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ii RÉSUMÉ

Résumé

Ce manuscrit présente un résumé de mes travaux de recherche qui sont focalisés sur deux thèmes

principaux : l’évolution morphologique des plages et l’hydrodynamique de vagues en
zone côtière. Ces deux thèmes sont fortement liés, avec l’objectif commun d’améliorer, à la fois

la connaissance des processus physiques qui contrôlent la dynamique en zone côtière, et aussi

les modèles numériques capables de reproduire l’hydrodynamique et l’évolution morphologique

dans cet environnement complexe.

Le premier chapitre présente succinctement ces deux thèmes, mes projets de recherche, les collab-

orations que j’ai développées et l’évolution de mes travaux de recherche pendant les 10 dernières

années depuis la �n ma thèse. Pendant cette période, j’ai suivi une gamme d’approches di�érentes

pour aborder ces thèmes, allant de l’analyse des observations in situ et des expériences en labora-

toire, à la modélisation empirique et numérique des processus observés. Ces approches complé-

mentaires m’ont d’abord permis d’étudier les processus physiques qui contrôlent la dynamique

en zone côtière à plusieurs échelles d’espace et de temps pour développer une vision globale

de cet environnement complexe. Ces travaux ont de plus contribué à mon deuxième objectif, à

savoir le développement des modèles empiriques et numériques pour une variété d’applications,

allant de l’évaluation des risques côtiers et l’estimation de la ressource des énergies marines re-

nouvelables, au dimensionnement et à la gestion des structures marines et côtières.

Le deuxième chapitre est dédié au thème de la morphodynamique en zone côtière, avec deux

grands axes de travail : (1) l’analyse de l’évolution morphologique des plages, basée sur des

observations morphologiques de plusieurs sites d’étude et sur des mesures expérimentales e�ec-

tuées en laboratoire, pour améliorer la compréhension des variations spatiales et temporelles

observées, et (2) la modélisation empirique et numérique de l’évolution des pro�ls de plage,

validés avec les observations, pour améliorer les outils de prédiction. Ses travaux m’ont permis

d’identi�er des questions fondamentales qui continuent de structurer mes thèmes de recherche,

en particulier une amélioration de la compréhension des processus d’érosion et d’accrétion, et

notamment des variations en espace et en temps à une variété d’échelles. Ces connaissances

me permettent de valider des modèles numériques basés sur des processus physiques et de les

appliquer aux échelles spatiales locales et aux échelles temporelles des événements, mais aussi

de proposer des modèles simpli�és, de type empirique, applicables aux échelles spatiales d’une

plage ou d’un secteur du littoral et aux échelles temporelles des saisons, des années, des décen-

nies. Mes travaux en cours explorent di�érents axes d’amélioration de ces types de modélisation,

notamment pour améliorer la prise en compte des processus physiques dans un modèle empirique

d’équilibre, incluant le transport longshore, les interactions entre les vagues et le niveau de l’eau

et les impacts du changement climatique.



RÉSUMÉ iii

Le troisième chapitre est focalisé sur le thème de l’hydrodynamique de vagues en zone côtière,

notamment avec le développement d’un modèle précis de propagation de vagues. Mes travaux

de recherche sont concentrés sur deux axes de développement de ce modèle : (1) la prise en

compte des processus physiques, et (2) la mise en œuvre numérique du modèle mathématique

choisi. L’approche retenue est de développer un modèle complètement non-linéaire et dispersif,

basé sur la théorie potentielle, en faisant un compromis entre la représentation des processus

physiques et l’e�cacité du modèle. Mes travaux en cours poursuivent le développement de ce

modèle pour obtenir un modèle capable de simuler la propagation de vagues en zone côtière. Sur

le premier axe, je me focalise sur la prise en compte des e�ets du déferlement de vagues et du

run-up. Sur le deuxième axe, mes activités sont concentrées sur l’amélioration de la stabilité du

modèle avec le traitement des frontières latérales dans la version 3D et aussi sur l’optimisation

de l’e�cacité du modèle. En�n, ses travaux me conduisent à faire des études de comparaison

avec d’autres codes existants pour identi�er les avantages et les limites des approches retenues

pour dé�nir le périmètre des applications de ce modèle.

En�n, le quatrième chapitre présente les conclusions avec un résumé des axes de travail fu-

tur et des collaborations à poursuivre. Les appendices présentent mes activités d’encadrement,

d’enseignement et d’animation scienti�que, mon curriculum vitae détaillé et une sélection de

deux articles de mes deux thèmes de recherche.
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Chapter 1

Introduction

Throughout my scienti�c career, I have developed two primary research themes centered on

coastalmorphological evolution and coastalwavehydrodynamics. This document presents

a summary of these research themes since I completed my PhD at the Scripps Institution of

Oceanography (SIO), University of California, San Diego (UCSD) in 2009. I have pursued these

subjects through my work as a post-doctoral scholar at UCSD, then as a research engineer

at the BRGM (Bureau de Recherches Géologiques et Minières), and �nally as a researcher for

the CETMEF (Centre d’études techniques maritimes et �uviales), which is now the Technical

Department of Water, Sea, and Rivers of the Cerema (Centre d’études et d’expertise sur les

risques, l’environnement, la mobilité et l’aménagement), when I integrated in the Saint-Venant

Hydraulics Laboratory (LHSV) in 2011.

My two research themes centered on coastal morphological evolution and wave hydrodynamics

are closely related, with the common objective of improving the understanding of and capacity

to model numerically coastal morphological evolution and wave propagation for a wide range of

applications (Figure 1.1). In particular, my research is structured around using observations to

improve knowledge of the dominant physical processes in the coastal zone and developing tools

or models able to help marine and coastal engineers and managers evaluate coastal risks, esti-

mate marine energy potential, aide coastal planners, and design and manage coastal structures.

The coastal zone is a highly complex and dynamic environment in which interactions between

marine, terrestrial, and atmospheric processes all have an important role. Thus, it is critical

to improve understanding of the dominant physical processes in coastal and maritime environ-

ments, and to do so, hydrodynamic and morphodynamic processes must be studied at a wide

range of spatial and temporal scales. To achieve this, thoughout my work I have used di�erent,

complementary approaches, including in situ observations, laboratory experiments, theoretical

analyses, and numerical models. Each of these approaches provides essential contributions to

enhance the overall understanding of this complex environment.
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Figure 1.1: Summary of research themes, approaches applied, research objectives, and applica-

tions of this work.

Furthermore, research in these domains, focused on increasing knowledge of and predicting

coastal hydrodynamics and beach morphological evolution has accelerated in recent decades.

This acceleration is related to e�orts to reduce the vulnerability of the coastal zone and society’s

energetic footprint, as well as to increased interest in using the ocean as a resource, all of which

have become important public issues. Thus research in the �elds of coastal hydrodynamics and

beach morphological evolution have also increased to meet these demands. Much work remains

to be done in these two broad �elds, in particular in predicting large-scale, coastal morphological

evolution on annual to decadal time scales, and in improving the ability to simulate accurately

and e�ciently nonlinear wave propagation in the nearshore zone. My work is focused on these

two subjects, including identifying the fundamental research questions and using a variety of

approaches to advance both understanding of the important physical processes and tools used

to model them.

This document is organized in two chapters centered on these research themes, which are intro-

duced brie�y in the following two sections. In each chapter, the state of the art is presented before

highlighting my main contributions, with selected articles included in the associated appendices

at the end of the document.

Coastal morphological evolution

For coastal management and planning purposes, it is essential to further our understanding of the

physical processes controlling coastal evolution at a wide range of spatial and temporal scales.
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To address this need, I have combined a variety of approaches, including in situ observations

of the complex environment, controlled laboratory experiments focusing on speci�c physical

processes, and numerical studies reproducing the observations. I began to develop this research

theme during my thesis and post-doctoral research at the Scripps Institution of Oceanography

at UCSD. My work was focused on the observation and analysis of a unique, long time series of

beach topographic surveys and wave conditions, which led to the development of an empirical

equilibrium shoreline change model capable of reproducing the nearly decade-long observations

of seasonal shoreline position variations. Following my post-doctoral work, I continued investi-

gating shoreline evolution, this time focusing on longer time scales, while working in the Coastal

Risks unit at the BRGM. I applied a variety of di�erent statistical techniques to analyze histor-

ical shoreline position changes and to evaluate the predominant factors causing the observed

morphological changes, with the objective of predicting future beach evolution. Since being re-

cruited as a researcher with the CETMEF, now Cerema, I have expanded my research activities

in this �eld to further understanding of equilibrium beach pro�les and beach evolution, and to

improve empirical and numerical modeling of observed morphological changes. I have used two

main approaches, and my work during this time period has included notably:

Data-based shoreline evolution analyses

• investigating the principal forcing factors causing local and large-scale spatial variabil-
ity of shoreline evolution using both qualitative and quantitative (e.g. machine learning)

approaches;

• studying short and medium-term beach morphological evolution using laboratory

experiments and in situ observations of beach pro�les at several study sites;

Modeling beach evolution

• evaluating process-based modeling of storm-induced beach pro�le evolution with

and without the presence of submerged structures; and

• extending the application of the equilibrium beach changemodel developed during my

thesis to include the e�ects of the tide level and alongshore processes, through the develop-

ment of a collaboration with researchers at the Institut Universitaire Européen de la Mer

- Université de Bretagne Occidentale (IUEM-UBO) and in an international collaboration

with the Port and Airport Research Institute (PARI), Kyoto University, and Toyohashi Uni-

versity of Technology in Japan within a Programme Hubert Curien (PHC) Sakura project.

Chapter 2 presents these research topics, describing previous work and outlining perspectives

for future work and ongoing collaborations in this �eld.
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Coastal wave hydrodynamics

In the �eld of coastal wave hydrodynamics, there exists a need for highly accurate and e�cient

nonlinear wave propagation models capable of simulating wave propagation and transforma-

tion at spatial and temporal scales relevant for applications in the nearshore zone. To achieve

this goal, it is necessary to reproduce nonlinear interactions (including wave-wave and wave-

bottom) and dispersive e�ects, including irregular, multidirectional sea states, and spatially and

temporally varying bathymetries. A wide variety of mathematical and numerical modeling ap-

proaches have been developed over the last few decades to take into account some or all of these

aspects, including:

• models based on the Reynolds-Averaged Navier-Stokes equations, calculating directly the

nonlinearities, viscosity, and vorticity of a �ow using Eulerian (e.g. OpenFOAM, Higuera

et al., 2013a,b) or Lagrangian (e.g. SPH, Dalrymple and Rogers, 2006) approaches;

• potential �ow theory models neglecting viscosity and turbulent e�ects, including fully

nonlinear potential �ow (FNPF) models (e.g. Grilli et al., 1989; Bingham and Zhang, 2007),

or partially nonlinear and dispersive Boussinesq-type models (e.g. Nwogu, 1993; Madsen

and Schä�er, 1998; Kennedy et al., 2001), and Serre-Green-Naghdi-type models (e.g. Bon-

neton et al., 2011);

• Nonlinear Shallow Water Equation models assuming that the wavelength is much larger

than the water depth and thus that the �ow is either homogeneous in the vertical (e.g.

Open Telemac system, Galland et al., 1991) or can be divided into a series of vertical layers

(e.g. SWASH, Stelling and Zijlema, 2003; Zijlema and Stelling, 2005);

• mild-slope equation models based on linear wave theory (e.g. REF-DIF, Kirby and Dalrym-

ple, 1983).

However, this �eld of research remains largely open owing to the di�culties to reproduce accu-

rately the nonlinear and dispersive wave e�ects, while maintaining reasonable calculation times

for the desired spatial and temporal scales. Each of the families of models listed above are appro-

priate to be used for speci�c applications. For example, RANS models are an optimal choice for

simulating wave breaking using local-scale, two-phase models, while simpli�ed, Boussinesq or

FNPF models may be su�cient for other applications, such as simulations of wave propagation

in coastal and littoral zones. The �nal goal of this work is to develop and validate a nonlinear

wave propagation model for marine and coastal research and engineering applications.

Since my arrival at the LHSV, I have co-developed a fully nonlinear and dispersive wave prop-

agation model in collaboration with Michel Benoit, several interns, a thesis student, and two

post-doctoral researchers whom we co-advised (within the ANR-France Energies Marines DiMe

project and the LaBeX DEPHYMAN project). The model is based on fully nonlinear potential
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�ow theory, assuming an inviscid �uid, incompressible and irrotational �ow, and a continuous

water column from the bottom to the free surface. These assumptions lead to a coupled set of

nonlinear equations expressing the temporal evolution of the free surface position and potential,

called the Zakharov equations (Zakharov, 1968). Signi�cant contributions to the development of

this model have included work both on the numerical implementation and e�ciency of the 1DH

and 2DH (one and two horizontal dimension) versions of this model, and on the representation

of a range of physical processes, including:

• demonstrating the accuracy and e�ciency of using a spectral approach to solve the

"Dirichlet-to-Neumann" (or DtN) problem in the vertical to advance in time the Zakharov

equations;

• taking into account viscous e�ects in the 1DH version of the model;

• extending the model to 2DH using a radial basis function - �nite di�erence approach;

• including the e�ects of wave breaking.

These topics will be described in Chapter 3, and perspectives for future work and collaborations

to develop in this �eld will be outlined.
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Chapter 2

Coastal morphological evolution

2.1 Scienti�c context and challenges

In the highly dynamic coastal environment, a wide range of physical processes contribute to

coastal morphological evolution, and they can be grouped into �ve broad families (Figure 2.1,

Bird, 1996; Stive et al., 2002; Le Cozannet et al., 2014): hydrometeorological factors, human activ-

ities, biological processes, external geodynamic processes, and internal geodynamic processes.

Climate change may be considered as an additional factor that impacts all of these families. Of-

ten, studies aimed at understanding coastal geomorphological changes focus primarily on the

hydrometeorological factors, including waves, wind, and sea level (e.g. Aubrey, 1979; Morton

et al., 1995; Fenster et al., 2001; Zhang et al., 2004; Coco et al., 2014; Harley et al., 2017), determin-

ing quantitative relationships between these factors and the resultant shoreline or beach pro�le

changes. The remaining forcing factors or impacts are often more di�cult to quantify and may

be taken into account with more qualitative approaches (e.g. Gornitz et al., 1994; Shaw et al.,

1998; McLaughlin and Cooper, 2010; Garcin et al., 2013). However, it is important to remember

that these factors may be dominant at a given site. In particular, the challenges associated with

identifying long-term morphological changes are often attributed to a lack of long-term obser-

vations, but it is essential to be able to quantify both the morphological trends and the forcing

factors that cause these changes at the appropriate timescales (Burningham and French, 2017).

An additional challenge is to be able to distinguish the impacts of di�erent physical processes

acting on di�erent temporal scales (Hapke et al., 2016). Thus, it is important to develop an under-

standing of the local complexity of a given environment, including the general geomorphological

and historical context, as well as the local hydrometeorological and other factors that may have

a strong impact on morphological evolution.

Before discussing further coastal evolution, it is necessary to de�ne the terminology used to

describe a beach system, as shown for a representative beach pro�le in Figure 2.2. As waves

propagate across the continental shelf and approach the shore, the o�shore limit of the nearshore
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Figure 2.1: Families of forcing factors and important physical processes impacting coastal and

shoreline changes, following Bird (1996), Stive (2004), Garcin et al. (2011), and

Le Cozannet et al. (2014). One may consider climate change as an additional factor

that impacts all of the families shown.

zone is typically de�ned by the depth of the wave base (water depth at which waves interact with

the bottom, which depends on the wavelength), also referred to as the depth of closure, which

depends on the wave height and wavelength (Hallermeier, 1980). Waves shoal in the nearshore

zone as they interact with the bottom and then begin breaking in the surf zone. Depending on

the wave exposure and tidal regime, a beach system may contain between 0 - 2 bars in the surf

zone (and more than 2 bars along the full intertidal pro�le). The waterline limit varies temporally

with wave action, and this part of the beach that is intermittently covered by water is referred to

as the swash zone. The swash zone extends from the moving waterline up the exposed beach face

to the base of dunes (if present) or higher, depending on the wave conditions. This zone, from

the depth of closure to the upper limit of the swash zone is often referred to as the active beach

pro�le, along which wave-induced cross-shore sediment transport causes erosion and accretion.

Farther landward, aeolian processes and interactions with vegetation dominate dune evolution.

A beach system may also be classi�ed by its tidal range, de�ned as the di�erence between low

and high tide levels. Davies (1964) created a classi�cation of tidal ranges that may also be used

to describe the tide range on beaches (Masselink and Short, 1993): microtidal (<2m), mesotidal

(2-4m), and macrotidal (>4m). In Figure 2.2 (bottom), the cross-shore beach pro�le is divided

into three tidal zones: the subtidal zone, which is remains submerged, the intertidal zone, which

is emerged or submerged as a function of the tide level, and the supratidal zone, which remains

emerged. The tidal range of a beach may have a strong impact on the nearshore morphology and

its evolution (Masselink and Short, 1993).
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Figure 2.2: Diagram of a beach system identifying the main beach features, based on Figure 4.1 of

Short and Woodro�e (2009). (a) For each zone, wave processes are described in blue

and the morphology and spatial scales are described in gray. Three tidal datum are

also indicated with horizontal lines: mean low water (MLW), mean sea level (MSL),

and mean high water (MHW). (b) The vertical dotted lines indicate the horizontal

extent of the three tidal zones, as de�ned by the vertical tidal datum.

Beach evolution occurs at a variety of spatial and temporal scales, related to the scales of the

forcing conditions. The observed morphological evolution often is controlled primarily by the

hydrodynamics (Figure 2.3, top), which causes the formation of di�erent morphological features

(Figure 2.3, bottom). For example, at the smallest temporal and spatial scales of the spectrum,

turbulence acts at the scales of interactions between grains of sand. At longer timescales of

seconds to minutes and hours, swash processes, waves, wave groups, surf zone currents, and

storms become important, causing the formation of ripples and bars, and playing an important

role in shoreline and dune evolution. At even longer temporal scales and larger spatial scales,

storms, �ooding events, tidal variability, shelf circulation, and sea level changes all interact to

cause shoreline, dune, and coastline evolution.

Here, it is important to point out a di�erence in terminology between shoreline and coastline

evolution. As de�ned by Woodro�e (2002), the shoreline is the margin between the land and the
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Figure 2.3: Temporal and spatial scales of important hydrodynamic processes (top, blue) and the

resultant morphodynamic features (bottom, orange).

sea, whereas the coast is a much broader zone, including features above and below the waterline

(e.g. cli�s, dunes, o�shore bars). Thus the term shoreline evolution typically refers to the local-

scale processes impacting the position of the limit between the land and the sea, and coastline

evolution typically refers to larger spatial scale and the associated longer time scale changes

(Figure 2.3, bottom).
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In recent decades, the evaluation of coastal vulnerability has received increased attention owing

to observations of coastal erosion and �ooding, and their e�ects on coastal infrastructure and

populations, and increased concerns about the impacts of sea-level rise and climate change in the

coming decades (Nicholls et al., 2007; Le Cozannet et al., 2014; IPCC, 2014, etc.). The last concern

is of particular importance for the development of local coastal management practices, which

require methods to characterize the future response of beaches to climate change, including the

impacts of changes in the wave climate and the mean sea level (e.g. Cooper and McLaughlin,

1998; Nicholls and de la Vega-Leinert, 2008; Hinkel and Klein, 2009; Nicholls et al., 2014; French

et al., 2016; Dean and Houston, 2016). Shoreline change observations can be used as a proxy for

estimating beach morphological changes (Smith and Bryan, 2007), as shown by the relationship

between shoreline and beach volume variability (Farris and List, 2007; Harley et al., 2011).

Beach morphological change studies focused on understanding these di�erent processes use a

variety of di�erent approaches that can be categorized broadly. Recently, Le Cozannet et al.

(2014) reviewed existing approaches used to evaluate long-term shoreline changes in response

to sea-level rise, distinguishing data-based and modeling approaches. While this review was

focused on the long-term impacts of sea-level rise, the distinction between di�erent types of

coastal evolution studies is relevant more generally for classifying di�erent types of shoreline

evolution studies (Figure 2.4).

Within the category of data-based approaches, they further distinguished studies that focused on

searching for common spatial or temporal trends between the forcing factors and the observed

shoreline changes. Examples of some of the applied approaches include estimating direct corre-

lations or using machine learning approaches to seek relationships between the observed forcing

factors and resultant morphological changes. The distinction between modeling spatial versus

temporal trends is discussed less often since numerical models often address both the spatial

and temporal dynamics. Di�erent types of modeling approaches are used to reproduce shoreline

and coastline evolution, and they can be divided into two broad categories of models: behavior-

oriented models and process-based models. Each of these categories can further be divided into

subcategories, as will be discussed in Section 2.3. Research in recent decades has focused on us-

ing all of these methods to characterize historical decadal-scale coastal evolution and to predict

short to long-term, future coastal evolution (Le Cozannet et al., 2014).

I began studying beach morphological evolution during my thesis work at the Scripps Institution

of Oceanography at UCSD. Since the completion of my PhD in 2009, I have strived to improve

understanding of the dominant physical processes causing shoreline evolution, and my work has

covered a wide range of spatial and temporal scales, from the response of beach pro�les to indi-

vidual storms, to the analysis of observations of tens to hundreds of kilometers of decadal-scale

coastal evolution. As outlined above, it is necessary to investigate the physical processes gov-

erning morphological evolution at a range of spatial and temporal scales to develop a complete

understanding of the dominant physical processes at a given site. To accomplish this, I have

applied a variety of approaches including analyzing in situ observations, conducting laboratory
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experiments, and developing and applying empirical and numerical models.

During the last 10 years, I have used both data-based and modeling approaches to characterize

historical beach morphological changes and to predict future changes on medium to long tempo-

ral scales, and local to regional spatial scales. Here, section 2.2 outlines my work using data-based

approaches to evaluate beach morphological evolution. The �rst half of section 2.2 describes my

research at the BRGM using data-based approaches to analyze the large-scale spatial variabil-

ity of decadal-scale shoreline changes, in collaboration with Gonéri Le Cozannet and Manuel

Garcin. Then, the second half of section 2.2 presents my work evaluating the short (event-scale)

and medium term (seasonal to interannual scale) temporal dynamics. These studies have been

carried out since my arrival at the LHSV laboratory, while I co-advised the post-doctoral research

of Mathieu Gervais focusing on laboratory measurements of storm-induced beach erosion, and

while I have been working in collaboration with a group of researchers from the IUEM, in par-

ticular, Nicolas Le Dantec, France Floc’h, and Serge Suanez (co-advising �ve Masters interns and

now one PhD thesis), studying the morphological evolution of two beaches in Brittany.

To extend my work beyond the analysis of these observations, I bridged the gap between data-

based and modeling approaches. My research focused on modeling beach evolution is presented

in section 2.3 through two studies concerning the validation and application of a process-based

numerical model (during the Masters internship of Marine De Carlo), and the ongoing devel-

opment of an empirical equilibrium shoreline change model in collaboration with Nicolas Le

Dantec and France Floc’h. This second theme represents a signi�cant part of my research focus

in recent years. During �ve Masters internships and now the PhD studies of Teddy Chataigner,

we have applied the empirical equilibrium shoreline change model developed during my thesis

work at two study sites in Brittany. This work has allowed an evaluation of the advantages and

limitations of the proposed approach and led to the extension of the model to take into account

Figure 2.4: Classi�cation of di�erent types of shoreline and coastline evolution studies
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additional physical processes not considered initially. In addition, since 2018, I am the French

coordinator of a PHC (Programme Hubert Curien) Sakura project in collaboration with a team of

Japanese researchers from the PARI (Port and Airport Research Institute), Kyoto University, and

Toyohashi University of Technology. This project is focused on advancing the methods used for

taking into account the impacts of climate change in equilibrium morphological change models.

Thus, throughout the last 10 years, I have used data-based and modeling approaches to evaluate

coastal evolution on short-term to multi-decadal timescales and local to regional spatial scales,

allowing me to outline the advantages and limitations of each method and to demonstrate how

these di�erent approaches are complementary. With this �eld of study, I have co-advised six

Masters interns, one post-doctoral researcher, and one PhD student (2018-2021), and this work

has been published in nine peer reviewed articles, two of which are presented in Appendix C.

2.2 Data-based shoreline evolution analysis

The objective of data-based shoreline evolution studies is to characterize shoreline change vari-

ability, to identify the dominant forcing factors, and to analyze how the shoreline variability is

related to those forcing factors. Long-term shoreline evolution analyses rely on the existence of

long-term observations of both shoreline position and the forcing factors (e.g. hydrometeoro-

logical factors, etc. Figure 2.1). The most commonly used approach to search for a relationship

between forcing factors and the resultant morphological evolution is to investigate the direct spa-

tial or temporal correlation between the desired quantities (e.g. Wright and Short, 1984; Morton

et al., 1995; Garcin et al., 2013). For example, previous work has focused on comparing obser-

vations of morphological evolution with either: (1) the spatial variability beach characteristics,

such as sand grain size or sediment fall velocity, or wave forcing conditions (e.g. Hapke et al.,

2009; Yates et al., 2009b; Bradbury et al., 2013; Lazarus et al., 2011), or (2) the temporal variability

of hydrometerological factors such as the wave height or wave energy �ux (e.g. Morton et al.,

1995; Lee et al., 1998; Anthony, 1998; Jiménez et al., 2008).

As previously mentioned, studies are often limited by a lack of long-term observations or by the

uncertainties inherent in these qualitative or quantitative data (Le Cozannet et al., 2014; Garcin

et al., 2016). However, in recent years there has been a rapid increase in the quantity and quality of

high spatial and temporal resolution observations (Goldstein et al., 2018), including topographic

and bathymetric data from GPS land and airborne (e.g. Lidar) based surveys, long-term wave

buoy observations or hindcast model outputs, etc. These observations have renewed interest

in e�cient, empirical, data-driven approaches seeking to determine the dominant relationships

between the forcing factors and the observed morphological response.

Previously, historical observations of coastal morphological changes often were used to estimate

past trends, which were then simply extrapolated to predict future evolution (e.g. Shows, 1978;

Council, 1990). This approach is still widely used by coastal planners and managers owing to its
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simplicity. However, it is limited by the assumption that the forcing factors causing historical

changes do not evolve in time, and thus that historical shoreline change trends will be represen-

tative of future shoreline changes.

More recently, a range of approaches have been applied to search for more complex relationships

between a range of qualitative and quantitative parameters using statistical, data-driven, or ma-

chine learning (ML) techniques to derive empirical relationships that may be used to forecast

future morphological changes. Goldstein et al. (2018) present a detailed but non-exhaustive re-

view of a wide variety of these techniques and their applications to estimate sediment transport,

nearshore bar dynamics, shoreline evolution, and dune erosion, using Bayesian Networks (BN,

e.g. Gutierrez et al., 2011; Yates and Le Cozannet, 2012; Plant et al., 2016), Arti�cial Neural Net-

works (ANN, e.g. Pape et al., 2007; Tsekouras et al., 2015; López et al., 2017), Genetic Algorithms

or Programming (GA or GP, e.g. Grimes et al., 2015), Regression Trees (RT, e.g. Oehler et al.,

2012), and Nonlinear Forecasting (NF, e.g. Ja�e and Rubin, 1996; Pape et al., 2007; Grimes et al.,

2015). While nonlinear forecasting is not technically a ML technique, the authors present this

approach with the other ML techniques since they are often used in conjunction. For more de-

tails concerning these di�erent approaches, see Goldstein et al. (2018) and the primary references

cited within.

Within this context of expanding data sets increasing interest in ML techniques, during my work

at the BRGM, I used data-based approaches to relate historical observations of shoreline change

to the primary forcing factors causing these changes. Two di�erent methods were applied to

address these questions by comparing the spatial variability of the potential forcing factors and

morphological evolution trends with:

1. a quantitative approach using Bayesian networks to evaluate large-scale (but low resolu-

tion) variability using an existing European-scale database (section 2.2.1), and

2. a qualitative approach relating local-scale (high spatial resolution), long-term historical

observations of shoreline changes on two Paci�c atolls (section 2.2.2).

Then, extending beyond the analysis of the observed spatial variability, it is necessary to study

the temporal variability of shoreline changes with high temporal resolution observations. In the

LHSV, I have focused my recent work on studying two temporal scales, addressing:

1. short-term, storm-induced beach pro�le evolution in laboratory experiments, with and

without the presence of submerged structures (section 2.2.3), and

2. medium-term, seasonal to interannual beach morphological evolution using monthly or

more frequent observations of beach pro�les at two study sites in Brittany (section 2.2.4).

These four studies, investigating the spatial and temporal variability of beach morphological

evolution are described brie�y in the next four sections.
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2.2.1 Large-scale shoreline change variability analysis usingBayesiannetworks

In collaboration with Gonéri Le Cozannet (BRGM), I completed a large-scale analysis of decadal-

scale shoreline changes using a ML technique using the European-scale Eurosion coastal dataset

(http://www.eurosion.org). A Bayesian network was created to test statistically the relationship

between quantitative estimations of the forcing factors, qualitative observations or characteri-

zation of the coastal zone, and the resultant coastal evolution, following the work of Gutierrez

et al. (2011). Bayesian networks (BNs) previously have been used in a wide range of studies from

arti�cial intelligence to ecological systems (Berger, 2000). Hapke and Plant (2010), Gutierrez et al.

(2011), and Plant and Holland (2011) then applied this approach to study coastal (shoreline and

cli�) morphological evolution and vulnerability. The objective of our study was to test the abil-

ity of BNs to “predict” large-scale shoreline evolution variability using conditional probabilities

linking the existing observations.

The BN approach is based on the application of Bayes’ theorem (Bayes, 1763) relating the prob-

ability (p) of an event (Fi) to the occurrence of another event (Oj):

p(Fi|Oj) = p(Oj |Fi)p(Fi)/p(Oj). (2.1)

The theorem relates the conditional dependencies of a set of quantitative or qualitative vari-

ables and is used frequently to estimate the likelihood that a particular cause contributes to a

given event. In this work, a BN was constructed to evaluate the probability of the outcome of

shoreline erosion or accretion (Fi) as a function of �ve variables (Oj , Figure 2.5), including mean

signi�cant wave height (Hs), mean tidal range, geomorphology, relative sea-level rise rate, and

geology. The variables selected here were based on hypotheses about their potential contri-

bution to shoreline changes, as well as the availability of data in the Eurosion database. They

Geomorphology 

Relative sea-level  
rise rate Geology 

Coastal Evolution 

Mean tidal range Mean significant  
wave height 

Figure 2.5: Bayesian network: the black arrows indicate the assumed causal relationships linking

the forcing factors (gray boxes) and the response variable (coastal evolution, black

box) (Yates and Le Cozannet, 2012).
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Table 2.1: Bayesian Network qualitative characteristic categories

Geomorphology Geology Shoreline evolution trend
Rocky cli�s and platforms Hard Eroding

Erodible (sand, clay, etc.) cli�s Soft Stable

Beaches Accreting

Wetlands

correspond to the most commonly used indicators of coastal vulnerability (e.g. for the develop-

ment of Coastal Vulnerability Indices (or CVI) in Daniels et al., 1992; Gornitz et al., 1994, 1997;

Shaw et al., 1998; Doukakis, 2005) and are similar to those used in previous coastal vulnerability

studies (e.g. Thieler and Hammar-Klose, 1999; Coelho et al., 2006; Gutierrez et al., 2011). It is

important to point out here that one of the bene�ts of using the BN approach is the ability to

draw probabilistic relationships between both quantitative and qualitative data, not limiting the

analysis to estimates of correlations between quantitative variables.

In the BN, the variables are linked by causal relationships (black arrows, Figure 2.5), which were

predetermined based on physical knowledge of coastal systems. The geology, mean signi�cant

wave height, relative sea-level rise rate, and mean tidal range impact the geomorphology through

the erodibility of the sediments and underlying substrata, wave action causing sediment trans-

port, and pro�le adjustments to the current mean sea level. Finally, it is also assumed that all �ve

factors additionally impact directly the coastline evolution.

The geology, geomorphology, and shoreline evolution characteristics, and the o�shore wave,

tidal, and sea-level rise data were obtained from the EUROSION database (EUROSION, 2004).

For more details concerning the data, see Yates and Le Cozannet (2012) and the references cited

therein. The continuous, quantitative observations were discretized into four bins using quan-

tiles, and the qualitative data were characterized as shown in Table 2.1. These observations were

then used to calculate the conditional occurrence probabilities (Eq. 2.1) of a given shoreline evo-

lution for each combination of variables using the Netica software package (Norsys Software

Corp., v4.16).

2.2.1.1 BN model performance

The BN approach predicted the most likely coastal evolution outcome (erosion, stability, or ac-

cretion, Figure 2.6, right) by assigning to each combination of variables the coastal evolution

outcome with the maximum probability (p), thus providing the level of uncertainty of the pre-

diction (p ranges from 36 to 99%). No model prediction is made when no data is available or

when all events have the same probability. This simple model correctly reproduces 65% of the

observations (Figure 2.6, left).
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A second measure of the model performance is the log-likelihood ratio (LR), which measures the

improvement in the prediction probability when using the model (Gutierrez et al., 2011) when

compared to the probability of the event occurring:

LR = log[p(Fi|Oj)]− log[p(Fi)]. (2.2)

The LR is positive when the updated prediction is greater than the prior prediction, indicating

that the updated distribution is either more accurate (the distribution corresponds to the observa-

tions) or more precise (the distribution is narrower). The LR ratio is positive for approximately

70% of all observations in this study and is most heavily in�uenced by the geomorphological

characteristics (for more details see Yates and Le Cozannet, 2012).

2.2.1.2 BN predictions of shoreline evolution trends

The spatial distribution of the di�erence between the predicted and observed trends highlights

areas in which the model is successful (Figure 2.6, left). The highest prediction probabilities are

observed in areas with rocky cli�s or platforms (with mostly stable shorelines), and the lowest

probabilities are in areas with wetlands (with eroding, stable, and accreting shorelines). For ex-

ample, the stability of the rocky coastline along the northern coast of the United Kingdom is

predicted accurately, whereas the shoreline change trends in regions with pocket beaches and

erodible cli�s are less well predicted. In addition, accretion trends in areas experiencing relative

Observations-Model
Difference

Model too accretive (-2)
Model too accretive/stable (-1)
Correct Prediction (0)
Model too erosive/stable (1)
Model too erosive (2)

Observed 
Shoreline Evolution

Accreting (1)
Stable (0)
Eroding (-1)

Figure 2.6: Spatial distribution of (left) the di�erence between the Bayesian Network model “pre-

diction” and the observations of coastal shoreline evolution, and (right) the observed

shoreline evolution (Yates and Le Cozannet, 2012).
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sea-level fall caused by post-glacial rebound are also reproduced well (along the east and west

coasts of Sweden and Finland, respectively). However, erosion is overpredicted along the coast

of Holland and Belgium likely owing to the impacts of coastal management policies that main-

tain primarily stable or accreting shorelines (EUROSION, 2004). The BN model also was unable

to predict the observed erosion trends along the French Atlantic coastline, potentially related

to the importance of alongshore transport caused by obliquely incident waves (Castelle et al.,

2007). The general trend of observed stability along the coastline of northern Spain and western

Portugal is reproduced well, but local-scale pockets of erosion are not predicted. Finally, in the

Mediterranean Sea, the observed shoreline change trends show signi�cantly more spatial vari-

ability than the variables included in this model, and the BN is unable to explain this variability.

Overall, the model reproduces better the evolution of stable coasts (90% correct predictions) than

of accreting (68%) or eroding (47%) coasts. The reduced predictive ability for eroding coasts

suggests that the variables in this model are insu�cient for determining erosive behavior, in

particular the observed variability at local scales. Additional important factors, such as coastal

structures, shoreline orientation, alongshore transport, sediment budgets, or other human im-

pacts may have a dominant role in shoreline change trends at these scales and should be included

in future BN models to try to improve predictions at sites experiencing erosion.

The objective of this study was to evaluate the ability of using BNs to predict large-scale shoreline

evolution trends using existing databases of morphological characteristics and hydrodynamic

conditions. The test presented here demonstrates the robustness of the approach in accurately

reproducing more than 65% of decadal shoreline evolution trends, but also highlights the lim-

itations of such a study. While this approach may be applied to make predictions of coastal

evolution, the uncertainties in the results are highly dependent on the availability and quality of

the data used to train the BN. This work emphasizes the importance of continuing and expand-

ing long-term observations and databases of coastal evolution, including the characterization of

the local environment and the dominant factors causing change. Future work should include

additional variables characterizing the alongshore transport, sediment budgets, and the impacts

of human activities (i.e. coastal structures, beach nourishments, etc.), which were not able to be

analyzed in this study.

2.2.2 Local-scale shoreline change variability analysis using trend analyses

As indicated in the previous section, data availability signi�cantly limits studies of long-term

coastal evolution, in particular a lack of high spatial and temporal resolution morphological and

hydrodynamic observations. In addition to these basic data requirements, observations of addi-

tional causes of coastal evolution, including biological processes, internal and external geody-

namic processes, and human activities (Figure 2.1), may become dominant at longer temporal

scales.
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Table 2.2: Image data available for Manihi and Manuae shoreline evolution analysis

Atoll Date Data source Image resolution Scan resolution*

Manihi 1961 Aerial photographs 1m (1:20,000) 0.5m

2001 Aerial photographs 0.5m (1:15,000) -

Manuae 1955 Aerial photographs 2m (1:40,000) 1m

2008 Quickbird satellite images 0.5-0.6m -

*for paper photographs

In this work in collaboration Gonéri Le Cozannet and Manuel Garcin (BRGM) that pursued the

Masters internship of Emilie Salaï, we studied the decadal-scale evolution of two Paci�c atolls,

Manihi and Manuae. This study was carried out within the ANR CECILE (Coastal Environment

Changes Impact of sea LEvel) project, with the objective of evaluating the spatial variability of

the observed morphological evolution and identifying the dominant forcing factors.

Historical aerial photographs and recent satellite images (available data shown in Table 2.2) �rst

were used to estimate long-term shoreline change trends. The idealized de�nition of the shoreline

position is the physical limit between land and water, and a common proxy for this limit is the use

of a tidal datum (e.g. Mean Sea Level (MSL) or Mean Higher High Water (MHHW)). See Boak

and Turner (2005) for a more in-depth discussion and a review of the de�nitions of shoreline

position. For long-term analyses where georeferenced topographic records of shoreline position

are unavailable, Thieler and Danforth (1994) suggest that the vegetation limit may be used. One

limitation of this method is that the beach width (with respect to a prede�ned elevation contour)

or beach volume may change without having an impact on the position of the vegetation limit.

However, the vegetation limit may be used as a proxy for long-term shoreline evolution where

more detailed topographic measurements are unavailable. Therefore, in this study, shoreline

changes were evaluated by calculating the di�erence in the vegetation limit between two surveys

(dates shown in Table 2.2), following Ford (2012) and Webb and Kench (2010). After digitizing

the vegetation limit in the aerial photographs and satellite images, two metrics of change were

calculated: (1) lagoon and ocean-side shoreline position change and (2) island (also called “motu”)

surface area changes. In the shoreline evolution analyses, changes of less than 5 m were not

considered signi�cant owing to the image pixel resolution and di�erences in user interpretation

of the vegetation limit (Yates et al., 2013).

2.2.2.1 Observed shoreline evolution and island surface area trends

The observed surface area changes on Manihi showed that 67% of the islands were increasing

and 4% were decreasing, with strong spatial trends. In particular, the islands on the northern

side of the atoll primarily increased in size (Figure 2.7). The ocean-side shoreline change rates

also demonstrated this trend, with accretion on the northern side of the atoll, and small to no

signi�cant changes on the southern side. No signi�cant shoreline evolution trends were observed
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Figure 2.7: Observed changes on Manihi: (a) surface area changes for each island, and examples

of 1961 (dotted line) and 2001 (solid line) shorelines, overlaid on the historical aerial

photographs for islands on the (b) northern and (c) southern atoll rims. The lettered

boxes in (a) indicate the location of insets (b) and (c). (Yates et al., 2013).

for the lagoon shoreline change rates (Figure 2.8a).

On Manuae, �ve out of the six islands decreased in surface area, while one island remained

stable during the study period (Figure 2.9). Analysis of the shoreline evolution trends shows

strong spatial dependence. The islands on the northeastern rim primarily demonstrated ocean

shoreline accretion and lagoon shoreline erosion, while the opposite trend was observed for the

two islands on the southeastern rim (Figure 2.8b).

2.2.2.2 Analysis of the dominant forcing factors

To relate the shoreline changes to the dominant forcing factors, �rst the spatial variability of sea

level changes and wave conditions was evaluated. In atoll environments, sea-level rise is expected

to cause ocean shoreline erosion or possible lagoonward “rollover” of islands (Dickinson, 1999).

Increases in the water level relative to the atoll and the adjacent coral reefs exposes beaches to

higher energy waves (Sheppard et al., 2005). The atolls of Manihi and Manuae are exposed to sea-

level rise rates that are greater than the global average, with nearly linear trends of 2.5 mm/yr and

2.9 mm/yr, respectively (Becker et al., 2012). However, given the spatial variability of the observed
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Figure 2.8: Observed ocean (ROCEAN ) and lagoon (RLAGOON ) shoreline change rates on (a)

Manihi and (b) Manuae (black points indicate signi�cant changes during the study

period, > 5 m). The point shape (see legends) identi�es the geographical location of

each island on the two atolls, as de�ned by the black lines in Figures 2.7 and 2.9 (Yates

et al., 2013).

evolution, sea-level rise impacts were not thought to be the primary forcing factor causing the

observed island evolution. Sea level rise may, however, increase the impacts of waves and storms

on exposed shorelines.

An analysis of the wave climate around the atolls shows strong spatial variation in wave exposure

on both atolls. The wave data were obtained from WaveWatch III model hindcasts from 1997-

2011, run by Ifremer, with 0.25
◦

spatial resolution in a zone around French Polynesia (Ardhuin

et al., 2010). While the annual wave energy �uxes a�ecting the northern and southern rims

of Manihi are similar, the southern side is protected from more energetic events by an atoll

“barrier” to the south in the Tuamotu islands. We analyzed the wave climate (for more details,

see Yates et al. (2013)), showing that the northern rim typically has low energy waves with a

mean wave height of 1 m or less, except when impacted by infrequent, high energy storms or

cyclones (CREOCEAN, 1995). On Manihi, we hypothesized that the occurrence of cyclones may

increase the sediment transport potential due to the potential to break up the reef and transport

bioclastic sediments landward (as observed by Harmelin-Vivien and Laboute, 1986, on another

atoll). In addition, these events impact the southern atoll rim via the process of lagoon �ushing in

which strong currents are generated and �ow out of a single passage at Manihi or in the narrow

channels between atoll islands, as observed on other atolls impacted by hurricanes (Stoddard and

Fosberg, 1994; Callahan et al., 2006).

In contrast, the wave energy �ux at Manuae is nearly four times greater than the wave energy

�ux at Manihi, and it is primarily dominated by waves originating in the south and east. This

high wave energy �ux may increase the sediment transport potential on the ocean side of the
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Figure 2.9: Observed changes on Manuae: (a) surface area changes for each island, and examples

of 1955 (dotted line) and 2008 (solid line) shorelines, overlaid on the historical aerial

photographs for islands on the (b) northeastern and (c) southeastern atoll rims. The

lettered boxes in (a) indicate the location of insets (b) and (c). (Yates et al., 2013).

southern and eastern atoll rims. The extent of submerged reef on the western and southern rims

of the atoll also suggests recurring erosion from southern swell (Andréfouët et al., 2001). With the

absence of islands on the northern and western atoll rims, infrequent but large waves originating

from the northwest may propagate across the western rim reef �at and lagoon, causing lagoon

shoreline erosion trends on the islands located on the southern and eastern rims (Figure 2.8b).

Atoll island evolution also is impacted strongly by biological processes since o�shore reefs are

the primary source of carbonate sediments (Stoddard, 1969). However, sediment supply budgets

were unable to be evaluated in this study due to a lack of data. Finally, human activities, including

but not limited to sediment dredging, agriculture, pearl farming, tourism, and the construction of

buildings and protective shoreline structures may also have important direct or indirect impacts

on island sediment budgets and shoreline change (Aubanel et al., 1999; Ford, 2012). For example,

two islands on Manihi were directly impacted by the construction of a port and the stabilization

of the shoreline on the southwestern rim, and both of these islands show long-term accretion.

Manuae, however, is an uninhabited island that presumably has not been a�ected signi�cantly by

anthropogenic activities. The indirect impacts of human activities were not able to be evaluated

in our study.

This work showed the importance of wave forcing in controlling the spatial variability of the

decadal-scale evolution of two atolls. While sea-level rise may indirectly have an impact on the
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magnitude of wave impacts at the shoreline, it was not identi�ed as the primary cause of the

observed shoreline evolution trends, even in this zone of the Paci�c experiencing elevated sea-

level rise rates. However, the hypothesis of the wave-forced response of the atoll islands needs

to be validated with local hydrodynamic and morphological observations.

2.2.2.3 Uncertainties in data-based approaches

Finally, it is important to conclude this section about data-based approaches with a discussion

of the di�erent types of uncertainties inherent in these studies. One of the largest challenges to

overcome in studying the spatial variability of shoreline changes is the existence of high quality

observations of the forcing factors and morphological changes with adequate spatial and tem-

poral resolution. The necessary observations (see Figure 2.1) and desired spatial and temporal

resolution depend strongly on the local context of the study site. For example, at sites with a

strong seasonal cycle in shoreline erosion and accretion, annual or bi-annual surveys may not be

su�cient for analyzing long-term trends. Therefore, it is important to determine the appropriate

spatial and temporal scales that can be evaluated with a given dataset, as well as to be aware of

the limitations of the available data.

In addition, it is crucial to evaluate the uncertainties in the available measurements to asses

the overall errors. This includes, but is not limited to the existence of metadata describing the

data, the frequency and duration of the observations, and the measurement precision. There are

uncertainties related to both the measurements and the analysis methods. In shoreline change

studies, the de�nition of the shoreline position varies depending on the chosen proxy, which

is often limited by data availability. For example, the shoreline position may be de�ned as the

location of the vegetation limit, the wet-dry line at high tide, or the position of a selected elevation

contour (e.g. MSL, MHHW, etc.). Once a shoreline proxy has been chosen, the interpretation of

its position contributes to the uncertainties (i.e. in the visual interpretation of the wet-dry tide

line or the digitalization of the vegetation limit in aerial images).

2.2.3 Short-term shoreline evolution

To study short-term, storm-induced shoreline evolution, we conducted a series of experiments

in a controlled environment in a wave �ume. The experimental work, �nanced by the Geocorail

society, was completed in the LHSV by a post-doctoral researcher, Mathieu Gervais (2015-2016),

whom I co-advised with Damien Pham Van Bang, and a laboratory technician, Vincent Vidal. The

overall objective of this study was to investigate storm-induced beach erosion and the ability of

submerged structures to reduce the observed erosion.

We used an innovative experimental protocol, following the work of Grasso et al. (2009), us-

ing lightweight plastic PMMA (polymethyl methacrylate) sand (ρ = 1.19 kg/m
3
) in the 1/10-

scale �ume experiments (36-m long, 0.5m deep wave �ume). At this scale, the nondimensional
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Figure 2.10: (a) Experimental setup in the wave �ume showing the position of the wave gauges

(numbered vertical lines) and the submerged structures, and (b) dimensions of the

submerged structures (1/10 scale) for (left) the �at slabs, (center) the geotextile tubes,

and (right) the submerged breakwaters (SBWs) (Gervais et al., 2016).

Froude number (Fr = 0.02-0.16), which is the ratio between inertial and gravitational forces,

is respected to reproduce correctly the wave hydrodynamics. In addition, the nondimensional

Shields (Sh =2-3) and Rouse (Ro =1.5-15) numbers are respected by using the low density

PMMA sand. This allows reproducing well both the suspended sediment and bedload transport,

respectively, in the swash and surf zones for natural environments with quartz sand of median

grain size d50 = 0.3 mm and a signi�cant wave heightHs of approximately 2 m (for more details,

see Appendix A of Gervais et al. (2014)).

In these experiments, we tested the e�ciency of three types of submerged structures placed in

two di�erent cross-shore positions: two submerged breakwaters (SBWs), two geotextile tubes,

and two �at concrete slabs (Figure 2.10b). To evaluate the storm-induced erosion on a natural

beach pro�le, the �rst series of experiments measured: (1) the initial beach pro�le formed under

steady, calm wave conditions, and (2) the erosion experienced during a hypothetical storm. Then,

to evaluate the ability of the submerged structures to reduce the erosion trends observed on the

natural pro�le, the initial beach pro�le was reconstructed, and a series of experiments measured

for each structure: (1) the new beach pro�le formed under the same, steady, calm wave conditions

in the presence of the structure, and (2) the observed erosion during the same hypothetical storm.
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Figure 2.11: Selected storm wave conditions (Hs, Tp) for di�erent phases (identi�ed by letters)

of the storm in the laboratory experiments (as a function of time at the laboratory

scale) (Gervais et al., 2016).

Waves were generated in the wave �ume using a �ap-type wave generator by imposing a Jonswap

spectrum. The selected calm (Hs= 0.15 m, Tp=1.6 s) and storm (Figure 2.11) wave conditions were

based on wave conditions observed along the southern coast of France in the Mediterranean

Sea (on microtidal beaches, where the tidal impacts are negligible). As mentioned above, the

initial beach pro�le was formed by running steady wave conditions and measuring the beach

pro�le evolution. As observed by Grasso et al. (2009), the beach pro�le adjusts to the incoming

wave conditions, forming what is called an equilibrium beach pro�le, as observed previously on

natural beaches (e.g. Bruun, 1954; Dean, 1977). In the laboratory experiments, the beach pro�le

evolved to a nearly constant state, called the pre-storm equilibrium pro�le, after approximately

30 hours, when the vertical bed change rate was approximately 2 mm/hr (Figure 2.12, following

Grasso et al., 2009). Therefore, to optimize the time required to reach equilibrium in subsequent

experiments, the initial beach pro�le was �rst reconstructed using the previously observed pre-

storm equilibrium pro�le and then allowed to adjust to the incoming wave conditions, reaching

the equilibrium state in approximately two hours (Figure 2.12, tests A-C for wave conditions

‘calm 1’).

These controlled experiments con�rm both the observations of:

• Bruun (1954); Dean (1977); Dean and Dalrymple (1991); Miller and Dean (2004); Yates et al.

(2009a); Davidson et al. (2013), among others, of the existence of an equilibrium beach

pro�le or equilibrium shoreline position in response to waves on natural beaches, and

• Kamali Nezhad (2004); Kamalinezhad et al. (2004); Wang and Kraus (2005); Michallet et al.

(2007); Grasso et al. (2009), among others, of the existence of equilibrium beach pro�les for

constant wave conditions in laboratory experiments.
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Figure 2.12: Average bed evolution rate along the beach pro�le for 2 obtained equilibrium pro-

�les: calm 0 (Hs = 0.15 m, Tp = 2 s) and calm 1 (Hs = 0.15 m, Tp = 1.6 s), with the

horizontal gray line indicating 2 mm/hr, the approximate average equilibrium bed

evolution rate.

The early work of Bruun (1954) and Dean (1977) proposed that beaches form a concave equilib-

rium pro�le of the form h(x) = Ax2/3
, where h is the water depth, x is the distance o�shore,

andA depends on sediment grain size. However, most natural beaches typically have more com-

plex shapes, and this simple pro�le is not largely applicable. Thus, other authors have suggested

alternative shapes with �nite slope or the inclusion of o�shore sandbars (e.g. Larson and Kraus,

1989; Inman et al., 1993; Bernabeu et al., 2003; Özkan Haller and Brundidge, 2007). In this study,

under steady wave forcing, pre-storm equilibrium pro�les are obtained, but they do not respect

the concave-up shape suggested by Dean (1977), especially with the presence of submerged struc-

tures. The demonstration of the existence of an equilibrium beach morphology for given wave

conditions will be addressed further in section 2.2.4 in my work studying in situ observations of

natural beach morphological evolution.

During the post-doctoral work of Mathieu Gervais at the LHSV, the results of the laboratory

experiments focused on the observations of erosion near the shoreline, and in particular, the im-

pacts of submerged structures in reducing the observed shoreline erosion. Attention was focused

on erosion around the shoreline since this zone is most often the priority for coastal planning

and management purposes (Stauble, 2003). Analysis of the laboratory experiments showed that

during storm events, the upper beach pro�le typically eroded, with the eroded sediment being

deposited along the lower portion of the beach pro�le. A transition zone between the sections

of the pro�le experiencing erosion and accretion was typically located around cross-shore posi-

tion x=10 m (de�ned from the top of the beach pro�le). Volume changes were thus calculated in

these two pre-de�ned zones (shoreward and seaward of the transition at x=10 m) to quantify the

observed morphological changes (Figure 2.13).
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Figure 2.13: Sand volume evolution on the upper (solid lines) and lower (dashed lines) pro�le,

de�ned as the zones shoreward and seaward of the transition zone approximated at

x=10 m, for the 6 di�erent submerged structures (colored lines) in comparison with

the pro�le without structures (black lines) (Gervais et al., 2016).

The experiments demonstrated that the SBWs were the most e�cient structures in reducing

storm-induced shoreline erosion, followed by the geotextile tubes (red and green curves in Fig-

ure 2.13, respectively). The concrete slabs were the least e�cient structures, as expected, since

they were unable to prevent erosion and provided no reduction in shoreline erosion compared

to the pro�le without any structure (blue/purple curves in comparison to the black curves, Fig-

ure 2.13). The SBWs and, to a lesser degree, geotextile tubes caused stronger wave breaking than

that observed on the natural beach pro�le, thus reducing the nearshore wave energy (as shown

at the end of the storm in Figure 2.14a). This reduction in wave energy likely caused the observed

reduction in shoreline erosion (Figure 2.14b). However, in the experiments with the SBWs signif-

icant scouring occurred in front of the structures, suggesting the importance of further studies

since scouring may have strong impacts on the long-term stability of such structures. This may,

however, be due to the 2D nature of the experiments, whereas 3D e�ects are likely signi�cant in

real settings.

Additional experiments with a longer storm and a barred pre-storm equilibrium pro�le demon-

strated that the preliminary conclusions were not highly dependent on the storm duration, but

did depend strongly on the initial beach pro�le. The limited number of experiments completed

in the laboratory emphasized several limitations of this study, including the need to test a wide

variety of initial beach pro�les (and geomorphological characteristics), storm wave characteris-

tics, and submerged structure con�gurations (e.g. size and position). In addition, to extend these
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Figure 2.14: (a) Cross-shore evolution of the root-mean square wave height Hrms measured at

the wave gauges at the end of each storm run for the tests without (black line) and

with (colored lines, see legend) submerged structures. (b) Cross-shore bathymetric

pro�les at the end of each storm test.

results to be able to design structures for real applications, additional 3D tests are necessary.

Given the resources required to conduct extended 2D and then 3D experiments, numerical stud-

ies were initiated to be able to test the ability to address some of these issues, and the results are

presented in section 2.3.1.

2.2.4 Medium-term shoreline evolution

Evaluating medium-term, or seasonal to interannual scale beach morphological evolution re-

quires adequate temporal resolution of the shoreline evolution and forcing factors. This research

focus began during my thesis work, when access to high quality morphological observations

and hydrodynamic model outputs of the wave characteristics enabled a study of the temporal

dynamics of shoreline changes. After analyzing the large-scale spatial variability of shoreline

changes along 10’s to 100’s of kilometers of coastline in Southern California (Yates et al., 2009c),

I highlighted the seasonal variability of the wave �eld as the primary forcing mechanism causing

seasonal shoreline changes at �ve surveyed study sites (Yates et al., 2009a).

This phenomenon of a strong seasonal cycle of shoreline evolution has been observed on beaches

worldwide (e.g. Winant et al., 1975; Aubrey, 1979; Dubois, 1988; Masselink and Pattiaratchi, 2001),

showing a strong relationship between the seasonal variations in wave characteristics and the

advance and retreat of the shoreline position (e.g. Wright and Short, 1984; Stive et al., 2002;

Davidson and Turner, 2009). Typical observations show moderate to severe erosion (shoreline
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retreat) in response to energetic winter storms, with sediments deposited along the beach pro�le

in the nearshore zone (Winant et al., 1975; Dubois, 1988; Castelle et al., 2007; Splinter et al., 2014;

Doria et al., 2016; Dodet et al., 2019). During time periods with moderate to low energy waves,

this sediment is often transported back to the exposed beach face where accretion occurs, as

observed with the seaward advance of the shoreline position (e.g. Winant et al., 1975; Stive et al.,

2002; Brenner et al., 2018).

Studies often try to correlate temporal variations in the wave �eld to temporal variations in

observed shoreline position or beach state with observations at weekly, monthly, biannual, or

even annual timescales (Dalrymple, 1992; Masselink and Short, 1993; List and Farris, 1999; Larson

et al., 2000; Miller and Dean, 2007; Quartel et al., 2008). However, many authors (e.g. Morton et al.,

1995; Lee et al., 1998; Anthony, 1998; Jiménez et al., 2008) have suggested that low correlations

between the instantaneous beach state (de�ned by the shoreline position, beach volume, or beach

pro�le) and instantaneous wave conditions are often observed on beaches dominated by storms

with seasonal or intermittent recovery periods. They attribute these low correlations to the

di�erent timescales of changes in the wave �eld and beach morphology. Searching for a direct

correlation between these two time series may also be complicated further by two important

observations:

1. detailed time series of the wave conditions are highly important, and comparing averaged

wave conditions and morphological changes over the timescales of typical beach surveys

(e.g. weekly, monthly, and longer) neglects the importance of the variable intensity and

sequence of wave conditions (e.g. Morton et al., 1995; Lee et al., 1998); and

2. the impact of waves on a beach depends strongly on the current beach state, following the

hypothesis of the existence of an equilibrium beach state (e.g. Bruun, 1954; Dean, 1977;

Wright et al., 1985). Equilibrium beach theory assumes that a beach pro�le will reach an

equilibrium pro�le in response to a constant wave forcing. Therefore, the observed pro�le

or shoreline change depends both on the forcing conditions and the initial beach pro�le.

For example, a moderate wave energy event may cause shoreline erosion if the beach was

initially in an accreted state (shown schematically in Figure 2.15, top), while the same

moderate wave energy event may cause shoreline accretion if the beach was initially in an

eroded state (Figure 2.15, bottom).

These two concepts have been discussed previously in the literature, in particular in relation to

the development of morphological shoreline evolution models (Wright et al., 1985; Miller and

Dean, 2004; Yates et al., 2009a; Davidson and Turner, 2009).

During my thesis work, using a �ve-year time series of shoreline change observations and in-

cident wave conditions at Torrey Pines beach, these concepts were demonstrated clearly with

observations (Yates et al., 2009a). First, the dependence of the magnitude and sign of shoreline

changes on the initial beach state and wave conditions was demonstrated using high spatial
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Figure 2.15: Schematic demonstrating the equilibrium beach pro�le hypothesis. When exposed

to constant wave forcing, a beach will evolve to form an equilibrium pro�le (black

line), and thus the observed pro�le changes (black arrows) will depend on the initial

beach state.

and temporal resolution shoreline change observations and modeled wave characteristics (Fig-

ure 2.16) by relating the current beach state S, described using the cross-shore position of the

MSL contour (m), the average normalized wave energy E (m
2
) between survey dates, and the

average shoreline change rate dS/dt (m/day). The color of each point indicates observed ero-

sion (red) or accretion (blue), while the intensity of the color indicates the magnitude of the

observed changes. Even though averaged (over weekly, bi-weekly, or monthly periods) wave

conditions and beach changes were analyzed, which likely contributes to the observed scatter,

the data demonstrated that the equilibrium wave energy is dependent on the initial state of the

beach. For example, in Figure 2.16, when the beach is wide (e.g. 15 m MSL position), an av-

erage wave energy of 0.75 m
2

typically causes shoreline erosion (red points). However, when

the beach is narrow (e.g. -15 m MSL position), the same average wave energy typically causes

shoreline accretion (blue points). For each beach state S, the equilibrium wave energy Eeq(S) is

thus the wave energy causing no further changes in the beach state (transition between red and

blue points in Figure 2.16). In addition, the observations demonstrate that the shoreline change

rate depends on the wave energy disequilibrium, de�ned as the di�erence between the measured

wave energy and the equilibrium wave energy for the given beach state, or ∆E = E −Eeq(S).

Since 2014, I have pursued this work of observing beach pro�le evolution and investigating the

existence of equilibrium beach response in collaboration with France Floc’h, Nicolas Le Dantec,
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Figure 2.16: Shoreline change rate (dS/dt, color and intensity of points) as a function of the beach

state (S, or shoreline position, de�ned by the MSL position here) and average wave

energy between topographic measurements (E) at Torrey Pines Beach (Yates et al.,

2009a).

and Serge Suanez from the IUEM/UBO. Using long-term, high resolution beach pro�le observa-

tions, I am collaborating with this group to study the morphological evolution of two macrotidal

beaches in Brittany: Porsmilin and Vougot. This work builds on a preliminary study completed

during the Masters internship of Klervi Hamon (Hamon, 2014), followed by the Masters intern-

ships of Clara Lemos and Gabin Bouvard (co-advised with France Floc’h and Nicolas Le Dan-

tec), studying the morphological evolution of Porsmilin and Vougot, respectively (Lemos, 2016;

Bouvard, 2017), and the PhD project of Teddy Chataigner (2018-2021), which I am currently co-

advising with Nicolas Le Dantec and Nicole Goutal. Over 10 years of approximately monthly to-

pographic measurements were studied along one and six cross-shore pro�les at Porsmilin (along-

shore uniform, embayed beach) and Vougot (high bathymetric alongshore variability) beaches,

respectively.

The macrotidal nature of these two sites provides an interesting environment to study further the

existence and evolution of equilibrium beach pro�les. While it is well known (e.g. Bagnold, 1940;

Bascom, 1951) that beach morphodynamic behavior depends strongly on the beach sediment

characteristics, wave conditions, and tidal e�ects, Bernabeu et al. (2003) point out that most

morphological evolution models depend solely on the beach characteristics and wave forcing.
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Wright and Short (1984) de�ned a beach classi�cation system based on the nondimensional fall

velocity, or Dean parameter Ω = Hb
wsT

, whereHb is the breaking wave height, ws is the sediment

fall velocity, and T is the wave period. They identi�ed six beach states ranging from dissipative

to re�ective-type beaches. However, this classi�cation does not take into account the tide range,

which plays an important role in the morphological evolution of macrotidal beaches owing to

the temporal variations in the position of the swash, surf, and shoaling zones and therefore

wave energy dissipation and wave-driven sediment transport processes. Davis and Hayes (1984)

suggested the importance of the relative tide range, RTR = TR/H , or ratio between the tide

rangeTR and wave heightH . Masselink and Short (1993) then used this nondimensional number

(RTR) and the Dean number (Ω) to develop a conceptual beach evolution model including the

impacts of the tidal range.

Using the classi�cation proposed by Masselink and Short (1993), Porsmilin and Vougot beaches

are Low Tide Terrace (LTT) beaches, with a compound intertidal pro�le composed of a re�ective

upper zone and a dissipative lower zone. The hydrodynamic and morphodynamic behavior of

these two zones di�ers, as shown by the temporal evolution of beach contours located in these

two sections of the intertidal beach pro�le (e.g. for Porsmilin beach, Figure 2.17). For example,

we observed that the seasonal variations in beach contour position and beach volume in the

upper intertidal zone of Porsmilin beach (e.g. MHWS = Mean High Water Spring, Figure 2.17,

left) show trends similar to observed shoreline trends on microtidal beaches. In particular, there

is signi�cant erosion and contour retreat during storms (typically during the winter months),

and accretion and beach recovery with the o�shore contour advancement during calm wave

conditions (typically during summer months). The opposite behavior is observed in the lower

intertidal zone at Porsmilin (e.g. MW = Mean Water level, Figure 2.17, right), with sediment

Figure 2.17: Observations of equilibrium beach states at three altitudes along the intertidal beach

pro�le at Porsmilin beach (MHWS = Mean High Water Spring (re�ective zone),

MHWN = Mean High Water Neap (transition zone), MW = Mean Water (dissipa-

tive zone), same format as Figure 2.16.
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eroded from the upper intertidal pro�le distributed in this zone during energetic wave events,

and the subsequent loss of this sediment during calmer wave conditions as it returns to the

upper intertidal zone. In the transition zone between the re�ective and dissipative regions, the

observed morphological changes do not demonstrate clear trends. We hypothesize that this is

caused by the fact that the contour altitudes in this zone are alternatively located in re�ective

and dissipative zones of the intertidal pro�le (e.g. MHWN = Mean High Water Neap, Figure 2.17,

center).

Similar trends are observed along the two westernmost pro�les (5 and 6) at Vougot Beach (results

from pro�le 6 are shown in Figure 2.18). These two pro�les appear to be more strongly controlled

by cross-shore processes than the pro�les located on the northeastern side of the beach (1 to 4),

where the o�shore and nearshore bathymetry varies signi�cantly alongshore (see Bouvard (2017)

for more details). In Figure 2.18, as observed at Porsmilin beach, the upper tidal zone (re�ective,

represented by MHWS) typically experiences erosion during energetic storms, and this sediment

is deposited in the lower intertidal zone (dissipative, represented by MW). Again, no clear trends

are observed in the transition zone (represented by MHWN). In Figure 2.18, the equilibrium

curves estimated with the averaged observations are drawn with dotted lines to indicate the lack

of con�dence in these estimated curves given the relatively small number of observations.

The observations at these two sites demonstrates that the morphodynamic evolution of macroti-

dal beaches is therefore highly dependent not only on the wave and sediment characteristics, but

also on the relative water depth, which varies temporally as a function of the tide level.

Finally, it is interesting to note that the relationship between the beach state, wave conditions,

and shoreline change is present in the observations averaged over intervals between the topo-

Figure 2.18: Observations of equilibrium beach states at three altitudes along the intertidal beach

for pro�le 6 at Vougot beach (MHWS = Mean High Water Spring (re�ective zone),

MHWN = Mean High Water Neap (transition zone), MW = Mean Water (dissipative

zone), same format as Figure 2.16.
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graphic surveys (weekly to monthly) shown at Torrey Pines (Figures 2.16), but less so for Pormilin

and Vougot beaches (Figures 2.17 and 2.18, respectively). During my thesis work, I demonstrated

the need to investigate the temporal dynamics at shorter timescales by showing an example of

the observed morphological evolution during two time periods with the same average wave con-

ditions Ē and approximately the same initial beach state S but di�erent time series of waves

E(t) (Yates et al., 2009a). In the presented example from Torrey Pines Beach (Figure 2.19), for a

two-week period with an average wave energy of Ē = 0.05 m
2
, the �rst set of wave conditions

caused a net change of 2.3 m of erosion, while the second set of wave conditions caused a net

change of 2.1 m of accretion. These di�erences are likely caused by the intensity and sequence

of wave conditions, with larger waves arriving at the end of the two-week period in the �rst

case, where the larger waves arrived at the beginning of the two-week period in the second case,

allowing time for recovery. Therefore, it can be hypothesized that part of the scatter observed

in Figure 2.16, and even more so in Figures 2.17 and 2.18 can be attributed (at least partially) to

averaging the observations over the time periods between measurements. All other longshore or

cross-shore processes that are not wave-forced, may also contribute to this scatter. The impor-

tance of timescales will be addressed further in the discussion of equilibrium beach modeling in

section 2.3.2.

Finally, although both Porsmilin and Vougot beaches are macrotidal beaches located along the

western coast of France, there are several important di�erences between the two sites that make

them interesting and unique sites for studying di�erent physical processes. First of all, Porsmilin

is an embayed beach, where cross-shore processes are dominant, whereas Vougot is a longer

beach along the open coast, showing signi�cant bathymetric variability alongshore, as explained

above. Porsmilin beach is located in the Iroise Sea, whereas Vougot beach is located along the At-

lantic coastline, and the wave energy �uctuations are approximately �ve times as large at Vougot

beach (e.g. Figure 2.17 compared to Figure 2.18). In addition, it is also important to highlight the

presence of dunes loacted along the backbeach at Vougot. The cross-shore dynamics at Vougot

beach thus include interactions with the dune system, including the loss of sediment from the

exposed beach to the dunes via aeolian transport, as well as the gain of sediments from the dunes

during storm events. Finally, for wave events of the same magnitude, the observed contour posi-

tion changes at Vougot beach are typically smaller than those observed at Porsmilin beach, likely

related to the larger sediment grain size at Vougot (d50 = 438 µm) in comparison to Porsmilin

(d50 = 320 µm). The availability of high quality, long-term topographic and hydrodynamic ob-

servations at these two sites provides an opportunity to study their morphological response in

two unique environments.

In this work comparing the temporal dynamics of the wave forcing and the observed morpholog-

ical changes, I highlighted the importance of the instantaneous beach state and the magnitude

and timing of individual wave events in controlling beach morphological evolution. These con-

cepts, while not new, were demonstrated clearly in my thesis work Yates et al. (2009a) and then

again with the observations of the macrotidal beach of Porsmilin with unique sets of long-term
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Figure 2.19: Two weeks of modeled hourly wave energy time series at Torrey Pines Beach for two

time periods with the same average wave energy (Ē, horizontal line) but di�erent

morphological evolution: (a) December 2007 with 2.3m of observed net shoreline

erosion and (b) June 2007 with 2.1m of observed net shoreline accretion (from Yates

et al., 2009a).

observations of the shoreline position and incident wave conditions. This work led naturally to

the development of an empirical equilibrium shoreline change model, which will be described

brie�y in section 2.3.2.
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2.3 Modeling beach evolution

Coastal scientists and engineers seek reliable, accurate methods for forecasting shoreline erosion

and accretion to contribute to coastal management practices. However, predicting coastal evolu-

tion at seasonal, to annual, to decadal or longer timescales remains a signi�cant challenge (Safak

et al., 2017; Davidson et al., 2017), and a variety of approaches are currently used, ranging from

empirical, to one- or n-line, to 3D process-based models.

A wide variety of process-based modeling approaches exist, which can be divided broadly into

three categories (de Vriend et al., 1993; Southgate and Brampton, 2001; Hanson et al., 2003;

Roelvink et al., 2012): coastal pro�le models, coastline models, and coastal area models. Di�erent

temporal and spatial scales, ranging from micro- to macro- and mega-scales, and thus di�erent

physical processes, can be simulated with these di�erent modeling approaches (Figure 2.20, based

on Cowell et al. (2003); Brommer and van der Burgh (2009); Winter (2012)). Cowell et al. (2003)

de�ned this hierarchal (or ‘cascade tract’) approach to describing morphological evolution, stat-

ing that the natural system can be divided into naturally occurring levels that interact with each

other in systemic ways. For example, at a given position in the hierarchy, the lower levels (e.g.

macro and mega-scales) place extrinsic constraints (or boundary conditions, gray arrows in Fig-

ure 2.20), whereas the higher levels (e.g. micro or meso-scales) describe the subgrid processes,

which must then be parameterized (blue arrows in Figure 2.20). However, Hanson et al. (2003)

emphasized that upscaling of �rst principle physical or process-based modeling approaches to

much longer timescales is restricted owing to a range of theoretical and practical limits. Brommer

and van der Burgh (2009) and Winter (2012) extended the hierarchal approach to describe which

types of morphological evolution models may be used at di�erent spatial and temporal scales,

ranging from 3D non-hydrostatic process-based models at micro-scales, to 2DH (two horizontal

dimension) and 2D morphodynamic coastal area models at meso-scales, and �nally to 1D coastal

pro�le and coastline models at macro- and mega-scales.

The spatial scales of these three categories of models are thus inherent, with some variability

between di�erent models in the same category. In general, they are applicable at the scales of

a beach pro�le (hundreds of meters in the cross-shore direction), of a coastline (several, tens,

or hundreds of kilometers alongshore), or of a beach or littoral zone (several kilometers in the

alongshore and cross-shore directions) as shown by the x-axis in Figure 2.20. With respect to tem-

poral scales, morphological evolution models are often divided into short- (seconds, hours, days),

medium- (days, seasons, years), and long- (years, decades, centuries) term models (HR Walling-

ford, 2000). Depending on the spatial and temporal scales of interest, process-based models, or

simpli�ed versions, called behavior-based models, using semi-empirical or averaged formula to

represent the hydrodynamic and/or morphodynamic processes (de Vriend et al., 1993; Niedoroda

et al., 1995), may be used. Within the three broad categories de�ned above, individual models

treat di�erent temporal scales, as shown by the y-axis for each of the boxes in Figure 2.20. These

three di�erent types of models are described further below.
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Figure 2.20: Spatial and temporal scales of the relevant physical processes and the applicable

morphological models, based on Cowell et al. (2003); Brommer and van der Burgh

(2009); Winter (2012).

Coastal pro�le models are based on the assumption that the littoral zone is uniform in the

alongshore direction and that the morphological evolution can be represented along a cross-shore

pro�le. By removing one spatial dimension, these types of models are able to provide a more de-

tailed representation of cross-shore processes while maintaining short computational times (e.g.

Larson and Kraus, 1989; van Rijn et al., 2003; Roelvink et al., 2009). Depending on the complexity

of the model, typical temporal scales may range from hours to days, and more recent work is fo-

cused on extending these approaches to longer timescales (e.g. Pender and Karunarathna, 2013;

Zimmermann et al., 2015). To model changes along gently varying coastlines, multiple cross-

shore pro�le models have been combined to evaluate alongshore variability. In this approach

of multiple pro�le modeling, the cross-shore pro�les are often independent of each other with

respect to the o�shore wave and current forcing, but may be related by the alongshore sediment

transport processes.

Coastline models, on the other hand, are based on the assumption that cross-shore processes

are assumed to counterbalance in time and that the net cross-shore changes at the timescales of

interest (years) are small, such that alongshore processes dominate the coastline evolution. In

this family of models, a representative coastline contour (often de�ned by an isobath) evolves

in time based on behavior-oriented rules, analytical expressions, or numerical approaches (e.g.

Pelnard-Considére, 1956; Larson et al., 1997; Jiménez and Sánchez-Arcilla, 2004; Ashton et al.,

2001; Ashton and Murray, 2006; Hanson et al., 2003; Bouchette et al., 2014; Hurst et al., 2015;

Limber et al., 2017). Coastline models are typically used to evaluate large spatial scale, medium

to long-term temporal scale morphological evolution.
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Coastal area models simulate both cross-shore and alongshore sediment transport processes

at the relevant timescales in 2DH (two horizontal dimension) or 3D models. A variety of models

exist that are designed for speci�c studies in idealized settings, such as estuaries (e.g. Hibma

et al., 2003; Winter, 2006), inlets (e.g. Wang et al., 1995; Ranasinghe and Pattiaratchi, 1999), and

beaches and the littoral zone (e.g. Lesser et al., 2004; Tonnon et al., 2007). These process-based

models are typically designed to be applicable at engineering temporal and spatial scales, for a

wide range of applications, taking into account coastlines of arbitrary geometry as well as the

presence of coastal structures. The main disadvantage is the computational time required, thus

limiting the temporal and spatial scales of their application.

Even with the development of a wide range of process-based models able to hindcast short-

term beach and shoreline evolution, these models remain limited in their ability to hindcast, and

even more so, forecast erosion and recovery at seasonal and longer timescales (Davidson et al.,

2017). Process-based models are mostly concentrated on the timescales of the hydrodynamical

processes (de Vriend et al., 1993), which are much shorter than the temporal scales of interest

here. Owing to the nonlinear nature and complexity of coastal systems, there still exists a strong

need for models able to predict current and future beach changes (Davidson et al., 2017).

A universal model for predicting coastal evolution spanning short to long timescales, or small to

large spatial scales, does not exist (Hanson et al., 2003). In addition, while signi�cant progress

has been made in modeling beach erosion, the ability to use process-based models to simulate

beach recovery processes remains a signi�cant challenge (de Vriend et al., 1993; Roelvink and

Brøker, 1993; Davidson et al., 2017). This may thus lead to signi�cant errors when simulating

long recovery periods.

To be able to make regional-scale predictions of shoreline change and to analyze erosion risks on

medium to long timescales, empirical modeling approaches based on equilibrium concepts may

be an optimal choice. Equilibrium beach pro�le concepts, discussed previously in section 2.2.4,

can be extended to develop equilibrium beach change models that use empirical functions to

relate incident wave conditions, beach characteristics, and beach morphological evolution (e.g.

Dean and Dalrymple, 1991; Miller and Dean, 2004; Davidson and Turner, 2009; Yates et al., 2009a;

Davidson et al., 2010; Kuriyama et al., 2012; Long and Plant, 2012; Splinter et al., 2014). Empirical

equilibrium beach models quantify the hypotheses that: (1) for a constant wave forcing, an equi-

librium beach response exists (e.g. Figure 2.15 in section 2.2.4), and (2) a beach in disequilibrium

with the wave �eld will evolve toward an equilibrium state at a rate proportional to the disequi-

librium (e.g. Miller and Dean, 2004; Yates et al., 2009a; Davidson and Turner, 2009; Splinter et al.,

2014). During my thesis work, I developed an empirical equilibrium shoreline change model

based on these two concepts (Yates et al., 2009a, 2011). Equilibrium theory has also been used to

model the evolution of beach pro�les (Larson and Kraus, 1989), including the response to beach

nourishment projects (Dean and Dalrymple, 1991), as well as interannual variations in sandbar

crest (Plant et al., 1999), alongshore variability in sandbar crest position (Splinter et al., 2011) and
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shoreline response to sea-level rise (Dubois, 1990), storm surges (Kriebel and Dean, 1993), storms

(Miller and Dean, 2004), and daily to interannual variations in wave conditions (Davidson and

Turner, 2009; Davidson et al., 2010; Splinter et al., 2014).

The following two sections present two projects in which I have used di�erent modeling tech-

niques to study short-term (hours to days) and medium-term (seasonal to interannual to decadal

scale) morphological evolution. First, in section 2.3.1, the work of the Masters internship of

Marine De Carlo (2017, co-advised with Damien Pham Van Bang) is presented, detailing the

process-based modeling of storm-induced beach erosion using the XBeach model. Then, in sec-

tion 2.3.2, the ongoing development of the empirical equilibrium morphological change model

developed during my thesis work is described. This work is part of the ongoing collaboration

with Nicolas Le Dantec and France Floc’h (IUEM), including the Masters work of Clara Lemos

(2016), Matthew Leary (2018), and the ongoing PhD project of Teddy Chataigner (2018-2021). The

objective of this work is to reproduce and ultimately predict short to medium-term to long-term

beach morphological evolution.

2.3.1 Process-based modeling of storm-induced beach erosion

At short temporal and small spatial scales, such as the storm-induced response of a beach pro�le,

process-based models are an optimal choice for representing the dominant physical processes

controlling morphological evolution. However, observations are still needed to validate and cal-

ibrate these approaches, in particular in complex environments.

Approximately a decade ago, the open source, process-based model XBeach was developed with

the goal of reproducing well extreme beach and dune erosion during storm events (Roelvink et al.,

2009). The model simulates both short and long (infragravity) wave transformation processes, as

well as wave-induced setup and unsteady currents in 1D or 2D settings. XBeach can be run in

either hydrostatic or non-hydrostatic mode. In the hydrostatic mode, the short wave amplitude

is solved using the wave action and roller equations, separately from the long wave, current, and

morphological evolution, which are solved at the scales of wave groups. In the non-hydrostatic

mode, the model additionally solves the phase-resolved, short wave motions, with the nonlinear

shallow-water equations and a corrective pressure term, but with signi�cantly increased com-

putational time. For more details about the model equations, see (Roelvink et al., 2009) and the

XBeach Open Source Community website (https://oss.deltares.nl/web/xbeach/).

Originally designed to model dune erosion and overtopping processes (Roelvink et al., 2009;

McCall et al., 2010), the hydrostatic mode of the XBeach model has been tested and validated for

modeling beach and dune erosion on a wide variety of beaches, in both 1D and 2D (e.g. Bolle et al.,

2011; Harley et al., 2011; Vousdoukas et al., 2012; Splinter and Palmsten, 2012). Additional work

also has tested and improved the simulation of beach recovery and nearshore accretion after

storms (van Rooijen et al., 2012; Pender and Karunarathna, 2013; Daly et al., 2017), but work

remains to be done to validate the ability of XBeach to reproduce accurately beach accretion
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Figure 2.21: Observed (black crosses, with error bars) and simulated (blue) root-mean square

wave height (Hrms) evolution along the cross-shore pro�le for storm 1 for the small

submerged breakwater (SBW1) using the ‘Roelvink2’ wave breaking model with

three values of γ (see legend).

processes. Daly et al. (2017) suggest using the non-hydrostatic mode of XBeach to reproduce

well accretion processes, but Roelvink et al. (2018) caution that further validation of sandy beach

morphological evolution using the non-hydrostatic model is still necessary. Finally, other recent

extensions also allow modeling gravel beach response to waves and tides (Williams et al., 2012;

McCall et al., 2014), and the impacts of coral fringing reefs (Dongeren et al., 2013) and vegetation

(van Rooijen et al., 2016) on nearshore hydrodynamics.

During the Masters internship of Marine De Carlo (2017), we selected the XBeach morpholog-

ical change model to study storm-induced cross-shore beach pro�le evolution with and with-

out the presence of submerged structures, reproducing the laboratory experiments described in

section 2.2.3. Since the XBeach model has been used extensively to model erosion on natural

beaches, the objective of our work was to evaluate the ability of the model to reproduce the ob-

served morphological changes on beach pro�les with submerged structures. In particular, the

ultimate goal of the study was to evaluate the feasibility of using XBeach to conduct future stud-

ies optimizing the con�guration of structures to develop design criteria for real applications.

In this study, we calibrated the model free parameters in two phases using �rst the hydrody-

namic and then the morphological measurements (described in section 2.2.3). The hydrodynamic

calibration phase was completed during time periods when the bathymetry was in an equilib-

rium state, thus remaining nearly constant, suggesting that the morphological evolution could

be considered negligible. During these simulations, the sediment transport module therefore was

deactivated in XBeach to allow comparing the simulated and measured hydrodynamics, without
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Table 2.3: XBeach hydrodynamic tests

Test Wave breaking model γ γ2
NormalizedHrms errors

SBW1 SBW2 Geo1 Geo2

1 Roelvink2 (default) 0.55 - 0.12 0.05 0.15 0.14

2 Roelvink2 (default) 0.4 - 0.09 0.05 0.16 0.15

3 Roelvink_Daly (default) 0.55 0 0.09 0.05 0.15 0.14

4 Roelvink_Daly (default) 0.4 0.1 0.08 0.05 0.17 0.15

5 Roelvink_Daly (default) 0.4 0.2 0.08 0.05 0.17 0.15

6 Roelvink_Daly (default) 0.4 0.3 0.09 0.05 0.17 0.15

simulating the impacts of the morphological evolution. Finally, owing to limitations in simu-

lating the reduced-scale particle density, which is below the threshold recommended for use in

XBeach, the simulations were conducted at full scale.

In this numerical study, we completed simulations for the 4 submerged structures that were able

to reduce shoreline erosion (SBW1, SBW2, Geo1, and Geo2). In addition to the normalized root-

mean square error (RMSE), the Brier Skill Score (BSS, van Rijn et al., 2003; Sutherland et al.,

2004) was used to evaluate the model skill since it has been shown to be a good measure of

morphological evolution model performance (Roelvink et al., 2009; Davidson et al., 2010; Pender

and Karunarathna, 2013; Berard et al., 2017).

Among the seven di�erent hydrodynamic model parameters evaluated (for more details, see

De Carlo (2017)), the hydrodynamic calibration phase showed the sensitivity of the results to

the choice of wave breaking model and to the free parameter γ (breaking wave height to water

depth ratio, Figure 2.21). This parameter is the criterion used to initiate wave breaking in the

model and therefore has a strong impact on the cross-shore location of wave breaking. However,

with a limited number of wave gauges in and shoreward of the wave breaking zone (x=280-350 m

in Figure 2.21), a series of di�erent tests with γ values ranging from 0.4 to 0.55 produced similar

normalized errors in Hrms (Table 2.3). It was therefore not possible to evaluate quantitatively

the best γ value using only the hydrodynamic observations.

The morphodynamic calibration phase presented a stronger challenge, and a systematic series

of tests were completed to evaluate the sensitivity of the simulation results to 32 di�erent model

parameters (for more details, see De Carlo, 2017). The tests demonstrated that once calibrated

(using the SBW1 observations), XBeach was able to reproduce well the observed changes on the

upper beach pro�le for all four submerged structure experiments (SBW1 and Geo1 shown in

Figure 2.22). This was achieved primarily by adapting γ and the asymmetry parameter facAs,

which is known to have an important role in de�ning the direction and magnitude of sediment

transport. However, XBeach was unable to reproduce the morphological changes near the struc-

tures (e.g. for SBW1 and Geo1 in Figure 2.22). In particular, the observed scouring at the base of
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Figure 2.22: Observed (black) and simulated (blue) pro�le evolution for storm 1 (Figure 2.11) for:

(top) the nearshore submerged breakwater (SBW1), and (bottom) the nearshore geo-

textile tube (Geo1). In both cases, the initial cross-shore pro�le is shown with the

dashed black line.

the structure (most signi�cant for SBW1) and the bar-like morphology between the structures

and the shoreline was not reproduced well. Overall, XBeach produces much smoother predic-

tions of beach pro�le changes than those observed in the experiments.

The retained optimal model parameters were: the Roelvink_Daly wave breaking model, with

γ = 0.7, γ2 = 0.2, and facua = 0.3 (which takes into account both the asymmetry and skew-

ness). Using these settings, which were chosen to minimize the shoreline position error and
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maximize the BSS, it was possible to obtain horizontal shoreline position errors less than 0.1 m,

and upper beach and total pro�le BSS values greater than 0.55 and 0.75, respectively (in the good

to excellent range, (van Rijn et al., 2003)), for the four studied structures (e.g. for SBW1 and Geo1,

shown in Figure 2.22). If the objective is to analyze only the storm-induced shoreline erosion in

the presence of submerged structures, the XBeach model may be used for preliminary studies.

However, Berard et al. (2017) forewarned that erosion near the shoreline can be over-predicted,

causing greater deposition along the lower beach face, as shown by Van Dongeren et al. (2009).

Therefore, one must be cautious in using this calibration, since we, in this study, and previous

authors (e.g. Splinter and Palmsten, 2012) have shown XBeach to be sensitive to the input pa-

rameters, in particular in the swash zone (van Rooijen et al., 2012).

Quanti�cation of the repeatability of the experiments, as well as additional measurements of the

wave height in the breaking zone could allow improving the XBeach model calibration. How-

ever, a more detailed model of the sediment transport around the structure, including 2DH ex-

periments and simulations, would be necessary before validating the use of the XBeach model

to de�ne design criteria and to validate the e�ciency of submerged structures in real settings.

2.3.2 Development of an equilibrium beach contour change model

During my thesis work advised by Bob Guza, we developed a simple empirical equilibrium beach

change model (Yates et al., 2009a) based on high resolution morphological and hydrodynamic ob-

servations (Figure 2.16). The model assumes that the shoreline change rate (
dS
dt ) can be estimated

as a function of the instantaneous wave energy (E) and wave energy disequilibrium (∆E):

dS

dt
= C+/−E1/2∆E, with ∆E = E − Eeq(S), (2.3)

where C+/−
are accretion (C+

, ∆E < 0) and erosion (C−, ∆E > 0) rate change coe�cients,

and Eeq is the equilibrium wave energy, or wave energy causing no further changes for a given

shoreline position S. Eeq is de�ned as a linear function of S: Eeq(S) = aS + b, where a and

b are free parameters that depend on the beach characteristics. The model free parameters are

determined using an optimization algorithm, which requires medium to long-term time series of

beach morphology and wave conditions. During my thesis work, we and then Splinter et al. (2013)

studied the necessary requirements for morphological data (frequency, duration) to calibrate

accurately empirical equilibrium models, demonstrating the need for at least monthly, multi-

year time series of beach morphology for making short to medium-term predictions. However,

Doria et al. (2016) demonstrated the limitations of applying a model calibrated with typical wave

conditions to predict erosion during less frequent events with wave characteristics not observed

during the calibration period. The skill of the model in predicting beach shoreline changes was

demonstrated at �ve microtidal beaches in California (for more details, see Yates et al., 2009a,

2011), with the model skill varying from 70% to 80%.
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More recently, Castelle et al. (2014) showed that the Yates et al. (2009a) shoreline change model

also could be used to predict beach elevation contour movement at di�erent altitudes along the

intertidal beach pro�le on a mesotidal beach. The only adaptation introduced in the model (rela-

tive to Yates et al. (2009a)) was the addition of a �fth free parameter d, indicating the uncertainty

in the initial shoreline position. Castelle et al. (2014) demonstrated the skill of this model, as

well as the Davidson et al. (2013) model in reproducing the evolution of a range of altitudes on a

mesotidal beach (Truc Vert, France).

2.3.2.1 Equilibrium model formulations

As discussed previously, a variety of empirical equilibrium models have been developed based

on equilibrium beach concepts. Two more recent contributions are the model that I developed

during my thesis work (Yates et al., 2009a), described in the previous section and used throughout

this work, and the ShoreFor model developed by Davidson et al. (2013) and Splinter et al. (2014).

While based on similar theoretical concepts, these two models di�er in their de�nitions of the

equilibrium beach state and in their explicit formulations. The ShoreFor model is thus described

here and the similarities and di�erences with the Yates et al. (2009a) are highlighted.

To begin with, the concept of an equilibrium beach state is treated di�erently in the two models.

In the Yates et al. (2009a) model, a single equilibrium wave energyEeq exists for each beach state

S. In the ShoreFor model, the concept of equilibrium is de�ned based on the antecedent morpho-

logical beach states (and therefore wave conditions), thus allowing the equilibrium condition to

vary temporally. The shoreline change rate (dS/dt) is de�ned as a function of the dimensionless

fall velocity Ω, which can be related the morphological state of the beach (Wright and Short,

1984):

dS

dt
= C+/−P 1/2 ∆Ω

σ∆Ω

+ b, with ∆Ω(t) = Ωeq(t)− Ωb(t), (2.4)

where C+/−
are accretion (C+ = c,∆Ω > 0) and erosion (C− = rc,∆Ω < 0) rate coe�cients,

similar to Yates et al. (2009a),P is the wave energy �ux at breaking, and b is a linear trend added to

the model to take into account all other long-term processes not simulated explicitly. In addition,

σ∆Ω is the standard deviation of ∆Ω (used to normalize ∆Ω), c is a rate parameter, and r is the

erosion ratio, de�ned empirically as a function of the wave forcing (see Splinter et al. (2014) for

more details). The equilibrium condition Ωeq(t) is assumed to be dependent on the memory of

the antecedent beach states, following Wright et al. (1985) such that:

Ωeq(t) =

2φ∑
i=1

Ωi10−i/φ

2φ∑
i=1

10−i/φ
. (2.5)

This weighted sum of antecedent beach morphological conditions has one important free param-
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eter φ, the response factor. It is de�ned to represent the number of days in the past such that the

weighting factor reaches 10%, 1%, and 0.1% at φ, 2φ, and 3φ days before the current time t. To

reduce the number of model free parameters, the weighted sum in Eq. 2.5 was truncated at 2φ, as

suggested by Davidson et al. (2013). The only remaining free parameter in Eq. 2.5 is thus φ, the

response factor that determines the time period over which the weighted sum is taken, which

indicates the importance given to antecedent beach conditions over a shorter or longer span of

time. This parameter can range from days to hundreds of days and is site speci�c.

In terms of the range of application of these models, both formulations are based on the temporal

variability of the wave conditions, and thus the models are designed for beaches where waves

are the primary forcing factor causing shoreline changes. Short temporal and/or small spatial

scale processes a�ecting beach cusps, bar dynamics (e.g. ridge-runnel systems, bar welding), or

local geomorphological features (e.g. rip embayments, exposed peat or bedrock) are not taken

into account. In addition, alongshore sediment transport, as well as changes in the water level

(e.g. storm surge, interannual sea level changes related to climate cycles like El Niño-Southern

Oscillation (ENSO), and long-term changes in the mean sea level) are not explicitly modeled. The

ShoreFor model does, however, include a linear term b that may implicitly take into account any

contributions of these processes that are linear in time. Both models are thus expected to have

higher skill at sites that are dominated primarily by wave-forced cross-shore sediment transport

processes on micro- to meso-tidal beaches, at seasonal to annual, to decadal timescales.

To summarize the comparison between the two models, the main di�erences in representing

physical processes are:

1. the de�nition of a stationary equilibrium (Eeq in Eq. 2.3) in the current model in compari-

son to a temporally varying equilibrium (Ωeq(t) in Eq. 2.4) in the ShoreFor model; and

2. the presence of a linear trend b added to the ShoreFor model (Eq. 2.4) to implicitly take into

account all other linear processes not explicitly modeled in the wave-forced term.

With respect to model free parameters, the Yates et al. (2009a) model has four free parameters:

C+/−
de�ning the accretion and erosion rate change coe�cients, and a and b de�ning the re-

lationship between the beach state and the equilibrium wave energy. In the ShoreFor model,

there are three free parameters: c de�ning the rate parameter, φ de�ning the time period used

to calculate Ωeq(t), and b the linear trend. In both models, the free parameters are determined

using optimization algorithms comparing the simulated and observed shoreline changes. There-

fore, both models require observations for the calibration phase. While site-speci�c calibration

of these parameters is recommended for both models, Splinter et al. (2014) applied the ShoreFor

model at 12 di�erent sites to evaluate the obtained optimal model free parameters, and they pro-

posed a generalized form of the model in which the wave-driven free parameters c and φ can be

estimated using empirical relationships depending on Ω (the temporal mean of Ω).

Finally, the wave conditions used to force both models also di�er. In the Yates et al. (2009a)
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model, the o�shore wave conditions are used, whereas in the ShoreFor model, the wave power

and dimensionless fall velocity are calculated using the wave conditions at the depth-limited

breaking point (assuming a breaking parameter γ = 0.78), as described by Splinter et al. (2014).

2.3.2.2 Equilibrium modeling of macrotidal beaches

As described above, the model is designed ideally to simulate shoreline changes on micro- to

mesotidal beaches where the impacts of the tide level are not signi�cant. When extending the

model to meso- and macrotidal beaches, it is important to consider the percentage of time that a

given elevation contour is impacted by the incoming wave energy. During the Masters internship

of Clara Lemos (2016), we therefore proposed an extension to the equilibrium model to take into

account the impacts of the varying water level. A vertical threshold of the relative water level

L was de�ned to determine the time periods when sediment transport is signi�cant and thus

contour evolution is simulated (Lemos et al., 2018). The assumption is that the vertical limits of

sediment transport along a beach pro�le are de�ned by the maximum runup level and the water

depth at the o�shore limit of the surf zone. We then tested two approaches in the equilibrium

model: (1) L symmetric about the water level (instantaneous tide level) for simplicity, with L

varying in the range of 0.5 m to 6 m, or (2) L proportional to the incoming wave height. In the

second approach, L is assumed to be a function of the wave height to approximate more realistic

thresholds corresponding to zone of the beach impacted by the maximum level of wave runup

(L ∼ Hs, following Caulet et al. (2017)) and by the limit of the wave breaking zone (L ∼ 2Hs,

following Dehouck et al. (2009)).

Once the L threshold has been de�ned, it is used to determine the time periods when a given

contour elevation Z0 will be modi�ed by the incoming wave energy (Figure 2.23b). When Z0 is

  

Figure 2.23: Extended equilibrium model taking into account the tide level: (a) beach pro�le with

the selected elevation contour Z0 and modeling threshold L, and (b) tide level deter-

mining the time periods (red) when the model takes into account the wave forcing

to simulate change in the contour elevation cross-shore position (Figure 7 in Lemos

et al., 2018).
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within the range de�ned by L around the instantaneous still water level (from hourly observa-

tions of the SHOM), the simulated contour elevation position is modi�ed (red zones, Figure 2.23b).

Outside of this threshold range, no elevation contour changes are simulated (blue zones, Fig-

ure 2.23b). This extended model is a simple, �rst attempt to take into account the e�ects of the

tide level in an equilibrium beach change model.

Before implementing the extended version of the empirical equilibrium model, the original model

formulation was applied to reproduce the observed changes at a range of contour altitudes, ex-

tending from approximately -2.0m to +6.0m (IGN NGF) at the two study sites, Porsmilin and

Vougot. Lemos et al. (2018) demonstrated the skill of the model in reproducing the interannual

variations in contour position at Porsmilin beach, with a good predictive ability in the upper

intertidal zone (60%), which is reduced in the lower intertidal zone (40%). Following Yates et al.

(2009a) and Ludka et al. (2015), alternative model formulations were tested by forcing the model

with the wave power instead of the wave energy, thus taking into account the impacts of the

wave period. The model skill increased to nearly 70% in both the upper (small increase in skill)

and lower intertidal (nearly 30% increase in skill) zones. We suggest the importance of the wave

period in reproducing well the sediment transport dynamics, related to the importance of in-

fragravity waves at this site, in particular in the dissipative lower intertidal zone, which merits

further study (Lemos et al., 2018).

Figure 2.24: Equilibrium model application at pro�le 6 at Vougot beach: simulated (blue) and

observed (green) contour evolution for: (a) MHWS, (b) MHWN, and (c) MW levels.

(d) R2
correlation coe�cient as a function of altitude, where the horizontal dashed

lines indicate the contours shown in plots (a)-(c).
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During the Masters internship of Gabin Bouvard (2017) and the ongoing thesis work of Teddy

Chataigner, we then applied the model at the second study site, Vougot, demonstrating relatively

high skill (> 60%) in reproducing contour evolution in the upper and lower intertidal zones along

two cross-shore pro�les (pro�les 5 and 6, Figure 2.24), located at the southwestern end of the

beach. However, the model demonstrated reduced skill in reproducing contour evolution along

Pro�les 1-4, which are located near a section of the beach with high alongshore bathymetric

variability, suggesting the importance of alongshore sediment transport for these pro�les.

Then the extended version of the model taking into account the impacts of the tide (or more

generally water) level was applied, showing equally high model skill as the previous version

of the model, with essentially the same cross-shore evolution, independent of the threshold L.

While the simulated contour evolution does not change signi�cantly, the rate change coe�cients

C+
and C− do vary as a function of L. The rate change coe�cients depend strongly on the

duration of events, which, for a given contour elevation Z0, changes as a function of the applied

threshold L. For example, Figure 2.25 shows the percentage of time that the model simulates

beach changes as a function of the contour elevation.

When using the more realistic model of L as a function of the incoming wave height, optimal

rate change coe�cients correspond to the case when L = 0.5 m for C+
and to L = 3.0 m for

C− at Porsmilin. For the accretion rate coe�cient C+
, this value of L corresponds to the mean

wave height at Porsmilin beach. For the erosion rate coe�cient C−, which typically is applied

during events with largeHs, this implies that the majority of the beach is impacted during storm

events. Based on the results of this work, we have retained the approach using a variable L that

is proportional to the signi�cant wave height for future modeling applications.

Figure 2.25: Percentage of time the model simulates contour elevation changes at pro�le 5 at

Vougot beach using the variable threshold L that is proportional to the wave height.
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Finally, at Porsmilin beach,the added value of the extended version of the model is that it not only

represents a more physically-based model (evolution of beach contours only when the altitude

may be impacted by the water level), but also that the rate change coe�cientsC+/−
attain values

of the same order of magnitude as those obtained for microtidal beaches (Lemos et al., 2018). This

remains to be validated at Vougot beach, as well as other meso- and macrotidal beaches.

2.4 Ongoing work and perspectives

This chapter provides a summary of my research activities in the �eld of coastal morphological

evolution, covering a range of spatial and temporal scales and using a variety of di�erent tech-

niques, ranging from the analysis of observations, to laboratory experiments, and empirical and

numerical modeling. As my career has evolved at the LHSV, I have participated in experimental

studies to take advantage of the available resources, and I have focused more particularly on nu-

merical and empirical modeling. This work has allowed me to identify a number of challenges

and open research questions, and my ongoing work and future perspectives aim to address sev-

eral important concepts in these �elds. My future work will be focused primarily on the two

themes of numerical and empirical modeling, including:

• Investigation and application of process-based modeling approaches to test, im-

prove understanding of, and propose simpli�ed models of the dominant physical processes

causing morphological evolution (section 2.4.1), and

• Ongoing development and analysis of empirical equilibrium-based modeling ap-
proaches to extend their application to take into account alongshore processes, to predict

beach evolution in response to climate change, to understand and de�ne better the advan-

tages, limits, and uncertainties of such models (section 2.4.2).

Ongoing work and perspectives in these two themes are presented in the following two sections.

2.4.1 Process-based modeling approaches

My previous work using process-based models began with the evaluation of the capacity of the

XBeach model to reproduce a series of laboratory �ume experiments. The objective of the experi-

ments was to test the e�ciency of three types of submerged structures in reducing storm-induced

shoreline erosion. These experiments presented a number of limitations, including their two di-

mensional nature and the limited number of di�erent structure con�gurations, wave conditions,

and beach characteristics that could be tested. To begin to address the limitations of the exper-

imental work, we conducted a numerical study to test the skill of XBeach in reproducing the

measured shoreline erosion. The preliminary study allowed calibrating the hydrostatic version

of the XBeach model with the experimental data to then be able to expand the range of tests for

a speci�c site.



50 CHAPTER 2: COASTAL MORPHOLOGICAL EVOLUTION

However, this preliminary work highlighted the challenges in using the XBeach model to simu-

late the complex sediment transport patterns around submerged structures. The calibrated model

was able to reproduce the upper beach and shoreline erosion during the storm events, but the

beach pro�le evolution near the structure was not simulated well. To further the study of the

use of process-based models to aide in engineering studies, with and and without the presence

of submerged structures, in the next �ve years I plan to pursue this research theme by:

• Improvingunderstanding of the cross-shore variability of sediment transport pro-
cesses in the surf zone through the continued analysis of the experimental wave condi-

tions. In particular, the objective here is to evaluate the observed and simulated wave skew-

ness and asymmetry in relation to the observed and simulated morphological changes,

following on the work of Grasso et al. (2009). They evaluated the wave hydrodynamics

in a series of laboratory experiments reproducing equilibrium beach pro�les, identifying

the cross-shore variability of these wave characteristics. The goal here is to pursue this

study by relating the wave hydrodynamics to the observed morphodynamics, both in the

observations and in the simulations.

The cross-shore variability of wave hydrodynamic processes and the induced morpholog-

ical changes (erosion and accretion patterns) is particularly important for understanding

the formation of equilibrium beach pro�les. This theme is of signi�cant interest both for

validating the dynamics of the XBeach model, and for using this information to re�ne

equilibrium beach pro�le change models, as will be discussed next.

• Evaluating the capacity of the XBeach model to reproduce well the observed pro-
�le evolution in the laboratory experiments (in its non-hydrostatic mode) and on natural

beaches (in both the non-hydrostatic and hydrostatic modes). In particular, the focus of this

work is aimed at reproducing both storm erosion events and the subsequent beach recov-

ery, which remains an open challenge in process-based morphological evolution models

(Davidson et al., 2017). These studies are focused on reproducing the short-term (daily to

weekly) morphological �uctuations, and to do so, this research theme will continue to ben-

e�t from an ongoing collaboration with researchers at the IUEM (with short-term, daily to

weekly observations of beach pro�le evolution at the study sites in Brittany) and abroad

(within the PHC Sakura project and the initiation of new collaborations).

• Applying the XBeach model to evaluate the sensitivity of the simulated shoreline

changes to a wide range of wave and beach characteristics, both with and without the pres-

ence of submerged structures. First, this work may address the ability to use the XBeach

model to predict beach pro�le response in the presence of submerged structures, depend-

ing on the results of the calibration tests proposed above. Second, it is of interest to run

a wide range of tests of beach pro�le evolution (with varying initial pro�les, and beach

and wave characteristics) to investigate the development of equilibrium beach pro�les in
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process-based numerical models. This work may address a number of research questions

relating process-based and empirical equilibrium modeling, such as:

– can process-based models accurately reproduce observed equilibrium pro�les?

– are the simulated erosion and accretion change rates and the time to attain an equi-

librium pro�le representative of observations?

– can process-based models be used as a tool to identify the main physical processes

governing morphological change rates?

The goal of my work in this domain is to test the ability to use process-based models to advance

understanding of both the complexities of the physical processes governing beach morpholog-

ical changes, and the potential simpli�cations of these dynamics that can then be integrated in

empirical modeling approaches.

2.4.2 Empirical equilibrium-based modeling approaches

Equilibrium beach change models are currently the focus of much work at the international

level because of their simplicity, ability to be applied to any site with adequate observations, and

usefulness for coastal managers and planners (e.g. Banno and Kuriyama, 2014; Vitousek et al.,

2017; Davidson et al., 2017; Lemos et al., 2018). However, these types of models have a number of

limitations, which have been described in the previous sections. To overcome these limitations,

my work during the next �ve years will be focused on:

• Integrating an alongshore transport model in the cross-shore only model, which was

the subject of the preliminary work of the Masters internship of Matthew Leary, and is now

an integral part of the PhD work of Teddy Chataigner (2018-2021). Several di�erent types

of alongshore sediment transport models are currently being considered, following the re-

cent work of Vitousek et al. (2017), Bouchette et al. (2014), and Robinet et al. (2018). These

approaches calculate the alongshore sediment transport based the incident wave energy

�ux, using widely known formula for estimating the alongshore sediment transport rate

Q (Komar and Inman, 1970; Kamphuis, 1991; USACE, 1984; Bayram et al., 2007), but they

di�er in the calculation of the contribution of alongshore transport to the shoreline move-

ment and the methods used to discretize the shoreline. These approaches will be explored

to select the optimal approach to couple with the existing cross-shore equilibrium beach

change model. A second important point to address, which has not been treated in current

coupled cross-shore equilibrium-based approaches and one-line longshore sediment trans-

port models is the importance of the cross-shore distribution of sediment, which is most

often assumed constant along the active beach pro�le (Vitousek et al., 2017; Robinet et al.,

2018). The cross-shore distribution of longshore sediment transport has been studied on

sandy beaches (e.g. Kamphuis, 1991; Bayram et al., 2001), and this is an important element

that will be investigated in our implementation of an alongshore transport model.
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• Investigating an extended approach to take into account the impacts of the water level,
going beyond the preliminary approach proposed during the Masters internship of Clara

Lemos (Lemos et al., 2018). As described in section 2.3.2, this simple approach limited the

simulated evolution of beach contours to time periods when the relative water level is in a

prede�ned range [+Hs,−2Hs] around the contour elevation. This binary approach does

not take into account the e�ects of the relative water level on the sediment transport rates,

and current work is focused on evaluating a new approach. This new approach also has

the potential to unify the application of the proposed modeling strategy along the beach

pro�le instead of applying the model independently at each elevation contour, as tested

previously (Yates et al., 2011; Castelle et al., 2014; Lemos et al., 2018).

• Applying the newly developed model at additional study sites (via national and interna-

tional collaborations) to validate the proposed methods (Lemos et al. (2018) and the current

work in progress) and to explore the generalization of the model free parameters, in

particular the erosion and accretion rate coe�cients C+/−
. It has been suggested that the

free parameters in equilibrium beach change models depend strongly on the local beach

characteristics (Miller and Dean, 2004; Davidson and Turner, 2009; Yates et al., 2009a, 2011).

By applying the developed model on a range of di�erent beaches, the variability of the op-

timal model free parameters can be studied to evaluate their dependence on the local beach

characteristics, such as the beach slope or sediment grain size. This work may include the

use of machine learning approaches to determine the optimal model free parameters as a

function of beach characteristics.

• Extending the existing model to take into account the impacts of climate change, includ-

ing the impacts of sea level rise and changes in the future wave climate. Current practice for

integrating the impacts of sea level rise in morphological models predicting beach pro�le

and shoreline evolution consists in applying the Bruun Rule (e.g. Bruun, 1962; Davidson-

Arnott, 2005; Banno and Kuriyama, 2014; Anderson et al., 2015; Vitousek et al., 2017). In

recent years, a second approach called the Probabilistic Coastline Recession (PCR) model

(Ranasinghe et al., 2012), has gained in interest due to the integration of the impacts of

dune toe erosion on beach pro�le and shoreline evolution. These two simple approaches

are based on di�erent assumptions of the processes controlling the long-term shoreline

evolution, and given the assumptions and limitations in validating these methods, one

must apply them with caution (Le Cozannet et al., 2019). It is therefore necessary to con-

tinue to explore additional methods that enable taking into account changes in the mean

water level. The objective here is to extend the approach discussed above, which was de-

veloped for pro�les exposed to tidally-varying water levels based on equilibrium beach

change concepts, to predict the impacts of long-term changes in the mean water level.

The results of the proposed approach will be compared with the above-mentioned existing

approaches to evaluate the variability in long-term predictions of beach evolution using
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di�erent approaches. Finally, making deterministic predictions of beach morphological

evolution is highly unrealistic, and statistical approaches will be used to take into account

the uncertainties in the predictions. This work is currently being completed (during the

Masters internship of Nicolas Cailler and the thesis work of Teddy Chataigner) in collab-

oration with a group of Japanese researchers via the PHC Sakura project (2018-2020).

• Comparing empirical equilibrium and process-based models, in particular by an-

alyzing quantitatively not only the modeled beach changes, but also the accretion and

erosion statistics of natural beaches. This study will allow evaluating the relevance and

limitations of each modeling approach, as discussed in the section concerning process-

based modeling. In particular, this proposed work will focus on investigating both the

appropriate timescales of application of empirical equilibrium models and the accuracy

as a function of the optimal observations required to calibrate the model free parameters.

Several open questions in using empirical equilibrium morphological change models are

related to the appropriate timescales of application:

– are equilibrium-based models valid on timescales as short as hours to days?

– or is the bulk parameterization of the physical processes of erosion and accretion

more appropriate for weekly to monthly, seasonal, and interannual timescales?

– additionally, is it possible to extend these approaches for longer timescales or is there

an inherent assumption of stationarity in the beach characteristics that prevents the

application of these simple models to decadal and longer timescales?

When asking these types of questions, it becomes rapidly apparent that it is necessary

to investigate the variability of the model free parameters and the possibility to develop

generalized approaches to determine their dependence on the local beach characteristics

and/or wave conditions, as described above. Finally, these questions are strongly linked

to the proposed work with process-based modeling approaches, which may be an optimal

choice at short timescales.

The goal of my work in this domain is to pursue the development of empirical equilibrium beach

evolution models �rst to be able to reproduce accurately past sandy beach morphological evolu-

tion. Ultimately, these tools may then be extended to make future predictions, keeping in mind

the uncertainties in these methods. As proposed here, a number of fundamental questions con-

cerning the theory and application of empirical equilibrium morphological change models will

be explored to achieve this goal.



54 CHAPTER 2: COASTAL MORPHOLOGICAL EVOLUTION



Chapter 3

Coastal wave hydrodynamics

3.1 Scienti�c context and challenges

In recent decades, the need for accurate and e�cient models of wave propagation in the nearshore

zone has increased owing to the wide variety of applications such as evaluating and managing

coastal risks, and designing and maintaining coastal and o�shore structures, as well as marine

renewable energy devices. In the past, linear wave propagation models were used in wave en-

gineering studies (Maguire, 2011) because of the computational costs associated with studying

wave propagation in large spatial domains with nonlinear propagation models. Today, there is

rapidly growing interest in providing more detailed representations of waves in the nearshore

zone (e.g. D’Alessandro and Tomasicchio, 2008; Kurnia and van Groesen, 2014). Therefore, linear

models are being replaced by nonlinear wave propagation models that represent more accurately

wave propagation at these spatial and temporal scales (e.g. Zijlema and Stelling, 2008; Engsig-

Karup et al., 2009; Roeber et al., 2010; Ducrozet et al., 2012; Zhao et al., 2014; Belibassakis and

Athanassoulis, 2011; Filippini et al., 2018; Raoult et al., 2019).

More generally, a wide range of phase-resolving modeling approaches are used to simulate coastal

wave propagation depending on the desired spatial and temporal scales and the dominant physi-

cal processes at those scales. The focus here is on phase-resolved modeling as opposed to phase-

averaged modeling because of the spatial and temporal scales of interest in the coastal zone.

These modeling approaches can be classi�ed into di�erent families (Figure 3.1) ranging from

simple, linear models based on the mild slope equations and their extensions (Berkho�, 1972;

Chamberlain and Porter, 1995; Lee and Suh, 1998) that are frequently used in coastal and port

engineering applications, to computationally intensive CFD (Computational Fluid Dynamics)

models that resolve the Reynolds Averaged Navier-Stokes (RANS) equations (Liu et al., 1999;

Shao, 2006; Lara et al., 2006; Dalrymple and Rogers, 2006; Higuera et al., 2013a) to simulate local-

scale processes (with spatial scales on the order of one to several wavelengths and temporal scales

ranging from minutes to hours).
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Figure 3.1: Spectrum of families (blue) of phase-resolving wave propagation models and their

domains of application (green), ranging from linear models resolving the mild-slope

equations (left) to CFD models resolving the Reynolds-averaged Navier-Stokes equa-

tions (right).

At the complex end of the spectrum (Figure 3.1) there are wave models solving the RANS equa-

tions with a turbulence closure scheme, and the dynamics of nonlinear wave propagation, inter-

actions with the bottom and structures, and wave breaking processes can be simulated. However,

the computational costs limit the domain size of applications of these models, and the numerical

methods used to resolve the free surface position are often unable to propagate accurately waves

over large spatial or long temporal scales owing to numerical di�usion. At the simpli�ed end

of the spectrum (Figure 3.1) there are linear wave propagation models that are computationally

e�cient, but unable to simulate nonlinear wave transformation processes (e.g. wave shoaling,

nonlinear wave interactions, etc.).

In the nearshore zone, it is essential to simulate accurately the nonlinear and dispersive charac-

teristics of waves. These e�ects can be characterized by the wave steepness ε = kH/2, relative

wave height H/h, and relative water depth µ = kh (where H , k, and h are the characteristic

local wave height, wave number, and water depth, respectively). In particular in the nearshore

zone, the wave steepness ε and relative wave height H/h increase in shallow water as waves

shoal, and the relative water depth µ increases in intermediate and deep water where waves are

dispersive. Thus when simulating the propagation of waves from deep water conditions to the

coast, it is necessary to simulate accurately both of these e�ects, and wave propagation models

can be classi�ed in this way. Between the two extremes of wave propagation models based on

linear wave propagation or the RANS equations, there exist several families of models that make

di�erent hypotheses about the nonlinear and dispersive properties of the waves and the �uid

�ow to simplify this complex problem.

By assuming an incompressible �uid and a vertically homogeneous �ow (i.e. that vertical vari-

ations are small in comparison to horizontal variations, also known as long wave or shallow

water approximation), it is possible to integrate vertically the Navier Stokes equations to derive

the Nonlinear Shallow Water Equations (NLSWE, center, Figure 3.1). However, models based
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on these equations are valid only for shallow water conditions by ignoring dispersive e�ects,

and short waves are not simulated correctly. These kinds of models may be used for simula-

tions extending from the mid- to inner surf zone shoreward, where wave nonlinearity dominates

(Brocchini and Dodd, 2008). One advantage of the NLSWE is that they provide a natural frame-

work for simulating wave bores. However, these models are limited by their inability to take into

account the e�ects of wave dispersion. To improve this, one approach is to add a non-hydrostatic

pressure term at the free surface and to divide the water column in multiple layers (Zijlema and

Stelling, 2008; Zijlema et al., 2011). The model accuracy can be improved further by optimizing

the position of these layers (Zhu et al., 2014).

However, these approaches are still limited in representing the dispersive e�ects of waves in in-

termediate to deep water conditions, and thus more complex models have been derived assuming

that the vertical variability can be described using a polynomial expansion, and estimating the

velocity at a �xed vertical level zα with Boussinesq-type or Serre-Green-Naghdi (SGN) methods

(Figure 3.1, center, e.g. Nwogu, 1993; Agnon et al., 1999; Madsen et al., 2002; Fuhrman et al., 2005;

Chazel et al., 2009). A variety of models have been derived that are valid to di�erent orders of

nonlinearity (ε) and dispersion (µ), and they are widely used in coastal engineering applications

for their e�ciency and relative accuracy (e.g. Madsen and Sørensen, 1992; Schä�er et al., 1993;

Wei et al., 1995; Kennedy et al., 2000; Chen et al., 1998; Roeber et al., 2010).

Going one step further along the spectrum, a fully nonlinear and dispersive model can be derived

by returning to the Navier Stokes equations and assuming an inviscid �uid to obtain the Euler

equations. Then by assuming irrotational �ow, thereby restricting the application of the model to

non-breaking waves, these equations can be reduced to a fully nonlinear potential �ow problem

requiring the resolution of the Laplace problem in the �uid domain (Figure 3.1, center). Several

di�erent approaches may be used, including projecting the resolution of the Laplace equation

in the interior of the �uid onto the boundary surface using Boundary Integral Equation Meth-

ods (BIEM, e.g. Romate and Zandbergen, 1989; Grilli et al., 2001, 1989; Newman and Lee, 2002;

Fochesato et al., 2007; Nimmala et al., 2013), or onto a �xed level in the �uid using pseudo-spectral

or high-order spectral methods to treat the nonlinear free surface boundary conditions (e.g. West

et al., 1987; Dommermuth and Yue, 1987; Chern et al., 1999; Ducrozet et al., 2007, 2012).

More recent work has concentrated on the direct numerical resolution of the 3D Laplace equation

in the �uid domain by discretizing the entire domain but taking local derivatives only using �nite

element (Wu et al., 1998; Ma et al., 2001) or �nite di�erence (Li and Fleming, 1997; Bingham and

Zhang, 2007; Engsig-Karup et al., 2009; Yates and Benoit, 2015) approaches, or by searching for

fast numerical methods for solving the Laplace problem, such as integral equations (Clamond

and Grue, 2001; Fructus et al., 2005) or coupled modes (Belibassakis and Athanassoulis, 2011;

Belibassakis et al., 2014). Each method presents its own advantages and limitations, in particular

concerning the mathematical complexity, numerical e�ciency, and domain �exibility.

Since my arrival at the LHSV in 2011, I have been working in collaboration with Michel Benoit
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on developing a fully nonlinear potential �ow theory model. With the objective of ful�lling

the need for highly accurate, nonlinear wave propagation models capable of simulating coastal

wave propagation and transformation, we chose to solve the Zakharov equations (Zakharov,

1968; Craig and Sulem, 1993) by directly solving the 3D Laplace equation. My work in this �eld

will be outlined in the remainder of this chapter. First, section 3.2 describes the mathematical and

numerical model, before section 3.3 evaluates the accuracy and e�ciency of the spectral approach

chosen to resolve the model in the vertical. The 1DH (one horizontal dimension, (x, z)) version

of the model is then validated with a series of test cases in section 3.4, before the 2DH (two

horizontal dimension, (x, y, z)) version of the model is developed and validated in section 3.5.

Finally, recent work to take into account the e�ects of wave breaking is described in section 3.6,

before future work is outlined in section 3.7.

This collaborative project with Michel Benoit continued after his departure from the LHSV in

2015 when he took a position at the IRPHE/ECM (Institut de Recherche des Phenomenes Hors

Equilibre / Ecole Centrale Marseille). During the 8-year time period that we have worked on co-

developing the model, we have co-advised 2 Engineering and Masters interns, one PhD student,

and two post-docs. This work has been published in four peer-reviewed articles, two of which

are presented in Appendix D, and three additional articles are currently under review.

3.2 Mathematical and numerical model

Modeling highly nonlinear and dispersive waves remains an open research topic due to the dif-

�culties in representing well a wide range of physical processes impacting wave propagation in

the nearshore zone at di�erent temporal and spatial scales. As mentioned in the introduction, a

variety of di�erent models exist, and here the choice was made to develop a fully nonlinear po-

tential �ow theory model, based on the Zakharov-Craig-Sulem system of equations (Zakharov,

1968; Craig and Sulem, 1993).

To derive this model, a �uid domain Ω of density ρ is described by the �uid velocity u

¯

(x, y, z, t) =

(u, v, w)T , with the temporally-varying free surface at z = η(x, y, t) and bottom boundary at

z = −h(x, y, t) (Figure 3.2). The �uid is assumed to be incompressible (constant and homoge-

neous density), and the �ow is assumed to be inviscid, allowing the simpli�cation of the Navier-

Stokes equations to the Euler equations. By additionally assuming the �ow is irrotational, it can

be represented following potential �ow theory with the velocity potential Φ such that u

¯

= ∇Φ.

Then, the kinematic (KFSBC) and dynamic free surface boundary conditions (DFSBC) are ex-

pressed as the impermeability of the free surface and the continuity of the free surface normal

stress, respectively. In the DFSBC, the atmospheric pressure patm is arbitrarily set to 0 without

loss of generality.

The system of nonlinear potential �ow equations, also known as the “water wave problem”, thus

consists of four equations:
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1. the conservation of mass in the �uid domain (or Laplace equation, where ∆ is the Laplace

operator)

∆Φ = 0 in Ω, (3.1)

2. the KFSBC

∂η

∂t
+∇

H
Φ.∇

H
η − ∂Φ

∂z
= 0, at z = η(x, y, t), (3.2)

3. the DFSBC rewritten using the Bernoulli equation at the free surface (derived from the

Euler equations)

∂Φ

∂t
+

1

2
(∇

H
Φ)2 + gη = 0, at z = η(x, y, t), and (3.3)

4. the bottom boundary condition

∂h

∂t
+∇

H
Φ.∇

H
h+

∂Φ

∂z
= 0, at z = −h(x, y, t), (3.4)

where∇ ≡ ( ∂
∂x ,

∂
∂y ,

∂
∂z )T is the gradient operator, and∇

H
denotes the horizontal gradient

operator.

This model is derived for a uniform and constant pressure at the free surface, neglecting the

e�ects of surface tension. The assumption that surface tension e�ects are negligible is valid

for real applications with wavelengths on the order of meters to hundreds of meters. Surface

tension e�ects become important for short waves with wavelengths on the order of millimeters

(capillary waves) to centimeters. During the thesis work of Cécile Raoult, (Raoult, 2017), the

Figure 3.2: Notation used to describe the �uid domain Ω and the free surface η and bottom h
boundaries in the 1DH version of the model.
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e�ects of surface tension were included in the model in the DFSBC (following Dingemans, 1997)

to simulate small-scale laboratory experiments (Monsalve et al., 2015) where the e�ects of surface

tension were no longer negligible (see section 3.4.2). The remainder of the work shown here will

neglect the e�ects of surface tension under the assumption that they are negligible for full-scale

modeling of waves propagating in the nearshore environment.

An additional assumption is made requiring that the water column is continuous from the bottom

to the free surface (i.e. single-valued free surface position η, and no overturning waves). The

KFSBC and DFSBC then can be rewritten as the temporal evolution of the free surface elevation

η and the free surface velocity potential as Φ̃(x, y, t) ≡ Φ(x, y, η(x, y, t), t) following Zakharov

(1968) and Craig and Sulem (1993):

ηt = −∇
H
η.∇

H
Φ̃ + w̃

(
1 + (∇

H
η)2
)
, (3.5)

Φ̃t = −gη − 1

2
(∇

H
Φ̃)2 +

1

2
w̃2
(
1 + (∇

H
η)2
)
, (3.6)

which are functions of only η, Φ̃, and w̃, the vertical velocity at the free surface, de�ned as:

w̃(x, y, t) ≡ ∂Φ

∂z
(x, y, η(x, y, t), t). (3.7)

This set of equations (Eqs. 3.5-3.6), known as the Zakharov-Craig-Sulem equations, must be sup-

plemented by lateral and bottom boundary conditions to solve the Laplace boundary value prob-

lem (BVP) in the domain. Thus far, we have implemented fully re�ective, periodic, or wave

generating lateral boundary conditions and an impermeable bottom boundary condition. The

primary di�culty in solving this coupled set of equations is to evaluate the vertical velocity at

the free surface w̃ as a function of η and Φ̃ (often called the “Dirichlet-to-Neumann” or DtN

problem).

A wide variety of di�erent methods are used to solve the DtN problem. One approach is to

solve directly the Laplace equation using �nite element (Wu et al., 1998; Ma et al., 2001) or �nite

di�erence (Li and Fleming, 1997; Engsig-Karup et al., 2009) methods. If the problem is simpli�ed

to a rectangular domain with a �at bottom, a high-order spectral (HOS) approach may be optimal

(Dommermuth and Yue, 1987; West et al., 1987; Chern et al., 1999; Ducrozet et al., 2012), and

recent work has extended HOS models to simulate variable and moving bottoms (Smith, 1998;

Guyenne and Nicholls, 2007; Gouin et al., 2015). Another e�cient approach is to use a spectral

method only in the vertical (thereby regaining �exibility in the horizontal domain structure)

using a local mode series expansion (Belibassakis and Athanassoulis, 2011; Athanassoulis and

Papoutsellis, 2015; Papoutsellis et al., 2018) or a projection on a polynomial basis (Kennedy and

Fenton, 1997; Tian and Sato, 2008). Additional approaches have been proposed such as a fast,

iterative algorithms for calculating the DtN operator (Clamond and Grue, 2001; Fructus et al.,

2005), but these methods introduce additional mathematical complexity.

Since my arrival in the LHSV, I have worked on co-developing the numerical model Misthyc
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solving the mathematical model presented here, known as the nonlinear water wave problem.

The numerical model requires three main components:

1. a method to compute the Laplacian and horizontal gradient operators,

2. a technique for solving the Laplace BVP for Φ at each time step, and

3. a temporal integration scheme to advance η and Φ̃ in time.

Figure 3.3 presents a schematic of the resolution of the Misthyc model at a given time t, identify-

ing the main steps (boxes, outlined below) and principle variables are passed between each step

(black arrows).

First, to calculate the gradient and Laplacian operators in the horizontal domain (Figure 3.3,

orange box), two di�erent approaches are used are in the 1DH and 2DH versions of the model:

• 1D high-order �nite di�erence schemes are used on structured grid in the 1D horizon-

tal domain (Figure 3.4a), and

• 2D radial basis function - �nite di�erence schemes (RBF-FD) are used on an unstruc-

tured grid in the 2D horizontal domain (Figure 3.4b).

These approaches were chosen to achieve high-order accuracy while maintaining the �exibility

of the approach for variable bathymetries and irregularly-shaped domains. In the 1DH model,

�exible, high-order �nite di�erence schemes were implemented following Fornberg (1988) and

Bingham and Zhang (2007). In the applications shown here, fourth-order schemes (Figure 3.4a)

are used as an optimal choice to obtain high-order accuracy, while minimizing both the appear-

ance of instabilities and the computational time (Bingham and Zhang, 2007; Yates and Benoit,

Figure 3.3: Schematic of the resolution of the Misthyc model. The dotted black line indicates the

temporal integration step.
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(a) 1DH (b) 2DH

Figure 3.4: Examples of the horizontal discretization for 1DH (�nite di�erence) and 2DH (radial

basis function - �nite di�erence) stencils.

2015). The radial basis function-�nite di�erence approach used in the 2DH version of the model

will be described in more detail in section 3.5.

Second, both the 1DH and 2DH versions of the model use a spectral approach in the vertical (Yates

and Benoit, 2015) to solve the Laplace boundary value problem (Figure 3.3, red box). The choice of

method and details of the vertical resolution are discussed further in section 3.3. For a horizontal

domain with NXY points and a vertical approximation with basis functions of maximum order

NT , the Laplace BVP (consisting of Eqs. 3.1-4) and the lateral boundary conditions (periodic or

fully re�ective vertical walls with
∂Φ
∂n = 0) is solved at each time step by solving a linear system

of NXY × (NT + 1) equations. The linear system of equations forms a sparse matrix, which

is solved in the Misthyc model using the direct solver MUMPS (MUltifrontal Massively Parallel

Solver, v4.10.0, Amestoy et al., 2001, 2006). This solver was chosen as an e�cient choice of a

parallel sparse direct solver that can be interfaced easily with Fortran.

Finally, the vertical velocity at the free surface w̃ is calculated (Eq. 3.7, Figure 3.3, green box) from

Φ, and then the Zakharov equations are integrated in time using the classical, explicit fourth-

order Runge-Kutta (RK) scheme with a constant time step (Figure 3.3, blue box). This approach

was chosen as a reliable, accurate, and stable method. Both higher and lower-order temporal

integration schemes, as well as a variable time step, could be tested to optimize the simulation

calculation time and accuracy.

As described in the introduction, work on this model was initiated upon my arrival in the LHSV.

The next four sections outline my contributions to the model development and validation (sec-

tions 3.3-3.6), including the work of the students and post-doctoral researchers co-advised with

Michel Benoit, before the last section presents future work I propose to do in this �eld (sec-

tion 3.7).
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3.3 Accuracy and e�ciency of the spectral approach

We �rst studied the accuracy and e�ciency of di�erent approaches for resolving the vertical

domain in 1DH. The 1DH version of Misthyc initially was developed using high-order �nite

di�erence schemes in both the horizontal and vertical domains to solve the Laplace equation

and the DtN problem. In the following, Model A refers to this version of Misthyc, with a vertical

discretization usingNZ layers (orNZ +1 points). Following Bingham and Zhang (2007), Engsig-

Karup et al. (2009), and Ducrozet et al. (2012), the vertical coordinate �rst is transformed into σ-

coordinates to simplify the resolution of the system of equations by creating a �xed rectangular

domain:

σ(x, z, t) =
z + h(x)

η(x, t) + h(x)
=
z + h(x)

d(x, t)
. (3.8)

I then studied the optimal vertical discretization of points following the analysis presented by

Engsig-Karup et al. (2009), comparing a uniform linear distribution, the roots of the Chebyshev-

Gauss-Lobatto (CGL) polynomials, and the roots of the Legendre-Gauss-Lobatto (LGL) polyno-

mials. The convergence of the Misthyc model is improved with inhomogeneous point spacing,

with a higher density of points near the free surface (Yates and Benoit, 2015). This improves the

estimates of Φ near the free surface and therefore of w̃. For example, for the same number of

points NZ , smaller errors are obtained when calculating the vertical velocity at the free surface

w̃ for a linear wave with kh ∼ 4 using the roots of CGL polynomials (Figure 3.5, center) than

using a linear distribution of points (Figure 3.5, left).

This optimal discretization was then compared to the use of a spectral Chebyshev-tau approach

to solve for Φ in the vertical, following Tian and Sato (2008). In this case, the vertical domain also

is transformed into a �xed rectangular domain, but with a vertical coordinate s varying from -1

at the bottom to 1 at the free surface:

s(x, z, t) =
2z + h−(x, t)

h+(x, t)
, (3.9)

with h+(x, t) = h(x) + η(x, t) and h−(x, t) = h(x) − η(x, t). Then, the velocity potential

ϕ(x, s) is expressed using a spectral approach as a sum of Chebyshev polynomials of the �rst

kind Tn(x), where n indicates the order of the polynomial:

ϕ(x, s) ' ϕNT (x, s) =

NT∑
n=0

an(x)Tn(s), (3.10)

where NT is the highest order Chebyshev polynomial and an(x) are the NT + 1 coe�cients

calculated at each point in x. For NT = 6, the �rst seven Chebyshev polynomials are shown

in Figure 3.5(top row, right). To solve for the an(x) coe�cients, the Laplace BVP and boundary

conditions (lateral and vertical) are expressed by applying the Chebyshev-tau method (e.g. Boyd,
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Figure 3.5: Convergence of the vertical velocity at the free surface w̃ for a linear wave with

kh ∼ 4, evaluated as a function of NX , NZ , and the vertical resolution: (a) Model

A: linear distribution, (b) Model A: roots of Chebyshev-Gauss-Lobatto (CGL) polyno-

mials, and (c) Model B: spectral method. In the top row, examples of the vertical point

distributions are shown for Model A (with NZ = 7) and of the Chebyshev polynomi-

als for Model B (with NT = 6) (Yates and Benoit, 2015).

2001) to the Laplace equation (3.1) and the boundary conditions to obtain a system of equations

as a function of s, Tn(s), T ′n(s) ≡ dTn
ds and T ′′n (s) ≡ d2Tn

ds2
. For more details about this method,

see Yates and Benoit (2015), shown in Appendix D.1.

Finally, a system of NX(NT + 1) linear equations must be solved for the coe�cients an(x), and

then the vertical velocity at the free surface w̃ is calculated:

w̃(xi) = Φssz
∣∣
s=1

=
2

h+(xi)

NT∑
n=0

an(xi)n
2, (3.11)

and the Zakharov equations (Eqs. 3.5 and 3.6) can be stepped forward in time. In the following,

Model B refers to this version of Misthyc, with the vertical variability resolved using a spectral
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approach with Chebyshev polynomials of maximum order NT . Figure 3.5 shows that when es-

timating w̃ for a linear wave with kh ∼ 4, convergence is achieved for Model B with smaller

values of NT than for either discretization in Model A.

To further demonstrate the accuracy and e�ciency of these methods in calculating the free sur-

face vertical velocity, I evaluated the convergence properties for a regular nonlinear wave of

permanent form, in a constant depth (h), periodic domain (L). The errors depend on both the

horizontal (NX ) and vertical (N ) resolution. The vertical resolutionN is determined by the num-

ber of layersN = NL for the �nite di�erence method (Model A with CGL polynomial roots) and

by the maximum order Chebyshev polynomial N = NT (e.g. number of polynomials) for the

spectral method (Model B). The Laplace BVP is solved, and the vertical velocity at the free surface

is calculated and compared to a reference solution calculated using a Fourier series approxima-

tion of the stream function method (to 20th order), following Chaplin (1980) and Rienecker and

Fenton (1981). As expected, both methods (Models A and B) demonstrated similar accuracy, but

the spectral method shows faster convergence (exponential) than the �nite di�erence method

(algebraic, for the CGL polynomial discretization) as a function of N (Figure 3.6).
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Figure 3.6: Convergence of the free surface vertical velocity w̃ for a regular nonlinear wave

with wave steepness H/L = 0.1 (ka = π/10) and relative water depth h/L = 1
(kh = 2π). Convergence of Model A with CGL polynomial roots (circles, vertical

discretization) and Model B (crosses, spectral approach) is plotted as a function of the

vertical resolution N for a range of horizontal resolutions NX (colored lines).
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After testing the convergence of these methods for solving the Laplace BVP, I then evaluated

accuracy and e�ciency of the Misthyc model using the optimal vertical discretization with CGL

polynomials and the spectral method for three cases including: (1) the long-time propagation of

stable, regular nonlinear waves in a periodic domain, (2) the temporal evolution of a nonlinear

standing wave in a domain with fully re�ective boundaries, and (3) the propagation and shoaling

of a train of waves on a slope (see Yates and Benoit (2015) for the detailed comparisons).

With these three test cases, we demonstrated the accuracy and e�ciency of the spectral method

in comparison to fourth-order �nite di�erence schemes through analysis of the model propa-

gation errors and CPU time. The spectral approach was thus retained in the Misthyc model

without loss of �exibility in the model applications. We also concluded that the optimal vertical

resolution for practical applications, which is a compromise between accuracy and e�ciency, is

approximately in the range 7 ≤ NT ≤ 15. Therefore, in the following model developments,

the spectral approach is used with a maximum order Chebyshev polynomial of NT = 7, unless

otherwise speci�ed.

3.4 Validating the 1DH model

3.4.1 Simulating nonlinear wave propagation

During the thesis work of Cécile Raoult, the accuracy of the Misthyc model in reproducing highly

nonlinear and dispersive waves was demonstrated further with a series of test cases in 1DH

(Raoult et al., 2016a). First, several analytical or accurate numerical solutions for highly nonlinear

waves were simulated to evaluate the accuracy and convergence of the model. Then a series

of laboratory experiments were simulated to demonstrate these properties when the model is

applied to practical test cases.

The analytical and numerical test cases included simulating linear wave propagation and re�ec-

tion over a steep, smooth change in depth (Roseau, 1976; Athanassoulis and Belibassakis, 1999)

and solitary wave propagation over a �at bottom (Clamond and Dutykh, 2013). The latter test

case will be presented here to evaluate the convergence properties of the model for nonlinear

wave propagation (section 3.4.1.1).

Then, comparisons of simulation results with observations from a series of laboratory experi-

ments cases demonstrated the ability of the model to simulate accurately regular or irregular

wave propagation (without wave breaking) over a �at bottom (Chapalain et al., 1992), a slop-

ing beach (Ting and Kirby, 1994), a submerged bar (Dingemans, 1994), and a barred beach pro�le

(Becq-Girard et al., 1999). Additional test cases included the generation and propagation of waves

from an impulsive bottom movement, simulating tsunami-like waves (Hammack, 1973; Fuhrman

and Madsen, 2009). The simulation of these experiments demonstrated the ability of the model to

reproduce accurately dispersive waves and nonlinear wave-wave and wave-bottom interactions,
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including the transfer of energy between the peak frequency and higher-order harmonics (up to

the �fth harmonic in some cases). The results of the Becq-Girard et al. (1999) comparisons are

presented here (section 3.4.1.2).

3.4.1.1 Model convergence properties

To evaluate the convergence properties of the model as a function of the temporal, horizontal, and

vertical resolution, we completed a series of simulations propagating a solitary wave generated

using the highly accurate numerical solution of Clamond and Dutykh (2013). Solitary waves

are characterized by the nonlinearity parameter δ = H/h, also called the nondimensional wave

height, calculated as the ratio of the wave height to the water depth, with δ = 0.3, 0.5, and 0.7

for the three cases tested here. Each simulation was initialized with a solitary wave at x = 0,

which was then propagated for T̃ ≡ T
√
g/h = 500 in a domain with water depth h = 1 m,

and horizontal extent x/h = [−25, 675]. The domain was su�ciently long to avoid the e�ects

of wave re�ection.

First, the model convergence was veri�ed as a function of ∆x and ∆t by analyzing the wave

phase, wave amplitude, and conservation of energy and volume, which should all remain con-

stant (Raoult et al., 2016a). Global volume and energy errors were calculated as the arithmetic

mean of the relative volume and energy evolution:

ErrY =

∣∣∣∣〈Y (t)〉t − Y0

Y0

∣∣∣∣ , (3.12)

where 〈Y (t)〉t = 1
NDT

∑NDT
i=1 Y (ti), NDT is the number of time steps, Y0 is the value at t = 0,

and Y = V orE, for volume or energy, respectively. The wave amplitude and phase errors were

calculated relative to the initial amplitude and to the theoretical position of the wave at the end

of the simulation (at t = T̃ ) :

Errampl =

∣∣∣∣∣ηmax(T̃ )−H
H

∣∣∣∣∣ , Errphase =

∣∣∣∣∣xmax(T̃ )− CT̃
CT̃

∣∣∣∣∣ . (3.13)

For the vertical convergence tests, the maximum orderNT of the Chebyshev polynomial was var-

ied fromNT = 3 to 15, and the relative errors were calculated using the results of the simulation

with the highest order as the reference value (here NT = 15). In this case, the relative volume

and energy errors, and relative amplitude and phase errors are calculated using Eqs. 3.12 and

3.13 by replacing Y0 and the theoretical values (H , C) with the values obtained when NT = 15.

For each set of test cases, two parameters were held constant (e.g. vertical resolution and time

step) and the last parameter varied (e.g. horizontal resolution). The energy conservation con-

vergence trends are presented in the following. The volume conservation, amplitude, and phase
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convergence trends (not shown here, see Raoult (2017) for more details) showed similar trends.

For the case examining the convergence as a function of the horizontal resolution ∆x (e.g. energy

conservation, Figure 3.7a), the vertical resolution and CFL number were held constant, with

NT = 7 and CFL ≡ C0∆t/∆x = 1.25. Fourth-order algebraic convergence in space was veri�ed

for the most nonlinear solitary wave (δ = 0.7), as expected for fourth-order �nite di�erence

schemes. Slightly higher-order (faster) convergence (4-5) was demonstrated for the two smaller

values of δ. Convergence was then evaluated as a function of the time step ∆t (e.g. energy

conservation, Figure 3.7b) by holding constant the spatial and vertical resolution, ∆x = 0.1 m

and NT = 7. As a function of the time step, slightly slower than fourth-order convergence (3.3-

4.1) was observed for the most nonlinear test case, while the convergence was again faster than

fourth-order for the two smaller values of δ (4-5).

The model convergence was also evaluated as a function of the vertical resolution NT (max-

imum order Chebyshev polynomial) to provide guidelines for the values to be used in future

simulations. At T̃ = 500, the amplitude and phase of the solitary wave depends on the verti-

cal resolution NT and the wave nonlinearity δ (Figure 3.8). Similar to the convergence tests as a

function of the horizontal and temporal resolution, the model converges faster for smaller values

of the nonlinearity parameter δ (e.g. Figure 3.8a-b). In addition the model converges rapidly even

with relatively small values of NT (also as observed previously by Yates and Benoit (2015)). For

example, the relative amplitude error (compared to the solution with the highest order Cheby-

shev polynomial) is less than 10−6
for NT = 6, 7, and 11, for δ = 0.3, 0.5 and 0.7, respectively.

Here, it must be noted that the model converges to a solution with a phase di�erence from the

analytical solution due to the underestimation of the amplitude and phase speed (Figure 3.8c).

(a) ∆x (b) ∆t

Figure 3.7: Convergence of the relative energy as function of the (a) horizontal resolution ∆x
(withCFL = 1.25 andNT = 7) and (b) time step ∆t (with ∆x = 0.1 m andNT = 7)

for the three solitary waves with δ = 0.3, 0.5, and 0.7.
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(a) δ = 0.3

(b) δ = 0.5

(c) δ = 0.7

Figure 3.8: Free surface pro�les at T̃ = 500 for several values of NT (see legend) for (a) δ = 0.3,

(b) δ = 0.5 and (c) δ = 0.7.
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Finally, the CPU time was also calculated for each of these test cases, and the following relation-

ship was obtained:

TCPU ≈
N1.5
T

∆t∆x2
.

This relationship indicates the relative importance of minimizing the horizontal (∆x), vertical

(NT ), and temporal (∆t) resolution, in that order.

3.4.1.2 Reproducing highly nonlinear laboratory experiments

We then validated the accurate simulation of wave-wave and wave-bottom interactions with a

series of laboratory experiments. In the Becq-Girard et al. (1999) experiments described here, the

model reproduced well nonlinear wave interactions and the transfer of wave energy between

higher- and lower-order harmonics.

In the experiments, irregular waves were generated using a piston-type wave generator and then

propagated over a barred bathymetric pro�le (Figure 3.9) to evaluate the generation of higher

harmonics and the transfer of energy between these frequencies. The irregular wave �eld was

generated using a JONSWAP spectrum with an enhancement factor γ = 3.3, a signi�cant wave

height of Hs = 3.4 m, and a peak frequency fp = 2.39 s. Sixteen resistive-type wave probes

measured the free surface position (Figure 3.9) during 40 minutes with a sampling rate of ∆t =

0.07 s.

In the model, waves were generated in a 5-m long relaxation zone imposing the velocity poten-

tial and free surface position ending at the foot of the bar (x = 0 m) and absorbed in a 10-m

long relaxation zone starting at x = 15 m. The waves were generated by reproducing the ob-

served wave spectrum at wave probe 2. The simulation parameters were de�ned as: horizontal

resolution ∆x = 0.05 m, vertical resolution NT=7, and time step ∆t = 0.07 s.

In agreement with the laboratory observations, the simulation results demonstrate in the wave

spectra (Figure 3.10) the transfer of wave energy from the peak frequency at the foot of the barred

beach pro�le (probe 2, Figure 3.9a) to the second to �fth harmonics over the bar (probes 7-11,

Figure 3.9b-d). In the trough after the bar, wave energy is transferred from the higher-order (third

−5 0 5 10 15
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−0.4

−0.2

0.0
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z
(m

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
wavemaker at x=-25 m

Figure 3.9: Bathymetric pro�le of the experiments of Becq-Girard et al. (1999), indicating the

position of the probes along the wave �ume.
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Figure 3.10: Comparison of measured and simulated wave spectra (as a function of the wave

frequency normalized by the peak frequency) at eight probes (a-h) placed along the

wave �ume for the experiments of Becq-Girard et al. (1999). Vertical lines indicate

the frequency of the primary wave and the second to �fth harmonics.
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Figure 3.11: Comparison of the evolution of the �rst �ve harmonics from the measurements (tri-

angles) and simulations (lines), with the bottom bathymetry shown in the bottom

panel for reference for the experiments of Becq-Girard et al. (1999).

to �fth) harmonics back to the peak frequency and second harmonic (probes 13-15, Figure 3.9f-g).

Finally, as the water depth increases again near the end of the tank, the third harmonic increases

in energy again (probe 16, Figure 3.9h).

The simulation reproduces correctly the spatial evolution of the �rst �ve harmonics over the

submerged bar (Figure 3.11), representing well the di�erent phases described above. The oscil-

lations observed in the observed and simulated harmonic amplitudes are caused by wave re�ec-

tions. In the model, wave re�ections are caused by an imperfect wave absorption zone (10 m-

long relaxation zone) and the impermeable boundary at the right side of the domain. This test

demonstrated the ability of the model to reproduce well nonlinear interactions between waves,

including transfers between the primary wave and higher-order harmonics, and waves and the

bottom bathymetry during the shoaling process.

3.4.2 Simulating viscous e�ets

In particular cases with shallow water or long propagation times, dissipative processes may be-

come important, and viscous e�ects, including bottom friction, cannot be neglected. To take into

account viscous e�ects in Misthyc, we �rst integrated the e�ects of bulk viscosity into the poten-

tial �ow theory model following the theoretical work of Liu and Or�la (2004), Dutykh and Dias

(2007), and Dias et al. (2008). They derived new sets of visco-potential equations by introducing
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dissipative terms in the dynamic and kinematic free surface boundary conditions (Eqs. 3.5-3.6)

such that they become:

∂η

∂t
= −∇HΦ̃.∇Hη + w̃(1 + (∇Hη)2) + 2ν∆Hη, (3.14)

∂Φ̃

∂t
= −gη − 1

2
(∇HΦ̃)2 +

1

2
w̃2(1 + (∇Hη)2)− 2 ν

∂2Φ

∂z2
. (3.15)

The additional terms added to these equations were derived following linear theory and then

added to the nonlinear Zakharov equations, following the suggestion of Dias et al. (2008). The

authors assume that the terms derived from linear theory are applicable at least to �rst order

in the nonlinear evolution equations. Then, in addition to taking into account the e�ects of

bulk viscosity, a nonlocal term was added to the bottom boundary condition, following Liu et al.

(2006), to take into account the e�ects of bottom friction:

B(t, x) =

∫ t

0

∂2Φ
∂z2 (τ, x)√
t− τ dτ. (3.16)

For the detailed derivation and description of the numerical implementation of these terms, see

Raoult (2017).

We �rst validated this approach in the linear regime by evaluating the dissipation of a regular

wave propagating in a periodic domain of constant water depth. These simulations (not shown

here) showed that the two terms added to the free surface boundary conditions (Eqs. 3.14 and 3.15)

contribute equally to the dissipation of the wave, observed by the decrease in the wave amplitude.

Here, two test cases are presented evaluating simulations of (1) the decay of a linear standing

wave in comparison to theoretical expressions and (2) small-scale laboratory experiments of wave

propagation over an abrupt change in bathymetry.

3.4.2.1 Standing wave decay

The mathematical and numerical implementation of the e�ects of viscosity were evaluated in the

model by investigating the decay of a standing wave oscillating in a periodic domain. A series

of test cases were completed to analyze the wave decay in both in�nite and �nite depth cases

(Raoult, 2017; Raoult et al., 2016b) and to compare the simulation results to theoretical results

(e.g. Figure 3.12).

Lamb (1932) originally derived an expression for the decay rate of a homogeneous (in space) grav-

ity wave of amplitude a and wave number k propagating in �nite depth by doing a dissipation

calculation and then by using the linearized Navier-Stokes equations:

da

dt
= −2νk2a. (3.17)
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He thus estimated that the wave amplitude decay is exponential in time a(t) = a(t = 0) e−2νk2t

and that shorter waves (large k) dissipate faster than longer waves (small k). This would suggest

that longer waves (swell) are expected to propagate farther with less amplitude decay in the

deep ocean, as observed by Snodgrass et al. (1966). In this derivation, Lamb (1932) assumed small

viscosity values and in�nite depth.

More recently, Antuono and Colagrossi (2013) extended the work of Lamb (1932) by deriving a

new expression from the linearized Navier-Stokes equations that relaxes the assumption of small

viscosity and removes the in�nite depth assumption. In deep water conditions, their expression

simpli�es to that of Lamb (1932) at �rst order for small values of the viscosity (as shown in Fig-

ure 3.12c). For larger values of the viscosity, the decay rate predicted by Antuono and Colagrossi

(2013) is slower than that of Lamb (1932) because of a second-order correction term (as shown

in Figure 3.12b). In shallow water (�nite depth), the two solutions show even larger di�erences

since the expression of Antuono and Colagrossi (2013) takes into account bottom friction, which

is not included in the expression of Lamb (1932) (Eq. 3.17).

To compare to the expressions derived by Lamb (1932) and Antuono and Colagrossi (2013), we

simulated the decay of a viscous standing wave for �ve di�erent combinations of (kh, Re) with

relative depths kh = π/12− π (shallow to deep water conditions) and Reynolds numbers Re =

50 − 2500. Here, the Reynolds number is de�ned as a function of the viscosity Re = h
√
gh/ν,

for viscosities ranging from ν = 0.001253 − 0.06264 m2/s (medium to large viscosity values

to emphasize viscous e�ects). The simulated waves have an amplitude of a = 0.05 m in a

water depth h = 1 m, in a periodic domain that is one wavelength (L) long. To compare to the

analytical expressions, these tests also were carried out in the linear regime (the nonlinear terms

in the Misthyc model were de-activated).

In the small viscosity, deep water limit (Figure 3.12c, kh = π), the simulations (both pure slip and

no slip) agree well with the expressions of Lamb (1932) and Antuono and Colagrossi (2013) since

the e�ects of bottom friction are negligible. As the viscosity increases, the di�erence between

the solutions of Lamb (1932) and Antuono and Colagrossi (2013) increases because of the second-

order correction term. In these cases (Figures 3.12a and 3.12b), the model simulations agree with

the decay rate of Lamb (1932) since the dissipative terms added to the KFSBC and DFSBC are

based on the assumption of small viscosity.

As mentioned above, in intermediate and shallow water conditions, the di�erences between the

expressions of Lamb (1932) and Antuono and Colagrossi (2013) increase because the e�ects of

bottom friction increase. For example, for kh = π/3 (Figure 3.13), the decay rate of Antuono and

Colagrossi (2013) is much faster than that of Lamb (1932). Simulations using pure slip boundary

conditions at the bottom boundary agree well with the expression of Lamb (1932), whereas the

simulation results using a no slip bottom boundary condition (taking into account the e�ects of

bottom friction) agree well with the results of Antuono and Colagrossi (2013) (Figure 3.13). It

must be noted, however, that the nonlocal term in (3.16) caused the development of high fre-
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(a) Re = 50 (ν = 0.06264 m2/s)

(b) Re = 500 (ν = 0.006264 m2/s)

(c) Re = 2500 (ν = 0.0011253 m2/s)

Figure 3.12: Evolution of the normalized kinetic energy of the system as a function of nondimen-

sional time for kh = π (deep water) (Raoult, 2017).
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Figure 3.13: Evolution of the normalized kinetic energy of the system as a function of nondi-

mensional time for kh = π/3 and Re = 500 (ν = 0.06264 m2/s) (Raoult, 2017).

quency instabilities in the model for some simulations with large viscosity values (e.g. in the

intermediate water depth case kh = π/3, with a relatively high viscosity ν = 0.006264 m2/s).

Decreasing the time step, or increasing the horizontal or vertical resolution did not stabilize the

simulations, so a low pass �lter was applied to the
∂2Φ
∂z2 term in (3.16) at every time step, keeping

only the �rst ten modes. These instabilities may be attributed to the large value of the viscos-

ity, which no longer satis�ed the small viscosity assumption used in the derivation of this term.

These test cases demonstrate the agreement of the simulation results with the theoretical work

of Lamb (1932) and Antuono and Colagrossi (2013) in the linear regime in deep and intermediate

to shallow water depths, respectively.

3.4.2.2 Small-scale laboratory experiments

Then the model was tested to evaluate its ability to simulate a series of small-scale experiments in

which the e�ects of viscosity were important. In collaboration with P. Petitjean and E. Monsalve

from the PMMH laboratory (Physique et Mécanique des Milieux Hétérogènes, UMR CNRS, ES-

PCI), A. Maurel from the Institut Langevin (ESPCI), and V. Pagneux from the LAUM (Laboratoire

d’Acoustique de l’Université du Mans) laboratory, Misthyc was applied to simulate small-scale

experiments of wave propagation over abrupt changes in bottom bathymetry (Monsalve et al.,

2015). The objective of their work was to evaluate experimentally and theoretically the inter-

actions between the bottom bathymetry and waves as they propagated over a step, including

the generation and propagation of forced and free harmonics. Within the thesis work of Cécile
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Raoult, our objective was to test the ability of Misthyc to simulate viscous e�ects, while main-

taining high accuracy in reproducing the nonlinear interactions.

The experiments were conducted as part of the thesis work of E. Monsalve in the PMMH labo-

ratory in a 1 m-long tank with a step transition between a deep water region with h(I) = 6.5

cm and a shallow water region with h(II) = 2.0 cm. A �ap-type wavemaker generated waves

at the left end of the tank, and an absorbing beach with an 8% slope was added at the right end

of the tank to dissipate the waves and to reduce wave re�ections. High temporal resolution,

two-dimensional measurements of the free surface position were obtained using a non-intrusive

method, called Fourier Transformed Pro�lometry (Cobelli et al., 2009; Monsalve et al., 2015). By

adding TiO2 particles to the free surface, the projection of a sinusoidal pattern is measured,

and the phase di�erence of the deformed pattern is used to reconstruct the free surface position

(Cobelli et al., 2009).

At these scales (centimeters), both capillary e�ects and bottom friction play an important role

in wave transformation processes, and it was necessary to take into account these two physical

processes in the Misthyc model (Figure 3.14a). Thus, surface tension e�ects were added to the

KFSBC following Dingemans (1997) by adding a correction term to the free surface pressure:

p(x, y, η(x, y, t), t) = patm(x, y, t)− σ∇
H
.

(
∇

H
η√

1 + |∇
H
η|2

)
, (3.18)

where σ is the surface tension coe�cient, or σ = 0.074 N/m (for an air-water interface at 20 ℃).

Surface tension e�ects are important at the spatial scale of these experiments, especially for

reproducing well the evolution of the higher-order harmonics because surface tension modi�es

the linear dispersion relation causing an increase in the wavelength for a given wave frequency

(Dingemans, 1997).

To evaluate the contributions of surface tension and viscosity e�ects, these terms were added to

the model �rst independently and then together. By including the e�ects of surface tension in the

model, the estimation of the second harmonic beat length improved signi�cantly (Figure 3.14c).

By including the e�ects of viscosity in the model, the agreement between the observed and sim-

ulated amplitude decay improved signi�cantly (Figure 3.14b). The best simulation results were

obtained when both terms were taken into account, showing good agreement with the observa-

tions (Figure 3.14d).

These test cases, as well as the test case simulating the attenuation of a solitary wave propagating

in a wave �ume across a �at bottom and then up a slope (experiments of Liu et al. (2006), not

shown here) demonstrated good agreement with the developed theories and experimental data

for small bottom slopes and viscosity values ν < 10−3
. The limitations of the viscosity approach

implemented here include the assumption of small viscosity, the extension of the expressions

derived for a linear model being applied in a nonlinear model, and the stability of the bottom

friction term in its numerical implementation.
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(a) no surface tension or viscous e�ects

(σ = 0N/m, ν = 0 m2/s)
(b) viscous e�ects only

(σ = 0 N/m, ν = 4.10−5 m2/s)

(c) surface tension e�ects only

(σ = 0.071 N/m, ν = 0 m2/s)
(d) surface tension and viscous e�ects

(σ = 0.071 N/m, ν = 4.10−5 m2/s)

Figure 3.14: Spatial evolution of the simulated (solid line) and measured (dashed line) �rst �ve

harmonic amplitudes for f = 1.9837 Hz. The dashed lines and shaded areas are the

transversal mean and standard deviation, respectively, of the two dimensional free

surface measurements. (Raoult, 2017)

Ongoing work includes a collaboration with Michel Benoit, Cécile Raoult, and two researchers

in the LHSV laboratory, Sébastien Boyaval and Je�rey Harris, comparing the simulation results

for the test case of Antuono and Colagrossi (2013) to simulations with a numerical model resolv-

ing the linearized version of the Navier-Stokes equations and a numerical model resolving the

Navier-Stokes equations (Code_Saturne, EDF R&D).

3.5 2DH extension of the model using RBFs

Continued work in the �nal year of Cécile Raoult’s thesis led to the extension of the 1DH model to

2DH using a meshless radial basis function - �nite di�erence (RBF-FD) approach to estimate the

horizontal derivatives (in the x, y plane) for a set of scattered nodes. The objective of this work

was to demonstrate the ability to apply this numerical approach to simulate accurately wave

propagation. The goal of using a meshless approach is to enable domain �exibility, including

irregularly shaped domains, as well as local re�nement in areas of interest.

Much of the early literature on RBFs focused on the use of these functions as a meshless method
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for interpolation (e.g. Hardy, 1971; Franke, 1982), which was then extended to estimate partial

derivatives or to solve PDEs (e.g. Stead, 1984; Kansa, 1990). The RBF-FD approach is based on

estimating the value of Lf(x1), where L the desired linear di�erential operator (i.e.
∂
∂x ,

∂2

∂x2 ...)

for any point x1 = (x1, y1) in the domain. The linear operator is expressed as:

Lf(x1) ≈
Nsten∑
i=1

wi fi, (3.19)

where fi are the function values at points in the stencil of size Nsten, and wi are weights to be

found using a RBF interpolant. The RBF interpolant here is supplemented with a polynomial of

degree l (general case) such that:

s(x) =

Nsten∑
k=1

λk φ(||x− xk||) +
M∑
j=1

βjpj(x) (3.20)

withφ the chosen radial basis function, pj(x)
(l+2

2 )
j=1 a basis of polynomials up to degree l, {λk}Nstenk=1 ,

{βj}Mj=1 the interpolation coe�cients, and M =
(
l+2
2

)
. Evaluating the derivative of the inter-

polant at x1:

Ls(x1) =

Nsten∑
k=1

λk Lφ(||x1 − xk||) +
M∑
j=1

βjLpj(x1), (3.21)

which can be expressed in matrix representation and then solved to obtain the unknown weights

(see Bayona et al. (2011) and Raoult (2017) for more details). The added polynomial is necessary in

some cases (discussed in more detail later) to maintain the inversability of the coe�cient matrix.

Application of the local RBF-FD method requires the choice of a radial basis function, including

the type or regularity of the function (piecewise (PS) or in�nitely (IS) smooth), a shape parameter

C for IS functions, the size of the stencil Nsten, the node spacing, and the degree of the added

polynomial. Raoult et al. (2019) tested six commonly used RBF functions (Table 3.1), including

4 IS functions requiring a shape parameter C and 2 PS functions. Contrary to intuition, some

of the proposed RBF functions φ(r) increase with increasing distance r from the center of the

stencil (e.g. MQ, PHS, and TPS in Table 3.1). For these functions, the corresponding calculated

interpolation coe�cients λk decrease with increasing distance r such that points farther from

the center of the stencil still have a smaller impact on the estimated derivatives.
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RBF (Acronym) φ(r) Condition Regularity

Multiquadric (MQ)

√
r2 + C2 C ∈ R IS

Inverse Multiquadric (IMQ)
1√

r2+C2
C ∈ R IS

Inverse Quadratic (IQ)
1

r2+C2 C ∈ R IS

Gaussian (GA) e−r
2/C2

C ∈ R IS

Polyharmonic Spline (PHS) rm m odd integer PS

Thin Plate Spline (TPS) rm log r m even integer PS

Table 3.1: RBF functions φ, describing the free parameter constraints and regularity.

3.5.1 Estimation of derivatives with RBF-FD

We conducted a thorough study of the parameters listed above for a representative sinusoidal

wave function of the form:

f(x, y) = A cos

(
2π

L
(x cos θ + y sin θ)

)
, (3.22)

and concluded that the choice of a PS RBF was optimal to avoid the di�culties in making the

appropriate choice for the shape parameter C . The shape parameter controls the �atness of

the RBF functions and has a signi�cant impact on the accuracy of the RBF approximation. For

example, for the four IS RBFs shown in Table 3.1, the normalized root-mean-square error in

calculating the horizontal derivatives fx for a sinusoidal wave shows variability over several

orders of magnitude depending on the value of C (Figure 3.15a). The four IS functions show the

same general trends, with large errors for small values C , a signi�cant decrease to a minimum

error for a narrow range ofC values, and then a subsequent increase in error associated with the

coe�cient matrix becoming ill-conditioned. The optimal value of C depends on many factors,

including the function f , the estimated derivative (e.g. fx, fy, fxx, fyy), the RBF function, the

stencil size Nsten, and the node spacing (∆x, ∆y).

In Misthyc, the RBF-FD approach is used to estimate all horizontal derivatives, including the free

surface position η, the free surface potential Φ, and the bottom topography or water depth h.

These surfaces have di�erent forms, and therefore the optimal function and shape parameter C

may not be the same for each variable or even for each test case (e.g. waves propagating over a �at

bottom or highly variable bathymetry). Tests using PS PHS or TPS functions demonstrate their

robustness in comparison to the IS functions (e.g. Figure 3.15b). Thus, to avoid the di�culties

associated with �nding the optimal C parameter for each study, we recommend using PHS, in

agreement with the work of Barnett (2015).
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(a) IS RBFs (b) PS RBFs

Figure 3.15: Normalized error in estimating fx for di�erent IS and PS RBFs as a function of the

shape parameter C (with Nsten = 21, ∆x = ∆y = L/100, and added polynomial of

degree 0). (Raoult, 2017)

Finally, after an analysis of the optimal stencil size and order of the added polynomial, the thesis

work of Cécile Raoult showed that using PHS functions of the form rk+pl, where k is the highest

order of the polynomial function, and l is the highest order of the added polynomial, is optimal

(Raoult, 2017; Raoult et al., 2019). For example, it is recommended to use a PHS r7 + p3 for a

targeted stencil size between 20 and 30 nodes, orPHS r5+p4 or r7+p4 for a targeted stencil size

between 30 and 40, making a compromise between accuracy and increased computation time.

3.5.2 Simulating laboratory experiments

Two sets of wave basin experiments were accurately reproduced using the RBF-FD approach

with PHS r7 + p3 (Nsten = 21): regular waves propagating over a semi-circular step (Whalin,

1971), and regular and irregular waves propagating over an elliptical shoal (Vincent and Briggs,

1989). These two test cases demonstrated the advantages and disadvantages of this modeling

approach, and the case of (Whalin, 1971) will be described further here.

The experiments of Whalin (1971) investigated the convergence of regular waves propagating

over a semi-circular, strongly convergent step. To reproduce one set of the laboratory experi-

ments, regular waves with a wave height H = 0.015 m and wave period T = 2 s (L = 3.91 m

in the deeper end of the domain) were generated in a one wavelength-long relaxation zone at

the left end of the domain and absorbed in a three wavelength-long relaxation zone at the right

end of the domain. The bathymetric pro�le de�ned by Shao and Faltinsen (2014) was used here

(Figure 3.16) to represent the convergent shoal, with the domain discretized by 137,712 regularly-

spaced nodes (∆x ≈ ∆y ≈ 0.04 m, or approximately L = 98). Waves were propagated with a

constant time step of ∆t = 0.0178 s (≈ T = 112) for 18 s to reach the steady state.
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Figure 3.16: Bathymetry of the wave basin test of Whalin (1971).

The free surface position at the end of the simulation shows the 2D free surface wave patterns and

the wave convergence over the shoal (Figure 3.17a). The simulation wave envelope (maximum

and minimum free surface position during the simulation) and the free surface position along the

centerline of the tank show an increase in wave height over the step caused by both wave shoaling

and the convergence of wave energy (Figure 3.17b). The generation of higher-order harmonics

is also observed by the presence of side lobes around the maximum wave near x = 20 m.

Energy transfers to higher-order harmonics were reproduced well in the simulations (Figure 3.18).

Wave energy was transferred from the incident regular wave to the second and third harmonics

as the waves propagated over the step. The �rst harmonic amplitude does not, however, decrease

in amplitude because of the wave convergence over the semi-circular shoal (for this particular

test case with H = 0.015 m and T = 2 s). The sensitivity of the simulation results to the cho-

sen parameters for the RBF-FD approach was tested (Table 3.2), and using stencil sizes ranging

from 18 to 21, regularly or irregularly-spaced nodes, and di�erent horizontal discretizations, and

di�erent time steps did not in�uence signi�cantly the simulation results for the ranges of values

tested (Figure 3.19).

Simulations node set ∆x(m) RBF type Nsten ∆t (s)

reg PHS 1 regular 0.040 r7 + p3 21 0.0178

reg PHS 2 regular 0.060 r7 + p3 21 0.0267

reg PHS 3 regular 0.075 r7 + p3 21 0.0333

irreg PHS 1 irregular ≈ 0.060 r7 + p3 21 0.0267

irreg PHS 2 irregular ≈ 0.060 r5 + p2 18 0.0267

Table 3.2: Numerical parameters for the simulation test cases with with T = 2 s, H = 0.015 m

of Whalin (1971). The original simulation results presented in Figures 3.17 and 3.18

correspond to case ‘reg PHS 2’.
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(a) 2D free surface position

(b) Free surface position at t = 18 s (black line) and wave envelope (gray lines) along the centerline of

the tank

Figure 3.17: Simulation results for the experiments of Whalin (1971) with H = 0.015 m and

T = 2 s.

The evaluation of derivatives estimated using the RBF-FD method for a representative sinusoidal

function allowed identifying the optimal RBF to implement in Misthyc. Then, preliminary work

comparing simulation results with experimental measurements of 3D laboratory experiments

demonstrated the robustness of the RBF-FD method for wave propagation applications (Raoult,

2017; Raoult et al., 2019). While the initial results are promising, there do exist several limitations

to this approach. Two main limitations include the development of instabilities near the domain

boundaries and the computational time of this approach, which requires solving the full Laplace

BVP in the domain at each time step, and future work will be focused on these issues.
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Figure 3.18: Observed (circles) and simulated (lines) spatial evolution of the amplitude of �rst

three harmonics (at frequencies f , 2f and 3f ) of the free surface elevation for T =
2 s, H = 0.015 m of the experiments of Whalin (1971), using a PHS RBF r7 + p3
with Nsten = 21.

Figure 3.19: Observed (triangles) and simulated (lines) spatial evolution of the amplitude of �rst

three harmonics (at frequencies f , 2f and 3f ) of the free surface elevation for T =
2 s, H = 0.015 m of the experiments of Whalin (1971) for regular and irregular

meshes with di�erent node spacing (Table 3.2).
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3.6 Simulating wave breaking

Finally, my recent work is focused on parameterizing the e�ects of wave breaking to extend the

application of Misthyc to nearshore wave propagation applications at study sites. This work is

being carried out within the France Energies Marines (FEM) - ANR DiMe (Dimensionnement et

Météocean) project and the Labex DEPHYMAN project in collaboration with Michel Benoit at

the Ecole Centrale Marseille and IRPHE laboratory, and two post-doctoral researchers (Christos

Papoutsellis and Bruno Simon) �nanced by these two projects.

Current research in the �eld of observations and modeling of wave breaking dynamics demon-

strates the complexity of this process and the challenges in integrating the impacts of wave

breaking in numerical models. In models that do not simulate directly wave breaking, �rst, it is

necessary to identify the initiation of wave breaking, which is not trivial, and then it is necessary

to accurately describe the impacts of the breaking wave on the �ow.

Several di�erent methods for taking into account the e�ects of wave breaking in potential �ow

theory models have been proposed over the last few decades, but this work has been focused

primarily on Boussinesq-type models. Recently, there has been renewed interest in this �eld

with the development of fully nonlinear potential �ow and multi-layer non-hydrostatic models

that are computationally e�cient and thus can be used for coastal applications (e.g. Tissier et al.,

2012; Sei�ert and Ducrozet, 2018; Filippini et al., 2018).

In these types of models, including the Misthyc model, where overturning waves can not be

simulated explicitly, only the e�ects of wave breaking on the momentum or energy balance can

be parameterized. To describe fully wave breaking processes, two-phase DNS (direct numerical

simulation) models simulating accurately the air-water interface, air entrainment, and bubble

dynamics are necessary to reproduce accurately wave breaking events (Popinet, 2009; Deike et al.,

2016; Lubin and Glockner, 2015). However, DNS models are still prohibitively computationally

expensive and are therefore not an optimal choice at the temporal (hours to days) and spatial

(kilometers) scales necessary for simulating nearshore wave dynamics. Therefore, a range of

nearshore wave models (e.g. Boussinesq, SGN, FNPF, multi-layer non-hydrostatic, etc.) have

been developed in recent years to seek an optimal compromise between computational e�ciency

and numerical accuracy in simulating highly nonlinear and dispersive waves as they propagate

from intermediate and deep water conditions to the nearshore zone. Thus, incorporating the

e�ects of wave breaking recently has become a topic of renewed interest (e.g. motivating the

organization every two years since 2014 of the B’WAVES workshop, including workshops in

Bordeaux, France in 2014; Bergen, Norway in 2016; Marseille, France in 2018).

The next two sections present �rst a review of techniques currently used to parameterize wave

breaking in potential �ow models, primarily with applications in Boussinesq-type models (sec-

tion 3.6.1), and then our tests of the selected approaches in fully nonlinear potential �ow models

based on the Zakharov equations (section 3.6.2).
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3.6.1 Current state of the art

In phase-resolving wave propagation models that can be both accurate (representing partially or

fully nonlinear and dispersive e�ects) and computationally e�cient at the temporal and spatial

scales of nearshore wave propagation, the parameterization of wave breaking processes is nec-

essary. This requires two important steps: (1) the identi�cation of breaking waves, quanti�ed

with breaking onset criteria, and (2) the proper dissipation of wave energy (both the magnitude

and spatial distribution). In the following two sections, a review of existing approaches used for

these two steps is presented.

3.6.1.1 Wave breaking onset criteria

A variety of techniques exist to identify breaking waves, and Barthelemy et al. (2018) divided

them into three generic categories: geometric, kinematic, and energetic. The most commonly

used criteria are based on geometric properties, such as wave steepness or asymmetry, or kine-

matic properties such as the crest acceleration or �uid speed relative to the wave phase speed.

The third type of approach is based on dynamical criteria, suggesting that the wave energy �ux

can be used locally to identify unstable, breaking waves within wave groups (overview by Tulin

and Landrini, 2000). In shallow water conditions, which will be the focus of the work presented

here, the most commonly used criteria include:

• wave steepness (e.g. Deigaard, 1989; Schä�er et al., 1993),

• horizontal crest velocity (e.g. Zelt, 1991),

• free surface vertical velocity (e.g. Kirby et al., 1998; Kennedy et al., 2000),

• wave Froude number or “Relative Trough Froude Number” (RTFN) (e.g. Utku, 1999; Okamoto

and Basco, 2006),

• hybrid approaches (e.g. Breaking Celerity Index, D’Alessandro and Tomasicchio, 2008).

There exist a wide variety of approaches used to identify breaking waves because of the di�culty

in de�ning a breaking wave. Depending on the physical processes that are being investigated (i.e.

air-sea interactions, bubble entrainment, impacts on structures, etc.), the de�nition of a breaking

wave may vary, and therefore the criteria used to identify the initiation of this process also vary.

In addition, depending on the water depth (deep or shallow water breaking) and the type of wave

breaking (e.g. spilling, plunging, surging), the physical mechanism causing wave breaking is not

the same. Thus, a variety of approaches have been proposed, and no one approach has been

demonstrated to be applicable universally (Barthelemy et al., 2018).

Wave steepness The wave steepness criteria is based on the geometrical approach of Deigaard

(1989), extended by Schä�er et al. (1993). As waves shoal, the wave front steepens until it even-

tually becomes unstable and begins to break. The identi�cation of breaking waves can thus be
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de�ned with a wave front slope criterion, assuming that non-breaking waves reach a local max-

imum slope before breaking is initiated. Wave breaking steepness criteria are typically used to

identify wave breaking in deep water conditions, while the relative water depth is typically used

to de�ne shallow water breaking criteria. However, Miche (1944) developed an empirical relation

combining both of these criteria to create criterion applicable in intermediate water depths:(
H

L

)
max

= 0.142 tanh
2πd

L
. (3.23)

Hughes (2004) showed that this formula has a tendency to underestimate wave heights in deep

water environments and to overestimate wave heights in shallow water environments. However,

this criteria continues to be used as an approximation of the maximum wave steepness. Deigaard

(1989) suggested that the maximum wave steepness threshold, or tanφ, is around 10◦ in the

inner surf zone. However, Schä�er et al. (1993) concluded that this threshold varies signi�cantly

in both time and space and that a constant threshold can not be used. The criteria used to initiate

wave breaking cannot be used to terminate breaking, and Schä�er et al. (1993) instead proposed

a threshold that decays exponentially in time from the wave breaking initiation to termination

value. This simple approach requires tuning a number of empirical parameters for each test case

to optimize the initiation and termination of wave breaking, and di�erent sets of initiation and

termination thresholds have been suggested, ranging from 14 − 32◦ and 7 − 10◦, respectively

(Schä�er et al., 1993; Madsen et al., 1997; Sørensen et al., 1998).

Horizontal crest velocity Instead of using a criteria based on the wave shape, a series of other

wave breaking criteria were developed based on the kinematic properties of breaking waves.

Stating that it is not possible to de�ne a critical wave steepness for all wave conditions, Zelt (1991)

instead preferred to de�ne a critical horizontal velocity at the free surface as the wave breaking

criterion for solitary waves. When the dimensionless velocity gradient
∂u
∂x

√
h+η
g exceeded the

threshold value of 0.3, waves were considered to be breaking. Other kinematic breaking criteria

are based on the ratio of the horizontal �uid velocity at the wave crest uc and the local wave phase

speed c, often using a threshold of uc/c ≥ 1 to de�ne the initiation of wave breaking (Kurnia and

van Groesen, 2014). More recently, Barthelemy et al. (2018) proposed a dynamical wave breaking

onset criterionBx based on the ratio of the local energy �ux to the energy density, normalized by

the local crest speed magnitude. At the free surface, this criterion reduces toBx = uc/c. In their

study, focused primarily on deep water waves, they suggest that waves that exceed a threshold

value of 0.85 will eventually break, although there may be a time lag between the time that the

threshold is exceeded and the initiation of wave breaking, which limits the use of this criterion

to de�ne the initiation of wave breaking in numerical models.

Free surface vertical velocity As an alternative to using the horizontal velocity as a wave

breaking criteria, the free surface vertical velocity ηt may also be used (Kirby et al., 1998; Kennedy

et al., 2000). Kennedy et al. (2000) suggested that using a critical value of ηt as the wave breaking

onset criteria ensured that the dissipation is concentrated on the front face of the wave. Again,
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much like the wave steepness criteria, the thresholds used to initiate and terminate wave breaking

are not the same, and an empirical relationship must be used to estimate how this value varies

in time. For example, Kennedy et al. (2000) estimate that wave breaking begins when η
(I)
t >

0.65
√
gh. Then the threshold decreases linearly in time (over a transition time T ∗) until wave

breaking terminates when η
(F )
t < 0.15

√
gh. These values were proposed for 1DH domains, and

Chen et al. (2000) suggest a smaller initiation threshold of 0.35 for 2D wave �elds. The default

transition time chosen by the authors is T ∗ = 5
√
h/g. However, each of these parameters

must be considered as a calibration parameter for di�erent wave conditions and di�erent types

of mathematical and numerical models. The advantage of this type of wave breaking initiation

criterion is that the quantity ηt is already known in models based on the Zakharov equations and

thus requires no additional computation.

Wave Froude number This criteria is based on the analogy between a breaking wave and a

moving hydraulic jump propagating like a bore. In this case, a breaking wave is treated like a

shock and two boundary conditions are required: (1) upstream side: trough, supercritical �ow,

and (2) downstream side: crest, moving shock celerity (Utku, 1999; Okamoto and Basco, 2006).

Therefore, to determine a critical threshold for wave breaking based on this analogy, the wave

Froude number or “Relative Trough Froude Number” (RTFN) is calculated as: RTFN = Frt =
|utrough|+C√

gD
, with C the wave phase speed, D the relative length scale calculated as the water

depth in the wave trough, and utrough the depth-averaged particle velocity in the wave trough.

Okamoto and Basco (2006) suggest that the RTFN must be greater than 1 for all wave motion,

and that the value should be larger for breaking waves. The authors make the analogy between

the transition from an undular jump to a surface roller jump and the critical limit distinguishing a

non-breaking and breaking wave. They conclude that the RTFN should therefore be in the range

1.36-1.60 (Okamoto and Basco, 2006; Kazolea et al., 2014). One drawback to this method is the

need to calculate accurately the wave celerity at the crest and in the trough. A hybrid approach is

proposed, using a cross-correlation method in deep water conditions and an analytical equation

in shallow water conditions to avoid underestimating utrough (Okamoto and Basco, 2006), thus

creating a somewhat computationally expensive wave breaking initiation criteria.

Hybrid approaches Finally, recent work has also concentrated on hybrid approaches that make

use of more than one existing wave breaking criteria. For example, D’Alessandro and Tomasic-

chio (2008) proposed the Breaking Celerity Index (BCI) by coupling two of the criteria listed

above: (1) the free surface vertical velocity criteria ηt and (2) the RTFN. In their model, wave

breaking is initiated when ηt exceeds a threshold de�ned by: BCI =

√
g(h+a)−uα

1.47 , where uα

is the horizontal velocity at the reference water depth z = zα = −0.531h (Nwogu, 1993), and

the denominator 1.47 is an empirical parameter that appears to depend on the bottom slope

(D’Alessandro and Tomasicchio, 2008).
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3.6.1.2 Wave breaking energy dissipation

Once the onset of wave breaking has been identi�ed, it is necessary to estimate the impacts of

wave breaking on the �uid �ow. The energy dissipation caused by breaking can be parameterized

using a variety of di�erent methods proposed in the literature:

• free surface pressure term (e.g. Guignard and Grilli, 2001),

• eddy viscosity model (e.g. Heitner and Housner, 1970; Zelt, 1991; Kennedy et al., 2000),

• wave roller model (e.g. Schä�er et al., 1993; Madsen et al., 1997),

• vorticity model (e.g. Svendsen et al., 1996; Veeramony and Svendsen, 1998, 2000), and

• hybrid switching approach (e.g. Boussinesq-type model to NLSWE, Tissier et al., 2012;

Kazolea et al., 2014).

These �ve approaches have been developed and implemented in a variety of di�erent wave prop-

agation models, mostly restricted to Boussinesq or SGN-type models, where dissipation terms are

added to the conservation of momentum equations. The majority of the models assume that the

geometrical form of and energy dissipated by a breaking wave can be simulated as: (1) a bore,

or quasi-steady wave with a roller on the front face that is transported by the wave (Brocchini,

2013), or (2) a hydraulic jump. However, the di�erent types of approaches listed above make

di�erent assumptions about the dominant physical processes causing wave breaking, or about

the optimal numerical method used to parameterize the e�ects.

Free surface pressure This technique applies an arti�cial pressure at the free surface in the

dynamic free surface boundary condition to dissipate wave energy in an absorption zone near

the domain boundary, as reviewed by Clément (1996) and Grilli and Horrillo (1999). Here, the

wave energy is dissipated simply by preventing the waves from overturning, without trying

to reproduce accurately the physical processes associated with wave breaking. The arti�cial

pressure term can be applied in a zone extending from the surf zone to the domain boundary, or

locally around an identi�ed breaking wave. Guignard and Grilli (2001) developed this technique

to simulate spilling breaking waves, assuming that the energy dissipated by wave breaking is

equivalent to the energy dissipated by a hydraulic jump with the same geometrical characteristics

(following the work of Svendsen et al., 1978; Svendsen and Madsen, 1984). The arti�cial pressure

added at the free surface is assumed to be of the form:

pbm(x, η, t) = νb0S(x)
∂Φ

∂n
(η(x, t)) , (3.24)

where
∂Φ
∂n is the normal velocity at the free surface, and νb0 is an absorption function. To make

a smooth transition in the zone where the pressure term is applied, S(x) is a function varying

between 0 and 1 . The absorption function νb0 is determined such that the wave power dissipated
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by an individual breaking wave Pb is proportional to the power dissipated by a hydraulic jump

Ph (following Lamb, 1932) with the same geometrical characteristics, or:

Pb = νb0

∫ xr

xl

S(x)

(
∂Φ

∂n

)2

dΓ, (3.25)

= µPh = µρgc
hH3

4hcht
, (3.26)

where c is the wave phase speed, h is the water depth, and hc and ht are the wave crest and trough

water depths. The constant of proportionality µ = 1.5 is a free parameter that was calibrated

with laboratory experiments by Svendsen et al. (1978). Applying this method requires imple-

menting a wave tracking algorithm to identify breaking waves and calculate a certain number of

geometrical (hc, ht, extent of breaking region) and kinematic wave properties (c).

Eddy viscosity model This type of wave breaking model assumes that the energy dissipated

by a breaking wave can be represented by the formation and propagation of a bore. An arti�cial

viscosity representing an eddy viscosity describes the energy dissipation by assuming that the

Reynolds stresses represent the energy transfer and turbulence generated during wave breaking.

In Boussinesq-type models, wave breaking is thus integrated in the conservation of momentum

equations with a di�usion term of the form νT (u)xx (Brocchini, 2013), where u is the vertically-

integrated horizontal velocity. The arti�cial viscosity is then calculated either as νT ≈ u∗d, with

u∗ =
√
gd (Zelt, 1991; Kennedy et al., 2000; Brocchini, 2013), or from a conservation equation

for turbulent kinetic energy and a mixing length hypothesis (Karambas and Koutitas, 1992; Chen

et al., 2000).

Representing breaking wave energy dissipation with an eddy viscosity approach is a popular

choice because of its simplicity to implement (e.g. Zelt, 1991; Karambas and Koutitas, 1992; Wei

et al., 1995; Chen et al., 2000; Musumeci et al., 2005; Roeber et al., 2010), and recent work continues

to demonstrate the accuracy of this approach (e.g. Kurnia and van Groesen, 2014). Extended

models have also been proposed to add the dissipation mechanism in the conservation of mass

equation to integrate vertically the equations only in the potential part of the �ow and not in the

turbulent region near the free surface (e.g. Cienfuegos et al., 2010; Klonaris et al., 2013).

Applying an eddy viscosity model also requires a wave tracking algorithm to be able to calculate

the associated eddy viscosity and to follow the temporal evolution of each breaking wave. The

added term is di�usive, which therefore has the additional bene�t of reducing the appearance

of instabilities related to frequency dispersion or nonlinearities, and this term is often applied

using a temporal ramp function (varying from 0 to 1) to progressively introduce and remove the

applied viscosity to avoid the appearance of temporal instabilities.

Wave roller model An additional approach is to represent the physical processes during a

breaking wave event through the formation of a surface wave roller, as described by Svendsen

and Madsen (1984). A wave roller is de�ned as the mass of recirculating foam that forms during
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wave breaking when the generated turbulence mixes air and water. This mass of foam is then

assumed to be transported passively by the wave in the form of a “roller” (Deigaard, 1989). In

this approach, the water column is often divided in two layers of constant horizontal velocity for

simplicity. To simulate the e�ects of a wave roller a convection term is added to the conservation

of momentum equations. The convection term represents the dissipation of wave energy (∆E)

corresponding to that dissipated by a hydraulic jump (Schä�er et al., 1993) with the same height

as that of the breaking wave Hb: ∆E ≈ H3
b (Brocchini, 2013).

This approach has been applied widely in Boussinesq-type models (e.g. Schä�er et al., 1993; Mad-

sen et al., 1997). To take into account the e�ects of the wave roller, an initially uniform horizon-

tal velocity pro�le is assumed to be non-uniform, following the simpli�ed approach of Madsen

(1981), with two layers of constant velocity that depend on the geometry of the wave:

u =

c S − δ ≤ z ≤ S
u0 −h ≤ z ≤ S − δ

where u0 is the velocity under the wave, c is the wave phase velocity, δ is the thickness of the

wave roller, and h is the water depth.

The impact of the wave roller is then estimated as the di�erence R between the uniform and

non-uniform vertical pro�le of the horizontal velocity. The horizontal gradient Rx of the term

R,

R = δ

(
c− P

h

)2(
1− δ

h

)−1

, (3.27)

is added to the conservation of momentum equations, where P is the vertically integrated hor-

izontal velocity. This empirical term depends on the geometrical properties of the wave roller,

which vary in space and time, as well as the wave phase speed (estimated as c = 1.3
√
gh fol-

lowing the experiments of Stive, 1980). One advantage of this approach is that the physical

processes of wave breaking are represented. However, an empirical approach is used to calculate

the impacts of the physical processes, and the implementation of this model also requires a wave

tracking algorithm to estimate the wave characteristics (e.g. phase velocity, roller thickness) and

their evolution in time.

Vorticitymodel The previous approaches assume that the �ow can be represented using poten-

tial �ow theory and that the impacts of wave breaking can be estimated by adding heuristic terms

to the Bernoulli equation (or DFSBC) or the conservation of momentum equation. However, it

is clear that a breaking wave violates the assumption that the �ow is irrotational. Thus another

approach for modeling breaking waves is to propose a new model as a function of the stream

function ∇2Ψ = ω and not the velocity potential ∇2Φ = 0 (Svendsen et al., 1996; Veeramony

and Svendsen, 1998), where ω is the vorticity that must be described independently. This method

was applied in Boussinesq-type models by expanding the stream function using a power series

and searching for a solution at a speci�ed order. The irrotational or potential part of the �ow up
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and the rotational part of the �ow ur associated with the e�ects of viscosity, are separated and

solved for independently. Finally, the mass and momentum conservation equations are coupled

with a vorticity transport equation, and the system is closed by specifying the vorticity boundary

conditions. The vorticity is zero at the surface and the bottom, to satisfy the boundary conditions

of no vorticity outside of the wave roller region and no bottom friction, respectively. In the roller,

however, the vorticity has an important role, with a maximum at the limit between the roller and

the �ow beneath it.

The advantage of this type of model is that the assumption of irrotational �ow is fully satis-

�ed, and the rotational part of the �ow is treated appropriately. This approach has been used in

several wave propagation models (e.g. Veeramony and Svendsen, 2000; Musumeci et al., 2006).

However, the model still requires a wave tracking algorithm to identify and follow in time break-

ing waves and to calculate wave characteristics that enable estimating empirically the vorticity

and viscosity associated with wave breaking.

Hybrid switching approach Finally, one of the most recently proposed approaches is to couple

a Boussinesq-type model with a Nonlinear Shallow Water (NLSW) equation model to simulate

directly the wave energy dissipation associated with wave breaking. Following Zijlema et al.

(2011), who developed a multi-layer non-hydrostatic wave propagation model, the wave energy

dissipation in this approach is simulated following the assumption that breaking waves can be

represented by shock waves. When the dispersive terms are neglected in Boussinesq or SGN-

type models, they reduce to the NLSW equations (Tonneli and Petti, 2012; Tissier et al., 2012).

Therefore, to simulate wave breaking processes in a Boussinesq-type model, the dispersive terms

are neglected locally when a breaking wave is identi�ed, and the wave energy dissipation is

estimated naturally by the NLSW equations (e.g. Tissier et al., 2012; Kazolea et al., 2014).

The advantage of this approach is that the wave energy dissipation is estimated automatically

and does not require empirical approximations based on wave characteristics. This approach

has thus been implemented in a variety of Boussinesq and SGN-type models in recent years

(e.g. Tonneli and Petti, 2012; Tissier et al., 2012; Roeber and Cheung, 2012; Kazolea et al., 2014).

However, it is still necessary to implement a wave tracking algorithm to identify breaking waves

and to specify the spatial extent over which the NLSW equations are applied.

3.6.2 Implementation and validation of wave breaking parameterization

The implementation of a wave breaking parameterization approach must thus include both an

onset criteria and a mechanism for dissipating the wave energy. The previous section summa-

rized the state of the art for phase-resolving nearshore wave models. However, it must be noted

that the majority of this work has been done in Boussinesq or SGN-type models, or more recently,

in multi-layer non-hydrostatic models. The e�ciency and accuracy of each approach depends

on the model in which it is implemented, therefore emphasizing the interest in testing existing

methods in di�erent mathematical models.
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The work that we have conducted with two post-doctoral researchers (Christos Papoutsellis and

Bruno Simon) is thus concentrated on the choice of the optimal approach to parameterize the

impacts of wave breaking in wave propagation models based on the Zakharov equations. Unlike

Boussinesq-type models, there is no explicit equation for the conservation of momentum, and

thus the e�ects of wave breaking are incorporated directly in the free surface boundary condition

equations.

During the post-doctoral research of Christos Papoutsellis, breaking waves were detected using

a criteria based on the velocity of the free surface position, following Kennedy et al. (2000) and

Kurnia and van Groesen (2014). This is a natural choice for a model based on the Zakharov

equations that calculates ηt at each time step. Then, a dissipative term is activated in the dynamic

free surface boundary condition. We hypothesized that the two most appropriate methods to

implement in a numerical model solving the fully nonlinear and dispersive Zakharov equations

are:

1. an arti�cial pressure term simulating the wave energy dissipation of an e�ective hydraulic

jump (EHJ), proposed by Guignard and Grilli (2001), and

2. an eddy viscosity method (EVM) proposed by Kurnia and van Groesen (2014), depending

on a mixing length parameter, the total water depth, and the temporal gradient of the free

surface position.

In the post-doctoral work of Christos Papoutsellis, these two approaches were adapted for the

Zakharov equations and implemented in the model of Athanassoulis and Belibassakis (1999),

Athanassoulis and Papoutsellis (2015), and Papoutsellis et al. (2018), which is based on the Za-

kharov equations (like the Misthyc code). This code, called HCMS for Hamiltonian Coupled-

Mode System, solves the DtN problem using a coupled mode approach instead of the spectral

approach coded in Misthyc (and presented in section 3.2). For more details about this model, see

Athanassoulis and Belibassakis (1999), Athanassoulis and Papoutsellis (2015), and Papoutsellis

et al. (2018).

First, by evaluating the propagation of dispersive shock waves, the mass and momentum con-

servation properties and wave energy dissipation of the model were veri�ed for both the eddy

viscosity method (EVM) and the e�ective hydraulic jump (EHJ) approach. This is an important

demonstration since the EHJ method was constructed by requiring energy dissipation, while the

EVM approach was constructed by requiring momentum conservation. Simulation results of the

wave energy dissipation and decrease in wave height for the case of regular waves shoaling and

breaking on a beach pro�le of constant slope (Figure 3.20) and over a barred beach pro�le (not

shown here) show good agreement with the laboratory observations of Ting and Kirby (1994)

and Beji and Battjes (1993), respectively (Papoutsellis et al., accepted, 2019).

In the post-doctoral work of Bruno Simon, these two approaches were also being tested in a sec-

ond fully nonlinear potential �ow model that solves exactly the same equations as the Misthyc
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Figure 3.20: Comparison of simulated and measured wave envelope along the wave channel for

a spilling breaking wave experiment of Ting and Kirby (1994).

model (Simon et al., submitted, 2019). The primary di�erences with Misthyc are the use of an it-

erative solver (GMRES algorithm with Incomplete L-U preconditioning) to solve the Laplace BVP

and a third-order Runge Kutta time-marching scheme (Simon et al., 2018). In this work, three

di�erent wave breaking initiation criteria were additionally tested, including the criteria tested

by Papoutsellis et al. (accepted, 2019), as well as a wave slope criterion, and the new criterionBx

proposed by Barthelemy et al. (2018). The test cases focused on reproducing laboratory exper-

iments of irregular wave propagation and breaking over a barred bathymetry (Beji and Battjes,

1993), or plane beach slopes (Mase and Kirby, 1992; Husrin et al., 2012; Adytia et al., 2018). This

work demonstrated the accuracy of all approaches in reproducing well the free surface position,

in particular in the shoaling region. In the post-breaking region, di�erences between the ob-

served and simulated wave shape (e.g. skewness and asymmetry parameters) increase, and work

remains to be done to improve these characteristics.

Ongoing tests are focused on validating the conservation of mass and momentum of the pro-

posed approaches, testing the sensitivity of the criteria to the initiation and termination of wave

breaking, and evaluating the spatial extent of the application of the wave breaking dissipation

term (i.e. along the entire wave or only on the wave face).

3.7 Ongoing work and perspectives

There is a strong need for highly accurate wave propagation models that are capable of simulating

wave hydrodynamics in the coastal zone for real applications. The objective of the development
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of the Misthyc model is to achieve this goal, while maintaining reasonable computational times

to enable the use of the model for practical applications. To achieve this goal, there remain certain

limitations to overcome, which will be the focus of my research in this �eld in the next �ve years,

including:

• Validation of the proposed approach for parameterizing wave breaking dissipation in

the 1DH model and extension of this approach to the 2DH model, to be able to apply

the model to real applications, in particular during the �nal stages of the FEM-ANR DiMe

project (2017-2020);

• Implementation of a moving shoreline (runup) to represent accurately wave re�ec-

tion and absorption at the shoreline, as well as wave setup (e.g. Figure 3.20);

• Optimization of the model, in particular regarding the use of an indirect solver to solve

the Laplace BVP at each time step;

• Improvement of lateral boundary treatment in the RBF-FD method to reduce model

instabilities for non-symmetric stencils;

• Comparison with existing wave propagation models such as SWASH (multi-layer

non-hydrostatic model), BOSZ or FunWave (Boussinesq-type models), etc. to evaluate the

accuracy, e�ciency, and limitations of the Misthyc model.

These �ve research goals address some of the current limitations of the model, and my research

in the �eld of modeling wave hydrodynamics will be centered on these axes that are outlined in

the following sections.

3.7.1 Parameterizing wave breaking dissipation

Current work in the scienti�c community is focused on investigating a variety of di�erent ap-

proaches, �rst to identify the initiation of wave breaking, and then to estimate properly the wave

dissipation during each individual breaking event. Work in the �eld is concentrated on using lab-

oratory and �eld measurements, as well as numerical models to investigate these processes. As

mentioned in the previous section, my current work is focused on testing and validating two

di�erent methods used to take into account the wave energy dissipation during breaking events.

This work is carried out within the ANR-FEM DiMe (2017-2020) and LaBeX DEPHYMAN (2018-

2019) projects, in collaboration with Michel Benoit and two post-doctoral researchers, Christos

Papoutsellis and Bruno Simon.

The two approaches being evaluated are the application of an arti�cial pressure at the free sur-

face, following the approach of Guignard and Grilli (2001), and the use of an eddy viscosity model,

following Kurnia and van Groesen (2014). Preliminary tests demonstrate that both methods re-

produce well both spilling and plunging waves, but several di�erences between the two methods

are being explored, which suggest the use of the eddy viscosity model as the optimal approach.
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First, the eddy viscosity model appears more accurate for cases with steeper beach slopes. This

e�ect may be expected given the assumption that the breaking wave characteristics and energy

dissipation can be related to that of a hydraulic bore (Guignard and Grilli, 2001), and the cali-

bration coe�cient µ = 1.5 was determined from laboratory experiments of waves propagating

across a �at bottom and up a gentle (1:35) slope (Svendsen et al., 1978).

Second, the wave energy dissipation mechanisms introduce additional terms in the free surface

boundary conditions, which can cause the appearance of instabilities in the model. To avoid this

problem, the pressure term is applied smoothly in space (with a bump function), while the eddy

viscosity approach is applied smoothly in time with a ramp function.

3.7.2 Implementation of a moving shoreline

In order to simulate properly wave dynamics in the nearshore zone, it will be necessary to im-

plement a moving shoreline in the numerical model. However, the numerical schemes used to

resolve the vertical variations of the velocity potential in both the Misthyc and HCMS models

are not easily extendable to extremely shallow water and to a moving shoreline approach. In

the work of Christos Papoutsellis, in the test cases extending from deep to shallow water condi-

tions (e.g. Figure 3.20), the numerical model becomes unstable when the water depth approaches

very small values. Thus far, we have treated the nearshore zone and shoreline using a relaxation

zone, and it will be necessary to explore other approaches that will represent properly the wave

dynamics, including wave setup, runup, and re�ection at the shoreline.

A variety of di�erent methods have been proposed for treating a moving boundary in potential

�ow and Boussinesq-type models (e.g. moving slot, boundary extrapolation, Lagrangian regrid-

ding techniques), and the simplest and most direct method that may be applied in the current

formulation follows the approach of Lynett et al. (2002) in extrapolating (e.g. η and Φ̃) beyond

the moving boundary. Using this approach, the shoreline is not restricted to fall on a speci�ed

grid point, nor are complex regridding techniques necessary. However, this type of scheme will

cause numerical dissipation (Lynett et al., 2002) and will not conserve the Hamiltonian structure

of the mathematical model. It will, however, allow tracking the shoreline position and simulation

of nearshore dynamics once issues of the stability in the nearshore zone are resolved.

The approach of Lynett et al. (2002) is based on using a threshold δmin for the total water depth

h+ η, below which the free surface position η and velocity potential Φ̃ are extrapolated beyond

the wet boundary. They de�ned the threshold as δmin = a0/50, where a0 is the initial wave

amplitude. However, this threshold is likely strongly dependent on the given model, and will

need to be studied in depth in the Misthyc model, in particular by looking at the convergence of

the model as a function of the threshold δmin.

Additional approaches that may be explored in collaboration with researchers in the LHSV in-

clude coupling the Misthyc model to a model solving the Navier Stokes equations to resolve fully
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the wave breaking processes and wave run-up in the (very) nearshore zone. Two possibilities to

investigate are coupling Misthyc with a Volume of Fluid (VOF) model, Code Saturne, in collab-

oration with Je�rey Harris, or pursuing the post-doctoral research of Jérémie Chicheportiche

in coupling Misthyc with a SPH model in collaboration with Damien Violeau. However, these

approaches may be unnecessary when considering only the accuracy of reproducing the moving

shoreline, since Pedersen (2008) suggest that thin tongue swash and runup dynamics may be

simple enough that even the shallow water equations are unnecessarily complicated.

3.7.3 Optimization of the model

During the thesis work of Cécile Raoult, the optimization of the model was achieved by imple-

menting the parallel version of the direct linear solver MUMPS (Amestoy et al., 2001, 2006). In

the current version of the Misthyc model, solving the linear system of equations is the process

that takes more than 99% of the CPU time at each time step (Raoult, 2017), thus making it the

most important step to optimize. Our initial work was focused simply on using the parallelized

version of MUMPS, which was optimized by its developers for sparse, symmetric matrices such

at the one solved in the 1DH version of the model. The system of equations that is solved in the

2DH version of the model is less sparse and has elements further from the diagonal. In addition,

as the matrix size increases rapidly when transitioning from the 1DH to 2DH model, it is neces-

sary to search for other methods, in particular iterative methods, requiring less memory to solve

the linear system of equations.

During the Masters internship of D. Tasing (Tasing, 2016), a series of tests were conducted using

the Hypre (for “high performance preconditioners”) library developed by the National Lawrence

Livermore Laboraotry (Falgout and Yang, 2002; Falgout et al., 2004) to explore solving the linear

system of equations using an indirect method. A series of di�erent combinations of precondition-

ers and indirect solvers were tested. The tests demonstrated the e�ciency of the GMRES method

in solving the matrix, and subsequent work focused on selecting the optimal preconditioner to

pair with the GMRES iterative solver. The choice of a preconditioner has a signi�cant impact on

the e�ciency of the GMRES method, and our tests compared the results obtained using Diag-

onal scaling, EUCLID, and BoomerAMG approaches (described in detail in HYPRE (2006)). For

the case of a matrix with over 600,000 points and nearly 43 million non-zero entries in the ma-

trix, using the ILU-BJ (Incomplete LU factorization - Block Jacobi) preconditioner with GMRES

allowed reducing the CPU time by a factor of 25 in comparison with MUMPS (with a threshold

of 10−5
). The results using the diagonal scaling preconditioner were nearly equivalent, and the

conclusion of this work was that the implementation of either of these preconditioners with the

GMRES iterative solver would allow optimizing the model CPU time.

These tests were conducted on matrices extracted from the Misthyc code, and current work

includes integrating the Hypre library in the Fortran code of Misthyc and validating the accuracy

and e�ciency of this method in comparison to the MUMPS solver when propagating nonlinear
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waves during long time simulations. Additional methods that will be tested to optimize the model

performance are:

• adapting a di�erent temporal integration scheme, for example by replacing the fourth-

order explicit Runge-Kutta scheme with a lower order scheme, or with an iterative ap-

proach that requires fewer resolutions of the system of linear equations (Laplace BVP

problem, such as an Adams-Moulton or Adams-Bashworth predictor-corrector scheme

(Shampine and Gordon, 1975). Finally, implicit methods could also be tested. However,

implicit methods have the drawback of losing the Hamiltonian structure of the model, and

simplectic methods (Feng, 1986) could be another more appropriate alternative to study.

• parallelizing not only the method used to solve the linear system of equations, but also

the entire Misthyc code using domain decomposition. This was not yet implemented since

the the pre-processing phase of the model and �lling the matrix were shown to require a

negligible amount of time for a test case with over 60,000 nodes (3% and <1% of the calcu-

lation time of one time step, respectively). As the matrix size increases, these calculation

times will also increase, and thus work can be done to reduce their (still small) contribution

to the total CPU time. These di�erent approaches will be explored during the continued

development of the Misthyc model to enable obtaining reasonable calculation times for

simulating real applications of nearshore wave propagation.

3.7.4 Improvement of lateral boundary treatment

One well known issue strictly related to the implementation of the RBF-FD method is the treat-

ment of non-symmetric stencils, in particular in the case of the lateral boundaries (Fornberg

et al., 2002; Fornberg and Zuev, 2007). Raoult (2017) demonstrated that the errors in estimat-

ing derivatives near the boundaries can be one to two orders of magnitude larger than those

for interior nodes (Figure 3.21) by distinguishing the errors estimated for three sets of nodes:

interior nodes with a centered stencil, asymmetric stencils not located on the boundary (called

asymmetric stencil nodes), and boundary nodes with a fully one-sided stencil (Figure 3.21).

Three di�erent types of solutions may be proposed:

• edge enhancement techniques such as including low degree polynomials, node clustering

near the boundaries, or Not-a-knot (Nak) and Super Not-a-knot (Snak) methods that allow

moving RBF centers outside of the model domain (Fornberg et al., 2002);

• spatial variations in C for IS functions (Fornberg and Zuev, 2007); and

• addition of layers of nodes outside of the boundary, typically called ghost nodes, that allow

enforcing both the boundary conditions and the PDE (partial di�erential equation) at the

boundary nodes (e.g. Engsig-Karup et al., 2009).
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Figure 3.21: Normalized global errors for fx as a function of the shape parameter C for a

representative sinusoidal function (using a multiquadric (MQ) function with an

added polynomial of degree 0 and a stencil size Nsten = 21): f(x, y) =
Acos

(
2π
L (xcosθ + y sin θ)

)
, with L = 0.5 m, A/L = 0.05, and θ = 20. The domain

extended from 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and was discretized with regularly-spaced

nodes with ∆x = ∆y = 0.005 m (= L/100).

Future work will be focused primarily on edge enhancement techniques, in particular the use of a

di�erent RBF function or node clustering techniques near the boundaries. Preliminary tests car-

ried out at the end of Cécile Raoult’s thesis suggested that these approaches may enable reducing

the errors near the model domain boundaries.

3.7.5 Comparison with existing wave propagation models

Finally, it is important to demonstrate the ability of the model to simulate well wave propagation

in the nearshore zone in comparison to �eld observations and to other existing wave models.

To demonstrate the accuracy and e�ciency of the Misthyc model, it will be important to com-

pare the simulation results to other nonlinear wave propagation models such as Boussinesq or

SGN-type models (e.g. BOSZ, FUNWAVE, UHAINA, Roeber et al., 2010; Roeber and Cheung,

2012; Kirby et al., 1998; Shi et al., 2012; Filippini et al., 2018), HOS methods (e.g. HOS-ocean,

Ducrozet et al., 2012; Gouin et al., 2016), and multi-layer non-hydrostatic models (e.g. SWASH,

Zijlema and Stelling, 2008; Zijlema et al., 2011), including the accuracy of the simulations and

the computational time required. These comparisons will be important to demonstrate both the
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advantages and limitations of the selected modeling approaches in order to de�ne the optimal

tools to be used for di�erent modeling applications. Within the ANR-FEM DiMe project, Volker

Roeber and I currently participate in the thesis committee of a PhD student Audrey Varing, ad-

vised by Jean-François Filipot (FEM). In our ongoing collaborative work, we plan to compare the

results of Misthyc and BOSZ (Boussinesq-type wave propagation model (Roeber et al., 2010)).

This work will therefore encourage the development of collaborations with researchers working

on closely related subjects in this �eld, both externally and within the LHSV.



Chapter 4

Conclusions

In summary, in the coming years, I will continue to develop two principal research themes:

coastal morphological evolution and coastal wave hydrodynamics. Throughout the last decade

since completing my PhD, I have centered my work on these two themes, exploring a variety of

di�erent approaches spanning observational, experimental, empirical, and numerical work.

The fundamental research questions identi�ed here are centered on improving understanding

of the physical processes controlling wave propagation and beach morphological evolution, and

improving our ability to model these processes at the desired spatial and temporal scales for a

wide range of applications.

The main challenges associated with empirical beach morphological modeling are related to how

to simplify the complex dynamics of the nearshore zone to develop models that are capable of

e�ciently and reliably predicting beach morphological response to wave forcing. I plan to focus

on taking into account alongshore sediment transport processes, the interactions between wave

forcing and the water (or tide) level, and the inherent uncertainties in this simple modeling ap-

proach. This work will continue to be the focus of ongoing collaborations with researchers from

the IUEM, as well as with 3 research groups in Japan within the PHC Sakura project. In addition,

the extension of the equilibrium shoreline change model is the topic of the PhD thesis of Teddy

Chataigner (2018-2020), several Masters internships, and future collaborations currently being

initiated with research teams abroad, such as with Camilo Jaramillo Cardona from the Univer-

sity of Cantabria who is working on coupling cross-shore and alongshore sediment transport in

medium to long-term morphological models, and Giovanni Coco and Jennifer Montano at the

University of Auckland who are working on coupling dune evolution with equilibrium models.

Concerning coastal wave hydrodynamics, my work is focused on the development of a highly

accurate nonlinear and dispersive wave propagation model using fully nonlinear potential �ow

theory. The objective of this project is to develop a highly accurate and e�cient wave propagation

model that is applicable for practical applications in the coastal zone. The fundamental research

questions are centered on the improvement of the representation of complex physical processes
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such as wave breaking and viscous e�ects, and on the optimal numerical implementation to solve

this system of equations (Zakharov equations plus boundary conditions) for 2D and 3D domains.

This work is currently being carried out in the ANR-FEM DiMe project and is part of a long-

term collaboration with Michel Benoit, who is now working at the IRPHE. These activities could

bene�t from ongoing collaborations with colleagues working in the DiMe project, who focus on

wave breaking in Boussinesq and spectral wave models, as well as future collaborations with

colleagues in the LHSV laboratory, who focus on coupling potential �ow and RANS models.

Finally, I plan to continue to develop these two research themes and the links between these

two �elds of study. In particular, the Misthyc model will be used to simulate wave propagation

in the nearshore zone, both by reproducing the hydrodynamics of the laboratory experiments

of storm-induced beach erosion discussed in section 2.2.3 and by analyzing the transformation

of waves from deep to shallow water at the Porsmilin and Vougot study sites evaluated in sec-

tion 2.2.4. This work will allow a more in-depth study of the wave hydrodynamics in relation to

the observed morphological changes, as well as an analysis of the sensitivity of morphological

change models to the wave forcing conditions.

In addition to my research projects described in this manuscript, Appendix A provides an overview

of my academic and project responsibilities, and Appendix B presents my curriculum vitae, which

includes a detailed summary of my presented and published work. Following my responsibilities

as a researcher at the Cerema, I will continue to focus on fundamental research questions in these

two �elds and also on practical applications to meet operational needs.
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Academic and project responsibilities

As a researcher for the Cerema in the Saint-Venant Hydraulics Laboratory, the responsibilities

of my position are centered on my research activities and their application for the mission of the

Cerema as a public actor. However, I have had a longterm interest in mentoring and teaching

and have developed this interest throughout my career. I believe that imparting our knowledge

to students during their academic careers is one of the most enriching and important facets of

our work as researchers, both through supervising their work via internships, thesis projects,

and postdoctoral projects, and directly through teaching.

A.1 Research supervision

Postdoctoral researchers

Christos Papoutsellis (2017-2018): Postdoctoral researcher (12 months, 50%, co-supervision

with Michel Benoit, FEM-ANR project DiMe), 6 months IRPHE, Marseille, 6 months LHSV. Inte-

grating the e�ects of wave breaking in a Hamiltonian Coupled-Mode Theory deterministic, fully

nonlinear potential �ow wave propagation model for coastal applications.

Bruno Simon (2018-2019): Postdoctoral researcher (18 months, 25%, co-supervision with Michel

Benoit, Sergey Gavrilyuk, Olivier Kimmoun, DEPHYMAN Labex project), IRPHE, Marseille. Inte-

grating the e�ects of wave breaking and optimizing a 3D deterministic, fully nonlinear potential

�ow wave propagation model.

Mathieu Gervais (2015-2016): Postdoctoral researcher (18 months, 50%, co-supervision with

Damien Pham Van Bang, Geocorail project), LHSV. Analysis of laboratory measurements of wave

transformation and morphological changes with the goal of mitigating beach erosion in storm

conditions with a submerged breakwater.
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PhD students

Marc Igigabel (2019-2020): Engineer at the Cerema, LHSV (30%, co-supervision with Youssef

Diab (HDR, Laboratoire d’Urbanisme (LAB’URBA)). “Les systèmes de protection contre les sub-

mersions marines - Diagnostic, adaptation et gestion” (Coastal protection systems against marine

�ooding - Diagnostic, adaptation, and management).

Teddy Chataigner (2018-2020): PhD student, LHSV (55%, co-supervision with Nicole Goutal

(HDR), Nicolas Le Dantec, �nanced by grants from the DGA, the Cerema, and the ENPC). Beach

morphological changes: integrated empirical modeling of cross-shore and longshore processes.

Cécile Raoult (2014-2017): PhD student, LHSV (50%, co-supervision with Michel Benoit, CIFRE

grant). Nonlinear and dispersive numerical modeling of nearshore waves.

Masters and Engineering students

Nicolas Cailler (2019): Masters intern, ENSTA Bretagne (60%, co-supervised with Nicolas Le

Dantec), LHSV, Chatou, France. Empirical modeling of beach morphological evolution and shore-

line dynamics : sea-level rise climate change impacts.

Corentin Petton (2019): Masters intern, Université de Caen (60%, co-supervised with Nicolas

Le Dantec), LHSV, Chatou, France. Empirical modeling of beach morphological evolution and

shoreline dynamics : wave climate change impacts.

Alessandro De Carolis (2019): Erasmus intern, University of Cassino (30%, co-supervised with

Pablo Tassi), LHSV, Chatou, France. Dune hydraulics.

Matthew Leary (2018): Masters intern, University of Rhode Island (60%, co-supervised with

Nicolas Le Dantec and France Floc’h), LHSV, Chatou, France. Extension of an equilibrium beach

change model to include alongshore transport processes.

Marine de Carlo (2017): Masters intern, ENSTA (60%, co-supervised with Damien Pham Van

Bang), LHSV, Chatou, France. Validating the morphological change model XBeach to simulate

submerged breakwater beach erosion reduction experiments.

Gabin Bouvard (2017): Engineering intern, ENTPE (50%, co-supervised with Nicolas Le Dantec

and France Floc’h), UBO, Brest, France. Application and calibration of an equilibrium model

applied to a beach-dune system at Guisseny beach.

Dimitri Tasing (2016): Masters intern, UPMC (100%), LHSV, Chatou, France. Optimization of

the wave propagation model Misthyc.

Christina Ghitui (2016): Masters intern, ENSE3 (Grenoble INP) (20%, co-supervised with Marc

Andreevsky and Antoine Joly), LNHE, EDF R&D, Chatou, France. Comparing wave propagation

models.

Maria Clara Lemos Rodríguez (2016): Masters intern, IUEM/UBO (30%, co-supervised with
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France Floc’h and Nicolas Le Dantec), IUEM/UBO, Brest, France. Predicting shoreline change

using equilibrium models: Porsmilin, France.

Pierre Desbrières (2014): First year intern, ENPC (50%, co-supervised with Michel Benoit),

LHSV, Chatou, France. Modeling waves in the coastal zone.

Emilie Salaï (2011): Masters intern, Université de Caen Basse Normandie (60% co-supervised

with Gonéri Le Cozannet), BRGM, Orléans, France. Multidecadal shoreline change of atolls:

Manihi and Scilly.

A.2 Teaching

Sea State, Waves and Coastal Morphodynamics, ENSTA, Master, 12h, 2013-2019

Since 2013, I have participated in the program Master WAPE (Water, Air, Pollution, and Energy) of

the University Paris-Saclay (Ecole Polytechnique and ENSTA ParisTech), in partnership with the

Master OACOS (Océan, Atmosphère, Climat et Observations Spatiales), co-organized by l’École

des Ponts ParisTech, l’Université Pierre et Marie Curie, l’École Normale Supérieure, l’École Poly-

technique, and l’ENSTA ParisTech. My participation in this class consists of approximately 12h

of classes (theory and practical applications) covering linear wave theory, sea states, the prop-

agation of waves in port and coastal zones, nearshore hydrodynamics, and an introduction to

wave models and nonlinear waves.

Travaux Maritimes, ENPC, 2nd year students, 20h, 2016-2019

Since 2016, I have participated in teaching the class “Travaux Maritimes”, or Maritime works, at

the ENPC as part of the second year of the program “Génie Civil et Construction”. For the last

two years, I have been responsible for the �rst module of the course concerning coastal waves

and currents, which includes approximately 10h of theoretical courses (covering topics similar to

those in the Sea State, Coastal Waves and Morphodynamics course) and 10h of practical sessions

focused on an applied project.

Physical processes andmodeling ofwaves in coastal andport zones, LHSV/LNHE
training sessions, 6h, 2016, 2019

As part of a series of training sessions concerning the general theme of Environmental Hy-

draulics, I taught two sessions concerning the dominant physical processes and modeling of

waves in coastal zones and ports. This series of courses was designed by members of the LHSV

and LNHE (Laboratoire National d’Hydraulique et Environnement) and is destined for students,

researchers, and engineers in these laboratories, the MFEE (Mécanique des Fluides, Energie et

Environnement) laboratory, and other departments of EDF R&D.
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Scienti�c English, ENS Cachan, 2nd year, 20h, 2012-2013

In 2012-2013, I additionally participated (20h) in teaching a scienti�c English (“Anglais scien-

ti�que”) course to second year students at the Ecole Normale Supérieur de Cachan.

The Ocean, UCSD, 2nd/3rd year, 20h, 2008

During my PhD, I was a teaching assistant (20h) for a class entitled "The Ocean", covering marine

geology, and physical, biological, and chemical oceanography for second and third year students

at the University of California, San Diego.

A.3 Other academic responsabilities

In addition to my role as a teacher and mentor for Masters students, PhD students, and postdoc-

toral researchers, I acted as an academic supervisor for �rst year students at the ENPC during

their scienti�c internships abroad (2 students in 2013, 3 students in 2015) in the �elds of coastal

and marine engineering. I am currently acting as the university’s academic tutor for a student

from the ENSTA doing a scienti�c internship at the UPPA and for a student from the ENPC doing

a professional internship at EGIS.

In the LHSV, I initiated and have organized since 2016 the “Journée des Doctorants du LHSV” to

highlight the work of the PhD students in our laboratory. This day of presentations is important

to present the work being carried out in our laboratory to the three member organizations of

the laboratory (EDF R&D, Cerema, ENPC) and to encourage interactions between students and

researchers within and associated with the laboratory (e.g. LNHE of EDF R&D).

A.4 Project management

2018-2019: PHC (Programme Hubert Curien) Sakura Project – Predicting decadal-scale shoreline

evolution integrating the impacts of climate change, �nanced by the Japan Society for the Promo-

tion of Science, the French Ministry for Europe and Foreign A�airs, and the French Ministry of

Higher Education, Research and Innovation.

I am the French coordinator of this project that provides �nancial support for the collaboration

developed between a team of French researchers from the LHSV and IUEM/UBO and a team of

Japanese researchers at the Port and Airport Research Institute (PARI), Kyoto University, and

Toyohashi University of Technology.

2017-2020: DiMe Project – “Dimensionnement et Meteocean : modélisation et observation des états

de mer extrêmes déferlants pour les EMR”, �nanced by France Energies Marines ITE (“Institute

pour la Transition Energétique”) and the ANR (“Agence National de la Recherche”).

The main objective of this project is to improve the estimation of large, breaking waves and their
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impacts on o�shore and nearshore structures. I am the scienti�c coordinator for the Cerema as a

part of the consortium of 18 academic, governmental, and industrial partners working together

on this project. Notably, the Cerema is responsible for working on: (1) comparing the ANEMOC

and HOMERE wave databases, in particular for large wave events, (2) co-supervising a post-

doctoral researcher (22 months) working on improving the parametrization of wave breaking in

spectral wave models, and (3) co-supervising a postdoctoral researcher (12 months) working on

taking into account the e�ects of wave breaking in a fully nonlinear and dispersive potential �ow

wave propagation model. I am overseeing administratively and scienti�cally the Cerema’s par-

ticipation in the project (6 researchers/engineers from the Cerema) and am personally working

on the third research subject listed above.
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ABSTRACT

Yates, M.L.; Le Cozannet, G.; Garcin, M.; Salai, E., and Walker, P., 2013. Multidecadal atoll shoreline change on Manihi
and Manuae, French Polynesia. Journal of Coastal Research, 29(4), 870–882. Coconut Creek (Florida), ISSN 0749-0208.

As interest in the impact of sea-level rise on atoll islands increases, this study contributes to the growing database of
observations of shoreline changes on South Pacific Islands, where few observations are currently available. Historical
aerial photographs and recent satellite images were used to evaluate multidecadal surface area and shoreline changes on
two atolls in French Polynesia: Manihi and Manuae. During the 40- to 50-year study period, atoll island surface area
primarily increased or remained stable on Manihi and decreased on Manuae. Distinct ocean and lagoon shoreline
changes were observed in different geographical regions of each atoll. On Manihi, ocean shoreline accretion rates were
larger on the NW rim than the SE rim. On Manuae, atoll islands on the NE rim were eroding on the lagoon side and
accreting on the ocean side, whereas islands on the SE rim showed the opposite trend. Sea-level rise is often thought to
cause atoll erosion, but in this study, lagoon and ocean shorelines both eroded and accreted over a period when sea-level
rise rates were greater than the global mean. Surface area changes related directly to anthropogenic activities were
identified on only two of the 47 atoll islands. After completing a classification of the incident wave field, it was
hypothesized that waves have an important role in controlling the shoreline change variability. Additional field surveys
and in situ observations are needed to validate this hypothesis and to understand better island response to changing
forcing factors.

ADDITIONAL INDEX WORDS: Sea-level rise, climate change, erosion, South Pacific.

INTRODUCTION
Atolls are midocean reef islands that may be highly

vulnerable to changes in climatic forcing because of their low-

lying morphology and exposure to a variety of ocean conditions.

In particular, small islands on the rims of atolls are considered

particularly fragile in the face of future sea-level rise (Nicholls

et al., 2007), and for this reason, several atoll island nations

(e.g., Tuvalu, Kiribati) have recently received significant

attention in both the media and the scientific community

(Connell, 2003).

Atolls are annular coral reef islands that form on midocean

volcanic hotspots. Darwin proposed the theory that atolls are

the result of two processes: subsidence of the foundation

(inactive volcano) and upward growth of corals (Darwin, 1842).

Initially, a fringing reef develops around the volcano, which

progresses to a barrier reef, and eventually to an atoll, with the

continued subsidence of the volcanic landmass and the upward

growth of the reef. The subsidence is due to isostatic

adjustment, lithospheric flexure, or plate migration away from

the hotspot forming the volcano (Woodroffe, 2008). The reef

growth is dependent on coral polyps that live near the surface

of the water and excrete calcium carbonate to form skeletons.

The solid base of the coral reef is composed of calcite and

dolomite, which originate from coral skeletons, carbonate

sediments created from their erosion, and direct precipitation

of calcium carbonate from sea water (Ohde et al., 2002;

Stoddart, 1969). Therefore, the geologic formation and long-

term evolution (on scales of hundreds to thousands of years) of

atolls is closely related to the relative sea level and the reef

growth rate (e.g., Pirazzoli and Montaggioni, 1986; Pirazzoli et

al., 1988; Stoddart, 1990).

Atoll islands are composed primarily of unlithified biodetrital

sediments that are eroded from reefs and accumulate on atoll

reef flats (Ohde et al., 2002). Atoll islands are highly dynamic

environments in which the accumulation and retention of

sedimentary deposits depends on the island elevation relative

to sea level, as well as the tidal range, wind and wave energy

and direction, and local currents (Stoddart, 1990). In addition,

complex interactions between a variety of other factors
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influence the resilience or mobility of island shorelines (Figure

1, Garcin et al., 2011), such as climate change (e.g., wind and

wave regimes, precipitation, sea level), internal (e.g., seismic,

volcanic activity) and external (sediment fluxes) geodynamic

processes, biological processes, and anthropogenic actions and

the resultant impacts.

Sea-level rise is commonly perceived to be the most

important factor causing the erosion and flooding of atolls

(Dickinson, 1999), which may result in their inhabitants

becoming the first environmental refugees (Connell, 2003).

However, studies of South Pacific Islands have shown that the

primary causes of coastal erosion may instead be due to

changes in wind and wave patterns (Flood, 1986; Kench et al.,

2006), cyclones or tsunamis (Bourrouilh-Le Jan and Talandier,

1985; Dupon, 1984; Harmelin-Vivien, 1994; Stoddart, 1963), or

even vertical land movement due to tectonic activity (Ballu et

al., 2011). For example, extreme events such as cyclones have

been shown to cause both atoll island erosion (Harmelin-

Vivien, 1994) and accretion (Maragos, Baines, and Beveridge,

1973), depending on the island sediment composition and

exposure to storms (Bayliss-Smith, 1988). Steady waves and

cyclones may cause accretion due to the breakup and landward

transport of biodetrital reef material, or erosion and flooding

due to direct wave impacts, elevated water levels, or strong

currents during lagoon flushing. Lagoon flushing is caused by

inflow across the reef flat or island overtopping by waves

causing an increase in the lagoon water level, which flushes out

through atoll passes or channels on the leeward atoll rim

(Callaghan et al., 2006). Anthropogenic factors, such as coral

and sediment mining, have also been shown to be the primary

cause of shoreline erosion on several atolls (Ford, 2012; Xue,

1997). Although anthropogenic impacts may be important on

local scales in highly urbanized areas, Salvat et al. (2008)

suggested that increases in cyclone strength, sea surface

temperature, and ocean acidity may be the leading factors

affecting atolls in French Polynesia.

There are a limited but growing number of studies

evaluating atoll island shoreline changes (Collen, Garton,

and Gardner, 2009; Ford, 2012; Kench et al., 2006, and others),

and the objective of the current study is to add to this growing

database by examining multidecadal island shoreline change

on two atolls in French Polynesia. Manihi and Manuae were

selected for analysis for three primary reasons: availability of

historical aerial photographs allowing a multidecadal shoreline

change analysis, minimal human activities, and estimates of

elevated sea-level rise rates in this region (see the section ‘‘Sea-

Level Rise during the Study Period’’). In this paper, the remote

sensing image analysis and wave classification analysis are

described, the shoreline change results for 41 islands on Manihi

and six islands on Manuae are presented, and the potential

factors causing the observed changes are discussed.

STUDY SITES

Setting
The current study evaluates island evolution on two atolls in

French Polynesia: Manihi and Manuae (Figure 2). Manihi

(148250 S, 1458550 W) is located at the NW extent of the

Tuamotu Islands in the King George Islands, and Manuae, also

called Scilly (168300 S, 1548400 W), is located at the NW extent of

the Society Islands in the Leeward Islands (Figure 2). The

atolls differ in many aspects, including size, geomorphology,

exposure to waves, and extent of human development and use.

Manihi has an elongated shape, with major and minor axes of

approximately 28 km and 8 km, respectively (Figure 3a). The

lagoon has gentler slopes and is less than 30 m deep on the

eastern side, but exceeds 30 m depth at the western end near

the only deep pass, Tairapa (SHOM, 2007). The tidal range is

less than 0.5 m (data from SHOM). More than 60 islands cover

the reef flat, ranging in size from 6000 m2 to approximately 2

km2. Tourism has developed at Manihi as a result of the

construction of an airport and a luxury resort. However, the

atoll still has a population of less than 1000 people, who live

primarily in the village of Turipaoa. The northern atoll rim is

mostly undeveloped, and there is a scattering of homes on the

southern atoll rim.

In comparison, Manuae is smaller and nearly circular, with a

diameter of approximately 10 km (Figure 3b). Islands exist only

on the eastern rim of the atoll, ranging from 0.1 to 1.3 km2, and

the entire western and southern rim is open to the ocean. In

this region, Chevalier (1979) observed that the submerged reef

flat is covered by only 1–2 m of water. Observations of aligned

beachrock sloping toward the lagoon suggest that this part of

the atoll rim was once covered in sandy islands that were

reworked and eventually entirely eroded by cyclone waves or a

tsunami (Barsczus, 1980; Chevalier, 1979; Salvat, 1983).

The lagoon of Manuae is deep, reaching 70 m depth (Venec-

Peyre, 1987), but no deep passes exist, and the water exchange

between the lagoon and the ocean takes place across the

shallow reef flat (Chevalier, 1979). The tidal range is less than

0.3 m (Guilcher et al., 1969). Copra was produced on Manuae in

the 1920s, but the plantation is no longer in operation, and in

Figure 1. Families of forcing factors that affect coastline mobility, with

arrows indicating some of the interactions and feedbacks (from Garcin et al.,

2011).
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1992, the atoll was designated as a nature reserve. Very few

man-made structures were observed on this atoll.

Sea-Level Rise during the Study Period
Global estimates of relative sea-level rise since the beginning

of the 20th century indicate a rate of approximately 1.7 6 0.3

mm/y (Church, White, and Hunter, 2006). High-resolution

satellite observations show an accelerated rate of 3.3 6 0.4 mm/

y between 1993 and 2009 (Nicholls and Cazenave, 2010), with

significant regional variability primarily due to temperature

and salinity variations (Lombard et al., 2005). Satellite

observations extending to 2010 show that sea-level rise in the

western tropical Pacific was more than three times the global

average during this period (Cazenave and Llovel, 2010).

However, multidecadal tide gauge records (spanning more

than 24 y) on islands within 158 of the equator show peak-to-

peak interannual variations of up to 60.45 m related to the El

Niño Southern Oscillation cycle (Church, White, and Hunter,

2006). To investigate multidecadal trends extending beyond

the era of satellites, Becker et al. (2012) reconstructed sea

levels in the Pacific Island Region (between 208S and 158N

latitude, and 1208E and 1358W longitude) over the 60-year time

period from 1950 to 2009 using DRAKKAR model sea surface

heights and high-quality, long-term tide gauge measurements.

(See Becker et al., 2012; Llovel et al., 2009; and Meyssignac et

al. 2012 for more details about the reconstruction method.) At

Manihi and Manuae, Becker et al. (2012) estimate approxi-

mately 2.5 and 2.9 mm/y, respectively, of absolute sea-level rise

during the last 60 years (Figure 4).

Becker et al. (2012) also caution that local, relative sea-level

rise, as felt by the population living on an island, may also be

affected by vertical land movements. Direct global positioning

system measurements in the Torres Islands showed that

subsidence due to tectonic activity nearly doubled the absolute,

climate-related sea-level rise (Ballu et al., 2011), but these

measurements are not available at Manihi and Manuae. The

Figure 2. Location of the study sites in the Southern Pacific Ocean: Manihi in the Tuamotu Islands (located to the left of the label) and Manuae in the Society

Islands of French Polynesia.

Figure 3. Images of the atolls (a) Manihi and (b) Manuae, showing the

historical aerial photographs used in this analysis overlaying the recent

aerial photographs and satellite images. The white boxes in (a) indicate the

location of the images shown in Figure 9. The southern rim of Manihi was not

surveyed in 1961, and the photographs on the western rim of Manuae were

not georectified due to the lack of islands.
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lack of current hotspots or high volcanic islands in the Tuamotu

Islands (Pirazzoli and Montaggioni, 1986), as well as the

estimated age (50–60 million years old) of the seamount upon

which Manihi formed (Pirazzoli and Montaggioni, 1985),

suggest that volcano-isostatic equilibrium and relative vertical

stability were likely reached long ago. In comparison, the

Society Islands are relatively young, and assuming a constant

drift rate of the Pacific Plate, Pirazzoli and Montaggioni (1985)

and Barsczus (1980) estimated that the seamount forming the

base of Manuae is approximately 5 to 6.5 million years old.

Pirazzoli and Montaggioni (1985) concluded that volcano-

isostatic phenomena are likely still active near Manuae,

estimating a subsidence rate of approximately 0.05 mm/y in

the Leeward Islands. Therefore, rates of vertical land move-

ment are assumed to be negligible in comparison with absolute

sea-level rise for these two atolls.

Wind and Wave Climate
French Polynesia is primarily exposed to cyclonic waves

(originating in the west), trade waves (originating in the east),

and southern swell. Two general types of waves are distin-

guished: seasonal waves that rarely exceed 3 m significant

wave height, and cyclone waves that can reach up to 12 m

significant wave height (Des Garets, 2005). Swell in this region

of French Polynesia usually originates in the SW, in the

Southern Ocean or just E of New Zealand, or in the N to NW, in

the North Pacific Ocean (Des Garets, 2005).

The atolls of Manihi and Manuae are exposed to different

wave conditions given their geographic locations. Manuae is

isolated and is exposed to waves originating from all directions,

whereas Manihi is shielded from waves originating from the

south by the presence of a string of atolls located directly to the

south in the Tuamotu Islands (Figure 2). In addition, Manuae

is located in a region that is more frequently affected by

cyclones than Manihi (Larrue and Chiron, 2010). During the

cyclone seasons from 1969/1970 to 2006/2007, twice as many

cyclones passed within a 400-km radius of Manuae than

Manihi, with 20 and 10 cyclones, respectively (data from the

Australian Bureau of Meteorology, 2011).

METHODS

Image Analysis
Multidecadal shoreline and land surface area changes were

examined using historical and recent aerial photographs and

recent satellite images (see Table 1; data provided by the

Service of Urbanization of French Polynesia). The scanned

images were georectified and georeferenced using ArcGIS

software. Owing to the lack of conventional permanent

reference points (e.g., survey datum points, Thieler and

Danforth, 1994), secondary reference points were used to

georectify the photographs. Secondary reference (or control)

points are features that are stable and clearly identifiable in

the historical and recent images, such as corners of buildings,

ends of jetties, road intersections, etc. (Crowell, Leatherman,

and Buckley, 1991). On Manihi and Manuae, very few

permanent buildings or roads were located in both sets of

images (only in the village of Turipaoa on Manihi). Therefore,

natural geomorphological features, including distinctly shaped

beach rock outcrops (on the ocean and lagoon side of the atoll

rim) and lagoon coral pinnacles, were used to georectify the

historical photographs, assuming that these distinct features

have not changed significantly. Errors induced by changes in

these geomorphological features contribute to the root-mean-

square error of each georectified image. In total, 49 photo-

graphs of Manihi and 12 photographs of Manuae (Figure 3)

were georectified in ArcGIS using second-order polynomials

with an average of 32 secondary reference points in each

photograph, resulting in root-mean-square errors of 1 to 4 m for

each photograph.

Shoreline and surface area changes were estimated by

measuring the movement of the vegetation limit between two

survey dates (Table 1, following Ford, 2012; Webb and Kench

2010; and others). Thieler and Danforth (1994) suggest that the

vegetation limit may be used as an indicator of shoreline

position, especially when historical records of more commonly

used proxies, such as the mean high water line or evidence of

the wet/dry or high tide line (Crowell, Leatherman, and

Buckley, 1991), are not available for long-term analyses. This

proxy is particularly adapted to evaluating multidecadal

changes (Ford, 2012; Garcin et al., 2008), since it is a rather

Figure 4. Reconstruction of the climatic component of historic sea-level

(zclim) since 1950 (data from the analysis of Becker et al., 2012), indicating the

estimated linear sea-level rise trends at Manihi (black) and Manuae (gray).

Table 1. Image data.

Atoll Date Data source

Image

resolution

(m)

Scan

resolution*

(m)

Manihi 1961 Aerial photographs 1 (1:20,000) 0.5

2001 Aerial photographs 0.5 (1:15,000) —

Manuae 1955 Aerial photographs 2 (1:40,000) 1

2008 Quickbird satellite images 0.5–0.6 —

* For paper photographs.
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stable indicator of shoreline changes that typically vary on the

scale of months to years instead of the higher-frequency

changes measured by other proxies (Hoeke, Zarillo, and

Synder, 2001). Ford (2012) also pointed out the drawback to

using the vegetation limit as a proxy for the shoreline position,

noting that the beach width or volume may change without

causing a change in the vegetation limit.

To identify the seaward vegetation limit for each island,

overlapping aerial photographs were superposed (Figure 3),

and the highest quality images (with high color contrast and no

cloud cover) were used to digitalize manually the vegetation

limit. The repeatability of the method was evaluated and will

be discussed in the ‘‘Shoreline Change Uncertainties’’ section.

A portion of the southern rim of Manihi was not photographed

during the aerial flight in 1961 (Figure 3); therefore, estimates

of island change were not calculated in this region.

With the digitalized shorelines, two different measures of

island changes were analyzed: surface area and shoreline

position. Surface area changes were calculated as the differ-

ence between the digitalized polygons using the ET Geo-

Wizards toolbox in ArcGIS. Shoreline change was calculated

using the Digital Shoreline Analysis System (Thieler et al.,

2009) in ArcGIS, on transects with 100-m alongshore spacing.

The average change in shoreline position was calculated for the

ocean and lagoon shore of each island, following Webb and

Kench (2010). Surface area changes estimate the net change in

vegetated land area, while the two measures of shoreline

change distinguish between ocean and lagoon erosion and

accretion processes.

Wave Analysis
In order to examine the wave exposure of Manihi and

Manuae, data were obtained from the hindcast wave model

WaveWatch III, run by IFREMER (with 0.258 spatial resolu-

tion in a zone around French Polynesia, during the period from

1997 to 2011, Ardhuin et al., 2010). While this time period is

short for evaluating interannual variability or calculating

extreme event statistics, it allows a preliminary evaluation of

the differences in the annual wave fields affecting the two

atolls.

To quantify the wave field, two model points were extracted

at Manihi (located off the NW and SE shores, at �14.358N,

146.058W and �14.458N, 145.858W, respectively), and one

model point was extracted near Manuae (located to the E, at

�16.558N,�153.38E). Manuae is located 150 km to the west of

the high spatial resolution model domain, thus the closest

model grid point was selected for the analysis. The modeled

wave field at this point is assumed to be representative of the

wave field observed at Manuae, since the atoll is isolated and no

obstructions exist between the atoll and the model output

location.

Clustering algorithms are a classic approach used to identify

the dominant wave classes in wave time series (Butel, Dupuis,

and Bonneton, 2002). A variety of different methods are

available, and here, a K-means algorithm is used to distinguish

the dominant wave classes by their significant wave height,

peak period, and mean wave direction, as in Le Cozannet et al.

(2011). The number of wave classes (15) was chosen empirical-

ly, as a compromise between resolving too many distinct wave

events (thus making the interpretation difficult) and isolating

the most important observed classes. These wave classes may

then be regrouped into well-known wave modes (e.g., trade

waves, southern swell) based on the analysis of the physical

characteristics and seasonality of the wave classes.

Shoreline Change Uncertainties
Errors in estimated shoreline change arise from a variety of

different sources: image resolution, aerial photograph georec-

tification, and shoreline digitalization. Taking into account the

scale of the photographs and the scan resolution, the images

have a resolution of between 1 and 2 m per pixel (see Table 1).

Average shoreline change errors resulting from the identifica-

tion of the shoreline using different photographs (i.e., errors

associated with the image georectification) and the interpreta-

tion of the shoreline location by different users, were 0.5 m and

1 m, respectively. Taking into account the digitalization, pixel

size, and georectification errors, average shoreline changes of

less than 5 m were not considered significant and were

interpreted as stable shorelines.

RESULTS
The islands on Manihi were generally stable or increasing in

surface area (Figure 5), while the islands on Manuae were

generally eroding or decreasing in surface area (Figure 6). In

addition, within each atoll, island shoreline change rates

showed distinct ocean and lagoon shoreline trends depending

on their geographic location.

Manihi Surface Area and Shoreline Changes
In total, only two small islands on Manihi (4%) decreased in

surface area between 1961 and 2001, while approximately 29%

of the islands were stable, and 67% increased in surface area

(Figure 5a). The islands on the NW rim of the atoll increased in

surface area, while the islands on the SE atoll rim either

increased in surface area or remained in dynamic equilibrium.

The estimated lagoon (RLAGOON) and ocean (ROCEAN)

shoreline change rates (Figure 7a) also show distinct trends

on the NW and SE atoll rims (zones separated schematically by

the black line in Figure 5a). Less than half of the islands on the

SE rim have significant (larger than the estimated errors)

ocean or lagoon shoreline change rates, and the observed

trends are relatively small (triangles, Figure 7a). In compar-

ison, islands on the NW rim have ocean shoreline accretion

rates that are up to twice as large (open circles, Figure 7a). No

distinct trends in lagoon shoreline changes were observed.

Evidence of these distinct trends in surface area and

shoreline change is seen in two examples of islands on the

NW and SE atoll rims (Figure 5). In Figure 5b, shoreline

accretion is observed on the ocean side of the island,

particularly on the E end, where a small island increased in

size and eventually became attached to the neighboring island.

In comparison, in Figure 5c, three small islands on the SE rim

showed little or no net change during the 40-year period.

Manuae Surface Area and Shoreline Changes
Unlike Manihi, the majority of the islands on Manuae (five

out of six) decreased in surface area between 1955 and 2008

(Figure 6a). However, the erosion occurred on different sides of

the islands depending on their geographic location (zones
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separated schematically with the black line in Figure 6a).

Three of the four islands located on the NE rim of Manuae

experienced ocean shoreline accretion and lagoon shoreline

erosion (diamonds, Figure 7b), whereas the fourth island near

the schematic transition zone did not have shoreline change

trends larger than the estimated errors. On the SE atoll rim,

both islands experienced ocean shoreline erosion and lagoon

shoreline accretion (asterisks, Figure 7b).

Figure 6b shows an example of an island with an eroding

lagoon shoreline ontheNE rim ofManuae, with losses extending

up to 100 m in some locations. The ocean shoreline of this island

remained stable on the southern end, while accretion was

observed along the central and northern portion. In addition, the

ocean shoreline is rather uniform in comparison with the highly

variable structure of the eroding lagoon shoreline. In Figure 6c,

small lagoon shoreline accretion and ocean shoreline erosion

trends were observed on the southernmost island.

Wave Classification
Northern and southern Manihi and Manuae are exposed to

different wave fields with average annual wave energy fluxes

(during the period 1997–2011) of 5.7, 5.8, and 21.9 kW/m of

wave crest, respectively. Using the K-means algorithm de-

scribed in the ‘‘Methods’’ section, the wave classifications of the

three wave time series show differences in the dominant

direction of incoming wave energy (Figure 8).

The N rim of Manihi is exposed to the open ocean and is thus

affected by waves arriving from the N and NE (Figure 8a).

Waves arriving from the N are usually rather weak, with the

exception of infrequent, energetic storms and cyclones

(Créocéan, 1995). The majority of these waves classes have a

mean wave height of 1 m or less, while the wave class

corresponding to northern storms and cyclones has a mean

significant wave height of 2.9 m (and a percentage annual

occurrence of 0.4%).

The two wave time series at Manihi show a high percentage

annual occurrence of trade waves, which are especially

dominant on the southern side of Manihi (Figures 8a and b).

Owing to the shielding of the southern rim of Manihi from

southern waves caused by the presence of an atoll ‘‘barrier’’ to

the south in the Tuamotu Islands (Figure 2), the rim is

Figure 5. Observed changes on Manihi: (a) surface area changes for each island, and examples of 1961 (dotted line) and 2001 (solid line) shorelines, overlaid on

the historical aerial photographs for islands on the (b) northern and (c) southern atoll rims. The lettered boxes in (a) indicate the location of insets (b) and (c).
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primarily exposed to waves originating from the east, created

by the trade winds.

In contrast, Manuae is an isolated atoll that is directly

affected by waves arriving from all directions (Figure 8c, Table

2), with a total wave energy flux nearly four times as large as

that observed at Manihi. The wave classification shows that

southern waves (excluding SE waves) occur during 39% of the

year and represent 46% of the incoming wave energy flux

affecting the atoll. The next most important wave modes are

the trade waves and SE waves (21% and 20% annual

occurrence, respectively). Long period swell and large waves

also arrive from north and west of Manuae, but waves

originating in the south and east dominate the annual

occurrence and wave energy flux of the atoll (Table 2).

DISCUSSION
During the study period, the islands on Manihi were

relatively stable or showed an increase in surface area,

whereas the islands on Manuae generally decreased in surface

area. In addition, within each atoll, ocean and lagoon shoreline

changes varied in different geographic regions. The accumula-

tion of sediments on islands is determined by a variety of

factors such as waves and cyclones, currents, reef-building

organism distribution, and the reef geometry and size

(Gourlay, 1988; Stoddart, 1969), as well as anthropogenic

activities and sea-level rise. Together these factors cause

changes in island shoreline position and total surface area.

The complexity of the coastal environment and a lack of data

prevent a quantitative analysis of the influence of these factors

but allow a qualitative analysis of their relative importance to

understand better the causes of the observed multidecadal

island evolution.

Shoreline Response to Forcing Factors

Anthropogenic Activities
Human activities, in the form of sediment dredging,

agriculture, pearl farming, tourism, and construction of

buildings and protective shoreline structures may all have

direct and indirect impacts on island sediment budgets and

shoreline change (Aubanel et al., 1999; Ford, 2012). Only two

islands on Manihi show evidence of direct shoreline modifica-

tion: the first as a result of the construction of a port and the

stabilization of the shoreline in the village (Figures 9a and b),

and the second as a result of the construction of an airport

runway (Figures 9c and d). In both cases, the total island area

increased because of land reclamation. However, the indirect

impacts of human activities on atoll island surface area and

shoreline changes (i.e., changes in sediment supply and

transport patterns resulting from sediment mining, dredging,

reef health, etc.) were unable to be evaluated.

Figure 6. Observed changes on Manuae: (a) surface area changes for each island, and examples of 1955 (dotted line) and 2008 (solid line) shorelines, overlaid on

the historical aerial photographs for islands on the (b) NE and (c) SE atoll rims. The lettered boxes in (a) indicate the location of insets (b) and (c).
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Sea-Level Rise
Sea-level rise is hypothesized to cause ocean shoreline

erosion and possible loss or lagoonward ‘‘rollover’’ of islands

in atoll environments (Dickinson, 1999). In addition to

increasing the water level relative to the beach, sea-level

rise may also increase the water depth over the adjacent reef

and therefore leave the atoll ocean shorelines exposed to

higher wave energy (Sheppard et al., 2005). Many studies use

the Bruun Rule (Bruun, 1962) to estimate shoreline retreat,

but the Bruun Rule states that sea-level rise results only in

shoreline erosion. However, in this study, no islands on

Manihi and only two islands on Manuae demonstrated ocean

shoreline erosion trends larger than the estimated errors

(Figure 7). While sea-level rise likely has an important role in

governing the long-term shoreline accretion and erosion of

these atoll islands, it is unable to explain the observed

variability in shoreline change rates. In addition, these

observations suggest that, during the study period, Manihi

and Manuae have been resilient to sea-level rise rates that

are greater than the global mean.

Cyclones and Waves
Island exposure to waves provides an attractive and simple

explanation for the observed morphology, sedimentary char-

acter, and distribution of atoll islands (Kench et al., 2006).

While average annual wave energy fluxes affecting the

northern and southern rims of Manihi are very similar,

differences in exposure to steady waves and extreme events

may play an important role in controlling shoreline changes.

Incoming waves breaking across the reef provide energy that

may break up the reef and transport bioclastic sediments

landward. The impacts of cyclones may increase the sediment

transport potential (Harmelin-Vivien and Laboute, 1986),

contributing to larger shoreline accretion on the NW rim of

Manihi. Large wave events directly affecting the northern atoll

rim may also have indirect impacts on the southern atoll rim

via lagoon flushing, as observed on the nearby atoll Manihiki

(Callaghan et al., 2006). At Manihi, lagoon flushing can only

occur through the one narrow pass, Tairapa, or through the

frequent, narrow channels between islands on the SE rim (e.g.,

Figures 3 and 5c), which are common features on atolls exposed

to hurricanes (Stoddart and Fosberg, 1994). Field surveys, such

as that of Callaghan et al. (2006), with additional measure-

ments of morphological changes or anecdotal evidence from

past events, are necessary to validate such a hypothesis.

At Manuae, the large wave energy flux suggests a high

potential for sediment transport on the ocean shoreline of the

southern and eastern atoll rims. In contrast, waves from the

NW do not account for a large fraction of the total wave

energy flux, but storms originating from this direction may

cause both elevated sea levels and wave propagation over the

western reef flat and across the lagoon. Waves propagating

across the lagoon may cause subsequent erosion on the

lagoon shoreline of the eastern rim, as evidenced by the

lagoon shoreline erosion observed on the NE rim (Figure 7b).

Finally, following the classification of Tuamotu atoll rims

developed by Andréfouët et al. (2001), the dominance of

submerged areas on the SE atoll rim (Figure 3b) is suggestive

of recurring erosion from southern swell, as observed on the

Figure 7. Observed ocean (ROCEAN) and lagoon (RLAGOON) shoreline change rates on (a) Manihi and (b) Manuae. The gray points correspond to islands showing

no significant (above the limit of estimated errors) lagoon and ocean shoreline changes. The point shape (see legends) identifies the island’s geographical location

on the two atolls, as defined by the black lines in Figures 5a and 6a.
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SE atoll rim (e.g., Figure 6c). As at Manihi, field surveys

measuring the local ocean and lagoon wave field and

currents, as well as morphological changes, are needed to

validate such hypotheses.

Biological Factors
Very few data exist concerning the health of reefs at Manihi

and Manuae, and the impact of biological factors on sediment

budgets was unable to be evaluated in this study. It is,

Table 2. Wave classes identified by a K-means algorithm for the 1997–2011 wave time series at Manuae, grouped by wave mode.

Wave class Season Origin Hs (m) T (s) D (degrees) Occurrence (%)

N and W Humid NW 2.1 9.5 316 1.9

N and W Humid NNW 1.7 17.6 331 2.4

N and W Humid W 1.7 13.9 272 2.8

N and W Humid N 1.5 14.3 357 4.1

Summer E Humid ENE 1.5 11.5 53 4.6

Summer E Humid E 1.6 16.5 78 3.4

Trade (E) Annual ESE 1.7 8.6 107 7.7

Trade (E) Annual ESE 1.7 12.9 110 8.9

Trade (E) Mostly dry SE 2.3 8.9 139 5.8

SE Mostly dry SE 2.0 15.1 141 7.9

SE Mostly dry SSE 1.6 11.4 150 11.7

S Mostly dry S 1.6 11.5 193 8.6

S Mostly dry S 1.9 13.8 170 13.0

S Mostly dry S 2.0 14.3 199 11.1

S Mostly dry S 2.1 16.9 182 6.2

Figure 9. Observed island shoreline changes on Manihi caused directly by human activities: (top) the enlargement of the town of Turipaoa and the construction of

a port and (bottom) the construction of an airport runway. The location of the insets is shown by the boxes in Figure 3a.
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however, important to note that atoll islands depend on

nearby, offshore reefs as a primarily source of carbonate

sediments (Stoddart, 1969). A variety of stresses, such as the

introduction of nonnative species and direct damage to reefs

from tropical cyclones, coral mining, and fishing, as well as

changes in sea level, sea surface temperature, salinity, ocean

acidity, water quality, and turbidity, (Mimura et al., 2007),

may directly damage reefs or cause coral bleaching (the loss of

symbiotic algae and/or pigments) (Nicholls et al., 2007) and

eventual mortality.

Study Limitations
The study results are based on the analysis of remote

sensing images, which provide snapshots of the islands at two

different periods in time. It is unlikely that island shoreline

changes were homogeneous during the 40 to 50-year study

period as a result of variations in the wave field and episodic

extreme events that may have caused large changes in short

time periods (Harmelin-Vivien, 1994; Maragos, Baines, and

Beveridge, 1973). Ballu et al. (2011), Bayliss-Smith (1988),

Stoddart (1990), and others also emphasize that there may be

an offset between the time scale of processes affecting the

shoreline position and the time scale of shoreline changes.

In addition, the high costs associated with in situ measure-

ments prevented ground truthing of the observed shoreline and

surface area changes. These limitations, and the uncertainties

inherent in the image analysis (discussed in the ‘‘Methods’’

sections) suggest that these observations of shoreline and

surface area changes must be interpreted with caution.

However, owing to the paucity of available observations of

multidecadal island surface area and shoreline changes, it is

important to make use of existing data as a first step in

studying atoll island changes. Future studies can build on

these results with the availability of more frequent remote

sensing observations and in situ measurements of wave

conditions and morphological changes.

Future Changes to Forcing Factors
Attempts to predict future atoll evolution are restricted by

the limited, but increasing number of measurements of

historical atoll island shoreline changes, as well as limited

understanding of the principal factors causing these changes,

and how these factors evolve in time. Many studies try to

predict future coastal change with simple conceptual models

such as the Bruun Rule. However, this model has not been

adequately verified with observations (Cooper and Pilkey,

2004), and the basic model assumptions are generally not

satisfied in coral reef island environments (Cowell and

Kench, 2001). Instead, Pilkey and Cooper (2004) recommend

making predictions based on observations of past changes

combined with expertise regarding the local context and

expectations of future change.

This study estimates historical shoreline changes on islands

on Manihi and Manuae. However, one must take caution before

extrapolating these historic trends to predict future shoreline

changes because of limited knowledge of how the forcing factors

may change. Increased human pressure, as already observed

on some highly developed atolls (e.g., Tuvalu; Connell, 2003),

may enhance anthropogenic impacts, while climate change

may affect wind and wave regimes (including cyclones) or cause

an acceleration of sea-level rise (Nicholls and Cazenave, 2010),

disrupting the existing shoreline change dynamics.

CONCLUSIONS
Analysis of historical and recent aerial photographs and

recent satellite images shows distinct island shoreline and

surface area changes on the atolls Manihi and Manuae. The

islands on Manihi were primarily stable or increasing in

surface area, whereas the islands on Manuae primarily

decreased in surface area. Each atoll was divided geograph-

ically into two regions showing distinct ocean and lagoon

shoreline change trends. Islands on the NW rim of Manihi

showed larger ocean shoreline accretion rates than those on

the SE rim, and no overall lagoon shoreline change trends

were observed. Islands on the NE rim of Manuae experienced

lagoon shoreline erosion and ocean shoreline accretion, while

the opposite trend was observed for islands on the SE rim. An

analysis of the wave climate affecting the two atolls shows

that the annual energy flux at Manuae is nearly four times

greater than that at Manihi. Trade waves are an important

source of energy on both atolls, but the largest wave events

impact the northern rim of Manihi and the southern rim of

Manuae.

Although many studies suggest that atoll islands are eroding

as a result of sea-level rise, this work supports the hypothesis,

in agreement with the results of Webb and Kench (2010), that

recent rates of climate-induced sea-level rise are not the

primary factor controlling shoreline change variability in these

environments at this time. The observations in this study

suggest that atoll islands have persisted over multidecadal

time scales with sea-level rise rates of approximately 3 mm/y

during the last 60 years (a rate significantly higher than the

global mean).

The observed island shoreline change variability is hypoth-

esized to be related to the variability in wave exposure. While

the northern and southern rims of Manihi are exposed to

similar annual average wave energy fluxes, the northern rim of

Manihi is exposed to infrequent, large wave events that may

contribute to the enhanced ocean shoreline accretion rates

observed there. On Manuae, the exposure of the eastern rim

lagoon shoreline to waves propagating across the interior of the

lagoon may explain the observed erosion trends, while the

southern rim’s constant exposure to intense southern swell

may explain the observed ocean shoreline erosion. However,

detailed observations of nearshore waves, currents, and

morphological changes are needed to validate these hypothe-

ses.

This study contributes to the growing body of knowledge of

atoll island shoreline changes with multidecadal observations

on the atolls of Manihi and Manuae. However, with predictions

of future changes in waves, cyclone intensity, sea-level rise, sea

surface temperature, and human-induced pressure, one must

be cautious when extrapolating observations of historical

shoreline change to predict future shoreline change. Continued

and additional surveying of atoll islands and their response to

varied forcing conditions is crucial for improving understand-

ing of historical changes and for predicting future change.
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A RÉSUMÉ A

Une analyse de la mobilité du trait de côte au cours des cinquantaines dernières années a été réalisée sur deux atolls de Polynésie Franaise (Pacifique Sud):

Manihi (Nord-ouest de l’archipel des Tuamotus) et Manuae (Est de l’archipel des ı̂les de la Société). La mobilité de la limite de végétation permanente a été

extraite de photographies aériennes anciennes de 1955 ou 1961 et d’images satellites à haute résolution acquises dans les années 2000. Cette analyse a nécessité

le géoréférencement des photographies aériennes puis la digitalisation des limites successives de la végétation permanente. La ligne de végétation permanente a

été utilisée comme marqueur des mouvements de basse fréquence du trait de côte (i.e., échelles de temps pluri-décennales). En effet, elle demeure aisément

identifiable aussi bien sur les images anciennes que récentes tout en s’émancipant des variations à haute fréquence (marée, surcote etc.) et des difficultés de

pointage de certains marqueurs sur les photographies anciennes. Les incertitudes liées au géoréférencement et à la digitalisation du trait de côte ont été

évaluées et conduisent à ne considérer que des mouvements supérieurs à 5m sur la durée considérée. Dans de trés nombreux ı̂lots (motu), des changements de

plus grande ampleur sont observés et sont de fait sont considérés comme significatifs. Ils indiquent une tendance générale à l’érosion à Manuae et à l’accrétion à

Manihi. Cependant, au sein d’un même atoll, nous observons une grande variabilité des évolutions des limites de végétation des motu : ainsi, la plupart des motu

sont en accrétion côté lagon et côté océan à Manihi, toutefois, certains sont en érosion côté océan, côté lagon ou bien des deux côtés. Dans ces deux atolls peu

anthropisés, les aménagements ne modifient la ligne de rivage que dans deux des 47 motu étudiés (quarante-et-un à Manihi, six à Manuae). Selon Becker et al.

(2012), l’élévation du niveau marin, dans cette partie du Pacifique, a été supérieure à la moyenne globale depuis 60 ans. Des études antérieures suggèrent que

l’élévation du niveau marin induit une érosion des ı̂lots notamment sur leur face océanique. Ces effets n’apparaissent pas dominants dans les deux atolls étudiés.

Au contraire, la tendance d’évolution du trait de côte obsevée n’est pas homogène sur l’ensemble des ı̂lots et ne semble donc pas liée à la remontée du niveau

marin. En revanche, l’analyse des climats de vagues sur ces deux atolls ainsi que des relations entre la position des motu au sein de l’atoll et l’évolution des traits

de côte suggèrent que leur mobilité est dominée, au cours des cinquante dernières années, par les effets des vagues.
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Abstract
Eleven-year long time series of monthly beach profile surveys and hourly incident wave conditions are analyzed for a
macrotidal Low Tide Terrace beach. The lower intertidal zone of the beach has a pluriannual cycle, whereas the upper beach
profile has a predominantly seasonal cycle. An equilibrium model is applied to study the variation of the contour elevation
positions in the intertidal zone as a function of the wave energy, wave power, and water level. When forcing the model with
wave energy, the predictive ability of the equilibrium model is around 60% in the upper intertidal zone but decreases to
40% in the lower intertidal zone. Using wave power increases the predictive ability up to 70% in both the upper and lower
intertidal zones. However, changes around the inflection point are not well predicted. The equilibriummodel is then extended
to take into account the effects of the tide level. The initial results do not show an increase in the predictive capacity of the
model, but do allow the model free parameters to represent more accurately the values expected in a macrotidal environment.
This allows comparing the empirical model calibration in different tidal environment. The interpretation of the model free
parameter variation across the intertidal zone highlights the behavior of the different zones along the intertidal beach profile.
This contributes to a global interpretation of the four model parameters for beaches with different tidal ranges, and therefore
to a global model applicable at a wide variety sites.
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Bordeaux 1, Talence, France

6 CNRS, UMR LETG 6554, Université de Bretagne
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1 Introduction

Predicting the temporal variability of shoreline position
in response to hydrodynamic forcing (waves and tides)
is of primordial interest to coastal scientists, engineers,
and beach managers. Shoreline positions along sandy
coasts vary over a range of temporal and spatial scales
in response to a wide range of physical processes (Stive
et al. 2002; Masselink et al. 2016; Suanez et al. 2015).
On short timescales ranging from hours to days, individual
storms causing variations in the wave energy arriving
at the coast may be the dominant process impacting
shoreline change and sediment transport processes. At these
timescales, cross-shore processes often dominate observed
beach changes (e.g., Davidson and Turner 2009; Yates
et al. 2009; Hansen and Barnard 2010; Castelle et al.
2014). Understanding beach profile response to energetic
waves and subsequent calm periods is crucial, especially as
rising seas encroach upon coastal infrastructure and climate
change may modify storm frequency and intensity (Stocker
2014; Ludka et al. 2015).
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Beach profile response to hydrodynamic forcing has long
been studied. Previous works (Bruun 1954; Dean 1977,
1991) demonstrated that beaches tend to form equilibrium
profiles in response to constant wave forcing, and these
studies developed empirical functions to describe the
observed equilibrium profile shapes. Furthermore, Wright
et al. (1985) showed that with varying wave conditions,
instantaneous beach profiles are also function of the state
of the beach. These concepts have been used in a variety
of empirical models to study shoreline position changes on
timescales of days to years on sandy beaches dominated
by cross-shore processes (e.g., Miller and Dean 2004;
Davidson and Turner 2009; Yates et al. 2009, 2011;
Davidson et al. 2010, 2013; Castelle et al. 2014; Ludka
et al. 2015). These models simulate shoreline variations as
a function of wave conditions and the previous shoreline
position. Yet, shoreline position models need extensive
historical observations, are calibrated for each specific site,
and have been applied primarily on microtidal beaches
(Yates et al. 2009; Splinter et al. 2014; Ludka et al.
2015). Results on such beaches show that when cross-
shore processes are dominant, the model performs well
with an efficiency of approximately 80% (e.g., Yates
et al. (2009) and Ludka et al. (2015) or Splinter et al.
(2014), when the model is forced with the wave energy
or Dean number, respectively). Recently, Castelle et al.
(2014) suggested that equilibrium shoreline models can be
extended and applied to a range of elevation contours in
the intertidal zone to evaluate the effect of wave energy at
different altitudes along the intertidal beach profile, with an
efficiency between 55 and 65% depending on the altitude
in the intertidal zone (between Mean Sea Level (MSL) and
Highest Astronomical Tide (HAT)).

Macrotidal environments experience different wave
conditions and hydrodynamic processes depending on the
elevation in the intertidal zone. This complicates the
understanding of beach morphodynamics due to temporal
variations in the (1) the impacts of wave-driven processes
across the intertidal zone and (2) the wave energy
dissipation over the subtidal zone. At low tide, waves are
highly dissipated over the foreshore zone, and the wave
energy reaching the beach may be significantly lower than
the offshore wave energy. This dissipation is less important
at high tide, and the wave energy reaching the upper
intertidal zone of the beach may be comparable to the
offshore wave energy. During a tidal cycle, the position
of the swash, surf, and shoaling zones shift with the tide
both vertically (in altitude) and horizontally (along the
intertidal profile), causing the intertidal beach profile to
be impacted by different hydrodynamic processes during
different phases of the tidal cycle (Masselink and Short
1993). The most sediment transport occurs in the surf and
swash zones (e.g., Kroon and Masselink 2002; Masselink

et al. 2006; Price and Ruessink 2008). Therefore, the
use of a simple equilibrium model to study shoreline
position changes on macrotidal beaches may highlight the
differences in sediment transport in each of these zones.

In macrotidal environments, a typical beach profile
experiencing strong morphodynamic variability over the
intertidal zone is the Low Tide Terrace profile as defined
in Masselink and Short (1993). A Low Tide Terrace (LTT)
profile is a compound profile consisting of a reflective
zone on the upper beach and a dissipative zone on the
lower beach. LTT profiles appear for low dimensionless fall
velocity (� < 2) and strong Relative Tide Range (h/Hs >

7) (Masselink and Short 1993). Many observations of beach
profile changes show that the magnitude varies significantly
along the cross-shore profile, caused by large variations in
the local beach slope (Miles and Russell 2004; Qi et al.
2010; Almeida et al. 2018). In fact, Miles and Russell
(2004) suggest that the dynamics of a LTT beach exhibit
characteristics of both dissipative and reflective sites. In
addition, Miles and Russell (2004) show that with an
increase in the beach slope and a corresponding decrease
in the surf zone width, the upper part of the beach is more
dynamic and reactive than the lower part, with sediment
transport rates that can be one order of magnitude larger.

Empirical models have been shown to predict well the
variations observed in the upper intertidal zone of reflective
(Yates et al. 2009), dissipative (Splinter et al. 2014), or
barred dissipative (Castelle et al. 2014) beaches, but have
never been tested on LTT beaches. The application of an
equilibrium model at multiple elevation contours along the
intertidal beach profile may improve our understanding
of LTT beach behavior, and allow a more detailed study
of the link between physical processes and the free
parameters required in empirical models. Improvements in
understanding these parameters contribute to generalized
expressions of the model constants.

This paper investigates the ability of an empirical model
(based on Yates et al. (2009) and Castelle et al. (2014) to
predict the pluriannual morphodynamics of the intertidal
zone in a macrotidal environment (i.e., a sandy LTT beach)
driven by cross-shore processes, by exploring changes in
cross-shore position of a range of elevation contours. This
study proposes a new approach to take into account the
effects of changing water levels (e.g., tidal effects) by
defining a vertical threshold within which the wave energy
may cause changes in the cross-shore position of a given
altitude, considering that most changes occur in the surf
and swash zones. First, the study site and morphological
and hydrodynamic data are described (Section 2). Then,
the extension of an existing equilibrium shoreline change
model (Yates et al. 2009; Castelle et al. 2014) to take
into account the effect of the instantaneous water level is
described in Section 3, and the results are presented when
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the model is forced with the wave energy or wave power
(Section 4). Finally, the accuracy and erosion/accretion rates
of empirical equilibrium models applied on beaches with
different tidal ranges are compared (Section 5).

2 Study site and data

2.1 Study site

This study focuses on a macrotidal embayed beach
(Porsmilin beach), located in western Brittany (France) on
the Iroise sea coastline (Fig. 1). Porsmilin beach is an
embayed barrier beach flanked by cliffs to the East and
West, and backed by colmated brackish water marshes to
the North. The intertidal zone is 200 m wide and 200 m
long (Fig. 2) and the median sediment grain size (d50)
is 320 μm. It is bounded (to the East and West) by
headlands and bedrock, which extend offshore and obstruct
the alongshore sediment transport generated in the surf
zone. The alongshore sediment flux is assumed negligible
since the shoreline does not exhibit rotational behavior
(Floc’h et al. 2016). According to the Masselink and Short
(1993) classification, Porsmilin beach is a Low Tide Terrace
beach. The primarily cross-shore dominant morphological
processes (Dehouck et al. 2009) make this sandy beach an
ideal site to study cross-shore variations along the intertidal
profile using an empirical equilibrium model (Yates et al.

2009). Because of the large tidal range at Porsmilin beach
(between 3.5 and 7 m), the evolution of the upper and
lower intertidal zone vary significantly for the same incident
wave conditions. Biannual bathymetric surveys acquired
from 2009 to 2018 show that the subtidal bathymetry of the
foreshore steadily increases, without occurence of sandbars.

Due to its orientation in the Iroise Sea (Fig. 2), Porsmilin
beach is mainly impacted by southwest waves that have
peak periods between 8 and 10 s. The Iroise Sea is a
highly energetic, wave-dominated environment, and 1 and
10 year significant wave height return periods are 11.3 and
14.5 m (in 110 m water depth at the West of Ouessant
Island) (Dehouck et al. 2009). The tide is semi-diurnal and
symmetric, with a mean spring tidal range of 5.7 m and
a mean spring tidal current of 0.4 m/s in Bertheaume Bay
(SHOM 1994), where Porsmilin beach is located. Along
this rocky coastline, wave propagation is considerably
affected by refraction and diffraction processes generated
by the local bathymetry, including the wide continental
shelf, offshore shoals and islands (Ouessant Island, Molene
archipielago), and local headlands. Hence, oceanic swells
that reach the shoreline have a quasi-normal incident angle
and already have dissipated a large amount of energy,
resulting in moderate wave energy conditions at Porsmilin
beach. Wave conditions are calculated using theWaveWatch
III (WWIII) numerical model, by selecting the output point
closest to Porsmilin Beach, approximately 2 km offshore in
20 m water depth. Between 2002 and 2014, the annual mean
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Fig. 2 Planview of the
morphological characteristics of
the Porsmilin beach

significant wave height was 0.76 m, and the seasonal means
in autumn, winter, and spring were 0.7, 1.08, and 0.7 m
respectively.

2.2 Beach profiles surveys

Monthly cross-shore surveys were completed from January
2003 to January 2014 (Figs. 2 and 3) with a Differential
Global Positioning System (DGPS) RTK (referenced to
the French topographic datum IGN69). During this period,
174 profiles of beach sand levels were measured along a
single cross-shore transect with 1 m horizontal resolution.

Along each profile, the data is then interpolated to a 0.1 m
horizontal resolution. Depending on the tide level during the
survey, each cross-shore profile has a different length, with
152 profiles extending vertically over the entire intertidal
zone from − 1.0 to 4.1 m (IGN69).

As a LTT beach, the intertidal beach profile can be
divided into two main parts: (1) a reflective zone from the
Mean High Water Spring (MHWS) level (3.4 m IGN69)
up to the Mean High Water Neap (MHWN) level (1.6 m
IGN69) with a mean slope of 0.08 and (2) a dissipative
zone below the MHWN level with a mean slope of 0.02.
The MHWN level therefore corresponds to an inflection

Fig. 3 Cross-shore profiles at
Porsmilin from January 2003 to
January 2014, indicating the
mean beach profile (red), as well
as the Mean High Water Spring
(MHWS), Mean High Water
Neap (MHWN), and Mean
Water (MW) levels
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point along the intertidal beach profile. In order to study
the behavior of different parts of the intertidal beach profile,
the temporal evolution of the cross-shore position of three
specific elevation contours, MHWS, MHWN, and the Mean
Water (MW, 0.4 m IGN69) levels, are shown (Fig. 4).
The upper intertidal zone of the beach (represented by
the MHWS elevation) shows a mainly seasonal behavior,
with erosion during winter, rapid recovery during early
spring, and slow accretion during late spring and summer.
From 2003 to 2006, the upper part of the beach accreted
rapidly at a rate of about 5 m/year. Then, the mean position
of the MHWS level remained stable from 2006 to 2010,
before experiencing a small erosional trend of 1 m/year
from 2010 to 2014, but still not reaching the most eroded
measured profile of 2003 (or after the extreme event of
winter 2013/2014 (Blaise et al. 2015)). Moving lower down
the profile, the inflection point (MHWN) shows a clear
pluriannual cycle of about 3 or 4 years: from 2003 to
2005, MHWN progrades, and from 2005 to 2007 it retreats,
coming back to the same position as in 2003. The same
cycle occurs from 2007 to 2011 and from 2011 to 2014,
with smaller amplitude changes and a net accretion trend
(1.7 m/year from 2008 to 2014). The lower intertidal zone
of the beach represented by the MW level shows mixed
behavior, with a pluriannual cycle before 2008 and a more
seasonal cycle after 2008. Contrary to the upper intertidal
zone or MHWN level, erosion occurs during summer and
accretion during winter. From 2010 to 2014, the MW
elevation tends to prograde by 2 m/year. This preliminary

analysis of three individual contour elevations shows the
importance of evaluating the whole intertidal profile instead
of focusing on a single contour elevation: overall, the upper
intertidal zone erodes slightly, while the middle and the
lower intertidal zones accrete.

2.3Wave and tide data

Hourly wave conditions in 20 m water depth from the
numerical model WWIII are used from January 2002
to January 2014 (NorGas configuration until 2008, then
NorGas-UG configuration at the grid point 4◦ 40.66′ W,
48◦ 33 N, Tolman (1991)). The WWIII model outputs
were compared to observations collected by an Acoustic
Doppler Current Profiler (ADCP) deployed during two field
experiments (25 November to 31 December 2013, and 24
September to 8 November 2014) at the same coordinates
in 20 m water depth. The linear fit between the modeled
(HswwIII ) and measured (HsADCP ) wave heights confirm
the model’s skill, with a correlation coefficient of 0.88 and
a slope of 1.6 (Fig. 5). It is noted that the larger Hs values
(> 1.5 m) are underpredicted by WWIII.

The mean period (T m) and significant wave height (Hs)
from WWIII are not linearly related. Therefore, in order
to consider the impacts of both the wave height and wave
period variability in the empirical model, wave energy and
wave power (taking into the effects of the wave period) are
tested to force the model. The mean period (T m) data is only
available between January 2008 and January 2014, which

Fig. 4 From top to bottom
Temporal evolution of the
cross-shore position of the
MHWS, MHWN, and MW
levels from the in situ data
(black crosses), interpolated
data (gray line) and 100-day
averaged data (thick black line)
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Fig. 5 Scatter diagram of the significant wave height from the
numerical model WWIII (HsWWIII ) and significant wave height
from an ADCP (HsADCP ) located near the considered WWIII node,
showing the linear regression (black line, y = 1.6x + 0.2) with a
correlation coefficient of 0.88

corresponds to 66 beach profiles. Finally, hourly estimates
of the tide level (2002 to 2014) from the SHOM (National
Hydrographic Service) are used from the grid point 4◦
49.48 W, 48◦ 38.29 N.

3 Equilibriummodel

3.1 Model description

An equilibrium shoreline model (Yates et al. 2009; Castelle
et al. 2014) is applied at discrete elevations along the
intertidal beach profile, ranging from − 1.0 to 4.1 m (every
0.1 m). The model simulates temporal changes of the
cross-shore position of each elevation contour using an
equilibrium approach based on the theory that a beach
adapts to form an equilibrium profile in response to given
wave conditions (Wright et al. 1985). The rate at which the
beach evolves towards equilibrium is a function of both the
intensity of the wave forcing (e.g., wave energy or power)
and the disequilibrium between the current and equilibrium
conditions (defined as a function of the current contour
position S), which causes the beach to erode or accrete. In
this study, the model developed by Yates et al. (2009) is used
for predicting changes in the cross-shore position (dS/dt),
which depend on both the wave energy (E) and the wave
energy disequilibrium (�E):

dS/dt = C±E1/2�E (1)

with

�E = E − Eeq(S) (2)

where C± are rate change coefficients for accretion (C+ for
�E < 0) and erosion (C− for �E > 0). The equilibrium
wave energy (Eeq) is defined as a linear function of the
cross-shore position Eeq(S) = aS+b (a and b are constants

for a given elevation). Since the mean wave period has
been shown to have significant impacts on the intertidal
zone beach morphodynamics (Floc’h et al. 2016), model
tests will also include replacing the wave energy with
the wave power in Eq. 1. The model developed in Yates
et al. (2009) has four free parameters: a and b determining
the equilibrium energy for each cross-shore position, and
C± the accretion and erosion coefficients. Here, following
Castelle et al. (2014), a fifth free parameter, d, is added to
reduce the dependence of the model on the initial cross-
shore position. This parameter represents a deviation of
the mean position that is used to initiate the timeseries. A
simulated annealing (Barth and Wunsch 1990) algorithm is
used to obtain the five free model parameters by minimizing
the root-mean-squared error (RMSE) between the model
and observations. The number of profiles used to calibrate
the model at each of the selected elevations varies from
152 to 174. The number of iterations is 700,000, with
a minimum number of loops of 400. In the simulated
annealing algorithm, the range of free parameter values
in which the optimization occurs has to be defined for
each parameter. In previous studies conducted in micro-
and mesotidal environements, the equilibrium function Eeq

is always a negative linear function of the cross-shore
position, leading to a negative slope a for every considered
altitude. This indicates that erosion always occurs for
high wave energy and accretion for low wave energy.
To define the range of free parameter values a required
for the optimization, the observed accretion/erosion rate
is analyzed across the cross-shore profile. When plotting
erosion/accretion rate as a function of the cross-shore
position and the incident wave energy at different elevation
contours and fitting the linear equilibrium function (Fig. 6),
the slope is negative on the upper intertidal zone of the
beach (close to − 0.1 m2/m), close to 0 at the inflection
point, and positive on the lower intertidal zone of the beach
(close to 0.1 m2/m). From these fits, one can deduce that at
the inflection point, the cross-shore position of the elevation
contours does not depend on the wave energy and that on
the lower intertidal zone of the beach, accretion occurs
for strong wave energy events and erosion for low wave
energy events (i.e., the opposite of the trend observed on
the upper intertidal zone of the beach). In order to verify
these preliminary results, the simulated annealing algorithm
searches for the five parameters over ranges that span
negative and positive values: − 0.5 to − 0.5 m2/m for a, − 2
to 2 m2 for b, and − 12 to 12 m.day−1/m3 for the accretion
and erosion coefficients C±.

3.2 Including tidal water level fluctuations

One important question is how to relate the model free
parameters to physical processes (e.g., realistic erosion and
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accretion rates C±) when at some altitudes, wave energy
only impacts the zone 5% of the time in reality, whereas
changes are simulated 100% of the time in the model.
Thus, it is important to take into account the tide level
when predicting beach morphological changes, especially
on meso- and macrotidal beaches. Here, a new approach
is proposed in the empirical model by allowing the cross-
shore position of the modeled elevation contour to evolve
only when it is in the surf or swash zones. This approach
requires defining the extent of the surf and swash zones. The
upper limit of the swash zone is defined as the vertical runup
extent. Many authors have tried to define a generalized
formula for the runup level, taking into account the beach
slope and/or wave parameters (Guza and Thornton 1982;
Holman and Sallenger 1985; King et al. 1990; Stockdon
et al. 2006; Senechal et al. 2011; Suanez et al. 2015;
Didier et al. 2017). For LTT beach profiles, Caulet et al.
(2017) and Almeida et al. (2018) have shown common
formula (e.g., Holman and Sallenger 1985; King et al. 1990;
Stockdon et al. 2006) underestimate the run up level and
do not represent well its temporal and spatial variability.
A good approximation of the maximum limit of the runup
extent seems to be the significant wave height (Caulet
et al. 2017). At the offshore side of the active sediment
transport zone, the surf zone offshore extent is often defined

proportional to the ratio of significant wave height and water
depth (Galvin 1972). The maximum water depth where the
breaking occurs on Porsmilin beach corresponds to twice
the significant wave height (Dehouck et al. 2009).

In the equilibrium model, a vertical threshold L is
defined to determine the spatial extent and therefore the
time periods during which the incident wave field causes
significant sediment transport around the given elevation
contour Z0 (see Fig. 7). First, L is chosen as a function
of significant wave height: L is taken equal to significant
wave height above the observed still water level (maximum
runup as upper limit, as described above) and to twice the
significant wave height below this elevation (surf zone limit
as lower limit). Second, in order to evaluate the impact
of this threshold on the model parameters, L is assumed
symmetric about the water level Z0 for simplicity and a
series of sensitivity tests are conducted, with L = 0.5,
1, 1.5, 2, 2.5, and 3 m. In the model, the difference
between the simulated elevation contour (Z0, Fig. 7a) and
the instantaneous still water level (hourly tidal predictions
obtained from the SHOM data) is calculated and compared
to this threshold. If the absolute value of this difference
is greater than L, then the simulated shoreline position
is not modified (blue zones, Fig. 7b). In this study, for
each simulation, the model skill was evaluated with the

Fig. 7 Diagram showing how
the water level is taken into
account in the equilibrium
mode: a beach profile with the
selected elevation contour Z0
and modeling threshold L, and
b tide level determining the time
periods (red) when the model
takes into account the wave
forcing to simulate change in the
contour elevation cross-shore
position
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R-squared coefficient (of determination) denoted R2, and
the root-mean-squared error (RMSE) between the modeled
and observed cross-shore position.

4 Results

4.1 Data analysis

In order to explain the observed elevation contour behavior,
the main modes describing the beach evolution are extracted
from an EOF (Empirical Orthogonal Function) analysis of
the detrended profile evolution timeseries (Aubrey 1979;
Aubrey et al. 1980; Larson et al. 2003; Karunarathna
et al. 2012). This analysis demonstrates that two principal
modes describe 64% of the cross-shore variability (Hamon
2014). The first EOF represents 36% of the beach variation,
showing variations in the upper intertidal zone, with
a seasonal berm appearing at the MHWS level during
summer, persisting through autumn, and then disappearing
progressively in winter and spring (e.g., along the cross-
shore profile between 10 and 60 m, Fig. 8). A fft (fast fourier
transform) analysis of the first temporal mode associated
with this spatial mode shows peaks at seasonal frequencies
similar to those of the significant wave height. The second
EOF represents 28% of the morphological changes showing
variations along the profile between the MHWN level down
to the lower intertidal zone of the beach (e.g., between 50
and 100 m, Fig. 8). The fft analysis associated temporal

mode shows a peak period at 3.8 years and only small
seasonal components. The temporal variability of this mode
is slightly correlated (29%) to the pluriannual behavior of
the lower part of the beach, shown in Fig. 3. Preliminary
comparisons show that this variability does not seem to be
related to the wave climate or other global climate factors
(e.g., NAO, ENSO, or WEPA indices, Gouirand and Moron
2003; Treguer et al. 2014; Castelle et al. 2017)

4.2 Empirical model application

During the investigated period, the wave energy at Porsmilin
beach varied seasonally. Between 2003 and 2014, the
winters of 2006, 2008, and 2010 were the most energetic
(Fig. 8), and the winters of 2008, 2010, and 2014 showed
maxima in the wave power. These time periods also
show large changes in contour position (e.g., Fig. 4),
suggesting the importance of the intensity and/or frequency
of storms during these winters. To test the accuracy of
the empirical equilibrium model in reproducing contour
elevation changes, the model was applied along the
intertidal beach profile, and Fig. 9 shows the model results
when the model is forced with the wave energy. Colored
lines show the cross-shore positions of different altitudes vs
time. Black crosses correspond to the in situ data acquired
at MHWS, MHWN, and MW levels. The thin black lines
show the empirical model results for these specific altitudes.
Figure 10 compares the predictive ability (RMSE) of the
empirical model when forced with wave energy or wave
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Fig. 9 Empirical model results forced by the wave energy for altitudes from − 1 m up to 4.1 m (IGN69) every 0.1 m (colored lines), in situ data
for MW, MHWN, and MHWS levels (black crosses), and the corresponding empirical model results (black thin lines)

power. For the wave power, only the period 2008–2014
is considered (due to lack of wave period data before
2008). For the wave energy, the predictive ability of the
model is similar is considering the period 2008–2014 or
the entire set of observations from 2002–2014. The model
using the wave energy reproduces well the variation of the
cross-shore position at seasonal and weekly scales on the
upper intertidal zone of the beach, down to an elevation
(Z) of approximately 2.2 m with an R2 > 0.5 (Fig. 10).
The best predictive ability of the model, with R2 = 0.6,
is observed at 3.4 m elevation (MHWS). The correlation
coefficient decreases to its minimum (10%) at the inflection
point and then increases up to 40% in the lower intertidal
zone of the beach. The model reproduces well the seasonal
component on the lower intertidal zone of the beach but
not the observed pluriannual cycle. Hence, the inflection
point behavior is not captured by the empirical model. The
predictive ability is improved if the model is forced with
the wave power: slightly in the upper intertidal zone (70%)
and strongly in the lower intertidal zone (70%), but no
improvement occurs at the inflection point (Fig. 9). Thus,
taking into account the wave period appears more important
in predicting the lower intertidal zone morphodynamics
than the upper intertidal zone morphodynamics where the
significant wave height is sufficient to explain 60% of the
variability. The significant wave height explains 40% of
the lower intertidal zone morphodynamics while the mean
period explains an additional 30%. The pluriannual cycle
(3.8 years) and the inflection point behavior remain poorly
reproduced.

Looking more closely at the model’s predictive ability on
short time scales, erosion is generally well reproduced in the
upper intertidal zone, including the periods of significant
erosion during the winters of 2006/2007 and 2013/2014
(Fig. 11). The performance of the model decreases during
periods of accretion, when the contour position change rate
is smaller, but the cumulative accretion may still be large.
Inversely, in the lower intertidal zone, accretion is well
reproduced and erosion is underestimated.

The free parameter a is negative as expected, above
the MHWN level (inflection point) with values between
− 0.25 m2/m and 0 m2/m (Fig. 12). Its value is quite

constant (− 0.2 m2/m) between MHWS and MHWN levels.
At the inflection point, the slope sign changes rapidly to a
positive value, of about 0.2 m2/m, which remains constant
for altitudes below 1.4 m IGN69. The free parameter b

remains between 1 and 2 m2 (Fig. 12). The erosion (C−)
and accretion (C+) coefficients increase from − 0.5 to
0 m day−1 m−3 at the inflection point (Fig. 12). At 1.0 m
IGN69, they increase suddenly to 0.5 m day−1 m−3 and
remain nearly constant for altitudes below 1.0 m IGN69.
Thus, the erosion and accretion rate coefficients also change
sign crossing the inflection point.

4.3 Effects of water level

In order to simulate more realistically the contour elevation
changes on a macrotidal beach, the water level is taken
into account as described in Section 3.2. Since wave period
data are only available after 2008, this adaptation is tested
with the model based on the wave energy in order to
use the whole dataset. The model takes into account the
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effects of the water level for six symmetric thresholds (L)
ranging from 0.5 to 3.0 m, every 0.5 m, and for a varying
threshold L that depends on the significant wave height.
The first important conclusion is that the model’s predictive
ability remains the same when applying the effect of the
tide level, independent of the threshold L (bottom right
plot in Fig. 13). The model is therefore able to reproduce
the same morphological changes even if the percentage
of wave conditions for which morphological changes are
simulated is decreased. For example, for L = 3 m, this
percentage is almost 100% for elevations between 0 and
1 m, but it decreases to 80% for elevations between 3.5
and 4 m, because the water level will be in the range
[tide level ± 3 m] only 80% of the time. This percentage
decreases for decreasing L. For L = 0.5 m, the maximum
percentage of wave conditions taken into account to model

the morphodynamical evolution of an altitude is only 20%.
The consequence of this threshold L is a reduction of
the time period when the cross-shore position evolves in
the model. The threshold has no impact on the optimal
linear equilibrium function, which does not depend on the
duration of the beach response, hence the parameters a and
b (Fig. 13). However, the threshold L strongly impacts the
rate coefficients that depend on the duration of the beach
response. The values of C± increase with a decrease in the
time period during which the elevation contour movement is
simulated, i.e., for decreasing values of L. For L = 0.5 m,
the most dynamic part of the beach (MHWS andMW levels)
reaches a variation rate of ± 4 m day−1 m−3. When L is
allowed to vary temporally proportional to the significant
wave height, the results are similar to those obtained with
L = 0.5 m for C+ and L = 3 m for C−.
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Fig. 13 Four free parameters of
Eq. 1 (using wave energy)
determined using the simulated
annealing to optimize the
prediction of the cross-shore
position S using Eq. 1 and the
associated predictive ability
(R2) considering the effects of
water level via different
thresholds L, ranging from 0.5
to 3 m, each 0.5 m, and for a
threshold L varying proportional
to the significant wave height
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5 Discussion

5.1 Empirical model application

This study applied an empirical equilibriummodel in amacroti-
dal environment for the first time. The model is calibrated
for a range of altitudes over the intertidal zone from − 1.0 to
4.1 m IGN69 (French Geographic Datum). The efficiency of
the empirical model forced by wave energy is 60% around
the MHWS and 40% around the MW level on a macrotidal
beach. This study shows that the empirical model developed
by Yates et al. (2009) and Castelle et al. (2014) is able to pre-
dict contour elevation variations in different tidal regimes
on the upper intertidal zone of the beach. This model is
able to predict the variation of the shoreline on a microtidal
beach with a higher efficiency of 90% (Yates et al. 2009,
2011; Ludka et al. 2015) and on a mesotidal beach with an
efficiency around 70% (Castelle et al. 2014). At Porsmilin
beach, where the mean wave period was shown to have an
important role in beach morphodynamics in previous stud-
ies, forcing the equilibrium model with the wave power
improved the predictive ability in the upper intertidal zone

of the beach from 60 to 70% and in the lower intertidal zone
from 40 to 70%.

Porsmilin beach is classified as a LTT beach (Masselink
and Short 1993) with a reflective upper intertidal zone and
a dissipative lower intertidal zone. At the inflection point in
between, the slope changes rapidly (near the MHWN level).
At Porsmilin, this is observed with mean slopes of 0.08
and 0.02 above and below MHWN. The behavior of each
zone is different as suggested by Miles and Russell (2004).
However, contrary to their observations, the lower part
of the beach exhibits significant morphological changes,
comparable to what is observed in the upper intertidal zone.
Above MHWN, high (low) incident conditions are related
to strong erosion (accretion), and 60% of the variability is
related to the significant wave height. Below MHWN, the
equilibrium function is inverted compared to the literature
on meso- and microtidal environments (Yates et al. 2009;
2011; Castelle et al. 2014; Ludka et al. 2015): high (low)
incident energy leads to accretion (erosion). This may be
expected if one considers that the erosion of the upper
intertidal zone of the beach leads to a transport to the lower
intertidal zone. Since the wave power is more important at
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high tide than at low tide (less dissipation over the shelf),
the erosion in the upper intertidal zone could lead to an
accretion in the lower intertidal zone. However, one must
note that the cross-shore elevation contours on the upper and
lower intertidal zone of the beach are not clearly correlated
and thus the sediment exchanges between the upper and
lower intertidal zone of the beach are not as simple as
suggested. The significant wave height explains only 40%
of the variability in the lower intertidal zone and the mean
wave period improves the predictions by nearly 30%. This
demonstrates the importance of the mean wave period
in the lower intertidal zone morphodynamics and shows
the different behavior of the dissipative and the reflective
zones. Contrary to the rest of the beach, the zone around
the inflection point is reproduced poorly by the empirical
equilibrium model. First, this region represented by the
MHWN level is shown to have a cross-shore position that
does not depend on the wave energy (a ∼ 0). In addition,
no seasonal cycle is observed but a strong pluriannual
component exists with a caracteristic period of 3–4 years
and a net trend of accretion, which is not reproduced
by the empirical equilibrium model, suggesting that the
forcing responsible for this pluriannual cycle is neither the
significant wave height nor the mean period. This variability
does not seem to be related to the wave climate or other
global climate factors (Gouirand and Moron 2003; Treguer
et al. 2014; Castelle et al. 2017), and more investigations
are needed to fully understand the beach dynamics on these
timescales.

Considering shorter time scales, erosion processes are
represented better than the accretion processes in the upper
intertidal zone, and, on the contrary, accretion processes are
well reproduced in the lower intertidal zone, but erosion is
underestimated (Fig. 11). Accretion in the upper intertidal
zone and erosion in the lower intertidal zone occur for low
incident wave energy. To improve the model’s predictive
ability above 70%, the low incident energy morphological
response needs to be reproduced better. For low incident
wave energy, the equilibrium position fixed by the linear
equilibrium function (and the fixed parameter a and b)
seems to underestimate the real position that can be reached
at the considered elevation. The beach reacts quicker than
the model to the incident wave energy and the upper (lower)
part of the beach progrades (retreats) more rapidly than
in the model. The linear equilibrium function may not be
a good hypothesis for low energy conditions, where the
equilibrium position does not reproduce well the maximum
(minimum) position observed on the upper (lower) part
of the beach. A function allowing for a varying slope a

as a function of the incident wave energy could be used,
with a smaller slope for low energy conditions, but more
studies are needed of low energy accretionary processes to
understand better the beach morphodynamical response.

5.2Water level and comparison with other study
sites

To take into account the effects of varying water levels,
the tide level is used in order to determine the time period
during which waves impact the intertidal beach morphology.
This leads to considering shorter periods of variation, thus
larger variation rates. In order to be able to compare study
sites located in different tidal environments, a threshold L

is proposed to take into account the water level in a range
about the astronomical tide level. This threshold is defined
between the maximum vertical runup observed on the study
site and the breaking point depth (i.e., the extent of the surf
and swash zones). Either a realistic threshold is considered,
following the variation of significant wave height (L = Hs

to model the maximum runup according to previous study
on LTT beaches (Caulet et al. 2017; Almeida et al. 2018)
and L = 2Hs considering the breaking index observed
on this study site (Dehouck et al. 2009)) or a constant,
symmetric threshold is considered to study the sensitivity of
the free parameters to the threshold L.

The empirical model converges to the same predicted
cross-shore position independent of the threshold L. Thus,
the efficiency of the model is the same, and the parameters
a and b do not change (the linear equilibrium function
remains unchanged). Only the coefficients C+ and C−
(accretion/erosion rates) change depending on the water
level threshold L, since the erosion and accretion rate
coefficients depend strongly on the duration of wave impact.
On the upper and lower limits of the beach, the model
simulates contour elevation changes as little as 20% of the
time, leading to the largest increases in the rate change
coefficients, as would be expected.

Without this threshold, the rate coefficients were in the
range [− 0.5; 0.5] m day−1 m−3. In the literature, the rate
coefficients are of the magnitude 4 m day−1 m−3 in a
microtidal environment (Torrey Pines (Yates et al. 2009))
and were in the range [− 3; 3] m day−1 m−3 in a mesotidal
environment (Truc Vert (Castelle et al. 2014)). Whereas
the vertical evolution of the free parameters a and b are
similar between the different study sites, the magnitude of
the change coefficients are different, with a minimum value
in the macrotidal environment. However, the dynamics at
Porsmilin have been shown to be quite rapid (Floc’h et al.
2016), expecting rate coefficients at least as large as on
other study sites. Introducing the tide level effects in the
model via the threshold L leads to larger rate coefficient for
smaller thresholds. For L larger than 1.0 m, the magnitude
of C± remains small. For L = 1.0 m, the magnitude of C±
reaches the range [− 3; 3] m day−1 m−3, as in Castelle et al.
(2014). The most dynamic zone appears to be theMHWS level
and between the MW and MHWN level. C+ increases
more than C− at MHWS level and C− increases more
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than C+ between MW and MHWN levels. The C+ and
C− coefficients allow considering different adaptation
velocities related to accretion or erosion process, but
comparing their magnitudes is not straightforward because
of the

√
E factor in Eq. 1, which is larger when considering

C− than C+. C+ has an important role when the incident
energy is lower than the equilibrium energy, which indicates
accretion and erosion above and below the MHWN level,
respectively (mean inflection point observed on this LTT
beach). The accretion in the upper intertidal zone is more
localized about the MHWS level while the erosion in the
lower intertidal zone seems to be spread over a large
spatial extent. When the threshold L varies as a function
of the significant wave height, the results are similar to
those obtained with L = 0.5 m for C+ coefficients,
which corresponds to the observed mean significant wave
height at Porsmilin. C− becomes important when the
incident wave energy is larger than the equilibrium energy,
which indicates erosion and accretion above and below
the MHWN level, respectively. The accretion in the lower
intertidal zone seems to be localized just below the mean
inflection point, when the slope a reaches its maximum
positive value (0.8–1 m IGN69). For the C− coefficients,
the results are similar to those obtained with L = 3 m,
suggesting that the majority of the beach is impacted during
larger storms (erosion events) and that the storms with
large Hs control the magnitude of the erosion rate change
coefficients.

6 Conclusion

This study assesses the predictions of pluriannual mor-
phological evolution of the intertidal zone on a Low Tide
Terrace (LTT) beach (Masselink and Short 1993) using
an empirical equilibrium model. The model shows a good
predicitve ability in the upper intertidal zone (60%) where
the sediment dynamics depend on the waves energy, while
the lower intertidal zone changes are reproduced at only
40%. The contours near the inflection point are poorly
reproduced by the model. Using the wave power instead of
the wave energy improves the predictive ability mostly in the
dissipative (lower intertidal) zone, where the significant wave
height explains 40% of the lower intertidal zone morpho-
dynamics while the mean period explains about 30%. The
observed pluriannual cycle and the inflection point behav-
ior remain poorly reproduced. The extension of the model
to take into account the effects of the water level during the
tidal cycle does not change the model’s predictive ability.
However, this extension does improve the physical inter-
pretation of the estimated erosion and accretion coefficients
and allows a comparison to other study sites with different
tidal ranges. Our results confirm that the upper zone of the

reflective section, which corresponds to the swash zone dur-
ing high tide of spring tide, shows large fluctuations occur-
ring in phase with significant wave height. As typically
observed in macrotidal environment, this is indeed the tidal
stage with largest significant wave height (less dissipation).
Our study provides new insights on the dissipative section.
Generally much wider than the reflective section, the entire
dissipative section shows fluctuations of the same magni-
tude as the reflective section. Still, morphological response
of the beach in low incident energy conditions is underesti-
mated and the model needs to be improved to address this
configuration.
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Hansen JE, Barnard PL (2010) Sub-weekly to interannual variability
of a high-energy shoreline. Coast Eng 57(11):959

Holman RA, Sallenger A (1985) Setup and swash on a natural beach.
J Geophys Res Oceans 90(C1):945

Karunarathna H, Horrillo-Caraballo JM, Ranasinghe R, Short AD,
Reeve DE (2012) An analysis of the cross-shore beach morpho-
dynamics of a sandy and a composite gravel beach. Mar Geol
299:33

King B, Blackley M, Carr A, Hardcastle P (1990) Observations of
wave-induced set-up on a natural beach. J Geophys Res Oceans
95(C12):22289

Kroon A, Masselink G (2002) Morphodynamics of intertidal bar
morphology on a macrotidal beach under low-energy wave
conditions, North Lincolnshire, England. Mar Geol 190(3-4):
591

Larson M, Capobianco M, Jansen H, Rózyński G, Southgate HN,
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SUMMARY

The accuracy and efficiency of two methods of resolving the exact potential flow problem for nonlin-
ear waves are compared using three different one horizontal dimension (1DH) test cases. The two model
approaches use high-order finite difference schemes in the horizontal dimension and differ in the resolution
of the vertical dimension. The first model uses high-order finite difference schemes also in the vertical, while
the second model applies a spectral approach. The convergence, accuracy, and efficiency of the two models
are demonstrated as a function of the temporal, horizontal, and vertical resolutions for the following: (1) the
propagation of regular nonlinear waves in a periodic domain; (2) the motion of nonlinear standing waves in a
domain with fully reflective boundaries; and (3) the propagation and shoaling of a train of waves on a slope.
The spectral model approach converges more rapidly as a function of the vertical resolution. In addition,
with equivalent vertical resolution, the spectral model approach shows enhanced accuracy and efficiency in
the parameter range used for practical model applications. Copyright © 2015 John Wiley & Sons, Ltd.
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KEY WORDS: finite difference; spectral; marine hydrodynamics; nonlinear dynamics; free surface; partial
differential equations

1. INTRODUCTION

Accurate and efficient models of nonlinear wave propagation are necessary for coastal and ocean
engineers to simulate a variety of coastal processes including shoreline processes, wave interactions
with coastal structures, wave energy conversion devices, and even the propagation of tsunamis. Until
recently, the majority of wave engineering studies, including the wave energy conversion industry,
continued to use linear wave models because of the need to model large spatial domains with-
out prohibitive computational costs [1]. However, in the nearshore region, it is necessary to model
the nonlinear and dispersive characteristics of waves, as well as wave interactions with variable
bathymetry, to model accurately wave transformation processes.

A growing number of models exist to fulfill this need, ranging from computationally intensive
CFD models resolving the full Navier–Stokes equations to Boussinesq or Serre-type models that
simplify the vertical structure of the dynamics and are only partially nonlinear and/or dispersive.
The use of the Reynolds-averaged Navier–Stokes equations with a turbulence closure scheme
enables modeling the complete dynamics of wave propagation and wave interactions with structures
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78401 Chatou, France.

†E-mail: marissa.yates-michelin@cerema.fr

Copyright © 2015 John Wiley & Sons, Ltd.
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(e.g., [2–4]). However, the domain size and resolution are limited by the computational cost,
preventing the use of such models for practical applications in the coastal zone. In addition, the
numerical methods used in these codes often are unable to propagate accurately free surface waves
over long distances without a reduction in the wave phase speed or height because of the presence
of numerical diffusion.

By neglecting viscosity and assuming irrotational flow thereby restricting the application of the
model to non-breaking waves, the Navier–Stokes equations can be reduced to a fully nonlinear
potential flow problem requiring the resolution of the Laplace problem in the fluid domain. A com-
monly applied strategy for resolving this problem is the use of the boundary integral equations, in
which the resolution of the Laplace equation in the interior of the fluid domain is projected onto the
boundary surface of the fluid volume (e.g., [5, 6]). Additional proposed methods include projection
to a fixed level in the fluid using pseudo-spectral methods [7] to treat the nonlinear free surface
boundary conditions (e.g., [8, 9]), or simplification of the vertical variability using a polynomial
expansion in the vertical with Boussinesq-type methods (e.g., [10–13]).

Recent work on the direct numerical simulation of the 3D Laplace equation uses finite element
[14, 15] and finite difference [16–18] approaches. Bingham and Zhang [17] argue that the resolution
of the exact Laplace problem may be ideal when studying nonlinear wave–body interactions because
of the relative simplicity of this approach in comparison with more mathematically complex pro-
jection methods. In addition, this allows going beyond second-order accurate methods to apply
higher-order schemes. Based on the work of [19] and [20], they suggest that it is optimal to use
fourth-order finite difference schemes in linear and nonlinear wave models.

In this paper, a fully nonlinear potential flow theory model is developed based on the resolution
of the Zakharov equations [21], which express the temporal evolution of the free surface elevation
� and free surface velocity potential Q� as a function of these two variables and the vertical velocity
at the free surface Qw. The principal difficulty in resolving this system of equations is to calculate
the free surface vertical velocity Qw as a function of .�; Q�/, a problem commonly called ‘Dirichlet-
to-Neumann’ or DtN. When considering flat bottomed, rectangular domains, spectral methods are
an attractive and efficient method for solving the DtN problem. The high-order spectral method
introduced in [7] and [8] is widely used in such conditions. However, for irregularly shaped domains
with variable bottom elevation, this spectral approach is more complicated to apply, although some
efforts were made by [22] and [23]. References [24] and [25] introduced another approach based
on the expansion of the DtN operator as a sum of global convolution terms and local integrals.
An efficient iterative algorithm was developed because of the rapid decay in space of the integral
kernels. In this work, two different approaches to resolving the potential in the vertical will be tested:
a high-order finite difference approach and a spectral approach.

The mathematical and numerical models are presented (Section 2) before a series of three test
cases (Section 3) are used to evaluate the convergence properties, accuracy, and efficiency of the
models as a function of the temporal, horizontal, and vertical resolutions: (1) propagation of a
regular nonlinear wave in a periodic domain; (2) motion of regular standing waves in a domain with
fully reflective boundaries; and (3) propagation and shoaling of a train of waves on a beach. The
performance of the two model approaches is compared for each test case, before concluding with a
discussion (Section 4) of the optimal model configuration.

2. MODEL DESCRIPTION

2.1. Mathematical model

The flow dynamics of a homogeneous and inviscid fluid of constant density are governed by the
Euler equations. By assuming that the flow is irrotational, the velocity vector u

¯
� .u; v; w/ in

the fluid domain can be expressed as the gradient of the velocity potential, �.x
¯
; ´; t/, such that

u
¯
D .r�; �´/

T , where x
¯
� .x; y/ and r� �

�
�x; �y

�T
. In the following, partial derivatives are

denoted as f˛ �
@f
@˛

, where ˛ = x; y; ´ or t .
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The velocity potential �.x
¯
; ´; t/ must then satisfy the Laplace equation in the fluid domain:

r2� C �´´ D 0: (1)

To resolve �, the Laplace equation is supplemented by boundary conditions at the free surface,
bottom, and lateral boundaries. Here, an impermeable and fixed bottom is considered with ´ D
�h.x

¯
/. By assuming continuity of the fluid from the bottom to the free surface �.x

¯
; t / (i.e., non-

overturning free surface), and by setting the atmospheric pressure equal to 0 at the free surface, the
kinematic and dynamic free surface boundary conditions (at ´ D �.x

¯
; t /) are respectively:

�t Cr� � r� � �´ D 0; (2)

�t C
1

2
.r�/2 C g� D 0; (3)

where g is the gravitational constant. The bottom boundary condition (at ´ D �h.x
¯
/) restricting

flow perpendicular to the bottom is:

r� � rhC �´ D 0: (4)

In addition, Dirichlet or Neumann boundary conditions are applied at the lateral boundaries. For
the test cases simulated in this study, either periodic lateral boundary conditions or impermeable
vertical walls (i.e., r� � n

¯
D 0 where n

¯
is the normal vector at the boundary) are applied.

After defining the velocity potential at the free surface as Q�.x
¯
; t / � �.x

¯
; �.x

¯
; t /; t/, the Zakharov

equations [21] are derived by rewriting (2) and (3) as a function of the free surface potential Q�:

�t D �r� � r Q� C Qw.1C .r�/
2/; (5)

Q�t D �g� �
1

2

�
r Q�

�2
C
1

2
Qw2.1C .r�/2/; (6)

where Qw.x
¯
; t / is the vertical velocity at the free surface defined by:

Qw.x
¯
; t / D �´.x

¯
; �.x

¯
; t /; t/: (7)

After resolving the DtN problem by calculating Qw.x
¯
; t / from .�.x

¯
; t /; Q�.x

¯
; t //, Equations (5) and (6)

model the temporal evolution of the free surface elevation � and the free surface velocity potential Q�.
With the objective of modeling arbitrarily shaped domains and bottom profiles, the DtN problem

is solved by computing the velocity potential solution of the boundary value problem (BVP), con-
sisting of the Laplace Equation (1) in the fluid domain with a kinematic boundary condition applied
at the bottom (4), a Dirichlet boundary condition applied at the free surface �.x

¯
; ´ D �.x

¯
; t /; t/ D

Q�.x
¯
; t /, and lateral boundary conditions specified for each test case. Once � is known throughout

the fluid domain, Qw.x
¯
; t / can be calculated with (7).

2.2. Numerical model

The objective of this paper is to evaluate two methods of resolving the DtN problem in the vertical.
The numerical methods used to resolve (5) and (6) are described for one horizontal dimension, x,
which is discretized by NX points in the domain.

2.2.1. General modeling strategy. The numerical simulation of the mathematical model requires
three main components: (1) a temporal scheme to advance � and Q� in time; (2) a method to compute
the horizontal gradient and Laplacian operators; and (3) a technique for resolving the Laplace BVP
for � at each time step.

The classical explicit, four-step, fourth-order Runge–Kutta scheme (RK4) with a constant time
step is applied. This scheme has sufficient accuracy for the current study, but higher order RK
schemes and/or RK schemes with an adaptive time step (e.g., [26]) could also be implemented.
For the considered system of (Hamiltonian) equations, a symplectic scheme could also be used

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2015; 77:616–640
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(e.g., [27]), as such a scheme should lead to better energy conservation. The selection of an optimal
temporal scheme will be considered more in future work.

Horizontal gradients and Laplacian operators are calculated using high-order finite difference
approximations with regular or irregular point distribution. Unless otherwise specified, first and
second order derivatives in x are approximated using fourth-order schemes following the method of
[28]. In the test cases described here, the lateral boundary conditions are either periodic or vertical
reflective walls, where @�

@n
D 0. To maintain fourth-order accuracy of horizontal spatial derivatives

in the latter case, the stencil size increases for all decentered finite difference schemes for second
order derivatives near the boundaries.

Finally, two model approaches (named Model A and Model B) are used to solve the Laplace
BVP problem. Both methods use high-order finite difference approximations to compute horizontal
derivatives. In the vertical, Model A uses a finite difference approximation as well, while Model B
uses a spectral approach. The same boundary conditions are applied in each case. Although tests
by [18] showed improved accuracy using ghost points at the domain boundaries to impose both the
boundary condition and the Laplace BVP, this method is not applied in the comparisons here. The
models are described in further detail in the following sections.

2.2.2. Model A: high-order finite difference approach. In the first approach, the entire fluid domain
is discretized, and high-order finite difference schemes are used to resolve both the horizontal and
vertical spatial derivatives (based on the work of [17], [18], and [29]). The vertical domain is trans-
formed to � -coordinates to simplify the resolution of the system of equations by creating a fixed
rectangular domain, with � varying from 0 at the bottom to 1 at the free surface:

�.x; ´; t/ D
´C h.x/

�.x; t/C h.x/
D
´C h.x/

d.x; t/
: (8)

The total water depth is defined as d.x; t/ D �.x; t/C h.x/. With this coordinate transformation,
Equations (1) and (4) can be rewritten as a function of � and resolved at each point in the fluid
domain once the lateral and surface boundary conditions are specified (see [17] for details).

The vertical domain is discretized withNZ points, creatingNL D NZ�1 layers of fluid. At each
time step, a system of NXNZ linear equations must be solved to determine the potential �.x; �/ in
the entire fluid domain. Then, the free surface vertical velocity is calculated as:

Qw D �´
ˇ̌
´D�
D
1

d
��
ˇ̌
�D1

; (9)

and Equations (5) and (6) can be stepped forward in time.
The model convergence is tested as a function of NX , NZ , and the vertical distribution of points

for the case of a linear wave, following [17] and [18]. For a wave with kh � 4 (L D 1 m, h D
0:64 m), the modeled free surface vertical velocity is calculated at time t D 0 and compared to the
analytical solution. The error is evaluated as:

Error D
jj Qw � Qwexactjj

jj Qwexactjj
; (10)

where Qwexact is the analytical solution calculated with linear wave theory, and jj � jj is the L2

norm

�
jjxjj D

qPn
iD1 x

2
n

�
. The tests of three different vertical distributions of points, that is,

linear distribution, roots of the Chebyshev–Gauss–Lobatto (CGL) polynomials, and roots of the
Legendre–Gauss–Lobatto (LGL) polynomials, show that the model convergence is improved with
inhomogeneous point spacing, with a higher density of points near the free surface (Figure 1a–b).
The differences in model convergence and errors in the free surface vertical velocity are nearly iden-
tical using the CGL or LGL discretizations, except for at small values of NZ . For this test case,
the CGL discretization produces smaller errors for NZ 6 8, while the LGL discretization produces
smaller errors for 8 < NZ < 15, and the differences in errors are of the order 10�4 and 10�5,
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Figure 1. Convergence of the vertical velocity at the free surface Qw for Models A and B, for a linear wave
with kh � 4. The convergence is evaluated as a function of NX , NZ , and the vertical resolution: (a)
Model A: linear distribution, (b) Model A: roots of Chebyshev–Gauss–Lobatto (CGL) polynomials, and (c)
Model B: spectral method. In the top row, examples of both of the vertical point distributions are shown for

Model A (with NZ D 7), and of the Chebyshev polynomials for Model B (with NT D 6).

respectively. Given these differences and the conclusions of [18] showing that the CGL discretiza-
tion produced the best balance between accuracy in dispersion and internal kinematics, a vertical
distribution of points using the roots of CGL polynomials will be used for the test cases shown
hereafter for Model A.

2.2.3. Model B: spectral approach. The second approach is inspired by the work of [30] and uses
a spectral Chebyshev-tau approach to resolve � in the vertical. The development of the numerical
model is comprised of three steps, whose main features are outlined next for the case of fully
reflective lateral boundary conditions.

The first step consists of transforming the fluid domain into a rectangular domain, with the vertical
coordinate s varying from �1 at the bottom to 1 at the free surface:

s.x; ´; t/ D
2´C h�.x; t/

hC.x; t/
; (11)

where hC.x; t/ D h.x/C �.x; t/ and h�.x; t/ D h.x/ � �.x; t/. The velocity potential, expressed
as �.x; ´; t/ D '.x; s; t/, must satisfy the Laplace Equation (1) in the fluid domain, the bottom
boundary condition (4), the free surface Dirichlet condition, and the impermeability condition at the
lateral boundaries (denoted x D xb), which become:

'xx C 2sx'xs C
�
s2x C s

2
´

�
'ss C sxx's D 0 in the fluid domain; (12)
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hChx'x C 2
�
1C h2x

�
's D 0 for s D �1; (13)

'.x; 1/ D Q�.x/ for s D 1; (14)

'x C sx's D 0 for x D xb: (15)

In the second step, the spectral approach is introduced to approximate the velocity potential as
a linear combination of base functions of the vertical s coordinate. Similar to [30], Chebyshev
polynomials of the first kind, denoted Tn.x/ (where n D 0; 1; 2; ::: indicates the order of
the polynomial), are used because they are easy to calculate and form a basis of orthogonal functions
over the range Œ�1; 1� (e.g., Figure 1c, top). Furthermore, they converge rapidly and have a large
convergence domain. The velocity potential is then approximated as:

'.x; s/ ' 'NT .x; s/ D

NTX
nD0

an.x/Tn.s/; (16)

where NT is the highest order Chebyshev polynomial used in the approximation, and an.x/ are a
set of NT C 1 coefficients that must be determined at each point in x. A series of equations for the
unknown coefficients an.x/ and their spatial derivatives a0n.x/ �

dan
dx

, a00n.x/ �
d2an
dx2

are derived
by inserting (16) in (12)–(15). The resultant system of equations depends on s, Tn.s/, T 0n.s/ �

dTn
ds

and T 00n .s/ �
d2Tn
ds2

.
The third step is to apply the Chebyshev-tau method, a variant of the Galerkin method (e.g., [31]),

to the Laplace Equation (12) and the Neumann lateral boundary condition (15). The inner product
of two arbitrary functions f .s/ and g.s/ is defined over Œ�1; 1� as:

< f; g >�

Z 1

�1

f .s/g.s/
p
1 � s2

ds: (17)

From the orthogonality relation verified by the Chebyshev polynomials,

< Tn; Tp >D

8<
:
0 if n ¤ p;
� if n D p D 0;
�
2

if n D p ¤ 0:
(18)

The following operator is applied to the arbitrary function f .s/:

< f >p�
2

�Cp
< f; Tp >; with

²
C0 D 2;
Cp D 1 for p > 0:

(19)

The orthonormality relation of the Tn polynomials is then < Tn >pD ınp , where ınp is the
Kronecker delta. Using the Galerkin method, the operator < : >p is applied to (12) for p D
0; 1; :::; NT :

a00p.x/C

NTX
nD0

Cpna
0
n.x/C

NTX
nD0

Dpnan.x/ D 0; p D 0; 1; ::::; NT ; (20)

with Cpn � .m011Bp01n C m111Bp11n/=m020 and Dpn � .m002Bp02n C m102Bp12n C
m202Bp22nCm001Bp01nCm101Bp11n/=m020. The termsmijk depend only on hC.x/, h�.x/ and
their spatial derivates (see Equations (21)–(28) in [30]), as well as:

Bpikn �< s
i @
kTn

@sk
.s/ >p : (21)
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The coefficients Bpikn are constant and can be calculated analytically once at the beginning of
each simulation.

By applying the same procedure to the impermeable lateral boundary condition, (15) becomes:

2a0p.x/C

NTX
nD0

Cpnan.x/ D 0; p D 0; 1; ::::; NT : (22)

At each point in x, there are NT C 1 unknown coefficients an.x/ for n D 0; 1; :::; NT . Therefore,
using this method to derive (20) and (22) with p D 0; 1; ::::; NT � 2 provides NT � 1 equations for
both the interior and lateral boundary points. These equations are supplemented by the two boundary
conditions at the bottom (13) and free surface (14), which become respectively:

NTX
nD0

�
.�1/nhChxa

0
n.x/C .�1/

n�12n2
�
1C h2x

�
an.x/

�
D 0; (23)

NTX
nD0

an.x/ D Q�.x/: (24)

In contrast to [30], spatial derivates of an.x/ are computed with high-order finite difference formulas
(fourth order). Thus, a system of NX .NT C 1/ linear equations must be solved for the coefficients
an.xi / for i D 1; ::::; NX .

Once the an.xi / are determined, the vertical velocity at the free surface Qw is

Qw.xi / D �ss´
ˇ̌
sD1
D

2

hC.xi /

NTX
nD0

an.xi /n
2; (25)

and Equations (5) and (6) can be stepped forward in time.
The convergence of Model B is then tested as a function of NX and NT for the same linear wave

test shown in section 2.2.2 for Model A. As expected, the normalized errors in the calculated free
surface vertical velocity converge faster for Model B than for Model A (Figure 1).

2.3. Numerical resolution of the linear system of equations

Each time the DtN problem is solved (at each sub-step of the RK4 scheme), a system ofNX .N C1/
linear equations must be resolved. For Model A, N D NL, the number of layers in the vertical, and
for Model B, N D NT , the maximum order Chebyshev polynomial. The corresponding matrices
are sparse, and to optimize the memory use and efficiency of the model, only the nonzero entries
are stored (in vector format). The direct solver MUMPS (“MUltifrontal Massively Parallel Solver",
v4.10.0) [32, 33] is applied in the Fortran code using the default settings. A direct (exact) solver
was selected to avoid residual errors associated with iterative solvers, but it may be replaced by an
iterative solver to increase the efficiency of the model.

3. TEST CASES

In this study, three different test cases will be used to demonstrate the properties of convergence,
accuracy, and efficiency of Models A and B as a function of the horizontal, vertical, and temporal
resolutions. In addition, the two models will be compared with the objective of determining the most
efficient approach to implement in future work.

3.1. Regular nonlinear wave

3.1.1. Description of the test case. The first test case investigates the resolution of the DtN problem
and the temporal evolution of a regular, nonlinear wave of permanent form in a uniform depth
periodic domain. The wave does not deform when propagating in uniform depth. Therefore, the
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wave characteristics should remain identical to the initial conditions after an integer number of
wave periods.

The reference solution used to create the initial conditions is calculated using a Fourier series
approximation of the stream function method, based on the work of [34] and [35]. This method is
capable of calculating highly accurate solutions for highly nonlinear waves in uniform, arbitrary
depth, with or without an homogeneous ambient current. STREAM_HT, a Fortran code developed
at EDF R&D (Chatou, France) based on this method, is used to approximate the initial free surface
position � and velocity potential Q� to the 20th order. A wave with wavelength L D 64 m and wave
height H D 6:4 m is calculated in a water depth h D 64 m. The wave steepness is H=L D 0:1 (or
ka D kH=2 D �=10), and the relative water depth is h=L D 1 (or kh D 2�). The model domain
has periodic boundary conditions, and the length of the domain Lx is the wavelength of a single
wave (i.e., Lx D L).

3.1.2. Resolving the DtN problem as a function of NX and N . Before evaluating the model behav-
ior as a function of time, the convergence of the two approaches is investigated as a function of the
horizontal (NX D L=�x) and vertical (N ) resolutions. For these tests, NX ranges from 24 to 256,
and N ranges from 5 to 100 for Model A and from 2 to 100 for Model B. For both models, at least
six points/nodes in the vertical (i.e., N D 5) are needed to reach the target fourth-order accuracy
with irregular spacing of points/nodes.

In addition to calculating the initial conditions, STREAM_HT is used to calculate the free surface
vertical velocity Qw, which is then compared with the values estimated by resolving the DtN problem
with the two model approaches. As in Section 2.2.2, the normalized error is calculated as jj Qw �
QwSTREAMjj=jj QwSTREAMjj, where QwSTREAM is the reference solution calculated using STREAM_HT.

For a fixed horizontal resolution NX , the normalized error of the free surface vertical veloc-
ity decreases with an increase in the vertical resolution N , and both models converge to the same
minimum for large values of N (Figure 2). While the decrease in error is monotonic for Model
A, Model B reaches a minimum at intermediate values of N (N D 10 � 15, for the range of
NX D 48 � 512), before converging to a constant value for larger N . The cause of these minima
is unknown. More importantly, Model B converges more rapidly than Model A, as shown for

Figure 2. Convergence of the free surface vertical velocity Qw for a regular nonlinear wave with wave steep-
ness H=L D 0:1 (ka D �=10) and relative water depth h=L D 1 (kh D 2�). Convergence of Models A

and B is plotted as a function of the vertical resolution N for a range of horizontal resolutions NX .
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NX D 128 in Figure 3 in (a) log–log and (b) log–linear space. The convergence of Model A is
algebraic, and the error decreases as N�k , with a rate of convergence k � 3:8 (slightly lower
than expected for a fourth-order finite difference scheme). Model B exhibits exponential conver-
gence, as expected from the spectral approach used in the vertical direction. The convergence rate
is geometric, and the error decreases as exp.�qN/ with q � 1:26.

In addition, a second test evaluated the convergence of the maximum absolute error in free surface
velocity (maximum of j Qw � QwSTREAMj) to compare qualitatively with the simulation results obtained

Figure 3. Convergence of Models A and B when resolving the free surface vertical velocity Qw for a nonlinear
wave with wave steepness H=L D 0:1 (ka D �=10) and relative water depth h=L D 1 (kh D 2�), for a
representative case with NX D 128. Model A converges linearly, and Model B converges geometrically as

a function of the vertical resolution N , as shown in (a) log–log and (b) log–linear space.

Figure 4. Convergence of the maximum of the vertical velocity error j Qw � QwSTREAMj for a nonlinear wave
with wave steepness H=L � 0:0955 (ka D 0:3) and relative water depth h=L D 1 (kh D 2�), for (a)

Model A, (b) Model B, and (c) OceanWave3D (data digitized from Figure 3 of [29]).
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in [29] with the model OceanWave3D. A new reference solution was calculated using STREAM_HT
for the wave specified in [29], with wave steepness H=L � 0:0955 (ka D 0:3) and relative water
depth h=L D 1. Here, h D 1 m to compare the absolute errors obtained with Models A and B with
the results of [29]. As expected, Model A and OceanWave3D show nearly identical convergence of
the maximum vertical velocity errors as a function of NX and N (Figure 4), with differences only
noticeable for NX D 8 and N > 10, where OceanWave3D performs better than Model A. To test
the cause of this difference, Model A was rerun using ghost points at the bottom of the domain to
enforce both the resolution of the Laplace BVP and the bottom boundary condition (as shown by
[18]), but this did not change the results obtained with Model A. The reason for this difference is
unknown and may be caused by the different methods used to solve the linear system of equations

Figure 5. Convergence of the free surface vertical velocity Qw for a regular nonlinear wave with wave steep-
ness H=L D 0:1 (ka D �=10) and relative water depth h=L D 1 (kh D 2�). Convergence is shown as a

function of the horizontal domain resolution NX (for a fixed vertical resolution N D 100).

Figure 6. (a) Model A and (b) Model B profiles of the regular nonlinear wave free surface position at
the initial time step (t D 0, solution given by STREAM_HT) for NX D 64 and after 25 wave periods

(Ntime D 100) for a range of vertical resolutions N D 5 � 90.
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(the direct solver MUMPS for Model A, and a preconditioned iterative method, the generalized
minimal residual [GMRES] for OceanWave3D).

Finally, as a function of the horizontal resolution, both models show an algebraic convergence
rate proportional to approximately N�4X (Figure 5).

3.1.3. Propagation errors as a function of NX , N , and Ntime . The subsequent tests study the
influence of the horizontal resolution NX , the vertical resolution N , and the number of time steps
per wave period Ntime on the errors after propagating the wave for 25 wave periods. The results are
evaluated as a function of the Courant–Friedrichs–Lewy (CFL) number, which is defined here as
CFL � C�t

�x
. With the wave phase speed C D L=T , �x D L=NX , and �t D T=Ntime , the CFL

number becomes the ratio of the horizontal resolution to the number of time steps per wave period,
or CFL D NX=Ntime .

Simulations with low vertical resolution are unable to model accurately the wave phase speed,
and phase differences are visible after propagating the wave for 25 wave periods (Figure 6, for
CFL D 0:64;NX D 64;Ntime D 100). To calculate the phase shift, a second-order polynomial
was fit to the three points around the maximum free surface elevation to interpolate the position and
magnitude of the maximum free surface position. The phase shift rapidly decreases with increasing
vertical resolution, even with an increase in the CFL number. In the midrange of values of vertical
resolution N , the phase differences are generally larger for Model A than for Model B, and for
the lowest (e.g., N D 5) and highest values of N , the phase shifts are approximately the same
(Figure 7). Both for models, the phase shifts reach an approximately constant value for largeN , and
both the phase shift and the value of N at which this plateau is reached depend on the CFL number.

In addition to the appearance of a phase shift, the maximum free surface elevation differs
from the initial value during the 25 wave period simulation (Figure 8). The largest differences
between the reference solution and the simulated values occur for low vertical resolution simulations
(e.g., N 610 for Models A and B in Figure 8a and b, respectively). For larger values of N , these
differences converge to a constant value, which is dependent on the horizontal resolution or CFL
number. As a function of the horizontal resolution, the errors in the maximum free surface position
generally decrease with increasing horizontal resolution, and exceptions to this trend may be related
to the interpolation method (fitting a polynomial to three points) used.

When both the horizontal NX and vertical N resolutions are instead held constant, errors in
the maximum free surface position generally increase with increasing CFL number (Figure 8c–d).
However, no clear trends are observed as a function of the number of time steps per wave period
Ntime (in the parameter range tested) for either model.

Figure 7. Regular nonlinear wave phase shift after 25 wave periods for Ntime D 100, as a function of the
vertical resolution N and CFL number.
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Figure 8. Normalized difference between the regular nonlinear wave simulated maximum free surface ele-
vation and reference solution during the entire 25 wave period simulation: (a, b) for fixed Ntime D 100,
as a function of the vertical resolution N and horizontal resolution NX , and (c, d) for fixed N D 12, as a

function of the CFL number and number of time steps per wave period Ntime .

The total energy error is calculated for several different vertical resolutions N and for a range
of CFL numbers. The error is defined as the root mean square (rms) error at the end of the
simulation period:

Error(ti ) D

vuut 1

NX

NXX
kD1

�
Y.xk; ti / � Yref .xk/

Yref .xk/

�2
; (26)

where ti D Tend D25 wave periods, Y is the total energy, and Yref is the total energy at time t D 0.
For Models A and B, the total energy errors vary as a function of NX and Ntime , but this variability
is nearly constant for N > 8 (e.g., Figure 9 for N D 8), with only small increases for N < 8.

With Ntime held constant, the energy errors decrease with an increase in horizontal resolution,
even though the CFL number also increases. WithNX held constant, the total energy error decreases
slightly with an increase in the number of time steps per wave period Ntime and converges to a
constant value for CFL <1. The two models show very similar energy errors for this test case, with
the exception that Model B remains more stable for higher horizontal resolution simulations.

In conclusion, an optimal value for the vertical resolution appears to be in the range of 7 <
N < 15. In this range, both the phase and the maximum free surface elevation differ little from
the initial conditions after 25 wave periods. Larger values of N improve the results minimally, yet
are much more computationally expensive. The errors in total energy support this conclusion and
further suggest that increasing the horizontal resolution NX allows larger gains in accuracy than
increasing only the number of time steps per wave period Ntime (or decreasing the CFL number).

3.1.4. Computational effort for a given level of accuracy. Finally, the computational efficiency of
the two models was evaluated as a function of a desired level of accuracy at the end of the 25 wave
period simulations. Here, the CFL number was held constant (CFL D 1:28), and the horizontal NX
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Figure 9. Regular nonlinear wave total energy conservation errors for (a) Model A and (b) Model B, as
a function of the number of time steps per wave period Ntime and the horizontal resolution NX , for a
fixed vertical resolution N D 8. The black triangles are the data points used to grid the data, and triangles
in regions with no color indicate that the simulations were unstable and stopped before reaching 25 wave

periods. The white curves are contour lines at intervals of 0.001.

Table I. Regular nonlinear wave test case with a con-
stant CFL number (CFL D 1:28), the horizontal (NX )
and vertical (N ) resolutions needed for Model A and
Model B to obtain a given level of accuracy in the

energy error.

Model A Model B

Energy error NX N Energy error NX N

7:3 � 10�3 64 8 7:3 � 10�3 64 5
4:7 � 10�3 96 8 4:5 � 10�3 96 5
3:5 � 10�3 128 8 3:3 � 10�3 128 5
2:3 � 10�3 192 8 2:3 � 10�3 192 8
1:7 � 10�3 256 8 1:7 � 10�3 256 8

and vertical N discretizations needed to obtain a given level of accuracy of the energy error were
recorded (Table I). The difference in computational effort required by the two models to obtain a
specified level of accuracy in the energy error depends on the both the discretization of the domain
and the optimization of each model. Here, Model B is more efficient than Model A, requiring
less computational effort to obtain the same level of accuracy in energy errors (Figure 10) for this
test case.

3.2. Nonlinear standing wave

3.2.1. Description of the test case. The second test case investigates the motion of a nonlinear
standing wave in a domain with fully reflective lateral boundaries. After an integer number of wave
periods, the wave characteristics should remain identical to those of the initial condition.

The initial conditions are calculated using the Fourier method of [36], which was developed for
calculating highly accurate time-dependent two-dimensional solutions of standing gravity waves
of finite amplitude in uniform water depth. This method is capable of calculating accurate solu-
tions of the free surface elevation and velocity potential at any instant in time by representing the
velocity potential with a truncated Fourier series and by using an implicit form of the free surface
elevation. STREAM_TJ, a Fortran code developed in the Saint-Venant Hydraulics Laboratory
(Chatou, France) using the method of [36], is used to approximate the initial conditions to the
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Figure 10. Computational effort required to obtain thresholds of energy errors for the case of a regular non-
linear wave with a constant CFL number (CFL=1.28). See Table I for the corresponding values of horizontal

NX and vertical N resolutions.

Figure 11. (a) Model A and (b) Model B standing wave free surface position � after 100 wave periods for
range of CFL numbers with horizontal resolution L=�x D 48.

14th order. A wave with wavelength L D 192 m, relative water depth kh D 3, and wave steepness
ka D 0:42 is calculated using STREAM_TJ. These values were selected for comparison with the
results of [36], and they represent a nonlinear wave that is approximately 66% of the maximum wave
height for kh D 3. By specifying the wavelength and non-dimensional depth and wave steepness,
the water depth and wave height are h � 91:6732 m and H � 25:6685 m, respectively.

For a wave with wavelength L, the length of the domain Lx must be a multiple of the half
wavelength L=2, and in this case, the domain length is Lx D L D 192 m. The initial condition is
imposed as the displacement of the free surface � (Figure 11), with no fluid velocity in the domain.

For the following tests, the vertical resolution is held constant with N D 7, and the errors and
stability of the models are evaluated as a function of the horizontal resolution NX and number of
time steps per wave periodNtime . This value ofN is selected as a good compromise between model
accuracy and efficiency. Five regularly spaced grids are tested with a horizontal resolution L=�x
ranging from 24 to 96.

3.2.2. Errors as a function of NX and Ntime . Errors in the free surface elevation � are evaluated as
a function of the CFL number, which is defined using the wave phase velocity C D L=T , and can
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Figure 12. Standing wave free surface position � error after 100 wave periods for (a) Model A and (b) Model
B as a function of the CFL number and horizontal grid spacing.

be rewritten as CFL D NX=Ntime , as for the previous test case. For high CFL number simulations,
errors in the free surface elevation � are visible after propagating the wave for 100 wave periods
with both models (e.g., L=�x D 48, Figure 11). The free surface position differs from the initial
conditions primarily because of changes in the wave amplitude, while the wave period remains
relatively constant.

Quantification of these errors (jj���STREAMjj=jj�STREAMjj) after 100 wave periods shows that they
primarily increase with increasing CFL number and decreasing horizontal resolution (Figure 12).
Model B generally produces smaller errors than Model A, with the exception of the grid with
coarsest horizontal resolution. For Model A, one exception to the trend is for L=�x D 32, where
the simulations have higher free surface position errors than the simulations with coarser hori-
zontal resolution (L=�x D 24). These simulations are unstable in time for low CFL numbers
(approximately CFL < 2:4). For Model B, the horizontal resolution that produces the smallest errors
at the lowest CFL numbers (L=�x D 64) is not the finest grid.

These anomalies appear to be associated with a transfer of energy from low frequency wave
numbers to high frequency wave numbers in both Models A and B (e.g., Model B, Figure 13).
The initial wave spectra (Figure 13a) are nearly superimposed for the first 12 wave numbers that
are present in all horizontal grids (L=�x D 24 � 96). The evolution in time of the initial spectra
shows the growth of nodal amplitudes at the high wave number end of the spectrum. For some cases
(e.g., L=�x D 24 for Model B, Figure 13b), the energy at high wave numbers continues to grow,
eventually causing the simulation to become unstable. For other cases (e.g., L=�x D 48 � 96 for
Model B, Figure 13c–d), the energy at high wave numbers increases but then remains relatively
stable (with variations in time) during the length of the current simulations. Similar to the L=�x D
24 case for Model B, the L=�x D 32 case of Model A also becomes unstable in time at low CFL
numbers. However, it is unclear why this occurs for the horizontal grid L=�x D 32, whereas this
phenomenon is not observed for the coarsest horizontal grid (L=�x D 24).

Finally, total energy errors calculated using (26) decrease with increasing horizontal resolution
and generally increase with increasing CFL number (Figure 14). For small CFL number simulations,
Model B generally has smaller energy errors than Model A. For each horizontal resolution tested,
Model A and B errors converge to the same values at large CFL numbers for nearly all horizontal
grids, as well as at low CFL numbers for L=�x D 48 and L=�x D 64. The precise CFL number at
which they converge depends on the horizontal resolution and increases with increasing horizontal
resolution. For a fixed horizontal resolution, the convergence of the energy errors is proportional to
approximately N�4time , as expected for a fourth-order RK4 temporal integration scheme.
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Figure 13. Energy density spectra of (a) the initial conditions created by STREAM_TJ (accurate to the
14th order) for three different horizontal grids, and the temporal evolution of the spectra as a function of
the number of periods of wave simulation for Model B with (b) L=�x D 24, (c) L=�x D 48, and (d)
L=�x D 96. The gray shaded zone indicates the first 12 spectral components that are common between all

of the simulations.

3.3. Transformation of a train of waves on a slope

3.3.1. Description of the test case. The last test case evaluates the ability of the two approaches to
model the propagation and shoaling of waves in a variable depth domain with impermeable lateral
boundaries, following [37]. The test case was proposed by [38], when the authors demonstrated the
performance of a highly accurate nonlinear potential flow model that applied a local polynomial
approximation of arbitrary order. [37] used the [38] model to find highly accurate reference solutions
(after ensuring convergence) for validation of a Boussinesq-type model. Their results will be used
here to validate qualitatively the model performance before further tests evaluate the convergence
and error evolution of Models A and B.

A train of waves are propagated up a slope (Figure 15a), and the bathymetry in the model domain
is defined as:

h

h1
D
hmin

h1
C

�
1 �

hmin

h1

��
1

cosh.tan.�x=2L1//

	
; x 6 L1 (27)

h

h1
D
hmin

h1
; L1 < x 6 2L1 (28)

where hmin=h1 D 0:2, and L1 D 50h1 (h1 D 1 m was chosen here). The initial free surface
position is defined as a train of waves with decreasing wave amplitude in the x direction:

�

h1
D
aI

h1

�
cos.2�Nwx=L1/

cosh.tan.�x=2L1//

	
; x 6 L1 (29)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2015; 77:616–640
DOI: 10.1002/fld



632 M. L. YATES AND M. BENOIT

Figure 14. Standing wave total energy error as a function of the CFL number and horizontal grid spacing for
Models A and B (with fixed vertical resolution, N D 7).

Figure 15. (a) Bathymetry and free surface initial position for aI=h1 D 0:125, following [37]. (b) Example
wave envelope and free surface position at the end of the simulation time.

�

h1
D 0; L1 < x 6 2L1 (30)

where Nw D 10 is the number of waves (the initial wavelength is thus L D L1=Nw ), and aI=h1
is the initial wave amplitude. There is no initial fluid velocity in the domain. Kennedy et al. [37]
completed three tests in which the initial relative wave amplitude varied, and the most nonlinear
case with aI=h1 D 0:125 is shown here (Figure 15a).

With these initial conditions, the system was allowed to evolve in time until the shoaling waves
nearly reached the breaking point. Kennedy et al. [37] stopped the computations at time T when the
waves were judged to be near the breaking point, with T

p
g=h1 D 45, or T D 14:36 s, for this test

case. At each position, the envelope of crests and troughs (the maximum and minimum elevations
recorded during the simulations, e.g., Figure 15b) is calculated for comparison with the results
obtained with the model of [38]. The results of these simulations were not available in numerical
format, so they were digitalized from the curves in Figure 9 of [37].
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Table II. Regularly spaced horizontal
grids for the test case propagating a

train of waves on a slope.

Grid Number of points �x (m)

R2 741 0.1
R3 1481 0.05
R4 3701 0.02
R5 7201 0.01
R6 14801 0.005
R7 37001 0.002

Figure 16. Model A simulation wave envelopes for different horizontal grid spacings (see Tables II and III
for details) and constant CFL � 0:63 compared with the results of [37]. Model B simulation wave envelopes

(not shown for clarity) are nearly identical.

3.3.2. Convergence as a function of NX and Ntime . In this section, the vertical resolution is held
constant with N D 7, and the convergence of the two model approaches is evaluated as a function
of the horizontal grid size �x and the time step �t .

The simulation results approach those of [37] as �x and �t decrease (see Table II for details
of the horizontal resolution of each test, denoted R2–R7). A visual comparison demonstrates the
convergence of the models with increasing horizontal resolution and number of time steps for a
constant CFL number � 0:63 (e.g., Figure 16 for Model A, results are similar for Model B and
are therefore not shown for clarity). Here, the CFL number is based on the long wave speed in the
deepest part of the domain, with CFL D

p
gh1.�t=�x/. A range of CFL numbers were selected,

and the time step�t for each simulation was calculated to approximate the preselected CFL number
with an integer number of time steps to achieve a total simulation time of T D 14:36 s.

The relative variations of fluid volume and total mechanical energy are then compared as a func-
tion of the CFL number (Figure 17) to evaluate quantitatively the convergence as a function of �x
and �t . Model A is unable to simulate the propagation of the wave train in simulations with the
highest horizontal resolution (R7, with �x=h1 D 0:002). The simulation duration increases with
decreasing CFL number, but none of the tests remain stable for the entire simulation period because
of the appearance and rapid growth of instabilities at high wavenumbers. Model B remains stable for
all of the tested simulations but appears to be more constrained by the CFL number than Model A.
The maximum attainable CFL number increases with increasing model resolution (Figure 17b, d).
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Figure 17. (a–b) Volume and (c–d) energy errors for Model A (left) and Model B (right) as a function of
the CFL number and horizontal grid spacing (see Tables II and III for details). The shading indicates the
maximum and minimum CFL defined for the irregularly spaced horizontal grids I2 and I3, as explained in

section 3.3.3.

For Model A, the volume errors are relatively constant as a function of CFL number. The energy
errors are also relatively constant for low CFL numbers and generally increase with increasing
CFL number for the coarser horizontal resolution grids (Figure 17a, c). Model B has stable or
increasing errors in volume and energy conservation with an increase in CFL number, as expected
(Figure 17b, d).

Both models converge to minimum errors for small CFL numbers. Model A converges to
minimum errors that are nearly constant, independent of the horizontal grid spacing (for the range
of values tested). Model B, however, converges to lower errors for simulations with increased
horizontal grid resolution with the exception of the energy error for grid R4. Finally, Model B is
more accurate than Model A, with volume and energy conservation errors that are more than an
order of magnitude smaller for grids finer than R2.

3.3.3. Irregular horizontal grid spacing. In the previous section, the horizontal grid spacing was
uniform, but irregular grid spacing may be used to decrease the simulation time while minimizing
the errors. Two irregularly spaced grids are tested (denoted I2 and I3), with low resolution in the
uniform-depth far left and right extremes of the domain, and high resolution at the top of the slope
where wave shoaling and nonlinear interactions with the bottom are most important (Figure 15a,
Table III). For both models, the results are visually indistinguishable with those obtained with grids
R5–R7 (Figure 16).

To compare the volume and energy errors with those obtained when using regularly spaced
horizontal grids, the CFL number in Figure 17 (solid lines) was defined using the minimum grid
spacing (�x D 0:0125 m for I2, and �x D 0:005 m for I3). To account for the variability in
horizontal grid spacing, the minimum CFL number was also calculated using the maximum grid
spacing (�x D 0:1 m for I2, and �x D 0:02 m for I3), as indicated by the shaded zone between
the maximum and minimum CFL numbers in Figure 17. If decreasing the grid spacing in the zones
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Table III. Irregularly spaced horizontal grids for the test case
propagating a train of waves on a slope.

GRID I2 GRID I3

x �x (m) x �x (m)

0 m < x < 35 m 0.05 0 m < x < 20 m 0.02
35 m < x < 40 m 0.025 20 m < x < 35 m 0.01
40 m < x < 48 m 0.0125 35 m < x < 50 m 0.005
48 m < x < 58 m 0.025 50 m < x < 60 m 0.01
58 m < x < 62 m 0.05 60 m < x < 74 m 0.02
62 m < x < 100 m 0.1

far from the slope has no impact on the model results, irregularly spaced grid I2 errors should be
between those of regularly spaced grids R4 and R5, and I3 errors should be equivalent to those
of R6.

Similar to the regularly spaced grids, the volume errors for Models A and B are nearly constant as
a function of the CFL number, and Model B errors are at least one order of magnitude smaller than
those of Model A (Figure 17a–b). For Model A, the errors appear equivalent to those obtained with
regularly spaced grids R4–R6. For Model B, the I2 volume errors are slightly larger than the errors
obtained for R3 with small CFL numbers. However, they do not increase for large CFL numbers
and the simulations remain stable for larger CFL numbers (2 < CFL < 4:7). Similarly, I3 volume
errors are slightly larger than those of R4 and R5 for small CFL numbers, but they do not increase
and the simulations remain stable for larger CFL numbers (CFL > 4:5).

The energy errors for Model A remain constant as a function of CFL number, while the Model
B energy errors increase as a function of CFL number for CFL > 1:5. However, Model B energy
errors are at least one to two orders of magnitude smaller than Model A errors (Figure 17c–d).
For Model A, these errors are equivalent to those obtained with regularly spaced grids R5 and R6.
For Model B, the I2 energy errors at low CFL numbers are between those obtained with grids R3
and R4, and for CFL > 2, these errors are between those obtained with grids R4 and R5. The I3
energy errors are equivalent to those obtained with grid R6.

The CPU time (discussed in more detail in Section 3.3.5) of the simulations with irregularly
spaced grids is equivalent to the CPU time of a regularly spaced grid with the same number of points.
The I2 simulation time falls between that of grids R3 and R4, while the I3 simulation time is equiv-
alent to that of grid R5. Visual comparison of the R3–R4 and I2 free surface position envelopes in
Figure 16 and quantitative comparison of the volume and energy errors for Model B in Figure 17b, d
show that gains in accuracy and efficiency can be made by using irregularly spaced grids. For these
two tests, the transition between different grid sizes varied by a factor of two. The sensitivity of the
model to further increases in this factor was not evaluated here but will be a topic of future work
with irregular grids in two horizontal dimensions.

3.3.4. Convergence as a function of the vertical resolution N . Finally, the model convergence
also depends strongly on the vertical resolution N , which was held constant in the previous tests
(Sections 3.3.2 and 3.3.3). The convergence is evaluated for the irregularly spaced grids I2 and I3
using time steps of �t D 0:005 s and �t D 0:002 s, respectively (CFL� 1:25, based on the defi-
nition using the minimum grid spacing). These time steps were selected to maintain a constant CFL
number and to maximize the efficiency of the simulations. Because an analytical solution is unavail-
able for comparison, the wave envelope errors for each model are calculated as the rms difference
of the simulated wave envelope with N D Œ3; 19� and the simulated wave envelope with N D 20.
For N D 20, the maximum and rms difference between the wave envelopes of Models A and B are
on the order of 10�5 and 10�6, respectively. For Model A, N D 5 (i.e., NZ D 6) is the minimum
value tested to maintain vertical spatial derivatives with fourth-order accuracy.
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Figure 18. Convergence of the wave envelope RMSE as a function of the vertical resolution N , using N D
20 as the reference solution for the horizontal grid I3 (similar results for grid I2).

Figure 19. CPU time TCPU as a function of (a) the number of time steps per wave period Ntime , with
constant N D 7, (b) the horizontal resolution NX , with constant Ntime D 1500 (vertical gray line in (a))
for regularly (R) and irregularly (I) spaced grids, and (c) the vertical resolution N for irregularly spaced grid
I2 (similar results for grid I3) for Models A and B. The thick black lines indicate the general trends for each

parameter plotted.

The wave envelope errors converge more rapidly with Model B than with Model A (Figure 18),
with differences of one to three orders of magnitude for N > 6. For the same vertical resolution,
Model B simulation results more rapidly approach the simulation results obtained for higher values
of N .
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3.3.5. CPU time. To further compare the performance of Models A and B, the CPU time trends
were evaluated as a function of the number of time steps Ntime and the horizontal NX and vertical
N resolutions:

TCPU D f .N;NX ; Ntime/ D N
˛N

ˇ
XN

�
time: (31)

All simulations shown here were run on Intel Xeon E5620 (Intel Corporation, Santa Clara, Califor-
nia, USA) 2.4 GHz processor. Because the measured CPU time depends on the machine, only the
trends will be discussed here.

As expected, the CPU time is linearly proportional, � D 1, to the number of time steps per wave
period Ntime for both models when the vertical resolution is held constant (N D 7, Figure 19a).
The computation time also increases with increasing horizontal resolution, and for the test cases
shown here with N D 7, Model B is more efficient than Model A by a factor of approximately
two. To evaluate the CPU time as a function of the horizontal resolution, the vertical resolution
and number of time steps are then held constant with N D 7 and Ntime D 1500. Because the
CPU time is a linear function of Ntime , it is linearly interpolated at Ntime D 1500 (vertical line
in Figure 19a) for each horizontal grid. For Models A and B, the CPU time is proportional to the
horizontal resolution NX to the power ˇ D 2:4 (Figure 19b), which is dependent on the chosen
direct solver and its optimization. Further improvements in CPU time may be made with the use of
an iterative solver, which will be considered in future work. Finally, the CPU time was evaluated as
a function of the vertical resolution N for a constant horizontal resolution (grid I2) and number of
time steps Ntime D 2872 (CFL � 1:25). The CPU time increases linearly (˛ D 1) for Model A and
slightly more rapidly with ˛ D 1:6 for Model B. This difference is caused by the different methods
used to resolve the potential in the vertical. Finally, for N < 20, Model B is more efficient, while
Model A becomes more efficient for N > 20.

4. DISCUSSION

The three test cases presented here highlight the numerical properties of the two model approaches
and identify differences between the two approaches of resolving the velocity potential in the ver-
tical. The first two academic test cases are compared with reference solutions calculated using
high-order Fourier methods. In the third test case simulating waves shoaling on a beach (in the non-
breaking limit), the solutions are qualitatively compared with the reference solution of [37], after
which the convergence properties, accuracy, and efficiency of the models were evaluated.

4.1. Optimal vertical resolution

This analysis suggests that the optimal vertical resolution for practical applications, which is a
compromise between accuracy and efficiency, is approximately 7 < N < 15 for both models.

The first test case shows that Model B converges more rapidly than Model A. Model B exhibits
exponential (geometric) convergence with N , while Model A has algebraic convergence, with
decreases in errors approximately proportional to N�4 (for fourth-order finite difference schemes).
The results of the second and third test cases confirm that Model B converges more rapidly than
Model A and is more accurate when equivalent values of N are compared. Therefore, while obtain-
ing highly accurate results, it is possible to reduce the size of the linear system of equations and
increase the simulation efficiency by using Model B.

4.2. Optimal CFL number range

As expected, the optimal CFL number is approximately 1 (Figures 12, 16, and 17) for tests with
sufficient horizontal grid resolution. The CPU time is optimized, and the free surface elevation, total
energy, and volume errors are approximately equal to those obtained in simulations with lower CFL
numbers. For simulations with irregularly-spaced grids, the optimal CFL number may be slightly
higher than for simulations with regularly-spaced grids (Figure 17), but a precise definition of the
CFL number is not straightforward because of the variability in �x.
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4.3. Stability of the time marching scheme

Numerical tests of the model stability demonstrate slightly different behavior for Models A and B.
For a given horizontal resolution, Model A generally remains stable at higher CFL numbers than
Model B. However, Model A often develops instabilities during simulations with high horizontal
resolution, whereas Model B remains stable.

Both models demonstrate the appearance of some anomalies in model errors as a function of
horizontal resolution or CFL number, as discussed in Section 3.2.2. For the standing wave test case,
some simulations with coarse horizontal resolution became unstable, as shown by the loss of energy
at low wave numbers and the growth in energy at high wave numbers of the free surface position
energy spectra.

4.4. Optimal model approach

Model B demonstrates more rapid convergence and lower errors as a function of the vertical
resolutionN , as well as generally smaller errors in the phase shift, free surface position, total energy,
and volume. While some exceptions exist primarily for high CFL number or low vertical resolu-
tion simulations, Model B shows improved accuracy for simulations within the optimal range of
parameter values for physical applications.

When comparing model efficiency for the third test case, the CPU time of Model A is proportional
to N 1, N 2:4

X , and N 1
time , while the CPU time of Model B is proportional to N 1:6, N 2:4

X , and N 1
time .

Although the CPU time of Model B increases more rapidly as a function of the vertical resolutionN ,
it remains below the CPU time of Model A in the range ofN recommended for physical applications
(7 < N < 15). [29] recently demonstrated the enhanced efficiency of a high-order spectral method
in both the horizontal and vertical dimensions, in comparison with the finite difference approach
of [18]. Here, these results are extended to consider the case when a high-order finite difference
approach is used in the horizontal dimension, while a spectral method is used only in the vertical
dimension.

Finally, in the third test case, the model accuracy and efficiency were also improved by using
irregularly spaced horizontal grids with finer resolution in the shoaling region, in comparison
with regularly spaced grids with the same value NX . In physical applications where a particular
zone of interest can be defined (e.g., with increased wave–wave or wave–bathymetry interac-
tions), increasing the horizontal resolution only in these zones can optimize the model accuracy
and efficiency.

5. CONCLUSIONS

Three test cases demonstrate the numerical properties of two approaches to solving the fully non-
linear potential flow problem in 1DH .x; ´/ domains with non-breaking waves. By comparing with
reference solutions, these simulations confirm the convergence properties of the two models and
demonstrate their ability to resolve accurately and propagate highly nonlinear waves.

Comparison of the convergence properties, model propagation errors, and CPU time of the two
approaches to resolving the potential in the vertical confirms the improved accuracy and efficiency
of the Model B spectral method (exponential convergence), in comparison with the Model A fourth-
order finite difference schemes (algebraic convergence).

Current work includes further model validation in comparison with wave tank experiments for
regular and irregular nonlinear waves. Future work includes the optimization and extension of the
Model B approach to 2DH domains to validate and apply the model in coastal settings, in particular
with the inclusion of wave breaking dissipation.
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With the objective of simulating wave propagation in the nearshore zone for engineering-
scale applications, a two dimensional (2DV) model based on the Euler–Zakharov equations 
[73,54] is extended to three dimensions (3D). To maintain the flexibility of the approach 
with the goal of applying the model to irregularly shaped domains, the horizontal plane 
is discretized with scattered nodes. The horizontal derivatives are then estimated using 
the Radial Basis Function-Finite Difference (RBF-FD) method, while a spectral approach 
is used in the vertical dimension. A sensitivity analysis examined the robustness of 
the RBF-FD approach as a function of RBF parameters when estimating the derivatives 
of a representative function. For a targeted stencil size between 20 and 30 nodes, 
Piecewise-Smooth (PS) polyharmonic spline (PHS) functions are recommended, avoiding 
the use of Infinitely-Smooth (IS) RBFs, which are less appropriate for the desired 
applications because of their dependence on a shape parameter. Comparisons of simulation 
results to observations from two wave basin experiments show that nonlinear effects 
induced by complex bottom bathymetries are reproduced well by the model with the 
recommended RBF approach, validating the use of this method for 3D simulations of wave 
propagation.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Accurate wave propagation models are required for a wide range of coastal management and engineering applications, 
including the design of coastal structures and the evaluation of coastal risks. In the nearshore zone, nonlinear and dis-
persive effects, characterized by the wave steepness and relative water depth, respectively, can be particularly important. 
The wave steepness ε = kH/2 and relative wave height H/h (where H , k, and h are the characteristic local wave height, 
wave number, and water depth, respectively) increase significantly as waves shoal in shallow water and approach the break-
ing point. The relative water depth μ = kh is often large in deep and intermediate water, or for the shorter waves in 
the sea state, indicating the importance of dispersive effects. Wave propagation models thus need to capture properly 
nonlinear and dispersive effects to simulate accurately offshore and coastal engineering problems. Two-dimensional cross-
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shore (2DV) wave models can be used as a preliminary step in coastal studies, but 3D models are needed to capture 
fully the effects of alongshore bathymetric variations, variable wave incidence, the presence of coastal or harbor struc-
tures, etc.

A wide variety of mathematical models exist to simulate nearshore wave propagation, and Yates and Benoit [74] and 
Benoit et al. [12] chose to develop a 2DV fully nonlinear and dispersive potential flow model based on the Euler–Zakharov 
equations as a compromise between accuracy, mathematical complexity, and computational time. A variety of other ap-
proaches exist, and recent non-exhaustive reviews are summarized by Raoult et al. [54] and Gouin et al. [41], for example. 
The chosen approach, based on fully nonlinear potential flow (FNPF) theory, requires solving the Laplace boundary value 
problem (BVP), which is implemented numerically in the model using a spectral approach in the vertical direction [59]
and finite difference schemes in the horizontal direction. The nonlinear and dispersive capacities of the 2DV version of the 
model were demonstrated in Yates and Benoit [74,73] and Raoult et al. [54]. The accuracy of a similar approach using the 
Chebyshev–Tau method in the vertical and a Fourier collocation method in the horizontal was demonstrated in Christiansen 
et al. [17].

Extending 2DV modeling approaches to 3D increases significantly the number of numerical challenges to overcome, 
including but not limited to the computational time, domain geometry, and boundary condition specification or far-field 
representation. Therefore, a variety of different numerical approaches have been used to solve the 3D FNPF problem by 
reducing the dimension of the problem (e.g. boundary element [56,42,30,52] or High-Order Spectral (HOS) methods [21,22]), 
discretizing the whole domain but taking local derivatives only (e.g. finite element [71] or finite difference schemes [24]), or 
searching for fast numerical methods for solving the Laplace problem (e.g. integral equations [40] or coupled modes [11]), 
each approach having its own advantages and disadvantages.

A number of 3D Numerical Wave Tanks (NWTs) have been developed using high-order Boundary Element Methods (BEM) 
[56,42,30,52], which are an efficient and accurate approach for solving the Laplace BVP by reducing the dimensionality of 
the discretized problem. However, standard BEM techniques yield nonsymmetric and fully populated matrices that require 
fast solution methods (e.g. fast multipole algorithm [53]) or advanced numerical implementations (e.g. pre-corrected Fast 
Fourier Transform methods [72]) to avoid becoming computationally prohibitively expensive to solve. This is especially the 
case for simulating irregular nonlinear waves that span a wide range of wavelengths, thus requiring fine grids.

In the literature, two other methods have been used to extend 2DV approaches to 3D with Finite Element Methods (FEM) 
(e.g. 2DV [70] to 3D [71]) or finite difference schemes (e.g. 2DV [13] to 3D [24]). These approaches require discretizing the 
entire fluid domain, but the only non-zero elements in the coefficient matrix are the neighboring points (with the number of 
points depending on the chosen order of the numerical scheme). While the full 3D Laplace problem still must be solved at 
each time step, recent work has improved the numerical efficiency of such codes (e.g. using preconditioned defect correction 
methods in 2DV [17] or in 3D in the OceanWave3D code [23]) that may then be used for coastal and offshore engineering 
applications.

Another even more computationally efficient approach uses the HOS method (e.g. Dommermuth and Yue [20], West et 
al. [63], Craig and Sulem [19]), which is based on a Taylor series expansion of the velocity potential about a reference water 
level (often the mean water line). This approach was originally developed for unbounded domains and then for finite depth 
cases, with periodic lateral boundary conditions. Ducrozet et al. [21,22] developed an open-source model, HOS-ocean, which 
is an extension of this method to take into account the generation and propagation of regular and irregular, multidirectional 
waves. Recently, HOS-ocean was also extended to simulate wave propagation over variable bottom bathymetries by Gouin et 
al. [41].

Additional approaches for solving the BVP include a fast Laplace equation solver using integral equations and an iterative 
solution procedure that converges rapidly (in 2DV [18] and then 3D [40]), or a fully dispersive coupled-mode model (in 2DV 
[10] and then 3D [11]).

Here, the objective is to extend the two dimensional model developed by Yates and Benoit [73] and Raoult et al. [54]
to three dimensions, maintaining the efficient and accurate spectral approach used in the vertical. The 2DV code used finite 
difference schemes to estimate horizontal derivatives. This approach is still applicable in two horizontal dimensions for 
simple domain geometries that can be discretized by regular meshes. However, the model cannot then be applied easily 
to complex domains. Therefore, to overcome these limitations, a meshless approach based on Radial Basis Functions (RBF) 
is implemented in the code and tested to propagate highly nonlinear and dispersive waves. The RBF method has been 
used extensively in other fields of research for a variety of physical and engineering problems, including, for example, 
diffusion [61,16], radiative transport [50], combustion [48], shallow-water models [77,44], and flow simulations using the 
Navier–Stokes equations [57]. Here, the RBF method is applied to evaluate its capacity to simulate accurately nonlinear wave 
propagation.

This paper presents a brief literature review of RBF methods (Section 2), before describing the mathematical model 
and its numerical implementation in the code (Section 3), focusing on the RBF Finite Difference (RBF-FD) method used to 
estimate the horizontal derivatives. A sensitivity analysis then evaluates the accuracy and stability of the RBF-FD method as a 
function of the RBF parameters for a representative test function (Section 4). These tests help to identify the optimal method 
parameters for simulating waves. Then, the 3D version of the model is validated by simulating two sets of experiments 
conducted in wave basins with variable bathymetries (Section 5). Finally, an analysis of the advantages and disadvantages of 
using the RBF-FD approach to simulate nonlinear wave propagation is summarized, including propositions for future work 
(Section 6).
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Table 1
Summary of commonly used RBFs describing the function, the constraints on the free parameters, and the regu-
larity of the function (PS stands for Piecewise-Smooth and IS for Infinitely-Smooth).

Name (Acronyme) Function ψ(r) Condition Regularity

Polyharmonic Spline (PHS) rm m odd integer PS
Thin Plate Spline (T P S) rm log r m even integer PS
Multiquadric (MQ)

√
r2 + C2 C > 0 IS

Inverse Multiquadric (IMQ) 1√
r2+C2

C > 0 IS

Inverse Quadratic (IQ) 1
r2+C2 C > 0 IS

Gaussian (GA) e−r2/C2
C > 0 IS

2. Brief review of RBF methods

RBFs were first introduced by Hardy [43] for interpolating surfaces. A function f̃ (x) is sought to approximate a given 
function f (x), for which the values f i (i = 1, ..., N) are known for a given set of N data points xi (i = 1, ..., N) using a set 
of basis functions ψi(x) (i = 1, ..., N):

f̃ (x) ≈
N∑

i=1

λi ψi(x), (1)

with x = (x, y). The interpolation coefficients λi are determined by solving the set of linear equations obtained by enforcing 
the interpolation conditions: f̃ (xi) = f i for i = 1 to N . For one-dimensional data, a variety of different basis functions 
(independent of the data points) lead to non-singular linear systems as long as the N data points are distinct (i.e. Fourier and 
polynomials series). However, this property is no longer guaranteed when the problem is extended to two dimensions [66]. 
Hardy [43] proposed using a basis of functions composed of a single radial function ψ(r) centered at each data point: 
ψi(x) = ψ(||x − xi ||) (i = 1, ..., N).

The initial work of Hardy [43] used the multiquadric (MQ) radial function ψ(r) = √
r2 + C2, with r the radial distance 

from the center xi to node x and C a strictly positive shape parameter to obtain a continuously differentiable basis function 
(even when r = 0), where C controls the narrowness of the RBF. A wide variety of radial functions may be used. In a 
study of scattered data interpolation, Franke [39] tested 29 interpolation methods for six different test functions. The results 
showed that MQ functions were among the most accurate, together with inverse multiquadric (IMQ) and thin plate spline 
(TPS) functions (Table 1).

Overall, the RBF method demonstrated good results for spatial interpolation. Therefore the approach was tested further 
for estimating derivatives in domains with scattered nodes. Stead [58] compared the errors obtained in estimating partial 
derivatives when using MQ or weighted least square quadratic approximate interpolants. Since RBF interpolants do not 
have polynomial precision (except when polynomial terms are added), the author recommended using the MQ interpolant 
for surfaces with significant curvature. Later, Kansa [45] was the first to use the MQ function to solve partial differential 
equations (PDEs), namely a Poisson equation, with a collocation method. The coefficients of the RBF approximation of the 
solution are found by solving the linear system obtained by applying the differential operators to the interpolant for the 
interior nodes and boundary conditions to the interpolant for the boundary nodes. The resulting matrix is not symmetric 
and is not proven to be unisolvent. Several improvements to this approach were made, by recovering the symmetry of 
the matrix using Hermite interpolation to modify the basis functions [25], or by imposing both the PDE and the boundary 
conditions at boundary nodes to increase the constraints where errors are larger [27].

Many different functions can be used in the RBF approach, and as shown in the preliminary study by Franke [39], the 
results are sensitive to the choice of function. The most commonly used functions (Table 1) can be broken into two families: 
piecewise-smooth (PS) and infinitely-smooth (IS) functions.

For IS-RBFs (with a shape parameter C ), the interpolation system will not be singular if the scattered nodes are distinct. 
PS-RBFs do not depend on a shape parameter, but they present a singularity at the origin. To ensure the unique solvability 
of the linear system, the interpolant has to be modified by including polynomial terms, requiring additional constraints for 
the linear system to be well-posed. In this case, the non-singularity of the matrix becomes more restrictive since it requires 
that the nodes are not only distinct but are also unisolvent in the appended polynomial space [31].

Global vs. local methods. The RBF method was first introduced as a global method, in which estimates at each node depend 
on all nodes in the domain, leading to a full coefficient matrix. When the matrix becomes too large, it often becomes 
ill-conditioned. The interpolation coefficients (λi , Eq. (1)) become oscillatory with large magnitudes that may lead to a poor 
interpolation because of numerical cancellations. In this case, the size of the matrix can be reduced by considering smaller 
domains using domain decomposition algorithms [8,65,76]. In the limit, one can instead use a local approach by defining 
stencils centered at each node of the domain and including only the Nsten − 1 nearest neighbors (for a total of Nsten nodes 
in each stencil) in the estimation of the function (Eq. (1)). Tolstykh and Shirobokov [60] were the first to consider this 
method to estimate derivatives with a RBF-FD approach, followed shortly by Wright [66] and Shu et al. [57]. Wright and 
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Fornberg [67] improved the accuracy of this method by including a linear combination of derivatives of the function at the 
surrounding nodes. The local method has the advantage of reducing considerably the computational time in comparison to 
the global method, as well as being parallelized easily. The construction of approximate formulas for the derivatives using 
RBF interpolants, also called the RBF-FD method, will be presented in more detail in Section 3.3.

However, even when using local methods, the matrix may become ill-conditioned for IS-RBFs when C → ∞ (i.e. in the 
limit of flat basis functions). Several specific algorithms have been developed to obtain accurate results even for large values 
of C (i.e. Contour Padé [35], RBF-QR [34], RBF-GA [38] or more recently the RBF-RA algorithm [68]). Using a stable algorithm 
not only improves the derivative estimation accuracy by allowing the use of larger values of C , but also makes the choice 
of optimal C less critical. Nevertheless, the algorithms may be difficult to adapt to a specific mathematical model or the 
modified RBFs may have much more complicated expressions.

PS vs. IS functions. The choice of RBF to obtain the most accurate estimates is not straightforward, and some trade-offs must 
be considered when using IS or PS functions. Errors when using either family of functions in the RBF method depend on the 
specific choice of the radial function (e.g. Table 1), the mesh resolution and spacing, and the stencil size Nsten . Two main 
characteristics differentiate these two families of functions: (1) the type of convergence as a function of the node spacing, 
and (2) the dependency on a shape parameter C .

When using global RBF methods, IS-RBFs have spectral convergence, while PS-RBFs have only algebraic convergence, 
which often leads to a preference for IS-RBFs [31]. However, when using local RBF methods (i.e. RBF-FD method), the 
spectral accuracy of IS-RBFs is lost, minimizing their advantage over PS-RBFs with respect to convergence. Additionally, 
stagnation errors exist. One type of PS-RBFs, PHS, require the addition of a polynomial (with M terms) to the interpolant 
to guarantee the unisolvency of the system. The PHS RBFs then have a convergence rate corresponding to the degree of the 
added polynomial. For complex applications, Barnett [3] and Bayona et al. [7] recommended an added polynomial of degree 
such that there are approximately twice as many RBFs as polynomial terms in the interpolant (i.e. Nsten ≈ 2M).

With IS-RBFs, the estimation error depends strongly on the value of the shape parameter C : for small values of C , the 
error is generally high, decreasing with an increase in C . A minimum is often reached for an intermediate value of C = Copt
(called the optimal value of C in the following). When C is increased beyond this optimal value, the error increases and 
large oscillations may be observed as the matrix becomes ill-conditioned. The matrix may already become ill-conditioned 
for values of C smaller than Copt : in this case, the minimal error is just at the limit of ill-conditioning. In the limit of 
C → ∞, Fornberg et al. [37] showed that when the interpolant limit is finite, it tends to a multivariate polynomial. Finding 
Copt is a difficult task. For global methods, there is no existing mathematical theory to determine the optimal choice of C . 
Often, this choice is based on the inter-node spacing for convenience. However, based on a series of tests, Carlson and 
Foley [15] and then Rippa [55] concluded that the optimal value of C depends on the shape of the interpolated function 
and not on the node positions or spacing. When the RBF method is used to interpolate data, the value of C is chosen 
by cross-validation methods. For example, Rippa [55] developed a method based on the minimization of a cost function 
calculated as the error between the interpolant and the desired function. Fasshauer and Zhang [26] adapted this algorithm 
for the resolution of PDEs with RBF pseudospectral methods. For RBF-FD, Bayona et al. [4] derived an expression of the 
estimated error as a function of C , showing that Copt depends on the shape of the function and its derivatives. They 
also showed that it is independent of the node spacing at first order, but can vary with node locations in 2D. Given an 
expression of the estimated error, Bayona et al. [5] proposed an algorithm to find the optimal value of C . However, this 
requires first estimating the derivatives at each point with another less accurate method (since the values of the derivative 
of the function are necessary to compute the error estimates), before re-estimating the derivatives with the RBF-FD method 
and newly obtained optimal value of C .

The selection of an optimal or even “good” value for the shape parameter C can be challenging. Thus, RBFs without 
shape parameters, such as PHS, recently have become more attractive, noting furthermore that they produce relatively 
well-conditioned matrices [4,29].

For more details on RBF methods and numerous application examples, see the recently published book of Fornberg and 
Flyer [31].

3. Model description

3.1. Mathematical model

The fluid domain is delimited in the vertical by the free surface at z = η(x, t) and the bottom at z = −h(x), with the 
vertical axis z pointing upwards and the origin at the still water level. The fluid is accelerated by gravity g . At the free 
surface, the atmospheric pressure is assumed uniform and constant in time (chosen to be 0 by convention), and surface 
tension is neglected. Potential flow theory is adopted by further considering the irrotational flow of an inviscid and homo-
geneous fluid of constant density. The kinematics of the fluid are obtained from the velocity potential �(x, z, t) such that 
v = (u, v, w) = (∇�, �z), where ∇ f ≡ ( fx, f y) is the horizontal gradient operator, and partial derivatives are denoted with 
subscripts.

If the free surface is assumed to be single-valued in x (no overturning waves), the evolutions of η(x, t) and �̃(x, t) ≡
�(x, z = η(x, t), t) are governed by the nonlinear kinematic and dynamic free surface boundary conditions, expressed as 
functions of free surface quantities only [75]:
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ηt = −∇η.∇�̃ + w̃
(

1 + (∇η)2
)

, (2)

�̃t = −gη − 1

2
(∇�̃)2 + 1

2
w̃2

(
1 + (∇η)2

)
, (3)

where w̃(x, t) ≡ �z|z=η(x,t) is the vertical velocity at the free surface.

To integrate these equations in time, w̃ is determined from η and �̃ by solving the Laplace BVP for the velocity potential 
� in the entire domain (Laplace equation) supplemented by the free surface and bottom boundary conditions (BCs):

∇2� + �zz = 0, −h(x) ≤ z ≤ η(x, t), (4)

� = �̃(x, t), z = η(x, t), (5)

∇� · ∇h + �z = 0, z = −h(x). (6)

At the lateral boundaries, periodic, Dirichlet or Neumann BCs are imposed to close the problem.
The Laplace BVP is solved using a spectral approach in the vertical dimension following the work of Tian and Sato [59]. 

The method is described for the case of a single horizontal dimension (i.e. x = x) in Yates and Benoit [73] and Raoult et 
al. [54]. The extension to two horizontal dimensions is quite straightforward, and only the main steps are presented here.

First, a change of the vertical coordinate from z ∈ [−h(x), η(x, t)] to s ∈ [−1, 1] is made to project the time-varying 
domain to a constant height domain extending from the bottom at s = −1 to the free surface at s = +1:

s(x, z, t) = 2z + h−(x, t)

h+(x, t)
, (7)

where h+(x, t) ≡ h(x) + η(x, t) and h−(x, t) ≡ h(x) − η(x, t).
The BVP is then reformulated in the transformed space (x, s) for �(x, z, t) ≡ ϕ(x, s(x, z, t), t).
Second, the vertical variation of the velocity potential is approximated by a linear combination of Chebyshev polynomials 

of the first kind, Tn(s):

ϕ(x, s) ≈
NT∑

n=0

an(x)Tn(s), (8)

where n = 0, 1, 2, ... indicates the order of the polynomial, and NT is the maximum order of the Chebyshev polynomials. 
These polynomials are easy to compute, form an orthogonal basis over the range [−1, 1], and converge rapidly over a large 
domain. Yates and Benoit [73] and Raoult et al. [54] have shown that values of NT smaller than 10 (typically in the range 
[5, 8]) are sufficient to obtain high accuracy for a variety of 2DV nonlinear wave propagation test cases.

The approximation Eq. (8) is then introduced in the BVP, and a Chebyshev–Tau method [14] is applied to eliminate the 
dependence on the vertical coordinate s. The Laplace equation (4) is projected on polynomials T p for p ranging from 0 to 
NT − 2, supplemented by the boundary conditions, Eq. (5) and (6), respectively. For nodes located on a lateral boundary, the 
Laplace equation (4) is replaced, either by a Neumann condition for an impermeable boundary ∇�.nlat = 0 (where nlat is 
the unit normal vector at the lateral wall) or by a Dirichlet condition for wave generation, imposing the velocity potential 
from linear theory (generally supplemented with a relaxation zone). The final set of equations is a linear system for the 
an(x), which depends only on x at a given time:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ap,xx + ap,yy +
NT∑

n=0

C x
pn an,x +

NT∑
n=0

C y
pn an,y +

NT∑
n=0

D pnan = 0 for p = 0, ..NT − 2 (a)

NT∑
n=0

an = �̃(x, t) (b)

h+hx

NT∑
n=0

(−1)nan,x + h+hy

NT∑
n=0

(−1)nan,y +

2 (1 + h2
x + h2

y)

NT∑
n=0

(−1)n−1n2an = 0 (c)

(9)

where

C x
pn = (m0101 B p01n + m1101 B p11n)/m0220, (10)

C y
pn = (m0011 B p01n + m1011 B p11n)/m0220, (11)

D pn = (m0002 B p02n − m1002 B p12n + m2002 B p22n + m0001 B p01n + m1001 B p11n)/m0220. (12)
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The mijkl terms depend only on h+ , h− , and their spatial derivatives (up to order two). The expressions for these terms 
are shown in Appendix A. The B pikn terms are introduced to express the projection of the terms si dk Tn

dsk on the polynomial T p , 
and they can be determined analytically as a function of n and p (see Appendix B). These terms are constant and can be 
computed once at the beginning of each simulation, after NT is chosen.

For each node x, NT + 1 unknown coefficients an in Eq. (8) must be determined. With the RBF-FD method, the horizontal 
spatial derivatives of the an coefficients are approximated as linear combinations of the values in the vicinity of the node 
considered, leading to a set of coupled linear equations.

Once the an(x) coefficients are determined, the vertical velocity at the free surface w̃(x) is obtained readily from:

w̃(x) = �z(x, z = η) = sz ϕs(s = +1) ≈ 2

h+(x)

NT∑
n=1

an(x) n2 (13)

The vertical velocity can then be used to evaluate the right hand side of Eq. (2) and Eq. (3), required by the numerical 
scheme to integrate in time.

3.2. Numerical implementation

A classical, explicit fourth-order Runge Kutta (RK4) scheme with a constant time step is used to integrate Eq. (2) and 
Eq. (3) in time. At each sub-step of the RK4 scheme, the Laplace BVP is solved. The domain is discretized with N P XY
nodes in the horizontal (x, y)-plane, and NT is the maximum order of the Chebyshev polynomials in Eq. (8). Horizontal 
derivatives are approximated with the local RBF-FD method (described in section 3.3) using a stencil consisting of a fixed 
number of neighboring nodes. Therefore, for nodes far from the boundaries, the stencil dimensions are symmetric, while 
they become asymmetric at and near the boundaries. The effect of this asymmetry will be studied further in section 4. The 
RBF-FD method is chosen for its ease of implementation, with an algorithm similar to finite difference methods, and for 
its flexibility with scattered nodes enabling the simulation of complicated domain geometries and the possibility of local 
refinement. The linear system corresponding to the Laplace BVP is composed of N P XY (NT +1) equations for the coefficients 
an(xi), with n = 0, ..., NT and i = 1, ..., N P XY . The associated matrix is sparse, and the system is currently solved using the 
direct solver MUMPS (“MUltifrontal Massively Parallel Solver”, v4.10.0) [1,2], using the default settings.

3.3. RBF-FD method

3.3.1. Theoretical background
Similar to finite difference methods, applying a linear differential operator L to a given function f at x1 is expressed as 

a linear combination of the values of the function f at the nodes in the stencil:

L f (x1) ≈
Nsten∑
i=1

αL
i f (xi). (14)

The stencil is composed of the node itself and its Nsten − 1 nearest neighbors (x2, x3, ..., xNsten
).

The weights αL
i , for i = 1 to Nsten , are determined by requiring the approximation in Eq. (14) to be satisfied by the set 

of radial functions centered at each node of the stencil ψi(x) ≡ ψ(||x − xi ||), i ∈ [1, Nsten]. This leads to the resolution of a 
linear set of Nsten equations for Nsten unknowns, which can be written as:⎡

⎢⎢⎢⎣
ψ(||x1 − x1||) · · · ψ(||xNsten

− x1||)
ψ(||x1 − x2||) · · · ψ(||xNsten

− x2||)
...

...
. . .

...

ψ(||x1 − xNsten
||) · · · ψ(||xNsten

− xNsten
||)

⎤
⎥⎥⎥⎦

⎡
⎢⎣

αL
1
...

αL
Nsten

⎤
⎥⎦ =

⎡
⎢⎣

L ψ(||x − x1||)(x1)
...

L ψ(||x − xNsten
||)(x1)

⎤
⎥⎦ (15)

As mentioned in the introduction, several different forms of RBF ψ(r) can be used (Table 1).
To improve the accuracy of the estimation, especially at the boundaries of the domain [36], the RBF can be supplemented 

with a polynomial of degree l: 
∑M

j=1 b j p j(x), where p j(x)M
j=1 is a basis of polynomials up to degree l in R2 and M = (l+2

2

)
. 

In this case, M additional constraints minimizing the far-field growth must be enforced to close the system:

Nsten∑
i=1

λi p j(xi − x1) = 0 j = 1,2,3..., M. (16)

Finally, the system to be solved to obtain the αL
i coefficients becomes:[

	 P
P T 0

][
α
β

]
=

[
L ψ

L p

]
(17)
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where 	 is the matrix of ψ in the left hand side of Eq. (15), P is a M × Nsten matrix formed by the p j , j = 1, ..., M basis of 
polynomials up to degree l in R2, and β and L p are the M × 1 vectors formed by βi and L pi(x1).

The application of the method depends on the non-singularity of the matrix 
[

	 P
P T 0

]
. The matrix 	 is guaranteed non 

singular for IS-RBFs provided that the nodes are distinct. For PS-RBFs 	 is no longer guaranteed to be nonsingular, and a 
polynomial of degree l must be added to ensure that the system is uniquely solvable [66]. Barnett [3] showed that for PHS 
of the form rm , the degree l of the added polynomial must satisfy l ≥ (m − 1)/2. The addition of a polynomial also requires 
the use of an unisolvent set of nodes [66].

3.3.2. Numerical implementation
The weights αL

i must be calculated at all nodes in the domain for each differential operator L required for the dis-
cretization of the PDEs. In the present model, first and second-order derivatives in the two horizontal dimensions are 
calculated. At each node x of the horizontal mesh, the following steps are carried out. First, the Nsten − 1 nearest neighbors 
of the selected node are identified. The size of the stencil and the degree of the augmented polynomial are defined at the 
beginning of the simulation and are constant for all nodes. Then, the linear system Eq. (17) is solved by completing a LU 
decomposition. The weights are computed once at the beginning of the simulation and are subsequently used to estimate 
all spatial derivatives in the model, including, but not limited to, the free surface elevation η, the free surface potential �̃, 
the water depth h, and the an coefficients.

The implementation of the RBF-FD method is first tested to evaluate its accuracy in approximating spatial derivatives of 
a representative wave function (Section 4), and then it is applied for the simulation of wave tank experiments with variable 
bathymetries (Section 5).

4. Accuracy of the RBF-FD derivative estimates

4.1. Method

A series of tests were conducted to evaluate the capabilities and limitations of the RBF-FD method in estimating first 
and second-order spatial derivatives. These tests evaluate the impact of several parameters such as the RBF type, the value 
of the shape parameter C in the case of IS-RBFs, the degree of the added polynomial, and the stencil size Nsten . Previous 
work (e.g. Franke [39], Stead [58]) has tested different types of RBFs (Table 1) to evaluate the interpolation and derivate 
estimate accuracy. However, these functions were usually chosen arbitrarily, with more or less complex spatial variations. 
When simulating ocean wave propagation, the free surface generally has oscillatory variations, thus a sinusoidal function is 
chosen here as a basic representative model:

f (x, y) = A cos

(
2π

L
(x cos θ + y sin θ)

)
, (18)

where L = 0.5 m is the characteristic length of variation (or wavelength), A is the wave amplitude such that A/L = 0.05, and 
θ = 20° is the direction of wave propagation with respect to the x axis. The domain is defined as 0 ≤ x ≤ 1 m and 0 ≤ y ≤
1 m and is discretized with a regular set of nodes with node spacing x = y = 0.05 m (= L/100). First and second-order 
derivatives in both horizontal dimensions are estimated with the RBF-FD method and compared to the analytical values 
(denoted L ftheo hereafter). The accuracy of the estimation is evaluated by calculating the normalized averaged error for all 
N nodes in the domain:

RM S Error =
√√√√∑N

i=1 (L f (xi) − L ftheo(xi))
2∑N

i=1 (L ftheo(xi))
2

(19)

Globally, errors are larger closer to the boundaries, and more particularly when the stencil is one-sided in the direction 
of the derivative (i.e. for x = 0 m and x = +1 m for x-derivatives, and y = 0 m and y = +1 m for y-derivatives). Two 
subsets of nodes are then defined, based on the asymmetry of the stencil: the interior nodes with a centered stencil (such 
as node A in Fig. 1) and the boundary nodes with asymmetric or one-sided stencils (such as nodes B and C in Fig. 1). In the 
following, the global averaged error Eq. (19) is shown except when the error behavior differs for the two node sets and is 
analyzed separately.

From the series of tests carried out to study the sensitivity of the method’s accuracy to the chosen parameters, one initial 
question arises: “Which RBF is optimal?”. The values of the other parameters will then depend on this choice. For IS-RBFs, 
which depend on a shape parameter, the accuracy of the method was evaluated as a function of the:

• IS-RBF function: MQ, IMQ, IQ and GA (see Table 1),
• variation of the shape parameter in the range C ∈ [0, 30] m,
• inclusion of an added polynomial up to degree 2, and
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Fig. 1. Example of three stencils of Nsten = 21 nodes, for a node A in the interior of the domain (symmetric stencil), and nodes B and C on or close to the 
boundaries (asymmetric stencil).

• stencil size for Nsten = 5, 13 and 21, corresponding to the optimal thresholds defined by Bayona et al. [4] for regular 
node sets.

For PS-RBFs (not depending on a shape parameter), the accuracy of the method was evaluated as a function of the:

• PS-RBF function: one T P S function ψ(r) = r4 log r to have at least the continuity of the second-order derivatives, and 
two PHS functions ψ(r) = r5 and ψ(r) = r7,

• inclusion of an added polynomial up to degree 5, (in the following, the shorthand form r5 + p3 is used to denote the 
PHS r5 with an added polynomial of degree 3), and

• stencil size in the range Nsten ∈ [9, 56].

4.2. Results

4.2.1. Sensitivity to the shape parameter C
In Fig. 2, the global averaged error for the four IS-RBFs is plotted as a function of the shape parameter C for the 

first-order ( fx, f y) and second-order ( fxx, f yy) derivatives. For IS-RBFs, the derivative estimate accuracy depends strongly 
on C . The four RBFs display the same general behavior as a function of C : large errors for small values of C that decrease 
with an increase in C , and the development of oscillations when C exceeds an unknown threshold (depending on the RBF). 
These oscillations appear when the coefficient matrix (Eq. (17)) becomes ill-conditioned. The optimal value of C for which 
the error is minimum (denoted Copt ) depends on the RBF and derivative estimated, and is therefore not known a priori (as 
previously stated in Section 2). First and second-order derivatives in x reach a minimum for C ≈ 0.42 m, whereas the matrix 
becomes ill-conditioned for the first and second-order derivatives in y before a minimum is observed. It can be inferred 
that the optimal value of C for derivatives in y is larger than for derivatives in x for this particular function and value 
of θ . The choice of the value of C is thus a compromise between optimizing the accuracy of the solution and reaching the 
limit of an ill-conditioned matrix. The accuracy of the estimation could be improved by allowing the shape parameter to 
vary with the RBF center (i.e. Kansa and Carlson [46], Kansa and Hon [47]), which produces larger variations in the matrix 
coefficients, thus reducing the condition number. Bayona et al. [6] developed an algorithm for the RBF-FD method to find 
the Copt for each node, but it is an inefficient approach in the current model since it requires estimating the derivatives 
twice. Finally, Copt depends on the function whose derivatives are estimated, suggesting that different coefficients would 
need to be calculated for each variable. In addition, some variables in the model (η, �̃, ...) are time dependent, requiring 
the coefficients to be a function of time as well. To increase the accuracy, a simpler approach was tested by normalizing the 
stencil, or transforming the local support to a unit circle, following the work of Shu et al. [57]. This was expected to reduce 
the difference in accuracy between interior nodes (with centered stencils) and boundary nodes (with asymmetric stencils), 
allowing the use of larger values of C for nodes with asymmetric stencils. However, tests with normalized stencils did not 
improve significantly the RBF accuracy (results not shown here).

The errors for the three PS-RBFs do not depend on a shape parameter and are therefore constant as a function of C
(Fig. 2). For PS-RBFs, the errors decrease when the degree of r increases, and ψ(r) = r7 produces the smallest errors for 



286 C. Raoult et al. / Journal of Computational Physics 378 (2019) 278–302

Fig. 2. Global errors of the four derivative estimates fx, f y, fxx , and f yy of the test function Eq. (18) for the four IS-RBFs and the three PS-RBFs as a function 
of the shape parameter C (with Nsten = 21 and an added polynomial of degree 0). (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

the four derivatives considered. Overall, PS-RBFs cause smaller errors than IS-RBFs for small values of C . The RBF ψ(r) = r7

produces errors comparable to the minimum errors obtained with the IS-RBFs for f y and f yy , and slightly larger errors 
than what can be reached by the IS-RBFs near Copt . Although the RBF ψ(r) = r7 may not be the optimal choice for the 
presented derivatives, it offers the advantage of not relying on the choice of a shape parameter, whose selection is not a 
straightforward process, as previously mentioned. Finally, since the errors with PHS r5 and r7 are smaller than those with 
r4log(r), only the PHS RBFs will be examined in the following tests.

4.2.2. Sensitivity to the stencil size and added polynomial degree
The dependence of the estimation accuracy on the stencil size (Nsten) and the degree of the added polynomial (l) demon-

strates that the sensitivity is not the same for IS and PS-RBFs.

IS-RBFs. First, focusing on IS-RBFs, Fig. 3 shows the global error for the estimation of fx as a function of C for three values 
of the stencil size, Nsten = 5, 13, and 21. The accuracy of the derivative estimates improves significantly by increasing the 
stencil size from 5 to 13 nodes, and even more by increasing to 21 nodes. However, C must be chosen carefully since 
the range of values of C producing a well-conditioned matrix is reduced. The matrix becomes ill-conditioned for smaller 
values of C when Nsten increases (e.g. C ≈ 0.8 m for Nsten = 13, whereas C ≈ 0.5 m for Nsten = 21). In addition, increasing 
Nsten increases the computational time (tests of regular wave propagation, not shown here, exhibited a computational time 
proportional to N1.36

sten , using a fixed value of N P XY ), so a compromise must be made between the desired accuracy, the 
difficulties in finding an optimal value of C , and the computational time.

The sensitivity of the error to the degree of the added polynomial is then studied by increasing l from 0 to 2 and 
comparing the results to those without an added polynomial. The boundary and interior nodes present different behavior 
as a function of l (Fig. 4). Despite the smaller number of boundary nodes (in comparison with interior nodes), the global 
error (calculated for all nodes, Fig. 4c) is dominated by the boundary errors, therefore presenting the same dependence on 
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Fig. 3. Global error for the estimate of fx for the IMQ RBF as a function of the shape parameter C (with an added polynomial of degree 0) for stencil sizes 
Nsten = 5, 13 and 21.

the shape parameter C . For interior nodes (Fig. 4a), adding higher degree polynomials decreases the error for C < 0.18 m, 
but this improvement is lost for higher values of C . For boundary nodes (Fig. 4b), the errors are reduced significantly with 
the addition of a polynomial and an increase in the degree of the polynomial for C < 0.3 m. Since RBFs are not exact 
approximations of polynomials, it is essential to add at least a constant to the RBF interpolant to be able to estimate 
accurately the derivative of a constant function.

For IS-RBFs, increasing the stencil size improves the accuracy but causes the matrix to become ill-conditioned for smaller 
values of C . The addition of high-order polynomials is only beneficial for small values of C , especially for the boundary 
nodes, in agreement with [36].

PS-RBFs. The addition of a high-order polynomial is essential to guarantee the inversibility of the collocation matrix for 
PHS RBFs. A minimum polynomial degree l is required, which depends on the degree of the PHS function. In addition, the 
maximum degree of the added polynomial is limited by the size of the stencil. To ensure that the problem is well-posed, 
Nsten must be larger than the number of independent monomials constituting the basis of polynomials of the same degree 
as the added polynomial (i.e. [3]). Given these constraints, a series of tests were conducted to study the sensitivity of 
the error estimation of the PHS r5 and r7 to the stencil size (Nsten ∈ [9, 56]) and to the degree of the added polynomial 
(l ∈ [2, 5]).

With regular node sets, the condition on the minimum stencil size for a given degree of added polynomial is not suffi-
cient to ensure the non-singularity of the matrix. The regularity of the node set does not allow the matrix to be unisolvent 
for the polynomial basis [66]. The stencil size thus has to be increased to recover the inversibility of the matrix [3]. With 
an irregular node set, this may not occur.

The results obtained with both PHS (r5 and r7) are compared in Fig. 5 for the first derivative in x. Similar behavior is 
observed for the two PHS, but PHS r7 produces smaller errors for a given degree of the added polynomial. The interior node 
and boundary node errors vary differently as a function of Nsten but in both cases, the errors decrease with an increase 
in the degree of the added polynomial. For an added polynomial with an even degree, the error for the interior nodes is 
weakly dependent on the stencil size Nsten , whereas for an added polynomial with an odd degree, a minimum is obtained 
for any stencil size with a symmetric distribution of nodes. This effect is caused by the regular distribution of the nodes and 
may not be observed with irregularly spaced nodes (for example, for boundary nodes with asymmetric stencils). The same 
trends are observed for the estimation of second-order derivatives, but for the inverse of odd and even added polynomials 
(not shown here). Contrary to the PHS r7, the PHS r5 has the advantage of being used with only a second degree added 
polynomial, thus requiring a smaller Nsten and allowing a reduction in the computational time.

4.2.3. Convergence study as a function of the grid spacing
For IS-RBFs (e.g. IMQ, Fig. 6) the optimal C is generally insensitive to the node spacing (here Copt � 0.4 m). As the 

node spacing decreases, the errors decrease until a certain limit below which the matrix becomes ill-conditioned. Thus C
is generally decreased with the node spacing to keep the condition number of the collocation matrix roughly constant, at 
about 1015 according to Flyer et al. [29]. This causes error saturation and the loss of convergence, which can be restored by 
adding polynomials.

For PHS RBFs, there are no saturation errors, and the convergence rate depends on the degree of the added polynomial l
(∝ xl−k+1), where k is the order of the estimated derivative [29]. When the degree of the PHS RBF increases (from r5 to r7), 
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Fig. 4. Errors for the estimate of fx , for the IMQ RBF as a function of the shape parameter C (with Nsten = 21) for added polynomials of degree 0 to 2: 
(a) interior nodes, (b): boundary nodes, and (c) all nodes.

the errors decrease slightly only for low order added polynomials (i.e. l = 3 and 4). The convergence rate is independent of 
the stencil size Nsten (Fig. 7).

These results, concerning error estimation as a function of node refinement for IS-RBFs and PS-RBFs (PHS), are in agree-
ment with the studies of Bayona et al. [4] and Flyer et al. [29].

4.2.4. Summary of the derivative estimate tests
Finally, based on a literature review and a series of tests including, but not limited to those shown here, the use of the 

PHS r7 with an added polynomial of degree 3 and Nsten = 21, appears to be a good compromise for applications similar 
to those presented here. For general applications, determining the optimal shape parameter may be challenging (where the 
derivatives of all variables are estimated with the same coefficients). It is more practical and efficient to use a RBF that 
does not depend on a shape parameter since Copt depends strongly on the estimated derivative and the function itself. 
The PHS r7 is preferred to the PHS r5 because, for the same degree of added polynomial, the PHS r7 tends to produce 
smaller errors. These choices are recommended to minimize the expected errors and stencil size (i.e. computational time) 
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Fig. 5. Errors for the estimate of fx for PHS r5 and r7 as a function of the stencil size Nsten and the degree of the added polynomial (shown in the legend) 
for: (a) interior nodes, (b) boundary nodes, and (c) all nodes.

for the estimation of first and second-order derivatives, and will be used in the subsequent test case simulations. This 
recommendation is derived from a sensitivity study testing a single function. Although there is no formal proof that these 
results can be extended to a wide range of functions, the chosen sinusoidal function is assumed representative of the type 
of functions encountered in real applications, suggesting the generalization of the conclusions concerning the efficiency and 
accuracy of this method for wave propagation simulation models.

5. Validation test cases

The 3D version of the model is validated by comparing simulation results to measurements from two laboratory ex-
periments studying the convergence of regular and irregular waves propagating over two different bathymetric profiles: 
a semi-circular step based on the experiments of Whalin [64], and a submerged shoal based on the experiments of Vincent 
and Briggs [62].
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Fig. 6. Errors for the estimate of fx for IMQ with Nsten = 21 and an added polynomial of degree one as a function of the shape parameter C for five 
different grid spacings (see legend).

Fig. 7. Errors for the estimate of fx for P H S r5 and r7 as a function of the grid spacing (same as in Fig. 6) for (left) different degrees of the added 
polynomial l, and (right) several stencil sizes Nsten .

5.1. Nonlinear wave propagation over a semi-circular step

Whalin [64] performed a series of experiments of regular waves propagating over a semi-circular bottom topography 
that acts as a focusing lens. These experiments were conducted to test the limit of linear and nondiffractive theory in a 
convergence zone, considering non-breaking waves with periods of 1, 2, and 3 s, for three wave heights. The bottom topog-
raphy was designed to produce strong wave convergence along the centerline of the basin and to minimize sidewall effects 
and dissipation by bottom friction. The wave tank was 6.096 m wide and 25.603 m long. In the experiments, regular waves 
were generated with a piston wave maker and propagated from an initial water depth of h0 = 0.4572 m to a shallower 
region of depth h1 = 0.1524 m. The bathymetric profile (Fig. 8) is defined analytically by:

h(x, y) =

⎧⎪⎨
⎪⎩

h0, −20.0 ≤ x ≤ 10.67 − G(y)

h0 + 1
25 (10.67 − G(y) − x), 10.67 − G(y) < x < 18.29 − G(y)

h1, 18.29 − G(y) ≤ x ≤ 35

(20)

with G(y) = √
y(6.096 − y), (h, x and y in m).
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Fig. 8. Bathymetry of the experiments of Whalin [64].

Table 2
Wave characteristics for the four simulations of the experiments of Whalin [64], where the 0 subscript denotes deep water conditions.

Wave condition T (s) A (m) L0 (m) k0h0 k0 A

A 2 0.0075 3.91 0.7347 0.01205
B 2 0.0108 3.91 0.7347 0.01736
C 3 0.0068 6.14 0.4663 0.006936
D 1 0.0195 1.50 1.9157 0.08171

Fig. 9. 3D view of the free surface elevation at the end of the simulation (t = 18T ), obtained with PHS r7 + p3 and Nsten = 21 for wave condition A (T = 2 s, 
A = 0.0075 m and L0 = 3.91 m) of the experiments of Whalin [64].

Four sets of wave conditions were simulated (see Table 2). For wave condition A, the computational domain extends 
from −3.91 m to 32.5 m in the x-direction and from 0 to 6.096 m in the y-direction. The computational domain is longer 
than the physical domain in the x-direction to include a one-wavelength long relaxation zone at the left boundary for wave 
generation and for the absorption of waves reflected from the underwater topography. A three-wavelength long relaxation 
zone is added at the right boundary for wave absorption. Impermeable conditions are applied at the lateral boundaries.

The domain is discretized with N P XY = 137,712 scattered nodes with regular node spacing (x ≈ y ≈ 0.04 m, or 
approximately L/98). Waves are propagated during 36 s (18 periods), with a constant time step t = 0.0178 s (≈ T /112) 
and NT = 7.

The free surface profile at the end of the simulation (Fig. 9) shows a quasi-2D behavior with almost no variations in 
the y-direction in the deeper part of the domain (x < 7.5 m). The 3D wave patterns develop in the shallower zone where 
nonlinear effects are important. The convergence of wave energy is caused by a combination of shoaling, diffraction, and 
refraction over the convergent bathymetric profile.

The simulated crest and trough elevation envelopes along the centerline of the tank (y = 3.048 m) show that before the 
foot of the slope, the crest and trough are nearly symmetric with respect to the still water level (Fig. 10). In the shallower 
zone (x > 15 m), the waves are narrower and their amplitudes increase, with deeper troughs and higher crests, breaking the 
horizontal symmetry observed in the deeper part of the domain. The vertical asymmetry of the waves also increases around 
x = 10 m, displaying a steeper wave front. At the maximum of the crest envelope (x ≈ 20 m), the wave has two small lobes 
on each side, a consequence of the increase of the second harmonic amplitude caused by nonlinear effects on the slope.

To examine more closely nonlinear effects and energy transfers between harmonics, a Fourier analysis of the simulated 
wave signal was completed along the centerline of the wave tank (Fig. 11). The model accurately reproduces the spatial 
evolution of the amplitudes of the first three harmonics (frequencies f , 2 f and 3 f ) in comparison to the measurements. 
The amplitude of the second harmonic is slightly underestimated in the deeper part of the domain (for x ≤ 12 m), which 
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Fig. 10. Free surface elevation profile along the centerline of the tank at the end of the simulation t = 18T (black line), for wave condition A (T = 2 s, 
A = 0.0075 m and L0 = 3.91 m) of the experiements of Whalin [64]. The wave envelope indicates the maximum and minimum free surface elevation 
during the simulation (gray lines). The light gray shaded areas (x < 0 m and x > 25 m) indicate the relaxation zones for wave generation and absorption in 
the numerical model.

Fig. 11. Comparison of measured (circles) and simulated spatial evolution of the amplitude of first three harmonics with a regular (solid lines), and 
two irregular (dashed and dotted lines) node distributions (at frequencies f , 2 f , and 3 f ) of the free surface elevation for wave condition A (T = 2 s, 
A = 0.0075 m and L0 = 3.91 m) of the experiments of Whalin [64].

may be related to the linear method used to generate waves in the model. Conversely, in the shallower zone, the second 
harmonic amplitude is slightly overestimated. As mentioned previously, in the convergence region (around x = 20 m), the 
second and third harmonic amplitudes increase due to energy transfers from the first harmonic, and the second harmonic 
amplitude becomes nearly half of the first harmonic amplitude. Despite the energy transfers to higher order harmonics, the 
amplitude of the first harmonic does not decrease as one would expect in the case of an alongshore uniform bathymetric 
profile. According to Whalin [64], along the centerline of the tank, the rate of decrease in amplitude due to nonlinear 
transfers to higher harmonics is compensated by the rate of increase in amplitude due to refraction and shoaling.

To test the sensitivity and flexibility of the model to the computational domain node distribution, the simulation was 
also run using two irregular node sets, one with a homogeneous node spacing (≈ 0.06 m) and the second with node spacing 
varying with the water depth (between ≈ 0.06 m in the shallower part and ≈ 0.1 m in the deeper part). The first irregular 
node distribution was created with the 3D finite element generator Gmsh (gmsh.info) distributed under GNU GPL. A zoom 
of a small part of the domain is shown (Fig. 12) for the irregular (left) and regular (right) node sets. The irregular node set 
distribution is not quasi-uniform, however there were no instability problems. For the second irregular node distribution, 
another node generator [32] enabling easy refinement with the bathymetry and maintaining high regularity at local level 
was used. A repel algorithm, based on Bayona et al. [7], was also applied after the addition of nodes close to the boundary, 
in the deeper part, to ensure simulation stability. The resulting harmonic amplitudes are almost superimposed with those 
obtained with the regular node set for both irregular node sets (Fig. 11).

The sensitivity to the spatial resolution was studied by running seven simulations with regular node spacing (x = 0.04, 
0.06, 0.075, 0.09, 0.16, 0.24, 0.32 m). The resulting harmonic amplitudes are nearly indistinguishable for x ≤ 0.16 m 
(Fig. 13) with normalized root mean square errors less that 1.5%, 4% and 7% for the first three harmonics, respectively. 
For x > 0.16 m, larger differences appear for all three harmonics, in particular in the shallow water region over the step 
(x > 15 m). For simulations with x ≥ 0.09 m, instabilities sometimes appeared at the boundaries. Therefore, in these 
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Fig. 12. Zooms of the bottom left corner of the domain for (left) irregular (≈ 0.06 m) and (right) regular (≈ 0.04 m) node distributions used to discretize 
the computational domain of the experiments of Whalin [64].

Fig. 13. Comparison of measured (triangles) and simulated (lines) spatial evolution of the amplitude of first three harmonics of the free surface elevation 
(at frequencies f , 2 f , and 3 f ) for regular node distributions with different spatial resolution (x = 0.04, 0.06, 0.075, 0.09, 0.16, 0.24, 0.32 m) for wave 
condition A (T = 2 s, A = 0.0075 m and L0 = 3.91 m) of the experiments of Whalin [64].

simulations, the internodal distance was decreased near the boundary to ensure stability. To evaluate the computational 
efficiency as a function of the number of nodes discretizing the computational domain (N P XY ), the computation time of 
one iteration is shown for each simulation (Fig. 14). The CPU time is proportional to N P XY 1.76. This is lower than the cost 
of the traditional exact sparse factorization (N P XY 2), which may be due to the use of a multifrontal factorization method in 
the MUMPS solver. This demonstrates the advantages of minimizing N P XY (Fig. 13) while maintaining satisfactory results.

The simulated spatial evolution of the first three harmonics along the centerline of the tank are compared to the ex-
perimental data for the other three wave conditions (Table 2, Fig. 15). For wave condition B (Fig. 15a), corresponding to 
the same wave period as case A but with a larger wave amplitude, nonlinear effects are more important, and the second 
harmonic amplitude is almost two-thirds of the maximum of the first harmonic amplitude. The amplitude of the first har-
monic also decreases slightly around x = 20 m, suggesting that the nonlinear energy transfers to higher frequencies occur at 
a faster rate than the energy convergence from refraction [64]. The results of the simulation of wave condition D (Fig. 15c), 
which is less nonlinear but has more important dispersive effects, are in close agreement with the experiments. The last 
test, wave condition C (Fig. 15b), corresponds to nearly shallow water conditions. The simulation overestimates the first 
harmonic amplitude, but underestimates the second and third harmonic amplitudes. This behavior has been observed in 
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Fig. 14. CPU time per timestep as a function of the number of nodes discretizing the domain for wave condition A (T = 2 s, A = 0.0075 m and L0 = 3.91 m) 
of the experiments of Whalin [64].

Fig. 15. Comparison of the observed (circles) and simulated (solid lines) spatial evolution of the amplitude of first three harmonics (at frequencies f , 2 f , 
and 3 f ) of the free surface elevation for wave conditions B, C and D (see Table 2) of the experiments of Whalin [64].

previous studies using a variety of different numerical models (Madsen and Sørensen [51], Beji and Nadaoka [9], Engsig-
Karup et al. [24], Wu et al. [69], Kazolea et al. [49], Filippini [28]). Kazolea et al. [49] suggested that the differences may be 
caused by the propagation of free reflected waves in the tank and the increased complexity of the case due to the shorter 
evolution distance and the combination of refraction-diffraction and nonlinearities. For case C, the model’s sensitivity to the 
initial wave amplitude or the position and length of the absorption relaxation zone was not able to explain the differences 
between the experimental data and the numerical results.
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Fig. 16. The numerical domain and bathymetry of the experiments of Vincent and Briggs [62], with horizontal and vertical white lines indicating the tran-
sects along which the simulation results and experimental measurements are compared. Hatched zones indicate the wave generation (left) and absorption 
(right) zones used in the numerical model.

5.2. Wave refraction and diffraction over an elliptical shoal

The last test case simulates the propagation of regular and irregular waves over a submerged elliptical mound, reproduc-
ing the experiments of Vincent and Briggs [62]. The aim of the experiments was to investigate the limits of approximating 
irregular wave conditions with monochromatic waves, and they produced a large experimental data set of both monochro-
matic waves and irregular waves with narrow or broad frequency and directional spreading. Two cases are considered 
here: first the regular wave case M1, with T = 1.3 s, L = 2.3 m, and A = 0.0275 m, and then the irregular wave case U 3, 
generated with a JONSWAP spectrum with Hs = 0.0254 m, T p = 1.3 s, and a peak enhancement factor γ = 2.

The experiments were conducted in a directional wave basin that was 35 m wide and 29 m long. The measurement area 
was restricted to a 6.10 m wide by 15.24 m long zone around the elliptical shoal, which had a major axis of 3.96 m and a 
minor axis of 3.05 m, with the center at (x0, y0) = (6.10 m, 13.72 m). The shoal boundary (Fig. 16) is defined by:

S(x, y) =
(

x − x0

3.05

)2

+
(

y − y0

3.96

)2

= 1. (21)

The water depth around the shoal is constant h(x, y) = 0.4572 m (i.e. for S(x, y) > 1), and the water depth over the shoal 
is:

h(x, y) = 0.9144 − 0.7620

√
1 −

(
x − x0

3.81

)2

−
(

y − y0

4.95

)2

. (22)

The minimum water depth above the center of the shoal is therefore hmin = 0.1524 m. In the experiments, waves were 
generated with a directional wave generator, located at x = 0 m. The free surface elevation was measured using an array of 
nine parallel resistive probes placed along nine different transects (five parallel and four perpendicular to the wave maker) 
during nine different experimental runs. In the following, two transects will be studied (Fig. 16): the transversal transect 4 
(x = 12.2 m) and the longitudinal transect along the centerline of the tank, consisting of transects 7 and 9 (y = 13.72 m).

To limit the computational time, the simulated domain is smaller than the experimental wave basin. The numerical 
domain extends from −2.3 m ≤ x ≤ 20.5 m and 3.7 m ≤ y ≤ 23.7 m. Two relaxation zones are added (hatched zones in 
Fig. 16): a one-wavelength long wave generation zone at the left side of the domain, and a two-wavelength long absorption 
zone at the right side of the domain. Impermeable conditions are applied at the lateral boundaries. The domain is discretized 
with regularly spaced nodes with x = y = 0.075 m, for a total of N P XY = 81,435 nodes.

For the regular wave case M1, waves were generated with an amplitude of A = 0.02325 m, using linear wave theory. 
This value is slightly smaller than the one prescribed to the wave maker in the experiments, but an adjustment of the 
incident wave amplitude was necessary to obtain a comparable average wave height (H = 0.0445 m) at a reference probe 
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Fig. 17. Contour plot of the free surface elevation at the end of the simulation (t ≈ 78T ) for case M1 of Vincent and Briggs [62]. The dotted line indicates 
the limit of the elliptical shoal on the basin’s floor.

located in an unperturbed zone of the domain upstream of the shoal (x = 3.05 m, y = 21.34 m). Waves are propagated 
during approximately 100 s (≈ 78T ), with a constant time step t = 0.036 s (≈ T /36), using NT = 5.

The contour plot of the free surface elevation at the end of the simulation, when the periodic steady state is reached, 
shows the wave pattern that developed around the shoal (Fig. 17). The wave height increases behind the shoal (x > 6 m), 
with complex 2D patterns with strong variations extending in both horizontal directions. The convergence zone along the 
centerline of the tank is surrounded by rectilinear zones of almost zero amplitude, looking like a wake. In addition, the crests 
and troughs in the y-direction are modulated with a characteristic length scale of approximately 3 m due to reflections from 
the lateral walls. The use of a computational domain smaller than the experimental one increases the importance of lateral 
reflections and possibly overestimates this effect.

To compare the simulation results to the experimental data, a zero up-crossing analysis of the free surface elevation 
time series is completed to compute the average wave height (Hm) along each transect. To conduct the analysis in the 
same way as for the experiments, a 28-period window of the free surface elevation time series is considered (once steady 
state is reached, from t = 60 to 96.4 s). Wave height profiles along the perpendicular transects show good agreement with 
the experimental data (transect 4, Fig. 18a). The wave height profile presents a maximum at the center, corresponding 
to the center of the shoal (y = 13.72 m), which is more than twice the incident wave height (ratio ≈ 2.03), but is slightly 
underestimated in the simulations. Moving symmetrically away from the center, two minima are reached, with wave heights 
less than half the incident wave height (ratios ≈ 0.21 and 0.43, respectively). Farther from the shoal, the wave height is 
nearly equal to the incident wave height. The simulated wave height profile in the wave propagation direction also agrees 
well with the experimental measurements (transect 7–9, Fig. 18b), with differences slightly larger than those observed 
along transect 4. In particular, the increase in the wave height between x = 4–6 m, and the small local peak around x = 7.5
m are not reproduced by the numerical model. After the shoal (x = 9 m), the simulated wave height profile shows small 
oscillations that may be caused by reflections from the relaxation zone that is not perfectly absorbing.

The experimental measurements vary between different runs. At a data measurement point (x = 12.2 m, y = 13.72 m) in 
two transects, the observed wave height is 0.0975 m and 0.104 m during 2 different runs (along transect 4 and transect 7–9, 
respectively), which is a difference of approximately 6.25%. Although the variability in the measurements at this location 
cannot be extended directly to the other measurement points, it can be used to estimate the order of magnitude of the 
experimental errors and variability.

A harmonic analysis was also performed on the simulated free surface time series along transect 7–9 to show the 
evolution of the first three harmonic amplitudes (Fig. 19). Before the shoal (x < 4 m), the waves are only weakly nonlinear, 
and the second and third harmonic amplitudes increase over the shoal. Over the shoal (x = 6.10 m), the second harmonic 
amplitude is more than half first harmonic amplitude. This effect is likely caused by wave convergence and the narrowing 
of the crest over the shoal (Fig. 17). After the shoal, the amplitude of the first harmonic more than doubles due to wave 
energy convergence induced by refraction. Nonlinearities are not significant after the shoal, although a modulation of the 
amplitude of the second harmonic is clearly observed. Comparison of the simulated and experimental harmonic amplitude 
evolution was not possible because of the lack of availability of the experimental time series.
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Fig. 18. Average wave height along (a) transect 4 and (b) transect 7–9, for case M1 of Vincent and Briggs [62]. The horizontal dashed line indicates the 
incident wave height.

Fig. 19. Simulated spatial evolution of the first three harmonic amplitudes for case M1 of the Vincent and Briggs [62] experiments along transect 7–9 
(y = 13.72 m).

For the irregular wave condition case U 3, the computational domain and numerical parameters remained unchanged, 
except that the maximum order of the Chebyshev polynomial was increased to NT = 7. NT was increased to account for the 
presence of higher frequencies in the wave spectrum and the need to resolve accurately the dispersion relation for these 
frequencies. Waves were propagated during approximately 200 s (≈ 153 T p ). The high frequencies propagate at a lower 
celerity than the peak frequency, hence the transient period is longer than for case M1.

The contour plot of the free surface elevation at the end of the simulation (t ≈ 153 T p ) for case U 3 shows more complex 
and irregular 2D patterns than the regular wave case (Fig. 20), and the convergence zone is less well-defined. The effects of 
reflections from the lateral walls are still visible.

To compare to the experimental data (only available for transect 4), the significant wave height is computed from the free 
surface elevation time series by calculating Hs = 4ση , where ση is the standard deviation of the free surface elevation. Time 
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Fig. 20. Contour plot of the free surface elevation at the end of the simulation (t ≈ 153T p ) for case U 3 of Vincent and Briggs [62]. The dotted line indicates 
the limit of the elliptical shoal on the basin’s floor.

Fig. 21. Significant wave height along transect 4, for the irregular wave case U 3 of the Vincent and Briggs [62] experiments. The horizontal dashed line 
indicates the incident significant wave height.

series of around one hundred wave periods are used for this analysis. The simulated Hs agrees well with the experimental 
observations (Fig. 21). The pattern of the significant wave height profile is similar to the one obtained for the regular wave 
case, with a maximum at the center due to wave convergence induced by the bathymetry (ratio ≈ 1.97).

6. Discussion and conclusions

A meshless approach, based on the RBF-FD method, was chosen for the extension of the 2DV version of a highly nonlinear 
and dispersive potential wave model to 3D domains. This method has the advantage of being both similar to finite difference 
methods and simple to implement, not requiring major adaptations to the structure of the 2DV code.

A series of sensitivity tests of the RBF-FD parameters were conducted to examine the robustness of this approach for 
estimating derivatives of a sinusoidal function. This study demonstrates that accurate results can be obtained with an IS-RBF 
without significant differences between the tested RBFs: MQ, GA, IMQ and IQ (Table 1). However, IS-RBFs depend on a shape 
parameter controlling the accuracy of the approximation, and the optimal value of this shape parameter depends on the 
estimated derivative and the form of the function. To avoid these limitations, it is recommended to use PS-RBFs, which do 
not depend on a shape parameter. The choice of the degree of the PS-RBF, the size of the stencil and the degree of the 
added polynomial is a compromise between the accuracy and computational time. For a targeted stencil size between 20 
and 30 nodes, a PHS function of the form r7 + p3 is recommended.

The application of the 3D version of the model to simulate two different wave basin experiments showed that complex 
free surface wave patterns induced by variable bathymetric profiles and the associated nonlinear effects are well reproduced 



C. Raoult et al. / Journal of Computational Physics 378 (2019) 278–302 299

by the model. The nonlinear and dispersive capabilities of the 3D model validate the use of the RBF-FD method for wave 
propagation in two horizontal directions.

Using the RBF-FD approach allows significant flexibility enabling the use of non-rectangular grids and local node refine-
ment, which is of particular interest for applications to real coastal domains. Simulations of wave condition A of Whalin [64]
experiments for two irregular node distributions show that a refinement following the water depth allows increasing node 
spacing in the deeper part of the domain, thus reducing the number of nodes (from 60,716 to 41,983) and the computational 
time by approximately 30% while maintaining the difference between harmonic amplitudes below about 2.5%.

With the long term objective of applying the model to real and complex nearshore domains, including wave propagation 
near coastal and harbor structures, work remains to be done to improve the robustness of the method and the computational 
efficiency of the numerical model. In some cases, instabilities may occur at or near the boundaries because of derivative 
estimate errors induced by asymmetric stencils at these locations. In the test cases presented here, refining the mesh close 
to the boundary was sufficient to avoid the appearance of instabilities. Another option is to add ghost nodes outside of the 
domain to reduce the one-sidedness of boundary node stencils [3], but the implementation of such a method is not trivial. 
More recently, Bayona et al. [7] showed that the development of instabilities at the boundaries could also be reduced by 
increasing the stencil beyond the threshold: Nsten ≥ 2M . One last method used to stabilize the resolution of PDEs without 
a physical dissipative term (as is the case of the Zakharov equations) is to add a hyper-viscosity operator to the right 
hand-side of the evolution equation to introduce artificially a small amount of dissipation that will dampen spurious high 
frequency oscillations [33].

The extension of the 2DV code to 3D was accompanied by a significant increase in the computational time. The numerical 
efficiency of the 3D version of the model needs to be improved in order to perform simulations with large spatial domains. 
The resolution of the Laplace BVP linear system is the most computationally expensive part of the model, so a parallel 
version of the linear solver is currently used. Further work could include parallelizing the code with a domain decomposition 
approach. Other possibilities to reduce the computational cost are currently being explored, including using time integration 
schemes requiring fewer resolutions of the Laplace BVP (i.e. multi-step predictor-corrector schemes) and/or iterative solvers 
with suitable preconditioners.

Finally, ongoing work also includes the representation of physical processes, including depth-induced wave breaking and 
run-up processes to enable simulating nearshore wave environments. Further validation of the 3D version of the model is 
required, including cases with complex coastlines and variable bathymetries, islands, and coastal structures.
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Appendix A. mi jkl terms in Eq. (10), (11) and (12)

The mijkl terms appearing in Eq. (10), (11) and (12) are terms that only depend on h+ = h + η and h− = h − η and their 
spatial derivatives:

m0220 = h+2

m0101 = 2h+h−
x

m1101 = −2h+h+
x

m0011 = 2h+h−
y

m1011 = −2h+h+
y

m0002 = 4 + (h−
x )2 + (h−

y )2

m1002 = 2 (h−
x h+

x + h−
y h+

y )

m2002 = (h+
x )2 + (h+

y )2

m0001 = −2h−
x h+

x − 2h−
y h+

y + h+h−
xx + h+h−

yy
m1001 = 2(h+

x )2 + 2(h+
y )2 − h+h+

xx − h+h+
yy .

Appendix B. B pikn terms in Eq. (10), (11) and (12)

In Eq. (10), (11) and (12) the notation B pikn is introduced:

B pikn ≡ 〈si dk Tn

dsk
〉p (23)
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where 〈 f (s)〉p is the inner product of any function f defined on the interval [−1, 1] with a Chebyshev polynomial T p of 
order p such that:

〈 f 〉p ≡ 2

πcp

1∫
−1

f (s)T p(s)
ds√

1 − s2
with

{
c0 = 2
cp = 1 if p ≥ 1

(24)

The following terms have to be estimated: 〈Tn〉p , 〈Tn,s〉p , 〈Tn,ss〉p , 〈s Tn,s〉p , 〈s Tn,ss〉p and 〈s2 Tn,ss〉p . They can be 
determined analytically as a function of n and p using the recurrence relation of the Chebyshev polynomials or from linear 
combinations of previously defined B pikn . Only the final formulas are given below:

〈Tn〉p = B p00n = δpn

〈Tn,s〉p = B p01n = 2
cp

{
n if p = n − 1,n − 3,n − 5, ...

0 otherwise

〈Tn,ss〉p = B p02n = 1
cp

{
n (n2 − p2) if p = n − 2,n − 4,n − 6, ...

0 otherwise

〈s Tn,s〉p = B p11n = ∑n−1
r=0 Br01n

{
1
2 (B p00(r−1) + B p00(r+1)) if r ≥1

B p001 if r = 0

〈s Tn,ss〉p = B p12n = ∑n−2
r=0 Br02n

{
1
2 (B p00(r−1) + B p00(r+1)) if r ≥1

B p001 if r = 0

〈s2 Tn,ss〉p = B p22n = ∑n−2
r=0 Br02n

⎧⎪⎨
⎪⎩

1
4 (B p00(r−2) + 2B p00r + B p00(r+2)) if r ≥2
1
4 (3B p001 + B p003) if r = 1
1
2 (B p000 + B p002) if r = 0
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