
HAL Id: tel-03943603
https://hal.science/tel-03943603

Submitted on 17 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph Matching, Matroid Intersection, and Beyond
Chien-Chung Huang

To cite this version:
Chien-Chung Huang. Graph Matching, Matroid Intersection, and Beyond. Computer Science [cs].
ENS Ulm, 2019. �tel-03943603�

https://hal.science/tel-03943603
https://hal.archives-ouvertes.fr

Graph Matching, Matroid Intersection, and Beyond

Chien-Chung Huang

cchuang@di.ens.fr

The present document consists of the following four components.

1. Introduction and summary of the dissertation (Chapter 1).

2. Five representative papers (Chapters 2-6).

1

Contents

1 Introduction 4

1.1 History . 5

1.2 After matching and matroid intersection . 5

1.3 Contribution of the author . 6

1.3.1 New algorithms for maximum weight matching (SODA 2012, MOR 2017) . 6

1.3.2 Exact and approximation algorithms for maximum weight matroid intersec-

tion (SODA 2016, MP accepted) . 8

1.3.3 Fair matching (FSTTCS 2012, Algorithmica 2016) 9

1.3.4 Maximising a monotone submodular function with a knapsack constraint

under the streaming model (APPROX 2017) 10

1.3.5 Mixed popular matchings (SODA 2017) . 12

2 New Algorithms for Maximum Weight Matching and a Decomposition Theorem 15

2.1 Introduction . 15

2.2 Maximum Weight Matching in General Graphs . 18

2.2.1 The Algorithm . 23

2.2.2 Consequences of the above algorithm: a decomposition theorem 29

2.3 Maximum Weight Bipartite Capacitated b-matching 31

2.4 Conclusions and Open Problems . 37

3 Exact and Approximation Algorithms for Weighted Matroid Intersection 38

3.1 Introduction . 39

3.1.1 Our Contribution . 39

3.1.2 Our Technique . 42

3.1.3 Application: rank-maximal matroid intersection 42

3.1.4 Outline . 43

3.2 Preliminaries . 43

3.2.1 Matroids . 43

3.2.2 Matroid Intersection . 44

3.3 Exact Algorithm . 45

3.3.1 Analysis . 46

3.4 Approximation Algorithm . 48

2

3.4.1 Analysis . 50

3.5 Implementation of Unweighted Matroid Intersection 54

3.5.1 General Matroids . 54

3.5.2 Graphic Matroids . 55

3.5.3 Linear Matroids . 56

3.6 Rank-Maximal Matroid Intersection . 58

3.6.1 Implementation of Rank-Maximal Matroid Intersection 61

3.7 Relation to Other Algorithms . 62

4 Fair Matchings and Related Problems 64

4.1 Introduction . 64

4.1.1 Background . 66

4.2 Our Combinatorial Technique for fair matchings 67

4.2.1 Solving the dual problem . 68

4.2.2 Our main algorithm . 72

4.2.3 Two-sided rank-maximality . 74

4.3 The fair b-matching problem: our scaling technique 74

5 Streaming Algorithms for Maximizing Monotone Submodular Functions under

a Knapsack Constraint 81

5.1 Introduction . 81

5.2 Single-Pass (1/3− ε)-Approximation Algorithm . 84

5.2.1 Thresholding Algorithm with Approximate Optimal Value 84

5.2.2 Dynamic Updates . 86

5.3 Improved Single-Pass Algorithm for Small-Size Items 87

5.3.1 Branching Framework with Approximate Optimal Value 87

5.3.2 Algorithms with Guessing Large Items . 90

5.4 Single-Pass (4/11− ε)-Approximation Algorithm 93

5.4.1 Bicriteria Approximation for a Knapsack Constraint 94

5.5 Multiple-Pass Streaming Algorithm . 96

5.5.1 Dealing with Large Items with Single Pass 96

5.5.2 Multiple-Pass (2/5− ε)-Approximation Algorithm 101

6 Popularity, Mixed Matchings, and Self-duality 105

6.1 Introduction . 106

6.1.1 Our Techniques . 109

6.2 The extended popular fractional matching polytope P ′
G 111

6.3 Integrality of PG in a special case . 114

6.4 Half-integrality of PG in the general bipartite graph 121

6.5 Half-integrality of PG in a roommates instance . 123

6.6 Hardness of max-utility popular matching in roommates instances 125

3

Chapter 1

Introduction

Given a graph G = (V,E), a subset of edges M ⊆ E is matching if no two edges in M share a com-

mon endpoint. Graph matching problems can be generally described as finding a matching that

satisfies some condition, such as optimality with respect to some objective function, stability [70],

popularity [74], or fairness [91]. The most common goal is to ask for a maximum weight matching,

where we assume that edges are assigned weights and the weight of a matching is the sum of the

weights of its edges. Without a doubt, graph matching is one of the most fundamental combi-

natorial optimisations problems. Some remarkable applications include: shortest paths [117], the

Chinese postman problem [114], planar max cut [82], and the travelling salesman problem [25]. Due

to applications in online auctions, the importance of matchings has become even more prominent

in recent years

A matroid M is a pair (E, I), where E is the ground set and I is a family of subsets of E.

Furthermore, the following conditions are satisfied. (1) ∅ ∈ I; (2) if I ⊆ J and J ∈ I, then I ∈ I;
(3) given I, J ∈ I, and |J |> |I|, then there exists an element e ∈ J\I so that I ∪{e} ∈ I. The sets
in I are called independent sets. Given two matroids, M1 = (E, I1) and M2 = (E, I2), a matroid

intersection problem asks for a common independent set I ∈ I1 ∩I2 that satisfies some condition.

As in the case of matching, the most common objective is to ask for maximum weight common

independent set, where the elements in E are assigned weights. Matroids, along with matroid

intersection, find numerous applications in combinatorial optimisation, the most well-known being

bipartite matching, packing of spanning trees, and finding arborescences in a directed graph [158].

Other applications exist in electric circuit theory [133, 146], rigidity theory [146], and network

coding [34].

Besides giving applications in a large number of areas, matching and matroid intersection

play a central role in theory, especially in algorithmic design, polyhedral combinatorics, linear

programming, and graph theory. In a certain sense, the boundary of P is to a large extent

delineated by these problems: those problems that can be solved in polynomial time are often

generalisations of these two, or share similar structures.

4

1.1 History

When talking about the matching and matroids, the name of Jack Edmonds is unavoidable. He

not only solved weighted matching and weighted matroid intersection problems, but also pioneered

an entire field. First consider the problem of maximum cardinality matching (i.e., when all weights

are uniform). Berge [12] showed that a matching M is of maximum cardinality if and only if there

is no augmenting path.1 Therefore to find a maximum cardinality matching, it suffices to repeat

augmenting the matching O(|V |) times. Finding an augmenting path in a bipartite graph is easy to

do in polynomial time; however, in a general graph, finding such a path is highly non-trivial. It was

Edmonds in 1965 who solved this problem [42], by proposing his famous “blossom” algorithm. It

is noteworthy that in this article, he formally introduced the notion of polynomial time algorithms

and in a sense anticipated the class of NP-complete problems. In the same year [41], he solved the

maximum weight matching problem. An important consequence of his primal-dual algorithm is a

linear description of the convex hull of all matchings, namely, the matching polytope. Remarkably,

the integrality of his matching polytope does not follow from standard total-unimodularity and is

generally regarded as a breakthrough in polyhedral combinatorics.2

Matroids were first introduced by Whitney [?] (and much less well-known, independently by

Nakasawa [?]). They capture many common structures across different branches of mathematics

(algebra, geometry, and graph theory). Their importance in algorithm design is demonstrated by

Edmonds [43, 44, 45]: he showed how a greedy algorithm can be used to find an optimal independent

set, proved a mini-max theorem on matroid intersection, gave an efficient algorithm to compute a

maximum weight common independent set, and showed that the intersection of the independent

set polytopes of two matroids gives exactly the convex hull of the common independent sets. The

fact that one can use two matroids to capture a large class of problems and use his algorithm to

solve them is really outstanding; the frontier of P is impressively pushed back by him.

1.2 After matching and matroid intersection

We now discuss some more developments after matching and matroid intersection problems were

resolved by Edmonds. These developments relate to problems that we have investigated or have

the plan of studying in the future.

It is known that both graph matching (in a general graph) and matroid intersection are different

generalisations of the bipartite graph matching. Since they are both solvable in polynomial time, it

is natural to ask for a common generalisation of graph matching and matroid intersection. Such a

generalisation is formulated by Lawler [119], as the matroid parity problem,3 where, given disjoint

pairs of elements, one finds the largest set of pairs whose union is an independent set in the matroid.

Such a problem is known to be unsolvable using a polynomial number of oracle calls (the oracle can

answer the query whether a certain set is independent in the matroid or not) [101?]. Remarkably,

1Indeed Petersen [143] made such an observation as early as in 1891.
2After Edmonds, there are also non-constructive proofs showing his linear system describes the matching poly-

tope, see for example [8, 11].
3Other common generalisations are also proposed, namely, the matchoid [?] and the matroid matching [?]. It

turns out that all three formulations are equivalent.

5

for the special case of a linear matroid, Lovász [?] gave a polynomial time algorithm and also gave

a mini-max formula. Several well-known applications of his algorithm include finding a maximum

size forest in a 3-uniform hyper-graph [?], finding the minimum vertex feedback set when the

given graph has degree at most 3 [168], and finding the maximum number of disjoint S-paths [?].

For long years, the complexity of weighted linear matroid parity problem (when the paired

elements are given weights) has remained unsolved. An exciting new result was achieved by Iwata

and Kobayashi [?], who gave a polynomial time algorithm for this problem.

Another subject related to matroids is that of submodular functions. Such a function captures

the property of “diminishing marginal return” and can be regarded as a discrete version of a

convex function. The rank function of a matroid is submodular and in fact many problems in

combinatorial optimisation are just special cases of maximising/minimising a submodular function

(with or without additional constraints). Some well-known examples include (directed) max-cut,

k-coverage, and matroid intersection [158]. Due to its generality in theory and wide application

(the maximisation problem sees many applications in machine learning in recent days, examples

including document summarisation, sensor placement, and image collection summarisation [1]; the

minimisation problem sees applications in discrete optimisation, game theory, queueing theory and

information theory [129]), submodular function optimisation received a large amount of attention

in the last two decades; notably, Iwata, Fleischer and Fujishige [?] and Schrijver [156] have

received Fulkerson prize in 2003 for their strongly polynomial time algorithms for minimising a

submodular function.

1.3 Contribution of the author

The author works on both exact and approximation algorithms. His main research interests include:

stable matching, algorithmic game theory, machine scheduling, and more generally, combinatorial

optimisation. His interest on the main topics of this proposal, namely matching, matroid, and

submodular function, was developed gradually over the years after the completion of his Ph.D in

2008. In the following subsections, five papers representing his contribution on these topics are

summarised.

1.3.1 New algorithms for maximum weight matching (SODA 2012, MOR

2017)

Designing faster algorithms to solve the maximum weight matching problem is one of the most

studied subjects in the area of algorithm design. Let n = |V |, m = |E|, and assume that integral

edge weight function w : E → {1, 2, · · · ,W} is given. We summarise the current fastest algorithms.

1. Gabow’s algorithm [61], which takes O(n(m+ n log n)) time.

2. Duan, Pettie, and Su’s algorithm [37], which takes O(m
√
n log nW) time.

3. Huang and Kavitha’s algorithm, which takes O(Wnω) or O(W
√
nm logn

n2

m) time, where

ω ≈ 2.37 is the exponent of the matrix multiplication time.

6

Thus, when W is large, say in the order of Ω(npolylogn), Gabow’s strongly polynomial time

algorithm is the choice; when W is not overly small, Duan, Pettie, and Su’s algorithm is the best.

Our pseudo-polynomial time algorithm is superior to the previous two when the graph is dense

enough and W is really small (say in the order of o(log n).)

Before explaining our approach, let us summarise the previous techniques. The most common

approach to solving the maximum weight matching problem is the primal-dual schema—often

called the Hungarian method [115] for the special case of bipartite graphs. For general graphs,

this approach was initiated by Edmonds [41] and various later algorithms, can be regarded as

refinements of Edmonds’ algorithm. The idea is to build up feasible primal and dual solutions

simultaneously and show that in the end, both solutions satisfy complementary slackness conditions

and hence by the linear programming duality theorem, the primal solution is a maximum weight

matching. A second approach, which can be regarded as the “primal approach,” is to maintain a

feasible matching and augment it successively to increase its weight until no further augmentation

is possible. The work of Cunningham and Marsh [30] (and also Derigs [33]) can be regarded as

representative of this approach.

A third approach, though still primal-dual in nature, can be called “weight-decomposition.”

It was originally proposed by Kao et al. [102] for the special case of bipartite graphs. Roughly

speaking, they show that the problem can be reduced to solving a sequence of W maximum

cardinality matchings in subgraphs of the original graph. Their algorithm can be described as

follows: in the i-th iteration, only edges of weights higher than W − i are considered and, in

particular, only edges whose weight minus the vertex potentials (i.e., the dual solution) equals

one are retained. Then a maximum cardinality matching is computed in the subgraph and this

matching is subsequently used to update the vertex potentials. The final matching and the vertex

potentials can be shown to satisfy the complementary slackness conditions. It should be emphasised

why this approach leads to some computational efficiency: the unweighted maximum cardinality

algorithm is slightly more efficient than its weighted counter-part. Therefore, when W is small

enough, this approach leads to faster algorithms. Indeed, it can be imagined that in the future,

if there is further improvement on the maximum cardinality algorithm, our algorithm for the

weighted problem becomes faster as well.

In [90], we showed that the same approach can be generalised to the case of non-bipartite

graphs. The main challenge lies in handling the blossoms and the more complicated dual program.

A by-product of our algorithm is a new proof showing that the matching polytope is totally dual

integral. More generally, we prove the following decomposition theorem.

In a graph G = (V,E) with edge weights in {1, . . . ,W}, we show that the maximum weight of a

matching is exactly
∑W

i=1|Mi|, where for each i ∈ {1, . . . ,W}, Mi is a maximum weight matching

in the subgraph Gi of G with edge set E′
i = {e ∈ E : w(e) ≥ W − (i− 1)} and the weight function

wi : E′
i → {1, . . . , i} defined as wi(e) = w(e) − (W − i). In particular, we show the following

equation:

|Mi|=
∑
u∈V

yiu +
∑
B∈Ω

ziB

(|B|−1

2

)
−
∑
u∈V

yi−1
u −

∑
B∈Ω

zi−1
B

(|B|−1

2

)
,

where ⟨yiu, ziB⟩(u∈V,B∈Ω) is an integral optimal solution to the dual program for the maximum

7

weight matching program in the graph Gi (note that y0u and z0B are just 0 for all u ∈ V and

B ∈ Ω). Since the graph GW = G, the above equation yields the decomposition theorem.

In the journal version of the paper, we also consider the maximum weight bipartite capacitated

b-matching problem. Let G = (A ∪ B,E) be a bipartite graph with weight function w : E →
{1, · · · ,W}. Note that G need not be simple, i.e., multi-edges are allowed. Additionally, there is

a quota b : A ∪ B → Z>0 on the vertices and a capacity c : E → Z>0 on the edges. A function

M :E → Z≥0 is a feasible solution if (1) M(e) ≤ c(e) for every e ∈ E and (2)
∑

e∈δ(v) M(e) ≤ b(v)

for every v ∈ A∪B. The goal is to find a feasible solution M so that
∑

e∈E w(e)M(e) is maximised.

We show that this problem can also be decomposed into W unweighted (and capacitated)

versions of the same problem. In particular, we can solve the problem in

1. O(Wnm) time, in the case of simple b-matching (where c ≡ 1);

2. O(W
√
βm) time, where β =

∑
v∈A∪B b(e);

3. O(W (n1m+ n3
1)), where n1 = min{|A|, |B|};

4. O(W (n1m+ n2
1

√
m));

5. O(W (n1m+ n2
1

√
logC)), where C = maxe∈E c(e);

6. O(Wn1m log(2 +
n2
1

m)).

As there are many parameters, it is difficult to give a detailed comparison of our algorithms to all

the fastest algorithms in the literature. But in general, unless the largest capacity C = maxe∈E c(e)

is really large, the recent algorithm of Lee and Sidford [122] is the fastest algorithm. Our algorithms

are faster than theirs when the graph is very unbalanced, i.e., when min{|A|, |B|} = o(n) and W

is O(polylog(m,C)).

1.3.2 Exact and approximation algorithms for maximum weight matroid

intersection (SODA 2016, MP accepted)

As discussed above, both weighted and unweighted matroid intersection problems were solved by

Edmonds. Recall that in the weighted version, an integral weight function w : E → {1, 2, · · ·W}
is defined over the ground set E of the two matroids M1 and M2. Since Edmonds, a sequence of

papers have proposed algorithms with faster running time and/or simpler analyses. It should be

mentioned that in the literature, the complexity of the algorithms is measured by the number of

oracle calls. For the unweighted case, the fastest algorithm was due to Cunningham [31], which

takes O(nr1.5) oracle calls, where n = |E| and r is the smaller rank of M1 and M2. For the

weighted case, various algorithms [14, 54, 69, 160] take O(nr2) calls or O(n2
√
r log rW) calls. Note

that the gap in the complexity between the unweighted and weighted version is more pronounced

than in the matching case. It is thus tempting to apply the same weight-decomposition technique

in the previous section.

Our paper [86] achieves exactly this. Here lies the challenge of this task: even though the

matroid intersection problem can be written as a linear program, its dual variables are harder to

8

reason with and to control, unlike the case of graph matching, where the dual variables can be

interpreted as “potential” on the vertices and the blossoms. The way we overcome this issue is

to adopt the “weight-splitting” approach of Frank [54]. He showed that the dual variables can

be replaced by a weight splitting w = w1 + w2 and the complementary slackness condition for

optimality can also be replaced by weight-optimality in w1 and w2.

A critical step of our algorithm is the following: on each round, after applying the unweighted

matroid intersection algorithm on a subset of elements in E, we update w1 and w2; more im-

portantly, two new matroids M ′
1 and M ′

2 are also defined based on the weights w1 and w2. The

newly defined matroids help to maintain the optimality condition in the subsequent rounds that

is satisfied in this round.

In summary, our approach gives rise to the following algorithms:

1. with two general matroids, an algorithm taking O(Wnr1.5) oracle calls;

2. with two linear matroids (given in the form of two r-by-n matrices), an algorithm taking

O(nr log r∗ +Wnrω−1
∗) time, where r∗ ≤ r is the maximum size of a common independent

set;

3. with two graphic matroids, an algorithm taking O(W
√
rn log r) time.

These algorithms are faster than previously known algorithms when W is relatively small. For

instance, given two general matroids, our algorithm is faster when W = o(min{√r, n log r
r }). Note

that after the technical report of our paper was published, Lee-Sidford-Wong [123] used a novel

cutting-plane method to develop a new algorithm taking only O(n2 log nW) calls. Our algorithm

remains faster when r = o(
√
n).

A recent trend in research is to design fast approximation algorithms for fundamental optimi-

sation problems even if they are in P. Examples include maximum weight matching [35], shortest

paths [166], and maximum flow [24, 108, 124, 159]. Using the algorithms of [21, 31, 68], our

decomposition technique delivers a (1− ε)-approximate solution,

1. when given two general matroids, using O(ε−1nr1.5 log r) oracle calls;

2. when given two linear matroids, using O(nr log r∗ + ε−1nrω−1
∗ log r∗) time;

3. when given two graphic matroids, using O(ε−1
√
rn log2 r) time.

Our approximation algorithms are significantly faster than most exact algorithms. Prior to our

results, there is only a simple greedy 1/2-approximation algorithm [100, 111]. We note that for

general matroids, after our paper was published, Chekuri and Quanrud [19] improved upon our

results: they obtain a (1 − ε)-approximate solution using O(nrε−2 log2 ε−1) oracle calls. For the

special case of linear and graphic matroid, our approximation algorithms remain the fastest.

1.3.3 Fair matching (FSTTCS 2012, Algorithmica 2016)

We consider a problem in the context of matching under preferences (the well-known stable match-

ing problem [70] falls into this category). Let G = (A∪B,E) be a bipartite graph, where each node

9

u ∈ A ∪B has a list ranking its neighbors in an order of preference (ties are allowed). Depending

on the applications, various optimality conditions can be imposed. We consider the problem of

fair matching, defined as follows.

A matching M is fair if M has maximum cardinality, subject to this, M matches the

minimum number of vertices to rank r neighbors, and subject to that, M matches the

minimum number of vertices to rank (r− 1) neighbors, and so on, where r is the worst

rank used in the preference lists of vertices.

Fair matching can be solved in polynomial time by the following reduction: for an edge e with

incident ranks i and j, let w(e) = ni−1+nj−1. It is easy to see that a maximum cardinality matching

of minimum weight (under weight function w) is a fair matching in G. Such a matching can be

computed via the maximum weight matching algorithm by resetting e’s weight to 4nr−ni−1−nj−1,

where r is the largest rank used in any preference list. However, this approach can be expensive even

if we use the fastest maximum-weight bipartite matching algorithms [39, 56, 63, 138]. The running

time will be O(rmn) or Õ(r2m
√
n). Note that these complexities follow from the customary

assumption that an arithmetic operation takes O(r) time on weights of the order nr.

We introduce a combinatorial algorithm to solve the problem of fair matching. This algorithm

takes Õ(r∗m
√
n) or Õ(r∗nω) time, where r∗ is the largest rank used in a fair matching, thus

significantly faster than the aforementioned brute-force reduction to weighted matching. Our

algorithm is similar in spirit to the weight-decomposition approach in the previous two papers: in

each round, a subset of edges are considered and a maximum weight matching, under the additional

constraint that certain vertices need to be matched, is computed. Such a matching is then used

to define the dual variables, which in turn determine the set of edges used in the next round. In

particular, we show how to solve the following problem, which can be of independent interest in

other contexts, in polynomial time.

Generalized minimum weighted vertex cover problem. Let Gi = (A ∪ B,Ei) be a bi-

partite graph with edge weights given by wi : Ei → {0, 1, . . . , c}. Let Ki−1 ⊆ A ∪ B

satisfy the property that there is a matching in G that matches all v ∈ Ki−1. Find a

cover {yiu}u∈A∪B so that
∑

u∈A∪B yiu is minimized subject to (1) for each e = (a, b) in

Ei, we have yia + yib ≥ wi(e), and (2) yiu ≥ 0 if u ̸∈ Ki−1.

1.3.4 Maximising a monotone submodular function with a knapsack

constraint under the streaming model (APPROX 2017)

Let f : 2E → R+ be a monotone non-negative submodular function. Recall that a function is

submodular if it satisfies the diminishing marginal returns property, i.e., for all subsets S ⊆ T ⊊ E

and e ∈ E \ T , we have

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T).

A function is monotone if f(S) ≤ f(T) for any S ⊆ T .

There can be various types of constraints which define the feasible sets of S. The simplest, and

probably the most well-known constraint is that of cardinality, namely, up to K elements in E are

10

allowed. This problem includes the k-coverage problem as a special case. By the well-known result

of Feige [49], one cannot hope to get an approximation ratio better than 1− 1
e + ε, for any ε > 0,

unless P=NP. A generalisation of the cardinality constraint would be the knapsack constraint.

In the latter, a size function c : E → N is given, and the goal is to maximise f(S), under the

restriction that
∑

e∈S c(e) ≤ K. For both cardinality and knapsack constraints, it is known that

one can achieve the approximation ratio of 1− 1
e using a greedy algorithm [52, 164], matching the

lower bound.

An interesting question is to consider the same problem in the single-pass streaming model.

In this model, elements arrive one by one but our storage space is much smaller than the total

input. An element, if discarded, due to the space limitation, is lost forever. A generalisation of

this model is that of multiple passes. The storage space is still small compared to the total input

size, but one is allowed to scan through the data a (usually very small) number of times. Observe

that this setting (single pass or multiple passes) renders most of the techniques in the traditional

setting useless, as they typically require random access to the input data.

The main result of this paper is:

1. a single-pass streaming algorithm with approximation ratio 4/11 − ε ≈ 0.363 − ε, using

O(K · poly(ε−1)polylog(K)) space.

2. a multiple-pass streaming algorithm with approximation ratio 2/5 − ε = 0.4 − ε, using

O(K · poly(ε−1)polylog(K)) space.

We now summarise the technique. First consider the single-pass model. A straightforward

greedy algorithm, where the incoming item is taken only if marginal ratio—defined as its marginal

value divided by its size—passes the threshold, if there is still space. But this gives only 1
3 − ε

approximation. The difficulty in improving further is the following situation: A new arriving item

that is relatively large in size passes the marginal-ratio threshold and is part of OPT, but its

addition would cause the size of the current set to exceed the capacity K. In this case, we are

forced to throw it away, but in doing so, we are unable to bound the approximation ratio of the

current set against that of OPT properly.

We propose a branching procedure to overcome this issue. Roughly speaking, when the size of

the current set exceeds a certain size (depending on the parameters), we create a secondary set.

We add an item to the secondary set only if it passes the marginal-ratio threshold with respect

to the original set, but its addition to the original set would violate the size constraint. In the

end, whichever set achieves the higher value is returned. In a way, the secondary set serves as a

“back-up” with enough space in case the original set does not have it, and this allows us to bound

the ratio properly. Such a branching technique leads to a (4/11− ε)-approximation.

The main bottleneck of the above single-pass algorithm lies in the situation where there is

a large item in OPT whose size exceeds K/2. To overcome this case, we develop a (2/3 − ε)-

approximation algorithm for constraint of a partition matroid of rank 2. Indeed, our technique is

more general and can be of independent interest; so let us describe it briefly.

Let Er ⊆ E be a subset of the ground set E (called “red items”). Consider the problem defined

below:

11

maximize f(S) subject to c(S) ≤ K, |S ∩ ER|≤ 1. (1.1)

We show that, given ε ∈ (0, 1], an approximation v to f(OPT) with v ≤ f(OPT) ≤ (1 + ε)v,

and an approximation θ of f(or) for the unique item or in OPT ∩ Er, we can choose O(1) of the

red items so that one of them e ∈ Er satisfies that f(OPT− or + e) ≥ (Γ(θ)−O(ε))v, where Γ is

a piecewise linear function lower-bounded by 2/3.

Our multiple pass algorithm uses this technique by treating the large item as the red items. A

pass is used to choose a good red item and in the next pass a modified version of our single-pass

algorithm is used to further collect smaller items.

1.3.5 Mixed popular matchings (SODA 2017)

We consider a problem of matching under preferences. Let G = (A ∪ B,E) be a bipartite graph

where A is called the set of men, B is called the set of women, and every vertex u ∈ A ∪ B has a

preference list ranking its neighbors in a strict order of preference. Such a graph G is also referred

to as an instance of the stable marriage problem [70] with strict and possibly incomplete preference

lists. Our interest here, however, is not the stability of a matching. It is rather the popularity, a

notion introduced by Gärdenfors [74]. A vertex u ∈ A ∪ B prefers matching M to matching M ′

if u is matched in M and unmatched in M ′ or it is matched in both and M(u) ranks higher than

M ′(u) in u’s preference list. For any two matchings M and M ′ in G, let ϕ(M,M ′) be the number

of vertices that prefer M to M ′. We say M is more popular than M ′ if ϕ(M,M ′) > ϕ(M ′,M).

Definition 1.3.1. A matching M is popular if ϕ(M,M ′) ≥ ϕ(M ′,M) for every matching M ′ in

G, i.e., ∆(M,M ′) ≥ 0 where ∆(M,M ′) = ϕ(M,M ′)− ϕ(M ′,M).

By this definition, a popular matching is a sort of “global stable” matching. Popular matching

has a strange history, much less glamorous, compared with its counterpart, the stable matching.

After Gärdenfors’ paper, the notion of popular matching seemed almost forgotten by the world.

Its revive was thanks to a paper in SODA 2005 [3], where a polynomial algorithm is given for

deciding the existence of a popular matching when only one side has preferences and can vote

(e.g., agents and houses). After this paper, a plethora of papers have been published on various

aspects of popular matching, for both one-sided and two-sided preferences, in theoretical computer

science. Some notable results include: a polynomial time algorithm for computing a maximum

cardinality popular matching [103] with the two-sided preferences (i.e., an instance of the stable

marriage problem); the existence of “mixed popular matching” (definition below) for both one-

sided or two-sided preferences [105]. We remark that at present, it is unknown whether there is a

polynomial time algorithm to compute a maximum utility (weight) popular matching (except for

the case all utilities are uniform—which is just maximum cardinality popular matching).

We now explain what a mixed popular matching is. A mixed matching is a probability dis-

tribution over matchings, i.e., a mixed matching Π = {(M0, p0), . . . , (Mk, pk)}, where M0, . . . ,Mk

are matchings in G and
∑k

i=0 pi = 1, pi ≥ 0 for all i, and the utility of Π is
∑k

i=0 pi · w(Mi).

12

The function ϕ(M,M ′) defined earlier easily extends to ϕ(Π,M ′) as follows: ϕ(Π,M ′) =∑k
i=0 pi · ϕ(Mi,M

′), where Π = {(M0, p0), . . . , (Mk, pk)}. The definition of ϕ(M ′,Π)) is analo-

gous.

Definition 1.3.2. A mixed matching Π is popular if ϕ(Π,M ′) ≥ ϕ(M ′,Π) for all matchings M ′

in G, i.e., ∆(Π,M ′) ≥ 0, where ∆(Π,M ′) = ϕ(Π,M ′)− ϕ(M ′,Π).

Suppose Λ = {(N0, q0), · · · , (Nh, qh)} is another mixed matching. Let

∆(Π,Λ) =
∑k

i=1

∑h
j=1 piqj∆(Mi, Nj). Then it follows easily from the above definitions that if Π

is popular then ∆(Π,Λ) ≥ 0 for all mixed matchings Λ in G. Thus a popular mixed matching

“beats” all integral and mixed matchings. We remark that it is not true that a mixed popular

matching is a convex combination of integral popular matchings.

Mixed matchings are closely related to fractional matchings. A fractional matching x⃗ in G is a

point in Rm
≥0 that satisfies

∑
e∈δ(v) xe ≤ 1, for every vertex v, where δ(v) is the set of edges incident

on vertex v. In a bipartite graph, a mixed matching is equivalent to a fractional matching (Birkhoff-

von Neumann theorem). The polytope PG ⊆ Rm of all popular mixed matchings in G = (A∪B,E)

involves exponentially many constraints. However a compact extended formulation of this polytope

was given in [105]. Thus a max-utility popular mixed matching can be computed in polynomial

time.

However a potential drawback of generalizing from matchings to mixed matchings is that the

optimal solution has become more complex to describe and more difficult to implement. A mixed

matching can be interpreted as either a lottery over matchings or a time-sharing arrangement when

the mixed matching is viewed as a fractional matching [150]: in the former case, we need access

to several random bits to implement a lottery and the latter case involves sub-dividing jobs and

assigning several fractional jobs to an applicant. Thus we may need to deal with an unstructured

optimal solution. Our main result is the following.

Theorem 1.3.3. Given an instance G = (A ∪ B,E) with strict preference lists and a utility

function w : E → Q, G always has a max-utility popular mixed matching Π = {(M0,
1
2), (M1,

1
2)}

and Π can be computed in polynomial time. Moreover, if G admits a perfect stable matching, i.e.

a stable matching where no vertex is unmatched, then Π = {(M, 1)}, namely, Π is pure.

Thus our result implies that to achieve max-utility, we need just a single random bit to imple-

ment the lottery or we can find a time-sharing arrangement that is simple and organized—every

vertex has at most two partners and spends the same amount of time with each. Hence we can

find a max-utility popular mixed matching that is highly structured. This theorem also implies a

polynomial time algorithm for computing a max-utility popular half-integral matching.

We now explain our technique. What we proved is in fact stronger than Theorem 1.3.3. We

show that the polytope PG ⊆ Rm of all popular mixed matchings is half-integral. We started by

making an observation: the linear program describing the polytope of mixed popular matching,

originally introduced in [105] for the one-sided preference, is self-dual when the input problem is of

two-sided preferences. This essentially means that if we look at the dual program, after replacing

all variables by their negative counter-parts (thus a minimisation problem becomes a maximisation

13

problem), the new program will be identical to the original primal program.4 This self-duality is

useful in our proof: due to complementary slackness condition, assuming that x is mixed popular,

if xab > 0, then the inequality corresponding to man a and woman b must be tight.

Our proof borrows some ideas from Teo and Sethuraman [165], who introduced an interesting

technique to prove the integrality of the stable matching polytope: for each man a (woman b),

line up from 0 to 1 the ”boxes” whose widths corresponding to the fractional values xa,b′ by the

decreasing order of women b′ on his list (similarly for woman b, we line up boxes whose widths

corresponding to xa′,b by the increasing order of men a′ on her list). It can be shown that picking

any point in [0, 1], if we match the man a (woman b) to the woman b′ (resp. man a′) for which

xa,b′ (resp. xa′,b) touches this point, the outcome is a stable matching. This fact implies that a

fractional stable matching x is a convex combination of integral stable matchings.

We proved that such a technique can also be generalised to the context of popular matching.

A new ingredient in our proof is to use the “witness” of a popular matching (a set of |A ∪ B|
variables corresponding to the vertices, which serve as a succinct certificate) to help us establish

the popularity of an integral matching.

4This is the only example we are aware of where the linear program for a natural problem has this surprising
property.

14

Chapter 2

New Algorithms for Maximum

Weight Matching and a

Decomposition Theorem

This paper first appeared in SODA 2012 and its full version appears in Mathematics of Operations

Research 2017. It is joint-work with Kavitha Telikepalli.

AbstractWe revisit the classical maximum weight matching problem in general graphs

with non-negative integral edge weights. We present an algorithm that operates by

decomposing the problem into W unweighted versions of the problem, where W is the

largest edge weight. Our algorithm has running time as good as the current fastest

algorithms for the maximum weight matching problem when W is small. One of the

highlights of our algorithm is that it also produces an integral optimal dual solution,

thus our algorithm also returns an integral certificate corresponding to the maximum

weight matching that was computed.

Our algorithm yields a new proof to the total dual integrality of Edmonds’ matching

polytope and it also gives rise to a decomposition theorem for the maximum weight of

a matching in terms of the maximum size of a matching in certain subgraphs. We also

consider the maximum weight capacitated b-matching problem in bipartite graphs with

non-negative integral edge weights and show that it can also be decomposed into W

unweighted versions of the problem, where W is the largest edge weight. Our second

algorithm is competitive with known algorithms when W is small.

2.1 Introduction

The input here is a graphG = (V,E) with edge weights given by the function w :E → {1, 2, · · · ,W}.
A matching M is a subset of E such that no two edges in M share an endpoint. The weight of a

matchingM is the sum of the weights of the edges inM . Our objective is to find a maximum weight

15

matching in G. We note that a maximum weight matching need not be a maximum cardinality

matching; a maximum weight matching has many applications. For instance, suppose V is a set

of players, E is the set of possible pairings of players, and the weight of each edge is the utility

of pairing its endpoints together. We seek a set of disjoint pairings so that the sum of utilities is

maximized, in other words, what we seek is a maximum weight matching in G.

A closely related problem is that of computing a maximum weight perfect matching, where

the goal is to find a perfect matching, and subject to that, one with the largest weight. Although

the maximum weight matching problem and the maximum weight perfect matching problem can

be reduced to each other in polynomial time, the two problems are different and an algorithm

designed for one problem may not achieve the same running time in the other problem. See [36]

for a more detailed discussion on this issue. The algorithms presented in this paper have running

time guarantees only for the maximum weight matching problem.

Matching problems lie at the core of graph theory, polyhedral combinatorics, and linear op-

timization. Due to their fundamental nature and vast application, in the past decades, intense

investigations have been made for the problem. Edmonds’ pioneering work back in the 60s espe-

cially highlights the intricate correlation between algorithm design and polyhedral characterization.

We refer the interested reader to [36, 157] for a history of the various matching algorithms and

their performance. For the polyhedral characterization aspect of matchings, see [26, 157].

The most common approach to solving the maximum weight matching problem is the primal-

dual schema—often called the Hungarian method [115] in the special case of bipartite graphs. For

general graphs, this approach was initiated by Edmonds [41] and various later algorithms, such as

[59], can be regarded as refinements of Edmonds’ algorithm. The idea is to build up feasible primal

and dual solutions simultaneously and show that in the end, both solutions satisfy complementary

slackness conditions and hence by the duality theorem, the primal solution is a maximum weight

matching. Another approach in dealing with the maximum weight matching problem is to maintain

a feasible matching and successively augment it to increase its weight, until no more augmentation

is possible. The work of Cunningham and Marsh [30] (and also Derigs [33]) can be regarded as

representative of this approach.

A different approach, though still primal-dual in nature, was proposed by Kao et al. [102]. In

the special case of bipartite graphs, they showed that the problem can be decomposed into W

maximum cardinality matchings. Using the fastest maximum cardinality matching algorithms as

a subroutine, their algorithm was faster than other algorithms when W is small. Their algorithm

can be roughly described as follows. In the i-th iteration, only edges of weights higher than W − i

are considered and in particular, only edges whose weight minus the vertex potentials (i.e., the

dual solution) equals one are retained. Then a maximum cardinality matching is computed in

the subgraph and this matching is subsequently used to update the vertex potentials. The final

matching and the vertex potentials can be shown to satisfy the complementary slackness conditions.

In a preliminary version of the paper [87], we showed that the same approach can be generalized

to the case of general graphs.1 The difficulty mostly lies in how to manipulate the “blossoms” of

1In Kao et al.[102], a decomposition theorem of the maximum weight matching in bipartite graphs is given and
their algorithm is then derived from it. However, in general graphs, the same theorem fails and the correctness of
our algorithm rather follows from the complementary slackness conditions. See Section 2.2.2 for details.

16

Edmonds’ algorithm and update the more complicated dual variables. Throughout the paper,

let n = |V | and m = |E|. We show that by using one of the fastest maximum cardinality

matchings as a subroutine [76, 132], we can solve the maximum weight matching problem in

O(W
√
nm logn(n

2/m)) time or in O(Wnω) time with high probability, where ω ≈ 2.3728 is the

exponent of matrix multiplication [71].

Table 2.1 below has the running times of the various fastest maximum weight matching algo-

rithms in general graphs. Subsequent to the preliminary version of this paper, Pettie [144] pointed

out that the earlier algorithm of Gabow [60] can be shown to achieve the same running time with

a much simpler proof; in fact, he showed that Gabow’s algorithm also can be regarded as decom-

posing the problem into W maximum cardinality matching problems. Compared to the previous

algorithms [38, 61, 65], Gabow’s algorithm [60] and our algorithm (without using the algebraic

algorithm [132] as a subroutine) are faster when W = o(log n), and if the graph is very dense,

i.e. m = Θ(n2), then the two latter algorithms are faster when W = o(log2 n). Compared to the

algebraic algorithm [32], Gabow’s algorithm and ours are always faster by a poly-log factor.

Table 2.1: A summary of the current fastest maximum weight matching algorithms in G = (V,E),
where |V |= n and |E|= m. The Õ notation of Cygan, Gabow and Sankowski’s algorithm hides
some factors of log nW .

Running Time Algorithm
O(n(m+ n log n)) Gabow [61]
O(m

√
n log n log nW), O(m

√
n log nW) Gabow and Tarjan [65], Duan, Pettie, and Su [38]

Õ(Wnω) Cygan, Gabow, and Sankowski [32]
O(Wnω), O(W

√
nm logn n

2/m) Gabow, Pettie [60, 144], this paper

In the present work, we give a new algorithm for solving the maximum weight matching problem

in general graphs. This algorithm is significantly different from our previous one and its proof

and presentation are much simpler. Additionally, our algorithm produces an integral optimal

dual solution. This in turn gives a new proof to the fact that the linear program proposed by

Edmonds to describe the matching polytope is totally dual integral. It is well-known that if a

matrix A is totally unimodular and b, c are integral vectors, then max{cTx : Ax ≤ b, x ≥ 0}
and min{yT b : yTA ≥ cT , y ≥ 0} are attained by integral vectors x and y whenever the optima

exist and are finite [155]. However total unimodularity is a very strong condition and in fact, the

integrality of vectors x and y holds even under the weaker condition that the system of inequalities

Ax ≤ b, x ≥ 0 is totally dual integral. Since TDI is a weaker sufficient condition for the polytopes

{Ax ≤ b, x ≥ 0} and {yTA ≥ cT , y ≥ 0} to be integral (where b and c are integral vectors), it is

interesting to know if a given system of inequalities is TDI.

Although the total dual integrality of the constraints describing Edmonds’ matching polytope

is well-known and there are several proofs for it [26, 30, 85], to the best of our knowledge, ours is

the fastest algorithm to compute an integral optimal dual solution when W is small. Note that

this dual solution is a witness or certificate to the optimality of our matching.

Our algorithm also gives rise to a decomposition theorem. In a graph G = (V,E) with edge

17

weights in {1, . . . ,W}, we show that the maximum weight of a matching is exactly
∑W

i=1|Mi|,
where for each i ∈ {1, . . . ,W}, Mi is a maximum weight matching in a subgraph Gi of G with the

edge set E′
i = {e ∈ E : w(e) ≥ W − (i− 1)} and the weight function wi : E

′
i → {1, . . . , i} defined

as wi(e) = w(e)− (W − i). In particular, we show the following equation:

|Mi|=
∑
u∈V

yiu +
∑
B∈Ω

ziB

(|B|−1

2

)
−
∑
u∈V

yi−1
u −

∑
B∈Ω

zi−1
B

(|B|−1

2

)
,

where ⟨yiu, ziB⟩(u∈V,B∈Ω) is an integral optimal solution to the dual program for the maximum

weight matching program in the graph Gi (note that y0u and z0B are just 0 for all u ∈ V and

B ∈ Ω). Since the graph GW = G, the above equation yields the decomposition theorem.

Maximum Weight Bipartite Capacitated b-matching.

Let G = (A ∪ B,E) be a bipartite graph with weight function w : E → {1, · · · ,W}. Note that G

need not be simple, i.e., multi-edges are allowed. Additionally, there is a quota b :A ∪ B → Z>0

on the vertices and a capacity c :E → Z>0 on the edges. A function M :E → Z≥0 is a feasible

solution if (1) M(e) ≤ c(e) for every e ∈ E and (2)
∑

e∈δ(v) M(e) ≤ b(v) for every v ∈ A∪B. The

goal is to find a feasible solution M so that
∑

e∈E w(e)M(e) is maximized.

We show that this problem can also be decomposed into W unweighted (and capacitated)

versions of the same problem. Using Orlin’s new maximum flow algorithm [137] as a subroutine,

we can solve the problem in O(Wnm) time; in the case of simple b-matching (where c ≡ 1), we

can use Gabow’s algorithm [61] to solve the problem in O(W
√
βm) time, where β =

∑
v∈A∪B b(e).

Moreover, in the case that the graph G is very “unbalanced”, i.e., the number of vertices on

one side is much larger than the number on the other side, then we can use the algorithms of

Ahuja et al. [5] as a subroutine, to solve the problem, in O(W (n1m+ n3
1)), O(W (n1m+ n2

1

√
m)),

O(W (n1m + n2
1

√
logC)), or O(Wn1m log(2 +

n2
1

m)) time, where n1 = min{|A|, |B|} and C =

maxe∈E c(e). See Table 2.2 for a summary of the fastest algorithms for this problem. As there are

many parameters, it is difficult to compare the running time of these algorithms without resorting

to case analysis. But in general, unless the largest capacity C = maxe∈E c(e) is really large, the

recent algorithm of Lee and Sidford [122] is the fastest one. Compared to theirs, our algorithms

are faster only when the graph is very unbalanced, i.e., when min{|A|, |B|} = o(n) and W is

O(poly-log(m,C)).

Our second algorithm differs from the first in that it does not seek to find the feasible dual

solution in each iteration. A final adjustment step is performed to show that the produced dual

solution and the primal matching satisfy complementary slackness conditions.

2.2 Maximum Weight Matching in General Graphs

In this section we present our algorithm for computing a maximum weight matching in G = (V,E)

with edge weights in {1, . . . ,W}. As mentioned in Section 2.1, our algorithm also computes an

integral optimal dual solution along with the optimal matching MW . We recall the linear program

describing the matching polytope and its dual program below. Let Ω be the set of all odd sized

18

Table 2.2: A summary of the current fastest maximum weight bipartite capacitated b-matching.
Here β =

∑
v∈A∪B b(e), B = maxv∈A∪B B(e), C = maxe∈E c(e), n1 = min(|A|, |B|), and

SP+(n,m,W) is the time needed to solve a shortest path problem in a digraph with n vertices, m
arcs, and nonnegative edge length function l and

∑
e∈E l(e) ≤ W . Furthermore, the Õ notation

of Gabow and Sankowski’s algorithm hides some factors of log βW ; the Õ notation of Lee and
Sidford’s algorithm hides some factors of logm.

Running Time Algorithm Note
O(n log β · SP+(n,m,W)) Lawler [119]
O(nm log n2/m log nW) Goldberg and Tarjan [77, 78]
O(m log n · SP+(n,m,W)) Orlin [135, 136]
O((

√
βm+ β log β) log nW) Gabow and Tarjan [63]

O((nm+ β log β) log nW) Gabow and Tarjan [63]
O(n1m+ n3

1 log n1W) Ahuja, Orlin, Stein, and Tarjan [5]

O(n1m log(2 +
n2
1

m) log n1W) Ahuja, Orlin, Stein, and Tarjan [5]

Õ(
√
nm · logO(1) C) Lee and Sidford [122]

Õ(Wβω) Gabow and Sankowski [62] only for simple graphs
O(Wnm) this paper
O(W

√
βm) this paper only for simple b-matching (c ≡ 1)

O(W (n1m+ n3
1)) this paper

O(W (n1m+ n2
1

√
m)) this paper

O(W (n1m+ n2
1

√
logC)) this paper

O(Wn1m log(2 +
n2
1

m)) this paper

subsets of V of size at least 3, also referred to as odd sets of vertices. For any set B ⊆ V , let E[B]

be the set of edges (x, y) both of whose endpoints x and y belong to B. For any vertex v, let E(v)

be the set of edges incident on v.

We first briefly review some classical concepts on which our algorithm is built: Edmonds’

blossom algorithm and Gallai-Edmonds decomposition. We highlight the main features of the

blossom algorithm. More details can be found in [127, 157]. In this and the next section, M(u)

refers to the vertex that is matched to u under the matching M .

Petersen [143] observed as early as in 1891 that a matching M is of maximum cardinality if and

only if there is no augmenting path with respect to M . It is not difficult to detect an augmenting

path with respect to a given matching in bipartite graphs. But finding such a path in general

graphs turns out to be more challenging. To overcome this difficulty, Edmonds introduced the idea

of opening/closing blossoms.

Definition 2.2.1. Let G = (V,E) be the original graph. Let G(V1) be a shrunken graph of G,

defined as follows.

(i) V1 ⊂ V ∪ Ω, i.e., each vertex v ∈ V is either in V1 or it belongs to an odd set in V1 ∩ Ω,

(ii) Edges in G(V1) are induced by V1. More precisely, (a, b) is an edge in G(V1) if and only if

there exists an edge (u, v) ∈ E so that (1) u = a or u ∈ a (where a ∈ V1 ∩ Ω), and (2) v = b

or v ∈ b (where b ∈ V1 ∩ Ω).

19

max
∑
e∈E

wexe∑
e∈E(v)

xe ≤ 1 ∀v ∈ V

∑
e∈E[B]

xe ≤
|B|−1

2
∀B ∈ Ω

xe ≥ 0 ∀e ∈ E.

min
∑
v∈V

yv +
∑
B∈Ω

zB
|B|−1

2

yu + yv +
∑

B:e∈E[B]

zB ≥ we ∀e = (u, v) ∈ E

yv ≥ 0 ∀v ∈ V

zB ≥ 0 ∀B ∈ Ω

Suppose G(V1) is a shrunken graph of G and M1 is a matching in it. A set of vertices B =

(a0, a1, . . . , a2t) is a blossom if (1) there exists a circuit traversing the vertices in B,

i.e., (ai, a(i+1) mod 2t+1
) ∈ E1 for 0 ≤ i ≤ 2t, and (2) M(a2i−1) = a2i, for 1 ≤ i ≤ t. The first

vertex a0 is called the base of the blossom B. (Note that a0 can be matched to some vertex in

V1 \B, or it can be left unmatched.)

Closing a blossom. Suppose B = (a0, a1, . . . , a2t) is a blossom. Then closing the blossom B

means we form a new shrunken graph G(V2), where V2 = (V1\{ai}2ti=0)∪{B}, and a new matching

M2 in G(V2) as follows:

M2(a) = M1(a) if a ̸∈ B ∪ {M1(a0)}; M2(B) = M1(a0).

Notice that once the blossom B is closed in G1(V1) to form a new shrunken graph G(V2), there

can be another blossom B′ in G(V2). It can happen that B in G(V2) (now a vertex in V2) forms

part of B′. In this case, B is said to be embedded in B′. A blossom not embedded in any other

blossom is an outermost blossom. (Note that by definition, an outermost blossom must be a vertex

in the last shrunken graph).

Definition 2.2.2. Opening a blossom. Let G(V1) be an shrunken graph of G derived from G

by a sequence of closing blossoms. Let M1 a matching in G(V1). Let B be an outermost blossom

in V1 and assume that B = (a0, a1, · · · , a2t), where ais are the nodes corresponding to B when B

is closed (note that ai can be a vertex or a blossom). Then opening the blossom B means that we

form a new shrunken graph G(V2), where V2 = (V1\{B})∪{ai}2ti=0 and create a new matching M2

in G(V2) as follows:

• M2(a) = M1(a) if a ̸∈ B ∪ {M1(B)}.

• If B is unmatched in M1, then a0 is unmatched in M2 as well and M2(a2i−1) = a2i,∀1 ≤
i ≤ t.

• If M1(B) = a′ ∈ V1, then choose ak ∈ B so that there is an edge in E connecting a vertex in

a′ and a vertex in ak; furthermore, let

M2(a(k+2i−1) mod (2t+1)) = a(k+2i) mod (2t+1), ∀1 ≤ i ≤ t; M2(ak) = a′.

We now describe how Edmonds’ blossom algorithm works. In each round, it seeks to find an

augmenting path by building a Hungarian forest. A Hungarian forest is a disjoint set of trees,

20

whose roots are unmatched nodes; every vertex in such a tree is connected to the root by an

alternating path using the edges in the tree. In the process of building the Hungarian forest, a

blossom may be detected. A detected blossom is then closed and the building of the Hungarian

forest restarts with respect to the updated graph. After the closing of blossoms, if an augmenting

path is found, then the matching is augmented along it. Furthermore, all blossoms are reopened

(thus restoring the graph completely) and this round is terminated.

In the last round of the blossom algorithm, no augmenting path will be detected even after

the closing of some blossoms. Let G̃ = (Ṽ , Ẽ) denote the final (updated) graph, M̃ the current

matching in it, and T̃ the final Hungarian forest that was constructed. Some of the vertices in G̃

can indeed be outermost blossoms. To avoid confusion, we refer to the vertices Ṽ in G̃ as nodes.

Note that M̃ is a maximum cardinality matching in G̃.

By Tutte-Berge formula [12, 167], it can be shown that if we reopen all blossoms, then we have a

maximum cardinality matching in the original graph. At the end of the blossom algorithm, we are

left with a Hungarian forest and a set of matched edges in M̃ (and the latter cannot be reached by

any alternative path starting from a unmatched node). Together they encode the Gallai-Edmonds

decomposition [42, 73]:

• in T̃ , we have a set of pairwise disjoint trees, whose roots are left unmatched in M̃ . Each tree

is composed of a set of alternating paths starting from the root. A node is odd (similarly,

even) if there is an alternating path of odd (resp., even) length starting from the root to this

node.

• we have also the remaining matched edges in M̃ (that are not part of T̃). The endpoint

nodes of these matched edges are unreachable.

Furthermore,

• All blossoms are (or are contained in) even nodes.

• There is no edge in the original graph between an even node and an even/unreachable node

in Ṽ (but notice that if an even node is a blossom, then G has some edges between its

members).

• No edge between an odd node and an odd/unreachable node is present in M .

For convenience of presentation, in the following, when we say the Hungarian forest and use

the notation T̃ , we mean both the disjoint trees and those remaining matched edges not included

in them.

We now show a simple proof that Edmonds’ algorithm produces a maximum cardinality match-

ing. Note that this proof is different from most found in the textbooks; it highlights the new

ingredient in our approach.

Proposition 2.2.3. Let T̃ be the Hungarian forest at the end of Edmonds’ blossom algorithm,

with the node set Ṽ ⊂ V ∪ Ω and M̃ the corresponding matching. Then the matching M obtained

by opening all blossoms in Ṽ is a maximum cardinality matching in G.

21

Proof. We show the optimality of M by constructing a dual solution ⟨yu, zB⟩(u∈V,B∈Ω) such that

this dual solution and M together satisfy complementary slackness conditions. For each vertex v,

the value yv is defined as follows:

• if v is an odd node in T̃ , then yv = 1;

• if v is an even node in T̃ or is contained in an even node, then yv = 0;

• let U ⊆ V be the set of remaining vertices – these are the unreachable vertices in T̃ . Choose

any one of them u∗ ∈ U ; set yu∗ = 1 and yu = 0 for the remaining vertices in u ∈ U \ {u∗}.

For each odd set B ∈ Ω, the value zB is defined as follows:

• if B ∈ Ω is an outermost blossom in G̃, then zB = 1.

• if |U \ {u∗}|≥ 2, then set zU\{u∗} = 1; for the remaining odd sets B ∈ Ω, let zB = 0.

We now verify that ⟨yu, zB⟩(u∈V,B∈Ω) is a dual feasible solution in the original graph G: the

non-negativity conditions obviously hold. We need to check that all edges are properly covered.

• Edges incident on an odd vertex v are clearly covered since yv = 1.

• It follows from Gallai-Edmonds decomposition that there is no edge between an even node

and an even/unreachable node. If an edge e = (u, v) has both endpoints in the same even

node B in T̃ , then zB = 1.

• If an edge e = (u, v) is incident on an unreachable node u, then the other endpoint v is either

an odd or an unreachable node. In the former case, yv = 1; in the latter case, either v = u∗

(then yu∗ = 1) or e ∈ E[U \ {u∗}] (then zU\{u∗} = 1).

We now show that M and the above dual solution ⟨yu, zB⟩(u∈V,B∈Ω) satisfy complementary slack-

ness conditions:

• all vertices v ∈ V with yv > 0 are actually matched in M .

• all odd sets B with zB > 0 have exactly (|B|−1)/2 edges of E[B] matched in M ; this also

includes the odd set B = U \ {u∗}.

• every edge in M is between an odd node and an even node, or between 2 unreachable nodes,

or within a blossom; thus all edges e = (u, v) ∈ M are tight, i.e., yu+yv+
∑

B:e∈E[B] zB = 1.

Hence by complementary slackness, ⟨yu, zB⟩(u∈V,B∈Ω) is dual optimal and M is primal optimal,

i.e., M is a maximum cardinality matching in G.

A more well-known optimal dual (e.g., see [26, Exercise 5.30]) is the following: all dual variables

remain the same as defined in the proof above except for the following two changes: (1) all

unreachable nodes v ∈ U have yu = 1/2, and (2) the odd set U \ {u∗} has zU\{u∗} = 0. In fact,

this dual was used by the earlier version of our algorithm and also by the algorithm of Gabow. We

choose not to use it because the final dual solution will only be half-integral here.

22

Observe that we use the variable zU\{u∗} to cover all edges in E[U \ {u∗}]. Roughly speaking,

in our algorithm, we will regard the odd set U \{u∗} as a “pseudo-blossom”. This pseudo-blossom

is shrunk or contracted into a single node and gets matched to u∗ in M – we will show in the next

section that this contraction lasts for exactly one iteration: this pseudo-blossom will be reopened

during the next iteration. The details are described in the next section.

2.2.1 The Algorithm

Our algorithm runs for W iterations: in the i-th iteration, the algorithm computes a maximum

weight matching Mi in a graph Gi = (V,E′
i), where E

′
i = EW ∪· · ·∪EW+1−i and Et = {e|w(e) = t}

for W + 1 − i ≤ t ≤ W . The edge weights in Gi are given by the function wi :E
′
i → {1, . . . , i}

defined as wi(e) = w(e) − (W − i) for e ∈ E′
i. For simplicity of presentation, in case e ̸∈ E′

i, we

write wi(e) = 0.

The optimality of the matching Mi in Gi will be established via the dual variables yiu, for

each u ∈ V , and ziB , for each B ∈ Ω. In the i-th iteration we compute integral values for these

dual variables and ensure that the dual feasibility conditions ((2.1) and (2.5)) and complementary

slackness conditions ((2.2), (2.3), and (2.4)) are satisfied by these dual values and the matching

Mi. This will establish the optimality of Mi and these dual values in Gi.

We will ensure that conditions (2.1)-(2.5) hold for all i ∈ {1, . . . ,W} in our algorithm. In the

last iteration, i.e., when i = W , the set E′
W of edges in GW is the same as the original edge set

E and its weight function wW coincides with the original weight function w. This will guarantee

that MW is a maximum weight matching in the original graph G.

yiu + yiv +
∑

B: e∈E[B]

ziB ≥ wi(e) ∀edges e = (u, v) in E′
i (2.1)

yiu + yiv +
∑

B: e∈E[B]

ziB = wi(e) ∀edges e = (u, v) ∈ Mi (2.2)

yiu > 0 ⇒ u is matched in Mi ∀ u ∈ V (2.3)

ziB > 0 ⇒ |B|−1

2
edges of E[B] are in Mi ∀ B ∈ Ω (2.4)

yiu ≥ 0 and ziB ≥ 0 ∀ u ∈ V and B ∈ Ω. (2.5)

The graph Gi and its function wi are introduced mainly to facilitate the proof. In implemen-

tation, our algorithm does not work with Gi = (V,E′
i). The actual working graph is an unweighted

graph Hi = (Vi, Fi). The vertex set Vi ⊂ V ∪Ω is decided by the previous iterations; the edge set

Fi consists of edges e ∈ E′
i that satisfy wi(e)− yi−1

u − yi−1
v −∑B:e∈E(B) z

i−1
B = 1.

We now describe the i-th iteration: the graph is Hi = (Vi, Fi) and the starting matching is

M̃i−1 (inherited from the previous iteration) and it will be the case that M̃i−1 ⊆ Fi. Edmonds’

blossom algorithm is called to augment M̃i−1 into M̃i. Let Ṽi be the resulting node set after the

execution of Edmonds’ algorithm.2 Recall that Ṽi can be partitioned into Oi ∪̇ Ui ∪̇ Ei, where Oi

2Here in the description and also in Step 2(c) of the algorithm, we use Edmonds’ algorithm for ease of presentation.
In actual implementation, we can use any other maximum cardinality algorithm to find a maximum cardinality M̃i

23

is the set of odd nodes, Ui is the set of unreachable nodes, and Ei is the set of even nodes.

We then create a pseudo-blossom B∗
i to replace a subset of unreachable nodes, as discussed in

the previous section, and a unreachable node u∗
i not in the subset is chosen to be B∗

i ’s partner

in M̃i. (Note that the pseudo-blossom B∗
i is also closed as a regular blossom, i.e., the set of

unreachable nodes in B∗
i are now replaced by a single node B∗

i and its incident edges are induced

by the nodes contained in B∗
i and the nodes not in B∗

i .) We define the next round of dual variables

⟨yiu, ziB⟩(u∈V,B∈Ω) based on ⟨yi−1
u , zi−1

B ⟩(u∈V,B∈Ω) and the decomposition Oi ∪̇ Ui ∪̇ Ei.
We will guarantee that in the i-th iteration, in Hi, u

∗
i−1 has no other incident edge except

(u∗
i−1, B

∗
i−1) (see Inequality (2.7) in Lemma 2.2.4 and the discussion immediately before that

lemma). This guarantees that the edge (u∗
i−1, B

∗
i−1) is never part of an augmenting path and the

edge is never shrunk into other blossoms in the i-th iteration. Moreover, at the end of i-th iteration,

either both B∗
i−1 and u∗

i−1 belong to Ui or the former is in Oi while the latter is in Ei. In both

cases, we will reopen the pseudo-blossom B∗
i−1; thus there will be at most one pseudo-blossom at

the end of the i-th iteration. Note that opening a pseudo-blossom simply means to match the node

originally matched with u∗
i−1 and restore the other originally matched edges contained in B∗

i−1.

We now give the algorithm formally below. Recall that for any e ∈ E, wi(e) = w(e)− (W − i).

1. Initialization: y0v = 0 ∀v ∈ V ; z0B = 0 ∀B ∈ Ω; M̃0 = ∅; V1 = V .

2. For i = 1 to W do

(a) Let Hi = (Vi, Fi), where Fi = {e = (u, v) ∈ E′
i : wi(e)− yi−1

u − yi−1
v −∑B:e∈E[B] z

i−1
B =

1}.
(b) Let M̃i−1 be the initial matching in Hi.

(c) Call Edmonds’ blossom algorithm to augment M̃i−1 so as to find a maximum cardinality

matching M̃i in Hi.

(d) Let Ṽi be the resultant node set and let Ṽi = Oi ∪̇ Ui ∪̇ Ei, where Oi (similarly, Ui or Ei)
is the set of odd (resp., unreachable or even) nodes.

(e) If i = 1 then choose an arbitrary node u∗
1 ∈ U1. If |U1 \ {u∗

1}|≥ 2, then replace U1 \ {u∗
1}

by a pseudo-blossom B∗
1 and let (B∗

1 , u
∗
1) ∈ M̃1.

Else (i.e., i > 1) then choose an arbitrary node u∗
i ∈ Ui \ {B∗

i−1, u
∗
i−1}.

• if |Ui \ {B∗
i−1, u

∗
i−1, u

∗
i }|≥ 2, then replace this set by a pseudo-blossom B∗

i ; in case

|Ui \{B∗
i−1, u

∗
i−1, u

∗
i }|= 1 and Ui \{B∗

i−1, u
∗
i−1, u

∗
i } is a blossom B, then let B∗

i = B.

• let (B∗
i , u

∗
i) ∈ M̃i.

[we now update the dual values: if no explicit update happens for vertex u, then yiu =

yi−1
u ; similarly ziB = zi−1

B for any odd set B unless otherwise stated.]

(f) For each v ∈ V : if v ∈ Oi or v ∈ B where B ∈ Oi, then set yiv = yi−1
v + 1.

(g) For each outermost blossom or pseudo-blossom B ∈ Oi: set z
i
B = zi−1

B − 1.

in Hi, as long as M̃i is an augmentation of M̃i−1 (that is, a node matched in M̃i−1 must be matched in M̃i as well).
Then by building the Hungarian forest according to M̃i, we can shrink the blossoms and the resultant matching
and nodes sets will be M̃i and Ṽi.

24

(h) If u∗
i is a vertex v ∈ V , then yiv = yi−1

v + 1.

Else (u∗
i is a blossom B ∈ Ω) set yiv = yi−1

v + 1 for all v ∈ B and ziB = zi−1
B − 1.

(i) If B∗
i−1 ∈ Ui, then set yiv = yi−1

v + 1 for each v ∈ B∗
i−1 and set ziB∗

i−1
= zi−1

B∗
i−1

− 1.

(j) For each outermost blossom B ∈ Ei and for B = B∗
i : set z

i
B = zi−1

B + 1.

(k) If u∗
i−1 is a blossom and is in Ui, then set ziu∗

i−1
= zi−1

u∗
i−1

+ 1.

(l) Suppose that B ∈ Ω \ {u∗
i } is a pseudo-blossom or an outermost blossom. If ziB = 0,

then open the blossom B and recursively so any other blossom B′ in B with ziB′ = 0.

(m) Let Vi+1 be the current node set and let M̃i be the corresponding matching.

3. Return the matching MW by opening all blossoms in M̃W .

Step 2 is the heart of the above algorithm and this step essentially consists of 2 parts: steps (a)-

(e) compute the matching M̃i while Steps (f)-(k) set the dual values. The matching M̃i gets further

updated in step (l) by opening out all outermost blossoms whose z-value becomes 0 and now if there

are new “outermost” blossoms (these blossoms were earlier embedded but due to the outermost

blossom getting opened, these embedded ones become outermost) with z-value 0, these get opened

and so on. The last step defines the node set Vi+1 to be used in the next iteration.

The steps that update the dual values here are analogous to how dual values are set in Propo-

sition 2.2.3. Here we make yiu = yi−1
u + 1 for every vertex u in Oi and this includes vertices that

belong to blossoms in Oi. For outermost blossoms B in Oi, we decrease ziB by 1. The y-value for

vertices in Ei is unchanged and if B is an outermost blossom in Ei, then we increase ziB by 1.

The node u∗
i is treated as an odd node while B∗

i is treated as an even node. Thus we make

yiu = yi−1
u +1 for every vertex u in u∗

i and decrease the z-value of u∗
i by 1 (if u∗

i is a blossom) while

the y-value for vertices in B∗
i is unchanged and we increase the z-value of B∗

i by 1. To compensate

for this, in the (i + 1)-st iteration, u∗
i will get treated as an even node while B∗

i will get treated

as an odd node – this is seen here in steps (j) and (k) where the dual variable values for u∗
i−1 and

B∗
i−1 are updated: u∗

i−1 is treated as an even node while B∗
i−1 is treated as an odd node.

Note that after we shrink the pseudo-blossom B∗
i and match it to u∗

i , the dual variables are set

in such a way that in the next iteration, u∗
i has only one incident edge (u∗

i , B
∗
i) in Hi+1. This can

be seen by Inequality (2.7).

Lemma 2.2.4. For each 1 ≤ i ≤ W , conditions (2.1)-(2.5) stated earlier hold, where Mi is the

matching derived from M̃i by opening all blossoms; conditions (2.6) and (2.7) stated below hold as

well.

There is at most one pseudo-blossom B∗
i in Vi+1 and if such a B∗

i exists, then ziB∗
i
= 1. (2.6)

Given e = (u, v) ∈ E′
i, u = u∗

i (if u∗
i ∈ V) or u ∈ u∗

i (if u∗
i ∈ Ω), and v /∈ B∗

i ∪ u∗
i ,

then yiu + yiv +
∑

B:e∈E[B] z
i
B > wi(e). (2.7)

25

Proof. We show by induction on i that conditions (2.1)-(2.7) hold for all 1 ≤ i ≤ W . The base

case is i = 1. The matching M1 is the maximum cardinality matching obtained by running

Edmonds’ algorithm in the graph H1 and the setting of dual variables in the first iteration of our

algorithm corresponds exactly to the setting of dual variables in Proposition 2.2.3. Thus by the

same arguments as in the proof of Proposition 2.2.3, conditions (2.1)-(2.5) hold.

It is also easy to see that condition (2.6) holds as there is at most one pseudo-blossom B∗
1 ∈ U1

at the end of the first iteration. We now show condition (2.7). Since at the end of Edmonds’

algorithm, all blossoms are in even nodes, it follows that u∗
1 ∈ U1 is a vertex in V and we have

y1u∗
1
= 1. Let e = (u∗

1, v) ∈ E′
1 where v /∈ B∗

1 . Then v has to be in O1 (as there are no edges in

U1 × E1 in F1 and E′
1 = F1). Thus we have y1v = 1 and so y1u∗

1
+ y1v +

∑
B:e∈E[B] z

i
B ≥ 2 > w1(e)

since w1(e) = 1.

We now assume conditions (2.1)-(2.7) hold for i = k − 1 and show that conditions (2.1)-(2.7)

corresponding to i = k hold as well.

Condition (2.1). We know by conditions (2.1) and (2.5) for i = k − 1 that for any edge e = (u, v)

in E′
k, we have yk−1

u + yk−1
v +

∑
B: e∈E[B] z

k−1
B ≥ wk−1(e). We now need to show the following

inequality:

yku + ykv +
∑

B: e∈E[B]

zkB ≥ wk−1(e) + 1 = wk(e). (2.8)

Consider first the case when e ∈ E[B], where B ∈ Ṽk ∩ Ω. If B ∈ Ok, then yku = yk−1
u + 1,

ykv = yk−1
v + 1, while zkB = zk−1

B − 1. Thus Inequality (2.8) clearly holds. If B ∈ Ek, then there

is some blossom B′ ⊇ B in Ṽk and we set zkB′ = zk−1
B′ + 1, thereby ensuring Inequality (2.8). If

B ∈ Uk, then we have the following cases: (i) B = u∗
k, (ii) B = B∗

k or B ⊂ B∗
k , (iii) B = u∗

k−1,

(iv) B = B∗
k−1. Note that cases (i) and (iv) are analogous to B ∈ Ok and cases (ii) and (iii) are

analogous to B ∈ Ek. Thus Inequality (2.8) holds when e ∈ E[B].

We now consider the case when u and v are not inside the same blossom in Ṽk. If one of u, v is

in Ok, then yku + ykv ≥ yk−1
u + yk−1

v +1. Thus Inequality (2.8) holds. If both u and v are in Ek and

the edge (u, v) is in E′
k, then it has to be the case that yk−1

u +yk−1
v +

∑
B: e∈E[B] z

k−1
B > wk−1(e) (as

there are no edges of Fk in Ek×Ek other than edges inside blossoms). Since yku ≥ yk−1
u , ykv ≥ yk−1

v ,

zkB = zk−1
B = 0 for every odd set B containing e, and wk−1(e) + 1 = wk(e), Inequality (2.8) again

holds. The only case left is when one of u, v is in Uk and the other is in Ek ∪ Uk.

Since Fk has no edges in Ek × Uk, this means that yk−1
u + yk−1

v +
∑

B:e∈E[B] z
k−1
B > wk−1(e)

and we again have yk−1
u + yk−1

v +
∑

B:e∈E[B] z
k−1
B ≥ wk−1(e) + 1 = wk(e). So Inequality (2.8)

holds. Finally, if both u and v are in Uk and by listing all subcases here, it is easy to see that

Inequality (2.8) holds. We show one particular subcase, which is when u = u∗
k−1 (or u ∈ u∗

k−1).

Here we use condition (2.7) for i = k − 1 which states that if v /∈ B∗
k−1, then yk−1

u + yk−1
v +∑

B:e∈E[B] z
k−1
B > wk−1(e). Thus Inequality (2.8) holds when v /∈ B∗

k−1 and when v ∈ B∗
k−1,

Inequality (2.8) holds since ykv = yk−1
v + 1.

Condition (2.2). Let e = (u, v) be an edge in Mk. It follows from the definition of the edge set Fk

that yk−1
u + yk−1

v +
∑

B: e∈E[B] z
k−1
B = wk−1(e). By going through the same case analysis as in the

proof of Inequality (2.8), we can show that yku + ykv +
∑

B: e∈E[B] z
k
B = wk(e). For instance, when

u, v ∈ Vk (i.e., u and v do not belong to any odd set B ∈ Vk) and say u ∈ Ok, then since an odd

26

node can only be matched to an even node, it follows that v ∈ Ek and thus yku = yk−1
u + 1 while

ykv = yk−1
v and zkB = zk−1

B = 0 for any odd set B containing (u, v). Thus we have

yku + ykv +
∑

B: e∈E[B]

zkB = (yk−1
u + 1) + yk−1

v +
∑

B: e∈E[B]

zk−1
B = wk−1(e) + 1 = wk(e).

Condition (2.3). We are given that yku > 0 and there are two cases here: yk−1
u > 0 or yk−1

u = 0.

Consider the former case – here it follows from condition (2.3) for i = k − 1 that u was matched

in Mk−1 and we now show that u continues to be matched in Mk. We first claim that all edges of

M̃k−1 are present in the edge set Fk, i.e., step 2(b) is correct. This follows from condition (2.2)

for i = k − 1: for each edge e = (u, v) ∈ Mk−1, we have

wk(e)− yk−1
u − yk−1

v −
∑

B:e∈E[B]

zk−1
B = (wk−1(e) + 1)− yk−1

u − yk−1
v −

∑
B:e∈E[B]

zi−1
B = 1.

Thus edge e ∈ Fk. Now condition (2.3) follows from the fact that M̃k is augmented from M̃k−1

and the fact that (pseudo-)blossom opening guarantees that vertices matched in Mk−1 remain

matched in Mk. Now consider the case yk−1
u = 0. For yku to become positive, it must be the case

that u ∈ Ok ∪B∗
k−1 ∪ u∗

k (or u = u∗
k). In all three cases, u is matched in Mk.

Condition (2.4). This is similar to the above proof that condition (2.3) holds. We are given that

zkB > 0 and if zk−1
B is also positive, then it means that the odd set B ∈ Vk and B remains a blossom

throughout the k-th iteration. By the definition of opening a blossom, it follows that when Mk

is derived from M̃k, there are (|B|−1)/2 edges of E[B] in Mk. If zk−1
B = 0, then it means that

the (pseudo-)blossom B was newly formed in the k-th iteration. So B ∈ Ṽk ∩ Ek or B = B∗
k or

B = u∗
k−1 and it is easy to see that in all three cases, (|B|−1)/2 edges in E[B] are present in Mk.

Condition (2.5). The non-negativity of yku for all vertices u is clear because yku ≥ yk−1
u for each

u ∈ V and by condition (2.5) for i = k − 1, we have yk−1
u ≥ 0 for all u ∈ V . Regarding zkB ,

we claim that at the end of the (k − 1)-st iteration, all outermost blossoms B ∈ Vk, along with

B = B∗
k−1, have zkB > 0, with the possible exception of u∗

k−1. This is because of Step 2(l) where

we recursively opened up all outermost blossoms and pseudo-blossoms B that satisfy zk−1
B = 0.

Thus at the beginning of the k-th iteration, all outermost blossoms (other than possibly u∗
k−1)

and pseudo-blossoms B satisfy zkB > 0. Hence in spite of decreasing by 1 the zk-value of some

outermost blossoms and pseudo-blossom B∗
k−1, at the end of the k-th iteration we maintain the

condition that zkB ≥ 0 for all B ∈ Ω.

Condition (2.6). By condition (2.7) for i = k − 1, in the edge set E′
k−1, the only edge incident on

the node u∗
k−1 is (u∗

k−1, B
∗
k−1) in Hi. Suppose there is some other edge e = (u, v), where u = u∗

k−1

(or u ∈ u∗
k−1) and v /∈ B∗

k−1 ∪ u∗
k−1, in the edge set Fk. Then it has to be the case that

yk−1
u + yk−1

v +
∑

B: e∈E[B]

zk−1
B = wk−1(e).

Since e ∈ E′
k \ E′

k−1, we have wk−1(e) = 0 while we know that yk−1
u ≥ 1 since u = u∗

k−1 (or

u ∈ u∗
k−1). This contradicts the above equation as yk−1

v and zk−1
B are non-negative for all v ∈ V

27

and B ∈ Ω. Thus the only edge incident on u∗
k−1 in the graph Hk is the edge (u∗

k−1, B
∗
k−1) ∈ M̃k−1.

Hence in the k-th iteration of the algorithm, neither u∗
k−1 nor B∗

k−1 belongs to any augmenting

path and so these nodes also cannot become a part of a newly formed blossom. Thus they remain

matched to each other during the k-th iteration.

If B∗
k−1 is a pseudo-blossom, then by condition (2.6) for i = k−1, we have zk−1

B∗
k−1

= 1. So zkB∗
k−1

becomes 0 because either B∗
k−1 ∈ Ok or B∗

k−1 ∈ Uk; hence we open up B∗
k−1 at the end of the k-th

iteration. By condition (2.7) for i = k − 1, we also know that there is no other pseudo-blossom at

the end of the (k− 1)-st iteration. Thus there is at most one pseudo-blossom B∗
k at the end of the

k-th iteration. Finally, if B∗
k is a pseudo-blossom, then zk−1

B∗
k

= 0, so zkB∗
k
= 1.

Condition (2.7). Suppose e = (u, v) is an edge in E′
k with one endpoint u ∈ u∗

k and the other

endpoint v /∈ B∗
k ∪u∗

k (for simplicity of exposition, we assume u∗
k is a blossom here; the same proof

holds when u∗
k is a vertex also). We consider two cases here: (i) v ∈ Ek∪u∗

k−1 and (ii) v ∈ Ok∪B∗
k−1.

We know that Fk has no edges in Uk×Ek, also we have seen in the proof of condition (2.6) that

the only edge incident on u∗
k−1 in the graph Hk is the edge (u∗

k−1, B
∗
k−1). Thus in case (i), i.e. when

v ∈ Ek∪u∗
k−1, there is no edge (u, v) in Fk; hence we have y

k−1
u +yk−1

v +
∑

B: e∈E[B] z
k−1
B > wk−1(e).

Since yku = yk−1
u +1, ykv ≥ yk−1

v ,
∑

B: e∈E[B] z
k
B =

∑
B: e∈E[B] z

k−1
B = 0 (as there is no blossom B ⊇

{u, v} either in Vk or in Vk+1) and wk(e) = wk−1(e)+1, we have yku+ ykv +
∑

B: e∈E[B] z
k
B > wk(e).

We now consider case (ii). In this case v ∈ Ok ∪ B∗
k−1, so ykv = yk−1

v + 1 ≥ 1. We know that

yku = yk−1
u +1 ≥ 1. If e /∈ E′

k−1, then wk(e) = 1. Thus we have yku+ykv+
∑

B: e∈E[B] z
k
B ≥ 2 > wk(e).

So suppose e ∈ E′
k−1. We have yku + ykv +

∑
B: e∈E[B] z

k
B = (yk−1

u + 1) + (yk−1
v + 1) +∑

B: e∈E[B] z
k−1
B . Since yk−1

u + yk−1
v +

∑
B: e∈E[B] z

k−1
B ≥ wk−1(e) for all edges in E′

k−1, we have

yku+ykv+
∑

B: e∈E[B] z
k
B ≥ wk−1(e)+2 ≥ wk(e)+1. This finishes the proof that conditions (2.1)-(2.7)

hold for i = k as well.

So for each i, Mi is a matching in Gi and ⟨yiu, ziB⟩(u∈V,B∈Ω) is a setting of dual variables such

that conditions (2.1)-(2.5) are satisfied. This immediately proves that Mi is an optimal solution

for the primal program of the i-th iteration, in other words, Mi is a maximum weight matching in

the graph Gi. Similarly, ⟨yiu, ziB⟩(u∈V,B∈Ω) is an (integral) optimal solution for the dual program

of the i-th iteration. Hence we can conclude Theorem 2.2.5.

Theorem 2.2.5. The matching MW returned by the algorithm is a maximum weight matching.

Furthermore, the variables ⟨yWu , zWB ⟩(u∈V,B∈Ω) is an integral optimal solution for the dual program.

Thus the linear program describing the matching polytope is totally dual integral.

Since the maximum weight matching problem in a graph G = (V,E) with edge weights in

{1, . . . ,W} can be solved asW maximum cardinality matching problems, we can draw the following

computational conclusion. Recall that m and n are the number of edges and number of vertices

in G, respectively.

Theorem 2.2.6. The maximum weight matching problem in G can be solved in O(W
√
nm logn(n

2/m))

time, or in O(Wnω) time with high probability, using the algorithms of [76, 132] as a subroutine,

where ω ≈ 2.3728 is the exponent of matrix multiplication.

Proof. The bottleneck in each iteration is in step 2(c), where the maximum cardinality matching in

28

Hi gets computed, and we need to spend O(
√
nm logn(n

2/m)) or O(nω) time, using the algorithms

of [76, 132]. Each of the other parts of Step 2 can be done in O(m) time.

In case we do not use Edmonds’ blossom algorithm but use Mucha and Sankowski’s algebraic

algorithm in step 2(c), then to ensure condition (2.3), where we claim that the new maximum

cardinality matching in Hi is augmented from M̃i−1, we can do the following: first find any

maximum cardinality matching in Hi and let its cardinality be t. Create |Vi|−2t dummy vertices

and connect each of them to all nodes in Vi that are left unmatched by M̃i−1. It is easy to see

that there is now a perfect matching and we can find it by running the maximum cardinality

matching algorithm again. Moreover, the perfect matching so found must guarantee that only the

nodes in Vi left unmatched by M̃i−1 can be matched to the dummy vertices and the rest of the

matching is the desired maximum cardinality matching M̃i in Hi. Then in step 2(d) we can build

the Hungarian forest according to M̃i to define the resulting vertex set Ṽi = Oi ∪̇ Ui ∪̇ Ei in O(m)

time.

2.2.2 Consequences of the above algorithm: a decomposition theorem

Our algorithm gives rise to the following decomposition theorem in a graph G = (V,E) with edge

weights in {1, . . . ,W}. Define graphs G1, . . . , GW as follows: Gi = (V,E′
i) where E′

i = {e ∈ E :

w(e) ≥ W − (i− 1)} with edge weight function wi(e) = w(e)− (W − i) for each e ∈ E′
i.

Theorem 2.2.7. There exist matchings M1, . . . ,MW and dual solutions ⟨yiu, ziB⟩(u∈V,B∈Ω) for

i = 1, . . . ,W such that the following properties hold:

1. For 1 ≤ i ≤ W , Mi is a maximum weight matching in Gi and ⟨yiu, ziB⟩(u∈V,B∈Ω) is an optimal

dual solution.

2. For 1 ≤ i ≤ W , ⟨yiu, ziB⟩(u∈V,B∈Ω) is an integral solution; furthermore, the set of odd sets B

with ziB > 0 forms a laminar family.

3. For 1 ≤ i ≤ W , |Mi|=
∑

u∈V yiu +
∑

B∈Ω ziB

(
|B|−1

2

)
−∑u∈V yi−1

u −∑B∈Ω zi−1
B

(
|B|−1

2

)
,

where y0u = 0 ∀u ∈ V and z0B = 0 ∀B ∈ Ω.

4. The maximum weight of a matching in G is equal to
∑W

i=1|Mi|.

Proof. For 1 ≤ i ≤ W , we will show that the matching Mi and the dual solution ⟨yiu, ziB⟩(u∈V,B∈Ω)

computed in the i-th iteration of our algorithm satisfy all the 4 parts of the above theorem. Part 1

is a corollary of Lemma 2.2.4.

Part 2 follows in a straightforward manner from our algorithm – it is easy to see that yiu and

ziB are integral for all vertices u and odd sets B. The fact that the sets B with ziB > 0 form a

laminar family follows from how the node set Ṽi is formed and how the z-values are assigned.

We now show part 3 of the above theorem. It follows from conditions (2.1)-(2.5) that

∑
e∈Mi

wi(e) =
∑
u∈V

yiu +
∑
B∈Ω

ziB

(|B|−1

2

)
.

29

We know that for each edge e, wi(e) = wi−1(e) + 1. Thus
∑

e∈Mi
wi(e) =

∑
e∈Mi

wi−1(e) +

|Mi|. Since every edge used in Mi belongs to the edge set Fi, we have wi−1(e) = yi−1
u + yi−1

v +∑
B:e∈E[B] z

i−1
B for edge e = (u, v) ∈ Mi. Also, the vertices that are not matched in Mi are

unmatched in Mi−1 as well. Thus yi−1
u = 0 for all vertices unmatched in Mi (by condition (2.3)).

Hence we have∑
u∈V

yiu +
∑
B∈Ω

ziB

(|B|−1

2

)
= |Mi| +

∑
u∈V

yi−1
u +

∑
e∈Mi

∑
B:e∈E[B]

zi−1
B .

What is left to show is that
∑

e∈Mi

∑
B:e∈E[B] z

i−1
B =

∑
B∈Ω zi−1

B

(
|B|−1

2

)
. By rearranging the

terms in the sum, we have
∑

e∈Mi

∑
B:e∈E[B] z

i−1
B =

∑
B∈Ω zi−1

B · |E[B] ∩Mi|. Thus what is left

to show is that for each B ∈ Ω with zi−1
B > 0, exactly (|B|−1)/2 edges of E[B] are present in Mi.

Consider any such B. Since zi−1
B > 0, at the beginning of the i-th iteration of our algorithm,

the odd set B is shrunk in the node set Ṽi. At the end of the i-th iteration, either ziB > 0 in which

case (|B|−1)/2 edges of B are present in Mi (by condition (2.4)) or ziB becomes 0 in which case

by the process of opening a blossom, (|B|−1)/2 edges of E[B] are present in Mi. This completes

the proof of part 3.

Part 4 follows from adding the equations of part 3 for all i ∈ {1, . . . ,W}. Since the right hand

side consists of a cascading sum and y0u = 0 for all u and z0B = 0 for all B, this results in

M∑
i=1

|Mi| =
∑
u∈V

yWu +
∑
B∈Ω

zWB

(|B|−1

2

)
.

We also know that the above right side is the optimum value for the dual program in the W -th

iteration. So this equals the value of the optimal primal solution, which is the maximum weight of

a matching in GW . Since GW = G, the maximum weight of a matching in G equals
∑W

i=1|Mi|.

It may be tempting to try to generalize the following decomposition theorem of Kao et al. [102]

to the context of general graphs.

Theorem 2.2.8 (from [102]). Let G be bipartite. Let G′ be Gi with the weight function wi for some

i ∈ {1, . . . ,W}. Let ⟨yiu⟩u∈V be any minimum weight cover in Gi and G′′ be the subgraph of G with

the edge set {e = (a, b) : w(e)− yia − yib > 0} with weight of edge e given by w̃(e) = w(e)− yia − yib.

Then the maximum weight of a matching in G is equal to the sum of the maximum weights of a

matching in G′ and in G′′.

Unfortunately, the above theorem with w̃(e) updated to w(e) − yiu − yiu −∑B:e∈E[B] z
i
B for

e = (u, v) need not hold in non-bipartite graphs. Consider the example in Figure 2.1.

The maximum weight of a matching in G is 5. Let G′ = G1, so the weight function is

w1(e) = w(e) − 2; thus we have w1(e) = 1 for e ∈ {(a, b), (b, c), (c, a)} while w1(e) ≤ 0 for

e ∈ {(a, x), (b, y), (c, z)}. The maximum weight of a matching in G′ is 1 and there is a unique

optimal dual solution: z1{a,b,c} = 1; all other z-values and y-values are 0. In G′′, the weight of edge

e = (u, v) is w̃(e) = w(e) − y1u − y1v −∑B:e∈E[B] z
1
B (see Figure 2.2). The maximum weight of a

matching in G′′ is 5. However the maximum weight of a matching in G is not 1 + 5 = 6.

30

3

1

2

3 3

2

a

b c

x

y z

G

Figure 2.1: The numbers on edges denote their weights and the bold edges (x, a) and (b, c) are the
ones in the maximum weight matching. The weight of a maximum weight matching in G is 5.

1 1

1

2

2 2

2

12

a

b c

a

b c

x

y z

G′

G′′

Figure 2.2: In the graph G′, the edges with non-positive weight have not been shown above. The
weight of a maximum weight matching in G′ is 1 and that in G′′ is 5.

2.3 Maximum Weight Bipartite Capacitated b-matching

The input here is a bipartite graph G = (A ∪ B,E) where as before, there is a weight function

w : E → {1, . . . ,W}. Associated with each vertex is a quota given by b : A∪B → Z+ and the goal

is to compute a b-matching of maximum weight. A b-matching is a subset M ⊆ E such that for

any vertex u, at most b(u) edges incident on u are present in M . When b(u) = 1 for each vertex

u, the resulting b-matching is the standard matching studied in the previous section.

In fact, here we consider an even more generalized concept called “capacitated b-matchings”:

several copies of an edge e can be present in M . That is, there is an edge capacity function

c : E → Z+ and up to c(e) copies of edge e are allowed in M . Recall that E(v) is the set of edges

incident on vertex v. For any vertex v, we assume that b(v) ≤∑e∈E(v) c(e).

Associated with every capacitated b-matching M is an m-tuple (M(e1), . . . ,M(em)) where

0 ≤ M(ei) ≤ c(ei) for every edge ei. For simplicity, we refer to capacitated b-matchings as b-

matchings here. When w(e) = 1 for all edges e, a maximum weight b-matching M maximizes∑
e∈E M(e), so we will call such a matching a maximum cardinality b-matching.

We will solve the maximum weight b-matching problem in bipartite graphs by reducing it

to several instances of the maximum cardinality b-matching problem. We will use the following

terminology here.

• An edge e is saturated in M if M(e) = c(e), otherwise, e is unsaturated. Similarly, a vertex

v is saturated if
∑

e∈E(v) M(e) = b(v), otherwise v is unsaturated.

31

• An edge e with M(e) > 0 is a positive edge.

Definition 2.3.1. An alternating path with respect to a b-matching M is a path p = ⟨e0, e1, . . . , ek⟩
in G such that e0, e2, . . . are unsaturated edges while e1, e3, . . . are positive edges. That is, unsatu-

rated edges and positive edges alternate in p.

An alternating path p of odd length with respect to a b-matchingM such that both the endpoints

of p are unsaturated in M is also called an “augmenting path” with respect to M . It is easy to

see that a maximum cardinality b-matching admits no augmenting path with respect to it. We

present below a generalization of the coarse version of Dulmage-Mendelsohn decomposition of

bipartite graphs [40]. We first need the following definition.

Definition 2.3.2. Let M be a maximum cardinality b-matching in G = (A ∪B,E).

• Let EA ⊆ A (similarly, OB ⊆ B) be the set of vertices reachable from an unsaturated vertex

in A via an alternating path of even (resp., odd) length with respect to M .

• Let EB ⊆ B (similarly, OA ⊆ A) be the set of vertices reachable from an unsaturated vertex

in B via an alternating path of even (resp., odd) length with respect to M .

• Let UA = A \ (EA ∪ OA) and let UB = B \ (EB ∪ OB).

Proposition 2.3.3. Let M be a maximum cardinality b-matching in G = (A ∪B,E) and

EA, EB ,OA,OB ,UA,UB be the sets of vertices as defined in Definition 2.3.2. Furthermore, let M ′

be an arbitrary maximum cardinality b-matching in G. Then the following holds.

(1) the three sets OA, EA, and UA are pairwise disjoint; so are OB, EB, and UB.

(2) all vertices in OA ∪ OB ∪ UA ∪ UB are saturated in M ′.

(3) there is no positive edge in (UA ∪ OA)×OB or in OA × UB in M ′.

(4) every edge in EA × (EB ∪ UB) is saturated in M ′; so is every edge in UA × EB in M ′.

Proof. To show (1), we first show that OA, EA, and UA are disjoint from one another. It follows

from the definition of UA that UA ∩ (EA ∪ OA) = ∅. So what is left to show is that EA ∩ OA = ∅.
Suppose v ∈ EA ∩OA – then gluing p1 and p2 till their first common vertex yields an augmenting

path p with respect to M , where p1 is the even length alternating path between some unsaturated

vertex a ∈ A and v (such a path p1 exists because v ∈ EA) and p2 is the odd length alternating

path between some unsaturated vertex b ∈ B and v (such a path p2 exists because v ∈ OA). The

augmenting path p contradicts that M is a maximum cardinality b-matching. A similar argument

shows that OB , EB , and UB are disjoint from one another. This finishes the proof of (1).

In the following, we first prove (2)-(4) assuming that M ′ = M ; we will later remove this

assumption.

It follows from the definition of UA and UB that every vertex u in UA∪UB has to be saturated in

M (otherwise there is a length zero alternating path from an unsaturated vertex to u, contradicting

32

that u ∈ UA∪UB). If a vertex a ∈ OA is unsaturated, then there is an alternating path of odd length

from some unsaturated vertex in B to the unsaturated vertex a, i.e., M admits an augmenting

path, a contradiction. Similarly every vertex in OB is saturated. This finishes the proof of (2)

when M ′ = M .

Suppose there is an edge e ∈ OA × OB such that M(e) > 0. Let e = (u, v). Then we can

again show an augmenting path with respect to M between an unsaturated vertex a ∈ A and an

unsaturated vertex b ∈ B using the paths p1, p2, and the edge (u, v), where p1 is the (odd length)

a-u alternating path and p2 is the (odd length) b-v alternating path. Similarly, if e = (u, v) in

UA ×OB satisfies M(e) > 0, then there is an alternating path from some unsaturated vertex in A

to u; this contradicts the fact that u ∈ UA. Similarly, there is no positive edge in OA × UB . This

finishes the proof of (3) when M ′ = M .

Suppose there is an edge e ∈ EA × EB such that M(e) < c(e). Let e = (u, v). Then we can

again show an augmenting path between some unsaturated vertex a ∈ A and some unsaturated

vertex b ∈ B using p1, p2, and (u, v), where p1 is the (even length) a-u alternating path and p2 is

the (even length) b-v alternating path. Similarly, if e = (u, v) in UA × EB satisfies M(e) < c(e),

then there is an alternating path between some unsaturated b ∈ B and u; this contradicts the fact

that u ∈ UA. Similarly, there is no unsaturated edge in EA × UB . This finishes the proof of (4)

when M ′ = M .

We now remove the assumption that M ′ = M . Let M ′ be an arbitrary maximum cardinality

b-matching in G. Let us define a bipartite directed flow f as follows: f(e) = |M ′(e) − M(e)|.
The direction of the edge e = (u, v) under f is from u to v if M ′(e) > M(e) and from v to u if

M ′(e) < M(e). It is clear that M ′ is the sum of M and the flow f . Let us summarize what we

know about f using what we have proved so far.

(i) Under f , there is no edge going from EA to UB ∪ EB and no edge from UA to EB ,

(ii) under f , there is no edge going from OB to UA ∪ OA, and no edge from UB to OA,

(iii) for all vertices in OA ∪ UA ∪ OB ∪ UB , the amounts of incoming flow and outgoing flow are

equivalent.

It is well known, e.g., [4] that f can be decomposed into a set of cycle flows Ci and a set of

path flows Pj by a greedy algorithm. By (i) and (ii), the cycle Ci consists entirely of vertices in

EA ∪ OA or EB ∪ OB . Furthermore, by (iii), the starting and ending vertices of Pj can only be in

EA ∪ EB . By (i) and (ii), Pj cannot start from EA and end in EB . Moreover, we cannot have Pj

start from EB and end in EA, as it would imply an augmenting path in M ′ from EA to EB . We can

thus conclude that the cycle Ci and Pj consist entirely of vertices in EA ∪ OA or in EB ∪ OB and

the proof follows.

Note that if a maximum cardinality b-matchingM is given, the decomposition A = OA∪EA∪UA

and B = OB ∪EB ∪UB with respect to M can be determined in O(m+n) time easily. We are now

ready to describe our algorithm to compute a maximum weight b-matching in G = (A ∪ B,E).

The linear program corresponding to the maximum weight b-matching problem and the dual LP

are given below.

33

max
∑
e∈E

w(e)xe∑
e∈E(v)

xe ≤ b(v) ∀v ∈ A ∪B.

0 ≤ xe ≤ c(e) ∀e ∈ E.

min
∑
v∈V

bvyv +
∑
e∈E

c(e)ze

ya + yb + ze ≥ w(e) ∀e = (a, b) ∈ E.

yv ≥ 0 ∀v ∈ A ∪B.

ze ≥ 0 ∀e ∈ E.

Our algorithm is similar in spirit to the algorithm from Section 2.2.1 but it also has some subtle

differences from that one. The algorithm here also runs for W iterations, where W = maxe∈E w(e).

In the first iteration, we consider only edges of weight W : this is the graph H1. We compute a

maximum cardinality b-matching M1 here and assign vertex potentials y1u; however not all edges

get covered by these vertex potentials, i.e., there exist edges e = (a, b) in H1 such that y1a = y1b = 0.

More precisely, all the uncovered edges are in E1
A×(E1

B∪U1
B); we also know from Proposition 2.3.3(4)

that each edge in E1
A × (E1

B ∪ U1
B) is saturated in M1.

In fact, this will be an important invariant that we will maintain: every uncovered or “not

fully paid for” edge will be saturated. In general, in iteration i we have an unsatisfied set Ψi ⊆ E,

which consists of those edges e = (a, b) such that yi−1
a + yi−1

b < wi−1(e) and it will be the case

that e is saturated by the previous maximum cardinality b-matching Mi−1.

In the i-th iteration, the algorithm works with the unweighted graph Hi = (A ∪B,Fi), where

Fi = {e = (a, b) ∈ E : wi(e) − yi−1
a − yi−1

b = 1} and wi(e) = w(e) − (W − i). Furthermore,

the quotas of the vertices are updated according to the unsatisfied set Ψi−1, namely, bi(v) =

b(v)−∑e∈Ψi−1∩E(v) c(e), where E(v) is the set of edges incident on vertex v. Our task is to obtain

a maximum cardinality b-matching in Hi, where vertex quotas are described by the function bi;

we obtain such a matching M ′
i by augmenting Mi−1 \ Ψi−1 in the graph Hi. The matching Mi

will be M ′
i along with all edges in Ψi−1 (these edges are all saturated). We will show that the final

matching MW is a maximum weight b-matching in G. We present our algorithm below.

1. Initialization: Set M0 = ∅, Ψ0 = ∅, and y0v = 0 ∀v ∈ V .

2. For i = 1 to W do

(a) For each e ∈ E: let wi(e) = w(e)− (W − i).

(b) Construct Hi = (A ∪B,Fi), where Fi = {e = (a, b) : wi(e)− yi−1
a − yi−1

b = 1}.
(c) For each v ∈ A ∪B do: set bi(v) = b(v)−∑e∈Ψi−1∩E(v) c(e).

(d) Find a maximum cardinality b-matching M ′
i in Hi (where the quotas of vertices are

given by bi) by augmenting Mi−1 \Ψi−1 in Hi.

(e) Using M ′
i , partition A = Oi

A ∪ E i
A ∪ U i

A and B = Oi
B ∪ E i

B ∪ U i
B .

• for each v ∈ Oi
A ∪ Oi

B ∪ U i
A do: set yiv = yi−1

v + 1.

• for each v ∈ E i
A ∪ E i

B ∪ U i
B do: set yiv = yi−1

v .

(f) Let Mi be M ′
i ∪Ψi−1, where Mi(e) = c(e) for each e ∈ Ψi−1.

34

(g) Let Si = {e = (a, b) ∈ Fi where a ∈ E i
A and b ∈ E i

B ∪ U i
B};

let Ci = {e = (a, b) ∈ Ψi−1 such that wi(e)− yia − yib = 0}.
(h) Ψi = (Ψi−1 \ Ci) ∪ Si.

3. Return MW .

It follows from the definition of Fi and from Step 2(e) (where vertex potentials are updated)

that those edges of Fi with at least one endpoint in Oi
A ∪ Oi

B ∪ U i
A are covered or paid for while

those with both endpoints in E i
A × (E i

B ∪ U i
B) are uncovered or not fully paid for. The edges of Fi

in E i
A × (E i

B ∪ U i
B) form the set Si and these are added to the set Ψi in Step 2(h).

Regarding the edges that are already in the set Ψi−1, it could be the case that some of them

get covered now (due to Step 2(e) where vertex potentials are updated) – for this to happen, it

is necessary that both the endpoints of such an edge are in Oi
A ∪ Oi

B ∪ U i
A. These newly covered

edges form the set Ci and these are no longer present in the unsatisfied set Ψi.

Lemma 2.3.4. For each 1 ≤ i ≤ W , the above algorithm maintains conditions (2.9)-(2.13) listed

below.

yia + yib ≥ wi(e) ∀ edges e = (a, b) ∈ E \Ψi (2.9)

yia + yib < wi(e) and Mi(e) = c(e) ∀ e ∈ Ψi (2.10)

yiu > 0 ⇒ u is saturated in Mi ∀ u ∈ A ∪B (2.11)

yia + yib = wi(e) ∀edges e = (a, b) ∈ Fi \ Si such that M ′
i(e) > 0(2.12)

yiu ≥ 0 ∀ u ∈ A ∪B. (2.13)

Proof. We show by induction on i that conditions (2.9)-(2.13) hold for all 1 ≤ i ≤ W . The base

case corresponds to i = 1. The set Ψ1 = E1
A × (E1

B ∪ U1
B) and it is easy to see that conditions

(2.9)-(2.13) for i = 1 follow from Proposition 2.3.3 and from how y1u-values are set in Step 2(e).

We now assume that conditions (2.9)-(2.13) hold when i = k− 1 and show that the conditions

corresponding to i = k hold as well. To show condition (2.9) for i = k, assume that e ∈ E \ Ψk.

If e ∈ Ψk−1 \Ψk, then e has to be in Ck, in other words, wk(e) = yka + ykb . So we can henceforth

assume that e /∈ Ψk−1. So yk−1
a + yk−1

b ≥ wk−1(e) by induction hypothesis. We consider two cases

here: (i) e ∈ Fk and (ii) e /∈ Fk.

Since Fk consists of edges e = (a, b) such that wk(e)−yk−1
a −yk−1

b = 1 and wk(e) = wk−1(e)+1,

it is easy to see that Fk is exactly the set of those edges e = (a, b) such that yk−1
a +yk−1

b = wk−1(e).

If e /∈ Fk, then we have yk−1
a + yk−1

b > wk−1(e), that is, y
k−1
a + yk−1

b ≥ wk−1(e) + 1. So we have

yka + ykb ≥ yk−1
a + yk−1

b ≥ wk−1(e) + 1 = wk(e).

So suppose e ∈ Fk. In this case, at least one of {a, b} has to be in Ok
A ∪ Ok

B ∪ Uk
A, otherwise

e ∈ Sk and thus e ∈ Ψk. Since a or b (or both) is in Ok
A ∪ Ok

B ∪ Uk
A, we have

yka + ykb ≥ yk−1
a + yk−1

b + 1 = wk−1(e) + 1 = wk(e).

Thus condition (2.9) holds for i = k.

35

We now show condition (2.10) for i = k. The set Ψk = (Ψk−1 \Ck)∪ Sk. It is easy to see that

every e = (a, b) ∈ Sk satisfies yka + ykb < wk(e) and Mk(e) = c(e): this is because every such edge

belongs to Fk ∩ (Ek
A × (Ek

B ∪ Uk
B)), thus wk(e) = wk−1(e) + 1 = yk−1

a + yk−1
b + 1 = yka + ykb + 1 and

by Proposition 2.3.3.4, Mk(e) = c(e).

We now consider the case when e ∈ Ψk−1 \ Ck. By induction hypothesis, every edge e = (a, b)

in Ψk−1 satisfies yk−1
a + yk−1

b < wk−1(e) and Mk−1(e) = c(e). In the k-th iteration we have

yka + ykb ≤ yk−1
a + yk−1

b + 2 ≤ wk−1(e) + 1 = wk(e).

We are given that e /∈ Ck, so yka + ykb ̸= wk(e). Thus y
k
a + ykb < wk(e). Since e is in Ψk−1, it follows

that Mk(e) = c(e).

We now show condition (2.11) for i = k. We are given that yku > 0. If yk−1
u > 0, then it follows

from induction hypothesis that u is saturated in Mk−1; since M ′
k is obtained by augmenting

Mk−1 \ Ψk−1 and Mk = M ′
k ∪ Ψk−1, it follows that

∑
e∈E(u) Mk−1(u) =

∑
e∈E(u) Mk(u), thus u

is saturated in Mk. If yk−1
u = 0, then it must be the case that yku ∈ Ok

A ∪ Ok
B ∪ UA and it follows

from Proposition 2.3.3.2 that u is saturated in Mk.

We now show condition (2.12) for i = k. Let e = (a, b) be an edge such that M ′
k(e) > 0. We

know that M ′
k is a maximum cardinality b-matching in Hk: since the edge set of Hk is Fk, this

implies that yk−1
a +yk−1

b = wk−1(e). We also know that e /∈ Sk. It follows from Proposition 2.3.3.3

that e ∈ (Ok
A × Ek

B) ∪ (Ek
A × Ok

B) ∪ (Uk
A × Ek

B). So we have yka + ykb = yk−1
a + yk−1

b + 1. So

yka + ykb = yk−1
a + yk−1

b + 1 = wk−1(e) + 1 = wk(e).

It is easy to see that condition (2.13) holds. Initially y0u = 0 for all vertices u and Step 2(e)

(where certain yiu values increase) is the only step where the yiu values get updated. Thus yku ≥ 0

for all u.

Theorem 2.3.5. The matching MW is a maximum weight b-matching in G.

Proof. We prove the optimality of MW by showing a dual feasible solution ⟨y∗u, z∗e ⟩(u∈A∪B, e∈E)

such that this dual solution and MW satisfy complementary slackness conditions. Let y∗u = yWu
for all u ∈ A ∪B and define z∗e = 0 if e ̸∈ ΨW , else z∗e = w(e)− y∗a − y∗b where e = (a, b).

Observe that wW (e) = w(e) for all edges e. The dual feasibility of ⟨y∗u, z∗e ⟩(u∈A∪B, e∈E) follows

from conditions (2.9), (2.10), (2.13), and the definition of z∗e values. Primal complementary slack-

ness follows from conditions (2.10) and (2.12) along with the definition of z∗e values for e ∈ ΨW .

Dual complementary slackness follow from conditions (2.10) and (2.11) along with the observation

that if z∗e > 0 then e ∈ ΨW . This proves that MW is primal optimal and ⟨y∗u, z∗e ⟩(u∈A∪B, e∈E) is

dual optimal.

Thus the maximum weight bipartite capacitated b-matching problem can be decomposed intoW

unweighted versions of the same problem, where W = maxe∈E w(e). The following computational

result is immediate.

36

Theorem 2.3.6. The maximum weight capacitated b-matching problem in G = (A∪B,E) can be

solved in

1. O(Wnm) time using Orlin’s maximum flow algorithm [137], or

2. O(W
√
βm) time, using Gabow’s algorithm [61], where β =

∑
v∈A∪B b(e), in the case of

simple b-matching (where c ≡ 1), or

3. O(W (n1m+ n3
1)) time, using Ahuja et al.’s algorithm [5], where n1 = min{|A|, |B|}, or

4. O(W (n1m+ n2
1

√
m)) time, using Ahuja et al.’s algorithm [5], or

5. O(W (n1m+ n2
1

√
logC)) time, using Ahuja et al.’s algorithm [5], or

6. O(Wn1m log(2 +
n2
1

m)) time, using Ahuja et al.’s algorithm [5].

2.4 Conclusions and Open Problems

We considered the maximum weight matching problem in G = (V,E) with integral edge weights.

We solved this problem via the maximum cardinality matching algorithm – the running time of

our algorithm is W times the running time of a maximum cardinality matching algorithm, where

W is the largest edge weight. This running time is as good as the current fastest algorithms for the

maximum weight matching problem. Our algorithm also computed an optimal dual solution that

is integral, thereby showing an integral certificate to the optimality of the computed matching.

We then extended this approach to the maximum weight capacitated b-matching problem in

bipartite graphs, where edge weights are in {1, 2, . . . ,W}. We showed that this problem can also be

decomposed into W unweighted and capacitated versions of the same problem. An open problem

is to extend this approach to the maximum weight b-matching problem in general graphs.

37

Chapter 3

Exact and Approximation

Algorithms for Weighted Matroid

Intersection

This paper first appeared in SODA 2016 and its full version will appear in Mathematical Program-

ming. It is joint-work with Naonori Kakimura and Naoyuki Kamiyama.

Abstract In this paper, we propose new exact and approximation algorithms for the

weighted matroid intersection problem. Our exact algorithm is faster than previous

algorithms when the largest weight is relatively small. Our approximation algorithm

delivers a (1 − ϵ)-approximate solution with a running time significantly faster than

most known exact algorithms.

The core of our algorithms is a decomposition technique: we decompose an instance

of the weighted matroid intersection problem into a set of instances of the unweighted

matroid intersection problem. The computational advantage of this approach is that

we can make use of fast unweighted matroid intersection algorithms as a black box for

designing algorithms. More precisely, we show that we can solve the weighted matroid

intersection problem via solving W instances of the unweighted matroid intersection

problem, where W is the largest given weight, assuming that all given weights are inte-

gral. Furthermore, we can find a (1− ϵ)-approximate solution via solving O(ϵ−1 log r)

instances of the unweighted matroid intersection problem, where r is the smaller rank

of the two given matroids. Our algorithms make use of the weight-splitting approach

of Frank [54] and the geometric scaling scheme of Duan and Pettie [35].

Our algorithms are simple and flexible: they can be adapted to special cases of the

weighted matroid intersection problem, using specialized unweighted matroid intersec-

tion algorithms. In addition, we give a further application of our decomposition tech-

nique: we solve efficiently the rank-maximal matroid intersection problem, a problem

motivated by matching problems under preferences.

38

3.1 Introduction

In the classical weighted matroid intersection problem, we are given two matroidsM1 = (S, I1),M2 =

(S, I2) and a weight function w:S → Z≥0, where Z≥0 is the set of non-negative integers. Then, the

goal is to find a maximum-weight common independent set I of M1 and M2, i.e., I ∈ I1 ∩I2 with∑
e∈I w(e) being maximized. This problem was introduced by Edmonds [43, 45] and solved by

Edmonds [43, 45] and others [6, 94, 117, 118] in 1970s. This problem is a common generalisation of

various combinatorial optimization problems such as bipartite matchings, packing spanning trees,

and arborescences in a directed graph. In addition, it has many applications, e.g., in electric circuit

theory [133, 146], rigidity theory [146], and network coding [34]. The fact that two matroids cap-

ture the underlying common structures behind a large class of polynomially solvable problems has

been impressive and motivated substantial follow-up research (see, e.g., [57, 158]). Techniques and

theorems developed surrounding this problem have become canon in contemporary combinatorial

optimization literature.

Since 1970s, quite a few algorithms have been proposed for matroid intersection problems, e.g.,

[14, 31, 54, 58, 160], with better running time and/or simpler proofs. See Table 3.1 for a summary.

Throughout the paper, n is the size of the ground set S, r is the smallest rank of the two given

matroids, and W is the largest given weight. The oracle to check the independence of a given set

has the running time of τ .

Table 3.1: Matroid intersection algorithms for general matroids. See also [43, 45, 142]. The
complexity is measured only by the number of independence oracle calls. In case the original
algorithms (Fujishige–Zhang and Gabow–Xu) use (co-)circuit oracles, each call of such oracles is
replaced by n independence calls in the table.

Algorithm Weight Time complexity
Aigner–Dowling [6] Unweighted O(τnr2)
Cunningham [31], Gabow–Xu [69] Unweighted O(τnr1.5)
Lawler [117, 118], Iri–Tomizawa [94] Weighted O(τnr2)
Frank [54] Weighted O(τn2r)
Brezovec–Cornuéjols–Glover [14] Weighted O(τnr2)
Fujishige–Zhang [58], Shigeno–
Iwata [160], Gabow–Xu [69]

Weighted O(τn2
√
r log rW)

Lee-Sidford-Wong [123] Weighted O(τn2 log nW)

Chekuri–Quanrud [19] ((1 − ϵ)-
approximation)

Weighted O(τnrϵ−2 log2 ϵ−1)

This paper Weighted O(τWnr1.5)
This paper ((1−ϵ)-approximation) Weighted O(τϵ−1nr1.5 log r)

3.1.1 Our Contribution

We propose both exact and approximation algorithms for the weighted matroid intersection prob-

lem. Our exact algorithm is faster than known algorithms when the largest given weight W is

relatively small. Our approximation algorithm delivers a (1 − ϵ)-approximate solution for every

39

Table 3.2: Matroid intersection algorithms for graphic matroids.

Algorithm Weight Time complexity

Gabow–Stallman [67] Unweighted O(
√
rn) if n = Ω(r3/2 log r)

Unweighted O(rn2/3 log1/3 r) if n = Ω(r log r) &
n = O(r3/2 log r)

Unweighted O(r4/3n1/3 log2/3 r) if n = O(r log r)
Gabow–Xu [68] Unweighted O(

√
rn log r)

Gabow–Xu [68] Weighted O(
√
rn log2 r log(rW))

This paper Weighted O(W
√
rn log r)

(1− ϵ) approximation Weighted O(ϵ−1
√
rn log2 r)

Table 3.3: Linear matroid intersection algorithms. Here the Õ notation hides a polynomial of log n
in the complexity.

Algorithm Weight Time complexity
Cunningham [31] Unweighted O(nr2 log r)

Gabow–Xu [69] Unweighted O(nr
5−ω
4−ω log r)

Harvey [84] Unweighted O(nrω−1)
Cheung, et al. [21] Unweighted O(nr log r∗ + nrω−1

∗)

Gabow–Xu [69] Weighted O(nr
7−ω
5−ω log

ω−1
5−ω r log nW)

Harvey [83] Weighted Õ(W 1+ϵnrω−1)

This paper Weighted O(nr log r∗ +Wnrω−1
∗)

(1− ϵ approximation) Weighted O(nr log r∗ + ϵ−1nrω−1
∗ log r∗)

fixed ϵ > 0 in times substantially faster than known exact algorithms in most cases. Our algo-

rithms and their analysis are surprisingly simple. Moreover, these algorithms can be specialized

for particular classes of matroids.

The core of our algorithms is a decomposition technique. We show that a given instance of the

weighted matroid intersection problem can be decomposed into a set of unweighted versions of the

same problem. To be precise, we can solve the weighted problem exactly by solving W unweighted

ones. Furthermore, we can solve the weighted problem (1−ϵ)-approximately by solving O(ϵ−1 log r)

unweighted ones.

Our decomposition technique not only establishes a hitherto unclear connection between the

weighted and unweighted problems, but also leads to computational advantages: the known un-

weighted matroid intersection algorithms are significantly faster than their weighted counterparts.

Thus, we can make use of the former to design faster algorithms. It may be expected that in

the future, there will be even more efficient unweighted matroid intersection algorithms, and that

would imply our algorithms will become faster as well.

We summarize the complexity of our exact algorithms below. For comparison of our algorithms

with previous results, see Tables 3.1–3.3.

General matroids. Given two general matroids, using the unweighted matroid intersection al-

40

gorithm of Cunningham [31], we can solve the weighted matroid intersection problem in

O(τWnr1.5) time. This algorithm is faster than all known algorithms whenW = o(min{√r, n log r
r })

and r = O(
√
n). A slightly different analysis shows that the same algorithm has the com-

plexity1 of O(τ(
∑

e∈S w(e))r1.5).

Graphic matroids. Given two graphic matroids, using the unweighted graphic matroid intersec-

tion algorithm proposed by Gabow and Xu [68], we can solve the weighted matroid intersec-

tion problem in O(W
√
rn log r) time. This is faster than the current fastest algorithm when

W = o(log2 r). If the graph is relatively dense, that is, n = Ω(r1.5 log r), then we can use the

algorithm of Gabow and Stallman [67] to solve the problem in O(W
√
rn) time.

Linear matroids. Given two linear matroids (in the form of two r-by-n matrices), using the

unweighted linear matroid intersection algorithm of [21], we can solve the weighted matroid

intersection problem in O(nr log r∗ +Wnrω−1
∗) time, where ω is the exponent of the matrix

multiplication time and r∗ ≤ r is the maximum size of a common independent set. This is

faster than all known algorithms when W = o(r
ω2−7ω+12

5−ω) (if ω ≈ 2.37 [27, 72, 171], it is when

W = o(r0.41)).

In the graphic matroid intersection problem, two graphs G1 = (V1, E) and G2 = (V2, E)

with the same edge set E are given. An intersection of the two matroids means a subset of

edges E′ ⊆ E so that E′ induces a forest in both G1 and G2. In the linear matroid intersection

problem, two r-by-n matrices M1 and M2 are given. An intersection of the two matroids means

a subset of columns so that they are linearly independent in both M1 and M2. The graphic and

linear matroid intersection problems arise in various branches in engineering. For example, the

intersection of graphic matroids has applications in determining the order of complexity of an

electrical network [93] and the unique solvability of open networks [145]; the intersection of linear

matroids has applications in the analysis of systems of linear differential equations [133, 134].

A recent trend in research is to design fast approximation algorithms for fundamental optimiza-

tion problems, even if they are in P. Examples include maximum weight matching [35], shortest

paths [166], and maximum flow [24, 108, 124, 159]. Using the algorithms of [21, 31, 68], our

decomposition technique delivers a (1− ϵ)-approximate solution in

1. O(τϵ−1nr1.5 log r) time with two general matroids,

2. O(ϵ−1
√
rn log2 r) time with two graphic matroids,

3. O(nr log r∗ + ϵ−1nrω−1
∗ log r∗) time with two linear matroids.

Our approximation algorithms are significantly faster than most exact algorithms. Prior to our

results, there is only a simple greedy 1/2-approximation algorithm [100, 111] dated in 1970s. It

should be noted that, by scaling weights to small integers, i.e., rounding W to O(rϵ) (cf. Lemma

3.4.1), exact algorithms deliver a (1 − ϵ)-approximate solution (this is used in [22] for the linear

matroid parity). Ours improve on such simple scaling significantly. We note that for general

matroids, very recently, Chekuri and Quanrud [19] improved on our results: they obtain a (1− ϵ)-

approximate solution in O(τnrϵ−2 log2 ϵ−1) time.

1This complexity is superior to the previous one only when the given weights are very “unbalanced.”

41

3.1.2 Our Technique

The idea of reducing a weighted optimization problem into unweighted ones has been success-

fully applied in the context of maximum-weight matching in bipartite graphs [102] and in general

graphs [90, 144]. Roughly speaking, these matching algorithms proceed iteratively: in each round,

in a subgraph, a maximum-cardinality matching and its optimal dual are computed; the latter is

then used to update the edge weights to construct the next subgraph. The optimality of the final

solution is shown via the complementary slackness condition.

The difficulty of extending such approaches for matching to the weighted matroid intersection

problem lies in the fact that, in the latter problem, the dual variables are harder to reason with

and to control. Instead we make use of Frank’s weight-splitting approach [54, 55]. Originally

Edmonds [45] gave a linear system describing the common independent sets and proved such a

system to be totally dual integral. This fact suggests that there exists a weight-splitting w = w1+w2

so that there exists a common independent set F so that F is of maximum weight for w1 in M1 and

for w2 in M2 and in fact Frank designed an algorithm [54] using this fact. The technical innovation

of Frank lies in avoiding the dual variables entirely when obtaining the weight splitting.

Our main insight is that the split weights w1 and w2 can also be used to re-define two new

matroids for subsequent operations. This is analogous to using the dual optimal solution to update

the edge weights in the maximum-weight matching [90, 102, 144].

Our approximation algorithms use the above basic ideas and a scaling technique of [35] for

approximating maximum-weight matching. In particular, as in [35], the amount of adjustments

done to the weights w1 and w2 decreases geometrically in each phase.

3.1.3 Application: rank-maximal matroid intersection

We consider a variation of the weighted matroid intersection problem, called the rank-maximal

matroid intersection problem. Suppose that instead of a weight function w, a rank function λ:S →
{1, 2, . . . , R} is given, where R is some positive integer. The goal is to find a common independent

set so that it has the maximum number of elements e with rank 1, and subject to that, it has

the maximum number of elements e with rank 2 and so on. The problem is a generalization of

the rank-maximal matching problem, introduced by [99] in the context of matching problems with

preference lists.

As done in [99], we can reduce this problem to the weighted matroid intersection problem by

assigning huge weights, say Ω(nR−i), to elements of rank i. However, such an approach would

be inefficient in time and space. We show how to modify our exact algorithm to decompose

the problem into R unweighted matroid intersection problems. In particular, we solve the rank-

maximal matroid intersection problem using O(Rnr1.5) independence oracle calls. Moreover, if

the given two matroids are graphic or linear, the running times are reduced to O(R
√
rn log r) and

O(Rnrω−1), respectively.

42

3.1.4 Outline

The rest of the paper is organized as follows. In Section 3.2, we give definitions and basic properties

of matroids. Our exact and approximation algorithms are presented in Sections 3.3 and 3.4,

respectively. Implementation details about finding a maximum-cardinality common independent

set are described in Section 3.5. The result of the rank-maximal matroid intersection problem is

in Section 4.2.3. The relation of our results with previous work is discussed in Section 3.7.

3.2 Preliminaries

3.2.1 Matroids

A matroid is a pair M = (S, I) of a finite set S and a family I of subsets of S satisfying the

following three conditions.

(I0) I ≠ ∅.

(I1) If I ⊆ J and J ∈ I, then I ∈ I.

(I2) If I, J ∈ I and |I|< |J |, then there is e ∈ J \ I such that I + e ∈ I.2

A set in I is said to be independent, and a maximal independent set is called a base. In addition,

a minimal non-independent subset C of S is called a circuit. A circuit of size one is a loop.

Throughout the article, we assume that the given matroids have no loops.

Let M = (S, I) be a matroid and X a subset of S. The restriction of M to X is defined by

M|X = (X, I|X) with I|X = {I ∈ I | I ⊆ X}. The contraction of M with respect to X is defined

as M/X = (S \ X, I/X) with I/X = {I ⊆ S \ X | I ∪B ∈ I for some base B of M|X}. The

direct sum of matroids M1 = (S1, I1) and M2 = (S2, I2), denoted by M1 ⊕M2, is defined to be

(S1 ∪ S2, I ′), where I ′ = {I1 ∪ I2 | I1 ∈ I1, I2 ∈ I2}.
Given a matroid M = (S, I) and a weight function w:S → Z≥0, a set I ∈ I is said to be w-

maximum, if its weight
∑

e∈I w(e) is maximum among all independent sets in I. A base is called

a w-maximum base, if its weight is maximum among all bases. Using the family of w-maximum

bases of M = (S, I), one can define a new matroid Mw = (S, Iw), where

Iw = {I | I ⊆ B for some w-maximum base B of M}.

It is well known that Mw is a matroid (see e.g., [44]).

The following lemma states some important properties of such a derived matroid Mw. As these

properties are well-known (e.g. see [170]), we omit the proof.

Lemma 3.2.1. Assume that we are given a matroid M = (S, I) and a weight function w:S →
{0, 1, . . . ,W}. We define Z(t) = {e ∈ S | w(e) ≥ t} for each integer t ≥ 0.

(i) Mw =
⊕W

t=0(M|Z(t))/Z(t+ 1).

(ii) A set I ∈ I is w-maximum if and only if I∩Z(t) is a base of M|Z(t) for every t = 1, 2, . . . ,W .

2We use the shorthand I + e and I − e to stand for I ∪ {e} and I \ {e}, respectively.

43

(iii) Suppose that a set I ∈ I satisfies the condition that I ∩ Z(t) is a base in M|Z(t) for every

integer t with (mine∈S w(e)) + 1 ≤ t ≤ W , and I + e0, where e0 ∈ S\I, contains a circuit

C ′ of Mw. Then, every element in C ′ has weight equal to w(e0). Furthermore, there exists

a circuit C ⊇ C ′ in I + e with respect to M, and each element in C \ C ′ has weight greater

than w(e0).

3.2.2 Matroid Intersection

Suppose that we are given a pair of matroids M1 = (S, I1) and M2 = (S, I2) on the same ground

set S. A subset I of S is called a common independent set if I is in I1∩I2. The goal of the matroid

intersection problem is to find a maximum-cardinality common independent set. Given M1 and

M2, the auxiliary graph is a directed graph GM1,M2
(I) = (S,E1 ∪ E2), where

E1 = {ef | I + e ̸∈ I1, I + e− f ∈ I1},
E2 = {fe | I + e ̸∈ I2, I + e− f ∈ I2}.

In the auxiliary graph GM1,M2
(I), we also define

X1 = {e ∈ S \ I | I + e ∈ I1},
X2 = {e ∈ S \ I | I + e ∈ I2}.

In the auxiliary graph, a directed path from X2 to X1 is an augmenting path. Let P be a shortest

augmenting path. Define I△P = (I \ P) ∪ (P \ I). It is known (e.g. [170]) that I△P is another

common independent set, whose size is one larger than I. If there is no augmenting path in

the auxiliary graph, then I is already a maximum-cardinality common independent set. Thus,

we can find a maximum-cardinality common independent set in a polynomial number of oracle

calls; starting with a common independent set I ∈ I1 ∩ I2 (I can be ∅), we repeatedly augment

the current common independent set I to a larger one by finding a shortest augmenting path in

GM1,M2(I). The algorithm constructs an auxiliary graph in each iteration, which takes O(nr)

independence oracle calls. Since the number of augmentations is at most r, it runs in O(nr2τ)

time.

Cunningham [31] improves the running time to O(nr1.5τ) by finding a maximal number of

disjoint augmenting paths in each iteration. For graphic matroids, we can obtain augmentation-

type algorithms running in O(
√
rn log r) time [68], and O(

√
rn) time if n = Ω(r1.5 log r) [67].

Given two matroids Mℓ = (S, Iℓ) (ℓ = 1, 2) and a weight function w:S → Z≥0, the weighted

matroid intersection problem is to find a common independent set with maximum weight. A pair

of functions wℓ:S → Z≥0 for ℓ = 1, 2 is a weight-splitting of w if w(e) = w1(e) + w2(e) for every

e ∈ S. Frank gave two different proofs [54, 55] to the following min-max theorem. Note that our

result (Theorem 4.2.9) gives an alternative proof of Theorem 3.2.2, as our algorithm does not rely

on Theorem 3.2.2.

Theorem 3.2.2. Let M1 = (S, I1) and M2 = (S, I2) be two matroids and w:S → Z≥0 a weight

44

function. Then the maximum weight of a common independent set is equal to

min
w1,w2:weight-splitting

b1(w1) + b2(w2),

where bℓ(wℓ) denotes the weight of the wℓ-maximum independent set of Mℓ for ℓ = 1, 2.

3.3 Exact Algorithm

In this section, we present an exact algorithm for the weighted matroid intersection problem. Let

W = maxe∈S w(e).

Our algorithm runs in W rounds. For ease of presentation, our algorithm starts from Round

W and down to Round 1. In Round i, the subset S′ ⊆ S of elements e with w(e) ≥ i is the ground

set of the two matroids.

We maintain a pair of weight functions w1 and w2 as a weight splitting of the original weight

w. We define a new pair of matroids M′
1 and M′

2 as the restrictions of Mw1
1 and Mw2

2 to S′. In

each round, the algorithm finds a maximum-cardinality common independent set I between M′
1

and M′
2 using I ′, where I ′ is the common independent set found in the previous round. As we

will show in Section 3.5, the augmentation-type algorithm described in Section 3.2.2 can be used

to obtain I with the additional property called near-optimality (see Definition 3.3.1). At the end

of the round, we update w1, w2 based on the auxiliary graph GM′
1,M

′
2
(I). Below we first present

the algorithm and then elaborate on the details.

Algorithm 1: Exact algorithm

Input: two matroids M1 = (S, I1) and M2 = (S, I2), a weight function w:S → Z≥0, and

W = maxe∈S w(e).

Output: I ∈ I1 ∩ I2 where I is a maximum-weight common independent set of M1 and M2.

Step 1. Set i := W , w1 := 0, w2 := w, and I ′ := ∅.

Step 2. While i > 0 do the following steps.

(2-1) Set S′ := {e ∈ S | w2(e) ≥ i}.
(2-2) Set M′

ℓ = (S′, I ′
ℓ) to be Mwℓ

ℓ |S′ for ℓ = 1, 2.

(2-3) Unweighted Matroid Intersection (I ′)

Construct I so that

(i) I is a maximum-cardinality common independent set of M′
1 and M′

2, and

(ii) I is (w1, w2)-near-optimal in S′.

(2-4) Update Weight

(2-4-1) Let T ⊆ S′ be the set of elements reachable from X2 in GM′
1,M

′
2
(I).

(2-4-2) For each e ∈ T , let w1(e) := w1(e) + 1, w2(e) := w2(e)− 1.

(2-5) Set i := i− 1 and I ′ := I.

45

Step 3. Return I.

Note that in Step (2-3), Unweighted Matroid Intersection takes I ′, which is the common indepen-

dent set computed in the previous round, to construct I. The implementation details (depending

on the type of given matroids) will be given in Section 3.5. Roughly speaking, we will show

that if I ′ is already (w1, w2)-near-optimal in S′, then we can compute I, based on I ′, so that

I becomes the maximum cardinality common independent set of M′
1 and M′

2 while remaining

(w1, w2)-near-optimal.

3.3.1 Analysis

The final goal of our algorithm is to find a common independent set that is w1-maximum in M1

and w2-maximum in M2, which would imply that I is w-maximum if w = w1 + w2. For each

integer t, let

Z1(t) = {e ∈ S | w1(e) ≥ t},
Z2(t) = {e ∈ S | w2(e) ≥ t}.

Lemma 3.2.1(ii) implies that I being w1-maximum in M1 and w2-maximum in M2 is equivalent

to

1. I ∩ Z1(t) is a base of M1|Z1(t) for every integer t ≥ 1, and

2. I ∩ Z2(t) is a base of M2|Z2(t) for every integer t ≥ 1.

Such a common independent set I of M1,M2 is called (w1, w2)-optimal.

We relax the above condition as follows. We here define Z ′
ℓ(t) = Zℓ(t) ∩ S′ for each subset

S′ ⊆ S and ℓ = 1, 2.

Definition 3.3.1. A common independent set I of M1 and M2 is (w1, w2)-near-optimal in a

subset S′ ⊆ S if

1. I ∩ Z ′
1(t) is a base of M1|Z ′

1(t) for every integer t ≥ 1, and

2. I ∩ Z ′
2(t) is a base of M2|Z ′

2(t) for every integer t ≥ α+ 1, where α = mine∈S′ w2(e).

Note that if α = 0 and S′ = S, then a (w1, w2)-near-optimal common independent set in S′ is

(w1, w2)-optimal.

In what follows, we will prove that, during the execution of our algorithm, the current set

I is always (w1, w2)-near-optimal in S′. To prove this, we analyze the two procedures Un-

weighted Matroid Intersection and Update Weight used in Steps (2-3) and (2-4).

In Unweighted Matroid Intersection of Step (2-3), if we only want a maximum-cardinality com-

mon independent set I of M′
1 and M′

2, the step is trivial. The difficulty is how to guarantee that I

is also (w1, w2)-near-optimal in S′ without resorting to weighted matroid intersection. The details

are deferred to Section 3.5. We use a lemma to summarize the outcome of Step (2-3). Recall that

we denote M′
ℓ = Mwℓ

ℓ |S′ for ℓ = 1, 2.

46

Lemma 3.3.2. Suppose that I ′ is (w1, w2)-near-optimal in a subset S′. Then we can construct

another common independent set I, using known unweighted matroid intersection algorithms, that

is simultaneously (i) a maximum-cardinality common independent set of M′
1 and M′

2, and (ii)

(w1, w2)-near-optimal in S′.

We next prove that, if the maximum-cardinality common independent set I of M′
1 and M′

2

is (w1, w2)-near-optimal in S′, then we can modify w1 and w2 at Step (2-4) so that I is still

(w1, w2)-near-optimal in S′.

Lemma 3.3.3. Suppose that all weights of w1 and w2 are nonnegative integers, and there are

some integers p1 and p2 such that w1(e) ≤ p1 and w2(e) ≥ p2 for every e ∈ S′. In addition,

suppose that I is (i) a maximum-cardinality common independent set of M′
1 and M′

2, and (ii)

(w1, w2)-near-optimal in S′. Then, after the procedure Update Weight, we have

(1) I ∩ Z ′
1(t) is a base of M1|Z ′

1(t) for every integer t with 1 ≤ t ≤ p1 + 1, and

(2) I ∩ Z ′
2(t) is a base of M2|Z ′

2(t) for every integer t ≥ p2.

It should be noted that Lemma 3.3.3 implies that after Step (2-4), I is still (w1, w2)-near-optimal

in S′, since then maxe∈S′ w1(e) ≤ p1 + 1 and mine∈S′ w2(e) ≥ p2 − 1.

Proof. We only prove (1), since (2) follows symmetrically. To avoid confusion, let Z̃ ′
1(t) denote

the set Z ′
1(t) after the weights w1 and w2 are updated. Observe that, for every integer t with

1 ≤ t ≤ p1 + 1,

Z̃ ′
1(t) = Z ′

1(t) ∪ ((Z ′
1(t− 1) \ Z ′

1(t)) ∩ T),

where we note that Z ′
1(p1 + 1) = ∅ and Z ′

1(0) = S′.

As I∩Z ′
1(t) is a base of M1|Z ′

1(t), we argue that given an element e ∈ ((Z ′
1(t−1)\Z ′

1(t))∩T)\I:

(∗) I + e ̸∈ I1|S′, and

(∗∗) the circuit of I + e in M1|S′ is contained in Z̃ ′
1(t).

This will establish that I ∩ Z̃ ′
1(t) is a base of M1|Z̃ ′

1(t) for every t = 1, 2, . . . , p1 + 1.

To see (∗), observe that in GM′
1,M

′
2
(I), e is not part of X1. Otherwise, there would be an aug-

menting path, contradicting to the assumption that I is a maximum-cardinality common indepen-

dent set in M′
1 and M′

2. Thus, I+e contains a circuit C ′ in M′
1. Furthermore, by Lemma 3.2.1(iii)

applied toM1|S′ (as the assumption is that I∩Z ′
1(t) is a base ofM1|Z ′

1(t) for every t = 1, 2, . . . , p1),

I + e also has a circuit C ⊇ C ′ in M1|S′. Thus, (∗) is proved.
To see (∗∗), consider an element e′ in C ′ − e. Then, e′ is contained in Z ′

1(t − 1) \ Z ′
1(t) by

Lemma 3.2.1(iii). Since e′ ∈ C ′, in GM′
1,M

′
2
(I), there is an arc from e to e′. Thus, e′ is part of T .

This implies that C ′ is a subset of (Z ′
1(t−1)\Z ′

1(t))∩T , which in turn, by Lemma 3.2.1(iii), implies

that the circuit C ⊇ C ′ in I+e with respect to M1|S′ is a subset of Z ′
1(t)∪((Z ′

1(t−1)\Z ′
1(t))∩T) =

Z̃ ′
1(t). The proof of (∗∗) follows.

By induction on i with Lemmas 3.3.2 and 3.3.3, we show that the current set I is always

(w1, w2)-near-optimal.

47

Lemma 3.3.4. In Round i with 1 ≤ i ≤ W , the following holds.

(1) w = w1 + w2,

(2) after Step (2-4), I ∩ Z ′
1(t) is a base of M1|Z ′

1(t) for every integer t with 1 ≤ t ≤ W − i+ 1,

and

(3) after Step (2-4), I ∩ Z ′
2(t) is a base of M2|Z ′

2(t) for every integer t with i ≤ t ≤ W .

Proof. (1) can be easily seen. We prove (2) and (3) by induction on i.

For the base case of i = W , since Z ′
1(1) = ∅ and Z ′

2(W + 1) = ∅ hold, I ′ = ∅ is (w1, w2)-near-

optimal in S′, and thus Lemma 3.3.2 implies that we can obtain a maximum-cardinality common

independent set I of M′
1 and M′

2 satisfying the condition that I ∩Z ′
1(1) is a base of M1|Z ′

1(1) and

I ∩Z ′
2(W +1) is a base of M2|Z ′

2(W +1). Now applying Lemma 3.3.3 (with p1 = 0 and p2 = W),

we have that I ∩ Z ′
1(1) is a base of M1|Z ′

1(1) and I ∩ Z ′
2(W) is a base of M2|Z ′

2(W).

For the induction step i < W , let I ′ be the common independent set obtained in Round i+ 1.

By induction hypothesis, I ′ ∩ Z ′
1(t) is a base of M1|Z ′

1(t) for every integer t with 1 ≤ t ≤ W − i

and I ′ ∩ Z ′
2(t) is a base of M2|Z ′

2(t) for every integer t with i + 1 ≤ t ≤ W . Notice that when

Round i begins, only elements e with w1(e) = 0 and w2(e) = i are added to S′. Hence the two

conditions remain true after Step (2-1).

By these facts, as w2(e) ≥ i for e ∈ S′, Step (2-3) can be correctly applied by Lemma 3.3.2,

and we obtain the new independent set I satisfying the two conditions stated in Step (2-3). The

proof now follows by applying Lemma 3.3.3 (with p1 = W − i and p2 = i).

Theorem 3.3.5. The common independent set I returned by Algorithm 1 is a maximum-weight

common independent set of M1 and M2.

Proof. By Lemma 3.3.4, after the last round when i = 1, as S′ = S, I ∩Z1(t) is a base of M1|Z1(t)

for every t = 1, 2, . . . ,W , and I ∩ Z2(t) is a base of M2|Z2(t) for every t = 1, 2, . . . ,W . Thus,

it follows from Lemma 3.2.1(ii) that I is wℓ-maximum in Mℓ for every ℓ = 1, 2. Then, for every

common independent set J , we have

w(J) = w1(J) + w2(J) ≤ w1(I) + w2(I) = w(I).

Thus, I is a maximum-weight common independent set. This completes the proof.

The algorithm clearly runs in O(W (Tu + Td)) time, where Tu and Td are the running times for

executing Unweighted Matroid Intersection and Update Weight, respectively. Note that Tu and Td

depend on the representation of the given matroids. Their complexities are discussed in Section 3.5.

3.4 Approximation Algorithm

In this section, we will design a (1 − ϵ)-approximation algorithm for the weighted matroid inter-

section. Let W be the maximum weight. First of all, we show that we can round weights to small

48

integers, and bound W from above.

Lemma 3.4.1. We can reduce a given instance of the weighted matroid intersection problem to

one with integral weights whose maximum weight is at most 2r∗/ϵ, where r∗ ≤ r is the maximum

size of a common independent set.

Proof. Set η = ϵW/2r∗, and define w′(e) = ⌊w(e)/η⌋ for each e ∈ S. Then, a (1−ϵ/2)-approximate

solution I ′ for the weight w′ is a (1 − ϵ)-approximate solution for the weight w. Indeed, since

w(e)− η ≤ ηw′(e) ≤ w(e) for every e ∈ S, we have

w(I ′) ≥ ηw′(I ′)

≥ η(1− ϵ/2)w′(I ′opt) (I ′opt is an optimal solution for w′)

≥ η(1− ϵ/2)w′(Iopt) (Iopt is an optimal solution for w)

≥ (1− ϵ/2)(w(Iopt)− η|Iopt|)
≥ (1− ϵ/2)(w(Iopt)− ηr∗)

= (1− ϵ/2)(w(Iopt)− ϵW/2)

≥ (1− ϵ)w(Iopt),

where the last inequality follows because we assume that the given matroids have no loop, so the

element e with w(e) = W is a common independent set, thus, w(Iopt) ≥ W .

During the algorithm, the weight w is split so that w ≈ w1+w2; furthermore, we will guarantee

that all weights of w1 and w2 are nonnegative multiples of some integer δ > 0, where δ may change

in different phases of the algorithm. At the end, we find a common independent set that is w1-

maximum in M1 and w2-maximum in M2, which would imply that I is a (1 − ϵ)-approximate

solution if w ≤ w1 + w2 ≤ (1 + ϵ)w.

For simplicity, we assume that the bound W and ϵ are both powers of 2. Then, our al-

gorithm runs in 1 + log2 ϵW phases. In every phase, we apply a number (roughly O(ϵ−1)) of

Unweighted Matroid Intersection and Update Weight operations. Note that log2 ϵW = O(log r) by

Lemma 3.4.1.

Let δ0 = ϵW . For each integer i with 1 ≤ i ≤ log2 ϵW , define δi = δ0/2
i. The term δi will

be the amount of change in the weights w1 and w2 during Phase i every time Update Weight

is invoked. For each e ∈ S and each integer i with 0 ≤ i ≤ log2 ϵW , define wi(e) to be the

truncated weight of element e in Phase i, i.e., wi(e) = ⌊w(e)/δi⌋δi. Notice that wi+1(e) = wi(e) or

wi+1(e) = wi(e) + δi+1. The algorithm, presented below, returns a (1
1+4ϵ)-approximate solution.

Algorithm 2: Approximation algorithm

Input: two matroids M1 = (S, I1) and M2 = (S, I2), a weight function w:S → Z≥0, and

W = maxe∈S w(e).

Output: I ∈ I1 ∩ I2 where w(I) ≥ w(Iopt)
1+4ϵ .

Step 1. Set i := 0, w1 := 0, w2 := w0, I ′ := ∅, and h := W .

49

Step 2. Applying Algorithm 1:

While i ≤ log2 ϵW , do the following steps.

(2-0) Set L := W
2i+1 if i < log2 ϵW , and L := 1 if i = log2 ϵW .

(2-1) While h ≥ L, do the following steps.

(2-1-1) Set S′ := {e ∈ S | w2(e) ≥ h}.
(2-1-2) Set M′

ℓ = (S′, I ′
ℓ) to be Mwℓ

ℓ |S′ for each ℓ = 1, 2.

(2-1-3) Unweighted Matroid Intersection

Construct I using I ′ so that

(i) I is a maximum-cardinality common independent set of M′
1 and M′

2, and

(ii) I is (w1, w2)-near-optimal in S′.

(2-1-4) Update Weight

(i) Let T ⊆ S′ be the set of elements reachable from X2 in GM′
1,M

′
2
(I).

(ii) For each e ∈ T , let w1(e) := w1(e) + δi, w2(e) := w2(e)− δi.

(2-1-5) Set h := h− δi and I ′ := I.

(2-2) Weight Adjustment:

If i < log2 ϵW , do the following.

(2-2-1) ∀e ∈ I ′, let w2(e) = w2(e) + δi+1.

(2-2-2) ∀e ∈ S \ I ′ where wi+1(e) = wi(e) + δi+1, let w2(e) = w2(e) + δi+1.

(2-2-3) Set h := h+ δi+1.

(2-3) Set i := i+ 1.

Step 3. Return I.

The outer loop Step 2 corresponds to a phase. We use a counter h to keep track of the

progress of the algorithm. Initially h = W . In Phase i, the weights are always kept as nonnegative

multiples of δi. In Step (2-1), the two matroids M′
1 and M′

2 are defined on the common ground

set S′ = {e ∈ S | w2(e) ≥ h}, and the two procedures Unweighted Matroid Intersection and

Update Weight are invoked as was done in the exact algorithm (Algorithm 1) in Section 3.3. The

counter h is decreased by the amount of δi each time after Update Weight is invoked in Step (2-1).

Each time h is halved, we make ready to move to the next phase, except in the last phase: in

Phase log2 ϵW , we stop when h goes down to 1. The reason that we adjust the w2-weights at Step

(2-2) is that we want to ensure that in the beginning of the next phase, the weights w1 and w2 still

approximate the next weight wi+1 (see Lemma 3.4.5). In particular, we increase the w2-weights

of all elements in the current common independent set I ′. This is to make sure that I ′ is still

w2-maximum in the beginning of the next phase (with respect to the newly-defined set S′ in Step

(2-1)).

3.4.1 Analysis

We first observe the number of iterations in the algorithm.

50

Lemma 3.4.2. (1) During Phase i with 0 ≤ i ≤ log2 ϵW , w1 and w2 are nonnegative multiples

of δi, except in Step (2-2).

(2) Step (2-1) is executed at most ϵ−1

2 times in Phase i with 0 ≤ i < log2 ϵW . In the last phase,

Step (2-1) is executed ϵ−1 + 1 times.

(3) The total number of iterations in Step (2-1) is O(ϵ−1 log r).

Proof. (1) can be easily verified. For (2), observe that in Phase 0, Step (2-1) is executed

W −W/2

δ0
=

ϵ−1

2

times. For Phase i ≥ 1, in the beginning of that phase, h = W
2i − δi. Hence, if i < log2 ϵW , Step

(2-1) is executed
(W/2i − δi)−W/2i+1

δi
≤ ϵ−1

2

times, and if i = log2 ϵW , Step (2-1) is executed

W/2i − δi
δi

≤ ϵ−1

times. (3) now immediately follows from (2).

We say an element e ∈ S joins in Phase j if in Phase j, element e becomes a part of the ground

set S′ in Step (2-1-1) the first time.

Lemma 3.4.3. Suppose that an element e ∈ S joins in Phase j for some integer j with j <

log2 ϵW . Then the following holds.

(1) wj(e) ≥ W
2j+1 =

δj
2ϵ .

(2) In every phase i ≥ j, wi(e) ≤ w1(e) + w2(e) ≤ wi(e) + 2δj .

(3) If e ∈ S joins in the last phase j = log2 ϵW , then w1(e) + w2(e) = wj(e).

Proof. Notice that immediately before e joins in Phase j, we have w1(e) + w2(e) = wj(e). This

follows from the observation that unless e is part of I when Step (2-2-1) is executed, the weight

splitting w1(e) and w2(e) is exact with respect wj′(e) for j′ ≤ j. (3) follows easily from this

observation. In the case that j < log2 ϵW , we have that wj(e) ≥ w2(e) ≥ W
2j+1 . Thus (1) is proved.

(2) follows from the fact that the difference between the sum of w1(e) and w2(e) and the

truncated weight wj′(e) grows larger only when Step (2-2-1) is executed in Phase j′ ≥ j and e is

part of the common independent set I in that step. Hence it holds that

wi(e) ≤ w1(e) + w2(e) ≤ wi(e) +

i∑
s=j

δs

≤ wi(e) + 2δj .

51

This completes the proof.

Since all weights of w1, w2 are nonnegative multiples of δi and we modify w1 and w2 by δi at

Update Weight, we have the following lemma, which can be obtained similarly to Lemma 3.3.3 by

dividing all the values by δi.

Lemma 3.4.4. Suppose that all weights of w1 and w2 are nonnegative multiples of δ, and there

are some integers p1 and p2 such that w1(e) ≤ p1 and w2(e) ≥ p2 for every e ∈ S′. In addition,

suppose that I is (i) a maximum-cardinality common independent set of M′
1 and M′

2, and (ii)

(w1, w2)-near-optimal in S′. Then after the procedure Update Weight, we have

(1) I ∩ Z ′
1(t) is a base of M1|Z ′

1(t) for every integer t with 1 ≤ t ≤ p1 + δ, and

(2) I ∩ Z ′
2(t) is a base of M2|Z ′

2(t) for every integer t ≥ p2.

Note that the lemma implies that the current independent set I is still (w1, w2)-near-optimal

in S′ after Step (2-1-4).

We finally see that Weight Adjustment maintains I ′ (w1, w2)-near-optimal in S′.

Lemma 3.4.5. In Phase i, after Step (2-1) terminates, we have the following.

(1) I ′ ∩ Z ′
1(t) is a base of M1|Z ′

1(t) for every integer t ≥ 1.

(2) I ′ ∩ Z ′
2(t) is a base of M2|Z ′

2(t) for every integer t ≥ h+ δi.

Proof. We first prove the following claim.

Claim 1. In each phase, if (1) and (2) hold before the first iteration of Step (2-

1) starts, we have (1) and (2) after the final iteration of Step (2-1) terminates.

Proof. We prove the claim by induction on the number of times Step (2-1)

is invoked. For the base case, we have (1) and (2) in the beginning by the

assumption.

Suppose that we have (1) and (2) for the previous set I ′ at the beginning of the

current iteration in Step (2-1). At Step (2-1-1), some elements may be added

into S′. However, all such elements have w1(e) = 0 and w2(e) = h. Thus,

I ′ still satisfies (1) and (2), and thus it is (w1, w2)-near-optimal in S′ since

w2(e) ≥ h for every e ∈ S′. By Lemma 3.3.2, Step (2-1-3) can be correctly

implemented, and we obtain a maximum-cardinality common independent set

I of M′
1 and M′

2 that is (w1, w2)-near-optimal in S′. After Step (2-1-4), by

Lemma 3.4.4 (by setting δ = δi, p1 = maxe∈S′ w1(e), and p2 = h), we have

that I satisfies (1) and I ∩ Z ′
2(t) is a base of M2|Z ′

2(t) for any integer t ≥ h.

Since h is decreased by δi in Step (2-1-5), we have (1) and (2) at the end of

the current iteration. This proves the claim.

52

We prove the lemma by induction on the number of phases. For the base case, as in the

beginning of the algorithm, h = W and I ′ = ∅, the set I ′ is (w1, w2)-near-optimal in S′. This

means that we have (1) and (2) for I ′, and hence Claim 1 implies that we have (1) and (2) after

the iterations of Step (2-1) terminates in Phase 0.

For the induction step, suppose that currently the algorithm is in Phase i, and that (1) and

(2) are satisfied after Step (2-1) are done. We argue that after the weight adjustment done in Step

(2-2), I ′ still satisfies (1) and (2).

To avoid confusion, let Z̃ℓ(t) (ℓ = 1, 2) denote the sets after w2-weights are modified in Steps

(2-2-1) and (2-2-2), and let h̃ be the value of h after Step (2-2-3), i.e., h̃ = h+ δi+1.

By Lemma 3.4.2(1), all w1 and w2 weights are multiples of δi in Phase i before Step (2-2).

Therefore, after Step (2-1), the fact that I ′ satisfies (2) implies

(⋆) I ′ ∩ Z ′
2(t) is a base of M2|Z ′

2(t) for every integer t ≥ h+ δi+1.

To see this, note that I ′ satisfying (2) only guarantees this property for t ≥ h + δi. We can

subtract δi+1 further because there is no element with w2-weight of the form aδi + δi+1 for some

integer a ≥ 0. Hence the range of t starts from h+ δi − δi+1 = h+ δi+1.

As we increase the w2-weights of all elements in I ′ and a subset of elements in S′ \ I ′, while

leaving the w1-weights unchanged, we have

(i) Z̃1(t) = Z1(t) for all t ∈ Z≥0.

(ii) I ∩ Z̃ ′
1(t) is a base of M1|Z̃ ′

1(t) for every integer t ≥ 1.

(iii) I ∩ Z̃ ′
2(t) is a base of M2|Z̃ ′

2(t) for every integer t ≥ h̃+ δi+1.

(i) and (ii) are easy to see, since w1-weights are unchanged and (1) holds before Step (2-2). For

(iii), consider any integer t ≥ h̃ + δi+1 = h + 2δi+1. We have that I ′ ∩ Z̃ ′
2(t) = I ′ ∩ Z ′

2(t − δi+1),

where the latter is a base of M2|Z ′
2(t−δi+1) by (⋆). As Z̃ ′

2(t) ⊆ Z ′
2(t−δi+1), we infer that I

′∩Z̃ ′
2(t)

is still a base of M2|Z̃ ′
2(t).

Therefore, at the beginning of Phase i + 1, we have (1) and (2), and hence the proof follows

from Claim 1. This completes the proof.

Lemma 3.4.6. The common independent set I returned by Algorithm 2 is a maximum-weight

common independent set, with respect to the final weight function w1 + w2.

Proof. After the last time Step (2-1-5) is executed, by Lemma 3.4.5 and the fact that S′ = S,

I ∩Z1(t) is a base of M1|Z1(t) for every integer t ≥ 1, and I ∩Z2(t) is a base of M2|Z2(t) for every

integer t ≥ δlog2 ϵW . Since δlog2 ϵW = 1, it follows from Lemma 3.2.1(ii) that I is w1-maximum in

M1 and w2-maximum in M2. Therefore, for every common independent set J , we have

w1(J) + w2(J) ≤ w1(I) + w2(I).

The proof follows.

53

Theorem 3.4.7. Let I be the common independent set returned by Algorithm 2. Then I is a

(1− 4ϵ) approximation.

Proof. For every e ∈ S, if it joins in Phase j < log2 ϵW , then by Lemma 3.4.3(2),

wlog2 ϵW (e) ≤ w1(e) + w2(e) ≤ wlog2 ϵW (e) + 2δj

≤ (1 + 4ϵ)wlog2 ϵW (e),

where the last inequality holds since δj ≤ 2ϵwj(e) ≤ 2ϵwlog2 ϵW (e) by Lemma 3.4.3(1). If j =

log2 ϵW , then wlog2 ϵW (e) = w1(e) + w2(e) by Lemma 3.4.3(3). Since wlog2 ϵW (e) = w(e), we

conclude that, for each e ∈ S,

w(e) ≤ w1(e) + w2(e) ≤ (1 + 4ϵ)w(e).

Thus, letting Iopt be the maximum-weight common independent set, Lemma 3.4.6 implies

w(Iopt) ≤ w1(Iopt) + w2(Iopt) ≤ w1(I) + w2(I)

≤ (1 + 4ϵ)w(I).

The proof follows.

3.5 Implementation of Unweighted Matroid Intersection

In this section, we discuss how to implement the procedure Unweighted Matroid Intersection and

the actual complexities of our algorithms for various weighted matroid intersection problems.

Let M1 and M2 be two matroids, and w1 and w2 be weights. Suppose that a given common

independent set I ′ of M′
1 and M′

2 is (w1, w2)-near-optimal in a subset S′ ⊆ S (recall that M′
ℓ =

Mwℓ

ℓ |S′ for ℓ = 1, 2). We explain in the following sections how to find a maximum-cardinality

common independent set I between M′
1 and M′

2 that is (w1, w2)-near-optimal in S′.

3.5.1 General Matroids

In [31], Cunningham shows how to find a maximum-cardinality common independent set, using

O(nr1.5) independence oracle calls. This is done by repeatedly finding an augmenting path in the

auxiliary graph, as described in Section 3.2.2. We argue that if we apply his algorithm to M′
1

and M′
2 with I ′ as the initial common independent set, each new independent set resulting from

augmentation will satisfy the same property as I ′.

Lemma 3.5.1. Suppose that I ′ is (w1, w2)-near-optimal in S′, and let P be the shortest path from

X2 to X1 in GM′
1,M

′
2
(I ′). Then, the set I = I ′△P is also (w1, w2)-near-optimal.

Proof. By Lemma 3.2.1(iii), in GM′
1,M

′
2
(I ′), an element e ∈ (Z1(t) \ Z1(t + 1)) \ I ′ has outgoing

arcs to only other elements in Z1(t) \ Z1(t + 1) for every integer t ≥ 1. Similarly, an element

54

e ∈ (Z2(t) \Z2(t+1))∩ I ′ has only outgoing arcs towards other elements in (Z2(t) \Z2(t+1)) \ I ′
for every integer t ≥ p+ 1, where p = mine∈S′ w2(e).

These two facts imply that along the augmenting path P in GM′
1,M

′
2
(I ′), the number of elements

in (Z1(t) \Z1(t+1)) \ I ′ is the same as the number of elements in (Z1(t) \Z1(t+1))∩ I ′ for every

integer t ≥ 1. Similarly, the number of elements in (Z2(t) \ Z2(t + 1)) ∩ I ′ is the same as that in

(Z2(t) \ Z2(t+ 1)) \ I ′ for every integer t ≥ p+ 1. Thus, |I ∩ Z1(t)|= |I ′ ∩ Z1(t)| for every integer

t ≥ 1, and |I ∩ Z2(t)|= |I ′ ∩ Z2(t)| for every integer t ≥ p+ 1. The proof follows.

Thus, the maximum-cardinality common independent set of M′
1 = (S′, I ′

1) and M′
2 = (S′, I ′

2)

obtained by Cunningham’s algorithm is (w1, w2)-near-optimal if so is the initial set. To apply

Cunningham’s algorithm [31] to M′
1 and M′

2, we need an independence oracle for M′
1 and M′

2

to find an augmenting path. More specifically, for ℓ = 1, 2, we need to test whether I ′ + e ∈ I ′
ℓ

and whether I ′ + e − f ∈ I ′
ℓ for a given independent set I ′, and given elements e ∈ S′ \ I ′ and

f ∈ I ′. This can be implemented by an independence oracle for M1 and M2 as follows. It follows

from Lemma 3.2.1(iii) that if I ′ + e /∈ I ′
ℓ, then I ′ + e − f ∈ I ′

ℓ if and only if I ′ + e − f ∈ Iℓ and

wℓ(e) = wℓ(f). In addition, I ′ + e ∈ I ′
1 if and only if I ′ + e ∈ I1 and w1(e) = 0, and I ′ + e ∈ I ′

2 if

and only if I ′ + e ∈ I2 and w′
2(e) = mine∈S′ w2(e). Thus Unweighted Matroid Intersection can be

implemented in O(nr1.5) independence oracle calls for M1 and M2.

We can perform Update Weight in O(nr) independence oracle calls. Therefore, we have the

following theorem for two general matroids.

Theorem 3.5.2. For two general matroids, we can solve the weighted matroid intersection problem

exactly in O(τWnr1.5) time, and (1− ϵ)-approximately in O(τϵ−1nr1.5 log r) time, where τ is the

running time to check the independence of a set in the given matroids.

For the exact algorithm, a slight sharpening in the running time is possible. Observe that in

Round i, Cunningham’s algorithm takes O(τ |S′|r1.5) time, where S′ = {e ∈ S | w(e) ≥ i}. Since

W∑
i=1

|{e ∈ S | w(e) ≥ i}|=
∑
e∈S

w(e),

the total running time is O(τ(
∑

e∈S w(e))r1.5). This is superior to the previous one only when the

given weights are very “unbalanced.”

3.5.2 Graphic Matroids

Suppose that M1 and M2 are graphic matroids. That is, Mℓ = (S, Iℓ) (ℓ = 1, 2) is represented by

a graph Gℓ = (Vℓ, S) so that Iℓ is the family of edge subsets in S that are forests in Gℓ. Note that

the number of edges in Gℓ is n = |S|, and the number of vertices is O(r), since we may assume that

there is no isolated vertex. Gabow and Xu [68] designed an algorithm that runs in O(
√
rn log r)

time for the unweighted graphic matroid intersection. Their algorithm is an augmentation-type

algorithm, that means it repeatedly finds an augmenting path in the auxiliary graph.

It is well known that, if Mℓ is graphic, then so is M′
ℓ = Mwℓ

ℓ |S′ for a subset S′ and ℓ = 1, 2.

Indeed, for a subset X ⊆ S, the restriction of Gℓ to X (the subgraph induced by an edge subset

55

X), denoted by Gℓ|X, represents Mℓ|X. Moreover, the graph obtained from Gℓ by contracting

X, denoted by Gℓ/X, represents Mℓ/X. Then, by Lemma 3.2.1(i), M′
ℓ = Mwℓ

ℓ |S′ has a graph

representation G′
ℓ|S′, where G′

ℓ is in the form of

G′
ℓ =

W⊕
t=0

(Gℓ|Zℓ(t))/Zℓ(t+ 1),

i.e., G′
ℓ is the disjoint union of graphs (Gℓ|Zℓ(t))/Zℓ(t+1) obtained by restriction and contraction.

Note that the numbers of vertices and edges in G′ are O(r) and n, respectively.

We apply Gabow and Xu’s algorithm [68] for the unweighted problem to M′
1 and M′

2 with I ′

as the initial common independent set. Since I ′ is (w1, w2)-near-optimal, it follows from Lemma

3.5.1 that the obtained maximum-cardinality common independent set is (w1, w2)-near-optimal in

S′. Thus the running time of Unweighted Matroid Intersection is O(
√
rn log r). Since the reachable

set T in the procedure Update Weight can be found in the end of Gabow and Xu’s algorithm, we

can perform Update Weight in linear time. Therefore, we have the following.

Theorem 3.5.3. For two graphic matroids, we can solve the weighted matroid intersection problem

exactly in O(W
√
rn log r) time, and (1− ϵ)-approximately in O(ϵ−1

√
rn log2 r) time.

3.5.3 Linear Matroids

In the case that M1 and M2 are linear, we can use a faster algorithm by Harvey [84] instead of

the augmentation-type algorithm. His algorithm is an algebraic one for finding a common base

of two linear matroids. We reduce our instance to the problem of finding a common base, that

corresponds to a (w1, w2)-near-optimal maximum-cardinality common independent set.

We first describe basic properties of a linear matroid M = (S, I) of rank r. We assume that

M is represented by an r × n matrix A whose column set is S and row set is denoted by R. We

denote by A[I, J] the submatrix consisting of row set I and column set J . For a set X, we denote

the complement by X.

It is known that the restriction and contraction of the linear matroid M are both linear.

Indeed, for a subset X ⊆ S, M|X has the matrix representation A|X = A[R,X]. Moreover, taking

a nonsingular submatrix of maximum size in A[R,X], denoted by A[Y,Z], we have the matrix

representation A/X of the contraction M/X in the form of

A/X = A[Y ,X]−A[Y , Z]A[Y,Z]−1A[Y,X].

The row set of A/X is Y = R\Y . See e.g., [83] for more details. The direct sum of linear matroids

M1 and M2 is also linear, whose matrix representation is the block diagonal matrix arranging the

two matrices for M1 and M2 on the diagonal.

Suppose that we are given a weight function w:S → {0, 1, . . . ,W}. Then, by Lemma 3.2.1(i),

Mw is also linear, and its matrix representation Aw is in the form of

Aw =

W⊕
t=0

(A|Z(t))/Z(t+ 1), (3.1)

56

where we recall Z(t) = {e ∈ S | w(e) ≥ t} for t = 0, . . . ,W + 1. The size of Aw is the same as

A; the ground set of Mw is S, and the row set of Aw is also R. We denote by Y (t) the set of the

nonzero rows in Aw[R,Z(t)] for t = 0, . . . ,W . Thus Aw is a block-diagonal matrix whose blocks

are Aw[Y (t) \ Y (t+ 1), Z(t) \ Z(t+ 1)] for t = 0, . . . ,W , where Y (W + 1) = ∅. Note that Aw can

be computed in O(nrω−1) time, since this can be obtained by Gaussian elimination (see [83]).

We now go back to the weighted matroid intersection. For ℓ = 1, 2, let Mℓ be a linear matroid

of rank rℓ on S, whose matrix representation is given by an rℓ × n matrix Aℓ with the same field.

We also denote by Rℓ the row set of Aℓ for ℓ = 1, 2. Then the following proposition is known in

[84].

Proposition 3.5.4. Two linear matroids M1 and M2 have a common base if and only if the

matrix N = −A1D
−1A⊤

2 is nonsingular, where D is a diagonal matrix of order n such that the set

of the diagonal entries is algebraically independent.

Note that N can be computed in O(nrω−1) time (see [84]).

Let us consider the procedure Unweighted Matroid Intersection. Given a weight-splitting w1 and

w2 of w, recall Zℓ(t) = {e ∈ S | wℓ(e) ≥ t} for t = 0, . . . ,W + 1 and ℓ = 1, 2. Let Yℓ(t) be the set

of the nonzero rows in Awℓ

ℓ [Rℓ, Zℓ(t)] for t = 0, . . . ,W . For a subset S′, let Z ′
ℓ(t) = Zℓ(t) ∩ S′.

Lemma 3.5.5. For two linear matroids, suppose that I ′ is (w1, w2)-near-optimal in a subset S′.

Then we can construct a common independent set I, in O(nrω−1) time, that is simultaneously (i)

a maximum-cardinality common independent set of M′
1 and M′

2, and (ii) (w1, w2)-near-optimal in

S′.

Proof. We denote A′
ℓ = Awℓ

ℓ [Rℓ, S
′], which is a matrix representation of M′

ℓ|S′, for ℓ = 1, 2. We

first show the following claim on (w1, w2)-near-optimality.

Claim 2. A set J is (w1, w2)-near-optimal in a subset S′ if and only if there exists Uℓ ⊆ Rℓ (ℓ =

1, 2) with Y1(1) ⊆ U1 and Y2(p+1) ⊆ U2, where p = mine∈S′ w2(e), such that J is a common base

of A′
1[U1, S

′] and A′
2[U2, S

′].

Proof. Suppose J is (w1, w2)-near-optimal in S′. Then it follows from (3.1) that J ∩Z ′
1(t) is a base

of M1|Z ′
1(t) for every integer t ≥ 1 if and only if each submatrix A′

1[Y1(t), J ∩Z ′
1(t)] is nonsingular

for every integer t ≥ 1. Since A′
1[Y1(1), J ∩ Z ′

1(1)] is nonsingular, we can take U1 ⊆ R1 with

|U1|= |J | such that A′
1[U1, J] is nonsingular and Y1(1) ⊆ U1. Similarly, there exists U2 ⊆ R2 with

|U2|= |J | such that A′
2[U2, J] is nonsingular and Y2(p + 1) ⊆ U2. Thus J is a common base of

A′
1[U1, S

′] and A′
2[U2, S

′].

Conversely, suppose that we have row subsets U1 and U2 satisfying the conditions. Since

A′
1[R1 \Y1(1), Z

′
1(1)] is a zero matrix, the base J has a nonsingular submatrix A′

1[Y1(1), J ∩Z ′
1(1)].

Since the submatrix is block-diagonal, this is equivalent to that J ∩ Z ′
1(t) is a base of M′

1|S′ for

every t ≥ 1. The case for A′
2 is analogous.

By the assumption that I ′ is (w1, w2)-near-optimal in S′, there exist U1 and U2 such that

Y1(1) ⊆ U1, Y2(p + 1) ⊆ U2, and A′
1[U1, S

′] and A′
2[U2, S

′] have a common base. Among such U1

57

and U2, we take U∗
1 and U∗

2 with maximum size. We can find a common base I for A′
1[U

∗
1 , S

′]

and A′
2[U

∗
2 , S

′] by Harvey’s algorithm in O(nrω−1) time [84]. Since I satisfies the conditions of the

above claim, I is (w1, w2)-near-optimal with maximum size in S′. Thus I is a desired set.

It remains to show that we can find such maximum U∗
1 and U∗

2 in O(nrω−1) time. Con-

struct N = −A′
1D

−1A′⊤
2 in O(nrω−1) time, which has the row set R1 and column set R2.

By Proposition 3.5.4, for U1 ⊆ R1 and U2 ⊆ R2, both A′
1[U1, S

′] and A′
2[U2, S

′] have a com-

mon base if and only if N [U1, U2] is nonsingular, which follows from the fact that N [U1, U2] =

−A′
1[U1, S

′]D−1(A′
2[U2, S

′])⊤. Therefore, it suffices to find U∗
1 ⊆ R1 and U∗

2 ⊆ R2 with maximum

size such that Y1(1) ⊆ U∗
1 and Y2(p+ 1) ⊆ U∗

2 and N [U∗
1 , U

∗
2] is nonsingular. This can be done in

O(rω) time, since the rank of N is at most r.

Since Update Weight can be performed in O(nrω−1) time, we can solve the weighted matroid

intersection exactly in O(Wnrω−1) time and approximately in O(ϵ−1nrω−1 log r) time.

Furthermore, using a preprocessing technique by Cheung, Kwok, and Lau [21], we can improve

the computational time. Given a positive integer k, their algorithm reduces an r × n matrix A to

an O(k)× n matrix A′ such that, if a column set in A′ of size at most k is independent, then it is

independent in A with high probability. This can be done in O(nr) time.

We simply use this algorithm where k is set to be the maximum size r∗ ≤ r of a common

independent set of M1 and M2. The size r∗ can be computed in O(nr log r∗ + nrω−1
∗) time

[21]. After we obtain two O(r∗) × n matrices by their method, apply our algorithm to obtain a

maximum-weight common independent set. This takes O(Wnrω−1
∗) time for an exact algorithm

and O(ϵ−1nrω−1
∗ log r∗) time for an approximation algorithm.

Therefore, we have the following theorem.

Theorem 3.5.6. For two linear matroids, we can solve the weighted matroid intersection exactly

in O(nr log r∗ +Wnrω−1
∗) time and (1− ϵ)-approximately in O(nr log r∗ + ϵ−1nrω−1

∗ log r∗) time,

where r∗ is the size of a common independent set.

It should be noted that our algorithm is simple in the sense that it involves only a constant

matrix and does not need to manipulate a univariate-polynomial matrix [163], unlike the algorithms

in [83, 153].

3.6 Rank-Maximal Matroid Intersection

In this section, we deal with the rank-maximal matroid intersection problem. As mentioned in

the introduction, this problem can be reduced to a weighted matroid intersection problem whose

weight w is drawn from {1, n, n2, . . . , nR−1}. More generally, we consider the case where the weight

w is drawn from a geometric series {1, u, u2, . . . , uR−1}, where u ≥ 2. Let dk be the difference of

two consecutive weights, i.e., dk = uk − uk−1 for k = R,R − 1, . . . , 1. For convenience, we also

define d0 = 1.

Our algorithm for the geometric-series weight case is described as follows, where the only

difference from our exact algorithm (Algorithm 1 in Section 3.3) is in the dual update Step (2-4):

we update w1 and w2 with large weight dk.

58

Algorithm 3: Exact algorithm for geometric-series weights

Input: two matroidsM1 = (S, I1) andM2 = (S, I2), a weight function w:S → {1, u, u2, · · · , uR−1},
where u ≥ 2.

Output: I ∈ I1 ∩ I2 where I is a maximum-weight common independent set of M1 and M2.

Step 1. Set k := R− 1, w1 := 0, w2 := w, and I ′ := ∅.

Step 2. While k > 0 do the following steps.

(2-1) Set S′ := {e ∈ S | w2(e) ≥ uk}.
(2-2) Set M′

ℓ := Mwℓ

ℓ |S′ for each ℓ = 1, 2.

(2-3) Unweighted Matroid Intersection (I ′)

Construct I so that

(i) I is a maximum-cardinality common independent set of M′
1 and M′

2, and

(ii) I is (w1, w2)-near-optimal in S′.

(2-4) Update Weight

(2-4-1) Let T ⊆ S′ be the set of elements reachable from X2 in GM′
1,M

′
2
(I).

(2-4-2) For each e ∈ T , let w1(e) := w1(e) + dk, w2(e) := w2(e)− dk.

(2-5) Set k := k − 1 and I ′ := I.

Step 3. Return I.

In the following, we prove the correctness of Algorithm 3 by showing that it would have the

same outcome as if we had run Algorithm 1 in Section 3.3 instead. For the purpose, we first need a

technical lemma, whose proof exploits the property that each weight is at least double the previous

weight in the given geometric series of weights w.

Lemma 3.6.1. At Step (2-1) of Round k (k = R − 1, R − 2, . . . , 1), we have the following for e

and f in S′.

(i) If w1(e) ̸= w1(f), then |w1(e)− w1(f)|≥ dk+1.

(ii) If w2(e) ̸= w2(f), then |w2(e)− w2(f)|≥ dk+1.

Proof. We prove (i) by induction on k. When k = R − 1, all elements have w1-weights 0. So (i)

holds trivially. For the induction step with k < R− 1, if w1(e) ̸= w1(f), then at least one of them,

say e, is part of S′ in the last round (i.e., Round k + 1). To avoid confusion, the set S′ in the last

round is denoted by S
′
. Also w1 and w2 at Step (2-1) of the last round are denoted by w1 and w2,

respectively. Consider two possibilities.

Case 1. Suppose that f ∈ S
′
. By induction hypothesis, either |w1(e) − w1(f)|≥ dk+2, or

w1(e) = w1(f). In the former case, the difference between the w1-weights of e and f is changed

by at most dk+1 in the last round. Therefore, we have

|w1(e)− w1(f)|≥ dk+2 − dk+1 ≥ dk+1,

59

where the last inequality holds because u ≥ 2. In the latter case, either w1(e) = w1(f) (if both

w1(e) and w1(f) are updated or unchanged in the last round), or |w1(e)−w1(f)|= dk+1 (if exactly

one of them is updated).

Case 2. Suppose that f ̸∈ S
′
. Then w1(f) = 0. If w1(e) has not been updated so far,

then w1(e) = 0. Otherwise, since w1(e) is increased at Round s for some s ≥ k + 1, we have

w1(e) ≥ ds ≥ dk+1. The induction step is completed.

(ii) can be proved symmetrically.

To avoid confusion, let i be the index of the rounds when we apply Algorithm 1 in Section 3.3,

and J i be the independent set obtained in Round i. Let k be the index of the rounds when we

apply Algorithm 3, and Ik be the independent set obtained at Round k of Algorithm 3.

Lemma 3.6.2. Define ik = uk for k = R−1, R−2, . . . , 1. For k = R−1, R−2, . . . , 1 and ℓ = 1, 2,

the weights wℓ at Round ik of Algorithm 1 are the same as the weights wℓ at Round k of Algorithm

3. Thus, for k = R− 1, R− 2, . . . , 1, the auxiliary graph in Round k of Algorithm 3 coincides with

one in Round ik of Algorithm 1.

Proof. We prove by induction in k. When k = R− 1 and ik = uR−1, the lemma holds easily. For

the induction step when k < R − 1, we argue that the update of the w1- and w2-weights done in

Round k + 1 of Algorithm 3 are the same as the accumulated updates of the w1- and w2-weights

done in Algorithm 1 from Round ik+1 down to Round ik + 1. To be more precise, in Round k+ 1

in Algorithm 3, all elements in S′ ∩ T have their w2-weights decrease by the amount of dk+1 and

their w1-weights increase by the same amount. We show that from Round ik+1 down to Round

ik + 1 in Algorithm 1, the same set of elements have their w2- and w1-weights updated (and each

round by the amount of one). This would prove the induction step.

For simplicity, we often denote ik+1 − t with (t) for t = 0, 1, . . . , dk+1 − 1. Let G(t) be the

auxiliary graph at Round ik+1 − t in Algorithm 1, and T (t) be the reachable set in G(t) found in

Step (2-4) of Round ik+1 − t. We will show the following properties for Algorithm 1.

(1) The ground set S(t) is the same as S(0).

(2) The reachable set T (t) is the same as T (0).

(3) The independent set J (t) is the same as J (0).

To see (1), observe that, in Algorithm 1, all elements e not in S(0) have w
(0)
2 (e) ≤ uk+1 − 1. Since

w
(0)
2 (e) is equal to w(e), we see w

(0)
2 (e) ≤ uk for e ̸∈ S(0) by the definition of w. Hence e is not

contained in S(t), as w
(t)
2 (e) = w

(0)
2 (e) ≤ uk < uk+1−t for 0 ≤ t ≤ dk+1−1. Therefore, S(0) = S(t).

To see (2), we first show T (t) ⊇ T (0). Note that, by Lemma 3.2.1(iii), for an arc ef in G(0), their

w1-weights w
(0)
1 (e) and w

(0)
1 (f) must be the same if e ̸∈ J (0) and f ∈ J (0), and their w2-weights

w
(0)
2 (e) and w

(0)
2 (f) must be the same if e ∈ J (0) and f ̸∈ J (0). Then, if both e and f are in T (0)

or neither of them is in T (0), their w2-weights (respectively w1-weights) remain the same in the

subsequent rounds, and hence the arc ef appears in G(t). Thus T (t) ⊇ T (0).

60

To prove T (t) ⊆ T (0), it suffices to show that, in the auxiliary graph G(t), there exists no new

arc from an element e in T (0) to an element f not in T (0). Note that, by the definition of T (0),

there exists no arc from e to f in G(0).

First suppose that e ̸∈ J (0) and f ∈ J (0). Then w
(0)
1 (e) < w

(0)
1 (f) holds if the arc ef appeared in

G(t). It follows from the induction hypothesis of the lemma that G(0) coincides with GM′
1,M

′
2
(Ik+1)

at Round k+1 of Algorithm 3. This implies by Lemma 3.6.1 that w
(0)
1 (f)−w

(0)
1 (e) ≥ dk+2. Hence,

for any t = 0, 1, . . . , dk+1 − 1, it holds that

w
(t)
1 (f)− w

(t)
1 (e) ≥ w

(0)
1 (f)− (w

(0)
1 (e) + t)

≥ dk+2 − dk+1 + 1 > 0,

where the last inequality follows from u ≥ 2. Therefore, we always have w
(t)
1 (f) > w

(t)
1 (e) for

0 ≤ t ≤ dk+1 − 1, and thus the arc ef never appears in G(t). Similarly, if e ∈ J (0) and f ̸∈ J (0),

then w
(0)
2 (e) − w

(0)
2 (f) ≥ dk+2 by Lemma 3.6.1. Hence we have w

(t)
2 (e) − w

(t)
2 (f) > 0 for t =

0, 1, . . . , dk+1 − 1. Therefore, (2) follows.

Finally, (3) follows from the fact that in each round, there is no augmentation happening, as

G(0) has no augmenting path and by (1) and (2) neither does G(t). This completes the proof.

Theorem 3.6.3. The independent set I returned by Algorithm 3 is an optimal solution.

Therefore, using Cunningham’s algorithm for the unweighted matroid intersection problem as

a subroutine, we have the following theorem.

Theorem 3.6.4. The rank-maximal matroid intersection problem can be solved using O(Rnr1.5)

independence oracle calls.

We note that even though the actual weights used in Algorithm 3 can be exponentially large,

there is indeed no need to store them explicitly (otherwise, we incur the extra cost in time and

space). We discuss in Section 3.6.1 the implementations details.

In addition, if the given two matroids are both graphic or both linear, then we can solve the

problem fast.

Theorem 3.6.5. The rank-maximal graphic matroid intersection problem can be solved in O(R
√
rn log r)

time.

Theorem 3.6.6. The rank-maximal linear matroid intersection problem can be solved in O(Rnrω−1)

time.

3.6.1 Implementation of Rank-Maximal Matroid Intersection

We discuss how to avoid storing the actual numerical values of the weights when implementing

Algorithm 3. As discussed in Section 3.3, we need to draw an arc in the auxiliary graph properly

and to do this, we just need to know that given any two elements e and f in S′, whether wℓ(e) is

larger than, equivalent to, or smaller than wℓ(f) for ℓ = 1, 2. There is no need to know the actual

values.

61

It is easy to see that, at Round k, we have w1(e) = 0 +
∑R−1

t=k+1 dt · 1e∈T t and w2(e) =

w(e)−∑R−1
t=k+1 dt · 1e∈T t , where T t is the reachable set found in Step (2-4) of Round t. Using this

fact, Lemma 3.6.1, and the definition of dk, we have

Lemma 3.6.7. At Step (2-1) of Round k (k = R − 1, R − 2, . . . , 1), we have the following for e

and f in S′.

(i) If w1(e) > w1(f), then, in Round h = k − 1, k − 2, . . . , 1, w1(e) > w1(f).

(ii) If w2(e) > w2(f), then, in Round h = k − 1, k − 2, . . . , 1, w2(e) > w2(f).

Below we only discuss how to compare the w1-weight of the elements, since the w2-weight can

be handled symmetrically.

In Round k, we can divide the elements according to their weights w1. There can be only O(n)

such groups, gk(1), gk(2), . . ., ordered by their increasing weights. Inside each group gk(i), in the

next round (Round k − 1), the elements can be split into two subgroups, if a strict subset of the

elements in gk(i) belongs to the reachable set T k in Step (2-4). However, by Lemma 3.6.7, in

the next round, we know that elements belonging to these two subgroups of gk(i) will still have

weights w1 smaller than the elements from the subgroups derived from gk(i+1), gk(i+2), . . ., and

larger than the elements from the subgroups derived from gk(i− 1), gk(i− 2), Finally, for the

elements e newly-added in Round k − 1, we have w1(e) = 0. These elements can be either added

into the existing group with the smallest weight, or we can create a new group for them (and such

a group necessarily has the smallest weight). The maintenance of such data structure as described

can be easily done in O(n) time in each round of the algorithm.

3.7 Relation to Other Algorithms

For both the weight matching and the weighted matroid intersection problem, when the largest

weight is not overly large, faster algorithms have been designed to leverage this fact. The more

well-known technique is that of scaling [37, 58, 64, 66, 69, 160]. In each phase, the weights are

rounded to speed up the computation; the weight rounding becomes more fine-grained in each

successive round. In contrast, in [90, 102, 144] and our present work, there is no rounding of

weights. In each phase, only a subset of the edges (the ground set) is considered. Such subsets

enlarge over the phases. We mentioned in passing that the recent result of Lee-Sidford-Wong [123]

is a far department from the previous two general techniques, where a novel cutting-plane method

is employed.

Since the weighted bipartite matching problem is a special case of the weighted matroid in-

tersection problem, we can apply our exact algorithm to the special case: in fact our algorithm

would behave similarly to the one by Kao et al.[102] with the same running time, though the data

structures used are different.

It may be worthwhile contrasting our exact algorithm with the algorithm of Frank [54] for two

general matroids. He uses the weights w1 and w2 to “suppress” some edges in the original auxiliary

graph. It can be shown that the modified auxiliary graph in his algorithm would be identical to

the auxiliary graph of our matroids defined in each round. He augments the current independent

62

set I repeatedly in the modified auxiliary graph, preserving the condition that I is a maximum-

weight common independent set with size |I|. On the other hand, our algorithm only maintains

the relaxed optimality condition, and dramatically augments I with the aid of unweighted matroid

intersection algorithms.

We mentioned earlier that Chekuri and Quanrud [19] have further improved the running time

of our approximation algorithm for general matroids. Their speeding-up is achieved by a more

sophisticated weight adjustment. In particular, in Step 2 of Algorithm 2, instead of finding a

maximum-cardinality common independent set as we have done (this takes O(nr1.5τ) time), they

only compute a common independent set whose size (1 − ϵ)-approximates the former (thus they

only need Õ(nrϵ−1τ) time).

63

Chapter 4

Fair Matchings and Related

Problems

This paper first appeared in FSTTCS 2012 and its full version appears in Algorithmica 2016. It

is joint-work with Kavitha Telikepalli, Kurt Mehlhorn, and Dimitrios Michail.

Let G = (A ∪ B,E) be a bipartite graph, where every vertex ranks its neighbors

in an order of preference (with ties allowed) and let r be the worst rank used. A

matching M is fair in G if it has maximum cardinality, subject to this, M matches

the minimum number of vertices to rank r neighbors, subject to that, M matches the

minimum number of vertices to rank (r−1) neighbors, and so on. We show an efficient

combinatorial algorithm based on LP duality to compute a fair matching in G. We

also show a scaling based algorithm for the fair b-matching problem.

Our two algorithms can be extended to solve other profile-based matching problems.

In designing our combinatorial algorithm, we show how to solve a generalized version

of the minimum weighted vertex cover in bipartite graph, using a single-source shortest

paths computation—this can be of independent interest.

4.1 Introduction

Let G = (A ∪ B,E) be a bipartite graph on n vertices and m edges, where each u ∈ A ∪ B has a

list ranking its neighbors in an order of preference (ties are allowed). Such an instance is usually

referred to a stable marriage instance with incomplete lists and ties. A matching is a collection of

edges, no two of which share an endpoint.

The focus in stable marriage problems is to find matchings that are stable. However, there

are many applications where stability is not the most critical objective: for instance, in matching

students with counsellors or applicants with training posts, we cannot compromise on the size of

the matching and a fair matching is a natural candidate for an optimal matching in such problems.

Definition 4.1.1. A matching M is fair in G = (A∪B,E) if M has maximum cardinality, subject

64

to this, M matches the minimum number of vertices to rank r neighbors, and subject to that, M

matches the minimum number of vertices to rank (r−1) neighbors, and so on, where r is the worst

rank used in the preference lists of vertices.

The fair matching problem can be solved in polynomial time as follows: for an edge e with

incident ranks i and j, let w(e) = ni−1+nj−1. It is easy to see that a maximum cardinality matching

of minimum weight (under weight function w) is a fair matching in G. Such a matching can be

computed via the maximum weight matching algorithm by resetting e’s weight to 4nr−ni−1−nj−1,

where r is the largest rank used in any preference list.

However this approach can be expensive even if we use the fastest maximum-weight bipartite

matching algorithms [39, 56, 63, 138]. The running time will be O(rmn) or Õ(r2m
√
n). Note that

these complexities follow from the customary assumption that an arithmetic operation takes O(r)

time on weights of the order nr. We present two different techniques to efficiently compute fair

matchings and a generalization called fair b-matchings.

A combinatorial technique. Our first technique is an iterative combinatorial algorithm for the

fair matching problem. The running time of this algorithm is Õ(r∗m
√
n) or Õ(r∗nω) with high

probability, where r∗ is the largest rank used in a fair matching and ω ≈ 2.37 is the exponent

of matrix multiplication. This algorithm is based on linear programming duality and in each

iteration i, we solve the following “dual problem” – dual to a variant of the maximum weight

matching problem.

Generalized minimum weighted vertex cover problem. Let Gi = (A ∪ B,Ei) be a bi-

partite graph with edge weights given by wi : Ei → {0, 1, . . . , c}. Let Ki−1 ⊆ A ∪ B

satisfy the property that there is a matching in G that matches all v ∈ Ki−1. Find a

cover {yiu}u∈A∪B so that
∑

u∈A∪B yiu is minimized subject to (1) for each e = (a, b) in

Ei, we have yia + yib ≥ wi(e), and (2) yiu ≥ 0 if u ̸∈ Ki−1.

When Ki−1 = ∅, the above problem reduces to the standard weighted vertex cover problem.

We show that the generalized minimum weighted vertex cover problem, where yiv for v ∈ Ki−1 can

be negative, can be solved via a single-source shortest paths subroutine in directed graphs, by a

non-trivial extension of a technique of Iri [92].

A scaling technique. Our second technique uses scaling in order to solve the fair matching

problem, by the aforementioned reduction to computing a maximum weight matching using ex-

ponentially large edge weights. It starts by solving the problem when each edge weight is 0 and

then iteratively solves the problem for better and better approximations of the edge weights. This

technique is applicable in the more generalized problem of computing fair b-matchings, where each

vertex has a capacity associated with it. We solve the fair b-matching problem, in time Õ(rmn)

and space O(m), by solving the capacitated transshipment problem, while carefully maintaining

“reduced costs” whose values are within polynomial bounds. Brute-force application of the fastest

known minimum-cost flow algorithms would suffer from the additional cost of arithmetic and an

O(rm) space requirement. For instance, using [78] would result in Õ(r2mn) running time and

O(rm) space.

65

4.1.1 Background

Fair matchings are a special case of the profiled-based matching problem. So far they have received

little attention in the literature. Except the two pre-prints [88, 130] on which this work is based,

the only work we are aware of is the Ph.D. thesis of Sng [161], where he gives an algorithm to

find a fair b-matching 1 in O(rQmin{m log n, n2)) time, where Q =
∑

v∈V q(v), the sum of the

capacity q(v) of all vertices v ∈ V .

The first profiled-based matching problem was introduced by Irving [98] and is called “rank-

maximal matching” problem. 2 This problem has been well-studied [95, 106, 131, 141].

Definition 4.1.2. A matching M in G = (A∪B,E) is rank-maximal if M matches the maximum

number of vertices to rank 1 neighbors, subject to this constraint, M matches the maximum number

of vertices to rank 2 neighbors, subject to the above two constraints, M matches the maximum

number of vertices to rank 3 neighbors, and so on.

However the rank-maximal matching problem has been studied so far in a more restricted model

called the the one-sided preference lists model. In this model, only vertices of A have preferences

over neighbors while vertices in B have no preferences. Note that a problem in the one-sided

preference lists model can also be modeled as a problem with two-sided preference lists by making

every b ∈ B assign rank r to every edge incident on it, where r is the worst rank in the preference

lists of vertices in A.

The current fastest algorithm to compute a rank-maximal matching in the one-sided preference

lists model takes time O(min{r∗m√
n,mn, r∗nω}) [95], where r∗ is the largest rank used in a

rank-maximal matching. In the one-sided preference lists setting, each edge has a unique rank

associated with it, thus the edge set E is partitioned into E1 ∪̇E2 ∪̇ · · · ∪̇Er – this partition enables

the problem of computing a rank-maximal matching to be reduced to computing r∗ maximum

cardinality matchings in certain subgraphs of G.

We show here that our fair matching algorithm can be easily modified to compute a rank-

maximal matching in the two-sided preference lists model. Thus this problem can be solved in

time Õ(r∗m
√
n) or Õ(r∗nω) with high probability, which almost matches its running time for the

one-sided case. Another problem that our algorithm can solve is the “maximum cardinality” rank-

maximal matching problem. A matching M is a maximum cardinality rank-maximal matching if

M has maximum cardinality, and within the set of maximum cardinality matchings, M is rank-

maximal.

Organization of the paper. Section 4.2.1 contains our algorithm for the generalized bipartite ver-

tex cover problem, Section 4.2.2 has our algorithm for fair matchings, and Section 4.2.3 has the

extension to rank-maximal matchings in two-sided preference lists. Section 4.3 has our scaling

algorithm.

1Sng used the term “generous maximum matching.”
2Irving called it “greedy matching.”

66

4.2 Our Combinatorial Technique for fair matchings

Recall that our input here is G = (A ∪ B,E) and r is the worst or largest rank used in any

preference list. The notion of signature will be useful to us in designing our algorithm. We first

define edge weight functions wi, for 1 ≤ i ≤ r − 1. The value wi(e), where e = (a, b), is defined as

follows:

wi(e) =


2 if both a and b rank each other as rank ≤ r − i neighbors

1 if exactly one of {a, b} ranks the other as a rank ≤ r − i neighbor

0 otherwise

Definition 4.2.1. For any matching M in G, let signature(M) be (|M |, w1(M), . . . , wr−1(M)),

where wi(M) =
∑

e∈M wi(e), for 1 ≤ i ≤ r − 1.

Thus signature(M) is an r-tuple, where the first coordinate is the size of M , the second coor-

dinate is the number of vertices that get matched to neighbors ranked r − 1 or better, and so on.

Let OPT denote a fair matching. Then signature(OPT) ⪰ signature(M) for any matching M in G,

where ⪰ is the lexicographic order on signatures.

In order to capture the first coordinate of signature(M) also via an edge weight function, let us

introduce the function w0 defined as: w0(e) = 1 for all e ∈ E. Thus |M |= w0(M) =
∑

e∈M w0(e).

For any matching M and 0 ≤ j ≤ r − 1, let signaturej(M) denote the (j + 1)-tuple obtained by

truncating signature(M) to its first j + 1 coordinates.

Definition 4.2.2. A matching M is (j + 1)-optimal if signaturej(M) = signaturej(OPT).

Our algorithm runs for r∗ iterations, where r∗ ≤ r is the largest index i such that wi−1(OPT) >

0. For any j ≥ 0, in the (j + 1)-st iteration, our algorithm solves the minimum weighted vertex

cover problem in a subgraph Gj . This involves computing a maximum wj-weight matching Mj in

the graph Gj under the constraint that all vertices of a critical subset Kj−1 ⊆ A ∪ B have to be

matched. In the first iteration which corresponds to j = 0, we have G0 = G and K−1 = ∅.
The problem of computing Mj will be referred to as the primal program of the (j + 1)-st

iteration and the minimum weighted vertex cover problem becomes its dual. We will show Mj to

be (j+1)-optimal. The problem of computingMj can be expressed as a linear program (rather than

an integer program) as the constraint matrix is totally unimodular and hence the corresponding

polytope is integral. This linear program and its dual are given below. (Let δ(v) be the set of

edges incident on vertex v.)

Lemma 4.2.3. Mj and yj are the optimal solutions to the primal and dual programs respectively,

iff the following hold:

1. if u is unmatched in Mj (thus u has to be outside Kj−1), then yju = 0;

2. if e = (u, v) ∈ Mj, then yju + yjv = wj(e);

67

max
∑
e∈E

wj(e)x
j
e∑

e∈δ(v)

xj
e ≤ 1 ∀v ∈ A ∪B

∑
e∈δ(v)

xj
e = 1 ∀v ∈ Kj−1

xj
e ≥ 0 ∀e in Gj .

min
∑
v∈V

yjv

yja + yjb ≥ wj(e) ∀e = (a, b) in Gj

yjv ≥ 0 ∀v ∈ (A ∪B) \Kj−1.

Proposition 4.2.3 follows from the complementary slackness conditions in the linear program-

ming duality theorem. This suggests the following strategy once the primal and dual optimal

solutions Mj and yj are found in the (j + 1)-st iteration.

• to prune “irrelevant” edges: if e = (u, v) and yju + yjv > wj(e), then no optimal solution of

the j-th iteration primal program can contain e. So we prune such edges from Gj and let

Gj+1 denote the resulting graph. The graph Gj+1 will be used in the next iteration.

• to grow the critical set Kj−1: if yju > 0 and u ̸∈ Kj−1, then u has to be matched in every

optimal solution of the primal program of the (j + 1)-st iteration. Hence u should be added

to the critical set. Adding such vertices u to Kj−1 yields the critical set Kj for the next

iteration.

Below we first show how to solve the dual problem and then give the main algorithm.

4.2.1 Solving the dual problem

For any 0 ≤ j ≤ r − 1, let Gj = (A ∪ B,Ej) be the subgraph that we work with in the (j + 1)-st

iteration and let Kj−1 ⊆ A∪B be the critical set of vertices in this iteration. Recall that for each

e ∈ Ej , we have wj(e) ∈ {0, 1, 2}. We now show how to solve the dual problem efficiently for a

more general edge weight function, i.e., wj(e) ∈ {0, 1, . . . , c} for each e ∈ Ej .

Let Mj be the optimal solution of the primal program (we discuss how to compute it at the end

of this section). We know that Mj matches all vertices in Kj−1. We now describe our algorithm

to solve the dual program using Mj . Our idea is built upon that of Iri [92], who solved the special

case of Kj−1 = ∅. Recall that if a vertex v is unmatched in Mj , then v ̸∈ Kj−1.

• Add a new vertex z to A and let A′ = A ∪ {z}. Add an edge of weight 0 from z to each

vertex in B \ Kj−1. For convenience, we call the edges from z to these vertices “virtual”

edges. The matching Mj still remains an optimal feasible solution after this transformation.

[Note that there are only O(n) virtual edges.]

• Next direct all edges e ∈ Ej \Mj from A′ to B and set the edge weight d(e) = −wj(e); also

direct all edges in Mj from B to A′ and let the edge weight d(e) = wj(e).

• Create a source vertex s and add a directed edge of weight 0 from s to each unmatched vertex

in A′. See Figure 4.1.

68

s

z

a1

a2

a3

b1

b2

b3

b4

A′ B

Figure 4.1: The bold edges are edges of Mj and are directed from B to A′ while the edges of Ej \Mj are
directed from A′ to B.

Let R denote the set of all vertices in A′ ∪ B that are reachable from s. In Figure 4.1,

R = {z, a3, b1, b2}.

Lemma 4.2.4. By the above transformation,

1. B \Kj−1 ⊆ R.

2. There is no edge between A′ ∩R and B \ R.

3. Mj projects on to a perfect matching between A′ \ R and B \ R.

Proof. Part (1) holds because there is a directed edge from s to z and directed edges from z to

every vertex in B \ Kj−1. To show part (2), it is trivial to see that there can be no edge from

A′ ∩R to B \ R (by the definition of B \ R). If there is an edge (b, a) from B \ R to A′ ∩R, then

this has to be an edge in Mj and hence it is a’s only incoming edge. So for a to be reachable from

s, it has to be the case that b is reachable from s, contradicting that b ∈ B \ R.

For part (3), observe that if b ∈ B \ R is unmatched in Mj , then b ̸∈ Kj−1 and such a vertex

can be reached via z, contradicting the assumption that b ∈ B \ R. If a ∈ A′ \ R is unmatched in

Mj , then such a vertex can be reached from s, contradicting the assumption that a ∈ A′ \ R. So

all vertices in (A′ ∪B) \ R are matched in Mj . By (2), a vertex b ∈ B \ R cannot be matched to

vertices in A′ ∩ R. If a vertex a ∈ A′ \ R is matched to a vertex B in R, then a is also in R, a

contradiction. This proves part (3).

Note that there may exist some edges in Ej \ Mj that are directed from A′ \ R to B ∩ R.

Furthermore, some vertices of A \Kj−1 can be contained in A \ R. Delete all edges from A′ \ R
to B ∩R from Gj ; let Hj denote the resulting graph. By Lemma 4.2.4.3, no edge of Mj has been

deleted, thus Mj belongs to Hj and Mj is still an optimal matching in the graph Hj . Moreover, Hj

is split into two parts: one part is (A′∪B)∩R, which is isolated from the second part (A′∪B)\R.

See Figure 4.2.

Next add a directed edge from the source vertex s to each vertex in B \R. Each of these edges

e has weight d(e) = 0. By Lemma 4.2.4.3, all vertices can be reached from s now. Also note that

there can be no negative-weight cycle, otherwise, we can augment Mj along this cycle to get a

69

A′ B

A′ ∩R

A′ \R

B ∩R

B \R

Figure 4.2: The set A′ ∪B in the graph Hj is split into two parts: (A′ ∪B) ∩R and (A′ ∪B) \ R

matching of larger weight while still keeping the same set of vertices matched, which leads to a

contradiction to the optimality of Mj .

Apply the single-source shortest paths algorithm [75, 152, 154, 174] from the source vertex s in

this graph Hj where edge weights are given by d(·). Such algorithms take O(m
√
n) time or Õ(nω)

time when the largest edge weight is O(1). Let dv be the distance label of vertex v ∈ A′ ∪B.

We define an initial vertex cover as follows. If a ∈ A′, let ỹa := da; if b ∈ B, let ỹb := −db. (We

will adjust this cover further later.)

Lemma 4.2.5. The constructed initial vertex cover {ỹv}v∈A′∪B for the graph Hj satisfies the

following properties:

1. For each vertex v ∈ ((A ∪B) ∩R) \Kj−1, ỹv ≥ 0.

2. If v ∈ (A ∪B) \Kj−1 is unmatched in Mj, then ỹv = 0.

3. For each edge e = (a, b) ∈ Hj, we have ỹa + ỹb ≥ wj
e.

4. For each edge e = (a, b) ∈ Mj, we have ỹa + ỹb = wj
e.

Proof. For part (1), suppose that a ∈ (A ∩R) \Kj−1 and ỹa < 0. By Lemma 4.2.4.2 and the fact

that all edges from A′ \ R to B ∩ R are absent, the shortest path from s to a cannot go through

(A∪B) \R. So there exists an alternating path P (of even length) starting from some unmatched

vertex a′ ∈ (A′ ∩ R) \ Kj−1 and ending at a. The distance from a′ to a along path P must be

negative, since da = ỹa < 0. Therefore,

∑
e∈Mj∩P

we <
∑

e∈P\Mj

we.

Note that it is possible that the first edge e = (a′, b) ∈ P is a virtual edge, i.e., a′ = z and the

first edge e connects z to some vertex b ∈ (B ∩ R) \ Kj−1. In this case, de = 0 and b is not an

element of the critical set Kj−1. Therefore, irrespective of whether the first edge is virtual or not,

we can replace the matching Mj by Mj ⊕ P (ignoring the first edge in P if it is virtual), thereby

creating a feasible matching with larger weight than Mj , a contradiction.

70

So we are left to worry about the case when vertex b ∈ (B ∩R) \Kj−1. Recall that ỹb = −db.

We claim that db ≤ 0. Suppose not. Then the shortest distance from s to b is strictly larger than

0. But this cannot be, since there is a path composed of edges (s, z) and (z, b), and such a path

has total distance of exactly 0. This completes the proof of part (1).

To show part (2), by Lemma 4.2.4.3, an unmatched vertex must be in R. First, assume that

this unmatched vertex is a ∈ (A∩R)\Kj−1. By our construction, there is only one path from s to

a, which is simply the directed edge from s to a and its distance is 0. So ya = da = 0. Next assume

that this unmatched vertex is b ∈ (B ∩ R) \Kj−1. Suppose that ỹb > 0. Then db = −ỹb < 0. By

Lemma 4.2.4.2 and the fact that all edges from A′ \ R to B ∩ R have been deleted, the shortest

path from s to b cannot go through (A ∪B) \ R. So the shortest path from s to b must consist of

the edge from s to some unmatched vertex a ∈ (A′ ∩R) \Kj−1, followed by an augmenting path

P (of odd length) ending at b. As in the proof of (1), we can replace Mj by Mj ⊕ P (irrespective

of whether the first edge in P is virtual or not) so as to get a matching of larger weight while

preserving the feasibility of the matching, a contradiction. This proves part (2).

For parts (3) and (4), first consider an edge e = (a, b) outside Mj in Hj . Such an edge

is directed from a to b. So ỹa − wj
e = da + d(e) ≥ db = −ỹb. This proves part (3). Next

consider an edge e = (a, b) ∈ Mj . Such an edge is directed from b to a. Furthermore, e is the

only incoming edge of a, implying that e is part of the shortest path tree rooted at s. As a result,

−ỹb+wj
e = db+d(e) = da = ỹa. This shows part (4). This completes the proof of Lemma 4.2.5.

At this point, we possibly still do not have a valid cover for the dual program due to the

following two reasons.

• Some vertex a ∈ A \ Kj−1 has ỹa < 0. (However it cannot happen that some vertex

b ∈ B \ Kj−1 has ỹb < 0, since Lemma 4.2.4.1 states that such a vertex is in R and

Lemma 4.2.5.1 states that ỹb must be non-negative.)

• The edges deleted from Gj (to form Hj) are not properly covered by the initial vertex cover

{ỹv}v∈A∪B .

We can remedy these two defects as follows. Define δ = max{δ1, δ2, 0},

where δ1 = max
e=(a,b)∈E

{wj
e − ỹa − ỹb} and δ2 = max

a∈A\Kj−1

{−ỹa}.

In O(n +m) time, we can compute δ. If δ = 0, the initial cover is already a valid solution to

the dual program. In the following, we assume that δ > 0 exists (if the initial cover is already a

valid solution for the dual program, then the proof that it is also optimal is just the same as in

Theorem 4.2.6.) We build the final vertex cover as follows. The proof of Theorem 4.2.6 is included

in Appendix A.

1. For each vertex u ∈ (A ∪B) ∩R, let yu = ỹu;

2. For each vertex a ∈ A \ R, let ya = ỹa + δ;

3. For each vertex b ∈ B \ R, let yb = ỹb − δ;

71

Theorem 4.2.6. The final vertex cover {yv}v∈A∪B is an optimal solution for the dual program.

Given Mj , it follows that the dual problem can be solved in time O(m
√
n) or Õ(nω). The

problem of computing Mj can be solved by the following folklore technique: form a new graph

G̃j by taking two copies of Gj and making the two copies of a vertex u /∈ Kj−1 adjacent using an

edge of weight 0. A maximum weight perfect matching in G̃j yields a maximum weight matching

in Gj that matches all vertices in Kj−1, i.e., an optimal solution to the primal program of the j-th

iteration. Since c = O(1), a maximum weight perfect matching in G̃j can be found in O(m
√
n log n)

time by the fastest bipartite matching algorithms [39, 56, 63, 138], or in Õ(nω) time with high

probability by Sankowski’s algorithm [154].

4.2.2 Our main algorithm

We now present our algorithm to compute a fair matching. Recall that r is the worst rank in

the problem instance and r∗ is the worst rank in a fair matching. We first present an algorithm

that runs for r iterations and we show later in this section how to terminate our algorithm in r∗

iterations.

1. Initialization. Let G0 = G and K−1 = ∅.

2. For j = 0 to r − 1 do

(a) Find the optimal solution {yju}u∈A∪B to the dual program of the (j + 1)-st iteration.

(b) Delete from Gj every edge (a, b) such that yja + yjb > wj(e). Call this subgraph Gj+1.

(c) Add all vertices with positive dual values to the critical set, i.e., Kj = Kj−1 ∪ {u}yj
u>0.

3. Return the optimal solution to the primal program of the last iteration.

The solution returned by our algorithm is a maximum (wr−1)-weight matching in the graph

Gr−1 that matches all vertices in Kr−2. By Proposition 4.2.3, this is, in fact, a matching in

the subgraph Gr that matches all vertices in Kr−1. Lemma 4.2.8 proves the correctness of our

algorithm. Lemma 4.2.7 (proof in Appendix A) guarantees that our algorithm is never “stuck” in

any iteration due to the infeasibility of the primal or dual problem.

Lemma 4.2.7. The primal and dual programs of the (j + 1)-st iteration are feasible, for 0 ≤ j ≤
r − 1.

Lemma 4.2.8. For every 0 ≤ j ≤ r − 1, the following hold:

1. any matching M in Gj that matches all v ∈ Kj−1 is j-optimal;

2. conversely, a j-optimal matching in G is a matching in Gj that matches all v ∈ Kj−1.

Proof. We proceed by induction. The base case is j = 0. As K−1 = ∅, G0 = G, and all matchings

are, by definition, 0-optimal, the lemma holds vacuously.

For the induction step j ≥ 1, suppose that the lemma holds up to j − 1. As Kj−1 ⊇ Kj−2

and Gj is a subgraph of Gj−1, M is a matching in Gj−1 that matches all vertices of Kj−2. Thus

72

by induction hypothesis, M is (j − 1)-optimal. For each edge e = (a, b) ∈ M to be present in

Gj , e must be a tight edge in the j-th iteration, i.e., yj−1
a + yj−1

b = wj−1(e). Furthermore, as

Kj−1 ⊇ {u}yj−1
u >0, we have

wj−1(M) =
∑

e=(a,b)∈M

wj−1(e) =
∑

e=(a,b)∈M

yj−1
a + yj−1

b ≥
∑

u∈A∪B

yj−1
u ,

where the final inequality holds because all vertices v with positive yj−1
v are matched in M . By

linear programming duality, M must be optimal in the primal program of the j-th iteration. So

the j-th primal program has optimal solution of value wj−1(M).

Recall that by definition, OPT is also (j − 1)-optimal. By (2) of the induction hypothesis,

OPT is a matching in Gj−1 and OPT matches all vertices in Kj−2. So OPT is a feasible solution

of the primal program in the j-th iteration. Thus wj−1(OPT) ≤ wj−1(M). However, it cannot

happen that wj−1(OPT) < wj−1(M), otherwise, signature(M) ≻ signature(OPT), since both OPT

and M have the same first j−1 coordinates in their signatures. So we conclude that wj−1(OPT) =

wj−1(M), and this implies that M is j-optimal as well. This proves (1).

In order to show (2), let M ′ be a j-optimal matching in G. Since M ′ is j-optimal, it is also

(j − 1)-optimal and by (2) of the induction hypothesis, it is a matching in Gj−1 that matches

all vertices in Kj−2. So M ′ is a feasible solution to the primal program of the j-th iteration. As

signature(M ′) has wj−1(OPT) in its j-th coordinate, M ′ must be an optimal solution to this primal

program; otherwise there is a j-optimal matching with a value larger than wj−1(OPT) in the j-th

coordinate of its signature, contradicting the optimality of OPT. By Proposition 4.2.3.2, all edges

of M ′ are present in Gj and by Proposition 4.2.3.1, all vertices u ̸∈ Kj−2 with yj−1
u > 0, in other

words, all vertices in Kj−1 \Kj−2 have to be matched by the optimal solution M ′. This completes

the proof of (2).

Since our algorithm returns a matching in Gr that matches all vertices in Kr−1, we know from

Lemma 4.2.8.1 that this matching is r-optimal, thus the matching returned is fair. As mentioned

earlier, our algorithm can be modified so that it terminates in r∗ iterations. For that, we need to

know the value of r∗.

We continue to use the weight function w0 : E → {1}, however instead of w1, . . . , wr, we should

use the weight functions w̃1, . . . , w̃r∗−1 where for 1 ≤ i ≤ r∗ − 1, w̃i is defined as: for any edge

e = (a, b), w̃i(e) is 2 if both a and b rank each other as rank ≤ r∗− i+1 neighbors, it is 1 if exactly

one of {a, b} ranks the other as a rank ≤ r∗ − i + 1 neighbor, otherwise it is 0. The value r∗ can

be easily computed right at the start of our algorithm as follows.

• Let M∗ be a maximum cardinality matching in G. The value r∗ is the smallest index j such

that the subgraph Ḡj admits a matching of size |M∗|, where Ḡj is obtained by deleting all

edges e = (a, b) from G where either a or b (or both) ranks the other as a rank > j neighbor.

• We compute r∗ by first computing M∗ and then computing a maximum cardinality matching

in Ḡ1, Ḡ2, . . . and so on till we see a subgraph Ḡj that admits a matching of size |M∗|. This
index j = r∗ and it can be found in O(r∗m

√
n) time [?] or in O(r∗nω) time [84, 132].

73

We now bound the running time of our algorithm. We showed how to solve the dual program in

O(m
√
n) time once we have the solution to the primal program and we have seen that the primal

program can be solved in O(m
√
n log n) time. Alternatively, both the primal and dual problems

can be solved in Õ(nω) time with high probability. Theorem 4.2.9 follows.

Theorem 4.2.9. A fair matching M in G = (A ∪ B,E) can be computed in Õ(r∗m
√
n) time,

or in Õ(r∗nω) time with high probability, where r∗ is the largest rank incident on an edge in M ,

n = |A ∪B|, m = |E|, and ω ≈ 2.37 is the exponent of matrix multiplication.

4.2.3 Two-sided rank-maximality

In this section we show how our fair matching algorithm can be modified to solve the rank-maximal

matching problem and the maximum cardinality rank-maximal matching problem in the domain

of two-sided preference lists. For both these problems, we use the same algorithm that we designed

for fair matchings – the only difference is in how the edge weight functions w0, . . . , wr−1 are defined.

Consider the maximum cardinality rank-maximal matching problem. Here we use the same

function w0 that we used in the fair matching algorithm, i.e., w0(e) = 1 for all e ∈ E. For

1 ≤ i ≤ r − 1 and e = (a, b), wi(e) = 2 if both a and b rank each other as rank i neighbors, it is 1

if exactly one of {a, b} ranks the other as a rank i neighbor, otherwise it is 0.

It is easy to see that the matching OPT under the above weight functions is a maximum

cardinality rank-maximal matching in G. When the algorithm given in Section 4.2.2 is run using

these edge weight functions, the matching returned has signature signature(OPT) (by Lemmas 4.2.7

and 4.2.8), in other words, it is a maximum cardinality rank-maximal matching. This algorithm

can again be made in terminate in r∗ iterations (Appendix A has the details).

In the rank-maximal matching problem, we define the functions w0, . . . , wr−1 from E to {0, 1, 2}
as follows. For 0 ≤ i ≤ r− 1 and e = (a, b), wi(e) = 2 if both a and b rank each other as rank i+1

neighbors, it is 1 if exactly one of {a, b} ranks the other as a rank i+1 neighbor, otherwise it is 0.

Using these edge weight functions and our algorithm from Section 4.2.2, we get a rank-maximal

matching in the two-sided preference lists model. Again, this algorithm can be made in terminate

in r∗ iterations (via the same details as in the case above – see Appendix A). We conclude this

section with the following theorem.

Theorem 4.2.10. A rank-maximal/maximum cardinality rank-maximal in G = (A ∪ B,E) with

two-sided preference lists, can be computed in Õ(r∗m
√
n) time, or in Õ(r∗nω) time with high

probability, where r∗ is the largest rank used in such a matching.

4.3 The fair b-matching problem: our scaling technique

The fair matching problem can be generalized by introducing capacities on the vertices. We are

given G = (A ∪B,E) as before, along with the capacity function q : V → S>0. What we seek is a

subset E′ of E where each vertex v ∈ A∪B is incident to at most q(v) edges in E′. Such a subset

E′ is a b-matching. Our goal here is to find a fair b-matching, i.e., a b-matching M which has

the largest possible size, subject to this constraint, M matches the minimum number of vertices

to their rank r neighbors, and so on.

74

The fair b-matching problem can be reduced to the minimum-cost circulation problem as

follows. Add two additional vertices s and t. For each vertex a ∈ A, add an edge (s, a) with

capacity q(a) and cost zero; for each vertex b ∈ B, add an edge (b, t) with capacity q(b) and cost

zero. Every edge (a, b) where a ∈ A, b ∈ B has capacity one and is directed from A to B. If the

incident ranks on edge e are i and j, then e will be assigned a cost of −(4nr − ni−1 − nj−1). The

resulting instance has a trivial upper bound of n2/4 on the maximum s-t flow. We also add an

edge from t to s with zero cost and capacity larger than the n2/4 upper bound. It is easy to verify

that a minimum-cost circulation yields a fair b-matching.

We note however, that the above reduction involves costs that are exponential in the size of

the original problem. We now present a general technique in order to handle these huge costs –

we focus on solving the capacitated transshipment version of the minimum-cost flow problem [?].

Let G = (V,E) be a directed network with a cost c : E → S and capacity u : E → S≥0 associated

with each edge. With each v ∈ V a real number b(v) is associated, where
∑

v∈V b(v) = 0. If

b(v) > 0, then v is a supply node, and if b(v) < 0, then v is a demand node. We assume G to be

symmetric, i.e., e ∈ E implies that the reverse arc eR ∈ E. The reversed edges are added in the

initialization step. The cost and capacity functions satisfy c(e) = −c(eR) for each e ∈ E, u(e) ≥ 0

for the original edges and u(eR) = 0 for the additional edges. From now on, E denotes the set of

original and artificial edges.

A pseudoflow is a function x : E → S satisfying the capacity and antisymmetry constraints: for

each e ∈ E, x(e) ≤ u(e) and x(e) = −x(eR). This implies x(e) ≥ 0 for the original edges. For a

pseudoflow x and a node v, the imbalance imbx(v) is defined as imbx(v) =
∑

(w,v)∈E x(w, v)+b(v).

A flow is a pseudoflow x such that, imbx(v) = 0 for all v ∈ V . The cost of a pseudoflow x is

cost(x) =
∑

e∈E c(e)x(e). The minimum-cost flow problem asks for a flow of minimum cost.

For a given flow x, the residual capacity of e ∈ E is ux(e) = u(e) − x(e). The residual

graph G(x) = (V,E(x)) is the graph induced by edges with positive residual capacity. A potential

function is a function π : V → S. For a potential function π, the reduced cost of an edge e = (v, w)

is cπ(v, w) = c(v, w) + π(v) − π(w). A flow x is optimal if and only if there exists a potential

function π such that cπ(e) ≥ 0 for all residual graph edges e ∈ E(x). For a constant ε ≥ 0 a flow

is ε-optimal if cπ(e) ≥ −ε for all e ∈ E(x) for some potential function π. Consider an ε-optimal

flow x and any original edge e. If cπ(e) < −ε, the residual capacity of e must be zero and hence e

is saturated, i.e., x(e) = u(e). If cπ(e) > ε, we have cπ(eR) = −cπ(e) < −ε and hence the residual

capacity of eR must be zero. Thus eR is saturated, i.e., x(eR) = u(eR) = 0. So e is unused.

We are now ready to describe our scaling algorithm, which is presented in a concise form in

Figure 4.3. The details are given in Appendix B. We conclude this section with Theorem 4.3.1,

which follows from the edge cost values used in our reduction.

Theorem 4.3.1. Given G = (A ∪ B,E) and a capacity function q : A ∪ B → S>0, the fair

b-matching problem can be solved in time O(rmn log (n2/m) log n) using space O(m).

75

1. Reduction.

(a) Add two additional vertices s and t. For each vertex a ∈ A, add an edge (s, a) with
capacity q(a) and cost zero; for each vertex b ∈ B, add an edge (b, t) with capacity q(b)
and cost zero. Add an edge from t to s with zero cost and capacity larger than n2/4.

(b) Direct any edge (a, b) where a ∈ A and b ∈ B from A to B, set its capacity to one and
cost to −(4nr − ni−1 − nj−1).

(c) Set the demand/supply values of all vertices to zero. Add, if required, additional edges
to ensure that G is symmetric.

2. Initialization Phase.

(a) Multiply all edge costs by 21+⌈logn⌉ to make them divisible by the same amount.

(b) Let K = ⌈logC⌉ where C is the magnitude of the largest edge cost and let Ei, 1 ≤ i ≤ K
denote the set of all edges having a 1 in the i-th bit of their cost.

(c) Initialize x0 to any feasible flow and reduced cost c0(e) = 0 for any e ∈ E.

3. Scaling Phase. For i = 1 to K do

(a) Let c̃i(e) = 2ci−1(e) + (1 if e ∈ Ei else 0) × sign(e), where sign(e) = ±1 depending on
the sign of the original cost c(e). The flow xi−1 is 3-optimal with respect to the cost
function c̃i and the zero potential function, i.e., the potential of all the vertices is 0.

(b) Use the results of [?] with input (i) the flow xi−1, (ii) c̃i as the edge cost function and
(iii) the zero potential function, to compute a 1-optimal flow and a potential function
π̃ which proves the 1-optimality. Let xi be this flow.

(c) Compute new reduced costs as ci(u, v) = c̃i(u, v) + π̃(u)− π̃(v).

(d) Let d be the constant from Lemma 4.3.3 (in Appendix B). If any edge e ∈ E has
|ci(e)|> d · n+ 1 fix it to empty or saturated by removing it (and its reversal) from the
graph and modifying the imbalances of both its endpoints accordingly.

4. Return the b-matching induced by the flow xK and any flow on edges which were fixed to
either empty or saturated.

Figure 4.3: The scaling algorithm for the fair b-matching problem.

Appendix A: Missing proofs from Section 4.2

Proof of Theorem 4.2.6. We first argue that {yv}v∈A∪B is a feasible dual solution. By

Lemma 4.2.5.1 and the choice of δ, all vertices a ∈ A \Kj−1 have ya ≥ 0. By Lemma 4.2.4.1 and

Lemma 4.2.5.1, all vertices b ∈ B \Kj−1 have yb ≥ 0. Also by Lemma 4.2.4.2 and Lemma 4.2.5.3,

and the choice of δ, all edges in Ej are properly covered. So {yv}v∈A∪B is feasible. We have:

wj(Mj) =
∑
e∈Mj

wj
e =

∑
e=(a,b)∈Mj , b∈R

ỹa + ỹb +
∑

e=(a,b)∈Mj , b ̸∈R
(ỹa + δ) + (ỹb − δ)

=
∑

e=(a,b)∈Mj

ya + yb ≥
∑

u∈A∪B

yu,

76

where the last inequality holds because if a vertex u is unmatched, Lemma 4.2.5.2 states that

ỹu = 0 and since u must be in R, we have yu = ỹu = 0. Now by the linear programming duality

theorem, we conclude that the cover {yv}v∈A∪B is optimal.

Proof of Lemma 4.2.7. By linear programming duality, if the primal program of the (j + 1)-st

iteration is bounded from above and admits a feasible solution, then there is also a feasible solution

for its dual. It is obvious that the primal program is bounded from above since it is upper bounded

by
∑

e∈E wj(e) ≤ 2m. Therefore, to prove this lemma, we just need to show the feasibility of the

primal program.

The base case is j = 0. SinceK−1 = ∅, any matching in G0 = G is a feasible solution for the first

primal program. For j ≥ 1, we need to show that the primal program of the (j + 1)-st iteration is

feasible. By induction hypothesis, assume that the primal program of the j-th iteration is feasible.

Let Mj−1 denote its optimal solution. Since Mj−1 is a feasible point of the primal program of the

j-th iteration, Mj−1 uses only edges in Gj−1 and matches all vertices in Kj−2. Since Mj−1 is, in

fact, an optimal solution to the primal program of the j-th iteration, we will show that Mj−1 has

to be a feasible point of the primal program of the (j + 1)-st iteration by arguing that Mj−1 does

not use any of the edges pruned from Gj−1 and all vertices in Kj−1 are matched in Mj−1.

In step 2(c) of the j-th iteration, we remove only those edges e = (a, b) such that yj−1
a +yj−1

b >

wj−1(e) from Gj−1 to form Gj . By the optimality of Mj−1, we know from Proposition 4.2.3.2 that

Mj−1 has no slack edges, thus all edges in Mj−1 are retained in Gj .

We also know from Proposition 4.2.3.1 that if yj−1
u > 0, then u must be matched in Mj−1.

Therefore, all vertices in Kj−1\Kj−2 are matched in Mj−1. Moreover, as Mj−1 is also a feasible

solution in the j-th primal program, all vertices in Kj−2 are matched in Mj−1. This completes

the proof of Lemma 4.2.7.

Two-sided rank-maximal matchings: terminating in r∗ iterations

In the problems of computing rank-maximal matchings and maximum cardinality rank-maximal

matchings (from Section 4.2.3), we can terminate our algorithm from Section 4.2.2 in r∗ iterations

by inserting the following step at the end of Step 2 in every iteration. Also, this new step has the

same complexity as the primal program.

Step 2(d) (in the (j + 1)-st iteration). Define the graph G′
j+1 as follows: the edge set

is exactly the same as in Gj+1; however the edge weight function w′
j is as follows. For

each edge e in G′
j+1: set w′

j(e) = 1 if
∑r

i=j wi(e) > 0, else set w′
j(e) = 0.

– Now find a maximum w′
j-weight matching M ′

j+1 in G′
j+1 that matches all vertices in

Kj . If the weight of M ′
j+1 is 0, then return Mj as the final solution, where Mj is the

primal optimal solution of the (j + 1)-st iteration.

Lemma 4.3.2. The following claims hold:

(1) For any j ≥ 0, if the matching M ′
j+1 has weight 0, then Mj is a fair matching.

(2) If r∗ is the largest rank incident on an edge in OPT, then M ′
r∗ has weight 0.

77

Proof. We first show (1). Suppose w′
j(M

′
j+1) = 0. Since all edge weights are non-negative, we claim

that any matching M in Gj+1 that matches all vertices in Kj must have wj(M) = wj+1(M) =

· · · = wr−1(M) = 0, otherwise, w′
j(M) > 0, a contradiction to the assumption that the maximum

weight matching M ′
j+1 in G′

j+1 satisfies w′
j(M

′
j+1) = 0.

As a result, both Mj and OPT have 0 in the last r− j coordinates in their signatures, since Mj

(by its optimality in Gj) and OPT (by Lemma 4.2.8.2) are matchings in Gj that match all vertices

of Kj−1. By Lemma 4.2.8.1, Mj is (j + 1)-optimal. Hence signature(Mj) = signature(OPT), thus

Mj is fair and (1) is proved.

We prove (2) by contradiction. Suppose r∗ is the largest rank on an edge incident in OPT and

we have w′
r∗−1(M

′
r∗) > 0. Since M ′

r∗ is a matching in Gr∗ that matches all vertices in Kr∗−1,

it follows from Lemma 4.2.8.1 that M ′
r∗ is r∗-optimal. While OPT has only 0 in its last r − r∗

coordinates, M ′
r∗ has some positive values in its last r − r∗ coordinates; so we have M ′

r∗ ≻ OPT.

This is a contradiction to the optimality of OPT.

Appendix B: Missing details from Section 4.3

We now give the details of our algorithm from Section 4.3, which was presented in Figure 4.3.

Goldberg and Tarjan [?] gave a scaling algorithm for the capacitated transshipment problem.

It scales the costs and runs in O(log(nC)) phases where C is the magnitude of the largest edge

cost. We assume that capacities, demands and supplies are polynomially bounded in n, but costs

may be exponential in the input size. We modify the algorithm of Goldberg and Tarjan so that

all numbers handled by the algorithm are polynomially bounded. The main ideas are to maintain

node potentials implicitly by storing only reduced costs and to fix the flow across edges of large

(positive or negative) reduced cost. Fixing flow or node potentials has been previously used in

network problems in order to obtain strongly polynomial algorithms [? , page 397].

First we assume that all costs are divisible by 21+⌈logn⌉. In case they are not, we can always

multiply them by 21+⌈logn⌉. This guarantees that a 1-optimal flow is optimal. We refer the reader

to [?] for more details. Let K = ⌈logC⌉ where C is the magnitude of the largest edge cost. We

assume that each cost is a signed integer ±b1b2 . . . bK , where b1 is the most significant bit. For

0 ≤ i ≤ K, let ci(e) = ⌊c(e)/2K−i⌋ be the cost obtained by considering only the first i-bits of the

binary representation of c(e) when viewed as numbers with K bits.

Our scaling algorithm works in phases; in phase i it computes a 1-optimal flow with respect to

the cost function ci and some potential function πi. During the algorithm we store explicitly only

the reduced costs and not the potential function. Nevertheless, we use πi to refer to the potential

function in phase i. In phase zero we set the cost of every edge to zero and calculate any feasible

flow x0. The zero potential function on the vertices, i.e., the potential of all the vertices is 0,

guarantees the 1-optimality of x0. We therefore set the reduced cost cπ0
0 (e) = 0 for any e ∈ E.

Consider next any phase i with i ≥ 1. At the beginning of the phase, we have a 1-optimal flow

xi−1 and a reduced cost function c
πi−1

i−1 . We scale up by multiplying the potentials and the edge

costs by 2 and adding ±1 (after multiplying by 2) to the edge costs of edges in Ei (we either add

78

or subtract based on the sign of c(e)). The reduced costs scale up as follows:

c̃i(e) = 2c
πi−1

i−1 (e) + (1 if e ∈ Ei else 0)× sign(e) (4.1)

where Ei is the set of edges having a one in the i-th bit of their cost and sign(e) is 1 or −1

depending on the sign of the original cost c(e) of e.

At the end of phase i − 1, the flow xi−1 is 1-optimal and therefore c
πi−1

i−1 (e) ≥ −1 for any

edge e with positive residual capacity. After scaling up, Equation (4.1) gives us that any edge

with positive residual capacity has c̃i(e) ≥ −3. This is equivalent to saying that xi−1 is 3-optimal

with respect to the edge costs c̃i and the zero potential function on the vertices, i.e., the potential

function which is zero for all vertices. We use a variant of the algorithm of Goldberg and Tarjan [?

] to transform the 3-optimal flow into a 1-optimal flow.

Lemma 4.3.3 (from [?], see also [?]). Given the edge cost function c̃i and a 3-optimal flow

xi−1 with respect to the zero potential function, in time O(mn log (n2/m)) one can compute a flow

xi and a potential function π̃ such that xi is 1-optimal with respect to the potential function π̃.

Potentials are only decreased, starting from zero, during the computation and π̃(v) ≥ −d · n for

some constant d and all v.

At the end of the phase, we recompute the reduced costs as cπi
i (u, v) = c̃i(u, v) + π̃(u)− π̃(v).

Recall that we do not store the potential function πi which at this point would be πi(v) = 2πi−1(v)+

π̃(v). We next show that edges of large reduced cost can be discarded; more precisely, we can fix

their flow to either zero or the capacity.

Handling large reduced costs. We say that the reduced cost of an edge e is large positive from

phase i on, if c
πj

j (e) > 1 at the end of every phase j ≥ i, and is large negative from phase i on,

if c
πj

j (e) < −1 at the end of every phase j ≥ i. If e is large positive from phase i on, we have

xj(e) = 0 for all j ≥ i and if e is large negative from phase i on, we have xj(e) = u(e) for all j ≥ i.

Lemma 4.3.4. Let e = (u, v) and d be the constant from Lemma 4.3.3. If c̃i(e) > 2dn+ 1 at the

beginning of phase i, e is large positive from phase i on, and if c̃i(e) < −2dn− 1 at the beginning

of phase i, e is large negative from phase i on.

Proof. Assume c̃i(e) > 2dn+1 at the beginning of some phase i. Then, at the end of phase i we have

cπi
i (e) = c̃i(u, v)+ π̃(u)− π̃(v) > dn+1 since we know from Lemma 4.3.3 that −dn ≤ π̃(v) ≤ 0 for

all v ∈ V . Therefore, at the beginning of the next phase c̃i+1(e) = 2cπi
i (e)+(1 if e ∈ Ei+1 else 0)×

sign(e) > 2dn+ 2− 1 = 2dn+ 1. Thus, e is large positive from phase i onwards.

Assume next that c̃i(e) < −dn − 1 at the beginning of some phase i. Then, at the end of

phase i we have cπi
i (e) = c̃i(u, v) + π̃(u)− π̃(v) < −dn− 1 since we know from Lemma 4.3.3 that

−dn ≤ π̃(v) ≤ 0 for all v ∈ V . At the beginning of the next phase c̃i+1(e) = 2cπi
i (e) + (1 if e ∈

Ei+1 else 0) × sign(e) < −2dn − 2 + 1 = −2dn − 1. Thus, e is large negative from phase i

onwards.

Lemmas 4.3.3 and 4.3.4 allow us to fix the flow across an edge e once |c̃i(e)|> dn+1. We remove

the edge e (and its reversal eR) from the graph and modify the imbalances of both endpoints

accordingly, by adjusting supply and demand values. Thus, all reduced costs can be bounded by

79

O(n) and all arithmetic operations involve polynomially bounded numbers. Theorem 4.3.5 now

follows.

Theorem 4.3.5. The minimum cost flow problem with polynomially bounded demands can be

solved in O(T +mn log (n2/m) log nC) time and O(S+m) space using arithmetic only on numbers

of size polynomial in n, where C is the magnitude of the largest edge cost and T and S are the

time and space bounds of an algorithm to sequentially enumerate the sets Ei, 1 ≤ i ≤ ⌈logC⌉, of
all edges having a 1 in the i-th bit of their weight.

80

Chapter 5

Streaming Algorithms for

Maximizing Monotone

Submodular Functions under a

Knapsack Constraint

This paper appeared in APPROX 2017. It is joint-work with Naonori Kakimura and Yuichi

Yoshida.

Abstract In this paper, we consider the problem of maximizing a monotone submod-

ular function subject to a knapsack constraint in the streaming setting. In particular,

the elements arrive sequentially and at any point of time, the algorithm has access only

to a small fraction of the data stored in primary memory. For this problem, we propose

a (0.363 − ε)-approximation algorithm, requiring only a single pass through the data;

moreover, we propose a (0.4−ε)-approximation algorithm requiring a constant number

of passes through the data. The required memory space of both algorithms depends

only on the size of the knapsack capacity and ε.

5.1 Introduction

A set function f : 2E → R+ on a ground set E is called submodular if it satisfies the diminishing

marginal return property, i.e., for any subsets S ⊆ T ⊊ E and e ∈ E \ T , we have

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T).

A function is monotone if f(S) ≤ f(T) for any S ⊆ T . Submodular functions play a fundamental

role in combinatorial optimization, as they capture rank functions of matroids, edge cuts of graphs,

and set coverage, just to name a few examples. Besides their theoretical interests, submodular

81

functions have attracted much attention from the machine learning community because they can

model various practical problems such as online advertising [7, 109, 162], sensor location [112], text

summarization [125, 126], and maximum entropy sampling [120].

Many of the aforementioned applications can be formulated as the maximization of a monotone

submodular function under a knapsack constraint. In this problem, we are given a monotone

submodular function f : 2E → R+, a size function c : E → N, and an integer K ∈ N, where N
denotes the set of positive integers. The problem is defined as

maximize f(S) subject to c(S) ≤ K, (5.1)

where we denote c(S) =
∑

e∈S c(e) for a subset S ⊆ E. Throughout this paper, we assume that

every item e ∈ E satisfies c(e) ≤ K as otherwise we can simply discard it. Note that, when c(e) = 1

for every item e ∈ E, the constraint coincides with a cardinality constraint.

The problem of maximizing a monotone submodular function under a knapsack constraint is

classical and well-studied. First introduced by Wolsey [172], the problem is known to be NP-hard

but can be approximated within the factor of (close to) 1− 1/e; see e.g., [10, 20, 52, 116, 164].

In some applications, the amount of input data is much larger than the main memory capacity

of individual computers. In such a case, we need to process data in a streaming fashion. That

is, we consider the situation where each item in the ground set E arrives sequentially, and we are

allowed to keep only a small number of the items in memory at any point. This setting effectively

rules out most of the techniques in the literature, as they typically require random access to the

data. In this work, we also assume that the function oracle of f is available at any point of the

process. Such an assumption is standard in the submodular function literature and in the context

of streaming setting [9, 18, 173]. Badanidiyuru et al. [9] discuss several interesting and useful

functions where the oracle can be implemented using a small subset of the entire ground set E.

We note that the problem, under the streaming model, has so far not received its deserved

attention in the community. Prior to the present work, we are aware of only two: for the special

case of cardinality constraint, Badanidiyuru et al. [9] gave a single-pass (1/2 − ε)-approximation

algorithm; for the general case of a knapsack constraint, Yu et al. [173] gave a single-pass (1/3−ε)-

approximation algorithm, both using O(K log(K)/ε) space.

We now state our contribution.

Theorem 5.1.1. For the problem (5.1),

1. there is a single-pass streaming algorithm with approximation ratio 4/11− ε ≈ 0.363− ε.

2. there is a multiple-pass streaming algorithm with approximation ratio 2/5− ε = 0.4− ε.

Both algorithms use O(K · poly(ε−1)polylog(K)) space.

Our Technique

We begin by a straightforward generalization of the algorithm of [9] for the special case of cardi-

nality constraint (Section 5.2). This algorithm proceeds by adding a new item into the current set

only if its marginal-ratio (its marginal return with respect to the current set divided by its size)

82

exceeds a certain threshold. This algorithm performs well when all items in OPT are relatively

small in size, where OPT is an optimal solution. However, in general, it only gives (1/3 − ε)-

approximation. Note that this technique can be regarded as a variation of the one in [173]. To

obtain better approximation ratio, we need new ideas.

The difficulty in improving this algorithm lies in the following case: A new arriving item that

is relatively large in size, passes the marginal-ratio threshold, and is part of OPT, but its addition

would cause the current set to exceed the capacity K. In this case, we are forced to throw it away,

but in doing so, we are unable to bound the ratio of the function value of the current set against

that of OPT properly.

We propose a branching procedure to overcome this issue. Roughly speaking, when the function

value of the current set is large enough (depending on the parameters), we create a secondary set.

We add an item to the secondary set only if it passes the marginal-ratio threshold (with respect

to the original set) but its addition to the original set would violate the size constraint. In the

end, whichever set achieves the higher value is returned. In a way, the secondary set serves as a

“back-up” with enough space in case the original set does not have it, and this allows us to bound

the ratio properly. Sections 5.3 and 5.4 are devoted to explaining this branching algorithm, which

gives (4/11− ε)-approximation with a single pass.

We note that the main bottleneck of the above single-pass algorithm lies in the situation where

there is a large item in OPT whose size exceeds K/2. In Section 5.5, we show that we can first

focus on only the large items (more specifically, those items whose size differ from the largest item

in OPT by (1 + ε) factor) and choose O(1) of them so that at least one of them, along with the

rest of OPT (excluding the largest item in it), gives a good approximation to f(OPT). Then in the

next pass, we can apply a modified version of the original single-pass algorithm to collect small

items. This multiple-pass algorithm gives a (2/5− ε)-approximation.

Related Work

Maximizing a monotone submodular function subject to various constraints is a subject that has

been extensively studied in the literature. We are unable to give a complete survey here and

only highlight the most representative and relevant results. Besides a knapsack constraint or a

cardinality constraint mentioned above, the problem has also been studied under (multiple) matroid

constraint(s), p-system constraint, multiple knapsack constraints. See [15, 17, 20, 50, 116, 121] and

the references therein. In the streaming setting, other than the knapsack constraint that we have

discussed before, there are also works considering a matroid constraint. Chakrabarti and Kale [16]

gave 1/4-approximation; Chekuri et al. [18] gave the same ratio.

Notation

For a subset S ⊆ E and an element e ∈ E, we use the shorthand S + e and S − e to stand for

S ∪ {e} and S \ {e}, respectively. For a function f : 2E → R, we also use the shorthand f(e)

to stand for f({e}). The marginal return of adding e ∈ E with respect to S ⊆ E is defined

as f(e | S) = f(S + e) − f(S). We frequently use the following, which is immediate from the

diminishing marginal return property:

83

Algorithm 1

1: procedure MarginalRatioThresholding(α, v) ▷ α ∈ (0, 1], v ∈ R+

2: S := ∅.
3: while item e is arriving do

4: if f(e|S)
c(e) ≥ αv−f(S)

K−c(S) and c(S + e) ≤ K then S := S + e.

5: return S.

Proposition 5.1.2. Let f : 2E → R+ be a monotone submodular function. For two subsets

S ⊆ T ⊆ E, it holds that f(T) ≤ f(S) +
∑

e∈T\S f(e | S).

5.2 Single-Pass (1/3− ε)-Approximation Algorithm

In this section, we present a simple (1/3−ε)-approximation algorithm that generalizes the algorithm

for a cardinality constraint in [9]. This algorithm will be incorporated into several other algorithms

introduced later.

5.2.1 Thresholding Algorithm with Approximate Optimal Value

In this subsection, we present an algorithm MarginalRatioThresholding, which achieves (almost)

1/3-approximation given a (good) approximation v to f(OPT) for an optimal solution OPT. This

assumption is removed in Section 5.2.2.

Given a parameter α ∈ (0, 1] and v ∈ R+, MarginalRatioThresholding attempts to add a new

item e ∈ E to the current set S ⊆ E if its addition does not violate the knapsack constraint and e

passes the marginal-ratio threshold condition, i.e.,

f(e | S)
c(e)

≥ αv − f(S)

K − c(S)
. (5.2)

The detailed description of MarginalRatioThresholding is given in Algorithm 1.

Throughout this subsection, we fix S̃ = MarginalRatioThresholding(α, v) as the output of the

algorithm. Then, we have the following lemma.

Lemma 5.2.1. The following hold:

(1) During the execution of the algorithm, the current set S ⊆ E always satisfies f(S) ≥
αvc(S)/K. Moreover, if an item e ∈ E passes the condition (5.2) with the current set

S, then f(S + e) ≥ αvc(S + e)/K.

(2) If an item e ∈ E fails the condition (5.2), i.e., f(e|S)
c(e) < αv−f(S)

K−c(S) , then we have f(e | S̃) <
αvc(e)/K.

Proof. We prove (1) by induction on the size of S. The base case S = ∅ is trivial. For induction

step, suppose that e ∈ E is the new item to be added into the current set S ⊆ E. Then

f(S + e) = f(S) + f(e | S) ≥ f(S) + c(e)
αv − f(S)

K − c(S)

84

≥ αvc(e)

K − c(S)
+ f(S)

K − c(S)− c(e)

K − c(S)
≥ αvc(S + e)

K
,

where the last inequality follows from the induction hypothesis on the lower bound of f(S). Thus

(1) holds.

For (2), as the current set satisfies S ⊆ S̃, by the submodularity of f ,

f(e | S̃) ≤ f(e | S) < c(e)(αv − f(S))

K − c(S)
≤ αvc(e)

K
,

where the last inequality follows from the first part of the lemma.

An item e ∈ OPT is not added to S̃ if either e does not pass the condition (5.2), or its addition

would cause the size of S to exceed the capacity K. We name the latter condition as follows:

Definition 5.2.2. An item e ∈ OPT is called bad if e passes the condition (5.2) but the total size

exceeds K when added, i.e., f(e | S) ≥ αv−f(S)
K−c(S) , c(S + e) > K and c(S) ≤ K, where S is the set

we have just before e arrives.

The following lemma says that, if there is no bad item, then we obtain a good approximation.

Lemma 5.2.3. If v ≤ f(OPT) and there have been no bad item, then f(S̃) ≥ (1− α)v holds.

Proof. By the submodularity and the monotonicity, we have

v ≤ f(OPT) ≤ f(OPT ∪ S̃) ≤ f(S̃) +
∑

e∈OPT\S̃
f(e | S̃).

Since we have no bad item, f(e | S̃) ≤ αvc(e)/K for any e ∈ OPT \ S̃ by Lemma 5.2.1 (2). Hence,

we have v ≤ f(S̃) + αv, implying f(S̃) ≥ (1− α)v.

Consider an algorithm Singleton, which takes the best singleton as shown in Algorithm 2. If

some item e ∈ OPT is bad, then, together with S̃′ = Singleton(), we can achieve (almost) 1/3-

approximation.

Theorem 5.2.4. We have max{f(S̃), f(S̃′)} ≥ min{α/2, 1 − α}v. The right-hand side is maxi-

mized to v/3 when α = 2/3.

Proof. If there exists no bad item, we have f(S̃) ≥ (1 − α)v by Lemma 5.2.3. Suppose that we

have a bad item e ∈ E. Let Se ⊆ E be the set just before e arrives in MarginalRatioThresholding.

Then, we have f(Se + e) ≥ αvc(Se + e)/K by Lemma 5.2.1 (1). Since c(Se + e) > K, this means

f(Se+ e) ≥ αv. Since f(Se+ e) ≤ f(Se)+ f(e) by submodularity, one of f(Se) and f(e) is at least

αv/2. Thus f(S̃) ≥ f(Se) ≥ αv/2 or f(S̃′) ≥ f(e) ≥ αv/2.

Therefore, if we have v ∈ R+ with v ≤ f(OPT) ≤ (1+ε)v, the algorithm that runs MarginalRa-

tioThresholding(2/3, v) and Singleton() in parallel and chooses the better output has the approxi-

mation ratio of 1
3(1+ε) ≥ 1

3 − ε. The space complexity of the algorithm is clearly O(K).

85

Algorithm 2

1: procedure Singleton()
2: S := ∅.
3: while item e is arriving do
4: if f(e) > f(S) then S := {e}.
5: return S.

Algorithm 3

1: procedure DynamicMRT(ε, α) ▷ ε, α ∈ (0, 1]
2: V := {(1 + ε)i | i ∈ Z+}.
3: For each v ∈ V, set Sv := ∅.
4: while item e is arriving do
5: m := max{m, f(e)}.
6: I := {v ∈ V | m ≤ v ≤ Km/α}.
7: Delete Sv for each v ̸∈ I.
8: for each v ∈ I do
9: if f(e|Sv)

c(e) ≥ αv−f(Sv)
K−c(Sv)

and c(Sv + e) ≤ K then Sv := Sv + e.

10: return Sv for v ∈ I that maximizes f(Sv).

5.2.2 Dynamic Updates

MarginalRatioThresholding requires a good approximation v to f(OPT). This requirement can be

removed with dynamic updates in a similar way to [9]. We first observe that maxe∈S f(e) ≤
f(OPT) ≤ Kmaxe∈S f(e). So if we are given m = maxe∈S f(e) in advance, a value v ∈ R+ with

v ≤ f(OPT) ≤ (1 + ε)v for ε ∈ (0, 1] exists in the guess set I = {(1 + ε)i | m ≤ (1 + ε)i ≤ Km, i ∈
Z+}. Then, we can run MarginalRatioThresholding for each v ∈ I in parallel and choose the best

output. As the size of I is O(log(K)/ε), the total space complexity is O(K log(K)/ε).

To get rid of the assumption that we are given m in advance, we consider an algorithm, called

DynamicMRT, which dynamically updates m to determine the range of guessed optimal values.

More specifically, it keeps the (tentative) maximum value max f(e), where the maximum is taken

over the items e arrived so far, and keeps the approximations v in the interval between m and

Km/α. The details are provided in Algorithm 3. We have the following guarantee.

Theorem 5.2.5. For ε ∈ (0, 1], the algorithm that runs DynamicMRT(ε, 2/3) and Singleton() in

parallel and outputs the better output is a (1/3−ε)-approximation streaming algorithm with a single

pass for the problem (5.1). The space complexity of the algorithm is O(K log(K)/ε).

Proof. Let e ∈ E be an item arriving. We will show that, if v > Km/α (for α = 2/3), then e always

fails the condition (5.2) in DynamicMRT. Indeed, if v > Km/α and e passes the condition (5.2)

with the current set S, then Lemma 5.2.1 (1) implies that

f(S + e) ≥ αvc(S + e)

K
> c(S + e)m ≥ |S + e| max

e′∈S+e
f(e′),

where the last inequality follows from the fact that c(e) ≥ 1 and m ≥ maxe′∈S+e f(e
′). On the

other hand, f(S + e) ≤ |S + e|maxe′∈S+e f(e
′) as f is submodular, which is a contradiction.

86

Therefore, when an item e ∈ E arrives, e may be added to the current set only if v ≤ Km/α.

Moreover, since Singleton returns an item e with f(e) ≥ m, we can discard the case when v < m

during the process of DynamicMRT. Thus DynamicMRT simulates all the values in V, only keeping

the values in the interval [m,Km/α]. Since one of v ∈ V satisfies v ≤ f(OPT) ≤ (1 + ε)v, the

output gives (1/3− ε)-approximation from Theorem 5.2.4.

There are O(logK/ε) streams, and each stream may have a solution with size O(K). Thus,

the total space is as desired.

5.3 Improved Single-Pass Algorithm for Small-Size Items

Let OPT = {o1, o2, . . . , oℓ} be an optimal solution with c(o1) ≥ c(o2) ≥ . . . ≥ c(oℓ). The main goal

of this section is achieving (2/5 − ε)-approximation, assuming that c(o1) ≤ K/2. The case with

c(o1) > K/2 will be discussed in Section 5.4.

5.3.1 Branching Framework with Approximate Optimal Value

We here provide a framework of a branching algorithm BranchingMRT as Algorithm 4. This will

be used with different parameters in Section 5.3.2.

Let v and c1 be (good) approximations to f(OPT) and c(o1)/K, respectively, and let b ≤ 1/2

be a parameter. The value c1 is supposed to satisfy c1 ≤ c(o1)/K ≤ (1 + ε)c1. This means that

we can ignore items e ∈ E with c(e) > min{(1 + ε)c1, 1/2}K.

The basic idea of BranchingMRT is to take only items with large marginal ratios, similarly

to MarginalRatioThresholding. The difference is that, once f(S) exceeds a threshold λ, where

λ = 1
2α (1− b) v, we store either the current set S or the latest added item as S′. This guarantees

that f(S′) ≥ λ and c(S′) ≤ (1− b)K, which means that S′ has a large function value and sufficient

room to add more elements. We call the process of constructing S′ branching. We continue to add

items with large marginal ratios to the current set S, and if we cannot add an item to S because

it exceeds the capacity, we try to add the item to S′. Note that the set S′, after branching, can

have at most one extra item; but this extra item can be replaced if a better candidate comes along

(See line 14–15).

Remark that the sequence of sets S in BranchingMRT is identical to that in MarginalRatio-

Thresholding in Section [?]. We say that an item e ∈ OPT is bad if it is bad in the sense of

MarginalRatioThresholding, i.e., it satisfies the condition in Definition 5.2.2. We have the following

two lemmas.

Lemma 5.3.1. For a bad item e with c(e) ≤ bK, let Se be the set just before e arrives in Algo-

rithm 4. Then f(Se) ≥ λ holds. Thus branching has happened before e arrives.

Proof. Sine e is a bad item, we have c(Se) > K − c(e) ≥ (1− b)K. Hence f(Se) ≥ α(1− b)v ≥ λ

by Lemma 5.2.1 (1). Since the value of f is non-decreasing during the process, it means that

branching has happened before e arrives.

87

Algorithm 4

1: procedure BranchingMRT(ε, α, v, c1, b) ▷ ε, α ∈ (0, 1], v ∈ R+, and c1, b ∈ [0, 1/2]
2: S := ∅.
3: λ := 1

2α(1− b)v.
4: while item e is arriving do
5: Delete e with c(e) > min{(1 + ε)c1, 1/2}K.

6: if f(e|S)
c(e) ≥ αv−f(S)

K−c(S) and c(S + e) ≤ K then S := S + e.

7: if f(S) ≥ λ then break // leave the While loop.

8: Let ê be the latest added item in S.
9: if c(S) ≥ (1− b)K then S′

0 := {ê} else S′
0 := S.

10: S′ := S′
0.

11: while item e is arriving do
12: Delete e with c(e) > min{(1 + ε)c1, 1/2}K.

13: if f(e|S)
c(e) ≥ αv−f(S)

K−c(S) and c(S + e) ≤ K then S := S + e.

14: if f(e|S)
c(e) ≥ αv−f(S)

K−c(S) and c(S + e) > K then

15: if f(S′) < f(S′
0 + e) then S′ := S′

0 + e.

16: return S or S′ whichever has the larger function value.

Lemma 5.3.2. It holds that f(S′
0) ≥ λ and c(S′

0) ≤ (1− b)K.

Proof. We denote by S the set obtained right after leaving the while loop from Line 4. If c(S) <

(1− b)K, then f(S′
0) = f(S) ≥ λ and c(S′

0) = c(S) ≤ (1− b)K. Otherwise, since c(S) ≥ (1− b)K,

we have f(S) ≥ α(1− b)v ≥ 2λ by Lemma 5.2.1 (1). Hence f(S′
0) = f(ê) ≥ λ since f(S − ê) < λ

and the submodularity. The second part holds since c(ê) ≤ K/2 ≤ (1− b)K by b ≤ 1/2.

Let S̃ and S̃′ be the final two sets computed by BranchingMRT. Note that we can regard S̃ as

the output of MarginalRatioThresholding and S̃′ as the final set obtained by adding at most one

item to S′
0.

Observe that the number of bad items depends on the parameter α. As we will show in

Section 5.3.2, by choosing a suitable α, if we have more than two bad items, then the size of S̃

is large enough, implying that f(S̃) is already good for approximation (due to Lemma 5.2.1 (1)).

Therefore, in the following, we just concentrate on the case when we have at most two bad items.

Lemma 5.3.3. Let α be a number in (0, 1], and suppose that we have only one bad item ob. If

v ≤ f(OPT) and b ∈ [c(ob)/K, (1 + ε)c(ob)/K], then it holds that

max{f(S̃), f(S̃′)} ≥ 1

2

(
1− α

K − c(ob)

2K

)
v − εαc(ob)

4K
v

=

(
1

2

(
1− α

K − c(ob)

2K

)
−O(ε)

)
v.

Proof. Suppose not, that is, suppose that both of f(S̃) and f(S̃′) are smaller than βv, where

β = 1
2 (1− αK−c(ob)

2K)− αc(ob)
4K ε. We denote Os = OPT \ {ob}.

Since the bad item ob satisfies c(ob) ≤ bK, it arrives after branching by Lemma 5.3.1. By

Lemma 5.3.2, we have c(S′
0 + ob) ≤ K. Since f(S̃′) is less than βv, we see that f(S′

0 + ob) < βv.

88

Since f(S′
0) ≥ λ,

f(OPT) ≤ f(ob | S′
0) + f(S′

0 ∪Os) < (βv − λ) + f(S′
0 ∪Os). (5.3)

Since S′
0 ⊆ S̃, submodularity implies that

f(S′
0 ∪Os) ≤ f(S̃ ∪Os) ≤ f(S̃) +

∑
e∈Os\S̃

f(e | S̃). (5.4)

Since f(S̃) < βv and no item in Os is bad, (5.3) and (5.4) imply by Lemma 5.2.1 (2) that

v ≤ f(OPT) < (βv − λ) + f(S′
0 ∪Os) < (βv − λ) + βv +

αc(Os)

K
v

≤ 2βv − 1

2
α(1− b)v + α

(
1− c(ob)

K

)
v.

Therefore, we have

β >
1

2

(
1 + α

2c(ob)/K − b− 1

2

)
.

Since b ≤ (1 + ε)c(ob)/K, we obtain

β >
1

2

(
1− α

(K − c(ob))

2K

)
− αc(ob)

4K
ε,

which is a contradiction. This completes the proof.

For the case when we have exactly two bad items, we obtain the following guarantee.

Lemma 5.3.4. Let α be a number in (0, 1], and suppose that we have exactly two bad items ob

and om with c(ob) ≥ c(om). If v ≤ f(OPT) and b ∈ [c(ob)/K, (1 + ε)c(ob)/K], then it holds that

max{f(S̃), f(S̃′)} ≥ 1

3

(
1 + α

c(om)

K

)
v − αc(ob)

3K
εv

=

(
1

3

(
1 + α

c(om)

K

)
−O(ε)

)
v.

Proof. Suppose not, that is, suppose that both of f(S̃) and f(S̃′) are smaller than βv, where

β = (1 + α c(om)
K)/3− αc(ob)

3K ε. We denote Os = OPT \ {ob, om}.
Since the bad items ob and om have size at most bK, these two items arrive after branching by

Lemma 5.3.1. By Lemma 5.3.2, c(S′
0 + ob) ≤ K and c(S′

0 + om) ≤ K. Since f(S̃′) < βv, we know

f(S′
0 + ob) < βv and f(S′

0 + om) < βv. Hence it holds that

f(OPT) ≤ f(ob | S′
0) + f(om | S′

0) + f(S′
0 ∪Os)

< (βv − λ) + (βv − λ) + f(S′
0 ∪Os), (5.5)

89

since f(S′
0) ≥ λ. Since S′

0 ⊆ S̃, we have

f(S′
0 ∪Os) ≤ f(S̃ ∪Os) ≤ f(S̃) +

∑
e∈Os\S̃

f(e | S̃).

Since f(S̃) < βv and no items in Os are bad, this implies by Lemma 5.2.1 (2) that

f(S′
0 ∪Os) ≤ βv + α

c(Os)

K
v.

Hence (5.5) can be transformed to

v ≤ f(OPT) < (βv − λ) + (βv − λ) + βv + α
c(Os)

K
v

≤ 3βv − 2λ+ α

(
1− c(ob)

K
− c(om)

K

)
v

= 3βv − α(1− b)v + α

(
1− c(ob)

K
− c(om)

K

)
v.

Therefore, since b ≤ (1 + ε)c(ob)/K, we have

β >
1

3

(
1 + α

c(om)

K

)
− αc(ob)

3K
ε,

which is a contradiction.

5.3.2 Algorithms with Guessing Large Items

We now use BranchingMRT to obtain a better approximation ratio. In the new algorithm, we guess

the sizes of a few large items in an optimal solution OPT, and then use them to determine the

parameter α.

We first remark that, when |OPT|≤ 2, we can easily obtain a 1/2-approximate solution with

a single pass. In fact, since f(OPT) ≤ ∑ℓ
i=1 f(oi) where ℓ = |OPT|, at least one of oi’s satisfies

f(oi) ≥ f(OPT)/ℓ, and hence Singleton returns a 1/2-approximate solution when ℓ ≤ 2. Thus, in

what follows, we may assume that |OPT|≥ 3.

We start with the case that we have guessed the largest two sizes c(o1) and c(o2) in OPT.

Lemma 5.3.5. Let ε ∈ (0, 1], and suppose that v ≤ f(OPT) and ci ≤ c(oi)/K ≤ (1 + ε)ci for

i ∈ {1, 2}. Then, S̃′ = BranchingMRT(ε, α, v, c1, b) with α = 1/(2 − c2) or 2/(5 − 4c2 − c1) and

b = min{(1 + ε)c1, 1/2} satisfies

f(S̃′) ≥
(
min

{
1− c2
2− c2

,
2(1− c2)

5− 4c2 − c1

}
−O(ε)

)
v. (5.6)

Proof. Let S̃ = MarginalRatioThresholding(α, v). Note that f(S̃′) ≥ f(S̃). If S̃ has size at least

90

(1− (1 + ε)c2)K, then Lemma 5.2.1 (1) implies that

f(S̃) ≥ α(1− (1 + ε)c2)v = α(1− c2)v −O(ε)v.

Otherwise, c(S̃) < (1− (1 + ε)c2)K. In this case, we see that only the item o1 can have size more

than (1 + ε)c2K, and hence only o1 can be a bad item. If o1 is not a bad item, then we have no

bad item, and hence Lemma 5.2.3 implies that

f(S̃) ≥ (1− α)v.

If o1 is bad, then Lemma 5.3.3 implies that

f(S̃′) ≥ 1

2

(
1− α

1− c1
2

)
v −O(ε)v.

Thus the approximation ratio is the minimum of the RHSes of the above three inequalities. This

is maximized when α = 1/(2− c2) or α = 2/(5− 4c2 − c1), and the maximum value is equal to the

RHS of (5.6).

Note that the approximation ratio achieved in Lemma 5.3.5 becomes 1/3 − O(ε) when, for

example, c1 = c2 = 1/2. Hence, the above lemma does not show any improvement over Theo-

rem 5.2.4 in the worst case. Thus, we next consider the case that we have guessed the largest three

sizes c(o1), c(o2), and c(o3) in OPT. Using Lemma 5.3.4, we have the following guarantee.

Lemma 5.3.6. Let ε ∈ (0, 1], and suppose that v ≤ f(OPT) and ci ≤ c(oi)/K ≤ (1 + ε)ci for i ∈
{1, 2, 3}. Then the better output S̃′ of BranchingMRT(ε, α, v, c1, b1) and BranchingMRT(ε, α, v, c1, b2)

with α = 1/(2− c3) or 2/(c2 + 3), b1 = min{(1 + ε)c1, 1/2}, and b2 = min{(1 + ε)c2, 1/2} satisfies

f(S̃′) ≥
(
min

{
1− c3
2− c3

,
c2 + 1

c2 + 3

}
−O(ε)

)
v.

Proof. Let S̃ = MarginalRatioThresholding(α, v). If S̃ has size at least (1 − (1 + ε)c3)K, then we

have by Lemma 5.2.1 (1)

f(S̃) ≥ α(1− (1 + ε)c3)v = α(1− c3)v −O(ε)v.

Otherwise, c(S̃) < (1−(1+ε)c3)K. In this case, we see that only o1 and o2 can have size more than

(1+ ε)c3, and hence only they can be bad items. If we have no bad item, it holds by Lemma 5.2.3

that

f(S̃) ≥ (1− α)v.

Suppose we have one bad item. If it is o1 then Lemma 5.3.3 with b1 implies

f(S̃′) ≥
(
1

2

(
1− α

1− c1
2

)
−O(ε)

)
v,

91

and, if it is o2, we obtain by Lemma 5.3.3 with b2

f(S̃′) ≥
(
1

2

(
1− α

1− c2
2

)
−O(ε)

)
v.

Moreover, if we have two bad items o1 and o2, then Lemma 5.3.4 implies

f(S̃′) ≥
(
1

3
(1 + αc2)−O(ε)

)
v.

Therefore, the approximation ratio is the minimum of the RHSes in the above five inequalities,

which is maximized to

min

{
1− c3
2− c3

,
c2 + 1

c2 + 3

}
−O(ε),

when α = 1/(2− c3) or α = 2/(c2 + 3).

We now see that we get an approximation ratio of 2/5 − O(ε) by combining the above two

lemmas.

Theorem 5.3.7. Let ε ∈ (0, 1] and suppose that v ≤ f(OPT) ≤ (1 + ε)v and ci ≤ c(oi)/K ≤
(1 + ε)ci for i ∈ {1, 2, 3}. If c(o1) ≤ K/2, then we can obtain a (2/5−O(ε))-approximate solution

with a single pass.

Proof. We run the two algorithms with the optimal α shown in Lemmas 5.3.5 and 5.3.6 in parallel.

Let S̃ be the output with the better function value. Then, we have f(S̃) ≥ βv, where

β = max

{
min

{
1− c2
2− c2

,
2(1− c2)

5− 4c2 − c1

}
,min

{
1− c3
2− c3

,
c2 + 1

c2 + 3

}}
−O(ε).

We can confirm that the first term is at least 2/5, and thus S̃ is a (2/5 − O(ε))-approximate

solution.

To eliminate the assumption that we are given v, we can design a dynamic-update version of

BranchingMRT by keeping the interval that contains the optimal value, similarly to Theorem 5.2.5.

The algorithm, called DynamicBranchingMRT, is given in Algorithm 5. The proof for updating

the interval I dynamically is the same as the proof of Theorem 5.2.5. The number of streams

for guessing v is O(log(K)/ε). We also guess ci for i ∈ {1, 2, 3} from {(1 + ε)j | j ∈ Z+}. As

1 ≤ c(oi) ≤ K/2 for i ∈ {1, 2, 3}, the number of guessing for ci is O(log(K)/ε). Hence, including

v, there are O((log(K)/ε)4) streams in parallel. To summarize, we obtain the following:

Theorem 5.3.8. Suppose that c(o1) ≤ K/2. The algorithm that runs DynamicBranchingMRT and

Singleton in parallel and takes the better output is a (2/5− ε)-approximation streaming algorithm

with a single pass for the problem (5.1). The space complexity of the algorithm is O(K(log(K)/ε)4).

92

Algorithm 5

1: procedure DynamicBranchingMRT(ε)
2: V := {(1 + ε)i | i ∈ Z+}.
3: For each c1, c2, c3 ∈ V with c3 ≤ c2 ≤ c1 ≤ 1/2 and each b ∈ {(1 + ε)c1, (1 + ε)c2, 1/2}, do

the following with α defined based on Lemmas 5.3.5 and 5.3.6.
4: For each v ∈ V, set Sv := ∅.
5: while item e is arriving do
6: Delete e with c(e) > (1 + ε)c1K.
7: m := max{m, f(e)}.
8: I := {v ∈ V | m ≤ v ≤ Km/α}.
9: Delete Sv (along with Ŝv and S′

v if exists) such that v ̸∈ I.
10: for v ∈ V do
11: if f(Sv) < λ then

12: if f(e|Sv)
c(e) ≥ αv−f(Sv)

K−c(Sv)
and c(Sv + e) ≤ K then Sv := Sv + e.

13: if f(Sv) ≥ λ then
14: if c(S) ≥ (1− b)K then S′ := {e} else S′ := S.
15: Ŝv := S′.
16: else
17: if f(e|Sv)

c(e) ≥ αv−f(Sv)
K−c(Sv)

and c(Sv + e) ≤ K then Sv := Sv + e.

18: if f(e|Sv)
c(e) ≥ αv−f(Sv)

K−c(Sv)
and c(Sv + e) > K then

19: if f(S′
v) < f(Ŝv + e) then S′

v := Ŝv + e.

20: S := Sv for v ∈ I that maximizes f(Sv).
21: S′ := S′

v for v ∈ I that maximizes f(S′
v).

22: return S or S′ whichever has the larger function value.

5.4 Single-Pass (4/11− ε)-Approximation Algorithm

In this section, we consider the case that c(o1) is larger than K/2. For the purpose, we consider

the problem of finding a set S of items that maximizes f(S) subject to the constraint that the total

size is at most pK, for a given number p ≥ 2. We say that a set S of items is a (p, α)-approximate

solution if c(S) ≤ pK and f(S) ≥ αf(OPT), where OPT is an optimal solution of the original

instance.

Theorem 5.4.1. For a number p ≥ 2, there is a
(
p, 2p

2p+3 − ε
)
-approximation streaming algo-

rithm with a single pass for the problem (5.1). In particular, when p = 2, it admits (2, 4/7 − ε)-

approximation. The space complexity of the algorithm is O(K(log(K)/ε)3).

The proof will be given in the next subsection. Using Theorem 5.4.1, we can design a (4/11− ε)-

approximation streaming algorithm for an instance having a large item.

Theorem 5.4.2. For the problem (5.1), there exists a (4/11 − ε)-approximation streaming algo-

rithm with a single pass. The space complexity of the algorithm is O(K(log(K)/ε)4).

Proof. Let o1 be an item in OPT with the maximum size. If c(o1) ≤ K/2, then Theorem 5.3.8

gives a (2/5 − O(ε))-approximate solution, and thus we may assume that c(o1) > K/2. Note

that there exists only one item whose size is more than K/2. Let β be the target approximation

93

ratio which will be determined later. We may assume that f(o1) < βf(OPT), as otherwise Sin-

gleton (Algorithm 2) gives β-approximation. Then, we see f(OPT − o1) > (1 − β)f(OPT) and

c(OPT− o1) < K/2. Consider maximizing f(S) subject to c(S) ≤ K/2 in the set {e ∈ E | c(e) ≤
K/2}. The optimal value is at least f(OPT− o1) > (1− β)f(OPT). We now apply Theorem 5.4.1

with p = 2 to this problem. Then, the output S̃ has size at most K, and moreover, we have

f(S̃) ≥
(
4
7 −O(ε)

)
(1 − β)f(OPT). Thus, we obtain min{β, (47 − O(ε))(1 − β)}-approximation.

This approximation ratio is maximized to 4/11 when β = 4/11.

5.4.1 Bicriteria Approximation for a Knapsack Constraint

We here present the proof of Theorem 5.4.1. Let p ≥ 2.

The basic framework is the same as in Section 5.3; we design both a simple-thresholding

algorithm and a branching algorithm, where the parameters are different and the analysis is simpler.

It is sufficient to design algorithms assuming that a (good) approximation v to f(OPT) is given,

as we can get rid of the assumption by using the dynamic update technique.

We design a variant of MarginalRatioThresholding. The new algorithm is parameterized by a

number p ≥ 2. In the algorithm we allow to pack items to the total size at most pK. Also, we

change the marginal-ratio threshold condition to the following:

f(s | S)
c(e)

≥ αpv − f(S)

pK − c(S)
. (5.7)

Let MarginalRatioThresholding′p be the resulting algorithm.

Similarly to Lemma 5.2.1, the following lemma holds. The proof is omitted as it is almost

identical to that of Lemma 5.2.1.

Lemma 5.4.3. Let S̃ = MarginalRatioThresholding′p(α, v) for some α ∈ (0, 1] and v ∈ R+. Then,

the following hold:

(1) During the execution of the algorithm, we have f(S) ≥ αvc(S)/K.

(2) If an item e fails the marginal-ratio threshold condition, i.e., f(e|S)
c(e) < αpv−f(S)

pK−c(S) , then f(e |
S̃) < αvc(e)/K.

Determining α using a good approximation to the largest size c(o1) in OPT gives the following

approximation guarantee:

Lemma 5.4.4. For ε ∈ (0, 1], suppose that v ≤ f(OPT) and c1 ≤ c(o1)/K ≤ (1 + ε)c1. Then,

S̃ = MarginalRatioThresholding′p(α, v), where α = 1/(p+ 1− c1), satisfies

f(S̃) ≥
(

p− c1
p+ 1− c1

−O(ε)

)
v.

Proof. If the output S̃ has size at least (p− (1 + ε)c1)K, then we have by Lemma 5.4.3 (1)

f(S̃) ≥ α(p− (1 + ε)c1)v = α(p− c1)v −O(ε)v.

94

Otherwise, c(S̃) < (p− (1 + ε)c1)K, and hence there is no bad item. Similarly to Lemma 5.2.3, it

follows from Lemma 5.4.3 (2) that we have

f(S̃) ≥ (1− α)v.

The approximation ratio is the minimum of the RHSes of the above two inequalities, which is

maximized to (p− c1)/(p+ 1− c1)−O(ε) by setting α = 1/(p+ 1− c1).

Next, we design a branching algorithm based on BranchingMRT. Here, the parameter b should

be at most 1, and the marginal-ratio threshold is replaced with (5.7). Also, λ is set to be

λ =
1

2
α (p− b) v,

and, at Line 8 of Algorithm 4, the condition is changed to (p − b)K instead of (1 − b)K. Let

BranchingMRT′
p be the resulting algorithm.

The analysis in Section 5.3 can be adapted:

Lemma 5.4.5. The following hold for BranchingMRT′
p:

• For a bad item e ∈ E with c(e) ≤ bK, let Se be the set just before e arrives. Then f(Se) ≥ λ

holds. Thus, branching has happened before e arrives.

• It holds that f(S′
0) ≥ λ and c(S′

0) ≤ (p− b)K.

Note that in the second statement, we do not need the assumption that b ≤ 1/2 as c(ê) ≤ K ≤
(p− b)K since b ≤ 1.

Determining α using good approximations to the largest two sizes c(o1) and c(o2) in OPT gives

the following approximation guarantee:

Lemma 5.4.6. For ε ∈ (0, 1], suppose that v ≤ f(OPT) and ci ≤ c(oi)/K ≤ (1+ε)ci for i ∈ {1, 2}.
Then S̃ = BranchingMRT′

p(ε, α, v, c1, b) with c1 ≤ b ≤ (1 + ε)c1 and α = 2
c1+p+2 satisfies

f(S̃) ≥
(

c1 + p

c1 + p+ 2
−O(ε)

)
v.

Proof. If the output S̃ has size at least (p− (1 + ε)c2)K, then we have by Lemma 5.4.3 (1)

f(S̃) ≥ α(p− (1 + ε)c2)v = (α(p− c2)−O(ε)) v.

Otherwise, c(S̃) < (p − (1 + ε)c2)K. In this case, we see that there exists at most one bad item.

If we have no bad item, it holds by Lemma 5.4.3 (2) that

f(S̃) ≥ (1− α)v.

Suppose that we have one bad item, which must be o1. Following the proof of Lemma 5.3.3, we

95

see that

f(S̃) ≥
(
1

2

(
1 + α

c1 + p− 2

2

)
−O(ε)

)
v.

The approximation ratio is the minimum of the RHSes of the above three inequalities. It is

maximized to

min

{
p− c2

p+ 1− c2
,

c1 + p

c1 + p+ 2

}
−O(ε).

when α = 1
p−c2+1 or α = 2

c1+p+2 . This is in fact equal to c1+p
c1+p+2 − O(ε) with α = 2

c1+p+2 , since

p ≥ 2.

Therefore, if we apply both of the above algorithms and take the better one, we obtain a set

S̃ ⊆ E satisfying

f(S̃) ≥
(
max

{
p− c1

p+ 1− c1
,

c1 + p

c1 + p+ 2

}
−O(ε)

)
v.

This is minimized when c1 = p/3, and hence we have

f(S̃) ≥
(2p

2p+ 3
−O(ε)

)
v.

Thus the set S̃ can be found in O(K(log(K)/ε)2) space. This, together with the dynamic update

technique to guess v, proves Theorem 5.4.1.

5.5 Multiple-Pass Streaming Algorithm

In this section, we provide a multiple-pass streaming algorithm with approximation ratio 2/5− ε.

In Section 5.5.1, we consider the monotone submodular function maximization with a different

constraint and develop an algorithm for it. In Section 5.5.2, this algorithm is used as a subroutine

for the original problem with a knapsack constraint.

5.5.1 Dealing with Large Items with Single Pass

We first consider a generalization of the original problem. Let Er ⊆ E be a subset of the ground

set E. For ease of presentation, we will call Er the red items. Consider the problem defined below:

maximize f(S) subject to c(S) ≤ K, |S ∩ ER|≤ 1. (5.8)

In the following, we show that, given ε ∈ (0, 1], an approximation v to f(OPT) with v ≤
f(OPT) ≤ (1 + ε)v, and an approximation θ to f(or) for the unique item or in OPT ∩ Er, we

can choose O(1) of the red items so that one of them e ∈ Er satisfies that f(OPT − or + e) ≥
(Γ(θ)−O(ε))v, where Γ is a piecewise linear function lower-bounded by 2/3. For technical reasons,

we will choose θ to be one of the geometric series (1 + ε)i/2 for i ∈ Z.

Theorem 5.5.1. Suppose that we are given ε ∈ (0, 1], v ∈ R+ with v ≤ f(OPT) ≤ (1 + ε)v, and

θ ∈ R+ with the following property:

96

Algorithm 6

1: procedure SelectRedItems(ε, v, θ, t, x) ▷ ε ∈ (0, 1], v ∈ R+, θ ≤ 1/2, t ∈ Z+, and x ∈ R+

2: S := ∅.
3: while item e is arriving do
4: if e ∈ Er and f(e) ≥ θv/(1 + ε) then
5: if S = ∅ then
6: S := {e}.
7: else
8: if f(e | S) > (θ − x|S|)v then S := S + e.
9: if |S|= t+ 1 then return S.

10: return S.

1. if θ ≤ 1/2, θv/(1 + ε) ≤ f(or) ≤ θv,

2. if θ ≥ 1/2, θv ≤ f(or) ≤ (1 + ε)θv ≤ v.

Then, there is a single-pass streaming algorithm that chooses a set S of red items in Er with constant

size such that (i) for any item e ∈ S, θv/(1 + ε) ≤ f(or) ≤ θv when θ ≤ 1/2 and θv ≤ f(or) ≤
(1+ε)θv ≤ v when θ ≥ 1/2, and (ii) some item e ∈ S satisfies that f(OPT−or+e) ≥ (Γ(θ)−O(ε))v,

where Γ(θ) is defined as follows: when θ ∈ (0, 1/2),

Γ(θ) = max
{ t(t+ 3)

(t+ 1)(t+ 2)
− t− 1

t+ 1
θ | t ∈ Z+, t >

1

θ
− 2
}
, (5.9)

when θ ∈ [1/2, 2/3), Γ(θ) = 2/3, and when θ ∈ [2/3, 1], Γ(θ) = θ.

In what follows, we prove Theorem 5.5.1 considering the cases θ ≤ 1/2 and θ ≥ 1/2 separately.

Case 1: θ ≤ 1/2

In this case, θ is supposed to satisfy θv/(1 + ε) ≤ f(or) ≤ θv. Then, we can just ignore all red

items e ∈ Er with f(e) < θv/(1 + ε) or f(e) > θv. Hence in the following, we assume that all the

arriving red items e satisfy f(e) ≥ θv/(1 + ε).

Our algorithm picks the first red item e1 and then collects up to t + 1 red items, where t is a

constant determined later. Observe that, as v ≤ f(OPT) ≤ f(or)+f(OPT−or) ≤ θv+f(OPT−or),

we have f(OPT−or) ≥ (1−θ)v. The algorithm guarantees that one of the chosen red items, along

with f(OPT − or), gives the value of (1 − θ + x)v, where x is the term we will try to maximize.

Our algorithm, SelectRedItems, is given in Algorithm 6.

The following lemma follows immediately from the algorithm.

Lemma 5.5.2. During the execution of SelectRedItems, f(S) ≥ v(θ(1
1+ε + |S|−1)− x

∑|S|−1
j=1 j).

Proof. Since the first item e we pick satisfies f(e) ≥ θ
1+εv, the condition at line 8 implies that

f(S) ≥ θ

1 + ε
v +

|S|−1∑
j=1

(θ − xj)v.

97

Thus the lemma follows.

The next lemma states that if or is thrown away at line 8 of the algorithm, then one of the red

items in S is already good for our purpose.

Lemma 5.5.3. Suppose that |S|< t + 1 holds for the current set S ⊆ Er and the arriving item

is or and is thrown away at line 8 of the algorithm. Then at least one red item e ∈ S satisfies

f(OPT− or + e) ≥ (1− θ + x)v.

Proof. First suppose that f(S ∪ (OPT− or)) ≥ (1− θ + |S|x)v. Then

(1− θ + |S|x)v ≤ f(S ∪ (OPT− or)) ≤ f(OPT− or) +
∑
e∈S

f(e | OPT− or),

implying that at least one red item e ∈ S ensures that

f(e | OPT− or) ≥
(1− θ + |S|x)v − f(OPT− or)

|S| .

So we obtain

f(OPT− or + e) = f(e | OPT− or) + f(OPT− or)

≥
(
x+

1− θ

|S|

)
v +

|S|−1

|S| f(OPT− or) ≥ (1− θ + x)v,

as f(OPT− or) ≥ (1− θ)v.

Next assume that f(S ∪ (OPT − or)) < (1 − θ + |S|x)v. But if this is the case, or would not

have been thrown away by the algorithm in line 8, since

f(or | S) ≥ f(or | S ∪ (OPT− or)) = f(OPT ∪ S)− f(S ∪ (OPT− or))

≥ v − (1− θ + |S|x)v = (θ − |S|x)v.

Thus the proof is complete.

The next lemma states that, if |S|= t+1, we can just ignore the rest, no matter or has arrived

or not.

Lemma 5.5.4. Suppose that |S|= t+ 1. Then at least one red item e ∈ S guarantees that

f(OPT− or + e) ≥
(
θ(1− ε) + t

t+ 1
− tx

2

)
v. (5.10)

Proof. As f(OPT − or) +
∑

e∈S f(e | OPT − or) ≥ f(S), there exists an item e ∈ S so that

98

f(e | OPT− or) ≥ f(S)−f(OPT−or)
|S| , implying that

f(OPT− or + e) = f(e | OPT− or) + f(OPT− or)

≥ f(S)

t+ 1
+

t

t+ 1
f(OPT− or)

≥

θ
(

1
1+ε + t

)
− xt(t+1)

2

t+ 1
+

t

t+ 1
(1− θ)

 v (By Lemma 5.5.2)

≥
(t+ θ(1− ε)

t+ 1
− tx

2

)
v (Rearranging and using 1/(1 + ε) ≥ 1− ε)

It follows from the two previous lemmas that the output is lower bounded by

min

{
1− θ + x,

θ + t

t+ 1
− tx

2

}
v − θ

t+ 1
εv. (5.11)

If t > 1/θ−2, then we can ignore the second term because it is O(ε)v. In what follows, we consider

maximizing the first term of (5.11) subject to t ∈ Z+ with t > 1/θ − 2 and x ∈ [0, θ], for a given

parameter θ.

Suppose that t is a fixed number. Then, since both the terms in (5.11) are linear functions

with respect to x, the maximum of (5.11) is attained when they are equal. That is, it is when

x∗
t = 2

θt+ 2θ − 1

(t+ 1)(t+ 2)
= 2

(
1

t+ 2
− 1− θ

t+ 1

)
. (5.12)

We see x∗
t ∈ [0, θ] when t > 1/θ − 2. Therefore, by substituting for (5.12), the first term of (5.11)

is changed to

1− θ + x∗
t =

t(t+ 3)

(t+ 1)(t+ 2)
− t− 1

t+ 1
θ.

Thus, if we run SelectRedItems(ε, v, θ, t, x∗
t) with different t, then the best output S̃ satisfies

f(S̃) ≥ (Γ(θ)−O(ε))v, where

Γ(θ) = max

{
t(t+ 3)

(t+ 1)(t+ 2)
− t− 1

t+ 1
θ | t ∈ Z+, t >

1

θ
− 2

}
. (5.13)

This is a piecewise convex non-increasing function of θ. See Figure 5.1 for the ratio calculated by

only considering t ≤ 10.

Case 2: θ ≥ 1/2

We now present another algorithm for the case of θ ≥ 1/2 and define the function Γ for the interval

of [1/2, 1]. In this case, θ is supposed to satisfy θv ≤ f(or) ≤ θv(1+ ε) ≤ v. Thus, in the following,

we assume that θv ≤ f(e) ≤ (1 + ε)θv for all red items e ∈ Er.

If θ ≥ 2/3, just pick any red item e with f(e) ≥ θv gives trivially f(OPT − or + e) ≥ θv.

Thus, we can define Γ(θ) = θ when θ ∈ [2/3, 1]. The remaining case is when θ ∈ [1/2, 2/3). We

99

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 5.1: Function Γ(θ).

Algorithm 7

1: procedure SelectRedItems’(ε, v, θ) ▷ ε ∈ (0, 1], v ∈ R+ and θ ≥ 1/2
2: S := {e1}, where e1 is the first arriving item in Er.
3: while item e ∈ Er is arriving do
4: if f(S + e) ≥ (1/3 + θ(1 + ε))v then e2 := e, S := S + e2 and return S.

5: return S.

present an algorithm, SelectRedItems’, for this case to guarantee that one of the chosen items e has

f(OPT− or + e) ≥ (2/3− ε)v. Namely, we will just let Γ(θ) = 2/3 for the interval θ ∈ [1/2, 2/3).

The detail of the algorithm is provided in Algorithm 7.

To avoid triviality, we assume that e1 ̸= or. The next lemma states that if there are two items

in the returned set S, at least one serves the purpose.

Lemma 5.5.5. Suppose that S = {e1, e2}. Then it cannot happen that f(OPT − or + ei) < 2/3v

for both i ∈ {1, 2}.

Proof. As f(OPT − or) + f(or) ≥ f(OPT) ≥ v and f(or) ≤ (1 + ε)θv, we have f(OPT − or) ≥
(1− θ(1 + ε))v. Now suppose that f(OPT− or + ei) < 2v/3 for both i ∈ {1, 2}. Then we have

f(e1 | OPT− or) = f(e1 + OPT− or) + f(OPT− or) ≤
(
2

3
− (1− (1 + ε)θ)

)
v,

and

f(e1 | OPT− or + e2) ≥ f({e1, e2})− f(OPT− or + e2) ≥ f({e1, e2})−
2

3
v.

As f(e1 | OPT − or) ≥ f(e1 | OPT − or + e2) by submodularity, the above two inequalities imply

that f({e1, e2}) ≤ (1/3 + (1 + ε)θ)v, contradicting Line 4 of the algorithm.

The next lemma states that if or is thrown away by the algorithm, e1 itself is already good for

approximation.

100

Lemma 5.5.6. If f({e1, or}) ≤ (1/3 + (1 + ε)θ)v, then we have f(OPT− or + e1) ≥ (2/3− ε)v.

Proof. Suppose, for a contradiction, that f(OPT− or + e1) < (2/3− ε)v. Then

f(or | OPT− or + e1) = f(OPT+ e1)− f(OPT− or + e1)

≥ v −
(
2

3
− ε

)
v =

(
1

3
+ ε

)
v.

On the other hand, it holds that

f(or | e1) = f({or, e1})− f(e1) ≤
(
1

3
+ (1 + ε)θ − θ

)
v =

(
1

3
+ εθ

)
v.

By submodularity, f(or | OPT − or + e1) ≤ f(or | e1) and the above two inequalities lead to a

contradiction.

By the previous two lemmas, one of the red items in the returned set S, along with OPT− or,

gives (2/3−O(ε))v. We then can define Γ as 2/3 in the interval θ ∈ [1/2, 2/3).

5.5.2 Multiple-Pass (2/5− ε)-Approximation Algorithm

In this section, we show that when c(o1) ≥ K/2, we can use multiple passes to get a (2/5 − ε)-

approximation. Let OPT = {o1, o2, . . . , oℓ} be an optimal solution with c(o1) ≥ c(o2) ≥ . . . ≥ c(oℓ).

Suppose that c1 ∈ R+ satisfies 1/2 ≤ c1/(1 + ε) ≤ c(o1)/K ≤ c1. Such c1 can be guessed with

O(ε−1) space by a geometric series {(1 + ε)i/2 | i ∈ Z+}.
First we observe the following claims.

Lemma 5.5.7. When c(o1) ≥ K/2, we may assume that 3
10f(OPT) < f(o1) <

2
5f(OPT).

Proof. If f(o1) ≥ 2
5f(OPT), then Algorithm 2 returns a 2/5-approximate solution. So we may

assume that f(o1) <
2
5f(OPT).

Suppose to the contrary that f(o1) < 3
10f(OPT). This implies f(OPT − o1) ≥ 7

10f(OPT).

Consider the problem of maximizing f(S) subject to c(S) ≤ K/2 in the set {e ∈ E | c(e) ≤
K/2}. Since the optimal value is at least f(OPT − o1) > 7

10f(OPT), by applying the bicriteria

approximation algorithm in Theorem 5.4.1 with p = 2, we obtain a solution S̃ satisfying

f(S̃) ≥
(
4

7
−O(ε)

)
7

10
f(OPT) ≥

(2
5
−O(ε)

)
f(OPT).

Thus the lemma holds.

Lemma 5.5.8. We may assume that c(o1) ≤ (1 + ε) 23K.

Proof. Suppose not. That is, suppose c(o1) > (1 + ε) 23K. By Lemma 5.5.7, we may assume that

f(o1) <
2
5f(OPT), and hence f(OPT− o1) >

3
5f(OPT) by submodularity.

101

Consider the problem of maximizing f(S) subject to c(S) ≤ (1− c1
1+ε)K. Since c(OPT− o1) ≤

K − c(o1) ≤ (1 − c1
1+ε)K, the set OPT − o1 is a feasible solution of the problem. Now apply the

bicriteria approximation in Theorem 5.4.1 with p = (1 − c1
1+ε)

−1 ≥ 3. Then, since p ≥ 3 and

f(OPT− o1) >
3
5f(OPT), the output S̃ satisfies that

f(S̃) ≥
(

2p

2p+ 3
−O(ε)

)
f(OPT− o1) ≥

(2
5
−O(ε)

)
f(OPT).

Thus the lemma holds.

We use the first pass to estimate f(OPT) as follows. For an error parameter ε ∈ (0, 1], perform

the single-pass algorithm in Theorem 5.2.5 to get a (1/3− ε)-approximate solution S ⊆ E, which

can be used to upper bound the value of f(OPT), that is, f(S) ≤ f(OPT) ≤ (3 + ε)f(S). We

then find the geometric series to guess its exact value. Thus, we may assume that we are given the

value v satisfying v ≤ f(OPT) ≤ (1 + ε)v with O(ε−1) space.

Below we show how to obtain a solution of value at least (2/5−O(ε))v, using two more passes.

Before we start, we introduce a slightly modified versions of the algorithms presented in Section 5.2;

it will be used as a subroutine.

Lemma 5.5.9. Consider the problem (5.1) with the knapsack capacity K ′. Let h ∈ R+, and

suppose that Algorithms 1 and 2 are modified as follows:

• (At Line 4 in Algorithm 1) A new item e is added into the current set S only if f(e|S)
c(e) ≥

αv−f(S)
hK′−c(S) and c(S + e) ≤ hK ′.

• (At Line 4 in Algorithm 2) A new item e is taken into account only if c(e) ≤ hK ′.

Then, the best returned set S̃ of the two algorithms with α = 2h
h+2 satisfies that c(S̃) ≤ hK ′ and

f(S̃) ≥ h
h+2v.

Proof. Let v′ be an approximation to the optimal value f(OPT′) of the problem (5.1) with the

knapsack capacity K ′. It is straightforward to to check that Lemma 5.2.1 holds with slight varia-

tions: (1) f(S) ≥ αv′c(S)
hK where S is the current set, and (2) if an item e fails the marginal-ratio

threshold, then f(e | S̃) < αv′c(e)
hK .

If there is no bad item, then v′ ≤ f(OPT′) ≤ f(S̃)+
∑

e∈OPT′\S̃ f(e | S̃) ≤ f(S̃)+ αv′

h , implying

that f(S̃) ≥ (1 − α
h)v

′. If there is a bad item, then the set S just before some bad item e arrives

satisfies that f(S+e) ≥ αv′. Hence f(S̃) or some singleton has the value at least αv′/2. Therefore,

when α = 2h
h+2 , the lower bound is maximized and the ratio in this case is h

h+2 .

Let all items e ∈ E whose sizes c(e) satisfy c1/(1 + ε) ≤ c(e)/K ≤ c1 be the red items. By

Theorem 5.5.1, we can select a set S of the red items so that one of them guarantees f(OPT−o1+

e) ≥ (Γ(θ)−O(ε))v, where θ satisfies the condition in Theorem 5.5.1. Note that θ can be guessed

by a geometric series from the interval [3
10v,

2
5 (1 + ε)v] by Lemma 5.5.7. The space required is

O(ε−1).

102

Algorithm 8

1: procedure MultiPassKnapsack(ε, v, θ, c1) ▷ ε ∈ (0, 1], v ∈ R+, and θ, c1 ∈ [0, 1].
2: Use the algorithm in Theorem 5.5.1 to choose a set S of items e with c1/(1+ε) ≤ c(e)/K ≤

c1 so that one of them e ∈ S satisfies f(OPT− o1 + e) ≥ (Γ(θ)−O(ε))v.
3: for each item e ∈ S do
4: Define a submodular function ge(·) = f(· | e).
5: Apply the marginal-ratio thresholding algorithm (Lemma 5.5.9) with regard to function

ge, where

h =
1− c1

1− (c1/(1 + ε))
and K ′ =

(
1− c1

1 + ε

)
K.

6: Let the resultant set be Se.

7: return the solution Se ∪ {e} with maxe∈S f(Se + e).

In the next pass, for each e ∈ S, define a new monotone submodular function ge(·) = f(· | e)
and apply the modified thresholding algorithm (Lemma 5.5.9) with h = 1−c1

1−(c1/(1+ε)) and K ′ =

(1 − (c1/(1 + ε))K. Let Se be the output of the modified thresholding algorithm. Then our

algorithm returns the solution Se ∪{e} with maxe∈S f(Se+ e). The detail is given in Algorithm 8.

The returned solution has size at most K, since c(Se) ≤ (1− c1)K by Lemma 5.5.9. Moreover,

it follows that the returned solution S̃ satisfies that f(S̃) ≥ (2/5−O(ε))v.

Theorem 5.5.10. For ε ∈ (0, 1], suppose that v ≤ f(OPT) ≤ (1 + ε)v, 1/2 ≤ c1/(1 + ε) ≤
c(o1)/K ≤ c1, and θ satisfies the condition in Theorem 5.5.1. After running MultiPassKnap-

sack(ε, v, θ, c1), there exists an item e ∈ S chosen in Line 2, which, along with Se collected in

Line 6, gives f(Se + e) ≥ (2/5−O(ε))v.

Proof. By Theorem 5.5.1, one item e ∈ S has f(OPT − o1 + e) ≥ (Γ(θ) − O(ε))v and f(e) ≥
θv/(1 + ε).

Consider the problem of maximizing ge(S) subject to c(S) ≤ h−1(1−c1)K with available space

(1− c1)K. Since c(OPT− o1) ≤ K − c(o1) ≤ h−1(1− c1)K, the set OPT− o1 is a feasible solution

of this problem. Therefore, it follows from Lemma 5.5.9 that the obtained solution Se satisfies that

ge(Se) ≥
(

h

h+ 2
−O(ε)

)
ge(OPT− o1) ≥

(
1− 2

h+ 2
−O(ε)

)
ge(OPT− o1).

Now we have

h = 1− εc1
1 + ε− c1

≥ 1− c1
1− c1

ε = 1−O(ε),

since c1
1−c1

is a constant by Lemma 5.5.8. Therefore, we have

ge(Se) ≥
(
1

3
−O(ε)

)
ge(OPT− o1) =

(
1

3
−O(ε)

)
(f(OPT− o1 + e)− f(e)).

It follows that the output Se + e satisfies that

f(Se + e) = f(e) + ge(Se) ≥ f(e) +
1

3
(1−O(ε)) ((Γ(θ)−O(ε))v − f(e))

103

≥ 2

3
f(e) +

1

3
(1−O(ε))Γ(θ)v

≥
(
2

3
θ +

1

3
Γ(θ)

)
(1−O(ε))v

where the last inequality holds since f(e) ≥ θv/(1 + ε). When θ ≥ 1/2, we have Γ(θ) ≥ 2/3 by

Theorem 5.5.1, and hence the ratio is more than 2/5. Consider the case when θ < 1/2. We observe

that 2
3θ +

1
3Γ(θ) is a non-decreasing function. Hence the minimum is attained when θ = 3/10 by

Lemma 5.5.7. The ratio is bounded by the linear function in (5.13) when t = 2, and hence it is at

least 2/5.

The next theorem summarizes our results in this section.

Theorem 5.5.11. Suppose that c(o1) > K/2. There exists an algorithm that uses MultiPassKnap-

sack as a subroutine so that it returns (2/5− ε)-approximation with 3 passes for the problem (5.1).

The space complexity of the algorithm is O(Kε−3).

104

Chapter 6

Popularity, Mixed Matchings, and

Self-duality

This paper appeared in SODA 2017. It is joint-work with Kavitha Telikepalli.

Abstract We consider the problem of matching applicants to jobs under two-sided

preferences in a popular and utility-optimal manner. Our input instance is a bipartite

graph G = (A ∪B,E) with a utility function w : E → Q where each vertex u ∈ A ∪B

has a preference list ranking its neighbors in a strict order of preference. For any two

matchings M and T in G, let ϕ(M,T) be the the number of vertices that prefer M to

T . A matching M is popular if ϕ(M,T) ≥ ϕ(T,M) for all matchings T in G. A mixed

matching is defined as Π = {(M0, p0), . . . , (Mk, pk)} for some matchings M0, . . . ,Mk

and
∑k

i=0 pi = 1, pi ≥ 0 for all i. The function ϕ(·, ·) easily extends to mixed matchings;

a mixed matching Π is popular if ϕ(Π,Λ) ≥ ϕ(Λ,Π) for all mixed matchings Λ in G.

Motivated by the fact that a popular mixed matching could have a much higher utility

than all popular matchings, we study the popular fractional matching polytope PG.

Our main result is that this polytope is half-integral (and in the special case where a

stable matching is a perfect matching, this polytope is integral), implying that there is

always a max-utility popular mixed matching Π such that Π = {(M0,
1
2), (M1,

1
2)} and

Π can be computed in polynomial time. An immediate consequence is that in order to

implement a max-utility popular mixed matching in G, we need just one single random

bit.

We analyze PG whose description may have exponentially many constraints via an

extended formulation in m + n dimensions with O(m + n) constraints. The linear

program that gives rise to this formulation has an unusual property: self-duality. In

other words, this linear program is exactly identical to its dual program. This is a rare

case where an LP of a natural problem has such a property. The self-duality of the LP

plays a crucial role in our proof of the half-integrality of PG.

We also show that our result carries over to the roommates problem, where the given

105

graph G may not be bipartite. The polytope of popular fractional matchings is still

half-integral here and thus we can compute a max-utility popular half-integral matching

in G in polynomial time. To complement this result, we also show that the problem

of computing a max-utility popular (integral) matching in a roommates instance G is

NP-hard.

6.1 Introduction

Let G = (A ∪ B,E) be a bipartite graph on n vertices and m edges where A is called the set of

applicants, B is called the set of jobs, and every vertex u ∈ A∪B has a preference list ranking its

neighbors in a strict order of preference. Such a graph G is also referred to as an instance of the

stable marriage problem with strict and possibly incomplete preference lists. Moreover, a utility

function w : E → Q is given, where w(a, b) is the utility of matching applicant a with job b. Our

goal is to match applicants to jobs such that this matching is popular and has the maximum utility,

where the utility w(M) of a matching M is the sum of utilities of all edges in M .

The notion of popularity was introduced by Gärdenfors [74] in 1975. A vertex u ∈ A∪B prefers

matching M to matching M ′ if u is matched in M and unmatched in M ′ or it is matched in both

and M(u) ranks higher than M ′(u) in u’s preference list. For any two matchings M and M ′ in G,

let ϕ(M,M ′) be the number of vertices that prefer M to M ′. We say M is more popular than M ′

if ϕ(M,M ′) > ϕ(M ′,M).

Definition 6.1.1. A matching M is popular if ϕ(M,M ′) ≥ ϕ(M ′,M) for every matching M ′ in

G, i.e., ∆(M,M ′) ≥ 0 where ∆(M,M ′) = ϕ(M,M ′)− ϕ(M ′,M).

Thus a popular matching never loses an election (where vertices cast votes) and so a popular

matching can be considered to be “globally stable” since an election cannot force a migration from

a popular matching to any other matching. The notion of popularity is naturally appealing and

is less demanding than the notion of stability. A matching is stable if it has no blocking edges: an

edge (a, b) blocks matching M if both a and b prefer each other to their respective assignments in

M . The existence of stable matchings and the Gale-Shapley algorithm [70] to find one are classical

results in algorithms. It is easy to show that every stable matching is popular [74].

There are many polynomial time algorithms to compute a max-utility stable matching in G [47,

48, 53, 96, 151, 165, 169] – several of these use linear programming on the stable matching polytope

SG, which is the convex hull of the 0-1 edge incidence vectors of stable matchings in G. The utility

of a max-utility popular matching could be much more than that of a max-utility stable matching;

for instance, when all utilities are 1, a max-utility popular matching is the same as a max-size

popular matching and it is known that a stable matching is a min-size popular matching [89].

Mixed matchings. Our objective is to find a max-utility matching under the constraints of

popularity — so as to achieve highest utility, what we seek should be a popular mixed matching

rather than a popular (pure) matching. A mixed matching is a probability distribution over

matchings, i.e., a mixed matching Π = {(M0, p0), . . . , (Mk, pk)}, where M0, . . . ,Mk are matchings

in G and
∑k

i=0 pi = 1, pi ≥ 0 for all i, and the utility of Π is
∑k

i=0 pi · w(Mi).

106

In economics, mixed matchings are called random assignments and they are used in the design

of mechanisms to guarantee various desirable properties, such as efficiency, fairness, and strategy-

proofness (see [13, 107] and the references therein). The function ϕ(M,M ′) defined earlier easily ex-

tends to ϕ(Π,M ′) as follows: ϕ(Π,M ′) =
∑k

i=0 pi ·ϕ(Mi,M
′), where Π = {(M0, p0), . . . , (Mk, pk)}.

The definition of ϕ(M ′,Π)) is analogous.

Definition 6.1.2. A mixed matching Π is popular if ϕ(Π,M ′) ≥ ϕ(M ′,Π) for all matchings M ′

in G, i.e., ∆(Π,M ′) ≥ 0, where ∆(Π,M ′) = ϕ(Π,M ′)− ϕ(M ′,Π).

Suppose Λ = {(N0, q0), · · · , (Nh, qh)} is another mixed matching. Let ∆(Π,Λ) =
∑k

i=1

∑h
j=1 piqj∆(Mi, Nj).

Then it follows easily from definition that if Π is popular then ∆(Π,Λ) ≥ 0 for all mixed matchings

Λ in G. Thus a popular mixed matching “beats” all integral and mixed matchings. As an allocation

mechanism, a popular mixed matching has several nice properties, such as population-consistency

and composition-consistency. We refer the readers to [46] for details.

A popular mixed matching need not be a probability distribution over popular matchings in

G. Such an example was shown in [104] and we show a much simpler example below in Fig. 6.1.

Here A = {a0, a1, a2}, B = {b1, b2}, and E = A × B. The preference list of every applicant

is the same: b1 ≻ b2, i.e., b1 is the top choice and then b2; the preference list of every job is

the same: a1 ≻ a2 ≻ a0. This instance admits exactly one popular matching: this is the stable

matching S = {(a1, b1), (a2, b2)} (the blue matching in Fig. 6.1). Consider the mixed matching

Π = {(S, 1
2), (M, 1

2)} where M = {(a1, b2), (a2, b1)} (the red matching in Fig. 6.1). Note that Π

is outside the convex hull of popular matchings – we will show in Section 6.2 that Π is popular.

Whenever w(a1, b2) + w(a2, b1) is larger than w(a1, b1) + w(a2, b2), the utility of Π is higher than

that of S. Thus the utility of a max-utility popular mixed matching can be much higher than that

of a popular matching.

������������������������

������������������������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

BA

a2

a1 b1

b2

a0

Figure 6.1: The blue matching S = {(a1, b1), (a2, b2)} is the only popular matching here. The red
matching M = {(a1, b2), (a2, b1)} is not popular as {(a0, b2), (a1, b1)} is more popular than M .

Mixed matchings are closely related to fractional matchings. A fractional matching p⃗ in G is

a point in Rm
≥0 that satisfies

∑
e∈E(v) pe ≤ 1, for every vertex v, where E(v) is the set of edges

incident on vertex v. In a bipartite graph, a mixed matching is equivalent to a fractional matching

(Birkhoff-von Neumann theorem). The polytope PG ⊆ Rm of all popular mixed matchings in

G = (A∪B,E) involves exponentially many constraints. However a compact extended formulation

of this polytope was given in [105]. Thus a max-utility popular mixed matching can be computed

in polynomial time.

107

However a potential drawback of generalizing from matchings to mixed matchings is that the

optimal solution has become more complex to describe and more difficult to implement. A mixed

matching can be interpreted as either a lottery over matchings or a time-sharing arrangement

(when the mixed matching is viewed as a fractional matching) [150]: in the former case, we need

access to several random bits to implement a lottery and the latter case involves sub-dividing

jobs and assigning several fractional jobs to an applicant. Thus we may need to deal with an

unstructured optimal solution. Our first result is the following.

Theorem 6.1.3. Given an instance G = (A ∪ B,E) with strict preference lists and a utility

function w : E → Q, G always has a max-utility popular mixed matching Π = {(M0,
1
2), (M1,

1
2)}

and Π can be computed in polynomial time. Moreover, if G admits a perfect stable matching, i.e.

a stable matching where no vertex is unmatched, then Π = {(M, 1)}, namely, Π is pure.

Thus our result implies that to achieve max-utility, we just need a single random bit to imple-

ment the lottery or we can find a time-sharing arrangement that is simple and organized—every

vertex has at most two partners and spends the same amount of time with each. Hence we can find

a max-utility popular mixed matching that is highly structured. Note that it was already known

how to compute a max-utility popular half-integral matching in G in polynomial time [104]. How-

ever it was not known whether this was a max-utility popular fractional matching or not. Our main

contribution is to show that this is so by proving that the polytope PG is half-integral. Moreover,

PG is integral when G admits a perfect stable matching (say, |A|= |B| and preference lists are

complete).

The complexity of finding a max-utility popular matching in G = (A ∪ B,E) is currently

unknown. We show here that when G is a general graph, i.e., not necessarily bipartite (also

called a roommates instance with strict preferences), the max-utility popular matching problem

becomes NP-hard. In fact, the max-utility stable matching problem in a roommates instance is

also NP-hard, as shown by Feder [47].

Theorem 6.1.4. Given G = (V,E) where each vertex has a strict preference list over its neighbors

and a utility function w : E → Q, the decision question of computing a max-utility popular matching

in G is NP-complete. Moreover, for any constant ϵ > 0, it is UGC-hard to design a polynomial

time ϵ-approximation algorithm for this problem.

We show below that when integrality is relaxed to half-integrality, the above problem becomes

tractable. Recall that a fractional matching needs not be a mixed matching in a non-bipartite

graph but it is always a convex combination of half-integral matchings. Analogous to a popular

mixed matching in a bipartite graph, a popular fractional matching in a general graph is a fractional

matching that “beats” all other fractional matchings. Formally, if node v prefers node v′ to node

v′′ or v′ = v′′, we write v′ ⪰v v′′; if only the former, we write v′ ≻ v. We slighly abuse notation

by writing v′ ≻v ∅ to denote that v prefers to be matched to any node v′ than being unmatched.

Given a half-integral matchingM ∈ {0, 1/2, 1}m, each node v inM is either fully-matched, half-

matched, or unmatched. In the first case, let M(v, 1), M(v, 2) be the two (not necessarily distinct)

vertices that v is fractionally matched to and let M(v, 1) ⪰v M(v, 2); in the second case, M(v, 1)

is the node v is matched to and M(v, 2) = ∅; in the last case, M(v, 1) = M(v, 2) = 0. Given two

108

half-integral matchings M and M ′, ϕ(M,M ′) =
∑2

i=1|{v|M(v, i) ≻v M ′(v, i)}|−{v|M ′(v, i) ≻v

M(v, i)}|. Let p =
∑k

i=0 piMi, where
∑k

i=0 pi = 1, be a fractional matching. Then ϕ(p,M ′) =∑k
i=0 piϕ(Mi,M

′). The definition of ϕ(M ′, p) is analogous.

We can now define a popular fractional matching analogously to Definition 6.1.2.

Definition 6.1.5. A fractional matching p =
∑k

i=0 piMi, where
∑k

i=0 pi = 1, is popular if

ϕ(p,M ′) ≥ ϕ(M ′, p) for all half-integral matchings M ′ in G, i.e., ∆(p,M ′) ≥ 0, where ∆(p,M ′) =

ϕ(p,M ′)− ϕ(M ′, p).

Let q =
∑h

j=0 qjNj , where
∑h

j=0 qj = 1, be another fractional matching. Furthermore, let

∆(p, q) =
∑k

i=1

∑h
j=1 piqj∆(Mi, Nj). It is clear that if p is popular, ∆(p, q) ≥ 0 for all fractional

matchings q. We show that there is a max-utility popular fractional matching that is half-integral.

Theorem 6.1.6. Given an instance G = (V,E) with strict preference lists and a utility function

w : E → Q, G always has a max-utility popular fractional matching p ∈ {0, 1
2 , 1}m, and p can be

computed in polynomial time.

6.1.1 Our Techniques

The polytope PG of popular fractional matchings has a compact extended formulation P ′
G ⊆ Rm+n

and in this paper, we analyze the linear program that gives rise to P ′
G and discover an unusual

property of this linear program. This LP is self-dual, i.e., it is exactly identical to its dual program.1

To the best of our knowledge, this seems to be the first time a natural problem has an LP with this

property and our proof on the structure of PG uses this self-duality crucially. Prior to our result, the

only linear program that had a somewhat similar property is the one used by Roth, Rothblum and

Vande Vate [150] to describe the stable matching polytope SG. Every stable fractional matching is

an optimal solution to their original LP there but also gives rise to an optimal solution in its dual.

In the original words of Roth et al. [150]: “We know of no similarly rich class of linear programs

whose primal and dual solutions are related in this way.”

By setting the n new variables (the ones added for the extended formulation) to 0, the descrip-

tion of P ′
G reduces to the description of SG. This formulation of SG is not independent of other

descriptions of this polytope [150, 165], however it has a novel and intuitive interpretation where

stability is interpreted as follows: the “sum of votes” of any adjacent pair of vertices for each other

is less than or equal to 0 (see Section 6.2 for details).

Our technique to prove the integrality of PG in the case when G = (A ∪ B,E) admits a

perfect stable matching (one that matches all vertices) is inspired by the one used by Teo and

Sethuraman [165] to show the integrality of SG. However as the description of the extended popular

fractional matching polytope P ′
G is more general than that of SG, our task is more involved here.

We use the fact that G admits a perfect stable matching to first conclude that for any integral

matching M here, there is a witness (αu)u∈A∪B ∈ {±1}n to the popularity of M , where the αu’s

are the n new variables that were added for the extended formulation. In order to find popular

matchings in G whose convex combination forms a popular fractional matching x⃗, we use the

1We remark that the same LP was first introduced in [105]. However, its self-duality is observed and explicitly
used the first time in the present work.

109

following new idea: for any vertex u, use the value of αu to divide into two sub-arrays the ordered

array of partners that u gets assigned in x⃗ and swap these two sub-arrays to get a reordered array.

We obtain the matchings M1, . . . ,Mk that form x⃗ from these reordered arrays. The popularity

of these matchings will be proved by assigning an appropriate witness α⃗i ∈ {±1}n to each Mi and

showing that each Mi along with its witness α⃗i belongs to P ′
G. The half-integrality of PG for the

general case (when G has no perfect stable matching) and for non-bipartite graphs follows from the

integrality of PG in this special case. For non-bipartite graphs, we show a simple reduction from

the vertex cover problem to show that it is NP-hard to compute a max-utility popular matching.

Background and related work. As mentioned earlier, popular matchings were introduced by

Gärdenfors [74] for two-sided preferences, i.e., vertices on both sides of the graph have preferences

over their neighbors. For one-sided preferences (i.e., vertices of only one side have preferences

over their neighbors), similar notions have been suggested by Kreweras [113] and Fishburn [51].

Popular matchings need not always exist in this setting and an efficient algorithm was given in

[3] to determine if the given instance admits a popular matching or not. It was shown in [105]

that popular mixed matchings always exist in the same setting and such a mixed matching can

be efficiently computed. Popular mixed matchings as an allocation mechanism have been studied

in [46, 80, 81].

In the domain of two-sided preferences, when preferences involve ties, the problem of determin-

ing if G = (A ∪ B,E) admits a popular matching or not is NP-hard [28, 139]. When preference

lists are strict, popular matchings always exist in G and efficient algorithms for computing a max-

size popular matching were given in [89, 103]. A subclass of max-size popular matchings called

dominant matchings were studied in [29]. The convex hull of the {0, 1
2 , 1}-edge incidence vectors of

popular half-integral matchings in G was described in [104] – this was done via the stable matching

polytope of a larger graph G∗ that was constructed using G.

Stable matchings have been extensively studied and there are several monographs [79, 110, 128,

147] on this subject. In practice, Roth [148, 149] discusses how stable matchings are compared

with other types of matchings in the two-sided matching markets. The first description of the

polytope SG for G = (A ∪ B,E) was given by Vande Vate [169] in 1989 and several descriptions

of SG are now known [53, 140, 150, 151, 165]. Stable matchings need not exist in the roommates

problem and efficient algorithms to determine if G = (V,E) admits a stable matching or not was

given in [97, 165]. Stable half-integral matchings always exist in G and it was shown in [2] that

the polytope of all stable fractional matchings is half-integral.

Organization of the paper. In Section 6.2 we describe the extended popular fractional match-

ing polytope P ′
G and show the self-duality of the LP that gives rise to this description. Section 6.3

shows the integrality of the popular fractional matching polytope PG when G is bipartite and ad-

mits a perfect stable matching. Section 6.4 shows the half-integrality of PG in the general bipartite

graph. The proofs of Theorems 6.1.4 and 6.1.6 are given Sections 6.5 and 6.6 respectively.

110

6.2 The extended popular fractional matching polytope P ′
G

Let MG be the matching polytope of G = (A ∪B,E): so MG = {x ∈ Rm :
∑

e∈E(u) xe ≤ 1 ∀u ∈
A ∪ B and xe ≥ 0 ∀e ∈ E}, where E(u) is the set of all edges incident on u in G. The popular

fractional matching polytope of G is

PG = {x⃗ ∈ MG : ∆(x⃗,M) ≥ 0 ∀matchings M in G},

where ∆(x⃗,M) = ∆(Π,M) where Π is a mixed matching corresponding to the fractional matching

x⃗ (recall that in a bipartite graph, a mixed matching is equivalent to a fractional matching).

Alternately, ∆(x⃗,M) =
∑

u∈A∪B voteu(x⃗,M(u)), where the function voteu(·, ·) is defined as follows.

For any vertex u ∈ A∪B and neighbors v, v′ of u, we have voteu(v, v
′) = 1 if u prefers v to v′,

it is -1 if u prefers v′ to v, else it is 0 (i.e., v = v′). The function voteu(v, v
′) extends by linearity

to voteu(x⃗, v
′) where x⃗ is a fractional matching:

voteu(x⃗, v
′) =

∑
v

x(u,v) · voteu(v, v′)

=
∑

v: v≻u v′

x(u,v) −
∑

v: v≺u v′

x(u,v),

where {v : v ≻u v′} consists all neighbors of u that are ranked higher than v′ in u’s preference

list and the set {v : v ≺u v′} consists of those who are ranked lower. We also let voteu(v
′, x) =

−voteu(x, v
′).

The description of PG in (6.1) above involves possibly exponentially many constraints – one

for each matching in G. Hence we will use the extended popular fractional matching polytope P ′
G

of G in m+ n dimensions (from [105]) that uses n new variables αu for u ∈ A ∪B along with the

m variables xe for e ∈ E. Note that the edge utilities given in the input instance G play no part

in the description of either PG or P ′
G.

It will be convenient to assume that each vertex u ∈ A∪B is completely matched in x⃗. So each

vertex u gets matched to a distinct artificial vertex ℓ(u) (referred to as the last resort neighbor of

u) placed at the bottom of u’s preference list with x(u,ℓ(u)) = 1 −∑e∈E(u) xe. Let Ẽ denote the

edge set E ∪ {(u, ℓ(u)) : u ∈ A ∪B} and let Ẽ(u) be the set of edges in Ẽ that are incident on u.

Then
∑

e∈Ẽ(u) xe = 1 for all u ∈ A ∪ B. For convenience, we will continue to use x⃗ to denote the

revised x⃗ in [0, 1]m+n.

The graph G̃x. The graph G̃x is the graph G augmented with last resort vertices and with edge

set Ẽ where the weight of edge (a, b) is equal to votea(b, x⃗) + voteb(a, x⃗) (note that in case a or b

is l(u) for some u ∈ A ∪B, votea(b, x⃗) or voteb(a, x⃗) is understood to be 0). For any matching M

in G̃x that matches all vertices in A ∪B, observe that the weight of M in G̃x is exactly the same

as ∆(M, x⃗).

The polytope P ′
G is based on the following observation: x⃗ ∈ MG is popular if and only if the

maximum weight of a matching in the graph G̃x that matches all vertices in A∪B is 0; note that

this value is always non-negative since the weight of the fractional matching x⃗ in G̃x is 0. Consider

111

the dual program (in variables αu for u ∈ A ∪ B) to the primal program which is the maximum

weight matching problem in the graph G̃x that matches all vertices in A∪B. This is LP1 described

below.

(LP1) minimize
∑

u∈A∪B

αu

αa + αb ≥ votea(b, x⃗) + voteb(a, x⃗) ∀ (a, b) ∈ Ẽ.

For any point x⃗ ∈ PG, by LP-duality, the optimal dual value is 0 and so there is the optimal

solution α⃗x = (αx
u)u∈A∪B to LP1 such that

∑
u∈A∪B αx

u = 0. We will regard α⃗x as the witness

to the popularity of x⃗. For example, consider the instance in Fig. 6.1: the half-integral matching

p⃗ = (S +M)/2 where S = {(a1, b1), (a2, b2)} and M = {(a1, b2), (a2, b1)} is popular as witnessed

by the following α-values: αa0 = αa1 = αb2 = 0, αa2 = −1, and αb1 = 1. Note that αa0 + αa1 +

αa2 + αb1 + αb2 = 0.

Instead of fixing a particular fractional matching x⃗ and regarding LP1 as a linear program in

the n variables αu, for u ∈ A∪B, we could regard LP1 as a linear program in m+ n variables xe,

for e ∈ Ẽ, and αu, for u ∈ A ∪B. This yields the following linear program (where votea(b, x⃗) and

voteb(a, x⃗) have been explicitly written in terms of xe’s).

(LP2) minimize
∑

u∈A∪B

αu

αa + αb ≥ (6.1)∑
b′:b′≺ab

x(a,b′) −
∑

b′:b′≻ab

x(a,b′) +
∑

a′:a′≺b a

x(a′,b)

−
∑

a′:a′≻b a

x(a′,b) ∀ (a, b) ∈ Ẽ.

∑
e∈Ẽ(u)

xe = 1 ∀u ∈ A ∪B.

xe ≥ 0 ∀e ∈ Ẽ.

The polytope P ′
G is the set of optimal solutions to LP2. Hence

∑
u∈A∪B αu = 0 and thus the

description of P ′
G consists of the following constraints: (we will refer to constraint (6.1) as the

covering constraint in P ′
G for (a, b))

αa + αb ≥ votea(b, x⃗) + (6.2)

voteb(a, x⃗),∀(a, b) ∈ Ẽ.

112

∑
u∈A∪B

αu = 0. (6.3)∑
e∈Ẽ(u)

xe = 1,∀u ∈ A ∪B, xe ≥ 0,∀e ∈ Ẽ. (6.4)

Observe that the description of P ′
G involves just O(m + n) constraints, far fewer than the

exponentially many constraints in the description of PG. We now show a very interesting and

special property of LP2.

Lemma 6.2.1. LP2 is its own dual program, i.e., LP2 is self-dual.

Proof. Consider the dual program corresponding to LP2. The dual variables are non-negative ye

for each e = (a, b) ∈ Ẽ and βu for each u ∈ A ∪B. This linear program is:

(LP3) maximize
∑

u∈A∪B

βu

βa + βb +
∑

b′:b′≺ab

y(a,b′) −
∑

b′:b′≻ab

y(a,b′) +
∑

a′:a′≺b a

y(a′,b)

−
∑

a′:a′≻b a

y(a′,b) ≤ 0 ∀ (a, b) ∈ Ẽ.

∑
e∈Ẽ(u)

ye = 1 ∀u ∈ A ∪B.

ye ≥ 0 ∀e ∈ Ẽ.

Let us substitute γu = −βu for each u ∈ A ∪ B. This makes LP3 exactly the same as LP2 – the

variable γu is in place of αu for each u ∈ A∪B and the variable ye is in place of xe for each e ∈ Ẽ

.

Thus LP2 is self-dual and so an optimal solution to LP2 is also an optimal solution to LP3.

This property will be crucial to us. We now show the relationship between P ′
G and the stable

matching polytope SG.

The typical formulation of SG contains the constraints that
∑

e∈Ẽ(u) xe = 1 for all u ∈ A ∪ B

and xe ≥ 0 for all e ∈ Ẽ along with the stability constraint for each edge (a, b) ∈ Ẽ. The stability

constraint for edge (a, b) in the description of SG from [150] is given by Inequality (6.5) below

and the stability constraint for each edge (a, b) in the description of SG from [165] is given by

Inequality (6.6) below. ∑
b′: b′≻ab

x(a,b′) + x(a,b) +
∑

a′: a′≻ba

x(a′,b) ≥ 1. (6.5)

∑
b′: b′≺ab

x(a,b′) + x(a,b) +
∑

a′: a′≺ba

x(a′,b) ≤ 1. (6.6)

In fact, the above two stability constraints are not independent and one can be derived from

113

the other.2 By subtracting the first from the second, we get the following constraint which is

equivalent to either of these constraints:(∑
b′: b′≺ab

x(a,b′) −
∑

b′: b′≻ab

x(a,b′)

)
(6.7)

+

(∑
a′: a′≺ba

x(a′,b) −
∑

a′: a′≻ba

x(a′,b)

)
≤ 0.

Thus constraint (6.7) for each edge (a, b) along with the constraints that
∑

e∈Ẽ(u) xe = 1 for

all u ∈ A ∪ B and xe ≥ 0 for all e ∈ Ẽ is a description of SG. Observe that the first term in

constraint (6.7) is votea(b, x⃗) and the second term there is voteb(a, x⃗). Thus the description of P ′
G

is a natural generalization of the description of SG where we have αa + αb on the right side of

constraint (6.7) along with the constraint that the sum of all αu’s has to be 0.

So SG is the set of those points x⃗ in PG that admit α⃗ = 0 as a witness to their popularity.

While SG is integral, we know that PG is not integral (as shown by the example in Fig. 6.1).

However we will be able to show in Section 6.3 that PG is integral in an important special case.

6.3 Integrality of PG in a special case

We will prove the following theorem in this section.

Theorem 6.3.1. Let G = (A ∪ B,E) be an instance of the stable marriage problem with strict

preference lists such that G admits a perfect stable matching. Then PG is integral.

Our assumption that G admits a perfect stable matching implies that every stable matching

S in G is perfect [67], i.e., every u ∈ A ∪ B is matched in S. In fact, this implies that every

popular matching in G has to be perfect – this is due to the fact that a stable matching is a

minimum-size popular matching in G (see Corollary 1 in [89]). Also, this extends to all popular

fractional matchings as well. That is, if x⃗ ∈ PG, then x⃗ has to fully match every vertex in A∪B to

genuine neighbors, otherwise we have ∆(x⃗, S) < 0 where S is any stable matching3, contradicting

the popularity of x⃗. The following lemma shows an important property satisfied by popular perfect

matchings in G.

Lemma 6.3.2. If M is a popular matching in G = (A ∪ B,E) such that M is perfect, then M

has a witness α⃗M ∈ {±1}n to its popularity.

Proof. A perfect popular matching in G is a dominant matching in G, i.e., a popular matching M

with the property that M is strictly more popular than every larger matching. It was shown in

[29] that every dominant matching allows a partition A0 ∪ A1 of A and B0 ∪ B1 of B such that

the following two properties are satisfied:

2We can obtain (6.6) by summing up the two equations
∑

e∈E(a) xe = 1 and
∑

e∈E(b) xe = 1 and subtracting

(6.5). (6.5) can be obtained from (6.6) analogously.
3x⃗ ∈ MG, so x⃗ is a convex combination of some matchings M1, . . . ,Mr in G and if some Mj is not perfect, then

it means ∆(Mj , S) < 0 and we also have ∆(Mi, S) ≤ 0 for all matchings Mi by the popularity of S, so this implies
∆(x⃗, S) < 0

114

(1) every blocking edge with respect to M is present in A0 ×B1

(2) if (a, b) is an edge in A1×B0 then both a and b prefer their respective partners in M to each

other.

Set αM
u = 1 for each u ∈ A0 ∪ B1 and set αM

u = −1 for each u ∈ A1 ∪ B0. This vector

α⃗M witnesses M ’s membership in PG since the covering constraints of all edges get satisfied by

properties (1) and (2) given above; also
∑

u∈A∪B αM
u =

∑
(a,b)∈M (αM

a + αM
b) since M is perfect

and this sum is 0 by our assignment of αM -values.

Let x⃗ ∈ PG. We seek to express x⃗ as a convex combination of some popular (integral) matchings

M1, . . . ,Mk in G. For ease of the narrative, we say these matchings Mi span x⃗ in the following

discussion.

We know from LP1 that there exists a witness α⃗x to the popularity of x⃗. Since x⃗ has to fully

match every vertex in A ∪ B to genuine neighbors, the covering constraint for (u, ℓ(u)) in the

description of P ′
G becomes αx

u ≥ −1. (Recall that ℓ(u) is the artificial last resort neighbor of u.)

So αx
u ≥ −1 for each u ∈ A ∪B. It can also be shown that αx

u ≤ 1 for each u ∈ A ∪B. Before we

prove this, we need the following very useful lemma. Recall that Ẽ = E ∪ {(u, ℓ(u)) : u ∈ A ∪B}.

Lemma 6.3.3. For every (a, b) ∈ Ẽ, if x(a,b) > 0 then the covering constraint in P ′
G for (a, b) is

tight. That is, we have:

αx
a + αx

b =
∑

b′:b′≺ab

x(a,b′) −
∑

b′:b′≻ab

x(a,b′) +∑
a′:a′≺b a

x(a′,b) −
∑

a′:a′≻b a

x(a′,b).

Proof. This follows directly from Lemma 6.2.1 which proved that LP2 is self-dual. So (x⃗,α⃗x) which

is an optimal solution to LP2 is also an optimal solution to its dual. Thus the following condition

is implied by complementary slackness: if x(a,b) > 0 then the constraint in LP2 for x(a,b) is tight.

That is,

αx
a + αx

b =
∑

b′:b′≺ab

x(a,b′) −
∑

b′:b′≻ab

x(a,b′) +∑
a′:a′≺b a

x(a′,b) −
∑

a′:a′≻b a

x(a′,b).

Lemma 6.3.4. For every vertex u ∈ A ∪B, we have αx
u ≤ 1.

Proof. Let {v1, v2, . . . , vd} be the set of all neighbors of u such that x(u,vi) > 0. Let vd be the least

preferred neighbor of u in this set. If x(u,vd) = δ, then
∑

u′:u′≺vd
u x(u′,vd) +

∑
u′:u′≻vd

u x(u′,vd) =

1− δ. So
∑

u′:u′≺vd
u x(u′,vd)−

∑
u′:u′≻vd

u x(u′,vd) is at most 1− δ. It follows from the definition of

vd that voteu(vd, x) = −(1− δ). Lemma 6.3.3 tells us that the covering constraint for edge (u, vd)

is tight. So αx
u + αx

vd
≤ −(1− δ) + (1− δ) = 0. Since αx

vd
≥ −1, it follows that αx

u ≤ 1.

115

Thus there exists a witness α⃗x = (αx
u)u∈A∪B ∈ [−1, 1]n for the popularity of x⃗. We will use α⃗x

as follows.

• for each a ∈ A: determine the value pa such that pa ·1+(1−pa)·(−1) = αx
a, i.e., 2pa−1 = αx

a.

• for each b ∈ B: determine the value pb such that pb ·(−1)+(1−pb) ·1 = αx
b , i.e., 1−2pb = αx

b .

The values pa and pb. The interpretation of pa is as follows: we would like to come up with

popular matchings spanning x. We know from Lemma 6.3.2 that every popular matching M in

G has a witness vector α⃗M ∈ {±1}n and so for any a ∈ A, we have αM
a ∈ {±1}. Suppose pa

fraction of the popular matchings that span x⃗ assign a’s α-value to 1 and so 1− pa of them assign

a’s α-value to -1. Then pa · 1 + (1− pa) · (−1) = 2pa − 1 = αx
a.

Let Xa denote the array containing a’s assignment in x⃗: each cell in the array Xa corresponds

to a neighbor b of a such that x(a,b) > 0. These neighbors of a are arranged in Xa in increasing

order of a’s preferences and the cell containing b has length x(a,b). Thus the total length of Xa is 1.

We use the value pa to partition Xa into a positive sub-array and a negative sub-array as defined

below.

Definition 6.3.5. For any a ∈ A, the initial pa fraction of Xa (i.e., the least preferred pa fraction

of Xa) will be called the positive sub-array of Xa and the remaining part (i.e., the most preferred

1− pa fraction of Xa) will be called the negative sub-array of Xa.

α = −1α = 1

pa 1− pa

α = −1 α = 1

1− pa pa

Figure 6.2: We will reorder Xa (the array on the left) by swapping the positive and negative
sub-arrays as shown above.

In Fig. 6.2, the array on the left is Xa and the positive sub-array of Xa is colored blue and the

negative sub-array of Xa is colored red. We will assume that the positive sub-array of Xa has a’s

α-value set to 1 and the negative sub-array of Xa has a’s α-value set to -1.

Our main idea here is the following: reorder Xa as shown in Fig. 6.2. That is, we cut Xa at

the end of its positive sub-array and move its entire negative sub-array (in the same order) to the

left of its positive sub-array. Note that neither the order within the positive sub-array nor within

the negative sub-array is changed by this. The reordered array is shown on the right on Fig. 6.2,

call this array X ′
a. In case the line cutting Xa into these 2 sub-arrays went through a cell, that

cell is now split into 2 cells (one negative and one positive). Thus each cell in X ′
a is either positive

or negative. Recall that each negative cell corresponds to a’s α-value being -1 and each positive

cell corresponds to a’s α-value being 1.

116

Similar to the interpretation of pa, the interpretation of pb is that if we assume pb fraction

of the popular matchings that span x⃗ assign b’s α-value to -1 and so (1 − pb) of them assign b’s

α-value to 1, then pb · (−1) + (1 − pb) · 1 = 1 − 2pb = αb. As done for each a ∈ A, here also we

form the array Xb which is b’s assignment in x⃗, however here the neighbors of b are arranged in

decreasing order of b’s preference.

Definition 6.3.6. For any b ∈ B, the initial pb fraction of Xb (i.e., the most preferred pb fraction

of Xb) will be called the negative sub-array of Xb and the remaining part (i.e., the least preferred

1− pb fraction of Xb) will be called the positive sub-array of Xb.

Refer to Fig. 6.3 – in the array on the left, the red part is the negative sub-array of Xb and the

blue part is the positive sub-array of Xb. As before, we will assume that the negative sub-array

of Xb has b’s α-value set to -1 and the positive sub-array of Xb has b’s α-value set to 1. We will

cut Xb at the end of its negative sub-array and move its entire positive sub-array to the left of its

negative sub-array as shown in Fig. 6.3. Call this reordered array X ′
b.

pb 1− pb

α = −1 α = 1

α = 1 α = −1

1− pb pb

Figure 6.3: The array on the left is Xb (b’s neighbors in x⃗ in decreasing order of b’s preference)
and the array on the right is X ′

b.

Finding the popular matchings that span x⃗. Form the table T whose rows are the reordered

arrays X ′
u, for u ∈ A ∪ B. The table T has width 1 and the number of cells in u’s row is at most

deg(u) + 1, where deg(u) is u’s degree in G. For any t ∈ [0, 1), define the matching Mt as follows:

• draw the vertical line Lt at distance t from the left end of T ;

• the line Lt intersects (or touches the left boundary of) some cell in X ′
u for each u ∈ A ∪B;

Mt = {(u, v) : u ∈ A ∪B and v is u’s neighbor in this cell}.

In fact, it is not obvious from the above construction that Mt is a matching: we need to show

that if b is in the cell in X ′
a at distance t from the left end of T , then a has to be in the cell in X ′

b

at distance t from the left. We will show this in Theorem 6.3.8. Before we show this, we show the

following simple lemma which will be used in the proof of Theorem 6.3.8.

Lemma 6.3.7. For any (a, b) ∈ Ẽ, we have x(a,b)+
∑

b′≺ab
x(a,b′)+

∑
a′≺b a x(a′,b) ≤ pa+(1−pb).

Moreoever, if x(a,b) > 0 then this inequality is tight.

117

Proof. We know by the covering constraint in P ′
G that for any (a, b) ∈ Ẽ:

αx
a + αx

b ≥
∑
b′≺ab

x(a,b′) −
∑
b′≻ab

x(a,b′) +∑
a′≺b a

x(a′,b) −
∑

a′≻b a

x(a′,b)

Rewrite the above constraint in a simpler form by substituting
∑

b′≻ab
x(a,b′) = 1 − x(a,b) −∑

b′≺ab
x(a,b′) and similarly substitute

∑
a′≻b a x(a′,b) = 1−x(a,b)−

∑
a′≺b a x(a′,b). Replace α

x
a with

2pa − 1 and αx
b with 1− 2pb. This results in the following simpler looking inequality:

x(a,b) +
∑
b′≺ab

x(a,b′) +
∑

a′≺b a

x(a′,b) (6.8)

≤ 1 + pa − pb = pa + (1− pb).

Note that it follows from Lemma 6.3.3 that when x(a,b) > 0, Inequality (6.8) is tight. Thus we

have shown the lemma.

We are now ready to show that Mt is a valid matching in G. For any edge (a, b), if x(a,b) > 0,

we need to show that the cell corresponding to b in X ′
a and the cell corresponding to a in X ′

b are

perfectly aligned in the vertical direction.

Theorem 6.3.8. Mt is a matching in G.

Proof. Recall that in X ′
a, a’s increasing order of preference of partners in x⃗ begins from the start of

its positive sub-array (the blue region) in a left to right orientation and it wraps around. Suppose∑
b′≺ab

x(a,b′) ≥ pa. Let d =
∑

b′:b′≺ab
x(a,b′) − pa. Then after traversing length d from the start of

X ′
a (refer to Fig. 6.4), we reach the cell in X ′

a that contains b – this is the darkened red cell in X ′
a

in Fig. 6.4 and it has length x(a,b).

1− pb

pa
d

incr. order
b’s

Figure 6.4: The top array is X ′
a and the darkened cell there contains b. The cell exactly below this

in the blue sub-array of X ′
b contains a.

Similarly in X ′
b, b’s increasing order of preference of partners in x⃗ begins from the end of its

positive sub-array and this order is from right to left (as indicated by the arrow in Fig. 6.4). Let

d′ =
∑

a′:a′≺ba
x(a′,b). After traversing length d′ from this vertical line inX ′

b (marking the end of the

positive sub-array) from right to left, we reach the cell that contains a. Note that this cell is within

118

the positive sub-array ofX ′
b since d

′+x(a,b) ≤ 1−pb because
∑

b′≺ab
x(a,b′)+d′+x(a,b) = pa+(1−pb)

(by Lemma 6.3.7) and we are in the case where
∑

b′≺ab
x(a,b′) ≥ pa.

Refer to Fig. 6.4, where the cell in X ′
b that contains a is the darkened blue cell and it has

length x(a,b). Since d+ x(a,b) + d′ = 1− pb, it follows that the cell containing a in X ′
b and the cell

containing b in X ′
a are exactly aligned with each other in the vertical direction.

The picture is absolutely symmetric when
∑

a′≺b a x(a′,b) ≥ (1− pb). Then the cell containing

b is in the positive sub-array of X ′
a and the cell containing a is in the negative sub-array of X ′

b.

The only case left is when
∑

b′≺a b x(a,b′) < pa and
∑

a′≺b a x(a′,b) < (1− pb). So in Xa, the line

separating the positive sub-array from the negative sub-array went through the cell containing b

and similarly, in Xb, the line separating the negative sub-array from the positive sub-array went

through the cell containing a. Let d0 =
∑

b′≺a b x(a,b′) and d1 =
∑

a′≺b a x(a′,b) (see Fig. 6.5).

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

pa

incr. order
b’s

a’s incr. order

1− pb

d1
d0

Figure 6.5: Both the leftmost (the dashed red) cell and the rightmost (the dashed blue) cell in X ′
a

contain b. Symmetrically both the leftmost (the dashed blue) cell and the rightmost (the dashed
red) cell in X ′

b contain a. Let the length of the leftmost cell in X ′
a be x0

(a,b) and let the length of

the rightmost cell in X ′
b be x1

(a,b).

Let the length of the rightmost cell in X ′
a be x0

(a,b) and let the length of the leftmost cell

in X ′
b be x1

(a,b). So x0
(a,b) = pa − d0 and x1

(a,b) = (1 − pb) − d1. Lemma 6.3.7 tells us that

x(a,b) + d0 + d1 = pa + (1 − pb). Hence x(a,b) = x0
(a,b) + x1

(a,b). We know that the length of the

cell containing b in Xa is x(a,b). So is the length of the cell containing a in Xb. Hence the length

of the leftmost cell in X ′
a is x(a,b) − x0

(a,b) = x1
(a,b) and the length of the rightmost cell in X ′

b is

x(a,b) − x1
(a,b) = x0

(a,b). Thus in this case as well we have perfect alignment between the two cells

in X ′
a that contain b and the two cells in X ′

b that contain a. So no matter which of these cells is

intersected by the line Lt, we have exact alignment between the cell containing a in X ′
b and the

cell containing b in X ′
a.

The popularity of matching Mt. We now need to show that Mt is a popular matching in G.

We do this by showing a witness vector α⃗t such that α⃗ = α⃗t and x⃗ = IMt
satisfy the constraints

of P ′
G, where IMt is the 0-1 edge incidence vector of Mt. We define α⃗t as follows. Recall that we

defined the matching Mt via the vertical line Lt that intersected table T .

• For each u ∈ A ∪B do: if the cell intersected by Lt is in the negative sub-array of X ′
u, then

set αt
u = −1; else (the cell is in the positive sub-array of X ′

u) set α
t
u = 1.

119

Observe that αt
a + αt

b = 0 for each edge (a, b) ∈ Mt. This is because it follows from the proof

of Theorem 6.3.8 that, for each edge (a, b) ∈ Mt, either b’s cell is in the negative sub-array of

X ′
a and a’s cell is in the positive sub-array of X ′

b or vice-versa. Since Mt is a perfect matching,

Corollary 6.3.9 follows.

Corollary 6.3.9.
∑

u∈A∪B αt
u = 0.

We now need to show that α⃗t and IMt
also satisfy the “covering constraints” in PG. Refer to

Fig. 6.6. The vertical line in X ′
a (with the left to right arrow adjacent to it) denotes the start of

a’s preference order of its partners in x⃗ in increasing order and this wraps around. Similarly, the

vertical line in X ′
b (with the right to left arrow adjacent to it) denotes the start of b’s preference

order of its partners in x⃗ in increasing order and this also wraps around.

1− pb

pa

a

b

Figure 6.6: The array on top is X ′
a and the rightwards arrow there denotes a’s increasing order.

The array on bottom in X ′
b and the leftwards arrow there denotes b’s increasing order (this is from

right to left).

Let the line Lt intersect cell c in X ′
a and cell c′ in X ′

b. Using Lemma 6.3.7, it is easy to make

the following observations:

(I) suppose x(a,b) = 0: so
∑

b′≺ab
x(a,b′)+

∑
a′≺b a x(a′,b) ≤ pa+(1−pb). Note that pa+(1−pb)

is the sum of lengths of positive sub-arrays in X ′
a and X ′

b. Hence for both a and b to be

matched in Mt to worse partners than each other, both c and c′ must be in their respective

positive sub-arrays. So if only one of c, c′ is in its positive sub-array, then at least one of a, b

is matched in Mt to a better partner than the other.

(II) suppose both c and c′ are in their respective negative sub-arrays: then we claim that both

a and b get matched in Mt to better partners than each other. This is because x(a,b) +∑
b′≺ab

x(a,b′) +
∑

a′≺b a x(a′,b) ≤ pa + (1 − pb) and pa + (1− pb) is the sum of the lengths

of the positive sub-arrays in X ′
a and in X ′

b.

Lemma 6.3.10. For each (a, b) ∈ Ẽ, we have αt
a + αt

b ≥ votea(b,Mt(a)) + voteb(a,Mt(b)).

Proof. Let (a, b) ∈ E and let the line Lt intersect cell c in X ′
a and cell c′ in X ′

b. There are three

possible cases regarding the “signs” of the cells c and c′:

(1) Both c and c′ are positive: so αt
a = αt

b = 1 and thus αt
a + αt

b = 2; hence the covering

constraint for edge (a, b) holds because the right side of this constraint is always at most 2.

120

(2) One of c, c′ is positive and the other is negative: so (αt
a, α

t
b) is either (−1, 1) or (1,−1). We

know from Observation (I) and the proof of Theorem 6.3.8 that when exactly one of the cells

is positive, either (i) at least one of a, b is matched in Mt to a better partner or (ii) a and b

are matched to each other. Thus the edge (a, b) is covered in both these sub-cases.

(3) Both cells c and c′ are negative: so αt
a = αt

b = −1. We know from Observation (II) that

when both c and c′ are negative, then both a and b are matched in Mt to better partners

than each other. Thus here also the edge (a, b) is covered.

Thus α⃗t and IMt together satisfy the covering constraints in PG for all edges (a, b) in E. For

each u ∈ A ∪ B, we have αt
u ≥ −1 and so the covering constraint for the edge (u, ℓ(u)) is also

satisfied (because voteu(ℓ(u),Mt) = −1). We have also shown that
∑

u α
t
u = 0. Thus we can

conclude that IMt
∈ PG, i.e., Mt is a popular matching in G.

We are now ready to express x⃗ as a convex combination of popular matchings: these matchings

are obtained by sweeping a vertical line from the left end to the right end of table T . Whenever

a new cell begins in some row in T (say, at distance t from the left end of T), we define a new

matching Mt as described above. The leftmost cell in T begins at distance 0 from the left end of

T , let the second leftmost cell in T begin at distance t1 from the left side of T , and so on, i.e., let

the i-th leftmost cell in T begin at distance ti−1 from the left side of T . Then we have:

x⃗ = t1 ·M0 + (t2 − t1) ·Mt1 + · · ·+ (1− tk−1) ·Mtk−1
.

The total number of matchings k that we construct here is at most m + |A| since m + |A|=∑
a∈A (deg(a)+1) is an upper bound on the total number of distinct cells in T . Thus every popular

fractional matching in G can be expressed as a convex combination of at most m + n popular

matchings in G. This finishes the proof of Theorem 6.3.1, in other words, if G = (A∪B,E) admits

a perfect stable matching then the polytope PG is integral.

6.4 Half-integrality of PG in the general bipartite graph

In this section we are in the general case: we have an instance G = (A∪B,E) with strict preference

lists and G need not admit a stable matching that matches all vertices. We know that PG need

not be integral here. We will show the following theorem.

Theorem 6.4.1. The popular fractional matching polytope PG in G = (A∪B,E) is half-integral.

We will show the above theorem with the help of Theorem 6.3.1. Using the given instance G,

we will construct a new instance H = (V ∪V ′, E′) as follows: let V = A0∪B1 and let V ′ = B0∪A1,

where Ai = {ai : a ∈ A} and Bi = {bi : b ∈ B}, for i = 0, 1 (see Fig. 6.7).

The edge set of H is E′ = E0 ∪ E1 ∪ {(u0, u1) : u ∈ A ∪B}, where Ei = {(ai, bi) : (a, b) ∈ E},
for i = 0, 1. For i = 0, 1 and for each vertex ui in H, ui’s preference list is the same as it was in

G, with a subscript i added to each of its neighbors (in the same order of preference) along with

u1−i added as ui’s least preferred neighbor in H.

121

B0

A0 A1

B1

V0 V1

Figure 6.7: The vertex set of the graph H is two copies of vertex set of the graph G.

Lemma 6.4.2. H admits a perfect stable matching.

Proof. Let S be a stable matching in H. Let S0 = S ∩ E0 and S1 = S ∩ E1. Thus both

S0 and S1 are stable matchings in G. Since all stable matchings in G match exactly the same

vertices [67], it follows that u0 is left unmatched in S0 if and only if u1 is left unmatched in S1.

Thus S = S0 ∪ S1 ∪ {(u0, u1) : u is an unstable vertex in G}. Thus S is perfect.

We can now use Theorem 6.3.1 to conclude that PH (the popular fractional matching polytope

of H) is integral. The rest of this section will use the integrality of PH to prove that PG is half-

integral. In order to do this, we define a mapping f from PG to the set of fractional matchings in

H. Let x⃗ ∈ PG, where x⃗ = (xe)e∈Ẽ ; we know that there exists a witness α⃗x = (αx
v)v∈A∪B such

that x⃗ and α⃗x satisfy the constraints of P ′
G.

Define the vector f(x⃗) = z⃗ = (ze)e∈E′ as follows: for every edge (a, b) ∈ E, let z(a0,b0) =

z(a1,b1) = x(a,b) and for every u ∈ A ∪ B, let z(u0,u1) = x(u,ℓ(u)). It is easy to see that z⃗ is a

fractional matching in H.

Lemma 6.4.3. f(x⃗) is a popular fractional matching in H.

Proof. We need to show a witness vector β⃗ = (βv)v∈V ∪V ′ such that β⃗ and f(x⃗) satisfy the con-

straints in P ′
H . We define β⃗ as follows: for each u ∈ A ∪ B, let βu0

= βu1
= αx

u. Let (a, b) ∈ E.

Given the fact that x⃗ and α⃗x satisfy the covering constraints in PG for (a, b), it immediately follows

that f(x⃗) along with the vector β⃗ satisfies covering constraints in P ′
H for the edges (a0, b0) and

(b1, a1).

Consider the edge (u, ℓ(u)) in G for any u ∈ A∪B: we have αx
u ≥ x(u,ℓ(u))−1. In the graph H,

the right side of the edge covering constraint for the edge (u0, u1) is 2(x(u,ℓ(u)) − 1) and as the left

hand side is αx
u+αx

u, it follows that the covering constraint for the edge (u0, u1) is also satisfied by

f(x⃗) and β⃗. Thus the covering constraints in the description of P ′
H for all edges in E′ are satisfied

by f(x⃗) and β⃗. Since βui = αx
u ≥ −1, the covering constraint in P ′

H for the edge (ui, ℓ(ui)) is

trivially satisfied for all u ∈ A ∪B and i = 0, 1.

Our goal now is to define a mapping h, which is the inverse of f , from PH to PG, i.e., h◦f(x⃗) = x⃗

for any popular fractional matching x⃗ in G. Let z⃗ = (ze)e∈E′ be any popular fractional matching

in H. We define h(z⃗) = y⃗ = (ye)e∈Ẽ as given below and note that h ◦ f(x⃗) = x⃗ for any x ∈ PG.

y(a,b) = (z(a0,b0) + z(b1,a1))/2 for every (a, b) ∈ E

122

y(u,ℓ(u)) = z(u0,u1) for every u ∈ A ∪B.

For y⃗ to belong to PG, it is necessary that y⃗ satisfies
∑

e∈Ẽ(u) ye = 1 for each u ∈ A∪B. Since∑
e∈E′ ze = 1, it is simple to see that the above constraint is satisfied. We will now show that y⃗

satisfies the other constraints defining P ′
G.

For this we need to show a witness vector α⃗: we know that there exists a witness vector

(βv)v∈V ∪V ′ that is a witness to z⃗’s popularity in H. For each u ∈ A ∪B, let αu = (βu0
+ βu1

)/2.

Since
∑

u∈A∪B (βu0
+ βu1

) = 0, we have
∑

u∈A∪B αu = 0. Using the fact that β⃗ and z⃗ satisfy

covering constraints for all edges in E′, it is straightforward to show that α⃗ and h(z⃗) satisfy covering

constraints for all edges in Ẽ. Thus we can conclude the following lemma.

Lemma 6.4.4. For any popular fractional matching z⃗ in H, h(z⃗) is a popular fractional matching

in G.

Theorem 6.4.1 follows from Lemma 6.4.5. Thus the polytope PG is half-integral.

Lemma 6.4.5. Let x⃗ ∈ PG. Then x⃗ =
∑r

i=1 λi pi, where p1, . . . , pr are popular half-integral

matchings in G and λi ≥ 0 for 1 ≤ i ≤ r along with
∑

i λi = 1.

Proof. Let x⃗ ∈ PG and let z⃗ = f(x⃗). We know from Lemma 6.4.3 that z⃗ ∈ PH . Since PH is

integral, it follows that z⃗ =
∑r

i=1 λi Mi, where M1, . . . ,Mr are popular matchings in H and for

each i, we have λi ≥ 0 along with
∑

i λi = 1.

We know that h(z⃗) = x⃗. So x⃗ = h(z⃗) =
∑r

i=1 λi · h(Mi). Lemma 6.4.4 tells us that

h(M1), . . . , h(Mr) belong to PG. Since M1, . . . ,Mr are integral matchings in H, it follows from

the definition of h that h(M1), . . . , h(Mr) are half-integral matchings in G. Thus x⃗ is a convex

combination of popular half-integral matchings in G.

6.5 Half-integrality of PG in a roommates instance

The input instance here is a graph G = (V,E) (not necessarily bipartite) and popular matchings

need not always exist here. Consider the instance G on the left of Fig. 6.8 on 3 vertices a, b, and

c. Suppose the preferences are cyclic, i.e., a prefers b to c, b prefers c to a, and c prefers a to b. It

is easy to see that G has no popular matching.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
��

�
�
�

�
�
�
�

�
�
�
�

b1

a

c0 c1

a1a0

b0

cb

V0 V1

Figure 6.8: To the left is the graph G which is the triangle on a, b, and c. To the right is the graph
H which is essentially the 6-cycle a-b′-c-a′-b-c′-a along with the new edges (a, a′), (b, b′), (c, c′)
which are the dashed edges above.

123

We first define the fractional matching polytope FMG of G:

FMG = {x⃗ ∈ Rm :
∑

e∈E(u)

xe ≤ 1 ∀u ∈ V and xe ≥ 0 ∀e ∈ E}.

The polytope PG is the set of points x⃗ ∈ FMG such that ∆(x⃗, y⃗) ≥ 0 for all y⃗ ∈ FMG. It is known

that FMG is half-integral, where a half-integral matching p⃗ = (pe)e∈E is a point in FMG such that

pe ∈ {0, 1
2 , 1} for each edge e. Thus PG can also be defined as ∆(x⃗, p⃗) ≥ 0 for all half-integral

matchings p in G.

As done in the case of bipartite instances in Section 6.2, there is an extended formulation P ′
G

on m + n variables as given by constraints (6.2)-(6.4). We will use this extended formulation to

prove the half-integrality of PG as done in Section 6.4.

Corresponding to G, we define the bipartite graph H = (V ∪ V ′, E′) where V is the vertex

set of G and V ′ = {v′ : v ∈ V }. Thus V ′ is another copy of V . The edge set E = {(u, v′) :

(u, v) ∈ E} ∪ {(v, v′) : v ∈ V }. We show an example in Fig. 6.8 where the graph H on the right is

the bipartite graph corresponding to the graph G on the left. The preference lists of vertices are

identical to how we defined them in Section 6.4. Thus for each v ∈ V , we have v′ as v’s last choice

and symmetrically, v is the v′’s last choice. The following lemma will be useful to us.

Lemma 6.5.1. H admits a perfect stable matching.

Proof. Let S be a stable matching in H. We claim that S must be perfect. Suppose, for a

contradiction, that v inV is unmatched (the case v′ ∈ V ′ is unmatched follows symmetrically). As

S is stable, v′ must be matched to some vertex u0 which ranks higher than v. Then u′
0 is matched

to some vertex u1 ranking higher than v (otherwise (v, u′
0) blocks S). As u′

0 prefers u1 to v, u0

prefers u′
1 to v′. Thus, u′

1 must be matched to some vertex u2 ranking higher than u0, otherwise

(u0, u
′
1) blocks S. Repeating this reasoning, we find a path ρ = ⟨v, v′, u0, u

′
0, u1, u

′
1, . . .⟩, where

s(v′) = u0 and s(u′
i) = ui+1 for i ≥ 0. Such a path is of finite length and must loop back to v, i.e.,

there exists some node u′
k so that s(u′

k) = v, contradicting the assumption that v is unmatched.

Thus we can conclude that the popular fractional matching polytope PH of H is integral (by

Theorem 6.3.1) The rest of the proof is identical to the proof in Section 6.4. For any x⃗ ∈ PG,

define the function f(x⃗) = z⃗ = (ze)e∈E′ where z(u,v′) = z(v,u′) = x(u,v) for every edge (u, v) ∈ E

and z(v,v′) = x(v,ℓ(v)) for any v ∈ A ∪ B. As done in the proof of Lemma 6.4.3, it is easy to show

that f(x⃗) is a popular fractional matching in H. Thus f is a function from PG to PH .

We then define a mapping h from PH to PG such that h ◦ f(x⃗) = x⃗ for any popular fractional

matching x⃗ in G. Let z⃗ = (ze)e∈E′ be any popular fractional matching in H. We define h(z⃗) =

y⃗ = (ye)e∈Ẽ as follows: y(u,v) = (z(u,v′) + z(v,u′))/2 for every (u, v) ∈ E and y(v,ℓ(v)) = z(v,v′) for

every v ∈ V . It is again easy to show that y⃗ ∈ PG. So for any popular fractional matching z⃗ in

H, h(z⃗) is a popular fractional matching in G.

As done in the proof of Lemma 6.4.5, we can now show that if x⃗ ∈ PG then x⃗ =
∑r

i=1 λi pi,

where p1, . . . , pr are popular half-integral matchings in G and λi ≥ 0 for 1 ≤ i ≤ r along with∑
i λi = 1. Thus we can conclude Theorem 6.1.6.

124

6.6 Hardness of max-utility popular matching in roommates

instances

In this section, we prove Theorem 6.1.4 by showing that it is NP-hard to compute a max-utility pop-

ular matching in a roommate instance. Here we use the characterization of popular matchings from

[89] that uses edge labels – for edge (u, v) in E\M , assign the label (voteu(v,M(u)), votev(u,M(v)).

Note that all edges with the label (1,1) are blocking edges to M . Let GM be the graph obtained

by deleting all edges labeled (−1,−1) from G. The matching M is popular in G if and only if the

following three conditions hold in GM :

(1) There is no alternating cycle with respect to M that contains a (1, 1) edge.

(2) There is no alternating path starting from an unmatched vertex that contains a (1, 1) edge.

(3) There is no alternating path with respect to M that contains more than one (1, 1) edge.

Let G = (V,E) be an instance of vertex cover. We construct a new graph H now. H will be

a complete graph. For every vertex vi ∈ V , there will be four vertices ai0, a
i
1, a

i
2, a

i
3 in H and they

have the following preferences (here π(X) means a permutation of elements in X in an arbitrary

order and π(· · ·) means an arbitrary permutation of all vertices not explicitly listed so far in the

preference list of ait, 0 ≤ t ≤ 3):

ai0 : ai1 ≻ π(∪∀vj ,(vi,vj)∈Ea
0
j) ≻ a2i ≻ a3i ≻ π(· · ·)

ai1 : ai0 ≻ ai2 ≻ ai3 ≻ π(· · ·)
ai2 : ai1 ≻ ai0 ≻ ai3 ≻ π(· · ·)
ai3 : ai1 ≻ ai2 ≻ ai0 ≻ π(· · ·)

We now define edge utilities in H as follows: w(ai0, a
i
2) = w(ai1, a

i
3) = 2, ∀vi ∈ V ; all other

edges e have w(e) = 1.

Lemma 6.6.1. Let C ⊆ V be a vertex cover of G. Then there exists a popular matching M in H

with w(M) = 4n− 2k, where k = |C| and n = |V |.

Proof. We construct a popular matching M in H according to the vertex cover C in G. If vi ∈ C,

then {(ai0, ai1), (ai2, ai3)} ⊆ M ; if vi ∈ V \ C, then {(ai0, ai2), (ai1, ai3)} ⊆ M . Observe that GM

consists of the following edges. See Fig. 6.9 and Fig. 6.10.

1. Edges in M .

2. ∀vi ∈ C: (ai0, a
i
2), (a

i
1, a

i
2), (a

i
1, a

i
3) – these are (1,−1) edges.

3. ∀vi ∈ V \ C: (ai0, a
i
1), (a

i
1, a

i
2) – these are (1, 1) edges.

4. (ai0, a
j
0) is a (1,−1) edge and such an edge exists in GM if and only if (vi, vj) ∈ E, and exactly

one of vi, vj is in C.

125

ai0

(1, 1)

ai2

ai3ai1

(1, 1)(1,−1)

(1,−1)

Figure 6.9: The vertices corresponding to vi ̸∈ C in GM : note that only ai0 has edges connecting
it to other vertices ak0 with vk ∈ C.

Figure 6.10: The vertices corresponding to vj ∈ C in GM : note that only aj0 has edges connecting
it to other vertices ak0 with vk ̸∈ C.

Note that if (vi, vj) ∈ E, then (ai0, a
j
0) cannot be a (1, 1) edge since C is a vertex cover.

We now show that M is popular. As M is a perfect matching, we only need to show that

conditions (1) and (3) characterizing popular matchings (from [89]) stated earlier hold in GM .

That is, there is no alternating path containing two or more (1, 1) edges and no alternating cycle

containing at least a (1, 1) edge.

The only (1, 1) edges in GM are (ai0, a
i
1) and (ai1, a

i
2) when vi ∈ V \C. The alternating path

(cycle) containing (ai0, a
i
1) must contain (ai3, a

i
1) ∈ M and (ai0, a

i
2) ∈ M and neither ai3 nor ai2 has

any other incident edges in GM . So we can rule out such paths (cycles).

Next suppose that the alternating path (cycle) contains (ai1, a
i
2). Such a path (cycle) contains

(ai1, a
i
3) ∈ M and (ai0, a

i
2) ∈ M and as ai3 has no other incident edge in GM , we can rule out the

possibility of the alternating cycle containing (ai1, a
i
2). Observe that ai0 may have incident edges

(ai0, a
j
0) labeled as (1,−1) in GM , when vj ∈ C. However, the alternating path, if it includes

(ai0, a
j
0), must also include (aj0, a

j
1) ∈ M . As aj1 has only (aj1, a

j
2) and (aj1, a

j
3) as incident edges, it

is easy to see that this alternating path must be “trapped” (see Figure 6.10) inside the vertices

corresponding to vj (i.e., this path cannot continue on to vertices corresponding to other nodes

vk ̸=j), without encountering a second (1, 1) edge. This proves the popularity of M .

We now proceed on the other direction of the reduction.

126

Lemma 6.6.2. No edge (ait, a
j
t′), 0 ≤ t, t′ ≤ 3, i ̸= j, belongs to a popular matching M .

Proof. First assume that t, t′ ∈ {0, 1}. If (ait, ajt′) ∈ M , then the path vi1−t-v
i
t-v

j
t′ -v

j
1−t′ contains two

(1, 1) edges. Next assume that t ∈ {0, 1} and t′ ∈ {2, 3}. Suppose first that t′ = 2. If (aj1, a
j
3) ̸∈ M ,

then vi1−t-v
i
t-v

j
2-v

j
3 has two (1, 1) edges; if (aj1, a

j
3) ∈ M , then vi1−t-v

i
t-v

j
2-v

j
0 has two (1, 1) edges

((vj2, v
j
0) is a (1, 1) edge since we already established that vj0 cannot be matched to vj

′ ̸=j
0 in M).

Suppose next that t′ = 3. If aj2 is matched to neither aj0 nor aj1, then vi1−t-v
i
t-v

j
3-v

j
2 has two (1, 1)

edges; if aj2 is matched to ajt′′ where t′′ ∈ {0, 1}, then vi1−t-v
i
t-v

j
3-v

j
1−t′′ has two (1, 1) edges.

So we have established that ai0, a
i
1 cannot be matched to vertices corresponding to other nodes

vj ∈ V . The remaining case is t, t′ ∈ {2, 3}. Suppose that t = 2. If (ai1, a
i
3) ∈ M , then (ai2, a

i
1) is

a (1, 1) edge; if (ai1, a
i
0) ∈ M , then (ai2, a

i
3) is (1, 1). Suppose that t = 3. If (ai0, a

i
1) (respectively

(ai0, a
i
2), (a

i
1, a

i
2)) is part of M , then (ai3, a

i
2) (respectively, (a

i
3, a

i
1), (a

i
3, a

i
0)) is an (1, 1) edge. This

applies to t′ analogously. We then have a path of length 3 with two (1, 1) edges (with (ait, a
j
t′) in

between) to arrive at a contradiction.

Lemma 6.6.3. Suppose M is popular in the instance H.

(i) For the vertices ai0, a
i
1, a

i
2, a

i
3, either {(ai0, ai1), (ai2, ai3)} ⊆ M or {(ai0, ai2), (ai1, ai3)} ⊆ M .

(ii) If (vi, vj) ∈ E, then it cannot happen that {(ai0, ai2), (ai1, ai3), (aj0, aj2), (aj1, aj3)} ⊆ M .

Proof. For (i), first note that M has to be a perfect matching, otherwise, the edge between two

unmatched vertices is a (1, 1) edge, contradicting the popularity of M . So by Lemma 6.6.2, we

just need to rule out the possibility of {(ai0, ai3), (ai1ai2)} ⊆ M . If this happens, then ai0-a
i
1-a

i
2-a

i
3-a

i
0

is a cycle with a (1, 1) and a (1,−1) edge in it, contradicting the popularity of M .

For (ii), if the described situation really happens, then the alternating path ai0-a
j
0-a

j
2-a

j
1 has

two (1, 1) edges, a contradiction.

Lemma 6.6.4. Suppose M is a popular matching with w(M) = 4n− 2k. Then we can construct

a vertex cover C with |C|= k.

Proof. By Lemma 6.6.3 (i), either {(ai0, ai1), (ai2, ai3)} ⊆ M or {(ai0, ai2), (ai1, ai3)} ⊆ M . In the

former case, put vi ∈ C; in the latter case, leave vi ouside of C. It follows from Lemma 6.6.3 (ii)

that the set C is a vertex cover in G. The fact that |C|= k can be easily verified.

Using Lemmas 6.6.1 and 6.6.4, we can draw the following conclusion.

Theorem 6.6.5. It is NP-hard to compute a max-utility popular matching in the roommates

instance, even when all preferences are strict and complete, and each edge utility is either 1 or 2.

Suppose the edge utilities are non-negative arbitrary values. We can also show the following

inapproximability result.

127

Theorem 6.6.6. Suppose all utilities are non-negative. Then there is no polynomial time ϵ-

approximation algorithm, for any ϵ > 0, to compute a max-utility popular matching in a roommates

instance, even when all preferences are strict and complete, unless the unique games conjecture

fails.

Proof. In the above reduction, let us modify the edge utilities as follows: w(ai0, a
i
2) = w(ai1, a

i
3) = 1,

∀vi ∈ V ; all other edges e have w(e) = 0. Lemmas 6.6.1 and 6.6.4 can be rephrased as there is a

vertex cover of size k if and only if there is a popular matching of utility 2n− 2k.

According to [23], vertex cover is hardest to approximate when the given instanceG = (V,E)

has a perfect matching. Thus we can assume that |OPTVC|≥ n/2.

First suppose |OPTVC|≥ (1/2 + ϵ)n. Then returning the entire set of vertices V would give a
n

(1/2+ϵ)n = 2−Θ(ϵ) approximation. Next suppose n/2 ≤ |OPTVC|≤ (1/2+ϵ)n. Then the maximum

utility of a popular matching in H is at least 2n− 2((1/2 + ϵ)n) = (1− 2ϵ)n.

Suppose we have an ϵ-approximation algorithm for some ϵ > 0. Then the utility of the returned

matching M is at least ϵ(1− 2ϵ)n. As w(M) = 2n− 2k ≥ ϵ(1− 2ϵ)n, we have k ≤ (1− ϵ/2+ ϵ2)n.

By assumption |OPTVC|≥ n/2, so we have a vertex cover whose size is at most (1−ϵ/2+ϵ2)n
n/2 =

2 − ϵ + ϵ2 = 2 − Θ(ϵ) times the size of OPTVC. In both cases, we have a 2 − Θ(ϵ) approximation

for vertex cover. This would break the unique games conjecture.

Acknowledgement.

We are grateful to the anonymous reviewers for their helpful comments. The second author wishes

to thank Naveen Garg for fruitful discussions.

128

Bibliography

[1]

[2] H. G. Abeledo and U. G. Rothblum. Stable matchings and linear inequalities. Discrete

Applied Mathematics, 54(1-27), 1994.

[3] D. Abraham, R. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. SIAM Journal

on Computing, 37(4):1030–1045, 2007.

[4] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms, and Applications.

Pearson, 1993.

[5] R. Ahuja, J. Orlin, C. Stein, and R. Tarjan. Improved algorithms for bipartite network flow.

SIAM J. Comput., 23(5):906–933, 1994.

[6] M. Aigner and T. A. Dowling. Matching theory for combinatorial geometries. Transactions

of the American Mathematical Society, 158(1):231–245, 1971.

[7] N. Alon, I. Gamzu, and M. Tennenholtz. Optimizing budget allocation among channels

and influencers. In Proceedings of the 21st International Conference on World Wide Web

(WWW), pages 381–388, 2012.

[8] J. Aráoz, W. Cunningham, J. Edmonds, and J. Green-Krótki. Reductions to 1-matching

polyhedra. Networks, 13:455–473, 1983.

[9] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause. Streaming submodular

maximization: massive data summarization on the fly. In Proceedings of the 20th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pages

671–680, 2014.

[10] A. Badanidiyuru and J. Vondrák. Fast algorithms for maximizing submodular functions.

In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 1497–1514, 2013.

[11] M. L. Balinski. Establishing the matchig polytope. Journal of Combinatorial Theory B,

pages 1–13, 1972.

[12] C. Berge. Sur le couplage maximum d’un graphe. Comptes Rendus Hebdomadaires des

Séances de l’Académie des Sciences, 247(258-359), 1958.

129

[13] A. Bogomolnaia and H. Moulin. A new solution to the random assignment problem. Journal

of Economic theory, 100:295–328, 2001.

[14] C. Brezovec, G. Cornuéjols, and F. Glover. Two algorithms for weighted matroid intersection.

Mathematical Programming, 36(1):39–53, 1986.

[15] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a monotone submodular

function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766,

2011.

[16] A. Chakrabarti and S. Kale. Submodular maximization meets streaming: matchings, ma-

troids, and more. Mathematical Programming, 154(1-2):225–247, 2015.

[17] T.-H. H. Chan, Z. Huang, S. H.-C. Jiang, N. Kang, and Z. G. Tang. Online submodular

maximization with free disposal: Randomization beats for partition matroids online. In

Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 1204–1223, 2017.

[18] C. Chekuri, S. Gupta, and K. Quanrud. Streaming algorithms for submodular function

maximization. In Proceedings of the 42nd International Colloquium on Automata, Languages,

and Programming (ICALP), volume 9134, pages 318–330, 2015.

[19] C. Chekuri and K. Quanrud. Fast approximations for matroid intersection. In Proceedings

of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2016.

[20] C. Chekuri, J. Vondrák, and R. Zenklusen. Submodular function maximization via the

multilinear relaxation and contention resolution schemes. SIAM Journal on Computing,

43(6):1831–1879, 2014.

[21] H. Y. Cheung, T. C. Kwok, and L. C. Lau. Fast matrix rank algorithms and applications.

Journal of the ACM, 60(5):31, 2013.

[22] H. Y. Cheung, L. C. Lau, and K. M. Leung. Algebraic algorithms for linear matroid parity

problems. ACM Transacitons on Algorithms, 10(3):10, 2014.

[23] M. Chleb́ık and J. Chleb́ıková. Minimum 2sat-deletion: Inapproximability results and rela-

tions to minimum vertex cover. Discrete Applied Mathematics, 155(2):172–179, 2007.

[24] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S. Teng. Electrical flows, laplacian

systems, and faster approximation of maximum flow in undirected graphs. In Proceedings of

the 43rd ACM Symposium on Theory of Computing, STOC, pages 273–282, 2011.

[25] N. Christofides. Worst case analysis of a new heuristic for the travelling salesman problem.

Tech. rep., Graduate School of Industrial Administration, Carnegie Mellon University, 1976.

[26] W. J. Cook, W. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial Opti-

mization. Wiley-Blackwell, 1997.

130

[27] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal

of Symbolic Computation, 9(3):251–280, 1990.

[28] A. Cseh, C.-C. Huang, and T. Kavitha. Popular matchings with two-sided preferences and

one-sided ties. SIAM Journal on Discrete Mathematics, 31(4):2348–2377, 2017.

[29] A. Cseh and T. Kavitha. Popular edges and dominant matchings. Mathematical Program-

ming, Series B, 172(1-2):209–229, 2018.

[30] W. Cunningham and A. Marsh. A primal algorithm for optimum matching. Polyhdedral

Combinatorics—Dedicated to the Memory of D.R. Fulkerson, pages 50–72, 1978.

[31] W. H. Cunningham. Improved bounds for matroid partition and intersection algorithms.

SIAM Journal on Computing, 15(4):948–957, 1986.

[32] M. Cygan, H. Gabow, and P. Sankowski. Algorithmic applications of baur-strassen’s theorem:

shortest cycles, diameter and matchings. In Proceedings of the 53rd Annual IEEE Symposium

on Foundations of Computer Science, FOCS, 2012.

[33] U. Derigs. A shortest augmenting path method for solving minimal perfect matching prob-

lems. Networks, 11:379–390, 1981.

[34] R. Dougherty, C. Freiling, and K. Zeger. Network coding and matroid theory. Proceedings

of the IEEE, 99(3):388–405, 2011.

[35] R. Duan and S. Pettie. Linear-time approximation for maximum weight matching. Journal

of the ACM, 61(1):1, 2014.

[36] R. Duan and S. Pettie. Linear-time approximation for maximum weight matching. J. of

ACM, 61(1):1–23, 2014.

[37] R. Duan, S. Pettie, and H.-H. Su. Scaling algorithms for weighted matching in general

graphs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 781–800, 2017.

[38] R. Duan, S. Pettie, and H.-H. Su. Scaling algorithms for weighted matching in general

graphs. Journal ACM Transactions on Algorithms, 14(1), 2018.

[39] R. Duan and H.-H. Su. A scaling algorithm for maximum weight matchings in bipartite

graphs. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA, pages 1413–1424, 2012.

[40] A. Dulmage and N. Mendelsohn. Coverings of bipartite graphs. Canadian J. of Mathematics,

10:517–534, 1958.

[41] J. Edmonds. Maximum matching and a polyhedron with (0, 1) vertices. Journal of Research

National Bureau of Standards Section, 69(B):125–130, 1965.

[42] J. Edmonds. Paths, trees, and flowers. Canadian J. of Mathematics, 17(49-467), 1965.

131

[43] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In R. Guy, H. Hanani,

N. Sauer, and J. Schönheim, editors, Combinatorial Structures and Their Applications, pages

69–87. Gordon and Breach, 1970.

[44] J. Edmonds. Matroids and the greedy algorithm. Mathematical Programming, 1(1):127–136,

1971.

[45] J. Edmonds. Matroid intersection. Annals of Discrete Mathematics, 4:39–49, 1979.

[46] F. B. F. Brandl and H. G. Seedig. Consistent probabilistic social choice. Econometrica,

84(5), 2016.

[47] T. Feder. A new fixed point approach for stable networks and stable marriages. Journal of

Computer and System Sciences, 45(2):233–284, 1992.

[48] T. Feder. Network flow and 2-satisfiability. Algorithmica, 11(3), 1994.

[49] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45(4):634–652,

1998.

[50] Y. Filmus and J. Ward. A tight combinatorial algorithm for submodular maximization

subject to a matroid constraint. SIAM Journal on Computing, 43(2):514–542, 2014.

[51] P. Fishburn. Probabilistic social choice based on simple voting comparisons. Review of

Economic Studies, 51(167):683–692, 1984.

[52] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for maxi-

mizing submodular set functions ii. Mathematical Programming Study, 8:73–87, 1978.

[53] T. Fleiner. A fixed-point approach to stable matchings and some applications. Mathematics

of Operations Research, 28(1):103–126, 2003.

[54] A. Frank. A weighted matroid intersection algorithm. Journal of Algorithms, 2(4):328–336,

1981.

[55] A. Frank. A quick proof for the matroid intersection weight-splitting theorem. Technical

Report QP-2008-03, Egerváry Research Group on Combinatorial Optimization, 2008.

[56] M. Fredman and R. Tarjan. Fibonacci heaps and their uses in improved network optimization

algorithms. J. of ACM, 34(3):596–615, 1987.

[57] S. Fujishige. Submodular functions and optimization. Elsevier, 2nd edition, 2005.

[58] S. Fujishige and X. Zhang. An efficient cost scaling algorithm for the independent assignment

problem. Journal of the Operations Research Society of Japan, 38(1):124–136, 1995.

[59] H. Gabow. An efficient implementation of edmonds’ algorithm for maximum matching on

graphs. J. of ACM, 23(221-234), 1976.

132

[60] H. Gabow. A scaling algorithm for weighted matching on general graphs. In Proceedings

of the 26th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages

90–100, 1985.

[61] H. Gabow. Data structures for weighted matching and nearest common ancestors with

linking. In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA, pages 434–443, 1990.

[62] H. Gabow and P. Sankowski. Algebraic algorithms for b-matching, shortest undirected paths,

and f-factors. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Com-

puter Science, FOCS, pages 137–146, 2013.

[63] H. Gabow and R. Tarjan. Faster scaling algorithms for network problems. SIAM Journal on

Computing, 18:1013–1036, 1989.

[64] H. Gabow and R. Tarjan. Faster scaling algorithms for network problems. SIAM Journal on

Computing, 18(5):1013–1036, 1989.

[65] H. Gabow and R. Tarjan. Faster scaling algorithms for general graph-matching problems. J.

of ACM, 38:815–853, 1991.

[66] H. Gabow and R. Tarjan. Faster scaling algorithms for general graph-matching problems.

Journal of the ACM, 38(4):815–853, 1991.

[67] H. N. Gabow and M. F. M. Stallmann. Efficient algorithms for graphic matroid intersec-

tion and parity (extended abstract). In Proceedings of the 12th Colloquium on Automata,

Languages and Programming,, ICALP, pages 210–220, 1985.

[68] H. N. Gabow and Y. Xu. Efficient algorithms for independent assignments on graphic and

linear matroids. In Proceedings of the 30th Annual Symposium on Foundations of Computer

Science, FOCS, pages 106–111, 1989.

[69] H. N. Gabow and Y. Xu. Efficient theoretic and practical algorithms for linear matroid

intersection problems. Journal of Computer and System Sciences, 53(1):129–147, 1996.

[70] D. Gale and L. Shapley. College admissions and the stability of marriage. American Math-

ematical Monthly, 69:9–15, 1962.

[71] F. L. Gall. Power of tensors and fast matrix multiplication. In Proceedings of the 39th

International Symposium on Symbolic and Algebraic Computation, ISSAC, pages 296–303,

2014.

[72] F. L. Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the Interna-

tional Symposium on Symbolic and Algebraic Computation, ISSAC, pages 296–303, 2014.

[73] T. Gallai. Maximale systeme unabhängiger kanten. A Magyar Tudományos Akadémia—

Matematikai Kutató Intézetének Közleményei, 9:401–413, 1964.

133

[74] P. Gärdenfors. Match making: assignments based on bilateral preferences. Behavioural

Sciences, 20:166–173, 1975.

[75] A. Goldberg. Scaling algorithms for the shortest paths problem. SIAM Journal on Comput-

ing, 24(3):494–504, 1995.

[76] A. Goldberg and A. Karzanov. Maximum skew-symmetric flows. In Proceedings of the 3rd

European Symposium on Algorithms, ESA, pages 155–170, 1995.

[77] A. Goldberg and R. Tarjan. Solving minimum-cost flow problems by successive approxi-

mation. In Proceedings of the 9th Symposium on Theory of Computing Conference, STOC,

pages 7–18, 1987.

[78] A. Goldberg and R. Tarjan. Solving minimum-cost flow problems by successive approxima-

tion. Mathematics of Operations Research, 15(3):430–466, 1990.

[79] D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithms. MIT

Press, 1989.

[80] F. B. H. Aziz and M. Brill. On the tradeoff between economic efficiency and strategyproof-

ness in randomized social choice. In Proceedings of the 12th International Conference on

Autonomous Agents and Multi-agent Systems, AAMAS, pages 455–462, 2013.

[81] F. B. H. Aziz and P. Stursberg. On popular random assignments. In Proceedings of the 6th

International Symposium on Algorithmic Game Theory, SAGT, pages 183–194, 2013.

[82] F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM Journal

on Computing, 4(3):221–225, 1975.

[83] N. J. A. Harvey. An algebraic algorithm for weighted linear matroid intersection. In Pro-

ceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages

444–453, 2007.

[84] N. J. A. Harvey. Algebraic algorithms for matching and matroid problems. SIAM Journal

on Computing, 39(2):679–702, 2009.

[85] A. Hoffman and R. Oppenheim. Local unimodularity in the matching polytope. Annals of

Discrete Mathematics, 2:201–209, 1978.

[86] C.-C. Huang, N. Kakimura, and N. Kamiyama. Exact and approximation algorithms for

weighted matroid intersection. Mi preprint series, Mathematics for Industry, Kyushu Uni-

versity, 2014.

[87] C.-C. Huang and T. Kavitha. Efficient algorithms for maximum weight matchings in general

graphs with small edge weights. In Proceedings of the 23rd Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA, pages 1400–1412, 2012.

[88] C.-C. Huang and T. Kavitha. Weight-maximal matchings. In Proceedings of the 2nd Inter-

national Workshop on Matching under Preferences, 2012.

134

[89] C.-C. Huang and T. Kavitha. Popular matchings in the stable marriage problem. Information

and Computation, 220(180-194), 2013.

[90] C.-C. Huang and T. Kavitha. New algorithms for maximum weight matching and a decom-

position theorem. Mathematics of Operations Research, 42(2):411–426, 2017.

[91] C.-C. Huang, T. Kavitha, K. Mehlhorn, and D. Michail. Fair matchings and related problems.

Algorithmica, 74(2):1184–1203, 2016.

[92] M. Iri. A new method of solving transportation-network problems. Journal of the Operations

Research Society of Japan, (3):27–87, 1960.

[93] M. Iri. Applications of matroid theory. In Mathematical Programming—the state of the art,

pages 158–201, 1983.

[94] M. Iri and N. Tomizawa. An algorithm for finding an optimal “independent assignment”.

Journal of the Operations Research Society of Japan, 19(1):32–57, 1976.

[95] R. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch. Rank-maximal matchings.

ACM Transactions on Algorithms, 2(4):602–610, 2006.

[96] R. Irving, P. Leather, and D. Gusfield. An efficient algorithm for the “optimal” stable

marriage. J. of ACM, 34(3):532–543, 1987.

[97] R. W. Irving. An efficient algorithm for the stable roommates problem. Journal of Algo-

rithms, 6:577–595, 1985.

[98] R. W. Irving. Greedy matchings. University of Glasgow, Computing Science Department

Research Report, TR-2003-136, 2003.

[99] R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch. Rank-maximal

matchings. ACM Transactions on Algorithms, 2(4):602–610, 2006.

[100] T. A. Jenkyns. The efficacy of the “greedy” algorithm. Proceedings of the 7th Southeastern

International Conference on Combinatorics, Graph Theory, and Computing, pages 341–350,

1976.

[101] P. M. Jensen and B. Korte. Complexity of matroid property algorithms. SIAM Journal on

Computing, 11(1):184–190, 1982.

[102] M.-Y. Kao, T. W. Lam, W.-K. Sung, and H.-F. Ting. A decomposition theorem for maximum

weight bipartite matchings. SIAM Journal on Computing, 31(1):18–26, 2001.

[103] T. Kavitha. A size-popularity tradeoff in the stable marriage problem. SIAM Journal on

Computing, 43(1):52–71, 2014.

[104] T. Kavitha. Popular half-integral matchings. In Proceedings of the 43rd Colloquium on

Automata, Languages and Programming,, ICALP, pages 22:1–22:13, 2016.

135

[105] T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. Theoretical Computer

Science, 412:2679–2690, 2011.

[106] T. Kavitha and C. D. Shah. Efficient algorithms for weighted rank-maximal matchings

and related problems. In Procceding of 17th International Symposium on Algorithms and

Computation, ISAAC, pages 153–162, 2006.

[107] T. Kavitha and C. D. Shah. Efficient algorithms for weighted rank-maximal matchings and

related problems. In Proceedings of the 17th International Symposium on Algorithms and

Computation, ISAAC, volume 4288 of Lecture Notes in Computer Science, pages 153–162,

2006.

[108] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford. An almost-linear-time algorithm

for approximate max flow in undirected graphs, and its multicommodity generalizations.

In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,

pages 217–226, 2014.

[109] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social

network. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD), pages 137–146, 2003.

[110] D. Knuth. Mariages stables et leurs relations avec d’autre problèmes. Les Presses de

l’université de Montréal, 1976.

[111] B. Korte and D. Hausmann. An analysis of the greedy heuristic for independence systems.

In P. H. B. Alspach and D. Miller, editors, Algorithmic Aspects of Combinatorics, volume 2

of Annals of Discrete Mathematics, pages 65–74. Elsevier, 1978.

[112] A. Krause, A. P. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian pro-

cesses: Theory, efficient algorithms and empirical studies. Journal of Machine Learning

Research, 9:235–284, 2008.

[113] G. Kreweras. Aggregation of preference orderings. Mathematics and Social Science I: Pro-

ceedings of the seminar of Menthon-Saint-Bernad, France and of Gösing, Austria, (73-79),

1966.

[114] M.-K. Kuan. Graphic programming using odd or even points. Chinese Mathematics, 1(273-

277), 1962.

[115] H. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics

Quarterly, 2:83–9, 1955.

[116] A. Kulik, H. Shachnai, and T. Tamir. Maximizing submodular set functions subject to

multiple linear constraints. In Proceedings of the 20th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 545–554, 2013.

[117] E. L. Lawler. Optimal matroid intersections. In R. Guy, H. Hanani, N. Sauer, and

J. Schönheim, editors, Combinatorial Structures and Their Applications, pages 233–234.

Gordon and Breach, 1970.

136

[118] E. L. Lawler. Matroid intersection algorithms. Mathematical Programming, 9(1):31–56, 1975.

[119] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Dover Publications,

1976.

[120] J. Lee. Maximum Entropy Sampling, volume 3 of Encyclopedia of Environmetrics, pages

1229–1234. John Wiley & Sons, Ltd., 2006.

[121] J. Lee, M. Sviridenko, and J. Vondrák. Submodular maximization over multiple matroids via

generalized exchange properties. Mathematics of Operations Research, 35(4):795–806, 2010.

[122] Y. Lee and A. Sidford. Path finding ii : An Õ(m
√
(n)) algorithm for the minimum cost flow

problem. ArXiv: 1312.6713v2, 2015.

[123] Y. Lee, A. Sidford, and S. C.-W. Wong. A faster cutting plane method and its implications

for combinatorial and convex optimization. In Proceedings of the 56th Annual Symposium

on Foundations of Computer Science, FOCS, 2015.

[124] Y. T. Lee, S. Rao, and N. Srivastava. A new approach to computing maximum flows using

electrical flows. In Proceedings of the 45th Symposium on Theory of Computing Conference,

STOC, pages 755–764, 2013.

[125] H. Lin and J. Bilmes. Multi-document summarization via budgeted maximization of sub-

modular functions. In Proceedings of the 2010 Annual Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies

(NAACL-HLT), pages 912–920, 2010.

[126] H. Lin and J. Bilmes. A class of submodular functions for document summarization. In

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies (ACL-HLT), pages 510–520, 2011.

[127] L. Lovász and M. Plummer. Matching theory. American Mathematical Society, 2009.

[128] D. Manlove. Algorithmics of Matching Under Preferences. World Scientific Publishing Com-

pany Incorporated, 2013.

[129] S. T. McCormick. Handbook on Discrete Optimization, chapter 7, pages 321–391. Elsevier,

2006.

[130] K. Mehlhorn and D. Michail. Network problems with non-polynomial weights and applica-

tions. Available at www.mpi-sb.mpg.de/~mehlhorn/ftp/HugeWeights.ps.

[131] D. Michail. Reducing rank-maximal to maximum weight matching. Theoretical Computer

Science, 389(1-2):125–132, 2007.

[132] M. Mucha and P. Sankowski. Maximum matchings via gaussian elimination. In Proceedings

of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages

248–255, 2004.

137

www.mpi-sb.mpg.de/~mehlhorn/ftp/HugeWeights.ps

[133] K. Murota. Matrices and matroids for systems analysis. Springer, 2nd edition, 2000.

[134] K. Murota, M. Iri, and M. Nakamura. Combinatorial canonical form of layered mixed matri-

ces and its applications to block-triangularization of systems of linear/nonlinear equations.

SIAM Journal on Algebraic and Discrete Methods, 8:123–149, 1987.

[135] J. Orlin. A faster strongly polynomial minimum cost flow algorithm. In Proceedings of the

20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 377–387, 1988.

[136] J. Orlin. Parallel algorithms for the assignment and minimum-cost flow problems. Operations

Research, 42(2):338–350, 1993.

[137] J. Orlin. Max flows in o(nm) time, or better. In Proceedings of the 45th Annual ACM

Symposium on Theory of Computing, STOC, pages 765–774, 2013.

[138] J. B. Orlin and R. K. Ahuja. New scaling algorithms for the assignment and minimum mean

cycle problems. Mathematical Programming, 54(1):41–5, 1992.

[139] R. I. P. Biró and D. Manlove. Popular matchings in the marriage and roommates problems.

In Proceedings of the 7th International Conference on Algorithms and Complexity, CIAC,

pages 97–108, 2010.

[140] I. M. P. Eirinakis, D. Magos and P. Miliotis. Polyhedral aspects of stable marriage. Mathe-

matics of Operation Research, 39(3):656–671, 2014.

[141] K. E. Paluch. Capacitated rank-maximal matchings. In Proceedings of the 8th International

Conference on Algorithms and Complexity, CIAC, volume 7878 of Lecture Notes in Computer

Science, pages 324–335, 2013.

[142] G. Pap. A matroid intersection algorithm. Technical Report TR-2008-10, Egerváry Research

Group on Combinatorial Optimization, 2008.

[143] J. Petersen. Die theorie der regulären graphs. Acta Mathematica, 15:193–220, 1891.

[144] S. Pettie. A simple reduction from maximum weight matching to maximum cardinality

matching. Information Processing Letters, 112(23):893–898, 2012.

[145] A. Recski. Terminal solvability and n-port interconnection problem. In IEEE International

Symposium on Circuits and Systems, pages 988–991, 1979.

[146] A. Recski. Matroid theory and its applications in electric network theory and in statics.

Springer, 1989.

[147] A. Roth and M. Sotomayor. Two-sided matching: a study in game-theoretic modeling and

analysis. Cambridge university press, 1992.

[148] A. E. Roth. New physicians: A natural experiment in market organization. Science,

250:1524–1528, 1990.

138

[149] A. E. Roth. A natural experiment in the organization of entry level labor markets: Regional

markets for new physicians and surgeons in the u.k. American Economic Review, 81:415–440,

1991.

[150] A. E. Roth, U. G. Rothblum, and J. H. V. Vate. Stable matchings, optimal assignments,

and linear programming. Mathematics of Operations Research, 18(4):803–828, 1993.

[151] U. Rothblum. Characterization of stable matchings as extreme points of a polytope. Math-

ematical Programming, 54(57-67), 1992.

[152] P. Sankowski. Shortest paths in matrix multiplication time. In Proceedings of the 13th

European Symposium on Algorithms, ESA, pages 770–778, 2005.

[153] P. Sankowski. Maximum weight bipartite matching in matrix multiplication time. Theoretical

Computer Science, 410(44):4480–4488, 2009.

[154] P. Sankowski. Maximum weight bipartite matching in matrix multiplication time. Theoretical

Computer Science, 410:4480–4488, 2009.

[155] A. Schrijver. Theory of Integer and Linear Programming. Wiley-Blackwell, 1998.

[156] A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly poly-

nomial time. Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000.

[157] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer-Verlag Berlin

and Heidelberg GmbH, 2003.

[158] A. Schrijver. Combinatorial optimization: Polyhedra and efficiency. Springer, 2003.

[159] J. Sherman. Nearly maximum flows in nearly linear time. In Proceedings of the 54th Annual

Symposium on Foundations of Computer Science, FOCS, 2013.

[160] M. Shigeno and S. Iwata. A dual approximation approach to weighted matroid intersection.

Operations Research Letters, 18(3):153–156, 1995.

[161] C. Sng. Efficient Algorithms for bipartite matching problems with preferences. PhD thesis,

University of Glasgow, 2008.

[162] T. Soma, N. Kakimura, K. Inaba, and K. Kawarabayashi. Optimal budget allocation: Theo-

retical guarantee and efficient algorithm. In Proceedings of the 31st International Conference

on Machine Learning (ICML), pages 351–359, 2014.

[163] A. Storjohann. High-order lifting and integrality certification. Journal of Symbolic Compu-

tation, 36:613–648, 2003.

[164] M. Sviridenko. A note on maximizing a submodular set function subject to a knapsack

constraint. Operations Research Letters, 32(1):41–43, 2004.

[165] C.-P. Teo and J. Sethuraman. The geometry of fractional stable matchings and its applica-

tions. Mathematics of Operations Research, 23(4):874–891, 1998.

139

[166] M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24,

2005.

[167] W. Tutte. The factorization of linear graphs. Journal of the London Mathematical Society,

22, 1947.

[168] S. Ueno, Y. Kajitani, and S. Gotoh. On the nonseparating independent set problem and

feedback set problem for graphs with no vertex degree exceeding three. Discrete Mathematics,

72(1-3):355–360, 1988.

[169] J. H. V. Vate. Linear programming brings marital bliss. Operations Research Letters,

8(3):147–153, 1989.

[170] W. R. P. W. J. Cook, W.H. Cunningham and A. Schrijver. Combinatorial Optimization.

Wiley-Interscience, 1997.

[171] V. V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proceedings of

the 44th Annual ACM Symposium on Theory of Computing, STOC, pages 887–898, 2012.

[172] L. Wolsey. Maximising real-valued submodular functions: primal and dual heuristics for

location problems. Mathematics of Operations Research, 1982.

[173] Q. Yu, E. L. Xu, and S. Cui. Streaming algorithms for news and scientific literature recom-

mendation: Submodular maximization with a d-knapsack constraint. IEEE Global Confer-

ence on Signal and Information Processing, 2016.

[174] R. Yuster and U. Zwick. Answering distance queries in directed graphs using fast matrix mul-

tiplication. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer

Science, FOCS, pages 90–100, 2005.

140

	Introduction
	History
	After matching and matroid intersection
	Contribution of the author
	New algorithms for maximum weight matching (SODA 2012, MOR 2017)
	Exact and approximation algorithms for maximum weight matroid intersection (SODA 2016, MP accepted)
	Fair matching (FSTTCS 2012, Algorithmica 2016)
	Maximising a monotone submodular function with a knapsack constraint under the streaming model (APPROX 2017)
	Mixed popular matchings (SODA 2017)

	New Algorithms for Maximum Weight Matching and a Decomposition Theorem
	Introduction
	Maximum Weight Matching in General Graphs
	The Algorithm
	Consequences of the above algorithm: a decomposition theorem

	Maximum Weight Bipartite Capacitated b-matching
	Conclusions and Open Problems

	Exact and Approximation Algorithms for Weighted Matroid Intersection
	Introduction
	Our Contribution
	Our Technique
	Application: rank-maximal matroid intersection
	Outline

	Preliminaries
	Matroids
	Matroid Intersection

	Exact Algorithm
	Analysis

	Approximation Algorithm
	Analysis

	Implementation of Unweighted Matroid Intersection
	General Matroids
	Graphic Matroids
	Linear Matroids

	Rank-Maximal Matroid Intersection
	Implementation of Rank-Maximal Matroid Intersection

	Relation to Other Algorithms

	Fair Matchings and Related Problems
	Introduction
	Background

	Our Combinatorial Technique for fair matchings
	Solving the dual problem
	Our main algorithm
	Two-sided rank-maximality

	The fair b-matching problem: our scaling technique

	Streaming Algorithms for Maximizing Monotone Submodular Functions under a Knapsack Constraint
	Introduction
	Single-Pass (1/3-)-Approximation Algorithm
	Thresholding Algorithm with Approximate Optimal Value
	Dynamic Updates

	Improved Single-Pass Algorithm for Small-Size Items
	Branching Framework with Approximate Optimal Value
	Algorithms with Guessing Large Items

	Single-Pass (4/11-)-Approximation Algorithm
	Bicriteria Approximation for a Knapsack Constraint

	Multiple-Pass Streaming Algorithm
	Dealing with Large Items with Single Pass
	Multiple-Pass (2/5-)-Approximation Algorithm

	Popularity, Mixed Matchings, and Self-duality
	Introduction
	Our Techniques

	The extended popular fractional matching polytope P'_G
	Integrality of P_G in a special case
	Half-integrality of P_G in the general bipartite graph
	Half-integrality of P_G in a roommates instance
	Hardness of max-utility popular matching in roommates instances

