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Introduction

En 1864, paraît dans la revue The Educational Times un problème de mathématiques proposé
par Sylvester [77] et qui s’énonce simplement de la manière suivante : étant donnés quatre points
jetés au hasard, quelle est la probabilité qu’ils soient les sommets d’un quadrilatère convexe ? Ce
casse-tête, connu de nos jours sous le nom de problème des quatre points de Sylvester, convoque à
la fois la théorie des probabilités et la géométrie euclidienne, sans pour autant qu’un cadre formel
précisant la nature de l’aléa et le lieu dans lequel les points sont jetés soit donné. Il s’inscrit dans une
succession de questions de probabilités géométriques qui ont émaillé l’histoire des mathématiques
depuis le 18ème siècle, comme par exemple celle liée à l’expérience de l’aiguille de Buffon décrite
en 1733 ou le paradoxe de Bertrand cité en 1888.

Ces problèmes ne sont alors considérés que comme des mathématiques récréatives. Il faut at-
tendre le milieu du vingtième siècle pour qu’un contexte théorique se mette en place. Apparaît
alors un nouveau domaine des probabilités axé sur l’étude de données spatiales aléatoires et dont
la naissance est notamment motivée par d’importants besoin en modélisation en sciences expéri-
mentales (notamment la physique des matériaux, la géologie puis plus tard, les télécommunications
et l’analyse d’image). Le nom de géométrie stochastique qui lui est donné est traditionnellement
attribué à Kendall et Krickeberg en 1969 (bien que Kendall note que le nom apparaît déjà en 1963
dans un article de percolation de Frisch et Hammersley). Ce domaine résulte de la conjonction de
la théorie des processus ponctuels, la théorie des files d’attentes, la géométrie convexe et intégrale,
la théorie des ensembles aléatoires et la géométrie combinatoire. Citons notamment les deux ou-
vrages de référence, dus à Stoyan, Kendall, Mecke, Chiu [32] d’une part et à Schneider et Weil [71]
d’autre part. Le premier met l’accent sur les questions de modélisation et de simulation tandis que
le second se distingue par une approche basée sur les fondements de géométrie convexe et intégrale.
Par ailleurs, la statistique spatiale qui vise à développer des méthodes d’inférence pour des données
géométriques multidimensionnelles constitue l’indispensable pendant de la géométrie stochastique.
Certaines questions probabilistes sont justement motivées par ces applications statistiques, comme
c’est par exemple le cas du convex hull peeling abordé dans cette thèse.

Le problème des quatre points de Sylvester a conduit les mathématiciens à proposer différentes
solutions suivant le modèle probabiliste adopté [57]. De par ses nombreuses extensions possibles,
il a surtout été à l’origine d’un sous-domaine de la géométrie stochastique consacré à l’étude des
polytopes aléatoires générés comme enveloppes convexes de nuages de points jetés au hasard. Cette
thèse s’inscrit exactement dans ce cadre. Plus précisément, étant donné un corps convexe K de
Rd d’intérieur non vide, où d est la dimension supposée au moins égale à 2, on considère un
ensemble aléatoire de points X ⊂ K et on étudie le polytope conv(X) obtenu en prenant l’enveloppe
convexe de ces points. Les questions abordées (nombre de points extrémaux et de faces, volumes,
qualité de l’approximation polytopale) sont notamment motivées par les applications en analyse de
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la complexité moyenne d’algorithmes de géométrie computationnelle et combinatoire [59, 40], en
optimisation [19], en biologie [75] ou encore en traitement du signal [39]. Pour plus de détails, on
renvoie le lecteur aux chapitres de synthèse dus à Bárány [6], Schneider [69], Reitzner [63] et Hug
[48].

Dans cette thèse, l’ensemble aléatoire X suit la loi d’un processus ponctuel de Poisson dans K,
c’est-à-dire un ensemble de points de K dont le nombre est poissonnien et tel que conditionnellement
à ce nombre, les points sont indépendants et identiquement distribués. En particulier, les nombres de
points tombant dans des boréliens disjoints de Rd sont indépendants. Cette hypothèse poissonnienne
est essentielle à notre étude. La mesure d’intensité d’un tel processus est la mesure qui à un borélien
de Rd associe le nombre moyen de points du processus dans ce borélien. Celle-ci caractérise la loi
du processus ponctuel de Poisson. On considérera en particulier le processus noté Pf dont la
mesure d’intensité s’écrit f(x)dx où f est une fonction mesurable positive de support inclus dans
K et où dx est la mesure de Lebesgue de Rd. Lorsque f = λ1K avec λ > 0, on note Pλ = Pf .
Pour un traitement plus général des processus ponctuels dont les processus de Poisson sont des cas
particuliers, on peut se référer notamment à l’ouvrage de Daley et Vere-Jones [34, 35]. Le livre de
Last et Penrose [53] se concentre quant à lui sur le processus de Poisson.

Il existe peu de résultats généraux sur la loi de conv(Pf ) à f fixé. Dans cette thèse, nous nous
concentrons sur des propriétés asymptotiques de conv(Pλ) lorsque le nombre moyen λ de points par
unité de volume dans K tend vers l’infini. En particulier, on s’intéresse aux nombres de sommets,
arêtes, faces et plus généralement de k-faces pour tout k ∈ {0, . . . , d−1} de la frontière du polytope
∂conv(Pλ) ainsi qu’aux volumes intrinsèques, dont le volume est un cas particulier, de conv(Pλ).
On note fk(P ) le nombre de k-faces d’un polytope P et Vk(P ) son k-ième volume intrinséque.
En particulier f0(P ) est le nombre de sommets de P et Vd est le volume dans Rd. L’étude du
premier moment de ces caractéristiques remonte aux deux articles fondateurs de Rényi et Sulanke
datant de 1963 [64] et 1964 [66] et consacrés au cas de la dimension deux. Les auteurs y obtiennent
notamment le fait surprenant que la vitesse de croissance du nombre moyen de points extrémaux est
polynomiale ou logarithmique suivant la régularité du bord du corps convexe K. Plus précisément,
il existe deux constantes explicites strictement positives cK et c′

K et ne dépendant que de K telles
que

lim
λ→+∞

λ−1/3E[f0(conv(Pλ))] = cK

dans le cas où K est à bord lisse, c’est-à-dire de classe C2, et

lim
λ→+∞

log−1(λ)E[f0(conv(Pλ))] = c′
K

lorsque K est un polygone. La constante cK est proportionnelle au périmètre affine de K lorsque
K est à bord lisse tandis que c′

K est proportionnelle au nombre de sommets de K lorsque K est un
polygone. À partir des années 1990, ces résultats sont étendus à l’espérance du nombre de k-faces
en toute dimension [62, 2, 7, 74]. Plus précisément, il existe des constantes explicites strictement
positives cK,k et c′

K,k ne dépendant que de K et k ∈ {0, . . . , d − 1} telles que si K est à bord lisse,

lim
λ→+∞

λ−(d−1)/(d+1)E[fk(conv(Pλ))] = cK,k

et si K est un polytope,

lim
λ→+∞

log−(d−1)(λ)E[fk(conv(Pλ))] = c′
K,k.
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Figure 1 – Exemple de convex hull peeling dans un disque.

Des résultats du second ordre (bornes et limite pour la variance, théorème central limite) [62,
61, 11, 12, 24, 25, 27] et des inégalités de concentration [63, 79, 44] sont venus compléter depuis
l’analyse asymptotique de ces fonctionnelles combinatoires du polytope aléatoire. Parallèlement,
des résultats analogues ont été établis pour les volumes intrinsèques dans le cas où K est à bord lisse
[72, 2, 8]. Dans le cas où K est un polytope, le problème reste ouvert pour les volumes intrinsèques
distincts du volume Vd [7] et V1 [67]. Pour plus de détails, nous renvoyons le lecteur à la section
1.3.

Cette thèse porte sur la construction du convex hull peeling (qu’on pourrait traduire littéralement
par enveloppe convexe pelée) qui est une généralisation des polytopes aléatoires décrits précédem-
ment. Plus précisément, le convex hull peeling d’un ensemble localement fini X consiste à prendre
l’enveloppe convexe de X, puis à enlever les points sur le bord de l’enveloppe et ensuite à répéter
l’opération jusqu’à ce qu’il ne reste plus de points, voir Figure 1. L’enveloppe prise à l’étape n est
notée convn(X) avec la convention conv1(X) = conv(X) et sa frontière ∂convn(X) est appelée la
n-ième couche du convex hull peeling de X. La procédure de convex hull peeling a été introduite par
Barnett [13] en 1976. Son but était de donner un sens au caractère "central" d’un point par rapport
à un ensemble de données en dimension d. En effet, le numéro de la couche du convex hull peeling
auquel appartient un point peut être interprêté comme la profondeur de ce point à l’intérieur de
l’ensemble de données. On s’attend ainsi à ce qu’un point soit d’autant plus central que son numéro
de couche est grand. Les applications du convex hull peeling concernent surtout les statistiques et
en particulier la détection d’anomalie, voir par exemple les articles de Donoho et Gasko [38], Hodge
et Austin [47] et Rousseeuw et Struyf [66]. Le convex hull peeling a également été utilisé pour la
reconnaissance d’ensembles déformés par des projections dans le cadre de la vision par ordinateur
[76] ou dans le contexte d’un algorithme de reconnaissance d’empreintes digitales [58].

À notre connaissance, il existe peu de résultats théoriques connus sur le convex hull peeling, à
l’exception notable essentiellement de deux articles.

Tout d’abord, Dalal [33] obtient en 2004 l’ordre de grandeur de l’espérance du nombre total de
couches du convex hull peeling de Pλ dans n’importe quelle région bornée K de Rd, qui n’est pas
nécessairement convexe. Plus précisément, pour toute région bornée K, il existe deux constantes
positives cK et c′

K ne dépendant que de K telles que le nombre total moyen de couches du convex
hull peeling de Pλ est compris entre cKλ2/(d+1) et c′

Kλ2/(d+1). La démonstration repose d’une part
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sur le codage par un graphe acyclique orienté déterministe d’une partition bien choisie de la zone
d’intérêt et d’autre part sur un résultat probabiliste de Bárány [1] selon lequel le nombre de points
sur la frontière de l’enveloppe convexe de n points uniformes i.i.d. dans un corps convexe quelconque
est toujours compris entre logd−1(n) et n(d−1)/(d+1) à constante multiplicative près, c’est-à-dire que
les cas des corps convexes lisse et des polytopes sont les deux cas extrêmes. En particulier, un
raisonnement heuristique simple permet de vérifier que le résultat de Dalal semble cohérent dans
le cas des convexes à bord lisse. En effet il y a asymptotiquement et en moyenne de l’ordre de
λ(d−1)/(d+1) points sur le bord de l’enveloppe convexe. En supposant que le nombre moyen de
points sur chacune des couches soit du même ordre de grandeur, on retrouve bien un total de λ
points en moyenne dans le corps convexe K. Dans le chapitre 2 de la thèse, nous exploitons la
construction de Dalal pour montrer que la famille des variables égales au nombre total de couches
renormalisé pour λ > 0 est uniformément intégrable.

Le deuxième travail consacré au convex hull peeling et qu’il est pertinent de mentionner dans le
cadre de cette thèse remonte à 2020 et est dû à Calder et Smart [22]. Dans cet article, les travaux
de Dalal sont étendus de multiples façons. Tout d’abord, le processus de Poisson peut avoir pour
intensité n’importe quelle mesure λf(x)dx où f est une fonction continue strictement positive sur
un corps convexe K. Ensuite, une valeur limite presque sûre est obtenue pour le nombre total
de couches. Surtout, ils étendent cette convergence à un cadre fonctionnel. Plus précisément, ils
définissent une fonction hλ qui, à chaque point du convexe mère K, associe le nombre d’enveloppes
du convex hull peeling de Pλf qui contiennent ce point. Cette fonction, appelée fonction de hauteur
(ou profondeur) convexe, admet une limite uniforme presque sûre explicite, c’est-à-dire que presque
sûrement,

λ− 2
d+1 hλ

unif−→ αh (1)

où α > 0 est une constante positive qui ne dépend que de la dimension d et h est l’unique solution
de viscosité de l’équation aux dérivées partielles{

⟨Dh, cof(−D2h)Dh⟩ = f2 dans int(K)
h = 0 sur ∂K

,

avec les notations ⟨·, ·⟩ et cof désignant le produit scalaire usuel de Rd et la comatrice respectivement.
Dans la mesure où le maximum de hλ est le nombre total de couches, les auteurs obtiennent comme
corollaire la convergence presque sûre et en espérance du nombre total de couches renormalisé par
λ2/(d+1) vers α maxK h. L’originalité de leur travail repose notamment sur une interprétation de la
procédure de peeling en termes de théorie des jeux, une étude des solutions de l’EDP ci-dessus et
de leur approximation par morceaux et dans la transformation locale de la construction du convex
hull peeling en ce qu’ils appellent un semiconvex peeling et qui n’est rien d’autre que le peeling
parabolique décrit dans notre chapitre 3.

Nous adoptons dans cette thèse un point de vue complémentaire de celui de Dalal et Calder et
Smart. Au lieu de compter le nombre de couches, nous fixons le numéro n d’une couche, indépen-
damment de λ et étudions ensuite les propriétés de la n-ième enveloppe convexe dans le même esprit
que la littérature existante sur les polytopes aléatoires. Plus précisément, nous cherchons à obtenir
des asymptotiques de moments pour le nombre de points sur la n-ième couche, puis pour le nombre
de k-faces et les volumes intrinsèques de cette couche. Nous nous sommes concentrés sur deux cas
précis : lorsque K est la boule unité Bd de Rd et lorsque K est un polytope simple.

Le chapitre 3 est consacré aux résultats inédits obtenus dans le cas K = Bd. Nous désignons par
Nn,k,λ le nombre de k-faces de la n-ième couche du convex hull peeling de Pλ pour k ∈ {0, . . . , d−1}
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Figure 2 – Premières couches d’un peeling parabolique, avec en rose la 5-ième enveloppe parabolique.

et par Vn,k,λ le k-ième volume intrinsèque défaut Vk(Bd)−Vk(convn(Pλ)) pour k ∈ {1, · · · , d}. Nous
obtenons alors les résultats suivants:

lim
λ→+∞

λ− d−1
d+1 E[Nn,k,λ] = Cn,k,d et lim

λ→+∞
λ− d−1

d+1 Var[Nn,k,λ] = C ′
n,k,d

et
lim

λ→+∞
λ

2
d+1 E[Vn,k,λ] = CV,n,k,d et lim

λ→+∞
λ

d+3
d+1 Var[Vn,k,λ] = C ′

V,n,k,d

où Cn,k,d, C ′
n,k,d, CV,n,k,d et C ′

V,n,k,d sont des constantes strictement positives ne dépendant que de
n, k et d. On peut remarquer en particulier que l’ordre de grandeur du nombre moyen de k-faces (et
également du volume intrinsèque défaut d’ordre k) reste le même pour la n-ième couche que pour
la toute première. Nous démontrons par ailleurs des théorèmes centraux limite pour les variables
Nn,k,λ et Vn,k,λ.

Les démonstrations de ces résultats sont assez différentes des articles précédents sur le convex hull
peeling. Nous nous appuyons en grande partie sur les techniques développés par Calka, Schreiber
et Yukich [24] pour étudier la première enveloppe convexe. La première étape consiste à réécrire les
variables considérées, Nn,k,λ et Vn,k,λ, comme la somme sur les points poissonniens de scores qui
sont des variables aléatoires dépendant du point poissonnien choisi et de l’ensemble du processus.
Ce score décrit la contribution d’un point donné à la variable globale Nn,k,λ ou Vn,k,λ. Comme
les premières couches ont tendance à s’agglutiner près du bord de Bd lorsque λ devient grand, on
choisit dans une seconde étape d’appliquer un changement d’échelle adapté. Ceci nous conduit à
considérer un autre modèle de peeling dit parabolique dans un demi-espace Rd−1 × R+ où le rôle
joué par les hyperplans dans la construction du convex hull peeling classique de départ est à présent
tenu par des paraboloïdes, voir Figure 2. En suivant la stratégie de [24], tout l’enjeu est alors de
montrer la stabilisation des scores dans ce nouveau modèle, c’est-à-dire de vérifier qu’avec grande
probabilité qui tend exponentiellement vite vers 1, la détermination du score d’un point donné
ne dépend que de l’intersection du processus avec un voisinage de ce point. Ceci est la difficulté
majeure de ce chapitre et la principale nouveauté par rapport à la littérature existante. En effet, la
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construction des couches du peeling nécessite la connaissance globale de tout l’ensemble de points
de Pλ et de tout l’historique des couches qui précèdent. De fait, dès que n ≥ 2, il est nettement
plus délicat d’établir un bon critère permettant de décider si un point donné est sur la n-ième
couche. Notamment, le seul critère que l’on connaisse pour déterminer si un point est sur la n-ième
couche est un critère récursif qui rappelle l’interprétation en termes de théorie des jeux exploitée
par Calder et Smart. Cela nous pousse à faire une démonstration par récurrence de la stabilisation
qui nécessite par ailleurs d’estimer la position en hauteur de chacune des couches. L’autre point
délicat de ce chapitre est la justification de la stricte positivité des espérances et variances limites
de Nn,k,λ et Vn,k,λ. Pour ce faire, nous procédons à la construction d’une configuration de points
déterministe idéale, représentée par un arbre, et nous la perturbons ensuite de manière aléatoire.

Le chapitre 4 porte sur nos résultats inédits dans le cadre d’un convexe-mère K qui est lui-même
un polytope simple. En notant de nouveau Nn,k,λ pour le nombre de k-faces du convex hull peeling
de Pλ, on obtient

lim
λ→+∞

log(λ)−(d−1)E[Nn,k,λ] = Cn,k,d et lim
λ→+∞

log(λ)−(d−1)Var[Nn,k,λ] = C ′
n,k,d

où Cn,k,d et C ′
n,k,d sont des constantes positives ne dépendant que de n, k et d. Là encore, à

constante multiplicative près, le comportement asymptotique de l’espérance et de la variance est le
même pour la n-ième couche que pour la première.

Une partie des outils du chapitre 3 se transposent assez bien au cas où K est un polytope
simple. En effet, on peut à nouveau utiliser une décomposition en somme de scores de Nn,k,λ puis
un changement d’échelle. Le modèle transformé est alors un peeling où le rôle des hyperplans est
joué par des grains ressemblant à des cônes. Dans les faits, malgré quelques complications tech-
niques, on peut montrer la stabilisation de façon relativement similaire à celle utilisée dans le cas
de la boule unité. En revanche, on fait face à un nouveau problème : le changement d’échelle
utilisé ne peut fonctionner qu’en se limitant au voisinage d’un sommet de K et il n’existe pas de
changement d’échelle global. Cela nous oblige à montrer deux faits importants, d’une part que les
contributions des sommes de scores au voisinage de chacun des sommets de K sont additives, que
l’on considère l’espérance ou la variance, et d’autre part que la contribution des scores de points
suffisamment éloignés des sommets de K est négligeable. La démonstration de ces deux faits néces-
site d’introduire des objets géométriques spécifiques, en particulier les corps flottants qui sont des
sous-ensembles convexes de K destinés à approcher avec grande probabilité les enveloppes convexes
successives du peeling. En reprenant des idées développées par Bárány et Reitzner dans le cas de
la première enveloppe [12], nous montrons que les couches successives du peeling sont contenues
dans une zone étroite près de la frontière de K, délimitée par deux corps flottants convenablement
calibrés. Ce résultat dit de sandwiching constitue l’une des principales nouveautés de ce chapitre.
Sa démonstration repose notamment sur un résultat Bárány [5] sur la probabilité pour n points
d’être en position convexe . La fin de la démonstration adapte aux enveloppes successives du peeling
la plupart des arguments utilisés par Calka et Yukich [27] dans le cas de la première enveloppe et
inspirés par [12], à savoir une partition explicite du sandwich et la construction d’un graphe de
dépendance.

La suite de cette thèse, rédigée en anglais, s’organise comme suit.
— Le premier chapitre rappelle quelques résultats de géométrie stochastique et de géométrie

convexe. Nous rappelons tout d’abord les définitions et principales propriétés des processus
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ponctuels, processus de Poisson, k-faces et volumes intrinsèques. Le chapitre se concentre
ensuite sur la description des principaux résultats connus sur les polytopes aléatoires. Nous
insistons en particulier sur les techniques de démonstrations utilisées par [24] et [27] car elles
sont réutilisées dans les chapitres 3 et 4.

— Dans le chapitre 2, nous donnons quelques définitions et résultats généraux sur le convex
hull peeling déterminimiste, puis nous présentons de manière précise les résultats de Dalal
[33] dans le cadre aléatoire. Nous en profitons pour déduire des arguments de Dalal un
résultat d’uniforme intégrabilité, ce qui constitue une première nouveauté dans cette thèse.
Nous décrivons ensuite la contribution de Calder et Smart [22] en détaillant en particulier
la convergence en espérance du nombre total de couches.

— Le chapitre 3 est dédié à l’étude des premières couches du convex hull peeling d’un processus
de Poisson d’intensité λdx dans la boule unité de Rd. Il s’agit d’un article soumis pour
publication et comprenant une partie des nouvelles contributions de cette thèse. On y
obtient une limite pour l’espérance et la variance renormalisées du nombre de k-faces ainsi
que de tous les volumes intrinsèques pour les premières couches du convex hull peeling. On
montre par ailleurs que les limites obtenues sont non nulles et on établit enfin un théorème
central limite pour chacune de ces quantités.

— Enfin le chapitre 4 concerne le cas où le convexe mère K est un polytope simple. Il est consti-
tué d’un article destiné à être soumis et incluant la seconde partie des nouvelles contributions
de la thèse. Y sont obtenues les limites de l’espérance et de la variance renormalisées du
nombre de k-faces des premières couches du convex hull peeling. Un résultat intermédiaire
intéressant en soi porte sur la localisation entre deux corps flottants des premières couches.

Les chapitres 2, 3 et 4 se concluent par une sélection de problèmes ouverts et de perspectives
engendrées par notre travail.
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Chapter 1

Elements of convex and stochastic
geometry

A general idea in the construction of numerous models of stochastic geometry consists in first
defining random points and then building geometric structures from these points according to a
particular deterministic rule. This is the case for random geometric graphs [56], random tessellations
[71, Chapter 10] or continuum percolation [55] for instance. The models of random polytopes under
study in this thesis also fit into this category.

This chapter aims at introducing the useful definitions and known results from both stochastic
and convex geometry. More precisely, we focus on the following objects: point processes, convex
bodies and random polytopes.

1.1 Point processes
This section is dedicated to reminders on random locally finite sets of points, that we call points

processes. A special attention is given to Poisson point processes which satisties a property of
non-interaction between the points. In this regard, they are the most convenient to handle and as
such are the ones that are used in the following chapters.

A point process is the basic object from which we build our random structures. It is a random
set of points which is locally finite almost surely, i.e. with probability 1, there is a finite number of
points in its intersection with any compact set. Such a model can be defined in any locally compact
space with a countable base, see e.g. [71, Chapter 3], or even more general spaces, see [53, Chapter
2] but for our purposes, we restrict ourselves to simple points processes in Rd.

A simple point process can be introduced as a random measure ν which is the sum of Dirac
measures at distincts points of Rd or alternatively as a locally finite closed set. Let us present
below both points of view. For sake of brevity, we omit the word simple in the subsequent lines
although it is implicit. For further details on point processes, we refer to both [71, Chapter 3] and
[53, Chapter 2].
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1.1.1 Generalities
Definition 1.1.1 (Counting measure). We call counting measure on (Rd, B(Rd)) a measure ν on
(Rd, B(Rd)) that is locally finite (i.e. finite on any compact set) with values in N∪ {+∞} and such
that for all x ∈ Rd we have ν({x}) ∈ {0, 1}.

In particular, when ν is a counting measure, its support supp(ν) is given by

supp(ν) = {x ∈ Rd : ν({x}) = 1}.

We write N for the set of all the counting measures on (Rd, B(Rd)). We endow it with the smallest
σ-algebra N which guarantees the measurability of the functions{

N → N ∪ {+∞}
ν 7→ ν(A) , A ∈ B(Rd).

Definition 1.1.2 (Point process). A point process is a random variable with values in N.

The denomination of point process is justified by the following property which states that a
point process can be written as a sum of Dirac measures at distinct random points.

Proposition 1.1.3. There exist measurable functions (ζi)i∈N from N to Rd such that for all ν ∈ N

ν =
ν(Rd)∑
i=1

δζi(ν).

The alternative way of defining a point process consists in considering a random closed set
which is locally finite almost surely. We describe this approach below. We denote by Floc the set
of all closed locally finite sets of Rd. We endow it with the smallest sigma algebra that makes the

functions
{

Floc → N ∪ {∞}
φ 7→ card(φ ∩ A) measurable for all A ∈ B(Rd).

The idea stated in Proposition 1.1.4 below consists in identifying a point process defined as a
random measure with the set of all the points where the measure is one, i.e. its support.

Proposition 1.1.4. The function {
N → Floc

ν 7→ supp(ν)

is a one-to-one measurable function with measurable inverse.

The so-called intensity of a point process which is defined below plays the role of a characteristic
of order one, in the spirit of the expectation of a real random variable.

Definition 1.1.5 (Intensity). Let η be a point process. We call intensity measure of η the measure
µ defined by

µ(A) := E[η(A)]

for all A ∈ B(Rd).

11



For sake of simplicity, we assume from now on that the intensity measure of the considered
point processes are locally finite. Definition 1.1.5 combined with the monotone class theorem for
functions yields the following useful formula. Using the identification between a point process η and
its support supp(η), we generally write

∑
x∈ν

f(x) for the random variable
∫
Rd fdν for any measurable

function f : Rd → R+.

Proposition 1.1.6 (Campbell formula). Let η be a point process with intensity measure µ. Then
for all measurable f : Rd → R+,

∑
x∈η f(x) =

∫
Rd fdη is a measurable function and

E[
∑
x∈η

f(x)] = E
[∫

Rd

fdη

]
=
∫
Rd

fdµ.

The moment measures that are defined now must be understood as analogues for a point process
of higher order moments of a real random variable. It can be proved that they satisfy generalized
Campbell formulas.

Definition 1.1.7 (m-th moment measure and factorial m-th moment measure). Let η be a point
process. The m-th moment measure (resp. m-th factorial moment measure) is the intensity measure
of the point process ηm (resp. of the point process ηm

̸= defined as ηm
̸= :=

∑
(x1,...,xm)∈ηm

xi ̸=xj ,∀i̸=j

δ(x1,...,xm)).

1.1.2 Poisson point processes
The particular point processes that we focus on in this thesis are the Poisson point processes.

They are point processes such that the number of points in disjoint subsets of Rd are independent,
which means in other words that the points do not interact. Moreover, they are the only point
processes with non-atomic intensity measures that satisfy this independence property, see e.g. [53,
Theorems 6.10 and 6.12].

The number of points of a Poisson point process in a Borel subset A of Rd is Poisson distributed
with mean µ(A) where µ is its intensity measure and is non-atomic. In fact, any of the two
properties, independence property or Poisson property, is enough to characterize the Poisson point
processes among all point processes under the assumption that the intensity measure is non-atomic.

The independence property enjoyed by Poisson point processes is crucial for the study of the
random structures that we build in this thesis. An important consequence is Mecke’s formula, that
we recall in Theorem 1.1.10 and that is used extensively in Chapters 3 and 4.

Definition 1.1.8 (Poisson point processes). For any locally finite non-atomic measure µ, there
exists a point process η with intensity measure µ which satisfies the following two conditions.

— For all pairwise disjoint sets A1, . . . , An ∈ B(Rd) the random variables (card(η ∩ Ai))i are
independent.

— For all A ∈ B(Rd) such that µ(A) < ∞, card(η ∩ A) is a Poisson random variable with mean
µ(A).

Such a point process is unique in distribution and is called the Poisson point process with intensity
measure µ.

When f is a non-negative measurable function, we denote by Pf the Poisson point process with
intensity measure f(x)dx. With a slight abuse, we keep the same notation when f is defined on a
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compact set K of Rd and the Lebesgue measure is restricted to K. The context should clear out
any confusion.

A Poisson point process with intensity λdx for some λ > 0 is called a homogeneous or stationary
Poisson point process.

As stated in Proposition 1.1.9, the intersection of a Poisson point process with a fixed compact
set may be realized explicitly, which provides an easy method of simulation.

Proposition 1.1.9. Let η be a Poisson point process with intensity measure µ on a compact set K.
Then η has the same distribution as the point process

∑N
i=1 δXi

where N ∼ P(µ(K)) and (Xi)∞
i=1

are i.i.d. random variables independent from N with distribution µ/µ(K) on K.
As a consequence for any m ∈ N, the conditional distribution P(η ∩ K ∈ · | card(η ∩ K) = m) is

the distribution of a set constituted with m i.i.d. random variables with distribution µ/µ(K) in K.

The following formula known in the literature as Mecke’s formula extends Campbell’s formula
as it calculates the expectation of a measurable functional of both a point and the whole point
process. It characterizes the Poisson point processes among all point processes. Furthermore and
unsurprisingly for those accustomed to deal with Poisson point processes, the use of Mecke’s formula
turns out to be decisive in many places in Chapters 3 and 4.

Theorem 1.1.10 (Mecke). Let m ∈ N∗, η be a Poisson point process with intensity µ and f :
(Rd)m × N → R+ a measurable function. Then we have

E

 ∑
(x1,...,xm)∈ηm

̸=

f(x1, . . . , xm, η)

 =
∫

(Rd)m

E[f(x1, . . . , xm, η ∪ {x1} ∪ . . . ∪ {xm}})]dµm.

The following proposition provides a canonical way to build a Poisson point process with inten-
sity f(x)dx when f is a continuous function from Rd to R+. One of its benefits is the possibility to
define two Poisson point processes on the same probability space with one included in the other.

Proposition 1.1.11. Let P be a Poisson point process with intensity 1Rd×]0,+∞[(x)dx in Rd+1 and
0 ≤ f ≤ g two measurable functions. The point process

Pf := {x ∈ Rd : ∃y ∈ ]0, f(x)[ s.t. (x, y) ∈ η}

has the distribution of a Poisson point process with intensity f(x)dx in Rd In particular Pf ⊂ Pg.

Incidentally, since the Poisson distribution plays a central role in our work, we state here a useful
concentration inequality satisfied by any Poisson random variable. We are aware of numerous such
estimates, see e.g. [56, Lemma 1.2] or [20, Section 2.2] but we opted for a simple upper bound
which is proved in the online course [29].

Proposition 1.1.12. Let λ > 0 and X ∼ P(λ). For all x > 0 we have

P(|X − λ| ≥ x) ≤ 2 exp
(

− x2

2(λ + x)

)
.
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1.2 Convex and integral geometry
For a given Poisson point process, we aim at describing its convex hull peeling. We postpone

the details of this construction to Chapter 2 and just state here that it involves the study of
convex hulls of random points which are then random polytopes. Defining and studying the useful
characteristics of these polytopes requires some knowledge of convex and integral geometry. In this
section, we recall the notions of polytope, k-dimensional face and intrinsic volume and we conclude
with a particular integral formula that is needed further on. For further details including the precise
definitions of Hausdorff distance, Hausdorff measures and Haar measures, we refer to [71, Parts II
& IV], [70, Chapters 1 to 4] and [16, Chapter 12].

1.2.1 Polytopes
In this section, we collect a few basic definitions related to the polytopes of Rd.

Definition 1.2.1 (Polytope). A polytope K is a compact set obtained as the intersection of a finite
number of closed half-spaces of Rd. It can be written uniquely as K = ∩n

i=1Ri where n is minimal
and Ri are closed half-spaces of Rd and well-determined up to a permutation.

The combinatorial structure of a polytope is described through a collection of (d + 1) integer
quantities, called the numbers of k-dimensional faces, 0 ≤ k ≤ d, or k-faces in abbreviated form.
They turn out to be some of our main objects of study in Chapters 3 and 4. In particular, for any
d-dimensional polytope, a 0-face is also called a vertex, a 1-face an edge and a (d − 1)-face a facet.

Definition 1.2.2 (k-faces). Let K = ∩n
i=1Ri be a polytope with non-empty interior. The sets

∂Ri ∩ K are called facets, or (d − 1)-faces of K. A k-face of K is a facet of a (k + 1)-face of
K seen as a polytope with non-empty interior in a (k + 1)-dimensional affine subspace of Rd

(k ∈ {0, . . . d − 2}). We write fk(K) for the number of k-faces of K.

We introduce below the notion of simple polytope which is needed in Chapter 4.

Definition 1.2.3 (Simple polytope). A polytope is said to be simple if each of his vertices is
included in exactly d facets.

1.2.2 Intrinsic volumes
Since Chapter 3 deals in part with the defect intrinsic volumes of the first convex hulls of the

convex hull peeling in the ball, we introduce now the notion of intrinsic volumes. The definition
of the intrinsic volumes is linked to the following formula, called Steiner’s formula. We denote by
Vold the d-dimensional Lebesgue measure and write κd = Vold(Bd) where Bd is the d-dimensional
Euclidean unit ball.

Theorem 1.2.4 (Steiner formula). There exists non-negative functions V0, . . . , Vd such that for
any convex body K ⊂ Rd and any ε > 0

Vold(K + εBd) =
d∑

j=0
εd−jκd−jVj(K).

Definition 1.2.5 (Intrinsic volumes). For any j ∈ {0, . . . , d}, the function Vj of Theorem 1.2.4
defined on the set of all convex bodies of Rd is called the jth intrinsic volume.
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Some of these intrinsic volumes can be linked to more intuitive geometric quantities. For a
convex body K of Rd, we have the following properties.

— V0(K) is equal to the Euler characteristic of K, i.e. is always equal to 1.
— V1(K) = dκd

2κd−1
b(K) where b(K) is the mean width of K.

— Vd−1(K) = 1
2 Hd−1(∂K) where Hd−1 is the (d − 1)−dimensional Hausdorff measure.

— Vd coincides with the d-dimensional Lebesgue measure in dimension d.
In Proposition 1.2.6 below, we state in particular that the intrinsic volumes are additive, i.e. they
belong to the class of valuations on convex bodies, see e.g. [70, Chapter 6]. The famous Had-
wiger’s theorem shows that conversely, any valuation under continuity and rigid motion invariance
assumptions can be decomposed into a linear combination of intrinsic volumes.

Proposition 1.2.6. The intrinsic volumes are additive in the sense that for all j and convex bodies
K and L

Vj(K ∪ L) + Vj(K ∩ L) = Vj(K) + Vj(L).

Furthermore the intrinsic volumes are invariant under rigid motions, continuous with respect to
Hausdorff distance, nonnegative, monotone under set inclusion, and locally bounded.

The classical Cauchy-Crofton formula states that up to a multiplicative constant, the intrinsic
volume V1 of a convex body K in R2 is equal to the mean of the diameter of K in all directions
and also equal to the length of the boundary of K. Kubota’s formula which is recalled in Theorem
1.2.7 below extends this identity to further dimension, i.e. it expresses the intrinsic volume Vk(K)
for any convex body K of Rd, 0 ≤ k ≤ d as the mean over a certain canonical measure of the k-th
dimensional Lebesgue measure of the projection of K onto all k-dimensional subspaces. Kubota’s
formula proves to be an important tool that is used in Chapter 3 for the study of the defect intrinsic
volumes of the k-th layer of the convex hull peeling in the unit ball. We write K|L for the orthogonal
projection of K onto L and νk for the normalized Haar measure on the k-th Grassmanian G(d, k)
of Rd.

Theorem 1.2.7 (Kubota’s formula). For any convex compact set K of Rd we have

Vj(K) = d!κd

j!κj(d − j)!κd−j

∫
G(d,j)

Vj(K|L)dνj(L).

1.3 Random polytopes
In this section we discuss random polytopes generated as the convex hull of a Poisson point

process. This is the first step of the construction of the convex hull peeling, where we then remove
the extreme points and take the convex hull of the remaining points repeatedly until there is no
remaining point. However before even thinking of the convex hull peeling, we wish to emphasize
here that several models of convex hulls of random sets of points have been studied extensively. For
precise surveys, we refer to [63], [6] and [48].

To the best of our knowledge, the list of available non-asymptotic results is limited to Efron’s
formula which relates the mean number of extreme points to the mean volume of the convex hull
[41], its extensions to higher moments due notably to Buchta [21], as well as Wendel’s formula for
the probability that the origin is included in the convex hull of a symmetric input [81]. Very recently,
by considering random angles in simplices, Kabluchko derived explicit formulas for the expected
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so-called f -vector of a random polytope, constituted with the number of k-faces for 0 ≤ k ≤ d
[49, 50].

Still, it is commonly considered as very delicate to derive distributional results on such random
polytopes. We have chosen to focus here on asymptotic results when the size of the input goes to
infinity. We concentrate on the following functionals : number of k-faces and k-dimensional intrinsic
volumes, 0 ≤ k ≤ d. The general problem of obtaining the limit of the average number of vertices
of the convex hull of n i.i.d. random points was originally solved in the case of uniform points in a
smooth convex body or in a polygon in dimension 2 by Rényi and Sulanke in their seminal works
[64, 65]. In particular, they identified the growth rate of the expected number of vertices to be n1/3

in a smooth convex body and log(n) in a polygon up to multiplicative constants.
In this section we start by defining the floating bodies and giving some useful results that con-

nects them to the study of random polytopes generated as convex hulls of Poisson point processes.
Then, we propose a selection of several historical results on random polytopes. Some of these results
concern in fact convex hulls generated by a deterministic number of i.i.d. random points, i.e. a
so-called binomial point process, but the Poisson case can be deduced from them by a classical use
of Bayes’ formula combined with a concentration result of the Poisson distribution. We omit this
technical step and state the results for a Poisson input even when they are written originally for
a binomial point process. Note that the reverse procedure known as de-Poissonization is infamous
for being much more intricate in general. We separate the case of random inputs in smooth convex
bodies with a special focus on the unit ball and the case of random inputs in polytopes. Incidentally,
we describe with more details the results that we intend to extend to the subsequent layers of the
convex hull peeling in Chapters 3 and 4 and we take this opportunity to introduce essential tools
that are needed for the study of the convex hull peeling. Throughout the whole section, Pλ denotes
a Poisson point process of intensity λdx where dx is the d-dimensional Lebesgue measure.

1.3.1 Floating bodies
First of all, we need to introduce two deterministic geometric constructions, namely the floating

bodies and the Macbeath regions, as they play an important role in the sequel, notably in Subsection
1.3.3 and in Chapter 4.

Definition 1.3.1 (Floating body). Let K be a convex body in Rd. We define the function v : K →
R for every z ∈ K by

v(z) := min{Vold(K ∩ H) : H halfspace containing z}.

The floating body of parameter t is the level set

K(v ≥ t) = {z ∈ K : v(z) ≥ t}.

It is a convex set and its counterpart K(v ≤ t) = {z ∈ K : v(z) ≤ t} is called the wet part at order
t.

Let us give some intuition to explain this designation. When we put a volume t of water in a
cube in dimension 3, the wet part is the region of the cube that can be put under the water by
rotating the cube in some direction. The floating body of parameter t is the part of the cube that
is never under water, no matter how the cube is rotated.

Bárány and Larman were the first to make the connection between floating bodies and the study
of random polytopes. In [20] they prove that for any convex body K and i.i.d. random variables
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(X1, . . . , Xn) uniformly distributed in K, the expected volume of K \ conv(X1, . . . , Xn) is close the
the volume of the wet part of order 1

n . More precisely we have the following result.

Theorem 1.3.2. Let K be a convex body in Rd and X1, . . . , Xn be n i.i.d. uniformly distributed
random variables in K. There exists constants c1, c2 > 0 and n0 ∈ N such that for all n ≥ n0

c1Vold(K(v ≤ 1
n

)) ≤ E[Vold(K \ conv(X1, . . . , Xn))] ≤ c2Vold(K(v ≤ 1
n

)).

Throughout the thesis, unless noted otherwise, c, c′, c1, c2 . . . denote positive constants which
only depend on dimension d (and possibly n and k in Chapters 2, 3 and 4) and whose value may
change at each occurrence.

Theorem 1.3.2 can be used to derive the asymptotic rate when n goes to infinity of the expected
volume of K \ conv(X1, . . . , Xn) and subsequently of f0(conv(X1, . . . , Xn)) by Efron’s formula.

The essential ingredient of the proof of Theorem 1.3.2 is the economic cap covering theorem that
they introduce in the same paper. It is also a key element of the proof of the sandwiching result,
see Theorem 1.3.5, that is used in [27] and that we extend to the layers of the convex hull peeling
in Chapter 4. Before stating the economic cap covering theorem, we need to define the Macbeath
regions.

Definition 1.3.3 (Macbeath regions). Let K be a convex body. The Macbeath region, or M-region
for short, with center z ∈ Rd and factor λ > 0 is M(z, λ) = MK(z, λ) := z + λ[(K − z) ∩ (z − K)].

Next we need some notations for the caps of K. Let hK be the support function of K. It is
defined for any u ∈ Sd−1 by hK(u) := max{⟨u, x⟩ : x ∈ K} where Sd−1 denotes the unit sphere of
Rd and ⟨·, ·⟩ is the usual scalar product in Rd. Any cap of K, i.e. any intersection of K with a
half-space of Rd can be written as

C = {x ∈ Rd : ⟨u, x⟩ ≥ hK(u) − t}

for some u ∈ Sd−1 and t ≥ 0. For any γ > 0 we write

Cγ := {x ∈ Rd : ⟨u, x⟩ ≥ hK(u) − γt}.

We call minimal cap of z a cap that contains z denoted by C(z) that is such that Vold(C(z)) = v(z).
It is not necessarily unique.

Let s0 := (2d)−2d. For any s ∈ [0, s0] we choose a maximal set of points z1(s), . . . , zm(s)(s) on
K(v = s) having pairwise disjoint M -regions M(zi,

1
2 ). We call such a system saturated and notice

that it is not necessarily unique. We write K ′
i(s) = M(zi,

1
2 ) ∩ C(zi) and Ki(s) := C6(zi). In this

context we have

Theorem 1.3.4 (Economic cap covering). Let K be a convex body with volume 1. For all s ∈ [0, s0]
1. ∪s

i=1K ′
i(s) ⊂ K(v ≤ s) ⊂ ∪m(s)

i=1 Ki(s),
2. s ≤ Vold(Ki(s)) ≤ 6ds for all i = 1, . . . , m(s),
3. (6d)−ds ≤ Vold(K ′

i(s)) ≤ 2−ds for all i = 1, . . . , m(s).

Theorem 1.3.2 has been later improved by Bárány and Reitzner in [11] in the case where K is
a polytope and with a Poisson input Pλ ∩ K. They obtain that the boundary of conv(Pλ ∩ K)
can in fact be sandwiched between two floating bodies with high probability, see Theorem 1.3.5
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below. This general fact is used in particular for deriving asymptotic bounds for the variance of
the number of k-faces and of the volume of the convex hull of Pλ ∩ K and for obtaining a CLT.

Let us write s = s(λ) := 1
λ log4d2+d−1(λ)

, T = T (λ) := α log log(λ)
λ with α = (6d)d(4d2 + d − 1) and

T ∗ = d6dT . We define A(s, T ∗, K) := K(v ≥ s) \ K(v ≥ T ∗).

Theorem 1.3.5 (Sandwiching). When K is a polytope with volume 1, there exists c > 0 such that
for λ large enough,

P(∂conv(Pλ ∩ K) ⊂ A(s, T ∗, K)) ≥ 1 − c ln−4d2
(λ).

1.3.2 Random polytopes in the unit ball and in smooth convex bodies
This subsection is devoted to the study of random polytopes generated by an homogeneous

Poisson point process when the ambient space K is a smooth convex body, i.e. its boundary is at
least C2-regular with a bounded Gaussian curvature from below and from above. Let us make an
overview of the known results about each of our functionals of interest, i.e. expectation asymptotics,
variance asymptotics, central limit theorems and concentration estimates.

As we stated before, the study of this case started with [64], a paper of Rényi and Sulanke
where they find the expectation of the number of vertices in dimension 2. In [65], they also find
the expectation of the defect volume between K and the convex hull of the random point set.
Through Efron’s formula, the study of these two quantities are intertwined in the works that come
afterwards. Following Wieacker’s work when K is the unit ball [82], Bárány finds the asymptotics
for both the defect volume and the number of vertices in [2] in the case of a C3 convex body. The
asymptotics for the number of vertices is given by

lim
λ→∞

E[f0(conv(Pλ ∩ K))]
λ(d−1)/(d+1) = c(d)as(K) (1.1)

where c(d) > 0 is a constant that only depends on the dimension and as(K) is the so-called affine
surface area of K. It is defined by

as(K) :=
∫

∂K

κ1/(d+1)(z)dz (1.2)

where for z ∈ ∂K, κ(z) is the Gaussian curvature of ∂K at point z and dz denotes the surface
measure on ∂K. An extension to C2 convex bodies and the exact value of the constant c(d) are
provided by Schütt in [74]. In [62], Reitzner generalizes the previous results and obtains the limit
of the expectation of the number of k-faces for any k ∈ {0, . . . , d − 1}. The formula (1.1) then
becomes

lim
λ→∞

E[fk(conv(Pλ ∩ K))]
λ(d−1)/(d+1) = c(d, k)as(K) (1.3)

where again c(d, k) > 0 only depends on the dimension and k. In particular we notice that the
dependence on k is only found in the constant and not in the exponent of λ. Moreover, the intrinsic
volumes have also been studied. Rényi and Sulanke derived the asymptotic mean of the perimeter
of the convex hull in dimension two in [65]. In dimension d, the expected mean width was found by
Schneider and Wieacker in [72]. The above-mentioned result of Bárány in [2] was actually extended
in the same paper to all of the intrinsic volumes, i.e. for any k ∈ {0, . . . , (d − 1)},

lim
λ→∞

λ2/(d+1)(E[Vk(K)] − E[Vk(conv(Pλ ∩ K))]) = c(d, k, K). (1.4)
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Note that again, the order of magnitude λ−2/(d+1) does not depend on the dimension of the intrinsic
volume that is considered.

Moments of higher order have been investigated as well. In [60] and then in [61], Reitzner proves
asymptotic lower and upper bounds for the variance of the number of k-faces and for the defect
volume. The order of magnitude of the variance is shown to be the same as for the expectation.
This result was extended to a limit by Calka, Schreiber and Yukich in [24], but only when the
convex body K is the unit ball. It was later shown for any C3 convex body by Calka and Yukich
in [27]. For the number of k-faces we have

lim
λ→∞

Var[fk(conv(Pλ ∩ K))]
λ(d−1)/(d+1) = c′(d, k, K) (1.5)

with c′(d, k, K) > 0. However, the knowledge on the intrinsic volumes, save for Vd, is more limited.
Lower and upper bounds were obtained by Bárány, Fodor and Vigh in [8], in particular the order
of magnitude of the variance of the defect intrinsic volumes is λ(d+3)/(d+1) up to a multiplicative
constant for any k. Furthermore as opposed to the number of k-faces it differs from the order of
magnitude of the expectation by a factor λ. Calka, Shreiber and Yukich also give a precise limit in
[24] but only in the case of K = Bd where we have

lim
λ→∞

λ(d+3)/(d+1)Var[Vk(K) − Vk(conv(Pλ ∩ Bd)] = cVk
(d,Bd).

To the best of our knowledge the problem is still open in a general smooth convex body K.
Next, we mention central limit theorems (CLT) in the literature. In the case of a general smooth

convex body K and in dimension d, the first central limit theorems were found for the number of
k-faces and for the volume by Reitzner in the Poisson case [61] and Vu in the binomial case [79]. In
[73], Schreiber and Yukich strengthen this to a multivariate central limit theorem in the unit ball
and Calka Shreiber and Yukich prove a central limit theorem for the number of k-faces and all of
the intrinsic volumes in the ball as well as a functional central limit theorem for the defect volume
[24]. More recently, the central limit theorem of [24] has been extended by Lachièze-Rey, Schulte
and Yukich in [52]. Their result is valid in any smooth convex body and the rate of convergence
provided by [24] is improved.

Finally, we mention several results in the flavor of large deviation (LD) estimates. Using the
Hoeffding-Azuma inequality, Reitzner provided general concentrations inequalities for the number
of k-faces and the defect volume in his survey [63]. Thanks to the so-called divide and conquer
martingale method, more precise and possibly optimal estimates were obtained by Vu in [80] in
the particular cases of the volume and the number of vertices. Finally, Grote and Thäle recently
proved moderate deviations for the number of k-faces and intrinsic volumes in the context of the
unit ball in [44].

All the references cited above are summarized in the following table.

f0 fk Vd Vk

E [64] for d = 2, [2, 74] [62] [65] for d = 2, [2, 74] [72] for V1, [2]
Var [60, 61], [24] for Bd, [25] [8], [24] for Bd

CLT [61], [79] [73, 24], [52] [24], [52]
LD [63], [80], [44] for Bd [63], [44] for Bd [63], [80], [44] for Bd [44] for Bd

We concentrate below on the description of [24] which deals with limit theory for random polytopes
in the d-dimensional unit ball Bd and is the main inspiration for Chapter 3 and even Chapter 4 to
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some extent. For k ∈ {0, . . . , d − 1} we write N1,k,λ(Bd) for the number of k-faces of the convex
hull of Pλ ∩ Bd. Our notation which might seem a bit intricate to this point is in fact tailored
for the future introduction of the consecutive layers of the convex hull peeling from Chapter 2 on.
Similarly for k ∈ {1, . . . , d} we denote by V1,k,λ(Bd) the k-th defect intrinsic volume of the convex
hull of Pλ ∩ Bd, i.e. the difference between the k-th intrinsic volumes of the unit ball and of the
convex hull of Pλ ∩ Bd.

In this context, [24] develops a method which allows to recover both the expectation asymptotics
and central limit theorem for N1,k,λ(Bd) and provides in addition the existence of a limiting vari-
ance. In particular, both the expectation and variance grow like λ(d−1)/(d+1) up to a multiplicative
constant. This is stated in Theorem 1.3.6 below.

Theorem 1.3.6. For any n ≥ 1 and k ∈ {0, . . . , d − 1} there exist C1,k,d(Bd), C ′
1,k,d(Bd) ∈ (0, ∞)

such that

lim
λ→+∞

λ− d−1
d+1 E[N1,k,λ(Bd)] = C1,k,d(Bd) and lim

λ→+∞
λ− d−1

d+1 Var[N1,k,λ(Bd)] = C ′
1,k,d(Bd).

Moreover, when λ → ∞, we have

sup
t

∣∣∣∣∣P
(

N1,k,λ − E[N1,k,λ]√
Var[N1,k,λ]

≤ t

)
− P(N (0, 1) ≤ t)

∣∣∣∣∣ = O
(

λ− d−1
2(d+1) (log λ)3d+1

)
.

Furthermore, similar results are derived for the defect intrinsic volumes. This time, the expec-
tation grows like λ2/(d+1) while the variance grows like λ(d+3)/(d+1).

Theorem 1.3.7. For any n ≥ 1 and k ∈ {1, . . . , d} there exist CV,1,k,d, C ′
V,1,k,d ∈ (0, ∞) such that

lim
λ→+∞

λ
2

d+1 E[V1,k,λ] = CV,1,k,d and lim
λ→+∞

λ
d+3
d+1 Var[V1,k,λ] = C ′

V,1,k,d.

Moreover, when λ → ∞, we have

sup
t

∣∣∣∣∣P
(

V1,k,λ − E[V1,k,λ]√
Var[Vn,k,λ]

≤ t

)
− P(N (0, 1) ≤ t)

∣∣∣∣∣ = O
(

λ− d−1
2(d+1) (log λ)3d+1

)
.

One of the goals of this thesis is to extend the two previous theorems to the next layers of the
convex peeling of Pλ ∩ Bd, see Chapter 3. That is why we pave the way for the methods from
Chapter 3 by sketching now the main ideas of the proofs of Theorems 1.3.6 and 1.3.7. For sake of
simplicity, we focus on the case of E[N1,k,λ(Bd)] as the overall plan of the proof is similar in the
case of the n-th layer of the convex hull peeling.

Scores. The first idea is to write N1,k,λ(Bd) as a sum of a functional taken over each of the
points, that represents the contribution of the point to the number of k-faces of the convex hull.
More precisely, for each point x ∈ Bd we write

ξ1,k(x, Pλ ∩ Bd) :=
{ 1

k+1 card(F1,k(x, Pλ ∩ Bd ∪ {x})) if x ∈ ∂conv(Pλ ∩ Bd ∪ {x})
0 otherwise

where F1,k(x, Pλ ∩Bd) denotes the set of all the k-faces of conv(Pλ ∩Bd ∪{x}) that contain x. This
allows us to write

N1,k,λ =
∑

x∈Pλ∩Bd

ξ1,k(x, Pλ ∩ Bd).
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The renormalization 1
k+1 in the definition of the score comes from the fact that each k-face contains

exactly (k + 1) points almost surely. One of the benefits of this rewriting is that it has the right
shape to use Mecke’s theorem, recalled in Theorem 1.1.10. The application of this theorem gives

E[N1,k,λ(Bd)] = λ

∫
Bd

E[ξ1,k(x, Pλ ∩ Bd)]dx. (1.6)

Scaling transform. The next important step is to use a scaling transform. The need for rescal-
ing is roughly due to the fact that when λ goes to infinity, there are so many points close to the
boundary of Bd that it is hard to distinguish the convex hull from Bd itself. The aim is then to send
the model to a new one, where each unit volume would contain a bounded number of points while
preserving the convex hull structure to some extent. The only possible scaling transform which
satisfies these requirements is defined as follows. We write Ted

for the tangent space of Sd−1 at
point ed = (0, 0, . . . , 0, 1). The exponential map exped

: Ted
∼= Rd−1 −→ Sd−1 sends a vector v of

Ted
to the vector u that lies at the end of the geodesic of Sd−1 of length ∥v∥ that starts at ed with

direction v. The function exped
induces a one-to-one map between Bd−1(π) and Sd−1 \ {−ed} of

inverse exp−1 where Bl(r) denotes the open ball centered at 0 of radius r in Rl. This lets us define
a one-to-one map T (λ) between Bd \ [0, −ed] and Wλ := λ

1
d+1 Bd−1(π) × [0, λ

2
d+1 ) by

T (λ)(x) :=
(

λ
1

d+1 exp−1
(

x

∥x∥

)
, λ

2
d+1 (1 − ∥x∥)

)
(1.7)

for all x ∈ Bd \ [0, −ed].
The scaling transform T (λ) maps the Poisson point process Pλ ∩ Bd to a Poisson point process

P(λ) on Wλ that converges to a Poisson point process P whose intensity is simply the Lebesgue
measure on Rd−1 × R+. This fulfills the goal of having roughly one point per unit volume. The
convex hull structure is also preserved but with a different geometry. The intersections of Bd with
half-spaces of Rd, which we call caps are transformed into a set that converge to a translate of the
paraboloid Π↓ given by

Π↓ := {(v, h) ∈ Rd−1 × R+ : h < −∥v∥2

2 }.

As the convex hull of Pλ ∩ Bd is the complement of all the caps that do not contain any point of
Pλ ∩Bd, conv(Pλ ∩Bd) is mapped asymptotically to the complement of all the translates of Π↓ that
do not contain any point of P. We are then led to study this limit set that we call the parabolic
hull process related to P, see Figure 1.1.

In practice, using a spherical change of coordinates, the rotation invariance of Pλ and the change
of variables given by the scaling transform T (λ), we deduce from (1.6) that

E[N1,k,λ] = λ
d−1
d+1

∫
Sd−1

∫ λ
2

d+1

0
E[ξ(λ)

1,k ((0, h), P(λ))](1 − λ− 2
d+1 h)d−1dhdσd−1(u) (1.8)

where ξ
(λ)
1,k ((0, h), P(λ)) = ξ1,k([T (λ)]−1(0, h), Pλ ∩ Bd) is the score in the rescaled model. We have

the right scaling in front of the integral as E[N1,k,λ(Bd)] is supposed to be asymptotically λ(d−1)/(d+1)

times a constant. It remains to show that the integral converges to a finite limite. To do so, we
wish to use Lebesgue’s dominated convergence theorem and have then to overcome two obstacles.
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Figure 1.1 – In blue, the boundary of the parabolic hull process, in pink the image of the convex
hull by the rescaling.

First, we need to prove that E[ξ(λ)
1,k ((0, h), P(λ))] converges almost surely to E[ξ(∞)

1,k ((0, h), P)] where
ξ

(∞)
1,k ((0, h), P) is the equivalent of the score in the limit model, i.e.

ξ
(∞)
n,k ((0, h), P) :=

{
1

k+1 card(F (∞)
n,k ((0, h), P)) if (0, h) ∈ ∂Φ(∞)

n (P ∪ {(0, h)})
0 otherwise

(1.9)

where F (∞)
n,k ((0, h), P) is the set of all the parabolic k-faces of Φ(P) that contain (0, h). Here, we

omit the precise definition of a parabolic k-face which is the analogue of a k-face in the context of
parabolic convexity. The second obstacle consists in showing that ξ

(λ)
1,k ((0, h), P(λ)) is dominated

by an integrable function of h. Both of these two problems are solved by a result of stabilization of
the scores.

Stabilization. The idea for proving the convergence of the scores consists in using a version
of the continuous mapping theorem, namely [17, Theorem 5.5]. Thanks to the convergence of
P(λ) = T (λ)(Pλ ∩ Bd) to P and of the image of a cap to a translate of the paraboloid Π↓, the
theorem can be applied save for one thing: we need to be in a compact set, which is not the case
as Wλ goes to Rd−1 × R+ when λ goes to infinity. In order to circumvent that issue, we observe
the crucial fact that it is not needed to know the whole point process P(λ) to determine if a point
is extreme or not and the number of k-faces that possibly contain that point. The knowledge of
the intersection of the point process with a region around the point which is not too large should
suffice to determine its status, i.e. its score.

More precisely, for (v, h) ∈ Wλ and r > 0 we write ξ
(λ)
1,k,[r]((v, h), P(λ)) := ξ

(λ)
1,k ((v, h), P(λ)∩Cv(r))

where Cv(r) is the vertical cylinder Bd−1(v, r) × R+, Bd−1(v, r) being the ball with center v and
radius r in dimension (d − 1). Basically, ξ

(λ)
1,k,[r]((v, h), P(λ)) represents the score of (v, h) when
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the whole process P(λ) is replaced by the subset of points of P(λ) that are in a vertical cylinder
of radius r around (v, h). The radius of stabilization is defined by R

(λ)
1,k(v, h) := inf{R > 0 :

ξ
(λ)
1,k ((v, h), P(λ)) = ξ

(λ)
1,k,[r]((v, h), P(λ)) ∀r ≥ R}. We say that the score stabilizes in width, if this

radius of stabilization has a sub-exponential tail. This is proved to be the case in [24].
Let us sketch the proof of this result in the particular case λ = ∞, v = (0, h) and k = 0, i.e. for

the score ξ
(∞)
1,0 ((0, h), P) equal to 1 if (0, h) is extreme in P and 0 if not. Technical details aside, it

is sufficient to prove that for any r > 0,

P(ξ(∞)
1,0 ((0, h), P) ̸= ξ

(∞)
1,0,[r]((0, h), P)) ≤ c1 exp(−c2rc3) (1.10)

with positive constants c1, c2, c3. In the base model before rescaling, a point x is extreme if there is
a half-space, whose bounding hyperplane contains x that does not contain any other point of the
point process. In the rescaled (limit) model, this criterion becomes: a point (v, h) is extreme if there
is a translate of Π↓ going through (v, h) that contains no other point of P. When the point process
is restricted to C0(r) it is the same but this translate of Π↓ has to contain no point of P ∩ C0(r).
Thus we see that the only possibility to have ξ

(∞)
1,0 ((0, h), P) ̸= ξ

(∞)
1,0,[r]((0, h), P) is the case where

(0, h) is not extreme for the whole process and extreme for P ∩ C0(r). This implies the existence
of a translate of Π↓, denoted by Π↓(v1, h1) := (v1, h1) + Π↓, that goes through (0, h), contains no
point of P ∩C(r) but contains at least one point of P. For this to be possible, Π↓(v1, h1) can not be
entirely contained in C0(r). Thus, given the equation of Π↓, the height of this paraboloid must be
larger than cr2 for some c > 0. The volume of such a paraboloid intersected with C0(r) is at least
crd+1. This area does not contain a point of P(λ) with probability smaller than c1 exp(−c2rd+1) by
definition of a Poisson point process. This provides the required estimate (1.10) for the stabilization
in width.

In the same spirit, it is possible to show a so-called stabilization in height which states that
with high probability, only the knowledge of the point process below a certain height is needed to
recover the score. Combining both the stabilization in width and stabilization in height, we obtain
that with a probability exponentially close to 1, the score of (0, h) is the same when the process is
restricted to a compact set around (0, h). This is enough to use [17, Theorem 5.5] and obtain the
convergence of E[ξ(λ)

1,k ((0, h), P(λ))] to E[ξ(∞)
1,k ((0, h), P)]. The stabilization in width and in height

also imply that the scores of (0, h) are uniformly bounded in Lp for all p ≥ 1 by a function that
decays exponentially fast in h. In conclusion, the stabilization implies that the conditions to apply
Lebesgue’s dominated convergence theorem are verified. As a consequence, the integral in (1.6)
converges, and the asymptotic result for the expectation follows.

1.3.3 Random polytopes in a polytope
The present subsection concerns random polytopes defined as the convex hull of a random input

in a polytope. As we did in the previous section for the case when the mother body K is smooth,
we survey below a selection of known results when K is a polytope.

Again, the study started with Rényi and Sulanke in [64] and [65]. They obtained a limit for the
expected number of vertices when K is any convex polygon as well as the expected defect area and
perimeter in dimension 2 in the particular case of the square. These results were extended to any
dimension by Bárány and Buchta in [7] who obtained the asymptotic expected defect volume and
recovered the asymptotic expected number of vertices through Efron’s formula. Later, Reitzner
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found a limit for the expected number of k-faces for any k ∈ {0, . . . , (d − 1)} in [62]

lim
λ→∞

E[fk(conv(Pλ ∩ K))]
logd−1(λ)

= c(d, k)T (K)

where T (K) is the number of towers of K, a tower being an increasing chain F0 ⊂ F1 . . . , ⊂ Fd−1
of i-faces Fi of K. As in the smooth case, the growth rate logd−1(λ) does not depend on k. In a
polytope, the problem of finding the asymptotics for the intrinsic volumes is mostly open, save for
the two cases of V1 and Vd treated by Schneider [67] and by Bárány and Buchta [7] respectively:

lim
λ→∞

λE[Vd(K \ conv(Pλ ∩ K))]
logd−1(λ)

= cdT (K)

and
lim

λ→∞
λ1/dE[V1(K) − V1(conv(Pλ))] = c′

d(K).

Next, regarding second-order estimates, lower and upper bounds of the variance of the number
of k-faces and of the defect volume were found by Bárány and Reitzner in [11] and [12]. A precise
limit was obtained by Calka and Yukich in [27] but only in the case of a simple polytope. They
found that

lim
λ→∞

Var[fk(conv(Pλ ∩ K))]
logd−1(λ)

= c′(d, k)f0(K)

while the variance of the defect volume is given by

lim
λ→∞

λ2Var[Vd(K \ conv(Pλ ∩ K))]
logd−1(λ)

= c′′
df0(K).

The variance of the defect intrinsic volumes Vi(K) − Vi(conv(Pλ)) is unknown for 2 ≤ i ≤ d − 1.
In [12], a central limit theorem has been proved by Bárány and Reitzner for the number of

k-faces and the defect volume. Here again, to the best of our knowledge, the question is still open
for the other intrinsic volumes.

Finally, let us conclude this overview with some concentration results. A concentration inequal-
ity for the number of k-faces and for the defect volume has been derived by Reitzner in his survey
[63] and in the particular case of the defect volume, the inequality has been sharpened by Vu [80].
As expected, no such result is known in the case of the other intrinsic volumes.

The references given in this overview can be summarized by the following table.

f0 fk Vd Vk

E [64] for d = 2, [7] [62] [65] for d = 2, [7] open, [67] for V1
Var [11, 12], [27] in the simple case open
CLT [12] open
LD [63] [80] open

Now let us describe in more detail the result of [27] where K is a simple polytope. This is the main
inspiration for the results of Chapter 4. Actually, the results of [27] share some techniques with
the case of the unit ball that was studied in [24]. In particular, a scaling transform and a result of
stabilization are of great help in this case as well. However, it does not work as smoothly as for
the ball. Extra tools from Subsection 1.3.1 are used to tackle these problems. We recall below the
main results of [27] and explain the strategy of proof.
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Theorem 1.3.8. For all k ∈ {0, 1, . . . , d − 1}, there exists a constant Fk,d ∈ (0, ∞), such that

lim
λ→∞

Var[fk(conv(Pλ))]
logd−1(λ)

= Fk,df0(K).

There exists a constant cVd
∈ (0, ∞) such that

lim
λ→∞

λ2Var[Vd(conv(Pλ))]
logd−1(λ)

= cVd
f0(K).

The proof relies on the one hand on the techniques of scaling and stabilization from [24] and on
the other hand on the techniques of economic cap covering and sandwiching introduced by Bárány
and Larman [10] and Bárány and Reitzner [11] respectively. This strategy is the backbone of the
proofs of the results of Chapter 4 where we partly extend Theorem 1.3.8 to the subsequent layers
of the convex hull peeling.
Scaling transform and stabilization. As in the case of the unit ball, we would like to use
a rescaling in order to obtain a model that is easier to analyze and use stabilization results for
deriving the asymptotics. This strategy is not as easily applicable here. The main problem is that
there is no global rescaling that fits the situation. However, it is possible to use this strategy when
we restrict ourselves to a region close to a vertex of K.

As the polytope K is assumed to be simple, everything works in the same way near each vertex
and we can assume that this vertex is 0 and that Q0 = [0, δ0]d is included in K for some δ0 that
goes to 0 with λ. Let V = {(x1, . . . , xd) ∈ Rd :

∑
i xi = 0}. For v ∈ V , we denote by li(v) the i-th

coordinate of v in the standard basis with respect to Rd and l(v) := (l1(v), . . . , ld(v)). We denote
by pV the orthogonal projection onto V and for any function f : R → R and x ∈ Rd we write
f(x) := (f(x1), . . . , f(xv)) ∈ Rd. Now we define the transformation T (λ) as

T (λ) :
{

(0, ∞)d −→ V × R
(z1, . . . , zd) 7−→

(
pV (log(z)), 1

d (log(λ) +
∑

i log(zi)
)
) . (1.11)

It is possible to prove that Pλ ∩Q0 is mapped by T (λ) to P(λ) = P ∩Wλ where P is a Poisson point
process with intensity

√
dedhdvdh on Rd−1 × R and where

Wλ := {(v, h) ∈ V × R : −li(v) + log1/d(λ)δ0, 1 ≤ i ≤ d}.

Moreover, on the event of the sandwiching from Theorem 1.3.5, T (λ) maps the facets to portions of
cone-like grains Π(λ)(v, h) which converge to an explicit limit shape when λ goes to infinity. Even if
the situation differs from the unit ball case in the intensity of the rescaled point process and in the
replacement of paraboloids by cone-like grains, the ideas of the case of the unit ball are still working
up to technical modifications. In particular, we can prove stabilization results and obtain a limit
for the variance of the sum of the scores in Pλ ∩ Q0, which is c logd−1(λ). Two problems remain,
i.e. we need to prove that the variance is additive over the vertices of K and that the contribution
of the Poisson points far from the vertices is negligible.

Flat part. Another consequence of Theorem 1.3.5 on the sandwiching is that only points in-
cluded in the region between two floating bodies actually matter for the construction of the convex
hull. The part of this region that is far from the vertices is what we call the flat part. Careful
estimations of the volume of the flat part show that the number of points in the flat part and a
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combinatorial result on the maximal number of faces of the convex hull of n points [54] show that
the number of faces in the flat part is of order (log log(λ))c for some c > 0 with high probability.
As a consequence, the variance coming from the flat part is negligible compared to the order of
magnitude of logd−1(λ) faces close to each vertex.

Additivity of the scores close to a vertex. The last missing ingredient is the additivity
of the variances of the scores over each of the vertices. Since this is undoubtedly the most technical
step of the proof, we will not delve too much into the details for the time being. The idea, borrowed
from [11], consists roughly in using the Macbeath regions that appear in the economic cap covering
theorem, see Theorem 1.3.4, to partition the sandwich of Theorem 1.3.5. We call supersets the
elements of the partition, as they are sets that contain a half-Macbeath region of the economic cap
covering. These supersets are the basis for building a so-called dependency graph used for showing
the CLT in [11]. The novelty introduced in [27] is the explicit calculation of the Macbeath regions of
the economic cap covering in a fixed cube that contains Q0. This induces an explicit description of
each superset and bounds for its diameter. In turn, the supersets in the vicinity of different vertices
of K are proved to be disconnected in the dependency graph and consequently, their contribution in
the sum of scores are independent. This explains why the variance is additive over the vertices of K.

Combining the three ingredients above in [27], they obtain subsequently an explicit limiting variance
of size c logd−1(λ) for the sum of the scores in the vicinity of each vertex K, then the neglibility of
the contribution of the part of the convex hull far from the vertices of K and finally the additivity
of the variance over the vertices.

1.3.4 Bounds in a general convex body
In this subsection, we aim at stating general bounds for the mean number of k-faces when K

is any convex body. It is proved that the two previous cases, smooth and polytope, yield the two
extreme cases for the expected number of k-faces. In other words, the case when K is a polytope
(resp. is smooth) corresponds to the minimal (resp. maximal) mean number up to a multiplicative
constant. This result is interesting in itself and is also used by Dalal to find a lower bound for the
expected number of layers in the convex hull peeling of i.i.d. random points, see Lemma 2.2.1.

We state below a partial version of [1, Corollary 3].

Theorem 1.3.9. There exists constants c1, c2 > 0 such that for any convex body K in Rd and for
any k ∈ {0, . . . , d − 1}, writing Kn for the convex hull of n i.i.d. uniformly distributed points in K
we have

c1 logd−1(n) ≤ E[fk(Kn)] ≤ c2n(d−1)/(d+1).
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Chapter 2

Convex hull peeling

This chapter presents the central object of study in this thesis, namely the so-called convex hull
peeling. Its iterative construction extends the previously described models of random polytopes:
we start by taking the convex hull of the whole point process and then repeatedly take the convex
hull of the points that were not extreme at the previous step until no point remains. The boundary
of the convex hull obtained at step n is called the n-th layer.

The convex hull peeling was first introduced by Barnett in [13] as a way to order multivariate
data and give a meaning to how central a point is with respect to a dataset. Indeed, the layer
number of a point can be interpreted as the depth of that point with respect to the input and
we expect it to be all the larger, the more central the point is. The convex hull peeling has then
been used in robust statistics and outlier detection, see [38, 47, 66]. It fits into a list of classical
techniques for ordering multivariate data, including half-space depth, simplicial depth or zonoid
depth, see e.g. [30] for an overview on these techniques.

The theoretical literature on the topic is scarce. Computer scientists have notably investigated
the complexity of the peeling in a deterministic setting. In particular, Chazelle [31] provides an
optimal algorithm for any set of n points in dimension 2 to compute the complete set of layers of
the convex hull peeling. It runs in O(n log(n)) in time and O(n) in space. As far as we know, there
is no extension of this algorithm to any dimension. When the points are placed on the integer n×n
grid, Har-Peled and Lidický [45] prove that the number of layers is bounded from below and from
above by n4/3 up to a multiplicative constant.

In this thesis, we consider the convex hull peeling of a random set and investigate several
random variables, including the total number of layers or the limit shape and some geometric and
combinatorial functionals of a fixed layer.

In this context, one of the first works that we are aware of is due to Davydov, Nagaev and
Philippe [36]. In the spirit of stable random vectors, they opt for a Poisson input with an intensity
measure which explodes at the origin, i.e. of type θ×ν in spherical coordinates where θ is a measure
on (0, ∞) with density αr−α−1 for fixed α > 0 and ν is a measure on the unit sphere of Rd with
a finite support which generates all of Rd. This setting guarantees that the number of layers is
infinite almost surely and they exhibit a limit shape for the n-th layer when n goes to infinity which
is described as the convex hull of the renormalized vectors in the support of ν.

In the more classical case of a Poisson point process with bounded intensity, which includes
in particular the uniform input in a fixed convex body that we consider in Chapters 3 and 4, we
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describe below two of the main existing papers. Before doing so, we start in a first section with a
few general properties of the deterministic convex hull peeling, including the monotonicity of the
total number of layers with respect to the inclusion.

The next section is devoted to Dalal’s work [33] which shows that the total number of layers
of n i.i.d. points uniformly distributed in some bounded region of Rd behaves like n2/(d+1) up to
a multiplicative constant. We propose here a slightly modified account of his results. We rewrite
a Poissonized version of his original proof, i.e. we replace the input by the Poisson point process
with intensity λ times the Lebesgue measure in the bounded region. We also take this opportunity
to show that Dalal’s method leads to an original extra result, i.e. the uniform integrability of the
sequence of renormalized numbers of layers for λ > 0.

In the last section, we focus on the very recent work due to Calder and Smart which extends
Dalal’s result in multiple ways. In particular, they consider the peeling of a general Poisson point
process in a convex body and adopt a functional point of view. In other words, they interpret the
total number of layers as the maximum of a so-called convex height function which associates to
any point the number of consecutive convex hulls containing that point and they show that the
renormalized convex height function converges uniformly almost surely to the viscosity solution of
a certain non-linear PDE.

2.1 Definitions, general properties
In this section, X denotes a finite closed set of Rd.

Definition 2.1.1 (Convex hull peeling, layers). We write conv1(X) := conv(X) and by induction
for any n ≥ 1, convn+1(X) := conv(int(convn(X)) ∩ X). The boundary ∂convn(X) of the n-th
convex hull is called the n-th layer of the convex hull peeling of X.

The words peeling and layers were chosen by analogy with the peeling of an onion. We often
abbreviate convex hull peeling to only peeling. For any x ∈ Rd we write

ℓX(x) := max{n : x ∈ convn(X ∪ {x})}.

We call ℓX(x) the layer number of the point x with respect to the peeling of X.
We provide below a few properties of the convex hull peeling, namely the invariance under affine

transformation, a suitable criterion for being on the n-th layer and the monotonicity of the layer
number. All of them will be continuously used in the sequel.

As affine transformations preserve the convexity of sets, it also preserves the convex hull peeling
in the following sense.

Proposition 2.1.2. For any affine transformation f and any n ≥ 1, we have f(convn(X)) =
convn(f(X)).

One of the main issues when studying the convex hull peeling is that we do not know of an easy
criterion for determining the layer number of a point without the knowledge of all the preceding
layers. The only criterion that we propose below is recursive. Incidentally, this explains why we
need to use an induction reasoning in Chapters 3 and 4 when proving stabilization.

We start by recalling the base case, namely the criterion for being included in the boundary
of the first convex hull. For any unit vector u ∈ Sd−1 and any point x ∈ Rd, we introduce the
following half-space H+

x,u = {y ∈ Rd : ⟨y − x, u⟩ > 0}.
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Lemma 2.1.3. Let x ∈ Rd, we have (ℓX(x) = 1) ⇐⇒ (∃u ∈ Sd−1 s.t. X ∩ H+
x,u = ∅).

Below, we extend recursively this criterion to the subsequent layers.

Lemma 2.1.4. Let x ∈ Rd and n ≥ 1. Then we have the two following equivalences.
(i) (ℓX(x) ≥ n) ⇐⇒ (∀u ∈ Sd−1, X ∩ H+

x,u ̸⊂ ∪n−2
i=1 ∂convi(X)).

(ii) (ℓX(x) ≤ n) ⇐⇒ (∃u ∈ Sd−1 s.t. X ∩ H+
x,u ⊂ ∪n−1

i=1 ∂convi(X)).

Proof. (i) Let us assume that ℓX(x) ≥ n and fix u ∈ Sd−1. If we had X ∩ H+
x,u ⊂ ∪n−2

i=1 ∂convi(X),
this half-space would not intersect X after the removal of the first (n − 2) layers, which means that
the layer number of x would be at most (n − 1) according to Lemma 2.1.3. Consequently, the first
implication in (i) holds.

Conversely, let us assume that X ∩ H+
x,u ̸⊂ ∪n−2

i=1 ∂convi(X) for any u ∈ Sd−1. Then once the
first (n − 2) layers are removed, H+

x,u has to meet the remainder of X for any u ∈ Sd−1. Thanks to
Lemma 2.1.3, this implies that x is not an extreme point of X\(∪n−2

i=1 ∂convi(X)) and thus ℓX(x) ≥ n.

(ii) If ℓX(x) = m ≤ n, x is extreme when we remove the first (m − 1) layers. Thus, let u ∈ Sd−1 be
such that H+

x,u does not contain any point of X after the removal of the first (m − 1) layers. This
implies that

X ∩ H+
x,u ⊂ ∪m−1

i=1 ∂convi(X) ⊂ ∪n−1
i=1 ∂convi(X).

Conversely, if we assume that X ∩ H+
x,u ⊂ ∪n−1

i=1 ∂convi(X), for some u ∈ Sd−1, either x belongs
to the first (n−1) layers or it is extreme once the first (n−1) layers are removed because of Lemma
2.1.3. Thus ℓX(x) ≤ n.

The following result means that the layer number of any point is increasing with X. In [33],
Dalal proves the monotonicity of the total number of layers and the proof of Proposition 2.1.5 is
strongly inspired by his ideas. Calder and Smart in [22] also state a similar fact but in the context
of a rescaled parabolic model, see Section 2.3.

Proposition 2.1.5. If x ∈ Rd and X ⊂ Y are two finite closed sets of Rd then

ℓX(x) ≤ ℓY (x) ≤ ℓX(x) + card(Y \ X).

Proof. Without loss of generality, we can assume that Y = X ∪ {z} where z ̸∈ X. Let L(x)
be the ℓX(x)-th convex hull of the convex hull peeling of X ∪ {x}. If z belongs to L(x), then
ℓX∪{z}(x) is equal to ℓX(x). We now assume that z is outside of L(x), meaning that ℓX∪{x}(z) ≤
ℓX(x). Denoting by n the layer number ℓX∪{x}(z), we notice that z belongs to ∂convn(X ∪ {x, z}).
Moreover, ∂convn(X ∪ {x, z}) ∩ (X ∪ {x}) ⊂ ∂convn(X ∪ {x}) and the points from X ∪ {x} in
∂convn(X ∪ {x}) \ ∂convn(X ∪ {x, z}) will belong to the next layer, i.e. ∂convn+1(X ∪ {x, z}). By
induction, this implies that the layer number of each point of X ∪{x} in convn+1(X ∪{x}) is either
unchanged or increased by one. We apply this remark to the particular point x.

In particular the maximum of the function ℓX over Rd, denoted by max ℓX , is either the total
number of layers of the convex hull peeling of X or that quantity plus one. This subtlety is obviously
irrelevant in the asymptotic context that we consider further on.

29



2.2 Number of layers
The goal of this section is to present the known asymptotic results about the total number

of layers of the convex hull peeling. These results come from [33]. However we present here a
Poissonized version of these results as it is more consistent with the results of the upcoming section
and chapters. We also give a slightly enhanced version of the upper bound of Dalal that implies
that the renormalized number of layers is uniformly integrable. The lower bound is going to be
improved similarly but is not needed in the sequel. This refinement is new, even if it does not
change much of the proof and is required to justify properly Corollary 2.3.4 in the next section. In
this subsection we write ℓλ for ℓPλ

, where Pλ is a homogeneous Poisson point process that is going
to be restricted to a subset of Rd depending on the context.

2.2.1 Lower bound
We start with a lower bound for the number of layers in any ball of Rd. This is a Poissonized

version of [33, Lemma 4.1]. Roughly, the idea in the case of uniform i.i.d. points is that, thanks
to Theorem 1.3.9, each layer can have at most cn(d−1)/(d+1) points and thus there must be at least
cn2/(d+1) layer to recover all of the n points. Even though there is no new idea in the Poissonized
version, the proof is a bit more technical as we need to condition on the number of points of Pλ to
use Theorem 1.3.9 properly.

Lemma 2.2.1. Let Pλ be a Poisson point process with intensity λ times the Lebesgue measure in
a d-dimensional ball and p ≥ 1. Then

E[(max ℓλ)p] = Ω(λ
2p

d+1 )

where f(λ) = Ω(g(λ)) means that for λ large enough, f(λ) ≥ cg(λ) for some positive constant c.

Proof. It is enough to consider the case Vold(K) = 1 as the general case is deduced from it by
replacing λ with λVold(K) everywhere.

Let us write ni := card(∂convi(Pλ)). We recall that the sequence (ni)i≥1 is eventually zero. Let
us estimate P(max ℓλ < t) for any constant t. First we have

P(max ℓλ < t) ≤ P(max ℓλ ≤ t) = P

 ⌊t⌋∑
i=1

ni ≥ card(Pλ)

 .

Then we condition on the possible values of Pλ and split the sum with the idea that we are interested
in the part where card(Pλ) is not too far from λ and that the other parts are small because of the
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concentration of a Poisson variable close to its expectation.

P(
⌊t⌋∑
i=1

ni ≥ card(Pλ)) =
∞∑

p=0
P(

⌊t⌋∑
i=1

ni ≥ card(Pλ), card(Pλ) = p)

=
⌈λ/2⌉∑
p=0

P(
⌊t⌋∑
i=1

ni ≥ card(Pλ), card(Pλ) = p)

+
2⌈λ⌉∑

⌈λ/2⌉+1

P(
⌊t⌋∑
i=1

ni ≥ card(Pλ), card(Pλ) = p)

+
∞∑

2⌈λ⌉+1

P(
⌊t⌋∑
i=1

ni ≥ card(Pλ), card(Pλ) = p).

Using Proposition 1.1.12, the first and third term in the right hand side are upper bounded by
c1 exp(−c2λ) so we deduce

P(
⌊t⌋∑
i=1

ni ≥ card(Pλ)) ≤
2⌈λ⌉∑

⌈λ/2⌉+1

P(
⌊t⌋∑
i=1

ni ≥ card(Pλ), card(Pλ) = p) + c1 exp(−c2λ). (2.1)

Now we try to find an upper bound for first term in the right hand side of this inequality.
Let us write ni,p for the number of points on layer i in the convex hull peeling of p i.i.d. uniformly

distributed points in K. Using Markov’s inequality and the fact that conditional on card(Pλ) = p,
Pλ has the distribution of p i.i.d. uniformly distributed points in K, see Proposition 1.1.9, we get
for i between ⌊λ/2⌋ and 2⌊λ⌋

P(
⌊t⌋∑
i=1

ni ≥ card(Pλ), card(Pλ) = p) = P(
⌊t⌋∑
i=1

ni,p ≥ p)P(card(Pλ) = p)

≤ c

λ

⌊t⌋∑
i=1

E[ni,p]P(card(Pλ) = p).

Conditional on the construction of the (i−1) first layers, the remaining points are i.i.d. uniformly
distributed in the ith convex hull which, combined with Theorem 1.3.9, implies that E[ni,p] ≤
cλ(d−1)/(d+1). Thus

P(
⌊t⌋∑
i=1

ni ≥ card(Pλ), card(Pλ) = p) ≤ ct

λ
λ(d−1)/(d+1)P(card(Pλ) = p). (2.2)

Inserting this into (2.1), we obtain in the end

P(max ℓλ < t) ≤ cdt

λ
λ(d−1)/(d+1).

Consequently, Markov’s inequality gives

E[max ℓλ] ≥ tP(max ℓλ ≥ t) ≥ t

(
1 − cdt

λ
λ(d−1)/(d+1)

)
.
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Figure 2.1 – The area in grey is the cap Cφ(a) with center a and angle φ, h is the height of the cap.

The particular choice t = λ
2cd

λ−(d−1)/(d+1) yields

E[max ℓλ] ≥ t/2 ≥ cλ2/(d+1).

With the previous lemma we are able to provide an asymptotic lower bound for the total number
of layers in the convex hull peeling of any Poisson point process with intensity measure λdx in a
bounded region A of Rd with a non empty interior. The region A does not even need to be convex.

Proposition 2.2.2. Let Pλ be a Poisson point process with intensity λ times the Lebesgue measure
in a bounded region A of Rd with a non empty interior and let p ≥ 1. Then

E[(max ℓλ)p] = Ω(λ2p/(d+1)).

Proof. Let B be a ball included in A, which is possible because A has non empty interior. As
B ⊂ A, Proposition 2.1.5 implies that

max ℓλ = max ℓPλ
≥ max ℓPλ∩B .

Now Lemma 2.2.1 tells us that E[(max ℓPλ∩B)p] = Ω(λ2p/(d+1)). combining these two facts yields
the result.

2.2.2 Upper bound
We now provide an upper bound for the total number of layers to the power p ≥ 1. This is a

much more challenging task. We mostly follow the proof of [33, Theorem 5.1] with some adjustments
to deal with the power p. Beforehand, let us introduce a notation for the caps that are used in the
proof. We denote by R the radius of the ball of volume 1 and by Cφ(a) the spherical cap of B(R)
with center a and angle φ, see Figure 2.1.
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Figure 2.2 – P1 for m = 8. We have taken γ = 1 − 1/m instead of 1 − 1/m2 to make the figure
clearer.

Proposition 2.2.3. Let Pλ be a Poisson point process with intensity measure λ times the Lebesgue
measure in a closed ball B(x, r) and p ≥ 1. We have

E[(max ℓλ)p] = O(λ2p/(d+1))

where f(λ) = O(g(λ)) means that for λ large enough, f(λ) ≤ cg(λ) for some positive constant c.

Proof. By translation invariance and scaling invariance, see Proposition 2.1.2, we can prove the
result in the case of the unit volume ball centered at 0 and of radius R without loss of generality.
Thanks to Propositions 1.1.11 and 2.1.5, it is enough to show the estimate when m := λ1/(d+1) is
an integer.

Let us consider the packing number

N := max{p ∈ N : ∃a1, . . . , ap ∈ RSd−1 s.t. Cφ(ai) ∩ Cφ(aj) = ∅ ∀i ̸= j} (2.3)

where φ := 1
m . We denote by a1, . . . , aN the points in RSd−1 which realize the optimal packing.

We then define the polytope K induced by the polar hyperplanes at points a1, . . . , aN , i.e.

K :=
N⋂

i=1
{x ∈ Rd : ⟨ai, x − ai⟩ ≤ 0}.

This polytope which includes RBd will be the base of our construction. Since N is an increasing
function of λ, we assert that K is a suitable approximation of RBd. For any 1 ≤ i ≤ N we define

Pi := K ∩ {x : ⟨γai, x − γai⟩ ≥ 0}

where γ := 1 − 1
m2 , see Figure 2.2.

We now define homothetic copies of K in the following way. Let K0 := K and for p = 0, . . . , m2,
let Kk := γkK0. Similarly, we define homothetic copies of Pi, i.e. P (i, k) := γk−1Pi for all
i = 1, . . . , N and k = 1, . . . , m2. Finally, for i = 1, . . . , N and k ∈ 0, . . . , m2, we introduce the
half-spaces

H(i, k) := {x : ⟨γkai, x − γkai⟩ > 0}.
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Figure 2.3 – Picture of P (i, k) and the hyperplanes defining its facets.

In particular we have

Kk =
N⋂

i=1
H(i, k)c.

Our next goal is to give an upper bound for the maximum layer number of a point outside of Km2 .
The following observation is essential to the whole reasoning. Let us fix k ≥ 1 and 1 ≤ i ≤ N . We
denote by J the set of j such that H(j, k − 1) supports a facet of P (i, k) . We have

H(i, k) ⊂ P (i, k) ∪
⋃
j∈J

H(j, k − 1). (2.4)

This can be seen on Figure 2.3. Let dmax := maxPλ∩(∪j∈J H(j,k−1)) ℓλ. If we remove the dmax first
layers, in particular we remove every point in

⋃
j∈J H(j, k−1) and maxPλ∩P (i,k) ℓλ becomes smaller

than card(P (i, k) ∩ Pλ). We deduce that

max
Pλ∩P (i,k)

ℓλ ≤ card(Pλ ∩ P (i, k)) + max
Pλ∩(∪j∈J H(j,k−1))

ℓλ

and it follows from (2.4) that

max
Pλ∩H(i,k)

ℓλ ≤ card(Pλ ∩ P (i, k)) + max
j∈J

max
Pλ∩H(j,k−1)

ℓλ. (2.5)

We now iterate the inequality (2.5). If the max in the right hands side of (2.5) is reached for some
i1 ∈ J , we denote by J1 the J-set associated with i1, i.e. the set of j such that H(j, k − 2) supports
a facet of P (i1, k − 1). Applying twice (2.5) to i then to i1, we deduce that

max
Pλ∩H(i,k)

ℓλ ≤ card(P (i, k) ∩ Pλ) + card(P (i1, k − 1) ∩ Pλ) + max
j∈J1

max
Pλ∩H(j,k−2)

ℓλ.

It is in fact possible to use this formula recursively. Let G be the directed acyclic graph whose
vertices are the sets P (i, k) for i = 1, . . . , N and k = 1, . . . , m2 and such that there is an edge going
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Figure 2.4 – The sequence of polygones in dark red from the innermost one to the outermost one
is a path in G.

from P (i, k) to P (j, k − 1) if and only if a facet of P (i, k) and a facet of P (j, k − 1) have a non
empty intersection, see Figure 2.4 for an example of path in G.

Let us write pext := maxPλ∩(RBd\Km2 ) ℓλ. We have pext = maxi=1,...,N maxPλ∩H(i,m2) ℓλ. Using
(2.5) inductively, we get that pext is bounded from above by the maximum number of points con-
tained in the vertices of G along any path starting from a vertex of type P (i, m2) to a vertex of
type P (j, 1).

We now aim to make explicit the previous upper bound of pext. This requires in particular to
estimate the maximal number of Poisson points along a path in the graph G. To do so, we need
four geometric claims. Claim 1 provides an estimate for the packing number introduced at (2.3).
In Claim 2, we sandwich K in an annulus between RBd and R

cos(2φ)B
d while Claims 3 and 4 deal

with the geometry of the thin polytopes Pi. The proofs of these 4 claims are omitted.

Claim 1. There exists a constant ca independent from λ such that the number N of facets of K
is at most camd−1

Claim 2. K ⊂ R
cos(2φ)B

d.

Claim 3. There exists a constant cvol that does not depend on λ such that for each i

Vold(Pi) ≤ cvol/λ.
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Claim 4. There exists a constant cfac that does not depend on λ such that for each i the number
of facets of Pi is at most cfac.

We now show that the probability that there exists a path in G with more than a constant
times m2 points is exponentially small. This will allow us to get a bound on the pth moment of the
maximum layer number outside of Km2 denoted by pext.

We will call a vertex of G of the form P (i, m2) a root and a vertex of the form P (j, 1) a leaf. In
what follows we will just say path for a path from a root to a leaf.

The number of points in a path is Poisson distributed with mean the sum of the volume along
the path times λ. From Claim 3, we get that the sum of the volumes of the vertices along a path is
at most cvolm

2/n. Consequently, we get that for any δ > 0 and any path, the probability that this
path has more than (1+δ)cvolm

2 points is at most P(X ≥ (1+δ)cvolm
2) for X ∼ P(cvolm

2). Using
the concentration inequality for the Poisson distribution given in Proposition 1.1.12 , we obtain

P(X ≥ (1 + δ)cvolm
2) ≤ exp

(
−δ2(cvol)2

2(1 + δ) m2
)

. (2.6)

Moreover, the number of paths in the directed acyclic graph G is at most the number of roots
times the maximum degree in G at the power m2 since our paths are of length m2. The number of
roots is bounded by Claim 1 and the maximum degree is at most cfac by Claim 4. Thus, there is a
positive constant c > 0 such that the number of paths in G is at most

Ncm2

fac ≤ exp(cm2). (2.7)

Let us denote by A the event ‘there exists a path with more than (1 + δ)cvolm
2 points’. Using (2.6)

and (2.7), we get that

P(A) ≤ exp
(

cm2 − δ2(cvol)2

2(1 + δ) m2
)

. (2.8)

Using Minkowski’s inequality, we get

(E[pp
ext])

1/p = (E [(pext1A + pext1Ac)p])1/p ≤ (E [(pext1A)p])1/p + (E [(pext1Ac)p])1/p (2.9)

On the event A, we bound pext by the number of points of the process, which is Poisson distributed
with mean λ. Its moment of order 2⌈p⌉ is a polynomial Qp in λ. Using the Cauchy-Schwartz
inequality and recalling that m = λ1/(d+1), we get

(E [(pext1A)p])1/p ≤ (E [card(Pλ)p1A])1/p ≤
(
E
[
card(Pλ)⌈p⌉1A

])1/p

≤ (Qp(λ)P(A))1/(2p)

Since (2.8) is satisfied for any δ, we choose a suitable large enough δ so that for any λ large enough,
Qp(λ)P(A) ≤ 1. We then have

(E [(pext1A)p])1/p ≤ 1. (2.10)
On the event Ac, since pext is upper bounded by the maximum number of points in a path of G,
we have

pext ≤ (1 + δ)cvolm
2.

Recalling that m = λ1/(d+1), we deduce from the previous inequality that

(E [(pext1Ac)p])1/p ≤ (1 + δ)cvolλ
2/(d+1). (2.11)
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Inserting (2.10) and (2.11) into (2.9), we get the existence of a positive constant c such that for
every λ

E[pp
ext] ≤ cλ2p/(d+1). (2.12)

We now have an upper bound for the pth moment of the maximum layer number outside of Km2 . It
remains to show a similar result for the whole ball RBd. We do so by applying the same reasoning
recursively. Using Claim 2 and recalling φ = 1

m = λ−1/(d+1), we obtain that for λ large enough

Km2 ⊂
(

1 − 1
m2

)m2
R

cos(2φ)B
d ⊂ 2R

e
Bd.

Removing the points outside of 2R
e Bd cancels at most pext layers. This means that

max
RBd

ℓλ ≤ pext + max
2R
e Bd

ℓPλ∩ 2R
e Bd . (2.13)

We now rescale Pλ ∩ 2R/eBd to get a Poisson point process on RBd with intensity only a fraction
of the intensity of Pλ. Indeed, e

2 Pλ ∩ 2R
e Bd is a Poisson point process with intensity measure (2/e)d

times the Lebesgue measure in 2R
e Bd. Furthermore, by scaling invariance, see Proposition 2.1.2,

the number of layers in the convex hull peeling of Pλ ∩ 2R
e Bd is the same as the number of layers

in the convex hull peeling of e
2 Pλ ∩ 2R

e Bd. Consequently, we get the stochastic domination

max
2R
e Bd

ℓPλ∩ 2R
e Bd ≤ ℓ⌈(2/e)d⌉λ. (2.14)

For any λ, we write
Dp(λ) := E[max

RBd
ℓp

λ]1/p. (2.15)

Using successively (2.13), the Minkowski inequality, (2.14) and (2.12), we obtain

Dp(λ) ≤ cλ2/(d+1) + Dp

(
⌈(2/e)dλ⌉

)
. (2.16)

By induction, we obtain the existence of a constant c > 0 such that for any λ ∈ N∗

Dp(λ) ≤ cλ2/(d+1).

Taking the power p yields the result.

Theorem 2.2.4. Let A be a compact subset of Rd and Pλ be a Poisson point process with intensity
λ1Adx. There exists a constant c > 0 such that for all λ > 0 :

E[(max ℓλ)p] ≤ cλ2p/(d+1).

Proof. Let R > 0 such that A ⊂ B(R). For all λ let P̃λ be a Poisson point process with intensity
λ1B(R)dx. Let ℓ̃λ := ℓP̃λ

and ℓ̃λ,A := ℓP̃λ∩A

P̃λ ∩ A and Pλ have the same distribution so

E[(max ℓλ)p] = E[(max ℓ̃λ,A)p]. (2.17)

Since P̃λ ∩ A ⊂ P̃λ Proposition 2.1.5 gives

E[(max ℓ̃λ,A)p] ≤ E[(max ℓ̃λ)p]. (2.18)
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Using jointly (2.17), (2.18) and applying Proposition 2.2.3 to P̃λ we get for all λ > 0 :
E[(max ℓλ)p] = E[(max ℓ̃λ,A)p] ≤ E[(max ℓ̃λ)p] ≤ cλ2p/(d+1).

The previous upper bound can actually be extended to point processes distributed as Pf where f
is continuous compact set of Rd. A similar proof would work for a lower bound under the hypothesis
that f is lower bounded by a constant c > 0.
Theorem 2.2.5. Let f ≥ 0 be a continuous function on a compact set K of Rd. For all λ, let Pλf

be a Poisson point process with intensity λf(x)dx in K, and ℓλ := ℓPλf
. There exists a constant

c > 0 such that for all λ > 0 :
E[(max ℓλ)p] ≤ cλ2p/(d+1).

Proof. Since f is continuous on K and K is a compact set, there exists R > 0 such that f ≤ R.
For all λ, we can assume that the Poisson point process PλR with intensity λRdx and Pλf are
defined on the same probability space with Pλf ⊂ PλR as in Proposition 1.1.11. We denote by ℓ̃λ

the analogue of ℓλ for the peeling of PλR. Since Pλf ⊂ PλR, thanks to Proposition 2.1.5 we have
for all n

E[(max ℓλ)p] ≤ E[(max ℓ̃λ)p].
Applying Theorem 2.2.4 to ℓ̃λ, there exists C > 0 such that for any λ > 0

E[(max ℓλ)p] ≤ E[(max ℓ̃λ)p] ≤ CR2p/(d+1)λ2p/(d+1).

2.3 Convex height
This section is devoted to the recent work of Calder and Smart [22], definitely a breakthrough in

the study of the layers of the convex hull peeling of a Poisson point process in some convex body K.
Their main theorem is a major improvement of the results of Dalal [33] in many ways. Indeed, the
originality of their approach lies in particular in their ability of dealing with a functional point of
view and making a bridge with the domains of game theory and partial diffential equations. More
precisely, they show that the convex hull peeling induces a random field on K, called the convex
height function which is proved to converge after renormalization to a deterministic function. By
interpreting the peeling procedure as a game, they get the intuition that the limit function satisfies
a particular explicit non-linear PDE and this is the basis for their main result.

In the whole subsection, f : K → R denotes a continuous positive function on K. We consider a
Poisson point process Pλf in K with intensity measure λf(x)1K(x)dx. First, we define their main
object of study, i.e. the convex height function.
Definition 2.3.1 (Convex height function). Let X be a finite point set included in a convex body
K. We define for each x ∈ K the convex height function of X at x by

hX(x) :=
∞∑

i=1
1int(convi(X))(x).

The function hPλf
is a random field over K which is simply denoted by hλ.

For any x ∈ K, we notice that hX(x) = ℓX(x) + 1. In particular, the two functionals hX and
ℓX share obviously the same asymptotic behavior.
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2.3.1 Main results
We rewrite below the main theorem from [22] which makes explicit both the correct normaliza-

tion of λ2/(d+1) for hλ and the limit function.

Theorem 2.3.2 ([22],Theorem 1.2). Let K be a convex body of Rd. For any ε > 0 there exists
δ > 0 such that

P(sup
K

|λ−2/(d+1)hλ − αh| > ε) ≤ exp(−δ(log−2(λ))λ3/(d+1))

where α > 0 is constant that only depends on the dimension and h is the unique viscosity solution
of the partial differential equation{

⟨Dh, cof(−D2h)Dh⟩ = f2 in int(K)
h = 0 on ∂K

, (2.19)

cof(·) being the cofactor matrix.

A consequence of this result is the almost sure uniform convergence of the rescaled convex height
function to αh. Additionally the rescaled total number of layers, which differs from maxK hλ by
at most 1, also converges to α max hλ. These two results are discussed in [22] though not precisely
proved therein. They are summarized in Corollary 2.3.3 below

Corollary 2.3.3. We have almost surely

λ−2/(d+1)hλ
unif.−−−−→
λ→∞

αh in K (2.20)

and
λ−2/(d+1) max

K
hλ −−−−→

λ→∞
α max

K
h. (2.21)

Proof. We start with a proof of (2.20). It is enough to prove that

λ−2/(d+1)
n hλn

unif.−−−−→
n→∞

αh

for any sequence (λn)n that goes to infinity as n goes to infinity.
Let ε > 0. For all n ∈ N∗, let An := {supK |λ−2/(d+1)

n hλn
− αh| > ε}. Theorem 2.3.2 implies

that ∑
n

P(An) < ∞

so the Borel-Cantelli lemma gives
P(lim An) = 0.

Thus for every ε > 0 we have

P(∀N ∈ N∗, ∃n ≥ N, sup
U

|λ−2/(d+1)
n hλn

− αh| > ε) = 0.

It implies the desired almost sure convergence.
The result on the maximum of hλ is a direct consequence of the following result: if a sequence

of bounded functions (fn)n converges uniformly to a limit function f , then sup fn converges to
sup f .

39



Theorem 2.3.2 is an improvement over the results of Dalal, see Subsection 2.2, in three ways.
First, this induces a limit for the total number of layers. Secondly, the convergence is strengthened
to a functional version for the underlying random field. Finally, the result holds for a whole class
of Poisson point processes whose intensity measure has a continuous and positive density. The only
additional assumption with respect to Proposition 2.2.2 and Theorem 2.2.5 is the convexity of the
underlying set K which is not needed in Dalal’s work.

Calder and Smart state that their almost sure uniform convergence result also implies the
convergence in expectation of the total number of layers but they do not provide a proof. In
Corollary 2.3.4 below, we propose to use our slightly improved rewriting of Dalal’s upper bound,
i.e. Theorem 2.2.5, to deduce the required convergence in mean and in Lp.

Corollary 2.3.4. We have

λ−2/(d+1)E[max
K

hλ] −−−−→
λ→∞

αE[max
K

h]

and for any p ≥ 1,
λ−2/(d+1) max

K
hλ

Lp

−−−−→
λ→∞

α max
K

h.

Proof. This is a direct consequence of the almost sure convergence (2.21) combined with the Vitali
convergence theorem and the uniform integrability of the sequence (hλ)λ deduced from Theorem
2.2.5.

Heuristics for the PDE. We propose below an account of the heuristic ingredients which are
presented in [22] as the main inspiration for getting Theorem 2.3.2: a game interpretation leading
to a dynamic programming principle which is then used to establish heuristically the PDE.

Let X ⊂ K be finite. The convex hull peeling game can be described as follows. It starts at a
point x0 ∈ int(K). Then Player 1 chooses p0 ∈ Rd \ {0} that should be seen as the ingoing normal
vector of a half-space going through x0. Inductively, when Player 2 chooses a point xk, Player 1
chooses pk ∈ Rd \{0} and once Player 1 chooses pk, Player 2 chooses in turn a point xk+1 such that
⟨pk, xk+1 − xk⟩ > 0, i.e. in the open half-space with xk on its boundary and with pk as an ingoing
normal vector. The game ends after the choice of a half-space that contains no point of X. The
goal of Player 1 is to minimize the final score

∑
k≥1 1X(xk) while Player 2 aims at maximizing this

quantity. An optimal choice of pk for Player 1 is such that every point x such that ⟨pk, x − xk⟩ > 0
verifies hX(x) ≤ hX(xk) − 1. The best possible choice of xk+1 for Player 2 is then a point of X
such that hX(xk+1) = hX(xK) − 1. Each of these choices is possible by definition of the peeling.
Thus, assuming that both players play optimally, each time they make their move, the game shifts
to the previous layer. As a consequence the final score under the assumption of optimal play from
both players is hX(x0).

This game can be summarized in the so-called dynamic programming principle that is verified
by hX . For any x ∈ int(K)

hX(x) = inf
p∈Rd\{0}

sup
y:⟨p,y−x⟩>0

(1X(y) + hX(y)).

Incidentally, we notice that this equality is closely related to our criterion in Lemma 2.1.4.
This connection between a game and a stochastic dynamic principle can already be found in

Kohn and Serfaty [51] and in the same spirit as in this article it is possible to derive a PDE from
the dynamic programming principle. First, Calder and Smart assume for their heuristics that
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h̃ = λ−2/(d+1)hλf is C∞, even if it is in fact discontinuous. They also add the assumptions that it
has uniformly convex level sets and a non-zero gradient. When a point x = xk has been chosen, the
best possible choice of p = pk for Player 1 is p = −Dh(x) up to a multiplicative constant. Indeed,
because of the assumptions above, it ensures that {y : ⟨pk, y − x⟩ > 0} only contains points y such
that hλf (y) ≤ hλf (x) − 1. As a consequence, the dynamic programming principle can be rewritten
as

sup
y:−⟨Dh(x),y−x⟩>0

(λ−2/(d+1)1Pλf
(y) + h̃(y) − h̃(x)) = 0.

In particular it implies that the set

{y ∈ K : −⟨Dh(x), y − x⟩ > 0 and h̃(y) ≥ h̃(x) − λ−2/(d+1)}

contains at least one point of Pλf , otherwise the indicator function above would always be equal
to 0. Then a computation involving the Taylor expansion of the function h̃ yields

⟨Dh̃(x), cof(−D2h(x))Dh̃(x)⟩ ≈ Cf(x)2.

In other words, h̃ = λ−2/(d+1)hλf (x) verifies equation (2.19) up to the constant C that this heuristic
does not allow to determine precisely.

Sketch of proof of Theorem 2.3.2. We propose here a tentative rough description of the
proof of Theorem 2.3.2.

A first ingredient is of geometric nature. The authors consider the (full) paraboloid P defined
as the set of (x1, · · · , xd) ∈ Rd such that φ(x) ≥ 0 where φ(x) = xd − 1

2
∑d−1

i=1 x2
i . They then exhibit

a map π which sends P to a half-space and transforms the convex hull peeling of a point set inside
the paraboloid into what they call the semiconvex peeling of the image of the point set inside the
half-space. In fact, the semiconvex peeling is the direct analogue of the convex hull peeling where
the role of the half-spaces in the classical convex hull peeling is now played by paraboloids.

The second step consists in observing locally the convex hull peeling in K and sending it after
rescaling to a semiconvex peeling. For a fixed point z in K, they consider the scaling transform

τz(x) = (λ
1

d+1 (x1 − z1), . . . , λ
1

d+1 (xd−1 − zd−1), λ
2

d+1 (xd − zd −
d−1∑
i=1

zi(xi − zi))). (2.22)

They show that τz sends a well-chosen neighborhood of z to a part of the paraboloid P and
composing with the map π, they finally send the convex hull peeling in that neighborhood to a
semiconvex hull peeling.

The crucial ingredient is then probabilistic. They study the semiconvex peeling and obtain the
asymptotics for the convex height function in this context by using martingale and subadditivity-
type arguments. First they derive estimates on the distribution of the layer number of a point at
height r in the parabolic model. They deduce from them a result reminiscent of stabilization results
i.e. they show that the layer number of a point at height r only depends on points in a cylinder of
width cr with c > 1 with probability going to 1 exponentially fast with r. This lets them reduce the
domain to a cylinder, that they periodize. On this periodized domain they study the martingale
(Xn)n where each Xn is defined as the conditional expectation of the layer number of red given
the σ-algebra generated by the n-th parabolic hull and the knowledge of every point on the first n
layers. Through the use of Azuma’s inequality, they get a fluctuation bound for the layer number
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of red where ed = (0, . . . , 0, 1) ∈ Rd. Combining this with sub-additivity arguments yields a law of
large number for the layer number of red that evolves as αr. This is then extended to a uniform
fluctuation result for every point at height r in a cylinder.

Finally, the connection between the PDE given at (2.19) and the equation φ of the paraboloid
P is the following: φ is a particular solution of the PDE when f2 is equal to 1. Moreover, any
solution in the sense of viscosity can be approximated by a supersolution and subsolution which
are constructed piecewise as C∞-deformations of φ.

Comparison with [24]. We would like to emphasize here two connections between Calder and
Smart’s approach and the techniques developed in [24] and described at the end of Subsection 1.3.2.

First, we observe that the two rescalings given at (1.7) and (2.22) are of similar nature. Indeed,
in both cases, the first (d − 1) coordinates (spherical coordinates in (1.7)) are rescaled by λ1/(d+1)

while the last coordinate (radial coordinate in (1.7)) is rescaled by λ2/(d+1). The main difference is
that the rescaling from [22] is applied around any point of K while the rescaling from [24] is only
relevant in the vicinity of the boundary of the unit ball.

Secondly, in both papers, the parabolic convexity in the upper half-space plays a pivotal role
and it will prove to be as crucial in Chapter 3 when studying the first layers of the convex hull
peeling in the unit ball. Incidentally, the study of the asymptotics for the parabolic hull process
(semiconvex peeling in [22]) involves the use of a stabilization property in both papers, see e.g. [22,
Lemma 2.5].

2.3.2 Conjectures and possible extensions
Calder and Smart’s work includes a specific conjecture which is a law of large numbers for the

number of points on a layer of the convex hull peeling with label proportional to λ2/(d+1). Their
heuristic reasoning is based on a geometric interpretation of the PDE that we describe below.

Geometric interpretation of the PDE A general differential geometry formula [43, 42] states
that, as long as h ∈ C2 and Dh ̸= 0, the Gaussian curvature of the level sets of h is given by

κG = ⟨Dh, cof(−D2h)Dh⟩
∥Dh∥d+1 .

As a consequence of this formula, the PDE (2.19) can be formally rewritten as

∥Dh∥κ
1/(d+1)
G = f2/(d+1). (2.23)

According to [22], the geometric interpretation of the PDE then goes as follows. Heuristically,
we consider two nearby level level sets {h = t} and {h = t + ∆t} and write ∆x for the normal
distance between these two level sets at some point x ∈ Rd such that h(x) = t. Thus, we have
∥Dh(x)∥ ≈ ∆t/∆x and by combining this with (2.23), we obtain in turn

∆x ≈ κ
1/(d+1)
G f−2/(d+1)∆t.

The equality above means roughly that h(x) can be interpreted as the arrival time of the boundary
∂K as it evolves with normal velocity κ

1/(d+1)
G f−2/(d+1). Incidentally, we notice that this velocity

involves the power 1/(d + 1) of the Gaussian curvature exactly as in the integrand which appears
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Figure 2.5 – In blue: the number of points on each layer as a function of the layer number, averaged
over 100 peelings of 105 i.i.d. points. The figure on the left is in the unit disk in R2 while the figure
on the right is in a square. We plotted the function giving the number of points on each layer given
by the conjecture of Calder and Smart in orange in the case of the unit disk.

in the definition of the affine surface area at (1.2).

Conjecture for the number of points on the layers in the regime λ2/(d+1). The heuristic
argument of Calder and Smart goes as follows. They fix 0 < a < b and assert that the number
of Poisson points which fall in a region located between the two level sets {hλ = aλ2/(d+1)} and
{hλ = bλ2/(d+1)} is Poisson distributed with mean λ

∫
a≤λ−2/(d+1)hλ≤b

f(x)dx. Since λ−2/(d+1)hλ →

αh a.s. when λ goes to infinity, they formally replace λ−2/(d+1)hλ by its limit αh and get the
approximation for λ large

1
λ

⌈bλ2/(d+1)⌉∑
n=⌊aλ2/(d+1)⌋

f0(convn(Pλf )) ≈
∫

a≤αh≤b

f(x)dx. (2.24)

Using the co-area formula and (2.23), they get∫
a≤αh≤b

f(x)dx = 1
α

∫ b

a

∫
{αh=r}

f

∥Dh∥
dσdr =

∫ b

a

∫
{αh=r}

f (d−1)/(d+1)κ
1/(d+1)
G dσdr (2.25)

where σ is the surface measure on the level set {αh = r}.
With the choice a = tλ2/(d+1) and b = a+λ−2/(d+1), which, by the way, is not rigorous as a and

b were initially assumed to be constant, they combine (2.24) and (2.25) to obtain for any t > 0

λ− d−1
d+1 f0(conv⌊tλ2/(d+1)⌋(Pλf )) ≈ 1

α

∫
{αh=r}

f (d−1)/(d+1)κ
1/(d+1)
G dσ. (2.26)

Perspectives. Calder and Smart’s impressive work yields a series of relevant open problems.
— Constant α. There is of course the question of the constant α in Theorem 2.3.2 which is

unknown, as emphasized by the authors [22, Problem 1.4]. They observe by simulation that
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Figure 2.6 – Evolution of n−2/(d+1) max hn/ max h with n for i.i.d. realizations in the unit disk. A
depoissonized version of Corollary 2.3.3 implies that it should converge to α, which is the height of
the black horizontal line.

α is close to 4/3 in dimension two. Our own simulations in the case of the unit disk with the
explicit calculation of h provided in [22, display (1.10)] are in agreement with this conjecture,
see Figure 2.6.

— Number of points on each layer. We recall the conjecture (2.26) described above, which
asserts that the layers with label proportional to λ2/(d+1) should contain asymptotically
λ(d−1)/(d+1) points. This extends to a similar question for the layers with label g(λ) for any
function g(λ) smaller than λ2/(d+1). In Chapters 3 and 4, we answer that question when g is
constant in the cases of the unit ball and a simple polytope respectively. In the smooth case,
we think that the growth rate λ

d−1
d+1 should stay the same for any g. Even if this fact were

justified, the evolution of the constant in front of the power should prove to be a very delicate
matter. In the polytope case, we expect a phase transition for the growth rate. Indeed, it is
proved in Chapter 4 that the first layers contain logd−1(λ) up to a multiplicative constant
and in addition to the conjecture (2.26), Theorem 2.2.5 derived from Dalal’s work implies
that there are at most λ2/(d+1) layers up to a multiplicative constant and consequently, that
the growth rate should reach at least λ

d−1
d+1 for some layers. Finally, a completely unexplored

topic concerns the study of the stochastic process constituted with the number of Poisson
points on the layer with label tλ2/(d+1) as a function of t. In particular, each layer is a
random surface which could be studied in the spirit of other random growth processes, like
for instance a percolation front.

— Unbounded K. The result of Calder and Smart requires the set K to be bounded. However,
as shown by their simulations, it seems that their result should be true for more general
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Poisson point processes. For instance, the case of a Poisson point process with a Gaussian
intensity is shown in their simulations but Theorem 2.3.2 does not apply. This case could
be investigated in the future.

— Non-convex K. As mentioned earlier, the only drawback of Calder and Smart’s work with
respect to Dalal’s result lies in their assumption of convexity of the mother body K which is
not required in [33]. When the Poisson points fall into a bounded and possibly non-convex
region, Dalal proves that the total number of layers still grows like λ2/(d+1). The asymptotics
for the corresponding convex height function and in particular its connection with a certain
PDE are unknown.
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Chapter 3

Limit theory for the first layers in
the ball

This chapter is a co-authored article with Pierre Calka that has been submitted for publication
[23]. We study the number of k-dimensional faces and the outer defect intrinsic volumes of the first
layers of the convex hull peeling of a homogeneous Poisson point process in the unit ball when its
intensity goes to infinity. More precisely we provide asymptotic limits for their expectation and
variance as well as a central limit theorem. In particular, we prove that the growth rates do not
depend on the layer.

The work relies heavily on techniques introduced in [24]. However, the proof of stabilization
estimates for the layers of the peeling requires a new approach that constitutes the most novel part
of our contribution.

3.1 Introduction
3.1.1 Context

Random polytopes as convex hulls of random points have been extensively studied in stochastic
geometry. An overview of the subject can be found in [63] and [71, Chapter 8.2] for instance. Let
Pλ be a Poisson point process with intensity measure λdx in a convex body K of Rd. The study
of the asymptotic behaviour as λ → ∞ of conv(Pλ) started with the work of Rényi and Sulanke
in [64, 65], in a binomial setting. They obtain in particular a different growth rate for the mean
number of extreme points when K is a smooth convex body with a C2-regular boundary and when
K is a polytope, namely polynomial for the former and logarithmic for the latter. Since then diverse
results on the number of k-dimensional faces and on the defect intrinsic volumes of conv(Pλ) have
been proved for both choices of K. We only consider the smooth case in this paper. Asymptotic
expectations are shown notably in [68, 62, 3]. In particular, it is known that the mean number of
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Figure 3.1 – Example of a convex hull peeling in B2 with six layers (here the last layer has only one
point).

extreme points grows like λ
d−1
d+1 up to a multiplicative constant. First-order results have then been

complemented by central limit theorems in [61, 78, 24]. Results on the variance of these quantities go
from general bounds in [11, 8] to explicit limits in [24, 25]. More recently, concentration inequalities
have been derived in [44]. The explicit formulas obtained by [21, 49, 50] are worth noting among
the very few non-asymptotic results available.

The subject of this paper is a generalization of the study of the convex hull of random points
to the so-called convex hull peeling. We start by taking the convex hull of the whole process and
then repeatedly take the convex hull of the points that were not extreme at the previous step
until no point remains. Let us write conv1(Pλ) := conv(Pλ) and by induction for any n ≥ 1,
convn+1(Pλ) := conv(int(convn(Pλ)) ∩ Pλ). The boundary of the n-th convex hull ∂convn(Pλ) will
be called the n-th layer of the convex hull peeling of Pλ. The words peeling and layers were chosen
by analogy with the peeling of an onion, see Figure 3.1.

The convex hull peeling was first introduced by Barnett in [13] as a way to order multivariate
data and give a meaning to how central a point is with respect to a dataset. Indeed, the layer
number of a point can be interpreted as the depth of that point with respect to the input and
we expect it to be all the larger the more central the point is. The convex hull peeling has then
been used in robust statistics and outlier detection, see [38, 47, 66]. It fits into a list of classical
techniques for ordering multivariate data, including half-space depth, simplicial depth or zonoid
depth, see e.g. [30] for an overview on these techniques.

However it seems that very few theoretical results exist on the convex hull peeling of a random
sample. For instance, the survey [63] devotes a small section on convex hull peeling but does not
provide any reference and states that in continuation with the available asymptotic results for the
convex hull, investigations concerning expectations and deviation inequalities for [the subsequent
layers of the convex hull peeling] are unknown. To the best of our knowledge, there are mostly two
papers which deal with the asymptotic properties of the convex hull peeling of random points. The
first one due to Dalal [33] states that the mean total number of layers of the convex hull peeling of n

i.i.d. uniform points in any bounded region of Rd is lower and upper bounded by multiples of n
2

d+1 .
Very recently, a breakthrough work by Calder and Smart [22] greatly improves Dalal’s estimate.
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Let Pλf be a Poisson point process of intensity measure λf(x)dx in K with f a continuous and
positive function on K. They consider the convex height function hλ(x) of any point x in Rd as the
largest n such that x ∈ int(convn(Pλf )). Note that Dalal’s work covers the particular problem of
estimating the expectation of max hλ when f = 1. Calder and Smart show that λ− 2

d+1 hλ converges
uniformly in probability with an explicit exponential bound and almost surely to a multiple of a
function h which is the unique viscosity solution of an explicit PDE. In other words, they obtain in
particular that when λ → ∞, almost surely

λ− 2
d+1 hλ

unif−→ αh (3.1)

where α is a positive constant which depends only on dimension d and h is the unique viscosity
solution of {

⟨Dh, cof(−D2h)Dh⟩ = f2 in int(K)
h = 0 on ∂K

,

cof(·) being the cofactor matrix. Denoting by Bd the unit ball of Rd, we observe that (3.1) implies
in the particular case when K = Bd and f = 1 that the rescaled total number of layers of the
peeling satisfies almost surely

λ− 2
d+1 max hλ −→ βd := (d + 1)α

2d
d−1
d+1 Vol

2
d+1
d−1(Sd−1)

(3.2)

where Vold−1(Sd−1) is the surface area of the (d − 1)-dimensional unit sphere Sd−1.
Because of the normalization of hλ in (3.1), this uniform convergence result can only provide

information on the regime of the peeling limited to layers numbered λ
2

d+1 up to a multiplicative
constant. The authors do not investigate any combinatorial or geometric functional of these layers.
Nonetheless, they conjecture with a short heuristic argument that the number Nn(λ,t),0,λ of Poisson
points on a layer numbered n(λ, t) := ⌊tλ

2
d+1 ⌋ should satisfy a law of large numbers when λ → ∞,

i.e. almost surely
λ− d−1

d+1 Nn(λ,t),0,λ −→
∫

{αh=t}
f

d−1
d+1 κ

1
d+1 dS

where κ is the Gauss curvature of the level set {αh = t} and dS is the Hausdorff measure of that
set. In particular, when K is the unit ball and f = 1, the conjectured result should read, see [22,
display (1.18)],

λ− d−1
d+1 Nn(λ,t),0,λ −→ d + 1

2βd

(
1 − β−1

d t
) d−1

2
+ (3.3)

where the constant βd is introduced at (3.2).
In comparison to [22], our approach is different, i.e. we consider the case K = Bd and f = 1,

we choose to fix a layer numbered n that does not depend on λ and study the geometric properties
of ∂convn(Pλ) as λ → ∞. In other words, we investigate a different regime, namely the regime
of the first layers in the context of uniform points in the ball. There are several reasons to do so:
when applying the convex hull peeling to outlier detection, we expect the outliers to be located on
the first layers of the peeling, which provides some motivation for understanding the cardinality
of these particular layers. Moreover, we intend to use a global scaling transformation on the ball
which has been introduced in [24] for the study of the convex hull and which is expected to bring
exhaustive information on the visible layers after rescaling, namely the first layers.
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3.1.2 Model
Let Pλ be a Poisson point process of intensity measure λdx in the unit ball Bd of Rd. We

construct the consecutive hulls convn(Pλ), n ≥ 1, of the peeling of Pλ. For n ≥ 1 and k ∈
{0, . . . , d − 1}, we denote by Nn,k,λ the number of k-dimensional faces of the n-th layer ∂convn(Pλ)
and for k ∈ {1, . . . , d}, by Vn,k,λ the defect k-dimensional intrinsic volume of convn(Pλ), i.e.

Vn,k,λ = Vk(Bd) − Vk(convn(Pλ)) (3.4)

where Vk stands for the k-th intrinsic volume, see for example [71, p. 600] for a definition and some
properties of the intrinsic volumes.

We focus on these two families of random variables and aim at studying their first and second-
order properties.

3.1.3 Main results
For two non-negative functions f and g, we write f = O(g) if there exist a constant C > 0 and

λ0 > 0 such that for any λ ≥ λ0 we have f(λ) ≤ Cg(λ). Theorem 3.1.1 below provides expectation
and variance asymptotics as well as a central limit theorem for the variables Nn,k,λ.

Theorem 3.1.1. For any n ≥ 1 and k ∈ {0, . . . , d − 1} there exist Cn,k,d, C ′
n,k,d ∈ (0, ∞) such that

lim
λ→+∞

λ− d−1
d+1 E[Nn,k,λ] = Cn,k,d and lim

λ→+∞
λ− d−1

d+1 Var[Nn,k,λ] = C ′
n,k,d.

Moreover, when λ → ∞, we have

sup
t

∣∣∣∣∣P
(

Nn,k,λ − E[Nn,k,λ]√
Var[Nn,k,λ]

≤ t

)
− P(N (0, 1) ≤ t)

∣∣∣∣∣ = O
(

λ− d−1
2(d+1) (log λ)3d+1

)
.

In Theorem 3.1.2, we derive similar results for the variables Vn,k,λ.

Theorem 3.1.2. For any n ≥ 1 and k ∈ {1, . . . , d} there exist CV,n,k,d, C ′
V,n,k,d ∈ (0, ∞) such that

lim
λ→+∞

λ
2

d+1 E[Vn,k,λ] = CV,n,k,d and lim
λ→+∞

λ
d+3
d+1 Var[Vn,k,λ] = C ′

V,n,k,d.

Moreover, when λ → ∞, we have

sup
t

∣∣∣∣∣P
(

Vn,k,λ − E[Vn,k,λ]√
Var[Vn,k,λ]

≤ t

)
− P(N (0, 1) ≤ t)

∣∣∣∣∣ = O
(

λ− d−1
2(d+1) (log λ)3d+1

)
.

The rates in Theorems 3.1.1 and 3.1.2 are identical to those obtained for the first layer, i.e.
the convex hull of Pλ, as described in [24]. In particular, the underlying limiting expectations
and variances are proved to be different from zero. They have an explicit formulation in terms of a
random process derived from a homogeneous Poisson point process in the product space Rd−1 ×R+,
see Theorems 3.2.8 – 3.2.11. This solves the conjecture discussed in [22] and along the lines above
(3.3) in the particular regime when the layer number does not depend on the size of the input.

Our tools are those of stabilization theory that were used in [24] to prove precise variance asymp-
totics for the first layer. The key idea consists in writing Nn,k,λ and Vn,k,λ as a sum

∑
x∈Pλ

ξ(x, Pλ)
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for some functional ξ and proving that for a given point x this functional only depends on the pro-
cess in a neighbourhood of x. That is what we call stabilization. The importance of the stabilization
can already be seen in the study of the variance of Nn,k,λ as it implies that ξ(x, Pλ) and ξ(y, Pλ)
are independent when x and y are far enough from each other, which simplifies the calculation of
the variance. The stabilization of ξ is in fact used much more extensively for all six results stated
in Theorems 3.1.1 and 3.1.2 and constitutes the main difficulty of this paper. Indeed, the formation
of each layer of the peeling requires a global knowledge of the point set and also of the history of
the previously constructed layers. In particular, for a given point x, there is no easy local criterion
for checking that x is on the n-th layer of the peeling. In this regard, the problem is significantly
different from the study of the convex hull as done in [24]. The only characterization that we can
use is incremental, see Lemma 3.2.5, and this explains why the proof of stabilization is done by
induction on the layer number. Incidentally, this also requires to estimate the position of each layer,
see e.g. Lemma 3.3.2.

The strategy of proof of the expectation and variance asymptotics in Theorem 3.1.1 is the
following.

— Using the decomposition of each variable as a sum over x ∈ Pλ of a functional ξ(x, Pλ), we
rewrite the expectation and variance of Nn,k,λ as an integral thanks to Mecke’s formula for
Poisson point processes.

— Dealing with this multiple integral, we intend to use Lebesgue’s dominated convergence
theorem after applying a suitable change of variables inside the integral. To do so, we need
to rescale the model. This leads us to introducing the notions of parabolic hull peeling in
the upper half-space, see Section 3.2.

— It then remains to show the convergence and domination of the integrands, rewritten as
either an expectation or a covariance of a local functional of the parabolic hull peeling.
This requires to show the so-called stabilization of the functionals, see Section 3.3. The
stabilization implies in turn general moment bounds and the convergence of the integrands,
see Section 3.4.

The proof of the central limit theorem also relies on the stabilization results from Section 3.3 as
well as a Gauss approximation result in the particular setting of dependency graphs.

Finally, showing the positivity of the limiting expectations and variances represents another
challenge. It requires to introduce a particular configuration where the determination of the layers
and the calculation of the considered variables are natural and then to randomize this idealized
configuration. This general principle has been used previously for proving the positivity of the
limiting variances of N0,k,λ and V0,k,λ, see e.g. [61] and [8]. The construction that we do in the
context of the n-th layer is partly inspired by [33].

We have chosen to concentrate mainly on the variables Nn,k,λ throughout the paper and to
discuss briefly the adaptations that are needed in the case of the variables Vn,k,λ at the end of the
paper, see Section 3.5.2.

3.1.4 Outline
The paper is structured as follows.
— In Section 3.2 we introduce the scaling transformation and study its effect on the point

process and on the subsequent convex hulls. Incidentally we state a few basic properties on
the peeling. We then define the scores as functionals of a point x and of the point process such
that the variables Nn,k,λ and Vn,k,λ can be decomposed as sums of such scores. We conclude
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with statements of more refined versions of the expectation and variance asymptotics of
Theorem 3.1.1, with precise limiting constants.

— Section 3.3 is devoted to proving the stabilization of the rescaled scores, i.e. that with
probability exponentially close to 1 they only depend on the process in the neighbourhood
of the point considered.

— In Section 3.4 we use stabilization properties shown to prove Lp bounds and a convergence
of in expectation of the rescaled scores.

— Section 3.5 contains the proofs of our main results.
— Finally, Section 3.6 collects several concluding remarks about possible extensions of our work

and open problems.

3.2 Rescaling and scores
In this section, we introduce an ad hoc scaling procedure originated in [73] and [24]. We then

study the image by that scaling transformation of the Poisson point process and of the layers of
the underlying convex hull peeling. Next we prove general properties on the construction of the
rescaled layers which are analogues of similar properties of the initial convex hull peeling. Finally
we introduce functionals that we call scores and we decompose Nn,k,λ as the sum over every point
of the process of these scores. This leads us to write explicit formulas for the constants in Theorem
3.1.1 and 3.1.2, where scores are involved.

3.2.1 Scaling transformation
To describe the scaling transformation that we will use on the point process, we first recall a

few definitions. We write Ted
for the tangent space of Sd−1 at point ed = (0, 0, . . . , 0, 1). The

exponential map exped
: Ted

∼= Rd−1 −→ Sd−1 maps a vector v of Ted
to the vector u that lies at

the end of the geodesic of Sd−1 of length ∥v∥ that starts at ed with direction v. The function exped

induces a one-to-one map between Bd−1(π) and Sd−1 \ {−ed} of inverse exp−1 where Bl(r) denotes
the open ball centered at 0 of radius r in Rl. This lets us define a one-to-one map T (λ) between
Bd \ [0, −ed] and Wλ := λ

1
d+1 Bd−1(π) × [0, λ

2
d+1 ) by

T (λ)(x) :=
(

λ
1

d+1 exp−1
(

x

∥x∥

)
, λ

2
d+1 (1 − ∥x∥)

)
for all x ∈ Bd \ [0, −ed]. In general we will denote by w = (v, h) with v ∈ Rd−1 and h ∈ R+ a generic
point in Wλ. The transformation T (λ) was already used in [24] to obtain variance asymptotics of
functionals of the convex hull of Pλ that include the number of k-faces (short for k-dimensional
faces) and the k-th intrinsic volume. This transformation enjoys two important properties. First,
unit volume subsets of Wλ near the hyperplane Rd−1×{0} contain Θ(1) rescaled points and actually,
we can show that the limit point process is Poisson and has intensity 1, see Lemma 3.2.1. Secondly,
the transformation preserves the parabolic shape of both the defect radius-vector function and the
defect support function of the random polytope conv(Pλ), as described in [24, p. 53–54]. These
properties have been crucial in the proofs of the results contained in [24] on the convex hull conv(Pλ).
It turns out that T (λ) plays a similar role for the first n layers as long as we take a fixed n that
does not vary with λ. Indeed, at the limit, the convex hull is mapped by T (λ) to what we call the
parabolic hull of the limit rescaled process. In the same way it maps the convex hull peeling to the
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analogue of the peeling procedure in the parabolic picture that we name parabolic hull peeling of
the limit rescaled process. We give more details below, after describing the effect of T (λ) on Pλ.

Our scaling transformation maps the Poisson point process Pλ to a Poisson point process on
Wλ that we denote by P(λ). Its intensity has a density with respect to the Lebesgue measure given
by

(v, h) 7→
sind−2

(
λ− 1

d+1 ∥v∥
)

∥λ− 1
d+1 v∥d−2

(
1 − λ− 2

d+1 h
)

, (3.5)

see [24, p. 57] for the computation. As proved in [24, p. 71], this point process converges in
distribution to a homogeneous Poisson point process of intensity one on Rd−1 ×R+, that we denote
by P or P(∞).

Lemma 3.2.1. We have lim
λ→+∞

P(λ) = P in distribution.

Next we recall from [24] the effect of the rescaling on the spherical caps in the ball. This will
then allow us to deduce the images of the consecutive layers by the rescaling. Any spherical cap in
the unit ball of Rd can be written

cap(x0) := {x ∈ Bd : ⟨x,
x0

∥x0∥
⟩ > ∥x0∥}, x0 ∈ Bd. (3.6)

One can see that cap(x0) is the cap orthogonal to x0 at distance ∥x0∥ of the origin. Let us write
(v0, h0) := T (λ)(x0). The cap cap(x0) is sent by T (λ) to a so-called downward quasi-paraboloid
[Π↓](λ)(v0, h0). Furthermore, the quasi-paraboloids [Π↓](λ)(v0, h0) converge to a paraboloid

[Π↓(v0, h0)](∞)(v0, h0) = Π↓(v0, h0) := {(v, h) ∈ Rd−1 × R+ : h < h0 − ∥v − v0∥2

2 }.

These results are made precise in Lemma 3.2.2 below, whose proof can be found in [24, p. 72-73] or
in [26, Lemma 3.1] up to a a small adaptation. Note that in this convergence result, with a slight
abuse, we use the notation ∂[Π↓](λ) (resp. ∂Π↓) for the function from Rd−1 to R+ whose graph is
the boundary of the set [Π↓](λ) (resp. Π↓).

Beforehand, we need to introduce useful notation for several types of cylinders that are used in
the rest of the paper. For any v ∈ Rd−1 and r > 0, Cv(r) denotes the vertical cylinder Bd−1(v, r) ×
[0, ∞) with the convention C(r) = C0(r). We also define the truncated cylinders C≥t

v (r) := Cv(r)∩
{(v′, h′) ∈ Rd : h′ ≥ t}, C≤t

v (r) := Cv(r) ∩ {(v′, h′) ∈ Rd : h′ ≤ t} and CI
v (t) := Cv(r) ∩ {(v′, h′) ∈

Rd : h′ ∈ I} for any t > 0 and any interval I ⊂ R+.

Lemma 3.2.2. Let λ > 0 and x0 ∈ Bd. We write (v0, h0) = T (λ)(x0). Then we have

T (λ)(cap(x0)) = [Π↓](λ)(v0, h0) (3.7)

:= {(v, h) ∈ Wλ : h < λ
2

d+1

(
1 − 1 − λ− 2

d+1 h0

cos(eλ(v, v0))

)
}

where eλ(v, v0) := dSd−1

(
expd−1(λ− 1

d+1 v), expd−1(λ− 1
d+1 v0)

)
for v, v0 ∈ Rd−1.

Additionally, for any L ≥ 1, we have the following convergence result.

lim
λ→∞

∂[Π↓](λ)(v0, h0) ∩ C(v0,h0)(L) = ∂Π↓(v0, h0) ∩ C(v0,h0)(L). (3.8)
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Remark 3.2.3. As in [24], when λ ∈ (0, ∞), we can introduce a dual set

[Π↑](λ)(v0, h0) := T (λ)(∂B(x0

2 ,
∥x0∥

2 )) (3.9)

= {(v, h) ∈ Wλ : h > λ
2

d+1 (1 − (1 − λ− 2
d+1 h0) cos(eλ(v, v0)))}

that we call the upward quasi-paraboloid with apex (v0, h0). Similarly, we define

[Π↑](∞)(v0, h0) = Π↑(v0, h0) := {(v, h) ∈ Rd−1 × R+ : h > h0 + ∥v − v0∥2

2 }. (3.10)

In particular, for any λ ∈ (0, ∞] and any (v0, h0), (v1, h1) ∈ Wλ,

((v1, h1) ∈ [Π↑](λ)(v0, h0)) ⇐⇒ ((v0, h0) ∈ [Π↓](λ)(v1, h1)).

This fact will be used on many occasions in the forthcoming proofs.

Recalling that for a locally finite point set X,

conv(X) =
⋃

H+ half-space
X∩H+=∅

(H+)c,

we are led by Lemma 3.2.2 to the following definition, that corresponds to the analogue of the
convex hull in the (quasi-)parabolic setting, where the role of the half-spaces is played by downward
quasi-paraboloids or paraboloids. For λ ∈ (0, ∞] and a locally finite point set Y in Wλ, we write

Φ(λ)(Y ) :=
⋃

w∈Wλ

Y ∩[Π↓](λ)(w)=∅

[Π↓](λ)(w)c

that we call the quasi-parabolic hull of Y , or parabolic hull when λ = ∞. We will generally write
Φ instead of Φ(∞) for sake of simplicity. Thanks to Lemma 3.2.2, we obtain that T (λ) maps the
convex hull of a point set to the quasi-parabolic hull of the image of this point set, i.e.

T (λ)(conv(X)) = Φ(λ)(T (λ)(X)),

provided that conv(X) contains the origin in its interior. In particular, when X = Pλ, Wendel’s
formula [81] shows that the event {0 ∈ int(conv(Pλ))} has a probability going to 1 exponentially
fast when λ → ∞ and we implicitly condition on that event when working with T (λ).

We call extreme points of Y the points of Y ∩ ∂Φ(λ)
1 (Y ). They are naturally images by T (λ) of

the extreme points of the convex hull of [T (λ)]−1(Y ).
When λ → ∞, the intersection ∂Φ(λ)(P(λ))∩C(R), R > 0, converges in distribution to ∂Φ(P)∩

C(R) where each quasi-parabolic hull is seen as a continuous function over C(R) and the set of
continuous functions on C(R) is endowed with the topology of the uniform convergence, see [24,
Theorem 4.1].

Let us now investigate the action of the transform T (λ) on the convex hull peeling procedure.
Quite naturally, it maps the convex hull peeling to a quasi-parabolic hull peeling that will converge
in some sense to a parabolic hull peeling. We define the hulls of the quasi-parabolic and parabolic
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hull peeling recursively with the following formula: for all n ≥ 2, λ ∈ (0, ∞] and a locally finite
point set Y ⊂ Rd−1 × R+, we set

Φ(λ)
n (Y ) = Φ(λ)(Y ∩ int(Φ(λ)

n−1(Y ))).

When λ = ∞, we speak of parabolic hull peeling and we write Φn instead of Φ(∞)
n . In the same

way as for the the first layer of the convex hull peeling, the subsequent ones are mapped by T (λ)

to the corresponding parabolic hulls, i.e.

T (λ)(convn(X)) = Φ(λ)
n (T (λ)(X)), (3.11)

provided that the origin lies in the interior of convn(X). It is a direct consequence of [22, Theorem
1.2], see also (3.1), and [22, Equation (1.10) for x = 0] that the event {0 ∈ int(convn(Pλ))} has a
probability going to 1 exponentially fast when λ → ∞. Henceforth, when dealing with convn, we
implicitly condition on that particular event.

We call the sets ∂Φ(λ)
n (Y ) the layers of the quasi-parabolic or parabolic hull peeling of Y .

For any n ≥ 1, the set Φ(λ)
n (Y ) (resp. Φn(Y )) is the complement of a union of down quasi-

paraboloids (resp. paraboloids). As the quasi-paraboloids converge to paraboloids, see Lemma
3.2.2, and Wλ goes to Rd−1 × R+ as λ goes to infinity, we can extend [24, Theorem 4.1] to the
convergence in distribution of the subsequent rescaled layers of the original convex peeling to the
corresponding layers of the parabolic peeling associated with the limit Poisson point process. As a
side result, we also obtain the convergence of the point process of points of P(λ) on the n-th layer.
This is summarized in Proposition 3.2.4 below.

Proposition 3.2.4. Let R > 0 and n ≥ 1. When λ → ∞, we have that

∂Φ(λ)
n (P(λ)) L→ ∂Φn(P)

where the set of continuous functions over Rd−1 is endowed with the topology of the uniform con-
vergence on every compact set. Moreover,

P(λ) ∩ ∂Φ(λ)
n (P(λ)) L→ P ∩ ∂Φn(P).

In other words, Proposition 3.2.4 explains to what extent the parabolic hull peeling is the rescaled
limiting model of the convex hull peeling in the ball. Since Proposition 3.2.4 is a natural analogue
of the results stated and proved in [24, Theorem 4.1] and [26, Theorem 1.1] for the (quasi)-parabolic
hull process, its proof is omitted. Let us note that when λ = ∞, the parabolic hull peeling of P, as
seen in Figure 3.2, is also a crucial tool of [22] under the name of semiconvex peeling.

3.2.2 Properties of the rescaled layers
For any w ∈ Rd−1 × R+ and Y ⊂ Rd−1 × R+„ we introduce the number

ℓ(λ)(w, Y ) = n such that w ∈ ∂Φ(λ)
n (Y ∪ {w}). (3.12)

In particular, for any x ∈ Bd, ℓ(λ)(T (λ)(x), T (λ)(X)) is the number of the layer of x in the initial
convex hull peeling of X ∪ {x}. We now aim at proving an explicit criterion for determining
ℓ(λ)(w, Y ), see Lemma 3.2.5, and the monotonicity of ℓ(λ)(w, Y ) with respect to Y , see Lemma
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∂Φ1(P)

∂Φ2(P)
∂Φ3(P)

∂Φ4(P)

∂Φ5(P)

Figure 3.2 – First layers of a parabolic hull peeling, with the interior of Φ5(P) in pink.

3.2.6. Both of these properties could be stated for the initial convex hull peeling but we will only
use the rescaled versions below.

Let us recall, see e.g. [24, pages 66-67], that a point w in Rd−1 × R+ is extreme if and only if
there exists (v1, h1) ∈ ∂[Π↑](λ)(w) such that [Π↓](λ)(v1, h1) ∩ Y = ∅.

Lemma 3.2.5 provides a geometric interpretation of the function ℓ(λ) that extends the result
above and that we will use frequently – and sometimes implicitly – in the rest of the paper, see
Figure 3.3 for an illustration of this lemma.

Lemma 3.2.5. Let Y be a locally finite subset of Rd−1 × R+, w ∈ Y , λ ∈ (0, ∞] and n ≥ 1. Then
we have the two following equivalences.
(i) (ℓ(λ)(w, Y ) ≥ n) ⇐⇒ (∀ (v1, h1) ∈ ∂[Π↑](λ)(w) : Y ∩ [Π↓](λ)(v1, h1) ̸⊂ ∪n−2

i=1 ∂[Φi](λ)(Y )).

(ii) (ℓ(λ)(w, Y ) ≤ n) ⇐⇒ (∃ (v1, h1) ∈ ∂[Π↑](λ)(w) : Y ∩ [Π↓](λ)(v1, h1) ⊂ ∪n−1
i=1 ∂[Φi](λ)(Y )).

Proof. (i) Let us assume that ℓ(λ)(w, Y ) ≥ n and take (v1, h1) ∈ ∂[Π↑](λ)(w). If we had [Π↓](λ)(v1, h1)∩
Y ⊂ ∪n−2

i=1 ∂[Φi](λ)(Y ), this quasi-paraboloid would not intersect Y after removing the first (n − 2)
layers, meaning that w would be at most of layer (n − 1) so the first implication holds.

Conversely, let us assume that [Π↓](λ)(v1, h1) ∩ Y ̸⊂ ∪n−2
i=1 ∂[Φi](λ)(Y ). Then after removing the

first (n − 2) layers, any down quasi-paraboloid whose boundary contains w has to meet Y . This
implies that w is not extreme after removing the first (n − 2) layers and thus ℓ(λ)(w, Y ) ≥ n.

(ii) If ℓ(λ)(w, Y ) = m ≤ n, w is extreme when we remove the first (m − 1) layers. Thus let
(v1, h1) ∈ ∂[Π↑](λ)(w) be such that [Π↓](λ)(v1, h1) does not contain any point of Y after removing
the first (m − 1) layers. This implies that

[Π↓](λ)(v1, h1) ∩ Y ⊂ ∪m−1
i=1 ∂[Φi](λ)(Y ) ⊂ ∪n−1

i=1 ∂[Φi](λ)(Y ).

Conversely, if we assume that

∃ (v1, h1) ∈ ∂[Π↑](λ)(w) : [Π↓](λ)(v1, h1) ∩ Y ⊂ ∪n−1
i=1 ∂[Φi](λ)(Y ),
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w

(v1, h1)

Π↓(v1, h1)

Π↑(w)

Figure 3.3 – Illustration of the criteria (i) and (ii) of Lemma 3.2.5 in the case λ = ∞ and
l(∞)(w, Y ) = 3. As in (ii), the paraboloid Π↓(v1, h1) contains w on its boundary and only contains
points on layers at most 2. As in (i), any translate of Π↓(v1, h1) containing w in its boundary (i.e.
with (v1, h1) ∈ ∂Π↑(w)) contains at least one point of layer at least 2.

either w belongs to the first (n − 1) layers or it is extreme once the first (n − 1) layers are removed.
Thus ℓ(λ)(w, Y ) ≤ n.

Lemma 3.2.6 below, which is of frequent use in our proofs, shows that the variables ℓ(λ)(w, X)
are increasing with respect to the set X. It slightly rephrases [33, Lemma 3.1] in the context of
the parabolic hull peeling and [22, Lemma 2.1]. For sake of completeness, we include a short proof
below.

Lemma 3.2.6. For λ ∈ (0, ∞], if X ⊂ Y ⊂ Wλ, we have for every w ∈ Wλ, ℓ(λ)(w, X) ≤
ℓ(λ)(w, Y ).

Proof. We prove the result by induction on n = ℓ(λ)(w, Y ). When n = 1, w is extreme for the point
set Y ∪ {w} so is also extreme for the smaller point set X ∪ {w}. When n > 1, by Lemma 3.2.5
(ii), w lies on the boundary of a down quasi-paraboloid such that each point w′ of Y in its interior
satisfies ℓ(λ)(w′, Y ∪ {w}) ≤ (n − 1). When w′ ∈ X, the induction hypothesis applied to w′ and
the point sets X ∪ {w} and Y ∪ {w} shows that ℓ(λ)(w′, X ∪ {w}) ≤ ℓ(λ)(w′, Y ∪ {w}) ≤ (n − 1).
Consequently, using again Lemma 3.2.5 (ii), we obtain that ℓ(λ)(w, X) ≤ n. This completes the
proof.
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Figure 3.4 – The effect of adding a (red) point to the parabolic hull peeling. The red dashed lines
are the changes applied to the layers.

Remark 3.2.7. In fact, when Y \ X is finite, we can show by arguments similar to the proof of
[33, Lemma 3.1] that ℓ(λ)(w, Y ) ≤ ℓ(λ)(w, X) + #(Y \ X) where #(·) denotes the cardinality, see
Figure 3.4.

3.2.3 Scores and correlation functions
In this subsection we associate to each point of Bd (resp. Wλ) a random variable depending

on that point and on the Poisson point process which we call a score. We start by defining the
score of a point in the initial convex hull peeling before rescaling, i.e. for every x ∈ Bd, n ≥ 1 and
k ∈ {0, . . . , d − 1}, we introduce the r.v.

ξn,k(x, X) :=
{ 1

k+1 #Fn,k(x, X) if x ∈ ∂convn(X ∪ {x})
0 otherwise

where Fn,k(x, X) is the set of all k-faces containing x of ∂convn(X ∪{x}). The factor 1
k+1 is needed

to take into account the fact that the faces are counted multiple times since a k-face contains a.s.
(k + 1) points of Pλ. In particular, we get the identity

Nn,k,λ =
∑

x∈Pλ

ξn,k(x, Pλ). (3.13)

We now extend this notion of score to the rescaled model. Let λ ∈ (0, ∞], Y be a locally finite
subset of Wλ, w ∈ Wλ, n ≥ 1 and k ∈ {0, . . . , d − 1}. We denote by F (λ)

n,k(w, Y ) the set of k-faces of
∂Φ(λ)

n (Y ∪{w}) containing w, i.e. the image by T (λ) of the set of k-faces of convn([T (λ)]−1(Y ∪{w}))
containing [T (λ)]−1(w) when λ < ∞. When λ = ∞, F (λ)

n,k(w, Y ) is the set of k-dimensional parabolic
faces of Φ(λ)

n,k(Y ∪ {w}), as defined in [24, p. 65–66], containing w. For any fixed λ ∈ (0, ∞], we
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define the score

ξ
(λ)
n,k(w, Y ) :=

{
1

k+1 #F (λ)
n,k(w, Y ) if w ∈ ∂Φ(λ)

n (Y ∪ {w})
0 otherwise

. (3.14)

We deduce from (3.14) and (3.11) that for every w ∈ Wλ,

ξ
(λ)
n,k(w, P(λ)) = ξn,k

(
[T (λ)]−1(w), Pλ

)
. (3.15)

Note that the r.v. ξ
(λ)
n,k are calibrated such that

∑
w∈P(λ) ξ

(λ)
n,k(w, P(λ)) is a.s. the total number of

k-faces of ∂Φ(λ)
n (P(λ)).

We then introduce the two-point correlation function which is crucial for deriving the limiting
variance. For any λ ∈ (0, ∞] let us write

c
(λ)
n,k((0, h0), (v1, h1)) := E[ξ(λ)

n,k((0, h0), P(λ) ∪ {(v1, h1)})ξ(λ)
n,k((v1, h1), P(λ) ∪ {(0, h0)})]

− E[ξ(λ)
n,k((0, h0), P(λ))]E[ξ(λ)

n,k((v1, h1), P(λ))]. (3.16)

We conclude by giving a more precise statement of Theorem 3.1.1, as we have now introduced
every notation involved in the limiting constants.

Theorem 3.2.8. For any n ≥ 1 and k ∈ {0, . . . , d − 1} we have

lim
λ→∞

λ− d−1
d+1 E[Nn,k,λ] = Vold−1(Sd−1)

∫ +∞

0
E[ξ(∞)

n,k ((0, h), P)]dh ∈ (0, ∞).

Theorem 3.2.9. For any n ≥ 1 and k ∈ {0, . . . , d − 1} we have

lim
λ→∞

λ− d−1
d+1 Var[Nn,k,λ] = Vold−1(Sd−1) (I1 + I2) ∈ (0, ∞)

where
I1 :=

∫ ∞

0
E[ξ(∞)

n,k ((0, h), P)2]dh (3.17)

and
I2 :=

∫ +∞

0

∫ +∞

0

∫
Rd−1

c
(∞)
n,k ((0, h0), (v1, h1))dv1dh0dh1. (3.18)

We restate in a similar way Theorem 3.1.2 for the intrinsic volumes, using the definitions of
ξ

(∞)
V,n,k and c

(∞)
V,n,k introduced at (3.94) and (3.95) respectively.

Theorem 3.2.10. For any n ≥ 1 and k ∈ {1, . . . , d} we have

lim
λ→+∞

λ
2

d+1 E[Vn,k,λ] = Vold−1(Sd−1)
∫ +∞

0
E[ξ(∞)

V,n,k((0, h), P)]dh ∈ (0, ∞).

Theorem 3.2.11. For any n ≥ 1 and k ∈ {1, . . . , d} we have

lim
λ→+∞

λ
d+3
d+1 Var[Vn,k,λ] = Vold−1(Sd−1) (I1 + I2) ∈ (0, ∞)
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where
I1 :=

∫ ∞

0
E[ξ(∞)

V,n,k((0, h), P)2]dh

and
I2 :=

∫ +∞

0

∫ +∞

0

∫
Rd−1

c
(∞)
V,n,k((0, h0), (v1, h1))dv1dh0dh1.

3.3 Stabilization
The aim of this section is to show stabilization results for the considered scores. This means

roughly that the score calculated at one particular fixed point requires the knowledge of the Poisson
points outside of a lateral neighborhood of that fixed point with an exponentially decreasing prob-
ability. This tool is essential to get moment bounds in Lemma 3.4.1, then the convergence of the
mean of one score and of the covariance of the scores and ultimately our main results, i.e Theorems
3.1.1 and 3.1.2.

3.3.1 Local scores and stabilization radius
First we extend the notion of score to a local score in an angular sector around a point in the

following way. For x ∈ Bd and r > 0, we introduce S(x, r) = {y ∈ Rd : dSd−1(x/∥x∥, y/∥y∥) ≤ r}
where dSd−1 is the geodesic distance along Sd−1 and

ξn,k,[r](x, Pλ) := ξn,k(x, Pλ ∩ S(x, r)).

We define the stabilization radius in the initial model as

Rn,k(x, Pλ) := inf{R > 0 : ξn,k(x, Pλ) = ξn,k,[r](x, Pλ) ∀r ≥ R}.

In particular, thanks to the rotation invariance of Pλ, we get the identity in law

Rn,k(x, Pλ) (d)= Rn,k(∥x∥ed, Pλ). (3.19)

We formally introduce the stabilization radius in the rescaled model as

R
(λ)
n,k(w, P(λ)) := Rn,k([T (λ)]−1(w), Pλ). (3.20)

Combining (3.20) with (3.19), we obtain the invariance under horizontal translation of R
(λ)
n,k, namely

for any (v, h) ∈ Wλ,
R

(λ)
n,k((v, h), P(λ)) (d)= R

(λ)
n,k((0, h), P(λ)). (3.21)

Since the image by T (λ) of S(ed, r) for r ∈ (0, π) is a cylinder, we also extend the notion of score
in the rescaled picture to a local score in a cylinder of radius r around a point in the following way.
For any r > 0, λ ∈ (0, ∞] and w = (v, h) ∈ Wλ we write

ξ
(λ)
n,k,[r](w, P(λ)) := ξ

(λ)
n,k(w, P(λ) ∩ Cv(r)). (3.22)

When w = (0, h), the following equality provides a convenient expression of the stabilization radius,
which is the one we use most of the time:

R
(λ)
n,k((0, h), P(λ)) = inf{R > 0 : ξ

(λ)
n,k((0, h), P(λ)) = ξ

(λ)
n,k,[r]((0, h), P(λ)) ∀r ≥ R}.
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We provide estimates for the distribution tail of R
(λ)
n,0(w, P(λ)) in Section 3.3.2 and of R

(λ)
n,k(w, P(λ))

in Section 3.3.3.

3.3.2 Stabilization for points
A prerequisite for Sections 3.3.2 and 3.3.3 is the following geometric lemma that we will use

extensively when showing the stabilization property. Though standard, we include its proof below
for the reader’s convenience.

Lemma 3.3.1. Let λ ∈ (0, ∞] and w0, w1 ∈ H such that ∂[Π↓](λ)(w1) goes through w0. Then
there exists a half-space P + delimited by a hyperplane P going through w0 with direction containing
(0, 0, . . . , 0, 1) such that [Π↓](λ)(w0) ∩ P + ⊂ [Π↓](λ)(w1).

Proof. For finite λ, this is a direct consequence of the following fact in the non-rescaled model: for
any point x0 = red, r ∈ (0, 1) and any point x1 ∈ ∂B( x0

2 , ∥x0∥
2 ), the set cap(x1) as defined in (3.6)

contains at least half of cap(x0). Using (3.7) and (3.9), we deduce the required result in the rescaled
model.

For λ = ∞, we proceed along the following lines. An orthogonal transformation allows us to
assume that w0 = (0, 0, . . . , 0, h0) for some h0 > 0 and w1 = (a, 0, . . . , 0, h1) with a, h1 > 0. Since
∂Π↓(w1) goes through w0, we must have a =

√
2(h1 − h0). Let us show that Π↓(w0) ∩ {(v, h) :

(v)1 > 0} ⊂ Π↓(w1) where (v)1, . . . , (v)d−1 denote the consecutive coordinates of v. The equations
of both paraboloids are

Π↓(w0) :
(

h < h0 − 1
2

d−1∑
i=1

(v)2
i

)
and Π↓(w1) :

(
h < h1 − 1

2
(
((v)1 − a)2 +

d−1∑
i=2

(v)2
i

))
.

For (v, h) ∈ Π↓(w0) ∩ {(v, h) : (v)1 > 0}, using a =
√

2(h1 − h), we get

h < h0 − 1
2

(
((v)1 − a)2 +

d−1∑
i=2

(v)2
i

)
+ 1

2
√

2(h1 − h0)
2

− a(v)1

< h1 − 1
2

(
((v)1 − a)2 +

d−1∑
i=2

(v)2
i

)
.

This completes the proof.

In the next lemma we show that the maximal height of the Poisson points on the n-th layer
∂Φ(λ)

n of the quasi-parabolic hull peeling inside a cylinder is bounded with a probability going to
1 exponentially fast with respect to the bound. This will be essential for proving the stabilization
result in Proposition 3.3.3 and will also be useful when proving Lemma 3.3.5 which provides a
stabilization in height.

Here and in the sequel we denote by c, c1, c2... generic positive constants that only depend on
n, k and d and which may change from line to line.

Lemma 3.3.2. For all n ≥ 1, there exist λ0, c1, c2 > 0 such that for all t ≥ 0, λ ∈ [λ0, ∞] and
1 ≤ r < πλ

1
d+1 , we have

P
(

∃(v, h) ∈ P(λ) ∩ ∂Φ(λ)
n

(
P(λ) ∩ C(r)

)
∩ C(r/2n) with h ≥ t

)
≤ c1rn(d−1)e−c2t(r∧

√
t)d−1
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and

P
(

∃(v, h) ∈ P(λ) ∩ ∂Φ(λ)
n

(
P(λ)

)
∩ C(r/2n) with h ≥ t

)
≤ c1rn(d−1)e−c2t(r∧

√
t)d−1

.

Proof. We only prove the first inequality as the method for getting the second one is very similar.
We begin with the proof for λ = ∞ as the case λ < ∞ is a bit more technical. We are going to
show it by induction on n. We first prove the induction step as it contains the main ideas. Then
we describe what needs to be changed to prove the induction step for λ < ∞ and finally we explain
the slight modifications that are needed to prove the base case.

Proof of the induction step for λ = ∞. We assume that the result holds for all l < n with a fixed
n > 1 and we show that it holds for n. Let w = (v, h) ∈ C(r/2n) with h ≥ t. Our first step is to
show that the event

{w ∈ ∂Φn ((P ∪ {w}) ∩ C(r))} (3.23)

occurs with probability smaller than c1 exp(−c2h(r ∧
√

h)d−1). Here we add w to the point process
because we plan to use Mecke’s formula later to deal with a union over all w.

Let (v1, h1) ∈ Rd−1 ×R+ such that w ∈ ∂Π↓(v1, h1) and Π↓(v1, h1) only contains points of layer
at most (n − 1) for C(r). Lemma 3.2.5 (ii) guarantees that such a (v1, h1) exists. By Lemma 3.3.1,
this downward paraboloid contains at least half of Π↓(w). Consequently, denoting by A1, . . . , A2d−1

the intersections of Π↓(w) with the product of an orthant of Rd−1 translated by v with R+, we have
Vold(Ai ∩C≥h/2(r/2n−1)) = 1

2d−1 Vold(Π↓(w)∩C≥h/2(r/2n−1)) and Π↓(v1, h1) contains at least one
of the Ai.

Let us write
Bi,n(h, r) := Ai ∩ {(v′, h′) : h′ ≥ h/2} ∩ C(r/2n−1). (3.24)

From the preceding reasoning we deduce that

{w ∈ ∂Φn ((P ∪ {w}) ∩ C(r))} ⊂ {∃i : P ∩ Bi,n(h, r) ⊂ [Φn((P ∪ {w}) ∩ C(r))]c}.

For fixed i, Bi,n(h, r) is either empty, which happens with probability smaller than c1 exp(−c2h(r ∧√
h)d−1) or it contains a point at height larger than h/2 on a layer at most (n − 1), which happens

with probability smaller than c1r(n−1)(d−1) exp(−c2h(r ∧
√

h)d−1) by the induction hypothesis.
Consequently we have

P({w ∈ ∂Φn ((P ∪ {w}) ∩ C(r))) ≤ c1r(n−1)(d−1) exp(−c2h(r ∧
√

h)d−1). (3.25)

We can write

P (∃(v, h) ∈ P ∩ ∂Φn(P ∩ C(r)) ∩ C(r/2n) with h ≥ t)

≤ E

 ∑
w∈P∩C≥t(r/2n)

1w∈∂Φn(P∩C(r))

.
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We combine this with Mecke’s formula and (3.25) to get

P (∃(v, h) ∈ P ∩ ∂Φn(P ∩ C(r)) ∩ C(r/2n) with h ≥ t)

≤
∫

∥v∥≤r/2n

∫
h∈]t,+∞[

P ((v, h) ∈ ∂Φn((P ∪ {(v, h)}) ∩ C(r))) dhdv

≤
∫

∥v∥≤r/2n

∫
h∈]t,+∞[

c1r(n−1)(d−1) exp(−c2h(r ∧
√

h)d−1)dhdv

≤ c1rn(d−1) exp(−c2t(r ∧
√

t)d−1).

This proves the induction step.

Proof of the induction step for λ < ∞. Let us check that the proof above still holds. The only dif-
ference here is that the intensity of the process is no longer constant. However let us recall that this
intensity has a density given by (3.5) so it is uniformly bounded from below for any ∥v∥ ≤ 3

4 λ
1

d+1 π

and h ≤ 3
4 λ

2
d+1 by a constant that does not depend on λ and is upper bounded by 1. The same

proof as in the case λ = ∞ shows that

{w ∈ ∂Φ(λ)
n ((P(λ) ∪ {w}) ∩ C(r))} ⊂ {∃i : P(λ) ∩ Bi,n(h, r) ⊂ [Φ(λ)

n ((P(λ) ∪ {w}) ∩ C(r))]c}.

with Bi,n(h, r) introduced at (3.24). If for a fixed i, Bi,n(h, r) is empty then in particular the
set Bi,n(h, r) ∩ {(v′, h′) : 1

2 h ≤ h′ ≤ 3
4 h} ∩ C(r/2n−1) is also empty and included in the region

{(v′, h′) : ∥v′∥ ≤ 3
4 λ

1
d=1 π and h′ ≤ 3

4 λ
2

d+1 } on which the density at (3.5) is bounded from below by
a constant. Consequently,

P(P(λ) ∩ Bi,n(h, r) = ∅) ≤ e−c1Vold(Bi,n(h,r)) ≤ e−c2h(r∧
√

h)d−1
.

The use of the induction hypothesis remains unchanged so we still have (3.25) in the case λ < ∞.
To get the result we then follow the same steps as before except that we upper-bound the intensity
density by 1 after the use of Mecke’s formula.

Proof of the base case n = 1 for both λ = ∞ and λ < ∞. We define for every 1 ≤ i ≤ 2d−1

B̃i,1(h, r) = Ai ∩ {(v′, h′) : 1
2h ≤ h′ ≤ 3

4h} ∩ C(3r/4).

which guarantees that the intensity measure of B̃i,1(h, r) is lower bounded by its Lebesgue measure
up to a multiplicative constant. Using the inclusion

{w ∈ ∂Φ1

(
(P(λ) ∪ {w}) ∩ C(r))

}
⊂ {∃i : P(λ) ∩ B̃i,1(h, r) = ∅},

we get an analogue of (3.25) which, combined with Mecke’s formula, proves the base case.
This completes the proof of Lemma 3.3.2.

We are now ready to prove a stabilization result for the 0−faces, i.e. the extreme points of the
n−th layer. It is a crucial step towards a general stabilization for k−faces.
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Proposition 3.3.3. For all n ≥ 1, there exist λ0, c1, c2 > 0 such that for any h0 > 0, λ ∈ [λ0, +∞]
and 1 ≤ r < πλ

1
d+1 we have

P
(

R
(λ)
n,0(0, h0) ≥ r

)
≤ c1 exp

(
−c2rd+1) . (3.26)

Proof. We give a detailed proof for the case λ = ∞ and briefly describe at the end how to adapt
the proof to make it work for finite λ.

We show this result by induction. The case n = 1 corresponds to [24, Lemma 6.1]. We now fix
n ≥ 2 and assume that (3.26) is verified for all m < n. Let us show (3.26) for n.

We first notice that

{R
(λ)
n,0(0, h0) ≥ r} =

⋃
s≥r

{ξ
(∞)
n,0 ((0, h0), P ∩ C(s)) ̸= ξ

(∞)
n,0 ((0, h0), P)}

Let us introduce

E1 :=
⋃
s≥r

⋃
l<n

{(0, h0) ∈ ∂Φl(P ∩ C(s)) ∩ ∂Φn(P)},

E2 :=
⋃
s≥r

⋃
l>n

{(0, h0) ∈ ∂Φn(P ∩ C(s)) ∩ ∂Φl(P)}.

Since {R
(λ)
n,0(0, h0) ≥ r} = E1 ∪ E2, it is enough to prove that for any r ≥ 1,

P(E1) ≤ c1 exp(−c2rd+1) (3.27)

and
P(E2) ≤ c1 exp(−c2rd+1). (3.28)

Decomposition of E1. The strategy is the following: we plan to select a down-paraboloid which
contains (0, h0) on its boundary and a point w in its interior to which we can apply the induction
hypothesis, recalling (3.21).

To do so, we introduce the two events

F1 := { ∃(v1, h1) ∈ ∂Π↑(0, h0), h1 ≤ r2/32 :
P ∩ C(r) ∩ Π↓(v1, h1) ⊂ [Φn−1(P ∩ C(r))]c} ∩ {(0, h0) ∈ ∂Φn(P)},

F2 := { ∃(v1, h1) ∈ ∂Π↑(0, h0), h1 ≥ r2/32 :
P ∩ C(r) ∩ Π↓(v1, h1) ⊂ [Φn−1(P ∩ C(r))]c} ∩ {(0, h0) ∈ ∂Φn(P)},

see Figure 3.5.
When n = 2, we replace the inclusion P ∩C(r)∩Π↓(v1, h1) ⊂ [Φn−1(P ∩C(r))]c in the definition

of F1 and F2 above by P ∩ C(r) ∩ Π↓(v1, h1) = ∅.
In particular, E1 ⊂ F1 ∪ F2. Indeed if one of the events of the union in the definition of

E1 occurs for fixed l < n and s ≥ r, there exists (v1, h1) ∈ ∂Π↑(0, h0) such that for every w ∈
P∩C(r)∩Π↓(v1, h1), ℓ(∞)(w, P∩C(s)) ≤ (l−1). Lemma 3.2.6 then implies that ℓ(∞)(w, P∩C(r)) ≤
(l − 1) ≤ (n − 2) for any such w.

Consequently, it suffices to upper bound P(F1) and P(F2) which we do with two different strate-
gies. In the case of F1, there is a downward paraboloid Π↓(v1, h1) which is low enough to be
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h0

r2

32

(v1, h1)

r−r

Figure 3.5 – Example of a situation where event F2 from Proposition 3.3.3 occurs when (0, h0) is
on layer 3 for the peeling of P ∩ C(r).

contained in a cylinder smaller than C(r). This implies that we can apply the induction hypothesis
to a well chosen point in Π↓(v1, h1). When on F2, the downward paraboloid is high enough so
that there is a high point w with ℓ(∞)(w, P ∩ C(r)) ≤ n and we deduce from Lemma 3.3.2 that it
happens with exponentially small probability.

Upper bound for P(F1). Let us fix (v1, h1) with h1 ≤ r2/32 as in the event F1. Using that
(v1, h1) ∈ ∂Π↑(0, h0), we get

∥v1∥ =
√

2(h1 − h0) ≤
√

2h1 = r/4. (3.29)

Furthermore if we take (v2, h2) ∈ Π↓(v1, h1), the norm of v2 is smaller than the norm of v1 plus
half of the width of the paraboloid Π↓(v1, h1), so

∥v2∥ ≤ ∥v1∥ + ∥v2 − v1∥ ≤ r

4 +
√

2h1 ≤ r/2. (3.30)

This implies that Π↓(v1, h1) ⊂ C(r/2). In particular, when n = 2, we get that (0, h0) is an
extremal point of (P ∪ {(0, h0)}) and subsequently that F1 = ∅. In the case n > 2, we proceed
in the following way. Since ℓ(∞)((0, h0), P) = n, we can choose a point w ∈ Π↓(v1, h1) such that
ℓ(∞)(w, P) ≥ (n−1). Then because we are on the event F1, we also have ℓ(∞)(w, P∩C(r)) ≤ (n−2).
By Lemma 3.2.6, this implies that ℓ(∞)(w, P ∩ Cw(r/2)) ≤ (n − 2), which means that

∃m ≤ (n − 2) : R
(∞)
m,0 (w) ≥ r/2. (3.31)

Using the induction hypothesis

P(R(∞)
m,0 (w) ≥ r/2) ≤ c1 exp(−c2rd+1).
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Since w belongs to P ∩ C≤ r2
32 (r/2), we rewrite

P (F1) ≤ P
( n−2⋃

m=1

⋃
w∈P∩C≤ r2

32 ( r
2 )

{R
(∞)
m,0 (w, P) ≥ r

2}
)

≤ E
[ n−2∑

m=1

∑
w∈P∩C≤ r2

32 ( r
2 )

1{R
(∞)
m,0 (w,P)≥ r

2 }

]
.

Now we use Mecke’s formula to obtain

P (F1) ≤
∑

m≤n−2

∫
C≤r2/32(r/2)

P
(

R
(∞)
m,0 (w, P) ≥ r/2

)
dw

≤ c1 exp(−c2rd+1). (3.32)

Decomposition of F2. We rewrite F2 = G1 ∪ G2 where

G1 := {∃(v1, h1), h1 ≥ r2/32, ∥v1∥ ≤ r/6 :
P ∩ C(r) ∩ Π↓(v1, h1) ⊂ [Φn−1(P ∩ C(r))]c} ∩ {(0, h0) ∈ ∂Φn(P)}.

G2 := {∃(v1, h1), h1 ≥ r2/32, ∥v1∥ ≥ r/6 :
P ∩ C(r) ∩ Π↓(v1, h1) ⊂ [Φn−1(P ∩ C(r))]c} ∩ {(0, h0) ∈ ∂Φn(P)}.

Again, when n = 2, we replace the inclusion P ∩ C(r) ∩ Π↓(v1, h1) ⊂ [Φn−1(P ∩ C(r))]c in the
definition of F1 and F2 above by P ∩ C(r) ∩ Π↓(v1, h1) = ∅.

Figure 3.6 – Illustration of the geometric constructions leading to the upper-bounds of P(G1) (left)
and P(G2) (right)

Upper bound for P(G1). We fix (v1, h1) with ∥v1∥ ≤ r/6 and h1 ≥ r2/32 as in the event G1. In
particular, we get

h0 = h1 − ∥v1∥2

2 ≥ 5
288r2. (3.33)

By Lemma 3.3.1, the down-paraboloid Π↓(v1, h1) contains half of Π↓(0, h0) ∩ C≥ h0
2 ( r

2n ), see Figure
3.6 (left). As in the proof of Lemma 3.3.2, we can find a deterministic subset Ai of Π↓(0, h0) for
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some 1 ≤ i ≤ 2d−1 such that Ai ⊂ Π↓(v1, h1) and

Vold
(

Ai ∩ C≥ h0
2

( r

2n

))
= 1

2d−1 Vold
(

Π↓(0, h0) ∩ C≥ h0
2

( r

2n

))
. (3.34)

The set Ai ∩ C≥ h0
2 ( r

2n ) is empty with probability bounded by exp(−crd+1) thanks to (3.33) and
(3.34). If Ai ∩ C≥ h0

2 ( r
2n ) is not empty, which happens only when n ≥ 3, it contains a point w at

height at least h0
2 ≥ cr2 with ℓ(∞)(w, P ∩ C(r)) ≤ (n − 2). Using Lemma 3.3.2 this happens with

probability smaller than c1 exp(−c2rd+1).
A union bound on the finite number of sets A1, . . . A2d−1 yields

P(G1) ≤ c1 exp(−c2rd+1). (3.35)

Upper bound for P(G2). We fix (v1, h1) with ∥v1∥ ≥ r/6 and h1 ≥ r2/32 as in the event G2.
Let P be the vertical plane containing the origin and (v1, h1) and let (v2, h2) be the highest in-
tersection point between Π↓(v1, h1) and ∂C(r/2n+1) in P . Using ∥v1∥ =

√
2(h1 − h0), we get

h2 = h1 − 1
2(∥v1∥ − r

2n+1 )2 = h0 + r

2n+1

√
2(h1 − h0) − r2

2(2n+1)2 ≥ cr2. (3.36)

We claim that Π↓(v1, h1)∩C( h2
2 ,h2)( r

2n ) contains a deterministic cylinder C0 with width proportional
to r and height proportional to h2. Indeed, for n ≥ 3, the cylinder inscribed in C( r

2n ) \ C( r
2n+1 ) of

radius r
2n+2 between heights h2

2 and h2 and with axis included in P as in Figure 3.6 (right) is fully
included in Π↓(v1, h1), thanks to the inequality ∥v1∥ ≥ r

6 ≥ r
2n . For n = 2, the inequality is not

satisfied and that is why we take a thinner cylinder inscribed in C( r
6 ) \ C( r

8 ) instead.
The cylinder C0 constructed above is empty with probability smaller than exp(−ch2rd−1). If

C0 is not empty, which happens only when n ≥ 3, it contains a point w of height at least h2
2 with

ℓ(∞)(w, P ∩ C(r)) ≤ (n − 2). By Lemma 3.3.2 combined with (3.36), this happens with probability
smaller than c1rd−1 exp(−c2h2rd−1).

Finally, discretizing ∂Π↑(0, h0) for

h1 ≥ h0 + 1
2

(
r

6

)2
, (3.37)

we get

P(G2) ≤ c1

∫ ∞

h0+r2/72
(h1 − h0)(d−2)/2rd−1e

−c2(h0+ r
2n+1

√
2(h1−h0)− r2

2(2n+1)2 )rd−1

dh1

≤ c1

∫ ∞

h0+r2/72
(h1 − h0)(d−2)/2rd−1e−c2

r
2n+2

√
2(h1−h0)rd−1

dh1

≤ c1 exp(−c2rd+1). (3.38)

Conclusion for λ = ∞. Using the inclusion E1 ⊂ F1 ∪ G1 ∪ G2 and the estimates for P(F1), P(G1)
and P(G2) obtained above, we deduce (3.27). The estimate (3.28) is obtained in a very similar
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fashion, where n plays the role of l, by considering the decomposition E2 ⊂ F ′
1 ∪ F ′

2 where

F ′
1 = {∃(v1, h1) ∈ ∂Π↑(0, h0), h1 ≤ r2/32 :

P ∩ C(r) ∩ Π↓(v1, h1) ⊂ [Φn(P ∩ C(r))]c} ∩ {∃l > n, (0, h0) ∈ ∂Φl(P)},

F ′
2 = {∃(v1, h1) ∈ ∂Π↑(0, h0), h1 ≥ r2/32 :

P ∩ C(r) ∩ Π↓(v1, h1) ⊂ [Φn(P ∩ C(r))]c} ∩ {∃l > n, (0, h0) ∈ ∂Φl(P)}.

For the sake of brevity, the proof of (3.28) is omitted. Combining (3.27) and (3.28), we complete
the proof of Proposition 3.3.3 when λ = ∞.

Case λ < ∞. We recall the two necessary updates for finite λ.
1. Density. The density of the intensity measure of P(λ) is lower bounded by a positive constant

in a compact subset of Wλ only.
2. Quasi-paraboloids. The calculations that have been done with paraboloids are valid for quasi-

paraboloids up to a small error.
The second update above implies that for λ large enough, (3.29) and (3.30) can be replaced by
∥v1∥ ≤ r

3 and ∥v2∥ ≤ 2r
3 respectively. The assertion (3.31) is in turn replaced by R

(λ)
m,0(w) ≥ r/3

for some m ≤ (n − 2) and we proceed with the same reasoning as before to get (3.32).
Regarding the upper bounds of P(G1) and P(G2), we make the following modifications.
— Because of the second update, the inequalities (3.33), (3.36) and (3.37) deduced from the

actual equation of a paraboloid become h0 ≥ cr2, h2 ≥ cr2 and h1 ≥ h0 + cr2 for λ large
enough thanks to (3.8). Moreover, the second equality at (3.36) stays the same up to a
multiplicative constant.

— In view of the first update, we replace Ai ∩ C≥ h0
2 ( r

2n ) by Ai ∩ C( h0
2 ,

3h0
4 )( r

2n ) in (3.34) and
in the rest of the proof of the upper bound for P(G1).
Moreover, the deterministic cylinder C0 constructed in the proof of the upper bound for
P(G2) on page 66 is replaced by a cylinder included in C( h2

2 ,
3h2

4 )( r
2n ) and with radius r

2n+3 ,
say.

We then obtain (3.35) and (3.38) and conclude as in the case λ = ∞.

Proposition 3.3.3 is a general stabilization result for the score at one fixed point and this sta-
bilization is lateral, meaning that the point process is intersected with a cylinder. Lemma 3.3.4
below is a complementary stabilization result in a cylinder and the stabilization there is in height,
meaning that the point process is intersected with a horizontal strip. Combining Lemma 3.3.4
with Proposition 3.3.3, we can deduce a general stabilization result both in width and height. The
stabilization in height is required to restrict the peeling to a cylinder bounded in height later on and
use the continuous mapping theorem, see Lemma 3.4.2. This will ultimately imply in particular a
convergence result for the mean of the functional ξ

(λ)
n,k, see Proposition 3.4.3. An extra refinement

contained in Lemma 3.3.4 is that the stabilization in height is proved to be uniform for all the
points inside a small cylinder. This will be needed for getting the stabilization in height of the
k-face score, see Lemma 3.3.7.
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Lemma 3.3.4. For all n ≥ 1, there exist λ0, c1, c2 > 0 such that for all λ ∈ [λ0, ∞] and 1 ≤ r <

πλ
1

d+1 , we have

P
(

∃w ∈ P(λ) ∩ C≤lnr2
( r

2n+1

)
: ξ

(λ)
n,0(w, P(λ) ∩ C(r)) ̸= ξ

(λ)
n,0(w, P(λ) ∩ C≤lnr2

(r))
)

≤ c1 exp(−c2rd+1)

with ln = 1
22n+7 .

Proof. As in the previous proofs, we proceed in the case λ = ∞ and explain at the end how to
adapt the arguments in the case λ < ∞. For fixed n, we prove by induction on m that for all m ≤ n
there exists c1, c2 > 0 such that for all r ≥ 1 we have

P
(

∃w ∈ P ∩ C≤lnr2
( r

2m+1

)
: ξ

(∞)
m,0 (w, P ∩ C(r)) ̸= ξ

(∞)
m,0 (w, P ∩ C≤lnr2

(r)
)

≤ c1 exp(−c2rd+1). (3.39)

Lemma 3.3.4 is then derived from (3.39) by taking m = n.

Proof of the base case m = 1 for λ = ∞. Let w ∈ C≤lnr2 ( r
4
)

and assume that ξ
(∞)
1,0 (w, P ∩ C(r)) ̸=

ξ
(∞)
1,0 (w, P ∩ C≤lnr2(r)). Then there exists a downward paraboloid Π↓(v1, h1), whose boundary

contains w, that contains no point of P ∩ C≤lnr2 (r) and contains at least one point of P ∩ C (r).
If h1 ≤ lnr2, we observe that thanks to ln = 1

22n+7 and the fact that w ∈ C
(

r
4
)
, we get for any

(v′, h′) ∈ Π↓(v1, h1),

∥v′∥ ≤ ∥v′ − v1∥ + ∥v1∥ ≤
√

2h1 + ∥v − v1∥ + ∥v∥ ≤ 2
√

2h1 + r

4
≤ 2
√

2lnr2 + r

4 ≤ r. (3.40)

The last inequality in (3.40) implies that Π↓(v1, h1) is contained in C≤lnr2 (r) which is excluded.
If h1 > lnr2, we claim that the intersection between Π↑(w) and the vertical plane containing w

and (v1, h1) contains exactly two points at height equal to lnr2 and we call (v2, h2) the one which is
closer to (v1, h1), see Figure 3.7. Thanks to Lemma 3.3.1, the paraboloid Π↓(v1, h1) contains half of
the down paraboloid with apex at the vertical projection of (v2, h2) onto ∂Π↓(v1, h1). Consequently,
Π↓(v1, h1) also contains Π↓

+(v2, h2) ∩ C≤lnr2(r) where Π↓
+(v2, h2) denotes half of Π↓(v2, h2). This

latter set has volume crd+1 so we can show by using deterministic orthants as in the proof of Lemma
3.3.2 that

P(P ∩ Π↓
+(v2, h2) ∩ C≤lnr2

(r) = ∅) ≤ exp(−crd+1). (3.41)

Denoting by D the set of points of ∂Π↑(w) at height lnr2 and discretizing D, we obtain

P(∃(v2, h2) ∈ D : P ∩ Π↓
+(v2, h2) ∩ C≤lnr2

(r) = ∅) ≤ c1 exp(−c2rd+1).

Using Mecke’s formula we get

P
(

∃w ∈ P(λ) ∩ C≤lnr2
(r

4

)
: ξ

(∞)
1,0 (w, P(λ) ∩ C(r)) ̸= ξ

(∞)
1,0 (w, P(λ) ∩ C≤lnr2

(r))
)

≤ c1Vold
(

C≤lnr2
(r

4

))
exp(−c2rd+1) ≤ c1 exp(−c2rd+1).
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Figure 3.7 – Case m = 1 of Lemma 3.3.4.

This proves the base case for λ = ∞.

Proof of the induction step for λ = ∞. Now for fixed 2 ≤ m ≤ n we assume that the result holds
for any p < m and we show that it remains true for m. Let w ∈ C≤lnr2 ( r

2m+1

)
. We denote by Ew

the event
Ew := {ξ

(∞)
m,0 (w, P ∩ C(r)) ̸= ξ

(∞)
m,0 (w, P ∩ C≤lnr2

(r))}.

When on Ew, we also assume that ξ
(∞)
m,0 (w, P ∩ C≤lnr2(r)) = 1, i.e. ℓ(∞)(w, P ∩ C≤lnr2(r)) = m.

Indeed, the case ξ
(∞)
m,0 (w, P ∩C(r)) = 1 can be treated in a similar way, see what we did when dealing

with events E1 and E2 in the proof of Proposition 3.3.3. In particular, when ℓ(∞)(w, P∩C≤lnr2(r)) =
m, the depth ℓ(∞)(w, P ∩ C(r)) is larger than (m + 1) thanks to Lemma 3.2.6.

In other words, there exists a downward paraboloid Π↓(v1, h1) whose boundary contains w and
that only contains points on a layer of order at most (m − 1) for the peeling in C≤lnr2 (r) and at
least one point denoted by (v3, h3) such that

ℓ(∞)((v3, h3), P ∩ C(r)) ≥ m and ℓ(∞)((v3, h3), P ∩ C≤lnr2
(r)) ≤ m − 1. (3.42)

If h1 ≤ lnr2, then for (v′, h′) ∈ Π↓(v1, h1), we obtain by the same method as in (3.40) that

∥v′∥ ≤ 2
√

2h1 + r

2m+1 ≤ 2
√

2lnr2 + r

2m+1 ≤ r

2m
. (3.43)

We notice that the last inequality in (3.43) still holds when ln is replaced by 1
22n+5 , which means

that our current calibration takes into account the case λ < ∞ which is discussed at the end
of the proof. The estimate (3.43) shows that the paraboloid Π↓(v1, h1) stays in C≤lnr2 ( r

2m

)
.

Consequently the point (v3, h3) introduced above belongs to C≤lnr2 ( r
2m

)
and by (3.42), it satisfies

ξ
(∞)
p,0 ((v3, h3), P ∩ C≤lnr2(r)) ̸= ξ

(∞)
p,0 ((v3, h3), P ∩ C(r)) for p = ℓ(∞)((v3, h3), P ∩ C≤lnr2(r)) < m.

Using the induction hypothesis, this happens with probability smaller than c1 exp(−c2rd+1).
If h1 > lnr2 we proceed as in the case m = 1 by using the construction described in Figure 3.7.

Namely, we show that there exists half of a paraboloid whose apex is on ∂Π↑(w) at height lnr2
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and that only contains points on a layer of order at most (m − 1) for the peeling of P ∩ C≤lnr2(r).
Let us denote by A this half-paraboloid. Thanks to (3.43), the set A is included in C

(
r

2m

)
which

implies that
P
(

P ∩ A ∩ C≥lnr2/2
( r

2m

)
= ∅

)
≤ exp(−crd+1). (3.44)

If P ∩ A ∩ C≥lnr2/2 ( r
2m

)
̸= ∅, we choose (v4, h4) in that set and two cases arise.

If ℓ(∞)((v4, h4), P ∩ C(r)) = ℓ(∞)((v4, h4), P ∩ C≤lnr2(r)), then ℓ(∞)((v4, h4), P ∩ C(r)) ≤
(m − 1) and h4 ≥ lnr2/2 = cr2. Using Lemma 3.3.2, this happens with probability smaller than
c1 exp(−c2rd+1).

If ℓ(∞)((v4, h4), P ∩ C(r)) ̸= ℓ(∞)((v4, h4), P ∩ C≤lnr2(r)), we can use the induction hypoth-
esis and a union bound for p < m to prove that this happens with probability smaller than
c1 exp(−c2rd+1).

To sum up, we have shown that for any w ∈ C≤lnr2 ( r
2n

)
P(Ew) ≤ c1r(m−1)(d+1) exp(−c2rd+1).

Using Mecke’s formula, we finally obtain

P
(

∃w ∈ C≤lnr2
( r

2m+1

)
: ξ

(∞)
m,0,(w, P(λ) ∩ C(r)) ̸= ξ

(∞)
m,0,(w, P(λ) ∩ C≤lnr2

(r))
)

≤ c1rm(d+1) exp(−c2rd+1).

Case λ < ∞. We have to adapt the arguments where either the actual equation of a paraboloid
or a lower bound of the intensity measure of P is used, namely (3.40), (3.41), (3.43) and (3.44).
Thanks to (3.8), for λ large enough, the series of estimates leading to (3.40) can be replaced by

∥v′∥ ≤ . . . ≤ 4
√

2h1 + r

4 ≤ 4
√

2lnr2 + r

4 ≤ r. (3.45)

The adaptation of (3.43) is identical.
In order to show (3.41) for λ < ∞, we use (3.45) to show that [Π↓](λ)(v2, h2) is included

in C( r
2 ) for λ large enough. In particular, the set [Π↓](λ)(v2, h2) ∩ C≤lnr2(r) is contained in

C≤λ
2

d+1 /2( 1
2 λ

1
d+1 π) which is a domain where the intensity measure of P(λ) is bounded from be-

low. Consequently, (3.41) occurs for λ < ∞ as well. In the same way, the estimate (3.44) holds for
λ < ∞ as well because A ∩ C≥lnr2/2 ( r

2m

)
is included in C≤λ

2
d+1 /2( 1

2 λ
1

d+1 π).

3.3.3 Stabilization for k-faces
Henceforth, we fix n ≥ 1 and k ∈ {0, . . . , d − 1}. We aim at proving Proposition 3.3.6 which

states a stabilization result for the quantities ξ
(λ)
n,k introduced at (3.14). To do so, we start with a

intermediary lemma on the distribution tail of the height of the parabolic facets containing a fixed
point from the n-th layer.

Let us recall the definition of the set F (λ)
n,d−1(w, Y ) given on page 57. For any locally finite set

Y ⊂ Rd−1 × R+ and w = (v, h) ∈ Rd−1 × R+, we introduce the maximal height of the facets from
F (λ)

n,d−1(w, Y ), i.e. H
(λ)
n (w, Y ) = 0 if w ̸∈ ∂Φn(Y ) and otherwise,

H(λ)
n (w, Y ) = sup{h1 > 0 : ∃v1 ∈ Rd−1, F ∈ F (λ)

n,d−1(w, Y ) s.t. F ⊂ ∂[Π↓](λ)(v1, h1)}. (3.46)
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Lemma 3.3.5. For all n ≥ 1 there exist λ0, c1, c2 > 0 such that for all λ ∈ [λ0, +∞], h0 ∈ (0, λ
2

d+1 ),
t > 0 and 1 ≤ r < πλ

1
d+1 , we have

P(∃s ≥ r : H(λ)
n ((0, h0), P(λ) ∩ C(s)) ≥ t) ≤ c1 exp(−c2

√
t(r ∧

√
t)d) (3.47)

and
P(H(λ)

n ((0, h0), P(λ)) ≥ t) ≤ c1 exp(−c2t
d+1

2 ). (3.48)

Proof. We only prove (3.47) as the proof of (3.48) is almost identical.

Case λ = ∞. For (v1, h1) ∈ Rd−1 × R+, we introduce the events

E(v1,h1) = {∃s ≥ r, F ∈ Fn,d−1((0, h0), P ∩ C(s)), F ⊂ ∂Π↓(v1, h1)}

and
E = E(t) :=

⋃
(v1,h1)∈Π↑(0,h0),h1≥t

E(v1,h1).

It is enough to prove that
P(E) ≤ c1 exp(−c2

√
t(r ∧

√
t)d). (3.49)

In the same spirit as in the proof of Proposition 3.3.3, we consider two cases depending on the value
of h0. The left- (resp. right-) hand side of Figure 3.6 reflects the first case h0 ≥ t/2 (resp. h0 ≤ t/2).

Case h0 ≥ t/2. As in the proof of Lemma 3.3.2, we start by decomposing Π↓(0, h0) into 2d−1

deterministic subparts A1, . . . , A2d−1 such that

Vold(Ai ∩ C≥h0/2((r ∧
√

t)/2n)) = 1
2d−1 Vold(Π↓((0, h0)) ∩ C≥h0/2((r ∧

√
t)/2n))

≥ ct(r ∧
√

t)d−1. (3.50)

Let (v1, h1) ∈ Π↑(0, h0) such that h1 ≥ t and ∂Π↓(v1, h1) contains a facet of ∂Φn(P ∩ C(s))
going through (0, h0) for some s ≥ r. By Lemma 3.3.1, Π↓(v1, h1) contains half of Π↓(0, h0), which
implies that it contains a set Ai ∩ C≥h0/2((r ∧

√
t)/2n) for some i. Consequently,

P(E) = P
( ⋃

(v1,h1)∈Π↑(0,h0),h1>t

E(v1,h1)

)

≤ P
( ⋃

s≥r

2d−1⋃
i=1

{P ∩ Ai ∩ C≥h0/2((r ∧
√

t)/2n) ⊂ [Φn(P ∩ C(s))]c}
)

≤ P
( 2d−1⋃

i=1
{P ∩ Ai ∩ C≥h0/2((r ∧

√
t)/2n) ⊂ [Φn(P ∩ C(r))]c}

)
≤ 2d−1P(P ∩ A1 ∩ C≥h0/2((r ∧

√
t)/2n) ⊂ [Φn(P ∩ C(r))]c). (3.51)

where the inclusion Φn(P ∩ C(r)) ⊂ Φn(P ∩ C(s)) is due to Lemma 3.2.6. By (3.50), P does not
meet A1 ∩ C≥h0/2((r ∧

√
t)/2n) with probability smaller than exp(−ct(r ∧

√
t)d−1). Otherwise it
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contains a point (v3, h3) with h3 ≥ h0/2 ≥ t/4 and such that ℓ(∞)((v3, h3), P ∩ C(r)) ≤ (n − 1).
Using Lemma 3.3.2, we obtain that

P(P ∩ A1 ∩ C≥h0/2((r ∧
√

t)/2n) ⊂ Φc
n(Pλ ∩ C(r))) ≤ c1 exp(−c2t(r ∧

√
t)d−1),

which implies (3.49) thanks to (3.51) and the inequality t(r ∧
√

t)d−1 ≥
√

t(r ∧
√

t)d.

Case h0 ≤ t/2. Let (v1, h1) ∈ ∂Π↑(0, h0) such that h1 ≥ t and ∂Π↓(v1, h1) contains a facet of
∂Φn(P ∩ C(s)) going through (0, h0) for some s ≥ r. For u > 0, the height of the highest point
of intersection between Π↓(v1, h1) and C(u/2n+1) in the vertical plane containing (v1, h1) and the
origin is

h2 := h0 +
√

2(h1 − h0) u

2n+1 − u2

22n+3 . (3.52)

We take u =
√

2(h1 − h0) ∧ r and fit a cylinder C0 of radius u
2n+2 between height h2/2 and h2 in

C( u
2n ) ∩ Π↓(v1, h1), see the right-hand side of Figure 3.6 with r replaced by u. Either the point

process P does not meet the cylinder C0 which happens with probability exp(−ch2ud−1) or it
contains a point (v3, h3) with h3 ≥ h2/2 and such that

ℓ(∞)((v3, h3), P ∩ C(r)) ≤ ℓ(∞)((v3, h3), P ∩ C(s)) ≤ (n − 1).

Using Lemma 3.3.2, this happens with probability smaller than c1 exp
(
−c2h2(u ∧

√
h2)d−1). Con-

sequently, we get
P(E(v1,h1)) ≤ c1ud−1 exp

(
−c2h2(u ∧

√
h2)d−1

)
. (3.53)

It remains to make explicit the right-hand side of (3.53) in the two cases u =
√

2(h1 − h0) and
u = r.

When u =
√

2(h1 − h0) ≤ r, we deduce from (3.52) and the fact that h1 ≥ t that

h2 = h0 + h1 − h0

2n
− h1 − h0

22(n+1) ≥ c(h1 − h0) ≥ c′t. (3.54)

Combining (3.53) with (3.54), we obtain

P(E(v1,h1)) ≤ c1 exp(−c2(h1 − h0)
√

t
d−1

). (3.55)

When u = r ≤
√

2(h1 − h0), we obtain in the same way

P(E(v1,h1)) ≤ c1 exp(−c2(h1 − h0)rd). (3.56)

Discretizing and integrating the right-hand sides of (3.55) and (3.56) over the set {(v1, h1) ∈
Π↑(0, h0) : h1 ≥ t}, we deduce (3.49) when h0 ≤ t/2.

This completes the proof of (3.47) in the case λ = ∞.

Case λ < ∞. In the case h0 ≥ t/2, we need to replace Ai ∩ C≥h0/2((r ∧
√

t)/2n) with Ai ∩
C(h0/2,

3h0
4 )((r ∧

√
t)/2n) which is included in C≤ 3

4 λ
2

d+1 ( π
2 λ

1
d+1 ) so that we can lower bound by a

constant the density of the intensity measure of P(λ) when on that particular set. We adapt the
case h0 ≤ t/2 in the exact same way as in the proof of Proposition 3.3.3 by replacing the equality
(3.52) by an inequality up to a multiplicative constant and reducing the cylinder C0 so that it is
included in C(h2/2, 3

4 h2)( u
2n ), which makes it possible to lower bound by a constant the density of

the intensity measure of P(λ) on C0.
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Proposition 3.3.6. For any n ≥ 1 there exists λ0, c1, c2 > 0 such that for any h0 > 0, λ ∈ [λ0, +∞]
and 1 ≤ r < πλ

1
d+1 , we have

P
(

R
(λ)
n,k(0, h0) ≥ r

)
≤ c1 exp

(
−c2rd+1) .

Proof. Let us assume that R
(λ)
n,k(0, h0) > r.

First, we can also assume that R
(λ)
n,0(0, h0) < r since the complement occurs with probability

smaller than c1 exp
(
−c2rd+1) by Proposition 3.3.3. In particular we have ξ

(λ)
n,0((0, h0), P(λ)) =

ξ
(λ)
n,0((0, h0), P(λ) ∩ C(s)) for every s ≥ r. We can also assume that both are different from 0, or

equivalently that (0, h0) is on the n-th layer for both peelings because otherwise we would have
R

(λ)
n,k(0, h0) ≤ r.

Thanks to Lemma 3.3.5, we have min(Hn((0, h0), P(λ)), maxs≥r Hn((0, h0), P(λ) ∩ C(s))) >
r2/32 with probability smaller than c1 exp

(
−c2rd+1). Consequently, we can assume that for any

s ∈ [r, ∞], Hn((0, h0), P(λ) ∩ C(s)) ≤ r2/32.
Let

U = U(h0, r2/32) :=
⋃

(v1,h1)∈∂[Π↑](λ)(0,h0),h1≤r2/32

Π↓(v1, h1). (3.57)

When λ = ∞, a point (v, h) ∈ U verifies ∥v∥ ≤
√

2(r2/32 − h0) +
√

2r2/32 ≤ 2
√

2r2/32 ≤ r/2. By
(3.8), this implies that for λ large enough, a point (v, h) ∈ U satisfies ∥v∥ ≤ 3

4 r.

The set U is designed to include all points of P(λ) which lie on a common k-face of ∂Φn(P(λ) ∩
C(s)) with (0, h0) for every s ∈ [r, ∞]. We assert that

{R
(λ)
n,k((0, h0), P(λ)) ≥ r} ⊂ {∃w ∈ P(λ) ∩ U : R

(λ)
n,0(w, P(λ)) ≥ r/4}. (3.58)

Indeed, if every point w ∈ P(λ) ∩U verifies R
(λ)
n,0(w, P(λ)) ≤ r/4, then the status of these points with

respect to the n-th layer is the same for both P(λ) and P(λ) ∩ C(s), for any s ≥ r. Consequently,
the k-faces of the n-th layer containing (0, h0) are the same for the peeling of any P(λ) ∩ C(s),
s ≥ r, which implies that R

(λ)
n,k((0, h0), P(λ)) ≤ r. Using consecutively (3.58), Mecke’s formula and

the fact that the density of the intensity measure of P(λ) is upper bounded by 1, we have

P(R(λ)
n,k(0, h0)) ≥ r) ≤ E

 ∑
x∈U∩P(λ)

1
R

(λ)
n,0(x)≥r/4


≤
∫

U
P(R(λ)

n,0(x) ≥ r/4)dx

≤ Vold(U)c1 exp(−c2rd+1)dx.

≤ c1 exp(−c2rd+1).

This yields the result.

The final result of this section is a slight analogue of Proposition 3.3.6 for the stabilization
in height, i.e. we prove that with high probability the calculation of the score of (0, h0) inside
the cylinder C(r) does not depend on the points of the point process which are higher than r2
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up to a multiplicative constant. The statement of that result uses the following notation: for
w = (v, h) ∈ Wλ, r, h > 0, n ≥ 1 and k ∈ {0, . . . , d − 1}, we denote by ξ

(λ)
n,k,[r,h](w) the quantity

ξ
(λ)
n,k,[r,h](w, P(λ)) = ξ

(λ)
n,k(w, P(λ) ∩ C≤h

v (r)).

Let us also recall the notation ξ
(λ)
n,k,[r](w, P(λ)) introduced at (3.22).

Lemma 3.3.7. For all n ≥ 1 and there exists λ0, c > 0 such that for all h0 > 0, λ ∈ [λ0, +∞] and
1 ≤ r < πλ

1
d+1 , we have

P
(

ξ
(λ)
n,k,[r]((0, h0), P(λ)) ̸= ξ

(λ)
n,k,[r,lnr2]((0, h0), P(λ))

)
≤ c1 exp(−c2rd+1)

with ln = 1
22n+7 .

Proof. We denote by A the event {Hn((0, h0), P(λ) ∩ C(r)) > lnr2}. Using Lemma 3.3.5 with the
choice r for t and lnr2 for r, we get

P(A) ≤ c1 exp(−c2rd+1). (3.59)

On the event Ac, every paraboloid containing a facet going through (0, h0) of ∂Φn(P(λ) ∩ C(r))
has height smaller than lnr2. This implies that every point that shares a facet of ∂Φn(P(λ) ∩ C(r))
with (0, h0) is on the boundary of such a paraboloid and is consequently included in C≤lnr2 ( r

2n+1

)
by the same method as in (3.41). Using Lemma 3.3.4, we obtain that with probability larger
than 1 − c1 exp(−c2rd+1), any w ∈ C≤lnr2 ( r

2n+1

)
verifies ξ

(λ)
n,0,[r](w, P(λ)) = ξ

(λ)
n,0,[r,lnr2](w, P(λ)).

Thus we deduce that with probability larger than 1 − c1 exp(−c2rd+1), the k−faces containing w

of ∂Φn(P(λ) ∩ C(r)) coincide with those of ∂Φn(P(λ) ∩ C≤lnr2(r)). In other terms we have proved
that

P
(

{ξ
(λ)
n,k,[r]((0, h0), P(λ)) ̸= ξ

(λ)
n,k,[r,ln]((0, h0), P(λ))} ∩ Ac

)
≤ c1 exp(−c2rd+1). (3.60)

Combining (3.59) and (3.60), we obtain the result.

3.4 Lp bounds and pointwise convergences
In this section, we prove intermediary results on the functionals ξ

(λ)
n,k and their variations which

depend on the stabilization properties of Section 3.3 and pave the way to the proofs of Theorems
3.2.8 and 3.2.9. More precisely, Lemma 3.4.1 states some moment bounds, Lemma 3.4.2 and
Proposition 3.4.3 show in two steps the convergence of the expectation of ξ

(λ)
n,k to the expectation

of ξ
(∞)
n,k . We then deduce similar results for covariances of scores in Proposition 3.4.4 and Lemma

3.4.5.

Lemma 3.4.1. For any p ∈ [1, +∞), there exist constants λ0, c > 0 such that for any (v, h) ∈
Rd−1 × R+ , λ ∈ [λ0, ∞] and 1 ≤ r < πλ

1
d+1

E
[
ξ

(λ)
n,k((v, h), P(λ))p

]
≤ c1hpk exp(−c2h

d+1
2 ), (3.61)
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E
[
ξ

(λ)
n,k,[r]((v, h), P(λ))p

]
≤ crpk(d−1)+1(h ∨ r2)pk, (3.62)

E
[
ξ

(λ)
n,k,[r,lnr2]((v, h), P(λ))p

]
≤ crpk(d+1)+1. (3.63)

with ln = 1
22n+7 .

Proof. The method is almost identical to [26, Lemma 4.4]. For the sake of completeness and because
the variants at (3.62) and (3.63) are new in comparison to [26], we provide as an example the proof
of (3.62).

We assert that ξ
(λ)
n,k,[r]((v, h), P(λ)) d= ξ

(λ)
n,k,[r]((0, h), P(λ)) because of the rotation-invariance of

the initial model in the unit ball.
We introduce the variables H := H

(λ)
n ((0, h), P(λ) ∩ C(r))) as defined at (3.46) and R as the

smallest s > 0 such that C(s) contains
⋃

(v1,h1)∈P(λ)∩U(h,H) Cv1(R(λ)
n,k(v1, h1)) where U(·, ·) has been

introduced at (3.57). We assert that the proof of Proposition 3.3.6 implies that

P(R ≥ r) ≤ c1e−c2rd+1
. (3.64)

In particular, only the points in C≤H(R) can be part of a potential facet containing (0, h) on
∂Φ(λ)

n (P(λ)). This implies that

ξ
(λ)
n,k((0, h), P(λ)) ≤ 1

k + 1

(
N

k

)
where N = card(C≤H(R) ∩ P(λ)). Consequently, it is enough to show that there exist c > 0 such
that

E[Npk] ≤ crpk(d−1)+1(h ∨ r2)pk. (3.65)
We decompose the expectation in the following way:

E[Npk] =
⌈r⌉∑
i=1

∞∑
j=⌊h⌋+1

E[Npk1(i−1)≤R<i1(j−1)≤H<j ]

≤
⌈r⌉∑
i=1

∞∑
j=⌊h⌋+1

E[card(C≤j(i) ∩ P(λ))pk1(i−1)≤R<i1(j−1)≤H<j ]

≤
⌈r⌉∑
i=1

∞∑
j=⌊h⌋+1

E[card(C≤j(i) ∩ P(λ))3pk]1/3P(R ≥ i − 1)1/3P(H ≥ j − 1)1/3 (3.66)

where the last line is a consequence of Hölder’s inequality. For any i, j ≥ 0, we observe that
C≤j(i) has volume cid−1j and thanks to (3.5), the dP(λ)-measure of C≤j(i) is bounded by its
volume. Consequently, the variable card(P ∩ C≤j(i)) is stochastically dominated by a Poisson
variable Po(cid−1j). Combining this fact, the moment bound E[Po(λ)r] ≤ cλr for any r ≥ 1 and
(3.66), we obtain

E[Npk] ≤
⌈r⌉∑
i=1

∞∑
j=⌊h⌋+1

cipk(d−1)jpkP(R ≥ (i − 1))1/3P(H ≥ (j − 1))1/3.
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Let us assume that h ≤ r2. We can now use Lemma 3.3.5 and (3.64) to get

E[Npk] ≤
⌈r⌉∑
i=1

c1ipk(d−1)e−c2id+1

 ⌊r2⌋∑
j=⌊h⌋+1

jpke−c3j
d+1

2 +
∞∑

j=⌊r2⌋+1

jpke−c4
√

jrd


≤ c1rpk(d−1)+1r2pk

(
e−c2h

d+1
2 + e−c3rd+1

)
.

This shows (3.65) and consequently (3.62). We proceed in the same way when h ≥ r2.

The next lemma is a first step towards the convergence of the expectation of ξn,k stated in
Proposition 3.4.3. It relies on the application of the continuous mapping theorem to the intersection
of the point process P(λ) with the compact set C≤lnr2(r).

Lemma 3.4.2. There exists c > 0 such that for all h0 ≥ 0 and r ≥ 1 we have

lim
λ→+∞

|E[ξ(λ)
n,k,[r]((0, h0), P(λ))] − E[ξ(∞)

n,k,[r]((0, h0), P)]| ≤ c1rk(d−1)+1/2(h0 ∨ r2)ke−c2rd+1
.

Proof. For sake of simplicity, we use the following abbreviations:

ξ
(λ)
n,k,[r] := ξ

(λ)
n,k,[r]((0, h0), P(λ)) and ξ

(∞)
n,k,[r] := ξ

(∞)
n,k,[r]((0, h0), P).

Recalling ln = 1
22n+7 , we use similar notations ξ

(λ)
n,k,[r,lnr2] and ξ

(∞)
n,k,[r,lnr2] and obtain∣∣E[ξ(λ)

n,k,[r]] − E[ξ(∞)
n,k,[r]]

∣∣
≤
∣∣E[ξ(λ)

n,k,[r] − ξ
(λ)
n,k,[r,lnr2]]

∣∣+∣∣E[ξ(λ)
n,k,[r,lnr2]] − E[ξ(∞)

n,k,[r,lnr2]]
∣∣+∣∣E[ξ(∞)

n,k,[r,lnr2] − ξ
(∞)
n,k,[r]]

∣∣. (3.67)

We start by bounding the first term in the rhs of (3.67). Using the Cauchy-Schwarz inequality, we
get ∣∣E[ξ(λ)

n,k,[r] − ξ
(λ)
n,k,[r,lnr2]]

∣∣ =
∣∣E[(ξ(λ)

n,k,[r] − ξ
(λ)
n,k,[r,lnr2])1{ξ

(λ)
n,k,[r] ̸=ξ

(λ)
n,k,[r,lnr2]

}]
∣∣

≤ E[(ξ(λ)
n,k,[r] − ξ

(λ)
n,k,[r,lnr2])

2]1/2P(ξ(λ)
n,k,[r] ̸= ξ

(λ)
n,k,[r,lnr2])

1/2.

Combining Lemma 3.3.7 and Lemma 3.4.1, we obtain for λ large enough∣∣E[ξ(λ)
n,k,[r] − ξ

(λ)
n,k,[r,lnr2]]

∣∣≤ c1rk(d−1)+1/2(h0 ∨ r2)k exp(−c2rd+1). (3.68)

In the same way, we bound the third term in the rhs of (3.67) to get∣∣E[ξ(∞)
n,k,[r] − ξ

(∞)
n,k,[r,lnr2]]

∣∣≤ c1rk(d−1)+1/2(h0 ∨ r2)k exp(−c2rd+1). (3.69)

Let us now prove that
lim

λ→+∞
E[ξ(λ)

n,k,[r,lnr2]] = E[ξ(∞)
n,k,[r,lnr2]]. (3.70)

To do so, we first prove the convergence in distribution of ξ
(λ)
n,k,[r,lnr2] to ξ

(∞)
n,k,[r,lnr2]. We denote by

X (r, lnr2) the set of finite points sets in C≤lnr2(r) and we endow it with the discrete topology. A
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sequence of point sets (ηi)i of X (r, lnr2) converges to a point set η if ηi = η for all i ≥ i0 for some
i0 ∈ N.

We define for all w ∈ Wλ and η ∈ X (r, lnr2)

gn,λ(w, η) := ξ
(λ)
n,k,[r,lnr2](w, η).

Considering that P(λ) → P in distribution in C≤lnr2(r) by Lemma 3.2.1, we intend to show the
convergence in distribution gn,λ(w0, P(λ)) → gn,∞(w0, P) by using [17, Theorem 5.5, p. 34]. To do
so, we observe that since P is in general position with probability 1, it is enough to prove that for
any η ∈ X (r, l) in general position, gn,λ(w0, η) = gn,∞(w0, η) for all λ large enough.

Let η ∈ X (r, lnr2) be in general position. We explain here why for each point w1 of η, the
number of the layer containing w1 and the local structure of that layer around w1 are fixed for λ
large enough. We start by considering an extreme point w1 for the parabolic hull peeling of η. We
choose a (d − 1)-dimensional parabolic face containing w1 which is generated by the extreme points
w1, w2, . . . , wd and we also denote by Π↓(v, h) the downward paraboloid containing that face on its
boundary. For ε > 0 small enough, the intersection of Π↓(v, h + ε) with η is {w1, · · · , wd}. Since
the quasi-paraboloids converge to the real paraboloids as λ goes to infinity, for λ large enough the
quasi-paraboloid with w1, . . . , wd on its boundary is contained in Π↓(v, h + ε) and does not contain
any point of η in its interior. This means that for λ large enough, w1 is extreme and the facets
containing it are generated by the same points. Applying this to every extreme point, we deduce
that the first layer is stable for λ large enough. By induction on the number of the layer, we prove
similarly that the subsequent layers of the quasi-parabolic hull peeling of η are stable for λ large
enough. This means that gn,λ(w0, η) = gn,∞(w0, η) for all λ large enough and as a consequence
completes the proof of the convergence in distribution of ξ

(λ)
n,k,[r,lnr2](w0, P(λ)) to ξ

(∞)
n,k,[r,lnr2](w0, P).

This extends to (3.70) by [17, Theorem 5.4] since the considered sequence is bounded in Lp with
p > 1 thanks to Lemma 3.4.1.

Inserting the results (3.68), (3.69) and (3.70) into (3.67), we deduce Lemma 3.4.2.

We are now ready to state the required convergence in expectation in Proposition 3.4.3 below.

Proposition 3.4.3. For any n ≥ 1 and all h0 > 0 we have

lim
λ→+∞

E
[
ξ

(λ)
n,k((0, h0), P(λ))

]
= E

[
ξ

(∞)
n,k ((0, h0), P)

]
.

Proof. With the same notation as in the proof of Lemma 3.4.2, we get from the triangle inequality
that∣∣E[ξ(λ)

n,k] − E[ξ(∞)
n,k ]

∣∣ ≤
∣∣E[ξ(λ)

n,k] − E[ξ(λ)
n,k,[r]]

∣∣+
∣∣E[ξ(λ)

n,k,[r]] − E[ξ(∞)
n,k,[r]]

∣∣+
∣∣E[ξ(∞)

n,k,[r]] − E[ξ(∞)
n,k ]

∣∣. (3.71)

Using the same method as in the proof of (3.68), we obtain thanks to Proposition 3.3.6 and
Lemma 3.4.1 that for r large enough,

max(
∣∣E[ξ(λ)

n,k] − E[ξ(λ)
n,k,[r]]

∣∣, ∣∣E[ξ(∞)
n,k,[r]] − E[ξ(∞)

n,k ]
∣∣) ≤ rk(d−1)+ 1

2 +2ke−cr
d+1

2 . (3.72)

Inserting (3.72) and the result of Lemma 3.4.2 into (3.71), we obtain that for any ε > 0, there exists
r large enough such that limλ→∞

∣∣E[ξ(λ)
n,k] − E[ξ(∞)

n,k ]
∣∣ ≤ ε. This completes the proof of Proposition

3.4.3.

77



In view of the required variance estimates, we now aim at extending Proposition 3.4.3 when the
expectation of a score is replaced by the covariance of two scores ξ

(λ)
n,k((0, h0), P(λ)) and ξ

(λ)
n,k((v1, h1), P(λ))

at two points (0, h0) and (v1, h1) belonging to Wλ. To do so, we study the two-point correlation
function defined at (3.16).
Proposition 3.4.4. For all h0 ≥ 0 and (v1, h1) ∈ Rd−1 × R+ we have

lim
λ→∞

c
(λ)
n,k((0, h0), (v1, h1)) = c

(∞)
n,k ((0, h0), (v1, h1)).

Proof. For sake of simplicity, let us use the following reduced notation for λ ∈ [λ0, ∞]:

ξ(λ)(0) := ξ
(λ)
n,k

(
(0, h0), P(λ) ∪ {(v1, h1)}

)
, ξ(λ)(1) := ξ

(λ)
n,k ((v1, h1), P ∪ {(0, h0)}) . (3.73)

By Proposition 3.4.3, we get

lim
λ→∞

E
[
ξ

(λ)
n,k

(
(0, h0), P(λ)

)]
E
[
ξ

(λ)
n,k

(
(v1, h1), P(λ)

)]
= E

[
ξ

(∞)
n,k ((0, h0), P)

]
E
[
ξ

(∞)
n,k ((v1, h1), P)

]
so we only need to prove

lim
λ→∞

E
[
ξ(λ)(0)ξ(λ)(1)

]
= E

[
ξ(∞)(0)ξ(∞)(1)

]
. (3.74)

Let us fix ε > 0. We can show that for r large enough

lim
λ→∞

∣∣E [ξ(λ)(0)ξ(λ)(1)
]

− E[
[
ξ

(λ)
[r] (0)ξ(λ)

[r] (1)
] ∣∣ ≤ ε, (3.75)

lim
λ→∞

∣∣E [ξ(λ)
[r] (0)ξ(λ)

[r] (1)
]

− E[
[
ξ(λ)

[r,lnr2]
(0)ξ(λ)

[r,lnr2](1)
] ∣∣ ≤ ε, (3.76)

lim
λ→∞

∣∣E[
[
ξ(λ)

[r,lnr2]
(0)ξ(λ)

[r,lnr2](1)
]

− E[
[
ξ(∞)

[r,lnr2]
(0)ξ(∞)

[r,lnr2](1)
] ∣∣ = 0, (3.77)∣∣E [ξ(∞)

[r] (0)ξ(∞)
[r] (1)

]
− E[

[
ξ(∞)

[r,lnr2]
(0)ξ(∞)

[r,lnr2](1)
] ∣∣ ≤ ε, (3.78)∣∣E [ξ(∞)(0)ξ(∞)(1)

]
− E[

[
ξ

(∞)
[r] (0)ξ(∞)

[r] (1)
] ∣∣ ≤ ε (3.79)

where we have used the reduced notation for ξ
(λ)
n,k,[r] and ξ

(λ)
n,k,[r,lnr2] and their counterparts in the

limit model similar to the one introduced at (3.73). These five assertions imply (3.74) so it is
enough to show each of them. We claim that (3.75), (3.76), (3.78) and (3.79) are obtained by
similar methods. Consequently we omit the proofs of (3.76), (3.78) and (3.79) and concentrate on
getting (3.75). ∣∣E [ξ(λ)(0)ξ(λ)(1)

]
− E[

[
ξ

(λ)
[r] (0)ξ(λ)

[r] (1)
] ∣∣

≤
∣∣E [(ξ(λ)(0) − ξ

(λ)
[r] (0))ξ(λ)(1)

] ∣∣+
∣∣E [ξ(λ)

[r] (0)(ξ(λ)(1) − ξ
(λ)
[r] (1))

] ∣∣. (3.80)

We derive an upper bound for the first term in the rhs of (3.80), the second term being treated
identically. Using Hölder’s inequality, we obtain∣∣E [(ξ(λ)(0) − ξ

(λ)
[r] (0))ξ(λ)(1)

] ∣∣
=
∣∣E [(ξ(λ)(0) − ξ

(λ)
[r] (0))ξ(λ)(1)1{ξ(λ)(0) ̸=ξ

(λ)
[r] (0)}

] ∣∣
≤ E[|ξ(λ)(0) − ξ

(λ)
[r] (0)|3]1/3E[ξ(λ)(1)3]1/3P(ξ(λ)(0) ̸= ξ

(λ)
[r] (0))1/3.
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The estimate (3.75) is then a consequence of Proposition 3.3.6 and Lemma 3.4.1. The convergence
(3.77) is derived analogously to (3.70) by using [17, Theorem 5.4] and Lemma 3.4.1. This proves
Proposition 3.4.4.

Lemma 3.4.5 below asserts that the correlation function c
(λ)
n,k decays exponentially fast as a

function of the heights of the two points and of the distance between them. This means in particular
that the scores get closer to being independent as the distance between the points increases. The
proof of Lemma 3.4.5 relies on Proposition 3.3.6 and Lemma 3.4.1 and is identical to the proof of
[26, Lemma 4.8]. For that reason, it is omitted.
Lemma 3.4.5. For all n ≥ 1, there exist c1, . . . , c4 > 0 such that for any h > 0, (v1, h1) ∈
Rd−1 × R+, p ≥ 1 and λ ∈ [1, ∞] we have

|c(λ)
n,k((0, h0), (v1, h1))| ≤ c1hc2

0 hc3
1 exp

(
−c4

(
∥v1∥d+1 + h

d+1
2

0 + h
d+1

2
1

))
.

3.5 Proofs of the main results
In this section, Theorems 3.2.8–3.2.11 are proved. We recall that they include the statements

on the limiting expectations and variances of Theorems 3.1.1 and 3.1.2. We have chosen to omit
the proof of the central limit theorems as it is the exact replicate line by line of [24, pages 93–98]
when the convex hull is replaced by the n-th layer of the peeling.

3.5.1 Results on k-dimensional faces
Proof of Theorem 3.2.8.

Proof of the convergence of the normalized expectation. The first step consists in taking the expec-
tation in (3.13) and using the Mecke formula to get

E[Nn,k,λ] = λ

∫
Bd

E[ξn,k(x, Pλ)]dx.

Let us introduce ed = (0, . . . , 0, 1). By rotation-invariance of E[ξn,k(x, Pλ)], we obtain
E[ξn,k(x, Pλ)] = E[ξn,k(|x|ed, Pλ)].

Then we apply a change of coordinates in spherical coordinates to get

E[Nn,k,λ] = λ

∫
Sd−1

∫ 1

0
E[ξn,k(red, Pλ)]rd−1drdσd−1(u), (3.81)

where σd−1 is the unnormalized area measure on Sd−1.
Recall that for every h > 0, ξ

(λ)
n,k((0, h), P(λ)) = ξn,k

(
[T (λ)]−1((0, h)), Pλ

)
, see (3.15). Conse-

quently, an application of the change of variables h = λ
2

d+1 (1 − r) in (3.81) leads to

E[Nn,k,λ] = λ

∫
Sd−1

∫ λ
2

d+1

0
E[ξ(λ)

n,k((0, h), P(λ))]λ− 2
d+1 (1 − λ− 2

d+1 h)d−1dhdσd−1(u)

= λ
d−1
d+1

∫
Sd−1

∫ λ
2

d+1

0
E[ξ(λ)

n,k((0, h), P(λ))](1 − λ− 2
d+1 h)d−1dhdσd−1(u). (3.82)
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We now wish to use the dominated convergence theorem. Lemma 3.4.3 implies that for any h > 0

E[ξ(λ)
n,k((0, h), P(λ))](1 − λ− 2

d+1 h)d−11
0≤h≤λ

2
d+1

−−−−−→
λ→+∞

E[ξ(∞)
n,k ((0, h), P)].

Thanks to Lemma 3.4.1, the integrand in the rhs of (3.82) is bounded from above by an integrable
function of h, i.e.

E[ξ(λ)
n,k((0, h), P(λ))](1 − λ− 2

d+1 h)d−11
0≤h≤λ

2
d+1

≤ c1 exp(−c2h
d+1

2 ).

Applying the dominated convergence theorem in (3.82) shows that

lim
λ→∞

λ− d−1
d+1 E[Nn,k,λ] = Vold−1(Sd−1)

∫ ∞

0
E[ξ(∞)

n,k ((0, h), P)]dh < ∞. (3.83)

Proof of the positivity of the limiting expectation. Noticing that

E[ξ(∞)
n,k ((0, h), P)] ≥ 1

k + 1P
(

(0, h0) ∈ ∂Φ(∞)
n (P)

)
,

we deduce that the positivity of the rhs of (3.83) is a consequence of Lemma 3.5.1 below.

Lemma 3.5.1. For any (0, h0) with h0 > 0 and any n ≥ 1 :

P
(

(0, h0) ∈ ∂Φ(∞)
n (P)

)
̸= 0.

Proof. Let us write w0 := (0, h0) and put T0 := {w0}. Our first step is purely deterministic and
consists in constructing for n = 2 an idealized point configuration which puts w0 on the second
layer. We then extend the procedure for every n > 2 to get a point set which puts w0 on the n-th
layer. In a second step, we introduce randomness and show that this property is stable with respect
to a small random perturbation of the configuration.

For each i ∈ {1, . . . , d − 1}, we write w(i,+) = (
√

2h0
2 ei,

h0
8 ) and w(i,−) = (−

√
2h0
2 ei,

h0
8 ). A direct

calculation shows that for any i, Π↓(w(i,+)) ⊂ Π↓(0, h0), Π↓(w(i,−)) ⊂ Π↓(w0) and Π↓(w(i,s1)) ∩
Π↓(w(j,s2)) = ∅ for any i, j ∈ {1, . . . , d − 1}, s1, s2 ∈ {+, −} such that (i, s1) ̸= (j, s2).

Let us consider the deterministic point set T1 := {w0} ∪ {w(i,s) : i ∈ {1, . . . , d − 1}, s ∈ {+, −}}
and describe the peeling of T1. The points w(i,s) are on the first layer because each Π↓(w(i,s)) is
empty. Any downward paraboloid whose boundary goes through w0 contains at least half of Π↓(w0)
by Lemma 3.3.1 so it contains at least one of the w(i,s). This implies in turn that w0 is not on the
first layer. Furthermore Π↓(w0) only contains points on the first layer so w0 is on the second layer.

We are going to iterate this construction by induction to obtain for every n > 2 an extended
deterministic point configuration Tn−1 = {wa : a ∈ ∪n−1

l=0 ({1, . . . , d − 1} × {+, −})l}, with the
convention (·)0 = {0}, which guarantees that w0 is on the n-th layer of the peeling of Tn−1 and that
for any 1 ≤ l ≤ (n − 1), Tl \ Tl−1 is included on its (n − l)-th layer. To do so, let us assume that we
have constructed Tn−2 with that property. Let us fix a ∈ ({1, . . . , d − 1} × {+, −})n−2 and write
wa = (v, h). We define wa,(i,+) := (v + 1

2

√
2 h0

8n−2 ei,
h

8n−1 ) and wa,(i,−) := (v − 1
2

√
2 h0

8n−2 ei,
h

8n−1 ).
The construction is just a rescaling of the situation described for the case n = 2 with wa playing

the role of w0 and wa,(i,s) that of w(i,s). Consequently, we get the same properties, i.e. for any (i, s)

Π↓(wa,(i,s)) ⊂ Π↓(wa) (3.84)
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Figure 3.8 – The tree of Lemma 3.5.1 for n = 3 and d = 2, 3.

and for (i, s1) ̸= (j, s2)
Π↓(wa,(i,s1)) ∩ Π↓(wa,(j,s2)) = ∅. (3.85)

If we put an edge from wa to each wa,(i,s) then we endow Tn−1 with a structure of tree with root
w0, see Figure 3.8 in the case n = 3 in dimension 2 and 3. We also take the convention T−1 = ∅.

The construction has been done such that for every l ∈ {0, . . . , (n−1)}, each point wa ∈ (Tl\Tl−1)
is on the (n − l)-th layer of the peeling of Tn−1.

We prove now by downward induction the stability of the property above when the idealized
point set is subject to a small random perturbation. Let us fix ε > 0 and consider the event

An = ∩wa∈Tn−1\{w0}{#(P ∩ B(wa, ε)) = 1} ∩ {P ∩ (Π↓(w0) \ ∪wa∈Tn−1B(wa, ε)) = ∅}.

On the event An, for every wa ∈ Tn−1 we denote by w̃a the unique point belonging to P ∩ B(wa, ε)
and call it a perturbed point from the tree (with same depth as the original point wa). We then
assert and prove below that the stability occurs, i.e. that the perturbed point w̃a is on the (n− l)-th
layer of the peeling of P ∪ {w0} as soon as the original point wa is at depth l in Tn−1.

We make the following preliminary observation: the calibrations in the construction of the
tree Tn−1 allow us to strengthen (3.84) and (3.85) by claiming that for ε small enough, the ε-
neighborhood of Π↓(wa) is included in Π↓(wb) for any wa ∈ Tn−1 with parent wb and that the
ε-neighborhoods of the downward parabolas associated with two distinct perturbed points at same
depth do not meet.

We start with our base case, which is depth (n − 1). For any a ∈ ({1, . . . , d − 1} × {+, −})n−1,
thanks to the observation above, the perturbed point w̃a satisfies that Π↓(w̃a) does not intersect P
when ε is small enough. This shows that all perturbed points at depth (n − 1) are extreme.

Now we assume that for some l ∈ {1, . . . , n − 1}, each perturbed point at depth k is on the
(n − k)-th layer for every l ≤ k ≤ (n − 1). We consider a perturbed point w̃a at depth (l − 1),
which means a ∈ ({1, . . . , d − 1} × {+, −})(l−1). Because of the preliminary observation, for ε small
enough, the downward paraboloid Π↓(w̃a) only contains points that can be written w̃a,b for some
b ∈ ({1, . . . , d − 1} × {+, −})p and 1 ≤ p ≤ (n − l). Thus w̃a is at most on the (n − l + 1)-th layer.
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Moreover, noticing that any downward paraboloid whose boundary goes through w̃a contains at
least one of the w̃a,(i,s), which are on the (n−l)-th layer. This shows that w̃a is on the (n−l+1)−st
layer. A finite induction on l thus gives us that on the event An, w0 is on the n-th layer.

It remains to show that P(An) > 0. Using the Poisson property and (3.84)-(3.85), we get

P(An) = P(P ∩ (Π↓(w0) \ ∪wa∈Tn−1B(wa, ε)) = ∅)
∏

wa ∈ Tn−1 \ {w0}

P(#(P ∩ B(wa, ε)) = 1) > 0.

Proof of Theorem 3.2.9.

Proof of the convergence of the normalized variance. In the same way as for the expectation
asymptotics, the first idea consists in using Mecke’s formula. Combining it with Fubini’s theorem
and writing ξ′

n,k,λ(x, Pλ) for the same functional as ξn,k,λ(x, Pλ) save for the fact that x is not
added to the process, we get

Var(Nn,k,λ)

= E
[( ∑

x∈Pλ

ξ′
n,k,λ(x, Pλ)

)2]
− E

[ ∑
x∈Pλ

ξ′
n,k,λ(x, Pλ)

]2

= E
[ ∑

x∈Pλ

ξ′
n,k,λ(x, Pλ)2

]
+ E

[ ∑
x,y∈Pλ

x ̸=y

ξ′
n,k,λ(x, Pλ)ξ′

n,k,λ(y, Pλ)
]

− E
[ ∑

x∈Pλ

ξ′
n,k,λ(x, Pλ)

]2

= I1(λ) + I2(λ)

where
I1(λ) := λ

∫
Bd

E
[
ξn,k,λ(x, Pλ)2]dx and I2(λ) := λ2

∫∫
(Bd)2

cn,k,λ(x, y)dxdy.

with

cn,k,λ(x, y) = E [ξn,k,λ(x, Pλ ∪ {y})ξn,k,λ(y, Pλ ∪ {x})] − E [ξn,k,λ(x, Pλ)]E [ξn,k,λ(y, Pλ)] .

We treat I1(λ) as in the proof of Theorem 3.2.8 to get

lim
λ→+∞

λ− d−1
d+1 I1(λ) = I1

where we recall the definition of I1 at (3.17). We now prove the convergence of λ− d−1
d+1 I2(λ). We

follow line by line the method used in [24, calculation of II on pages 92-93], i.e. rewriting in spherical
coordinates, then use of a change of variables provided by the scaling transformation T (λ), to obtain
that

I2(λ) = λ
d−1
d+1

∫
Sd−1

∫ λ
2

d+1

0

∫
T

(λ)
u (Sd−1)

f (λ)(u0, h0, v1, h1)dv1dh1dh0dσd−1(u0)

where

f (λ)(u0, h0, v1, h1) := (1 − λ− 2
d+1 h0)d−1

sind−2
(

λ− 1
d+1 |v1|

)
|λ− 1

d+1 v1|d−2
(1 − λ− 2

d+1 h1)d−1c
(λ)
n,k((0, h0), (v1, h1)),
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with c
(λ)
n,k defined at (3.16).

It remains to apply the dominated convergence theorem. Using Lemma 3.4.5, we obtain

|f (λ)(u0, h0, v1, h1)| ≤ c1hc2
0 hc3

1 exp
(

−c4

(
∥v1∥d+1 + h

d+1
2

0 + h
d+1

2
1

))
which is integrable on Sd−1 × R+ × Rd−1 × R+. We deduce from Proposition 3.4.4 that

lim
λ→∞

f (λ)(u0, h0, v1, h1) = c
(∞)
n,k ((0, h0), (v1, h1)).

This implies that
lim

λ→∞
λ− d−1

d+1 I2(λ) = I2,

where I2 has been defined at (3.18).

Proof of the positivity of the limiting variance. This proof is essentially adapted from [28, Sec-
tion 4.5]. The main difference is that we make sure that our points are on the n-th layer instead of
being extremal.

Similarly to what is done in [24, Lemma 7.6], we can use the same arguments as in the proof of
Theorem 3.2.9 to show that

lim
λ→∞

λ− d−1
d+1 Var[Nn,k,λ] = lim

λ→∞
λ− d−1

d+1 Var[Ñn,k,λ] (3.86)

where we write Ñn,k,λ :=
∑

w∈P∩Wλ
ξ

(∞)
n,k (w, P).

Our strategy to prove that the limit in the rhs of (3.86) is positive is the following: we start
by discretizing Wλ and construct in each parallelepiped of that discretization two different config-
urations, said to be good, which have a positive probability to occur and which give birth to two
different values for the local number of k-faces of the n-th layer. Then we check that this counting
is not affected by the external configuration and finally, we find a lower bound for the total variance
conditional on the intersection of the point process with the outside of the parallelepipeds which
contain one of the two good configurations.

Step 1. Construction of a good configuration in a thin parallelepiped. First, we consider a cube
Q ⊂ Rd−1 and we take ρ ∈ (0, ∞) smaller than the diameter of Q. We take δ > 0 sufficiently small
such that the paraboloids Π↓(w) are pairwise disjoint for w belonging to the grid (ρZd−1 ∩Q)×{δ}.
For each w ∈ (ρZd−1 ∩Q)×{δ}, we make the same tree construction as in the proof of Lemma 3.5.1
inside Π↓(w). We obtain a forest that we call Tn,ρ. In particular, the construction ensures that all
points w ∈ (ρZd−1 ∩Q)×{δ} belong to the n-th layer of Tn,ρ. Let us write Fn,k(Q, ρ, δ) for the num-
ber of k-faces of the n-th layer of (P \ (Q× [0, ∞)))∪Tn,ρ going through any w ∈ (ρZd−1 ∩Q)×{δ}.
If we ignore the points of P \ (Q× [0, ∞)), as the diameter of Q gets large compared to ρ, boundary
effects become negligible and we get

Fn,k(Q, ρ/2, δ) ∼ 2d−1Fn,k(Q, ρ, δ).

Then we consider ε > 0 such that
δ + ε ≤ ρ2

8 . (3.87)
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Figure 3.9 – A part of the dual grid for non-perturbed points in dimensions 2 and 3.

This guarantees in particular that for any w = (v, δ+ε) and w′ = (v′, δ+ε) with |v−v′| ≥ ρ, we have
Π↓(w) ∩ Π↓(w′) = ∅. As in the proof of the positivity of the expectation, we consider a random
perturbation of the points of Tn,ρ by at most ε for the Euclidean distance, i.e. we assume that
P ∩ B(w, ε) consists of one point for each w ∈ Tn,ρ. We notice that the obtained perturbed points
have a height at most equal to δ + ε and are distant by at most 2ρ when ε < ρ/2. Consequently,
for ε small enough, the maximal height of (Q × [0, ∞)) \

⋃
w′∈P∩∪w∈Tn,ρ B(w,ε) Π↑(w′) is smaller

than α where α is the maximal height of a point in (Q × [0, ∞)) \
⋃

w∈(Q∩2ρZd−1)×{δ+ε} Π↑(w). In
particular, we claim that there is a constant cα > 1 depending only on dimension d such that

α ≤ cαρ2. (3.88)

Indeed, up to boundary effects, the set of apices of down paraboloids which contain 2d−1 points of
Q ∩ 2ρZd−1 × {δ + ε} is located on a translated dual grid at height ((d − 1) ρ2

2 + δ + ε), see Figure
3.9.

Consequently, let us consider the event

An,ρ = ∩w∈Tn,ρ{#(P ∩ B(w, ε)) = 1} ∩ {(P ∩ [(Q × [0, α]) \ ∪w∈Tn,ρB(w, ε)] = ∅}.

Let us write Fn,k(Q, ρ, δ, ε) for the total number of k-faces of the n-th layer of P going through
at least one point in P ∩ ∪w∈(ρZd−1∩Q)×{δ}B(w, ε). Conditional on An,ρ and when the points of
P \ (Q × [0, α]) are ignored, for ε small enough, this quantity is in fact equal to Fn,k(Q, ρ, δ) and
we keep the relation

Fn,k(Q, ρ/2, δ, ε) ∼ 2d−1Fn,k(Q, ρ, δ, ε). (3.89)

Step 2. Influence of the points outside of the thin parallelepiped Q × [0, α]. For any closed set
C ⊂ Rd−1, we define for any γ > 0 C(γ) := {x ∈ C : d(x, ∂C) > γ}. We claim that on An,ρ, for any
w ∈ P ∩ (Q(ρ) × [0, α]), the status of w does not depend on points outside Q × [0, α], i.e.

ℓ(∞)(w, P ∩ (Q × [0, α])) = ℓ(∞)(w, P).
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This is due to the fact that the condition (3.87) guarantees that the down paraboloids with apices
at points from P ∩ (Q(ρ) × [0, α]) are included in Q × [0, α]. Moreover, for c =

√
2cα + 2, we

assert that the facial structure around any point inside P ∩ (Q(cρ) × [0, α]) which belongs to the
n-th layer of the peeling of P does not depend on points outside Q × [0, α]. Indeed, let us consider
w ∈ P ∩(Q(cρ) × [0, α]). We choose (d−1) points from P ∩(Q(

√
2cαρ) × [0, α]) which share a common

facet of the n-th layer of the peeling of P ∩ (Q × [0, α]). The down paraboloid which contains this
facet has an apex in Q(

√
2cαρ) × [0, α]. Consequently, thanks to (3.88), that down paraboloid is

included in Q × [0, α], which implies that the facet containing w and the (d − 1) other points is a
facet of the n-th layer of the peeling of P.

Step 3. Discretization of Wλ and lower bound for the variance. We are now ready to discretize Wλ

and isolate the good parallelepipeds from the discretization, according to the two previous steps.
We choose δ and ε which satisfy (3.87) with the choice ρ = 1. We take a large positive number

M and we partition
[
− λ

1
d+1

2 , λ
1

d+1

2

]d−1
into L :=

[
λ

1
d+1

M

]d−1
cubes Q1, . . . , QL. We consider the

cubes Qi satisfying the following properties:
(a) For each z ∈ (Zd−1 ∩ (Qi \Q

(c)
i ))×{δ}, P ∩B(z, ε) is a singleton and is put on the n-th layer

using the tree construction associated with Tn,1 and the perturbation of each point by at most ε as
in Step 1.

(b) One of these two conditions holds:

1. For each z ∈ (Zd−1 ∩ Q
(c)
i ) × {δ}, P ∩ B(z, ε) is a singleton and this point is put on the n-th

layer as in property (a).

2. For each z ∈ ( 1
2Z

d−1 ∩ Q
(c)
i ) × {δ}, P ∩ B(z, ε) is a singleton and this point is put on the n-th

layer as before.
(c) Aside from the points described above, P has no point in Qi × [0, α].

After a possible relabeling, let I := {1, . . . K} be the indices of cubes partitioning
[
− λ

1
d+1

2 , λ
1

d+1

2

]d−1

that verify properties (a) to (c). Since any cube has a positive probability to verify these properties,
we have

E[K] ≥ cλ
d−1
d+1 . (3.90)

Let Fλ be the σ-algebra generated by I, the positions of points in Wλ \ (
⋃

i∈I Q
(c)
i × [0, α]) and the

scores ξ
(∞)
n,k (x, P) at these points. For each i ∈ I we claim that

Var
[ ∑

x∈P∩(Qi×[0,α])

ξ
(∞)
n,k (x, P)

∣∣∣Fλ

]
= Var

[ ∑
x∈P∩(Q

(3)
i

×[0,α])

ξ
(∞)
n,k (x, P)

∣∣∣Fλ

]
≥ c0. (3.91)

Indeed, either condition (b1) or condition (b2) occurs in Q
(c)
i × [0, α], each with positive probability.

Moreover, we observe that
∑

x∈P∩(Qi×[0,α]) ξ
(∞)
n,k (x, P) is larger when (b2) is satisfied. This is due

to the scaling result (3.89) which implies that the contribution of points inside Q
(c)
i × [0, α] provides

a quantity almost 2d−1 times larger when (b2) is satisfied.
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Since only scores in ∪i∈IQi × [0, α] have any variability conditional on Fλ we get

Var[Ñn,k,λ] = Var[E[Ñn,k,λ|Fλ] + E[Var[Ñn,k,λ|Fλ]]
≥ E

[
Var

[
Ñn,k,λ|Fλ

]]
= E

[
Var
[∑

i∈I

∑
x∈P∩(Q

(3)
i

×[0,α])

ξ
(∞)
n,k (x, P)

∣∣∣Fλ

]]
.

Then the sums of scores in Q
(c)
i × [0, α] and Q

(c)
j × [0, α] for i ̸= j are independent conditional on

Fλ since the scores in Q
(c)
i × [0, α] only depend on points in Qi × [0, α]. Thus we can write

Var[Ñn,k,λ] ≥ E
[∑

i∈I

Var
[ ∑

x∈P∩(Qi×[0,α])

ξ
(∞)
n,k (x, P)

∣∣∣Fλ

]]
≥ c0E[K]

≥ cλ
d−1
d+1 .

where the second inequality comes from (3.91) applied to each Qi and the last inequality comes
from (3.90). Thanks to (3.86), this proves the positivity of the limiting variance.

3.5.2 Results on intrinsic volumes
We define the score and two-point correlation function in the case of intrinsic volumes by fol-

lowing closely the method of [24, pp. 54–55], which relies on Kubota’s formula, see [71, equation
(6.11)]. For convenience, let us write convn,λ := convn(Pλ) and let us denote by κm the volume of
the m-dimensional unit ball. By Kubota’s formula applied to convn,λ, we get

Vk(convn,λ) = d!κd

k!κk(d − k)!κd−k

∫
G(d,k)

Volk(convn,λ|L)dνk(L) (3.92)

where νk is the normalized Haar measure on the k-th Grassmanian G(d, k) of Rd and convn,λ|L is
the orthogonal projection of convn,λ onto L. For every x ∈ Rd \ {0} we define ϑL(x, convn,λ) :=
1{x ̸∈convn,λ|L} and the projection avoidance functionals

ϑk(x, convn,λ) :=
∫

G(lin[x],k)
ϑL(x, convn,λ)dν

lin[x]
k (L)

where lin[x] is the linear space spanned by x, G(lin[x], k) is the set of all k-dimensional linear sub-
spaces of Rd containing lin[x] and ν

lin[x]
k is the normalized Haar measure on G(lin[x], k). Combining

(3.92) and Fubini’s theorem we can rewrite the defect k-th intrinsic volume of convn,λ as

Vn,k,λ =
(

d−1
k−1
)

κd−k

∫
Rd

ϑk(x, convn,λ) dx

|x|d−k
.

The functional Vn,k,λ can then be written as a sum of scores, i.e.

Vn,k,λ =
∑

x∈Pλ

ξV,n,k(x, Pλ)
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with

ξV,n,k(x, Pλ) :=
{ (d−1

k−1)
dκd−k

∫
conen(x,Pλ) ϑk(y, convn(Pλ ∪ {x})) dy

|y|d−k if x ∈ ∂convn,λ

0 otherwise

where conen(x, Pλ) := {ry : r > 0 and y ∈ Fn,d−1(x, Pλ)}. We denote by

ξ
(λ)
V,n,k(x, P(λ)) := λξV,k,λ([T (λ)]−1(x), Pλ) (3.93)

their rescaled counterparts, see [24, page 84] for an explanation on the factor λ. Let us explain how
to define the limit versions of the rescaled scores. For a point w = (v, h) ∈ Rd−1 × R+ we write w↕

for the set {v}×R+. We denote by A(w↕, k) the set of all k-dimensional affine spaces in Rd−1 ×R+
containing w↕. For any k and any affine space L ∈ A(w↕, k) we define the orthogonal parabolic
volume

Π⊥(w, L) := (w ⊕ L⊥) ∩ Π↓(w).

We put ϑ
(∞)
n,L (w) = 1 if Π⊥(w, L) ∩ Φn(P) = ∅ and 0 otherwise. Then we define

ϑ
(∞)
n,k (w) :=

∫
A(w↕,k)

ϑ
(∞)
n,L (w)dµ

w↕
k (L)

where µ
w↕
k is the normalized Haar measure on A(w↕, k). We are finally able to define the limit score

ξ
(∞)
V,n,k(w, P) :=

(
d−1
k−1
)

dκd−k

∫
v-cone(F(∞)

n,d−1(w,P))
ϑ

(∞)
n,k (w′)dw′ (3.94)

where v-cone(F (∞)
n,d−1(w, P)) := {(v′, h′), ∃h′′ : (v′, h′′) ∈ F (∞)

n,d−1(w)}.
For any λ ∈ (0, ∞], the corresponding two-point correlation function is then defined by the

identity

c
(λ)
V,n,k((0, h0), (v1, h1))

:= E[ξ(λ)
V,n,k((0, h0), P(λ) ∪ {(v1, h1)})ξ(λ)

V,n,k((v1, h1), P(λ) ∪ {(0, h0)})]

− E[ξ(λ)
V,n,k((0, h0), P(λ))]E[ξ(λ)

V n,k((v1, h1), P(λ))]. (3.95)

Proof of Theorems 3.2.10 and 3.2.11.

Proof of the convergence of the normalized expectation and variance. The proofs of Theorems 3.2.10
and 3.2.11 go along the same lines as the proofs of Theorems 3.2.8 and 3.2.9 : after application of
Mecke’s formula and a suitable change of variables in the integral, we need to apply Lebesgue’s dom-
inated convergence theorem which requires the convergence of E[ξ(λ)

V,n,k(w, P(λ))],E[(ξ(λ)
V,n,k(w, P))2]

and c
(λ)
V,n,k(w, w′) in the same spirit as in Propositions 3.4.3 and 3.4.4 as well as moment bounds

similar to those in Lemma 3.4.1. All these results rely on stabilization results identical to the tail
estimates in Propositions 3.3.6 and 3.3.7.

As an example, we explain how to adapt Proposition 3.3.6, Lemma 3.4.1 and Proposition 3.4.3
to get the convergence of the expectation of ξ

(λ)
V,n,k.
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We claim that as soon as H
(λ)
n ((0, h0), P(λ)) ≤ r2

32 , the calculation of ξ
(λ)
V,n,k only depends on the

set U defined at (3.57). Consequently, the radius of stabilization for ξ
(λ)
V,n,k((0, h), P(λ)) is the same

as the one considered in Proposition 3.3.6.
To prove the moment bounds for ξ

(λ)
V,n,k, we notice that ξ

(λ)
V,n,k(0, h) is smaller than the volume

of C≤H(R) where R is the stabilization radius of ξ
(λ)
V,n,k((0, h), P(λ)) and H = H

(λ)
n ((0, h), P(λ)).

Using Lemmas 3.3.5 and 3.3.6 as in the proof of Lemma 3.4.1, we deduce that for some c1, c2 > 0,

E
[
(ξ(λ)

V,n,k((0, h), P(λ)))p
]

≤ c1hp exp(−c2h
d+1

2 ).

These two ingredients allow us to prove the convergence of E[ξ(λ)
V,n,k(w, P(λ))] with the help of

the continuous mapping theorem as in Lemmas 3.4.2 and 3.4.3.

Proof of the positivity of the limiting constants for the intrinsic volumes. The defect intrinsic vol-
umes are increasing with respect to set inclusion. As the limiting constant is positive for conv1(P(λ))
[1, Theorem 3], it remains true for convn(Pλ).

It remains to prove that the limiting constant for the variance is positive. The strategy is the
same as the one that we used in the case of the k-faces. Because of the renormalization by λ in the
definition of ξ

(λ)
V,n,k, see (3.93) , the equality (3.86) in the case of the volume scores becomes

lim
λ→∞

λ
d+3
d+1 Var[Vn,k,λ] = lim

λ→∞
λ− d−1

d+1 Var[Ṽn,k,λ],

where Ṽn,k,λ :=
∑

w∈P∩Wλ
ξ

(∞)
V,n,k(w, P). The paragraph right after (3.86) details the rest of our

strategy. We repeat word for word the first two steps of the proof of the positivity of the limiting
variance on page 83, save for all the statements regarding Fn,k. In the sequel we use the notations
of the aforementioned proof and go directly to Step 3, i.e. the choice of the good configurations.

We discretize Wλ by decomposing it into parallelepipeds and isolate the good parallelepipeds
from the discretization as we have done for the k-faces. We choose δ and ε which satisfy (3.87) with

the choice ρ = 1. We take a large positive number M and we partition
[
− λ

1
d+1

2 , λ
1

d+1

2

]d−1
into

L :=
[

λ
1

d+1

M

]d−1
cubes Q1, . . . , QL. We consider the cubes Qi satisfying the following properties,

note that the main difference is the content of conditions b)1) and b)2):
(a) For each z ∈ (Zd−1 ∩ (Qi \Q

(c)
i ))×{δ}, P ∩B(z, ε) is a singleton and is put on the n-th layer

using the tree construction associated with Tn,1 and the perturbation of each point by at most ε as
in Step 1.

(b) One of these two conditions holds:

1. For each z ∈ (Zd−1 ∩ Q
(c)
i ) × {δ}, P ∩ B(z, ε) is a singleton and this point is put on the n-th

layer as in property (a).

2. For each z ∈ (Zd−1 ∩ Q
(c)
i ) × {δ/2}, P ∩ B(z, ε) is a singleton and this point is put on the

n-th layer as before.
(c) Aside from the points described above, P has no point in Qi × [0, α].
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After a possible relabeling, let I := {1, . . . K} be the indices of cubes partitioning
[
− λ

1
d+1

2 , λ
1

d+1

2

]d−1

that verify properties (a) to (c) and it remains true that

E[K] ≥ cλ
d−1
d+1 . (3.96)

Let Fλ be the σ-algebra generated by I, the positions of points in Wλ \ (
⋃

i∈I Q
(c)
i × [0, α]) and the

scores ξ
(∞)
V,n,k(x, P) at these points. For each i ∈ I we claim that

Var
[ ∑

x∈P∩(Qi×[0,α])

ξ
(∞)
V,n,k(x, P)

∣∣∣Fλ

]
= Var

[ ∑
x∈P∩(Q

(3)
i

×[0,α])

ξ
(∞)
V,n,k(x, P)

∣∣∣Fλ

]
≥ c0. (3.97)

Again, either condition (b1) or condition (b2) occurs in Q
(c)
i × [0, α], each with positive proba-

bility. To ensure that the remaining part of the proof for the k-faces works here as well, it remains
to prove that

∑
x∈P∩(Qi×[0,α]) ξ

(∞)
V,n,k(x, P) is larger when (b1) is satisfied. We do it when k = d,

i.e. in the case of the volume, as it contains all the ingredients needed to prove it for any intrinsic
volume but with slightly less technicality that would only obfuscate the ideas.

If each point z were deterministic in (Zd−1 ∩ Q
(c)
i ) × {δ} or (Zd−1 ∩ Q

(c)
i ) × {δ/2} then the n-th

layer in case (b2) would be a copy of the n-th layer in case (b1) at a lower height. The difference
of volume between the two cases (b1) and (b2) would thus be a constant times the difference of
height, i.e. cδ. In the general case when the points are random, since we can choose ε > 0 as small
as we want, we can make the difference of volume as close as needed to this deterministic situation.
Thus we can make sure that there exists a constant c > 0 such that

∑
x∈P∩(Qi×[0,α]) ξ

(∞)
n,k (x, P) in

situation (b2) is smaller than c times
∑

x∈P∩(Qi×[0,α]) ξ
(∞)
n,k (x, P) in situation (b1). Thus we have

proved (3.97).
The end of the proof follows along the same lines as in the case of the k-faces.

3.6 Concluding remarks
Let us conclude with a list of possible extensions of our results and related open problems.
— Other intensity measures. In [26], the convex hull of a Poisson point process with a Gaussian

intensity measure is studied. While the intensity of the process and therefore the rescaling
are different, the techniques that are used are very similar so these results should extend
to the n-th layer as we did in this paper for the uniform measure in the unit ball. We also
expect that our results extend to a stationary Poisson point process in any smooth convex
body as in [25] where the case of the first layer is treated. The n-th layer should have the
same behaviour as the first one in this case as well. However, [25] uses a sandwiching result
stating that with high probability the first layer lies between two floating bodies, see [61].
Such a result has not been proved for the n-th layer and would be interesting on its own.
The same kind of problem arises in [27] about the convex hull of the peeling of a uniform
point set in a polytope. Again, an argument on the sandwiching of the first layer is needed,
see [12]. An extension to the n-th layer inside a polytope will be the subject of a future
work.
Finally, in [9] asymptotic results on the expected number of vertices of the convex hull of an
i.i.d. sample of an arbitrary non atomic probability distribution on Rd are derived from an
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approximation of the convex hull with floating bodies. We may hope that an approximation
of the same kind should be possible for the n-th layer.

— Invariance principles. Let us consider the processes defined as the integrated versions of the
defect support function and radius support function of each of the first layers. It is proved
in [24, Theorem 8.3] that in the case of the first layer, such processes when properly rescaled
and centered converge to a Brownian sheet process. We expect to get analogous functional
central limit theorems for subsequent layers as we think that the arguments, for both the
convergence of the finite-dimensional distributions and the tightness, should translate well
to the case of the n-th layer. This would certainly be more challenging to do so when the
number of the layer depends on λ, see below.

— Depoissonization. We left aside the case where we have a fixed number of i.i.d. random
points uniformly distributed in the unit ball, i.e. a binomial point process instead of a
Poisson point process. We expect a result of depoissonization in the spirit of [25, Theorem
1.2] and [28, Theorem 1.1] to occur.

— Optimal Berry-Esseen bounds. Recently, a method to derive central limit theorems for
stabilizing functionals has been derived in [52]. The case of the number of k-faces of a
convex hull of Poisson point processes in a smooth convex body is given as an application
with an improved rate of convergence, i.e. O

(
λ− d−1

2(d+1)

)
instead of O

(
λ− d−1

2(d+1) (log λ)3d+1
)

as in Theorem 3.1.1. We conjecture that the same rate of convergence should hold for the
n-th layer but extending the method from [52, Theorem 3.5] seems somehow challenging.

— Monotonicity. A monotonicity problem arises naturally from Theorem 3.1.1. Denoting by
Cn,k,d the limit obtained for the expectation in Theorem 3.1.1, we might wonder how the
constants Cn,k,d evolve with n. For k = 0, we expect that the sequence (Cn,0,d)n decreases
with n. This is what our simulations suggest. In general, monotonicity problems in random
polytopes are difficult, some insightful results on the monotonicity of the number of k-faces
of the convex hull when the number of points increases can be found in [37], [15] and [18].

— Other regimes. Until now we have only considered a fixed layer number n that does not
depend λ which means that we have only studied the first layers. It would be interesting
to study different regimes, where n would vary with λ. Thanks to [33] and [22] we know
that the expected number of layers is equivalent to λ

2
d+1 up to a constant. Thus a natural

regime to study would be the case where n = cλ
2

d+1 . Calder and Smart conjecture in [22]
that the mean number of points in this regime is still equivalent to λ

d−1
d+1 up to an explicit

constant. They provide in particular a heuristic argument and simulations that we were able
to reproduce.
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Chapter 4

Limit theory for the first layers in
a simple polytope

This chapter contains the current state of an ongoing work with Pierre Calka, where we study
the first layers of the convex hull peeling of a homogeneous Poisson point process in a simple
polytope as its intensity goes to infinity. We obtain a limit for the expectation and the variance of
the number of k-faces of the n-th layer for any fixed n that does not vary with λ.

We draw our inspiration from the methods of [27] and [12]. The originality of our contribution
lies notably in Sections 4.2 and 4.4. In the former, we generalize the sandwiching result from [12]
to all of the first layers, i.e. we show that the first n-layers can be sandwiched in a thin region
delimited by two floating bodies. In the latter, we prove a stabilization result that requires new
arguments, of the same flavor as those used in Chapter 3 in the case of the unit ball.

We expect that our techniques would provide additional results such as a central limit theorem,
analogous asymptotics for the defect volume and the positivity of the underlying constants. This
should take place in a future version.

4.1 Introduction
Random polytopes constructed as convex hulls of a random point set have attracted attention

for sixty years since the seminal work due to Rényi and Sulanke [64, 65]. For a general overview,
we refer to the classical surveys [6, 69, 63, 48]. The basic question is: given n random points which
are independent and uniformly distributed in some fixed convex body K in Rd, d ≥ 2, what can be
said about the convex hull of these points? Even easier to deal with is the Poissonized counterpart
of that question, when the random input is a Poisson point process with intensity measure equal
to λ times the Lebesgue measure in K. With a few notable exceptions [81, 41] including a very
recent one [50], most of the existing work tackles asymptotic issues, including the behavior for large
n or large λ of functionals of the random convex hull which are either combinatorial, namely the
number of k-dimensional faces, or geometric, namely the volume and intrinsic volumes. Rényi and
Sulanke’s results in dimension two have revealed a fundamental dichotomy, depending on whether
the convex body K has a smooth boundary with a C2 regularity or is a polytope itself. In the first
case, for any d ≥ 2, the expectations of the number of extreme points and subsequently of any
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number of k-dimensional faces are proved to grow polynomially fast, with a rate proportional to
n

d−1
d+1 or λ

d−1
d+1 [2, 74, 62]. In the second case, the obtained growth rate is logarithmic [7, 62]. More

precisely, for 0 ≤ k ≤ (d − 1), let us denote by fk(·) the number of k-dimensional faces (or k-faces
in short) of a polytope and by conv(·) the convex hull of a point set. When K is a convex polytope
and Pλ is a Poisson point process with intensity measure λ times the Lebesgue measure in K, a
Poissonized version of a result due to Reitzner [62, Theorem] says that

lim
λ→∞

log−(d−1)(λ)E(fk(conv(Pλ))) = cdT (K) (4.1)

where cd is an explicit positive constant depending only on dimension d and T (K) is the number
of towers of K, a tower being an increasing chain F0 ⊂ F1 . . . ⊂ Fd−1 of k-faces Fk of K. A similar
asymptotic estimate has been obtained for the variance of fk(conv(Pλ)) when the convex polytope
K is assumed to be simple, in which case the number T (K) is proportional to the number of vertices
of K [27, Theorem 1.3]. In other words, when K is a simple polytope, we get

lim
λ→∞

log−(d−1)(λ)Var(fk(conv(Pλ))) = c′
df0(K) (4.2)

where c′
d is a positive constant depending only on dimension d.

For a general polytope K, Bárány and Reitzner have obtained lower and upper bounds for the
variance which match with the growth rate logd−1(λ) up to multiplicative constants as well as a
central limit theorem satisfied by fk(conv(Pλ)), see [12, 11].

In this work, we concentrate on the case when K is a d-dimensional simple polytope and we
investigate the so-called convex hull peeling of a Poisson input Pλ in K.

The procedure of convex hull peeling consists in constructing a decreasing sequence convn(Pλ),
n ≥ 1, of convex hulls as follows: we initialize the process by taking conv1(Pλ) := conv(Pλ). We then
remove the set of extreme points ∂conv1(Pλ) ∩ Pλ and define conv2(Pλ) := conv(Pλ \ ∂conv1(Pλ)).
We extend recursively the process so that for every n ≥ 1,

convn(Pλ) = conv(Pλ \ (∪n−1
i=1 ∂convi(Pλ))). (4.3)

We call n-th layer the boundary ∂convn(Pλ) and for any x ∈ K, we denote by ℓPλ
(x) the label of

the layer which contains x in the peeling of the point set Pλ ∪ {x}.
To the best of our knowledge, the literature on the theoretical study of random convex hull

peeling remains sparse, as emphasized in [63, Section 2.2.7]. Introduced by Barnett in [13] in 1976,
the procedure of peeling finds its roots in spatial statistics, in particular it is used for defining a
notion of depth inside multivariate data [47, 66]. We draw attention to two particular references
which investigate the asymptotics of the depth related to the peeling. In [33], Dalal shows that
the total number of layers, which differs from maxx∈K ℓPλ

(x) by at most 1, is upper and lower
bounded in expectation by λ

2
d+1 up to a multiplicative constant. Actually, his statement is given

for a binomial input, i.e. with deterministic cardinality, but it can be Poissonized straightforwardly.
In any case, the result is remarkable as it does not depend on the nature of the convex body K,
which means that it includes both cases of a polytope and of a smooth convex body. In fact, Dalal
does not even assume that the underlying mother body is convex.

More recently, in a breakthrough paper [22], Calder and Smart have strengthened Dalal’s result
by deriving a limit expectation and a law of large numbers for the total number of layers when
the input is a Poisson point process in a convex body K, such that its intensity measure has a
continuous density f . Above all, they produce a functional version of the convergence by showing
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that the rescaled convex height function, equal to λ− 2
d+1 (ℓPλ

(x) + 1) according to their convention
therein, converges uniformly and almost surely to a limit function which is proved to be the viscosity
solution of an explicit non-linear partial differential equation, see [22, Theorem 1.2]. Naturally, their
renormalization involves layers of the peeling which have a label proportional to λ

2
d+1 . In particular,

let us fix n(λ, t) = ⌊tλ
2

d+1 ⌋ and denote by Nn(λ,t),0,λ the number of Poisson points lying on the
n(λ, t)-th layer of the peeling. Calder and Smart then conjecture [22, display (1.18)] with a short
heuristic argument that when λ → ∞, almost surely

λ− d−1
d+1 Nn(λ,t),0,λ −→ 1

α

∫
{αh=t}

f
d−1
d+1 κ

1
d+1 dS (4.4)

where α is a positive constant depending only on dimension d, αh is the limit function of λ− 2
d+1 ℓPλ

(x),
κ is the Gaussian curvature of the level set {αh = t} and dS is the Hausdorff measure of that level
set.

Again, they believe that (4.4) should not depend on the nature of K, i.e. whether K is a
polytope or is smooth. This would suggest in particular a polynomial growth for the number of
vertices of the n(λ, t)-th layer, i.e. asymptotically equal to λ

d−1
d+1 up to a multiplicative constant.

This is especially noticeable in view of (4.1) which claims that when K is a polytope, the first
layer for a uniform input contains in mean a logarithmic number of Poisson points. Incidentally,
Dalal’s result on the growth rate for the total number of layers confirms that the number Nn,0,λ of
Poisson points on the n-th layer could not be logarithmic for all n as there are, in mean and up to
a multiplicative constant, at most λ

2
d+1 layers and a total of λ Poisson points in K.

Inspired by Calder and Smart’s conjecture (4.4) and by its patent discrepancy with the case
of the first layer when K is a polytope, we devote this paper to the study of the combinatorial
functionals, i.e. the number of k-faces for 0 ≤ k ≤ (d − 1), of the consecutive layers of the convex
hull peeling of a Poisson point process Pλ in a simple polytope K. We focus on the first layers of
the peeling, i.e. with a label independent of λ. The regime that we investigate is different from
the regime which is covered by Calder and Smart’s study and conjecture (4.4) but in our opinion,
this choice is meaningful for two reasons. First, when applying the peeling procedure to outlier
detection in a point set, we expect the outliers to appear in the first layers rather than in the
last ones. Secondly, we anticipate the first layers to be located near the boundary of K so that
the methods developed for deriving (4.1) and (4.2) in the case of the first layer could extend to
subsequent layers.

For a fixed d-dimensional simple polytope K and a Poisson point process Pλ in K with intensity
measure equal to λ times the Lebesgue measure in K, we denote by Nn,k,λ the number of Poisson
points on the n-th layer convn(Pλ), i.e. Nn,k,λ = f0(convn(Pλ)). Our main result below provides
expectation and variance asymptotics for Nn,k,λ when λ → ∞.

Theorem 4.1.1. For any n ≥ 1 and k ∈ {0, . . . , d − 1} there exist constants Cn,k,d, C ′
n,k,d ∈ [0, ∞)

which only depend on n, k and d such that

lim
λ→∞

log(λ)−(d−1)E[Nn,k,λ] = Cn,k,df0(K) and lim
λ→∞

log(λ)−(d−1)Var[Nn,k,λ] = C ′
n,k,df0(K).

Theorem 4.1.1 shows that the growth rate for both the expectation and variance of the number
of k-faces of the n-th layer does not depend on n up to a multiplicative constant, i.e. that for any
n ≥ 1, the n-th layer behaves like the first one. In view of (4.4), this suggests in particular that
we should expect a phase transition when n gets close to λ

2
d+1 . Only, the actual evolution of Nn,k,λ
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as a function of n which would depend on λ is unfortunately not covered by our methods. In any
case, the transition from a logarithmic regime to a polynomial regime remains a pivotal question
that would deserve further attention in the future.

Moreover, Theorem 4.1.1 is intended as an obvious companion to [23, Theorem 1.1]. Indeed, in
[23], we investigate the first layers of the convex hull peeling of a Poisson input in the d-dimensional
unit ball and show that, in the same way, the expectation and variance of the number of k-faces
of the n-th layer behave asymptotically like the first layer and have a growth rate proportional to
λ

d−1
d+1 .

In fact, the connection with [23] is even more visible when we address the strategy of proof.
Indeed, the main results in [23] rely on the use of a global scaling transformation in the unit
ball which was introduced in the context of the first layer [24]. This transformation sends the
consecutive layers of the convex hull peeling to the layers of a different peeling with a so-called
parabolic convexity. In particular, only the layers with label independent of λ are visible in this
new picture and this explains a posteriori the choice for this particular regime. In the case of
Theorem 4.1.1, we take our inspiration from [27] which contains in particular the proof of (4.2)
and we show that near each vertex of K, we can construct a scaling transformation which sends
the consecutive layers of the initial convex hull peeling to layers of a new peeling. The role played
by the paraboloids in [23] is now played by so-called cone-like grains. Again, the rescaling makes
visible the first layers with label independent of λ and only them.

The reason why the scaling transformation is needed is the following: in both [23] and the
present paper, we can show properties of stabilization for the rescaled process. In other words,
the status of one point, meaning the number of the layer containing that particular point, should
only depend on the intersection of the Poisson point process with a vicinity of that point. This
guarantees in turn mixing properties which imply, thanks to Mecke’s formula for Poisson point
processes, the calculation of the limit expectation and variance of the number of k-faces in the
neighborhood of a vertex of K.

Still, the analysis of the peeling in the neighborhood of each vertex of K is not enough for
deriving Theorem 4.1.1, namely global asymptotics for the number of k-faces of each layer. We
need to show that on the one hand the contribution of the flat parts, i.e. the regions far from the
vertices of K, is negligible and on the other hand that the contributions of all the neighborhoods
of the vertices of K can be added. In the case of the variance, this means that these contributions
must decorrelate asymptotically. Both of these issues are treated with the same method as in [27]
which is in turn inspired by geometric techniques developed in [12]. One of the key ingredients
in [12] is a so-called sandwiching result, which states that with high probability, the boundary of
the convex hull of Pλ lies between two so-called floating bodies related to K. The shape of such
a sandwich is very thin along the facets of K and it is wider in the neighborhood of the vertices.
As such, it plays the role of a deterministic approximation for the location of the boundary of the
random convex hull of Pλ. Subsequently, it is partitioned into smaller regions with the help of an
economic cap covering and this paves the way for the construction of a dependency graph. This, in
turn, induces both the decorrelation of the contributions of the neighborhoods of the vertices and
the negligibility of the contribution of the flat parts. Our goal in this paper consists in adapting
the technique to the first layers of the peeling, starting with the sandwiching property.

In comparison with the previous works on the convex hull of a Poisson input in a polytope
[12, 27] and on the peeling in the unit ball [23], the most challenging and novel parts in the proof
of Theorem 4.1.1 are the following.

— The proof of the stabilization result after rescaling, see notably Proposition 4.4.4, differs
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significantly from its counterpart [23, Proposition 3.6] in the case of the parabolic peeling
for two reasons: first, the geometry of the cone-like grains which play the role held by the
paraboloids in [23] prevents us from making explicit analytical calculations. This induces
a specific study of the shape of a cone-like grain, see Lemma 4.3.8 and a careful use of a
spherical cone included in a cone-like grain. Secondly, the scaling tranformation sends the
initial Poisson point process Pλ to a Poisson point process in the whole space Rd−1 × R
which has a limit density equal to

√
dedh. In comparison, the limit Poisson point process in

[23] is homogeneous with intensity 1 in the product space Rd−1 ×R+. This new exponential
density induces several adaptations in the proofs of the main results in Section 4.4.

— The extension of the sandwiching result to the layers of the convex hull peeling requires new
ideas: we study the peeling construction in each subset given by the economic cap covering
of the sandwich, then use a general estimate for the probability of having points in convex
position combined with the monotonicity of the layer numbers of the peeling.

— The proof in Section 4.5 for the negligibility of the flat parts and decorrelation of the parts in
the neighborhoods of the vertices of K contains a specific twist with respect to its counterpart
in [27, Section 3]. Indeed, the technique in [27] relies on the knowledge of an actual upper
bound for the variance of the number of k-faces of the first layer provided by [11]. This falls
down in the case of the subsequent layers of the convex hull peeling. Our proof then requires
a careful study of each term appearing in our decomposition without any prior prediction
on the growth rate of either the expectation or the variance.

The paper is structured as follows. In Section 4.2, we introduce a few geometric objects including
the floating bodies and show the required sandwiching property for the first layers of the convex hull
peeling. This represents our starting point for the proof of Theorem 4.1.1. Section 4.3 is devoted
to the introduction of a scaling transformation in the neighborhood of a vertex of K, which is the
same as in [27], and to the description of its effect on the layers of the convex hull peeling. We show
in Section 4.4 the required stabilization properties for the functionals of interest in the rescaled
picture. This implies the asymptotics for the expectation and variance of the number of k-faces in
the neighborhood of a vertex of K given in Proposition 4.4.9. Section 4.5 deals with the negligibility
of the contribution of the remaining parts of the sandwich and the asymptotic decorrelation of the
contributions of all the vertices of K. We then prove Proposition 4.4.9 and Theorem 4.1.1 in Section
4.6. The final Section 4.7 includes a list of selected comments and prospects suggested by our work.

Throughout the paper, unless noted otherwise, c, c′, c1, c2 . . . denote positive constants which
only depend on dimension d and possibly n and k and whose value may change at each occurrence.

4.2 Floating bodies, Macbeath regions and sandwiching
Floating bodies and Macbeath regions are classical objects from convex geometry that have

proved to play a significant role in the study of random polytopes [10, 12]. This section aims
at introducing them and using them to prove a probabilistic result of asymptotic nature, which
goes as follows: with high probability, the first layers of the convex hull peeling are located in a
small vicinity of the boundary of K which is precisely described as the region between two well-
calibrated deterministic floating bodies. This extends a similar result due to Bárány and Reitzner
in the context of the convex hull [12, Section 5] and which is called by them sandwiching property
in a welcome figurative way. That property is indeed crucial for the study of the second-order
asymptotics of the convex hull inside a polytope [12, 27]. Unsurprisingly, we show in the rest of the
paper that this is also the case for the subsequent layers of the peeling.
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4.2.1 Floating bodies and Macbeath regions
In this subsection, we recall the definitions of floating bodies and Macbeath regions and state

the classical economic cap covering due to Bárány and Larman [10] and Bárány [1].
Floating bodies are convex bodies included in K which provide notably a deterministic approx-

imation of the consecutive convex hulls of the random input in K. As in [12] and [27], we define
v : K → R as

v(z) := min{Vold(K ∩ H) : H is a half-space of Rd and z ∈ H},

where Vold is the d-dimensional Lebesgue measure. For t ∈ [0, ∞) we call floating body of K with
parameter t the set

K(v ≥ t) := {z ∈ K : v(z) ≥ t}
and define similarly the sets K(v ≤ t) and K(v = t).

When K is locally a cube around one of its vertices, it is possible to make explicit the equation
of K(v = t) and show that its shape is pseudo hyperbolic. We recall without proof the following
result.

Lemma 4.2.1 ([27], Lemma 7.1). There exists ∆d ∈ [1, ∞) depending only on d such that when
K contains [0, ∆d] and is contained in some multiple of that cube, then for any t ∈ (0, ∞) :

K(v = t) ∩ [0,
1
2 ]d = {(z1, . . . , zd) ∈ [0,

1
2 ]d :

d∏
i=1

zi = d!
dd

t}

Bárány and Larman were the first to show a connection between floating bodies and random
polytopes, namely that the mean defect volume of the random polytope generated as the convex
hull of n i.i.d. uniform points in any convex body is well approximated up to a multiplicative
constant by the volume of the floating body with parameter 1

n [10, Theorem 1]. Such a property
relies on the construction of a specific deterministic covering of the set K(v ≤ t) which is called the
economic cap covering and which has been introduced in [10] and [1]. Subsequently, the economic
cap covering has been instrumental in Bárány and Reitzner’s proof of the sandwiching property of
the first layer of the peeling [12] and will remain so for proving the analogue for the next layers.
Its statement, given in Theorem 4.2.2 below, relies on the notion of Macbeath regions defined as
follows: the Macbeath region, or M-region for short, with center z and factor λ > 0 is the set
M(z, λ) = MK(z, λ) := z + λ[(K − z) ∩ (z − K)].

Let s0 := (2d)−2d. For any s ∈ [0, s0], we choose a maximal set of points z1(s), . . . , zm(s)(s)
on K(v = s) having pairwise disjoint M-regions M(zi,

1
2 ). We call such a system saturated. We

assert that it exists for each s although it is not necessarily unique. For any z in the interior
of K, we denote by C(z) the minimal cap of z, i.e. the intersection of K with a half-space H
containing z which has minimal volume equal to v(z). The hyperplane bounding H is at some
distance t > 0 from the support hyperplane in same direction u ∈ Sd−1 and we denote by Cγ(z) the
intersection of K with the translate of H by −(γ − 1)tu. We then write K ′

i(s) := M(zi,
1
2 ) ∩ C(zi)

and Ki(s) := C6(zi) for 1 ≤ i ≤ m(s) and state the economic cap covering result as follows.

Theorem 4.2.2 ([10], Theorem 6). Assume that Vold(K) = 1. For all s ∈ [0, s0], we have :
1. ∪m(s)

i=1 K ′
i(s) ⊂ K(v ≤ s) ⊂ ∪m(s)

i=1 Ki(s),
2. s ≤ Vold(Ki(s)) ≤ 6ds for all i = 1, . . . , m(s),
3. (6d)−ds ≤ Vold(K ′

i(s)) ≤ 2−ds for all i = 1, . . . , m(s).
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4.2.2 Sandwiching
In this section, we aim at proving Theorem 4.2.3 below, i.e. constructing two floating bodies

with small parameters such that the first n layers of the peeling are located between those floating
bodies with high probability. This result extends Bárány and Reitzner’s work [12, Claims 5.1 and
5.2] on the convex hull, i.e. the first layer, and for that reason, we keep their original expression of
sandwiching result.

Following their notation, we write

s := 1
λ(log λ)4d2+d−1 , T := α

log log(λ)
λ

and T ∗ = d6dT (4.5)

where α = 16 · 2−d · (6d)2d(4d2 + d − 1). We make the observation here that the definitions of s, T
and T ∗ are the same as in [12, Section 5] but the constant α is larger. The reason why α has been
recalibrated for our purpose is visible in the proof of Lemma 4.2.5.

We introduce the sandwich set

A(s, T ∗, K) := K(v ≥ s) \ K(v ≥ T ∗)

and the sandwiching event, for fixed n ≥ 1,

Ãλ := {∪n
l=1∂convl(Pλ) ⊂ A(s, T ∗, K)}. (4.6)

Theorem 4.2.3 below shows that the event Ãλ above occurs with high probability.

Theorem 4.2.3. Assume that Vold(K) = 1. There exists a positive constant c > 0 such that for
all λ large enough,

P(Ãλ) ≥ 1 − c log−4d2
(λ).

This result will prove to be of utmost importance further on. First, it is instrumental when
studying the convex hull peeling near a vertex of K: indeed, in Section 4.3, the neighborhood of
a vertex is transformed after rescaling into a product space in which the convex peeling becomes
a peeling of another sort. Proposition 4.3.2 therein is proved with the help of Theorem 4.2.3 and
shows that the faces of the first layers of the initial convex peeling are sent to the faces of the new
peeling. Later on, Theorem 4.2.3 is again essential all the way through Section 4.5 when proving
Proposition 4.5.15 which says in particular that the contribution of the Poisson points far from
a vertex of K is negligible in the asymptotic estimate of both the expectation and the variance
of the variables Nn,k,λ. Intuitively, this is due to the fact that the sandwich between the two
floating bodies is asymptotically much thinner in the region far away from the vertices of K and
consequently contains less Poisson points in that particular region.

The proof of Theorem 4.2.3 relies first on the use of Theorem 4.2.2 which guarantees the existence
of sets Ki and K ′

i, 1 ≤ i ≤ m(T ) for the coverage of K(v ≤ T ) and then on the essential fact that
with high probability, the peeling of the Poisson points in each set K ′

i gives birth to at least n
layers, see Lemma 4.2.5 below.

A prerequisite to the proof of Lemma 4.2.5 is a general estimate on the probability denoted
by p(n, L) that n i.i.d. points which are uniformly distributed in a fixed convex body L in Rd

are in convex position, i.e. belong to the boundary of their common convex hull. That particular
question is a classical extension to any finite point set and any dimension of the famous Sylvester’s
four-point problem which asks for the probability that 4 random points in the plane are the vertices
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of a convex quadrilateral. In dimension 2, the precise asymptotic behavior of the probability p(n, L)
has been obtained by Bárány [4], see also [46] for further discussion. In particular, he shows that
for any planar convex body L, when n → +∞,

log(p(n, L)) = −2n log n + n log(e2A3(L)/(4Vol2(L))) + o(n), (4.7)

where A(L) means the maximal affine perimeter of any convex body included in L. The case of
higher dimension is considered in [4] and for any d ≥ 3, an expansion similar to (4.7) is conjectured,
see display (3.1) therein. To the best of our knowledge, the existence of such a result is still open.
Fortunately, this is not required for our purpose. We state below a weaker estimate which has been
obtained by Bárány in 2001.

Lemma 4.2.4 ([5], Theorem). There exist two positive constants c1 < c2 and n0 ≥ 1 such that for
any convex body L in Rd and n ≥ n0,

cn
1 n− 2

d−1 n ≤ p(n, L) ≤ cn
2 n− 2

d−1 n. (4.8)

As emphasized above, Lemma 4.2.4 is the key ingredient for proving Lemma 4.2.5 below which
investigates the peeling in each set K ′

i from the economic cap covering applied to the convex body
K and the parameter T . For any 1 ≤ i ≤ m(T ), we denote by Li,λ the number of layers in the
peeling of Pλ ∩ K ′

i, i.e.
Li,λ := max

x∈Pλ∩K′
i

ℓPλ∩K′
i
(x). (4.9)

Lemma 4.2.5. Let K ′
1, . . . , K ′

m(T ) be the m(T ) sets provided by the economic cap covering applied
to K with the parameter T given at (4.5). For every n ≥ 1, there exists c > 0 such that

P(∃i ∈ {1, . . . , m(T )} : Li,λ ≤ n) ≤ c log−4d2
(λ).

Proof. Let us introduce mi,λ := E[card(Pλ ∩ K ′
i)] for 1 ≤ i ≤ m(T ). Thanks to part 3 of Theorem

4.2.2 and (4.5), we obtain

(6d)−dα log log(λ) ≤ mi,λ ≤ 2−dα log log(λ). (4.10)

Consequently, we get for every 1 ≤ i ≤ m(T )

P(Li,λ ≤ n) ≤T1 + T2 (4.11)

where
T1 := P

(
|card(Pλ ∩ K ′

i) − mi,λ| ≥ 1
2(6d)−dα log log(λ)

)
and

T2 := P (Li,λ ≤ n, c1 log log(λ) ≤ card(Pλ ∩ K ′
i) ≤ c2 log log(λ)) ,

with c1 = 1
2 (6d)−dα and c2 =

( 1
2 (6d)−d + 2−d

)
α.

Using the fact that card(Pλ ∩ K ′
i) is Poisson distributed with mean mi,λ, we observe that the

term T1 can be estimated through a classical concentration inequality for the Poisson distribution,
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see e.g. [20, Section 2.2]. Indeed, using that any Poisson variable Pois(µ) with mean µ satisfies for
every x > 0

P(|Pois(µ) − µ| ≥ x) ≤ 2 exp
(

− x2

2(µ + x)

)
,

combining it with (4.10) and recalling the value of α, we obtain that

T1 ≤ 2 log(λ)−(4d2+d−1). (4.12)

We now estimate T2. By the law of total probability,

T2 ≤
⌈c2 log log(λ)⌉∑

j=⌊c1 log log(λ)⌋

P
(
Li,λ ≤ n | card(Pλ ∩ K ′

i) = j
)
. (4.13)

Given that card(Pλ ∩ K ′
i) = j, Pλ ∩ K ′

i consists of j i.i.d. variables which are uniformly distributed
in K ′

i. Moreover, whenever Li,λ ≤ n, at least one layer with label smaller than n must contain at
least j/n points. In particular at least j/n points in Pλ ∩ K ′

i need to be in convex position. This
implies that

P
(
Li,λ ≤ n | card(Pλ ∩ K ′

i) = j
)

≤
(

j

⌈j/n⌉

)
p(⌈j/n⌉, K ′

i)

where we recall the notation p(n, L) introduced before (4.7). Using Lemma 4.2.4, the fact that j is
proportional to log log(λ) and the inequality

(
j

⌈j/n⌉
)

≤ 2j , we deduce from the previous inequality
that for λ large enough,

P
(
Li,λ ≤ n | card(Pλ ∩ K ′

i) = j
)

≤ clog log(λ) log log(λ)−c′ log log(λ) (4.14)

where c and c′ are two positive constants which depend only on dimension d. Summing (4.14) over
j between ⌊c1 log log(λ)⌋ and ⌈c2 log log(λ)⌉ and using (4.13), we obtain the existence of c > 0 such
that for λ large enough

T2 ≤ log log(λ)−c log log(λ). (4.15)

Combining (4.11), (4.12) and (4.15), we get for every 1 ≤ i ≤ m(T )

P(Li,λ ≤ n) ≤ c log(λ)−(4d2+d−1).

It remains to use the estimate m(T ) ≤ c logd−1(λ) from [12, Theorem 2.7] to complete the proof of
Lemma 4.2.5.

We are finally ready to prove Theorem 4.2.3.

Proof of Theorem 4.2.3. We start by recalling the sandwiching result for the convex hull of Pλ [12,
Claims 5.1 and 5.2], which implies in particular that

P(conv1(Pλ) ⊂ K(v ≥ s)) ≥ 1 − c log−4d2
(λ).
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Since the consecutive convex hulls convn(Pλ), n ≥ 1 produced by the peeling are decreasing, this
also implies that for every n ≥ 1,

P(convn(Pλ) ⊂ K(v ≥ s)) ≥ 1 − c log−4d2
(λ).

Consequently, only the bound

P(K(v ≥ T ∗) ⊂ convn(Pλ)) ≥ 1 − c log−4d2
(λ) (4.16)

requires an explanation. We consider again the sets Ki = Ki(T ) and K ′
i = K ′

i(T ), 1 ≤ i ≤ m(T ),
provided by Theorem 4.2.2 applied to the convex body K and the parameter T . Thanks to Lemma
4.2.5, each K ′

i contains at least n layers for the peeling of Pλ ∩ K ′
i with probability greater than

1 − c log−4d2
(λ). On this event, we pick a point xi ∈ Pλ ∩ K ′

i for each 1 ≤ i ≤ m(T ) such that
ℓPλ∩K′

i
(xi) = n. In particular, the monotonicity of the function ℓ with respect to the input set [33,

Lemma 3.1] implies that ℓPλ
(xi) ≥ n for every i so conv(x1, . . . , xm(T )) ⊂ convn(Pλ). Moreover,

[12, Claim 4.5] provides the inclusion K(v ≥ T ∗) ⊂ conv(x1, . . . , xm(T )). Consequently, we have
proved that

{∀ i ∈ {1, . . . , m(T )}, Li,λ ≤ n} ⊂ {K(v ≥ T ∗) ⊂ convn(Pλ)}

where we recall the definition of Li,λ at (4.9). Lemma 4.2.5 now justifies (4.16) and completes the
proof of Theorem 4.2.3.

4.3 Scaling transform and scores
In this section, we introduce a scaling transform that lets us study the layers of the peeling in

a more efficient way. This transform was already used in [27] in the case of the first layer and we
expect it to bring the same benefits in our setting. As in [23], the scaling transform leads to a new
type of peeling where the hyperplanes are replaced by a different geometric shape. In [23], that
shape was a paraboloid while it is here a shape close to a cone. An important difference with the
convex hull peeling in the ball [23] is the following: in the case of the simple polytope, the rescaling
procedure is tailored for the study of the layers in the neighborhood of a vertex of K but we are
unable to build a suitable global scaling transform, see Remark ii) after Theorem 4 in [27] for an
explanation of this fact. A large part of this paper, see Section 4.5, is then dedicated to proving that
the contribution of the Poisson points far from the vertices is negligible and that the contributions
of the Poisson points near different vertices of K are independent. With that in mind, we devote
Sections 4.3 and 4.4 to the estimation through the scaling transform of the local numbers of k-faces
of the layers in the vicinity of a fixed vertex of K.

The outline of this section is the following. We first define the scaling transform and describe
its effect on the Poisson point process, see Lemma 4.3.1. We then study its effect on the layers. In
order to do this, we observe that only the so-called cone-extreme faces find their counterparts in
the rescaled picture but fortunately, on the sandwiching event defined in Section 4.2.2, all regular
faces are proved to be cone-extreme faces, see Lemma 4.3.2. We are then led to study a new
type of rescaled peeling procedure where so-called cone-like grains defined with a specific function
G, see (4.18), play the role of the half-spaces in the classical convex hull peeling and where the
same basic properties as for the regular peeling are proved to occur, see Lemmas 4.3.4 and 4.3.5.
Next, we introduce a sequence of random variables called scores and its equivalent in the rescaled
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picture. Incidentally, we give a more precise version of Theorem 4.1.1 where the constants are
rewritten explicitly through integral formulas involving the scores. Finally, we state a few analytical
properties for the function G that are required in Section 4.4, see notably Lemma 4.3.8.

4.3.1 Rescaling
First of all, we introduce some useful notation related to the simple polytope K. We denote

by VK := {Vi} the set of vertices of K. Rescaling K if necessary, for each vertex Vi ∈ VK , we
introduce an associated volume preserving affine transformation ai : Rd → Rd , with ai(Vi) = 0,
and such that the facets of ai(K) containing 0 also contain the facets of K ′ := [0, ∆d]d belonging to
the coordinate hyperplanes, with ∆d fixed by Lemma 4.2.1. This is possible because K is a simple
polytope. For any δ ∈ (0, ∆d), we define the parallelepiped pd(Vi, δ) := a−1

i ([0, δ]d).
In practice, it means that the behavior of the convex hull peeling in any of the sets pd(Vi, δ) can

be deduced from the behavior of the convex hull peeling in [0, δ]d through the use of ai. For this
reason, we focus in the sequel on the convex hull peeling in a neighborhood of the vertex 0. We
begin with a definition of a rescaling in the corner (0, ∞)d that is suitable for our purpose.

We extend the definition of the logarithm and exponential functions to d-dimensional vectors
by writing for any z = (z1, . . . , zd) ∈ (0, ∞)d and v = (v1, . . . , vd) ∈ Rd,

log(z) = (log(z1), . . . , log(zd)) and ev = (ev1 , . . . , evd).

We write pV : Rd → V for the orthogonal projection onto V where

V = {z ∈ Rd :
d∑

i=1
zi = 0}.

The (d − 1) dimensional vector space V is frequently identified with Rd−1 in the sequel. For any
λ ∈ [1, ∞) we define the scaling transform

T (λ) :
{

(0, ∞)d → V × R
(z1, . . . , zd) 7→ (pV (log(z)), 1

d (log(λ) +
∑d

i=1 log(zi)))
. (4.17)

The transform T (λ) comes from [27, Equation (1.5)] and [14]. It is a one-to-one map between
(0, ∞)d and V × R of inverse

[T (λ)]−1 :
{

V × R → (0, ∞)d

(v, h) 7→ λ−1/dehel(v)

where for any v ∈ V , l(v) = (l1(v), . . . , ld(v)) and li(v) is the i-th coordinate of v in the standard
basis of Rd.

Let us consider the cube Q0 = [0, δ0]d where δ0 = exp(− log(λ)1/d). Its image by T λ is

Wλ := T (λ)(Q0) = {(v, h) ∈ V × R : h ≤ −li(v) + log(λ)1/dδ0}.

We also define the image in Wλ of the initial Poisson point process, i.e.

P(λ) := T (λ)(Pλ ∩ Q0).

We recall [27, Lemma 4.2] that gives the distribution and the limit in distribution of P(λ).
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Lemma 4.3.1 ([27], Lemma 4.2). Let P be the Poisson point process in Rd−1 × R with intensity
measure

√
dedhdvdh. The Poisson point process P(λ) satisfies

P(λ) (d)= P ∩ Wλ and P(λ) L−→ P when λ → ∞

where (d)= means the equality in distribution and L−→ means the convergence in distribution.

For sake of simplicity, when λ = ∞ we identify Wλ with V × R and P(λ) with P .

4.3.2 Effect on the layers
We now focus on the effect of the scaling transform T (λ) on the layers of the peeling procedure.

In agreement with [27, Section 3], we anticipate that T (λ) makes visible only a fraction of the faces
of a layer, namely the so-called cone-extreme faces.

Adapting [27, Definition 3.1] to the n-th layer, we call a face F of convn(Pλ) a ‘cone-extreme’
face if the collection CF (convn(Pλ) ∩ Q0) of outward normals to F belongs to the normal cone
C0(K) := (−∞, 0)d.

Proposition 4.3.2 below states that on the event Ãλ defined at (4.6), every face of convn(Pλ) is
indeed cone-extreme. It extends to the subsequent layers the analogous result [27, Proposition 3.1]
proved in the case of the first layer.

Proposition 4.3.2. On the event Ãλ we have for λ large enough CF (convn(Pλ ∩ Q0)) ⊂ C0(K)
for any face F of convn(Pλ ∩ Q0).

The proof of [27, Proposition 3.1] relies on two ingredients: the sandwiching estimate [12,
Claims 5.1 and 5.2] and a construction of explicit dyadic Macbeath regions in a region containing
Q0. Unsurprisingly, the proof of Proposition 4.3.2 goes along very similar lines, i.e. it builds upon
Theorem 4.2.3 and the explicit Macbeath regions given in Section 4.5. Consequently, for sake of
brevity, we omit its proof.

We say that a hyperplane (resp. a half-space) is cone-extreme, if it has a unit normal vector
(resp. an outward unit normal vector) in C0(K). We describe in the next lines how to encode in a
suitable way such a hyperplane.

For any t > 0, we call pseudo-hyperboloid the surface

Ht := {(z1, . . . , zd) ∈ (0, ∞)d :
d∏

i=1
zi = t}.

For every z(0) ∈ (0, ∞)d, we denote by H(z(0)) the hyperplane tangent to the unique pseudo-
hyperboloid Ht containing z(0). The reasoning before [27, (4.2)] shows that the equation of this
hyperplane is given by

H(z(0)) := {(z1, . . . , zd) ∈ Rd :
d∑

i=1

zi

z(0) = d}.

In particular, any cone-extreme hyperplane can be written as H(z(0)) for some z(0) ∈ (0, ∞)d.
Let us define for any v ∈ V the function

G(v) := log(1
d

d∑
i=1

eli(v)). (4.18)
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Next, we define the downward cone-like grain as

Π↓ := {(v, h) ∈ Rd−1 × R : h < −G(v)}.

For any w ∈ Rd, we then denote by Π↓(w) := w+Π↓ the translate of Π↓ by w, often called cone-like
grain with apex at w. In a similar way, we introduce the upward cone-like grain

Π↑ := {(v, h) ∈ Rd−1 × R : h > −G(v)}

and its translate Π↑(w) := w +Π↑. The duality between the upward and downward cone-like grains
is given by the equivalence

w ∈ Π↑(w′) ⇐⇒ w′ ∈ Π↓(w).

Lemma 4.3.3 below is taken from [27, Lemma 4.3]. It shows that any cone-extreme half-space is
mapped to a downward cone-like grain. In other words, the cone-like grains play the role in the
rescaled model of the cone-extreme half-spaces in the original model.

Lemma 4.3.3 ([27], Lemma 4.3). (i) For every c ∈ (0, ∞), we have

T (λ)(Hc/λ) = V × {1
d

log(c)}.

(ii) For every cone-extreme half-space H+(z(0)), z(0) ∈ (0, ∞)d , we have

T (λ)(H+(z(0))) = Π↓(T (λ)(z(0))).

A consequence of Lemmas 4.3.2 and 4.3.3 is that on the event Ãλ, the convex hull peeling of Pλ

is mapped to a new peeling procedure with cone-like grains instead of half-spaces. We now describe
properly that peeling.

For any λ ∈ [1, ∞] and any locally finite point set Y in Wλ, we introduce [Π↓](λ) = Π↓ ∩ Wλ

and the cone-like hull of Y as

Φ(λ)(Y ) :=
⋃

w∈Wλ

Y ∩[Π↓](λ)(w)=∅

[Π↓](λ)(w)c. (4.19)

We then define recursively the consecutive hulls Φ(λ)
n (Y ), n ≥ 2, of the cone-like peeling with the

formula
Φ(λ)

n (Y ) = Φ(λ)(Y ∩ int(Φ(λ)
n−1(Y ))). (4.20)

When λ = ∞, we generally write Φn instead of Φ(∞)
n . As a result of Lemma 4.3.3, we obtain that

on the event Ãλ, the transformation T (λ) maps the layers of the convex hull peeling of Pλ ∩ Q0 to
the layers of the cone-like hull peeling of its image, i.e. for any n ≥ 1

T (λ)(convn(Pλ ∩ Q0)) = Φ(λ)
n (P(λ)).
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4.3.3 Properties of the rescaled layers
This section gathers two relevant results on the rescaled layers that will be used frequently in

Section 4.4. We omit the proofs as they are direct transpositions to the context of the cone-like
peeling of [23, Lemma 2.5 and 2.6.] written for a parabolic peeling.

For any w ∈ Rd−1 × R, we introduce its layer number as

ℓ(λ)(w, Y ) = n such that w ∈ ∂Φ(λ)
n (Y ∪ {w}). (4.21)

The number ℓ(λ)(w, Y ) is the counterpart for the cone-like peeling of Y of the layer number ℓX(x)
of a point x in the classical convex hull peeling of a point set X. According to the construction
of the cone-like hull given at (4.19), we recall that a point w in Rd−1 × R is extreme if and only
if there exists (v1, h1) ∈ ∂[Π↑](λ)(w) such that [Π↓](λ)(v1, h1) ∩ Y = ∅. The following result is a
generalization of this criterion to the subsequent layers.

Lemma 4.3.4. Let Y be a locally finite subset of Rd−1 × R, w ∈ Y , λ ∈ [1, ∞] and n ≥ 1. Then
we have the two following equivalences.
(i) (ℓ(λ)(w, Y ) ≥ n) ⇐⇒ (∀ (v1, h1) ∈ ∂[Π↑](λ)(w) : Y ∩ [Π↓](λ)(v1, h1) ̸⊂ ∪n−2

i=1 ∂[Φi](λ)(Y )).

(ii) (ℓ(λ)(w, Y ) ≤ n) ⇐⇒ (∃ (v1, h1) ∈ ∂[Π↑](λ)(w) : Y ∩ [Π↓](λ)(v1, h1) ⊂ ∪n−1
i=1 ∂[Φi](λ)(Y )).

Another important property of the peeling is that the layer number of any point increases with
the point set. This is stated in Lemma 4.3.5 below.

Lemma 4.3.5. For λ ∈ [1, ∞], if X ⊂ Y ⊂ Wλ, we have for every w ∈ Wλ, ℓ(λ)(w, X) ≤
ℓ(λ)(w, Y ).

4.3.4 Scores
To each point in K, we associate a random variable that depends on the point and the point

process and that we call score. It represents the contribution of that point to the number of k-faces
of the n-th layer of the convex hull hull peeling of the point process. For any x ∈ K, n ≥ 1,
k ∈ {0, . . . , d − 1} and any point set X of Rd, we introduce the function

ξn,k(x, X) :=
{ 1

k+1 card(Fn,k(x, X)) if x ∈ ∂convn(X ∪ {x})
0 otherwise

where Fn,k(x, X) is the set of all k-faces of ∂convn(X ∪{x}) containing x. The factor 1
k+1 is needed

to take into account the fact that the faces are counted multiple times since a k-face contains a.s.
(k + 1) points of Pλ. In particular, we get the identity

Nn,k,λ =
∑

x∈Pλ

ξn,k(x, Pλ). (4.22)

We now extend this notion of score to the rescaled model. Let λ ∈ [1, ∞] and Y be a locally finite
subset of Wλ. For any w ∈ Wλ, we define the score of w in the rescaled model as

ξ
(λ)
n,k(w, Y ) = ξn,k

(
[T (λ)]−1(w), [T (λ)]−1(Y )

)
. (4.23)
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When w ∈ ∂Φ(λ)
n (Y ), we put

ξ̂
(λ)
n,k(w, Y ) :=

{
1

k+1 [number of k − faces of ∂Φ(λ)
n (Y ) containing w] if w ∈ ∂Φ(λ)

n (Y )
0 otherwise

(4.24)

where as in [27, Section 4], we call k-face of ∂Φ(λ)
n (Y ) the image by T (λ) of a cone-extreme k-face

of [T (λ)]−1(∂Φ(λ)
n (Y )).

A consequence of Proposition 4.3.2 and Lemma 4.3.3 is that on the event Ãλ, the score of a
point x ∈ Pλ ∩ Q0 can be rewritten as ξ̂

(λ)
n,k(T (λ)(x), P(λ)). More precisely, putting w = T (λ)(x), we

have for x ∈ Q0
ξn,k(x, Pλ)1Ãλ

= ξ̂
(λ)
n,k(w, P(λ))1Ãλ

= ξ
(λ)
n,k(w, P(λ))1Ãλ

. (4.25)
In fact, because of boundary effects, the scores of the points close to the boundary of Q0 may be
different when the peeling is restricted to Q0, making the equation above possibly false for these
points. A solution to that issue would consist in applying the scaling transform in a larger cube
Q1. Because of Lemma 4.5.5, the scores of the points in Q0 would only depend on the points in Q1
for a suitable choice of Q1. The rescaled model would then be constructed inside a window slightly
larger than Wλ. This would not lead to any significant change and the identity (4.25) would then
be true for any point in Q0. For sake of simplicity, we ignore these considerations in the rest of the
paper and assume that (4.25) holds for any point x ∈ Q0.

For all λ ∈ [1, ∞] and (v0, h0), (v1, h1) ∈ Wλ, we introduce the two-point correlation function

c
(λ)
n,k((v0, h0), (v1, h1)) := E[ξ̂(λ)

n,k((v0, h0), P(λ) ∪ {(v1, h1)})ξ̂(λ)
n,k((v1, h1), P(λ) ∪ {(v0, h0)})]

−E[ξ̂(λ)
n,k((v0, h0), P(λ))]E[ξ̂(λ)

n,k((v1, h1), P(λ))].

This function plays a crucial role in the proof of the convergence of the variance of Nn,k,λ.
Let us denote by S(d) the regular d-dimensional simplex of edge length

√
2d given by

S(d) := {(x1, . . . , xd) ∈ (−∞, 1] :
d∑

i=1
xi = 0}. (4.26)

Now that we have introduced every notation involved in the limiting constants of Theorem 4.1.1, we
can state a more precise result which clearly implies Theorem 4.1.1 and which is proved in Section
4.6.

Theorem 4.3.6. For any n ≥ 1 and k ∈ {0, . . . , d − 1}, we get

lim
λ→∞

log(λ)−(d−1)E[Nn,k,λ] = f0(K)d−d+3/2Vold(S(d))
∫ ∞

−∞
E[ξ(∞)

n,k ((0, h0), P)]edh0dh0

and
lim

λ→+∞
log(λ)−(d−1)Var[Nn,k,λ] = f0(K)d−d+1Vold(S(d))(I1(∞) + I2(∞))

where
I1(∞) :=

√
d

∫ ∞

−∞
E[ξ(∞)

n,k ((0, h0), P)2]edh0dh0

and
I2(∞) := d

∫ ∞

−∞

∫
Rd−1

∫ ∞

−∞
c(∞)((0, h0), (v1, h1))ed(h0+h1)dh1dv1dh0.
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Figure 4.1 – The cone inclusion of Lemma 4.3.7 2) .

We finally introduce some abbreviated notation used for practical reasons in Sections 4.4 and
4.5. For n ≥ 1, k ∈ {1, . . . , d − 1}, δ ∈ (0, 1/2) and 1 ≤ i ≤ f0(K), we put

Z :=
∑

x∈Pλ

ξn,k(x, Pλ) = Nn,k,λ and Zi(δ) :=
∑

x∈Pλ∩pd(Vi,δ)

ξn,k(x, Pλ). (4.27)

4.3.5 Properties of the function G

In preparation for Section 4.4, we state here a few properties satisfied by the function G intro-
duced at (4.18).

Lemma 4.3.7 below comes from [27, Lemma 4.4 and 4.5]. It shows that the graph of the function
G is convex and sandwiched between two circular cones.

Lemma 4.3.7 ([27], Lemmas 4.4 and 4.5). The function G is convex and positive. Moreover, there
exists two constants c and c ∈ (0, ∞) such that for every v ∈ V ,

c∥v∥ − log(d) ≤ G(v) ≤ c∥v∥.

Lemma 4.3.8 provides a new property of the function G that is heavily required to prove the
stabilization of the scores in Section 4.4. In particular, it can be geometrically reinterpreted by
stating that there exists a downward circular cone C such that for any point w on the boundary of
a cone-like grain Π↓(v1, h1), we have C + w ⊂ Π↓(v1, h1), see Figure 4.1.

Lemma 4.3.8.

1. There exists a constant c > 0 such that for any v ∈ V ,

∥∇G(v)∥ ≤ c∥v∥.
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2. For any (v1, h1), (v, h) and (v′, h′) ∈ V ×R such that h = h1−G(v−v1) and h′ ≤ h−c∥v′−v∥,
we have

h′ ≤ h1 − G(v′ − v1).

Proof. We fix a basis B = (ε1, . . . , εd−1) of V and a vector v ∈ V which will be identified with its
coordinates (v1, . . . , vd−1) in B.
1. For any i = 1, . . . , (d − 1), we introduce αi,1, . . . , αi,d−1 such that for any v ∈ V we can write
li(v) = αi,1v1 + . . . + αi,d−1vd−1. It is enough to prove that for any 1 ≤ j ≤ (d − 1) and v ∈ V ,
there exists cj such that | ∂G

∂vj
(v)| ≤ cj . Since for any i, j, we have ∂li

∂vj
(v) = αi,j , we deduce from

(4.18) that
∂G

∂vj
(v) =

∑d
i=1

∂li

∂vj
(v)eli(v)∑d

i=1 eli(v)
=
∑d

i=1 αi,jeli(v)∑d
i=1 eli(v)

.

Thus we get the bound ∣∣∣∣ ∂G

∂vj
(v)
∣∣∣∣ ≤ max

k,l
|αk,l|

and taking cj = maxk,l|αk,l| yields the result.

2. Using part 1 and the mean value theorem applied to the function G, we obtain that

G(v′ − v1) ≤ G(v − v1) + c∥v′ − v′∥. (4.28)

Using consecutively the two assumptions on (v1, h1), (v, h) and (v′, h′) then (4.28), we then get

h′ ≤ h − c∥v′ − v∥
≤ h1 − G(v − v1) − c∥v′ − v∥
≤ h1 − G(v′ − v1),

which completes the proof of Lemma 4.3.8.

4.4 Stabilization and limit theory near a vertex
The final goal of this section is the convergence of the expectation and the variance of the

variables Zi(δ0), 1 ≤ i ≤ f0(K), introduced at (4.27), i.e. the sum of the scores of Poisson points in
a neighborhood of a vertex of K. Starting from (4.27), we apply Mecke’s theorem then a rescaling to
rewrite both the expectation and the variance as an integral of a functional which involves either an
expected score or the correlation function introduced in Section 4.3. The proof of the convergence
then relies on the use of the dominated convergence theorem, in the spirit of [27]. In order to get
the required convergence and domination of the integrand, we follow a series of papers including
[27] and [23], i.e. we appeal to a crucial ingredient, which consists in proving stabilization results for
rescaled scores. In other words, we show that with probability exponentially close to one, the score
of a point w only depends on the points located in a neighborhood of w. An additional difficulty
compared to the case of the first layer studied by [27] comes from the lack of an easy criterion
for determining the layer number of a point without the knowledge of all the preceding layers. To
tackle this problem, we prove a lemma on the localisation in height of the n-th layer, as in the case
of the unit ball [23].
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Beforehand, we need to introduce useful notation for several types of cylinders that are used in
the rest of the paper. For any v ∈ Rd−1 and r > 0, Cv(r) denotes the vertical cylinder Bd−1(v, r)×R
with the convention C(r) = C0(r). We also define the truncated cylinders C≥t

v (r) := Cv(r) ∩
{(v′, h′) ∈ Rd : h′ ≥ t}, C≤t

v (r) := Cv(r) ∩ {(v′, h′) ∈ Rd : h′ ≤ t} and CI
v (t) := Cv(r) ∩ {(v′, h′) ∈

Rd : h′ ∈ I} for any t > 0 and any interval I ⊂ R.
In this first lemma, we show that the maximal height of the Poisson points on the n-th layer of

the cone-like hull peeling inside a cylinder is bounded with a probability going to 1 exponentially fast
with respect to the bound. This represents an essential ingredient of the proof of the stabilization
result in height of Lemma 4.4.2.
Lemma 4.4.1. For all n ≥ 1 and ε > 0, there exist λ0 ≥ 1 and c > 0 such that for all t > 0,
r ≥ ε, v0 ∈ Rd−1 and λ ∈ [λ0, ∞] we have

P
(

∃(v, h) ∈ ∂Φ(λ)
n

(
P(λ) ∩ Cv0(r)

)
∩ P(λ) ∩ Cv0(r/2n) with h ≥ t

)
≤ cr(n−1)(d−1) exp

(
−et/c

)
and

P
(

∃(v, h) ∈ ∂Φ(λ)
n

(
P(λ)

)
∩ P(λ) ∩ Cv0(r/2n) with h ≥ t

)
≤ cr(n−1)(d−1) exp

(
−et/c

)
.

Proof. We only prove the first statement as the proof of the second one is identical. We start with
the case λ = ∞ and explain at the end why it still works for λ < ∞.

We show the result by induction, we start with the induction step and assume that n ≥ 2 and
that the result is verified for any p < n.

Our first step is to show that for any fixed w = (v, h) ∈ Cv0(r/2n) with h ≥ t the event
{w ∈ ∂Φn ((P ∪ {w}) ∩ Cv0(r))} (4.29)

occurs with probability smaller than c exp
(
−eh/c

)
. We consider a fixed w that verifies these condi-

tions. Then there exists (v1, h1) ∈ Rd−1 ×R such that w ∈ ∂Π↓(v1, h1) and Π↓(v1, h1) only contains
points of layer number at most (n − 1) for the peeling in Cv0(r). This downward cone-like grain
contains a fixed circular cone Cw with apex w as given by Lemma 4.3.8.

From the preceding reasoning and because Cw does not depend on (v1, h1), we deduce that
{w ∈ ∂Φn ((P ∪ {w}) ∩ Cv0(r))} ⊂ {P ∩ C̃w ⊂ ∪n−1

i=1 ∂Φi((P ∪ {w}) ∩ Cv0(r))}

where C̃w := Cw ∩ {(v′, h′) : h′ ≥ h/2} ∩ Cv0(r/2n−1). The set P ∩ C̃w is empty with probability
smaller than c exp(−eh/c). If P ∩C̃w is not empty, it contains a point at height larger than h/2 on a
layer at most (n − 1), which happens with probability smaller than cr(n−2)(d−1) exp(−eh/c) thanks
to the induction hypothesis. Consequently we have

P({w ∈ ∂Φn ((P ∪ {w}) ∩ Cv0(r))) ≤ cr(n−2)(d−1) exp(−eh/c). (4.30)
We can write

P (∃(v, h) ∈ ∂Φn(P ∩ Cv0(r)) ∩ P ∩ Cv0(r/2n) with h ≥ t)

≤ E

 ∑
w∈P∩C

≥t
v0 (r/2n)

1w∈∂Φn(P∩Cv0 (r))

.
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We combine this with the Mecke formula and (4.30) to get

P (∃(v, h) ∈ ∂Φn(P ∩ Cv0(r)) ∩ Cv0(r/2n) with h ≥ t)

≤
∫

∥v−v0∥≤r/2n

∫
h∈]t,∞[

P ((v, h) ∈ ∂Φn((P ∪ {(v, h)}) ∩ Cv0(r)))
√

dedhdhdv

≤
∫

∥v−v0∥≤r/2n

∫
h∈]t,∞[

cr(n−2)(d−1) exp(−eh/c)
√

dedhdhdv

≤ cr(n−1)(d−1) exp(−et/c).

This proves the induction step.
The base case is easier as the same reasoning holds except that we only have to consider the

case where the circular cone Cw is empty.

Case λ < ∞. We claim that as long as the circular cone Cw is included in Wλ the proof re-
mains valid because the intensity of the point process P(λ) is the same as the intensity of P except
that the process is restricted to Wλ. Let us describe how we can ensure that Cw is included in Wλ.
Let Cm = Cm(λ) be the largest cone contained in Wλ with the same apex as Wλ. As for λ ≥ λ′,
Wλ is only a vertical translation of Wλ′ , the aperture of Cm(λ) stays the same. Thus, for λ ≥ λ0
and any (v′, h′) ∈ Wλ the cone Cm(λ0) is contained in Wλ. If we take for Cw the smallest cone
between the translation of Cm(λ0) with apex (v, h) and the choice of Cw in the case λ = ∞ we
obtain a circular cone that is contained in Wλ and verifies the volume estimates in the proof of the
case λ = ∞. This makes the proof valid in the case λ < ∞.

When w ∈ ∂Φn(P(λ)) we define H
(λ)
n (w, P(λ)) as the maximal height of an apex of a down

cone-like grain belonging to the n-th layer and containing w. Otherwise, we put H
(λ)
n (w, P(λ)) = 0.

The next result has the flavor of a stabilization in height. It provides an upper bound on the
distribution tail of the height of the rescaled cone-like facets containing a fixed point from the n-th
layer.

Lemma 4.4.2. There exist a constant c > 0 and λ0 ≥ 1 such that for all λ ∈ [λ0, ∞], (v0, h0) ∈ Wλ

and t ≥ h0 ∨ 0,
P(H(λ)

n ((v0, h0), P(λ)) ≥ t) ≤ c exp(−et/c).

Furthermore, for any ε > 0, there exist a constant c > 0 and λ0 ≥ 1 such that for all λ ∈ [λ0, ∞],
(v0, h0) ∈ Wλ, t ≥ h0 ∨ 0 and r > ε,

P(∃s ≥ r : H(λ)
n ((v0, h0), P(λ) ∩ C(s)) ≥ t) ≤ c exp(−et/c).

Proof. Let us concentrate on the first statement. We can assume that n ≥ 2 as the case n = 1
is proved in [27, Lemma 5.1]. Let us assume that H

(λ)
n ((v0, h0), P(λ)) ≥ t. It implies that there

exists a downward cone-like grain with apex (v1, h1) ∈ [Π↑](λ)(v0, h0) and h1 ≥ t that only contains
points on layer at most (n − 1).

Let cmin be the minimum between the aperture of the circular cone contained in Π↓(v1, h1)
given by Lemma 4.3.7 and the aperture of the largest circular cone contained in Wλ with the same
apex as Wλ. We can fit a circular cone C(v1,h1) with apex (v1, h1) and aperture cmin in Π↓(v1, h1)
that is entirely contained in Wλ.
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Let C̃ := C(v1,h1) ∩ {(v′, h′) : h1/4 ≤ h′ ≤ h1/2} ∩ Cv1(t/2n). Then either P(λ) ∩ C̃ = ∅, which
happens with probability smaller than c exp(−eh1/c) or it contains at least one point which is thus
on layer at most (n−1). This last event occurs with probability smaller than c exp(−eh1/c) because
of Lemma 4.4.1.

Discretizing and integrating over (v1, h1) ∈ [Π↑](λ)(v0, h0), h1 ∈ [t, ∞) yields the desired result.
The second statement follows along similar lines with a proper updating of the cylinder Cv1(t/2n)

in the intersection defining the set C̃.

We are now ready to prove in Proposition 4.4.3 below a result of stabilization in width for the
score ξ̂

(λ)
n,0 corresponding to the number of vertices of the n-th layer. It is a necessary step towards

the proof of the stabilization in width for the general score ξ̂
(λ)
n,k which is stated in Proposition 4.4.4

that follows directly.
For any h0 we write

h̃0 := (6
c

log(d)) ∨ (−6
c

h0)1{h0<0}.

For any λ ≥ 1 and (v0, h0) ∈ Wλ, we define the radius of stabilization as

R
(λ)
n,k := inf{r > 0 : ξ̂

(λ)
n,k((v0, h0), P(λ)) = ξ̂

(λ)
n,k((v0, h0), P(λ) ∩ C(s)) for all s ≥ r}.

Proposition 4.4.3. For all n ≥ 1, there exist λ0 ≥ 1 and c > 0 such that for any (v0, h0) ∈ Wλ,
r ≥ h̃0 and λ ∈ [λ0, +∞] we have

P
(

R
(λ)
n,0(v0, h0) ≥ r

)
≤ c exp (−r/c) .

Proof. For sake of simplicity, we only treat v0 = 0, the proof for general v0 is analogous. Let us
write Rn,0 for R

(λ)
n,0(0, h0). We use an induction reasoning on n. The base case was already proved

in [27]. We assume that the result holds for any p < n with n ≥ 2.
Let us suppose that Rn,0 ≥ r. We can further assume that (0, h0) ∈ ∂Φ(λ)

n (P(λ)) and (0, h0) ̸∈
∂Φ(λ)

n (P(λ)∩C(r)) as the other case, which is (0, h0) ̸∈ ∂Φ(λ)
n (P(λ)) and (0, h0) ∈ ∂Φ(λ)

n (P(λ)∩C(r)),
can be proved almost identically. Let us write c1 := c

12 with c the constant from Lemma 4.3.7 and
c2 = inf(c1, 1

6dcstab
) with cstab the minimum (that makes the exponential the smallest) of all the

constants c in the exponential given by the induction hypothesis for p < n.
Let l = ℓ(λ)((0, h0), P(λ) ∩ C(r)). In particular, due to Lemma 4.3.5, ℓ(λ)((0, h0), P(λ)) ≥ l.

We choose a pseudo-cone [Π↓](λ)(v1, h1), with (v1, h1) ∈ [Π↑](λ)(0, h0), that only contains points of
layer at most (l − 1) ≤ (n − 2) for the peeling of P(λ) ∩ C(r) and at least one point of layer at least
(n − 1) for the whole peeling. As Lemma 4.4.2 implies that

P(H(λ)
l ((0, h0), P(λ) ∩ C(r)) ≥ c2r) ≤ c exp(−er/c),

we can assume that h1 ≤ c2r. We write E for the corresponding event. We assert that

[Π↓](λ)(v1, h1) ∩ {(v′, h′) : h′ ≥ −c1r} ⊂ C(2r/3). (4.31)
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Indeed let us take (v, h) ∈ [Π↓](λ)(v1, h1) ∩ {(v′, h′) : h′ ≥ −c1r}. The first step is to prove that
∥v − v1∥ ≤ r/3. The equation of the cone-like grains and Lemma 4.3.7 imply that

h ≤ h1 − G(v − v1) ≤ h1 − c∥v − v1∥ + log(d).

In turn
∥v − v1∥ ≤ 1

c
[h1 − h + log(d)].

As h1 and h are both bounded by c1r = c
12 r and log(d) ≤ c

6 r we obtain

∥v − v1∥ ≤ r/3. (4.32)

Additionally, a similar reasoning yields

h1 = h0 + G(−v1) ≥ h0 + c∥v1∥ − log(d)

and then ∥v1∥ ≤ r/3. Combining this, (4.32) and the triangle inequality gives (4.31).
Now we write

E1 := E ∩ {[Π↓](λ)(v1, h1) ∩ {h ≤ −c1r} ∩ P(λ) ∩ ∂Φ(λ)
n−1(P(λ)) = ∅}

and
E2 = E ∩ {[Π↓](λ)(v1, h1) ∩ {h ≤ −c1r} ∩ P(λ) ∩ ∂Φ(λ)

n−1(P(λ)) ̸= ∅}.

a) If E1 occurs, we have a point (v, h) of layer (n − 1) for the peeling of P(λ) with h ≥ −c1r. It is
in particular included in C(2r/3), see (4.31). This point must have a stabilization radius greater
than r/3 as its layer number can not be (n − 1) for the peeling of P(λ) ∩ C(r).

P (E1) ≤ P

 ⋃
m≤n−1

⋃
w∈P(λ)∩C[−c1r,c2r](2r/3)

{R
(λ)
m,0(w, P(λ)) ≥ r/3}


≤ E

 ∑
m≤n−1

∑
w∈P(λ)∩C[−c1r,c2r](2r/3)

1
R

(λ)
m,0(w,P(λ))≥r/3

 .

Now we use the Mecke formula ,the induction hypothesis and the calibration of c2 to obtain

P (E1) ≤
√

d
∑

m≤n−1

∫
C[−c1r,c2r](2r/3)

P
(

R
(λ)
m,0((v, h), P(λ)) ≥ r/3

)
edhdvdh ≤ c exp(−r/c).

b) If E2 occurs, it means that [Π↓](λ)(v1, h1)∩{h ≤ −c1r}∩P(λ) ̸= ∅. This happens with probability
smaller than c exp(−r/c), see [27, p.32].

Combining a) and b) we get P(E) ≤ c exp(−r/c).

Proposition 4.4.4. For all n ≥ 1, there exist λ0 ≥ 1 and c > 0 such that for any (v0, h0) ∈ Wλ,
r ≥ h̃0 and λ ∈ [λ0, ∞] we have

P
(

R
(λ)
n,k(v0, h0) ≥ r

)
≤ c exp

(
−er/c

)
.
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Proof. Let us consider (v0, h0) such that R
(λ)
n,k(v0, h0) ≥ r. We also write c1 = c

12 as in Proposition
4.4.3 and c2 = inf(c1, 1

6dcstab
) with cstab the constant from Proposition 4.4.3.

Guided by the previous arguments used in Proposition 4.4.3, we can assume several facts without
loss of generality.

— v0 = 0.
— R

(λ)
n,0(0, h0) < r. Indeed, the complement event occurs with probability smaller than c exp(−r/c)

thanks to Proposition 4.4.3. This implies that (0, h0) is on the n-th layer of the peeling of
P(λ) if and only if it is on the n-th layer of the peeling of P(λ) ∩ C(s) for any s ≥ r.

— (0, h0) is on the n-th layer for the peelings of both P(λ) and P(λ) ∩ C(s) for any s ≥ r.
Otherwise, the score ξ

(λ)
n,k(0, h0) would be equal to ξ

(λ)
n,0(0, h0) = 0 and would share the same

stabilization radius.
— P(λ) does not meet C(r)∩{(v′, h′) : h′ ≤ −c1r} as the complement set occurs with probability

smaller than c exp(−r/c).
— min(Hn((0, h0), P(λ)), sups≥r Hn((0, h0), P(λ) ∩ C(s))) ≤ c2r. Indeed, Lemma 4.4.2 implies

that the complement event occurs with probability smaller than c exp(−er/c).
We denote by E the event corresponding to all of the assumptions above. We consider the set

U :=
⋃

(v1,h1)∈∂[Π↑](λ)(0,h0),h1≤c2r

[Π↓](λ)(v1, h1) ∩ {(v′, h′) : h′ ≥ −c1r}.

On the event E, we obtain thanks to (4.31) that U ⊂ C [−c1r,c2r](2r/3). Moreover, because of the
assumption on the variables Hn((0, h0), P(λ) ∩ C(s)), U contains every point that shares a common
face of the n-layer with (0, h0) for the peeling of P(λ) ∩C(s) for any s ∈ [r, ∞]. We can now proceed
as in the proof of [23, Lemma 3.6]. We assert that

{R
(λ)
n,k((0, h0), P(λ)) ≥ r} ∩ E ⊂ {∃w ∈ P(λ) ∩ U : R

(λ)
n,0(w, P(λ)) ≥ r/3} ∩ E. (4.33)

Indeed, if every point w ∈ P(λ) ∩U verifies R
(λ)
n,0(w, P(λ)) ≤ r/3, then the status of these points with

respect to the n-th layer is the same for both P(λ) and P(λ) ∩C(s), for any s ≥ r. Consequently, the
k-faces of the n-th layer containing (0, h0) are the same for the peeling of any P(λ) ∩ C(s), s ≥ r,
which implies that R

(λ)
n,k((0, h0), P(λ)) ≤ r. Using consecutively (4.33) and Mecke’s formula we have

P({R
(λ)
n,k(0, h0)) ≥ r} ∩ E) ≤ E

 ∑
(v,h)∈U∩P(λ),h≥−c1r

1{R
(λ)
n,0(v,h)≥r/3}∩E


≤

√
d

∫
C[−c1r,c2r](2r/3)

P(R(λ)
n,0((v, h)) ≥ r/3)edhdvdh

≤ c exp(−r/c).

As said before, our strategy to derive the limit of the sum of the scores in the vicinity of the
origin relies on the dominated convergence theorem. This requires to dominate the expectation of
the score or one of its powers. This is done in Lemma 4.4.5 below. Its proof which relies on Lemmas
4.4.4 and 4.4.2 is omitted, as it is almost identical to the proof given in the case of the first layer,
see [27, Lemma 5.3] and also very close to the proof of [23, Lemma 4.1].
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Lemma 4.4.5. For all p ∈ [1, ∞), there exists a constant c > 0 and λ0 ≥ 1 such that for all
(v0, h0) ∈ Wλ and λ ≥ λ0

E[ξ̂(λ)
n,k(v0, h0)p] ≤ c1(|h0| + 1) exp

(
−c2eh0∨0) .

In the next lemma, we prove the convergence of E[ξ̂(λ)
n,k(v0, h0)] to E[ξ̂(∞)

n,k (v0, h0)].

Lemma 4.4.6. For all (v0, h0) ∈ Rd−1 × R, we have

lim
λ→∞

E[ξ̂(λ)
n,k((v0, h0), P(λ))] = E[ξ̂(∞)

n,k ((v0, h0), P)].

Proof. First, we prove the a.s. convergence of ξ̂
(λ)
n,k((v0, h0), P(λ)) to ξ̂

(∞)
n,k ((v0, h0, P). Let us write

B(v0, h0) := C
≤H

(∞)
n,k

((v0,h0),P)
v0 (R(∞)

n,k ((v0, h0), P)).

By definition of R
(∞)
n,k ((v0, h0), P) and H

(∞)
n,k ((v0, h0), P), we have

ξ̂
(∞)
n,k ((v0, h0), P ∩ B(v0, h0)) = ξ̂

(∞)
n,k ((v0, h0), P).

Almost surely, we have for λ large enough B(v0, h0) ⊂ Wλ and subsequently

ξ̂
(∞)
n,k ((v0, h0), P) = ξ̂

(∞)
n,k ((v0, h0), P ∩ Wλ) = ξ̂

(λ)
n,k((v0, h0), P(λ)).

It implies in turn the almost sure convergence. To extend it to the convergence of the expectation,
we use the uniform integrability of (ξ̂(λ)

n,k((v0, h0), P(λ)))λ that comes from Lemma 4.4.5.

The next two lemmas imply analogous results of domination and convergence for the two-point
correlation function. They are used in the proof of the convergence of the variance of the number
of k-faces in a neighborhood of a vertex of K. Proofs of these results are again omitted, as they
are almost identical to the proofs of [27, Lemma 5.4], [27, Lemma 5.5] and [27, Lemma 5.6].

Lemma 4.4.7. For all n ≥ 1 and k ∈ {0, . . . , d − 1}, there exists a constant c > 0 such that for all
λ ≥ 1 and (v0, h0), (v1, h1) ∈ Wλ satisfying

∥v1 − v0∥ ≥ 2 max
(

6
c

log(d), −6
c
1{h0<0}, −6

c
1{h1<0}

)
with c as in Lemma 4.3.7, we have

|c(λ)
n,k((v0, h0), (v1, h1))| ≤ c(∥h0∥ + 1)c(∥h1∥ + 1)c exp

(
−1

c
(∥v1 − v0∥ + eh0∨0 + eh1∨0)

)
.

Additionally, there is an integrable function g : R×Rd−1 ×R → R+ such that for all λ ∈ [1, ∞] we
have

|c(λ)
n,k((0, h0), (v1, h1))|edh0edh1 ≤ gn,k(h0, v1, h1).

Lemma 4.4.8. For all h0 ∈ R, (v1, h1) ∈ Rd−1 × R, we have

lim
λ→∞

c
(λ)
n,k((0, h0), (v1, h1)) = c

(∞)
n,k ((0, h0), (v1, h1)).
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The combination of the previous results allows us to obtain Proposition 4.4.9 which provides the
asymptotics for the expectation and variance of the contribution of Poisson points in a neighborhood
of a vertex of K. We recall the definition of Zi(δ0) given at (4.27). The event Aλ therein is a slight
modification of the event Ãλ which is introduced later on, at (4.35). Proposition 4.4.9 is used in
Section 4.5 where the event Aλ is required for technical reasons. Its proof is postponed to Section
4.6, dedicated to the proof of the main results. It is an adaptation of the core of the proof of [27,
Theorem 2.1].

Proposition 4.4.9. For each 1 ≤ i ≤ f0(K) we have

lim
λ→∞

E[Zi(δ0)1Aλ
]

logd−1(λ)
= d−d+3/2Vold(S(d))

∫
R
E[ξ(∞)

n,k ((0, h0), P)]edh0dh0

and
lim

λ→∞

Var[Zi(δ0)1Aλ
]

logd−1(λ)
= I1(∞) + I2(∞)

where
I1(∞) = d−d+3/2Vold(S(d))

∫
R
E[ξ(∞)

n,k ((0, h0), P)2]edhdh0

and
I2(∞) = d−d+2Vold(S(d))

∫
Rd−1×R

∫
R

c
(∞)
n,k ((0, h0), (v′, h1))ed(h0+h1)dh0d(v′, h1).

4.5 Decomposition of the expectation and variance
The aim of this section is to prove Proposition 4.5.15 which combines the two following facts.
— The variance is additive over the vertices of K, i.e. for a suitable δ that depends on λ, the

variables Zi(δ), 1 ≤ i ≤ f0(K), decorrelate asymptotically where we recall that Zi(δ) is the
sum of the scores of points in sets pd(Vi, δ).

— Asymptotically, the contribution of the Poisson points far from the vertices to the expec-
tation and variance of Z is negligible compared to the contribution of the points near the
vertices. In other words, the sum of scores in the complement of ∪f0(K)

i=1 pd(Vi, δ) in the sand-
wich A(s, T ∗, K) is negligible in the asymptotic calculation of both the expectation and the
variance of Z.

In order to do so, we use an explicit construction of Macbeath regions appearing near the vertices in
the economic cap covering theorem, see Theorem 4.2.2. This construction allows us to partition the
annulus A(s, T ∗, K) in a way that makes it easier to control the spatial dependence of the scores,
conditional on the sandwiching event. This dependence is described through a dependency graph.
The strategy described above is heavily inspired by [27, Section 3].

The results of this section justify a posteriori the work of Sections 4.3 and 4.4. Indeed it shows
that it is enough to study the asymptotics of the sums of the scores near a vertex, which is precisely
the goal of Sections 4.3 and 4.4.

In the whole section, unless stated otherwise, we consider δ ∈ (0, 1/2).
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4.5.1 Dyadic M-regions and supersets
This part is dedicated to the construction of the so-called supersets. It is done via an explicit

description of the Macbeath regions of the economic cap covering near a corner. This construction
comes from [27, Section 3].

Let us write, for all z ∈ K, MK(z) := MK(z, 1/2). Given δ ∈ (0, 1/2) and integers ki ∈ Z
with 3ki ∈ (0, 1/(3δ)) for 1 ≤ i ≤ d (so that 3ki+1δ/2 ≤ 1/2), the dyadic rectangular solids∏d

i=1[ 3ki δ
2 , 3ki+1δ

2 ] coincide with the M-regions MK((3k1δ, . . . , 3kdδ)). When log3( d!T
ddδd ) ∈ Z, an

M-region MK(z) has center z belonging to K(v = t) as soon as
∑d

i=1 ki = log3( d!T
ddδd ), thanks to

Lemma 4.2.1 and a direct computation.
For any δ ∈ (0, 1/2) with log3( d!T

ddδd ) ∈ Z , we denote by M(0, δ) the set of all M-regions that
can be written as

MK((3k1δ, . . . , 3kdδ)) =
d∏

i=1

[
3kiδ

2 ,
3ki+1δ

2

]
with ki ∈ Z, 3ki ∈ (0, 1/(3δ)) for 1 ≤ i ≤ d and

∑d
i=1 ki = log3( d!T

ddδd ). The set M(0, δ) is maximal in
the sense that it can not be enlarged to include another M-region with center on K(v = T )∩[0, 1/2]d,
see [27, Lemme 3.1]. Furthermore, the economic cap covering that we recalled in Theorem 4.2.2
can be constructed such that the set of all the Macbeath regions of the saturated system covering
K(v = T ) with center in [0, 1/2]d is exactly M(0, δ).

We can now introduce the supersets induced by the net of the M-regions in MK(0, δ). The goal
is to partition A(s, T ∗, K) with these supersets. This construction is the same as in [27, Section
3.3]. We start with the supersets in [0, 1/2]d.

We describe the construction of the cone sets and cylinder sets associated to an M-region in
M(0, δ) as they intervene in the construction of the supersets. For any M-region Mj that meets
[0, (T ∗)1/d]d, we define its associated cone set Coj as the intersection of K(v ≤ T ∗) with the smallest
cone with apex at ((T ∗)1/d, . . . , (T ∗)1/d) that contains Mj . For any M-region Mj with center at
(3k1δ, . . . , 3kdδ) that meets ([0, (T ∗)1/d]d)c, we define its associated cylinder set as follows. Here
and in the sequel, we denote by Hl, 1 ≤ l ≤ d, the coordinate hyperplanes. We first define for every
1 ≤ l ≤ d the cylinder

Cl(k1, . . . , kd) :=
l−1∏
i=1

[ 3
kiδ

2 ,
3ki+1δ

2 ] × R ×
d∏

i=l+1
[ 3

kiδ

2 ,
3ki+1δ

2 ] ∩ ([0, (T ∗)1/d]d)c.

It is the smallest cylinder containing Mj and oriented in direction nHl
where nHl

is a unit normal
vector of the hyperplane Hl. We define the regions

S̃j := S̃j(k1, . . . , kd) :=
⋃

l:kl=min(k1,...,kd)

Cl(k1, . . . , kd) ∩ K.

When kl is the unique minimum, S̃j is a single cylinder Cl and it simply extends Mj ∩([0, (T ∗)1/d]d)c

in direction nHl
. We wish the cylinder sets to cover K(v ≤ T ∗) ∩ [0, 1/2]d \ [0, (T ∗)1/d]d but the

union of all the regions S̃j does not cover all of it. The uncovered parts are rectangular regions
produced by exactly one M-region having a cubical face. For this reason, we define the cylinder set
Cylj of Mj as the union of S̃j and the rectangular regions produced by the ties in the minimum of
k1, . . . , kd.

Let Mj be an M-region in M(0, δ). The superset S′
j associated with Mj is defined as follows.
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— If Mj is entirely included in [0, (T ∗)1/d]d, the cone set associated with Mj is also included in
[0, (T ∗)1/d]d and the superset associated with Mj is defined as S′

j = Coj ∩ A(s, T ∗, K). We
say that S′

j is a cone set.
— If Mj meets [0, (T ∗)1/d]d, but is not entirely included in [0, (T ∗)1/d]d, the superset associated

with Mj is S′
j = (Coj ∪ Cylj) ∩ A(s, T ∗, K). In this case we say that S′

j is a cone-cylinder
set.

— If Mj is included in ([0, (T ∗)1/d]d)c we simply put S′
j = Cylj ∩ A(s, T ∗, K) and call S′

j a
cylinder set.

The supersets associated with an M-region in MK(0, δ) are now well defined. For any vertex Vi ∈
VK \{0}, we may likewise define a collection MK(Vi, δ) of dyadic M-regions. We can then generate
an associated collection of supersets in a similar way. We embed the union of all the MK(Vi, δ) into
a (not necessarily unique) larger collection of M-regions MK(m(T, δ)) with cardinality m(T, δ), that
is maximal for the entirety of K(v = T ). This is always possible because among all the collections
of M-regions containing the union of the MK(Vi, δ), there is always at least one that is maximal.
To each additional M-region that is not in any of the MK(Vi, δ), we associate a superset as in [12],
i.e. we take them such that Mj ⊂ S′

j , the sets S′
j are pairwise internally disjoint and such that

their union cover the part of the sandwich that is not already covered by the supersets associated
with the M-regions in one of the MK(Vi, δ). We also ask for an additional technical condition on
these S′

j which is that S′
j ⊂ K

(γ)
j where γ = 3d36d. This is possible because K(v ≤ T ∗) is covered

by ∪iK
(γ)
i , see [12, Claim 2.6] where T and d6d play the role of s and λ therein respectively. We

claim in Lemma 4.5.1 below that all of these properties are in fact satisfied by every superset.

Lemma 4.5.1. The supersets (S′
j)j are pairwise interior disjoint, ∪jS′

j = A(s, T ∗, K) and for
every 1 ≤ j ≤ m(T, δ), we have Mj ⊂ S′

j and S′
j ⊂ K

(γ)
j .

Note that the M-regions Mj also verify the properties of Theorem 4.2.2. In particular, combining
them with the previous lemma, we deduce the following volume estimates for the supersets. For all
1 ≤ j ≤ m(T, δ), we have

(6d)−dα log log(λ)
λ

≤ Vold(Mj) ≤ Vold(S′
j) ≤ Vold(K(γ)

j ) ≤ (6γ)dα log log(λ)
λ

. (4.34)

In the sequel, we denote by S(δ) := {S′
j}m(T,δ)

j=1 the set of all the supersets generated by M-
regions in MK(m(T, δ)). Now that we have defined the supersets, we are able to define the event
Aλ, which is a refinement of Ãλ where we ask additionally for each superset to contain less than
c log log(λ) Poisson points.

Aλ = Aλ(δ) := {∪n
l=1∂Φl(Pλ) ⊂ A(s, T ∗, K), ∀j card(S′

j ∩ Pλ) ≤ 3(6γ)dα log log(λ)}. (4.35)

The event Aλ depends on δ through the explicit construction of the M-regions in each M(Vi, δ).
However, the next lemma shows that the probability of Aλ can be estimated independently from δ.
As a result, we omit the dependency on δ in the sequel. A particular choice of δ will be made in
the next subsection.

The proof of the following estimation of P(Aλ) follows from [12, Claim 5.2.].

Lemma 4.5.2. There exists a constant c > 0 such that for all λ ∈ [1, ∞)

P(Aλ) ≥ 1 − c log−4d2
(λ).
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Proof. From Theorem 4.2.3, we deduce that it is enough to prove that

P(∃j : card(S′
j ∩ Pλ) ≥ 3(6γ)dα log log(λ)) ≤ log−4d2

(λ).

We recall that for any Poisson random variable Pois(µ) with mean µ,

P(Pois(µ) ≥ 3µ) ≤ 3
3 − e

e−µ.

Setting µ = λVold(S′
j) and using the volume estimate at (4.34), we get that

P(card(Pλ ∩ S′
j) ≥ 3(6γ)dα log log(λ)) ≤ 3

3 − e
exp(−(6d)−dα log log(λ)) ≤ c log−(4d2+d−1)(λ).

As the number of M-regions and thus of supersets in m(T, δ) is bounded by c logd−1(λ), thanks
to the estimate on the number of Macbeath regions in the economic cap covering provided by [12,
Theorem 2.7], we obtain the result with a union bound.

Using the estimate [12, Theorem 2.7] and the definition of Aλ yields the following lemma, that
provides an estimate of the number of points of Pλ in the sandwich on the event Aλ.

Lemma 4.5.3. There exists a constant c > 0 such that on the event Aλ,

card(Pλ ∩ A(s, T ∗, K)) ≤ c logd−1(λ) log log(λ).

4.5.2 Dependency graph
In this subsection, we use the previous construction of the supersets to build a dependency

graph as in [27, Section 3.4].
We define a graph G := (VG , EG), where VG is the set {1, . . . , m(T, δ)}. With a slight abuse of

notation, we may sometimes identify the vertex i with the corresponding superset S′
i and say for

instance that there is an edge between S′
i and S′

j instead of i and j. We define the edges of the graph
as follows. For any 1 ≤ j ≤ m(T, δ), we define Lj to be the union of all the supersets S′

k ∈ S(δ) such
that there exist a ∈ S′

j and b ∈ S′
k with the segment [a, b] disjoint from K(v ≥ T ∗). In particular

S′
j ⊂ Lj and S′

j ⊂ Lk if and only if S′
k ⊂ Lj . We join the vertices i and j in {1, . . . , m(T, δ)} by an

edge if and only if Li and Lj contain at least one superset S′
k in common. The remaining part of

this subsection consists in stating some spatial conditions for having no edge between two vertices
in the graph and deducing from them that conditional on Aλ, it is indeed a dependency graph.

We first prove a technical geometric lemma.

Lemma 4.5.4. For λ large enough and any choice of δ = δ(λ) such that T = o(δ) as λ goes to
inifinity, ⋃

j:S′
j
⊂[0, 3

2 δ]d

S′
j = [0,

3
2δ]d ∩ A(s, T ∗, K).

Proof. For any i, we consider the M-regions

Mi,p :=
i−1∏
l=1

[ 3
kl,p

2 δ,
3kl,p+1

2 δ] × [ 12δ,
3
2δ] ×

d∏
l=i+1

[ 3
kl,p

2 δ,
3kl,p+1

2 δ]
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such that Mi,p ∈ M(0, δ) and ki,p ≤ 0 for all i and p. As T = o(δ) and
∑d

i=1 ki = log3(d!T/(dδ)d),
for λ large enough, these regions are included in [0, 3

2 δ]d. We claim that the cylinder sets S′
j

corresponding to these regions cover the part of ∂[0, 3
2 δ]d that is contained in A(s, T ∗, K). Since

the supersets S′
j are pairwise interior disjoint and cover all of A(s, T ∗, K), we deduce that [0, 3

2 δ] \
∪i,pMi,p is covered by supersets S′

j that can only be contained in [0, 3
2 δ]d. The result follows.

An important consequence of Lemma 4.5.4 is the following decomposition of Z1( 3
2 δ), corre-

sponding to the vertex 0 of K:

Z1(3
2δ) =

∑
j:S′

j
⊂[0, 3

2 δ]d

∑
x∈S′

j

ξn,k(x, Pλ). (4.36)

It justifies our focus on the supersets that are included in [0, 3
2 δ]d in the next lemmas.

For 0 < a < b < ∞ and 1 ≤ i ≤ d, we denote by Hi[a, b] the ‘parallel slab’ between hyperplanes
Hi + anHi and Hi + bnHi where nHi ∈ [0, ∞)d is a normal unit vector of Hi. We define for any
bounded A ⊂ Rd, the diameter diami(A) in direction nHi

as the width of the maximal parallel slab
containing A. Let ∪J′

i=1S′
j be connected and assume that it meets Hi[0, δ]. We recall the following

bound from [27],
diami(∪J′

j=1S′
j) ≤ c′δ3J′

. (4.37)

Since (4.37) relies on the construction of the sets S′
j , which themselves only depends on T and T ∗

and since T and T ∗ in this work only differ from the T and T ∗ in [27] by multiplicative constants,
we claim that this bound still holds in our context.

From the bound (4.37) and the inequality card({k; S′
k ⊂ Lj}) ≤ c log log(λ)3(d−1) provided by

[12, Lemma 6.1], we deduce as in [27] that as long as Lj has a non-empty intersection with Hi[0, δ1],
there exist constants c∗, cdiam ∈ (0, ∞) such that its diameter in the direction nHi

satisfies

diami(Lj) ≤ cdiamδ3c∗L(λ) (4.38)

where L(λ) := T (K)3(log log(λ))3(d−1) and T (K) is the number of towers of K. This is the essential
ingredient of the proof of the next lemma, which is an adaptation of [27, Lemma 3.3]. It is a first
step towards proving that the sums of scores in supersets sufficiently far apart are independent.

Beforehand, we specify our choice of δ ∈ (0, 1/2). Recalling that δ0 = exp(− log(λ)1/d), we
define δ1 := r(λ, d)δ0 where r(λ, d) ∈ [1, 31/d] is chosen so that log3(d!T/(dδ)d) ∈ Z. In particular
it verifies the hypotheses of Lemma 4.5.4.

Lemma 4.5.5. For λ large enough, if S′
j ⊂ [0, 3

2 δ1]d and if there exist an i and 1 ≤ l ≤ d such that
S′

i ∩ Hl[4cdiamδ13c∗L(λ), diam(K)] ̸= ∅ , then there is no edge in EG between j and i.

Proof. Let us assume that such an S′
i exists. We distinguish two different cases.

Case i). Let us assume that S′
i is generated by an M-region in MK(0, δ1). We prove that in

this case, it is enough to have S′
i ∩ Hl[cdiamδ13c∗L(λ)+1, diam(K)] ̸= ∅ to conclude that there

is no edge between S′
i and S′

j . Indeed, from the diameter bound (4.38), we deduce that Li ⊂
Hl[2cdiamδ13c∗L(λ), diam(K)] while Lj ⊂ Hl[0, cdiamδ13c∗L(λ)]. In particular, we deduce that Li ∩
Lj = ∅ and thus, there is no edge between j and i in this case.

Case ii). We now assume that S′
i is generated by an M-region in MK(m(T, δ1)) \ MK(0, δ1). We
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proceed by contradiction and assume that there is an edge between i and j. As cdiamδ13c∗L(λ) →
0, for λ large enough, a path from S′

j to S′
i has to cross a superset S′

m that verifies S′
m ∩

Hl[cdiamδ13c∗L(λ)+1, diam(K)] ̸= ∅ before leaving [0, 1/2]d. Therefore, we can find a superset
S′

m generated by an M-region in [0, 1/2]d that verifies S′
m ∩Hl[cdiamδ13c∗L(λ)+1, diam(K)] ̸= ∅ such

that there is an edge between S′
j and S′

m. This contradicts the first case.

The next lemma expands on the result of Lemma 4.5.5. Its goal is to prove that two regions
at a long distance from each other have no edge between them. This is a slight rephrasing of [27,
Lemma 3.5].

Lemma 4.5.6. There exists a constant c′ ∈ (0, ∞) such that if S′
0 ∈ S(δ1) is a subset of [0, 3

2 δ1]
and S′ ∈ S(δ1) is at distance at least c′δ13c∗L(λ) from [0, 3

2 δ1]d, then conditional on Aλ and for λ
large enough, there is no edge between S′

0 and S′.

Proof. We can choose c′ > 0 such that anytime the distance between S′
0 and S′ is larger than

c′δ13c∗L(λ), the distance between them in some direction nHl
is larger than 4δ13c∗L(λ). In particular,

S′
0 and S′ verify the hypotheses of Lemma 4.5.5 for l. Thus there is no edge between them.

An important corollary of Lemma 4.5.6 is the fact that the sums of scores around different
vertices of K are independent for λ large enough. Beforehand, we make a connection between the
fact of having no connection between two supersets and the fact of having the independence of the
two sums of the scores inside each of them. This result stated in Lemma 4.5.7 below implies that
conditional on Aλ, the constructed graph is a dependency graph.

Lemma 4.5.7. Let m ≥ 2 be an integer W1, . . . Wm be disjoint subsets of VG having no edge
between them. Then conditional on Aλ, the random variables ∑

x∈Pλ∩(∪j∈Wl
S′

j
)

ξn,k(x, Pλ)


l=1,...,m

are independent.

Proof. Let j ∈ {1, . . . , m(T, δ1)}. At least one facet of each layer with number ≤ n must intersect
S′

j . The vertices of these facets can only be points in Lj because they are at one end of a segment
crossing S′

j . We deduce from this observation that for any p ≤ n, the construction of convp(Pλ) in
S′

j only depends on the points in Lj .
Let L(l) = ∪i∈Wl

Li for l = 1, . . . , m. The sets L(l) are unions of sets S′
j and have disjoint

interior because there is no edge between the Wl. Since
∑

x∈Pλ∩(∪j∈Wl
S′

j
) ξn,k(x, Pλ) only depends

on L(l) ∩ Pλ and the point sets (L(l) ∩ Pλ)i=1,...,m are independent conditional of Aλ, the result
follows.

4.5.3 Decomposition
This section contains the proof of Proposition 4.5.15. Using the dependency graph described

in Section 4.5.2, we obtain the asymptotic independence of the variables Zi( 3
2 δ1) conditional on

the high probability event Aλ, see Lemma 4.5.8. In Lemma 4.5.11, we prove that conditional on
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Aλ, the contribution of Z0( 3
2 δ1) is negligible. The conditioning is then removed thanks to Lemmas

4.5.13 and 4.5.14.
Our first result is the required asymptotic independence of the variables Zi( 3

2 δ1), up to condi-
tioning on the high probability event Aλ. This result is a direct consequence of Lemmas 4.5.6 and
4.5.7.

Lemma 4.5.8. Conditional on Aλ, for λ large enough the variables Zi( 3
2 δ1), for 1 ≤ i ≤ f0(K),

are independent.

Proof. We first recall that thanks to Lemma 4.5.4, the variable Zi( 3
2 δ1), 1 ≤ i ≤ f0(K), is the

sum of the scores of all points in the supersets included in pd(Vi,
3
2 δ1). Consequently, thanks

to the dependency graph property proved in Lemma 4.5.7, we obtain the required conditional
independence of the variables Zi( 3

2 δ1) as soon as we can show that there is no edge in the graph
between any superset included in pd(Vi,

3
2 δ1) and any superset included in pd(Vj , 3

2 δ1), j ̸= i. Let
us then consider two such supersets S(i) and S(j). We have

d(S(i), S(j)) ≥ d(Vi, Vj) − cδ1.

which implies in particular that for λ large enough, the Euclidean distance between S(i) and S(j)

is larger than c′δ13c∗L(λ). Thus, applying Lemma 4.5.6 after application of the respective affine
transformations ai and aj , we obtain that there is no edge between S(i) and S(j). This completes
the proof of Lemma 4.5.8.

Lemma 4.5.9 below is a purely geometrical one and basically states that most of the volume
of the sandwich A(s, T ∗, K) is located near the vertices. This will be an important ingredient for
showing the negligibility of the flat parts of the sandwich in the calculation of the expectation and
variance of Z as it implies that most of the Poisson points and subsequently facets of the layers of
the peeling should lie near the vertices of K.

The statement of Lemma 4.5.9 is in fact a slight variation around [27, display (7.13)] which itself
relies on [7, display (4.1)]. We omit the proof as the only change compared to these two references
comes from the fact that our constants T and T ∗ differ by a multiplicative constant from their
respective definitions in [27] and [12]. This easily leaves the growth rate of the volume unchanged.

Lemma 4.5.9. For δ ∈ (0, 1/2), let

A(s, T ∗, K, δ) := A(s, T ∗, K) \
f0(K)⋃

i=1
pd(Vi, δ).

When λ → ∞, we get

Vold(A(s, T ∗, K,
3
2δ1) = O(log log(λ)(log(λ))d−2+1/d/λ).

In the sequel we write for each δ ∈ (0, 1/2)

Z0(δ) :=
∑

x∈Pλ∩A(s,T ∗,K,δ)

ξn,k(x, Pλ).

The next lemma is again deterministic and provides information on the maximal degree of the
underlying dependency graph. It will be another ingredient needed to show Lemma 4.5.11. Its
proof is omitted as well as it is an exact rewriting of [12, Theorem 6.2].
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Lemma 4.5.10. The maximal degree D(λ) of the dependency graph (VG , EG) satisfies

D(λ) = O(log log(λ)6(d−1)).

Next, we derive the equivalent of [27, Lemma 3.7]. Note that the statement is slightly different,
i.e. o(Var(Z)) is replaced by o(logd−1(λ)) since in [27] the growth rate of Var[Z] was already known
and the challenge was to obtain a precise limit. Here, in the context of the subsequent layers of the
convex hull peeling, we do not even know an order of magnitude for the variance of the number of
k-faces. The proof does not differ much from [27, Lemma 3.7] but still, we write it in detail in order
to justify that the issue mentioned above is in fact harmless. It also brings to light the importance
of having the same T and T ∗ as in [27] and [12] up to a constant factor.

Lemma 4.5.11. We have E[Z0( 3
2 δ1)|Aλ] = o(logd−1(λ)) and Var[Z0( 3

2 δ1)|Aλ] = o(logd−1(λ)).

Proof. We prove the result on the conditional variance as it is the most challenging estimate and we
mention at the end how to adapt the method for the conditional expectation. For sake of simplicity,
we write Z0 for Z0( 3

2 δ1) in this proof.
(1) First, we prove that Var[Z01Aλ

] = o(logd−1(λ)). Let us write ξ̃n,k(x, Pλ) := ξn,k(x, Pλ)1Aλ
and

Px
λ := Pλ ∪ {x} for any x ∈ K. Using the Mecke formula we obtain the following decomposition

Var[Z01Aλ
] = Var[

∑
x∈Pλ(s,T ∗,K, 3

2 δ1)

ξ̃n,k(x, Pλ)] = V1 + V2

where
V1 := λ

∫
Aλ(s,T ∗,K, 3

2 δ1)
ξ̃(x, Pλ)2dx

and

V2 := λ2
∫

A(s,T,K, 3
2 δ1)2

(E[ξ̃n,k(x, Py
λ)ξ̃n,k(y, Px

λ)] − E[ξ̃n,k(x, Pλ)]E[ξ̃n,k(x, Pλ)])dxdy.

(a) We start by finding a bound for V1. Each x ∈ A(s, T ∗, K, 3
2 δ1) is in some S′

i ∈ (S′
j)m(T, 3

2 δ1)
j=1 . Let

Sx be the union of all the S′
j connected to S′

i in the dependency graph. As the cardinal of Sx is
bounded by the maximal degree in the graph, Lemma 4.5.10 implies

card({j : S′
j ⊂ Sx}) = O(log log(λ)6(d−1)).

Since only the points in Sx can be in a k-face containing x, see the definition of the edges in
the graph, and since on Aλ, each S′

j contains at most c log log(λ) points of the process, only
O(log log(λ)6(d−1)+1) points of Pλ can contribute to a k-face containing x. Using McMullen’s
bound, see [54], the number of k-faces on a set of l points contains a number of k-faces of at most
cld/2. Thus, we obtain the following bound

sup
x,y∈A(s,T ∗,K, 3

2 δ1)
|ξ̃n,k(x, Py

λ)| = O(log log(λ)(6(d−1)+1)/2). (4.39)
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Combining (4.39) and Lemma 4.5.9, we obtain

V1 = λ

∫
A(s,T ∗,K, 3

2 δ1)
E[ξ̃(x, Pλ)2]dx

= O(λVold(A(s, T ∗, K,
3
2δ1)(log log(λ)6(d−1)+1))

= o(logd−1(λ)).

(b) We now bound V2. It goes in two parts, i.e. we first treat the sum over x ∈ A(s, T ∗, K, 3
2 δ1),

y ̸∈ Sx and then the sum over x ∈ A(s, T ∗, K, 3
2 δ1), y ∈ Sx separately.

(b1) We start with the sum over x ∈ A(s, T ∗, K, 3
2 δ1), y ̸∈ Sx. In this case, as the scores of x

and y only depend on points in Sx and Sy respectively, see the beginning of the proof of Lemma
4.5.7 for an explanation, and since y ̸∈ Sx, conditional on Aλ, the scores ξn,k(x, Py

λ) and ξn,k(y, Px
λ)

are independent. Therefore

E[ξn,k(x, Py
λ)ξn,k(y, Px

λ)|Aλ] − E[ξn,k(x, Pλ)|Aλ]E[ξn,k(x, Pλ)|Aλ] = 0.

Consequently, we get

E[ξ̃n,k(x, Py
λ)ξ̃n,k(y, Px

λ)] − E[ξ̃n,k(x, Pλ)]E[ξ̃n,k(y, Pλ)]
= E[ξ̃n,k(x, Py

λ)ξ̃n,k(y, Px
λ)|Aλ]P(Aλ) − E[ξ̃n,k(x, Pλ)|Aλ]E[ξ̃n,k(y, Pλ)|Aλ]P(Aλ)2

= E[ξ̃n,k(x, Py
λ)ξ̃n,k(y, Px

λ)|Aλ]P(Aλ) − E[ξ̃n,k(x, Pλ)|Aλ]E[ξ̃n,k(y, Pλ)|Aλ]P(Aλ)(1 − P(Ac
λ))

= E[ξ̃n,k(x, Pλ)|Aλ]E[ξ̃n,k(y, Pλ)|Aλ]P(Aλ)P(Ac
λ).

Combining this last equality with (4.39), slightly modified for Pλ instead of Py
λ , Lemma 4.5.2 and

Lemma 4.5.9, we obtain

λ2
∫

A(s,T,K, 3
2 δ1)2

(E[ξ̃n,k(x, Py
λ)ξ̃n,k(y, Px

λ)]−E[ξ̃n,k(x, Pλ)]E[ξ̃n,k(x, Pλ)])1y ̸∈Sx
dxdy = o(logd−1(λ)).

(4.40)
(b2) We now deal with the case y ∈ Sx. Equation (4.39) implies that

sup
x,y

|E[ξ̃n,k(x, Py
λ)ξ̃n,k(y, Px

λ)] − E[ξ̃n,k(x, Pλ)]E[ξ̃n,k(y, Pλ)]| = O((log log(λ))(6(d−1)+1)d) (4.41)

Moreover, using [12, equation (5.4)] yields

sup
x∈A(s,T ∗,K, 3

2 δ1)
Vold(Sx) ≤ sup

x∈A(s,T ∗,K, 3
2 δ1)

card({j : S′
j ⊂ Sx}) sup

j
Vold(S′

j) = O

(
(log log(λ))(6(d−1)+1)d

λ

)
.

(4.42)
Combining (4.41), (4.42) and Lemma 4.5.9, we obtain

λ2
∫

A(s,T,K, 3
2 δ1)2

(E[ξ̃n,k(x, Py
λ)ξ̃n,k(y, Px

λ)] − E[ξ̃n,k(x, Pλ)]E[ξ̃n,k(x, Pλ)])1y∈Sx
dxdy

≤ λ2Vold(A(s, T ∗, K,
3
2δ1)) sup

x∈A(s,T ∗,K, 3
2 δ1)

Vold(Sx)(log log(λ))(6(d−1)+1)d

= o(logd−1(λ)). (4.43)
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To summarize, we have proved that V2 = o(logd−1(λ)). We have shown the same bound in (a) for
V1 and we can thus conclude that Var[Z01Aλ

] = o(logd−1).

(2) Our last step is to show that Var[Z0|Aλ] = o(logd−1(λ)). First, we notice that

Var[Z0|Aλ] = P(Aλ)−2(Var[Z01Aλ
] − E[Z2

01Aλ
](1 − P(Aλ))).

As P(Aλ) → 1, see Lemma 4.5.2, and we already know that Var[Z01Aλ
] = o(logd−1(λ)), we only

need to prove that E[Z2
01Aλ

](1 − P(Aλ)) = o(logd−1(λ)). To achieve this, we use the estimates
already obtained in Lemma 4.5.9 and (4.39). We then get

E[Z2
01Aλ

] ≤ λ2
∫

A(s,T ∗,K, 3
2 δ1)2

E[ξ̃n,k(x, Py
λ)ξ̃n,k(y, Px

λ)]dxdy

= O(λ2Vold(A(s, T ∗, K,
3
2δ1))2(log log(λ))(6(d−1)+1)d)

= O((log(λ))2(d−2)+2/d(log log(λ))(6(d−1)+1)d+2).

Using Lemma 4.5.2 again gives the desired result and concludes the proof.

To prove the result on the conditional expectation, one can adapt the proof of the upper bound for
V1 where we integrate ξ̃(x, Pλ) instead of its square.

For now, on the one hand, we have shown the additivity of Var[
∑

i Zi( 3
2 δ1)|Aλ] and the neg-

ligibility of E[Z0( 3
2 δ1)|Aλ] and Var[Z0( 3

2 δ1)|Aλ]. On the other hand, we found the asymptotics of
E[Zi(δ0)1Aλ

] and Var[Zi(δ0)1Aλ
].

The goal in the sequel is to estimate the error made when the indicator function is replaced by
the conditioning given Aλ and the error made when we remove the conditioning.

For the next step, we are going to need an additional technical result. We put U = log(λ)
λ and

U∗ = d6dU. Then we call Bλ the event that K(v ≥ U∗) ⊂ Φn(Pλ) and K(v ≤ U∗) contains at most
c logd(λ) points of Pλ. The same method as in the previous sections yields the following estimate,
which is an adaptation of [12, Lemma 5.3].

Lemma 4.5.12.
P(Bc

λ) = O(λ−3d).

The following lemma proves that the conditional expectation and the conditional variance of Z
are close to the expectation and the variance of Z respectively. The proof follows from [12, Section
8].

Lemma 4.5.13. For λ large enough we have

max{|E[Z] − E[Z|Aλ]|, |Var[Z] − Var[Z|Aλ]|} = o(logd−1(λ))

Proof. We first estimate E[Zk|Aλ] and E[Zk|Ac
λ] for k = 1, 2.

1) Estimation of E[Zk|Aλ]. On the event Aλ, the sandwich A(s, T ∗, K) contains at most c logd−1(λ) log log(λ)
points of Pλ, see Lemma 4.5.3. Using MacMullen’s bound [54], the fact that E[Zk|Aλ] = 1

P(Aλ)E[Zk1Aλ
]

and Lemma 4.5.2, we deduce that for λ large enough

E[Zk|Aλ] ≤ c logd(d−1)(λ) log log(λ)d. (4.44)
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2) Estimation of E[Zk|Ac
λ]. We use the event Bλ here, we have

E[Zk|Ac
λ] = E[Z1Bλ

|Ac
λ] + E[Z1Bc

λ
|Ac

λ]. (4.45)

On the event Bλ, there is at most c logd(λ) points in Bλ and from MacMullen’s bound [54], we
deduce that

E[Zk1Bλ
|Ac

λ] ≤ c logd2
(λ). (4.46)

The estimate of E[Zk1Bc
λ
|Ac

λ] is more difficult as on the event Bc
λ, the variable Z is not necessarily

bounded. Using the conditional total probability formula, writing Em for the event card(Pλ) = m
and MacMullen’s bound we get

E[Zk1Bc |Ac
λ] =

∞∑
m=0

E[Zk1Bc
λ
|Ac

λ ∩ Em]P(Em|Ac
λ)

≤
3λ∑

m=0
(3λ) kd

2 E[1Bc
λ
|Ac

λ ∩ Em]P(Em|Ac
λ) +

∑
m≥3λ

m
kd
2 E[1Bc

λ
|Ac

λ ∩ Em]P(Em|Ac
λ)

≤ c

 3λ∑
m=0

(3λ) kd
2 P(Bc

λ|Ac
λ ∩ Em)P(Em|Ac

λ) +
∑

m≥3λ

m
kd
2 P(Em|Ac

λ)


Then we use Lemma 4.5.12 and Lemma 4.5.2 to get

P(Bc
λ|Ac

λ ∩ Em)P(Em|Ac
λ) = P(Bc

λ ∩ Ac
λ ∩ Em)

P(Ac
λ ∩ Em)

P(Ac
λ ∩ Em

P(Ac
λ) ≤ P(Bc

λ)
P(Ac

λ) ≤ cλ−3d+1.

Thus we have

E[Zk1Bc
λ
|Ac

λ] ≤ c

λ−2d+1 +
∑

m≥3λ

m
kd
2
P(Em)
P(Ac

λ)


As P(Ac

λ) goes to 1 as λ goes to infinity, we deduce, after an estimation of
∑

m≥3λ
m

kd
2 P(Em) that

we leave to the reader, that for λ large enough

E[Zk1Bc |Ac
λ] ≤ cλ−2d+1. (4.47)

Combining (4.45), (4.46) and (4.47), we obtain

E[Zk|Ac
λ] ≤ c logd2

(λ). (4.48)

We are now able to prove the result on the expectation. For any positive random variable ζ and
event A, we appeal to the following result,

|E[ζ] − E[ζ|A]| ≤ (E[ζ|A] + E[ζ|Ac])P(Ac) (4.49)

which is proved in [12, Claim 8.3]. Applying it to our context, we get

|E[Z] − E[Z|Aλ]| ≤ (E[Z|Aλ] + E[Z|Ac
λ])P(Ac

λ).
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From the upper bound P(Ac
λ) ≤ c log−4d2

(λ) given by Lemma 4.5.2 and equations (4.44) and (4.48),
we deduce that

|E[Z] − E[Z|Aλ]| ≤ c log−3d2
(λ) = o(logd−1(λ)).

Let us prove the result about the variance. We have

|Var[Z] − Var[Z|Aλ]| = |E[Z2] − E[Z]2 − (E[Z2|Aλ] − E[Z|Aλ]2)|
≤ |E[Z2] − E[Z2|Aλ]| + |E[Z]2 − E[Z|Aλ]2|
= |E[Z2] − E[Z2|Aλ]| + |E[Z] − E[Z|Aλ]||E[Z] + E[Z|Aλ]|
≤ |E[Z2] − E[Z2|Aλ]| + |E[Z] − E[Z|Aλ]|(|E[Z] − E[Z|A]| + E[Z|Aλ]).

The first term of this last line is bounded by log−3d2
(λ), thanks to (4.49) applied to Z2, Lemma

4.5.2 and the previous estimates for k = 2. As we know that |E[Z] − E[Z|Aλ]| ≤ c log−3d2
(λ) and

E[Z|Aλ] ≤ c logd2
(λ), the second term is also a o(logd−1(λ)) and the result follows.

Next we estimate the difference between the expectation (resp. variance) of the variable Zi(δ0)
conditional on Aλ and the expectation (resp. variance) of Zi(δ0)1Aλ

. Notice that this concerns
Zi(δ0) and not the variable Zi( 3

2 δ1) as opposed to most of the previous lemmas of this subsection.

Lemma 4.5.14. For every 1 ≤ i ≤ f0(K) we have

|E[Zi(δ0)|Aλ] − E[Zi(δ0)1Aλ
]| = o(logd−1(λ))

and
|Var[Zi(δ0)|Aλ] − Var[Zi(δ0)1Aλ

]| = o(logd−1(λ)).

Proof. We only prove the result on the variance. Let 1 ≤ i ≤ f0(K).
The key is to use the formula

Var[Zi(δ0)|Aλ] − Var[Zi(δ0)1Aλ
] =

(
P(Aλ)−2 − 1

)
Var[Zi(δ0)1Aλ

] − P(Aλ)−2P(Ac
λ)E[Zi(δ0)21Aλ

],

which comes from

Var[Zi(δ0)|Aλ] = P(Aλ)−2(Var[Zi(δ0)1Aλ
] − E[Zi(δ0)21Aλ

](1 − P(Aλ))).

Theorem 4.2.3 and Proposition 4.4.9 imply that
(
P(Aλ)−2 − 1

)
Var[Zi(δ0)1Aλ

] = o(logd−1(λ)) so
we only need to study P(Aλ)−2P(Ac

λ)E[Zi(δ0)21Aλ
]. On the event Aλ, card(Pλ ∩ A(s, T ∗, K)) ≤

c logd−1(λ) log log(λ), see Lemma 4.5.3, and only these points can contribute to a k-face of ∂convn(Pλ).
Using MacMullen’s bound [54] we deduce that

E[Zi(δ0)21Aλ
] ≤ c log log(λ)d logd(d−1)(λ).

As P(Ac
λ) ≤ c log−4d2

(λ), see Lemma 4.5.2, we get P(Aλ)−2P(Ac
λ)E[Zi(δ0)21Aλ

] = o(1) and the
result follows.
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We are now finally able to prove the main result of this section, which yields the decomposi-
tion of E[Z] and Var[Z] into the sum of the variables E[Zi(δ0)1Aλ

] and the sum of the variables
Var[Zi(δ0)1Aλ

] respectively, plus a negligible term. There is a small technical issue that needs to be
addressed. Some of the results of this section concern the variables Zi( 3

2 δ1). As the transformation
in the corner is applied to Q0 = [0, δ0]d, we need to replace Zi( 3

2 δ1) by Zi(δ0) and estimate the
error.

Proposition 4.5.15. When λ → ∞, we get

E[Z] =
∑

Vi∈VK

E[Zi(δ0)1Aλ
] + o(logd−1(λ)).

and
Var[Z] =

∑
Vi∈VK

Var[Zi(δ0)1Aλ
] + o(logd−1(λ)).

Proof. We focus on the variance, the proof for the expectation is similar and actually easier. Our
first step is to prove that the variances conditional on Aλ of Zi( 3

2 δ1) and Zi(δ0) are close to each
other. More precisely, we show that for every i

Var[Zi(
3
2δ1)|Aλ] = Var[Zi(δ0)|Aλ] + o(logd−1(λ)). (4.50)

The idea is to write the difference Zi( 3
2 δ1) − Zi(δ0) as a sum of scores in the flat part for a

δ′
1 that is slightly smaller than δ0 and allows the construction of dyadic Macbeath region in the

same spirit as what we have done for 3
2 δ1. As for 3

2 δ1, the scores in this flat part are negligible.
We introduce δ′

1 = r′(λ, d)δ0 where r′(λ, d) ∈ (3−1/d, 1] is chosen so that log3(T/δ′
1

d) ∈ Z. We
claim that such a δ′

1 exists and it can be checked by looking for a condition on r′(λ, d) to have
log3(T/δ′

1
d) = ⌊log3(T/δd

0)⌋ + 1. Methods similar to the proof of Lemma 4.5.11 show that

Var[Z0(1
2δ′

1)|Aλ] = o(logd−1(λ))

and more generally for any subset B of Pλ(s, T ∗, K, 1
2 δ′

1), we have

Var[
∑
x∈B

ξn,k(x, Pλ)|Aλ] = o(logd−1(λ)). (4.51)

As for any i the set Bi := (pd(Vi,
3
2 δ1) \ pd(Vi, δ0)) ∩ A(s, T ∗, K) is a subset of Pλ(s, T ∗, K, 1

2 δ′
1), we

deduce that

Var[Zi(
3
2δ1) − Zi(δ0)|Aλ] = Var[

∑
x∈Bi

ξn,k(x, Pλ)|Aλ] = o(logd−1(λ)). (4.52)

Moreover

Cov(Zi(
3
2δ1) − Zi(δ0), Zi(δ0)|Aλ) ≤

√
Var[Zi(

3
2δ1) − Zi(δ0)|Aλ]

√
Var[Zi(δ0)|Aλ]. (4.53)

From Lemma 4.5.14 and Proposition 4.4.9 we know that Var[Zi(δ0)|Aλ] = O(logd−1(λ)). Therefore,
combining this, (4.52) and (4.53) yields (4.50).
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We are now able to prove the lemma. First, we use Lemma 4.5.13 to reduce to the variance of
Z conditional on Aλ. We get

Var[Z] = Var[Z|Aλ] + o(logd−1(λ)) = Var[Z0(3
2δ1) +

f0(K)∑
i=1

Zi(
3
2δ1)|Aλ] + o(logd−1(λ)).

Next, we want to remove Z0 from the variance. We can write

Var[Z0(3
2δ1)+

f0(K)∑
i=1

Zi(
3
2δ1)|Aλ] = Var[Z0(3

2δ1)|Aλ]+Var[
f0(K)∑

i=1
Zi(

3
2δ1)|Aλ]+2Cov(

f0(K)∑
i=1

Zi(δ1), Z0(δ1)|Aλ).

(4.54)
Lemma 4.5.11 implies that Var[Z0( 3

2 δ1)|Aλ] = o(logd−1(λ)). Additionally, we use the Cauchy-
Schwarz inequality, Lemma 4.5.8, (4.50), Lemma 4.5.14 and Proposition 4.4.9 to obtain

Cov(
f0(K)∑

i=1
Zi(

3
2δ1), Z0(δ1)) ≤

Var[
f0(K)∑

i=1
Zi(

3
2δ1)|Aλ]

1/2(
Var[Z0(3

2δ1)|Aλ]
)1/2

=

f0(K)∑
i=1

Var[Zi(
3
2δ1)|Aλ]

1/2 (
o(logd−1(λ))

)1/2

=

f0(K)∑
i=1

Var[Zi(δ0)|Aλ] + o(logd−1(λ))

1/2 (
o(logd−1(λ))

)1/2

=

f0(K)∑
i=1

Var[Zi(δ0)1Aλ
] + o(logd−1(λ))

1/2 (
o(logd−1(λ))

)1/2

=
(

O(logd−1(λ))
)1/2 (

o(logd−1(λ))
)1/2

= o(logd−1(λ)) (4.55)

Inserting Var[Z0(δ1)|Aλ] = o(logd−1(λ)) and (4.55) into (4.54) gives

Var[Z] = Var[Z0(3
2δ1) +

f0(K)∑
i=1

Zi(
3
2δ1)|Aλ] = Var[

f0(K)∑
i=1

Zi(
3
2δ1)|Aλ] + o(logd−1(λ)).

Finally, we combine this equation with the additivity of the variance for Zi(δ1) implied by Lemma
4.5.8, (4.50) and Lemma 4.5.14 to obtain

Var[Z] =
f0(K)∑

i=1
Var[Zi(

3
2δ1)|Aλ] + o(logd−1(λ)) =

f0(K)∑
i=1

Var[Zi(δ0)|Aλ] + o(logd−1(λ))

=
f0(K)∑

i=1
Var[Zi(δ0)1Aλ

] + o(logd−1(λ))

which is the desired result.
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4.6 Proof of the main results
Proof of Proposition 4.4.9. This proof is an adaptation of the proof of [27, Theorem 2.1]. As we
have already proved the same kind of required results of stabilization and domination adapted to
the n-th layer in Section 4.4 and an analogous sandwiching result in Section 4.2, we merely have to
check that no new problem arises.

Appealing to the volume-preserving affine transformations ai introduced at the beginning of
Section 4.3 are volume-preserving, we claim that we only need to prove the result for a vertex
artificially placed at 0 as the proof works in the exact same way for the other vertices. In the lines
below, the label i refers to the actual label of the vertex 0.

1) Let us first prove the result on the expectation. Applying the transformation T (λ), Mecke’s
formula, the fact that ξ

(λ)
n,k((v, h), P(λ))1Aλ

= ξ̂
(λ)
n,k((v, h), P(λ))1Aλ

, see (4.25), and the translation
invariance of ξ̂

(λ)
n,k we have

E[Zi1Aλ
] =

∫
Q0

E[ξn,k(x, Pλ)1Aλ
]λdx =

√
d

∫
(v,h)∈Wλ

E[ξ̂(λ)
n,k((v, h), Wλ)1Aλ

]edhdhdv

=
√

d

∫
(v,h)∈Wλ

E[ξ̂(λ)
n,k((0, h)), P ∩ (Wλ − v))1Aλ

]edhdhdv]

Then we apply the change of variable u = ( 1
d log(λ))−1v, dv = d−(d−1) logd−1(λ)du to get

E[Zi1Aλ
]

logd−1(λ)
= d−d+3/2

∫
(u,v)∈W ′

λ

E[ξ̂(λ)
n,k((0, h), P ∩ (W ′

λ − u) log1/d(λ))1Aλ
]edhdhdu (4.56)

where W ′
λ = {(( 1

d log(λ))−1v, h) : (v, h) ∈ Wλ} and writing for any s ∈ R and B ⊂ Rd−1 × R
sB := {(sv, h) : (v, h) ∈ B}.

Now our goal is to use Lebesgue’s dominated convergence theorem. The equation of W ′
λ is

li(u) ≤
(

1 + log(δ0)−h

log1/d(λ)

)
for all 1 ≤ i ≤ d. Therefore the limit of 1W ′

λ
is the indicator function of

the cylinder V ∩ {(x1, . . . , xd) ∈ Rd : xi ≤ 1 for all i} ×R. The base of this cylinder is exactly S(d)
defined at (4.26).

As (W ′
λ − u) log1/d(λ) goes to Rd as λ → ∞, we can show that

lim
λ→∞

E[ξ̂n,k((0, h), P ∩ (W ′
λ − u) log1/d(λ)] = E[ξ̂(∞)

n,k ((0, h), P)

with a small modification of the proof of Lemma 4.4.6. Lemma 4.4.5 shows that E[ξ̂n,k((0, h), P ∩
(W ′

λ − u) log1/d(λ)]edh is dominated by an integrable function on Rd−1 × R. Using Lebesgue’s
dominated convergence theorem, we get

lim
λ→∞

∫
(u,v)∈W ′

λ

E[ξ̂(λ)
n,k((0,h), P ∩ (W ′

λ − u) log1/d(λ))]edhdhdu

= Vold(S(d))
∫
R
E[ξ(∞)

n,k ((0, h), P)]edhdh. (4.57)
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In view of (4.56), we only need to get rid of the indicator function of Aλ. By the Cauchy-Schwarz
inequality and a moment bound similar to the one in Lemma 4.4.5, we have uniformly in u∫

R
E[ξ̂(λ)

n,k((0, h), P ∩ (W ′
λ − u) log1/d(λ))1Ac

λ
]edhdh

≤
∫
R
(E[ξ̂(λ)

n,k((0, h), P ∩ (W ′
λ − u) log1/d(λ))2])1/2P(Ac

λ)1/2edhdh

≤ c log−2d2
(λ).

Thus combining this with (4.56), we obtain

E[Zi1Aλ
]

logd−1(λ)
= lim

λ→∞
d−d+3/2

∫
(u,v)∈W ′

λ

E[ξ̂(λ)
n,k((0, h), P ∩ (W ′

λ − u) log1/d(λ))]edhdhdu + o(1).

Using (4.57) we obtain the result.

2) Next, let us prove the limit of the variance. As for the expectation, we begin with an application
of Mecke’s formula. We get

Var[Zi1Aλ
] = I1(λ) + I2(λ).

where
I1(λ) =

∫
Q0

E[ξn,k(x, Pλ)21Aλ
]λdx

and

I2(λ) :=
∫

Q2
0

(E[ξn,k(x, Pλ ∪ {y})E[ξn,k(y,Pλ ∪ {x})1Aλ
]

− E[ξn,k(x, Pλ)1Aλ
]E[ξn,k(y, Pλ)1Aλ

])λ2dxdy.

A slight adaptation of the proof of the convergence of the expectation shows that

lim
λ→∞

I1(λ)
logd−1(λ)

= d−d+3/2Vold(S(d))
∫
R
E[ξn,k(x, Pλ)2]edhdh.

It remains to find a limit for I2(λ), rescaled by logd−1(λ). Let us write

cξ̂
(λ)
n,k

1Aλ ((v0, h0), (v1, h1)) := E[ξ̂(λ)
n,k((v0, h0),P(λ) ∪ {(v1, h1)})ξ̂(λ)

n,k((v1, h1), P(λ) ∪ {(v0, h0)})1Aλ
]

− E[ξ̂(λ)
n,k((v0, h0), P(λ))1Aλ

]E[ξ̂(λ)
n,k((v1, h1), P(λ))1Aλ

].

Applying the transformation T (λ), we can rewrite I2(λ) as

I2(λ) = d

∫
(v0,h0)∈Wλ

∫
(v1,h1)∈Wλ

cξ̂
(λ)
n,k

1Aλ ((v0, h0), (v1, h1))edh0edh1dh0dh1dv0dv1.

The translation invariance of ξ̂ yields

I2(λ) = d

∫
(v0,h0)∈Wλ

∫
(v1,h1)∈Wλ

cξ̂
(λ)
n,k

1Aλ ((v0, h0), (v1−v0, h1), P∩(Wλ−v0))edh0edh1dh0dh1dv0dv1.
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As for the expectation, we make the change of variable u = ( 1
d log(λ))−1v0, dv0 = d−(d−1) logd−1(λ)du.

We obtain
I2(λ)

logd−1(λ)

= d−d+2
∫

(u,h0)∈W ′
λ

∫
(v1,h1)∈Wλ

cξ̂
(λ)
n,k

1Aλ ((v0, h0), (v1 − 1
d

log(λ)u, h1), P ∩ (Wλ − 1
d

log(λ)u))

edh0edh1dh0dh1dv0dv1.
(4.58)

We determine the limit of the integral above in four steps (i)–(iv). First, we take the limit of the
integration domain, then we remove the indicator of Aλ, then we find the limit of the integrand
and finally, we bound it to finally apply Lebesgue’s dominated convergence theorem.

(i) As in part 1), we have
lim

λ→∞
1(u,h0)∈W ′

λ
1(v1,h1)∈Wλ

= 1u∈S(d).

(ii) We now justify that we can remove the indicator of Aλ in cξ̂
(λ)
n,k

1Aλ with an error that goes
to 0 as λ goes to infinity. We assert that with a small modification of the proof of Lemma 4.4.5, we
can show that

|cξ̂
(λ)
n,k

1Aλ

(
(0, h0), (v1, −1

d
log(λ)u, h1), P ∩ (Wλ − 1

d
log(λ)u)

)
− c

(λ)
n,k

(
(0, h0), (v1, −1

d
log(λ)u, h1), P ∩ (Wλ − 1

d
log(λ)u)|

)
ed(h0+h1)

is bounded by P(Ac
λ)G(h0, v1, h1) where G is an integrable function with respect to (h0, v1, h1) ∈

R×Rd−1 ×R that does not depend on u. As a result, using Lemma 4.5.2, we get that the integrated
error is bounded uniformly in u by∫

h0∈R

∫
(v1,h1)∈Wλ

P(Ac
λ)1/4G(h0, v1, h1)dh0dv1dh1 ≤ c log−d2

(λ) = o(logd−1(λ)).

Thus we obtain that removing the indicator function of Aλ in (4.58) does not change the asymp-
totics.

(iii) For any fixed u and for all (v1, h1) ∈ Wλ, we make the change of variable v′ = v1 − 1
d log(λ)u,

dv′ = dv1. This changes

c
(λ)
n,k

(
(0, h0), (v1 − 1

d
log(λ)u, h1), P ∩ (W ′

λ − 1
d

log(λ)u)
)

into
c

(λ)
n,k

(
(0, h0), (v′, h1), P ∩ (W ′

λ − u) log1/d(λ)
)

ed(h0+h1).

By small modifications of Lemma 4.4.8 and Lemma 4.4.7, we can show that it is bounded uniformly
in λ by an integrable function of h0, v′ and h1 and it converges to c

(∞)
n,k ((0, h0), (v1, h1), P) as λ goes
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to infinity.

(iv) The change of variable v′ = v1− 1
d log(λ)u transforms the integration domain Wλ into {(v′, h0) ∈

(W ′
λ − u) log1/d(λ)}, which increases up to Rd−1 × R. Combining this with points (i) to (iii) and

the dominated convergence theorem, we finally obtain

lim
λ→∞

I2(λ)
logd−1(λ)

= d−d+2Vold(S(d))
∫
Rd−1×R

∫
R

c
(∞)
n,k ((0, h0), (v′, h1))ed(h0+h1)dh0d(v′, h1).

Proof of Theorem 4.3.6. We only prove the result on the variance as the proof of the expectation
is analogous. From Proposition 4.5.15, we deduce that

Var[Z] =
∑

Vi∈VK

Var[Zi(δ0)1Aλ
] + o(logd−1(λ)).

Combining this with the rewriting of the limit

lim
λ→∞

Var[Zi(δ0)1Aλ
]

logd−1(λ)
= I1(∞) + I2(∞)

that is obtained in Proposition 4.4.9, we get

lim
λ→∞

Var[Z] = f0(K)(I1(∞) + I2(∞)).

4.7 Concluding remarks
To conclude, we give some possible extensions of our results and related open problems.
— Positivity of the limiting constants. While we have proved that the expectation and variance

of Nn,k,λ

logd−1(λ) converge to constants, we did not show that these constants do not vanish. The
renormalization logd−1(λ) could theoretically be too large. However, we believe it is the
correct renormalization as we think that the order of magnitude is the same as for the first
layer and this is corroborated by our simulations. An adaptation of the methods of [23,
Section 5] might be possible.

— Central limit theorem Some of the methods of Section 4.5 are direct adaptations of those
developped in [12] in order to obtain a central limit theorem for the volume and the number
of k-faces of the convex hull. In particular, we use the same dependency graph. As a
consequence, we expect to be able to find a central limit theorem for the number of k-faces
of the n-th layer in a near future by adapting the remaining part of their methods.

— Intrinsic volumes. The functionals under investigation are currently limited to the number
of k-faces of the n-th layer. In the case of the first layer in a simple polytope, limiting
expectation and variance for the defect volume of conv(Pλ) have been derived as well in [7]
and [27] respectively. In the case of the unit ball, we obtained in [23] the asymptotics for
the defect intrinsic volume of convn(Pλ) for any fixed n. An interesting perspective would
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then be to do the same in the case of the convex hull peeling in a (simple) polytope. We
expect the defect volume corresponding to the n-th layer to be decomposed as a sum of
scores in a similar way as in [27] for the convex hull so we think the method developed in
this paper may extend to the defect volume. The case of the defect intrinsic volumes of order
k ∈ {1, . . . , (d − 1)} seems more intricate, especially because in the case of the convex hull,
the problem remains open for both the expectation and the variance. To the best of our
knowledge, only the expectation for the defect mean width, i.e. for k = 1, has been derived
in [67].

— Monotonicity. Theorem 4.1.1 induces a natural monotonicity problem, i.e. how do the
constants Cn,k,d evolve with n ? We may start with Cn,0,d, i.e. the expected renormalized
number of extreme points on the n-th layer. We recall that this particular issue was already
raised in [23, Section 6] in the context of the convex hull peeling in the unit ball. It turns out
that our simulations show a significant difference between these two models regarding the
behaviour of Cn,0,d. While Cn,0,d seems to be decreasing with n in the case of the unit ball, it
looks like it is increasing up to a certain point and then decreasing in the case of a polytope.
We assert that the two behaviors are in fact consistent with our current knowledge of the
convex hull peeling. Indeed, the expected total number of layers estimated by Dalal in [33]
and then more precisely by Calder and Smart in [22] is proved to behave like Θ(λ2/(d+1)) in
any case, i.e. whether K is smooth or is a polytope. In the particular case of the polytope,
we know that the first layers are occupied by (at most) Θ(logd−1(λ)) Poisson points while
the expected total number of Poisson points is λVold(K). Consequently, that regime of
Θ(logd−1(λ)) could not be shared by all the Θ(λ2/(d+1)) layers up to the last one. We know
that Nn,k,λ has to increase and reach, for some n depending on λ, a phase transition where
it starts to grow polynomially fast. That phase transition should probably occur when n
is proportional to λ2/(d+1), i.e. in the regime investigated in [22]. This heuristic reasoning
would imply the increase of the constant Cn,0,d up to the phase transition. After the point
when Nn,0,λ reaches the polynomial regime, we think that the Markov property of the peeling
construction implies that the subsequent layers should behave in the same way as for the
convex hull peeling in the unit ball, i.e. we expect a decrease of Nn,0,λ. This is indeed what
we observe in our simulations.

— Other regimes. In view of the previous point, it appears that a change in the growth rate
of Nn,0,λ should occur. We expect the mean of Nn,0,λ to grow at most like Θ(logd−1(λ))
when n is fixed from the start and does not vary with λ, because of Theorem 4.1.1, then
to grow like Θ(λ

d−1
d+1 ) for the last layers, i.e. when n is proportional to λ2/(d+1). This last

prediction comes from both the conjecture (4.4) stated by Calder and Smart [22] and our
own simulations. We would then wish to determine, if possible, the specific ‘time’ n when
the phase transition occurs and the behavior of the expectation of Nn,0,λ when n = f(λ)
reaches all the intermediate regimes between f being constant and f(λ) = cλ2/(d+1). In
fact, this would mean being able to describe Nn,0,λ as a random process depending on time
n = f(λ).

— Depoissonization. In this paper, the input set has been assumed to be a Poisson point
process, i.e. the total number of i.i.d. uniform points in K is Poisson distributed, which
involves notably nice independence properties and Mecke’s formula. When the input set is a
binomial point process, i.e. the total number of points is deterministic, the formula for the
limiting expectation of the number of k-faces of the convex hull is known to depoissonize [7].
We expect that Theorem 4.1.1 should depoissonize as well, even though there is no mention
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in [27] of a binomial version of the limiting variance in the case of the convex hull. Methods
of depoissonization in the spirit of [25, Theorem 1.2] and [28, Theorem 1.1] could be relevant
here.

— Position of the subsequent layers. Lemma 3.3.2 provides a rough estimate of the distribution
tail of the maximal height of the n-th layer in the rescaled picture. We did not try to
discuss how this height should depend on n even though we expect it to be asymptotically
proportional to n, in the spirit of the results of Calder and Smart for the parabolic hull
peeling [22, Section 2]. This would first require to improve Lemma 3.3.2 by taking t and the
constant c therein depending on n.
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