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Résumé

Nous considérons des inégalités variationnelles écrites sous forme d’équations aux dérivées par-
tielles avec contraintes de complémentarité non linéaires. La discrétisation de tels problèmes
conduit à des systèmes discrets non linéaires et non différentiables qui peuvent être résolus en em-
ployant une méthode de linéarisation itérative de type semi-lisse comme, par exemple, l’algorithme
de Newton-min. Notre objectif dans cette thèse est de concevoir une approche simple de régu-
larisation qui consiste à approximer le problème par un système d’équations non linéaires lisses
(différentiables). Dans ce contexte, une application directe des méthodes classiques de type New-
ton est possible. Nous construisons des estimations d’erreur a posteriori qui sont à la base d’un
algorithme de Newton régularisé, inexact et adaptatif, pour une solution des problèmes consid-
érés. Nous présentons d’abord la stratégie dans un cadre discret. Ensuite, nous développons la
méthode pour le problème modèle du contact entre deux membranes. Enfin, nous introduisons
une application à un modèle industriel d’écoulement multiphasique compositionnel.

Dans le chapitre 1, nous nous intéressons aux systèmes algébriques non linéaires avec des con-
traintes de complémentarité provenant de discrétisations numériques d’EDP avec problèmes de
complémentarité non linéaires. Nous produisons une approximation différentiable d’une fonction
non différentiable, en reformulant les conditions de complémentarité. Le système non linéaire
qui en résulte est résolu en utilisant la méthode de Newton, ainsi qu’un solveur algébrique
linéaire itératif pour résoudre approximativement le système linéaire. Nous établissons une borne
supérieure sur le résidu du système considéré et concevons des estimateurs d’erreur a posteriori
identifiant les composantes d’erreur de régularisation, de linéarisation et algébrique. Ces ingrédi-
ents sont utilisés pour formuler des critères d’arrêt efficaces pour les solveurs non linéaires et al-
gébriques. Avec la même méthodologie, une méthode adaptative de points intérieurs est proposée.
Nous appliquons notre algorithme au système algébrique d’inégalités variationnelles décrivant le
contact entre deux membranes et à un problème d’écoulement diphasique. Nous fournissons une
comparaison numérique de notre approche avec une méthode de Newton semi-lisse, éventuelle-
ment combinée avec une stratégie de path-following, et une méthode non-paramétrique de points
intérieurs.

Dans le chapitre 2, en dimension infinie, nous considérons comme problème modèle le problème
de contact entre deux membranes. Nous utilisons une discrétisation par la méthode des volumes
finis et appliquons l’approche de régularisation proposée dans le chapitre 1 pour lisser la non-
différentiabilité dans les contraintes de complémentarité. La résolution du système régularisé non
linéaire qui en résulte est à nouveau réalisée grâce à la méthode de Newton, en combinaison
avec un solveur algébrique itératif pour la solution du système linéaire résultant. Nous concevons
des reconstructions de potentiel H1-conformes ainsi que des reconstructions de flux équilibrés
discrets H(div)-conformes. Nous prouvons une borne supérieure pour l’erreur totale par la norme
d’énergie et concevons des estimateurs de discrétisation, de régularisation, de linéarisation et
d’algèbre linéaire reflétant les erreurs provenant de la discrétisation en volumes finis, du lissage
de la non-différentiabilité, de la linéarisation par la méthode de Newton et du solveur algébrique,
respectivement. Cela nous permet d’établir des critères d’arrêt adaptatifs pour arrêter les différents
solveurs dans l’algorithme proposé et de concevoir un algorithme adaptatif pilotant ces quatre
composantes.

Dans le chapitre 3, nous considérons un écoulement multiphasique compositionnel (huile, gaz
et eau) avec des transitions de phase dans un milieu poreux. Une discrétisation par la méthode des
volumes finis produit un système algébrique non linéaire et non différentiable que nous résolvons en
utilisant notre technique de Newton régularisé et inexacte. En suivant le processus du chapitre 1,
nous construisons des estimateurs a posteriori en majorant la norme du résidu du système discret,
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ce qui résulte des critères adaptatifs que nous incorporons dans l’algorithme employé.
Tout au long de cette thèse, des expériences numériques confirment l’efficacité de nos es-

timations. En particulier, nous montrons que les algorithmes adaptatifs développés réduisent
significativement le nombre global d’itérations par rapport aux méthodes existantes.

Mots-clés : Contraintes de complémentarité non linéaires, inégalité variationnelle elliptique, prob-

lème de contact, écoulement multiphasique compositionnel, méthode des volumes finis, méthode

de Newton, méthode de Newton semi-lisse, stratégie de path-following, régularisation, méthode

de points intérieurs, flux équilibré, estimation d’erreur a posteriori, adaptivité, critères d’arrêt



Abstract

We consider variational inequalities written in the form of partial differential equations with non-
linear complementarity constraints. The discretization of such problems leads to nonlinear non-
differentiable discrete systems that can be solved employing an iterative linearization method of
semismooth type like, e.g., the Newton-min algorithm. Our goal in this thesis is to conceive a
simple smoothing approach that involves approximating the problem as a system of nonlinear
smooth (differentiable) equations. In this setting, a direct application of classical Newton-type
methods is possible. We construct a posteriori error estimates that lie at the foundation of an
adaptive inexact smoothing Newton algorithm for a solution of the considered problems. We first
present the strategy in a discrete framework. Then, we develop the method for the model prob-
lem of contact between two membranes. Last, an application to a compositional multiphase flow
industrial model is introduced.

In Chapter 1, we are concerned about nonlinear algebraic systems with complementarity con-
straints arising from numerical discretizations of PDEs with nonlinear complementarity problems.
We produce a smooth approximation of a nonsmooth function, reformulating the complementarity
conditions. The ensuing nonlinear system is solved employing the Newton method, together with
an iterative linear algebraic solver to approximately solve the linear system. We establish an upper
bound on the considered system’s residual and design a posteriori error estimators identifying the
smoothing, linearization, and algebraic error components. These ingredients are used to formulate
efficient stopping criteria for the nonlinear and algebraic solvers. With the same methodology,
an adaptive interior-point method is proposed. We apply our algorithm to the algebraic system
of variational inequalities describing the contact between two membranes and a two-phase flow
problem. We provide numerical comparison of our approach with a semismooth Newton method,
possibly combined with a path-following strategy, and a nonparametric interior-point method.

In Chapter 2, in an infinite-dimensional framework, we consider as a model problem the con-
tact problem between two membranes. We employ a finite volume discretization and apply the
smoothing approach proposed in Chapter 1 to smooth the non-differentiability in the comple-
mentarity constraints. The resolution of the arising nonlinear smooth system is again realized
thanks to the Newton method, in combination with an iterative algebraic solver for the solution of
the resulting linear system. We design H1-conforming potential reconstructions as well as H(div)-
conforming discrete equilibrated flux reconstructions. We prove an upper bound for the total error
in the energy norm and conceive discretization, smoothing, linearization, and algebraic estimators
reflecting the errors stemming from the finite volume discretization, the smoothing of the non-
differentiability, the linearization by the Newton method, and the algebraic solver, respectively.
This enables us to establish adaptive stopping criteria to stop the different solvers in the proposed
algorithm and design adaptive algorithm steering all these four components.

In Chapter 3, we consider a compositional multiphase flow (oil, gas, and water) with phase
transitions in a porous media. A finite volume discretization yields a nonlinear non-differentiable
algebraic system which we solve employing our inexact smoothing Newton technique. Following
the process of Chapter 1, we build a posteriori estimators by bounding the norm of the discrete
system’s residual, resulting in adaptive criteria that we incorporate in the employed algorithm.

Throughout this thesis, numerical experiments confirm the efficiency of our estimates. In
particular, we show that the developed adaptive algorithms considerably reduce the overall number
of iterations in comparison with the existing methods.

Keywords: nonlinear complementarity constraints, elliptic variational inequality, contact prob-

lem, compositional multiphase flow, finite volume method, Newton method, semismooth Newton
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method, path following strategy, smoothing, interior-point method, equilibrated flux, a posteriori

error estimate, adaptivity, stopping criteria
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Introduction

“As far as the laws of mathematics
refer to reality, they are not certain,

and as far as they are certain,
they do not refer to reality.”

- Albert Einstein

The natural need to discover the world around us, to understand it better, and to make
accurate predictions is a human need as old as time. Simulating numerous phenomena
requires a multidisciplinary process consisting in our vision of five major stages.

The first step is to establish the physical model that describes the essential charac-
teristics of the underlying physical phenomena. Then, through mathematical modeling,
the problem is expressed as a (nonlinear) partial differential equation (PDE) describing
the setup. The developed model is then analyzed for existence, uniqueness, stability, and
regularity.

A specific category of PDEs that model a wide range of real life problems is that
involving (nonlinear) complementarity constraints, which are a set of inequalities and
equalities expressing the complementary relationship between the variables of the mod-
eled phenomena. In the vast majority of the cases, these equations cannot be solved
analytically. Therefore, the third step is to employ a numerical discretization method al-
lowing to approximate the mathematical model by a discrete problem whose solution lies
in a finite-dimensional space, with the basic properties of both the physical and math-
ematical models. The nonlinearities that may occur in the arising discrete system are
typically treated by an iterative linearization method. This yields an algebraic linear sys-
tem that can be solved inexactly (on purpose) by means of an iterative algebraic solver,
see Figure 1.

The above methods are implemented in a computer algorithm that provides com-
putable approximations to the solutions of the considered systems. An important feature
in numerical simulations is the evaluation of the accuracy of the numerical method. For
this purpose, it is important to identify the magnitude of the error between the unavail-
able exact solution and its approximation, and thus between the reality and the numerical
simulation, as well as the nature of this error. This is possible through a posteriori error
estimates. Here, the art of adapting the algorithms, while taking into consideration the
accuracy, efficiency, robustness, and computational cost, represents the last step of the
numerical simulation for any considered problem.

The contributions of this thesis lie in the heart of the last two steps of the process
detailed above. In particular, this work focuses on introducing a-posteriori-steered adap-
tive algorithm for the resolution of nonlinear algebraic systems stemming from numerical
discretizations of nonlinear complementarity problems. In particular, we first consider
an academic model problem given by a system of variational inequalities describing the
contact between two membranes. Then, we tackle the industrial problem of composi-
tional multiphase flow in porous media, in which the phase transitions are modeled by a
variational inequality.



2 Introduction

Physical phenomena

Mathematical modeling

Numerical discretization method

Iterative linearization method

Iterative algebraic solver

Figure 1: Possible stages of the numerical simulation process for a physical phenomena.

i Context and applications

Reservoir simulation aims at predicting the flow of fluids through porous media. Computer
models are used to optimize the management of hydrocarbon resources under various op-
erating conditions. We are often interested in simultaneous compositional flow involving
two or more fluid phases, typically, oil, water, or gas. From a mathematical standpoint,
such models are governed by nonlinear coupled systems of partial differential equations
and complementarity constrains. The numerical resolution of the underlying model is
tackled by engineers at IFPEn for the EOR (enhanced oil recovery) techniques. Also
known as tertiary recovery, it consists in injecting a miscible gas (CO2), or other chem-
ical products, into the subsoil, in order to increase the recovery rate, i.e., the volume of
hydrocarbons extracted from the petroleum reservoir. Studies of such models are nowa-
days also oriented to green technologies, such as carbon dioxide sequestration in deep
saline aquifers or depleted oil gas reservoirs, see Figure 2, and radioactive waste storage
in geological layers.

When considering compositional multiphase flows in porous media, the central dif-
ficulty lies in handling the phase transitions, i.e., the appearance and disappearance of
phases for various components. Several possible formulations developed in reservoir sim-
ulation industry to treat such problem can be found in [42, 144], see also the references
therein. The most commonly used one is the natural variables formulation. Introduced
by Coats [51], it considers as unknowns the natural variables, that are pressures, satu-
rations, and molar fractions of the present phases. This formulation, in which the phase
apparition is detected through a flash calculation [147], appears stable with respect to
phase transitions. Nevertheless, it has the inconvenience of having to constantly adjust
the set of present phases and the associated unknowns and equations at each point of
the time-space domain. Practically, this approach is considerably expensive as it involves
dynamic handling of the unknowns. Other approaches have been developed to address
phase transitions. We mention for example for industrial applications the contributions of
Bourgeat et al. [29] where the balance equations are formulated using gas concentration
in the liquid phase and saturation, or total concentration and saturation in Bourgeat et
al. [30], and Abadpour and Panfilov [2] where the saturation of one phase is extended and
can be negative or greater than one.

More recently, an alternative approach for the automatic management of appearances
and disappearances of phases using nonlinear complementarity conditions was introduced
in Lauser et al. [107]. It consists in formulating the exchange conditions between the
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phases as local constraints, and enables one to keep a fixed set of unknowns and equa-
tions regardless of the context. Many advances have been obtained using this unified
formulation see e.g. [91, 25, 53] and the references therein. This is a promising step
forward at IFPEn. As, however, the new formalism involves several nonsmooth comple-
mentarity equations, it is nowadays customary to resort to semismooth Newton methods,
which may exhibit a pathological oscillatory behavior during phase transitions. One rem-
edy for this problem is to decrease the time step and restart the Newton process, but this
will increase the computational time. When the semismooth Newton method converges,
we obtain very significant gain factors in computation time on realistic reservoir models,
as demonstrated in [83]. This encourages us to persist with the unified formulation by
looking for other linearization methods that guarantee the nonlinear solver’s convergence
and makes the ground for the current thesis.

Figure 2: Carbon capture and sequestration; various underground storage op-
tions. https://business.libertymutual.com/insights/carbon-sequestration-options-for-a-
low-carbon-future/

ii Numerical resolution

Let V be a Hilbert space equipped with the inner product ⟨·, ·⟩. Let K be a nonempty
closed convex set of V . Let Φ : V → V ∗ be a continuous operator, where V ∗ is the dual
space of V . A variational inequality problem consists in finding u ∈ K such that〈

Φ(u),v − u
〉

≥ 0 ∀v ∈ K.

We assume that the problem admits a solution u ∈ K. The most commonly used numerical
methods for deriving the discrete problem associated to the considered continuous problem
are the finite volume methods [85, 69], the finite element methods [33, 66], the mixed
finite element methods [126, 27], the discontinuous Galerkin methods [125, 58], and more
recently the virtual element methods [12, 35]. In this work, we employ the finite volume
technique, in common use for discretizing computational fluid dynamics equations as it
holds the flows conservation property.

https://business.libertymutual.com/insights/carbon-sequestration-options-for-a-low-carbon-future/
https://business.libertymutual.com/insights/carbon-sequestration-options-for-a-low-carbon-future/
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The numerical discretization of variational inequalities can be reformulated using non-
linear complementarity conditions, see [73]. We will therefore be brought to solve a system
of algebraic equations with complementarity constraints written in the following form:
Find a vector X ∈ Rn such that

F(X) = 0, (1a)

K(X) ≥ 0, G(X) ≥ 0, K(X) · G(X) = 0, (1b)

where for two integers n > 1 and 0 < m < n, F : Rn → Rn−m, K : Rn → Rm and
G : Rn → Rm are (non)linear operators, and · denotes the Hadamard’s componentwise
product. The second line (1b) represents the complementarity constraints. It states that
the vectors K(X) and G(X) have nonnegative components and are orthogonal.

We are now concerned with the numerical methods to approximately solve the nonlin-
ear algebraic system (1). Much focus was devoted by researchers to the resolution of this
problem. We refer to Aganagić [3], Harker and Pang [92], Facchienei and Pang [73, 74],
and Bonnans et al. [28] for a general introduction. Some of the interesting developments
are the projection-type methods [150], the merit functions methods [62], the active set-
type Newton methods [103], and the primal dual active-set methods [97] or, in some cases
equivalently, semismooth Newton method [94].

The other methods for solving constrained variational problems can be roughly cat-
egorized into either semismooth Newton methods or smoothing Newton methods, which
are discussed next. For a short state-of-the-art review of these developments, we refer the
reader to [151].

ii.1 Semismooth Newton methods

The non-differentiability of the complementarity conditions (1b) generally prevents the
use of the classical Newton method. One can use, however, an alternative typical variant,
the semismooth Newton method, with a weaker concept for the Jacobian matrix.

The main feature of semismooth methods is to reformulate the complementarity condi-
tions expressed in (1b) as algebraic inequalities, into a nonlinear non-differentiable equal-
ity, by means of C-functions, where C stands for complementarity. For more details, we
refer to the books [73, 74]. A function C̃ : Rm × Rm → Rm,m ≥ 1, is said to be a
C-function if for (x,y) ∈ (Rm)2,

C̃(x,y) = 0 ⇐⇒ x ≥ 0, y ≥ 0, and x · y = 0.

Among the wide variety of C-functions that can be found in the literature, we give as
examples the most frequently used ones.

a) Minimum function (min)(
C̃min(x,y)

)
l

:=
(
min{x,y}

)
l

= (xl + yl)/2 − |xl − yl|/2, l = 1, . . . ,m. (2)

The min function is differentiable everywhere except in x = y. The associated
Newton-min algorithm has been widely employed for its local quadratic convergence
properties, see [22, 23, 24, 52].

b) Fischer–Burmeister function (F–B)(
C̃FB(x,y)

)
l

:=
√

x2
l + y2

l − (xl + yl), l = 1, . . . ,m. (3)
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This function is differentiable everywhere except in (0,0). It was first introduced in
[79] and has maintained a central role in the development of semismooth methods,
see, e.g., [56].

c) Mangasarian function (Man)(
C̃Man(x,y)

)
l

:= ξ
(
|xl − yl|

)
− ξ(xl) − ξ(yl), l = 1, . . . ,m,

where ξ : R → R is a strictly increasing function satisfying ξ(0) = 0. The Man
function, introduced in [110], can be made differentiable everywhere with an ap-
propriate choice of the underlying function ξ, for instance ξ(t) = t3. The main
drawback in the use of semismooth methods with such smooth C-function is that
∇C̃Man(0,0) = (0,0), which may lead to a singular Jacobian matrix.

The popularly used C-functions are locally Lipschitz-continuous functions, and thus dif-
ferentiable almost everywhere by Rademacher’s theorem [73, Theorem 3.1.1]. They are
not Fréchet-differentiable, but admit a weaker smoothness called the Clarke (generalized)
derivative, see [50] and [73, Section 7.1].

Introducing the function C : Rn → Rm defined as C(X) := C̃
(
K(X),G(X)

)
, where

C̃ : Rm × Rm → Rm is any C-function, problem (1) can be equivalently rewritten as:
Find a vector X ∈ Rn, such that

F(X) = 0, (4a)

C(X) = 0. (4b)

We underline that semismooth Newton methods do not maintain the complementarity
conditions (1b) at each iteration, i.e., feasibility is guaranteed only at convergence, where
(4b) is equivalent to (1b).

Path-following approach. This procedure consists in equivalently expressing the comple-
mentarity constraints given by (1b) as

K(X) + min
{

0,−K(X) + γG(X)
}

= 0, (5)

for any γ > 0. Here the min-operation is understood componentwise. Equation (5) is
replaced by a sequence of regularized problems, allowing an infinite-dimensional analysis,
in the form

K(X) + min
{

0,−λ+ γG(X)
}

= 0, (6)

where λ is an optional shift parameter, suggested by augmented Lagrangian concepts,
see e.g., [98, 100]. For λ = 0, this results in a penalty-type methods. Defining the

function Lγ : Rn → Rm by Lγ(X) := K(X) + min
{

0,−λ+ γG(X)
}
, problem (1) can

be rewritten as

F(X) = 0,
Lγ(X) = 0. (7)

It is important to stress that under appropriate conditions, the solution of problem
(7) converges to the solution of the original problem (1) as γ → ∞, see [95, 136]. Starting
with a big value for the path parameter γ may lead to a badly conditioned problem.
Therefore, it appears advantageous to apply a path-following strategy that allows appro-
priate steering of this parameter. System (7) can be solved efficiently using a semismooth
Newton method, or in some cases equivalently, a primal–dual active set strategy, see [94].
Semismooth Newton methods combined with a path-following strategy are proved to be
efficient methods for solving variational inequalities in function space, see e.g. [100].
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ii.2 Smoothing linearization methods

Existing smoothing methods

The type of smoothing algorithms for the solution of nonlinear optimization problems is
determined by one of the three following tools: (i) the way of dealing with the comple-
mentarity condition; (ii) the process by which the smoothing is steered; (iii) the adopted
strategy to stop the smoothing.

Interior points methods. Interior point methods (or barrier methods) are a class of
algorithms to solve linear and nonlinear convex optimization problems. The cornerstone
of these methods lies in perturbing the complementarity condition K(X)G(X) = 0 and
replacing it with K(X)G(X) = µ, with µ = µ1 ∈ Rm, µ > 0, where the smoothing
parameter µ is gradually driven to zero. The original nonsmooth problem (1) is thus
replaced by a regularized problem written in the form: Find X ∈ Rn such that

F(X) = 0, (8a)

K(X) ≥ 0, G(X) ≥ 0, K(X)G(X) − µ = 0, (8b)

where
(
K(X)G(X)

)
m

=
(
K(X)

)
m

(G(X))m. For the inequality constraints in (8b),
nonnegative slack variables (V ,W ) ∈ Rm × Rm are introduced such that K(X) = V
and G(X) = W . We obtain the enlarged unknown vector X̃ := [X,V ,W ] ∈ Rn+2m of
the enlarged system of n+ 2m equations given by

F(X) = 0,
K(X) − V = 0,
G(X) − W = 0,
V · W − µ = 0,

.

V ≥ 0, W ≥ 0, that can be solved iteratively using the classical Newton method. It
should be noted that this approach requires all iterates to remain in the feasible set, i.e.,
the positivity of K(Xk) and G(Xk) should be preserved at each step k of the nonlinear
solver. This can be ensured by performing a truncation of the Newton direction. The
regularization parameter µ is “manually” driven towards zero during the iterations. Fur-
thermore, interior-point methods are sensitive to the choice of an initial point. Practically,
one should start from a point which is sufficiently far from the boundary of the feasible
set, i.e., an initial guess X0 satisfying K(X0) ≥ 0 and G(X0) ≥ 0. In [54], one can find
many designed techniques for the choice of a good starting point. For an overview and
further insight, we refer the reader to the work of Wright [148] and Bellavia et al.[14].

Nonparametric interior-point method. The main drawback of interior-point methods
appears to be the lack of a systematic strategy to properly steer the sequence of reg-
ularization parameters toward zero. Recently in [146], an approach is introduced in
which the smoothing parameter µ in the perturbed complementarity condition in (8b)
is treated as a full-fledged unknown. A new equation is introduced into the system
allowing for an automatic update of µ. The new unknown is the enlarged vector
X := [X̃, µ] ∈ Rn+2m × R+ ⊂ Rn+2m+1. The solution of the enlarged smooth system of
n+2m+1 equations can be obtained by applying the standard Newton method. In [146],
Armijo’s is additionally used to enforce a globally convergent behavior. The initial point

X
0 = [X̃0, µ0] must be an interior point, with µ0 often taken equal to K(X0)G(X0)/m,

so it has the correct order of magnitude. Also in this approach, the iterates are required
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to stay strictly feasible during the iterations, by truncating the Newton direction. In
[146, Section 3], a particular choice of the added equation ensures the feasibility of the
iterates without needing to carry out a truncation. This technique is detailed in Chapter
1, Section 4.

Augmented Lagrangian methods. Although we do not consider this class of algorithms
is our work, we briefly describe their concept. The key idea of these methods is to replace
the considered constrained optimization problem by a series of unconstrained problems
and to add a penalty term to the objective function, as well as another term that mimics
a Lagrange multiplier. The major advantage of the method is that it converges without
requiring that the penalty parameter tends to infinity. We refer to [98, 100, 153] and the
references therein for more details.

To mention a few contributions including combination or comparison of some of the
methods cited above, see e.g., [26] for the comparison of Moreau–Yosida-based primal
dual active set strategy with an interior-point method, [95] for a path-following method
for primal-dual active set strategies requiring a regularization parameter, and [134] for an
analysis of the close relation between a primal-dual active set strategy and an augmented
Lagrangian method for a simplified friction problem.

ii.3 Proposed guideline

As previously mentioned, there is a vast literature on numerical methods based on smooth-
ing. For a more thorough review of these developments we shall still refer to the seminal
works of Facchinei and Pang [73, 74], Ulbrich [138], and the recent contributions of Had-
dou and Maheux et al. [90] and Xiao et al. [149]. Our novelty in this thesis is to address
this issue through the lens of a posteriori error estimates. We introduce an algorithm
wherein the smoothing decision is steered adaptively by a dedicated a posteriori estima-
tor. This will be further developed in the subsequent sections. More precisely, a popular
approach to overcome the difficulty that the nonlinear complementarity problem (1b) is
nonsmooth would be to approximately transform the nonsmooth system into a system of
nonlinear smooth (i.e. continuously differentiable) equations. Then, the classical Newton
method can be applied to the resulting system. The usual way to formulate a smooth ap-
proximation of a non-smooth function C̃ is smoothing (or regularization), which typically
introduces a small smoothing parameter µ > 0, yielding a function C̃µ : Rm × Rm → Rm

such that for any (x,y) ∈ Rm × Rm, C̃µ(·, ·) is of class C1 on Rm × Rm and verifies∣∣∣∣∣∣C̃(x,y) − C̃µ(x,y)
∣∣∣∣∣∣ −→ 0 as µ −→ 0,

where ∥ · ∥ is the L2-norm. A possible smoothing of the functions (2) and (3) can be,
respectively: for l = 1, . . . ,m,

(
C̃minµ(x,y)

)
l

= xl + yl

2 −

(
|x − y|µ

)
l

2 with
(
|z|µ

)
l

:=
√

z2
l + µ2,(

C̃FBµ(x,y)
)

l
=
√
µ2 + x2

l + y2
l −

(
xl + yl

)
,

where the µ-smoothed absolute value function | · |µ : Rm → Rm
+ , m ≥ 0, replaces the

absolute value function (not differentiable at 0), see Figure 3. Note that both functions
C̃minµ and C̃FBµ are actually of class C∞.
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Figure 3: Left: Absolute value function | · | and smoothed absolute value function | · |µ.
Right: Fischer–Burmeister function C̃FB(·) and smoothed Fischer–Burmeister function
C̃FBµ(·), for different values of the smoothing parameter µ. Chapter 1, Figure 1.1 and
https://hal.archives-ouvertes.fr/hal-03355116/.

Such technique yields a discrete smoothed formulation that requests to find, at each
smoothing step indexed by j ≥ 0, a vector Xj ∈ Rn such that

F(Xj) = 0,
C̃µj (Xj) = 0, (9)

where C̃µj (Xj) := C̃µj

(
K(Xj),G(Xj)

)
, and µj > 0 is a (decreasing) sequence of

smoothing parameters. The solution of the original problem (4) can be typically found by
reducing the smoothing parameter µj down to zero. As a crucial advantage, the solution
of the nonlinear algebraic system (9) can now be approximated by the standard Newton
method. This amounts to finding an approximation Xj,k ∈ Rn solving the linear problem
written as

A
j,k−1
µj Xj,k = Bj,k−1

µj . (10)

ii.4 Linear algebraic iterative methods

Finding an exact solution of the linear system (10) at each regularization step j ≥ 0 and
linearization step k ≥ 1 can be very costly for large-scale problems, in terms of CPU time
or memory consumption. Iterative methods are thus a common choice to compromise
precision for a shorter execution time, as the linear system is solved only up to a certain
degree of accuracy. Basic examples of iterative methods are the Jacobi, Gauss–Seidel,
and Conjugate Gradient when the matrix A

j,k−1
µj is positive definite, see, e.g., Kelley

[104], Saad [130], and Olshanskii and Tyrtyshnikov [115]. An efficient method for large
sparse algebraic linear systems is the multigrid method, see e.g., Brandt et al. [32], and
the recent work of Napov and Notay [113]. Other popular techniques for solving large
linear systems are the Krylov subspace methods, and in particular the generalized minimal
residual (GMRES) method that consists in minimizing the residual norm at each iteration,
see Saad and Schultz [131]. For a given initial vector Xj,k,0, at each smoothing step j ≥ 0,
and each step k ≥ 1 of the nonlinear solver, the algebraic iterative solver generates for
i ≥ 1 an approximation Xj,k,i of Xj,k from (10), up to the algebraic residual vector
defined by

Rj,k,i
alg := Bj,k−1

µj − A
j,k−1
µj Xj,k,i.

https://hal.archives-ouvertes.fr/hal-03355116/
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The accuracy level of the approximate solution is traditionally measured by the Euclidean
norm of the vector Rj,k,i

alg and controlled by the so-called forcing term εj,k. Indeed, the
termination of the iterative solver traditionally requires satisfying∥∥∥Rj,k,i

alg

∥∥∥∥∥∥Bj,k−1
µj − A

j,k−1
µj Xj,k,0

∥∥∥ ≤ εj,k, (11)

where || · || is the L2-norm. The choice of the forcing term is of great influence on
the behavior of the method. Thus, it is recommended to choose them suitably, as in,
e.g., [65, 7]. A central part of our strategy is to reformulate the classical termination
criterion (11) in terms of a posteriori error estimates and that distinguish different error
components.

At this stage, it is relevant to present the concept of a posteriori error estimate, which
plays a pivotal role in this thesis.

iii A posteriori error estimate

In order to guarantee the accuracy of the numerical methods, one would need to know how
large is the overall error by expressing the distance between the unavailable exact solution
u of a PDE and its approximation uh obtained by a numerical method. Traditionally,
the quality of numerical solutions is expressed with the aid of a priori error estimates.
They have typically the form

|||u − uh||| ≤ Chp,

where C > 0 is a constant, ||| · ||| is some norm, h is the maximal mesh size, and p > 0
is the approximation order (polynomial degree). This type of estimate is a valuable
tool in order to provide qualitative information about the error, particularly about the
convergence order of the numerical method employed, as the error decreases by refining
the mesh (decreasing h) and increasing the polynomial degree. For details on a priori
error estimates, we refer to Ciarlet [49], Ryoo [129], and Ern and Guermond [66]. Let
us stress, however, that the upper bound is typically not computable, as the constant
C = C(u) depends on the unknown exact solution u.

In contrast to a priori error estimates, a posteriori error estimates use only the ap-
proximate solution uh, an available outcome of the computations. They usually take the
form:

|||u − uh||| ≤ η :=

 ∑
K∈Th

η2
K


1
2

, (12)

where ηK = ηK(uh) is a quantity computable from the approximate solution uh and
linked to the element K of a mesh Th. Thus, one can calculate an upper bound on the
total error, with an identified contribution locally in each element of the mesh. There is a
well-developed literature on a posteriori error estimates for partial differential equations.
For a general introduction, see for instance the books of Ainsworth and Oden [5], Repin
[122], and Verfürth [140]. For variational inequalities, we can mention the prominent
contributions of Brezzi et al. [37, 38], Ainsworth et al. [6], Kornhuber [105], Repin [123],
Belgacem et al. [17], Bürg and Schröder [40], and Dabaghi et al.[53]. There exist many
categories of a posteriori error estimates. We mention for example the residual estimates,
see Verfürth [140], functional estimates, see Repin [122], averaging estimates, see Fierro
and Veeser [78], and hierarchical estimates, see Bank and Smith [8]. For an overview
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of these techniques, we refer to [140]. In this thesis, we are interested in equilibrated
fluxes estimates, based on H (div,Ω)-conforming and locally conservative (equilibrated)
flux reconstructions, following the concept of Prager and Synge [119], Destuynder and
Métivet [57], and Ern and Vohraĺık [67], and on potential reconstructions following [142]
and the refernces therein.

Many advantages follow from a posteriori approach: (i) First, as expressed in (12),
a posteriori error estimates aim at giving a guarenteed computable upper bound on the
error between the known numerical approximation uh and the unknown exact solution u
of a system PDEs without unknown constants; (ii) The a posteriori estimators play an
essential role in identifying the sources and nature of error resulting from the numerical
simulation, cf. Chaillou and Suri [43], Ern and Vohraĺık [67], Di Pietro et al. [59], or
Dabaghi et al. [53]; (iii) This makes it possible to formulate optimal stopping criteria to
adaptively stop the various iterative solvers, in contrast to common approaches where the
termination requires reaching a fixed threshold or forcing terms as in (11); (iv) Although
we do not address mesh adaptivity in our work, we underline that a posteriori estimators
are an important tool for adaptive mesh refinement strategies since they can be evaluated
locally on each element, they could be used as indicators to adaptively refine the space
meshes in areas of the domain where the estimator reflecting the the discretization error
is large, see, e.g., [59]; (v) Finally, adaptive algorithms based on the stopping criteria can
ensure significant computational gains in terms of the total number of iterations and mesh
cells.

We explain now the adaptive approaches we develop in this work.

iv A posteriori-steered algorithm

If we are to consider iterative procedures for solving nonlinear non-smooth systems, a
salient question arises: how to choose a good stopping procedure for the various iterative
loops in the algorithm? A posteriori analysis plays an essential role to treat this question.
Let ej,k,i be the energy error between the approximate solution uj,k,i

h and the unknown
solution u at each smoothing step j ≥ 0, linearization step k ≥ 1, and algebraic step i ≥ 1,
schematically written as ej,k,i = |||u − uj,k,i

h |||. In this thesis, we focus on the enrichment
of the typical formula (12) to the form

ej,k,i ≤ ηj,k,i
tot ≤ ηj,k,i

disc + ηj,k,i
sm + ηj,k,i

lin + ηj,k,i
alg (13)

that distinguishes the different error components, namely, the discretization error of the
continuous problem by the given numerical scheme, the smoothing error linked to the
carried out regularization, the linearization error stemming from the incomplete conver-
gence of the nonlinear solver, and the algebraic error reflecting the imprecision in the
solutions of the associated linear algebraic system. A typical property at the heart of an
optimal separation of error sources is the vanishing of the a posteriori estimator when the
corresponding solvers converge, i.e.,

ηj,k,i
sm −→

j,k,i→∞
0, ηj,k,i

lin −→
k,i→∞

0, and ηj,k,i
alg −→

i→∞
0.

The discretization estimator ηj,k,i
disc vanishes when the number of mesh elements goes to

infinity. This error components identification leads to a proposition of adaptive stopping
criteria for the smoothing, nonlinear, and algebraic solvers that can be incorporated in a
fully adaptive algorithm. As displayed in Figure 4, where we stop the various iterative
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solvers whenever the corresponding error no longer significantly influences the behavior
of the overall error.

More precisely, the algebraic iterations can be stopped when the algebraic estimator
is sufficiently small with respect to the linearization estimator. Numerically, the role and
importance of this criterion can be seen in Figure 5 in which we show the algebraic and
linearization estimators, as well as the relative algebraic residual during the algebraic
iterations for specific smoothing step j and linearization step k. It can be seen that
the employment of the adaptive stopping criterion leads to smaller iteration numbers
in comparison with the use of the classical one requiring the L2-norm of the algebraic
residual vector to drop below a fixed threshold. Similarly, the nonlinear solver can be
stopped when the smoothing estimator starts to dominate the linearization estimator,
as shown in Figure 6. Last, we can decide if an additional smoothing step is needed,
whether the smoothing estimator is sufficiently small with respect to the discretization
estimator or not. We refer the reader to the contributions [67, 60, 61]. Figure 4 illustrates
the adaptive algorithm wherein the iterations are adaptively stopped. Therein, the bars
denote the stopping indices, and the parameters αsm, αlin, and αalg represent the desired
relative sizes of the smoothing, linearization, and algebraic errors, respectively. We

mention that the solution Xj−1,k,i at smoothing step j−1 serves as initial approximation
to the nonlinear solver at step j. Similarly, we initialize the algebraic solver at step k
with the solution Xj,k−1,i of the nonlinear system at step k − 1.

Discretization

Smoothing
stops if

ηj,k,i
sm < αsmηj,k,i

disc

Xj,0,0 := Xj−1,k,i

µj := αµj−1

Nonlinear
solver
stops if

ηj,k,i
lin < αlinηj,k,i

sm

Xj,k,0 := Xj,k−1,i

Algebraic
solver
stops if

ηj,k,i
alg < αalgηj,k,i

lin

Figure 4: Illustration of the a posteriori-steered Algorithm 7 of Chapter 2, involving
the adaptive stopping criteria for the smoothing, linearization, and algebraic solvers, the
initial approximations, and the update of the smoothing parameter.
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Figure 5: Illustration of the classical stopping criterion based on GMRES relative residual,
and the adaptive one based on the algebraic and linearization estimators, for stopping the
algebraic iterations i at fixed smoothing and linearization iterations, j = 2, k = 2, left,
and j = 3, k = 1, right, with αalg = 10−3. Chapter 1, Figure 1.7 and https://hal.archives-
ouvertes.fr/hal-03355116/.
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Figure 6: Illustration of the adaptive stopping criterion for the nonlinear solver: the
smoothing Newton-min. Estimators of Section 7.3 as a function of the cumulated
Newton-min iterations at convergence of the algebraic solver (j and k vary, i = i).
Each set of curves represents one specific smoothing step. Chapter 2, Figure 2.11, and
https://hal.inria.fr/hal-03696024.

v Contributions of the thesis

The contribution of this thesis is threefold. The first objective is to introduce in Chapter 1
an adaptive (inexact) smoothing Newton method for solving discrete nonlinear problems
with complementarity constraints in the form of problem (1). The main tool in the
proposed approach is first the use of any smoothing function (as opposed to a semismooth
Newton), to smooth the complementarity constraints in order to be able to use a Newton-
type method to solve the resulting nonlinear smooth problem. We are also interested in
comparing this latter method to other existing methods, namely, the semismooth Newton

https://hal.archives-ouvertes.fr/hal-03355116/
https://hal.archives-ouvertes.fr/hal-03355116/
https://hal.inria.fr/hal-03696024
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method combined or not with a path-following strategy, and the nonparametric interior-
point method.

The second main point of this thesis is to develop, in Chapter 2, a procedure that links
the smoothing and the a posteriori estimators for the purpose of solving continuous level
PDEs with variational inequalities. We propose a strategy driven by a posteriori analysis
in order to adaptively steer the smoothing. This allows us to design an adaptive algorithm
in which the three involved iterative solvers are stopped at an appropriate moment decided
adaptively. Consequently, we reduce the computational cost of the numerical resolution,
by reducing the number of the linear and nonlinear solvers iterations while adapting the
level of smoothing. This provides a fast and efficient way for dealing with this category
of problems.

Finally, we are concerned in applying the developed method to a concrete industrial
reservoir simulation problem. This forms the content of Chapter 3.

The manuscript is constituted of three chapters, essentially self-contained. We now
detail the problem addressed in each chapter, as well as the achieved contributions.

v.1 Chapter 1: Semismooth and smoothing Newton methods for nonlinear sys-
tems with complementarity constraints: adaptivity and inexact resolution

In this first chapter, we establish the groundwork that will be also employed in the fol-
lowing chapters. We consider nonlinear algebraic systems arising from the numerical
discretization of PDEs with inequalities in a form of complementarity constraints in the
form of problem (1). Semismooth and smoothing methods for solving such problems have
been extensively studied, as detailed in Sections ii.1 and ii.2.

Main contributions. We present a simple and effective smoothing of the non-
differentiable C-functions which allows to express the discrete system as a smoothed
system that can be solved by the classical Newton method, as previously explained in
Section ii.3. Compared to the closely related existing smoothing approaches, the key fea-
ture that distinguishes this work is the adaptivity based on a posteriori error estimates.
We consider in this chapter the L2-norm of the total residual vector of problem (4) and
develop an upper bound of the form∥∥∥R(Xj,k,i)

∥∥∥ ≤ ηj,k,i
sm + ηj,k,i

lin + ηj,k,i
alg ,

that holds true at any smoothing step j ≥ 1, linearization step k ≥ 1, and algebraic step
i ≥ 1. This identification of the smoothing, linearization, and algebraic error components
leads to the proposition of an adaptive algorithm wherein the nonlinear and algebraic
solvers are adaptively stopped. Nevertheless, at this stage, the smoothing iterations are
still terminated classically, i.e., when the L2-norm of the total residual vector R(Xj,k,i)
drops below a fixed threshold. In the same spirit, we introduce an adaptive version of the
nonparametric interior-point method. Numerical tests investigate the performance of the
adaptive algorithm with the smoothed min and F–B functions in combination with the
GMRES algebraic solver. We compare the performance of the proposed adaptive smooth-
ing Newton and adaptive interior-point methods, both in terms of number of iterations
and timing, to some existing approaches, namely, the semismooth Newton method with
path-following strategy, following [152], and the nonparametric interior point method of
[146], for both the contact problem between two membranes as well as a two-phase flow
model with phase transition in porous media.
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v.2 Chapter 2: Adaptive inexact smoothing Newton method for a nonconform-
ing discretization of a variational inequality

We tackle here a simple variational inequality problem arising from the contact problem
between two elastic membranes. Let Ω ∈ R2 be an open polygonal domain. The problem
reads: find u1, u2, and λ such that

−β1∆u1 − λ = f1 in Ω,
−β2∆u2 + λ = f2 in Ω,

u1 − u2 ≥ 0, λ ≥ 0, (u1 − u2)λ = 0 in Ω,
u1 = g on ∂Ω,
u2 = 0 on ∂Ω.

(14a)

(14b)

(14c)

(14d)

(14e)

The unknowns are the vertical displacements u1 and u2 of the two membranes and the
Lagrange multiplier λ expressing the action of one membrane on the other. The kinematic
behavior of each membrane under the action of external forces f1, f2 ∈ L2(Ω) is described
in equations (14a) and (14b). The coefficients β1, β2 > 0 represent the tension of each
membrane. Moreover, two different physical situations can be distinguished through the
linear complementarity constraints expressed in (14c): assuming that the membranes
cannot interpenetrate (u1 − u2 ≥ 0) and that λ is nonnegative, constraint (u1 − u2)λ = 0
states that either the membranes are not in contact (u1 −u2 > 0 and λ vanishes), or they
are in contact (u1 = u2 and λ is nonnegative). The boundary conditions stated in (14d)
and (14e) ensure that the first membrane is fixed on the boundary ∂Ω at g > 0, above the
second one, which is fixed at zero. For the sake of simplicity, we assume that g is constant.

Contact problems have broad applications in a wide range of fields. In particular,
the elliptic contact problem have been studied extensively, see for example the overview
of Rodrigues [127]. We only mention several publications that design a posteriori error
estimates for a contact problem. In [47, 139], a posteriori error estimators of residual type
are derived with P1 finite element discretization. In [9], the authors develop averaging a
posteriori error estimates for finite element methods. For a posteriori analysis considering
the discontinous Galerkin method we refer to [88, 89]. Moreover, in [48], a residual-based
a posteriori error estimator with finite elements and Nitsche’s method are introduced.

We consider in this work the contact problem between two membranes (14) that has
been tackled by Ben Belgacem, Bernardi, Blouza and Vohraĺık in [15, 16], see also the
references therein. The authors study existence and uniqueness of a solution for problem
(14), consider a conforming finite element discretization, and address the numerical reso-
lution employing a primal dual active set strategy. In [17], they perform an a posteriori
analysis based on flux reconstructions in H (div,Ω) and proved optimal error estimates. In
[152], Zhang, Yan, and Ran have formulated the complementarity constraint in (14) as a
regularized equation similar to (6) in a function space setting. They applied a semismooth
Newton method to approximate the solution of the corresponding problem, together with
a path-following technique to improve the performance of the method by automatically
adjusting the regularization parameter. More recently, an adaptive inexact semismooth
Newton method, steered by a posteriori error estimates as in (13), was developed for
the solution of problem (14) in Dabaghi, Martin, and Vohraĺık [53]. In the latter work,
the authors discretized problem (14) with conforming finite elements of order p ≥ 1, and
established efficient a posteriori estimates based on H (div,Ω)-conforming discretization
flux reconstructions following [57, 31, 67], algebraic flux reconstructions via a multilevel
approach as introduced in [116], and potential reconstructions in H1(Ω).
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Main contributions. In this chapter, we discretize problem (14) by the cell-centered fi-
nite volume method, which yields a nonlinear algebraic system with complementarity
constraints of the form (1). The first contribution consists in regularizing the complemen-
tarity constraints as a smooth equation by means of a smoothed C-function. The resulting
system taking the form (9) can be solved with the standard Newton method. We then con-
struct the necessary ingredients for the a posteriori error estimate. As the original finite
volume approximation uh is only piecewise constant, we shall build, following [70, 142],
a postprocessed approximation ũh, whose mean value in each cell is fixed by the original
constant approximation, using for this purpose the additional knowledge that we have
from a finite volume scheme: the fluxes. This postprocessing allows us to evaluate the
broken gradient of the solution. Then, we introduce H (div,Ω)-conforming equilibrated
flux reconstruction σαh, α ∈ {1, 2} belonging to the lowest-order Raviart–Thomas space
RT0, a discrete subspace of H (div,Ω) . Since the postprocessed approximation ũh is in
general not included in H1(Ω) but only H1(Th), we introduce a H1(Ω)-conforming poten-
tial reconstruction sh, inspired from [142]. The advantage of this continuous reconstructed
solution is however compensated by the fact that sh does not fulfill the constraints, which
leads us to finally construct an admissible potential reconstruction s̃h.

The main result of Chapter 2 lies in Theorem 2.9 in which we introduce a posteriori
error estimate for the displacements, giving a fully computable upper bound on the energy
semi-norm of the error between the exact solution u and its approximation uh at each
resolution step. This leads to a distinction among the different error components as in
(13) that reveals crucial for formulating optimal stopping criteria for the iterative solvers.
An additional result is developed in Theorem 2.11 where a posteriori estimate for the
actions is established. The main novelty lies at the heart of Algorithm 7. The motivation
sustaining the algorithm is that the smoothing, nonlinear, and algebraic iterative solvers
are adaptively stopped, as already illustrated in Figure 4. We apply our adaptive approach
with the min function, combined with the GMRES algebraic solver. Numerical tests
support the effectiveness of the developed algorithm and show that it leads to smaller
number of linearization and algebraic iterations in comparison with classical stopping
criteria as well as in comparison with the semismooth Newton method. The quality of
the developed a posteriori estimates is assessed by means of an effectivity index, defined
as the ratio of the total error estimator and the actual energy error.

v.3 Chapter 3: Adaptive smoothing Newton method for a compositional multi-
phase flow with nonlinear complementarity constraints

The main purpose of this chapter is to provide an industrial application of the developed
method. We consider the problem of compositional multiphase flow in porous media, in
which the phase transitions are described by nonlinear complementarity constraints as
presented in [107]. This problem will be clearly detailed in Chapter 3.

Main contributions. This work is intented to employ the adaptive smoothing Newton
method of Chapter 1 to provide an approximated solution of the nonlinear algebraic
system in the form (1) arising from the discretization of the problem. A smoothing and
linearization a posteriori estimators are developed by providing an upper bound on the
norm of the system’s residual of the form∥∥∥R(X n,j,k)

∥∥∥ ≤ ηn,j,k
sm + ηn,j,k

lin ,

where 0 ≤ n ≤ 1 is a time step, j ≥ 1 a smoothing step, and i ≥ 1 an algebraic step.
These elements allow to design an adaptive algorithm wherein the steps of the nonlinear
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solver and the smoothing loop are adaptively stopped at each time step. The advantage
of the designed algorithm is shown through numerical tests on two and three-dimensional
test cases.



Chapter 1

Semismooth and smoothing Newton
methods for nonlinear systems with
complementarity constraints:
adaptivity and inexact resolution

This chapter consists of an extension of the published article [21], written with Ibtihel
Ben Gharbia, Martin Vohraĺık, and Soleiman Yousef.
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Abstract

We consider nonlinear algebraic systems with complementarity constraints stem-

ming from numerical discretizations of nonlinear complementarity problems. The

particularity is that they are non-differentiable, so that classical linearization

schemes like the Newton method cannot be applied directly. To approximate the so-

lution of such nonlinear systems, an iterative linearization algorithm like the semis-

mooth Newton-min or an interior-point algorithm can be used. Alternatively, the

non-differentiable nonlinearity can be smoothed, which allows a direct application

of the Newton method. Corresponding linear systems can be solved only approx-

imately using an iterative linear algebraic solver, leading to inexact approaches.

In this work, we design a general framework to systematically steer these different

ingredients. We first derive an a posteriori error estimate given by the norm of

the considered system’s residual. We then, relying on smoothing, design a simple

strategy of tightening the smoothing parameter. We finally distinguish the smooth-

ing, linearization, and algebraic error components, which enables us to formulate

an adaptive algorithm where the linear and nonlinear solvers are stopped when the

corresponding error components do not affect significantly the overall error. Numer-

ical experiments indicate that the proposed algorithm, possibly in combination with

the GMRES algebraic solver, ensures important savings in terms of the number of

iterations and execution time. It appears rather promising in comparison with the

other methods, namely since its performance seems remarkably stable over a range

of academic and industrial problems.

1 Introduction

Consider a system of algebraic equations with complementarity constraints written in the
following form: Find a vector X ∈ Rn such that

EX = F , (1.1a)

K(X) ≥ 0, G(X) ≥ 0, K(X) · G(X) = 0, (1.1b)

where for two integers n > 1 and 0 < m < n, E ∈ Rn−m,n is a matrix, K : Rn → Rm and
G : Rn → Rm are (linear) operators, and F ∈ Rn−m is a given vector. The first line (1.1a)
typically represents the discretization of a linear partial differential equation. The second
line (1.1b) then represents the complementarity constraints. It states that the vectors
K(X) and G(X) have nonnegative components and are orthogonal. Complementarity
problems have important applications in many fields: economics, engineering, operations
research, nonlinear analysis... In the literature, many theoretical results and numerical
methods have been proposed to solve problem (1.1), see for example the books of Facchinei
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and Pang [73, 74], Ito and Kunisch [101], Ulbrich [138], Bonnans et al. [28], and the study
of Aganagić [3].

By means of so-called C-functions (C for complementarity), see [73, 74], the comple-
mentarity constraints (1.1b) can be rewritten as a system of equations C(X) = 0, where
C : Rn → Rn is nonlinear and semismooth. We then obtain the following equivalent
formulation of problem (1.1): Find X ∈ Rn such that

EX = F ,
C(X) = 0. (1.2)

A direct application of the standard Newton method to (1.2) is, however, impeded by
the fact that C(X) is not differentiable. An introduction of the Clarke differential [50]
allows to give a weaker differentiability meaning and leads to the class of semismooth
Newton methods, with reputedly good convergence properties [112, 74, 22, 23, 24, 63, 64].
These methods are in certain cases equivalent to primal–dual active set strategies, see
Hintermüller et al. [94]. Moreover, in [149], a regularized semismooth Newton method
combined with a hyperplane projection technique was proposed.

Augmented Lagrangian method is one of the commonly used algorithms for con-
strained optimization, see, e.g., [98] and the references therein. It seeks a solution by
replacing the original constrained problem by a series of unconstrained problems and add
to the objective function a penalty term, and another term designed to mimic a Lagrange
multiplier.

An additional technique, often used in a function space setting, consists in introduc-
ing a proper regularization, motivated by the augmented Lagrangian method. It allows
to apply an infinite-dimensional semismooth Newton method for the solution of the reg-
ularized problem, see, e.g., [138]. In the present context, this leads to replacing the
complementarity conditions (1.1b) by

K(X) + min
{
0,−K(X) + γG(X)

}
= 0,

for a parameter γ > 0. This method can be combined with a path-following strategy to
update the regularization parameter γ, see for instance [136, 95, 134].

Another important class of methods for constrained optimization problems of the
form (1.1) is formed by interior-point methods. These methods consist in generating a
sequence in the feasible region K(X) ≥ 0 and G(X) ≥ 0, under the assumption of
knowing a feasible initial point. We refer to the work of Wright [148], Bellavia et al. [14],
and the references therein for a review.

Lastly, an additional notable method is the smoothing Newton method. The main
idea of this approach is to approximate the semismooth (non-differentiable) function C
from (1.2) by a smooth (differentiable) function that depends on a smoothing parameter.
The problem is reformulated as a sequence of regularized smooth equations that can be
solved by applying the standard Newton method, and where one drives the smoothing
parameter down to zero, cf. [128, 121, 120] and the references therein.

In this work, we design a general framework to systematically steer the above different
ingredients. Our main philosophy is adaptive smoothing (regularization). For µj > 0, let
a smoothed function Cµj (·), satisfy ∥Cµj (X) − C(X)∥ → 0 as µj → 0, for X ∈ Rn. The
smoothing parameter µj is reduced at each smoothing iteration j ≥ 1. Thus, problem
(1.1), or equivalently (1.2), can be reformulated as a system of smooth (differentiable)
equations written in the form: Find Xj ∈ Rn such that

EXj = F ,
Cµj (Xj) = 0. (1.3)
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Hence, Newton-type methods can be applied to solve system (1.3), yielding, at each
linearization step k ≥ 1, a linear system

A
j,k−1
µj Xj,k = Bj,k−1

µj , (1.4)

where A
j,k−1
µj ∈ Rn,n is a matrix and Bj,k−1

µj ∈ Rn is a vector.

Solving (1.4) with a direct method may be very expensive. A popular approach is to
solve it approximately by applying only a few steps of an iterative algebraic solver. Such
inexact approaches can be found in [72, 111] for semismooth Newton methods, in [128, 81]
for smoothing Newton methods, in [153] for augmented Lagrangian methods, and in [13]
for interior-point methods. In the algorithms introduced therein, the iterations of different
solvers are stopped according to a fixed maximal number of iterations, the Euclidean norm
of the residual vector, or other parameters-dependant stopping criteria. In this work, the a
posteriori estimate constitute a distinctive element at the heart of the proposed smoothing
method. Importantly, it ensures the desired balance between each source of error at any
resolution step, unlike existing approaches based on classical stopping criteria.

At each linear algebraic step i ≥ 1 for (1.4), one in particular obtains Xj,k,i ∈ Rn such
that

A
j,k−1
µj Xj,k,i = Bj,k−1

µj − Rj,k,i
alg ,

where Rj,k,i
alg ∈ Rn is the algebraic residual vector of (1.4).

Our principal aim is to reduce the computational cost of the numerical resolution of
(1.1) by employing an adaptive strategy based on a posteriori error estimates. There is
a well-developed literature on a posteriori error estimates and mesh adaptivity for partial
differential equations, see for instance the books of Ainsworth and Oden [5], Repin [122],
and Nochetto et al. [114]. For variational inequalities, we can mention the contributions
of Repin [123], Ben Belgacem et al. [17], Bürg and Schröder [40], and Dabaghi et al. [53].
Although smoothing Newton approaches have been widely studied, to the best of our
knowledge, almost no work has been done to this day on a posteriori error estimates and
adaptivity for solvers applied to discrete problems of the form (1.1).

We first derive an upper bound on the norm of the residual of system (1.2), given by

R(Xj,k,i) :=
[

F − EXj,k,i

−C(Xj,k,i)

]
.

Then, decomposing R(Xj,k,i), we distinguish the different error components. This leads
to an a posteriori control of the form∥∥∥R(Xj,k,i)

∥∥∥
r

≤ ηj,k,i = ηj,k,i
sm + ηj,k,i

lin + ηj,k,i
alg . (1.5)

Here, ηj,k,i is a fully computable upper bound that holds true at any smoothing (regu-
larization) step j, linearization step k, and algebraic solver step i, whereas the role of

the estimators ηj,k,i
sm , ηj,k,i

lin , and ηj,k,i
alg is to identify the smoothing, linearization, and al-

gebraic components of the error. This error bound allows to define adaptive stopping
criteria for the nonlinear and linear algebraic solvers, in the spirit of [67, 53], and the
references therein. These criteria, as well as a simple way to tighten the smoothing pa-
rameter µj , are incorporated in a three-level adaptive algorithm. In contrast to common
approaches, where the termination requires reaching a fixed threshold, the particularity of
this adaptive algorithm is that the iterations are stopped when the error component of the
concerned solver is smaller than the total error, up to a desired fraction. The efficiency of
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the proposed adaptive algorithm for (inexact) smoothing Newton methods and (inexact)
interior-point methods is showcased numerically on practical problems.

It is relevant to mention that this work is extented in [20], where the present approach
is applied to a system of PDEs with complementarity constraints in infinite-dimensional
space. In particular, taking into account the discretization error allows to adaptively
steer the smoothing in system (1.3). Although we do not address mesh adaptivity in our
work, we underline that a posteriori estimators are an important tool for adaptive mesh
refinement strategies, see, e.g., [59] and the references therein. Consequently, algorithms
based on the previous criteria ensure significant computational gains in terms of total
number of iterations and mesh cells.

Our manuscript is organized as follows. In Section 2, we recall a semismooth Newton
method based on an equivalent reformulation of the complementarity constraints in the
form (1.2), then we complement it by a path-following technique. Section 3 is devoted
to introduce our adaptive inexact smoothing Newton method based on the reformulation
as a system of smooth equations as in (1.3). We establish here the a posteriori error
estimates (1.5) and propose an adaptive algorithm with a posteriori stopping criteria. We
survey a nonparametric interior-point method in Section 4, and introduce its adaptive
version in Section 5. Finally, a detailed numerical study is presented in Sections 6 and 7.

2 Semismooth Newton method

The purpose of this section is to briefly recall the semismooth Newton method to ap-
proximate the solution of the nonlinear system of equations (1.1), see, e.g., [112, 73, 53].
The complementarity constraints represented by (1.1b) as algebraic inequalities are here
rewritten as non-differentiable algebraic equalities, using a complementarity function (C-
function). A function C̃ : Rm × Rm −→ Rm, m ≥ 1, is called a C-function if

C̃(x,y) = 0 ⇐⇒ x ≥ 0, y ≥ 0, x · y = 0 ∀(x,y) ∈ Rm × Rm.

A variety of C-functions can be found in the literature, see, e.g., [137, 80]. We give as
examples the minimum (min) function and the Fischer–Burmeister (F–B) function: for
l = 1, . . . ,m, (

C̃min(x,y)
)

l
:= (min(x,y))l = (xl + yl)/2 − |xl − yl|/2, (1.6)(

C̃FB(x,y)
)

l
:=
√

x2
l + y2

l − (xl + yl). (1.7)

In general, the C-functions are not Fréchet differentiable. The min and the Fischer–
Burmeister functions are, for example, differentiable everywhere except in x = y and
(0,0), respectively. Let us introduce a function C : Rn → Rm defined as C(X) :=
C̃ (K(X),G(X)) , where C̃ : Rm ×Rm → Rm is any C-function. By using this reformu-
lation in (1.1b), it is obvious that problem (1.1) can be equivalently rewritten as: Find a
vector X ∈ Rn, such that

EX =F , (1.8a)

C(X) = 0. (1.8b)

Next, we detail the semismooth Newton linearization. Let an initial vector X0 ∈ Rn

be given. At the step k ≥ 1, one looks for Xk ∈ Rn such that

Ak−1Xk = Bk−1, (1.9)
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where the square matrix Ak−1 ∈ Rn,n and the right-hand side vector Bk−1 ∈ Rn are given
by

Ak−1 :=
[

E

JC(Xk−1)

]
, Bk−1 :=

[
F

JC(Xk−1)Xk−1 − C(Xk−1)

]
. (1.10)

Note that the Jacobian corresponding to (1.8a) is constant and equal to E since it is
linear. The semismooth nonlinearity occurs in the second line (1.8b): the notation JC in
(1.10) stands for the Jacobian matrix in the sense of Clarke of the function C, cf. [73, 74].
To give an example, consider the semismooth min function (1.6) and define the matrices
K and G ∈ Rm,n respectively by K := [∇K(X)] and G := [∇G(X)] . Then the lth row
of the Jacobian matrix in the sense of Clarke JC is either given by the lth row of K, if
(K(Xk−1))l ≤ (G(Xk−1))l, or by the lth row of G, if (G(Xk−1))l < (K(Xk−1))l.

We will need below the total residual vector of problem (1.8), defined by

R(V ) :=
[

F − EV
−C(V )

]
, V ∈ Rn. (1.11)

In this context, the relative norm of a vector V ∈ Rn is given by

||V ||r := ||V ||
||R(X0)|| ,

where ∥ · ∥ is the L2-norm.
The semismooth Newton algorithm for solving system (1.9) reads:

Algorithm 1: Semismooth Newton algorithm

1. Choose a tolerance ε > 0, an initial approximation X0 ∈ Rn, and set k := 1.

2. i) From Xk−1 define Ak−1 ∈ Rn,n and Bk−1 ∈ Rn by (1.10).

ii) Find a solution Xk ∈ Rn of the linear system

Ak−1Xk = Bk−1.

3. If
∣∣∣∣∣∣R(Xk)

∣∣∣∣∣∣
r
< ε, stop. If not, set k := k + 1 and go to 2.

2.1 Semismooth Newton and path-following method

Semismooth Newton methods complemented by augmented Lagrangian method or path-
following approach are proved to be efficient methods for solving variational inequalities
in function space, see e.g. [99, 100]. In this section, we apply a combination of semismooth
Newton method and path-following method to the finite-dimensional Problem (1.1). The
complementarity conditions (1.1b) can equivalently be expressed as

min
{
K(X), γG(X)

}
= 0 ⇐⇒ K(X) + min

{
0,−K(X) + γG(X)

}
= 0, (1.12)

for any fixed parameter γ > 0, see [100]. However, since the pointwise min-functional
appearing in (1.12) is not differentiable, and due to the lack of regularity of K(X),
cf. e.g. [100, 99], equation (1.12) is regularized, resulting in

K(X) + min
{
0,−λ+ γG(X)

}
= 0, γ > 0, (1.13)
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where λ ∈ Rn is an optional shift parameter. Its introduction in (1.13) is motivated by
augmented Lagrangians, cf. [100]. Let Lγ : Rn → Rm be defined by

Lγ(X) := K(X) + min
{
0,−λ+ γG(X)

}
. (1.14)

Problem (1.1) can be expressed as

EX = F ,
Lγ(X) = 0. (Pγ)

It was shown in the above-mentioned references that under appropriate conditions the
solution X to (Pγ) exists, and the solution of (Pγ) converges to the solution of (1.1) as
γ → ∞; for a proof we refer to [100].

We now address the numerical solution of Problem (Pγ). We assume that an iterative
linearization procedure is applied such that for a given initial vector X0 ∈ Rn, on step
k ≥ 1, one looks for Xk ∈ Rn such that

Ak−1
γ Xk = Bk−1

γ , (1.15)

where the Jacobian matrix Ak−1
γ ∈ Rn,n and the right-hand side vector Bk−1

γ ∈ Rn are
defined by

Ak−1
γ :=

[
E

JL
γk

(Xk−1)

]
, Bk−1

γ :=
[

F
JL

γk
(Xk−1)Xk−1 − JL

γk
(Xk−1)

]
, (1.16)

with JL
γk

(Xk−1) the Jacobian matrix of the function Lγ .

Following [152], we then give a brief review of a path-following strategy to update the
path parameter γ. We introduce for the kth Newton iteration, the sets

Ak =
{
X ∈ Rn;λ− γG(X) > 0

}
and Ik = Rn\Ak.

We also introduce the primal infeasibility measure ρF and the complementarity measure
ρC as follows:

ρk
F :=

∫
Rn

min
{
0,G(Xk)

}
dx,

ρk
C := −

∫
Ik

min
{
0,G(Xk)

}
dx +

∫
Ak

max
{
0,G(Xk)

}
dx.

The parameter γ is updated by

γk := max
(
γk−1max

(
τ,
ρk

F

ρk
C

)
,

1(
max(ρk

F , ρ
k
C)
)q
)
, (1.17)

with τ > 0, and q ≥ 1.

The semismooth Newton algorithm with path-following method is defined as follows:
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Algorithm 2: Semismooth Newton algorithm with path-following strategy

1. Choose γ1 > 0, a tolerance ε > 0, and an initial approximation X0 ∈ Rn. Set
k := 1.

2. i) From Xk−1 define Ak−1
γ ∈ Rn,n and Bk−1

γ ∈ Rn by (1.16).

ii) Find a solution Xk ∈ Rn of the linear system

Ak−1
γ Xk = Bk−1

γ .

3. If
∥∥∥R(Xk)

∥∥∥
r
< ε, stop.

If not, update γk according to (1.17), then set k := k + 1 and go to 2.

3 Adaptive inexact smoothing Newton method

In this section we introduce our adaptive inexact smoothing Newton method. Based on
a posteriori error estimators, adaptive stopping criteria are formulated to conceive an
adaptive iterative algorithm.

3.1 Smoothing of the C-functions

The key of our developments is to smooth the non-differentiable equation formulation
(1.8b) of the complementarity constraints (1.1b) with the help of a smooth (i.e. continu-
ously differentiable) function. This smoothing allows us to approximately transform the
nonsmooth nonlinear system (1.8) to a smooth system of nonlinear equations to be solved
by using the standard Newton method.

Let µ > 0 be a (small) smoothing parameter. We construct an approximation function
C̃µ : Rm ×Rm → Rm of a C-function C̃ such that C̃µ(·, ·) is of class C1 on Rm ×Rm and
satisfies

∥C̃(x,y) − C̃µ(x,y)∥ → 0 as µ → 0 for all (x, y) ∈ Rm × Rm.

For example, for l = 1, . . . ,m, a possible smoothing of the min and the Fischer–Burmeister
functions (1.6) and (1.7) can be

(
C̃minµ(x,y)

)
l

= xl + yl

2 −

(
|x − y|µ

)
l

2 , with (|z|µ)
l

=
√

z2
l + µ2, (1.18)(

C̃FBµ(x,y)
)

l
=
√
µ2 + x2

l + y2
l − (xl + yl), (1.19)

where the µ-smoothed absolute value function | · |µ : Rm → Rm
+ , m ≥ 0, replaces the

absolute value function (not differentiable at 0), see Figure 1.1. Note that both functions
| · |µ and C̃FB,µ are of class C∞.

We define the function Cµ : Rn → Rm as Cµ(X) := C̃µ (K(X),G(X)) , where
C̃µ : Rm × Rm → Rm is any smoothed C-function of at least class C1. This allows
to approximate problem (1.1) or (1.2) by a system of smooth equations: Find a vector
X ∈ Rn, such that

EX = F ,
Cµ(X) = 0. (1.20)
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Figure 1.1: Left: Absolute value function | · | and smoothed absolute value function | · |µ.
Right: Fischer–Burmeister function C̃FB(·) and smoothed Fischer–Burmeister function
C̃FBµ(·), for different values of the smoothing parameter µ.

Thus, Newton-type methods can be applied to solve the system of nonlinear algebraic
equations (1.20).

Fixing µ1 > 0, we now describe an iterative method for solving problem (1.8). At
the beginning of each smoothing iteration (outer iteration) denoted hereafter by j ≥ 1,
an initial guess Xj ∈ Rn is given, and a smoothing parameter µj is determined; µj will
be driven down to zero. Then some iterative nonlinear solver like the Newton method is
employed to solve the smoothed problem written in the form: Find Xj ∈ Rn such that

EXj = F ,
Cµj (Xj) = 0. (1.21)

3.2 Newton linearization of the nonlinear algebraic system

In what follows, we detail the Newton method employed to solve problem (1.21) at a
fixed outer smoothing step j ≥ 1. Given an initial vector Xj,0 (typically Xj,0 = Xj−1),
Newton’s algorithm generates a sequence (Xj,k)k≥1 with Xj,k ∈ Rn given by the following
system of linear algebraic equations

A
j,k−1
µj Xj,k = Bj,k−1

µj , (1.22)

where the Jacobian matrix A
j,k−1
µj ∈ Rn,n and the right-hand side vector Bj,k−1

µj ∈ Rn are
defined by

A
j,k−1
µj :=

[
E

JC
µj (Xj,k−1)

]
, Bj,k−1

µj :=
[

F
JC

µj (Xj,k−1)Xj,k−1 − Cµj (Xj,k−1)

]
,

(1.23)
with JC

µj (Xj,k−1) the Jacobian matrix of the smooth function Cµj at Xj,k−1.

3.3 Inexact solution of the linear algebraic system

The linearized system (1.22) may not be solved exactly, since the use of a direct method
may be expensive. For this reason, we consider in this work also an inexact resolution.
For a fixed smoothing step j ≥ 1, a fixed Newton step k ≥ 1, and an initial guess Xj,k,0

(typically Xj,k,0 = Xj,k−1), only a few steps of an iterative linear algebraic solver can be
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applied to find an approximate solution to (1.22), yielding, on step i ≥ 1, an approximation
Xj,k,i to Xj,k. This satisfies (1.22) up to the residual vector given by

Bj,k−1
µj − A

j,k−1
µj Xj,k,i. (1.24)

Define now the linearization function Cj,k−1
µj : Rn → Rm of Cµj at smoothing step j

and Newton step k as

Cj,k−1
µj (V ) := Cµj (Xj,k−1) + JC

µj (Xj,k−1)(V − Xj,k−1) ∀ V ∈ Rn. (1.25)

This allows us to write the algebraic residual vector for V ∈ Rn as

RAISN
alg (V ) := Bj,k−1

µj − A
j,k−1
µj V =

[
F − EV

−Cj,k−1
µj (V )

]
. (1.26)

3.4 An upper bound for the norm of the residual

We consider the total residual vector of problem (1.8) given in (1.11). By adding and

subtracting Cµj (Xj,k,i) and its linearization Cj,k−1
µj (Xj,k,i) given by (1.25), the total

residual vector can be decomposed as follows:

R(Xj,k,i) =
[

F − EXj,k,i

−C(Xj,k,i) ± Cµj (Xj,k,i) ± Cj,k−1
µj (Xj,k,i)

]

=
[

0
Cµj (Xj,k,i) − C(Xj,k,i)

]
︸ ︷︷ ︸

smoothing

+
[

0
Cj,k−1

µj (Xj,k,i) − Cµj (Xj,k,i)

]
︸ ︷︷ ︸

linearization

+
[

F − EXj,k,i

−Cj,k−1
µj (Xj,k,i)

]
︸ ︷︷ ︸

algebraic

.

It is reasonable to get these three terms. Indeed, the first one reflects the error due
to the approximation of the semismooth function C by the smoothed function Cµj . The
second term is related to the linearization of the nonlinear smooth problem (1.21). Taking
into account that the resolution of the smooth linearized problem (1.22) is possibly done
“inexactly”, the remaining term represents the error of the inexact algebraic resolution. By
the triangle inequality, the relative norm of R(Xj,k,i) is thus bounded by the smoothing,
linearization, and algebraic estimators respectively defined as

ηj,k,i
sm,AISN :=

∣∣∣∣∣∣Cµj (Xj,k,i) − C(Xj,k,i)
∣∣∣∣∣∣

r
, (1.27a)

ηj,k,i
lin,AISN :=

∣∣∣∣∣∣Cj,k−1
µj (Xj,k,i) − Cµj (Xj,k,i)

∣∣∣∣∣∣
r
, (1.27b)

ηj,k,i
alg,AISN :=

(∣∣∣∣∣∣F − EXj,k,i
∣∣∣∣∣∣2

r
+
∣∣∣∣∣∣Cj,k−1

µj (Xj,k,i)
∣∣∣∣∣∣2

r

) 1
2
. (1.27c)

Note that ηj,k,i
alg,AISN is exactly equal to the relative norm of RAISN

alg (Xj,k,i) given by (1.26).
From these developments we conclude:

Theorem 1.1. Let Xj,k,i ∈ Rn arise from an inexact solve of (1.22). We have∣∣∣∣∣∣R(Xj,k,i)
∣∣∣∣∣∣

r
≤ ηj,k,i

AISN := ηj,k,i
sm,AISN + ηj,k,i

lin,AISN + ηj,k,i
alg,AISN.



3. Adaptive inexact smoothing Newton method 27

3.5 Adaptive inexact smoothing Newton algorithm

Theorem 1.1 motivates the following. Let two real parameters αlin and αalg be given in
]0, 1], representing the desired relative size of the algebraic and linearization errors, and
let ε > 0 be a given desired tolerance for the total error. The stopping criteria for the
linearization, algebraic, and smoothing steps, with the bars denoting the stopping indices,
are respectively set as

ηj,k,i
alg,AISN < αalgη

j,k,i
lin,AISN, (1.28a)

ηj,k,i
lin,AISN < αlinη

j,k,i
sm,AISN, (1.28b)∥∥∥R(Xj,k,i)

∥∥∥
r
< ε. (1.28c)

The first criterion (1.28a) for the algebraic iterative solver expresses that there is no
need to continue with the algebraic steps when the linearization error becomes dominant.
Similarly, the second one (1.28b) aims at stopping the linearization iterations when the
linearization error does not substantially contribute to the smoothing error. Finally, the
termination criterion for the smoothing steps (1.28c) is of the standard type, that is when
we stop the entire procedure, when the relative norm of the total residual vector lies below
the desired tolerance ε.

The entire method is described by the following adaptive algorithm, which drives the
smoothing parameter µj to zero as µj := αµj−1, α ∈ ]0, 1[, at each smoothing iteration.
Such geometric sequence have the advantage of going slowly to zero, which is useful when
µj is still large. Other heuristic updating strategies for µj are the following:

(i) µj = (µj−1)2, a power sequence that goes quickly to zero, which is recommended
when µj is already small,

(ii) µj = min
{
αµj−1, (µj−1)2}, which combines the advantages of the geometric and

power sequence strategies,

(iii) µj = min
{
αµj−1, (µj−1)2,K(Xj)G(Xj)/m

}
, a geometric-power sequence that links

the smoothing parameters sequence to the current order of K(Xj)G(Xj).

The adaptive inexact smoothing Newton algorithm is the following:
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Algorithm 3: Adaptive inexact smoothing Newton algorithm

1. Initialization
Choose a tolerance ε > 0 and parameters α ∈ ]0, 1[ and αlin, αalg ∈ ]0, 1].
Fix µ1 > 0 and an initial approximation X0 ∈ Rn. Set j := 1.

2. Smoothing loop

2.1 Set Xj,0 := X0 as an initial guess for the nonlinear solver. Set k := 1.
2.2 Newton linearization loop

2.2.1 From Xj,k−1 define A
j,k−1
µj ∈ Rn,n and Bj,k−1

µj ∈ Rn by (1.23).

2.2.2 Consider the problem of finding a solution Xj,k to

A
j,k−1
µj Xj,k = Bj,k−1

µj . (1.29)

2.2.3 Set Xj,k,0 := Xj,k−1 as initial guess for the iterative algebraic solver. Set
i := 1.

2.2.4 Algebraic solver loop

i) Starting from Xj,k−1, perform a step of the iterative algebraic solver
for the solution of (1.29), yielding, on step i an approximation Xj,k,i

to Xj,k satisfying

A
j,k−1
µj Xj,k,i = Bj,k−1

µj − RAISN
alg (Xj,k,i).

ii) Compute the estimators given in (1.27).

iii) If ηj,k,i
alg,AISN < αalgη

j,k,i
lin,AISN, set i := i and stop. If not, set i := i+ 1

and go to i).

2.2.5 If ηj,k,i
lin,AISN < αlinη

j,k,i
sm,AISN, set k := k and stop. If not, set k := k + 1 and

go to 2.2.1.

2.3 If ∥R(Xj,k,i)∥r < ε, set j := j and stop.

If not, set j := j + 1, Xj,0 := Xj−1,k,i, and µj := αµj−1. Then set k := 1 and
go to 2.2.1.

4 Nonparametric interior-point method

Now we employ a nonparametric interior-point method to problem (1.1). More precisely,
we consider the method introduced in [145] where a systematic strategy is used to steer
the sequence of smoothing parameters towards zero.

We introduce a vector µ = µ1 ∈ Rm, where µ > 0 is the smoothing parameter and
1 ∈ Rm is the vector with all components equal to 1. The original nonsmooth problem
(1.1) is replaced by a smoothed problem written in the form: Find X ∈ Rn such that

EX = F , (1.30a)

K(X) ≥ 0, G(X) ≥ 0, K(X)G(X) = µ, (1.30b)

where
[
(K(X)G(X)

]
m

=
[
K(X)

]
m

[
G(X)

]
m
. In order to properly adjust the sequence

of smoothing parameters, the smoothing parameter µ is treated as an unknown, by intro-
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ducing the following new equation into system (1.30)

θµ+ µ2 = 0, (1.31)

where θ is a small positive real parameter, chosen once and for all. This equation prevents
µ from rushing to zero in just one iteration, and ensures quadratic convergence, see [145].
The unknown of system (1.30) is now the enlarged vector X = (X, µ)T ∈ Rn+1. We are
thus brought back to applying the standard Newton method to a smooth problem.

Let X0 ∈ Rn such that K(X0) ≥ 0 and G(X0) ≥ 0 be given. To update the
iterate X k−1, we compute a search direction denoted by dk = [dk

X , d
k
µ] ∈ Rn+1, where

dk
X ∈ Rn and dk

µ ∈ R. Then, to preserve positivity of K(Xk) and G(Xk) at each step

of the nonlinear solver, a truncation of the Newton direction dk is performed so that the
corresponding update satisfies

K(Xk−1 + κkdk
X) ≥ 0 and G(Xk−1 + κkdk

X) ≥ 0

for some κk ∈ ]0, 1], as close to 1 as possible. After this, we can set

X k := X k−1 + κkdk.

Recall that our goal is to make µ equal to 0 in the limit while ensuring the positivity of
the updated iterate. Another choice for the additional equation (1.31) added to system
(1.30) was developed and introduced in a recent work, see [146, Section 3]. The proposed
equation does not require to truncate the Newton direction, and couples µ and X in a
tighter way.

We rewrite system (1.30) as Φ(X ) = 0, where

Φ(X ) :=

 F − EX
µ − K(X)G(X)

−θµ− µ2

 ∈ Rn+1. (1.32)

We define for V ∈ Rn, the linearization residual vector associated to the nonparametric
interior-point method as

RIP(V ) := Φ(V ), (1.33)

and recall that the relative norm of RIP(V ) is defined by

∥RIP(V )∥r := ∥RIP(V )∥
∥RIP(X0)∥ . (1.34)

The nonparametric interior-point algorithm is as follows:

Remark 1.2. This method is qualified as nonparametric in the sense that the model only
involves a small positive parameter that is chosen once and for all and does not need to
be driven to zero.
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Algorithm 4: Nonparametric interior-point algorithm

1. Choose θ > 0, a tolerance ε > 0 and an initial approximation
X 0 = (X0, µ0)T ∈ Rn+1, such that

K(X0) > 0, G(X0) > 0, µ0 = K(X0) · G(X0)
m

.

Set k := 1.

2. Compute a direction dk = [dk
X , d

k
µ] ∈ Rn+1 such that

Φ(X k−1) + DΦ(X k−1)dk = 0,

where Φ is given by (1.32) and DΦ is the Jacobian matrix of Φ at X k−1.

3. Compute κk ∈ ]0, 1] such that K(Xk−1 + κkdk
X) ≥ 0 and G(Xk−1 + κkdk

X) ≥ 0.

4. Set X k := X k−1 + κkdk.

5. If ∥RIP(Xk)∥r < ε, stop. If not, set k := k + 1, and go to 2.

5 Adaptive inexact interior-point method

We present in this section our adaptive inexact version of the nonparametric interior point
method of Section 4. In contrast to Section 4, we consider, however, µ > 0 as a parameter,
and not as an unknown. At each smoothing step j ≥ 1, we may solve the system of
smoothing equations written as: Find Xj ∈ Rn such that K(Xj) ≥ 0, G(Xj) ≥ 0, and

EXj = F , (1.35a)

Hµj (Xj) := K(Xj)G(Xj) − µj = 0. (1.35b)

The values of µj are gradually decreased at each smoothing iteration, creating a sequence
of suitable µj converging to zero.

5.1 Newton linearization of the nonlinear algebraic system

Let X0 ∈ Rn such that K(X0) ≥ 0 and G(X0) ≥ 0 be given. At each smoothing
iteration j ≥ 1 and each linearization step k ≥ 1, starting with an initial approximation
Xj,0 such that K(Xj,0) ≥ 0 and G(Xj,0) ≥ 0 (typically Xj,0 = Xj−1), we try to
approach the solution of problem (1.35) by finding Xj,k ∈ Rn such that

A
j,k−1
µj Xj,k = Bj,k−1

µj , (1.36)

where the Jacobian matrix A
j,k−1
µj ∈ Rn,n and the right-hand side vector Bj,k−1

µj ∈ Rn are
defined by

A
j,k−1
µj :=

[
E

JH
µj (Xj,k−1)

]
, Bj,k−1

µj :=
[

F
JH

µj (Xj,k−1)Xj,k−1 − Hµj (Xj,k−1)

]
,

(1.37)
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with JH
µj the Jacobian matrix of Hµj . To ensure the positivity of the complementarity

constraints, we then define the direction dj,k := Xj,k − Xj,k−1 ∈ Rn and find κj,k ∈ ]0, 1]
such that

K(Xj,k−1 + κj,kdj,k) ≥ 0 and G(Xj,k−1 + κj,kdj,k) ≥ 0.

5.2 Inexact solution of the linear algebraic system

For a fixed smoothing iteration j ≥ 1, a fixed Newton step k ≥ 1, and an initial guess Xj,k,0

(typically Xj,k,0 = Xj,k−1), an iterative algebraic solver can be applied to approach the
solution of (1.36), yielding, on step i ≥ 1, an approximation Xj,k,i to Xj,k. This satisfies
(1.36) up to a residual vector defined by

Bj,k−1
µj − A

j,k−1
µj Xj,k,i. (1.38)

Introduce the linearization Hj,k−1
µj : Rn → Rm of Hµj (·) such that for V ∈ Rn,

Hj,k−1
µj (V ) := Hµj (Xj,k−1) + JH

µj (Xj,k−1)(V − Xj,k−1). (1.39)

Using (1.39), the algebraic residual vector can be written as follows

RAIIP
alg (V ) := Bj,k−1

µj − A
j,k−1
µj V =

[
F − EV

−Hj,k−1
µj (V )

]
, V ∈ Rn. (1.40)

We now define the function H : Rn → Rm by

H(V ) := K(V )G(V ), V ∈ Rn. (1.41)

and the total residual vector associated to the adaptive inexact interior-point method by

RAIIP(V ) :=
[

F − EV
−H(V )

]
, V ∈ Rn. (1.42)

Here again, the relative norm of a given vector V ∈ Rn is given by ||V ||r :=
||V || /∥RAIIP(X0)∥.

5.3 An upper bound for the norm of the residual

In the same spirit as in Section 3.4, we decompose at each smoothing step j ≥ 1, each
linearization step k ≥ 1, and each algebraic step i ≥ 1 the total residual vector given by
(1.42)

RAIIP(Xj,k,i) =
[

0
Hµj (Xj,k,i) − H(Xj,k,i)

]
︸ ︷︷ ︸

smoothing

+
[

0
Hj,k−1

µj (Xj,k,i) − Hµj (Xj,k,i)

]
︸ ︷︷ ︸

linearization

+
[

F − EXj,k,i

−Hj,k−1
µj (Xj,k,i)

]
︸ ︷︷ ︸

algebraic

.

We then define the smoothing, linearization, and algebraic estimators by

ηj,k,i
sm,AIIP :=

∣∣∣∣∣∣Hµj (Xj,k,i) − H(Xj,k,i)
∣∣∣∣∣∣

r
=
∣∣∣∣∣∣µj

∣∣∣∣∣∣
r
, (1.43a)
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ηj,k,i
lin,AIIP :=

∣∣∣∣∣∣Hj,k−1
µj (Xj,k,i) − Hµj (Xj,k,i)

∣∣∣∣∣∣
r
, (1.43b)

ηj,k,i
alg,AIIP :=

(
∥F − EXj,k,i∥2

r + ∥Hj,k−1
µj (Xj,k,i)∥

2

r

) 1
2
. (1.43c)

Then we have an upper bound for the norm
∣∣∣∣∣∣RAIIP(Xj,k,i)

∣∣∣∣∣∣
r
:

Theorem 1.3. Let Xj,k,i ∈ Rn be the approximation of X given by an iterative algebraic
solver. Then we have∣∣∣∣∣∣RAIIP(Xj,k,i)

∣∣∣∣∣∣
r

≤ ηj,k,i
AIIP := ηj,k,i

sm,AIIP + ηj,k,i
lin,AIIP + ηj,k,i

alg,AIIP.

5.4 Adaptive inexact interior-point algorithm

Our proposed adaptive inexact interior-point algorithm implements adaptive stopping
criteria formulated using the error component estimators given by (1.43) is as follows:
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Algorithm 5: Adaptive inexact interior-point algorithm

1. Initialization
Choose a tolerance ε > 0 and parameters α ∈ ]0, 1[ and αlin, αalg ∈ ]0, 1].
Fix µ1 > 0 and an initial vector X0 ∈ Rn such that K(X0) ≥ 0 and G(X0) ≥ 0.
Set j := 1.

2. Smoothing loop

2.1 Set Xj,0 := X0 as an initial guess for the linearization loop and k := 1.
2.2 Interior-point linearization loop

2.2.1 From Xj,k−1 define A
j,k−1
µj ∈ Rn,n and Bj,k−1

µj ∈ Rn by (1.37).

2.2.2 Consider the problem of finding Xj,k ∈ Rn such that

A
j,k−1
µj Xj,k = Bj,k−1

µj . (1.44)

2.2.3 Set Xj,k,0 := Xj,k−1 as initial guess for the iterative algebraic solver.
Set i := 1.

2.2.4 Algebraic solver loop

i) Starting from Xj,k−1 perform a step of the iterative algebraic solver
for (1.44), yielding, at step i ≥ 1, a vector Xj,k,i ∈ Rn such that

A
j,k−1
µj Xj,k = Bj,k−1

µj − RAIIP
alg (Xj,k,i).

ii) Set dj,k,i := Xj,k − Xj,k−1 and compute κj,k,i ∈ ]0, 1] such that

K(Xj,k−1 + κj,k,idj,k,i) ≥ 0 and G(Xj,k−1 + κj,k,idj,k,i) ≥ 0.

Then set Xj,k,i := Xj,k−1 + κj,k,idj,k,i.

iii) Compute the estimators given by (1.43).

iv) If ηj,k,i
alg,AIIP < αalgη

j,k,i
lin,AIIP, set i := i and stop. If not, set i := i+ 1

and go to i).

2.2.5 If ηj,k,i
lin,AIIP < αlinη

j,k,i
sm,AIIP, set k := k and stop. If not, set k := k + 1

and go to 2.2.1.

2.3 If
∣∣∣∣∣∣RAIIP(Xj,k,i)

∣∣∣∣∣∣
r
< ε, set j := j and stop. If not, set j := j + 1,

Xj,0 := Xj−1,k,i, and µj := αµj−1. Then set k := 1 and go to 2.2.1.

6 Numerical experiments: Problem of contact between two mem-
branes

This section reports some numerical illustrations obtained using the algorithms previously
presented. We consider here the model problem of contact between two membranes.
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6.1 Problem statement

Let Ω = (a, b) be a one-dimensional domain. The problem reads: Find u1, u2, and λ such
that 

−µ1∆u1 − λ = f1 in Ω,
−µ2∆u2 + λ = f2 in Ω,

(u1 − u2)λ = 0, u1 − u2 ≥ 0, λ ≥ 0 in Ω,
u1 = g on ∂Ω,
u2 = 0 on ∂Ω,

(1.45)

where u1 and u2 represent the vertical displacements of the two membranes and λ is a
Lagrange multiplier characterizing the action of the second membrane on the first one, −λ
being the reaction. The constant parameters µ1, µ2 > 0 correspond to the tension of each
membrane, whereas f1, f2 ∈ L2(Ω) are given external forces. The boundary condition
prescribed by a constant g > 0 ensures that, on the boundary ∂Ω, the first membrane is
above the second one. The third line of (1.45) represents the linear complementarity con-
ditions which serve to distinguish two different physical situations: either the membranes
are separated (u1 > u2 and λ = 0), or they are in contact (u1 = u2 and λ > 0). We
discretize this problem by the finite volume method. The corresponding discretization
can be written under the form of problem (1.1).

6.2 Test problem setting

Following [17], we set Ω = (−1, 1) and consider the following analytical solution for x ∈ Ω

u1(x) := g(2x2 − 1), u2(x) :=
{

2g(1 − x2)(2x2 − 1) if x < −1√
2 or x > 1√

2 ,

g(2x2 − 1) otherwise,

λ(x) :=
{

0 if x < −1√
2 or x > 1√

2 ,

2g otherwise.

This triple is the solution of (1.45) for the data f1 and f2 given by

f1(x) :=
{

−4g if x < −1√
2 or x > 1√

2 ,

−6g otherwise,

and f2(x) :=
{

−12g(1 − 4x2) if x < −1√
2 or x > 1√

2 ,

−2g otherwise.

Throughout the computational experiments, the parameters µ1 and µ2 are set to 1
and the boundary condition g for the first membrane is taken equal to 0.1. Let N be the
number of mesh elements. The initial guess X0 ∈ R3N has its first N components equal
to g and its other components equal to zero for the semismooth and smoothing Newton
methods. For the nonparametric interior-point method (resp. the adaptive interior-point
method), the initialization is given by X 0 = [0.1 0 0.5 0.05]T ∈ R3N+1 (resp. X0 =
[0.1 0 0.5]T ∈ R3N ). All the simulations are performed in MATLAB. We consider N =
25000 elements, leading to the matrix A of size n = 75000.
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6.3 Semismooth Newton method

We start by presenting the numerical results of the semismooth Newton method described
in Section 2, Algorithm 1, using the F–B function (1.7). We recall that the stopping
criterion is on the total residual vector (1.11)∥∥∥R(Xk)

∥∥∥
r
< 10−8. (1.46)

To achieve this stopping criterion, 527 semismooth Newton-F–B iterations (CPU time:
68.9s) and 2232 Newton-min iterations (CPU time: 338.9s) are needed. Figure 1.2 repre-
sents the evolution of ∥R(Xk)∥r as a function of the semismooth Newton-F–B iterations.
We can see that it decreases slowly during iterations, then the convergence gets extremely
fast at the end. The use of the path-following technique presented in Section 2.1 ensures a
faster decrease rate of the residual as shown in Figure 1.3. Precisely, employing Algorithm
2, only 38 iterations are needed to satisfy the stopping criterion (1.46). The parameter λ
in (1.14) is taken equal to 0.1.

It should be noted that the semismooth Newton algorithm converges if the initial
iterate is chosen sufficiently close to the solution. It is a key condition required for the
convergence of the method. As a natural choice in our numerical tests, we initialize the
algorithm by X0 = [0.1 0 0]T ∈ R3N , where 0.1 and 0 represent the value of the boundary
condition for the first and second membrane, respectively.
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Figure 1.2: [Semismooth Newton method, F–B function (1.7), Algorithm 1, stopping cri-
terion (1.46)] Relative norm of the total residual vector (1.11) as a function of semismooth
Newton iterations.
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Figure 1.3: [Semismooth Newton method with path-following strategy, Algorithm 2, stop-
ping criterion (1.46)] Relative norm of the total residual vector (1.11) as a function of
Newton iterations.

6.4 Adaptive smoothing Newton method

We now test the adaptive smoothing Newton method, denoted by ASN, with the smoothed
F–B function (1.19). This consists in employing the method presented in Section 3,
summarized in Algorithm 3, but with an exact resolution of the nonlinear system (1.22).
The linearization and smoothing estimators are respectively defined by

ηj,k
lin,ASN :=

∣∣∣∣∣∣Cµj (Xj,k)
∣∣∣∣∣∣

r
, (1.47a)

ηj,k
sm,ASN :=

∣∣∣∣∣∣Cµj (Xj,k) − C(Xj,k)
∣∣∣∣∣∣

r
, (1.47b)

and the total estimator by ηj,k
ASN := ηj,k

sm,ASN + ηj,k
lin,ASN.

First, we analyze the performance of the adaptive stopping criterion based on the
estimators for stopping the linearization steps. We compare it with the classical approach
in where the linearization is continued until the relative norm of the linearization estimator
becomes smaller than a threshold taken as 10−8, i.e.,

Classical stopping criterion: ηj,k
lin,ASN < 10−8, (1.48)

Adaptive stopping criterion: ηj,k
lin,ASN < αlinη

j,k
sm,ASN. (1.49)

We set µ1 = 1, ε = 10−8, αlin = 1, and α = 0.1 in Algorithm 3. Figure 1.4 depicts the
evolution of the estimators and the relative norm of the total residual vector R(Xj,k) given
in (1.11) as a function of the smoothing Newton–F–B iterations, at a specific smoothing
iteration j = 1 (µ1 = 1), left, and j = 3 (µ3 = 10−2), right. We can observe from Figure
1.4, left, that, as expected, the smoothing estimator and ∥R(Xj,k)∥r stagnates after few
steps, since here the smoothing parameter µ1 is equal to 1, whereas the linearization
estimator steadily decreases. If we consider the classical stopping criterion (1.48), the
linearization will only be stopped at step k = 8. On the other hand, with our adaptive
stopping criterion (1.49), only one iteration is necessary. Clearly after a few linearization
steps, the linearization estimator no longer affects significantly the smoothing estimator,
and we can economize many useless iterations.
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Figure 1.4: [Adaptive smoothing Newton method, smoothed F–B function (1.19), classical
and adaptive stopping criteria (1.48) and (1.49)] Relative norm of the total residual vector
(1.11) and estimators (1.47) as a function of Newton iterations k, at a specific smoothing
iteration j = 1 (µ1 = 1), left, and at j = 3 (µ3 = 10−2), right.

Next, we provide in Table 1.1 the results obtained using the adaptive stopping criterion
(1.49) to stop the nonlinear solver. We terminate the smoothing iterations using the
relative norm of the total residual vector (1.11)

∥R(Xj,k)∥r < 10−8. (1.50)

We present the cumulated number of Newton iterations Niter, the estimators (1.47), and
the relative norm of the total residual vector (1.11) at each smoothing step j. In terms of
numbers, 10 smoothing iterations and 36 cumulated Newton iterations (CPU time: 6.9s)
are needed to achieve the stopping criterion (1.50). From Table 1.1, one can see that

for each value of µj , the Newton iterations are stopped according to (1.49). ∥R(Xj,k)∥r
decreases until lying below 10−8. Figure 1.5 displays the curve of the estimators as a
function of cumulated Newton iterations and smoothing iterations, as well as the relative
norm of the total residual vector as a function of smoothing iterations. The improvement
of the performance with respect to the semismooth Newton-F–B method of Section 6.3 is
spectacular.
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Figure 1.5: [Adaptive smoothing Newton method, smoothed F–B function (1.19), adaptive
stopping criterion (1.49)] Estimators (1.47) as a function of cumulated Newton iterations
(left). Estimators (1.47) (middle) and relative norm of the total residual vector (1.11)
(right) as a function of smoothing iterations j at convergence of the linearization solver.

µj Niter ηj,k
lin,ASN ηj,k

sm,ASN ∥R(Xj,k)∥r

1e+00 1 2.17e+03 4.24e+03 2.17e+03
1e-01 3 6.00e+01 2.37e+02 2.03e+02
1e-02 4 9.73e+00 1.53e+01 1.01e+01
1e-03 5 3.18e-01 6.84e-01 6.00e-01
1e-04 7 9.87e-03 3.58e-02 3.43e-02
1e-05 4 1.06e-03 2.33e-03 1.87e-03
1e-06 3 1.14e-04 1.50e-04 7.45e-05
1e-07 3 4.85e-06 8.04e-06 3.84e-06
1e-08 3 3.23e-07 4.72e-07 1.83e-07
1e-09 3 1.43e-08 2.15e-08 8.04e-09

Table 1.1: [Adaptive smoothing Newton method, smoothed F–B function (1.19), adaptive
stopping criterion (1.49)] Number of Newton iterations Niter, estimators (1.47), and rela-
tive norm of the total residual vector (1.11) at each smoothing iteration j, at convergence
of the linearization solver.
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The following test compares the semismooth Newton method (SSN), Algorithm 1, and
the semismooth Newton method with path-following (SSN-pf), Algorithm 2, in which the
linearization is stopped when the criterion (1.46) is satisfied, to the adaptive smooth-
ing Newton method, using the smoothed min and F–B functions (1.18) and (1.19) and
the stopping criteria (1.49) and (1.46) respectively for the linearization and smoothing
iterations.

We compare the number of cumulated linearization iterations and the global CPU
time of the simulation for the different strategies. The results are displayed in Figure 1.6.
They confirm the expected reduction of the computational cost of the numerical resolution
with our adaptive approaches. Actually, we notice that the semismooth Newton method
with path-following (red curve) and the adaptive smoothing Newton method (purple and
dark blue curves) require significantly fewer cumulated Newton iterations and time to
converge, in comparison with the semismooth Newton method (green and orange curves).
Therefore, employing the path-following strategy or the adaptive strategy based on a
posteriori error estimates enables to save many unnecessary additional iterations, and
yield much better results than the pure semismooth Newton method. We note that,
using the adaptive smoothing Newton method, one obtains similar computational results
using both the smoothed F–B or the smoothed min function.
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Figure 1.6: [Semismooth Newton method (with and without a path-following strategy)
and adaptive smoothing method] Cumulated number of Newton iterations (left) and CPU
time (right) as a function of the number of mesh elements.

6.5 Adaptive inexact smoothing Newton method

We focus in this section on the adaptive inexact Newton method introduced in Section 3
and investigate the performance of Algorithm 3 using the smoothed F–B function (1.19)
together with the restarted GMRES method. Typically, we use a fixed restart parameter
equal to 300. The behavior of the adaptive smoothing solvers can be improved dra-
matically by using good preconditioners. Here, we merely use an ILU preconditioner to
speed-up the GMRES solver. For other possibilities for preconditioners, we refer to, e.g.,
[106] and the references therein. To point out the efficiency of the adaptivity, we test two
approaches. First, we stop the algebraic iterations using the standard GMRES stopping
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criterion on the relative residual given by

Rrel :=
∥M2\(M1\(Bj,k−1

µj − A
j,k−1
µj Xj,k,i))∥

∥M2\(M1\(Bj,k−1
µj − A

j,k−1
µj Xj,k−1))∥

≤ 10−10, (1.51)

where M1 and M2 are the preconditioner matrices. Second, we incorporate the adaptive
stopping criteria (1.28a) for the algebraic solver in Algorithm 3. We set the parameters
µ1 = 1, ε = 10−5, αalg = 10−3, αlin = 1, and α = 0.1. Figure 1.7 depicts the evolution of
the algebraic and linearization estimators and the GMRES relative residual during the
algebraic resolution, for specific smoothing step j and linearization step k. For j = 2 and
k = 2, we see that 22 GMRES iterations are needed to achieve the standard stopping
criterion (1.51), whereas in the adaptive resolution case, only 10 GMRES iterations are
required to satisfy the adaptive stopping criterion (1.28a). In this case, we can avoid many
unnecessary iterations. One can also see from the right part of Figure 1.7, for j = 3 and
k = 1, that the overall gain in terms of algebraic iterations obtained using our stopping
criteria is quite significant.
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Figure 1.7: [Adaptive inexact smoothing Newton method, smoothed F–B function (1.19),
Algorithm 3] Algebraic and linearization estimators (1.27) and GMRES relative residual
as a function of the GMRES iterations i, for a fixed smoothing and linearization iterations,
j = 2, k = 2, i varies, left, and j = 3, k = 1, i varies, right, using the classical stopping
criterion (1.51) and the adaptive one (1.28a).

Figure 1.8, left, shows the evolution of the estimators during smoothing iterations, at
convergence of the nonlinear and linear solvers. As expected, the estimators decrease when
µ decreases at each smoothing step. In the middle part of Figure 1.8, we can observe the
behavior of the estimators at the end of the algebraic iterations, during the linearization
iterations. We present 8 curves, each one corresponding to a specific value of µj . We

can see that at each smoothing iteration j, the smoothing estimator ηj,k,i
sm,AISN stagnates

after about two iterations. The linearization estimator ηj,k,i
lin,AISN decreases until becoming

smaller than the smoothing estimator, satisfying the stopping criterion (1.28b). Finally,
the detected behavior in terms of all smoothing iterations j, linearization iterations k,
and algebraic solver iterations i is presented in Figure 1.8, right, for j ≤ 2.

The overall results are collected in Table 1.2. We present in particular the number
of linearization and cumulated algebraic iterations per smoothing step j, Niter and Giter
respectively, as well as the estimators (1.27) and the relative norm of the total residual
vector (1.11) at the end of each smoothing step j. Using the adaptive stopping criteria
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Figure 1.8: [Adaptive inexact smoothing Newton method, smoothed F–B function (1.19),
Algorithm 3] Estimators (1.27) as a function of smoothing iterations j at convergence
of the algebraic and linearization solvers, left. Estimators as a function of cumulated
Newton iterations at convergence of the algebraic solver, middle. Estimators as a function
of cumulated GMRES iterations during the first two smoothing iterations (j = 1 and
j = 2), right.

(1.28), 8 smoothing iterations, 39 cumulated Newton iterations, and 5999 cumulated GM-
RES iterations are needed to ensure convergence. Figure 1.9 illustrates the performance of
the adaptive inexact smoothing Newton method. It represents the ratio between: 1) the
number of algebraic iterations (left) and the CPU time (right) using the classical GMRES
stopping criterion (1.51) and 2) the number of algebraic iterations and the CPU time
using the adaptive stopping criterion (1.28a) for GMRES, as a function of the number of
elements. For larger systems, 20-times fewer iterations and 18-times faster execution time
are achieved.
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Figure 1.9: [Adaptive inexact smoothing Newton method, smoothed F–B function (1.19),
Algorithm 3] Ratio between: the number of algebraic iterations (left) and CPU time
(right) needed by the classical stopping criterion (1.51) to converge to the number and
time needed by the adaptive stopping criterion (1.28a), as a function of the number of
mesh elements.

µj Niter Giter ηj,k,i
lin,AISN ηj,k,i

sm,AISN ηj,k,i
alg,AISN

∣∣∣∣∣∣R(Xj,k,i)
∣∣∣∣∣∣

r
1e+00 1 8 2.16e+03 4.24e+03 1.80e+00 2.19e+03
1e-01 4 34 5.95e+01 2.31e+02 1.89e-02 1.80e+02
1e-02 3 391 1.54e+01 1.73e+01 1.41e-02 6.75e+00
1e-03 4 198 5.04e-01 8.16e-01 4.60e-04 5.95e-01
1e-04 10 796 7.99e-03 3.53e-02 5.58e-06 3.43e-02
1e-05 10 684 8.54e-04 2.12e-03 7.61e-07 1.94e-03
1e-06 4 513 9.03e-05 1.48e-04 7.42e-08 1.05e-04
1e-07 3 3375 6.04e-06 8.14e-06 4.27e-09 4.26e-06

Table 1.2: [Adaptive inexact smoothing Newton method, smoothed F–B function (1.19),
Algorithm 3] Number of Newton iterations and cumulated GMRES iterations, estimators
(1.27), and relative norm of the total residual vector (1.11) at each smoothing iteration
j, at convergence of the algebraic and linearization solvers.

6.6 Nonparametric interior-point method

We consider here the nonparametric interior-point approach of Section 4, Algorithm 4,
where the dimension of the corresponding problem is n = 3N+1. The value of the constant
θ in the additional equation (1.31) is 10−1. Using this method, 19 Newton iterations (CPU
time: 6.7s) are needed to reach the end of the simulation. Figure 1.10 shows that the
relative norm of the linearization residual vector decreases during the Newton interior-

point iterations until satisfying the stopping criterion
∥∥∥RIP(Xk)

∥∥∥
r
< 10−8.
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Figure 1.10: [Nonparametric interior-point method, Algorithm 4] Relative norm of the
linearization residual vector (1.33) as a function of Newton iterations.

6.7 Adaptive interior-point method

Next, we consider the adaptive interior-point method, which is the method presented in
Section 5, Algorithm 5 without applying an algebraic iterative solver to approximate the
solution of the linear system (1.36). In this case, we can define the linearization and
smoothing estimators respectively by

ηj,k
lin,AIP :=

∣∣∣∣∣∣Hµj (Xj,k)
∣∣∣∣∣∣

r
, (1.52a)

ηj,k
sm,AIP :=

∣∣∣∣∣∣µj
∣∣∣∣∣∣

r
, (1.52b)

where Hµj (·) is defined in (1.35b), and the total estimator by ηj,k
AIP := ηj,k

sm,AIP + ηj,k
lin,AIP.

Recall from (1.42) the definition of the total residual vector for V ∈ Rn as

RAIP(V ) :=
[

F − EV
−H(V )

]
, (1.53)

where H(·) is defined in (1.41). The adaptive stopping criterion

ηj,k
lin,AIP < αlinη

j,k
sm,AIP (1.54)

is used to stop the nonlinear solver and a criterion on the relative norm of the total
residual vector is applied to stop the smoothing iterations

∥RAIP(Xj,k)∥r < 10−8. (1.55)

The initial smoothing vector is µ1 = [1, . . . , 1]T ∈ RN and αlin = 1. Concerning the update
of the smoothing parameter µ, we set α = 10−1. Table 1.3 summarizes the results. To
achieve the stopping criterion (1.55), 11 smoothing iterations and 20 cumulated Newton
iterations are needed (CPU time: 5.0s). In Figure 1.11, we plot the estimators (1.52) as a
function of the cumulated Newton iterations (left), the smoothing iterations (middle), and
the relative norm of the residual vector as a function of the smoothing iterations (right).

The behavior of
∣∣∣∣∣∣RAIP(Xj,k)

∣∣∣∣∣∣
r
in Figure 1.11 appears a bit different from its behavior

in Figure 1.5. This is related to the fact that the relative norm of the total residual
given by (1.11) includes C(X) in the adaptive smoothing Newton method, whereas in
this adaptive interior-point method, the relative norm of the total residual given by (1.53)
includes K(X)G(X).
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µj Niter ηj,k
lin,AIP ηj,k

sm,AIP

∣∣∣∣∣∣RAIP(Xj,k)
∣∣∣∣∣∣

r
1e+00 2 1.11e+01 2.00e+01 3.00e+01
1e-01 2 1.24e+00 2.00e+00 3.20e+00
1e-02 2 1.15e-01 2.00e-01 3.11e-01
1e-03 2 6.51e-03 2.00e-02 2.43e-02
1e-04 2 3.38e-04 2.00e-03 2.14e-03
1e-05 1 1.58e-04 2.00e-04 2.82e-04
1e-06 2 3.67e-06 2.00e-05 2.10e-05
1e-07 2 1.00e-07 2.00e-06 2.02e-06
1e-08 1 1.86e-07 2.00e-07 3.84e-07
1e-09 2 9.33e-10 2.00e-08 2.01e-08
1e-10 2 2.55e-11 2.00e-09 2.00e-09

Table 1.3: [Adaptive interior-point method] Number of Newton iterations, estimators
(1.52), and relative norm of the total residual vector (1.53) at each smoothing step j, at
convergence of the linearization solver.
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Figure 1.11: [Adaptive interior-point method] Estimators (1.52) as a function of cumu-
lated Newton iterations (left). Estimators (1.52) (middle) and relative norm of the total
residual vector (1.53) (right) as a function of smoothing iterations j at convergence of the
linearization solver.
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6.8 Adaptive inexact interior-point method

Let us now present the numerical results of the adaptive inexact interior-point method,
detailed in Section 5. We employ Algorithm 5 with the GMRES algebraic solver and an
ILU preconditioner. The parameters in Algorithm 5 are set as µ1 = [1, . . . , 1]T ∈ RN , ε =
10−5, αalg = 1, αlin = 1, and α = 0.1. The restart parameter of restarted GMRES is
chosen equal to 300. From Table 1.4, we can see that the method converged after 8
smoothing iterations, 20 cumulated linearization iterations, and 760 cumulated GMRES
iterations. Figure 1.12, left, displays the curves of the estimators (1.43) as a function of
the smoothing iteration. One can see that the estimators satisfy the adaptive stopping
criteria incorporated in Algorithm 5. In Figure 1.12, right, the estimators are shown as a
function of cumulated Newton iterations, at convergence of the linear solver.

µj Niter Giter ηj,k,i
lin,AIIP ηj,k,i

sm,AIIP ηj,k,i
alg,AIIP

∣∣∣∣∣∣RAIIP(Xj,k,i)
∣∣∣∣∣∣

r
1e+00 3 7 1.15e+01 2.00e+01 3.36e+00 5.59e+00
1e-01 2 12 5.44e-01 2.00e+00 1.78e-02 2.00e+00
1e-02 3 20 9.75e-02 2.00e-01 2.80e-02 2.04e-01
1e-03 3 29 4.82e-03 2.00e-02 1.74e-03 2.01e-02
1e-04 3 56 2.52e-04 2.00e-03 2.19e-04 2.01e-03
1e-05 2 62 1.77e-04 2.00e-04 1.08e-04 2.29e-04
1e-06 2 110 1.49e-05 2.00e-05 1.42e-05 2.46e-05
1e-07 2 464 1.34e-06 2.00e-06 1.16e-06 2.31e-06

Table 1.4: [Adaptive inexact interior-point method, Algorithm 5] Number of cumulated
Newton and GMRES iterations, estimators (1.43), and relative norm of the total residual
vector (1.42) at each smoothing iteration j, at convergence of the algebraic and lineariza-
tion solvers.
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Figure 1.12: [Adaptive inexact interior-point method, Algorithm 5] Estimators (1.43) as a
function of smoothing iterations j at convergence of the algebraic and linearization solvers
(left). Estimators as a function of cumulated Newton iterations k at convergence of the
algebraic solver (right).
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6.9 Comparison of the methods

This section is devoted to compare the semismooth Newton method (SSN), Algorithm
1, the semismooth Newton method with path-following (SSN-pf), Algorithm 2, nonpara-
metric interior-point method (IP), Algorithm 4, the adaptive smoothing Newton method
(ASN), and the adaptive interior-point method (AIP). For this purpose, we introduce a
unified residual vector, for V ∈ Rn

Runif(V ) :=


F − EV

min(0,K(V ))
min(0,G(V ))
K(V ) · G(V )

 , (1.56)

independent of the way the nonlinear complementarity constraints are reformulated. The
stopping criterion of the nonlinear solver for the classical methods (SSN, SSN-pf, IP) is
on the relative unified residual ∥Runif(Xk)∥r lying below 10−8. Regarding the adaptive
methods (ASN, AIP), to stop the nonlinear solver, we use the adaptive stopping criteria
given respectively in (1.49) and (1.54). To stop the smoothing iterations, ∥Runif(Xj,k)∥r
is requested to become smaller than 10−8.
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Figure 1.13: [Semismooth Newton method (F–B function (1.7)), semismooth Newton
method with a path-following strategy, nonparametric interior-point method, adaptive
interior-point method, and adaptive smoothing Newton method (smoothed F–B function
(1.19))] Number of cumulated Newton iterations (left) and CPU time (right) as a function
of the number of mesh elements, employing a stopping criterion on the relative norm of
the unified residual vector (1.56).

In Figure 1.13, we plot the cumulated number of the Newton iterations (left) and
the CPU time (right) required by each method, as a function of the number of mesh
elements. It is clearly seen that the semismooth Newton method (green curve) is typi-
cally more costly, both in terms of the required number of iterations and the CPU time,
in comparison with the other methods. Precisely, we can observe an important gain be-
tween the semismooth Newton method (green curve) and the adaptive smoothing Newton
method (purple curve). Moreover, as we can remark from the red curve, the combination
of a path-following strategy to the semismooth Newton method seems to be efficient. Fi-
nally, one does not see a remarkable difference between the results of the nonparametric
interior-point method (cyan curve) and the adaptive interior-point method (black curve)
in this test case.
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7 Numerical experiments: Two-phase flow with phase transition

The second model problem that we consider in our numerical tests is a two-phase flow
model (liquid–gas) with phase transition in porous media following [18, 25, 82]. Each
of the liquid phase, denoted by l, and the gas phase, denoted by g, is composed of two
components, water and hydrogen, denoted respectively by w and h.

7.1 Problem statement

The problem at hand can be formulated as a system of nonlinear partial differential
equations with nonlinear complementarity constraints at each time step τν . Let Th be
the spatial mesh, we denote respectively by Sν

K , P
ν
K , and χν

K the discrete elementwise
unknowns approximating the values of the saturation Sl, the pressure P l, and the molar
fraction of hydrogen in the liquid phase χl

h in the element K ∈ Th and on time step
1 ≤ ν ≤ Nt. Let N be the number of elements in the mesh Th. If one introduces the
appropriate nonlinear function Hν

c,K : R3N → R, c ∈ {w,h}, and suitable functions

FK : R3 → R and GK : R3 → R, the discrete problem written elementwise consists in
finding Xν := (Xν

K)K∈Th
∈ Rn, where n = 3N, and Xν

K := [Sν
K , P

ν
K , χ

ν
K ] ∈ R3, such that

for all K ∈ Th

Hν
c,K(Xν) = 0, c ∈ {w,h}, (1.57a)

FK(Xν
K) ≥ 0, GK(Xν

K) ≥ 0, FK(Xν
K)GK(Xν

K) = 0. (1.57b)

The formulation (1.57) allows to model the transition from a single-phase flow to a two-
phase flow during the appearance and disappearance of the gas phase and vice versa. As
an example, a detailed finite volume discretization can be found in [19, Section 3.2]. The
first 2N lines of system (1.57) can be written globally as

Hν(Xν) = 0,

where Hn : R3N → R2N is defined elementwise by (1.57a).

Considering a C-function Cν , for 1 ≤ ν ≤ Nt, we define a function Cν : R3N → RN as
Cν(Xν) = Cν ((FK(Xν

K))K∈Th
, (GK(Xν

K))K∈Th
) . This leads us to apply a semismooth

Newton method to find a solution for problem (1.57) written as

Hν(Xν) = 0,
Cν(Xν) = 0. (1.58)

The total residual vector R(V ) of problem (1.58) is thus given by

R(V ) :=
[

−Hν(V )
−Cν(V )

]
, ∀ V ∈ Rn. (1.59)

7.2 Adaptive smoothing Newton method

We introduce a function Cν
µ : R3N → RN defined as

Cν
µ(Xν) = Cν

µ

((
FK(Xν

K)
)

K∈Th
,
(
GK(Xν

K)
)

K∈Th

)
,

for 1 ≤ ν ≤ Nt, where C
ν
µ is a smoothed C-function. Line (1.57b) can be approximated

as a smoothed nonlinear equation Cν
µ(Xν) = 0, making it possible to apply the standard
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Newton method to solve the resulting nonlinear system in the form: Find Xν,j ∈ R3N at
each time step ν, 1 ≤ ν ≤ Nt, satisfying

Hν(Xν,j) = 0,
Cν

µjν (Xν,j) = 0. (1.60)

At each time step 1 ≤ ν ≤ Nt, each smoothing step j ≥ 1, and each linearization step
k ≥ 1, fixing Xν,j,0 ∈ Rn, we try to approach the solution of problem (1.60) by finding a
solution Xν,j,k ∈ Rn such that

A
ν,j,k−1
µν,j Xν,j,k = Bν,j,k−1

µν,j , (1.61)

where the Jacobian matrix A
ν,j,k−1
µν,j ∈ Rn,n and the right-hand side vector Bν,j,k−1

µν,j ∈ Rn

are defined by

A
ν,j,k−1
µν,j :=

[
JHν (Xν,j,k−1)
JCν

µjν
(Xν,j,k−1)

]
, (1.62a)

Bν,j,k−1
µν,j :=

[
JHν (Xν,j,k−1)Xν,j,k−1 − Hν(Xν,j,k−1)

JCν
µjν

(Xν,j,k−1)Xν,j,k−1 − Cν
µjν (Xν,j,k−1)

]
, (1.62b)

with JHν (Xν,j,k−1) and JCν
µjν

(Xν,j,k−1) the Jacobian matrices of the function Hν and

the smoothed function Cν
µjν , respectively, at the point Xν,j,k−1 obtained by a Newton

linearization.

7.3 Adaptive smoothing Newton algorithm

Let ε > 0 be the desired relative tolerance, αlin ∈ ]0, 1] be the desired relative size of
the linearization error, and α ∈ ]0, 1[ the smoothing decrease parameter. The unsteady
adaptive smoothing Newton algorithm reads as follows:

Description of Algorithm 6. For the first time step ν = 1, starting with an initial approx-
imation Xν,0 ∈ Rn and an initial smoothing parameter µν,1 > 0, we solve the smoothed
nonlinear system (1.61) by the Newton linearization solver, and decrease the smoothing
parameter µν,j at each smoothing step j, until the stopping criterion (1.64) on the smooth-
ing estimator or the relative norm of the total residual vector is satisfied at step j. Then,
we continue the time loop, for 2 ≤ ν ≤ Nt, starting for j = 1 with Xν,j,0 := Xν−1,j and
µjν := µjν−1 , until satisfying the stopping criterion (1.64).
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Algorithm 6: Unsteady adaptive smoothing Newton algorithm

Initialization: Fix ε > 0, α ∈ ]0, 1[, and αlin ∈ ]0, 1]. Set ν := 1 and tν := 0.
Choose Xν,0 ∈ Rn.

Time loop

1. Fix µjν > 0 and set j := 1.

2. Smoothing loop

2.1 Set Xν,j,0 := Xν,0 and k := 1.
2.2 Newton linearization loop

2.2.1 From Xν,j,k−1 define A
ν,j,k−1
µν,j ∈ Rn,n and Bν,j,k−1

µν,j ∈ Rn given by (1.62).

2.2.2 Find Xν,j,k solution to the linear system

A
ν,j,k−1
µν,j Xν,j,k = Bν,j,k−1

µν,j .

2.2.3 Compute the estimators and check the stopping criterion for the
nonlinear solver(

ην,j,k
lin,ASN < αlinη

ν,j,k
sm,ASN

)
or

(
ην,j,k

lin,ASN < ε
)
. (1.63)

If satisfied, set k := k and stop. If not, set k := k + 1 and go to 2.2.1.

2.3 Check the stopping criterion for the smoothing iterations in the form:

max
{
ην,j,k

sm,ASN,
∣∣∣∣∣∣R(Xν,j,k)

∣∣∣∣∣∣
r

}
< ε. (1.64)

If satisfied, set j := j and stop. If not, set j := j + 1, Xν,j,0 := Xν,j−1,k,
and µjν := αµ(j−1)ν . Then set k := 1 and go to 2.2.1.

If ν = Nt, stop. If not, set ν := ν + 1, j = 1, Xν,j,0 := Xν−1,j , and
tν := τν + tν−1. Then set µjν = µjν−1 , k = 1, and go to 2.2.1.

7.4 Numerical results

We consider a homogeneous porous medium in one dimension, supposed to be horizontal
with length 2m, and a uniform spatial mesh with N = 1000 elements. The final time
of simulation is tF= 100s, and the time step is constant τν = 10s. We assume that the
medium is initially saturated with liquid, Sl = 1, and containing no hydrogen, χl

h = 0, on
which we impose an injection of gas (hydrogen), constant in time, in the first cell of the

mesh. The initial conditions are Sl,ν=0 = 1, P l,ν=0 = 106Pa, and χl,ν=0
h = 0.

Semismooth Newton method. We begin by employing the semismooth Newton method
presented in Section 2, with the min function (1.6) to solve the nonlinear system (1.58).
On each time step ν ≥ 1, we request the relative norm of the total residual vector R(Xν,k)
given by (1.59) to drop below 10−4.

In Figure 1.14, the evolution of
∣∣∣∣∣∣R(Xν,k)

∣∣∣∣∣∣
r
is shown at each time step. 31 cumulated

Newton iterations are needed.
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Figure 1.14: [Semismooth Newton method, min function (1.6)] Relative norm of the total
residual vector (1.59) as a function of cumulated Newton iterations along the time steps
ν.

Adaptive smoothing Newton method. Next, we present the results obtained using the
adaptive smoothing Newton method, summarized in Algorithm 6, with the smoothed
min function (1.18) to solve the smoothed nonlinear problem (1.60) at each time step
τν , 1 ≤ ν ≤ Nt. The parameters are set as µj1 = 10−1, ε = 10−4, αlin = 1, and α = 0.1.
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Figure 1.15: [Adaptive smoothing Newton method, smoothed min function (1.18), Algo-
rithm 6] Estimators (1.47) and relative norm of the total residual vector (1.59) at the first
time step ν = 1 as a function of smoothing iterations j, at convergence of the lineariza-
tion solver (ν = 1 fixed, j varies, k = k), left, and of cumulated Newton iterations, right,
(ν = 1 fixed, j and k vary).

From Figure 1.15, one can see that at the first time step ν = 1 and at each smoothing
step j ≤ 4, the linearization estimator decreases until lying below the smoothing estimator.
The smoothing iterations are thus stopped in the first possibility according to the stopping

criterion (1.63). On the other hand, at the 5th smoothing step, ην,j,k
lin,ASN is smaller than
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ν µjν Niter ην,j,k
lin,ASN ην,j,k

sm,ASN

∣∣∣∣∣∣R(Xν,j,k)
∣∣∣∣∣∣

r
2 1e-05 3 2.15e-07 3.13e-07 2.86e-07
3 1e-05 3 3.13e-07 3.68e-07 4.24e-07
4 1e-05 3 3.93e-07 1.19e-07 3.47e-07
5 1e-05 3 4.62e-07 1.59e-07 4.01e-07
6 1e-05 3 5.04e-07 1.88e-06 1.87e-06
7 1e-05 3 5.58e-07 1.74e-07 4.94e-07
8 1e-05 3 5.94e-07 3.76e-07 7.08e-07
9 1e-05 3 6.64e-07 2.77e-07 7.50e-07
10 1e-05 3 7.01e-07 3.00e-07 7.89e-07

Table 1.5: [Adaptive smoothing Newton method, smoothed min function (1.18), Algo-
rithm 6] Relative norm of the total residual vector (1.59) and estimators (1.47) at each
time step ν, at convergence of the linearization solver.

the fixed tolerance but not smaller than ην,j,k
sm,ASN. Even after additional Newton iterations

at this smoothing step, we will have the same observation. This justifies the modification
applied in the adaptive stopping criterion (1.63). In Figure 1.15, right, we report the
estimators and ∥R(X1,j,k)∥r as a function of cumulated Newton iteration for ν = 1.
The stopping criterion (1.64) is satisfied after 5 cumulated smoothing iterations, and 10
cumulated Newton iterations. Then, as presented in Table 1.5, starting at the second
time step (ν = 2) with µjν = 10−5, the smoothing parameter does not decrease since
the stopping criterion (1.64) is satisfied at each time step after one smoothing step only.
To reach the end of the simulation, 9 cumulated smoothing steps and 31 cumulated
linearization steps are needed.

As a conclusion, the results confirm the expected behavior of Algorithm 6 featuring
an adaptive stopping criterion for the nonlinear solver. In this case, though, the stopping
criteria in the adaptive smoothing Newton method do not bring the number of iterations
down since the semismooth Newton method already behaves very well here.

8 Conclusion and outlook

In this work, we have considered nonlinear algebraic systems with inequalities in a form
of complementarity constraints. We have considered some existing methods, like the
semismooth Newton method, possibly combined with a path-following strategy, or a non-
parametric interior-point method. Our goal was to propose a systematic way to drive such
methods with adaptive stopping criteria and possibly inexact algebraic solvers. We have
achieved this by a reformulation of the complementarity constraints using a smoothed
function and a posteriori error estimate that enables to distinguish the different error
components. Numerical experiments confirmed that the proposed adaptive approaches
yield significant computational savings compared to some standard approaches from lit-
erature. Moreover, their numerical performance seems to be notably good across a range
of test problems. In [20], we also take into account the discretization error of the consid-
ered problem, enabling to adaptively stop the outer smoothing loop in Algorithm 3, and
employ the method to solve more involved problems.
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Abstract

We develop in this work an adaptive inexact smoothing Newton method for a non-

conforming discretization of a variational inequality. As a model problem, we con-

sider the contact problem between two membranes. Discretized with the finite

volume method, this leads to a nonlinear algebraic system with complementarity

constraints. The non-differentiability of the arising nonlinear discrete problem a

priori requests the use of an iterative linearization algorithm in the semismooth

class like, e.g., the Newton-min. In this work, we rather approximate the inequality

constraints by a smooth nonlinear equality, involving a positive smoothing param-

eter that should be drawn down to zero. This makes it possible to directly apply

any standard linearization like the Newton method. The solution of the ensuing

linear system is then approximated by any iterative linear algebraic solver. In our

approach, we carry out an a posteriori error analysis where we introduce poten-

tial reconstructions in discrete subspaces included in H1(Ω), as well as H (div,Ω)-
conforming discrete equilibrated flux reconstructions. With these elements, we de-

sign an a posteriori estimate that provides guaranteed upper bound on the energy

error between the unavailable exact solution of the continuous level and a postpro-

cessed, discrete, and available approximation, and this at any resolution step. It

also offers a separation of the different error components, namely, discretization,

smoothing, linearization, and algebraic. Moreover, we propose stopping criteria

and design an adaptive algorithm where all the iterative procedures (smoothing,

linearization, algebraic) are adaptively stopped; this is in particular our way to fix

the smoothing parameter. Finally, we numerically assess the estimate and confirm

the performance of the proposed adaptive algorithm, in particular in comparison

with the semismooth Newton method.

1 Introduction

Variational inequalities have been of great interest to researchers due to their various
applications. Possibly expressed as a system of partial differential equations (PDEs) with
complementarity constraints, they arise in a variety of fields such as engineering and
economics [76], mathematical finance [77], structural mechanics [53], flow processes in
porous media [25], and many more. The numerical discretization of such problems yields
a finite-dimensional nonlinear algebraic system with complementarity constraints written
in the form: find a vector X ∈ Rn, n > 1, such that

EX = F , (2.1a)

K(X) ≥ 0, G(X) ≥ 0, K(X) · G(X) = 0. (2.1b)

Let 0 < m < n be an integer. The first line (2.1a) derives from the discretization of a
linear PDE, where E ∈ Rn−m,n is a matrix and F ∈ Rn−m is a given vector. Denoting
by K : Rn → Rm and G : Rn → Rm two (linear) operators, line (2.1b) expresses the
complementarity relationship between the nonnegative vectors K(X) and G(X), in the
sense that if one of them has a positive component, then the corresponding component
in the other one must be zero. Countless developments have been made over the years to
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(approximately) solve problem (2.1). In this regard, we mention the semismooth Newton
method [55, 91, 22, 63, 52], the active set-type methods [103], the primal-dual active set
strategy which can be interpreted as a semismooth Newton method [94], and projection-
type methods [150]. Another class of methods, motivated by the augmented Lagrangian
methods, is the one invoking a regularization technique [135, 102]. It can be combined
with a path-following strategy to properly update the regularization parameter, see, e.g.,
[95, 136]. Inspired from the interior-point methods [148, 86], another approach is the
non-parametric interior-point method proposed recently in [146]. For an enlightening
summary of numerical methods solving problem (2.1), we refer to the books of Ferris
et al. [75], Facchinei and Pang [73, 74], Bonnans et al. [28], Ito and Kunisch [101], and
Ulbrich [138]. Recently, we have proposed in [21] an adaptive smoothing Newton method
for the resolution of nonlinear discrete problems in the form (2.1).

In this work, we consider a system of PDEs with complementarity constraints in an
infinite-dimensional framework. Our goal is to estimate the overall error between the
unknown PDE solution and a numerical approximation at each resolution step in an
adaptive algorithm inspired from [21].

The guiding principle of the considered approach, following [21], is to approximate the
complementarity constraints in (2.1b) by a system of smooth (differentiable) nonlinear
equations Cµ(X) = 0, where Cµ : Rn → Rm is a smooth (differentiable) approximation
of a non-differentiable complementarity function (C-function) C : Rn → Rm with a
parameter µ > 0. This reformulation brings us to approximate problem (2.1) at each
smoothing step j ≥ 1, with parameter µj > 0, by finding a vector Xj ∈ Rn such that

EXj = F ,
Cµj (Xj) = 0. (2.2)

Hence, any iterative linearization procedure can be directly applied to system (2.2), yield-
ing at each linearization step k ≥ 1 a linear system

A
j,k−1
µj Xj,k = Bj,k−1

µj , (2.3)

where A
j,k−1
µj ∈ Rn,n is a matrix and Bj,k−1

µj ∈ Rn is a vector. Let us stress, however,

that it is impractical to solve (2.3) exactly in applications. Following [72, 111, 128, 81],
we solve the latter system only approximately by employing an iterative linear algebraic
solver, giving rise, at each smoothing step j ≥ 1, linearization step k ≥ 1, and linear
algebraic step i ≥ 1, to a residual vector Rj,k,i

alg ∈ Rn defined by

Rj,k,i
alg := Bj,k−1

µj − A
j,k−1
µj Xj,k,i. (2.4)

In this regard, as we consider numerical approximations, it is crucial to control the
error between the unknown PDE solution u and the numerical approximation arising at
steps j, k, i, say uj,k,i

h , and to approximate systems (2.2) and (2.3) efficiently and accurately
while limiting the computational costs. In this respect, we remark that in [21], a posteriori

error estimators were only formulated at the discrete level, addressing the error uh −uj,k,i
h

only, represented by the norm of the residual, and yielding adaptive stopping criteria for
the nonlinear and linear solvers but not for the smoothing iterations.

The present paper aims at designing an adaptive algorithm steering the iterations in
j, k, and i. Our key tool for this is to derive guaranteed a posteriori estimates allowing to
obtain a fully computable upper bound on the energy error ej,k,i between the approximate
solution uj,k,i

h and the unknown solution u, at each step j ≥ 1, k ≥ 1, and i ≥ 1 of the
resolution, in the form

ej,k,i ≤ ηj,k,i
disc + ηj,k,i

sm + ηj,k,i
lin + ηj,k,i

alg . (2.5)
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These computable estimates allow us to identify all sources of error resulting from the
numerical simulation, namely the discretization, smoothing, linearization, and linear al-
gebraic solver error. Distinguishing the error components in particular enables to formu-
late optimal criteria to adaptively stop the various iterative solvers whenever the corre-
sponding error no longer significantly influences the behavior of the overall error, as in
[118, 11, 67, 59, 124, 48, 53, 93, 84], and the references therein.

There is a well-developed literature on a posteriori error estimates for PDEs. For a
general introduction, we refer for instance to the books of Ainsworth and Oden [5], Repin
[122], and Verfürth [140]. For variational inequalities, we can mention the contributions of
Repin [123], Belgacem et al. [17], and Bürg and Schröder [40]. In this work, we are inter-
ested in the so-called equilibrated fluxes estimates, based on H (div,Ω)-conforming and
locally conservative flux reconstructions belonging to the lowest-order Raviart–Thomas–
Nédélec space RT0 (discrete subspace of H (div,Ω)). We refer the reader to the contribu-
tions [57, 31, 67]. As we consider a nonconforming, finite volume, numerical discretization,
we will also rely on a potential reconstruction following in particular [4, 142, 68]. This
methodology in particular allows us to obtain the unknown constant-free bound in (2.5).

We apply our approach to the following problem that models the contact between two
membranes. Let Ω ⊂ R2 be an open polygonal domain. The problem reads: find u1, u2,
and λ such that



−β1∆u1 − λ = f1 in Ω,
−β2∆u2 + λ = f2 in Ω,

u1 − u2 ≥ 0, λ ≥ 0, (u1 − u2)λ = 0 in Ω,
u1 = g on ∂Ω,
u2 = 0 on ∂Ω,

(2.6a)

(2.6b)

(2.6c)

(2.6d)

(2.6e)

where the unknowns are the displacements u1 and u2 of the two membranes and the
Lagrange multiplier λ which characterizes the action, or the reaction −λ, of one mem-
brane on the other. Equations (2.6a) and (2.6b) describe the kinematic behavior of each
membrane under the action of external forces f1, f2 ∈ L2(Ω). The constant parameters
β1, β2 > 0 correspond to the tension of each membrane. Line (2.6c) represents the linear
complementarity conditions, u1 − u2 ≥ 0 states that the membranes cannot interpene-
trate, λ ≥ 0 stems from the definition of λ, and (u1 − u2)λ = 0 means that where the
membranes are not in contact (u1 − u2 > 0), λ vanishes, and where they are in contact
(u1 = u2), λ is nonnegative. The boundary conditions in (2.6d) and (2.6e) indicate that
the first membrane is fixed on the boundary ∂Ω at g > 0, where g is a constant, above
the second one, which is fixed at zero.

The contact problem (2.6) has been studied in several works. Existence and uniqueness
together with a conforming finite element discretization were studied in [15, 16, 17], see
also the references therein. A semismooth Newton method combined with a path-following
strategy was introduced and tested in [152]. Recently, in [53], an adaptive inexact Newton
method, steered by a posteriori error estimates as in (2.5), was proposed to solve problem
(2.6) when discretized by conforming finite elements. In our work, we rather consider the
cell-centered finite volume method. We develop an adaptive inexact smoothing Newton
method to solve the arising discrete problem, where any of the classical linearization
scheme for smooth nonlinearities and any iterative linear algebraic solver can be used.

Let us briefly outline the structure of the paper. In Section 2, we fix notation, present
the model problem (2.6) in details, and introduce its finite volume discretization. We recall
the semismooth Newton method in Section 3. Then, we introduce a smoothed reformu-
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lation of our problem and address its numerical approximation employing an (inexact)
smoothing Newton method in Section 4. Next, Sections 5 and 6 are devoted to describe
the potential and equilibrated flux reconstructions, enabling to pursue our analysis. In
Section 7, we derive an a posteriori error estimate on the error between the exact solution
and the approximate solution on any smoothing step j ≥ 1, any linearization step k ≥ 1,
and any algebraic step i ≥ 1. We split our guaranteed bound into estimators charac-
terizing the discretization, smoothing, and algebraic errors, and establish a linearization
estimator reflecting the linearization error, obtaining an estimate of the form (2.5). This
error distinction leads to adaptive stopping criteria that we incorporate in the adaptive
inexact smoothing Newton algorithm presented in Section 8. We study numerically the
behavior of our a posteriori estimates and the efficiency of the developed algorithm in
Section 9. Finally, Section 10 brings forth our conclusions and outlook.

2 Continuous problem and its finite volume discretization

In this section, we first fix notation and present the full and reduced variational formula-
tions of the model problem (2.6). Then, we introduce its finite volume discretization.

2.1 Function spaces, meshes, and notation

We first recall the definition of some functional spaces. For a polygonal Lipschitz domain
Ω ⊂ R2, let D(Ω) be the space of functions u : Ω → R of class C∞ with a compact
support in Ω.We denote by L2(Ω) the space of Lebesgue-measurable functions u : Ω → R

such that ∥u∥ := (
∫

Ω |u(x)|2dx)
1
2 < ∞. It is a Hilbert space for the scalar product

(u, v) =
∫

Ω u(x)v(x)dx. Next, H1(Ω) stands for the space of functions in L2(Ω) which
admit a weak gradient in [L2(Ω)]2, and H1

0 (Ω) stands for its subspace of functions that
vanish on ∂Ω in the sense of traces. Moreover, H (div,Ω) is the space of vector-valued
functions u : Ω → R2,u ∈ [L2(Ω)]2, such that ∇·u ∈ L2(Ω). The standard notation ∇· is
used for the weak divergence operator. We shall define the sets

H1
g (Ω) :=

{
u ∈ H1(Ω), u = g on ∂Ω

}
and Λ :=

{
χ ∈ L2(Ω), χ ≥ 0 a.e. in Ω

}
.

We also use in the subsequent sections the notation ∥ · ∥2
ω := (·, ·)ω for the L2(ω) norm

and scalar product on a subdomain ω of Ω. When ω = Ω, the subscript is dropped. A
similar notation is used for vector-valued functions.

We shall consider a mesh Th given by a family of triangles K verifying Ω =
⋃

K∈Th
K.

We assume that the elements of Th are conforming in the sense that the intersection of
the closure of two elements is either an empty set, a vertex, or an edge. We also assume
that Th is admissible, i.e., for all K ∈ Th, there is an associated distinct point xK such
that the straight line connecting two points xK and xL of two neighboring triangles K
and L ∈ Th is orthogonal to σK,L := ∂K ∩∂L, see [69]; we choose for xK the circumcenter
of K. We denote by Eh the set of all edges σ of Th, by E int

h the set of interior, and by Eext
h

the set of boundary edges. To each edge σ ∈ Eh, we associate a unit normal vector nσ.
The set of all edges of K is denoted by EK , which is decomposed into interior edges and
boundary edges such that EK = E int

K ∪ Eext
K . We denote by nK,σ the outward unit normal

vector to K on the edge σ.

We then define the broken Sobolev space H1(Th) := {u ∈ L2(Ω);u|K ∈ H1(K),∀K ∈
Th}. For a function u ∈ H1(Th), we denote by ∇u ∈ [L2(Ω)]2 the broken weak gradient
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such that (∇u)|K := ∇(u|K).

Next, for a function u and an edge σ ∈ E int
h shared by K,L ∈ Th such that nσ points

from K towards L, we define the jump of u on σ as

JuKσ := (u|K)|σ − (u|L)|σ.

We set JuKσ = u|σ for σ ∈ Eext
h in the contact of the second membrane, whereas JuKσ =

u|σ − g for the first membrane and its approximations. Later, we will simply use the
notation JuK, since there will be no ambiguity, and also extend it componentwise for
vector-valued variables.

We recall two basic inequalities that will be necessary in order to carry out the analysis
in the following sections. Let hω denote the diameter of ω ⊂ Ω. The Poincaré–Friedrichs
and the Poincaré–Wirtinger inequalities state that

∥u∥ω ≤ CPFhω∥∇u∥ω ∀u ∈ H1
0 (ω), (2.7a)

∥u− uω∥ω ≤ CPWhω∥∇u∥ω ∀u ∈ H1(ω), (2.7b)

where uω is the mean value of the function u over ω given by uω := (u, 1)ω/|ω| (|ω| is the
measure of ω). The constant CPF can be taken equal to 1, cf. [141, Remark 5.8]. If ω
is convex, CPW can be evaluated as 1/π, cf. [10], and it only depends on the geometry of

ω if ω is non-convex, cf. [69, Lemma 10.4]. For a function u = (u1, u2) ∈
[
H1

0 (ω)
]2
, we

introduce the energy semi-norm

|||u|||ω :=
{ 2∑

α=1
βα∥∇uα∥2

ω

} 1
2

. (2.8)

We will use the simplified notation |||u||| := |||u|||ω when ω = Ω.We extend this definition
in the same way to all u = (u1, u2) ∈ [H1(Th)]2, where it becomes merely a semi-norm.
Finally, we define the rescaling of the H−1(ω) norm

|||u|||H−1
∗ (ω) := sup

ϕ∈H1
0 (ω)

max(β
1
2
1 ,β

1
2
2 )||∇ϕ||ω=1

⟨u, ϕ⟩ , u ∈ H−1(ω). (2.9)

2.2 Continuous problem

Seting u := (u1, u2) and v := (v1, v2) ∈ [H1(Ω)]2, we consider the forms, for χ ∈ L2(Ω),

a(u,v) :=
2∑

α=1
βα(∇uα,∇vα), b(v, χ) := (χ, v1 − v2), l(v) :=

2∑
α=1

(fα, vα). (2.10)

We will also consider in a forthcoming section the extension

a(u,v) :=
2∑

α=1
βα(∇uα,∇vα) u,v ∈ [H1(Th)]2, (2.11)

where, recall, ∇ denotes the broken weak gradient on H1(Th).

Given (f1, f2) ∈ [L2(Ω)]2 and g > 0 a constant, the weak formulation of problem (2.6)
is to find u ∈ H1

g (Ω) ×H1
0 (Ω) and λ ∈ Λ such that

a(u,v) − b(v, λ) = l(v) ∀ v ∈
[
H1

0 (Ω)
]2
, (2.12a)
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b(u, χ− λ) ≥ 0 ∀χ ∈ Λ. (2.12b)

Problem (2.12) admits a unique weak solution (cf. [16, Proposition 1]).
Define then the convex set Kg by

Kg :=
{

(v1, v2) ∈ H1
g (Ω) ×H1

0 (Ω), v1 − v2 ≥ 0 a.e. in Ω
}
. (2.13)

We also consider the reduced variational problem: find u = (u1, u2) ∈ Kg such that

a(u,v − u) ≥ l(v − u) ∀v = (v1, v2) ∈ Kg, (2.14)

which is equivalent to (2.12), as proved in [16, Lemma 2]. Note that by the Poincaré–
Friedrichs inequality (2.7a), the bilinear form a is coercive on [H1

0 (Ω)]2. Thus, the well-
posedness of (2.14) is a consequence of the Lions–Stampacchia theorem, see [34, Theorem
5.6].

2.3 Finite volume discretization

The finite volume scheme for problem (2.6) reads: find the values {u1,K}K∈Th
, {u2,K}K∈Th

,
and {λK}K∈Th

such that for all K ∈ Th∑
σ∈EK

Fα,K,σ + (−1)α|K|λK = |K|fα,K , α ∈ {1, 2}, (2.15a)

u1,K − u2,K ≥ 0, λK ≥ 0, (u1,K − u2,K)λK = 0, (2.15b)

where fα,K := (fα, 1)/|K|. In scheme (2.15), Fα,K,σ represents the numerical approxima-
tion of the flux through the edge σ of the element K ∈ Th and is given by

Fα,K,σ =

 −βα|σ|uα,L−uα,K

dK,L
if σ ∈ E int

h , σ = K ∩ L,

−βα|σ|uα,σ−uα,K

dK,σ
if σ ∈ Eext

h ,
(2.16)

where for σ ∈ Eext
h , u1,σ = g and u2,σ = 0, which corresponds to the discretization of

the Dirichlet boundary conditions in (2.6). Let for the discretization of problem (2.6),
m denotes the number of mesh elements and n := 3m. Using that EK = E int

K ∪ Eext
K , we

develop (2.15) and define the stiffness matrix Cα ∈ Rm,m, α ∈ {1, 2}, by

Cα,K,K :=
∑

σ∈E int
K

|σ|
dK,L

+
∑

σ∈Eext
K

|σ|
dK,σ

, Cα,K,L := − |σ|
dK,L

, K, L ∈ Th, K ̸= L.

We also define the diagonal mass matrixM ∈ Rm,m byMK,K := |K|, and a vector fα ∈ Rm

such that fα,K := |K|fα,K +
∑

σ∈Eext
K
βα

|σ|
dK,σ

uα,σ, ∀K ∈ Th. Let X := [X1,X2,λ]T ∈ Rn

be the algebraic vector of unknowns of the model such that X1 = (u1,K)K∈Th
∈ Rm,X2 =

(u2,K)K∈Th
∈ Rm, and λ = (λK)K∈Th

∈ Rm. Then, the finite volume discretization (2.15a)
can be written as: find X ∈ Rn such that EX = F , with F := [f1,f2]T ∈ Rn−m being
the right-hand side vector, and E ∈ Rn−m,n being a rectangular block matrix defined by

E :=
[
β1C1 0 −M

0 β2C2 M

]
.

Overall, (2.15) leads to the following system of algebraic inequalities: find X ∈ Rn such
that

EX = F , (2.17a)

K(X) ≥ 0, G(X) ≥ 0, K(X) · G(X) = 0, (2.17b)

where the linear operators K : Rn → Rm and G : Rn → Rm are defined as

G(X) := X1 − X2, and K(X) := λ. (2.18)
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3 Semismooth Newton method

In this section, we consider the semismooth Newton linearization to approximate the
solution of the nonlinear system of equations (2.17), see, e.g., [73, 53].

The complementarity constraints (2.17b) written as algebraic inequalities can be ex-
pressed as a nonlinear non-differentiable equality by means of C-functions, where C stands
for complementarity. We say that a function C̃ : (Rm)2 → Rm, m ≥ 1, is a C-function if
for any pair (x,y) ∈ (Rm)2,

C̃(x,y) = 0 ⇐⇒ x ≥ 0, y ≥ 0, and x · y = 0.

As examples, we consider the min and Fischer–Burmeister (F–B) functions(
C̃min(x,y)

)
l

:= (min{x,y})l = (xl + yl)/2 − |xl − yl|/2 l = 1, . . . ,m, (2.19)(
C̃FB(x,y)

)
l

:=
√

x2
l + y2

l − (xl + yl) l = 1, . . . ,m. (2.20)

For more details on C-functions see [73, 74]. Let us consider a function C : Rn → Rm

defined as C(X) := C̃ (K(X),G(X)) , where C̃ is any C-function and K(·),G(·) are
given in (2.18). This allows to conveniently state constraints (2.17b) in an equality of
the form C(X) = 0. Then, problem (2.17) can be equivalently rewritten as a system of
nonlinear algebraic equations: find a vector X ∈ Rn such that

EX = F , (2.21a)

C(X) = 0. (2.21b)

Note, however, that in general C-functions are not Fréchet-differentiable everywhere.
Next, we detail the semismooth Newton linearization of problem (2.21). Let an initial

vector X0 ∈ Rn be given. At the step k ≥ 1, one looks for Xk ∈ Rn such that

Ak−1Xk = Bk−1, (2.22)

where the Jacobian matrix Ak−1 ∈ Rn,n and the right-hand side vector Bk−1 ∈ Rn are
given by

Ak−1 :=
[

E

JC(Xk−1)

]
, Bk−1 :=

[
F

JC(Xk−1)Xk−1 − C(Xk−1)

]
. (2.23)

We emphasize that equation (2.21a) is linear and a semismooth nonlinearity occurs in the
second line (2.21b). In (2.23), JC(Xk−1) stands for the Jacobian matrix in the sense of
Clarke of the semismooth function C at point Xk−1, cf. [73, 74]. To give an example, we
consider the semismooth min function (2.19) at Xk−1

C(Xk−1) = min{Xk−1
1 − Xk−1

2 ,λk−1} = min



uk−1

1,K1
− uk−1

2,K1
...

uk−1
1,Km

− uk−1
2,Km

 ,

λk−1

K1
...

λk−1
Km


 .

We define the block matrices G and K ∈ Rm,n by G = [Im×m,−Im×m,0m×m] and K =
[0m×m,0m×m, Im×m] . Then, the lth row of the Jacobian matrix in the sense of Clarke
JC(Xk−1) is either given by the lth row of G, if uk−1

1,Kl
− uk−1

2,Kl
≤ λk−1

Kl
, or by the lth row

of K, if λk−1
Kl

< uk−1
1,Kl

− uk−1
2,Kl

.
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4 Inexact smoothing Newton method

We now address the numerical approximation of the nonsmooth nonlinear problem (2.21)
employing a smoothing approach.

4.1 Discrete smoothed problem

We replace C(·) in problem (2.21) by a smoothed C-function Cµ(·) of class C1, where
µ > 0 is a (small) smoothing parameter. A possible smoothing of the functions (2.19)
and (2.20) can be, respectively: for l = 1, . . . ,m,

(
C̃minµ(x,y)

)
l

= xl + yl

2 −

(
|x − y|µ

)
l

2 with (|z|µ)
l

:=
√

z2
l + µ2, (2.24)(

C̃FBµ(x,y)
)

l
=
√
µ2 + x2

l + y2
l − (xl + yl), (2.25)

where the µ-smoothed absolute value function | · |µ : Rm → Rm
+ , m ≥ 0, replaces the

absolute value function (not differentiable at 0). Note that both functions C̃min,µ and
C̃FB,µ are of class C∞.

We now introduce a smoothing loop with index j ≥ 1, where µj > 0 is a (decreas-
ing) sequence of smoothing parameters. The discrete smoothed problem at each outer
smoothing step j ≥ 1 then reads as follows: find Xj ∈ Rn such that

EXj = F ,
Cµj (Xj) = 0, (2.26)

with Cµj (Xj) := C̃µj

(
K(Xj),G(Xj)

)
. This approach gives rise to the nonlinear alge-

braic system (2.26) at each smoothing step j ≥ 1, which is differentiable. Its solution is
approximated employing the (inexact) Newton method detailed next.

4.2 Newton linearization

Let j ≥ 1 be fixed and let Xj,0 be a given initial vector. At each linearization iteration
k ≥ 1, the new approximation Xj,k ∈ Rn is obtained solving the linear problem written
as

A
j,k−1
µj Xj,k = Bj,k−1

µj , (2.27)

where the Jacobian matrix A
j,k−1
µj ∈ Rn,n and the right-hand side vector Bj,k−1

µj ∈ Rn are
defined by

A
j,k−1
µj :=

[
E

JC
µj (Xj,k−1)

]
, Bj,k−1

µj :=
[

F
JC

µj (Xj,k−1)Xj,k−1 − Cµj (Xj,k−1)

]
,

(2.28)
with JC

µj (Xj,k−1) the standard Jacobian matrix of the smooth function Cµj at Xj,k−1.

4.3 Algebraic resolution

The system of linear algebraic equations (2.27) is typically numerically addressed using
an iterative algebraic solver. For a fixed smoothing step j ≥ 1, a fixed Newton step k ≥ 1,
and a given initial vector Xj,k,0 (typically, Xj,k,0 = Xj,k−1,i, the last iterate available
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from the previous linearization step), the iterative solver generates for i ≥ 1 (inner loop
in k) a sequence Xj,k,i approximating Xj,k from (2.27) up to the residual given by

Rj,k,i
alg := Bj,k−1

µj − A
j,k−1
µj Xj,k,i. (2.29)

Detailing the first two equations of (2.29), we obtain for α ∈ {1, 2}, at smoothing
iteration j ≥ 1, Newton iteration k ≥ 1, and linear solver iteration i ≥ 1, the residual
Rj,k,i

alg,α,K given by

Rj,k,i
alg,α,K := |K|fα,K −

∑
σ∈EK

F j,k,i
α,K,σ − (−1)α|K|λj,k,i

K , (2.30)

where Rj,k,i
alg,α,K is the algebraic residual associated to the element K ∈ Th, α ∈ {1, 2}, and

F j,k,i
α,K,σ is given by

F j,k,i
α,K,σ :=

 −βα|σ|uj,k,i
α,L −uj,k,i

α,K

dK,L
if σ ∈ E int

h , σ = K ∩ L,

−βα|σ|uα,σ−uj,k,i
α,K

dK,σ
if σ ∈ Eext

h .
(2.31)

5 Postprocessing of the approximate solution and potential recon-

structions

This section introduces H1(Ω)-conforming reconstructed potentials that will be central in
the formulation of our a posteriori error estimates.

Theorem 2.1 (Weak solution). The weak solution u = (u1, u2) of (2.14) satisfies for
α ∈ {1, 2}

u ∈ Kg, (2.32a)

σα ∈ H (div,Ω) , (2.32b)

∇·σα = fα − (−1)αλ, (2.32c)

where the vector valued function σα := −βα∇uα is the flux.

Proof. From (2.14) we have u ∈ Kg. Then, as (u1, u2) ∈ H1
g (Ω) × H1

0 (Ω), we obviously
have σα = −βα∇uα ∈ [L2(Ω)]2. Let ϕ lie in D(Ω). By choosing (v1, v2) = (ϕ, 0) for α = 1
and (v1, v2) = (0, ϕ) for α = 2 in (2.12), and using the fact that D(Ω) ⊂ H1

0 (Ω) we obtain

(σα,∇ϕ) = (−βα∇uα,∇ϕ) = − (fα − (−1)αλ, ϕ) .

As fα ∈ L2(Ω) and λ ∈ L2(Ω) by assumption, it follows immediately that ∇·σα ∈ L2(Ω),
and more precisely ∇·σα = fα − (−1)αλ. Thus σα ∈ H (div,Ω) .

5.1 Postprocessed potential

The discrete finite volume solution from (2.15) or more precisely from (2.29) is only
piecewise constant, see Figure 2.1, left, for an illustration in one space dimension. Recall
that it is defined for all K ∈ Th and α ∈ {1, 2} by uj,k,i

αh |K := uj,k,i
α,K and λj,k,i

h |K := λj,k,i
K .

In particular, setting uj,k,i
h := (uj,k,i

1h , uj,k,i
2h ), the discrete solution is such that

uj,k,i
h /∈ Kg,
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−βα∇uj,k,i
αh /∈ H (div,Ω) , α ∈ {1, 2},

∇·(−βα∇uj,k,i
αh ) ̸= fα − (−1)αλj,k,i

h , α ∈ {1, 2}.

In the subsequent sections, we try to mimic the above properties, satisfied by of the
weak solution u, by building reconstructions from the discrete approximate solution uj,k,i

h .

Let Pp(K), p ≥ 0, denote the set of polynomials of total degree at most p on the element
K ∈ Th. First, to be able to evaluate the (broken) gradient of the approximate solution
and to measure its distance to the exact solution by the energy (semi-)norm defined in

(2.8), it is primordial to transform the piecewise constant solution uj,k,i
h into a higher-order

piecewise polynomial. To do so, we locally construct a postprocessed approximation ũj,k,i
h

that lies in [P2(Th)]2 , the space of piecewise second-order polynomials, following [70, 142].

Definition 2.2 (Postprocessed solution). We introduce the piecewise quadratic, discontin-

uous, postprocessed solution ũj,k,i
h :=

(
ũj,k,i

1h , ũj,k,i
2h

)
∈ [P2(Th)]2 as follows. Let F j,k,i

α,K,σ be

given by (2.31). For α ∈ {1, 2}, let(
ũj,k,i

αh , 1
)

K

|K|
= uj,k,i

α,K , (2.33a)

− βα∇ũj,k,i
αh ∈ (P0(K))2 + xP0(K), −βα∇ũj,k,i

αh |K · nK,σ =
F j,k,i

α,K,σ

|σ|
∀σ ∈ EK .

(2.33b)

Figure 2.1, right part, gives an illustration of this postprocessed solution. Condition
(2.33a) states that the mean value on each mesh element of the postprocessed solution

is given by the original solution, whereas (2.33b) fixes the flux −βα∇ũj,k,i
αh to be in the

lowest-order Raviart–Thomas space and its normal component to coincide with the finite
volume edge fluxes.

Figure 2.1: [Adaptive inexact smoothing Newton method, Algorithm 7, one space dimen-
sion, zoom on the first 5 elements of the computational mesh Th] Left: exact solution u1

and approximate solution uj,k,i
1h at convergence of all solvers. Right: Approximate solution

uj,k,i
1h and postprocessed solution ũj,k,i

1h at steps (j, k) = (2, 1) and at convergence of the
algebraic solver (i = i).
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5.2 Non-admissible potential reconstruction

The postprocessed solution ũj,k,i
h of Definition 2.2 is not included in the convex space Kg,

already by the fact that it does not lie in H1
g (Ω) × H1

0 (Ω). We will therefore introduce
a continuous reconstructed solution sh that can still be nonphysical, in the sense that it
may not satisfy condition sj,k,i

1h − sj,k,i
2h ≥ 0, and thus not lie in Kg, but at least it lies in

H1
g (Ω) ×H1

0 (Ω).

Notations. Let Xp
h, p ≥ 1, stand for the discrete conforming space of piecewise polyno-

mial functions

Xp
h :=

{
vh ∈ C0(Ω); vh|K ∈ Pp(K), ∀K ∈ Th

}
⊂ H1(Ω). (2.34)

We will in the sequel also need the boundary-aware set and space

Xp
gh :=

{
vh ∈ Xp

h; vh = g on ∂Ω
}

⊂ H1
g (Ω) and Xp

0h := Xp
h ∩H1

0 (Ω) ⊂ H1
0 (Ω). (2.35)

Definition 2.3 (Non-admissible potential reconstruction). We introduce sj,k,i
h :=

(sj,k,i
1h , sj,k,i

2h ), given by, for α ∈ {1, 2},

sj,k,i
h := IOs(ũj,k,i

h ) :=
(
IOs(ũj,k,i

1h ), IOs(ũj,k,i
2h )

)
, (2.36)

where IOs denotes the Oswald interpolation operator previously considered in, e.g., [142].

This operator associates to the discontinuous piecewise polynomial ũj,k,i
αh , α ∈ {1, 2}, its

conforming interpolant, i.e., continuous and contained in H1(Ω), by taking averages in all
Lagrangian evaluation points and fixing the boundary values to respectively g or 0. Figure
2.2 illustrates the postprocessed and the reconstructed solution at a specific smoothing and
linearization iterations (left) and at convergence (right). The reconstructed solution is
then piecewise second-order polynomial and continuous and satisfies

sj,k,i
h := (sj,k,i

1h , sj,k,i
2h ) ∈ X2

gh ×X2
0h ⊂ H1

g (Ω) ×H1
0 (Ω).

5.3 Admissible potential reconstruction

It may happen that the potential reconstruction sj,k,i
h defined by (2.36) violates the non-

penetration condition sj,k,i
1h −sj,k,i

2h ≥ 0, see Figure 2.3, so that sj,k,i
h /∈ Kg, where we recall

Kg is given in (2.13). In order to avoid this, we build from the potential reconstruction

sj,k,i
h ∈ X2

gh ×X2
0h ̸⊂ Kg, a final admissible potential reconstruction s̃j,k,i

h ∈ Kg, s̃j,k,i
h ∈

X3
gh ×X3

0h. We now provide details on how to build it.

Definition 2.4 (Admissible potential reconstruction). We employ the following possible
procedure, which is composed of two steps:

Step 1. First, we construct ŝj,k,i
h ∈ X2

gh × X2
0h ⊂ H1

g (Ω) × H1
0 (Ω) such that for each

Lagrangian evaluation node a

ŝj,k,i
h (a) :=


(
sj,k,i

1h (a), sj,k,i
2h (a)

)
if sj,k,i

1h (a) ≥ sj,k,i
2h (a),(1

2
(
sj,k,i

1h (a) + sj,k,i
2h (a)

)
,
1
2
(
sj,k,i

1h (a) + sj,k,i
2h (a)

))
if sj,k,i

1h (a) < sj,k,i
2h (a).
(2.37)

Step 2. We point out that even if the inequality (ŝj,k,i
1h − ŝj,k,i

2h )(a) ≥ 0 is satisfied by the
above first construction step for all Lagrangian nodes a, this does not necessarily imply
that ŝj,k,i

1h ≥ ŝj,k,i
2h everywhere, see the left part of Figure 2.4. To guarantee the requested

property, we proceed as follows:
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Figure 2.2: [Adaptive inexact smoothing Newton method, Algorithm 7, one space dimen-
sion, zoom on the first 5 elements of the computational mesh Th] Postprocessed solution

ũj,k,i
1h and reconstructed solution sj,k,i

1h at steps (j, k) = (2, 1) and at convergence of the

algebraic solver (i = i), left. Postprocessed solution ũj,k,i
1h and reconstructed solution sj,k,i

1h

at convergence of all solvers, right.

a) First, go through all internal edges σ ∈ E int of the mesh Th. Consider the second-

degree polynomial ŝσ := (ŝj,k,i
1h − ŝj,k,i

2h )|σ on the edge σ. If ŝσ ≥ 0, i.e. ŝσ is non-
negative over σ, set cσ := 0. Otherwise, ŝσ takes negative values inside σ. Let ωσ

be the subdomain formed by the two triangles that share the edge σ. Consider the
edge bubble function ψσ, a non-negative piecewise second-order polynomial defined
over ωσ, continuous over σ, zero on ∂ωσ, with ∥ψσ∥∞,ωσ

= 1. Let cσ be the smallest
positive constant such that (ŝσ + cσψσ|σ) ≥ 0 on σ.

b) Second, go through all elements K of Th. Consider the second-degree polynomial

ŝK := (ŝj,k,i
1h − ŝj,k,i

2h )|K +(
∑

σ∈E int
K
cσψσ)|K on the triangle K. If ŝK ≥ 0, set cK := 0.

Otherwise, consider the element bubble function ψK , a non-negative third-order
polynomial defined over K, zero on ∂K, with ∥ψK∥∞,K = 1. Let cK be the smallest
positive constant such that ŝK + cKψK ≥ 0 on the element K.

c) The last step of our construction is to define s̃j,k,i
h , for α ∈ {1, 2}, by

s̃j,k,i
αh := ŝj,k,i

αh − (−1)α 1
2
∑

σ∈E int
h

cσψσ − (−1)α 1
2
∑

K∈Th

cKψK . (2.38)

This yields

s̃j,k,i
h ∈ X3

gh ×X3
0h ⊂ H1

g (Ω) ×H1
0 (Ω), with s̃j,k,i

1h ≥ s̃j,k,i
2h ,

so that
s̃j,k,i

h ∈ Kg.

An illustration of the two steps described above is given in Figure 2.4.
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Figure 2.3: [Adaptive inexact smoothing Newton method, Algorithm 7, one space di-

mension, zoom on one element of the computational mesh Th] s
j,k,i
1h − sj,k,i

2h at steps
(j, k) = (3, 1), at convergence of the algebraic solver (i = i).

Figure 2.4: [Adaptive inexact smoothing Newton method, Algorithm 7, one space di-

mension, zoom on one element of the computational mesh Th] ŝ
j,k,i
1h − ŝj,k,i

2h after the

reconstruction step 1, left, and s̃j,k,i
1h − s̃j,k,i

2h after the reconstruction step 2, right, at steps
(j, k) = (3, 1) and at convergence of the algebraic solver (i = i).

6 Flux reconstructions

We present in this section a construction of an equilibrated flux σ̃j,k,i
αh providing a discrete

approximation of the exact flux −βα∇uα, cf. [142]. For this purpose, we will need the
lowest-order Raviart–Thomas finite-dimensional subspace of H (div,Ω) , defined by

RT0(Ω) := {vh ∈ H (div,Ω) ; vh|K ∈ [P0(K)]2 + xP0(K)}, ∀K ∈ Th.

In particular, vh ∈ RT0(Ω) is such that (∇·vh)|K ∈ P0(K),∀K ∈ Th, and (vh· n)|σ ∈
P0(σ), ∀σ ∈ EK . For more details, we refer to [36].

Let ΠP0 denote the L2(Ω)-orthogonal projection onto P0(Th), the space of piecewise

constants. An equilibrated flux reconstruction σ̃j,k,i
αh is a piecewise vector-valued polyno-

mial function, designed to approximate σα = −βα∇uα, and satisfying

σ̃j,k,i
αh ∈ RT0(Ω), (2.39a)
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∇·σ̃j,k,i
αh = ΠP0 (fα) − (−1)α λj,k,i

h ∈ P0(Th). (2.39b)

The remaining difference between fα and ΠP0(fα) will be considered in the next sec-
tion, giving rise to the so-called data oscillation. Note that the reconstructed flux mim-
ics the properties of the weak flux. Indeed, (2.39b) is a discrete form of the condition

∇·σα = fα − (−1)αλ, where only the mean values of the divergence of σ̃j,k,i
αh need to coin-

cide with the mean values of fα −(−1)αλj,k,i
h on each mesh element. This can equivalently

be written as (
∇·σ̃j,k,i

αh + (−1)αλj,k,i
h , 1

)
K

= (fα, 1)K , ∀K ∈ Th.

We would like to emphasize that since the construction of the fluxes is based on the
first two diffusion equations in (2.6) that are linear, there is no need to construct any
linearization error flux as in [67]. To cope with inexact algebraic solver, though, we define
the algebraic error flux reconstruction as follows.

Definition 2.5 (Algebraic error flux reconstruction). Let the smoothing step j ≥ 1, the
step of the nonlinear solver k ≥ 1, and the step of the linear solver i ≥ 1 be fixed. Given
Rj,k,i

alg,α,K defined in (2.30), and following [116, Concept 4.1], we can define the algebraic

error flux reconstruction σ̃j,k,i
αh,alg in RT0(Th) for α ∈ {1, 2} as follows

∇·σ̃j,k,i
αh,alg|K =

Rj,k,i
alg,α,K

|K|
, ∀K ∈ Th. (2.40)

Definition 2.6 (Total flux reconstruction). The total flux reconstruction σ̃j,k,i
αh ∈ RT0(Th)

is defined by
σ̃j,k,i

αh := −βα∇ũj,k,i
αh + σ̃j,k,i

αh,alg. (2.41)

Lemma 2.7 (Total flux reconstruction). There holds (2.39).

Proof. First, condition (2.39a) follows from Definition 2.2 of the postprocessed solution
together with Definition 2.5. To show (2.39b), we apply the Green formula and then
employ (2.33b) and (2.30) which shows(

∇·σ̃j,k,i
αh , 1

)
K

=
(
∇·(−βα∇ũj,k,i

αh ) + ∇·σ̃j,k,i
αh,alg, 1

)
K

=
∑

σ∈EK

(
−βα∇ũj,k,i

αh · nK,σ, 1
)

σ
+
(
∇·σ̃j,k,i

αh,alg, 1
)

K

(2.33b),(2.40)=
∑

σ∈EK

F j,k,i
α,K,σ + Rj,k,i

alg,α,K

(2.30)=
(
fα,K − (−1)αλj,k,i

K , 1
)

K
.

Remark 2.8 (Practical approximate algebraic error flux reconstruction). We use below
a simple and practical approach to approximate the algebraic error flux reconstruction
σ̃j,k,i

αh,alg, following [67, Section 4]. Let ν > 0 be a user-given fixed parameter. Performing

ν additional steps of the linear solver, then computing −βα∇ũj,k,i+ν
αh as in (2.33b) with

i+ ν in place of i, an algebraic error flux reconstruction can be defined as

σ̃j,k,i
αh,alg := −βα∇ũj,k,i+ν

αh −
(
−βα∇ũj,k,i

αh

)
,

satisfying (2.40) approximately.



7. A posteriori error estimates 67

7 A posteriori error estimates

Equipped with the key ingredients of the a posteriori analysis, namely the postprocessing
and reconstructions of Sections 5 and 6, we are now in a position to rigorously derive an a
posteriori estimate for the displacements. This allows to obtain a fully computable error
upper bound at any smoothing step j ≥ 1, any linearization step k ≥ 1, and any step of
the algebraic solver i ≥ 1 of the inexact smoothing Newton method of Section 4. Let us
stress that, for j ≥ 1, k ≥ 1, and i ≥ 1, the conditions (uj,k,i

1h − uj,k,i
2h ) ≥ 0, λj,k,i

h ≥ 0, and
λj,k,i

h (uj,k,i
1h − uj,k,i

2h ) = 0 are not necessarily satisfied, see Figure 2.5 for an illustration. In
addition to the developments of Section 5, to deal with the possible violation of condition
λj,k,i

h ≥ 0, we define the negative and positive parts of λj,k,i
h by

λj,k,i
h = λj,k,i,pos

h + λj,k,i,neg
h , λj,k,i,pos

h := max{λj,k,i
h , 0}, λj,k,i,neg

h := min{λj,k,i
h , 0}.

Figure 2.5: [Adaptive inexact smoothing Newton method, Algorithm 7, one space dimen-

sion, zoom on some elements of the computational mesh Th] u
j,k,i
1h − uj,k,i

2h , left, and λj,k,i
h ,

right, in specific elements, at steps (j, k) = (2, 1) and at convergence of the algebraic
solver (i = i).

7.1 A posteriori error estimate for the displacements

Recall that CPF and CPW are the Poincaré constants from (2.7). Let Cβ,Ω := CPFhΩ( 1
β1

+
1

β2
)

1
2 .We introduce for each element different estimators ηj,k,i

·,K ,K ∈ Th together with their

global counterparts ηj,k,i
· :=

{∑
K∈Th

(ηj,k,i
·,K )2} 1

2 . We then have the following theorem.

Theorem 2.9 (A posteriori estimate for the displacements). Let u ∈ Kg be the weak
solution of (2.14). Consider the finite volume discretization (2.30)–(2.31) on smoothing
step j ≥ 1, linearization step k ≥ 1, and algebraic step i ≥ 1. Let the postprocessed solution
ũj,k,i

h be given following Definition 2.2, and the admissible potential reconstruction s̃j,k,i
h

following Definition 5.3. Next, let the algebraic error flux reconstruction be given following
Definition 2.5, and the total flux reconstruction following Definition 2.6. Let Πσ

0 be the
L2(σ)-orthogonal projection onto constants. For α ∈ {1, 2}, define the local elementwise
estimators
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ηj,k,i
nonc,K :=

∣∣∣∣∣∣∣∣∣s̃j,k,i
h − ũj,k,i

h

∣∣∣∣∣∣∣∣∣
K
, (2.43a)

ηosc,K,α := CPWhKβ
− 1

2
α ∥fα − ΠP0(fα)∥K , ηosc :=

 ∑
K∈Th

2∑
α=1

(ηosc,K,α)2

 1
2

,

(2.43b)

ηj,k,i
alg,K,α := β

− 1
2

α

∥∥∥σ̃j,k,i
αh,alg

∥∥∥
K
, ηj,k,i

alg :=

 ∑
K∈Th

2∑
α=1

(ηj,k,i
alg,K,α)2

 1
2

,

(2.43c)

ηj,k,i
sm,lin,alg,1,K := Cβ,Ω

∥∥∥λj,k,i,neg
h

∥∥∥
K
, ηj,k,i

sm,lin,alg,2,K := 2
(
λj,k,i,pos

h , s̃j,k,i
1h − s̃j,k,i

2h

)
K
.

(2.43d)

Then, defining the total estimator by

ηj,k,i :=

(ηosc + ηj,k,i
alg + ηj,k,i

nonc + ηj,k,i
sm,lin,alg,1

)2
+
∑

K∈Th

ηj,k,i
sm,lin,alg,2,K


1
2

, (2.44)

the following a posteriori error estimate holds for the energy semi-norm, as well as for
the energy semi-norm augmented by the jump term for the the postprocessed solution∣∣∣∣∣∣∣∣∣u − ũj,k,i

h

∣∣∣∣∣∣∣∣∣ ≤ ηj,k,i, (2.45a)

∣∣∣∣∣∣∣∣∣u − ũj,k,i
h

∣∣∣∣∣∣∣∣∣+
∑

σ∈Eh

|σ|−1
∥∥∥ru − Πσ

0 (ũj,k,i
h )

z∥∥∥2

σ


1
2

≤ ηj,k,i +

∑
σ∈Eh

|σ|−1
∥∥∥rΠσ

0 (ũj,k,i
h )

z∥∥∥2

σ


1
2

.

(2.45b)

Remark 2.10 (Estimates (2.45)). The estimate (2.45a) gives a fully computable upper
bound on the energy semi-norm of the error between the exact solution u and its approx-
imation ũj,k,i

h at each smoothing, linearization, and algebraic iterations j, k, and i ≥ 1.
The data oscillation estimators ηosc,K,α come from the fact that the source term is not

necessarily piecewise constant, whereas ηj,k,i
alg,K,α reflect the algebraic error. The estima-

tors ηj,k,i
sm,lin,alg,1,K and ηj,k,i

sm,lin,alg,2,K reflect inconsistencies in the contact conditions at the

discrete level, whereas ηj,k,i
nonc,K evaluates the nonconformity of the postprocessed solution

ũj,k,i
h , i.e. the fact that it does not lie in Kg. Finally, (2.45b) adds an error jump term

to the left which equals the jump estimator on the right since JuαK = 0, α ∈ {1, 2}. This
transforms the energy semi-norm into a norm.

Proof. We first remark that (2.45b) follows from (2.45a) by adding to both sides of the
inequality the same term, since JuK = 0. To prove (2.45a), we distinguish the following
two cases.

Case 1. If
∣∣∣∣∣∣∣∣∣u − ũj,k,i

h

∣∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣u − s̃j,k,i

h

∣∣∣∣∣∣∣∣∣, we just have to estimate
∣∣∣∣∣∣∣∣∣u − s̃j,k,i

h

∣∣∣∣∣∣∣∣∣ .
The reduced problem (2.14) for the test function v = s̃j,k,i

h ∈ Kg gives

a(u,u − s̃j,k,i
h ) ≤ l(u − s̃j,k,i

h ). (2.46)
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Denoting w := u − s̃j,k,i
h , we use (2.46) and add and subtract a(ũj,k,i

h ,w) and b(w, λj,k,i
h )

to get, also employing the notations (2.10),

a(w,w) ≤ l(w) + b(w, λj,k,i
h ) − a(ũj,k,i

h ,w) + a(ũj,k,i
h − s̃j,k,i

h ,w) − b(w, λj,k,i
h )

=
2∑

α=1

(
fα − (−1)αλj,k,i

h , wα

)
−

2∑
α=1

βα

(
∇ũj,k,i

αh ,∇wα

)
+ a(ũj,k,i

h − s̃j,k,i
h ,w)

− b(w, λj,k,i
h ).

(2.47)

As σ̃j,k,i
αh ∈ H (div,Ω) by (2.39a), and as, relying on Definition 2.35, wα ∈ H1

0 (Ω), the
Green formula gives(

∇·σ̃j,k,i
αh , wα

)
= −

(
σ̃j,k,i

αh ,∇wα

)
∀α ∈ {1, 2}. (2.48)

Then, from (2.41) and (2.48), we have

a(w,w) ≤
2∑

α=1

∑
K∈Th

(
fα − (−1)αλj,k,i

h − ∇·σ̃j,k,i
αh , wα

)
K

−
2∑

α=1

∑
K∈Th

(
σ̃j,k,i

αh,alg,∇wα

)
K

+ a(ũj,k,i
h − s̃j,k,i

h ,w) − b(w, λj,k,i
h ). (2.49)

It remains to bound each of the four terms in (2.49).
Using for the first term the flux property (2.39b) and the Cauchy–Schwarz and

Poincaré–Wirtinger inequalities (2.7b) as wα|K ∈ H1(K), we have(
fα − (−1)αλj,k,i

h − ∇·σ̃j,k,i
αh , wα

)
K

= (fα − ΠP0(fα), wα − wα,K)K ≤ ηosc,K,α

∥∥∥∥β 1
2
α ∇wα

∥∥∥∥
K
,

(
σ̃j,k,i

αh,alg,∇wα

)
K

≤ ηj,k,i
alg,K,α

∥∥∥∥β 1
2
α ∇wα

∥∥∥∥
K
,

where wα,K denotes the mean value of wα on K. By applying the Cauchy–Schwarz in-
equality and using the definition of the energy semi-norm (2.8), we obtain

2∑
α=1

∑
K∈Th

(
fα − (−1)αλj,k,i

h − ∇·σ̃j,k,i
αh , wα

)
K

≤ ηosc
∣∣∣∣∣∣∣∣∣u − s̃j,k,i

h

∣∣∣∣∣∣∣∣∣ , (2.50)

−
2∑

α=1

∑
K∈Th

(
σ̃j,k,i

αh,alg,∇wα

)
K

≤ ηj,k,i
alg

∣∣∣∣∣∣∣∣∣u − s̃j,k,i
h

∣∣∣∣∣∣∣∣∣ . (2.51)

For the third term of (2.49), applying the Cauchy–Schwarz inequality, we get

a(ũj,k,i
h − s̃j,k,i

h ,w) ≤
∣∣∣∣∣∣∣∣∣ũj,k,i

h − s̃j,k,i
h

∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
ηj,k,i

nonc

∣∣∣∣∣∣∣∣∣u − s̃j,k,i
h

∣∣∣∣∣∣∣∣∣ . (2.52)

Next, as u ∈ Kg, −b(u, λj,k,i,pos
h ) ≤ 0, and since w = u − s̃j,k,i

h , we have

−b(w, λj,k,i,pos
h ) ≤ b(s̃j,k,i

h , λj,k,i,pos
h ).

Using the fact that λj,k,i
h = λj,k,i,pos

h + λj,k,i,neg
h , the last term of (2.49) will be estimated

as

−b(w, λj,k,i
h ) ≤ − b(w, λj,k,i,neg

h ) + b(s̃j,k,i
h , λj,k,i,pos

h ) (2.53a)



70 Chapter 2.

= − (λj,k,i,neg
h , w1 − w2) +

(
λj,k,i,pos

h , s̃j,k,i
1h − s̃j,k,i

2h

)
. (2.53b)

The Cauchy–Schwarz inequality and the definition of the energy norm (2.8) lead to

∥∇(w1 − w2)∥ ≤
2∑

α=1
β

− 1
2

α

∥∥∥∥β 1
2
α ∇wα

∥∥∥∥ ≤
( 2∑

α=1
β−1

α

) 1
2
( 2∑

α=1

∥∥∥∥β 1
2
α ∇wα

∥∥∥∥2
) 1

2

≤
( 1
β1

+ 1
β2

) 1
2

|||w||| .

The Poincaré–Friedrichs inequality (2.7a) together with (2.54) give

− b(w, λj,k,i
h ) ≤ ηj,k,i

sm,lin,alg,1

∣∣∣∣∣∣∣∣∣u − s̃j,k,i
h

∣∣∣∣∣∣∣∣∣+ 1
2
∑

K∈Th

2
(
λj,k,i,pos

h , s̃j,k,i
1h − s̃j,k,i

2h

)
K︸ ︷︷ ︸

ηj,k,i
sm,lin,alg,2,K

. (2.55)

Finally, due to the results (2.50), (2.51), (2.52), and (2.55) we have∣∣∣∣∣∣∣∣∣u − s̃j,k,i
h

∣∣∣∣∣∣∣∣∣2 ≤
(
ηosc + ηj,k,i

alg + ηj,k,i
nonc + ηj,k,i

sm,lin,alg,1

) ∣∣∣∣∣∣∣∣∣u − s̃j,k,i
h

∣∣∣∣∣∣∣∣∣+ 1
2
∑

K∈Th

ηj,k,i
sm,lin,alg,2,K .

(2.56)

The Young inequality ab ≤ 1
2
(
a2 + b2) , (a, b) ≥ 0, applied to the first term of (2.56)

finally gives

∣∣∣∣∣∣∣∣∣u − s̃j,k,i
h

∣∣∣∣∣∣∣∣∣ ≤ ηj,k,i =

(ηosc + ηj,k,i
alg + ηj,k,i

nonc + ηj,k,i
sm,lin,alg,1

)2
+
∑

K∈Th

ηj,k,i
sm,lin,alg,2,K


1
2

.

Case 2. If
∣∣∣∣∣∣∣∣∣u − s̃j,k,i

h

∣∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣u − ũj,k,i

h

∣∣∣∣∣∣∣∣∣, we have∣∣∣∣∣∣∣∣∣u − ũj,k,i
h

∣∣∣∣∣∣∣∣∣2 = a(u−ũj,k,i
h ,u−ũj,k,i

h ) = a(u−ũj,k,i
h ,u−s̃j,k,i

h )+a(u−ũj,k,i
h , s̃j,k,i

h −ũj,k,i
h ).
(2.57)

We start by estimating the first term of (2.57), while still denoting w = u − s̃j,k,i
h , as

a(u − ũj,k,i
h ,w) ≤ l(w) − a(ũj,k,i

h ,w) + b(w, λj,k,i
h ) − b(w, λj,k,i

h )

≤
2∑

α=1

(
fα − (−1)αλj,k,i

h , wα

)
−

2∑
α=1

βα

(
∇ũj,k,i

αh ,∇wα

)
− b(w, λj,k,i

h ),

(2.58)

using again (2.10) and (2.14), as in (2.47). The three terms in (2.58) are identical to
the terms in (2.47), estimated in (2.50), (2.51), and (2.55), respectively. Invoking the
hypothesis of this case, we can thus write

a(u − ũj,k,i
h ,w) ≤

(
ηosc + ηj,k,i

alg + ηj,k,i
sm,lin,alg,1

) ∣∣∣∣∣∣∣∣∣u − s̃j,k,i
h

∣∣∣∣∣∣∣∣∣+ 1
2
∑

K∈Th

ηj,k,i
sm,lin,alg,2,K

≤
(
ηosc + ηj,k,i

alg + ηj,k,i
sm,lin,alg,1

) ∣∣∣∣∣∣∣∣∣u − ũj,k,i
h

∣∣∣∣∣∣∣∣∣+ 1
2
∑

K∈Th

ηj,k,i
sm,lin,alg,2,K .

The Cauchy–Schwarz inequality yields for the second term of (2.57)

a(u − ũj,k,i
h , s̃j,k,i

h − ũj,k,i
h ) ≤

∣∣∣∣∣∣∣∣∣s̃j,k,i
h − ũj,k,i

h

∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣u − ũj,k,i
h

∣∣∣∣∣∣∣∣∣ = ηj,k,i
nonc

∣∣∣∣∣∣∣∣∣u − ũj,k,i
h

∣∣∣∣∣∣∣∣∣ .
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By combining the previous results, we then obtain

∣∣∣∣∣∣∣∣∣u − ũj,k,i
h

∣∣∣∣∣∣∣∣∣2 ≤
(
ηosc + ηj,k,i

alg + ηj,k,i
nonc + ηj,k,i

sm,lin,alg,1

) ∣∣∣∣∣∣∣∣∣u − ũj,k,i
h

∣∣∣∣∣∣∣∣∣+ 1
2
∑

K∈Th

ηj,k,i
sm,lin,alg,2,K .

(2.59)

The Young inequality ab ≤ 1
2
(
a2 + b2) , (a, b) ≥ 0, applied to the first term of (2.59)

provides now again immediately the desired result.

7.2 A posteriori error estimate for the actions

We present here an a posteriori estimate for the actions λj,k,i
h , extending [17, Corollary

3.5] to the nonconforming and inexact solvers setting.

Theorem 2.11 (A posteriori estimate for the actions). Let the assumptions and notations
of Theorem 2.9 hold. The following a posteriori error estimate holds between the solution
λ ∈ Λ of problem (2.12) and the approximation λj,k,i

h given by (2.30)–(2.31)∣∣∣∣∣∣∣∣∣λ− λj,k,i
h

∣∣∣∣∣∣∣∣∣
H−1

∗ (Ω)
≤ ηosc + ηj,k,i

alg + ηj,k,i. (2.60)

Proof. Let βm := max(β1, β2). From the definition (2.9) of the norm of H−1
∗ (Ω) and of

the form b in (2.10) we have∣∣∣∣∣∣∣∣∣λ− λj,k,i
h

∣∣∣∣∣∣∣∣∣
H−1

∗ (Ω)
= sup

v∈H1
0 (Ω)

βm∥∇v∥2=1

(λ− λj,k,i
h , v) = sup

φ∈[H1
0 (Ω)]2

βm
∑2

α=1 ∥∇φα∥2=1

b(φ, λ− λj,k,i
h ).

Fix φ ∈ [H1
0 (Ω)]2 such that βm

∑2
α=1 ∥∇φα∥2 = 1. It follows from (2.12a) that −b(φ, λ−

λj,k,i
h ) = l(φ)−a(u,φ)+ b(φ, λj,k,i

h ). By simply adding and subtracting a(ũj,k,i
h ,φ), where

the action of the form a on ũj,k,i
h is defined in (2.11), we obtain

−b(φ, λ− λj,k,i
h ) = l(φ) + b(φ, λj,k,i

h ) − a(ũj,k,i
h ,φ) − a(u − ũj,k,i

h ,φ).

The first three terms are identical to the first three terms in (2.47) but with φ instead of
w. They are estimated in (2.50) and (2.51), leading to

l(φ) + b(φ, λj,k,i
h ) − a(ũj,k,i

h ,φ) ≤ (ηosc + ηj,k,i
alg ) |||φ||| .

The last term is estimated as −a(u−ũj,k,i
h ,φ) ≤

∣∣∣∣∣∣∣∣∣u − ũj,k,i
h

∣∣∣∣∣∣∣∣∣ , since |||φ||| ≤ 1. Through
these estimations we get

− b(φ, λ− λj,k,i
h ) ≤ ηosc + ηj,k,i

alg +
∣∣∣∣∣∣∣∣∣u − ũj,k,i

h

∣∣∣∣∣∣∣∣∣ . (2.61)

We obtain the desired result by combining (2.61) to (2.45a).

7.3 Distinguishing the different error components

The aim of this section is to identify the various error components in the a posteriori
estimators from Theorem 2.9, which will lead to a posteriori stopping criteria.
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Corollary 2.12 (A posteriori error estimate distinguishing the error components). We
define for α ∈ {1, 2} and K ∈ Th the smoothing, discretization, linearization, and algebraic
estimators as follows:

ηj,k,i
disc := ηosc + ηj,k,i

nonc +

∣∣∣∣∣∣
∑

K∈Th

2
(
λj,k,i,pos

h , s̃j,k,i
1h − s̃j,k,i

2h − ũj,k,i
1h + ũj,k,i

2h

)
K

∣∣∣∣∣∣
 1

2

, (2.62a)

ηj,k,i
sm := ηj,k,i

sm,lin,alg,1 +

∣∣∣∣∣∣
∑

K∈Th

2
(
λj,k,i,pos

h , uj,k,i
1h − uj,k,i

2h

)
K

∣∣∣∣∣∣
 1

2

, (2.62b)

ηj,k,i
lin,alg := ηj,k,i

lin,alg,1 +

∣∣∣∣∣∣
∑

K∈Th

2
(
λj,k,i,pos

h − λj,k−1,i,pos
h , uj,k,i

1h − uj,k,i
2h − uj,k−1,i

1h + uj,k−1,i
2h

)
K

∣∣∣∣∣∣
 1

2

,

(2.62c)

ηj,k,i
alg :=

 ∑
K∈Th

2∑
α=1

(
ηj,k,i

alg,K,α

)2
 1

2

, (2.62d)

with

ηj,k,i
lin,alg,1,K := Cβ,Ω

∥∥∥λj,k,i,neg
h − λj,k−1,i,neg

h

∥∥∥
K
, and ηj,k,i

lin,alg,1 :=

 ∑
K∈Th

(
ηj,k,i

lin,alg,1,K

)2
 1

2

.

Then, ∣∣∣∣∣∣∣∣∣u − ũj,k,i
h

∣∣∣∣∣∣∣∣∣ ≤ ηj,k,i ≤ ηj,k,i
disc + ηj,k,i

sm + ηj,k,i
lin,alg + ηj,k,i

alg . (2.63)

Proof. From (2.45a), employing the inequality (a+ b)
1
2 ≤ a

1
2 + b

1
2 , for a, b ≥ 0, we have

∣∣∣∣∣∣∣∣∣u − ũj,k,i
h

∣∣∣∣∣∣∣∣∣ ≤ ηj,k,i ≤ ηosc +ηj,k,i
alg +ηj,k,i

nonc +ηj,k,i
sm,lin,alg,1 +

 ∑
K∈Th

ηj,k,i
sm,lin,alg,2,K

 1
2

. (2.64)

We then decompose ηj,k,i
sm,lin,alg,2,K by adding and subtracting the components of ũj,k,i

h as
follows

ηj,k,i
sm,lin,alg,2,K = 2

(
λj,k,i,pos

h , s̃j,k,i
1h − s̃j,k,i

2h

)
K

= 2
(
λj,k,i,pos

h , s̃j,k,i
1h − s̃j,k,i

2h − ũj,k,i
1h + ũj,k,i

2h

)
K

+ 2
(
λj,k,i,pos

h , ũj,k,i
1h − ũj,k,i

2h

)
K

(2.33a)= 2
(
λj,k,i,pos

h , s̃j,k,i
1h − s̃j,k,i

2h − ũj,k,i
1h + ũj,k,i

2h

)
K

+ 2
(
λj,k,i,pos

h , uj,k,i
1h − uj,k,i

2h

)
K
.

(2.65)

We now combine (2.65) together with (2.64) inserting the absolute values. This leads to∣∣∣∣∣∣∣∣∣u − ũj,k,i
h

∣∣∣∣∣∣∣∣∣ ≤ ηj,k,i
disc + ηj,k,i

sm + ηj,k,i
alg .

Finally, we define the linearization estimator ηj,k,i
lin,alg analogously to the smoothing es-

timator ηj,k,i
sm , considering the terms λj,k,i

h − λj,k−1,i
h and uj,k,i

h − uj,k−1,i
h estimating the

linearization error.
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Remark 2.13 (Nature of the estimators). The nonconformity and oscillation estimators
ηj,k,i

nonc and ηosc considered as discretization estimators vanish when the computational effort
grows, i.e. when the number of mesh elements goes to infinity. The smoothing estimator
ηj,k,i

sm stems from the error in the algebraic system, linearization, and smoothing. It goes
to zero at convergence of all the solvers, since when j, k, and i → ∞, we have λj,k,i

h ≥ 0
and λj,k,i

h (uj,k,i
1h −uj,k,i

2h ) = 0. The linearization estimator ηj,k,i
lin,alg reflects the error stemming

from both linearization and algebraic resolution and vanishes when k and i → ∞. Finally,
the algebraic estimator ηj,k,i

alg evaluating the error in the algebraic iterative resolution of
the linear system (2.27) vanishes when i → ∞.

8 Stopping criteria and adaptive inexact smoothing algorithm

We derive in this section adaptive stopping criteria for the linear, the nonlinear solver,
and the smoothing iterations, based on the estimators of Corollary 2.12.

Let three user-specified parameters ζsm, ζlin, and ζalg be given in ]0, 1], representing
the desired relative size (percentage) of the smoothing, linearization, and algebraic errors,
respectively. Below, we denote by j, k, and i the last (stopping) smoothing, linearization
and algebraic step, respectively. The stopping criterion for the algebraic step i at each
linearization step k and smoothing step j is chosen as

ηj,k,i
alg < ζalgη

j,k,i
lin,alg. (2.66)

This criterion expresses that there is no need to continue with the algebraic iterations
once the linearization error component starts to dominate. Similarly, to stop the Newton
iterations at each smoothing step j, we apply

ηj,k,i
lin,alg < ζlinη

j,k,i
sm,lin,alg, (2.67)

which requires the linearization estimator to be sufficiently small with respect to the
smoothing estimator. Finally, we stop the outer smoothing loop whenever

ηj,k,i
sm,lin,alg < ζsmη

j,k,i
disc , (2.68)

i.e. when the smoothing estimator is ζsm-times smaller than the discretization estimator.
As for the amount of smoothing, we will proceed following [21] and diminish it by a fixed
factor ζ ∈]0, 1[ on each smoothing step. We are now ready to present in Algorithm 7 our
adaptive inexact smoothing Newton algorithm that includes the above adaptive criteria
for stopping the iterative solvers.
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Algorithm 7: Adaptive inexact smoothing Newton algorithm

1. Initialization
Choose parameters ζ ∈ ]0, 1[ and ζsm, ζlin, ζalg ∈ ]0, 1].
Choose an initial smoothing parameter µ1 > 0, a number of additional algebraic
solver steps ν ≥ 1, and an initial approximation X0 ∈ Rn. Set j := 1 and j = 0.

2. Smoothing j-loop

2.1 Set Xj,0 := X0, k := 1, and k = 0.
2.2 Newton linearization k-loop

2.2.1 From Xj,k−1 define A
j,k−1
µj ∈ Rn,n and Bj,k−1

µj ∈ Rn by the Newton

linearization (2.28).

2.2.2 Consider the problem of finding a solution Xj,k to

A
j,k−1
µj Xj,k = Bj,k−1

µj . (2.69)

2.2.3 Set Xj,k,0 := Xj,k−1 as initial guess for the iterative algebraic solver.
Set i := 1, and if j = 1 and k = 1, set i = 0.

2.2.4 Algebraic solver i-loop

i) Perform ν steps of the iterative algebraic solver for the solution of
(2.69), yielding, on step i+ ν, an approximation Xj,k,i+ν to Xj,k

satisfying
A

j,k−1
µj Xj,k,i+ν = Bj,k−1

µj − Rj,k,i+ν
alg .

ii) Set i := i+ ν. Compute the estimators given in (2.62).

iii) If ηj,k,i
alg < ζalgη

j,k,i
lin,alg, set i := i and stop. If not, go to i).

2.2.5 If ηj,k,i
lin,alg < ζlinη

j,k,i
sm,lin,alg, set k := k and stop. If not, set k := k + 1 and go

to 2.2.1.

2.3 If ηj,k,i
sm,lin,alg < ζsmη

j,k,i
disc , set j := j and stop.

If not, set j := j + 1, Xj,0 := Xj−1,k,i, and µj := ζµj−1. Then set k := 1
and go to 2.2.1.

9 Numerical results

In this section, we numerically illustrate the efficiency of our theoretical developments
considering problem (2.6). Our main goals are to assess the sharpness of the guaranteed
bound (2.45) and to show that Algorithm 7 performs well and leads to smaller number of
iterations in comparison with usual stopping criteria as well as the classical semismooth
Newton method.

We carry out computations fixing the tensions in (2.6a) and (2.6b) as β1 = 1 and
β2 = 1. The boundary condition g of the first membrane in (2.6d) is taken equal to 0.1.
We consider the one-dimensional domain Ω = (−1, 1), (all the theoretical developments
apply here), and use the following analytical solution for x ∈ Ω, following [17],

u1(x) := g(2x2 − 1), u2(x) :=
{

2g(1 − x2)(2x2 − 1) if x < −1√
2 or x > 1√

2 ,

g(2x2 − 1) otherwise,
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λ(x) :=
{

0 if x < −1√
2 or x > 1√

2 ,

2g otherwise.

This triple is the solution of (2.6) for the data f1 and f2 given by

f1(x) :=
{

−4g if x < −1√
2 or x > 1√

2 ,

−6g otherwise,
f2(x) :=

{
−12g(1 − 4x2) if x < −1√

2 or x > 1√
2 ,

−2g otherwise.

For all the tests, the number of mesh elements is m = 10000, leading to the overall
number of unknowns n = 30000. We choose the initial guess as X0 = [1g,0,0] ∈ Rn,
where 1 = [1, . . . , 1]T ∈ Rm. The implementation was done in the MATLAB software.
The value of the coefficients ζsm, ζlin, and ζalg from the adaptive stopping criteria in Section
8 is 0.1. The parameters in Algorithm 7 are set as: µ1 = 1, ζ = 0.1, and ν = 4.

9.1 Semismooth Newton-min

First, for comparison, to find an approximate solution to the algebraic system (2.17),
we employ the semismooth Newton-min method described in Section 3 in which the
stopping criterion for the linearization requests the relative total residual of problem
(2.21) Rk

rel := ∥R(Xk)∥/∥R(X0)∥ to be below 10−8, where

R(V ) :=
[

F − EV
−C(V )

]
, V ∈ Rn. (2.70)

The evolution of the relative total residual is shown in Figure 2.6. In its right part, we
zoom on the last 10 Newton-min iterations. We observe that the curve goes down slowly
until step 893, where the convergence gets extremely fast.
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Figure 2.6: [Semismooth Newton-min method of Section 3] Relative total residual as a
function of Newton-min iterations, left, and as a function of the last 10 Newton-min
iterations, right.

9.2 Adaptive smoothing Newton-min

In this section, we employ Algorithm 7 with an“exact”resolution of the system of algebraic
equations (2.69), i.e., we skip steps 2.2.3 and 2.2.4. We drop the notation “alg” from

estimators (2.62b) and (2.62c), whereas ηj,k,i
alg of (2.62d) vanishes. First, we want to

emphasize the performance of the adaptive smoothing method employing the adaptive
stopping criterion to stop the nonlinear solver. To this end, we use two linearization
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stopping criteria: the adaptive criterion (2.67) ηj,k
lin < ζlinη

j,k
sm,lin and the classical one on

the relative linearization residual of problem (2.26) Rj,k
lin,rel := ∥Rlin(Xj,k)∥/∥Rlin(X1,0)∥

lying below 10−8, with Rlin(·) given by

Rlin(V ) :=
[

F − EV
−Cµj (V )

]
, V ∈ Rn. (2.71)

We show in Figure 2.7 the number of performed Newton iterations employing the smooth-
ing Newton method with exact algebraic resolution, during the fourth smoothing step
(j = 4). It can be noticed that the use of the adaptive stopping criterion brings down the
number of iterations from 20 to 12.
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Figure 2.7: [Adaptive smoothing Newton-min method, Algorithm 7, exact resolution of
the algebraic system (2.69)] Estimators and relative linearization residual as a function of
the Newton iterations at a specific smoothing step (j = 4, k varies).

We now employ the adaptive smoothing Newton-min method, with an exact algebraic
resolution, including the adaptive stopping criteria (2.67) and (2.68) to stop the lineariza-
tion and smoothing steps, respectively. In terms of numbers, 6 smoothing iterations and
41 cumulated linearization iterations are needed to reach the end of the simulation, as seen
from Figure 2.8 left, compared to 894 linearization iterations employing the semismooth
Newton-min method above.

The various estimators given in (2.62) are presented in the left part of Figure 2.8.
Each set of curves represents one smoothing step (fixed value j). From each set one can
see that the linearization estimator is dominant and close to the total estimator, until
becoming smaller than the smoothing estimator, when the adaptive stopping criterion
ηj,k

lin < ζlinη
j,k
sm,alg is satisfied. The smoothing estimator satisfies (2.68) from the cumulated

Newton-min iteration k = 40. Computational savings in terms of linearization iterations
can be evaluated considering the results in Figure 2.8, right. A comparison of the number
of performed Newton iterations employing the semismooth Newton-min method of Sec-
tion 9.1 and the adaptive smoothing Newton-min method of the present section shows a
significant gain reaching a factor of roughly 22.
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Figure 2.8: [Adaptive smoothing Newton-min method, Algorithm 7, exact resolution of
the algebraic system (2.69)] Estimators as a function of the cumulated Newton iterations,
left. Comparison between the number of performed Newton iterations employing the
Newton-min method of Section 9.1 and the adaptive smoothing Newton-min method of
Section 9.2, right.

9.3 Adaptive inexact smoothing Newton-min

This section is devoted to present the results obtained employing the adaptive inexact
smoothing Newton-min algorithm of Algorithm 7 in Section 8. We consider at each
Newton step k ≥ 1 the GMRES iterative algebraic solver for the system (2.69), see
[131], with an ILU preconditioner. To shed more light on the importance of the adaptive
stopping criterion for stopping the linear solver, we compare the adaptive resolution where
the stopping criterion for the GMRES is given by (2.66) with the classical resolution where
the algebraic iterations are stopped using the relative algebraic residual, i.e.,

Rj,k,i
alg,rel :=

∥∥M2\(M1\(Bj,k−1
µj − A

j,k−1
µj Xj,k,i))

∥∥∥∥M2\(M1\(Bj,k−1
µj − A

j,k−1
µj Xj,k−1))

∥∥ ≤ 10−10, (2.72)

where M1 and M2 denote the preconditioner matrices. Figure 2.9 shows the algebraic
estimator, linearization estimator, and relative algebraic residual, computed every ν = 4
algebraic steps, at specific smoothing and linearization steps (j, k) = (4, 1) for the classical
and adaptive resolutions. We observe that only 20 algebraic iterations are required to
satisfy (2.66), whereas 188 iterations are needed to meet the classical criterion (2.72).

We now employ the entire Algorithm 7 featuring also the adaptive stopping criterion
for the algebraic solver. To satisfy adaptive criteria (2.66), (2.67), and (2.68), 6 smoothing
iterations, 41 cumulated Newton-min iterations, and 2552 cumulated GMRES iterations
are needed. We also assess the quality of the a posteriori error estimates of Theorems 2.9
and 2.11 by means of the effectivity indices resulting from estimates (2.45a), (2.45b), and
(2.60) defined as

Ij,k,i
eff := ηj,k,i

|||u − ũj,k,i
h |||

, (2.73a)

Ij,k,i
eff :=

ηj,k,i +
{∑

σ∈Eh
|σ|−1∥JΠσ

0 (ũj,k,i
h )K∥

2
σ

} 1
2

|||u − ũj,k,i
h ||| +

{∑
σ∈Eh

|σ|−1∥Ju − Πσ
0 (ũj,k,i

h )K∥
2
σ

} 1
2
, (2.73b)
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Figure 2.9: [Adaptive inexact smoothing Newton-min method, Algorithm 7] Estimators
and relative algebraic residual as a function of the GMRES iterations at smoothing and
linearization steps (j, k) = (4, 1) using the adaptive stopping criterion (2.66) and the
classical one (2.72).

Ĩj,k,i
eff :=

ηosc + ηj,k,i
alg + 2ηj,k,i +

{∑
σ∈Eh

|σ|−1∥JΠσ
0 (ũj,k,i

h )K∥
2
σ

} 1
2

|||u − ũj,k,i
h ||| + |||λ− λj,k,i

h |||H−1
∗ (Ω) +

{∑
σ∈Eh

|σ|−1∥Ju − Πσ
0 (ũj,k,i

h )K∥
2
σ

} 1
2
.

(2.73c)

See Remark 2.14 for details on approximately computing the dual norm.

Remark 2.14 (Computing approximately the dual norm). In practice, the dual norm

|||λ− λj,k,i
h |||H−1(Ω) with λ − λj,k,i

h ∈ Λ, is not easily computable. We provide here a

practical way to approximate this norm and evaluate it numerically following [61]. We
consider the following elliptic problem that consists in finding, for a given f ∈ L2(Ω), the
function ϕ : Ω → R such that

−∆ϕ = f in Ω,
ϕ = 0 on ∂Ω. (2.74)

The weak formulation of problem (2.74) consists in finding ϕ ∈ H1
0 (Ω) such that

(∇ϕ,∇v) = (f, v) ∀v ∈ H1
0 (Ω). (2.75)

Then the definition of the H−1(Ω) norm together with (2.75) give

∥f∥H−1(Ω) = sup
v∈H1

0 (Ω); ||∇v||Ω=1
(f, v) (2.75)= sup

v∈H1
0 (Ω); ||∇v||Ω=1

(∇ϕ,∇v) = ∥∇ϕ∥Ω.

We consider the cell-centered finite volume method to find an approximate solution to
problem (2.74) on a refined mesh. Assuming that the discretization error is negligible,
we employ ∥∇ϕ̃h∥Ω, where ϕ̃h is obtained by a postprocessing as in Definition 2.2, to
approximate ∥f∥H−1(Ω).
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The results are reported in Table 2.1 where we show at each smoothing step j and
linearization step k: the last algebraic step i, the estimators, and the effectivity indices
(2.73) at convergence of the algebraic solver (i = i). We observe that we indeed have
a guaranteed upper bound on all steps j ≥ 1, k ≥ 1, and i, and that all the effectivity
indices take excellent values when all the three stopping criteria (2.66)–(2.68) are satisfied
on the last line of Table 2.1.

j k i ηj,k,i
disc ηj,k,i

sm,lin,alg ηj,k,i
lin,alg ηj,k,i

alg ηj,k,i Ij,k,i
eff Ij,k,i

eff Ĩj,k,i
eff

1 1 12 4.25e-04 8.72e-01 7.06e-01 5.71e-02 8.74e-01 1.70 1.64 2.01
1 2 12 4.27e-04 9.78e-01 1.19e-01 6.83e-04 9.78e-01 1.68 1.63 1.93
1 3 12 4.33e-04 9.97e-01 2.52e-02 4.18e-04 9.97e-01 1.68 1.64 1.93

2 1 20 2.16e-01 5.89e+01 5.94e+01 1.49e+00 6.03e+01 140.12 46.87 75.11
2 2 16 8.45e-03 3.33e+00 6.03e+01 2.78e+00 6.06e+00 65.93 31.89 60.43
2 3 12 4.43e-04 9.40e-01 3.65e+00 2.63e-01 1.12e+00 47.56 14.21 22.96
2 4 12 4.19e-04 9.50e-02 7.66e-01 1.81e-02 9.67e-02 4.91 2.02 2.89
2 5 12 4.18e-04 9.84e-02 6.23e-03 6.04e-04 9.84e-02 4.27 1.97 2.68

3 1 12 1.83e-02 1.16e+00 1.16e+00 8.51e-02 1.23e+00 37.75 13.62 16.84
3 2 12 1.64e-02 2.01e-01 1.15e+00 1.10e-01 3.17e-01 10.29 4.07 5.88
3 3 28 1.29e-02 2.34e-01 3.37e-01 1.47e-02 2.50e-01 34.75 4.77 8.18
3 4 24 8.35e-03 4.43e-02 2.51e-01 2.11e-02 6.19e-02 16.86 1.97 3.10
3 5 28 1.86e-03 9.33e-03 3.66e-02 1.90e-03 9.73e-03 10.51 1.15 1.32
3 6 48 4.08e-04 9.91e-03 8.06e-04 2.89e-05 9.92e-03 13.22 1.16 1.32

4 1 16 3.45e-03 2.42e-01 2.40e-01 1.56e-02 2.56e-01 73.81 5.16 8.53
4 2 12 2.73e-03 2.80e-02 2.53e-01 6.15e-03 3.37e-02 14.96 1.53 1.86
4 3 44 6.58e-04 2.31e-01 2.32e-01 1.60e-02 2.46e-01 258.31 5.24 9.68
4 4 8 1.13e-03 2.83e-03 2.47e-01 1.65e-02 1.84e-02 23.26 1.31 1.80
4 5 60 4.75e-04 1.04e-01 1.03e-01 7.75e-03 1.11e-01 231.17 2.94 5.01
4 6 8 1.12e-03 1.73e-03 1.25e-01 1.18e-02 1.28e-02 26.74 1.22 1.60
4 7 60 4.04e-04 2.48e-02 2.40e-02 2.04e-03 2.62e-02 63.62 1.45 1.95
4 8 8 4.50e-04 1.10e-03 2.77e-02 2.15e-03 2.78e-03 6.78 1.04 1.12
4 9 156 4.03e-04 9.97e-04 3.51e-05 3.47e-06 1.08e-03 2.63 1.01 1.03
...
...

...
...

...
...

...
...

...
...

...

6 1 20 5.07e-04 2.87e-03 2.84e-03 2.81e-04 3.52e-03 8.61 1.05 1.12
6 2 16 4.79e-04 4.73e-05 3.38e-03 1.36e-04 5.76e-04 1.41 1.00 1.01
6 3 60 4.14e-04 3.12e-03 3.12e-03 5.37e-05 3.57e-03 8.73 1.06 1.12
6 4 12 4.80e-04 2.73e-05 3.18e-03 1.69e-04 5.75e-04 1.41 1.00 1.02
6 5 96 4.06e-04 1.39e-03 1.39e-03 1.33e-04 1.92e-03 4.69 1.03 1.06
6 6 8 4.34e-04 2.02e-05 1.66e-03 4.36e-05 4.46e-04 1.09 1.00 1.01
6 7 316 4.02e-04 2.87e-03 2.86e-03 2.61e-04 3.52e-03 8.62 1.05 1.12
6 8 8 4.15e-04 1.21e-05 2.88e-03 1.66e-05 4.18e-04 1.02 1.00 1.01
6 9 680 4.01e-04 1.00e-05 1.73e-07 1.30e-08 4.01e-04 1.00 1.00 1.01

Table 2.1: [Adaptive inexact smoothing Newton-min method, Algorithm 7] Last algebraic
step i, estimators (2.62) and effectivity indices (2.73) at each smoothing step j and each
Newton-min step k, at convergence of the algebraic solver (i = i).

We next plot in Figure 2.10, left, the evolution of the various estimators as a func-
tion of the smoothing iterations in j when the stopping criteria (2.67) and (2.66) have
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Figure 2.10: [Adaptive inexact smoothing Newton-min method, Algorithm 7] Estimators
of Section 7.3, left, and relative linearization and total residuals, right, as a function of the
smoothing iterations j at convergence of the algebraic and linearization solvers (j varies,
k = k, i = i).
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Figure 2.11: [Adaptive inexact smoothing Newton-min method, Algorithm 7] Estimators
of Section 7.3 as a function of the cumulated Newton-min iterations at convergence of the
algebraic solver (j and k vary, i = i).

been satisfied. The curve of the smoothing estimator goes down at each smoothing step
while the discretization estimator stagnates. In the right part, we show the relative to-

tal residual Rj,k,i
rel := ∥R(Xj,k,i)∥/∥R(X0)∥ with R(·) given in (2.70) and the relative

linearization residual Rj,k,i
lin,rel := ∥Rlin(Xj,k,i)∥/∥Rlin(X1,0)∥ with Rlin(·) given in (2.71)

during the smoothing iterations. Let us point out that Rj,k,i
rel steadily decreases as we

tighten the smoothing. The residual Rj,k,i
lin,rel in turn systematically takes smaller values.

The estimators as a function of the cumulated Newton-min iterations are then illustrated
in Figure 2.11. We remark that at each smoothing step the linearization estimator and
the algebraic estimator (blue) steadily decrease, while the discretization estimator roughly

stagnates. The oscillating behavior of ηj,k,i
sm,lin,alg is explained by the fact that it involves
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ηj,k,i
sm,lin,alg,1 given in (2.43d) that takes values varying between 0 and 6.91e+01 depending

on whether the constraint λj,k,i
h ≥ 0 is satisfied or not. Moreover, Figure 2.12 shows the

evolution of the estimators during the cumulated algebraic steps for j = {1, 2}. The two
sets of curves separated by the dashed line represent two smoothing steps whereas the
inner sets separated by the dotted lines represent the linearization steps. As expected, the
discretization and smoothing estimators typically stagnate while the algebraic estimator
decreases until step i, at which criterion (2.66) is satisfied.
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Figure 2.12: [Adaptive inexact smoothing Newton-min method, Algorithm 7] Estimators
of Section 7.3 as a function of the GMRES iterations during the first 2 smoothing iterations
(j = {1, 2}, k and i vary).

Next, Figure 2.13 shows the effectivity indices (2.73) during the cumulated Newton-

min iterations. It can be seen that the index Ij,k,i
eff defined as the ratio of the total error

estimator and the actual energy error takes bigger values than the indices Ij,k,i
eff featuring

the jump term and the estimate Ĩj,k,i
eff featuring the jump term and the action. When the

stopping criteria (2.66)–(2.68) are reached, all the indices approach the optimal value of
one.

10 20 30 40

100

101

102

Cumulated Newton iteration

E
ff
ec
ti
v
it
y
in
d
ic
es

Ij,k,i
eff

Ij,k,i
eff
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Figure 2.13: [Adaptive inexact smoothing Newton-min method, Algorithm 7] Effectivity
indices given in (2.73) using the total estimator ηj,k,i given in (2.44), as a function of the
cumulated Newton-min iterations, at convergence of the algebraic solver (i = i).

The estimators and the effectivity indices at convergence of all solvers, i.e., when the
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Figure 2.14: [Adaptive inexact smoothing Newton-min method, Algorithm 7] Estimators,
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convergence of all the solvers.
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adaptive stopping criterion (2.66) and the classical one (2.72) for stopping the GMRES
solver.
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criteria (2.66), (2.67), and (2.68) have been satisfied, are plotted in Figure 2.14 as a
function of the number of mesh elements. Notice that the discretization estimator essen-
tially coincides with the total estimator. We observe that the accuracy of our estimators
increases in function of the computational effort.

We are also interested in the comparison between the adaptive GMRES (adaptive
stopping criterion (2.66)) and the classical GMRES (standard stopping criteria (2.72))
with regard to the number of performed iterations. As seen from Figure 2.15, the adaptive
algebraic resolution does not impact the number of smoothing steps. It slightly affects the
number of cumulated Newton steps but leads to an important decrease of the number of
GMRES iterations compared with the classical resolution. In this regard, we numerically
explore the influence of the coefficients ζsm, ζlin, and ζalg in the adaptive stopping criteria
of Section 8 on the smoothing algorithm. We summarize the results obtained in Table 2.2.
We observe that choosing ζsm or ζlin small does not considerably affect the overall number
of iterations. However, setting ζalg small increases notably the number of algebraic and
linearization iterations.

ζsm ζlin ζalg # Smoothing iter. # Cumul. Newton iter. # Cumul. GMRES iter. Rj,k,i
rel

10−1 10−1 10−1 6 41 2552 6.33e-04
10−2 10−2 10−2 7 63 9108 3.67e-05
10−2 10−1 10−1 7 45 3652 3.66e-05
10−1 10−2 10−1 6 51 3944 6.33e-04
10−1 10−1 10−2 6 57 6996 6.33e-04

Table 2.2: [Adaptive inexact smoothing Newton-min method, Algorithm 7] Number of
smoothing, cumulated Newton, and cumulated GMRES iterations as well as the relative

total residual Rj,k,i
rel for various parameters ζsm, ζlin, and ζalg in the adaptive stopping

criteria of Section 8.

10 Conclusions and outlook

The motivation of the present work was to propose an adaptive inexact smoothing Newton
method based on rigorous a posteriori error estimates for solving nonlinear algebraic
systems with complementarity constraints arising from finite volume discretizations. We
considered in particular the problem modeling the contact between two membranes. We
treated the non-differentiable nonlinearity in the constraints by means of a smoothed
C-function, which allowed a direct application of the standard Newton method. We
designed a posteriori error estimates between the exact and approximate solution, enabling
to identify the error components (discretization, smoothing, linearization, algebraic) and
yielding adaptive stopping criteria. These criteria together with a simple way of tightening
the smoothing became the cornerstones of the developed adaptive algorithm. We finally
provided numerical tests employing our adaptive method and the existing semismooth
Newton method. The results agree with theoretical developments and confirm that the
adaptivity allows for important computational savings in terms of number of iterations.
Future work will consist in applying this method to several synthetic cases of petroleum
reservoir simulation, see [82].
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11 Appendix

The a posteriori estimate (2.45) of Section 7.1 involves the L2-norm of λj,k,i,neg
h and the

global domain diameter hΩ. This gives a guaranteed upper bound, but is not very sharp.
We present here an alternative upper bound on the energy error that is typically sharper,
but not guaranteed anymore.

Remark 2.15 (Alternative bound). From (2.53a), −b(w, λj,k,i
h ) can be decomposed as fol-

lows

−b(w, λj,k,i
h ) = −

(
λj,k,i

h , (u1 − s̃j,k,i
1h ) − (u2 − s̃j,k,i

2h )
)

≈ 1
2

 ∑
K∈Th

2
(
λj,k,i

h , uj,k,i
2h − uj,k,i

1h + s̃j,k,i
1h − s̃j,k,i

2h

)
K

 .
This will give us the following result

∣∣∣∣∣∣∣∣∣u − ũj,k,i
h

∣∣∣∣∣∣∣∣∣ ≲ ηj,k,i
alt :=

(ηosc + ηj,k,i
alg + ηj,k,i

nonc

)2
+
∑

K∈Th

2
(
λj,k,i

h , uj,k,i
2h − uj,k,i

1h + s̃j,k,i
1h − s̃j,k,i

2h

)
K


1
2

.

(2.76)

The corresponding effectivity indices are illustrated during the cumulated linearization
iterations in Figure 2.16. We indeed observe a general improvement at the effectivity
indices, though they become (importantly) below one at the initial iterations.
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Figure 2.16: [Adaptive inexact smoothing Newton-min method, Algorithm 7] Effectivity

indices using the alternative total estimator ηj,k,i
alt as a function of the cumulated Newton-

min iterations, at convergence of the algebraic solver (i = i).
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Abstract

We propose in this work an adaptive smoothing Newton method for a composi-

tional multiphase flow involving three phases (oil, gas, and water), with dynamic

appearance and disappearance of phases in porous media. The problem at hand is

expressed as a system of nonlinear evolutive partial differential equations coupled

with nonlinear complementarity constraints that handle the phase transitions [107].

We use the finite volume scheme as spatial discretization and the backward Euler

scheme for the time discretization. This yields a nonlinear non-differentiable alge-

braic system that can be approximately solved employing an iterative linearization

algorithm, namely, the semismooth Newton method. In the present work, we rather

employ the smoothing Newton method introduced in [21]. The approach relies on

smoothing the nonlinear non-differentiability in the complementarity constraints so

that the classical Newton method can be directly applied to the arising smooth

nonlinear discrete problem. We devise adaptive stopping criteria driven by a poste-

riori error estimates that identify the different sources of the error (smoothing and

linearization). This gives rise to an adaptive a-posteriori-steered algorithm. Nu-

merical experiments investigate the performance of the proposed method for various

cases of reservoir engineering problems.

1 Introduction

Modeling multiphase flow problems with phase transitions in porous media requires ap-
propriate formulations to determine the composition of the involved fluid phases. The
numerical approximation of such problems is of direct industrial applications in different
industries including oil reservoir simulation, carbon dioxide (CO2) capture and sequestra-
tion, nuclear waste underground storage and much more.

In this work, we consider an isothermal compositional model for a multiphase flow
(oil, water, and gas), with exchange between phases in a porous media. This problem
has been widely used in reservoir simulation industry, especially in the development of
enhanced oil recovery techniques, where a chemical species like CO2 is injected in the
petroleum reservoir in order to recover more of the hydrocarbons.

Many numerical methods have been proposed for the numerical solution of com-
positional multiphase models, such as the finite differences, finite elements, mixed fi-
nite elements, and discontinuous Galerkin methods, the reader may refer to the books
[46, 44, 87, 133] for a general overview. In this work, a conservative finite volume method
is used for the discretization in space, see, e.g., [96, 71], together with an implicit Euler
time discretization.

The governing equations for this type of model are strongly nonlinear partial differen-
tial equations supplemented by nonlinear algebraic equations that are extremely complex
to solve. The inherent difficulty lies in handling the phases transitions, i.e., the appearance
or/and disappearance of one of the phases. To cope with this physical phenomena, numer-
ous formulations have been developed over the last few decades. A notable approach is
the natural variables formulation introduced by Coats [51, 1] where the unknowns are the
pressure, saturation, and molar fraction of the phases. The presence of a phase is detected
through a flash calculation [147] that requires a local resolution of a nonlinear system of
equations of the size of all thermodynamic quantities. This represents the main short-
coming of this approach. A more recent unified formulation that incorporates essentially
the phase transitions into the flow model was presented by Lauser et al. in [107]. It uses
the phase pressures, saturations and component fugacities as main unknowns. The key
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idea of this class of methods relies on expressing the transition conditions as a set of local
inequality constraints. Then, based on a well-known reformulation of the complementar-
ity constraints by means of a complementarity function as a non-differentiable nonlinear
equation, a linearization solver like the semismooth Newton method can be applied for
the solution of the considered problem, [91, 25]. The numerical performance of the two
cited formulations is compared for a multiphase model in Ben Gharbia and Flauraud
[82], where an exact semismooth Newton solver is applied to solve the nonlinear system
resulting from the complementarity approach. Many other interesting developments in
the field of computational methods for multiphase flows can be found in [45, 42, 46, 144]
and the references therein.

With the aim of developing efficient algorithms that reduce the computational cost
of the numerical resolution and improve the approximation as efficiently as possible, par-
ticular interest has been given by researchers to a posteriori analysis for the multiphase
model. For several contributions on this subject we refer to [41, 143, 59, 60]. Recently in
[19], a posteriori error estimates are derived and incorporated through stopping criteria
in an adaptive semismooth Newton algorithm for a compositional two-phase liquid–gas
flow problem.

The novel aspect of this work centers around employing a practical smoothing New-
ton method, introduced in [21, 20], that consists in approximating the nonlinear comple-
mentarity constraints by a smooth (differentiable) equation involving a small smoothing
parameter µ. This allows the application of a Newton-like method for a solution of the re-
sulting smooth nonlinear equation, yielding at each time step 1 ≤ n ≤ Nt, each smoothing
iteration j ≥ 1, and each linearization step k ≥ 1 a linear system

A
n,j,k−1
µjn X n,j,k = Bn,j,k−1

µjn ,

where X n,j,k ∈ RN , N > 0, is the vector of unknowns, An,j,k−1
µjn ∈ RN,N a matrix, and

Bn,j,k−1
µjn ∈ RN a vector. Following [21], we derive a computable upper bound on the

considered system’s residual in the form

∥∥∥R(X n,j,k)
∥∥∥ ≤ ηn,j,k

sm + ηn,j,k
lin ,

allowing to identify the smoothing and linearization error components through a poste-
riori estimators. With these relevant informations, we develop optimal stopping criteria
that are incorporated in an adaptive algorithm steering the linearization and smoothing
iterations.

The chapter is structured as follows. In Section 2, we introduce the model problem that
we will be studying. In Section 2.5, we detail the handling of phase transitions by means
of a complementarity function. In Section 3, we first briefly present the discretization
in time and space of the model. Then, we show that the inequality constraints can be
approximated by a smooth equation and present the numerical resolution of the resulting
smooth nonlinear discrete system by a smoothing Newton method. Section 4 is then
devoted to state a posteriori error estimate in order to propose in Section 5 an adaptive
algorithm featuring adaptive stopping criteria. Next, the performance of the presented
procedure is evaluated in Section 6 through numerical experiments carried out on two and
three-dimensional synthetic cases of reservoir simulation. Finally, we give some concluding
remarks in Section 7.
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2 Multiphase compositional model

This section is devoted to present the setting with which we will be working, and to
introduce the model problem as well as its governing equations.

2.1 Setting

We consider here a compositional flow that involves three phases: water (w), gas (g), and
oil (o), through a porous medium reservoir represented by Ω ⊂ Rd, d ∈ {2, 3}, over the
time interval (0, tF), where tF > 0 is the simulation time. For the sake of simplicity, we
tackle the case where the water phase is pure, i.e., composed only of H2O, and immiscible
with the other phases. We assume that the oil and gas phases are composed of a finite
number of components. We suppose that the domain Ω is an open bounded connected
polygon if d = 2, or a polyhedron if d = 3. We describe the model under the assumption
that the flow process is isothermal, i.e., with a fixed temperature T. Hence, the dependence
of the physical laws on the temperature is not taken into account in the subsequent
sections.

2.2 Model unknown and physical properties

Let P = {w, g, o} be the set of phases and C the set of components. For a given phase
p ∈ P, we denote by Cp ⊂ C the set of its components. Then, for p ∈ P, let Sp denote its
saturation, Pp its pressure, and for each component c ∈ Cp, Xp,c the molar fraction of the
component c in phase p. We denote by ρp the molar density of a phase p ∈ P. The capillary
pressure is defined as the pressure difference existing across the interface separating two
fluids. It mainly depends on the saturation of the phase with higher wettability. The
fugacity functions of the components of each phase are denoted by fp

c for all c ∈ Cp. Let P
be the reference pressure corresponding to the pressure of a given phase p whose capillary
pressure is zero. In this work, we employ the formulation introduced by Lauser et al. in
[107], in which the molar fractions (Xp,c)c∈C of the components in phase p ∈ P can be
computed from the fugacities (fc)c∈C and the reference pressure P . Let NC be the number
of components. The NC +4 unknowns of the model are the reference pressure P, the three
phase saturations (Sp)p∈P collected in the vector S, and the NC fugacities (fc)c∈C. The
porous medium is characterized by its porosity ϕ and its permeability. Let ξp

c denote the
fugacity coefficient of component c in the phase p ∈ {o, g}, computed using an equation
of state.

The molar fractions are defined as the solution (X̃p,c)c∈C of the nonlinear system

fc = ξp
cPX̃p,c, c ∈ C,

where (X̃p,c)c∈C are called extented molar fractions. If the phase p is present, these
quantities coincide with the molar fractions (Xp,c)c∈C . In the case where phase p is absent,
(X̃p,c)c∈C represent the molar fractions that are at thermodynamical equilibrium with the
ones of the present phase, and thus do not have a physical meaning.

2.3 Mass conservation

The partial differential equations that govern the isothermal compositional model are
derived by applying the total mass conservation law for the water component and for
each hydrocarbon component. In particular, the velocity vp of a phase p ∈ P is computed
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through Darcy’s law. The resulting system consists of NC + 1 equations and is expressed
as

∂t(ϕρwSw) + div(ρwvw) = qw, (3.1a)

∂t
(
ϕ(ρwSoX̃o,c + ρgSgX̃g,c)

)
+ div(ρoX̃o,cvo + ρgX̃g,cvg) = qc, ∀ c ∈ C, (3.1b)

where qw and qc are the molar flow rates of water and each component c ∈ C produced or
injected at the well, and are given by

qw = ρwQw,

qc = ρoX̃o,cQo + ρgX̃g,cQg, ∀ c ∈ C,
(3.2)

where Qp represents the flow rate of phase p, and depends on the nature of the associated
well. Specifically, Qp is positive for an injection well and negative for a production well.

2.4 Equilibrium equations

The distribution of each hydrocarbon component into the oil and gas phases (the water
phase being pure) is subject to the condition of thermodynamical equilibrium given by
the following relations

fc = fo,c = fg,c, ∀ c ∈ C. (3.3)

Condition (3.3) states that the fugacity of any component c ∈ C is the same in all
phases, i.e., fo,c and fg,c can be computed from the fugacity fc.

2.5 Complementarity constraints reformulation

We formulate here the complementarity constraints that describe the phase transitions.
The complementarity approach is based on the distinction of two different physical states
depending on the composition of the phases at a given spatial point. For each phase
p ∈ {g, o}, if the phase is present, its saturation Sp is strictly greater than zero and the
sum of its extended molar fractions X̃p,c is equal to one. If not, its saturation is equal to
zero and the sum of its extended molar fraction is less or equal than one. This yields the
following nonlinear complementarity conditions

Sp ≥ 0, 1 −
∑
c∈C

X̃p,c ≥ 0, Sp

(
1 −

∑
c∈C

X̃p,c

)
= 0, p ∈ {g, o}. (3.4)

2.6 Closure equation

So far, we have obtained NC +1 differential equations from (3.1) and two complementarity
relations from (3.4) for the NC + 4 unknowns. The additional algebraic equation we
consider results from the conservation of the volume, i.e., the fact that the porous medium
is saturated with fluids, and is given by∑

p∈P
Sp = 1.

The multiphase flow model with phase transitions is thus governed by the following
system of NC + 4 equations: for p ∈ P, find P, Sp, and (fc)c∈C such that
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∂t(ϕρwSw) + div(ρwvw) = qw, (3.5a)

∂t
(
ϕ(ρwSoX̃o,c + ρgSgX̃g,c)

)
+ div(ρoX̃o,cvo + ρgX̃g,cvg) = qc, ∀ c ∈ C, (3.5b)∑

p∈P
Sp = 1. (3.5c)

Sp ≥ 0, 1 −
∑
c∈C

X̃p,c ≥ 0, Sp
(
1 −

∑
c∈C

X̃p,c
)

= 0, (3.5d)

where qw and qc are given in (3.2).

Remark 3.1 (Flash calculation). In the natural variable formulation [51, 1], the phase
apparition is detected by a flash calculation. We underline that in the complementarity
approach detailed in Section 2.5, the flash calculation is avoided as the set of unknowns
and equations does not depend on the present phases. The saturation of each phase,
present or absent, is updated at each iteration allowing to directly deduce the context of
each cell.

Through the so-called complementarity function (C-function), see [73, 74], the non-
linear complementarity constraints expressed in (3.5d) as algebraic inequalities can be
equivalently rewritten as nonlinear non-differentiable algebraic equalities. We employ in
the present work the min C-function fmin : Rm → Rm, 0 < m < N, defined by(

fmin(x,y)
)

l
:=
(
min{x,y}

)
l

= (xl + yl)/2 − |xl − yl|/2 l = 1, . . . ,m. (3.6)

It should be emphasized that, in general, C-functions are not Fréchet differentiable ev-
erywhere. In particular, the min function is differentiable everywhere except at x = y.

3 Discretization and numerical resolution

Let us now turn to the discretization of problem (3.5) and describe how its solution is
numerically approximated by a smoothing Newton method.

3.1 Space-time meshes

For the time discretization, we consider the discrete times {tn}1≤n≤Nt such that t1 =
0, tNt = tF . Then we define the discrete time steps τn = tn − tn−1, and the time intervals
In = (tn−1, tn), ∀ 1 ≤ n ≤ Nt. As for the space discretization, we consider a finite volume
mesh Th of the domain Ω, given by a family of control volumes (cells) denoted by K. We
assume that Th is admissible in the sense of [69, Definition 9.1]. For the sake of brevity,
we shall not detail here the discretization of the equations outlined in Section 2 . We refer
the interested reader to [109].

3.2 Finite volume discretization

System (3.5) is discretized with the finite difference discretization in time using a backward
Euler scheme, and a cell-centered finite volume scheme with a two-point flux in space.
The mobility terms are given using an upwind approximation with respect to the sign of
the phase Darcy flux. Let m denotes the number of mesh elements and N := (NC + 4)m.
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Introducing an appropriate nonlinear function Hn
K : RNC+4 → RNC+2 and two functions

Fp,K and Gp,K , p ∈ {g, o}, defined as

Fp,K : RNC+4 −→ R and Gp,K : RNC+4 −→ R

X n
K 7−→ Sn

p,K , X n
K 7−→ 1 − X̃n

p,K ,
(3.7)

the finite volume scheme for the numerical approximation of the solution to problem
(3.5) written elementwise reads: for all 1 ≤ n ≤ Nt, find X n := (X n

K)K∈Th
∈ RN and

X n
K :=

[
PK , (Sp,K)p∈P , (fc,K)c∈C

]
∈ RNC+4 such that for all K ∈ Th

Hn
K(X n

K) = 0, (3.8a)

Fp,K(X n
K) ≥ 0, Gp,K(X n

K) ≥ 0, Fp,K(X n
K)Gp,K(X n

K) = 0, p ∈ {g, o}, (3.8b)

Line (3.8a) can be written globally as

Hn(X n) = 0, with Hn : RN → R(NC+2)m,

where Hn(X n) gives the discrete conservation and closure equations corresponding to
equations (3.5a), (3.5b), and (3.5c). We now introduce two functions Cn

p : RN → Rm, p ∈
{g, o}, defined as

Cn
p (X n) := fn

((
Fp,K(X n

K)
)

K∈Th
,
(
Gp,K(X n

K)
)

K∈Th

)
, (3.9)

where fn : Rm × Rm → Rm is any C-function and Fp,K(·), Gp,K(·) are given in (3.7).
This yields an equivalent reformulation of the complementarity constraints (3.5c) for all
K ∈ Th as an equality in the form Cn

p (X n) = 0. Consequently, introducing the function

Ψn : RN → R2m, such that Ψn(X n) :=
(
Cn

g (X n),Cn
o (X n)

)
, problem (3.8) can be

equivalently rewritten as a system of nonlinear algebraic equations: for 1 ≤ n ≤ Nt, find
X n ∈ RN such that

Hn(X n) = 0, (3.10a)

Ψn(X n) = 0. (3.10b)

We define the total residual vector of problem (3.10) by

R(V ) :=
[

−Hn(V )
−Ψn(V )

]
, ∀ V ∈ RN . (3.11)

3.3 Smoothing Newton method

We are now interested in solving system (3.10) with the smoothing Newton method in-
troduced in Chapter 1.

We approximate the C-function Cn
p in (3.9) by a smoothed C-function Cn

p,µ of class
C1 where µ > 0 is a small smoothing parameter. We refer to Chapter 1, Section 3.1 for
more details.

We denote hereafter by j ≥ 1 the index for the smoothing iterations. Let
{µjn}(1≤n≤Nt,j≥1) be a (decreasing) sequence of smoothing parameters. We define for
p ∈ {g, o} two functions

Cn
p,µjn : RN −→ Rm

X n,j 7−→ fn
µjn

((
Fp,K(X n,j

K )
)

K∈Th
,
(
Gp,K(X n,j

K )
)

K∈Th

)
,

(3.12)
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where fn
µjn is a smoothed C-function. We then introduce the function Ψn

µjn : RN → R2m,

such that Ψn
µjn (X n,j) :=

(
Cn

g,µjn (X n,j),Cn
o,µjn (X n,j)

)
. Therefore, the arising nonlinear

differentiable discrete system reads: Find X n,j ∈ RNC+4 at each time iteration n, 1 ≤
n ≤ Nt, and each smoothing iteration j ≥ 1, such that

Hn(X n,j) = 0, (3.13a)

Ψn
µjn (X n,j) = 0. (3.13b)

At each time step n, 1 ≤ n ≤ Nt, each smoothing step j ≥ 1, and each linearization step
k ≥ 1, fixing an initial vector X n,j,0 ∈ RN , an approximated solution X n,j,k ∈ RN of
problem (3.13) is obtained by solving the following linear problem written as

A
n,j,k−1
µjn X n,j,k = Bn,j,k−1

µjn , (3.14)

where the Jacobian matrix A
n,j,k−1
µjn ∈ RN,N and the right-hand side vector Bn,j,k−1

µjn ∈ RN

are defined by

A
n,j,k−1
µjn :=

[
JHn(X n,j,k−1)

JΨn
µjn

(X n,j,k−1)

]
, (3.15a)

Bn,j,k−1
µjn :=

[
JHn(X n,j,k−1)X n,j,k−1 − Hn(X n,j,k−1)

JΨn
µjn

(X n,j,k−1)X n,j,k−1 − Ψn
µjn (X n,j,k−1)

]
, (3.15b)

with JHn(X n,j,k−1) and JΨn
µjn

(X n,j,k−1) the Jacobian matrices of the function Hn and

the smoothed function Ψn
µjn , respectively, at the point X n,j,k−1 obtained by a Newton

linearization.

4 A posteriori error estimate

In the same spirit of Chapter 1, we decompose the total residual vector (3.11)

R(X n,j,k) =
[

−Hn(X n,j,k)
−Ψn(X n,j,k) ± Ψn

µjn (X n,j,k)

]

=
[

0
Ψn

µjn (X n,j,k) − Ψn(X n,j,k)

]
︸ ︷︷ ︸

smoothing

+
[

−Hn(X n,j,k)
−Ψn

µjn (X n,j,k)

]
︸ ︷︷ ︸

linearization

.

By the triangle inequality we get the following guaranteed upper bound∣∣∣∣∣∣R(X n,j,k)
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣Ψn
µjn (X n,j,k) − Ψn(X n,j,k)

∣∣∣∣∣∣︸ ︷︷ ︸
smoothing estimator

+
(∣∣∣∣∣∣Hn(X n,j,k)

∣∣∣∣∣∣2 +
∣∣∣∣∣∣Ψn

µjn (X n,j,k)
∣∣∣∣∣∣2) 1

2

︸ ︷︷ ︸
linearization estimator

.

The smoothing estimator is related to the smoothed reformulation of the complementarity
constraints, whereas the linearization estimator measures the error in the linearization of
the nonlinear smoothed system (3.13).

Theorem 3.2. Let X n,j,k ∈ RNC+4 satisfy (3.14). Then we have∣∣∣∣∣∣R(X n,j,k)
∣∣∣∣∣∣ ≤ ηn,j,k := ηn,j,k

sm + ηn,j,k
lin ,

with ηn,j,k the total estimator.
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5 Adaptive smoothing Newton algorithm

Let ε > 0 be the desired relative tolerance, αlin ∈ ]0, 1] be the desired relative size of
the linearization error, and α ∈ ]0, 1[ the smoothing decrease parameter. We formulate
the following stopping criteria for stopping the linearization and smoothing iterations,
respectively

ηn,j,k
lin < αlinη

n,j,k
sm , (3.16a)

ηn,j,k
sm < ε, (3.16b)

Criterion (3.16a) stops the Newton iterations when the linearization estimator is dom-
inated by the smoothing error. As for the smoothing steps, usually they are stopped
when the smoothing estimator becomes sufficiently small with respect to the discretiza-
tion estimator as in [20]. From a practical viewpoint, as this work does not involve yet an
estimator reflecting the discretization error, we will stop the smoothing steps when ηn,j,k

sm
drops below a threshold ε having the same usual order of magnitude of the discretization
error.

The adaptive smoothing Newton algorithm based on these stopping criteria reads as
follows:
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Algorithm 8: Adaptive smoothing Newton algorithm

Initialization: Fix ε > 0, α ∈ ]0, 1[, and αlin ∈ ]0, 1]. Set n := 1 and tn := 0.
Choose X n,0 ∈ RN .

Time loop

1. Fix µjn > 0 and set j := 1.

2. Smoothing loop

2.1 Set X n,j,0 := X n,0 and k := 1.
2.2 Newton linearization loop

2.2.1 From X n,j,k−1 define A
n,j,k−1
µjn ∈ RN,N and Bn,j,k−1

µjn ∈ RN given by (3.15).

2.2.2 Find X n,j,k solution to the linear system

A
n,j,k−1
µjn X n,j,k = Bn,j,k−1

µjn .

2.2.3 Compute the estimators and check the stopping criterion for the
nonlinear solver

ηn,j,k
lin < αlinη

n,j,k
sm .

If satisfied, set k := k and stop. If not, set k := k + 1 and go to 2.2.1.

2.3 Check the stopping criterion for the smoothing iterations in the form:

ηn,j,k
sm < ε.

If satisfied, set j := j and stop. If not, set j := j + 1, X n,j,0 := X n,j−1,k,
and µjn := αµ(j−1)n . Then set k := 1 and go to 2.2.1.

If n = Nt, stop. If not, set n := n+ 1, j = 1, X n,j,0 := X n−1,j , and
tn := τn + tn−1. Then set µjn = µjn−1 , k = 1, and go to 2.2.1.

6 Numerical experiments

In this section, we illustrate the numerical results on a relatively realistic multiphase
compositional fluid flow model. We implement our approach in a code developed at
IFPEn in Fortran 90. Our purpose is to apply the proposed adaptive smoothing Newton
method on this model and to compare its performance with the semismooth Newton
method on three different test cases.

For the modeling of the relative permeabilities, the approach of Brooks and Corey
is used [39]. The other physical properties of oil and gas such as the fugacities and the
densities are computed with cubic equations of state of Peng and Robinson [117]. The
Lohrenz-Bray-Clark model [108] is used for the computation of the viscosities. The density
and viscosity of water are computed using data from [132]. For more details on the setting
and the parameters, we refer to [82].

Remark 3.3 (Preelimination). In order to save computational time, we reduce the size of
system (3.10) by applying a preelimination strategy. Based on the fact that the closure
equation (3.5c) can be solved locally, since it does not depend on the unknowns values in
the neighboring cells, we decompose the elementwise saturation unknown vector SK into
two primary unknowns Sw,K and Sg,K and one remaining secondary unknown So,K . Note
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that this splitting is done locally in each cell depending on the set of present phases. As
a result, we obtain a system of NC + 3 equations per cell. Fore more details, we refer the
reader to [82, Section 5.1].

Remark 3.4 (Handling of time steps). In practice, the solution at each time step serves as
intialization to the smoothing solver at the following time step. We control the evolution
of the time steps based on the variation between the solutions of two consecutive time
steps. More precisely, if a small variation is detected, we fix a bigger time step for the
next iteration i.e., ∆tn+1 = β∆tn, β > 1. Otherwise, a slightly smaller time step is set to
avoid the divergence of the method, i.e., ∆tn+1 = β∆tn, 0 < β ≤ 1.

Remark 3.5 (Restarted time steps). During the simulation, if an error occurs in the
execution of the Newton method, the time step is slightly reduced, the time is reinitialized
(t = t− ∆t), and the time step is restarted (n = n− 1).

6.1 Two-dimensional domain

We consider here a two-dimensional domain that has a size of 100m in both horizontal
and vertical directions.

CO2 injection in a three-component system

Setting. As a first test case, we consider a CO2 injection in a homogeneous porous
medium Ω which is initially fully saturated by oil and contains no CO2. Its porosity
is equal to 0.3 and its permeability is set to 500 mD. The domain is discretized using
a 20 × 20 regular grid blocks. The injection well is located at the left lower corner of
the domain, whereas the production well is at the right upper corner. This problem
involves three phases: gas, oil, and water. The oil and gas phases are a mixture of three
components, C1, C6, and CO2, and the oil is initially composed by 20% of C1, and 80%
of C6 with no CO2. The gas, composed only of CO2, is injected with a constant rate of
80 m3/day and the pressure at the producer is taken equal to 55 bar. The initial water
saturation is given by Sw = Swi = 0.25, Swi being the irreducible water saturation, and
the oil saturation is equal to 1 - Swi. The initial time step is 0.05 day, the minimum and
maximum time step are 10−5 day and 20 days, respectively, and the total simulation time
is 30 days. The temperature is assumed to be constant at 80°C and the initial pressure
is equal to 55 bar.

The simulation is performed using the semismooth Newton method and the proposed
adaptive smoothing Newton method of Algorithm 8 as detailed next.

We solve the nonlinear system (3.10) using first the traditional semismooth Newton
method with the min function (2.19), in which the linearization iterations are stopped at
each time step n when the norm of the total residual vector R(X n,j,k) given by (3.11)
drops below 10−6. To satisfy this stopping criterion, the nonlinear solver require 30 time
steps, with no restarted time steps, and a total of 130 cumulated Newton iterations.

We then test the adaptive smoothing Newton method of Algorithm 8 where the func-
tion fn

µjn in (3.12) is the smoothed min function (2.24). The parameters are set as

µ1 = 10−2, α = 0.1, αlin = 1, and ε = 10−3. To reach the end of the simulation, 30
times steps, 31 cumulated smoothing iterations, 109 cumulated Newton iterations and 0
restarted time steps are needed. We are interested in comparing an important quantity
in an industrial context, that is the cumulated rate of oil and gas production. Figure 3.1
shows the evolution with time of the cumulative oil production, left, and cumulative gas
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production, right, in the setting of test case 6.1. It can be noticed that the the curves are
slightly different. Table 3.1 compares the numerical results in terms of number of time
steps, number of cumulated Newton iterations and number of restarted time steps. We
observe that the adaptive smoothing Newton method reduces the performed number of
Newton iterations without requiring to restart any time step.
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Figure 3.1: [Adaptive smoothing Newton method, smoothed min function (2.24), Algo-
rithm 8, test case 6.1] Cumulative production of oil (left) and of gas (right) employing
the semismooth Newton-min method and the adaptive smoothing Newton method after
30 days.

Method Time steps Cumulated Newton iterations Restarts

Semismooth Newton 30 130 0

Adaptive smoothing Newton 30 109 0

Table 3.1: [Semismooth Newton method and adaptive smoothing Newton method,
smoothed min function (2.24), Algorithm 8, test case 6.1] Results employing the semis-
mooth Newton method and the adaptive smoothing Newton method.

CO2 injection in a seven-component system

The model’s properties are the same as in the first test 6.1. The total simulation time is
set here to 115 days.

To achieve the classical stopping criterion, the semismooth Newton-min method re-
quires 59 times steps, 247 cumulated Newton iterations, and no restarted time steps. Our
adaptive method requires 59 time steps without restarts, 60 cumulated smoothing iter-
ations, and 191 cumulated Newton iterations. Figure 3.2 indicates that the results are
similar with regard to the evolution of the oil and gas saturation during time for the two
employed methods. Table 3.2 shows an important reduction in term of the number of
cumulated Newton iterations using the adaptive smoothing strategy in comparison with
the resolution with the semismooth Newton method. Moreover, Figure 3.3 illustrates the
cumulative oil production, left, and gas production, right, during the simulation for test
case 6.1. One can see that the accuracy of the oil and gas production is not affected
whether we employ the semismooth Newton or the adaptive smoothing Newton method.
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Figure 3.2: Oil saturation (top) and gas saturation (bottom) after 115 days employing
the adaptive smoothing Newton method, smoothed min function (2.24), Algorithm 8, left,
and the semismooth Newton-min method, right.

Method Time steps Cumulated Newton iterations Restarts

Semismooth Newton 59 247 0

Adaptive smoothing Newton 59 192 0

Table 3.2: [Semismooth Newton method and adaptive smoothing Newton method,
smoothed min function (2.24), Algorithm 8, test case 6.1] Results employing the semis-
mooth Newton method and the adaptive smoothing Newton method.
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Figure 3.3: [Adaptive smoothing Newton method, smoothed min function (2.24), Algo-
rithm 8, test case 6.1] Cumulative production of oil (left) and of gas (right) employing
the semismooth Newton-min method and the adaptive smoothing Newton method after
115 days.

6.2 Three-dimensional domain

CO2 injection in a seven-component system

We consider as a third test case a challenging three-dimensional problem with up to three
phases, (gas, oil, water), and seven different components (C1N2, C23, CO2, C46, C712,
C1319, and C+

20). The other model’s properties are the same as in the first test in Section
6.1. The CO2 is injected in a reservoir represented by a three-dimensional domain initially
saturated with oil. The reservoir size is 100m in both x and y-direction and 20m in z-
direction and is discretized using a 20 × 20 × 4 grid blocks. The fluid is initially composed
of 38.8209% of C1N2, 14.5821% of C23, 2.2685% of CO2, 11.9334% of C46, 19.4598% of
C712, 8.7079% of C1319, and 4.2274% of C+

20. The initial pressure and temperature are
respectively 200 bar and 132.77°C (above the bubble point). The total simulation time is
60 days. The CO2 is injected with a fixed rate of 300 m3/day and the production pressure
is 150 bar (below the bubble point).

Employing the semismooth Newton-min method, 39 time steps and a total of 180
Newton iterations are needed to meet the classical stopping criterion based on the norm
of the total residual vector. On the other hand, the adaptive smoothing approach requires
39 time steps, 40 cumulated smoothing iterations, and a total of 135 Newton iterations
to reach the end of the simulation. The results are summarized in Table 3.3.

Method Time steps Cumulated Newton iterations Restarts

Semismooth Newton 39 180 0

Adaptive smoothing Newton 39 135 0

Table 3.3: [Semismooth Newton method and adaptive smoothing Newton method,
smoothed min function (2.24), Algorithm 8, test case 6.2] Results employing the semis-
mooth Newton method and the adaptive smoothing Newton method.



7. Conclusions and outlook 99

0 10 20 30 40 50 60

0

2

4

6

·104

Time [days]

C
u
m
u
la
ti
ve

o
il
p
ro
d
u
ct
io
n

Semismooth Newton

Adaptive smoothing Newton

0 10 20 30 40 50 60

0

0.5

1

·104

Time [days]

C
u
m
u
la
ti
ve

g
a
s
p
ro
d
u
ct
io
n

Semismooth Newton

Adaptive smoothing Newton

Figure 3.4: [Adaptive smoothing Newton method, smoothed min function (2.24), Algo-
rithm 8, test case 6.2] Cumulative production of oil (left) and of gas (right) employing
the semismooth Newton-min method and the adaptive smoothing Newton method after
60 days.

In addition to the reduction in terms of number of linearization iterations, the efficiency
of the adaptive approach can be appreciated in Figure 3.4 presenting the oil and gas
cumulative production curves for test case 6.2. One does not see a remarkable difference
in the production rate between obtained with the two applied methods which proves the
efficiency of our approach.

7 Conclusions and outlook

The purpose of this work was to apply the adaptive smoothing Newton method developed
in [21] to an industrial problem. We considered a compositional multiphase flow problem
with exchange between phases in porous media. The construction of efficient stopping cri-
teria based on a posteriori error estimators led to an adaptive algorithm. Numerical tests
investigated the performance of the proposed strategy and showed that it can make the
overall implementation less expensive for several two-dimensional and three-dimensional
test cases.

Future work would be devoted to conceive an estimator reflecting the discretization
error and to consider inexact methods to address the numerical solution of the linear
algebraic systems using an iterative algebraic solver. An adaptive stopping criterion
based on an a posteriori algebraic estimator will allow to adaptively steer the linear
solver iterations and ensure an important gain in terms of number of iterations.



Conclusions and perspectives

We considered in this thesis nonlinear partial differential equations with complementarity
constraints. The numerical discretization of such problems yields a nonlinear algebraic
system with non-differentiable inequalities that can be solved employing any iterative
linearization scheme like the semismooth Newton method or the interior-points method.
Our work was motivated by the need to develop an inexact smoothing Newton approach
based on a smooth reformulation of the complementarity constraints combined with an
adaptive strategy driven by a posteriori error estimates in order to adaptively steer the
smoothing and stop the different solvers. We summarize in the sequel the key results of
this thesis.

We were first interested in Chapter 1, in a general finite-dimensional framework, in
the discrete problem arising from the numerical discretization of such models, which
is typically composed of nonlinear algebraic systems with complementarity constraints.
More precisely, we provided a fully computable upper bound on the norm of the
total residual vector of the discrete system, and split it into three terms that identify
all sources of error resulting from the numerical simulation, namely, the smoothing,
linearization, and algebraic errors. We further desgined an adaptive algorithm featuring
a posteriori-based stopping criteria in which only the nonlinear and linear solvers are
adaptively stopped. We have also considered a recently developed non-parametric
interior-point method and have enriched it with the adaptivity feature. The performance
of the proposed algorithm was tested on the contact problem between two membranes
and a two-phase flow problem with phase transition. Numerical tests validated the
effectiveness of the adaptive smoothing technique, especially in cutting the number of
linearization and algebraic steps. In particular, several methods were fairly compared.
Our approach appeared to be less expensive numerically than the classical semismooth
Newton method even when combined with a path-following strategy. Moreover, the
combination of the adaptive technique to the existing nonparametric interior-point
method did not lead to a remarkable improvement in terms of number of iterations.

In Chapter 2, in an infinite-dimensional framework, we extended the adaptive
smoothing approach presented in Chapter 1 to the continuous (variational) level consid-
ering in particular the contact problem between two elastic membranes in the form of a
variational inequality. The discretization was achieved with the finite volume method.
Based on equilibrated flux reconstructions, we carried out a posteriori analysis and
conceived a posteriori estimators that deliver a global upper bound on the error between
the exact solution and the postprocessed numerical approximation. The developed
estimators also have the practical advantage of identifying the discretization, smoothing,
linearization, and algebraic error components. In comparison with 1, taking into account
the discretization error allowed to formulate an additional criterion to adaptively steer
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the smoothing iterations. A posteriori error estimate for the actions was additionally
conducted. The efficiency of the resulting adaptive method was appreciated in all
the performed numerical experiments. Several tests have indeed shown the optimal
algorithmic cost of the adaptive algorithm expressed as the overall number of linearization
and algebraic steps as well as the unaffected accuracy of the obtained numerical solution.

Chapter 3 was dedicated to the application of the adaptive smoothing Newton method
developed in 1 to a compositional multiphase flow industrial model with complementarity
constraints handling the phase transitions.

The discretization of the considered problem yields a system of nonlinear algebraic
equations with complementarity constraints. With the same methodology of Chapter
1, at the discrete level, we also designed an adaptive smoothing Newton algorithm in
which the stopping criteria for the nonlinear solver and the smoothing loop are based
on a posteriori estimators. Numerical experiments on two and three-dimensional test
cases supported the developed algorithm that appeared less costly in comparison with
the semismooth Newton method.

Perspectives. In this thesis, we proposed a smoothing method involving a smoothing
parameter that should be progressively driven to zero. We have opted for a simple and
heuristic way of reducing this parameter. Unfortunately, we have not developed a unified
technique that gives optimal results with all problems. Thus, it would be advantageous to
look for developing an adaptive update strategy that monitors the sequence of smoothing
parameters. It would also be convenient to try finding a way to adaptively choose the
initial smoothing parameter.

An additional reflection is the following. As the application of the adaptive inexact
interior-point method in Chapter 1 gave promising results, it would be interesting to
employ it in the context of Chapter 2 and analyze its behavior to see if it brings advantages
over the adaptive inexact smoothing Newton method.

In this regard, it is important to emphasize that interior-point methods are very
sensitive to the choice of a starting point. For simple test cases like the contact problem,
it is easy to start with a good initial interior-point. For the compositional flow model, the
starting point, that is the solution at the previous time step, is always on the boundary
of the interior region because of thermodynamic equilibrium. To go back inside this
region, several perturbation techniques of the current state were tried in [145] but turned
out to significantly influence the behaviour of the method. Thus, we still need to find an
efficient warm start-strategy for choosing a good starting point.

In Chapter 3 we tackled a time-dependent compositional multiphase flow problem.
The continuity of Chapter 3 would be to consider an iterative algebraic solver to approx-
imate the solution of the obtained smooth linear algebraic system, yielding an error that
can be expressed by an algebraic a posteriori estimator as in Chapters 1 and 2. Based
on the experimental results of the first two chapters, we expect to ensure also here a
significant gain of algebraic iterations when terminating the algebraic solver according to
an adaptive criterion.

Moreover, it would be of great importance to carry out H1-conforming potential re-
constructions and H(div)-conforming equilibrated flux reconstructions as in Chapter 2,
giving the possibility to conceive an additional estimator reflecting the discretization er-
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ror. A better steering of the smoothing iterations could then be ensured through the
stopping criterion (3.16b).

Furthermore, to optimize the numerical resolution, it is practically desirable to adap-
tively update the time steps, which requires a temporal a posteriori estimator evaluating
the error related to the time discretization. Additionally, as the estimators can be evalu-
ated locally on each element, and at any resolution step, they could be used as indicators
in order to adaptively refine the space meshes. Thus, it will be interesting to consider in
future work an entirely adaptive algorithm balancing the time and space error components
via adaptive time step choice and adaptive mesh refinement as in [59, 60]
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versité de Sherbrooke, Canada, HAL Preprint 02306526, submitted for publication,
2019, https://hal.archives-ouvertes.fr/hal-02306526.

[65] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inex-
act Newton method, vol. 17, 1996, pp. 16–32, https://doi.org/10.1137/0917003.
Special issue on iterative methods in numerical linear algebra (Breckenridge, CO,
1994).

[66] A. Ern and J.-L. Guermond, Theory and practice of finite elements, vol. 159 of
Applied Mathematical Sciences, Springer-Verlag, New York, 2004, https://doi.
org/10.1007/978-1-4757-4355-5.
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