrastructure, thereby limiting their adoption.

In Chapter 3, we produce competitive convolution-free transformers by training on ImageNet only. We train them on a single computer in less than 3 days. Our reference vision transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop) on ImageNet with no external data. We also introduce a teacher-student strategy specific to transformers. It relies on a distillation token ensuring that the student learns from the teacher through attention. We show the interest of this token-based distillation, especially when using a convnet as a teacher. This leads us to report results competitive with convnets for both ImageNet (where we obtain up to 85.2% accuracy) and when transferring to other tasks. Moreover, we build and optimize deeper transformer networks for image classification as the optimization of image transformers has been little studied so far. In particular, we investigate the interplay of architecture and optimization of such dedicated transformers. We propose two modifications that significantly improve the convergence and accuracy of deep transformers. This leads us to produce models whose performance does not saturate early with more depth. For instance we obtain 86.2% top-1 accuracy on ImageNet when training with no external data.

Outline. Chapter 3 shows for the first time that it is possible to have state of the art performance with transformers on ImageNet without using hundreds of millions of images for pre-training. First, we introduce a new training procedure for Vision transformers and then we introduce Layer Scale and Class Attention, two methods for training deeper transformers.

Publication. Chapter 3 is based on the papers "Training data-efficient image transformers & distillation through attention", Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou, ICML 2021 (see DeiT paper [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF]) and "Going deeper with Image Transformers", Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, Hervé Jégou, ICCV 2021 (see CaiT paper [START_REF] Touvron | Going deeper with image transformers[END_REF]). The code is available at https://github.com/facebookresearch/ deit.

Multi-layers perceptron for computer vision

After the success of transformers in computer vision we can question whether this success is related to the self-attention process or whether it is more related to the training procedure and patching of the input. Indeed, the training procedures and input splitting adopted by transformers are quite different from those usually used for convnet. On the other hand, the attention process allows long range interaction that is adapted to the input, whereas convnet allows more local and input independent operations. We further discuss these phenomena in Chapter 4. We introduce ResMLP, which is an architecture entirely built upon multi-layer perceptron. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer MLP network in which channels interact independently per patch. When trained with our modern training strategy using heavy data augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We also train ResMLP models in a self-supervised setup, to further limit priors from employing a labelled dataset.

Outline. Chapter 4 shows that it is possible to have good performance on computer vision and NLP tasks with an MLP-like architecture. First, we introduce ResMLP, a pure residual MLP architecture working on tokens without normalization process relying on data statistics. Then, we validate our architecture on large scale experiments and provide extensive ablation in order to understand the impact of each component.

Publication. Chapter 4 is based on the paper "ResMLP: Feedforward networks for image classification with data-efficient training", Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby, Edouard Grave, Gautier Izacard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, Hervé Jégou, arXiv 2021, submitted to TPAMI (minor revision) (see ResMLP paper [START_REF] Touvron | ResMLP: feedforward networks for image classification with data-efficient training[END_REF]). The code associated is publicly available at https://github.com/facebookresearch/deit.

Revisiting convnet architecture

After studying transformers and MLP for computer vision, we adopt concepts from these architectures to revisit the design of convnets. The aim is to have simpler models with the possibility to obtain visualisations like those of transformers. In Chapter 5, we show how to augment any convolutional network with an attention-based global map to achieve non-local reasoning. We replace the final average pooling by an attention-based aggregation layer akin to a single transformer block, that ponders how the patches are involved in the classification decision. We plug this learned aggregation layer with a simplistic patch-based convolutional network parametrized by two parameters (width and depth). In contrast with a pyramidal design, this architecture family maintains the input patch resolution across all the layers. It yields competitive trade-offs between accuracy and complexity, in terms of memory consumption, as shown by our experiments on various computer vision tasks: object classification, image segmentation and detection.

Outline. Chapter 5 revisits the design of convnets by taking inspiration from the works on vision transformers. We first introduce the learn aggregation layer and analyse its interest for class activation map visualization. Then we present the PatchConvnet architecture. Finally, we evaluate it on different tasks in order to show that a simple architecture can be efficient on many tasks.

Publication. Chapter 5 is based on "Augmenting Convolutional networks with attention-based aggregation", Hugo Touvron, Matthieu Cord, Alaaeldin El-Nouby, Piotr Bojanowski, Armand Joulin, Gabriel Synnaeve, Hervé Jégou, arXiv 2021, under review NeurIPS 2022 (see PatchConvnet paper [START_REF] Touvron | Augmenting convolutional networks with attentionbased aggregation[END_REF]). The code is publicly available at https://github.com/facebookresearch/deit.

Architecture and training interaction

Architecture design is quite well studied for vision transformers. Many variants have been introduced to reduce the cost of attention by introducing for example more efficient attention [START_REF] El-Nouby | Xcit: Cross-covariance image transformers[END_REF][START_REF] Haoqi Fan | Multiscale vision transformers[END_REF][START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF] or pooling layers [START_REF] Heo | Rethinking spatial dimensions of vision transformers[END_REF][START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF][START_REF] Wang | Pyramid vision transformer: A versatile backbone for dense prediction without convolutions[END_REF]. Some papers re-introduce spatial biases specific to convolutions within hybrid architectures [START_REF] Graham | Levit: a vision transformer in convnet's clothing for faster inference[END_REF][START_REF] Wu | Cvt: Introducing convolutions to vision transformers[END_REF][START_REF] Xiao | Early convolutions help transformers see better[END_REF]. However, training recipes seem to be the key elements with general architectures like transformers. Indeed, with general architecture the risk of overfitting is more important due to the flexibility of the architecture. If we find proper training recipes we should be able to learn similar or better operation than the more specific architectures. Recent works show that ViTs benefit from self-supervised pre-training, in particular BerT-like pre-training like BeiT [START_REF] Bao | Beit: Bert pre-training of image transformers[END_REF].

In Chapter 6, we revisit the supervised training of ViTs. Our procedure builds upon and simplifies a recipe introduced for training ResNet-50. It includes a new simple data augmentation procedure with only 3 augmentations, closer to the practice in self-supervised learning. Our evaluations on Image classification (ImageNet-1k with and without pre-training on ImageNet-21k), transfer learning and semantic segmentation show that our procedure outperforms by a large margin previous fully supervised training recipes for ViT.

Outline. Chapter 6 revisits the training procedures for vision transformers and highlights the interactions between training and architectures. We first introduce a new data augmentation for vision transformers and then propose a new training procedure for the ViT architecture. We evaluate our models on different tasks and compare the performance of our training recipes with Bert like approach and discuss the interactions between training and architectures.

Publication. Chapter 6 is based on the papers "ResNet strikes back: An improved training procedure in timm", Ross Wightman, Hugo Touvron, Hervé Jégou, NeurIPS workshop 2021 (see RSB paper [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF]) and "DeiT III: Revenge of the ViT", Hugo Touvron, Matthieu Cord, Hervé Jégou, ECCV 2022 (see DeiT III paper [START_REF] Touvron | Deit iii: Revenge of the vit[END_REF]). The corresponding code is available at https://github.com/ facebookresearch/deit and https://github.com/rwightman/pytorch-image-models.

C h a p t e r

L E A R N I N G F I N E -G R A I N E D I M A G E R E P R E S E N TAT I O N S W I T H C O A R S E L A B E L S

Image classification now achieves a performance that meets many application needs [START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF][START_REF] Touvron | Fixing the train-test resolution discrepancy: Fixefficientnet[END_REF]. However, in practice, datasets and labels available at training time do not necessarily correspond to those needed in subsequent applications [START_REF] Alexander D'amour | Underspecification presents challenges for credibility in modern machine learning[END_REF]. The granularity of the training-time concepts may not suffice for fine-grained downstream tasks. This has encouraged the development of specialized classifiers offering a more precise representation. Fine-grained classification datasets [START_REF] Van Horn | The inaturalist challenge 2017 dataset[END_REF] have been developed for specific domains, for instance to distinguish different plants [START_REF] Kiat Chuan | The herbarium challenge 2019 dataset[END_REF] or bird species [START_REF] Wah | The Caltech-UCSD Birds-200-2011 Dataset[END_REF]. Gathering a sufficiently large collection with fine-grained labels is difficult by itself, as it requires to find enough images of rare classes, and annotating them precisely requires domain specialists with in-domain expertise. This is evidenced by the Open Images construction annotation protocol [START_REF] Kuznetsova | The open images dataset v4[END_REF] that states that: "Manually labeling a large number of images with the presence or absence of 19,794 different classes is not feasible". For this reason they resorted to computer-assisted annotation, at the risk of introducing biases.

To circumvent this issue, we propose in this chapter, a new strategy Grafit, to get strong classification and image retrieval performance on fine concepts using only coarse labels at training. Our work leverages two intuitions. First, in order to improve the granularity beyond the one provided by image labels, we need to exploit another signal than just the labels. For this purpose, we build upon the works [START_REF] Berman | Multigrain: a unified image embedding for classes and instances[END_REF][START_REF] Xie | Unsupervised data augmentation for consistency training[END_REF] that exploit two losses to address both image classification and instance recognition, leveraging the "free" annotations provided by multiple data augmentations of a same instance, in the spirit of self-supervised learning [START_REF] Bojanowski | Unsupervised learning by predicting noise[END_REF][START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF][START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF][START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF]. The second intuition is that it is better to explicitly infer coarse labels even when classifying at a finer granularity. For this purpose, we propose a simple method that exploits both a coarse classifier and image embeddings to improve fine-grained category-level retrieval. This strategy outperforms existing works that exploit coarse labels at training time but do not explicitly rely on them when retrieving finer-grained concepts [START_REF] Wu | Improving generalization via scalable neighborhood component analysis[END_REF].

By these ways our Grafit method is able to liberate the data collection process from the quirks of a rigid fine-grained taxonomy, as previously discussed. To validate our strategy, we investigate two challenging applications :

On-the-fly classification. For this task, the fine-grained labels are available at test time only, and we use a non-parametric kNN classifier [START_REF] Wu | Improving generalization via scalable neighborhood component analysis[END_REF] for on-the-fly classification, i.e. without training on the fine-grained labels.

Category-level Retrieval. Given a collection of images annotated with coarse labels, like a product catalog, we aim at ranking these images according to their fine-grained semantic similarity to a new query image outside the collection, as illustrated by Figure 2.3. We believe that this new task better is more realistic than the on-the-fly classification setting. This chapter is organized as follows. After reviewing related works in Section 2.1, we present our Grafit method in Section 2.3. Section 2.4 compares our approach against baselines on various datasets, and presents an extensive ablation.

Transfer Learning. Transfer learning datasets [START_REF] Bossard | Food-101 -mining discriminative components with random forests[END_REF][START_REF] Krause | 3d object representations for fine-grained categorization[END_REF][START_REF] Nilsback | Automated flower classification over a large number of classes[END_REF] are often fine grained and rely on a feature extractor pre-trained on another set of classes. However, the fine labels are not a subset of the pre-training labels, so we consider transfer learning as a generalization of our coarse-tofine task. It is preferable to pre-train on a domain similar to the target [START_REF] Cui | Large scale finegrained categorization and domain-specific transfer learning[END_REF], e.g., pre-training on iNaturalist [START_REF] Van Horn | The inaturalist challenge 2017 dataset[END_REF] is preferable to pre-training on ImageNet if the final objective is to discriminate between species of birds. The impact of pre-training granularity is discussed in prior works [START_REF] Cui | Measuring dataset granularity[END_REF][START_REF] Yan | Clusterfit: Improving generalization of visual representations[END_REF]. In Section 2.4.6 we investigate how Grafit pre-training performs on fine-grained datasets with transfer learning task.

About granularity

Is it possible to create representations that discriminate between classes finer than the available coarse labels? Considering that we have seen only coarse labels at training time, how can we exploit the coarse classifier for fine-grained classification, if useful at all? In this section we discuss these two questions and construct an experiment to analyze the role of the losses and of the coarse classifier. We then provide empirical observations. Practical setup. In the following two experiments, we consider the CIFAR-100 benchmark that has two granularity levels with 20 and 100 classes (see Section 2.4.1).

We denote by f the Resnet-18 trunk mapping from the image space to an embedding space. We train the neural network trunk f with three possible losses:

• Baseline: regular cross-entropy classification training L CE with coarse or fine classes;

• Triplet loss: training a triplet loss L Triplet to differentiate between image instances (does not use the labels);

• L CE + L Triplet : sum of the two losses. This is intended to be a simple proxy of Grafit.

Experiment: separating arbitrary fine labels

This experiment is inspired both by the Rademacher complexity [START_REF] Boucheron | Theory of classification: A survey of some recent advances[END_REF] and by the self-supervised learning (SSL) literature [START_REF] Berthelot | Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring[END_REF]. In SSL, the standard way to evaluate the quality of a feature extractor f is to measure the accuracy of the network after learning a linear classifier l for the target classes on top of f . The Rademacher complexity measures how a class of functions (i.e. l • f , with f fixed and l learned) is able to classify a set of images with random binary labels.

For this experiment we train the trunk f jointly with a (coarse class) classifier with L CE using coarse labels. We hope to improve the granularity of f , i.e. improve the network trunk such that a (finer-grained) classifier l trained on top of f performs better at discriminating between instances that have the same coarse label.

Random labels.

We generate synthetic fine labels by the following process: for each coarse label, we randomly and evenly split the training images into two subcategories, yielding 40 classes in total. Inspired by the empirical Rademacher estimation, we sample 10 distinct splits of random labels. For each split, we learn a linear classifier l on top of f i . We then compute the mean accuracy (top-1, %) of l • f i on the training examples for the three losses. By evaluating to what extent one can fit a linear classifier l on top of f , this experiment measures how well the data are spread in the representation spaces.

Table 2.1 -Separability experiment on CIFAR-100. The trunk is trained with coarse labels only. Images with the same coarse label are randomly grouped into two distinct fine-grain labels (40 distinct labels in total). Then we fine-tune a linear classifier on the synthetic labels and measure the top-1 accuracy on fine-labels. When conditioning, the estimator exploits the hierarchy: we first predict the coarse class and condition on it to make the final prediction. We report results with three training losses.

Training

Top- Impact of the loss terms. We report the results in Table 2.1. We can see that, to distinguish between our synthetic fine labels, training with the triplet loss L Triplet in combination with the classification loss L CE is essential: the sum of losses outperforms each individual loss.

Conditioning. We also measure the impact of conditioning on coarse classes: we first predict the coarse label with the coarse classifier, and leverage its softmax output to classify the fine class. This clearly improves the accuracy, which motivates our fusion strategy inspired by this conditioning in Section 2.3.2.

Experiment: varying the training granularity

In this section we make empirical observations related to the training granularity in the embedding space.

We train f with one of the three losses and either coarse or fine labels as supervision. In a second stage, we train a linear classifier l on the Resnet-18 trunk with fine class supervision, and evaluate its accuracy on the test set.

Accuracies. We first quantify the quality of the representation space. The accuracies are reported in Table 2.2. We observe that the coarse labels are almost as good as the fine labels for pre-training. The unsupervised L Triplet loss performs significantly worse, which concurs with our previous separability experiment. Combining this loss with the L CE loss improves it, both with coarse and fine supervisions.

Size of the representation space. We quantify the information content of embedding vectors by computing their principal components analysis (PCA). This is a reasonable proxy for information content given that the features are separated by linear classifiers afterwards. We observe the cumulative energy of the PCA components ordered by decreasing energy. We assume that a more uniform energy distribution (and thus lower curves) means that the representation is richer, since a few vector components cannot summarize it.

Figure 2.1 shows the results. When training with L CE loss, the most uniform distribution for the principal components is obtained for the fine supervision. This is expected since it is a finer-grain separation of entities and that can not be summarized with a subspace as small as the one associated with a relatively small number of categories. Notice that the training granularity (20 or 100 classes) can be read as an inflection point on the PCA decomposition curves. The loss L Triplet is not very informative on its own but does improve the cross-entropy representation when combined with it.

Discussion. This simple preliminary experiment shows that the label granularity has a strong impact on very basic statistics of the embedding distribution. It is the basic intuition behind Grafit: a rich representation can be obtained using just coarse labels, if we combine them with a self-supervised loss. 

Grafit: Fitting a finer granularity

Training procedure: Grafit and Grafit FC

We first introduce an instance loss inspired by BYOL [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF] that favors fine-grained recognition. The Grafit model includes a trunk network f θ , to which we add two multi-layer perceptrons (MLP): a "projector" P θ and a predictor q θ . In the Grafit FC variant, P θ is linear for a more direct fair comparison with Wu et al. [START_REF] Wu | Improving generalization via scalable neighborhood component analysis[END_REF]'s projector. The learnable parameters are represented by the vector θ. As in BYOL we define a "target network" f ξ as an exponential moving average of the main network f θ : the parameters ξ are not learned, but computed as ξ ← τ ξ + (1 -τ )θ, with a target decay rate τ ∈ [0, 1]. Instance loss. Each image x is transformed by T data augmentations (t 1 , . . . , t T ). Denoting cos the cosine similarity and g θ (x) = P θ (f θ (x)), the instance loss is:

L inst (x) = - 1≤i̸ =j≤T cos q θ • g θ (t i (x)).g ξ (t j (x)) T (T -1) , (2.1) 
The instance loss allows the network to discriminate at the instance level, which is a finer granularity than the class level. We give more insights about this loss in Section 2.2. kNN loss. A parametric classifier with softmax yields a representation that does not generalize naturally to new classes [START_REF] Wu | Improving generalization via scalable neighborhood component analysis[END_REF] and is not adapted for kNN classification. Therefore, inspired by the neighborhood component analysis [START_REF] Goldberger | Neighbourhood components analysis[END_REF]139,[START_REF] Salakhutdinov | Learning a nonlinear embedding by preserving class neighbourhood structure[END_REF], Wu et al. [START_REF] Wu | Improving generalization via scalable neighborhood component analysis[END_REF] propose a loss function optimized directly for kNN evaluation, that we adopt and denote by L knn . Let x i be a training image with coarse label y i and σ a temperature hyper-parameter. For each image x i we select x j (j ̸ = i) as its neighbor with probability p i,j , computed as

p i,j ∝ exp cos(g θ (x i ), g θ (x j ))/σ , (2.2) 
where the p i,j are normalized so that j̸ =i p i,j = 1. The loss is then defined as:

L knn (x i , y i ) = -log j,yj =yi,j̸ =i p i,j . (2.3) 
We ℓ 2 -normalize after the P θ projection. The L knn scores all classes with Equation 2.3.

Memory of embeddings.

One of the limitations of the kNN approach is that it requires to use all the features of the training set. To avoid recomputing all the embeddings of the training set, we use a memory M = {m 1 , . . . , m i , . . . }. It is updated as follows: when the image x i in the training set is in the current mini-batch, we update its embedding m i as follows: m i ← 1 2 (m i + g θ (x i )). In order to limit the memory space needed, we apply the L knn loss on the space of the projected features, which allows us to store smaller embedding and hence requires less memory. For instance for ImageNet we have to store 1.2M training images. Without the projection with ResNet-50 architecture for f θ , the memory size is 2048 × 1.2M but with a projection on a space of size 256 the memory size is 256 × 1.2M what is ×8 smaller.

Combined loss. Our method is summarized in Figure 2.2. The total loss at training time for an image x with label y is:

L tot (x) = L knn (g θ (x), y) + L inst (x).
(2.4) Section 2.5 empirically shows that weighting differently the losses does not bring much difference.

Adapting the architecture at test-time. The training parameters include the model weights (f θ , P θ ) and the parameters related to L inst (f ξ , P ξ and q θ ) as described previously. At test time we remove the L inst branch, keeping only f θ and P θ . In order to have consistent representations of all the training images with the final weights, we re-compute m i = g θ (x i ) for each training image x i and store it in M.

Category-level retrieval

For a given test image x ′ the task is to order by semantic relevance all images from the training collection. In our coarse-to-fine case, a search result is deemed correct if it has the same fine label as the query.

Cosine-based ranking. The standard strategy to order the images is to compute g θ (x ′ ), and to order all images x i in the collection by they cosine similarity score cos(g θ (x i ), g θ (x ′ )) to the query (the g θ (x i ) are pre-computed in M). The experiments in Section 2.4 show that the way Grafit embeddings are trained already improves the ranking with that method.

Ranking conditioned by coarse prediction. Let x ′ be a test image and x a training image with coarse class y. Let p c (x, y) be the probability that the image x has coarse label y according to our classifier. Our conditional score ψ cond is a compromise between the embedding similarity and the coarse classification, in spirit of the loss in Equation 2.4:

ψ cond (x ′ , x) = cos (g θ (x ′ ), g θ (x)) + log p c (x ′ , y) 1 -p c (x ′ , y) . (2.5)
Note that, in that case, we rely on the fact that the collection in which we search is the training set, so that the coarse labels associated with the collection are known. In Section 2.4 we show that ψ cond improves the category-level retrieval performance in the coarse-to-fine context.

Conditional ranking: Oracle. If we assume that the coarse label of the query test image is known (given by an oracle), then we can set p c (x ′ , y) = 1 y=y ′ with y ′ the coarse class of the test image x ′ . This boils down to systematically putting images with the same coarse class as the test image first in the ranking. Experimentally, this shows the impact of test label prediction on the score, and provides an upper bound on the performance of the conditional ranking strategy. It is also relevant in practice in a scenario where the user provides this coarse labeling, for instance by selecting it from an interface.

On-the-fly classification

In on-the-fly classification, a kNN classifier "knows" about the fine classes of the training images only at test time [START_REF] Wu | Improving generalization via scalable neighborhood component analysis[END_REF]. Such a non-parametric classification does not require any training or fine-tuning. Note this flexible classifier can handle settings with evolving datasets, including dynamic add-ons of new classes, although such setups are outside the scope of this chapter.

For a test image x we compute the embedding g θ (x) and compare it to the training image embeddings stored in M. We select the k embeddings maximizing the cosine similarity to the query, (x 1 , ..., x k ), with labels (y 1 , ..., y k ). For a direct comparison with Wu et al. [START_REF] Wu | Improving generalization via scalable neighborhood component analysis[END_REF] and consistently with Equation 2.3, we apply an exponentially decreasing neighbour weighting that computes the probability that x belongs to class y as p kNN (x, y) ∝ k j=1,yj =y exp (cos(g θ (x), g θ (x j ))/σ) .

(2.6)

We normalize the probabilities so that y p kNN (x, y) = 1.

Experiments

Coarse Fine 3 -Category-level retrieval orders images based on their semantic similarity to a query. Our Grafit method, although it has used only coarse labels (like 'pyrgus') at training time, produces a ranking consistent with fine-grained labels. Unsupervised learning is a particular case of this task, in which the set of coarse labels is reduced to a singleton. Image credit: [2].

We consider evaluation scenarios where it is beneficial to learn at a finer granularity than that provided by the training labels. The first two tasks are coarse-to-fine tasks (category-level retrieval and on-the-fly classification), where we measure the capacity of the network to discriminate fine labels without having seen them at training time. The third protocol is vanilla transfer learning, where we transfer from Imagenet to a fine-grained dataset.

Datasets and evaluation metrics

We carry out our evaluations on public benchmarks, which statistics are detailed in Table 2.3. [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] has 100 classes grouped into 20 coarse concepts of 5 fine classes each. For instance the coarse class large carnivore includes fine classes bear, leopard, lion, tiger and wolf. In all experiments, we use the coarse concepts to train our models and evaluate the trained model using the fine-grained labels.

CIFAR-100

ImageNet [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] classes follow the WordNet [START_REF] Fellbaum | WordNet: An Electronic Lexical Database[END_REF] hierarchy. We use the 127 coarse labels defined in Huh et al. [START_REF] Huh | What makes imagenet good for transfer learning?[END_REF] in order to allow for a direct comparison with their method. Evaluation metrics. For category-level retrieval we report the mean average precision (mAP), as commonly done for retrieval tasks [8,[START_REF] Philbin | Object retrieval with large vocabularies and fast spatial matching[END_REF]. For on-the-fly classification we report the top-1 accuracy in order to be directly comparable with prior work [START_REF] Wu | Improving generalization via scalable neighborhood component analysis[END_REF].

Baselines

We use existing baselines and introduce stronger ones:

Wu's baselines [START_REF] Wu | Improving generalization via scalable neighborhood component analysis[END_REF] use activations of a network learned with cross-entropy loss, but evaluated with a kNN classifier. Huh et al. [START_REF] Huh | What makes imagenet good for transfer learning?[END_REF] evaluate how a network trained on the 127 ImageNet coarse classes transfers on the 1000 fine labels1 .

Our main baseline: we learn a network with cross-entropy loss, and perform retrieval or kNNclassification with the ℓ 2 -normalized embedding produced by the model trunk. We point out that, thanks to our strong optimization strategy borrowed from recent works [START_REF] He | Bag of tricks for image classification with convolutional neural networks[END_REF][START_REF] Tan | EfficientNet: Rethinking model scaling for convolutional neural networks[END_REF], this baseline by itself outperforms all published results in several settings, for instance our ResNet-50 baseline without extra training data outperforms on ImageNet a ResNet-50 pretrained on the large dataset YFCC100M [START_REF] Zeki Yalniz | Billion-scale semi-supervised learning for image classification[END_REF] (see Table 2.12).

SNCA. Wu et al. [START_REF] Wu | Improving generalization via scalable neighborhood component analysis[END_REF] proposed a SNCA, a model optimized with a loss suitable for knn classification. In our implementation, we add a linear operator P θ to the network trunk f θ when training the supervised loss L knn .

SNCA+. We improve SNCA with our stronger optimization procedure. The retrieval or kNN evaluation uses features from a MLP instead of a simple linear projector, which means that its number of parameters is on par with Grafit (and larger than Grafit FC). ClusterFit+. Same as for SNCA, we improve ClusterFit [START_REF] Yan | Clusterfit: Improving generalization of visual representations[END_REF] with our training procedure, and cross-validate the number of clusters (15000 for Imagenet and 1500 for CIFAR-100). As a result we improve its performance and have a fair comparison, everything being equal otherwise.

Experimental details

Architectures. Most experiments are carried out using the ResNet-50 architecture [START_REF] He | Deep residual learning for image recognition[END_REF] except for Section 2.4.6 where we also use RegNet [START_REF] Radosavovic | Designing network design spaces[END_REF] and ResNeXt [START_REF] Xie | Aggregated residual transformations for deep neural networks[END_REF].

Training settings. Our training procedure borrows from the bag of tricks [START_REF] He | Bag of tricks for image classification with convolutional neural networks[END_REF]: we use SGD with Nesterov momentum and cosine learning rates decay. We follow Goyal et al.'s [START_REF] Goyal | Accurate, large minibatch sgd: Training imagenet in 1 hour[END_REF] recommendation for the learning rate magnitude: lr = 0.1 256 × batchsize. The data augmentation consists of random resized crop, RandAugment [START_REF] Ekin | RandAugment: Practical automated data augmentation with a reduced search space[END_REF] and Erasing [START_REF] Zhong | Random erasing data augmentation[END_REF]. We train for 600 epochs with batches of 1024 images at resolution 224 × 224 pixels (except for CIFAR-100: 32 × 32). We set the temperature σ to 0.05 in all our experiments following Wu et al. [START_REF] Wu | Improving generalization via scalable neighborhood component analysis[END_REF]. We refer the reader to Section 2.5.1 for more training details.

For the on-the-fly classification task, the unique hyper-parameter cross-validated is k, with experiment with k ∈ {10, 15, 20, 25, 30}.

Coarse-to-fine experiments

CIFAR and ImageNet experiments. Table 2.4 compares Grafit results for coarse to fine tasks with the baselines from Section 2.4.2. On CIFAR-100, Grafit outperforms other methods by +5.5% top-1 accuracy. On ImageNet the gain over other methods is +13.7%.

Grafit also outperforms other methods on category-level retrieval, by 13.2% on CIFAR and 11.1% on ImageNet. In the Table 2.4 we shows that Grafit not only provides a better on-the-fly classification (as evaluated by the kNN metric), but that the ranked list is more relevant to the query (results for mAP).

Coarse-to-Fine with different taxonomic ranks. We showcase Grafit on various levels of coarse granularity by training one model on each annotation level of iNaturalist-2018 and evaluating on all levels with kNN classification (Table 2.5) and retrieval (Table 2.6). Figure 2.4 presents results with retrieval and kNN classification for two of the most interesting cases: when the train and test granularities are the same (left), and on the finest test level (Species) with varying granularities at training time (right). On the left, the accuracy of all methods decreases as the granularity increases: this is expected as the task moves from coarse classification to fine, as it is more difficult to discriminate amongst a larger number of classes.

We observe that the performance drop of Grafit for category-level retrieval is reduced in comparison with other methods. On the right figures, the accuracy of all methods increases as the level of annotation increases (keeping evaluation at Species). Grafit also stands out in this context, outperforming other methods.

We report comprehensive results with Grafit and the baselines from Section 2.4.2 on iNaturalist-2019 & 2018 in the section 2.5.3.

Visualizations. Figure 2.3 shows visual results for the category-level retrieval task with Grafit. All the results for the baseline and Grafit have the correct coarse label, but our method is better at a finer granularity. In Section 2.6 we show that the improvement is even more evident when the granularity level at training time is coarser. [START_REF] Van Horn | The inaturalist challenge 2018 dataset[END_REF] with and left: train=test granularity right: test at finest granularity (species). We compare our method Grafit, SNCA+, ClusterFit+ and Baseline. Top: on-the-fly kNN classification (top-1 accuracy); bottom: category-level retrieval (mAP).

Ablation studies

Losses, architectural choice and conditioning. Table 2.7 presents a study on CIFAR-100 and ImageNet-1k, where we ablate several components of our method. A large improvement stems from the instance loss when it supplements the supervised kNN loss. It is key for discriminating at a finer grain. The category-level retrieval significantly benefits from our approach, rising from 22.7% to 44.4% in the best case. Coarse conditioning also has a consistent measurable impact on performance, yielding around 3 mAP points across the various settings.

Sanity check: training with coarse vs fine labels. 

Transfer Learning to fine-grained datasets

We now evaluate Grafit for transfer learning task on fine-grained datasets.

Settings. We initialize the network trunk with ImageNet pre-trained weights and fine-tune the model. For our method, the network trunk f θ remains fixed and the projector P θ is discarded. For all methods we fine-tune during 240 epochs with a cosine learning rate schedule starting at 0.01 and batches of 512 images (details in Section 2.5.4).

Classifier. We experiment with two types of classifiers: a standard linear classifier (FC) and a multi-layer perceptron (MLP) composed of two linear layers separated by a batch-normalization and a ReLU activation. We introduce this MLP because, during training, both Grafit and SNCA+ employ an MLP projector, so their feature space is not learned to be linearly separable. In contrast, the baseline is trained with a cross-entropy loss associated with a linear classifier.

Tasks. We evaluate on five classical transfer learning datasets: Oxford Flowers-102 [START_REF] Nilsback | Automated flower classification over a large number of classes[END_REF], Stanford Cars [START_REF] Krause | 3d object representations for fine-grained categorization[END_REF], Food101 [START_REF] Bossard | Food-101 -mining discriminative components with random forests[END_REF], iNaturalist 2018 [START_REF] Van Horn | The inaturalist challenge 2018 dataset[END_REF] & 2019 [START_REF] Van Horn | The iNaturalist species classification and detection dataset[END_REF]. Table 2.3 summarizes some statistics associated with each dataset.

Results. Table 2.9 compares a ResNet-50 pretrained on ImageNet with Grafit, SNCA+, Clus-terFit [START_REF] Yan | Clusterfit: Improving generalization of visual representations[END_REF] and our baseline on five transfer learning benchmarks. Our method outperforms all methods. The table also shows the relatively strong performance of SNCA+. Table 2.10 compares Grafit with the RegNetY-8.0GF [START_REF] Radosavovic | Designing network design spaces[END_REF] architecture against the state of the art, on the same benchmarks. Note that this architecture is significantly faster than the EfficientNet-B7 and ResNet-152 employed in other papers, and that we use a lower resolution in most settings.

In Table 2.10 we consider models pre-trained on ImageNet with and fine-tuned on the finegrained target dataset. In each case we report results with Grafit (with a MLP for the projector P θ ) and Grafit FC. See more detailed results in Section 2.5 Table 2. [START_REF] Berthelot | Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring[END_REF].

In summary, Grafit establishes the new state of the art. We point out that we have used a consistent training scheme across all datasets, and a single architecture that is more efficient than in competing methods.

Additional experiments

This section details the training procedure and provides more experimental results.

Training settings

As described in the main part, our training procedure is inspired by Tong et al. [START_REF] He | Bag of tricks for image classification with convolutional neural networks[END_REF]: we use SGD with Nesterov momentum and cosine learning rates decay. We follow Goyal et al.'s [START_REF] Goyal | Accurate, large minibatch sgd: Training imagenet in 1 hour[END_REF] recommendation for the learning rate magnitude: lr = 0.1 256 × batchsize. The augmentations include random resized crop, RandAugment [START_REF] Ekin | RandAugment: Practical automated data augmentation with a reduced search space[END_REF] and Erasing [START_REF] Zhong | Random erasing data augmentation[END_REF]. We train for 600 epochs with batches of 1024 images of resolution 224 × 224 pixels (except for CIFAR-100 where the resolution is 32 × 32). For Grafit with L inst we use T = 4 different data-augmentations on ImageNet and T = 8 [START_REF] Xie | Self-training with noisy student improves imagenet classification[END_REF] JFT-300M [START_REF] Xie | Self-training with noisy student improves imagenet classification[END_REF] 78.9 Billion Scale [START_REF] Zeki Yalniz | Billion-scale semi-supervised learning for image classification[END_REF] YFCC100M [START_REF] Thomee | Yfcc100m: the new data in multimedia research[END_REF] 79.1

Our Baseline _ 79.3

on CIFAR-100. For the supervised loss we use one data-augmentation in order to have the same training procedure as our supervised baseline.

Weighting of the losses. We investigate the impact of weighting the losses L knn and L inst . For example, on CIFAR-100 classification, Table 2.11 shows that an equal weighting gives the best or near-best results. Therefore, to avoid adding a hyper-parameter and in order to simplify the method, we chose to not use weighting, i.e. we just sum up the two losses.

A strong Baseline. Our training procedure improves the ResNet-50 performance and thus is a strong baseline against which we can compare Grafit. Therefore, Table 2.12 compares our baseline on ImageNet with other ResNet-50 training procedures. We observe that our training procedure gives better results than many other approaches. This makes it possible to isolate the contribution of our improved training practices and that of the Grafit loss.

{coarse,fine}-to-{coarse,fine}: evaluation

We compare our main baselines and Grafit's performance in the 4 following scenarios: coarseto-coarse, coarse-to-fine, fine-to-fine and fine-to-coarse. The evaluations are performed with two classifiers: a kNN classifier (kNN) on top of the embeddings and a linear classifier with the fine-tuned network (FT) with a cross-entropy loss.

The results in Table 2. [START_REF] Bello | Revisiting ResNets: Improved training and scaling strategies[END_REF] show that Grafit training improves the accuracy in almost all settings, including the fine-to-fine setting, which is just the regular image classification setting with the usual ImageNet labels.

Coarse-to-Fine with different taxonomic rank

Datasets. We carry out evaluations on iNaturalist-2018 (iNat-18), and with iNaturalist-2019 [START_REF] Van Horn | The iNaturalist species classification and detection dataset[END_REF](iNat-19), which is a subset of iNaturalist-2018 [START_REF] Van Horn | The inaturalist challenge 2018 dataset[END_REF] where classes with too few images have been removed. iNaturalist 2019 dataset is thus composed of 268,243 images divided into 1,010 classes Results. We report exhaustive results with our two coarse-to-fine evaluation protocols with all our baselines on iNaturalist-2018 [START_REF] Van Horn | The inaturalist challenge 2018 dataset[END_REF] and iNaturalist-2019 [START_REF] Van Horn | The iNaturalist species classification and detection dataset[END_REF] in Table 2.14.

We comment more specifically the kNN classification accuracy (left) because for retrieval, Grafit outperforms all the baselines by a large margin. The table on the right is divided in 10 matrices each containing results for one combination of a method and a dataset (iNat-18 or 19).

The diagonal values in the matrices correspond to a traditional setting where the training and the test granularity are the same. Even in this case, the Grafit descriptors outperforms the baseline methods most often. On iNaturalist 2018, for Species, the finest and most challenging level, the additional Grafit loss improves the top-1 accuracy by 7% absolute. The gain is more marginal for iNaturalist 2019 (+0.9%), which shows that Grafit is especially useful for unbalanced class distributions where some classes are in a low-shot training regime.

The lower triangle of each matrix reports the coarse-to-fine results, which is the setting in which we focus in this chapter. Grafit obtains the best results for most combinations, with accuracy gains of around 10 points with respect to the baseline and by a few points for ClusterFit+. It is interesting to look at the ∅ column, which is the unsupervised case. In that case, the baseline training reduces to a random network, but Grafit is able to extract signal from the kNN loss.

The upper triangle is the fine-to-coarse setting, where finer labels are available for the training images than what is used at test time. This is obviously not the setting of this chapter but it is worth discussing these results. A natural baseline for fine-to-coarse is to discard the fine labels and train only with the coarse labels induced by the fine annotation. This would yield the same accuracy as on the corresponding entry of the diagonal of the matrix. Irrespective of the method, the fine-to-coarse training does not necessarily outperform this simple strategy. Left: on-the-fly k-NN classification accuracy (top-1, %) Right: category-level retrieval (mAP, %). We highlight the best and second-best result across methods for each train-test granularity combination. The diagonals (test = train granularity) are in bold. Lower triangles are coarse-to-fine combinations, handled in this chapter. Upper triangles (fine-to-coarse) are reported for reference but not formally addressed by our approach: better strategies would exploit the hierarchy of concepts more explicitly. 

Transfer Learning Tasks

This section details the experimental settings for the transfer learning and reports more results and comparisons.

Fine-tuning settings As described in Section 2.4.6 We initialize the network trunk with ImageNet pre-trained weights and fine-tune the model.

For our method, we keep the pre-trained network trunk f θ . But the projector P θ is discarded. For all methods we fine-tune during 240 epochs with a cosine learning rate schedule starting at 0.01, and batches of 512 images.

For fine-tuning results in Table 2.10 we additionally use Cutmix [START_REF] Yun | CutMix: Regularization strategy to train strong classifiers with localizable features[END_REF] and FixRes [START_REF] Touvron | Fixing the train-test resolution discrepancy[END_REF] during fine-tuning and we fine-tune with more epochs (1000 for Flowers [START_REF] Nilsback | Automated flower classification over a large number of classes[END_REF] and Cars [START_REF] Krause | 3d object representations for fine-grained categorization[END_REF], 300 for Food-101 [START_REF] Bossard | Food-101 -mining discriminative components with random forests[END_REF] and iNat [START_REF] Van Horn | The inaturalist challenge 2018 dataset[END_REF][START_REF] Van Horn | The iNaturalist species classification and detection dataset[END_REF]). These choices improve the performance for all the methods.

Results. Table 2.15 compares the performance obtained with Grafit for different architectures. We report results with Grafit topped with either a multi-layer perceptron (MLP) or a linear classifier (FC). The accuracy increases for larger models. This shows that, although ResNet-50 serves as a running example architecture for Grafit, the method applies without modifications to other architectures.

Table 2.16 compares the performances obtained with Grafit and baselines with MLP and FC classifier. For all settings, the flexibility of the MLP is useful to outperform the linear classifier (FC). The transfer learning results are better or as good for Grafit variants. The gap with the baseline methods is higher for the iNaturalist variants. This is because the datasets are more challenging, as evidenced by the relatively low accuracies reported.

Visualization

CIFAR. Figure 2.6 shows for a given test image in CIFAR-100 the 10 nearest neighbours in the training according the cosine similarity in the embedding space. In Figure 2.6 models are trained on the 20 CIFAR-100 coarse classes. The correct classes are indicated in green. For example, in the first row, Grafit correctly identifies a butterfly query in 9 out of 10 results, while the baseline method succeeds only 5 times. The second row is a relative failure case, because Grafit confuses a van with a pickup truck. However, it correctly matches the colors of the vehicles. iNaturalist. Figure 2.7, 2.8 and Figure 2.9 present similar results for three examples for iNaturalist-2018, but with several levels of granularity for the training set, which allow one to vizualize the importance of the training granularity as well. Each granularity level is identified with a color. The frame color around the image indicates which at which granularity the match is correct: for example, light orange means it is correct at the order level and green means that the result is correct at the finest granularity (Species).

We can observe from the colors and the image content that the level at which Grafit is correct is almost systematically better than the baseline2 . For example, the baseline model trained at the genus granularity in Figure 2.7 matches the deer query with a moose (rank 3).

In Figure 2.8, the butterfly is matched relatively easily with other butterflies by both classifiers, even when they are trained with coarse granularity. This is because butterflies have quite distinctive textures. However, Grafit slightly outperforms the baseline for finer granularity levels. Figure 2.9 shows an orca query, which is quite distinctive with its black-and-white skin. The baseline method is unable to distinguish it from other marine mammals, even when trained at the finest granularity. Grafit is able to distinguish these textures more accurately, so it gets perfect retrieval results even when trained at the genus granularity.

Train granularity: Family

Train granularity: Genus baseline Grafit Figure 2.5 -t-SNE representations of features from images of the family paridae, focusing on the genus baeolophus (in blue). When trained with granularity Family, all depicted points have the same coarse label, while granularity Genus means that the network has seen 7 distinct labels. Visually, Grafit offers a better separation of the images than the baseline w.r.t. the two finest level 'Genus' and 'Species'. l e a r n i n g finegrained image representations with coarse labels

Baeolophus

Conclusion

In this chapter, we have introduced Grafit, a method to learn image representations at a finer granularity than the one offered by the annotation at training time. Inspired by recent selfsupervised learning approach, we carefully design a joint learning scheme integrating instance and coarse-label based classification losses. For the latter one, we exploit a knn strategy but with a dedicated process to manage the memory both at train-time and for inference at test-time.

We propose two original use-cases to deeply evaluate coarse-trained fine-grained testing evaluation, for which Grafit exhibits outstanding performance.

It improves the performance for fine-grained category retrieval within a coarsely annotated collection. For on-the-fly kNN classification, Grafit significantly reduces the gap with a network trained with fine labels. For instance, we improve by +16.3% the top-1 accuracy for on-the-fly classification on ImageNet. This improvement is still +9.5% w.r.t. our own stronger baseline, everything being equal otherwise. Grafit also improves transfer learning: our experiments show that our representation discriminates better at a finer granularity. It also translates into better transfer learning performance to fine-grained datasets, outperforming the current state of the art with a more efficient network. The chapter is organized as follows: we review related works in Section 3.1, and focus on transformers for image classification in Section 3.2. We introduce our distillation strategy for transformers in Section 3.3. The experimental section 3.4 provides analysis and comparisons against both convnets and recent transformers, as well as a comparative evaluation of our transformerspecific distillation. Section 3.4.5 details our training scheme. It includes an extensive ablation of our data-efficient training choices, which gives some insight on the key ingredients involved in DeiT. Section 3.6 introduces our second contribution, namely class-attention layers, that we present in Figure 3.7. It is akin to an encoder/decoder architecture, in which we explicitly separate the transformer layers involving self-attention between patches, from class-attention layers that are devoted to extract the content of the processed patches into a single vector so that it can be fed to a linear classifier. This explicit separation avoids the contradictory objective of guiding the attention process while processing the class embedding. We refer to this new architecture as CaiT (Class-Attention in Image Transformers). In the experimental Section 3.7, we empirically show the effectiveness and complementary of our approaches. We provide visualizations of the attention mechanisms in Section 3.7.2.5.

Publication. Chapter 3 is based on the papers "Training data-efficient image transformers & distillation through attention", Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou, ICML 2021 (see DeiT paper [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF]) and "Going deeper with Image Transformers", Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, Hervé Jégou, ICCV 2021 (Oral) (see CaiT paper [START_REF] Touvron | Going deeper with image transformers[END_REF]). The code is available at https://github.com/ facebookresearch/deit.

Related work

As detailed in chapter 1, Transformers have been introduced by Vaswani et al. [START_REF] Vaswani | Attention is all you need[END_REF].Many improvements of convnets for image classification are inspired by transformers. For example, Squeeze and Excitation [START_REF] Hu | Squeeze-and-excitation networks[END_REF], Selective Kernel [START_REF] Li | Selective kernel networks[END_REF] and Split-Attention Networks [START_REF] Zhang | Resnest: Split-attention networks[END_REF] exploit mechanisms akin to transformer's self-attention (SA).

Vision transformers (ViT) [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] close the gap with the state of the art on ImageNet, without using any convolution. This performance is remarkable since convnet methods for image classification have benefited from years of tuning and optimization [START_REF] He | Bag of tricks for image classification with convolutional neural networks[END_REF]214]. Nevertheless, according to this study [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF], a pre-training phase on a large volume of curated data is required for the learned transformer to be effective.

Knowledge Distillation (KD), introduced by Hinton et al. [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF], refers to the training paradigm in which a student model leverages "soft" labels coming from a strong teacher network. This is the output vector of the teacher's softmax function rather than just the maximum of scores, wich gives a "hard" label. Such training improves the performance of the student model (alternatively, it can be regarded as a form of compression of the teacher model into a smaller one -the student). On the one hand the teacher's soft labels will have a similar effect to label smoothing [START_REF] Yuan | Revisit knowledge distillation: a teacher-free framework[END_REF]. On the other hand as shown by Wei et al. [START_REF] Wei | Circumventing outliers of autoaugment with knowledge distillation[END_REF] the teacher's supervision takes into account the effects of the data augmentation, which sometimes causes a misalignment between the real label and the image. For example, let us consider image with a "cat" label that represents a large landscape and a small cat in a corner. If the cat is no longer on the crop of the data augmentation it implicitly changes the label of the image. KD can transfer inductive biases [4] in a soft way in a student model using a teacher model where they would be incorporated in a hard way. For example, it may be useful to induce biases due to convolutions in a transformer model by using a convolutional model as teacher. In this chapter, we study the distillation of a transformer student by either a convnet or a transformer teacher. We introduce a new distillation procedure specific to transformers and show its superiority.

Deeper architectures usually lead to better performance [START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF][START_REF] Szegedy | Going deeper with convolutions[END_REF], however this complicates their training process [START_REF] Srivastava | Highway networks[END_REF][START_REF] Srivastava | Training very deep networks[END_REF]. One must adapt the architecture and the optimization procedure to train them correctly. Some approaches focus on the initialization schemes [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF][START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Xiao | Dynamical isometry and a mean field theory of cnns: How to train 10, 000-layer vanilla convolutional neural networks[END_REF], others on multiple stages of training [START_REF] Romero | Fitnets: Hints for thin deep nets[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], multiple losses at different depth [START_REF] Szegedy | Going deeper with convolutions[END_REF], adding components in the architecture [START_REF] Thomas | Rezero is all you need: Fast convergence at large depth[END_REF][START_REF] Zhang | Fixup initialization: Residual learning without normalization[END_REF] or regularization [START_REF] Huang | Deep networks with stochastic depth[END_REF].

Vision transformer: overview

In this section, we briefly recall preliminaries associated with the vision transformer [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Vaswani | Attention is all you need[END_REF], and further discuss positional encoding and resolution.

Multi-head Self Attention layers (MSA).

The attention mechanism is based on a trainable associative memory with (key, value) vector pairs. A query vector q ∈ R d is matched against a set of k key vectors (packed together into a matrix K ∈ R k×d ) using inner products. These inner products are then scaled and normalized with a softmax function to obtain k weights. The output of the attention is the weighted sum of a set of k value vectors (packed into V ∈ R k×d ). For a sequence of N query vectors (packed into Q ∈ R N ×d ), it produces an output matrix (of size N × d):

Attention(Q, K, V ) = Softmax(QK ⊤ / √ d )V, (3.1) 
where the Softmax function is applied over each row of the input matrix and the √ d term provides appropriate normalization. In [START_REF] Vaswani | Attention is all you need[END_REF], a Self-attention layer is proposed. Query, key and values matrices are themselves computed from a sequence of N input vectors (packed into

X ∈ R N ×D ): Q = XW Q , K = XW K , V = XW V , using linear transformations W Q , W K , W V with the constraint k = N ,
meaning that the attention is in between all the input vectors. Finally, Multi-head self-attention layer (MSA) is defined by considering h attention "heads", ie h self-attention functions applied to the input. Each head provides a sequence of size N × d. These h sequences are rearranged into a N × dh sequence that is reprojected by a linear layer into N × D.

Transformer block for images. To get a full transformer block as in [START_REF] Vaswani | Attention is all you need[END_REF], we add a Feed-Forward Network (FFN) on top of the MSA layer. This FFN is composed of two linear layers separated by a GeLu activation [START_REF] Hendrycks | Gaussian error linear units (GELUs)[END_REF]. The first linear layer expands the dimension from D to 4D, and the second layer reduces the dimension from 4D back to D. Both MSA and FFN are operating as residual operators thanks to skip-connections, and with a layer normalization [7].

In order to get a transformer to process images, our work builds upon the ViT model [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]. It is a simple and elegant architecture that processes input images as if they were a sequence of input tokens. The fixed-size input RGB image is decomposed into a batch of N patches of a fixed size of 16 × 16 pixels (N = 14 × 14). Each patch is projected with a linear layer that conserves its overall dimension 3 × 16 × 16 = 768. The transformer block described above is invariant to the order of the patch embeddings, and thus does not consider their relative position. The positional information is incorporated as fixed [START_REF] Vaswani | Attention is all you need[END_REF] or trainable [START_REF] Gehring | Convolutional sequence to sequence learning[END_REF] positional embeddings. They are added before the first transformer block to the patch tokens, which are then fed to the stack of transformer blocks.

The class token is a trainable vector, appended to the patch tokens before the first layer, that goes through the transformer layers, and is then projected with a linear layer to predict the class. This class token is inherited from NLP [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF], and departs from the typical pooling layers used in computer vision to predict the class. The transformer thus process batches of (N + 1) tokens of dimension D, of which only the class vector is used to predict the output. This architecture forces the self-attention to spread information between the patch tokens and the class token: at training time the supervision signal comes only from the class embedding, while the patch tokens are the model's only variable input.

Fixing the positional encoding across resolutions. Touvron et al. [START_REF] Touvron | Fixing the train-test resolution discrepancy[END_REF] show that it is desirable to use a lower training resolution and fine-tune the network at the larger resolution. This speeds up the full training and improves the accuracy under prevailing data augmentation schemes. When increasing the resolution of an input image, we keep the patch size the same, therefore the number N of input patches does change. Due to the architecture of transformer blocks and the class token, the model and classifier do not need to be modified to process more tokens. In contrast, one needs to adapt the positional embeddings, because there are N of them, one for each patch. Dosovitskiy et al. [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] interpolate the positional encoding when changing the resolution and demonstrate that this method works with the subsequent fine-tuning stage.

Distillation through attention

In this section, we assume we have access to a strong image classifier as a teacher model. It could be a convnet, or a mixture of classifiers. We address the question of how to learn a transformer by exploiting this teacher. As we will see in Section 3.4 by comparing the trade-off between accuracy and image throughput, it can be beneficial to replace a convolutional neural network by a transformer. This section covers two axes of distillation: hard distillation versus soft distillation, and classical distillation versus the distillation token.

Soft distillation [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF][START_REF] Wei | Circumventing outliers of autoaugment with knowledge distillation[END_REF] minimizes the Kullback-Leibler divergence between the softmax of the teacher and the softmax of the student model. Let Z t be the logits of the teacher model, Z s the logits of the student model. We denote by τ the temperature for the distillation, λ the coefficient balancing the Kullback-Leibler divergence loss (KL) and the cross-entropy (L CE ) on ground truth labels y, and ψ the softmax function. The distillation objective is Hard-label distillation. We introduce a variant of distillation where we take the hard decision of the teacher as a true label. Let y t = argmax c Z t (c) be the hard decision of the teacher, the objective associated with this hard-label distillation is:

L global = (1 -λ)L CE (ψ(Z s ), y) + λτ 2 KL(ψ(Z s /τ ), ψ(Z t /τ )). ( 3 
L hardDistill global = 1 2 L CE (ψ(Z s ), y) + 1 2 L CE (ψ(Z s ), y t ). (3.3) 
For a given image, the hard label associated with the teacher may change depending on the specific data augmentation. We will see that this choice is better than the traditional one, while being parameter-free and conceptually simpler: The teacher prediction y t plays the same role as the true label y.

Note also that the hard labels can also be converted into soft labels with label smoothing [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF], where the true label is considered to have a probability of 1 -ε, and the remaining ε is shared across the remaining classes. We choose ε = 0.1 in our all experiments that use true labels.

Distillation token. We now focus on our proposal, which is illustrated in Figure 3.1. We add a new token, the distillation token, to the initial embeddings (patches and class token). Our distillation token is used similarly as the class token: it interacts with other embeddings through self-attention, and is output by the network after the last layer. Its target objective is given by the distillation component of the loss. The distillation embedding allows our model to learn from the output of the teacher, as in a regular distillation, while remaining complementary and compatible with the class embedding.

Interestingly, we observe that the learned class and distillation tokens converge towards different vectors: the average cosine similarity between these tokens equal to 0.06. As the class and distillation embeddings are computed at each layer, they gradually become more similar through the network, all the way through the last layer at which their similarity is high (cos=0.93), but still lower than 1. This is expected since as they aim at producing targets that are similar but not completely identical.

We verified that our distillation token adds something to the model, compared to simply adding an additional class token associated with the same target label: instead of a teacher pseudo-label, we experimented with a transformer with two class tokens. Even if we initialize them randomly and independently, during training they converge towards the same vector (cos=0.999), and the output embedding are also quasi-identical. This additional class token does not bring anything to the classification performance. In contrast, our distillation strategy provides a significant improvement over a vanilla distillation baseline, as validated by our different experiments in the Section 3.4.2.

Fine-tuning with distillation. We use both the true label and teacher prediction during the fine-tuning stage at higher resolution. We use a teacher with the same target resolution, typically obtained from the lower-resolution teacher by the method of Touvron et al [START_REF] Touvron | Fixing the train-test resolution discrepancy[END_REF]. We have also tested with true labels only but this reduces the benefit of the teacher and leads to a lower performance in the settings we considered.

Classification with our approach: joint classifiers. At test time, both the class or the distillation embeddings produced by the transformer are associated with linear classifiers and able to infer the image label. Yet our referent method is the late fusion of these two separate heads, for which we add the softmax output by the two classifiers to make the prediction. We evaluate these three options in Section 3.4.

DeiT experiments

This section presents a few analytical experiments and results. We first discuss our distillation strategy. Then we comparatively analyze the efficiency and accuracy of convnets and vision transformers for image classification task.

Transformer models

As mentioned earlier, our architecture design is identical to the one proposed by Dosovitskiy et al. [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] with no convolutions. Our only differences are the training strategies, and the distillation token. Also we do not use a MLP head for the pre-training but only a linear classifier. To avoid any confusion, we refer to the results obtained in the prior work by ViT, and prefix ours by DeiT. If not specified, DeiT refers to our referent model DeiT-B, which has the same architecture as ViT-B. When we fine-tune DeiT at a larger resolution, we append the resulting operating resolution at the end, e.g, DeiT-B↑384. Last, when using our distillation procedure, we identify it with an alembic sign as DeiT⚗.

The parameters of ViT-B (and therefore of DeiT-B) are fixed as D = 768, h = 12 and d = D/h = 64. We introduce two smaller models, namely DeiT-S and DeiT-Ti, for which we change the number of heads, keeping d fixed. Table 3.1 summarizes the models that we consider in the first part of this chapter.

Distillation

Our distillation method produces a vision transformer that becomes on par with the best convnets in terms of the trade-off between accuracy and throughput, see Table 3.5. Interestingly, the distilled model outperforms its teacher in terms of the trade-off between accuracy and throughput. Our best model on ImageNet-1k is 85.2% top-1 accuracy outperforms the best Vit-B model pre-trained on JFT-300M at resolution 384 (84.15%). For reference, the current state of the art of 88.55% achieved with extra training data was obtained by the ViT-H model (600M parameters) trained on JFT-300M at resolution 512. Hereafter we provide several analysis and observations. Convnets teachers. We have observed that using a convnet teacher gives better performance than using a transformer. Table 3.2 compares distillation results with different teacher architectures. The fact that the convnet is a better teacher is probably due to the inductive bias inherited by the transformers through distillation, as explained in Abnar et al. [4]. In all of our subsequent distillation experiments the default teacher is a RegNetY-16GF [START_REF] Radosavovic | Designing network design spaces[END_REF] (84M parameters) that we trained with the same data and same data-augmentation as DeiT. This teacher reaches 82.9% top-1 accuracy on ImageNet.

Comparison of distillation methods. We compare the performance of different distillation strategies in Table 3.3. Hard distillation significantly outperforms soft distillation for transformers, even when using only a class token: hard distillation reaches 83.0% at resolution 224×224, compared to the soft distillation accuracy of 81.8%. Our distillation strategy from Section 3.3 further improves the performance, showing that the two tokens provide complementary information useful for classification: the classifier on the two tokens is significantly better than the independent class and distillation classifiers, which by themselves already outperform the distillation baseline. Table 3.3 -Distillation experiments on ImageNet with DeiT, 300 epochs of pre-training. We report the results for our new distillation method in the last three rows. We separately report the performance when classifying with only one of the class or distillation embeddings, and then with a classifier taking both of them as input.

In the last row (class+distillation), the result correspond to the late fusion of the class and distillation classifiers. This late fusion corresponds to the average of classifiers outputs.

Supervision

ImageNet top- The distillation token gives slightly better results than the class token. It is also more correlated to the convnets prediction. This difference in performance is probably due to the fact that it benefits more from the inductive bias of convnets. We give more details and an analysis in the next paragraph. The distillation token has an undeniable advantage for the initial training.

Agreement with the teacher & inductive bias?

As discussed above, the architecture of the teacher has an important impact. Does it inherit existing inductive bias that would facilitate the training? While we believe it difficult to formally answer this question, we analyze in Table 3.4 the decision agreement between the convnet teacher, our image transformer DeiT learned from labels only, and our transformer DeiT⚗.

Our distilled model is more correlated to the convnet than with a transformer learned from scratch. As to be expected, the classifier associated with the distillation embedding is closer to the convnet that the one associated with the class embedding, and conversely the one associated with the class embedding is more similar to DeiT learned without distillation. Unsurprisingly, the joint class+distil classifier offers a middle ground.

Number of epochs.

Increasing the number of epochs significantly improves the performance of training with distillation, see Figure 3.2. With 300 epochs, our distilled network DeiT-B⚗ is already better than DeiT-B. But while for the latter the performance saturates with longer schedules, our distilled network clearly benefits from a longer training time. [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] with DeiT-B: performance as a function of the number of training epochs. We also provide the performance without distillation but it saturates after 400 epochs.

Efficiency vs accuracy: a comparative study with convnets

In the literature, the image classificaton methods are often compared as a compromise between accuracy and another criterion, such as FLOPs, number of parameters, size of the network, etc. We focus in Figure 3.3 on the tradeoff between the throughput (images processed per second) and the top-1 classification accuracy on ImageNet. We focus on the popular state-of-the-art Effi-cientNet convnet, which has benefited from years of research on convnets and was optimized by architecture search on the ImageNet validation set.

Our method DeiT is slightly below EfficientNet, which shows that we have almost closed the gap between vision transformers and convnets when training with ImageNet only. These results are a major improvement (+6.3% top-1 in a comparable setting) over previous ViT models trained on ImageNet-1k only [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]. Furthermore, when DeiT benefits from the distillation from a relatively weaker RegNetY to produce DeiT⚗, it outperforms EfficientNet. It also outperforms by 1% (top-1 acc.) the Vit-B model pre-trained on JFT300M at resolution 384 (85.2% vs 84.15%), while being significantly faster to train. Table 3.5 reports the numerical results in more detail and additional evaluations on ImageNet V2 and ImageNet Real, that have a test set distinct from the ImageNet validation, which reduces overfitting on the validation set. Our results show that DeiT-B⚗ and DeiT-B⚗ ↑384 outperform, by some margin, the state of the art on the trade-off between accuracy and inference time on GPU.

Transfer learning: Performance on downstream tasks

Although DeiT perform very well on ImageNet it is important to evaluate them on other datasets with transfer learning in order to measure the power of generalization of DeiT. We evaluated this on transfer learning tasks by fine-tuning on the datasets in Table 3.6. Table 3.7 compares DeiT transfer learning results to those of ViT [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] and state of the art convolutional architectures [START_REF] Tan | EfficientNet: Rethinking model scaling for convolutional neural networks[END_REF]. DeiT is on par with competitive convnet models, which is in line with our previous conclusion on ImageNet. Table 3.5 -Throughput on and accuracy on ImageNet [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF], ImageNet Real [START_REF] Beyer | Are we done with ImageNet?[END_REF] and ImageNet V2 matched frequency [START_REF] Recht | Do ImageNet classifiers generalize to ImageNet[END_REF] of DeiT and of several state-of-the-art convnets, for models trained with no external data. The throughput is measured as the number of images that we can process per second on one 16GB V100 GPU.

For each model we take the largest possible batch size for the usual resolution of the model and calculate the average time over 30 runs to process that batch. With that we calculate the number of images processed per second. Throughput can vary according to the implementation: for a direct comparison and in order to be as fair as possible, we use for each model the definition in the same GitHub [214] repository. ⋆ : Regnet optimized with a similar optimization procedure as ours, which boosts the results. These networks serve as teachers when we use our distillation strategy. See Table 3.5 for details and more models. For this experiment, we tried we get as close as possible to the ImageNet pre-training counterpart, meaning that (1) we consider longer training schedules (up to 7200 epochs, which corresponds to 300 ImageNet epochs) so that the network has been fed a comparable number of images in total; (2) we re-scale images to 224 × 224 to ensure that we have the same augmentation. The results are not as good as with ImageNet pre-training (98.5% vs 99.1%), which is expected since the network has seen a much lower diversity. However they show that it is possible to learn a reasonable transformer on CIFAR-10 only. 

Training details & ablation

In this section we discuss the DeiT training strategy to learn vision transformers in a dataefficient manner. We build upon PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] and the timm library [214]1 . We provide hyperparameters as well as an ablation study in which we analyze the impact of each choice.

Initialization and hyper-parameters. Transformers are relatively sensitive to initialization. After testing several options in preliminary experiments, some of them not converging, we follow the recommendation of Hanin et al. [START_REF] Hanin | How to start training: The effect of initialization and architecture[END_REF] to initialize the weights with a truncated normal distribution. Table 3.9 indicates the hyper-parameters that we use by default at training time for all our experiments, unless stated otherwise. For distillation we follow the recommendations from Cho et al. [START_REF] Cho | On the efficacy of knowledge distillation[END_REF] to select the parameters τ and λ. We take the typical values τ = 3.0 and λ = 0.1 for the usual (soft) distillation.

Data-Augmentation.

Compared to models that integrate more priors (such as convolutions), transformers require a larger amount of data. Thus, in order to train with datasets of the same size, we rely on extensive data augmentation. We evaluate different types of strong data augmentation, with the objective to reach a data-efficient training regime. Auto-Augment [START_REF] Dogus Cubuk | Autoaugment: Learning augmentation policies from data[END_REF], Rand-Augment [START_REF] Ekin | RandAugment: Practical automated data augmentation with a reduced search space[END_REF], and random erasing [START_REF] Zhong | Random erasing data augmentation[END_REF] improve the results. For the two latter we use the timm [214] customizations, and after ablation we choose Rand-Augment instead of AutoAugment. Overall our experiments confirm that transformers require a strong data augmentation: almost all the data-augmentation methods that we evaluate prove to be useful. One exception is dropout, which we exclude from our training procedure.

Regularization & Optimizers. We have considered different optimizers and cross-validated different learning rates and weight decays. Transformers are sensitive to the setting of optimization hyper-parameters. Therefore, during cross-validation, we tried 3 different learning rates (5.10 -4 , 3.10 -4 , 5.10 -5 ) and 3 weight decay (0.03, 0.04, 0.05). We scale the learning rate according to the batch size with the formula: lr scaled = lr 512 × batchsize, similarly to Goyal et al. [START_REF] Goyal | Accurate, large minibatch sgd: Training imagenet in 1 hour[END_REF] except that we use 512 instead of 256 as the base value. 

✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ 4.3* 0.1 adamw adamw ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ 3.4* 0.1 adamw adamw ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ 76.5 77.4 adamw adamw ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 81.3 83.1 adamw adamw ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ 81.9 83.1
Table 3.8 -Ablation study on training methods on ImageNet [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF]. The top row ("none") corresponds to our default configuration employed for DeiT. The symbols ✓ and ✗ indicates that we use and do not use the corresponding method, respectively. We report the accuracy scores (%) after the initial training at resolution 224×224, and after fine-tuning at resolution 384×384. The hyper-parameters are fixed according to Table 3.9, and may be suboptimal.

* indicates that the model did not train well, possibly because hyper-parameters are not adapted.

The best results use the AdamW optimizer with the same learning rates as ViT [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] but with a much smaller weight decay, as the weight decay reported in the ViT paper hurts the convergence in our setting.

We have employed stochastic depth [START_REF] Huang | Deep networks with stochastic depth[END_REF], which facilitates the convergence of transformers, especially deep ones [START_REF] Fan | Reducing transformer depth on demand with structured dropout[END_REF][START_REF] Fan | Training with quantization noise for extreme model compression[END_REF]. For vision transformers, they were first adopted in the training procedure by Wightman [214]. Regularization like Mixup [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF] and Cutmix [START_REF] Yun | CutMix: Regularization strategy to train strong classifiers with localizable features[END_REF] improve performance. We also use repeated augmentation [START_REF] Berman | Multigrain: a unified image embedding for classes and instances[END_REF][START_REF] Hoffer | Augment your batch: Improving generalization through instance repetition[END_REF], which provides a significant boost in performance and is one of the key ingredients of our proposed training procedure.

Exponential Moving Average (EMA).

We evaluate the EMA of our network obtained after training. There are small gains, which vanish after fine-tuning: the EMA model has an edge of is 0.1 accuracy points, but when fine-tuned the two models reach the same (improved) performance.

Fine-tuning at different resolution. We adopt the fine-tuning procedure from Touvron et al. [START_REF] Touvron | Fixing the train-test resolution discrepancy: Fixefficientnet[END_REF]: our schedule, regularization and optimization procedure are identical to that of Fix-EfficientNet but we keep the training-time data augmentation (contrary to the dampened data augmentation of Touvron et al. [START_REF] Touvron | Fixing the train-test resolution discrepancy: Fixefficientnet[END_REF]). We also interpolate the positional embeddings: In principle any classical image scaling technique, like bilinear interpolation, could be used. However, a bilinear interpolation of a vector from its neighbors reduces its ℓ 2 -norm compared to its neighbors. These low-norm vectors are not adapted to the pre-trained transformers and we observe a significant drop in accuracy if we employ use directly without any form of fine-tuning. Therefore we adopt a bicubic interpolation that approximately preserves the norm of the vectors, before fine-tuning the network with either AdamW [START_REF] Loshchilov | Fixing weight decay regularization in adam[END_REF] or SGD. These optimizers have a similar performance for the fine-tuning stage, see Table 3 By default and similar to ViT [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] we train DeiT models with at resolution 224 and we finetune at resolution 384. We detail how to do this interpolation in Section 3.2. However, in order to measure the influence of the resolution we have finetuned DeiT at different resolutions. We report these results in Table 3.10.

Training time.

A typical training of 300 epochs takes 37 hours with 2 nodes or 53 hours on a single node for the DeiT-B.As a comparison point, a similar training with a RegNetY-16GF [START_REF] Radosavovic | Designing network design spaces[END_REF] (84M parameters) is 20% slower. DeiT-S and DeiT-Ti are trained in less than 3 days on 4 GPU. Then, optionally we fine-tune the model at a larger resolution. This takes 20 hours on a single node (8 GPU) to produce a FixDeiT-B model at resolution 384×384, which corresponds to 25 epochs. Not having to rely on batch-norm allows one to reduce the batch size without impacting performance, which makes it easier to train larger models. Note that, since we use repeated augmentation [START_REF] Berman | Multigrain: a unified image embedding for classes and instances[END_REF][START_REF] Hoffer | Augment your batch: Improving generalization through instance repetition[END_REF] with 3 different augmentation as in Touvron et al. [START_REF] Touvron | Fixing the train-test resolution discrepancy[END_REF], we only see one third of the images during a single epoch2 .

Going deeper with vision transformers

So far in this chapter, we have introduced DeiT, which are image transformers that do not require very large amount of data to be trained, thanks to improved training and in particular a novel distillation procedure.

However, in DeiT works, there is no evidence that depth can bring any benefit when training on Imagenet only: the deeper ViT architectures have a low performance, while with DeiT we only considered transformers with 12 blocks of layers. In our early experiments, we observe that Vision Transformers become increasingly more difficult to train when we scale architectures. Depth is one of the main source of instability. For instance with our DeiT procedure we fail to properly converge above 18 layers without adjusting hyper-parameters. Large ViT [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] models with 24 and 32 layers were trained with large training datasets, but when trained on Imagenet only the larger models are not competitive. In the rest of this chapter, we study more specifically how to train deeper image transformers.

Residual architectures are prominent in computer vision since the advent of ResNet [START_REF] He | Deep residual learning for image recognition[END_REF]. They are defined as a sequence of functions of the form

x l+1 = g l (x l ) + R l (x l ), (3.4) 
where the function g l and R l define how the network updates the input x l at layer l. The function g l is typically the identity, while R l is the main building block of the network: many variants in the literature essentially differ on how this residual branch R l is constructed or parametrized [START_REF] Radosavovic | Designing network design spaces[END_REF][START_REF] Tan | EfficientNet: Rethinking model scaling for convolutional neural networks[END_REF][START_REF] Xie | Aggregated residual transformations for deep neural networks[END_REF]. Residual architectures highlight the strong interplay between optimization and architecture design. As pointed out by He et al. [START_REF] He | Deep residual learning for image recognition[END_REF], residual networks do not offer better representational power. They achieve better performance because they are easier to train: shortly after their seminal work, He et al. discussed [START_REF] He | Identity mappings in deep residual networks[END_REF] the importance of having a clear path both forward and backward, and advocate setting g l to the identity function.

The vision transformers [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] instantiate a particular form of residual architecture: after casting the input image into a set x 0 of vectors, the network alternates self-attention layers (SA) with feed-forward networks (FFN), as

x ′ l = x l + SA(η(x l )) x l+1 = x ′ l + FFN(η(x ′ l )) (3.5)
where η is the LayerNorm operator [7]. This definition follows the original architecture of Vaswani et al. [START_REF] Vaswani | Attention is all you need[END_REF], except the LayerNorm is applied before the block (pre-norm) in the residual branch, as advocated by He et al. [START_REF] He | Identity mappings in deep residual networks[END_REF]. Child et al. [START_REF] Child | Generating long sequences with sparse transformers[END_REF] adopt this choice with LayerNorm for training deeper transformers for various media, including for image generation where they train transformers with 48 layers.

How to normalize, weigh, or initialize the residual blocks of a residual architecture has received significant attention both for convolutional neural networks [START_REF] Brock | Characterizing signal propagation to close the performance gap in unnormalized resnets[END_REF][START_REF] Brock | High-performance large-scale image recognition without normalization[END_REF][START_REF] He | Identity mappings in deep residual networks[END_REF][START_REF] Zhang | Fixup initialization: Residual learning without normalization[END_REF] and for transformers applied to NLP or speech tasks [START_REF] Thomas | Rezero is all you need: Fast convergence at large depth[END_REF][START_REF] Shi Huang | Improving transformer optimization through better initialization[END_REF][START_REF] Zhang | Fixup initialization: Residual learning without normalization[END_REF]. In Section 3.5.1, we revisit this topic for transformer architectures solving image classification problems. Examples of approaches closely related to ours include Fixup [START_REF] Zhang | Fixup initialization: Residual learning without normalization[END_REF], T-Fixup [START_REF] Shi Huang | Improving transformer optimization through better initialization[END_REF], ReZero [START_REF] Thomas | Rezero is all you need: Fast convergence at large depth[END_REF] and SkipInit [START_REF] De | Batch normalization biases residual blocks towards the identity function in deep networks[END_REF].

Following our analysis of the interplay between different initialization, optimization and architectural design, we propose an approach that is effective to improve the training of deeper architecture compared to current methods for image transformers. Formally, we add a learnable diagonal matrix on output of each residual block, initialized close to (but not at) 0. Adding this simple layer after each residual block improves the training dynamic, allowing us to train deeper high-capacity image transformers that benefit from depth. We refer to this approach as LayerScale.

Deeper image transformers with LayerScale

Our goal is to increase the stability of the optimization when training transformers for image classification especially when we increase their depth. Figure 3.4 depicts the main variants that we compare for helping the optimization. They cover recent choices from the literature: as discussed in the introduction, the architecture (a) of ViT and DeiT is a pre-norm architecture [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF], in which the layer-normalisation η occurs at the beginning of the residual branch. Note that the original architecture of Vaswani et al. [START_REF] Vaswani | Attention is all you need[END_REF] applies the normalization after the block, but in our experiments the DeiT training does not converge with post-normalization.

Fixup [START_REF] Zhang | Fixup initialization: Residual learning without normalization[END_REF], ReZero [START_REF] Thomas | Rezero is all you need: Fast convergence at large depth[END_REF] and SkipInit [START_REF] De | Batch normalization biases residual blocks towards the identity function in deep networks[END_REF] introduce learnable scalar weighting α l on the output of residual blocks, while removing the pre-normalization and the warmup, see Figure 3.4(b). This amounts to modifying Eqn. 3.5 as

x ′ l = x l + α l SA(x l ) x l+1 = x ′ l + α ′ l FFN(x ′ l ). (3.6) 
ReZero simply initializes this parameter to α = 0. Fixup initializes this parameter to α = 1 and makes other modifications: it adopts different policies for the initialization of the block weights, and adds several weights to the parametrization. In our experiments, these approaches do not converge even with some adjustment of the hyper-parameters.

Our empirical observation is that removing the warmup and the layer-normalization is what makes training unstable in Fixup and T-Fixup. Therefore we re-introduce these two ingredients so that Fixup and T-Fixup converge with DeiT models, see Figure 3.4(c). As we see in the experimental section, these amended variants of Fixup and T-Fixup are effective, mainly due to the learnable parameter α l . When initialized at a small value, this choice does help the convergence when we increase the depth.

Our proposal LayerScale is a per-channel multiplication of the vector produced by each residual block, as opposed to a single scalar, see Figure 3.4(d). Our objective is to group the updates of the weights associated with the same output channel. Formally, LayerScale is a multiplication by a diagonal matrix on output of each residual block. In other terms, we modify Eqn. 3.5 as

x ′ l = x l + diag(λ l,1 , . . . , λ l,d ) × SA(η(x l )) x l+1 = x ′ l + diag(λ ′ l,1 , . . . , λ ′ l,d ) × FFN(η(x ′ l )), (3.7) 
where the parameters λ l,i and λ ′ l,i are learnable weights. The diagonal values are all initialized to a fixed small value ε: we set it to ε = 0.1 until depth 18, ε = 10 -5 for depth 24 and ε = 10 -6 for deeper networks. This formula is akin to other normalization strategies ActNorm [START_REF] Diederik | Glow: Generative flow with invertible 1x1 convolutions[END_REF] or LayerNorm but executed on output of the residual block. Yet we seek a different effect: ActNorm is a data-dependent initialization that calibrates activations so that they have zero-mean and unit variance, like batchnorm [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF]. In contrast, we initialize the diagonal with small values so that the initial contribution of the residual branches to the function implemented by the transformer is small. In that respect our motivation is therefore closer to that of ReZero [START_REF] Thomas | Rezero is all you need: Fast convergence at large depth[END_REF], SkipInit [START_REF] De | Batch normalization biases residual blocks towards the identity function in deep networks[END_REF], Fixup [START_REF] Zhang | Fixup initialization: Residual learning without normalization[END_REF] and T-Fixup [START_REF] Shi Huang | Improving transformer optimization through better initialization[END_REF]: to train closer to the identity function and let the network integrate the additional parameters progressively during the training. LayerScale offers more diversity in the optimization than just adjusting the whole layer by a single learnable scalar as in ReZero/SkipInit, Fixup and T-Fixup. As we will show empirically, offering the degrees of freedom to do so per channel is a decisive advantage of LayerScale over existing approaches. In Section 3.5.3, we present other variants or intermediate choices that support our proposal, and a control experiment that aims at disentangling the specific weighting of the branches of LayerScale from its impact on optimization procedure. Formally, adding these weights does not change the expressive power of the architecture since they can be integrated into the previous matrix of the SA and FFN layers without changing the function implemented by the network.

LayerScale main experiments

Experimental setting. Our implementation is based on the timm library [214]. Unless specified otherwise, for this analysis we make minimal changes to hyper-parameters compared to our initial DeiT training scheme. In order to speed up training and optimize memory consumption we have used a sharded training provided by the Fairscale library3 with fp16 precision.

In the following, we analyse various ways to stabilize the training with different architectures. At this stage we consider a Deit-Small model4 during 300 epochs to allow a direct comparison with our preliminary results with DeiT training. We measure the performance on the ImageNet-1k [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF][START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] classification dataset as a function of the depth.

Adjusting the drop-rate of stochastic depth. The first step to improve convergence is to adapt the hyper-parameters that interact the most with depth, in particular Stochastic depth [START_REF] Huang | Deep networks with stochastic depth[END_REF]. This method is already popular in NLP [START_REF] Fan | Reducing transformer depth on demand with structured dropout[END_REF][START_REF] Fan | Training with quantization noise for extreme model compression[END_REF] to train deeper architectures. The per-layer drop-rate depends linearly on the layer depth, but in our experiments this choice does not provide an advantage compared to the simpler choice of a uniform drop-rate d r . In Table 3.11 we show that Table 3.11 -Improving convergence at depth on ImageNet-1k. The baseline is DeiT-S with uniform drop rate of d = 0.05 (same expected drop rate and performance as progressive stochastic depth of 0.1). Several methods include a fix scalar learnable weight α per layer as in Figure 3.4(c). We have adapted Rezero, Fixup, T-Fixup, since the original methods do not converge: we have re-introduced the Layer-normalization η and warmup. We have adapted the drop rate dr for all the methods, including the baseline. The column α = ε reports the performance when initializing the scalar with the same value as for LayerScale. †: failed before the end of the training. Comparison of normalization strategies. We carry out an empirical study of the normalization methods discussed in Section 3. We report the results for these "adaptations" of Fixup and T-Fixup in Table 3.11.

depth
The modified methods are able to converge with more layers without saturating too early. ReZero converges, we show (column α = ε) that it is better to initialize α to a small value instead of 0, as in LayerScale. All the methods have a beneficial effect on convergence and they tend to reduce the need for stochastic depth, therefore we adjust these drop rate accordingly per method. Figure 3.5 provides the performance as the function of the drop rate d r for LayerScale. We empirically use the following formula to set up the drop-rate for the CaiT-S models derived from Deit-S: d r = min(0.1 × depth 12 -1, 0).This formulaic choice avoids cross-validating this parameter and overfitting, yet it does not generalize to models with different d: We further increase (resp. decrease) it by a constant for larger (resp. smaller) working dimensionality d.

Fixup and T-Fixup are competitive with LayerScale in the regime of a relatively low number of blocks [START_REF] Bao | Beit: Bert pre-training of image transformers[END_REF][START_REF] Bello | Revisiting ResNets: Improved training and scaling strategies[END_REF][START_REF] Bello | Attention augmented convolutional networks[END_REF][START_REF] Berman | Multigrain: a unified image embedding for classes and instances[END_REF][START_REF] Berthelot | Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring[END_REF][START_REF] Berthelot | Mixmatch: A holistic approach to semi-supervised learning[END_REF][START_REF] Beyer | Are we done with ImageNet?[END_REF]. However, they are more complex than LayerScale: they employ different initialization rules depending of the type of layers, and they require more changes to the transformer architecture. Therefore we only use LayerScale in subsequent experiments. It is much simpler and parametrized by a single hyper-parameter ε, and it offers a better performance for the deepest models that we consider, which are also the more accurate.

Layerscale: Analysis and variations.

Statistics of branch weighting. We evaluate the impact of Layerscale for a 36-blocks transformer by measuring the ratio between the norm of the residual activations and the norm of the activations of the main branch ∥g l (x)∥ 2 /∥x∥ 2 . The results are shown in Figure 3.6. We can see that training a model with Layerscale makes this ratio more uniform across layers, and seems to prevent some layers from having a disproportionate impact on the activations. Similar to prior works [START_REF] Thomas | Rezero is all you need: Fast convergence at large depth[END_REF][START_REF] Zhang | Fixup initialization: Residual learning without normalization[END_REF] Table 3.12 -Performance when increasing the depth. We compare different strategies and report the top-1 accuracy (%) on ImageNet-1k for the DeiT training (Baseline) with and without adapting the stochastic depth rate dr (uniform drop-rate), and a modified version of Rezero with LayerNorm and warmup. We compare different initialisation of the diagonal matrix for LayerScale. We also report results with 0 initialization, Uniform initialisation and small constant initialisation. Except for the baseline dr = 0.1, we have adapted the stochastic depth rate dr. hypothetize that the benefit is mostly the impact on optimization. This hypothesis is supported by the control experiment that we detail in section 3.5.3.

depth baseline baseline ReZero LayerScale [ε] d r = 0.1 [d r ] α = 0 λ i = 0 λ i = U[0, 2ε] λ i = ε 12 
Variations on LayerScale init. For the sake of simplicity and to avoid overfitting per model, we have chosen to do a constant initialization with small values depending on the model depth. In order to give additional insight on the importance of this initialization we compare in Table 3.12 other possible choices.

LayerScale with 0 init. We initialize all coefficients of LayerScale to 0. This resembles Rezero, but in this case we have distinct learnable parameters for each channel. We make two observations. First, this choice, which also starts with residual branches that output 0 the beginning of the training, gives a clear boost compared to the block-wise scaling done by our adapted ReZero. This confirms the advantage of introducing a learnable parameter per channel and not only per residual layer. Second, LayerScale is better: it is best to initialize to a small ε different from zero.

Random init.

We have tested a version in which we try a different initial weight per channel, but with the same average contribution of each residual block as in LayerScale. For this purpose we initialize the channel-scaling values with the Uniform law (U[0, 2ε]). This simple choice ensures that the expectation of the scaling factor is equal to the value of the classical initialization of LayerScale. This choice is overall comparable to the initialization to 0 of the diagonal, and inferior to LayerScale. The ratio between the norm of the residual and the norm of the main branch is shown for each layer of the transformer and for various epochs (darker shades correspond to the last epochs). For the model trained with layerscale, the norm of the residual branch is on average 20% of the norm of the main branch. We observe that the contribution of the residual blocks fluctuates more for the model trained without layerscale and in particular is lower for some of the deeper layers. We can see that the control training with fixed weights also converges, but it is only slightly better than the baseline with adjusted stochastic depth drop-rate d r . Nevertheless, the results are lower than those obtained with the learnable weighting factors. This suggests that the evolution of the parameters during training has a beneficial effect on the deepest models.

Re

Specializing layers for class attention

In this section, we introduce the CaiT architecture, depicted in Figure 3.7 (right). This design aims at circumventing one of the problems of the ViT architecture: the learned weights are asked to optimize two contradictory objectives: (1) guiding the self-attention between patches while (2) summarizing the information useful to the linear classifier. Our proposal is to explicitly separate the two stages, in the spirit of an encoder-decoder architecture, see Section 3.1.

Later class token.

As an intermediate step towards our proposal, we insert the so-called class token, denoted by CLS, later in the transformer. This choice eliminates the discrepancy on the first layers of the transformer, which are therefore fully employed for performing self-attention between patches only. As a baseline that does not suffer from the contradictory objectives, we also consider average pooling of all the patches on output of the transformers, as typically employed in convolutional architectures.

CaiT: A simple encoder-decoder for image classification

Our CaiT network consists of two distinct processing stages visible in Figure 3.7:

1. The self-attention stage is identical to the one used in Vision transformer, but with no class embedding (CLS).

2. The class-attention stage is a set of layers that compiles the set of patch embeddings into a class embedding CLS that is subsequently fed to a linear classifier.

This class-attention alternates in turn a layer that we refer to as a multi-head class-attention (CA), and a FFN layer. In this stage, only the class embedding is updated. Similar to the one fed in ViT and DeiT on input of the transformer, it is a learnable vector. The main difference is that, in our architecture, we do not copy information from the class embedding to the patch embeddings during the forward pass. Only the class embedding is updated by residual in the CA and FFN processing of the class-attention stage.

Multi-head class attention. The role of the CA layer is to extract the information from the set of processed patches. It is identical to a SA layer, except that it relies on the attention between (i) the class embedding x class (initialized at CLS in the first CA) and (ii) itself plus the set of frozen patch embeddings x patches . We discuss why we include x class in the keys in Section 3.6.3.

Considering a network with h heads and p patches, and denoting by d the embedding size, we parametrize the multi-head class-attention with several projection matrices, This choice is detrimental, as the same weights are used for two different purposes: helping the attention process, and preparing the vector to be fed to the classifier. We put this problem in evidence by showing that inserting CLS later improves performance (middle). In the CaiT architecture (right), we further propose to freeze the patch embeddings when inserting CLS to save compute, so that the last part of the network (typically 2 layers) is fully devoted to summarizing the information to be fed to the linear classifier.

W q , W k , W v , W o ∈ R d×d ,
form) as z = [x class , x patches ] (see Section 3.6.3 for results when z = x patches ). We then perform the projections as follows:

Q = W q x class + b q , (3.8) 
K = W k z + b k , (3.9) 
V = W v z + b v . (3.10) 
The class-attention weights are given by

Attention(Q, K) = Softmax(Q.K T / d/h ) (3.11)
where Q.K T ∈ R h×1×p . This attention is involved in the weighted sum Attention(Q, K) × V to produce the residual output vector

out CA = W o Attention(Q, K) V + b o , (3.12) 
which is in turn added to x class for subsequent processing.

The CA layers extract the useful information from the patches embedding to the class embedding. In preliminary experiments, we empirically observed that the first CA and FFN give the main boost, and a set of 2 blocks of layers (2 CA and 2 FFN) is sufficient to cap the performance. In the experimental section, we denote by 12+2 a transformer when it consists of 12 blocks of SA+FFN layers and 2 blocks of CA+FFN layers.

Complexity. The layers contain the same number of parameters in the class-attention and selfattention stages: CA is identical to SA in that respect, and we use the same parametrization for the FFNs. However the processing of these layers is much faster: the FFN only layers processes matrix-vector multiplications.

The CA function is also less expensive than SA in term of memory and computation because it computes the attention between the class vector and the set of patch embeddings: Q ∈ R d means that Q.K T ∈ R h×1×p . In contrast, in the "regular self-attention" layers SA, we have Q ∈ R p×d and therefore Q.K T ∈ R h×p×p . In other words, the initially quadratic complexity in the number of patches becomes linear in our extra CaiT layers.

Preliminary analysis with late insertion and class-attention layers

In Table 3.13 we study the impact on performance of the design choices related to class embedding. We depict some of them in Figure 3.7. As a baseline, average pooling of patches embeddings with a vanilla DeiT-Small achieves a better performance than using a class token. This choice, which does not employ any class embedding, is typical in convolutional networks, but possibly weaker with transformers when transferring to other tasks [START_REF] El-Nouby | Training vision transformers for image retrieval[END_REF].

Late insertion.

The performance increases when we insert the class embedding later in the transformer. It is maximized two layers before the output. Our interpretation is that the attention process is less perturbed in the 10 first layers, yet it is best to keep 2 layers for compiling the patches embedding into the class embedding via class-attention, otherwise the processing gets closer to a weighted average. Our class-attention layers are designed on the assumption that there is no benefit in copying information from the class embedding back to the patch embeddings in the forward pass. Table 3.13 supports that hypothesis: if we compare the performance for a total number of layers fixed to 12, the performance of CaiT with 10 SA and 2 CA layers is identical to average pooling and better than the DeiT-Small baseline with a lower number of FLOPs. If we set 12 layers in the self-attention stage, which dominates the complexity, we increase the performance significantly by adding two blocks of CA+FFN.

Ablation: Design of the class-attention stage

In this subsection we report some results obtained when considering alternative choices for the class-attention stage.

Not including class embedding in keys of class-attention.

In our approach we chose to insert the class embedding in the class-attention: By defining

z = [x class , x patches ], (3.13) 
we include x class in the keys and therefore the class-attention includes attention on the class embedding itself in Eqn. 3.9 and Eqn. 3.10. This is not a requirement as we could simply use a pure cross-attention between the class embedding and the set of frozen patches.

If we do not include the class token in the keys of the class-attention layers, i.e., if we define z = x patches , we reach 83.31% (top-1 acc. on ImageNet1k-val) with CaiT-S-36, versus 83.44% for the choice adopted by default in the chapter. This difference of +0.13% is likely not significant, therefore either choice is reasonable. In order to be more consistent with the self-attention layer SA, in the sense that each query has its key counterpart, we have kept the class embedding in the keys of the CA layers as stated in this chapter.

Remove LayerScale in Class-Attention. If we remove LayerScale in the Class-Attention blocks in the CaiT-S-36 model, we obtain a top-1 accuracy of 83.36% on ImageNet1k-val, versus 83.44% with LayerScale. The difference of +0.08% is not significant enough to conclude on a clear advantage. For the sake of consistency we have used LayerScale after all residual blocks of the network.

Distillation with class-attention. We report results with hard distillation, which in essence replaces the label by the average of the label and the prediction of the teacher output. This is the choice we adopted in our main experiments, since it provides better performance than traditional distillation as shown earlier in this chapter.

In Table 3.14 we report the results obtained when inserting a distillation token at the same layer as the class token, i.e., on input of the class-attention stage. In this case we do not observe an advantage of this choice over hard distillation when using class-attention layers. Therefore we have only considered the hard distillation. 10 -6 10 -5 10 -6 10 -6 10 -5 10 -6 10 -6

Our CaiT models

In this section, we report our experimental results related to CaiT with our DeiT training. We present our models in Subsection 3.7. Section 3.7.1 details our results on ImageNet and Transfer learning. We provide an ablation of hyper-parameter and ingredients in Section 3.7.2.

Our CaiT models are built upon ViT: the only difference is that we incorporate LayerScale in each residual block (see Section 3.5.1) and the two-stages architecture with class-attention layers described in Section 3.6. Table 3.15 describes our different models. The design parameters governing the capacity are the depth and the working dimensionality d. In our case d is related to the number of heads h as d = 48 × h, since we fix the number of components per head to 48. This choice is a bit smaller than the value used in DeiT. We also adopt the crop-ratio of 1.0 optimized for DeiT by Wightman [214]. Table 3.21 and 3.22 in the ablation section 3.7.2 support these choices.

We incorporate talking-heads attention [START_REF] Shazeer | Talking-heads attention[END_REF] into our model. It increases the performance on ImageNet of DeiT-Small from 79.9% to 80.3%.

The hyper-parameters are identical to those provided in DeiT [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF], except mentioned otherwise. We use a batch size of 1024 samples and train during 400 epochs with repeated augmentation [START_REF] Berman | Multigrain: a unified image embedding for classes and instances[END_REF][START_REF] Hoffer | Augment your batch: Improving generalization through instance repetition[END_REF]. The learning rate of the AdamW optimizer [START_REF] Loshchilov | Fixing weight decay regularization in adam[END_REF] is set to 0.001 and associated with a cosine training schedule, 5 epochs of warmup and a weight decay of 0.05. We report in Table 3.16 the two hyper-parameters that we modify depending on the model complexity, namely the drop rate d r associated with uniform stochastic depth, and the initialization value ε of LayerScale.

Fine-tuning at higher resolution (↑) and distillation (Υ).

We train all our models at resolution 224, and optionally fine-tune them at a higher resolution to trade performance against accuracy [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF][START_REF] Touvron | Fixing the train-test resolution discrepancy[END_REF]: we denote the model by ↑384 models fine-tuned at resolution 384×384. We also train models with distillation (Υ) as suggested by Touvron et al.. [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF]. We use a RegNet-16GF [START_REF] Radosavovic | Designing network design spaces[END_REF] as teacher and adopt the "hard distillation" [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF] for its simplicity.

Results

Performance/complexity of CaiT models

Table 3.15 provides different complexity measures for our models. As a general observation, we observe a subtle interplay between the width and the depth, both contribute to the performance as reported by Dosovitskiy et al.. [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] with longer training schedules. But if one parameter is too small the gain brought by increasing the other is not worth the additional complexity.

Fine-tuning to size 384 (↑) systematically offers a large boost in performance without changing the number of parameters. It also comes with a higher computational cost. In contrast, leveraging a pre-trained convnet teacher with hard distillation as suggested by Touvron et al. [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF] provides a boost in accuracy without affecting the number of parameters nor the speed.

Comparison with the state of the art on ImageNet

Our main classification experiments are carried out on ImageNet [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF], and also evaluated on two variations of this dataset: ImageNet-Real [START_REF] Beyer | Are we done with ImageNet?[END_REF] that corrects and give a more detailed annotation, and ImageNet-V2 [START_REF] Recht | Do ImageNet classifiers generalize to ImageNet[END_REF] (matched frequency) that provides a separate test set. In Table 3.17 we compare some of our models with the state of the art on ImageNet classification when training without external data. We focus on the models CaiT-S36 and CaiT-M36, at different resolutions and with or without distillation.

On ImageNet-1k val, CaiT-M48↑448Υ achieves 86.5% of top-1 accuracy, which is a significant improvement over DeiT (85.2%). It is the state of the art, on par with a recent concurrent work [START_REF] Brock | High-performance large-scale image recognition without normalization[END_REF] that has a significantly higher number of FLOPs. Our approach outperforms the state of the art on ImageNet with reassessed labels, and on ImageNet-V2, which has a distinct validation set which makes it harder to overfit.

Transfer learning

We evaluated our method on transfer learning tasks by fine-tuning on the datasets in Table 3.18.

Fine-tuning procedure. For fine-tuning we use the same hyperparameters as for training. We only decrease the learning rates by a factor 10 (for CARS, Flowers, iNaturalist), 100 (for CIFAR-100, CIFAR-10) and adapt the number of epochs (1000 for CIFAR-100, CIFAR-10, Flowers-102 and Cars-196, 360 for iNaturalist 2018 and 2019). We have not used distillation for this finetuning.

Results. Table 3.19 compares CaiT transfer learning results to those of EfficientNet [START_REF] Tan | EfficientNet: Rethinking model scaling for convolutional neural networks[END_REF], ViT [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] and DeiT [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF]. These results show the excellent generalization of the transformers-based models in general. Our CaiT models achieve excellent results, as shown by the overall better performance than EfficientNet-B7 across datasets.

Ablation and visualization

In this section we provide different sets of ablation, in the form of a transition from DeiT to CaiT. Then we provide experiments that have guided our hyper-parameter optimization. As Table 3.17 -Complexity vs accuracy on ImageNet [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF], ImageNet Real [START_REF] Beyer | Are we done with ImageNet?[END_REF] and ImageNet V2 matched frequency [START_REF] Recht | Do ImageNet classifiers generalize to ImageNet[END_REF] for models trained without external data. We compare CaiT with DeiT [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF], Vit-B [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF], TNT [START_REF] Han | Transformer in transformer[END_REF], T2T [START_REF] Yuan | Tokensto-token vit: Training vision transformers from scratch on imagenet[END_REF] and to several state-of-the-art convnets: Regnet [START_REF] Radosavovic | Designing network design spaces[END_REF] improved by Touvron et al. [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF], EfficientNet [START_REF] Ekin | RandAugment: Practical automated data augmentation with a reduced search space[END_REF][START_REF] Tan | EfficientNet: Rethinking model scaling for convolutional neural networks[END_REF][START_REF] Xie | Adversarial examples improve image recognition[END_REF], Fix-EfficientNet [START_REF] Touvron | Fixing the train-test resolution discrepancy: Fixefficientnet[END_REF] and NFNets [START_REF] Brock | High-performance large-scale image recognition without normalization[END_REF]. Most reported results are from corresponding papers, and therefore the training procedure differs for the different models. For ImageNet V2 matched frequency and ImageNet Real we report the results provided by the authors. When not available (like NFNet), we report the results measured by Wightman [214] with converted models, which may be suboptimal. The RegNetY-16GF is the teacher model that we trained for distillation. We report the best result in bold and the second best result(s) underlined. mentioned, we use the same hyperparameters as in DeiT [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF] everywhere except stated otherwise.

We have only changed the number of attention for a given working dimension (see Section 3.7.2.2), and changed the crop-ratio (see Section 3.7.2.3).

Step by step from DeiT-Small to CaiT-S36

In Table 3.20 we present how to gradually transform the Deit-S [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF] architecture into CaiT-36, and measure at each step the performance/complexity changes. One can see that CaiT is complementary with LayerScale and offers an improvement without significantly increasing the FLOPs. As already reported in the literature, the resolution is another important step for improving the performance and fine-tuning instead of training the model from scratch saves a lot of computation at training time. Last but not least, our models benefit from longer training schedules.

Optimization of the number of heads

In Table 3.21 we study the impact of the number of heads for a fixed working dimensionality. This architectural parameter has an impact on both the accuracy, and the efficiency: while the number of FLOPs remain roughly the same, the compute is more fragmented when increasing this Table 3.20 -Ablation: we present the ablation path from DeiT-S to our CaiT models. We highlight the complementarity of our approaches and optimized hyper-parameters. Note, Fine-tuning at higher resolution supersedes the inference at higher resolution. See Table 3 number of heads and on typical hardware this leads to a lower effective throughput. Choosing 8 heads in the self-attention offers a good compromise between accuracy and speed. In Deit-Small, this parameter was set to 6.

Adaptation of the crop-ratio

In the typical ("center-crop") evaluation setting, most convolutional neural networks crop a subimage with a given ratio, typically extracting a 224 × 224 center crop from a 256 × 256 resized image, leading to the typical ratio of 0.875. Wightman et al. [214] notice that setting this crop ratio to 1.0 for transformer models has a positive impact: the distilled DeiT-B↑ 384 reaches a top1-accuracy on ImageNet-1k val of 85.42% in this setting, which is a gain of +0.2% compared to the accuracy of 85.2% reported with DeiT in Table 3.5.

Our measurements concur with this observation: We observe a gain for almost all our models and most of the evaluation benchmarks. For instance our model M36↑384Υ increases to 86.1% top-1 accuracy on ImageNet-1k val.

Longer training schedules

As shown in Table 3.20 , increasing the number of training epochs from 300 to 400 improves the performance of CaiT-S-36. However, increasing the number of training epochs from 400 to 500 does not change performance significantly (83.44 with 400 epochs 83.42 with 500 epochs). This is consistent with the observation of DeiT, which notes a saturation of performance from 400 epochs for the models trained without distillation.

Visualizations

Attention map In Figure 3.9 we show the attention maps associated with the individual 4 heads of a XXS CaiT model, and for the two layers of class-attention. In CaiT and in contrast to ViT, the class-attention stage is the only one where there is some interaction between the class token and the patches, therefore it conveniently concentrates all the spatial-class relationship. We make two observations:

• The first class-attention layer clearly focuses on the object of interest, corresponding to the main part of the image on which the classification decision is performed (either correct or incorrect). In this layer, the different heads focus either on the same or on complementary parts of the objects. This is especially visible for the waterfall image;

• The second class-attention layer seems to focus more on the context, or at least the image more globally.

Illustration of saliency in class-attention

In figure 3.10 we provide more vizualisations for a XXS model. They are just illustration of the saliency that one may extract from the first class-attention layer. As discussed previously this layer is the one that, empirically, is the most related to the object of interest. To produce these visual representations we simply average the attention maps from the different heads (depicted in Figure 3.9), and upsample the resulting map to the image size. We then modulate the gray-level image with the strength of the attention after normalizing it with a simple rule of the form (x -x min )/(x max -x min ). We display the resulting image with cividis colormap.

For each image we show this saliency map and provides all the class for which the model assigns a probability higher than 10%. These visualizations illustrate how the model can focus on two distinct regions (like racket and tennis ball on the top row/center). We can also observe some failure cases, like the top of the church classified as a flagpole. 

Conclusion

In this chapter, we have shown how to train transformer-based image classification neural networks with Imagenet-1k data only. With our Data-efficient image Transformers (DeiT), we report large improvements over previous results, see Figure 3.3. Our ablation study details the hyper-parameters and key ingredients for a successful training, such as repeated augmentation. We show that our neural networks that contain no convolutional layer can achieve competitive results against the state of the art on ImageNet with no external data. They are learned on a single node with 4 GPUs in three days (we can accelerate the learning of the larger model DeiT-B by training it on 8 GPUs in two days). Our two new models DeiT-S and DeiT-Ti have fewer parameters and can be seen as the counterpart of ResNet-50 and ResNet-18.

We address another question: how to distill these models? We introduce a token-based strategy, specific to transformers and denoted by DeiTΥ, and show that it advantageously replaces the usual distillation procedure. Interestingly, with our distillation, image transformers learn more from a convnet than from another transformer with comparable performance.

We propose LayerScale that significantly facilitates the convergence and improves the accuracy of image transformers at larger depths. It adds a few thousands of parameters to the network at training time (negligible w.r.t. the total number of weights). Our specific class-attention design offers a more effective processing of the class embedding. In addition, this simplifies the visualisation of attention maps.

After studying the transformers architecture for computer vision we will try to understand the importance of attention in the next chapter.

C h a p t e r

M U LT I -L AY E R P E R C E P T R O N F O R C O M P U T E R V I S I O N

As shown in the chapter 3, the transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF], adapted from its original use in natural language processing with only minor changes, has achieved performance competitive with the state of the art on ImageNet-1k [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] when pre-trained with a sufficiently large amount of data [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]. Retrospectively, this achievement is another step towards learning visual features with less priors: Convolutional Neural Networks (CNN) had replaced the hand-designed choices from hard-wired features with flexible and trainable architectures. Vision transformers further remove several hard decisions encoded in the convolutional architectures, namely the translation invariance and local connectivity. This evolution toward less hard-coded priors in the architecture has been fueled by better training schemes [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF]. In this chapter, we push this trend further forward by showing that a purely multi-layer perceptron (MLP) architecture, called Residual Multi-Layer Perceptrons (ResMLP), is competitive on image classification. ResMLP is designed to be simple and encoding little prior knowledge about images: it takes image patches as input, projects them with a linear layer, and sequentially updates their representations with two residual operations: (i) a cross-patch linear layer applied to all channels independently; and (ii) a cross-channel single-layer MLP applied independently to all patches. At the end of the network, the patch representations are average pooled, and fed to a linear classifier.

The ResMLP architecture is strongly inspired by the vision transformers (ViT) [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF], yet it is much simpler in several ways: we replace the self-attention sublayer by a linear layer, resulting in an architecture with only linear layers and GELU non-linearity [START_REF] Hendrycks | Gaussian error linear units (GELUs)[END_REF]. We observe that the training of ResMLP is more stable than ViTs when using the same training scheme as in Chapter 3, removing the need for batch-specific or cross-channel normalizations such as BatchNorm, GroupNorm or LayerNorm. We speculate that this stability comes from replacing self-attention with linear layers. Finally, another advantage of using a linear layer is that we can still visualize the interactions between patch embeddings, revealing filters that are similar to convolutions on the lower layers, and longer range in the last layers.

We further investigate if our purely MLP based architecture could benefit to other domains beyond images, and particularly, with more complex output spaces. In particular, we adapt our MLP based architecture to take inputs with variable length, and show its potential on the problem of Machine Translation. To do so, we develop a sequence-to-sequence (seq2seq) version of ResMLP, where both encoder and decoders are based on ResMLP with cross-attention between the encoder and decoder [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF]. This model is similar to the original seq2seq Transformer with ResMLP layers instead of Transformer layers [START_REF] Vaswani | Attention is all you need[END_REF]. Despite not being originally designed for this task, we observe that ResMLP is competitive with Transformers on the challenging WMT benchmarks.

The chapter is organised as follows: We first detail the related work, We outline our ResMLP architecture in Figure 4.1 and detail it further in Section 4.2. In section 4.3 we conduct image classification, semantic segmentation and machine translation experiments with our ResMLP architecture. Section 4.4 concludes the chapter.

Publication. Chapter 4 is based on the paper "ResMLP: Feedforward networks for image classification with data-efficient training", Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby, Edouard Grave, Gautier Izacard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, Hervé Jégou, arXiv 2021 (see ResMLP paper [START_REF] Touvron | ResMLP: feedforward networks for image classification with data-efficient training[END_REF]). The code associated is available at https://github.com/facebookresearch/deit.

Related work

We review the research on applying Fully Connected Network (FCN) for computer vision.

Fully-connected network for images. Many studies have shown that FCNs are competitive with convnets for the tasks of digit recognition [START_REF] Claudiu Cireşan | Deep big multilayer perceptrons for digit recognition[END_REF][START_REF] Simard | Best practices for convolutional neural networks applied to visual document analysis[END_REF], keyword spotting [START_REF] Chatelain | Extraction de séquences numériques dans des documents manuscrits quelconques[END_REF] and handwriting recognition [START_REF] Bluche | Deep neural networks for large vocabulary handwritten text recognition[END_REF]. Several works [START_REF] Lin | How far can we go without convolution: Improving fully-connected networks[END_REF][START_REF] Decebal | Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science[END_REF][START_REF] Urban | Do deep convolutional nets really need to be deep and convolutional[END_REF] have questioned if FCNs are also competitive on natural image datasets, such as CIFAR-10 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF]. More recently, d'Ascoli et al. [START_REF] Stéphane D'ascoli | Finding the needle in the haystack with convolutions: on the benefits of architectural bias[END_REF] have shown that a FCN initialized with the weights of a pretrained convnet achieves performance that are superior than the original convnet. Neyshabur [START_REF] Behnam Neyshabur | Towards learning convolutions from scratch[END_REF] further extend this line of work by achieving competitive performance by training an FCN from scratch but with a regularizer that constrains the models to be close to a convnet. These studies have been conducted on small scale datasets with the purpose of studying the impact of architectures on generalization in terms of sample complexity [START_REF] Simon S Du | How many samples are needed to estimate a convolutional neural network?[END_REF] and energy landscape [START_REF] Shirish Keskar | On large-batch training for deep learning: Generalization gap and sharp minima[END_REF]. In our work, we show that, in the larger scale setting of ImageNet, FCNs can attain surprising accuracy without any constraint or initialization inspired by convnets.

Finally, the application of FCN networks in computer vision have also emerged in the study of the properties of networks with infinite width [START_REF] Novak | Bayesian deep convolutional networks with many channels are Gaussian processes[END_REF], or for inverse scattering problems [START_REF] Khoo | Switchnet: a neural network model for forward and inverse scattering problems[END_REF]. More interestingly, the Tensorizing Network [START_REF] Novikov | Tensorizing neural networks[END_REF] is an approximation of very large FCN intending to remove prior by approximating even more general tensor operations, i.e., not arbitrarily marginalized along some pre-defined sharing dimensions. However, their method is designed to compress the MLP layers of a standard convnets.

Other architectures with similar components.

A fully connected layer is equivalent to a convolution layer with a 1 × 1 receptive field, and several work have explored convnet architectures with small receptive fields. For instance, the VGG model [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] uses 3×3 convolutions, and later, other architectures such as the ResNext [START_REF] Xie | Aggregated residual transformations for deep neural networks[END_REF] or the Xception [START_REF] Chollet | Xception: Deep learning with depthwise separable convolutions[END_REF] mix 1×1 and 3×3 convolutions. In contrast to convnets, interactions between patches may be obtained via a linear layer that is shared across channels, and rely on absolute rather than relative positions.

ResMLP

In this section, we describe our architecture, ResMLP, as depicted in Figure 4.1. ResMLP is inspired by ViT and this section focuses on the changes made to ViT that lead to a purely MLP based model. We refer to Dosovitskiy et al. [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] for more details about ViT.

The overall ResMLP architecture. Our model, denoted by ResMLP, takes a grid of N ×N nonoverlapping patches as input, where the patch size is typically equal to 16×16. The patches are then independently passed through a linear layer to form a set of N 2 d-dimensional embeddings.

The resulting set of N 2 embeddings are fed to a sequence of Residual Multi-Layer Perceptron layers to produce a set of N 2 d-dimensional output embeddings. These output embeddings are then averaged ("average-pooling") as a d-dimension vector to represent the image, which is fed to a linear classifier to predict the label associated with the image. During the training we use the cross-entropy loss.

ResMLP Layer

Cross-patch sublayer

The Residual Multi-Perceptron Layer. Our network is a sequence of layers that all have the same structure: a linear sublayer applied across patches followed by a feedforward sublayer applied across channels. Similar to the Transformer layer, each sublayer is paralleled with a skipconnection [START_REF] He | Deep residual learning for image recognition[END_REF]. The absence of self-attention layers makes the training more stable, allowing us to replace the Layer Normalization [7] by a simpler Affine transformation:

Aff λ,β (x) = Diag(λ)x + β, (4.1) 
where λ and β are learnable weight vectors. This operation only rescales and shifts the input element-wise. This operation has several advantages over other normalization operations: first, as opposed to Layer Normalization, it has no cost at inference time, since it can be absorbed in the adjacent linear layer. Second, as opposed to BatchNorm [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] and Layer Normalization, the Aff operator does not depend on batch statistics. The closer operator to Aff is the LayerScale introduced by Touvron et al. [START_REF] Touvron | Going deeper with image transformers[END_REF], with an additional bias term. For convenience, we denote by Aff(X) the Affine operation applied independently to each column of the matrix X.

We apply the Aff operator at the beginning ("pre-normalization") and end ("post-normalization") of each residual block. As a pre-normalization, Aff replaces LayerNorm without using channelwise statistics. Here, we initialize λ = 1, and β = 0. As a post-normalization, Aff is similar to LayerScale and we initialize λ with the same small value as in [START_REF] Touvron | Going deeper with image transformers[END_REF].

Overall, our Multi-layer perceptron takes a set of N 2 d-dimensional input features stacked in a d × N 2 matrix X, and outputs a set of N 2 d-dimension output features, stacked in a matrix Y with the following set of transformations:

D = X + Aff (A • Aff X) ⊤ ⊤ , (4.2) 
Y = D + Aff (C • GELU(B • Aff(D))) , (4.3) 
where A, B and C are the main learnable weight matrices of the layer. Note that Eq (4.

3) is the same as the feedforward sublayer of a Transformer with the ReLU non-linearity replaced by a GELU function [START_REF] Hendrycks | Gaussian error linear units (GELUs)[END_REF]. The dimensions of the parameter matrix A are N 2 ×N 2 , i.e., this "cross-patch" sublayer exchanges information between patches, while the "cross-channel" feedforward sublayer works per location. Similar to a Transformer, the intermediate activation matrix D has the same dimensions as the input and output matrices, X and Y. Finally, the weight matrices B and C have the same dimensions as in a Transformer layer, which are 4d×d and d×4d, respectively.

Differences with the Vision Transformer architecture. Our architecture is closely related to the ViT model [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]. However, ResMLP departs from ViT with several simplifications:

• no self-attention blocks: it is replaced by a linear layer with no non-linearity,

• no positional embedding: the linear layer implicitly encodes information about patch positions,

• no extra "class" token: we simply use average pooling on the patch embeddings,

• no normalization based on batch statistics: we use a learnable affine operator.

Class-MLP as an alternative to average pooling.

We propose an adaptation of the class-attention token introduced in CaiT [START_REF] Touvron | Going deeper with image transformers[END_REF]. In CaiT, this consists of two layers that have the same structure as the transformer, but in which only the class token is updated based on the frozen patch embeddings. We translate this method to our architecture, except that, after aggregating the patches with a linear layer, we replace the attention-based interaction between the class and patch embeddings by simple linear layers, still keeping the patch embeddings frozen. This increases the performance, at the expense of adding some parameters and computational cost. We refer to this pooling variant as "class-MLP", since the purpose of these few layers is to replace the average pooling operation.

Sequence-to-sequence ResMLP. Similar to Transformer, the ResMLP architecture can be applied to sequence-to-sequence tasks. First, we follow the general encoder-decoder architecture from Vaswani et al. [START_REF] Vaswani | Attention is all you need[END_REF], where we replace the self-attention sublayers by the residual multi-perceptron layer. In the decoder, we keep the cross-attention sublayers, which attend to the output of the encoder. In the decoder, we adapt the linear sublayers to the task of language modeling by constraining the matrix A to be triangular, in order to prevent a given token representation to access tokens from the future. Finally, the main technical difficulty from using linear sublayers in a sequence-to-sequence model is to deal with variable sequence lengths. However, we observe that simply padding with zeros and extracting the submatrix A corresponding to the longest sequence in a batch, works well in practice.

Experiments

In this section, we present experimental results for the ResMLP architecture on image classification and machine translation. We also study the impact of the different components of ResMLP in ablation studies. We consider three training paradigms for images:

• Supervised learning: We train ResMLP from labeled images with a softmax classifier and crossentropy loss. This paradigm is the main focus of our work.

• Self-supervised learning: We train our ResMLP architecture with the DINO method of Caron et al. [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] that trains a network without labels by distilling knowledge from previous instances of the same network.

• Knowledge distillation: We employ the knowledge distillation procedure proposed in chapter 3 to guide the supervised training of ResMLP with a convnet. 

Experimental setting

Datasets. We train our models on the ImageNet-1k dataset [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF], that contains 1.2M images evenly spread over 1,000 object categories. In the absence of an available test set for this benchmark, we follow the standard practice in the community by reporting performance on the validation set. This is not ideal since the validation set was originally designed to select hyper-parameters. Comparing methods on this set may not be conclusive enough because an improvement in performance may not be caused by better modeling, but by a better selection of hyper-parameters. To mitigate this risk, we report additional results in transfer learning and on two alternative versions of ImageNet that have been built to have distinct validation and test sets, namely the ImageNetreal [START_REF] Beyer | Are we done with ImageNet?[END_REF] and ImageNet-v2 [START_REF] Recht | Do ImageNet classifiers generalize to ImageNet[END_REF] datasets. We also report a few data-points when training on ImageNet-21k. Our hyper-parameters are mostly adopted from chapter 3.

Hyper-parameter settings. In the case of supervised learning, we train our network with the Lamb optimizer [START_REF] You | Large batch optimization for deep learning: Training BERT in 76 minutes[END_REF] with a learning rate of 5 × 10 -3 and weight decay 0.2. We initialize the LayerScale parameters as a function of the depth by following CaiT [START_REF] Touvron | Going deeper with image transformers[END_REF]. The rest of the hyperparameters follow the default setting used in Chapter 3. For the knowledge distillation paradigm, we use the same RegNety-16GF [START_REF] Radosavovic | Designing network design spaces[END_REF] as in Chapter 3 with the same training schedule. The majority of our models take two days to train on eight V100-32GB GPUs.

Main Results

In this section, we compare ResMLP with architectures based on convolutions or self-attentions with comparable size and throughput on ImageNet. Self-supervised setting. We pre-train ResMLP-S12 using the self-supervised method called DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] during 300 epochs. We report our results in Table 4.2. The trend is similar to the supervised setting: the accuracy obtained with ResMLP is lower than ViT. Nevertheless, the performance is surprisingly high for a pure MLP architecture and competitive with Convnet in k-NN evaluation. Additionally, we also fine-tune a model pre-trained with self-supervision on ImageNet using the ground-truth labels. Pre-training substantially improves performance compared to a ResMLP-S24 solely trained with labels, achieving 79.9% top-1 accuracy on ImageNet-val (+0.5%).

Knowledge distillation setting.

We study our model when training with the knowledge distillation approach of Touvron et al. [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF]. In their work, the authors show the impact of training a ViT model by distilling it from a RegNet. In this experiment, we explore if ResMLP also benefits from this procedure and summarize our results in Table 4.3 (Blocks "Baseline models" and "Training"). We observe that similar to DeiT models, ResMLP greatly benefits from distilling from a convnet. This result concurs with the observations made by d'Ascoli et al. [START_REF] Stéphane D'ascoli | Finding the needle in the haystack with convolutions: on the benefits of architectural bias[END_REF], who used convnets to initialize feedforward networks. Even though our setting differs from theirs in scale, the problem of overfitting for feedforward networks is still present on ImageNet. The additional regularization obtained from the distillation is a possible explanation for this improvement.

Visualization & analysis of the linear interaction between patches

In Figure 4.2, we show in the form of squared images, the rows of the weight matrix from crosspatch sublayers at different depths of a ResMLP-S24 model. The early layers show convolution-like patterns: the weights resemble shifted versions of each other and have local support. Interestingly, in many layers, the support also extends along both axes; see layer 7. The last 7 layers of the network are different: they consist of a spike for the patch itself and a diffuse response across other patches with different magnitude; see layer 20.

Measuring sparsity of the weights. The visualizations described above suggest that the linear communication layers are sparse. We analyze this quantitatively in more detail in Figure 4.3. We measure the sparsity of the matrix A, and compare it to the sparsity of B and C from the per-patch MLP. Since there are no exact zeros, we measure the rate of components whose absolute value is lower than 5% of the maximum value. Note, discarding the small values is analogous to the case where we normalize the matrix by its maximum and use a finite-precision representation of weights. For instance, with a 4-bits representation of weight, one would typically round to zero all weights whose absolute value is below 6.25% of the maximum value.

The measurements in Figure 4.3 show that all three matrices are sparse, with the layers implementing the patch communication being significantly more so. This suggests that they may be compatible with parameter pruning, or better, with modern quantization techniques that induce sparsity at training time, such as Quant-Noise [START_REF] Fan | Training with quantization noise for extreme model compression[END_REF] and DiffQ [START_REF] Défossez | Differentiable model compression via pseudo quantization noise[END_REF]. The sparsity structure, in particular in earlier layers, see Figure . 4.2, hints that we could implement the patch interaction linear layer with a convolution. We provide some results for convolutional variants in our ablation study. Further research on network compression is beyond the scope of this chapter, yet we believe it worth investigating in the future.

Communication across patches.

If we remove the linear interaction layer (linear → none), we obtain substantially lower accuracy (-20% top-1 acc.) for a "bag-of-patches" approach. We have tried several alternatives for the cross-patch sublayer, which are presented in Table 4.3 (block "patch communication"). Amongst them, using the same MLP structure as for patch processing (linear → MLP).The simpler choice of a single linear square layer led to a better accuracy/performance trade-off -considering that the MLP variant requires compute halfway between ResMLP-S12 and ResMLP-S24 -and requires fewer parameters than a residual MLP block.

The visualization in Figure 4.2 indicates that many linear interaction layers look like convolutions, the kernels being increasingly larger closer to the output layer. Hence in our ablation, we replaced the linear layer with different types of 3×3 convolutions. The depth-wise convolution does not implement interaction across channels -as our linear patch communication layer -and yields similar performance with a comparable number of parameters and FLOPs. While full 3×3 convolutions yield best results, they require roughly double the number of parameters and FLOPs. Interestingly, the depth-separable convolutions combine accuracy close to that of full 3×3 convolutions with a number of parameters and FLOPs comparable to our linear layer. This suggests that convolutions on low-resolution feature maps at all layers is an interesting alternative to the common pyramidal design of convnets, where early layers operate at higher resolution and smaller feature dimension.

Ablation studies

Table 4.3 reports the ablation study of our base network and a summary of our preliminary exploratory studies.

Control of overfitting.

Since MLPs are subject to overfitting, we show in Fig. 4.4 a control experiment to probe for problems with generalization. We explicitly analyze the differential of performance between the ImageNet-val and the distinct ImageNet-V2 test set. The relative offsets between curves reflect to which extent models are overfitted to ImageNet-val w.r.t. hyperparameter selection. The degree of overfitting of our MLP-based model is overall neutral or slightly higher to that of other transformer-based architectures or convnets with same training procedure.

Normalization & activation. Our network configuration does not contain any batch normalizations. Instead, we use the affine per-channel transform Aff. This is akin to Layer Normalization [7], typically used in transformers, except that we avoid to collect any sort of statistics, since we do no need it it for convergence. In preliminary experiments with pre-norm and post-norm [START_REF] He | Identity mappings in deep residual networks[END_REF], we observed that both choices converged. Pre-normalization in conjunction with Batch Normalization could provide an accuracy gain in some cases.

We choose to use a GELU [START_REF] Hendrycks | Gaussian error linear units (GELUs)[END_REF] function. We also analyze the activation function: ReLU [START_REF] Glorot | Deep sparse rectifier neural networks[END_REF] also gives a good performance, but it was a bit more unstable in some settings. We did not manage to get good results with SiLU [START_REF] Hendrycks | Gaussian error linear units (GELUs)[END_REF] and HardSwish [START_REF] Howard | Searching for MobileNetV3[END_REF]. . This is in line with recent work pointing out the importance of the training strategy over the model choice [START_REF] Bello | Revisiting ResNets: Improved training and scaling strategies[END_REF][START_REF] Radosavovic | Designing network design spaces[END_REF]. Pre-training on more data and distillation also improve the performance of ResMLP architecture, especially for the bigger models, e.g., distillation improves the top-1 accuracy of ResMLP-B24/8 by 2.6%.

Other analysis. In our early exploration, we evaluated several alternative design choices. As in transformers, we could use positional embeddings mixed with the input patches. In our experiments we did not see any benefit from using these features.This observation suggests that our cross-patch sublayer provides sufficient spatial communication, and referencing absolute positions obviates the need for any form of positional encoding.

Transfer learning

We evaluate the quality of features obtained from a ResMLP architecture when transferring them to other domains. The goal is to assess if the features generated from a feedforward network are more prone to overfitting on the training data distribution. We adopt the typical setting where we pre-train a model on ImageNet-1k and fine-tune it on the training set associated with a specific domain. We report the performance with different architectures on various image benchmarks in Table 4.4, namely CIFAR-10 and CIFAR-100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF], Flowers-102 [START_REF] Nilsback | Automated flower classification over a large number of classes[END_REF],

Stanford Cars [START_REF] Krause | 3d object representations for fine-grained categorization[END_REF] and iNaturalist [START_REF] Van Horn | The iNaturalist species classification and detection dataset[END_REF]. We refer the reader to the corresponding references for a more detailed description of the datasets.

We observe that the performance of our ResMLP is competitive with the existing architectures, showing that pretraining feedforward models with enough data and regularization via data augmentation greatly reduces their tendency to overfit on the original distribution. Interestingly, this regularization also prevents them from overfitting on the training set of smaller dataset during the fine-tuning stage.

Machine translation

We also evaluate the ResMLP transpose-mechanism to replace the self-attention in the encoder and decoder of a neural machine translation system. We train models on the WMT 2014 English-German and English-French tasks, following the setup from Ott et al. [START_REF] Ott | Scaling neural machine translation[END_REF]. We consider models of dimension 512, with a hidden MLP size of 2,048, and with 6 or 12 layers. Note that the current state of the art employs much larger models: our 6-layer model is more comparable to the base transformer model from Vaswani et al. [START_REF] Vaswani | Attention is all you need[END_REF], which serves as a baseline, along with pre-transformer architectures such as recurrent and convolutional neural networks. We use Adagrad with learning rate 0.2, 32k steps of linear warmup, label smoothing 0.1, dropout rate 0.15 for En-De and 0.1 for En-Fr. We initialize the LayerScale parameter to 0.2. We generate translations with the beam search algorithm, with a beam of size 4. As shown in Table 4.5, the results are at least on par with the compared architectures. Table 4.5 -Machine translation on WMT 2014 translation tasks. We report tokenized BLEU on newstest2014.

Models GNMT [START_REF] Wu | Google's neural machine translation system: Bridging the gap between human and machine translation[END_REF] ConvS2S [START_REF] Gehring | Convolutional sequence to sequence learning[END_REF] Transf. (base) [START_REF] Vaswani | Attention is all you need[END_REF] 

Semantic Segmentation

We perform semantic segmentation experiments on the ADE20k [START_REF] Zhou | Semantic understanding of scenes through the ade20k dataset[END_REF] datasets with ResMLP models pre-trained on ImageNet. We adopt the classical UperNet [START_REF] Xiao | Unified perceptual parsing for scene understanding[END_REF] setting with the ×3 schedule [START_REF] Bao | Beit: Bert pre-training of image transformers[END_REF][START_REF] El-Nouby | Xcit: Cross-covariance image transformers[END_REF]. We finetune for the semantic segmentation task at resolution 224 × 224 and evaluate the network with the usual resolution by adopting a sliding window. We report results in Table 4.6 and compare ResMLP with DeiT with the same setting. In that case ResMLP is used as backbone in order to extract features before the UperNet part. At training time we resize images at resolution 896 × 224 and apply RandomResizeCrop in order to have an image of size 224 × 224. ResMLP obtains interesting results, but note that vision transformers remain better. One of the main limitations is the fixed spatial linear layer which makes it more difficult to adapt the ResMLP architecture at different resolutions. Indeed, the size of the linear layer applied to the spatial dimension is fixed and can only be used with a certain image size. It is possible to interpolate the weights to adapt to other resolutions but this does not allow a very good adaptability. 

Conclusion

In this chapter, we have shown that a simple residual architecture, whose residual blocks consist of a one-hidden layer feed-forward network and a linear patch interaction layer, achieves high performance on ImageNet classification benchmarks, provided that we adopt a modern training strategy such as those described in chapter 3 for transformer-based architectures. Thanks to their simple structure, with linear layers as the main mean of communication between patches, we can vizualize the filters learned by this simple MLP. While some of the layers are similar to convolutional filters, we also observe sparse long-range interactions as early as the second layer of the network.

In summary, the main contributions are the following:

• We propose a drastically simplified design for neural network, namely ResMLP, whose main difference compared to a MLP is the residual design borrowed from earlier convolutional neural network architectures;

• Albeit simple, ResMLP reaches surprisingly decent accuracy/complexity trade-offs when trained on ImageNet-1k only;

• These models benefit significantly from distillation methods introduced in chapter 3 and are easily combined with modern self-supervised learning methods based on data augmentation, such as DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF];

• A seq2seq ResMLP achieves competitive performances compared to a seq2seq Transformers on the WMT benchmark for Machine Translation.

Our model with less of spatial prior gives interesting perspectives to design new networks with less inductive bias than most of convolutional neural networks.

In the next chapter, we study how to revisit convnet architectures with elements inherited from transformers and MLP architectures like patch splitting.

C h a p t e r

R E V I S I T I N G C O N V N E T A R C H I T E C T U R E

In transformers, the so-called "class token" correlates with the patches most related to the classification decision. Therefore, the softmax in the self-attention blocks, especially in the last layers, can be used to produce attention maps showing the interaction between the class token and all the patches. Such maps have been employed for visualization purposes [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF][START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]. It gives some hints on which regions of a given image are employed by a model to make its decision. However, the interpretability remains limited: producing these maps involves some fusion of multiple softmax in different layers and heads.

In this chapter, we investigate similar vizualization properties for convnets: we augment convnets with an attention map. More precisely, we replace the usual average pooling layer by an attention-based layer. Indeed, nothing in the convnets design precludes replacing their pooling by attention [START_REF] Ilse | Attention-based deep multiple instance learning[END_REF][START_REF] Bello | Attention augmented convolutional networks[END_REF]. We design our attention-based pooling layer such that it explicitly provides the weights of the different patches. Compared to ViT, for which the aggregation is performed across multiple layers and heads, our proposal offers a single weight per patch, and therefore a simple way to interpret the attention map: it is the respective contribution of each patch in the weighted sum summarizing the images.

We introduce a simple patch-based convolutional architecture that keeps the input resolution constant throughout the network. This design departs from the historical pyramidal architectures of LeNet [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF], AlexNet [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF] or ResNet [START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] He | Identity mappings in deep residual networks[END_REF], to name only a few. Their pyramidal design was motivated by the importance of reducing the resolution while increasing the working dimensionality. That allowed one to maintain a moderate complexity while progressively increasing the working dimensionality, making the space large enough to be separable by a linear classifier. In our case, we simplify the trunk after a small pre-processing stage that produces the patches. We adopt the same dimensionality throughout all the trunk, fixing it equal to that of the final layer, e.g. our aggregation layer. We refer to it as PatchConvNet. This chapter is organised as follows: we first detail the related work. In section 5.2, we describe our architecture PatchConvNet and present the training recipes. In section 5.3, we conduct image classification and semantic segmentation experiments.

Publication. Chapter 5 is based on the submission "Augmenting Convolutional networks with attention-based aggregation", Hugo Touvron, Matthieu Cord, Alaaeldin El-Nouby, Piotr Bojanowski, Armand Joulin, Gabriel Synnaeve, Hervé Jégou, arXiv 2021, under review NeurIPS 2022 (see Patch-Convnet paper [START_REF] Touvron | Augmenting convolutional networks with attentionbased aggregation[END_REF]). The code is available at https://github.com/facebookresearch/deit.

Related work

Attention-based architectures for vision. Early works have introduced attention into convnets [START_REF] Bello | Attention augmented convolutional networks[END_REF][START_REF] Ramachandran | Stand-alone self-attention in vision models[END_REF][START_REF] Shen | Global self-attention networks for image recognition[END_REF][START_REF] Wang | Non-local neural networks[END_REF][START_REF] Wu | Visual transformers: Token-based image representation and processing for computer vision[END_REF], but it is only recently that a fully attention-based architecture, the vision transformer [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] (ViT), has become competitive with convnets on ImageNet [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF]. The particularity of this model is that it processes images as a set of non-overlapping patches, without any convolu-tional or downsampling layers. Nevertheless, several works have recently proposed to re-introduce convolutions and downsampling into this architecture. For example, some architectures [START_REF] Graham | Levit: a vision transformer in convnet's clothing for faster inference[END_REF][START_REF] Xiao | Early convolutions help transformers see better[END_REF] leverage convolutional layers in the first layers of the vision transformer architecture, while others, such as Swin [START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF], LeViT [START_REF] Graham | Levit: a vision transformer in convnet's clothing for faster inference[END_REF], or PiT [START_REF] Heo | Rethinking spatial dimensions of vision transformers[END_REF] exploit a pyramid structure to gradually reduce the spatial resolution of the features.

The pyramid-based methods are more compatible with prior detection frameworks, and aim at improving the computational efficiency (FLOPs). As a downside, the pyramidal approaches dramatically reduce the resolution of the last layers, and hence the quality of their attention maps, making their predictions harder to interpret. Another shortcoming is their relatively high memory usage [START_REF] Sandler | Nondiscriminative data or weak model? on the relative importance of data and model resolution[END_REF]. In chapter 3, we adopt a few layers in one decoder using class-attention instead of self attention. Other works [START_REF] Ilse | Attention-based deep multiple instance learning[END_REF][START_REF] Jaegle | Perceiver io: A general architecture for structured inputs & outputs[END_REF][START_REF] Lee | Set transformer. International Conference on Machine Learning[END_REF] propose this type of attention to aggregate features at the end of the network or at intermediate levels. Our learned attention-based pooling is more simple and offers a better interpretability than these approaches.

MLP and other patch-based approaches. Architectures based on patches [START_REF] Liu | Are we ready for a new paradigm shift? a survey on visual deep mlp[END_REF] have been proposed beyond transformers, in particular, based on Multi-Layer Perceptron (MLP) layers such as MLP-Mixer [START_REF] Tolstikhin | MLP-Mixer: An all-MLP architecture for vision[END_REF] and the work chapter 4. Most related to our work, the ablation study of chapter 4 shows the potential of patch-wise convolution over MLPs in terms of performance. In line with the ConViT model [START_REF] Stéphane D'ascoli | Convit: Improving vision transformers with soft convolutional inductive biases[END_REF], CoatNet [START_REF] Dai | Coatnet: Marrying convolution and attention for all data sizes[END_REF] is a patch-based architecture with blocks yielding local-interactions followed by transformer blocks. Concurrently, replacing self-attention layers with convolution layers has been explored in the ConvMixer paper [6].

Explainability of the classification decision.

There are many strategies to explain the classification decision of a network [START_REF] Tulio Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF][START_REF] Matthew | Visualizing and understanding convolutional networks[END_REF], and most notably by highlighting the most influential regions that led to a decision [START_REF] Simonyan | Deep inside convolutional networks: Visualising image classification models and saliency maps[END_REF][START_REF] Zhou | Learning deep features for discriminative localization[END_REF][START_REF] Ruth | Interpretable explanations of black boxes by meaningful perturbation[END_REF]. Grad-cam methods [START_REF] Ramprasaath | Grad-cam: Visual explanations from deep networks via gradientbased localization[END_REF][START_REF] Chattopadhyay | Balasubramanian. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks[END_REF] are certainly the most used methods to give explanation about network decision. Inspired by the CAM [START_REF] Zhou | Learning deep features for discriminative localization[END_REF] principle, they exploit the gradients from the network decision to identify specific object locations that can be backprojected onto the image. These methods act as general external probes that project the network activity back into the image space, even though [START_REF] Oquab | Is object localization for free?weakly-supervised learning with convolutional neural networks[END_REF][START_REF] Durand | WILDCAT: weakly supervised learning of deep convnets for image classification, pointwise localization and segmentation[END_REF] have shown evidence that convnet features contain rough information about the localization of objects. Unlike these external approaches, the self-attention layers of vision transformers offer a direct access to the location of the information used to make classification decisions [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF][START_REF] Touvron | Going deeper with image transformers[END_REF][START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF]. Our built-in class attention mechanism shares the same spirit of interpretable by design computer vision models [START_REF] Rudin | Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[END_REF]. However, unlike our mechanism, self-attention layers do not distinguish between classes on the same image without additional steps [START_REF] Chefer | Transformer interpretability beyond attention visualization[END_REF]. The learned aggregation layer is best associated with a high-resolution feature map. Therefore, while it can be combined with any convolutional architecture like a regular ResNet-50, our suggestion is to combine it with an architecture that maintains the resolution all across the layers. Some works exist, however they offer underwhelming trade-offs [START_REF] Tolstikhin | MLP-Mixer: An all-MLP architecture for vision[END_REF][START_REF] Touvron | ResMLP: feedforward networks for image classification with data-efficient training[END_REF]. To remedy that problem, we introduce PatchConvNet. This design, which illustrated in Figure 5.1, is intended to concentrate most of the compute and parameters in the columnar trunk. The architecture family is parametrized by the embedding dimension d, and the number of repeated blocks in the trunk N . Below, we describe the architecture and its training in more details.

Attention-based pooling with PatchConvNet

Architecture design

The convolutional stem is a light-weight pre-processing of the image pixels whose role is to segment and map an image into a set of vectors. In ViT, this exactly corresponds to the patch extraction step [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]. Therefore, we refer to the vectors resulting from this pre-processing as patches.

Recent papers [START_REF] Graham | Levit: a vision transformer in convnet's clothing for faster inference[END_REF][START_REF] El-Nouby | Xcit: Cross-covariance image transformers[END_REF] have shown that it is best to adopt a convolutional pre-processing, in particular for stability reasons [START_REF] Xiao | Early convolutions help transformers see better[END_REF]. In our case, we borrow the convolutional stem from LeVit [START_REF] Graham | Levit: a vision transformer in convnet's clothing for faster inference[END_REF]: a small ConvNet that is applied to the image of size W × H × 3 and produces a vector map of W/16 × H/16 × d. It can be viewed as a set of k non-overlapping d-dimensional patches. In our experimental results, except if mentioned otherwise, we use a convolutional stem consisting of four 3 × 3 convolutions with a stride of 2 × 2, followed by a GELU non-linearity [START_REF] Hendrycks | Gaussian error linear units (GELUs)[END_REF]. We illustrate the convolutional stem in Figure 5.1.

The column, or trunk, is the part of the model which accounts for most of the layers, parameters, and compute. It consists of N stacked residual convolutional blocks as depicted in Figure 5.1. The block starts with a normalization, followed by a 1 × 1 convolution, then a 3 × 3 convolution for spatial processing, a squeeze-and-excitation layer [START_REF] Hu | Squeeze-and-excitation networks[END_REF] for mixing channel-wise features, and finally a 1 × 1 convolution right before the residual connection. Note that we can interpret the 1 × 1 convolutions as linear layers. A GELU non-linearity follows the first two convolutions. The output of this block has the same shape as its input: the same number of tokens of the same dimension d.

Using BatchNorm [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] often yields better results than LayerNorm [7], provided the batches are large enough. As shown in Section 5.3, we also observe this for our model family. However, BatchNorm is less practical when training large models or when using large image resolutions because of its dependency on batch size. In that setup, using BatchNorm requires an additional synchronization step across multiple machines. This synchronization increases the amount of node-to-node communication required per step, and in turn, training time. In other situations, like for detection and segmentation, the images are large, limiting the batch size and possibly impacting performance. Because of all those reasons, unless stated otherwise, we adopt LayerNorm.

Attention-based pooling. At the output of the trunk, the pre-processed vectors are aggregated using a cross-attention layer inspired by transformers. We illustrate this aggregation mechanism in Figure 5.1. A query class token attends to the projected patches and aggregates them as a weighted summation. The weights depend on the similarity of projected patches with a trainable vector (CLS) akin to a class token. The resulting d-dimensional vector is subsequently added to the CLS vector and processed by a feed-forward network (FFN). As opposed to the class-attention decoder by Touvron et al. [START_REF] Touvron | Going deeper with image transformers[END_REF] we use a single block and a single head. This drastic simplification has the benefit of avoiding the dilution of attention across multiple channels. Consequently, the communication between the class token and the pre-processed patches occurs in a single softmax, directly reflecting how the pooling operator weights each patch.

We can easily specialize the attention maps per class by replacing the CLS vector with a k × d matrix, where each of the k columns is associated with one of the classes. This specialization allows us to visualize an attention map for each class, as shown in Figure 5.6. The impact of the additional parameters and resulting FLOPS is minimal for larger models in the family. However, this design increases peak memory usage and makes the optimization of the network more complicated. We typically do that in a fine-tuning stage with a lower learning rate and smaller batch size to circumvent these issues. By default, we use the more convenient single class token. Depending on the performance criterion (importance of latency, resolution, FLOPs), one could prefer either deeper models or wider models. See Bello et al. [START_REF] Bello | Revisiting ResNets: Improved training and scaling strategies[END_REF] for a study on the relationship between model size, resolution and compute. Below we discuss several properties of our convolutional trunk augmented with the proposed attention-based aggregation stage.

Discussion: analysis & properties

1. Simple parametrization. Our main models are fully defined by width and depth. See Figure 5.2 for results obtained with these models at two different resolutions (224 and 384). Following the same convention as in previous work on vision transformers and vision MLPs [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF][START_REF] Touvron | ResMLP: feedforward networks for image classification with data-efficient training[END_REF], we refer by S the models with an vector size of d = 384 per patch, by B when d = 768, and by L for d = 1024. We use the S60 model for most of our ablations and comparisons since it has a similar number of parameters and FLOPs as a ResNet-50.

2.

Visualization. Our model allows to easily visualize the network activity. Saliency maps are directly extracted from our network without any post-processing.

3. Constant resolution across the trunk. The patch-based processing leads to a single processing resolution in the trunk. Therefore the activation size is constant across the whole network. The memory usage is (almost) constant at inference time, up to the pre-and post-processing stage, which are comparatively less demanding. Compared to traditional ConvNets, the network has a coarser processing in the early stages, but a finer resolution towards the output of the trunk.

4.

Linear scaling with image size. This is a key difference with Vision Transformers. Pyramidal transformers such as LeVit [START_REF] Graham | Levit: a vision transformer in convnet's clothing for faster inference[END_REF], SwinTransformer [START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF] or MViT [START_REF] Haoqi Fan | Multiscale vision transformers[END_REF] partly solve the problem by breaking the quadratic component by rapidly down-scaling the image. However, they don't avoid the memory peaks happening with very large images. As a consequence of that constant memory usage and linear scaling, our model smoothly scales to larger resolutions, as shown in Figure 5.3 where we report the Peak Memory usage at inference time as a function of the image size.

5.

Easy change of resolution. We do not require any positional encoding, as the relative patch positions are handled by the convolutions. In that respect our approach is more flexible than most approaches that needs to be fine-tuned or trained from scratch for each possible target resolution. In Figure 5.4 we show that the properties of our models are quite stable under relatively significant resolution changes.

6.

No pooling. There is no pooling or other non-reversible operator in our architecture. Formally the function implemented by the trunk is bijective until the aggregation stage. We do not exploit this property, but it may be useful in contexts like image generation [START_REF] Donahue | Large scale adversarial representation learning[END_REF][START_REF] Diederik | Glow: Generative flow with invertible 1x1 convolutions[END_REF].

Training recipes

Like many other works (see Liu et al. [START_REF] Liu | A survey of visual transformers[END_REF], Table I), our training algorithm inherits from the Chapter 3 procedure for training transformers. We adopt the Lamb optimizer [START_REF] You | Large batch optimization for deep learning: Training BERT in 76 minutes[END_REF] (a variant of AdamW [START_REF] Loshchilov | Fixing weight decay regularization in adam[END_REF]) with a half-cosine learning schedule and label smoothing [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF]. For data augmentation, we include the RandAugment [START_REF] Ekin | RandAugment: Practical automated data augmentation with a reduced search space[END_REF] variant by Wightman et al. [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF], Mixup [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF] (α = 0.8) and CutMix [START_REF] Yun | CutMix: Regularization strategy to train strong classifiers with localizable features[END_REF] (α = 1.0). Notably, we include Stochastic Depth [START_REF] Huang | Deep networks with stochastic depth[END_REF] that is very effective for deep transformers [START_REF] Touvron | Going deeper with image transformers[END_REF], and for which we observe the same effect with our deep PatchConvNet. We adopt a uniform drop rate for all layers, and we cross-validate this parameter on ImageNet1k for each model.We also adopt LayerScale [START_REF] Touvron | Going deeper with image transformers[END_REF] introduced in Chapter 3. For the deepest models, the drop-rate hyper-parameter (often called "drop-path") can be set as high as 0.5, meaning that we can potentially drop half of the trunk. A desirable byproduct of this augmentation is that it accelerates the training. Note that we do not use gradient clipping, Polyak averaging, or erasing to keep our procedure simple enough.

We now detail some context-dependent adjustments, based on datasets (ImageNet1k or Ima-geNet21k), and training (from scratch or fine-tuned). Note that, apart our sensivity study, we use the same Seed 0 for all our experiments [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF] to prevent picking a "lucky seed" [START_REF] Picard | ) is all you need: On the influence of random seeds in deep learning architectures for computer vision[END_REF] that would not be representative of the model performance.

Training on ImageNet1k. We train during 400 epochs with a batch size of 2048 and a learning rate fixed at 3.10 -3 for all models. Based on early experiments, we fixed the weight decay to 0.01 for S models and 0.05 for wider models, but practically we observed that the stochastic depth parameter had a preponderant influence and the most important to adjust, similar to prior observations with ViT et al. [START_REF] Touvron | Going deeper with image transformers[END_REF]. We use repeated augmentation [START_REF] Berman | Multigrain: a unified image embedding for classes and instances[END_REF] only when training with this dataset.

Fine-tuning at higher resolutions. We fine-tune our models at higher resolutions in order to correct the train-test resolution discrepancy [START_REF] Touvron | Fixing the train-test resolution discrepancy[END_REF], and to analyze the behavior of our models at higher resolutions. This can save a significant amount of resources because models operating at larger resolutions are very demanding to train. For fine-tuning, we use a smaller batch size of 1024 in order to compensate for the larger memory requirements. We fix the learning rate to 10 -5 , the weight decay to 0.01, and fine-tune during 10 epochs for all our models.

Training on ImageNet21k. We train during 90 epochs as in prior works [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF]. We trained with a batch size of 2048 with a learning rate of 3.10 -3 and weight decay of 0.01, or when possible with a batch size of 4096 in order to accelerate the training. In that case we adjust the learning rate to 4.10 -3 .

Fine-tuning from ImageNet21k to ImageNet1k is a more involved modification of the network than just fine-tuning across resolutions because one needs to re-learn the classifiers. In that case, we adopt a longer fine-tuning schedule of 100 epochs along with a batch size of 1024 and an initial learning rate of 5.10 -4 with a half-cosine schedule.

Main experimental results

This section presents our main experimental results in Image classification, detection and segmentation. We also include an ablation study. Our code depends on the PyTorch [3] and timm libraries [214]. Model weights and implementation of our main models are open-source.

Class activation

In Figure 5.5, we show the attention maps extracted from ViT by using a visualization as in [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF]. It involves some post-processing as there are multiple layers and heads providing patch weights. Then we show a "ResNet-50" augmented by adding our attention-based aggregation layer. Its hierarchical design leads to a low-resolution attention map with artefacts: We need an architecture producing a higher-resolution feature maps in order to better leverage the proposed attention-based pooling.

Classification results

We first compare our model with competing approaches on the validation set of ImageNet-1k (Imnet-val / Top-1) and ImageNet-v2 in Table 5.1. We report the compute requirement as reflected by FLOPs, the peak memory usage, the number of parameters, and a throughput at inference time measured for a constant batch-size of 256 images.

We compare with various models, including classic models like ResNet-50 [START_REF] He | Deep residual learning for image recognition[END_REF] revisited with modern training recipes such as the one recently proposed by [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF]. Note however that different models may have received a different optimization effort, therefore the results on a single criterion are mostly indicative. That being pointed out, we believe that the PatchConvNet results show that a simple columnar architecture is a viable choice compared to other attention-based approaches that are more difficult to optimize or scale.

Higher-resolution.

There is a fine interplay between model size and resolution when it comes to the specific optimization of FLOPs and accuracy. We refer to the findings of [START_REF] Bello | Revisiting ResNets: Improved training and scaling strategies[END_REF] who discussed some of these relationships, for instance the fact that small networks are better associated with smaller resolution. In our work, we did not specifically optimize the Pareto curve. Since this trade-off is only one out of multiple criteria depending on the context, we prefer to report most of our results at the 224 and 384 resolutions. Table 5.1 shows that our model significantly benefits from larger resolution images. See also Figures 5.3 We visualize the attention maps for classification for diverse models. We first extract attention maps from a regular ViT-S [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF]. Then we consider convnets in which we replace the average pooling by our learned attention-based aggregation layer. Unlike ViT, this layer directly provides the contribution of the patches in the weighted pooling. This is shown for a "ResNet-50 [START_REF] He | Deep residual learning for image recognition[END_REF]", and with our new simple patch-based model (S60) that we introduce to increase the attention map resolution. We can specialize this attention per class, as shown with S60 †.

epochs at resolution 224, finetuned on ImageNet-1k at resolution 384 and then fine-tuned at bigger resolution.

Transfer Learning experiments We evaluate our architecture on 6 transfer learning tasks. The datasets used are summarized Table 5.4. For fine-tuning we used the procedure used in Chapter 3.

Our results are summarized Table 5.5. We can observe that our architecture achieves competitive performance on transfer learning tasks.

Segmentation results and detection

Semantic segmentation We evaluate our models with semantic segmentation experiments on the ADE20k dataset [START_REF] Zhou | Scene parsing through ade20k dataset[END_REF]. This dataset consist of 20k training and 5k validation images with labels from over 150 categories. For the training, we adopt the same schedule as in Swin: 160k iterations with UPerNet [START_REF] Xiao | Unified perceptual parsing for scene understanding[END_REF]. At test time we evaluate with a single scale similarly to XciT and multi-scale as in Swin. As our approach is not pyramidal we only use the final output of our network in UPerNet. Unlike concurrent approaches we only use the final output of our network at different levels in UPerNet which simplifies the approach.

Our results are reported in Table 5.3. We can observe that our approach although simpler is at the same level as the state-of-the-art Swin architecture and outperforms the XCiT architecture w.r.t. FLOPs-mIoU trade-off.

Detection & instance segmentation

We have evaluated our models on detection and instance segmentation tasks on COCO [START_REF] Lin | Microsoft coco: Common objects in context[END_REF]. We adopt the Mask R-CNN [START_REF] He | Mask r-cnn[END_REF] setup with the commonly used ×3 schedule. Similar to segmentation experiments, as our approach is not pyramidal, we only use the final output of our network in Mask R-CNN [START_REF] He | Mask r-cnn[END_REF]. In Table 5.6, our results show that PatchConvNet is on par with Swin [START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF] and XCiT [START_REF] El-Nouby | Xcit: Cross-covariance image transformers[END_REF] in terms of FLOPs-AP tradeoff.

Ablations

All our ablation have been carried out with "Seed 0", i.e., we report only one result without handpicking. For this reason one must keep in mind that there is a bit of noise in the performance measurements: On ImageNet-1k val, we have measured with the seeds 1 to 10 a standard deviation [6,[START_REF] Brock | High-performance large-scale image recognition without normalization[END_REF][START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Radosavovic | Designing network design spaces[END_REF][START_REF] Tan | EfficientNet: Rethinking model scaling for convolutional neural networks[END_REF]), Transformers [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF][START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF] and feedforward networks [START_REF] Tolstikhin | MLP-Mixer: An all-MLP architecture for vision[END_REF][START_REF] Touvron | ResMLP: feedforward networks for image classification with data-efficient training[END_REF] with comparable FLOPs and number of parameters. All models are trained on ImageNet-1k only without distillation nor selfsupervised pre-training. We report Top-1 accuracy on the validation set of ImageNet-1k and ImageNet-V2 with different measures of complexity: throughput, FLOPs, number of parameters and peak memory usage. The throughput and peak memory are measured on a single V100-32GB GPU with batch size fixed to 256 and mixed precision. For ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] and RegNet [START_REF] Radosavovic | Designing network design spaces[END_REF] we report the improved results from [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF]. Note that different models may have received a different optimization effort. ↑R indicates that the model is fine-tuned at the resolution R. We point out that we have not optimized the training recipes further (either without or with class-attention). This result is reported for a single run (Seed 0) in both cases.

Patch pre-processing. In the vanilla patch-based approaches as vision transformers [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF] and MLP-style models [START_REF] Tolstikhin | MLP-Mixer: An all-MLP architecture for vision[END_REF][START_REF] Touvron | ResMLP: feedforward networks for image classification with data-efficient training[END_REF], the images patches are embedded by one linear layer. Recent works [START_REF] Graham | Levit: a vision transformer in convnet's clothing for faster inference[END_REF][START_REF] Xiao | Early convolutions help transformers see better[END_REF] show that replacing this linear patch pre-processing by a few convolutional layers allows to have a more stable architecture [START_REF] Xiao | Early convolutions help transformers see better[END_REF] with better performance. So, in our work we choose to use a convolutional stem instead of pure linear projection. We provide in Table 5.7 an ablation of this component. 

Conclusion

In this chapter, we introduced an attention-based pooling layer which offers visualization properties and interpretability by design. In addition, we proposed a full patch-based ConvNet with no pyramidal structure design in order to better exploit our pooling layer. We demonstrated its interest on several computer vision tasks: classification, segmentation, detection.

In summary, we make the following contributions:

• We revisit the final pooling layer in convnets and introduce a simple learned, attention-based pooling, which provides a direct visualization and interpretability of the decision;

• We propose a slight adaptation of our attention-based pooling in order to have one attention map per class, offering an interpretability of the predictions per class;

• We propose an architecture, PatchConvNet, with a simple patch-based design (two parameters: depth and width), which we design so that it offers better visualizations of the class attention maps (see Figure 5.5) by maintaining a relatively high resolution across all layers.

After studying different architectures for computer vision and in particular for image classification, we will study the interaction between the architecture and the training procedure.

C h a p t e r

A R C H I T E C T U R E A N D T R A I N I N G I N T E R A C T I O N R E V I S I T E D

After their vast success in NLP, transformer models [START_REF] Vaswani | Attention is all you need[END_REF] and their derivatives are increasingly popular in computer vision. Because they incorporate as priors only the co-localisation of pixels in patches, transformers have to learn about the structure of images while optimizing the model such that it processes the input with the objective of solving a given task. This can be either reproducing labels in the supervised case, or other proxy tasks in the case of self-supervised approaches. Nevertheless, despite their huge success, there has been only few works in computer vision studying how to efficiently train vision transformers, and in particular on a midsize dataset like ImageNet-1k. Since the work of Dosovistky et al. [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF], the training procedures are mostly variants from the proposal of DeiT (Chapter 3) and Steiner et al. [START_REF] Steiner | How to train your vit? data, augmentation, and regularization in vision transformers[END_REF]. In contrast, multiple works have proposed alternative architectures by introducing pooling, more efficient attention, or hybrid architectures re-incorporating convolutions and a pyramid structure. These new designs, while being particularly effective for some tasks, are less general. One difficult question to address is whether the improved performance is due to a specific architectural design, or because it facilitates the optimization as suggested it is the case for convolutions with ViTs [START_REF] Xiao | Early convolutions help transformers see better[END_REF].

Recently, self-supervised approaches inspired by the popular BerT pre-training have raised hopes for a BerT moment in computer vision. There are some analogies between the fields of NLP and computer vision, starting with the transformer architecture itself. However, these fields are not identical in every way: The modalities processed are of different nature (continuous versus discrete). Computer vision offers large annotated databases like ImageNet [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF], and fully supervised pre-training on ImageNet is effective for handling different downstream tasks such as transfer learning [START_REF] Oquab | Learning and transferring midlevel image representations using convolutional neural networks[END_REF] or semantic segmentation. Without further work on fully supervised approaches on ImageNet it is difficult to conclude if the intriguing performance of self-supervised approaches like BeiT [START_REF] Bao | Beit: Bert pre-training of image transformers[END_REF] is due to the training, e.g. data augmentation, regularization, optimization, or to an underlying mechanism that is capable of learning more general implicit representations.

In this chapter, we propose to revisit the training procedure for vanilla ViT architectures. We investigate how to fully exploit the potential of transformers and discuss the importance of BerT-like pre-training. Our work builds upon the recent state of the art on fully supervised and self-supervised approaches, with new insights regarding data-augmentation. We propose new training recipes for vision transformers on ImageNet-1k and ImageNet-21k. The whole procedure is called DeiT III. This chapter is organised as follows: first, we describe the related work. Then, we detail our training strategies with our new training components. In section 6.3, we provide image classification and semantic segmentation experiments.

Publication. Chapter 6 is based on the papers "ResNet strikes back: An improved training procedure in timm", Ross Wightman, Hugo Touvron, Hervé Jégou, NeurIPS workshop 2021 (see RSB paper [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF]) and "DeiT III: Revenge of the ViT", Hugo Touvron, Matthieu Cord, Hervé Jégou, ECCV 2022 (see DeiT III paper [START_REF] Touvron | Deit iii: Revenge of the vit[END_REF]). The code associated is publicly available at https://github.com/ facebookresearch/deit and https://github.com/rwightman/pytorch-image-models.

Related work

Training procedures: The first procedure proposed in the ViT paper [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] was mostly effective for larger models trained on large datasets. In particular the ViT were not competitive with convnets when trained from scratch on ImageNet. Chapter 3 showed that by adapting the training procedure, it is possible to achieve a performance comparable to that of convnets with Imagenet training only. After this Data Efficient Image Transformer procedure (DeiT), only few adaptations have been proposed to improve the training of vision transformers. Steiner et al. [START_REF] Steiner | How to train your vit? data, augmentation, and regularization in vision transformers[END_REF] published a complete study on how to train vision transformers on different datasets by doing a complete ablation of the different training components. Their results on ImageNet [START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] are slightly inferior to those of DeiT but they report improvements on ImageNet-21k compared to Dosovitskiy et al. [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]. The self-supervised approach referred to as masked auto-encoder (MAE) [START_REF] He | Masked autoencoders are scalable vision learners[END_REF] proposes an improved supervised baseline for the larger ViT models.

BerT pre-training: In the absence of a strong fully supervised training procedure, BerT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF]-like approaches that train ViT with a self-supervised proxy objective, followed by full finetuning on the target dataset, seem to be the best paradigm to fully exploit the potential of vision transformers. Indeed, BeiT [START_REF] Bao | Beit: Bert pre-training of image transformers[END_REF] or MAE [START_REF] He | Masked autoencoders are scalable vision learners[END_REF] significantly outperform the fully-supervised approach, especially for the largest models. Nevertheless, to date these approaches have mostly shown their interest in the context of mid-size datasets. For example MAE [START_REF] He | Masked autoencoders are scalable vision learners[END_REF] report its most impressive results when pre-training on ImageNet-1k with a full finetuning on ImageNet-1k. When pre-training on ImageNet-21k and finetuning on ImageNet-1k, BeiT [START_REF] Bao | Beit: Bert pre-training of image transformers[END_REF] requires a full 90-epochs finetuning on ImageNet-21k followed by another full finetuning on ImageNet-1k to reach its best performance, suggesting that a large labeled dataset is needed so that BeiT realizes its best potential. A recent work suggests that such auto-encoders are mostly interesting in a data starving context [START_REF] El-Nouby | Training vision transformers for image retrieval[END_REF], but this questions their advantage in the case where more labelled data is actually available.

Data augmentation:

For supervised training, the community commonly employs data augmentations offered by automatic design procedures such as RandAugment [START_REF] Ekin | RandAugment: Practical automated data augmentation with a reduced search space[END_REF] or Auto-Augment [START_REF] Dogus Cubuk | Autoaugment: Learning augmentation policies from data[END_REF]. These data augmentations seem to be essential for training vision transformers [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF]. Nevertheless, papers like TrivialAugment [START_REF] Müller | Trivialaugment: Tuning-free yet state-of-the-art data augmentation[END_REF] and Uniform Augment [START_REF] Ching Lingchen | Uniformaugment: A search-free probabilistic data augmentation approach[END_REF] have shown that it is possible to reach interesting performance levels when simplifying the approaches. However, these approaches were initially optimized for convnets. In our work, we propose to go further in this direction and drastically limit and simplify data augmentation: we introduce a data augmentation policy that employs only 3 different transformations randomly drawn with uniform probability. That's it!

Revisit training & pre-training for Vision Transformers

We present our training procedure for vision transformers and compare it with existing approaches. We detail the different ingredients in Table 6.1. Building upon Wightman et al. [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF] and Touvron et al. [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF], we introduce several changes that have a significant impact on the final model accuracy.

Regularization & loss

Stochastic depth is a regularization method that is especially useful for training deep networks. We use a uniform drop rate across all layers and adapt it according to the model size [START_REF] Touvron | Going deeper with image transformers[END_REF]. Table 6.14 (6.3.6) gives the stochastic depth drop-rate per model. Table 6.1 -Summary of our training procedures with ImageNet-1k and ImageNet-21k. We also provide DeiT [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF], Wightman et al [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF] and Steiner et al. [START_REF] Steiner | How to train your vit? data, augmentation, and regularization in vision transformers[END_REF] baselines for reference. Adapt. means the hparams is adapted to the size of the model. For finetuning to higher resolution with model pre-trained on ImageNet-1k only we use the finetuning procedure from Chapter 3 see section 6.3.6 for more details.

Previous approaches Ours

Procedure Label smoothing ε 0.1 0.1 0.1 LayerScale. We use LayerScale [START_REF] Touvron | Going deeper with image transformers[END_REF] introduced in Chapter 3. As previously mentioned, this method was introduced to facilitate the convergence of deep transformers. With our training procedure, we do not have convergence problems, however we observe that LayerScale allows our models to attain a higher accuracy for the largest models. In Chapter 3, the initialization of LayerScale is adapted according to the depth. In order to simplify the method we use the same initialization (10 -4 ) for all our models. Binary Cross entropy. Wigthman et al. [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF] adopt a binary cross-entropy (BCE) loss instead of the more common cross-entropy (CE) to train ResNet-50. They conclude that the gains are limited compared to the CE loss but that this choice is more convenient when employed with Mixup [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF] and CutMix [START_REF] Yun | CutMix: Regularization strategy to train strong classifiers with localizable features[END_REF]. For larger ViTs and with our training procedure on ImageNet-1k, the BCE loss provides us a significant improvement in performance, see an ablation in Table 6.4. We did not achieve compelling results during our exploration phase on Imagenet21k, and therefore keep CE when pre-training with this dataset as well as for the subsequent fine-tuning.

✗ ✗ 0.1 0.1 Dropout ✓ ✓ ✗ ✗ ✗ ✗ ✗ Stoch. Depth ✗ ✓ ✓ ✓ ✓ ✓ ✓ Repeated Aug ✗ ✗ ✓ ✓ ✓ ✗ ✗ Gradient Clip. 1.0 1.0 ✗ 1.0 1.0 1.0 1.0 H. flip ✓ ✓ ✓ ✓ ✓ ✓ ✓ RRC ✓ ✓ ✓ ✓ ✓ ✗ ✗ Rand Augment ✗ Adapt. 9/0.5 7/0.5 ✗ ✗ ✗ 3 Augment (ours) ✗ ✗ ✗ ✗ ✓ ✓ ✓ LayerScale ✗ ✗ ✗ ✗ ✓ ✓ ✓
The optimizer is LAMB [START_REF] You | Large batch optimization for deep learning: Training BERT in 76 minutes[END_REF], a derivative of AdamW [START_REF] Loshchilov | Fixing weight decay regularization in adam[END_REF]. It includes gradient clipping by default in Apex's [1] implementation.

Data-augmentation

Since the advent of AlexNet, there has been significant modifications to the data-augmentation procedures employed to train neural networks. Interestingly, the same data augmentation, like RandAugment [START_REF] Ekin | RandAugment: Practical automated data augmentation with a reduced search space[END_REF], is widely employed for ViT while their policy was initially learned for convnets. Given that the architectural priors and biases are quite different in these architectures, the augmentation policy may not be adapted, and possibly overfitted considering the large amount of choices involved in their selection. We therefore revisit this prior choice.

3-Augment:

We propose a simple data augmentation inspired by what is used in self-supervised learning (SSL). We consider the following transformations:

• Grayscale: This favors color invariance and give more focus on shapes.

• Solarization: This adds strong noise on the colour to be more robust to the variation of colour intensity and so focus more on shape.

• Gaussian Blur: In order to slightly alter details in the image.

For each image, we select only one of these data-augmentations with a uniform probability over 3 different ones. In addition to these 3 augmentation choices, we include the common color-jitter and horizontal flip. Figure 6.1 illustrates the different augmentations used in our 3-Augment approach. In Table 6.2 we provide an ablation on our different data-augmentation components.

Cropping

Random Resized Crop (RRC) was introduced in the GoogleNet [START_REF] Szegedy | Going deeper with convolutions[END_REF] paper. It serves as a regularisation to limit model overfitting, while favoring that the decision done by the model is invariant to a certain class of transformations. This data augmentation was deemed important on Imagenet1k to prevent overfitting, which happens to occur rapidly with modern large models.

This cropping strategy however introduces some discrepancy between train and test images in terms of the aspect ratio and the apparent size of objects [START_REF] Touvron | Fixing the train-test resolution discrepancy[END_REF]. Since ImageNet-21k includes significantly more images, it is less prone to overfitting. Therefore we question whether the benefit of the strong RRC regularization compensates for its drawback when training on larger sets.

Simple Random Crop (SRC) is a much simpler way to extract crops. It is similar to the original cropping choice proposed in AlexNet [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF]: We resize the image such that the smallest side matches the training resolution. Then we apply a reflect padding of 4 pixels on all sides, and finally we apply a square Crop of training size randomly selected along the x-axis of the image. Figure 6.2 vizualizes cropping boxes sampled for RRC and SRC. RRC provides a lot of diversity and very different sizes for crops. In contrast SRC covers a much larger fraction of the image overall and preserve the aspect ratio, but offers less diversity: The crops overlaps significantly. As a result, when training on ImageNet-1k the performance is better with the commonly used RRC. For instance a ViT-S reduces its top-1 accuracy by -0.9% if we do not use RRC. At the same time it introduces a discrepancy of scale and aspect-ratio. It also leads to labeling errors, for instance when the object is not in the cropped region (e.g., train or boat). On Imagenet1k this regularization is overall regarded as beneficial. However our experiments show that it is detrimental on ImageNet-21k, which is less prone to overfitting.

However, in the case of ImageNet-21k (×10 bigger than ImageNet-1k), there is less risk of overfitting and increasing the regularisation and diversity offered by RRC is less important. In this context, SRC offers the advantage of reducing the discrepancy in apparent size and aspect ratio. More importantly, it gives a higher chance that the actual label of the image matches that of the crop: RRC is relatively aggressive in terms of cropping and in many cases the labelled object is not even present in the crop, as shown in Figure 6.3 where some of the crops do not contain the labelled object. For instance, with RRC there is a crop no zebra in the left example, or no train in three of the crops from the middle example. This is more unlikely to happen with SRC, which covers a much larger fraction of the image pixels. In Table 6.5 we provide an ablation of random resized crop on ImageNet-21k, where we see that these observations translate as a significant gain in performance.

Experiments

This section includes multiple experiments in image classification, with a special emphasis on ImageNet-1k [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF][START_REF] Recht | Do ImageNet classifiers generalize to ImageNet[END_REF][START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF]. We also report results for downstream tasks in fine-grained classification and segmentation. We include a large number of ablations to better analyze different effects, such as the importance of the training resolution and longer training schedules. We provide additional results in the appendices.

Baselines and default settings

The main task that we consider in this chapter for the evaluation of our training procedure is image classification. We train on ImageNet-1k train and evaluate on ImageNet-1k val, with results on ImageNet-V2 to control overfitting. We also consider the case where we can pretrain on ImageNet-21k, Finally, we report transfer learning results on 6 different datasets/benchmarks.

ImageNet-1k

ImageNet-21k 

Ablations

Impact of training duration

In Figure 6.5 we provide an ablation on the number of epochs, which shows that ViT models do not saturate as rapidly as the Chapter 3 training procedure [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF] when we increase the number of epochs beyond the 400 epochs adopted for our baseline.

For ImageNet-21k pre-training, we use 90 epochs for pre-training as in a few works [START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF][START_REF] Touvron | Augmenting convolutional networks with attentionbased aggregation[END_REF]. We finetune during 50 epochs on ImageNet-1k [START_REF] Touvron | Augmenting convolutional networks with attentionbased aggregation[END_REF] and marginally adapt the stochastic depth parameter. We point out that this choice is mostly for the sake of consistency across models: we observe that training 30 epochs also provides similar results.

Data Augmentation

In Table 6.3 we compare our handcrafted data augmentation 3-Augment with existing learned augmentation methods. With the ViT architecture, our data augmentation is the most effective while being simpler than the other approaches. Since previous augmentations were introduced on convnets, we also provide results for a ResNet-50. In this case, previous augmentation policies have similar (RandAugment, Trivial-Augment) or better results (Auto-Augment) on the validation set. This is no longer the case when evaluating on the independent set V2, for which the Auto-Augment better accuracy is not significant. 

Impact of training resolution

In Table 6.6 we report the evolution of the performance according to the training resolution. We observe that we benefit from the FixRes [START_REF] Touvron | Fixing the train-test resolution discrepancy[END_REF] effect. By training at resolution 192×192 (or 160×160) we get a better performance at 224 after a slight fine-tuning than when training from scratch at 224×224.

We observe that the resolution has a regularization effect. While it is known that it is best to use a smaller resolution at training time [START_REF] Touvron | Fixing the train-test resolution discrepancy[END_REF], we also observe with the training curves that using smaller resolution reduces the overfitting of the larger models. This is also illustrated by our results Table 6.6 with ViT-H and ViT-L. This is especially important with longer training, where models overfit without a stronger regularisation. This smaller resolution implies that there are less patches to be processed, and therefore it reduces the training cost and increases the performance. In that respect it effect is comparable to that of MAE [START_REF] He | Masked autoencoders are scalable vision learners[END_REF]. We also report results with ViT-H 52 layers and ViT-H 26 layers parallel [START_REF] Touvron | Three things everyone should know about vision transformers[END_REF] models with 1B parameters. Due to the lower resolution training it is easier to train these models.

Comparison with previous training recipes for ViT

In Figure 6.4, we compare training procedures used to pre-train the ViT architecture either on ImageNet-1k and ImageNet-21k. Our procedure outperforms existing recipes with a large margin. For instance, with ImageNet-21k pre-training we have an improvement of +3.0% with ViT-L in comparison to the best approach. Similarly, when training from scratch on ImageNet-1k we improve the accuracy by +2.1% for ViT-H compared to the previous best approach, and by +4.3% with the best approach that does not use EMA. See also detailed results in our appendices.

Image Classification

ImageNet-1k. In Table 6.7 we compare ViT architectures trained with our training recipes on ImageNet-1k with other architectures. We include a comparison with the recent SwinTransformers [START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF] and ConvNeXts [START_REF] Liu | A convnet for the 2020s[END_REF].

ImageNet-21k. In Table 6.8 we compare ViT architecture pre-trained on ImageNet-21k with our training recipe then finetuned on ImageNet-1k. We can observe that the findings are similar to what we obtained on ImageNet-1k only.

Comparison with BerT-like pre-training. In Table 6.9 we compare ViT models trained with our training recipes with ViT trained with different BerT-like approaches. We observe that for an equivalent number of epochs our approach gives comparable performance on ImageNet-1k and better on ImageNet-v2 as well as in segmentation on Ade. For BerT like pre-training we compare our method with MAE [START_REF] He | Masked autoencoders are scalable vision learners[END_REF] and BeiT [START_REF] Bao | Beit: Bert pre-training of image transformers[END_REF] because they remain relatively simple approaches with very good performance. As our approach does not use distillation or multi-crops we have not made a comparison with approaches such as PeCo [START_REF] Dong | Peco: Perceptual codebook for bert pre-training of vision transformers[END_REF] which use an auxiliary model as a psychovisual loss and iBoT [START_REF] Zhou | ibot: Image bert pre-training with online tokenizer[END_REF], which uses multi-crop and an exponential moving average of the model.

Significance of measurements

In this subsection we study first the Significance of measurements with ResNet-50 architectures and A2 training strategy from Wigthman et al. [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF] We then extend this study to the ViT architecture with our new training procedure.

Seed experiments For a fixed set of choices and hyper-parameters, there is some inherent variability on the performance due to the presence of random factors in several stages. It is the case for the weight initialization, but also for the optimization procedure itself. For instance the order in which the images are fed to the network through batches depends on a random generator. This variability raises the question of the significance of accuracy measurements. For this purpose, we measure the distribution of performance when changing the random generator choices. This is conveniently done by changing the seed, as previously done by Picard [START_REF] Picard | ) is all you need: On the influence of random seeds in deep learning architectures for computer vision[END_REF], who concludes to the existence of outliers significantly outperforming or underperforming the average outcome of a training procedure. In Figure 6.7, we report several statistics on the performance with the A2 training [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF] procedure and ResNet50 architecture when considering 100 distinct seeds (from 1 to 100, note that we have used seed=0 in all other experiments). In these experiments, we focus on the performance reached at the end of the training: we do not select the maximum obtained by intermediate checkpoints in the last epochs. This would have a similar effect as a seed selection, but the measures would not be IID and less disentangled from the training duration itself. Variability along epochs and discussion on early stopping. Figure 6.9 shows how the performance variability evolves along epochs, where we observe the variance of the score is very high until the last 100 epochs. In Figure 6.10, we additionally measure the performance early in the training and compare it to the final performance. It is only towards the end of the training that one can determine the most interesting seeds. We conclude that we can not apply an early stopping rule based on early results.

Comparing architectures and training procedures: a show-case of contradictory conclusions

In this paragraph we case how difficult it is to compare two architectures, even under the same training procedure, or conversely how it is difficult to compare different procedures with a single architecture. We choose ResNet-50 and DeiT-S. The latter [START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF] is essentially a ViT parameterized so that it has approximately the same number of parameters as a ResNet-50. For each architecture, we have put a significant effort in optimizing the procedure to maximize the performance on Imagenet-val with the same 300 epochs training schedule and same batch size. Under this constraint, the best training procedure that we have designed for ResNet-50 is A2. We denote by T2 the corresponding training procedure for DeiT-S. Note that this training procedure achieves a significantly better performance on Imagenet-val than the one initially proposed for DeiT-S ( As one can see, by choosing the procedure optimized for any of the two architectures, one may conclude that this architecture is better based on ImageNet-val accuracy: with A2 training, ResNet50 is better than DeiT-S, with T2 training, DeiT-S is better than ResNet50. The measurements on ImageNet-v2 would lead to a different conclusion, as DeiT-S is better for both procedure. But even in that case, by focusing on A2 one may conclude that the difference between ResNet-50 and DeiT-S with A2 training is not statistically significant: 67.9% vs 68.1%. Conversely, if the goal is to compare A2 to T2, we could draw different conclusions on ImageNet-val if considering a single architecture. This highlights the difficulty of comparing two architectures in a fair way. The training procedure has interactions with the choice of architecture. It is completely possible to overfit an architecture on a training procedure. 6.7 and Table 6.8. We display a linear interpolation of all points in order to compare the generalization capability (or level of overfitting) for the different models.

After highlighting the interest of overfitting control with the ResNet50 and the training procedure of Wightman et al [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF]. we study it with our training procedure and the ViT architecture.

Overfitting evaluation with DeiT III The comparison between ImageNet-val and -v2 is a way to quantify overfitting [START_REF] Touvron | Fixing the train-test resolution discrepancy: Fixefficientnet[END_REF], or at least the better capability to generalize in a nearby setting without any fine-tuning 1 . In Figure 6.11 we plot ImageNet-val top-1 accuracy vs ImageNet-v2 top-1 accuracy in order to evaluate how the models performed when evaluated on a test set never seen at validation time. Our models overfit significantly than all other models considered, especially on ImageNet-21k. This is a good behaviour that validates the fact that our restricted choice of hyper-parameters and variants in our recipe does not lead to (too much) overfitting. In order to evaluate the quality of the ViT models learned through our training procedure we evaluated them with transfer learning tasks. We focus on the performance of ViT models 1. Caveat: The measures are less robust with -V2 as the number of test images is 10000 instead of 50000 for ImageNet-val. This translates to a higher standard deviation (about 0.2%). We also report results with convolutional architectures for reference. For consistency we keep our crop ratio equal to 1.0 on all datasets. Other works use 0.875, which is better for iNat-19 and iNat-18, see Figure 6 6.11. In Figure 6.6 we measure the impact of the crop ratio at inference time on transfer learning results. We observe that on iNaturalist this parameter has a significant impact on the performance. As recommended in the paper Three Things [START_REF] Touvron | Three things everyone should know about vision transformers[END_REF] we finetune only the attention layers for transfer learning experiments on Flowers, this improves performance by 0.2%.

Downstream tasks and other architectures

Semantic segmentation

We evaluate our ViT baselines models (400 epochs schedules for ImageNet-1k models and 90 epochs for ImageNet-21k models) with semantic segmentation experiments on ADE20k dataset [START_REF] Zhou | Scene parsing through ade20k dataset[END_REF]. This dataset consists of 20k training and 5k validation images with labels over 150 categories. For the training, we adopt the same schedule as in Swin: 160k iterations with UperNet [START_REF] Xiao | Unified perceptual parsing for scene understanding[END_REF]. At test time we evaluate with a single scale and multi-scale. Our UperNet implementation is based on the XCiT [START_REF] El-Nouby | Xcit: Cross-covariance image transformers[END_REF] repository. By default the UperNet head uses an embedding dimension of 512. In order to save compute, for small and tiny models we set it to the size of their working dimension, i.e. 384 for small and 192 for tiny. We keep the 512 by default as it is done in XCiT for other models. Our results are reported in Table 6.12. We observe that vanilla ViTs trained with our training recipes have a better FLOPs-accuracy trade-off than recent architectures like XCiT or Swin.

Training with others architectures

In Table 6.13 we measure the top-1 accuracy on ImageNet-val, ImageNet-real and ImageNet-v2 with different architecture train with our training procedure at resolution 224×224 on ImageNet-1k only. We can observe that for some architectures like PiT or CaiT our training method will improve the performance. For some others like TNT our approach is neutral and for architectures like Swin it decreases the performance. This is consistent with the findings of Wightman et al. [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF] and illustrates the need to improve the training procedure in conjunction to the architecture to obtain robust conclusions. Indeed, adjusting these architectures while keeping the training procedure fixed can probably have the same effect as keeping the architecture fixed and adjusting the training procedure. That means that with a fixed training procedure we can have an overfitting of an architecture for a given training procedure. In order to take overfitting into account we perform our measurements on the ImageNet val and ImageNet-v2 to quantify the amount of overfitting.

Conclusion

This chapter makes a simple contribution: it proposes improved baselines for vision transformers trained in a supervised fashion that can serve (1) as a comparison basis for new architectures;

(2) for other training approaches such as those based on self-supervised learning.

To summarize the main ingredients are as follows:

• We build upon the work of Wightman et al. [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF] introduced for ResNet50. In particular we adopt a binary cross entropy loss for ImageNet-1k training. We adapt this method by including ingredients that significantly improve the training of large ViT [START_REF] Touvron | Going deeper with image transformers[END_REF], namely stochastic depth [START_REF] Huang | Deep networks with stochastic depth[END_REF] and LayerScale [START_REF] Touvron | Going deeper with image transformers[END_REF], explained in chapter 3.

• 3-Augment: is a simple data augmentation inspired by that employed for self-supervised learning. It works better than the usual automatic/learned data-augmentation employed to train vision transformers like RandAugment [START_REF] Ekin | RandAugment: Practical automated data augmentation with a reduced search space[END_REF].

• Simple Random Cropping is more effective than Random Resize Cropping when pretraining on a larger set like ImageNet-21k.

• A lower resolution at training time. This choice reduces the train-test discrepancy [START_REF] Touvron | Fixing the train-test resolution discrepancy[END_REF] but has not been much exploited with ViT. We observe that it also has a regularizing effect for the largest models by preventing overfitting. For instance, for a target resolution of 224 × 224, a ViT-H pre-trained at resolution 126 × 126 (81 tokens) achieves a better performance on ImageNet-1k than when pre-training at resolution 224 × 224 (256 tokens). This is also less demanding at pre-training time, as there are 70% fewer tokens. From this perspective it offers similar scaling properties as masked-autoencoders [START_REF] He | Masked autoencoders are scalable vision learners[END_REF].

Our "new" training strategies do not saturate with the largest models, making another step beyond the Data-efficient image Transformer (DeiT) introduced in chapter 3. As a result, we obtain a competitive performance in image classification and segmentation, even when compared to recent popular architectures such as SwinTransformers [START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF] or modern convnet architectures like ConvNext [START_REF] Liu | A convnet for the 2020s[END_REF]. Below we point out a few interesting outcomes.

• We leverage models with more capacity even on midsize datasets. For instance we reach 85.2% in top-1 accuracy when training a ViT-H on ImageNet1k only, which is an improvement of +5.1% over the best ViT-H with supervised training procedure reported in the literature at resolution 224×224.

• Our training procedure for ImageNet-1k allows us to train a billion-parameter ViT-H (52 layers) without any hyper-parameter adaptation, just using the same stochastic depth droprate as for the ViT-H. It attains 84.9% at 224×224, i.e., +0.2% higher than the corresponding ViT-H trained in the same setting.

• Without sacrificing performance, we divide by more than 2 the number of GPUs required and the training time for ViT-H, making it effectively possible to train such models with a reduced amount of resources. This is thanks to our pre-training at lower resolution, which reduces the peak memory.

• For ViT-B and ViT-L models, our supervised training approach is on par with BerT-like self-supervised approaches [START_REF] Bao | Beit: Bert pre-training of image transformers[END_REF][START_REF] He | Masked autoencoders are scalable vision learners[END_REF] with their default training setting and when using the same level of annotations and less epochs, both for the tasks of image classification and of semantic segmentation.

• With this improved training procedure, a vanilla ViT closes the gap with recent state-of-the art architectures, often offering better compute/performance trade-offs. Our models are also comparatively better on the additional test set ImageNet-V2 [START_REF] Recht | Do ImageNet classifiers generalize to ImageNet[END_REF], which indicates that our trained models generalize better to another validation set than most prior works.

• An ablation on the effect of the crop ratio employed in transfer learning classification tasks. We observe that it has a noticeable impact on the performance but that the best value depends a lot on the target dataset/task.

We hope that this very strong baseline will stimulate the discussion about good practice to learn huge foundation models. Our experiments have also gathered a few insights on how to train ViT for larger models with reduced resources without hurting accuracy, allowing us to train a one-billion parameter model with 4 nodes of 8 GPUs.

C h a p t e r

C O N C L U S I O N

We summarise in the following our main contributions:

Grafit. In the coarse-to-fine representation learning context presented in Chapter 2, we make the following contributions: We propose Grafit, a method to learn image representations at a finer granularity than the one offered by the annotation at training time. Inspired by the recent self-supervised BYOL [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF] instance learning approach, we carefully design a joint learning scheme integrating instance and coarse-label based classification losses. For the latter one, we exploit a knn strategy but with a dedicated process to manage the memory both at train-time and for inference at test-time. We propose two original use-cases to deeply evaluate coarse-trained fine-grained testing evaluation, for which Grafit exhibits outstanding performance. For instance, we improve by +16.3% the top-1 accuracy for on-the-fly classification on ImageNet. This improvement is still +9.5% w.r.t. our own stronger baseline. Grafit also improves transfer learning: our experiments show that our representation discriminates better at a finer granularity.

Transformers: DeiT & CaiT. In Chapter 3 we show how to train transformer-based image classification neural networks on ImageNet only. With DeiT, we report large improvements over previous ViT [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] results. We introduce a novel distillation procedure based on a token-based strategy. With CaiT, we propose a new method to train deeper models called LayerScale and a new architecture designed to extract the information inside the architecture called class attention. In Chapter 6 we revisit the training strategy for vision transformers. We propose a new data-augmentation approach called 3Augment. We adapt the cropping approach according to the datasets size. We called our whole training procedure DeiT III, with which we achieve competitive performance on image classification and semantic segmentation with vanilla vision transformers. We show the importance of the interaction between architecture and training procedure by comparing our approach with BerT like pre-training and discussing the performance of DeiT III when applied to different architectures. We have also proposed additional improvements (not detailed in Chapter 6) for the ViT architectures in our last paper Three things everyone should know about Vision Transformers, we refer to the publication for more details.

ResMLP & PatchConvnet. We further investigate patch-based residual architectures, alternating feed-forward blocks and linear patch interaction layers. Thanks to modern training strategies similar to ours proposed for transformers, we achieve an unexpectedly high performance on ImageNet classification benchmarks. In Chapter 5, we introduce an attention-based pooling layer, which offers visualization properties and interpretability by design. In addition, we propose a full patch-based ConvNet with no pyramidal structure design to best exploit our pooling layer. We demonstrate its interest on several computer vision tasks: classification, segmentation and detection.

In this thesis, we have studied the training procedures and architectures that can be used in computer vision, mostly for image classification. We have shown that it is possible to achieve a competitive performance in image classification with transformer architectures without using hundreds of millions of annotated images. We also showed that a MLP-like architecture could obtain reasonable performance on different computer vision tasks and on NLP tasks. We have highlighted the impact of the interactions between the training procedures and the architectures, and thus the need to revisit the baselines with modern procedures to get consistent conclusions.

Perspectives. With a proper training procedure [START_REF] Steiner | How to train your vit? data, augmentation, and regularization in vision transformers[END_REF][START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF][START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF], Transformers achieve interesting performance/complexity trade-offs. Although we have studied the training procedures (see Chapter 3 and 6), much remains to be done. Transformers seem more efficient than convnet when we have a large dataset (like JFT-300M or JFT-3B) as shown by Dai et al. [START_REF] Dai | Coatnet: Marrying convolution and attention for all data sizes[END_REF]. Although there are some studies interested in the scaling of vision transformers [START_REF] Dai | Coatnet: Marrying convolution and attention for all data sizes[END_REF][START_REF] Riquelme | Scaling vision with sparse mixture of experts[END_REF][START_REF] Zhai | Scaling vision transformers[END_REF], we are still far from obtained effective models with more than 100B parameters as it is the case in NLP [START_REF] Tom | Language models are few-shot learners[END_REF][START_REF] Chowdhery | Palm: Scaling language modeling with pathways[END_REF][START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF]. BerT-like approaches [START_REF] Bao | Beit: Bert pre-training of image transformers[END_REF][START_REF] He | Masked autoencoders are scalable vision learners[END_REF] also seem very promising for training bigger models. Indeed, the masking task seems to be less prone to overfitting, which is essential for this kind of models. Let us mention two challenging use-cases:

• Vision transformers by retrieving from trillions of tokens. Transformers exploiting an extra token base with retrieval in its attention process as illustrated in Figure 7.1 with the retro method [START_REF] Borgeaud | Improving language models by retrieving from trillions of tokens[END_REF], are very successful approaches in NLP. This kind of approach is not yet used in vision. However, this could have many advantages, for example, for classification tasks with non-fixed classes. Indeed, using an external memory allows the model to include parts that are non-parametric (as in Chapter 2). This allows the behaviour of the network to be modified without the need to re-train the weights. Indeed, it is only necessary to update the external database. This also has the advantage of not having to encode all the useful information in the weights of the network, which can be difficult if we have few data for certain concepts we want to encode.

• Vision & language joint representation. Since Radford et al. [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF] (see Figure 7.2) joint models for vision and language become more and more popular. Indeed, since transformers have become very powerful in vision, using this architecture together in vision and language seems very promising. Being able to align text and vision representations allows to exploit new properties by contextualising the output of the model in some way thanks to the text. Models combining vision and language appear to be able to handle different tasks without requiring a complete fine tuning as illustrated in the Flamingo [5] paper. These approaches are thus very promising given the different tasks they can handle. However, this field is quite new, and the architectures and training procedures are far from being fully understood.

Having a better knowledge of how to scale these models, as well as finding the right way to design these architectures and the way to train them, seems to be a very important aspect. Indeed, as we have highlighted in Chapter 6, the interaction between architecture and training should plays a key role in the performance of such models. 
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 11 Figure 1.1 -Illustration of different tasks usually studied in computer vision. Credit Lin et al. Microsoft COCO: Common Objects in Context.
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 12 Figure 1.2 -Illustration of a multi-layers perceptrons (MLP). Credit: Martin Cenek, Researchgate.
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 13 Figure 1.3 -Illustration of the convolutional neural network AlexNet. Credit: Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks.
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 14 Figure 1.4 -Illustration of the vision transformers architecture (ViT). credit: Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
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 15 Figure 1.5 -Illustration of different data augmentation on an image with the label dog. The different data augmentation don't change the concept inside the image. Credit: Chen et al. A Simple Framework for Contrastive Learning of Visual Representations.
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 21 Figure 2.1 -Cumulative energy of the PCA decomposition of CIFAR-100 image embeddings, depending on the granularity of the training labels (20 or 100 classes).
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 22 Figure 2.2 depicts our approach at training time. In this section, we discuss the different components and training losses. Then, we detail how we produce the category-level ranking, and how we perform on-the-fly classification.
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 22 Figure2.2 -Illustration of our method at train time. The convnet trunk that receives gradient is f θ and is used to update the target network f ξ as a moving average. The database of neighbors is updated by averaging embedding in each mini-batch with corresponding embeddings in the database.
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 2 Figure 2.3 -Category-level retrieval orders images based on their semantic similarity to a query. Our Grafit method, although it has used only coarse labels (like 'pyrgus') at training time, produces a ranking consistent with fine-grained labels. Unsupervised learning is a particular case of this task, in which the set of coarse labels is reduced to a singleton. Image credit:[2].
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 25 Figure 2.5 presents t-SNE visualizations[START_REF] Van Der Maaten | Visualizing data using t-SNE[END_REF] of the latent spaces associated with the baseline and Grafit for images associated with a sub-hierarchy of iNaturalist-2018.
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 24 Figure 2.4 -Evaluation on iNaturalist-2018[START_REF] Van Horn | The inaturalist challenge 2018 dataset[END_REF] with and left: train=test granularity right: test at finest granularity (species). We compare our method Grafit, SNCA+, ClusterFit+ and Baseline. Top: on-the-fly kNN classification (top-1 accuracy); bottom: category-level retrieval (mAP).
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 26 Figure 2.6 -CIFAR-100: For given test images (top), we present the ranked list of train images most similar with embeddings obtained with a baseline method (top) and our method (bottom) train with coarse labels. Images in green indicate that the image belongs to the correct fine class; orange indicates the correct coarse class but incorrect fine class. In this example, all results are correct w.r.t. coarse granularity.
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 1271281293 Figure 2.7 -We compare Grafit and Baseline for different training granularity. We rank the 10 closest images in the iNaturalist-2018 train set for a query image in the test set. The ranking is obtained with a cosine similarity on the features space of each of the two approaches. See Table7.1 for image copyrights.
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 231 Figure 3.1 -Our distillation procedure: we simply include a new distillation token. It interacts with the class and patch tokens through the self-attention layers. This distillation token is employed in a similar fashion as the class token, except that on output of the network its objective is to reproduce the (hard) label predicted by the teacher, instead of true label. Both the class and distillation tokens input to the transformers are learned by back-propagation.
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 32 Figure 3.2 -Distillation on ImageNet[START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] with DeiT-B: performance as a function of the number of training epochs. We also provide the performance without distillation but it saturates after 400 epochs.
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 33 Figure 3.3 -Throughput and accuracy on ImageNet of our methods compared to EfficientNets, trained onImageNet-1k only. The throughput is measured as the number of images processed per second on a V100 GPU. DeiT-B is identical to VIT-B, but the training is more adapted to a data-starving regime. It is learned in a few days on one machine. The symbol ⚗ refers to models trained with our transformer-specific distillation.
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 34 Figure 3.4 -Normalization strategies for transformer blocks. (a) The ViT image classifier adopts prenormalization like Child et al.[START_REF] Child | Generating long sequences with sparse transformers[END_REF]. (b) ReZero/Skipinit and Fixup remove the η normalization and the warmup (i.e., a reduced learning rate in the early training stage) and add a learnable scalar initialized to α = 0 and α = 1, respectively. Fixup additionally introduces biases and modifies the initialization of the linear layers. Since these methods do not converge with deep vision transformers, (c) we adapt them by re-introducing the pre-norm η and the warmup. Our main proposal (d) introduces a per-channel weighting (i.e, multiplication with a diagonal matrix diag(λ1, . . . , λ d ), where we initialize each weight with a small value as λi = ε.
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 51 As previously indicated, Rezero, Fixup and T-Fixup do not converge when training DeiT off-the-shelf. However, if we re-introduce LayerNorm 5 and warmup, Fixup and T-Fixup achieve congervence and even improve training compared to the baseline DeiT.
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 35 Figure 3.5 -We measure the impact of stochastic depth on ImageNet with a DeiT-S with LayerScale for different depths. The drop rate of stochastic depth needs to be adapted to the network depth.
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 36 Figure3.6 -Analysis of the contribution of the residual branches (Top: Self-attention ; Bottom: FFN) for a network comprising 36 layers, without (red) or with (blue) Layerscale. The ratio between the norm of the residual and the norm of the main branch is shown for each layer of the transformer and for various epochs (darker shades correspond to the last epochs). For the model trained with layerscale, the norm of the residual branch is on average 20% of the norm of the main branch. We observe that the contribution of the residual blocks fluctuates more for the model trained without layerscale and in particular is lower for some of the deeper layers.

  -training. LayerScale makes it possible to get increased performance by training deeper models. At the end of training we obtain a specific set of scaling factors for each layer. Inspired by the lottery ticket hypothesis [75], one question that arises is whether what matters is to have the right scaling factors, or to include these learnable weights in the optimization procedure. In other terms, what happens if we re-train the model with the scaling factors obtained by a previous training?In this experiment below, we try to empirically answer that question. We compare the performance (top-1 validation accuracy, %) on ImageNet-1k with DeiT-S architectures of different depths. Everything being identical otherwise, in the first experiment we use LayerScale, i.e. we have learnable weights initialized at a small value ε. In the control experiment we use fixed scaling factors initialised at values obtained by the LayerScale training. LayerScale 80.5 81.7 82.4 82.9 Re-trained with fixed weights 80.6 81.5 81.2 81.6
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 37 Figure 3.7 -In the ViT transformer (left), the class embedding (CLS) is inserted along with the patch embeddings.This choice is detrimental, as the same weights are used for two different purposes: helping the attention process, and preparing the vector to be fed to the classifier. We put this problem in evidence by showing that inserting CLS later improves performance (middle). In the CaiT architecture (right), we further propose to freeze the patch embeddings when inserting CLS to save compute, so that the last part of the network (typically 2 layers) is fully devoted to summarizing the information to be fed to the linear classifier.
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 123439310 Figure 3.9 -Visualization of the attention maps in the class-attention stage, obtained with a XXS model. For each image we present two rows: the top row correspond to the four heads of the attention maps associated with the first CA layer. The bottom row correspond to the four heads of the second CA layer.
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 41 Figure 4.1 -The ResMLP architecture. After linearly projecting the image patches into high dimensional embeddings, ResMLP sequentially processes them with (1) a cross-patch linear sublayer; (2) a cross-channel two-layer MLP. The MLP is the same as the FCN sublayer of a Transformer. Each sublayer has a residual connection and two Affine element-wise transformations.
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 2042 Figure 4.2 -Visualisation of the linear layers in ResMLP-S24.For each layer we visualise the rows of the matrix A as a set of 14 × 14 pixel images, for sake of space we only show the rows corresponding to the 6×6 central patches. We observe patterns in the linear layers that share similarities with convolutions.
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 43 Figure 4.3 -Sparsity of linear interaction layers.For each layer (linear and MLP), we show the rate of components whose absolute value is lower than 5% of the maximum. Linear interaction layers are sparser than the matrices involved in the per-patch MLP.
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 44 Figure 4.4 -Top-1 accuracy on ImageNet-V2 vs. ImageNet-val. ResMLPs tend to overfit slightly more under identical training method. This is partially alleviated with by introducing more regularization (more data or distillation, see e.g., ResMLP-B24/8-distil).
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 51 Figure 5.1 -Detail of the full model, with the convolutional stem on the left, the convolutional main block in the middle, and here toppled with multi-class attention-based pooling on the right.
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 52 Figure 5.2 -Analysis of the accuracy as a function of width (S: d = 384, B: d = 768) and depth N .Depending on the performance criterion (importance of latency, resolution, FLOPs), one could prefer either deeper models or wider models. See Bello et al.[START_REF] Bello | Revisiting ResNets: Improved training and scaling strategies[END_REF] for a study on the relationship between model size, resolution and compute.
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 53 Figure 5.3 -Peak memory for varying resolution and different models. Some models like Swin require a full training at the target resolution. Our model scales linearly as a function of the image surface, like other ConvNets. This is in contrast to most attentionbased models, which abide by a quadratic complexity for images large enough.
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 54 Figure 5.4 -Accuracy at different resolutions for the S60 model. We analyze models trained at size 224 or fine-tuned (FT) @384, and compare them to models fine-tuned at the target inference size to show the tolerance to test-time resolution changes. The best model are pre-trained on ImageNet21k at resolution 224 or 320 and fine-tuned at test-time resolution.
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 9055 Figure 5.5 -We augment convolutional neural networks with a learned attention-based aggregation layer.We visualize the attention maps for classification for diverse models. We first extract attention maps from a regular ViT-S[START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Hugo Touvron | Training data-efficient image transformers & distillation through attention[END_REF]. Then we consider convnets in which we replace the average pooling by our learned attention-based aggregation layer. Unlike ViT, this layer directly provides the contribution of the patches in the weighted pooling. This is shown for a "ResNet-50[START_REF] He | Deep residual learning for image recognition[END_REF]", and with our new simple patch-based model (S60) that we introduce to increase the attention map resolution. We can specialize this attention per class, as shown with S60 †.
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 56 Figure 5.6 -We provide three images for which the attention-based aggregation stage is specialized so as to provide one attention map per ImageNet classes. We display the attention for the top-3 classes w.r.t. the model prediction.
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 558 Figure 5.8 -Effect of stochastic depth on the performance for varying training duration for a PatchConvNet-B120 model trained @ resolution 224. The corresponding hyper-parameter (drop-path) is selected among 0.3, 0.4 or 0.5 in that case, which means that we randomly drop up to half of the layers. Smaller values of the drop-rate converge more rapidly but saturate.
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 616263 Figure 6.1 -Illustration of the 3 types of data-augmentations used in 3-Augment.

Figure 6 . 5 -

 65 Figure 6.5 -Top-1 accuracy on ImageNet-1k only at resolution 224 × 224 with our training recipes and a different number of epochs

Figure 6 . 8 -

 68 Figure 6.8 -Distribution of the performance on ImageNetval with the A2 procedure. It is measured with 100 different seeds. We also depict the Gaussian-fit of this distribution.
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 69 Figure 6.9 -We show how the mean, standard deviation, minimum and maximum of the top-1 accuracy on ImageNet-val evolves during training with the A2 procedure (ResNet-50 architecture). (Left) For all 300 training epochs. (Right) Same but for the last epochs.We note that the variance in accuracy is high at the beginning, see for instance at epoch 100, where the difference in performance can be as large as 10% in accuracy. Towards the end of the training, most of the networks converge to similar values and the range significantly decreases in the last 50 epochs. Credit: this figure and experiment was inspired by Picard[START_REF] Picard | ) is all you need: On the influence of random seeds in deep learning architectures for computer vision[END_REF].
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 611 Figure 6.11 -Generalization experiment: top-1 accuracy on ImageNet-1k val versus ImageNet-v2 for models in Table6.7 and Table6.8. We display a linear interpolation of all points in order to compare the generalization capability (or level of overfitting) for the different models.
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 71 Figure 7.1 -Illustration of transformers with retrieval mechanisms as in used in the Retro transformers. Credit: Borgeaud et al. "Improving language models by retrieving from trillions of tokens".
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 72 Figure 7.2 -Illustration of the Clip method. Credit: Radford et al. "Learning Transferable Visual Models From Natural Language Supervision".
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Table 2 .

 2 2 -Top-1 accuracy of a ResNet-18 on CIFAR-100 for different training schemes. We report the results after finetuning of the linear classifier on the fine labels (see Section 2.2). The Triplet training is unsupervised, therefore the results for the two columns are identical.

	1 (%)

Table 2 .

 2 3 -Datasets used for our different tasks. The four top datasets offer two or more levels of granularity, we use them for all coarse-to-fine tasks. The bottom three are fine-grained datasets employed to evaluate transfer learning performance.

	Dataset	Train size Test size	#classes
	CIFAR-100 [124]	50,000	10,000	20/100
	ImageNet [168]	1,281,167	50,000	127/1000
	iNaturalist 2018 [104]	437,513	24,426 6/. . . /8,142
	iNaturalist 2019 [103]	265,240	3,003 6/. . . /1,010
	Flowers-102 [144]	2,040	6,149	102
	Stanford Cars [121]	8,144	8,041	196
	Food101 [23]	75,750	25,250	101

iNaturalist-2018 offers 7 granularity levels from the most general to the most specific, that follow the biological taxonomy: Kingdom (6 classes), Phylum (25 classes), Class (57 classes), Order (272 classes), Family (1,118 classes), Genus (4,401 classes) and Species (8,142 classes). We consider pairs of (coarse,fine) granularity levels in our experiments. iNaturalist-2019 is similar to iNaturalist-2018 with fewer classes and images, and yields similar conclusions.

Flowers-102, Stanford Cars and Food101 are fine-grained benchmarks with no provided coarse labelling. Therefore we can use them for the transfer learning task.

Table 2 .4 -Coarse-to-fine: comparison with the state of the art for

 2 category-level retrieval (mAP, %) and kNN classification (top-1, %), with the ResNet50 architecture. We compare Grafit with the state of the art[START_REF] Wu | Improving generalization via scalable neighborhood component analysis[END_REF] and our stronger baselines. We highlight methods that use more parameters (32.9M vs ∼23.5M), we refers the reader to Table2.7 for more details.

	Method	CIFAR-100 kNN mAP	ImageNet-1k kNN mAP
	Baseline, Wu et al. [220]	54.2	_	48.1	_
	SNCA, Wu et al. [220]	62.3	_	52.8	_
	Baseline (ours)	71.8	42.5	54.7	22.7
	ClusterFit+	72.5	23.0	59.5	12.7
	SNCA+	72.2	35.9	55.4	31.8
	Grafit FC	75.6	55.0	69.1	44.4
	Grafit	77.7	55.7	69.1	42.9

Table 2 .

 2 5 -kNN evaluation on iNaturalist-2018 with different semantic levels. The symbol ∅ refers to the unsupervised case (a unique class). We compare with the best competing method according to Table2.4.

		Train →	∅	Kingdom Phylum class Order Family Genus Species
		↓Test / #classes →	1	6	25	57	272	1,118	4,401	8,142
		Kingdom 70.9	94.7	95.0	95.3	95.6	96.2	96.3	96.1
	ClusterFit+	Phylum 48.8 Class 40.4 Order 17.1 Family 5.6 Genus 0.9	87.4 80.2 54.5 38.3 26.7	90.3 83.8 59.0 42.1 29.5	90.7 85.7 61.4 44.4 31.5	91.1 86.7 70.8 54.3 40.1	92.6 88.8 73.9 63.0 49.4	92.6 88.8 74.3 64.2 53.9	92.2 88.2 72.3 61.9 51.7
		Species	0.3	21.8	23.7	25.2	32.7	40.3	44.7	43.4
		Kingdom 95.5	98.1	98.2	98.2	98.2	98.2	98.4	98.3
		Phylum 90.0	94.1	96.6	96.7	96.8	96.7	96.9	96.7
	Grafit	Class 82.2 Order 54.0 Family 33.7	87.5 61.7 42.1	90.9 66.9 48.7	94.5 72.7 55.1	94.9 87.1 70.9	94.9 87.5 81.8	95.0 87.6 82.4	95.0 87.3 82.1
		Genus 20.5	27.0	33.5	39.5	54.2	64.6	75.6	75.5
		Species 15.9	20.4	25.5	30.8	42.7	51.2	61.9	67.7

Table 2 .

 2 6 -Category-retrieval evaluation (mAP, %) on iNaturalist-2018 with different semantics levels. We compare with the best baseline according to Table2.4.

		Train → Kingdom Phylum class Order Family Genus Species
		↓Test / #classes →	6	25	57	272	1,118	4,401	8,142
		Kingdom	97.6	83.3	75.9	59.2	56.0	54.9	55.0
		Phylum	59.8	91.7	79.4	49.1	35.0	32.3	32.2
	SNCA+	Class Order Family	41.3 9.09 2.24	73.1 24.9 6.43	89.9 35.7 11.2	49.2 77.9 35.7	28.1 35.3 68.4	23.6 18.0 29.1	23.0 15.0 21.7
		Genus	0.39	2.47	5.03	18.1	36.6	60.5	46.0
		Species	0.19	1.86	3.80	12.8	26.4	46.0	54.9
		Kingdom	98.6	88.3	79.7	60.8	58.0	55.9	55.5
		Phylum	67.8	97.2	82.1	50.9	38.9	34.2	33.0
	Grafit	Class Order Family	50.1 17.7 8.70	74.9 30.7 13.2	95.4 42.7 18.0	51.2 88.3 43.9	32.3 42.3 83.1	25.9 21.1 34.8	24.1 16.2 24.2
		Genus	6.78	9.72	13.5	29.0	46.9	77.2	53.9
		Species	6.45	9.02	12.1	23.6	35.6	55.4	70.0

Table 2

 2 

	.8 compares the performance gap of

Table 2 .

 2 7 -Ablation study on CIFAR-100 and ImageNet with ResNet50 architecture. We report results both for on-the-fly classification (kNN classifier, top-1 accuracy, %) and category-level retrieval (mAP, %). The rows corresponding to the main baselines and methods discussed through this chapter are highlighted: our baseline and improved SNCA+ in grey and red, and our two variants Grafit-FC and Grafit in blue. The last row is the result that Grafit would obtain with a perfect coarse classification.

	Loss LCE Lknn Linst	knn head proj. Pθ	coarse cond.	CIFAR-100 kNN mAP kNN mAP #Params ImageNet-1k
	✓	_	_	_	_		71.8 42.5	54.7 22.7	23.5M
	✓	_	_	_	✓		71.8 43.1	54.7 24.4	23.5M
	_	_	✓	_	_		54.3 14.3	41.7 3.47	23.5M
	✓	_	✓	_	_		76.9 51.0	65.0 26.0	23.5M
	_	✓	_	FC	_		70.0 39.7	57.8 30.7	23.8M
	_	✓	✓	FC	_		75.6 53.6	69.1 41.7	23.8M
	_	✓	✓	FC	✓		75.6 55.0	69.1 44.4	23.8M
	_	✓	_	MLP	_		72.2 35.9	55.4 31.8	32.9M
	_	✓	_	MLP	✓		72.2 41.4	55.4 32.9	32.9M
	_	✓	✓	MLP	_		77.7 52.9	69.1 39.4	32.9M
	_	✓	✓	MLP	✓		77.7 55.7	69.1 42.9	32.9M
	_	✓	✓	MLP	oracle	77.7 59.3	69.1 47.2	32.9M
	Table 2.8 -We compare coarse-to-fine and fine-to-fine context with mAP (%), kNN (top-1, %) and fine-tuning
	(FT) with fine labels (top-1, %) on ImageNet.			
			Method	Train Coarse		Train Fine
			(with ResNet50) mAP kNN	FT	mAP kNN	FT
			Baseline	22.7	54.7	78.1	51.5	78.0	79.3
			SNCA+	31.8	55.4	77.9	72.0	79.1	77.4
			Grafit FC	44.4	69.1	78.3	72.4	79.2	78.5
			Grafit	42.9	69.1	77.9	71.2	79.6	78.0

Table 2 .

 2 9 -Comparison of transfer learning performance for different pre-training methods. All methods use a ResNet-50 pre-trained on Imagenet. The training procedues are the same (except the result reported for ClusterFit[START_REF] Yan | Clusterfit: Improving generalization of visual representations[END_REF]). We report the top-1 accuracy (%) with a single center crop evaluation at resolution 224 × 224. See Table2.15 of Appendix 2.5.4 for additional results with other architectures.

	Dataset		Baseline	ClusterFit	[233]	ClusterFit+	SNCA+	Grafit	Grafit FC
	Flowers-102		96.2	_	96.2 98.2 98.2 97.6
	Stanford Cars	90.0	_	89.4 92.5 92.5 92.7
	Food101		88.9	_	88.9 88.8 89.5 88.7
	iNaturalist 2018 68.4	49.7	67.5 69.2 69.8 68.5
	iNaturalist 2019 73.7	_	73.8 74.5 75.9 74.6
	Table 2.10 -State of the art for transfer learning with pretrained ImageNet-1k models. We report top-1
	accuracy (%) with a single center crop. For Grafit we use the RegNetY-8.0GF [156] (39M params) with
	resolution 384 × 384 pixels that is 4× faster than EfficientNet-B7 at inference. "Res" refer to the inference
	resolution in pixels.							
			Best reported results (%)		Grafit
	Dataset	State of the art			# Params Res Top-1 Top-1
	Flowers-102	EfficientNet-B7 [187]	64M 600	98.8	99.1
	Stanford Cars	EfficientNet-B7 [187]	64M 600	94.7	94.7
	Food101	EfficientNet-B7 [187]	64M 600	93.0	93.7
	iNaturalist 2018 ResNet-152 [40]		60M 224	69.1	81.2
	iNaturalist 2019 -				-	-	-	84.1

Table 2 .

 2 11 -Category-level (mAP, %) and one-the-fly kNN classification (top-1, %) performance in a coarse-tofine setting on CIFAR-100 with different loss weighting. Our total loss is defined as Ltot(x) = L knn (g θ (x), y)+ λLinst(x) with λ being a real-valued coefficient.

	λ	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4
	mAP 35.9 46.3 49.6 51.4 52.4 52.9 52.8 52.4
	kNN 72.2 70.0 73.2 74.8 75.8 77.7 77.4 77.7
	Table 2.12 -Performance comparison (top-1 accuracy) with our ResNet-50 baseline and state of the art
	ResNet-50 on ImageNet. All results are with single center crop evaluation with image resolution 224 × 224.
		Method			Extra-data		Top-1 (%)
		ResNet-50 [94] PyTorch _			76.2	
		RandAugment [44]		_			77.6	
		CutMix [237]		_			78.6	
		Noisy-Student						

Table 2 .

 2 [START_REF] Bello | Revisiting ResNets: Improved training and scaling strategies[END_REF] -Performance comparison (top-1 accuracy) when learning and testing at different granularities (ResNet50). For CIFAR-100, there are 100 fine and 20 coarse concepts. ImageNet covers 1000 fine and 127 coarse concepts. We report the results of both the kNN classifier and of a linear classifier fine-tuned with the target granularity (FT).at the finest level. From the coarse to the finest level, we have 3 classes for Kingdom, 4 classes for Phylum, 9 classes for Class, 34 classes for Order, 57 classes for Family, 72 classes for Genus and 1,010 classes for Species.

		Method	↓ Test	Train Coarse kNN FT	Train Fine kNN FT
	CIFAR-100	Baseline SNCA+ Grafit Baseline SNCA+	Coarse Fine	89.3 ±0.1 88.4 ±0.3 90.6 ±0.1 71.8 ±0.3 72.2 ±0.3 82.0 ±0.4 81.7 ±0.1 82.9 ±0.1 89.4 ±0.2 90.3 ±0.1 90.5 ±0.2 88.9 ±0.3 88.8 ±0.1 90.2 ±0.1 90.6 ±0.1 90.6 ±0.3 90.9 ±0.2 82.3 ±0.2 82.7 ±0.2 82.7 ±0.2
		Grafit		77.7 ±0.2	83.7 ±0.2	83.2 ±0.3	83.7 ±0.2
	ImageNet-1k	Baseline SNCA+ Grafit Baseline SNCA+	Coarse Fine	87.0 ±0.1 87.7 ±0.1 88.4 ±0.1 54.7 ±0.2 55.4 ±0.2	87.6 ±0.1 87.5 ±0.1 87.3 ±0.1 78.1 ±0.1 77.9 ±0.1	87.4 ±0.1 88.9 ±0.1 89.2 ±0.1 78.0 ±0.1 79.1 ±0.1	87.9 ±0.1 87.2 ±0.1 87.7 ±0.1 79.3 ±0.1 77.4 ±0.1
		Grafit		69.1 ±0.2	77.9 ±0.1	79.6 ±0.1	78.0 ±0.1

Table 2 .

 2 14 -Evaluation on iNaturalist-2018/2019 with all combinations of training / testing semantic levels.

Table 2 .

 2 15 -Transfer learning task with various architectures pretrained on ImageNet with Grafit. We report the Top-1 accuracy (%) for the evaluation with a single center crop at resolution 224 × 224. 90.2 90.3 90.9 91.1 91.2 91.3 92.1 92.4 iNaturalist 2018 [104] 67.7 71.2 68.9 72.4 71.4 74.4 73.8 74.2 76.4 76.8 iNaturalist 2019 [103] 75.3 76.3 75.8 77.6 77.8 78.7 78.1 77.9 79.8 80.0

		ResNeXt50-	32x4	[230]	ResNeXt50D-	32x4	[96]	ResNeXt50D-	32x8	[96]	RegNety-	4GF	[156]	RegNety-	8GF	[156]
	# Params	25M	25M	48M	21M	39M
	Dataset	FC MLP FC MLP FC MLP FC MLP FC MLP
	Flowers-102 [144]	95.5 98.3 95.9 98.6 96.3 98.7 98.1 98.6 99.0 98.8
	Stanford Cars [121]	91.6 92.9 88.7 93.3 90.9 93.8 93.3 92.7 94.0 93.4
	Food101 [23]	89.6 89.9											

Table 2 .

 2 16 -Transfer learning with ResNet-50 pretrained on ImageNet. Comparison between different pretraining methods and two different classifiers trained on the target domain (a linear FC or an MLP). We report the top-1 accuracy (%) with a single center crop evaluation at resolution 224 × 224. iNaturalist 2018 [104] 65.0 68.4 64.7 69.2 64.2 67.5 65.6 69.8 65.2 68.5 iNaturalist 2019 [103] 72.8 73.7 73.1 74.5 71.8 73.8 74.1 75.9 73.9 74.6

	Dataset	Baseline	SNCA+	ClusterFit+	Grafit	Grafit FC

FC MLP FC MLP FC MLP FC MLP FC MLP Flowers-102 [144] 96.2 95.7 94.3 98.2 96.2 96.1 97.6 98.2 94.3 97.6 Stanford Cars [121] 90.0 89.8 91.6 92.5 89.4 89.3 91.4 92.5 91.4 92.7 Food101 [23] 88.2 88.9 88.7 88.8 88.5 88.9 88.9 89.5 88.5 88.7

Table 3 .

 3 1 -Variants of our DeiT architecture. The larger model, DeiT-B, has the same architecture as the ViT-B[START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]. The only parameters that vary across models are the embedding dimension and the number of heads, and we keep the dimension per head constant (equal to 64). Smaller models have a lower parameter count, and a faster throughput. The throughput is measured for images at resolution 224×224.

	Model	ViT model embedding #heads #layers #params	training	throughput
			dimension				resolution	(im/sec)
	DeiT-Ti	N/A	192	3	12	5M	224	2536
	DeiT-S	N/A	384	6	12	22M	224	940
	DeiT-B	ViT-B	768	12	12	86M	224	292

Table 3 .

 3 2 -We compare on ImageNet[START_REF] Russakovsky | ImageNet large scale visual recognition challenge[END_REF] the performance (top-1 acc., %) of the student as a function of the teacher model used for distillation.

	Teacher Models	Student: DeiT-B ⚗ acc. pretrain ↑384
	DeiT-B	81.8	81.9	83.1
	RegNetY-4GF	80.0	82.7	83.6
	RegNetY-8GF	81.7	82.7	83.8
	RegNetY-12GF 82.4	83.1	84.1
	RegNetY-16GF 82.9	83.1	84.2

Table 3 .

 3 4 -Disagreement analysis between convnet, image transformers and distillated transformers: We report the fraction of sample classified differently for all classifier pairs, i.e., the rate of different decisions. We include two models without distillation (a RegNetY and DeiT-B), so that we can compare how our distilled models and classification heads are correlated to these teachers.

	1 (%)

Table 3 .

 3 

	Dataset		Train size Test size #classes
	ImageNet [168]		1,281,167	50,000	1000
	iNaturalist 2018 [104]	437,513	24,426	8,142
	iNaturalist 2019 [103]	265,240	3,003	1,010
	Flowers-102 [144]		2,040	6,149	102
	Stanford Cars [121]		8,144	8,041	196
	CIFAR-100 [124]		50,000	10,000	100
	CIFAR-10 [124]		50,000	10,000	10
	Method RegNetY-16GF DeiT-B DeiT-B⚗
	Top-1	98.0	97.5	98.5

6 

-Datasets used for our different tasks.

Comparison vs training from scratch. We investigate the performance when training from scratch on a small dataset, without ImageNet-1k pre-training. We get the following results on the small CIFAR-10, which is small both w.r.t. the number of images and labels:

Table 3 .

 3 7 -We compare Transformers based models on different transfer learning task with ImageNet pre-training. We also report results with convolutional architectures for reference.

	Model	ImageNet CIFAR-10 CIFAR-100 Flowers Cars iNat-18 iNat-19 im/sec
	Grafit ResNet-50 [198]	79.6	_	_	98.2	92.5	69.8	75.9	1226.1
	Grafit RegNetY-8GF [198]	_	_	_	99.0	94.0	76.8	80.0	591.6
	ResNet-152 [40]	_	_	_	_	_	69.1	_	526.3
	EfficientNet-B7 [187]	84.3	98.9	91.7	98.8	94.7	_	_	55.1
	ViT-B/32 [61]	73.4	97.8	86.3	85.4	_	_	_	394.5
	ViT-B/16 [61]	77.9	98.1	87.1	89.5	_	_	_	85.9
	ViT-L/32 [61]	71.2	97.9	87.1	86.4	_	_	_	124.1
	ViT-L/16 [61]	76.5	97.9	86.4	89.7	_	_	_	27.3
	DeiT-B	81.8	99.1	90.8	98.4	92.1	73.2	77.7	292.3
	DeiT-B↑384	83.1	99.1	90.8	98.5	93.3	79.5	81.4	85.9
	DeiT-B⚗	83.4	99.1	91.3	98.8	92.9	73.7	78.4	290.9
	DeiT-B⚗ ↑384	84.4	99.2	91.4	98.9	93.9	80.1	83.0	85.9

Table 3 .

 3 .8. 9 -Ingredients and hyper-parameters for our method and ViT-B.

	Methods	ViT-B [61]	DeiT-B	
	Epochs	300	300	
	Batch size	4096	1024	
	Optimizer	AdamW	AdamW	
	learning rate	0.003	0.0005 × batchsize 512	
	Learning rate decay	cosine	cosine	
	Weight decay	0.3	0.05	
	Warmup epochs	3.4	5	
	Label smoothing ε	✗	0.1	
	Dropout	0.1	✗	
	Stoch. Depth	✗	0.1	
	Repeated Aug	✗	✓	
	Gradient Clip.	✓	✗	
	Rand Augment	✗	9/0.5	
	Mixup alpha.	✗	0.8	
	Cutmix alpha.	✗	1.0	
	Erasing prob.	✗	0.25	
	image throughput ImageNet-1k [168] Real [18] V2 [159]
	size (image/s)	acc. top-1	acc. top-1 acc. top-1
	160 2	609.31	79.9	84.8	67.6
	224 2	291.05	81.8	86.7	71.5
	320 2	134.13	82.7	87.2	71.9
	384 2	85.87	83.1	87.7	72.4

Table 3 .

 3 

10 -Performance of DeiT trained at size 224 2 for varying finetuning sizes on ImageNet-1k, ImageNet-Real and ImageNet-v2 matched frequency.

  the default stochastic depth of DeiT allows us to train up to 18 blocks of SA+FFN. After that the training becomes unstable. By increasing the drop-rate hyper-parameter d r , the performance increases until 24 layers. It saturates at 36 layers (we measured that it drops to 80.7% at 48 layers).

			baseline		scalar α weighting		LayerScale
		d r = 0.05 adjust [d r ] Rezero T-Fixup Fixup α = ε	
	12	79.9	79.9 [0.05]	78.3	79.4	80.7	80.4	80.5
	18	80.1	80.7 [0.10]	80.1	81.7	82.0	81.6	81.7
	24	78.9 †	81.0 [0.20]	80.8	81.5	82.3	81.1	82.4
	36	78.9 †	81.9 [0.25]	81.6	82.1	82.4	81.6	82.9

Table 3 .

 3 [START_REF] Bello | Revisiting ResNets: Improved training and scaling strategies[END_REF] -Variations on CLS with Deit-Small (no LayerScale): we change the layer at which the class embedding is inserted. In ViT and DeiT, it is inserted at layer 0 jointly with the projected patches. We evaluate a late insertion of the CLS, as well as our design choice to introduce specific class-attention layers.

	depth: SA+CA insertion layer top-1 acc. #params FLOPs
		Baselines: DeiT-S and average pooling	
	12: 12 + 0	0	79.9	22M	4.6B
	12: 12 + 0	n/a	80.3	22M	4.6B
		Late insertion of class embedding	
	12: 12 + 0	2	80.0	22M	4.6B
	12: 12 + 0	4	80.0	22M	4.6B
	12: 12 + 0	8	80.0	22M	4.6B
	12: 12 + 0	10	80.5	22M	4.6B
	12: 12 + 0	11	80.3	22M	4.6B
	DeiT-S with class-attention stage (SA+FFN)	
	12: 9 + 3	9	79.6	22M	3.6B
	12: 10 + 2	10	80.3	22M	4.0B
	12: 11 + 1	11	80.6	22M	4.3B
	13: 12 + 1	12	80.8	24M	4.7B
	14: 12 + 2	12	80.8	26M	4.7B
	15: 12 + 3	12	80.6	27M	4.8B

Table 3 .

 3 [START_REF] Bello | Attention augmented convolutional networks[END_REF] -CaiT models with and without distillation token. All these models are trained with the same setting during 400 epochs.

		Distillation token
	Model	✗	✓
	XXS-24Υ 78.4	78.5
	M-24Υ	84.8	84.7

Table 3 .

 3 [START_REF] Berman | Multigrain: a unified image embedding for classes and instances[END_REF] -CaiT models: The design parameters are depth and d. The mem columns correspond to the memory usage. All models are initially trained at resolution 224 during 400 epochs. We also fine-tune these models at resolution 384 (identified by ↑384) or train them with distillation (Υ). The FLOPs are reported for each resolution.

	CAIT	depth	d #params FLOPs (×10 9 ) Top-1 acc. (%): Imagenet1k-val
	model	(SA+CA)		(×10 6 )	@224 @384 @224 ↑384 @224Υ ↑384Υ
	XXS-24	24 + 2 192	12.0	2.5	9.5	77.6	80.4	78.4	80.9
	XXS-36	36 + 2 192	17.3	3.8	14.2	79.1	81.8	79.7	82.2
	XS-24	24 + 2 288	26.6	5.4	19.3	81.8	83.8	82.0	84.1
	XS-36	36 + 2 288	38.6	8.1	28.8	82.6	84.3	82.9	84.8
	S-24	24 + 2 384	46.9	9.4	32.2	82.7	84.3	83.5	85.1
	S-36	36 + 2 384	68.2	13.9	48.0	83.3	85.0	84.0	85.4
	S-48	48 + 2 384	89.5	18.6	63.8	83.5	85.1	83.9	85.3
	M-24	24 + 2 768 185.9	36.0 116.1	83.4	84.5	84.7	85.8
	M-36	36 + 2 768 270.9	53.7 173.3	83.8	84.9	85.1	86.1

Table 3 .

 3 16 -Hyper-parameters for training CaiT models: The only parameters that we adjust per model are the drop rate dr of stochastic depth and the LayerScale initialization ε.

	hparams	d r ε	0.05 10 -5	0.1 10 -6	0.05 10 -5	0.1	0.1	0.2	0.3	0.2	0.3	0.4

CAIT model XXS-24 XXS-36 XS-24 XS-36 S-24 S-36 S-48 M-24 M-36 M-48

Table 3 .

 3 [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF] -Results in transfer learning. All models are trained and evaluated at resolution 224 and with a crop-ratio of 0.875 in this comparison (see Table3.22 for the comparison of crop-ratio on ImageNet).

	Model	ImageNet	CIFAR-10	CIFAR-100	Flowers	Cars	iNat-18	iNat-19	FLOPs
	EfficientNet-B7	84.3	98.9 91.7 98.8 94.7	_	_	37.0B
	ViT-B/16	77.9	98.1 87.1 89.5	_	_	_	55.5B
	ViT-L/16	76.5	97.9 86.4 89.7	_	_	_	190.7B
	Deit-B 224	81.8	99.1 90.8 98.4 92.1 73.2 77.7 17.5B
	CaiT-S-36 224	83.4	99.2 92.2 98.8 93.5 77.1 80.6 13.9B
	CaiT-M-36 224	83.7	99.3 93.3 99.0 93.5 76.9 81.7 53.7B
	CaiT-S-36 Υ 224	83.7	99.2 92.2 99.0 94.1 77.0 81.4 13.9B
	CaiT-M-36 Υ 224	84.8	99.4 93.1 99.1 94.2 78.0 81.8 53.7B

Table 3 .

 3 21 -Deit-Small: for a fixed 384 working dimensionality and number of parameters, impact of the number of heads on the accuracy and throughput (images processed per second at inference time on a singe V100 GPU).

	# heads dim/head throughput (im/s) GFLOPs top-1 acc.
	1	384	1079	4.6	76.80
	2	192	1056	4.6	78.06
	3	128	1043	4.6	79.35
	6	64	989	4.6	79.90
	8	48	971	4.6	80.02
	12	32	927	4.6	80.08
	16	24	860	4.6	80.04
	24	16	763	4.6	79.60

Table 3 .

 3 [START_REF] Borgeaud | Improving language models by retrieving from trillions of tokens[END_REF] -We compare performance with the defaut crop-ratio of 0.875 usually used with convnets, and the crop-ratio of 1.0 [214] that we adopt for CaiT.

	Network	Crop Ratio ImNet Real	V2
		0.875 1.0	top-1	top-1 top-1
	S36	✓ _	_ ✓	83.4 83.3	88.1 88.0	73.0 72.5
	S36↑384	✓ _	_ ✓	84.8 85.0	88.9 89.2	74.7 75.0
	S36Υ	✓ _	_ ✓	83.7 84.0	88.9 88.9	74.1 74.1
	M36Υ	✓ _	_ ✓	84.8 84.9	89.2 89.2	74.9 75.0
	S36↑384Υ	✓ _	_ ✓	85.2 85.4	89.7 89.8	75.7 76.2
	M36↑384Υ	✓ _	_ ✓	85.9 86.1	89.9 90.0	76.1 76.3

Table 4 . 1 -

 41 Comparison between architectures on ImageNet classification. We compare different architectures based on convolutional networks, Transformers and feedforward networks with comparable FLOPs and number of parameters. We report Top-1 accuracy on the validation set of ImageNet-1k with different measure of complexity: throughput, FLOPs, number of parameters and peak memory usage. All the models use 224×224 images as input. By default the Transformers and feedforward networks uses 14×14 patches of size 16×16, see Table4.3 for the detailed specification of our main models. The throughput is measured on a single V100-32GB GPU with batch size fixed to 32. For reference, we include the state of the art at the time of publication for models trained with ImageNet training only.

		Arch.	#params throughput FLOPS Peak Mem Top-1
			(×10 6 )	(im/s)	(×10 9 )	(MB)	Acc.
	State of the art	CaiT-M48↑448Υ [197] NfNet-F6 SAM [25]	356 438	5.4 16.0	329.6 377.3	5477.8 5519.3	86.5 86.5
		EfficientNet-B3 [187]	12	661.8	1.8	1174.0	81.1
		EfficientNet-B4 [187]	19	349.4	4.2	1898.9	82.6
		EfficientNet-B5 [187]	30	169.1	9.9	2734.9	83.3
	Convolutional networks	RegNetY-4GF [153]	21	861.0	4.0	568.4	80.0
		RegNetY-8GF [153]	39	534.4	8.0	841.6	81.7
		RegNetY-16GF [153]	84	334.7	16.0	1329.6	82.9
		DeiT-S [193]	22	940.4	4.6	217.2	79.8
	Transformer networks	DeiT-B [193]	86	292.3	17.5	573.7	81.8
		CaiT-XS24 [197]	27	447.6	5.4	245.5	81.8
		ResMLP-S12	15	1415.1	3.0	179.5	76.6
	Feedforward networks	ResMLP-S24	30	715.4	6.0	235.3	79.4
		ResMLP-B24	116	231.3	23.0	663.0	81.0
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 42 Self-supervised learning with DINO[START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF].Classification accuracy on ImageNet-1k val.ResMLPs evaluated with linear and k-NN evaluation are on par with convnets but inferior to ViTs. Supervised setting. In Table4.1, we compare ResMLP with different convolutional and Transformer architectures. For completeness, we also report the best-published numbers obtained with a model trained on ImageNet alone. While the trade-off between accuracy, FLOPs, and throughput for ResMLP is not as good as convolutional networks or Transformers, their strong accuracy still suggests that the structural constraints imposed by the layer design do not have a drastic influence on performance, especially when training with enough data and recent training schemes.

		Params. FLOPS ImNet-val top-1 acc.
	Models	(×10 6 )	(×10 9 ) Linear	k-NN
	ResNet-50	25	4.1	75.3	67.5
	ViT-S/16	22	4.6	77.0	74.5
	ViT-S/8	22	22.4	79.7	78.3
	ViT-B/16	87	17.5	78.2	76.1
	ResMLP-S12	15	3.0	67.5	62.6
	ResMLP-S24	30	6.0	72.8	69.4
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 43 Ablation. Our default configurations are presented in the three first rows. By default we train during 400 epochs. The "old-fashioned" is similar to what was employed for ResNet[START_REF] He | Deep residual learning for image recognition[END_REF]: SGD, 90-epochs waterfall schedule, same augmentations up to variations due to library used.

	Ablation	Model	Patch Params size ×10 6	FLOPs ×10 9	Variant	top-1 acc. on ImageNet val real [18] v2 [159]
		ResMLP-S12	16	15.4	3.0	12 layers, working dimension 384	76.6	83.3	64.4
	Baseline models ResMLP-S24	16	30.0	6.0	24 layers, working dimension 384	79.4	85.3	67.9
		ResMLP-B24	16	115.7	23.0	24 layers, working dimension 768	81.0	86.1	69.0
	Normalization	ResMLP-S12	16	15.4	3.0	Aff → Layernorm	77.7	84.1	65.7
	Pooling	ResMLP-S12	16	17.7	3.0	average pooling → Class-MLP	77.5	84.0	66.1
		ResMLP-S12	16	14.9	2.8	linear → none	56.5	63.4	43.1
	Patch	ResMLP-S12	16	18.6	4.3	linear → MLP	77.3	84.0	65.7
	communication	ResMLP-S12	16	30.8	6.0	linear → conv 3x3	77.3	84.4	65.7
		ResMLP-S12	16	14.9	2.8	linear → conv 3x3 depth-wise	76.3	83.4	64.6
		ResMLP-S12	16	16.7	3.2	linear → conv 3x3 depth-separable	77.0	84.0	65.5
		ResMLP-S12/14 14	15.6	4.0	patch size 16×16→14×14	76.9	83.7	65.0
	Patch size	ResMLP-S12/8	8	22.1	14.0	patch size 16×16→8×8	79.1	85.2	67.2
		ResMLP-B24/8	8	129.1	100.2	patch size 16×16→8×8	81.0	85.7	68.6
		ResMLP-S12	16	15.4	3.0	old-fashioned (90 epochs)	69.2	76.0	56.1
		ResMLP-S12	16	15.4	3.0	pre-trained SSL (DINO)	76.5	83.6	64.5
		ResMLP-S12	16	15.4	3.0	distillation	77.8	84.6	66.0
	Training	ResMLP-S24	16	30.0	6.0	pre-trained SSL (DINO)	79.9	85.9	68.6
		ResMLP-S24	16	30.0	6.0	distillation	80.8	86.6	69.8
		ResMLP-B24/8	8	129.1	100.2	distillation	83.6	88.4	73.4
		ResMLP-B24/8	8	129.1	100.2	pre-trained ImageNet-21k (60 epochs) 84.4	88.9	74.2
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 44 Evaluation on transfer learning. Classification accuracy (top-1) of models trained on ImageNet-1k for transfer to datasets covering different domains. The ResMLP architecture takes 224×224 images during training and transfer, while ViTs and EfficientNet-B7 work with higher resolutions, see "Res." column.Pooling. Replacing average pooling with Class-MLP, see Section 4.2, brings a significant gain for a negligible computational cost. We do not include it by default to keep our models more simple. Smaller patches significantly increase the performance, but also increase the number of flops (see Block "Patch size" in the ablation Table4.3). Smaller patches benefit more to larger models, but only with an improved optimization scheme involving more regularization (distillation) or more data.

	Architecture	FLOPs	Res. CIFAR 10 CIFAR 100 Flowers102 Cars iNat 18 iNat 19
	EfficientNet-B7 [187]	37.0B	600	98.9	91.7	98.8	94.7	_	_
	ViT-B/16 [61]	55.5B	384	98.1	87.1	89.5	_	_	_
	ViT-L/16 [61]	190.7B	384	97.9	86.4	89.7	_	_	_
	Deit-B/16 [193]	17.5B	224	99.1	90.8	98.4	92.1	73.2	77.7
	ResNet50 [198]	4.1B	224	_	_	96.2	90.0	68.4	73.7
	Grafit/ResNet50 [198]	4.1B	224	_	_	97.6	92.7	68.5	74.6
	ResMLP-S12	3.0B	224	98.1	87.0	97.4	84.6	60.2	71.0
	ResMLP-S24	6.0B	224	98.7	89.5	97.9	89.5	64.3	72.5
	Patch size.								

Training. Consider the Block "Training' in

Table 4.3. ResMLP significantly benefits from modern training procedures such as those used in Chapter 3. For instance, the Chapter 3 training procedure improves the performance of ResMLP-S12 by 7.4% compared to the training employed for ResNet [94] 1

Table 4 . 6 -

 46 Semantic segmentation results on ADE20K dataset with UperNet and ×3 settings. All architectures are trained with crop of size 224 × 224

	Model	DeiT-S DeiT-B ResMLP-12 ResMLP-24 ResMLP-36 ResMLP-B24
	mIoU (%)	40.5	42.3	35.9	39.1	39.1	42.5

Table 5 . 1 -

 51 Classification with ImageNet-1k training. We compare architectures based on convolutional networks

Table 5 .

 5 

	2 -ImageNet-21k pre-training: Comparison of PatchConvNet fine-tuned at different resolutions on ImageNet-1k. We report peak memory (MB) and throughput (im/s) on one GPU V100 with batch size 256 and mixed precision. Larger resolution provides classification improvement with the same model,	Table 5.3 -ADE20k semantic segmentation per-formance using UperNet [223] (in comparable set-tings [59, 66, 134]). All models are pre-trained on ImageNet-1k except models with † symbol that are pre-trained on ImageNet-21k (Swin-B at resolution 640 × 640).
	but significantly increase the resource requirements.				
	[italic: results obtained with a longer training].			UperNet
	Model GFLOPs	Peak throughput Res Mem (im/s)	Imnet-val top-1 Acc	Backbone	Single Multi scale scale (×10 ) mIoU mIoU #params FLOPs (×10 6 )
	S60 S60	4.0 6.6	1322 2091	1129 692	224 82.9 [83.5] 288 84.0 [84.4]	ResNet50 DeiT-S	66.5 52.0	_	42.0 _	_ 44.0
	S60	11.8	3604	388	384 84.6 [84.9]	XciT-T12/16	34.2		41.5	_
	S60	20.9	6296	216	512 85.0 [85.4]	XciT-S12/16	54.2		45.9	_
	B60 B60	15.8 26.1	2794 4235	547 328	224 85.0 [85.4] 288 85.7	Swin-T Ours-S60	59.9 57.1		44.5 46.0	46.1 46.9
	B60	46.5	7067	185	384 86.1 [86.5]	XciT-M24/16	112.2		47.6	_
	L60 L60 L60	28.1 46.4 82.5	3913 5801 9506	394 237 132	224 85.6 288 86.1 384 86.4	XciT-M24/8 Swin-B Ours-B60 Ours-B120	110.0 121.0 140.6 229.8		48.4 48.1 48.1 49.4	_ 49.7 48.6 50.3
	B120 B120 B120	29.8 49.3 87.7	3313 4752 7587	280 169 96	224 86.0 288 86.6 384 86.9	Swin-B † CSWin-B † Ours-S60 †	121.0 109.2 57.1		50.0 51.8 48.4	51.6 52.6 49.3
	L120	53.0	4805	204	224 86.1	Ours-B60 †	140.6		50.5	51.1
	L120	87.5	6693	123	288 86.6	Ours-B120 †	229.8		51.9	52.8
	L120	155.5	10409	68	384 87.1	Ours-L120 †	383.7		52.2	52.9

Table 5 .

 5 4 -Datasets used for our transfer learning tasks.

	Dataset	Train size Test size #classes
	iNaturalist 2018 [104]	437,513	24,426	8,142
	iNaturalist 2019 [103]	265,240	3,003	1,010
	Flowers-102 [144]	2,040	6,149	102
	Stanford Cars [121]	8,144	8,041	196
	CIFAR-100 [124]	50,000	10,000	100
	CIFAR-10 [124]	50,000	10,000	10

Table 5 .

 5 5 -Results in transfer learning.

	Model	CIFAR-10	CIFAR-100	Flowers	Cars	iNat-18	iNat-19	FLOPs
	ResNet-50 [215]	98.3 86.9 97.9 92.7	_	73.9	4.1B
	Grafit [198]	_	_	98.2 92.5 69.8 75.9	4.1B
	EfficientNet-B7 [187] 98.9 91.7 98.8 94.7	_	_	37.0B
	ViT-B/16 [61]	98.1 87.1 89.5	_	_	_	55.5B
	ViT-L/16 [61]	97.9 86.4 89.7	_	_	_	190.7B
	DeiT-B [193]	99.1 90.8 98.4 92.1 73.2 77.7	17.5B
	CaiT-S-36 [197]	99.2 92.2 98.8 93.5 77.1 80.6	13.9B
	CaiT-M-36 [197]	99.3 93.3 99.0 93.5 76.9 81.7	53.7B
	Ours-S60	99.2 91.4 98.8 94.0 72.9 78.1	4.0B
	Ours-B120	99.2 91.1 99.0 94.4 74.3 79.5	29.9B
	Ours-S60 @ 320	99.1 91.4 98.9 94.5 76.8 81.4	8.2B
	Ours-B120 @ 320	99.1 91.2 99.1 94.8 79.6 82.5	60.9B

Table 5 .

 5 6 -COCO object detection and instance segmentation performance on the mini-val set. Backbones[START_REF] El-Nouby | Xcit: Cross-covariance image transformers[END_REF][START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF][START_REF] Xie | Aggregated residual transformations for deep neural networks[END_REF][START_REF] Wang | Pyramid vision transformer: A versatile backbone for dense prediction without convolutions[END_REF][START_REF] Zhang | Multi-scale vision longformer: A new vision transformer for high-resolution image encoding[END_REF] are all pre-trained on ImageNet-1k, use Mask R-CNN[START_REF] He | Mask r-cnn[END_REF] and the same 3× train schedule.

	Backbone	#params GFLOPs AP b AP b 50 AP b 75	AP m AP m 50 AP m 75
	ResNet50	44.2M	180	41.0 61.7 44.9	37.1 58.4 40.1
	ResNet101	63.2M	260	42.8 63.2 47.1	38.5 60.1 41.3
	ResNeXt101-64 101.9M	424	44.4 64.9 48.8	39.7 61.9 42.6
	PVT-Small	44.1M	_	43.0 65.3 46.9	39.9 62.5 42.8
	PVT-Medium	63.9M	_	44.2 66.0 48.2	40.5 63.1 43.5
	XCiT-S12/16	44.4M	295	45.3 67.0 49.5	40.8 64.0 43.8
	XCiT-S24/16	65.8M	385	46.5 68.0 50.9	41.8 65.2 45.0
	ViL-Small	45.0M	218	43.4 64.9 47.0	39.6 62.1 42.4
	ViL-Medium	60.1M	294	44.6 66.3 48.5	40.7 63.8 43.7
	ViL-Base	76.1M	365	45.7 67.2 49.9	41.3 64.4 44.5
	Swin-T	47.8M	267	46.0 68.1 50.3	41.6 65.1 44.9
	Ours-S60	44.9M	264	46.4 67.8 50.8	41.3 64.8 44.2
	Ours-S120	67.4M	339	47.0 69.0 51.4	41.9 65.6 44.7

Table 5 .

 5 7 -Ablation of our model: we modify each time a single architectural characteristic in our Patch-ConvNet model S60, and measure how it affects the classification performance on ImageNet-1k. Batchnormalization improves the performance a bit. The convolutional stem is key for best performance, and the class-attention brings a slight improvement in addition to enabling attention-based visualisation properties.

Table 5 .

 5 8 -Comparison of PatchConvNet with Layer-Normalization and Batch-Normalization: Performance on ImageNet-1k val after pre-training on ImageNet-1k train only. The drop-path parameter value is obtained by cross-validation on ImageNet-1k for each model. Batch-Normalization usually provides a slight improvement in classification, but but with large models the need for synchronization can significantly slow down the training (in some cases like training a B120 model on AWS, it almost doubled the training time). Therefore we do not use it by default in this chapter.

			ImageNet-val Top-1 acc.
	Model drop-path LayerNorm BatchNorm
	S20	0.0	78.7	78.8
	S36	0.05	80.7	81.2
	S60	0.15	82.1	82.4
	S120	0.2	83.2	83.4
	B36	0.2	82.8	83.5
	B60	0.3	83.5	83.9
	B120	0.4	84.1	84.3

Table 6 .

 6 2 -Ablation of the components of our data-augmentation strategy with ViT-B on ImageNet-1k.

		Data-Augmentation		ImageNet-1k
	ColorJitter Grayscale Gaussian Blur Solarization Val	Real	V2
	0.3	✗	✗	✗	81.4	86.1	70.3
	0.3	✓	✗	✗	81.0	86.0	69.7
	0.3	✓	✓	✗	82.7	87.6	72.7
	0.3	✓	✓	✓	83.1	87.7	72.6
	0.0	✓	✓	✓	83.1	87.7	72.0

  When training on ImageNet-1k only, by default we train during 400 epochs with a batch size 2048, following prior works[START_REF] Touvron | Going deeper with image transformers[END_REF][START_REF] Xiao | Early convolutions help transformers see better[END_REF]. Unless specified otherwise, both the training and evaluation are carried out at resolution 224 × 224 (even though we recommend to train at a lower resolution when targeting 224 × 224 at inference time).When pre-training on ImageNet-21k, we pre-train by default during 90 epochs at resolution 224 × 224, followed by a finetuning of 50 epochs on ImageNet-1k. In this context, we consider two fine-tuning resolutions: 224 × 224 and 384 × 384.

	CARS CIFAR-10 CIFAR-100 Flowers INAT-18 INAT-19
	Figure 6.6 -Transfer learning performance on 6
	datasets with different test-time crop ratio. ViT-B pre-
	trained on ImageNet-1k at resolution 224.

Default setting.

Table 6 .

 6 3 -Comparison of some existing data augmentation methods with our simple 3-Augment proposal inspired by data augmentation used with self-supervised learning.

	Method	Learned augm. # Nb of methods DA	Model	ImageNet-1k Val Real V2
					ResNet50 79.7 85.6 67.9
	Auto-Augment [45]	✓	14	ViT-B	82.8 87.5 71.9
					ViT-L	84.0 88.6 74.0
					ResNet50 79.5 85.5 67.6
	RandAugment [44]	✓	14	ViT-B	82.7 87.4 72.2
					ViT-L	84.0 88.3 73.8
					ResNet50 79.5 85.4 67.6
	Trivial-Augment [142]	✗	14	ViT-B	82.3 87.0 71.2
					ViT-L	83.6 88.1 73.7
					ResNet50 79.4 85.5 67.8
	3-Augment (Ours)	✗	3	ViT-B	83.1 87.7 72.6
					ViT-L	84.2 88.6 74.3
	Model Loss LayerScale	Data Aug.	Epochs	ImageNet-1k val real v2
		CE	✗	RandAugment	300	79.8 85.3 68.1
	ViT-S	BCE BCE BCE	✗ ✓ ✓	RandAugment RandAugment RandAugment	300 300 400	79.8 85.9 68.2 80.1 86.1 69.1 80.7 86.0 69.3
		BCE	✓	3-Augment	400	80.4 86.1 69.7
		CE	✗	RandAugment	300	80.9 85.5 68.5
	ViT-B	BCE BCE BCE	✗ ✓ ✓	RandAugment RandAugment RandAugment	300 300 400	82.2 87.2 71.4 82.5 87.5 71.4 82.7 87.4 72.2
		BCE	✓	3-Augment	400	83.1 87.7 72.6
	ViT-L	BCE BCE BCE	✗ ✗ ✓	RandAugment RandAugment RandAugment	300 400 400	83.0 87.9 72.4 83.3 87.7 72.5 84.0 88.3 73.8
		BCE	✓	3-Augment	400	84.2 88.6 74.3

Table 6 . 4
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	Crop. LS Mixup	Aug. #Imnet21k finetuning Imagenet-1k val top-1 Imagenet-1k v2 top-1 policy epochs resolution ViT-S ViT-B ViT-L ViT-S ViT-B ViT-L
	RRC	✗	0.8	RA	90	224 2	81.6	84.6	86.0	70.7	74.7	76.4
	SRC	✗	0.8	RA	90	224 2	82.1	84.8	86.3	71.8	75.0	76.7
	SRC	✓	0.8	RA	90	224 2	82.4	85.0	86.4	72.4	75.7	77.4
	SRC	✓	✗	RA	90	224 2	82.3	85.1	86.5	72.4	75.6	77.2
	SRC	✓	✗	3A	90	224 2	82.6	85.2	86.8	72.6	76.1	78.3
	SRC	✓	✗	3A	240	224 2	83.1	85.7	87.0	73.8	76.5	78.6
	SRC	✓	✗	3A	240	384 2	84.8	86.7	87.7	75.1	77.9	79.1

-Ablation on different training component with training at resolution 224 × 224 on ImageNet-1k. We perform ablations with ViT-S, ViT-B and ViT-L. We report top-1 accuracy (%) on ImageNet validation set, ImageNet real and ImageNet v2.

Table 6 .

 6 All experiments are done with Seed 0 with fixed hparams except the drop-path rate of stochastic depth, which depends on the model and is increased by 0.05 for the longer pre-training. We report 2 digits top-1 accuracy but note that the standard standard deviation is around 0.1 on our ViT-B baseline. Note that all these changes are neutral w.r.t. complexity except in the last row, where the fine-tuning at resolution 384×384 significantly increases the complexity.

	5 -Ablation path: augmentation and regularization with ImageNet-21k pre-training (at resolution
	224×224) and ImageNet-1k fine-tuning. We measure the impact of changing Random Resize Crop (RRC)
	to Simple Random Crop (SRC), adding LayerScale (LS), removing Mixup, replacing RandAugment (RA)
	by 3-Augment (3A), and finally employing a longer number of epochs during the pre-training phase on
	ImageNet-21k.

Table 6 . 6
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-We compare ViT architectures pre-trained on ImageNet-1k only with different training resolution followed by a fine-tuning at resolution 224 × 224. We benefit from the FixRes effect

[START_REF] Touvron | Fixing the train-test resolution discrepancy[END_REF] 

and get better performance with a lower training resolution (e.g resolution 160 × 160 with patch size 16 represent 100 tokens vs 196 for 224 × 224. This represents a reduction of 50% of the number of tokens).

  80.4% versus 79.8% in the original paper).

	test set → ImageNet-val ImageNet-v2
	↓ architecture training →	A2	T2	A2	T2
	ResNet-50	79.9	79.2	67.9	67.9
	DeiT-S	79.6	80.4	68.1	69.2

  Figure 6.10 -Final accuracy @ Epoch 300 versus accuracy at epochs 150, 250 and 290, for 100 networks trained with A2 training. It is only close to the end of the training that we start observing a correlation between temporary and final performance. We can therefore not apply early stopping rules based on an early validation accuracy.

			ImageNet-1k						ImageNet-21k
	69 70 71 72 73 74 75 76 ImageNet-v2 Top-1(%)	81 82 83 84 85 86 ImageNet Top-1(%) Ours: ViT ConvNeXt DeiT: ViT EfficientNet EfficientNet-V2 RSB: ResNet Swin	75 76 77 78 79 ImageNet-v2 Top-1(%)	85	86 ImageNet Top-1(%) 87 Ours: ViT ConvNeXt EfficientNet-V2 Swin	88
	79.9					79.9					79.9	
	79.8					79.8					79.8	
	79.7					79.7					79.7	
	79.6 @300				@300	79.6				@300	79.6	
	79.5					79.5					79.5	
	79.4					79.4					79.4	
		66	68	70 @150	72	78.2	78.4	78.6 @250	78.8	79.4	79.5 @290 79.6	79.7	79.8

Table 6 .

 6 10 -Datasets used for our different transfer-learning tasks.

	6.3.5.1 Transfer Learning			
	Dataset	Train size Test size #classes
	iNaturalist 2018 [104]	437,513	24,426	8,142
	iNaturalist 2019 [103]	265,240	3,003	1,010
	Flowers-102 [144]	2,040	6,149	102
	Stanford Cars [121]	8,144	8,041	196
	CIFAR-100 [124]	50,000	10,000	100
	CIFAR-10 [124]	50,000	10,000	10

Table 6 .

 6 11 -We compare Transformers based models on different transfer learning tasks with ImageNet-1k pre-training. We report results with our default training on ImageNet-1k (400 epochs at resolution 224 × 224).

  .6.pre-trained on ImageNet-1k only at resolution 224 × 224 during 400 epochs on the 6 datasets shown in Table6.10. Our results are presented in Table

	Model	CIFAR-10 CIFAR-100 Flowers Cars iNat-18 iNat-19
	Grafit ResNet-50 [198]	_	_	98.2	92.5	69.8	75.9
	ResNet-152 [40]	_	_	_	_	69.1	_
	ViT-B/16 [61]	98.1	87.1	89.5	_	_	_
	ViT-L/16 [61]	97.9	86.4	89.7	_	_	_
	ViT-B/16 [183]	_	87.8	96.0	_	_	_
	ViT-L/16 [183]	_	86.2	91.4	_	_	_
	DeiT-B	99.1	90.8	98.4	92.1	73.2	77.7
	Ours ViT-S	98.9	90.6	96.4	89.9	67.1	72.7
	Ours ViT-B	99.3	92.5	98.6	93.4	73.6	78.0
	Ours ViT-L	99.3	93.4	98.9	94.5	75.6	79.3

Table 7 .

 7 1 -Author and Creative Commons Copyright notice for images in Figure 2.7.

Table 7 .

 7 3 -Author and Creative Commons Copyright notice for images in Figure 2.9.

Dans cette thèse, nous discutons des interactions qu'il existe entre les architectures et les procédures d'entrainement. Nous étudions plus spécifiquement l'architecture des Transformers[START_REF] Vaswani | Attention is all you need[END_REF], appliqués à la vision par ordinateur, pour lesquels les procédures d'entrainement sont encore peu explorées. Elles sont pourtant essentielles pour compenser l'absence de prior architectural spécifique au traitement d'image. Nous proposons dans ce travail des procédures d'entraînement capables d'obtenir des performances état de l'art pour des Transformers ou même pour des architectures plus simples se rapprochant de perceptrons multi-couches. Plus précisément, nous commençons par étudier la possibilité d'apprendre avec des étiquettes grossières par une modification de la procédure d'entrainement. Nous étudions ensuite différents types d'architectures pour la vision par ordinateur. Nous analysons en particulier leurs caractéristiques, leurs avantages, leurs inconvénients et la manière de les entraîner. Enfin, nous étudions l'impact des interactions entre les architectures et les procédures d'entrainement. L'ensemble de nos approches sont évaluées en classification d'image sur ImageNet et en transfer. Nous nous évaluons également sur des tâches annexes comme par exemple la segmentation sémantique.

They fine-tune a linear classifier with fine labels. We do not consider this task in the body of this chapter, but refer to section

2.5.2: our approach provides a significant improvement in this case as well.

l e a r n i n g finegrained image representations with coarse labels

These examples are representative of typical comparisons, as we have not cherry-picked to show cases where our method is better.

The timm implementation already included a training procedure that improved the accuracy of ViT-B from 77.91% to 79.35% top-1, and trained on Imagenet-1k with a 8xV100 GPU machine.

Formally it means that we have 100 epochs, but each is 3x longer because of the repeated augmentations. We prefer to refer to this as 300 epochs in order to have a direct comparison on the effective training time with and without repeated augmentation.

https://pypi.org/project/fairscale/

https://github.com/facebookresearch/deit

Bachlechner et al. report that batchnorm is complementary to ReZero, while removing LayerNorm in the case of transformers.

Interestingly, if trained with this "old-fashion" setting, ResMLP-S12 outperforms AlexNet[START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF] by a margin.

of ±0.11% in top-1 accuracy for a S60 model, which concurs with measurements done on ResNet-50 trained with modern training procedures [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF].

Stochastic depth. Our main parameter is the stochastic depth, whose effect is analyzed in Fig. 5.8. This regularization slows down the training, yet with long enough schedules, higher values of the drop-path hyperparameter lead to better performance at convergence. We train with the values reported in Table 5.8. When fine-tuning at higher resolutions or from ImageNet-21k, we reduce this drop-path by 0.1.

Architectural ablation.

In Table 5.7, we have conducted various ablations of our architecture with the S60 model. We compare the impact of class attention vs. average-pooling. Average-pooling is the most common aggregation strategy in ConvNet while class attention is only used with transformers [START_REF] Touvron | Going deeper with image transformers[END_REF]. We compare also convolutional stem vs. linear projection for the patch extraction in the image, LayerNorm vs. BatchNorm and Multi-head class attention as used in CaiT [START_REF] Touvron | Going deeper with image transformers[END_REF] vs. single-head class attention. Our single-head design reduces the memory consumption and simplifies attention map visualization.

LayerNorm vs BatchNorm. LayerNorm is the most used normalisation in transformers while

BatchNorm is the most used normalisation with ConvNets. For simplicity we have used Layer-Norm as it does not require (batch) statistics synchronisation during training, which tends to slow the training, especially on an infrastructure with relatively high synchronisation costs.

In Table 5.8 we compare the effects of LayerNorm with those of BatchNorm. We can see that BatchNorm increases the PatchConvNet top-1 accuracy. This difference tends to be lower for the deeper models. For ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] and RegNet [START_REF] Radosavovic | Designing network design spaces[END_REF] we report the improved results from Wightman et al. [START_REF] Wightman | Resnet strikes back: An improved training procedure in timm[END_REF]. Note that different models may have received a different optimization effort. ↑R indicates that the model is fine-tuned at the resolution R and -R indicates that the model is trained at resolution R. The standard deviation is typically around 0.1 on ImageNet-val, see Figure 6.7. This concurs with statistics reported in the literature for ResNet and other convnets [START_REF] Radosavovic | Designing network design spaces[END_REF]. The variance is higher on ImageNet-V2 (std=0.23), which consists of a smaller set (10000 vs 50000 for -val) of images not present in the validation set. The mean 79.72% shows that our main weights (seed 0) overestimates the average performance by about +0.13%.

Attention-based pooling with

Peak performance and control of overfitting

To prevent to over-estimate too much the accuracy on validation, during our exploration process we have selected only the final checkpoint and we use relatively coarse grid for hyper-parameters search to prevent introducing an additional seed effect. However optimizing over a large number of choices typically leads to overfitting. In Figure 6.7, we observe that the maximum (or peak performance) is close to 80.0% with the A2 training procedure. Note, Figure 6.8 provides the distribution of accuracy as an histogram;

One question is whether this model is intrinsically better than the average ones, or if it was just lucky on this particular measurement set. To attempt to answer this question, we measure how the performance transfers to another measurement dataset: we compute for all the seeds the couples (ImageNet-val top-1 acc., ImageNet-V2 top-1 acc.), and plot them as a point cloud in Figure 6.7. We observe that the correlation between the performance on ImageNet-val and -V2 is limited. Noticeably the best performance is not achieved by the same seed on the two datasets. This observation suggests some significant measurement noise, which advocates to report systematically the performance on different datasets, and more particularly one making a clear distinction between validation and test. 
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