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Résumé 

Les systèmes de pile à combustible à membrane échangeuse de protons (PEMFC) 
conviennent à diverses applications de transport grâce à leurs structure compacte, 
densité de puissance élevée, faible température de démarrage/fonctionnement et 
absence d'émissions de carbone. Le coût élevé et le manque de durabilité des PEMFC 
restent les principaux facteurs limitant leur commercialisation à grande échelle. Dans les 
applications de transport, la détérioration des PEMFC est aggravée par des conditions de 
charge variables, ce qui entraîne une diminution de leur durée de vie utile restante 
(RUL). La gestion des pronostics et de la santé (PHM) est un outil efficace pour prévoir 
les risques du système, gérer les calendriers de contrôle/maintenance du système, 
améliorer la sécurité et la fiabilité du système, prolonger la durée de vie du système et 
réduire les coûts d'exploitation/maintenance. Le pronostic est une base importante et 
un support clé pour le PHM, et ses tâches principales incluent l'extraction d'indicateurs 
de santé, la prédiction des tendances de dégradation et l'estimation de la RUL. Les 
caractéristiques de dégradation à long terme des PEMFC sont dissimulées dans des 
conditions de charge variables, ce qui augmente la difficulté d'extraction des indicateurs 
de santé, réduit la précision de la prédiction de la dégradation et inhibe la fiabilité de 
l'estimation de la durée de vie. Dans cette optique, le travail de thèse part de la 
modélisation du comportement de dégradation des PEMFC dans des conditions de 
charge variables et mène des travaux de recherche sur l'extraction d'indicateurs de 
santé, la prédiction des tendances de dégradation à court/long terme, l'estimation RUL 
et l'évaluation de la fiabilité. Les principaux contenus de recherche et contributions de la 
thèse sont les suivants : (1) extraction en temps réel des indicateurs de santé des piles à 
combustible dans des conditions de charge variables ; (2) prévision des tendances de la 
dégradation des piles à combustible à court/long terme basée sur les données ; et (3) 
prédiction RUL dans des conditions de charge variables basées sur des méthodes 
hybrides.  

 
Mots clés : pile à combustible à membrane échangeuse de protons, pronostic, 

comportement de détérioration, apprentissage profond, conditions de charge variables, 
indicateur de santé, durée de vie utile restante, horizon de pronostic 
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Abstract 

Proton Exchange Membrane Fuel Cell (PEMFC) systems are suitable for various 
transportation applications thanks to their compact structure, high power density, low 
start/running temperature, and zero carbon emissions. High cost and lack of durability 
of PEMFC are still the core factors limiting their large-scale commercialization. In 
transportation applications, the deterioration of PEMFCs is aggravated by variable load 
conditions, resulting in a decrease in their Remaining Useful Life (RUL). Prognostics and 
Health Management (PHM) is an effective tool to forecast potential system risks, manage 
system control/maintenance schedules, improve system safety and reliability, extend 
system life, and reduce operation/maintenance costs. Prognostics is an important 
foundation and key support for PHM, and its core tasks include health indicator 
extraction, degradation trend prediction, and RUL estimation. The long-term 
degradation characteristics of PEMFC are concealed in variable load conditions, which 
increases the difficulty of health indicator extraction, reduces the accuracy of 
degradation prediction, and inhibits the reliability of life estimation. In view of this, the 
thesis work starts from modeling the degradation behavior of PEMFC under variable 
load conditions and carries out research work on health indicator extraction, 
short/long-term degradation trend prediction, RUL estimation and reliability evaluation. 
The main research contents and contributions of the thesis are as follows: (1) real-time 
extraction of fuel cell health indicators under variable load conditions; (2) data-driven 
short/long-term fuel cell degradation trend prediction; and (3) RUL prediction under 
variable load conditions based on hybrid methods.  

 
Keywords: proton exchange membrane fuel cell, prognostics, deterioration behavior, 

deep Learning, variable load conditions, health indicator, remaining useful life, 
prognostic horizon 
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NARX Nonlinear Autoregressive Exogenous 
XS Exogenous Sequences 
FT Failure Threshold 
EoL End of Life 
SD Standard Deviation 
LOESS Locally Estimated Scatterplot Smoothing 
CI Confidence Interval 
RMSE Root-Mean-Square Error 
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AST Accelerated Stress Test 
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WCSS Within-Cluster Sum of Squares 
PFR Probable Failure Range 
CFR Calculable Failure Range 
NEDC New European Driving Cycle 
PH Prognostics Horizon 
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CBM Condition-Based Maintenance 
IMF Intrinsic Mode Function 
EMD Empirical Mode Decomposition 
HT Hilbert Transform 
HSA Hilbert Spectral Analysis 
IF Instantaneous Frequency 
PDF Probability Distribution Function 
RA Relative Accuracy 
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Symbol 
 

H2 Hydrogen 
O2 Oxygen 
H2O Water 
H+ Hydrogen ion 
e− Electron 
𝐸𝑎𝑐𝑡 Operation voltage affected by activation losses only 
𝐸𝑟𝑒𝑣 Open-circuit voltage of the fuel cell 
𝑉𝑎𝑐𝑡 Voltage drop triggered by the activation losses 
𝐸𝑟 Operation voltage affected by Ohmic losses only 
𝑉𝑟 Voltage drop induced by Ohmic losses 
𝐸𝑐𝑜𝑛𝑐 Operation voltage affected by concentration losses only 
𝑉𝑐𝑜𝑛𝑐 Voltage drop triggered by the concentration losses 



XIII 

𝐸𝑐𝑒𝑙𝑙 Actual (single cell) operation voltage 
{𝑥𝑖𝑡} i-th input time sequence of ARIMAX 
ℝ𝑙  l-dimensional time steps 
{𝑦𝑡} Output time sequence of ARIMAX 
μ Mean vector of ARIMAX output sequence 
𝜀𝑡 Regression residual sequence of ARIMAX 
B Backshift operator of input time sequence 
𝐿𝑖  i-th lag degree of backshift operator 
𝛩𝑖(𝐵) Moving average polynomial of input time sequence 
𝛷𝑖(𝐵) Autoregressive polynomial of input time sequence 
𝜃(𝐵) q-order moving average operator 
𝜙(𝐵) p-order autoregressive operator 
𝑎𝑡 Zero-mean white noise sequence 
𝑐𝑡 Cell state of LSTM 
ℎ𝑡  Hidden state of LSTM/GRU 
𝑓𝑡  Forget gate of LSTM 
𝑖𝑡 Input gate of LSTM 
𝑜𝑡 Output gate of LSTM 
�̃�𝑡 Internal state unit of LSTM 
𝑥𝑡 Input of LSTM 
ℝℎ h-dimensional hidden units 
ℝ𝑑  d-dimensional input features 
σ Sigmoid function 
tanh Hyperbolic tangent function 
∘ Hadamard (element-wise) product 
𝑊𝑓 Input weight matrix of the forget gate 
𝑊𝑖 Input weight matrix of the input gate 
𝑊𝑜 Input weight matrix of the output gate 
𝑊𝑐 Input weight matrix of the cell state 
ℝℎ×𝑑  ℎ × 𝑑-dimensional matrix 
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𝑈𝑜 Recurrent weight matrix of the output gate 
𝑈𝑐 Recurrent weight matrix of the cell state 
ℝℎ×ℎ ℎ × ℎ-dimensional matrix 
𝑏𝑓 Bias of the forget gate 
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𝑏𝑐 Bias of the cell state 
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{𝑧𝑠𝑡𝑑} Standardized training set sequence 
𝑦�𝑘𝑖  i-th predicted value of the k-th time step 
𝑦�𝑘 Average predicted value of the k-th time step 
𝑆𝐷𝑘 Identified standard deviation of the k-th time step 
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R Molar gas constant (8.3145 J/mol/K) 
F Faraday constant (96485 C/mol) 
𝛼𝑎+𝑐 Charge transfer coefficient from two electrodes 
𝛽𝑎+𝑐 Mass transfer coefficient from two electrodes 
𝑇 Operating temperature (thermodynamic) 
𝑅𝑒𝑞𝑢 Equivalent resistance 
𝑗(𝑡) Continuous-time input (time-varying current density) 
𝑣(𝑡) Continuous-time output (time-varying global overpotential) 
𝐻(𝑠) System transfer function 
𝑠 Complex variable 
𝐽(𝑠) Laplace transform of the input 
𝑉(𝑠) Laplace transform of the output 
𝑝𝑖 i-th Laplace variable of the denominator polynomial 
𝑞𝑖 i-th Laplace variable of the numerator polynomial 
𝐿(𝑠) Refined choice of filter 
𝐴(𝑠) Denominator of the system 
𝑗′(𝑡) First order derivatives of the input 
𝑣′(𝑡) First order derivatives of the output 
𝑒(𝑡) Disturbance of the system 
𝜑(𝑡) Vector of variables containing actual output 
𝜃 Parameter vector 
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𝑣�(𝑡) Predicted output 
𝜁(𝑡) Vector of variables containing predicted output 
𝜃� Estimated parameters 
𝑋 Historical health indicator sequence for ABBA-LSTM 
𝑥𝑖  i-th element of health indicator 
ℝ𝑛 n-dimensional health indicator 
𝑄𝑗 j-th segments 
ℝ𝑚 m-dimensional segments 
𝑥�𝑖ℎ  ℎ-th breakpoint 
𝑙𝑒𝑛𝑗  j-th time direction increment 
𝑖𝑛𝑐𝑗  j-th numerical direction increment 
𝑡𝑜𝑙 Tolerance parameter 
𝐷 Time and numerical increment tuples-set 
ℝ2×𝑚 2 × 𝑚-dimensional tuples-set 
𝐷𝑗  j-th tuple of 𝐷 
𝜔𝑙𝑒𝑛  Segment length weight 
𝜔𝑖𝑛𝑐  Segment increment weight 
𝐷𝑙   l-th tuple of scaled set 
𝜎𝑙𝑒𝑛  Standard deviation of the segment lengths 
𝜎𝑖𝑛𝑐  Standard deviation of the segment increments 
𝑆𝑙  l-th cluster 
arg min𝑥∈𝑆 𝑓(𝑥)  Arguments 𝑥 for which 𝑓(𝑥) attains its smallest value 
‖∙‖2  Euclidean norm 
𝜇𝑙  Center of the 𝑙-th cluster 
𝐿 Alphabet set representing clusters' categories 
𝑘  Number of letter symbols in 𝐿 
𝐴  m-dimensional character series 
𝑠𝑦𝑖   i-th letter symbol of 𝐴 
𝐵 p-dimensional predicted set of characters 
𝑏𝑗  i-th letter symbol of 𝐵 
𝐷� Predicted increments tuples-set 
𝑙�̂�𝑛𝑗  j-th predicted time direction increment 
𝑖𝑛�𝑐𝑗  j-th predicted numerical direction increment 
ℝ2×𝑝 2 × 𝑝-dimensional predicted tuples-set 
𝑌 Predicted health indicator, also predicted degradation trend 
𝑦𝑖 Predicted health indicator at i-th time step 
ℝ𝑞 q-dimensional predicted time steps 
𝑡𝑙𝑖𝑚𝑖𝑡 Extreme point of recoverable fault 
𝑡𝑒𝑛𝑑 Complete failure point or data ending point 
𝑡𝑎1  Expected earliest failure point 
𝐹𝑇𝑖 𝑖-th failure threshold 
𝑡𝑎𝑖  Actual end-of-life at 𝐹𝑇𝑖 
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𝑌�  A series of predicted degradation trends at 𝐹𝑇𝑖 from multiple 
ABBA-LSTM models 

𝑌𝑗  𝑗-th predicted degradation trend 
𝑡𝑖𝑗  𝑗-th predicted end-of-life at 𝐹𝑇𝑖 
𝑅𝑈𝐿𝑖 A series of predicted RUL at 𝐹𝑇𝑖 
𝑅𝑈𝐿𝑖𝑗  Predicted RUL corresponding to 𝑌𝑗 , also j-th element of 𝑅𝑈𝐿𝑖 
𝑅𝑈𝐿𝑃𝑖  Corresponds to the value of the horizontal coordinate of 𝑃𝑖  
𝑃𝑖  Probability density distribution based on 𝑅𝑈𝐿𝑖 
𝑅𝑈�𝐿𝑖 Final predicted RUL at 𝐹𝑇𝑖, also the maximum of 𝑃𝑖  
𝑅𝑈�𝐿 Final predicted RUL series at h failure thresholds 
𝑅𝑈𝐿𝑎𝑖  Actual RUL at 𝐹𝑇𝑖 
argmax𝑥∈𝑆 𝑓(𝑥)  Arguments 𝑥 for which 𝑓(𝑥) attains its largest value 
𝐸�𝑐𝑒𝑙𝑙 Identified/reconstructed single-cell voltage 
𝑇𝐴𝑖 i-th trust area at 𝐹𝑇𝑖 
𝑃𝐻𝑖 i-th prognostics horizon at 𝐹𝑇𝑖 
𝛼𝑙𝑜𝑤 Trust area lower limit tolerance factor 
𝛼𝑢𝑝 Trust area up limit tolerance factor 
𝑡1𝑠𝑡𝑖  Earliest time point after all predicted RULs are within 𝑇𝐴𝑖 
𝐻𝐼𝑖 i-th extracted health indicator 
𝑅𝐸𝐸  Relative error of single-cell voltage 
𝑥(𝑡) Input signal of HHT 
𝑒𝑚𝑎𝑥(𝑡) Upper envelope curve 
𝑒𝑚𝑖𝑛(𝑡) Lower envelope curve 
𝑚1,1(𝑡) Mean envelope function (first sifting of the first IMF) 
ℎ1,𝑗(𝑡) First component obtained at j-th repetition 
𝑐𝑖(𝑡) i-th IMF 
𝑟𝑖(𝑡) i-th residual 
𝑟𝑛(𝑡) Final residual 
ℋ𝑖(𝑡) Hilbert transform of the residual 
PV Cauchy principal value 
𝑧𝑖(𝑡) Analytical function of 𝑟𝑖(𝑡) 
𝑎𝑖(𝑡) Amplitude function 
𝜙𝑖(𝑡) Instantaneous phase function 
𝜔𝑖(𝑡) Instantaneous frequency 
𝜀𝑖(𝑡) Instantaneous energy 
𝜔𝑖
+ Frequency range upper bound of i-th residual 

𝜔𝑖
− Frequency range lower bound of i-th residual 

𝐻(𝜔𝑖, 𝑡) Hilbert spectrum of i-th residual 
𝑅𝑒[𝑓(𝑥)] Extract the real component of the function 𝑓(𝑥) 
ℎ𝑡−1 Previous hidden state of GRU 
𝑎𝑡 Current symbol in the input of GRU 
𝑟𝑡 Reset gate of GRU 
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𝑧𝑡 Update gate of GRU 
𝑊𝑟 Input weight matrix of the reset gate 
𝑊𝑧 Input weight matrix of the update gate 
𝑊ℎ Input weight matrix of the hidden state 
𝑈𝑟 Unit internal weight matrix of the reset gate 
𝑈𝑧 Unit internal weight matrix of update gate 
𝑈ℎ Unit internal weight matrix of the hidden state 
𝑏𝑟 Bias vector of the reset gate 
𝑏𝑧 Bias vector of the update gate 
𝑏ℎ Bias vector of the hidden state 
ℎ�𝑡  Unit internal hidden state vector 
𝑇FC1 Operating temperature of FC-1 
𝐼FC1 Operating load current of FC-1 
𝑇𝐴𝑖𝛼–𝜆 i-th trust area using the 𝛼– 𝜆 performance at 𝐹𝑇𝑖 
𝑅𝐴𝑖 Relative accuracy at i-th failure threshold 
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1. Introduction 

1.1. Background 
Energy, one of the eternal topics of mankind. Fossil fuels such as coal and oil have 

greatly contributed to the progress of civilization. Along with the rapid leap of economy, 
the per capita energy demand keeps climbing while non-renewable energy sources are 
depleting day by day. At the same time, fossil fuels, as carbon-based primary energy 
sources, inevitably emit greenhouse gases during the energy conversion process, 
aggravating environmental pollution.  

Hydrogen energy, an ideal renewable and clean energy source, has abundant reserves 
and high combustion calorific value. Proper application of hydrogen energy will be 
expected to alleviate the shortage of fossil fuels and reduce carbon emissions [1, 2]. As 
one of the efficient ways to utilize hydrogen energy, Fuel Cells (FC) have been shown to 
convert chemical energy into electrical energy with efficiencies of 60% to 80%, making 
them a highly promising power generation device [3-6]. The main types of mass-
produced commercial fuel cells include: Proton Exchange Membrane Fuel Cell (PEMFC), 
Solid Oxide Fuel Cell (SOFC), Phosphoric Acid Fuel Cell (PAFC), Molten Carbonate Fuel 
Cell (MCFC), Direct Methanol Fuel Cell (DMFC), Alkaline Fuel Cell (AFC), etc. The data in 
the Fuel Cell Industry Review 2019-2021 published by E4tech, an international 
consulting firm, shows that the annual shipments of fuel cells (by MW) continue to grow, 
jumping from less than 300 MW in 2015 to 2,313.1 MW in 2021. As shown in Figure 1.1, 
the shipments of PEMFC are the largest and growing the most among all types of fuel 
cells. In 2021 alone, PEMFC shipments have reached 1998.3 MW, which is already more 
than 86% of the total global fuel cell shipments in that year [7-9].  

 
Figure 1.1 Shipments of different types of fuel cells (by megawatt). 

The common application types of fuel cells involve transportation, stationary power 
generation, and portable devices, and as shown in Figure 1.2, fuel cell shipments (by 
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megawatt) applied to transportation have increased significantly year by year since 
2015. By 2021, the share of fuel cell shipments in transportation applications has 
reached nearly 85%, with most of the contribution coming from proton exchange 
membrane fuel cells [7-11]. Typically, PEMFCs use hydrogen directly as fuel and their 
electrochemical reaction products are only water and heat during operation, allowing 
for zero carbon emissions. In addition, fuel cell power generation systems composed of 
PEMFC have the advantages of high electrical efficiency, fast start-up, low noise, low 
operating temperature, and scalable power/capacity. It is expected to be a strong 
competitor for the replacement of internal combustion engines and has already emerged 
in different applications in transportation (e.g., hybrid electric vehicles [12, 13], long-
haul heavy-duty trucks [2], buses [14], trains [15], ships [16], etc.). 

 
Figure 1.2 Common fuel cell application types and their annual shipments (by 

megawatt). 

At present, insufficient durability and high cost are still the main constraints to 
achieve further large-scale commercialization of PEMFC. Especially in transportation 
applications, the actual useful life of PEMFCs is still far below the expected target [17-
20]. The United States Department of Energy (DOE) has proposed an ultimate target of 
8000 hours for the expected life of the Fuel Cell Electric Vehicle (FCEV), which is 
equivalent to 150,000 miles (approximately 240,000 km) of low-speed vehicle travel. 
Data from the report "Fuel Cell Electric Vehicle Durability and Fuel Cell Performance" 
published by the DOE's National Renewable Energy Laboratory shows that the average 
fleet durability of FCEVs operating on actual roads is about 2,000 hours and max fleet 
average durability is about 4,000 hours, both of which fall short of the interim goal set 
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by the DOE (5,000 hours). Even, some of the stacks of FCEVs operating for more than 
5000 hours show up to 30% performance degradation. For on-board fuel cells in buses 
and long-haul heavy-duty trucks, the expected ultimate durability goal is 25,000 hours, 
but in practice the average lifetime of the stack is only about half of this goal [2, 4, 18, 21, 
22]. PEMFCs are characterized by multi-physics, multi-variables, multi-subsystems, and 
multi-times/spatial scales, so their degradation triggers are abundant and the 
performance degradation process is complex [18]. In the transportation field, road 
conditions, driving styles, and other elements are random, sudden, and idiosyncratic. 
The actual load of the vehicle also exhibits time-varying characteristics. Usually, the 
operating condition of fuel cell under time-varying load is called variable load condition. 
At this situation, the PEMFC output power characteristics are heterogeneous. The water-
thermal management and air supply control challenges are intensified, which are very 
likely to cause performance degradation and even induce abnormal shutdowns and fatal 
failures, affecting the service life [22-24]. Therefore, the lack of durability has become 
the core bottleneck problem faced in the promotion of PEMFC in the transportation field.  

 
Figure 1.3 Basic architecture of prognostics and health management. 

Prognostics and Health Management (PHM) identifies the degradation evolution of 
engineering equipment, systems and structures. In turn, it predicts potential risks and 
avoids accidents, ultimately enabling reliable, efficient, economical and safe operation of 
equipment [25]. In the last decade, PHM technology has flourished and is one of the 
highly regarded interdisciplinary disciplines in academia and industry. In the fields of 
aerospace, energy, chemical, transportation, and equipment manufacturing, PHM has 
gradually become an important driving technology for improving reliability and safety 
and reducing maintenance costs [26]. For fuel cells, PHM is also one of the promising 
durability enhancement solutions and has become a hot research topic [27]. The PHM 
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framework for fuel cells is shown in Figure 1.3, which can be divided into three phases, 
"Observe", "Analyze", and "Act", and consists of seven steps [28, 29]. By continuously 
monitoring the fuel cell operation, assessing its State of Health (SoH) based on historical 
data, diagnosing potential failures, predicting Remaining Useful Life (RUL), and making 
timely control/maintenance decisions to achieve life extension goals [30].  

Prognostics is an important foundation and key support of PHM framework, and its 
accuracy is related to the timely deployment of control/maintenance decisions, and 
directly affects the effectiveness of health management. Furthermore, reliable and 
efficient prognostics is expected to drive the shift from a "scheduled maintenance"-
"failure replacement" strategy to a "forecast abnormality"-"condition-based 
maintenance" strategy. This facilitates to reduce the operation risks and high costs 
caused by "inadequate maintenance" and "redundant maintenance" [19, 31]. The 
International Organization for Standardization (ISO) defines prognostics as "analysis of 
the symptoms of faults to predict future condition and residual life within design 
parameters" [32]. As a result, the prognostics of PEMFC should cover the following core 
tasks. 

(1) extract Health Indicator (HI) with the capability to characterize the 
degradation evolution process. 

(2) predict future operating conditions and degradation trends. 
(3) estimate the remaining useful life.  

Under constant load conditions, measurements such as stack voltage can be directly 
used to assess the degradation evolution of the PEMFC [33-35]. In contrast, under 
variable load conditions, the frequently changing operating behavior is coupled and 
superimposed with the inherent degradation evolution of the PEMFC. This contributes 
to the difficulty of health indicator extraction, the decrease of deterioration trend 
prediction accuracy/efficiency, and the weakened reliability of remaining life estimation. 
Therefore, the prognostics issue of PEMFC under variable load conditions is very 
challenging and needs to be addressed urgently, which is the focus of this dissertation.  

1.2. Related work and literature review 
Prognostics of fuel cells is an emerging research area in the last decade. In order to 

comprehensively analyze the current status of PEMFC prognostics research, the relevant 
research literature are searched in two major databases, Web of Science (WOS) core 
collection and Scopus, respectively. The search results show that between January 2013 
and July 2022, 144 relevant papers are included in the WOS core database and 131 
relevant papers are included in the Scopus database. According to the statistics by year 
of publication as shown in Figure 1.4, the related research work of PEMFC prognostics is 
gradually attracting wide attention from academia and industry. This section will review 
and analyze "durability test and health indicator extraction", "degradation condition 
prediction", and "remaining useful life estimation".  
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Figure 1.4 Literature related to PEMFC prognostics by year of publication. 

1.2.1. Long-term durability test 
Durability testing is considered as an important tool to analyze the evolution of fuel 

cell degradation as well as a data base for prognostics. The degradation process of 
PEMFC involves many time scales from "milliseconds" to "months". Jouin et al. pointed 
out in the literature [30] that there are different levels of decisions for different time 
scales, and the time scale corresponding to prognostics should be at least larger than the 
"hour" level, as shown in Figure 1.5. Generally, the "medium-term prognostics" refer to 
the prediction time range between one day (24 hours) and one week (168 hours); while 
the prediction range beyond one week is considered as "long-term prognostics" [11]. 
The medium and long term prognostics can provide sufficient time for task scheduling 
optimization and maintenance planning decisions for PEMFC. In view of this, for the 
medium/long-term prognostics of PEMFC, this dissertation focuses on reviewing the 
literature with durability test duration longer than 24 hours in the search results.  

 

Figure 1.5 Different levels of decision making and association with prognostics [30]. 

In the long-term prognostics related literature, the involved durability tests can be 
divided into three categories: constant load condition, quasi-constant load condition and 
variable load condition.  
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(1) Constant load condition indicates that the load is always kept constant during 
the durability test. Specifically, the output current or output power of PEMFC is 
constant. 

(2) Quasi-constant load condition means that the ripple current with fixed 
amplitude and frequency is superimposed on the current of the constant load 
condition. To simulate the output behavior of a static converter connected 
behind the stack. 

(3) Variable load condition means that the load current and power show 
significant changes in a periodic or non-periodic manner during the durability 
test. 

It should be noted that in this dissertation PEMFC performance characterization tests 
(e.g., polarization curve tests, electrochemical impedance spectroscopy tests, etc.) 
triggering changes in PEMFC operating parameters are not considered in the variable 
load category.  

 

Figure 1.6 Distribution of the types of operating conditions involved in the long-term 
prognostics related literature. 

Compared with the other two operating conditions, the operating behavior and 
degradation characteristics of PEMFC under quasi-constant load conditions are very 
close to those under constant load conditions, and the constant load conditions and 
quasi-constant load conditions are combined in this section to review the literature. 
Accordingly, the literature related to long-term prognostics is analyzed, and the 
distribution of various operating conditions is shown in Figure 1.6. Among them, 69% of 
the literature only conducts research work for constant or quasi-constant load 
conditions, and 12% of the literature considers long-term prognostics under both 
constant load conditions and variable load conditions. The durations and corresponding 
literature for the durability tests under constant/quasi-constant load conditions are 
shown in Table 1.1. The reported PEMFC stack operation durations ranged from 400 
hours10500 hours. The involved minimum current density is 0.08 A/cm2 [36] and the 
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maximum current density is 0.8 A/cm2 [37]. More than 60% of the research work is 
centered on the dataset called "IEEE PHM 2014 Data Challenge" [38] (hereinafter 
referred to as PHM 2014 Challenge). The PHM 2014 Challenge is published by the IEEE 
Reliability Society, FCLAB, and other scientific institutions. It consists of two durability 
test data of more than 1000 hours from two PEMFC stacks running in constant load 
conditions (corresponding to the dataset named FC1) and quasi-constant load 
conditions (corresponding to the dataset named FC2) [38]. In the literature searched 
above, all of the work involving quasi-constant load conditions used FC2 aging data from 
the PHM 2014 Challenge. The total percentage of PEMFC prognostics related research 
work involving constant/quasi-constant load conditions is over 80%. This seems to 
result from the fact that the public availability of the PHM 2014 Challenge dataset has 
greatly contributed to the development of related research. This also coincides with the 
rapid growth of the relevant literature after 2014 in Figure 1.4.  

Test implementer or  
Stack manufacturer 

Duration 
(hours) 

Related literature 

PHM 2014 Challenge 
(Open Source Dataset) 

1150 (FC1) [27, 28, 35, 36, 39-
81] 1000 (FC2) 

Ballard NEXA 400 [36, 47, 50, 82-84] 
IEK-14 (High-temperature PEMFC) 1000 [74] 

PRAGMA Industries 1700 [77, 85] 
ZSW 1750 [27, 41, 86-90] 

CEA-LITEN 2000 [91] 
Wuhan University of Technology 7000 [37] 

Proton Motor 200 10500 [36, 47] 

Table 1.1 Long-term durability test under constant load/quasi-constant load 
conditions. 

In different practical applications, the load demand is usually variable. Therefore, it is 
difficult to fully reveal the degradation behavior of PEMFC by studying the durability 
tests of constant and quasi-constant loads only. From the statistics in Figure 1.6, less 
than 20% of the related research works address the long-term prognostics of PEMFC 
under variable load conditions. This appears to be due to the fact that deploying long-
term durability testing under variable load conditions is more challenging. For instance, 
PEMFCs in transportation applications may have more frequent load changes when 
dealing with very different road conditions and driving styles. Although accelerated 
lifetime tests allow to simulate the degradation evolution of automotive PEMFCs to some 
extent as well as to significantly reduce costs and improve efficiency. However, for 
durability tests under variable load conditions the available datasets are still relatively 
scarce [92]. The duration of the durability tests under variable load conditions and the 
corresponding literature are shown in Table 1.2. The reported PEMFC stack durations 
range from 80 to 5000 hours and involve maximum current density variations in the 
range of 0-1.2A/cm2 [93]. The load variation modes included in the literature are as 
follows.  



8 

(1) Standby-constant load cycle; 
(2) Shutdown-constant load cycle; 
(3) Switching between multiple constant-load operating points; 
(4) Different combinations of the above three modes.  

Test implementer or 

Stack manufacturer 

Duration 

(hours) 
Related literature 

MobyPost 80 [52, 59, 60, 69, 94, 95] 

Tongji University 
425 

[93] 
505 

Fuel Cell Bus (Beijing, China) 280 [14] 

Proton Motor 200 450 [36, 72] 

CEA-LITEN 
1000 [27, 42, 80, 96-99] 

1400 [91] 

Wuhan New Energy Co., Ltd 

(open source dataset) 
1008 [100] 

SAPPHIRE 1200 [101] 

Fuel Cell Bus (Zhangjiagang, China) 1200 [102] 

PRAGMA Industries 1500 [85, 103] 

H2SYS AIRCELL 5000 [104] 

Table 1.2 Long-term durability test under variable load conditions. 

In addition, there are individual differences in fuel cells, and the degradation behavior 
is not entirely consistent even for the same type and/or batch of products. In the 
durability test, the performance of the fuel cell can be partially recovered after the 
downtime for maintenance, but it is difficult to recover completely. Furthermore, 
abnormalities in the operating auxiliary devices such as the gas supply unit and 
temperature regulation component of the fuel cell can also affect the degradation 
evolution. It is difficult to guarantee that the stack and peripheral auxiliary equipment 
operate in the same state in each long-term test. These factors make it difficult to 
reproduce the long-term durability test of fuel cells. Although the long-term 
deterioration evolution of PEMFC has some commonalities, stack specificity cannot be 
ignored. Further, the shortage of durability test data is not conducive to fully investigate 
the specificity of stack degradation. In summary, the long-term durability tests of fuel 
cells have the following characteristics. 

(1) Durability test is difficult to implement and almost impossible to fully 
reproduce. 

(2) Durability test is inadequate and publicly available dataset is scarce. 
(3) PEMFC prognostics is highly dependent on the durability test dataset.  
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1.2.2. Fuel cell health indicators extraction 
The health indicator is proposed to scientifically, accurately and reliably characterize 

the SoH of the PEMFC. For the PEMFC operating under constant/quasi-constant load 
conditions, the load current is always the same or fluctuates less. For the PEMFC 
operating under constant/quasi-constant load conditions, the load current is always the 
same or fluctuates less. At this case, the measurements of output voltage/power etc. will 
gradually decrease with the increase of operation time, as shown in Figure 1.7. 
Therefore, under constant/quasi-constant load conditions, the measured stack 
voltage/power, etc. is sufficient to indicate the degradation state of the PEMFC. As 
shown in Table 1.3, most of the related works, directly choose the stack voltage or 
power as the health indicator for PEMFC under constant/quasi-constant load operating 
conditions. Besides, scholars are also exploring model-based methods to extract health 
indicators, which are mostly based on fuel cell degradation mechanism models or 
empirical models. The health indicators obtained by model-based extraction methods 
can be divided into two categories.  

 

Figure 1.7 Durability test conditions of PHM 2014 challenge: FC1 for constant load; 
FC2 for quasi-constant load (adapted from [38]). 

(1) Certain parameters in the model are used as health indicators.  
Such parameters have the ability to reflect the degradation trend or rate, 
but are not physical quantities per se. In [88], Bressel et al. extracted 
health indicators related to internal resistance and limiting current 
(referred to as "aging/degradation factor α" in [88]) by linearly fitting a 
PEMFC degradation model. Similar health indicators are used by Jha et al. 
in [42] and Ma et al. in [72].  

(2) The physical quantities reconstructed by the model or the fused multi-physical 
quantities are used as health indicators.  

Chen et al. in [44] utilize a degradation model to extract the PEMFC 
internal resistance and fuse it with voltage and power as a health indicator. 
In [53], Liu et al. propose multi-scale health indicator based on different 
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degradation models such as platinum (catalyst) particle radius, 
electrochemical surface area, and membrane thickness. Jouin et al. in [27] 
propose a PEMFC degradation model for the health state evolution and use 
the extracted "reconstructed power" as a health indicator.  

Health 

indicators 

Measurements 

(voltage, power) 
Model parameters 

Reconstructed 

physical quantities 

Extraction 

method 
None Model-based Model-based 

Related 

literature 

[28, 35-37, 39-41, 43, 

45-52, 54-87, 89-91] 
[42, 72, 88] [27, 44, 53] 

Table 1.3 Extraction of health indicators under constant load/quasi-constant load 
conditions. 

  
(a) (b) 

Figure 1.8 Samples of durability tests of PEMFC under variable load conditions: (a) 
simulated combined heat and power scenario [96]; (b) simulated load dynamic cycling 

scenario [72]. 

Under variable load conditions, the time-varying operating conditions not only affect 
the transient response performance of the PEMFC, but also result in measurements such 
as voltage that are no longer suitable as health indicators for direct assessment of 
degradation behavior [24]. The durability tests of the PEMFC under two variable load 
conditions are illustrated in Figure 1.8. Among them, Figure 1.8 (a) characterizes the 
variable load operation of a PEMFC in a micro combined heat and power system for 
different seasons [96]. While, Figure 1.8(b) is used to simulate the operation with high 
(100A), medium (70A), and low (20A) load cycles [72]. In comparison with Figure 1.7, 
under variable load conditions, the PEMFC is not only affected by the inherent 
degradation evolution, but also by the superimposed time-varying operating conditions 
and highly dynamic loads. Therefore the stack voltage/power is no longer able to 
visualize its long-term degradation trend. As in Table 1.4, there are limited studies 
related to the direct use of measured values as health indicators under variable load 
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conditions. Mezzi et al. in [101] assume a constant effect of the operating conditions of 
the PEMFC system. The periodically varying voltage is filtered and used as a health 
indicator after removing its variable load instantaneous dynamics. However, the 
assumed conditions somewhat limit its generalizability.  

Besides this, most of the research works related to variable load conditions are 
carried out by extracting new health indicators to replace the measurements. However, 
dynamic operating conditions and load variations are often operator-dependent and 
stochastic, making the PEMFC internal parameters (e.g., internal resistance) more 
complex to estimate. The extracted health indicators can be classified into "model 
parameters" and "reconstructed physical quantities", and the extraction methods can be 
classified into model-based and data-based categories.  

(1) Model parameters are extracted as health indicators by model-based methods. 
Bressel et al. in [96] and Ma et al. in [72] use the extended Kalman filter to 
estimate the actual SoH and degradation dynamics. In turn, the 
degradation model parameters are selected as health indicators. Yue et al. 
employ the multiplicative feature decomposition method in [105], and the 
same authors use a nonlinear regression method combined with a 
polarization model in [103] to extract model parameters as health 
indicators by segmental fitting of the measured voltage.  

(2) Reconstructed physical quantities are extracted as health indicators by model-
based methods.  

In [27] and [30], Jouin et al. discuss the possibility of extracting power or 
cumulative energy as a PEMFC health indicator based on a polarization 
curve model under variable load conditions. However, the cumulative 
energy seems to be plagued with error accumulation. Li et al. use a linear 
parameter varying model to simulate the dynamics of the PEMFC and 
extract the virtual steady state voltage as a health indicator [85, 106]. Hua 
et al. deploy a polarization test at the start of the available lifetime of the 
PEMFC and propose the relative power-loss rate as a health indicator 
based on the observed power [98].  

(3) Reconstructed physical quantities are directly extracted based on the data as 
health indicators.  

This type of extraction method uses resampling, filtering, etc. to select a 
certain part of the measured physical quantities as reconstructed health 
indicators. Some operating condition is cyclic switching between nominal 
power operating point and shutdown. For this case, Vichard et al. in [104] 
remove the data corresponding to the shutdown operating condition from 
the stack voltage. In turn, the reconstructed voltage is used as a health 
indicator. The same approach is used by Chen et al. in [52, 59, 60, 69, 94, 
95]. The variable load conditions mentioned by Ou et al. in [93] and Zuo et 
al. in [100] involve more voltage operating points. The authors selected a 
certain load current and extracted its corresponding stack voltage by a 
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resampling-like approach. The virtual constant-load voltage reconstructed 
accordingly is used as a health indicator.  

Health 
indicators 

Measurements 

(voltage) 

Model 

parameters 

Reconstructed physical 

quantities 
Extraction 

method None Model-based Model-based Data-based 

Related 
literature [101] 

[72, 96, 102, 

103] 

[14, 27, 30, 
72, 80, 85, 98, 

99, 102] 

[52, 59, 60, 
69, 93-95, 

100, 104] 

Table 1.4 Extraction of health indicators under variable load conditions. 

In summary, for constant/quasi-constant load conditions, it is well accepted to use 
measurements such as voltage/power as the health indicator. For variable load 
conditions, the measurements with superimposed operational behavior are no longer 
suitable as health indicators. Extracting reliable and physically interpretable health 
indicators from the effects of complex operating conditions and frequent load switching 
remains extremely challenging. Most of the related methods that have been proposed by 
scholars suffer from: requiring additional downtime testing of the PEMFC, difficulty in 
tracking the load change transient dynamics, and high computational cost. As a result, 
how to extract a suitable health indicator for characterizing the degradation evolution is 
the core task for the long-term prognostics of PEMFC under variable load conditions.  

1.2.3. Fuel cell degradation condition prediction and 
RUL estimation 

The ultimate goal of prognostics is to predict the future conditions and lifetime of the 
fuel cell. Among them, the future condition, also known as the future degradation 
condition, mainly includes the short-term operational behavior and long-term 
degradation trend associated with the fuel cell performance decrease. In the model 
training phase, the prediction model is trained using historical health indicator data. 
While updating the model in the prediction phase, different models rely on future 
operational monitoring data to different extents. Accordingly, the prediction modes can 
be classified into two categories: single-step and multi-step prediction.  

(1) Single-step prediction mode. 
During the prediction process, fuel cell operation data are required 
continuously to update the well-trained prediction model, as shown in 
Figure 1.9. This mode is suitable for tracking short-term degradation 
behavior and has a strong ability to portray the detailed changes of health 
indicators. It is conducive to identifying short-term abnormalities and can 
provide support for real-time fuel cell control and operation monitoring. 
Nevertheless, it is difficult to be used for remaining useful life prediction 
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because of its strong dependence on real-time operation data and short 
prediction range ( typically less than 1 day).  

 

Figure 1.9 Single-step degradation prediction mode. 

(2) Multi-step prediction mode. 
Multi-step prediction is usually built on a single-step prediction, and the 
model is updated using the predicted data from the previous step to 
achieve continuous prediction iteratively, as shown in Figure 1.10. This 
mode is designed to predict future long-term degradation trends over a 
prediction range of tens to hundreds of hours, which in turn allows for the 
remaining useful life estimation by setting a failure threshold. It does not 
rely on real-time operational data during the prediction phase. 
Nevertheless, updating the model using only the predicted data has the 
potential to accumulate errors, which results in the prediction accuracy 
decreasing as the prediction range increases.  

 

Figure 1.10 Multi-step degradation prediction and remaining useful life prediction. 

Accordingly, this dissertation reviews the literature related to PEMFC long-term 
prognostics. The distribution share of each type of prediction model in the searched 
literature is shown in Figure 1.11. Among them, the percentage of literature focusing 
only on the identification and extraction of health indicators (without performing the 
prediction task) is 4%. Approaches involving single-step degradation prediction account 
for about 46% of the literature, and almost none of them estimate the RUL due to the 
limitation of the prediction range. About half of the literature used multi-step 
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degradation prediction mode, and most of these estimated RUL. From the distribution of 
the literature, single-step degradation prediction and multi-step degradation prediction 
receive comparable attention. While more scholars prefer to achieve RUL prediction in 
multi-step degradation prediction. For variable-load conditions, the degradation 
evolution of PEMFC is coupled with the operational behavior, which makes predicting 
both long-term degradation trends and RULs very challenging. Several scholars have 
attempted to deploy single-step degradation prediction under variable load conditions 
[95, 100, 101], achieving high accuracy prediction in a shorter range, which would 
support real-time detection and operational control of fuel cells [107]. In contrast, the 
multi-step degradation prediction mode provides a longer prediction range and 
calculates the RUL at a preset failure threshold. Furthermore, by improving the 
prediction accuracy and extending the prediction range, it will facilitate the 
development of maintenance plans to provide sufficient time for avoiding fatal failures 
[11].  

 

Figure 1.11 Distribution of literature involved in degradation prediction and 
remaining useful life (RUL) estimation. 

Besides, common prediction methods involved in prognostics can be divided into 
three categories: data-driven, model-driven, and hybrid methods [19]. Among them, the 
model-driven method describes the degradation process by constructing physical 
models of the fuel cell. In cases where the physical degradation model is accurate 
enough, this type of method is beneficial to improve the prediction accuracy. Hu et al. 
propose a reconstructed prediction method for fuel cell city buses in [14]. By analyzing 
different operating conditions of the city bus, a fuel cell stack voltage degradation model 
is constructed. However, in that work only short-term predictions (less than one hour) 
are analyzed and do not estimate the RUL. The authors of the literature [108], Liu et al. 
propose a PEMFC prognostics model based on an adaptive unscented Kalman filter. 
Currently, most scholars seem to believe that the fuel cell degradation process is very 
complex and its degradation mechanism has not been fully revealed, making it difficult 
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to build a physical degradation model with sufficient fidelity. Moreover, purely model-
driven methods are often accompanied by strong assumptions for fuel cell parameters, 
leading to limited model generalization performance.  

Data-driven (e.g., [34, 36, 41, 65, 101]) and hybrid methods (e.g., [27, 28, 30, 33, 48, 
54, 101]) have attracted more widespread attention than model-driven methods. This is 
due to the ability of these methods to proficiently learn and predict trend characteristics 
of health indicators [10, 31]. In the literature [41], Javed et al. propose an algorithm 
based on summation wavelet extreme learning machine which is capable of long-term 
degradation trend prediction and RUL estimation. It is worth mentioning that the 
robustness and adaptability of the prediction methods are discussed in that work, which 
has become one of the thorny issues faced by most prognostic methods. In [28], Jouin et 
al. propose a hybrid method based on particle filter framework and degradation 
behavior model , it also estimates the RUL.  

Inspired by the remarkable recent advances in Deep Neural Network (DNN), scholars 
have paid particular attention to the development of data-driven prediction tools by 
configuring and training different DNN structures. The literature [62, 85, 106] uses the 
Echo State Network (ESN) framework for prediction. Among them, Li et al. in [85, 106] 
conducted long-term aging experiments on a compact fuel cell system and used the 
Linear Parameter Varying (LPV) model to extract the virtual steady-state voltage of the 
fuel cell under variable load conditions and further used the ESN to predict the 
degradation trend of the voltage and estimate the RUL. Similar to the literature [28], the 
method focuses more on the long-term variation trend rather than capturing local 
details.  

Among the data-driven methods in the DNN framework, the prediction models based 
on Long Short-term Memory (LSTM) networks possess powerful time series processing 
capabilities. Therefore, PEMFC prognostics methods applying LSTM networks have 
received much attention in recent years [34, 36, 65]. Nevertheless, the training and 
learning of classical LSTM models strongly depend on historical data (training set). To 
achieve accurate prediction beyond the training data value scale then becomes a difficult 
task [109]. Meanwhile, to enable RUL estimation, multi-step degradation prediction with 
long prediction ranges typically needs to be deployed. However, the performance of the 
classical LSTM becomes unsatisfactory with the extension of the prediction range in the 
multi-step degradation prediction mode. Interestingly, the reason for this phenomenon 
may be due to the powerful "memory" ability of the LSTM itself, which incorrectly 
records irrelevant features in the training set. To cope with this issue, Ma et al. in [33] 
propose a hybrid model consisting of an Autoregressive Integrated Moving Average 
(ARIMA) model combined with the LSTM. Overall, LSTM network-based prediction 
models still need improvement in long-term prediction cases, while related studies are 
extremely limited.  

As a summary of the above, among the two prognostics modes, single-step and multi-
step prediction have their own focus in different demand scenarios. Limited by the 
unknown future operation monitoring data, the multi-step prediction mode is more 
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susceptible to cumulative errors, making it more difficult to predict. On the other hand, 
among the three types of prognostics methods. 

(1) model-driven methods exhibit high prediction accuracy, but are complex in 
configuration and inadequate in generalization performance.  

(2) Data-driven methods do not require the acquisition of a priori physical 
knowledge, are efficient, and possess favorable transferability. However, the 
prediction accuracy is easily constrained by the size of the training set data.  

(3) Hybrid methods combine the advantages of physical models and data-driven 
methods, but also tend to merge the shortcomings of both.  

Moreover, there are very limited studies related to the failure threshold and evaluation 
criteria in RUL estimation. Therefore, the core challenges that need to be addressed in 
fuel cell degradation condition prediction and remaining useful life prediction can be 
summarized as follows: improving the prediction accuracy under multi-step prediction 
mode, enhancing the shortcomings of prediction methods, and providing reasonable 
RUL evaluation criteria.  

1.3. Dissertation organization structure 
The remainder of the dissertation is organized as follows. 
Chapter 2 introduces the basic concepts, performance indicators, and 

characterization of fuel cells. Specifically, the development of fuel cells is briefly 
introduced, and the basic principles of fuel cell are given. Furthermore, a detailed 
description of how to measure the fuel cell global performance using the "Current 
density-Voltage" (C-V) curve is presented. Then, four on-site characterization methods 
commonly used for fuel cells are provided. It concludes with a discussion of the 
challenges posed by variable load conditions, the inadequacy of characterization 
methods, and the necessity of deep learning-based prognostics.  

Chapter 3 presents a prognostics strategy based on the fusion of a statistical approach 
and a deep learning model. Specifically, an Autoregressive Integrated Moving Average 
Model with Exogenous Variables (ARIMAX) is used to generate navigation sequences 
and to navigate the LSTM network model during prediction. The proposed prognostics 
strategy is able to optimize multi-step prediction for long-term degradation trends and 
RUL.  

Chapter 4 proposes an electrochemical mechanism-based model for extracting fuel 
cell HI under dynamic mission profiles. In addition, the historical operational data are 
processed using the Adaptive Brownian Bridge-based Aggregation (ABBA) method to 
further extract the inherent degradation feature information in HI via compression and 
dimensionality reduction. The processed symbolic sequences are used to improve the 
long-term prediction performance of the LSTM.  

Chapter 5 suggests a data-driven prognostics approach based on time-frequency 
analysis and symbolic-based Gated Recurrent Unit (GRU). A modified Hilbert-Huang 
Transform (HHT) method is used to extract HI from historical operational data. 
Subsequently, symbolic-based GRU is used for long-term degradation condition 
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prediction and RUL estimation. Finally, the hybrid prognostics performance is evaluated 
multiple times over the interval of possible failure thresholds, instead of using only a 
single failure threshold. The approach allows for an effective reduction in computational 
costs.  

Eventually, the main contributions and potential future research aspects of this 
dissertation are summarized and discussed in Chapter 6.  
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2. Preliminary 

2.1. History of fuel cells 
Fuel cells are generally considered to be devices that convert the chemical energy 

contained in fuels and oxidizers into electrical energy through chemical reactions. 
Recently, the term fuel cell seems to be used specifically to describe a reactor that uses 
hydrogen as a fuel. Hydrogen has been used as a fuel for automobiles for a long history. 
For instance, hydrogen was used as a fuel in internal combustion engines 200 years ago, 
similar to how fuels such as gasoline work in internal combustion engines today. 
Nevertheless, at that time, hydrogen was subject to many technical limitations in terms 
of production, storage and transfer compared to gasoline. Therefore, hydrogen has not 
shown superiority as a fuel for internal combustion engines.  

A simple history timeline of the fuel cell is shown in Figure 2.1. In 1839, the German-
Swiss chemist Christian Friedrich Schönbein first publishes the principle of the fuel cell 
in the Philosophical Magazine. Three years later, British physicist William Robert Grove 
develops the first fuel cell, also known as the gas voltaic battery. In 1958, General 
Electric Company, invents the platinum-deposited ion exchange membrane. The fuel cell 
improved by this technology is considered the first PEMFC, also known as the Grubb-
Niedrach fuel cell. In 1965, NASA replaces chemical cells with fuel cells in Project Gemini, 
which is the first commercial application of fuel cells. Thanks to fuel cells that can 
generate enough electricity to power longer missions, the Gemini V completes more 
than a week of manned space flight. Furthermore, PEMFC produces water during the 
power generation process, which is expected to contribute to the astronauts' drinking 
water storage expansion. In 1966, General Motors presentes the world's first fuel cell 
automobile, named Electrovan.  

After the 1970s, the energy crisis prompts an accelerated consideration of 
alternatives to fossil fuels. As a result, hydrogen fuel cells are also gaining new 
opportunities for development. In addition, fuel cells also show advantages in some 
special cases, such as in the military, where Siemens AG of Germany designs a fuel cell-
based air-independent propulsion system and applies it to the Type 212 submarine in 
1998. Especially, unlike internal combustion engines, fuel cell stacks do not contain 
reciprocating mechanical structures. As a result, it operates at a lower noise level, which 
is conducive to the submarine's survivability.  

As we enter the 21st century, the development of fuel cells applied to electric vehicles 
is attracting much attention. In 2015, Toyota launches Mirai, the first mass-produced 
fuel cell electric vehicle. In 2018, Hyundai presentes its crossover SUV powered by fuel 
cells, called NEXO. Two years later, Toyota launches the second generation Mirai with a 
range being updated to over 647 km.  
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Figure 2.1 History of fuel cell development. 
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2.2. Basic principle of fuel cell 
Hydrogen releases energy when it undergoes an oxidation reaction. A simple and 

direct way is "combustion", as in the following reaction equation.  

2H2 + O2 → 2H2O (2.1) 

This "combustion" is rapid and violent, releasing a large amount of "heat energy". If we 
want to obtain electrical energy, it is required to convert thermal energy into mechanical 
energy first, and then mechanical energy into electrical energy. This is similar to driving 
a generator set with an internal combustion engine, which involves a complex energy 
conversion process and can easily lead to undesirable energy losses.  

 

Figure 2.2 Structure diagram of fuel cell stack and components [19]. 

In contrast, in the current fuel cell technology, hydrogen is not burned directly, but is 
converted to electricity by reacting with oxygen. To achieve this process, an electrolyte 
is required to spatially isolate the fuel from the oxidizer. In fact, the electrolyte allows 
the passage of ions while blocking electrons. Figure 2.2 shows the structure diagram of 
the fuel cell components, single cells and stacks. A cathode and anode are installed on 
the left and right sides of the electrolyte, respectively. In this case, the anode (right) side 
is fed with hydrogen gas, which is then ionized into hydrogen ions (or protons) and 
electrons, as in the following equation.  

H2 → 2H+ + 2e− (2.2) 

Subsequently, hydrogen ions will transfer to the cathode through the electrolyte. And 
electrons flow through the circuit to drive the load (e.g. motor), after which they also 
arrive at the cathode. At the same time, the following reaction occurs with the cathode 
side being fed with oxygen (or air).  

1
2O2 + 2e− + 2H+ → H2O (2.3) 
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The oxidation reaction that occurs here seems to be similar to the "combustion" in 
equation (2.1). The main difference is that the reaction process in the fuel cell involves 
the flow of electrons and directly generates an electric current. Meanwhile, less "heat 
energy" is released.  

2.3. Performance of fuel cell 
The fuel cell output current is directly proportional to the hydrogen consumption. If 

the fuel supply and output current are kept fixed, when the output voltage drops, the 
electrical power produced by the fuel cell also falls. Therefore, the output voltage can be 
used to measure the efficiency and performance of the fuel cell. Based on this, how to 
obtain a high output voltage under high current load is significant for the power increase 
of fuel cells. To achieve this goal, however, is undoubtedly challenging. This is due to the 
fact that fuel cells, like other power generation devices, are accompanied by power 
losses when generating electricity. Moreover, this power loss will vary depending on the 
load current level.  

One possible way to better quantify the fuel cell performance is to utilize a "Current 
density-Voltage" (C-V) curve. It is worth noting that "current density" is used here 
instead of "current". This is because the reaction interface area (electrolyte surface area) 
varies greatly from one scale of fuel cell to another, even leading to order of magnitude 
differences in output current. In order to get more appropriate performance 
measurements, it is necessary to normalize the current based on surface area. Figure 2.3 
shows the C-V curves for a single cell of a hypothetical low-temperature PEMFC, 
containing six curves in total.  

 

Figure 2.3 Voltage drops of fuel cell. 
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(1) Theoretical voltage of fuel cell 
Ideally, the voltage value is obtained by theoretical (thermodynamics) 
calculation , which is considered as "no loss". In addition, it seems to be 
very difficult to obtain the theoretical voltage by practical measurement.  

(2) Open-circuit voltage of fuel cell 
Obviously, in this case the open-circuit voltage is lower than the 
theoretical voltage. One possible explanation is due to the internal current, 
which flows in the opposite direction to the load current. The electrolyte 
may allow a very few electrons to pass through, or the fuel (hydrogen) 
may flow abnormally to the cathode, both of which may trigger internal 
currents. In addition, the open-circuit voltage can be physically measured.  

(3) Voltage drop due to activation losses 
Activation losses are caused by electrochemical reaction kinetics. Some 
energy is inevitably consumed during the start-up of the fuel cell, which is 
specifically reflected in the drop of output voltage. Actually, the activation 
losses, which are the most important reason for the irreversibility and 
voltage drop of low temperature fuel cells, occur mainly at the cathode. It 
is observed that the "activation losses" curve in Figure 2.3 drops rapidly at 
the initial stage, and then the voltage drop behavior becomes gradually 
moderated with the increase of the load current. This curve can be 
expressed by the following equation.  

𝐸𝑎𝑐𝑡 = 𝐸𝑟𝑒𝑣 − 𝑉𝑎𝑐𝑡 (2.4) 

Where, 𝐸𝑎𝑐𝑡  is the operation voltage of the fuel cell when only the 
activation losses are considered, 𝐸𝑟𝑒𝑣 is the open-circuit voltage of the fuel 
cell, and 𝑉𝑎𝑐𝑡 represents the voltage drop triggered by the activation losses.  

(4) Voltage drop due to Ohmic losses 
Ohmic losses are voltage drops caused by the resistance existing in the 
electrodes and electrolyte. As shown in Figure 2.3, the "Ohmic losses" 
curve demonstrates the linear drop in output voltage that accompanies the 
increase in current load. This can be calculated using the following 
equation.  

𝐸𝑟 = 𝐸𝑟𝑒𝑣 − 𝑉𝑟 (2.5) 

Where, 𝐸𝑟 is the operating voltage of the fuel cell when only Ohmic losses 
are considered, and 𝑉𝑟 represents the voltage drop induced by Ohmic 
losses.  

(5) Voltage drop due to concentration losses 
When the fuel (and/or oxidizer) is supplied in gaseous form, the hydrogen 
(or oxygen) at the electrodes is drawn off by the operating fuel cell, 
causing a slight reduction in gas concentration. This triggers a drop in the 
fuel cell output voltage, called the concentration losses (also known as 
mass transfer losses). Obviously, the higher the load current is, the greater 
will be the effect of such concentration losses, as shown in Figure 2.3. The 
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operating voltage 𝐸𝑐𝑜𝑛𝑐 considering only the concentration losses can be 
calculated as follows.  

𝐸𝑐𝑜𝑛𝑐 = 𝐸𝑟𝑒𝑣 − 𝑉𝑐𝑜𝑛𝑐 (2.6) 

Where, 𝑉𝑐𝑜𝑛𝑐 represents the voltage drop triggered by the concentration 
losses. It shows a rapid drop in the high current density region, in contrast 
to the insignificant drop at low current loads.  

(6) Operation voltage of fuel cell 
Practically, the fuel cell output voltage takes into account the effects of 
activation, Ohmic, and concentration losses at the same time. The actual 
(single cell) operation voltage (𝐸𝑐𝑒𝑙𝑙) calculation equation is as follow.  

𝐸𝑐𝑒𝑙𝑙 = 𝐸𝑟𝑒𝑣 − 𝑉𝑎𝑐𝑡 − 𝑉𝑟 − 𝑉𝑐𝑜𝑛𝑐 (2.7) 

The trend of the operation voltage also inherits the characteristics of these 
three losses, dropping rapidly at the beginning (mainly activation losses), 
then showing a similar linear fall (mainly Ohmic losses), and finally 
dropping rapidly again at high load currents (mainly concentration losses).  

In summary, the performance of the fuel cell can be regarded as the ability to sustain 
the output voltage under the premise that the load current meets the demand setting. 
For fuel cells, the actual output voltage is generally lower than the theoretical voltage, 
even if the open-circuit voltage is also the case. Once a fuel cell starts to operate, the 
operation voltage drops with the increase of load current due to the combined effect of 
several factors. As a result, it becomes more challenging to evaluate the fuel cell 
performance under variable load conditions.  

2.4. Characterization of fuel cell 
Characterization is a way to portray the performance of fuel cells in different 

dimensions by experimental measurements. Even the SoH degradation evolution of fuel 
cells can be revealed by continuous characterization tests. It is undeniable that the 
performance losses caused by different components of a fuel cell are also very various. 
Performance evaluation at the component level of a fuel cell is usually based on an off-
site characterization model. The off-site model is interested in the physical structure 
(e.g., catalyst surface area, porosity, permeability, and even microstructure) , as well as 
the chemical properties, of the components. This does allow for a deeper exploration of 
the fact that fuel cell performance is degraded. However, the off-site mode usually 
requires the fuel cell to be shut down and the components to be disassembled for testing. 
In this case, the characterization has to ignore the effects of actual operation conditions, 
even accompanied by destructive testing of the components. Moreover, these 
components will incur additional performance losses upon integration. Therefore, it is 
essential to deploy stack (and/or system) level characterization of fuel cells under actual 
operation conditions.  

In contrast, the on-site Characterization model aims to quantify the performance of 
the fuel cell under actual operation conditions. On-site mode focuses on time-dependent 
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electrochemical variables (e.g., voltage, current, etc.), and is therefore also referred to as 
Electrochemical Characterization. Four common types of on-site characterization are as 
follows.  

(1) Polarization curve method 
As described in Section 2.3, current density-voltage curve (also called 
polarization curve) can quantify the overall performance of a fuel cell. In 
this case, obtaining polarization curves from experimental measurements 
is one of the on-site characterization methods. It should be noted that the 
polarization curve measurement is based on the premise that the fuel cell 
is kept in steady-state operation. Recalling Figure 2.3, it is easy to see that 
the current densities involved in the polarization curves are diverse. 
Typically, it is sufficient to plot the polarization curve by measuring the 
operation voltage at 10 to 20 different load currents. The polarization 
curve test needs to last for several or even tens of hours.  

(2) Current interrupt method 
When switching between two different load currents, the operation 
voltage of the fuel cell is slow to reach the new steady state, as shown in 
Figure 2.4. This is due to the fact that a change in load will inevitably affect 
the reactant concentration and stack temperature. The fuel cell needs time 
to reach a new balance. Briefly, the current interrupt method is used to 
record the duration it takes for the operation voltage to regain steady state. 
The transient change in voltage is generally considered to correspond to 
the Ohmic losses of the fuel cell, while the slowly changing part 
corresponds to the non-Ohmic losses. The current interrupt method is a 
fast characterization oriented to dynamic performance evaluation. It can 
be easily deployed whenever load switching exists.  

 

Figure 2.4 Voltage against time for a fuel cell after a current interrupt [110]. 

(3) Cyclic voltammetry 
Cyclic voltammetry (CV) is designed to characterize the performance of 
fuel cell catalysts, such as Electrochemcial Active Surface Area (ECSA). 
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Specifically, the operation voltage of the fuel cell is linearly scanned 
between two preset voltage values repeatedly. The corresponding current 
density change is recorded and the resulting curve is shown in Figure 2.5. 
Repeated voltage scans make the CV test time consuming. In addition, the 
fuel cell needs to be specially configured, for instance to provide extra 
types of test gases.  

 

Figure 2.5 A cyclic voltammetry sample [111]. 

(4) lectrochemical impedance spectroscopy 
Electrochemical Impedance Spectroscopy (EIS) is the behavior of 
superimposing a small amplitude sinusoidal interference signal on the 
operation voltage and observing the current response. In turn, Nyquist 
plots are drawn to characterize the impedance characteristics of the fuel 
cell, as in Figure 2.6.  

 

Figure 2.6 Example Nyquist plot from a hypothetical fuel cell.[112]. 

In fact, combined with the assumption of equivalent circuits, EIS facilitates 
the independent characterization of the three voltage losses mentioned in 
Section 2.3. However, impedance measurements need to be performed at 
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dozens of different frequencies, hence the EIS is also time-consuming. In 
addition, the assumed equivalent circuit may be complex in order to fit the 
measurement results as accurately as possible.  

In summary, the off-site characterization of fuel cells focuses on component level, or 
even deeper, performance quantification. While it can reveal some degradation facts, it 
is also accompanied by stack shutdown or component damage. At the same time, the off-
site mode inevitably lacks comprehensive consideration of inter-component integration, 
actual operation conditions, and other factors. Comparatively, on-site methods are able 
to characterize the performance of well-integrated fuel cells. Nevertheless, it also suffers, 
to varying degrees, from being time-consuming, complex, and requiring extra 
configuration.  

2.5. Discussion 
In this chapter, the history, fundamentals, performance and characterization of fuel 

cells are reviewed. Specifically, for factors affecting the operating voltage, it is closely 
related to the magnitude and variability of the load or not. Under variable load 
conditions, fuel cells suffer from switching and superposition of different components of 
overpotential. This makes it exceptionally difficult to identify these overpotential 
components. On the other hand, most of the different characterization methods interfere 
with the fuel cell operation. For instance, it requires shutdown or running at a specific 
load current to achieve performance tests. This is not only inconvenient, but also tends 
to cause additional damage to the fuel cell. Further, it is doubtful whether the 
characterization results obtained in isolation from the actual operating operation can 
represent the true performance of the fuel cell. Moreover, the characterization 
techniques mentioned above cannot explain the deterioration of fuel cells at a deeper 
level. The degradation process of the platinum catalyst particles in the core components 
of the fuel cell, e.g., the membrane electrode assembly, is difficult to observe online.  

In conclusion, the degradation process of fuel cells is complex and becomes more 
difficult to be identified under the influence of variable loads. It is important to seek a 
performance evaluation method that does not rely on characterization techniques, or 
does not require shutdowns and additional testing procedures. With this in mind, this 
thesis will be devoted to the evaluation of fuel cell performance, especially long-term 
degradation behavior and remaining lifetime, using deep learning-based methods.  
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3. Fusion prognostics strategy based on 
statistical method and deep learning 

3.1. Introduction 
In order to better understand the degradation mechanisms of PEMFC, and shorten 

the time/cost of durability tests, it is essential to estimate the degradation trend and 
RUL as accurately as possible. It has been widely known that the FC degradation process 
is complicated and complex. It is usually difficult to establish an analytical degradation 
model with sufficient fidelity. Data-based methods and hybrid methods have therefore 
been attracting wider attention compared with model-based ones.  

Recently, long short-term memory, a Recurrent Neural Network (RNN) paradigm, has 
been considered as a potentially effective tool to handle time series prediction problems. 
In most cases, based on raw LSTM, the degradation trend can be effectively predicted 
only for a short horizon of a few hours. To achieve RUL estimation, multi-step prediction 
with long prediction horizon is required, particularly for the prognostics of aging 
degradation. However, several issues arise as the prediction horizon is extended.  

(1) The prediction error is accumulated when well-trained LSTM models are fed 
with the output in previous-step prediction iteratively.  

(2) The FC degradation behavior is disturbed and influenced by the time-varying 
operations and recoverable faults, which poses difficulties for tracing the 
intrinsic degradation trend.  

(3) The prognostic models built only on the historical data usually suffer from the 
model epistemic uncertainty. The predicted results are hardly beyond the 
numerical interval of the historical-based training set. 

This Chapter is devoted to tackling the afore-mentioned issues and make LSTM model 
more appropriate for long-term prognostic use. Basically, the above issues are due to the 
lack of reliable data or information in the prediction zone. As one potential solution, an 
approximate trend sequence, inherited from the training data, can be pre-generated for 
the prediction zone. The pre-generated sequence can then be used to guide the LSTM 
model in order to avoid the afore-mentioned undesired predictive behaviors. 
Specifically, in this Chapter, an autoregressive integrated moving average model with 
exogenous variables is proposed to generate a Navigation Sequence (NS) to guide LSTM 
for multi-step prediction. As a consequence, a novel Navigation Sequence Driven LSTM 
(NSD-LSTM) prognostic strategy design is proposed. The strategy is then tested using 
different fuel cell long-term aging datasets, including those obtained in both static and 
dynamic operating conditions. The enhanced multi-step prediction capability and RUL 
estimation performance are then highlighted by comparing the proposed NSD-LSTM 
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with two state-of-the-art data-driven prognostic models, namely, Nonlinear 
Autoregressive Exogenous (NARX) [113] and ESN.  

The remaining organization of this Chapter is as follows. In Section 3.2, the principles 
of LSTM and ARIMAX are briefly introduced. The prognostic strategy of NSD-LSTM is 
also presented in the same section. In Section 3.3, FC aging experiments and data 
preprocessing are introduced. Then, the proposed prognostic strategy is tested and 
compared with NARX and ESN models in Section 3.4. Finally, the Section 3.5 is the 
summary and discussion. 

3.2. NSD-LSTM based prognostics strategy 

3.2.1. ARIMAX model 
The ARIMAX model is one of the most commonly used time series analysis models 

[114], which can be used to explain the relationship between system variables. In 
literature [115], the author applies several artificial intelligence models and ARIMAX to 
predict time series. Compared with other state-of-the-art models, thanks to the addition 
of Exogenous Sequences (XS), the ARIMAX model is considered to be a useful method for 
predicting time series.  

Assuming that k input variable sequences ({𝑥1𝑡}, {𝑥2𝑡}, … , {𝑥𝑘𝑡}), including the XS and 
the historical HI sequence, are stationary, where 𝑡 ∈ ℝ𝑙  corresponds to l time steps. The 
regression model between the output variable sequence {𝑦𝑡} and the input variable 
sequences is as follows:  

𝑦𝑡 = 𝜇 + � [𝛩𝑖(𝐵) 𝛷𝑖(𝐵)⁄ ]
𝑘

𝑖=1
𝐵𝐿𝑖𝑥𝑖𝑡 + 𝜀𝑡 (3.1) 

where μ is the mean vector of {𝑦𝑡}, and {𝜀𝑡} represents regression residual sequence. 
{𝑥𝑖𝑡} is the i-th (𝑖 = 1, 2, . . . ,𝑘) input variable sequence. 𝐿𝑖  represents the i-th lag degree. 
B is backshift operator such as 𝐵𝐿𝑖𝑥𝑖𝑡 = 𝑥𝑖𝑡−𝐿𝑖 . 𝛩𝑖(𝐵) = 𝛩0𝑖 − ∑ 𝛩𝑗𝑖𝐵𝑗𝑞

𝑗=1 denotes q-order 
moving average polynomial of {𝑥𝑖𝑡} , and 𝛷𝑖(𝐵) = 𝛷0

𝑖 − ∑ 𝛷𝑗𝑖𝐵𝑗𝑝
𝑗=1  denotes p-order 

autoregressive polynomial of {𝑥𝑖𝑡}.  
Since both {𝑦𝑡} and {𝑥𝑖𝑡} are stationary sequences, the {𝜀𝑡} is also stationary:  

𝜀𝑡 = 𝑦𝑡 − �𝜇 + � [𝛩𝑖(𝐵) 𝛷𝑖(𝐵)⁄ ]
𝑘

𝑖=1
𝐵𝐿𝑖𝑥𝑖𝑡� (3.2) 

Assuming that {𝜀𝑡} is a non-white noise sequence, the autoregressive moving average 
model is then used to extract the information. The final fitted model is:  

�𝑦𝑡 = 𝜇 + � [𝛩𝑖(𝐵) 𝛷𝑖(𝐵)⁄ ]
𝑘

𝑖=1
𝐵𝐿𝑖𝑥𝑖𝑡 + 𝜀𝑡

𝜀𝑡 = [𝜃(𝐵) 𝜙(𝐵)⁄ ]𝑎𝑡
 (3.3) 

where 𝜃(𝐵) = 1 − ∑ 𝜃𝑗𝐵𝑗𝑞
𝑗=1  is the q-order moving average operator, and 𝜙(𝐵) = 1 −

∑ 𝜙𝑗𝐵𝑗𝑝
𝑗=1  is the p-order autoregressive operator. {𝑎𝑡} is a zero-mean white noise 

sequence [114]. The specific process of generating NS using the ARIMAX model will be 
described in detail in Section 3.2.3.  
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3.2.2. LSTM structure 
The aging degradation process of FC generally lasts thousands to tens of thousands of 

hours. LSTM can selectively store the intrinsic information of long-term data and 
capture the long time-scale correlation between time series data. In fact, as in [36, 56, 
75], the LSTM-based prognostics framework is demonstrated to be capable of predicting 
the short-term PEMFC degradation behavior. Specifically, the basic network 
configuration of the LSTM contains three layers, namely the input layer, the single LSTM 
layer, and the output layer, as in Figure 3.1 (a).  

To eliminate the risk of gradient disappearance or explosion in RNN, the LSTM 
creates a path that allows the gradient to flow continuously for a long time through an 
ingenious controllable self-circulation [36]. Specifically, in a single LSTM layer, h hidden 
units are connected sequentially to form a chain, which allows the cell state (𝑐𝑡 ∈ ℝℎ) 
and the hidden state (ℎ𝑡 ∈ ℝℎ) to be continuously passed, as in Figure 3.1 (b). The 
𝑥𝑡 ∈ ℝ𝑑  (the superscript d refers to the number of input features) from the input layer 
enters the hidden unit along with the previous unit outputs (𝑐𝑡−1 and ℎ𝑡−1). The new 
outputs (𝑐𝑡 and ℎ𝑡) are generated with the collaboration of forget gate (𝑓𝑡 ∈ ℝℎ), input 
gate (𝑖𝑡 ∈ ℝℎ), output gate (𝑜𝑡 ∈ ℝℎ), and the internal state unit (�̃�𝑡 ∈ ℝℎ) [56].  

 
(a) 

 
(b) 

Figure 3.1 Illustration of LSTM model: (a) LSTM (single-layer) network configuration; 
(b) hidden unit chain and individual unit structure. 

Equations (3.4) to (3.9) show the functional equations of LSTM  

𝑓𝑡 = 𝜎�𝑊𝑓𝑥𝑡+𝑈𝑓ℎ𝑡−1 + 𝑏𝑓� (3.4) 
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𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡+𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (3.5) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡+𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (3.6) 

�̃�𝑡 = tanh(𝑊𝑐𝑥𝑡+𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (3.7) 

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ �̃�𝑡 (3.8) 

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡) (3.9) 

where the matrices 𝑊𝑞 ∈ ℝℎ×𝑑 and 𝑈𝑞 ∈ ℝℎ×ℎ contain, respectively, the weights of the 
input and recurrent connections, where the subscript q can be either the input gate i, 
output gate o, the forget gate f or the cell state c. Similarly, the vectors 𝑏𝑞 ∈ ℝℎ, such as 
𝑏𝑓, 𝑏𝑖, 𝑏𝑜 and 𝑏𝑐, are the bias of each component [56]. The gate activation function 𝜎 is 
the sigmoid function with "S"-shaped curve characteristics. It can be defined by the 
following equation.  

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (3.10) 

And the internal state activation function tanh is hyperbolic tangent function. It can be 
defined by the following equation.  

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (3.11) 

While, the operator “∘” denotes the Hadamard (element-wise) product, which is a binary 
operation[36]. The Hadamard product operation between two matrices, both of 𝑚 × 𝑛 
dimensions, is defined as follows.  

�

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑛
⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑚1 𝑎𝑚2

⋱ ⋮
⋯ 𝑎𝑚𝑛

� ∘ �

𝑏11 𝑏12
𝑏21 𝑏22

⋯ 𝑏1𝑛
⋯ 𝑏2𝑛

⋮ ⋮
𝑏𝑚1 𝑏𝑚2

⋱ ⋮
⋯ 𝑏𝑚𝑛

� = �

𝑎11𝑏11 𝑎12𝑏12
𝑎21𝑏21 𝑎22𝑏22

⋯ 𝑎1𝑛𝑏1𝑛
⋯ 𝑎2𝑛𝑏2𝑛

⋮ ⋮
𝑎𝑚1𝑏𝑚1 𝑎𝑚2𝑏𝑚2

⋱ ⋮
⋯ 𝑎𝑚𝑛𝑏𝑚𝑛

� (3.12) 

3.2.3. NSD-LSTM model architecture 
FC operation involves coupled multi-physics processes. The aging degradation of FC 

is time-varying, highly uncertain and correlated to these processes. This leads to the 
prognostics, supposed to predict the intrinsic FC degradation evolution, is disturbed. 
Moreover, the prognostics model built on the historical data of the identical FC also 
suffers from the epistemic uncertainty as the predicted data evolve within an unseen 
quantity interval. In order to handle the disturbances from both the system 
operation/degradation and model uncertainties, the LSTM based prognostics model 
should be trained so as to trace the intrinsic degradation evolution. With this in mind, 
this Chapter proposes a novel prognostics strategy based on NSD-LSTM, which takes 
into account the characteristics of LSTM and ARIMAX. The overall NSD-LSTM based 
prognostics strategy is shown in Figure 3.2. The strategy is divided into three parts: 
dataset preprocessing, offline phase and online phase.  
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3.2.3.1. Dataset preprocessing 
The upper left frame of Figure 3.2 shows the dataset preprocessing phase of the 

strategy. The purpose of this phase is to adjust the HI sequence to make it suitable for 
prognostics. The HI can be the stack voltage sequence from the aging experiment, or the 
virtual nominal stack voltage mentioned in the literature [85].  

 
Figure 3.2 The prognostics process based on NSD-LSTM. (a) Dataset preprocessing: 
datasets segmentation, standardization, exogenous sequences generation; (b) Offline 
phase: navigation sequence generation, training of LSTM; (c) Online phase: long-term 

degradation trends prediction, RUL prediction. 

The first step is to select the split point (also known as the prediction starting point). 
The split point can divide the HI sequence into a training set and a test set. Further, the 
test set can be used to calculate the real RUL. Subsequently, it is necessary to select the 
Failure Threshold (FT), and determine the actual End of Life (EoL) according to FT. Then 
the actual RUL is calculated as  
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𝑅𝑈𝐿 = 𝐸𝑜𝐿 − 𝑡0 (3.13) 

where 𝑡0 is the operating time at the split point. It is worth mentioning that the test set is 
considered unknown in both offline and online phases, in order to avoid data leakage, as 
in practical conditions.  

The second step is to standardize the training set using:  

𝑧𝑠𝑡𝑑 = (𝑧 − 𝑧) 𝑆𝐷⁄  (3.14) 

where  {𝑧} is the raw training set sequence, 𝑧 is the average, SD is the standard deviation, 
and {𝑧𝑠𝑡𝑑} is the standardized training set sequence.  

The third step is to generate multiple XS for the ARIMAX model. The XS are 
introduced to better retain the main trends in the raw training set while filtering out 
anomalous and meaningless data fluctuations. Specifically, by adjusting the smoothing 
coefficient in the Locally Estimated Scatterplot Smoothing (LOESS) method [56], 
multiple XS with different smoothing levels can be obtained. These different smoothing 
levels facilitate diversified exogenous information for ARIMAX to prevent the impact by 
uncertainty disturbances. Moreover, each XS can eliminate some fluctuations mainly due 
to the system operation while retaining the long-term degradation trend.  

3.2.3.2. Offline phase 
The offline phase is displayed on the right frame of Figure 3.2. This phase contains 

two parts: generating NS and training LSTM.  
1) Generating NS 
The NS generation process is shown in the red dashed box in Figure 3.2. The training 

set and XS generated in the preprocessing phase will be used to fit the ARIMAX model. 
Specifically, a series of ARIMAX models are fitted using multiple (here n) different XS. 
Based on these models n candidate sequences for NS can be predicted. Then, at the k-th 
predicted instance after the split point, the average predicted value and the Confidence 
Interval (CI) can be calculated respectively, as  

𝑦�𝑘 =
∑ 𝑦�𝑘𝑖𝑛
𝑖=1

𝑛
 (3.15) 

𝐶𝐼𝑘 = 𝑦�𝑘 ± 1.96𝑆𝐷𝑘 (3.16) 

Where 𝑦�𝑘𝑖  is the i-th (𝑖 ∈ {1,2, … , 𝑛}) predicted value, 𝑦�𝑘  represents the average 
predicted value of the k-th time step, and 𝑆𝐷𝑘 denotes the identified standard deviation. 
The constant 1.96 means 95% CI. The 𝐶𝐼𝑘 are the confidence interval bounds. The 
average predicted value sequence �𝑦�� is considered as the NS.  

2) Training LSTM 
In the training LSTM stage , Adam is utilized as an optimizer to facilitate 

hyperparameters tuning, because it is computationally efficient and has little memory 
requirements [116]. This drives the model to converge to the minimum generalization 
error in a stable and rapid manner. Meanwhile, Adam is proven to be suitable for 
training LSTM [35, 56]. Different settings of hyperparameters and initialized weight 
matrices can bring diversity to the LSTM model. This variation of model is not fully 
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controllable for the prediction phase. Any well-trained LSTM model can be considered to 
perform effectively in the training set, yet there is often a significant difference in its 
performance in the test set. Setting the multiple initialization weight matrixes of hidden 
units randomly, multiple LSTM can be trained to generate multiple prognostics models, 
such as LSTM 1, LSTM 2, ..., LSTM n shown in the blue dashed box in Figure 3.2. The 
multiple LSTM setting benefits to provide diverse prediction results, which will be used 
further to improve the model epistemic uncertainty.  

3.2.3.3. Online phase 
As shown in the right frame in Figure 3.2, the HI trend prediction and the RUL 

estimation are completed in the online phase.  
(1) Predicting degradation trends 

Multi-step prediction is achieved by deploying well-trained LSTM 
iteratively for single-step prediction. Specifically, in order to break the 
historical numerical interval and mitigate the cumulative single-step 
prediction error, the NSD-LSTM model uses NS rather than the previous 
step prediction value as model input. Corresponding to multiple well-
trained LSTM models in the offline phase, a series of NSD-LSTM models 
(NSD-LSTM 1, ... , NSD-LSTM n) will be formed in the online phase. These 
NSD-LSTM models will give n different HI degradation prediction results. 
Assuming that the n predicted degradation trends follow the standard 
Gaussian distribution, which can be tested by hypothesis testing, the mean 
trend composed of the average of these predicted values is regarded as the 
final predicted HI degradation trend, and the CI is configured as a 95% 
probability interval using Equation (3.16).  

(2) RUL estimation 
The estimated end of life (𝐸𝑜𝐿� ) is considered to be the operating time 
when the mean trend first-time reaches the FT. The estimated remaining 
useful life (𝑅𝑈𝐿�) is calculated according to equation:  

𝑅𝑈𝐿� = 𝐸𝑜𝐿� − 𝑡0 (3.17) 

Additionally, the computing cost of the NSD-LSTM model will be discussed in Section 
3.4. 

3.3. Long-term FC aging tests and prognostics 
data sets 

3.3.1. FC aging experiments 
In view of the FC lifetime data scarcity limitations and the operating conditions 

influences. In this Chapter, two long-term FC aging experiments are conducted under 
constant and dynamic-load conditions, respectively.  



36 

3.3.1.1. Constant-load aging experiment 
The first FC aging experiment in constant-load operating condition is completed on a 

1kW Proton Motor 200 fuel cell. In this experiment, the Proton Motor 200 FC stack with 
96 cells is tested under the operating conditions shown in Table 3.1 [36].  

Operating mode Constant-load 
Air supply Air blower & filter 
Cooling system Deionized-water/glycol 
Fuel gas supply 99.99% dry H2@1.5 bar 
Number of cells 96 

Operating hours 10430 h 
Stack temperature 58 °C 
Current density 0.64 A/cm2 

Table 3.1 Constant-load aging experiment operating condition. 

3.3.1.2. Dynamic-load aging experiment 
In the dynamic-load aging experiment, the concerned FC stack is of an open cathode 

and a dead-end anode structure. Some operating conditions are shown in Table 3.2. One 
24 V DC-fan realizes the functions of air supply and temperature adjustment. The 
pressure of hydrogen as fuel is fixed at about 1.35 bar. In addition, FC is self-humidifying 
and a purge lasting for 0.5 seconds is activated every 30 seconds. In order to get closer 
to the dynamic operating conditions of FC in electric vehicle applications, a 
programmable electronic DC load is used to set the output current in the experiment 
[85].  

Operating mode Dynamic-load 
FC type Open cathode/Dead-end anode 
Active surface 33.63 cm2 
Number of cells 15 

Nominal output power 73.5 W 
Operating temperature corresponding to current 
Maximum temperature 75 °C 
Maximum current 13.45 A 
Lowest permitted stack voltage 7.5 V 
Pressure interval at hydrogen inlet 0.10 to 0.40 bar 
Table 3.2 Dynamic-load aging experiment operating condition. 

3.3.2. Datasets for prognostics 
The observed/virtual average cell voltages are specified as HI sequences to verify the 

reliability and generalization of the prognostics strategy. Through the data set 
preprocessing method mentioned in Section 3.2, the HI sequences are processed to be 
suitable for prognostics. Figure 3.3 shows the pre-processed datasets.  

(1) Constant-load dataset 
The constant-load dataset is the average cell voltage, which comes from 
the actual stack voltage measured in the Proton Motor 200 aging 
experiment. In the dataset, the highest voltage is 0.654 V and the lowest 
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voltage is 0.523 V. The average initial voltage is 0.650 V, and the failure 
threshold is set to 0.533 V. The actual EoL corresponding to this failure 
threshold is 8583.3 h. As shown in Figure 3.3 (a), there are three obvious 
voltage fluctuations, which are caused by the failures of auxiliary 
components such as the air blower or the cooling system. In the 
experiment to verify the prognostics strategy, a series of split points are 
selected. From point A (5261.1 h) to point B (7378.2 h), 21 split points are 
set at equal intervals. Among them, between points A and B, four points 
are selected for comparison experiment: point 1 (5580.5 h), point 2 
(6078.3 h), point 3 (6573.2 h), and point 4 (7151.6 h).  

 
(a) 

 
(b) 

Figure 3.3 Fuel cell aging experimental datasets: (a) average cell voltage in the 
constant-load, (b) virtual nominal average cell voltage in the dynamic-load.  

(2) Dynamic-load dataset 
The dynamic-load dataset is about a HI extracted using the same method 
proposed in the literature [85]. The HI can be considered as the nominal 
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average cell voltage of the concerned stack. In the dynamic-load dataset, 
the highest voltage is 0.683 V and the lowest voltage is 0.559 V. The 
average initial voltage is 0.676 V, and the failure threshold is set to 0.595 V. 
The actual EoL corresponding to this failure threshold is 1335 h. As shown 
in Figure 3.3 (b), there are three abnormal stops. Among them, the most 
obvious voltage fluctuation is near to stop 2 which is related to an 
unexpected system stop of hydrogen depletion. In the experiment to verify 
the prognostics strategy, a series of split points are selected. From point A 
(735 h) to point B (1087.5 h), 25 split points are set at equal intervals. 
Among them, between points A and B, four points are selected for 
comparison experiment: point 1 (808.5 h), point 2 (882 h), point 3 (955.5 
h), and point 4 (1029 h).  

3.4. Evaluation of prognostics strategy 

3.4.1. Evaluation criteria 
This Chapter sets two evaluation criteria: the Root-mean-square Error (RMSE) and 

the Relative Error (RE). The RMSE evaluates the single-step prediction performance, and 
the RE is used in the online phase to evaluate the accuracy of the estimated RUL from 
the prognostics strategy. The mathematical description of RMSE and RE are given by:  

𝑅𝑀𝑆𝐸 = �∑ �𝑢𝑗 − 𝑢�𝑗�
2𝑚

𝑗=1

𝑚
 (3.18) 

𝑅𝐸 =
|𝑥 − 𝑥�|
𝑥

× 100% (3.19) 

where, 𝑢𝑗  is the actual stack voltage observation value in the training set; 𝑢�𝑗  is the 
predicted voltage value by the well-trained LSTM and/or ARIMAX model in the offline 
phase; m is the sample number under evaluation. 𝑥 can be the actual remaining useful 
life (𝑅𝑈𝐿); 𝑥� corresponds to the predicted remaining useful life (𝑅𝑈𝐿�).  

3.4.2. Prognostics experiment and discussion 
The programs used in the FC prognostics experiment are developed in a Matlab 

R2019b environment. Even with the help of Adam, some hyperparameters configuration 
and tuning still rely on manual adjustment. The following are part of the 
hyperparameters configured and tuned in this Chapter: the number of hidden units is 
set to 200 to ensure prediction accuracy and regulate model complexity; the dynamic 
learning rate is set to 0.001 initially and becomes smaller by 80% after 100 epochs to 
avoid training loss oscillation, overfitting, or slow convergence; the maximum training 
epoch is set to 150 based on the data characteristics of the training sets; the gradient 
threshold is set to 1 for avoiding gradient explosion.  
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3.4.2.1. Single-step prediction performance comparison test 
between LSTM and ARIMAX 

In this Chapter, long-term/multi-step prediction is achieved by deploying single-step 
prediction iteratively. Therefore, it is essential to evaluate the credibility of the single-
step prediction. Specifically, this evaluation uses the test set as input to evaluate the 
well-trained LSTM model in the NSD-LSTM. Moreover, in order to more 
comprehensively evaluate the single-step prediction performance, a comparison test 
between the ARIMAX model and the well-trained LSTM model is utilized. The results of 
the tests performed at point A of the two different load datasets are shown in Figure 3.4, 
Figure 3.5 and Table 3.3. The results show that the ARIMAX model tends to be more 
trend-holding, while the LSTM is better at describing degradation behavior in detail. The 
LSTM predicted values match the test set well, and the RMSEs (as in Table 3.3) are 
slightly better than ARIMAX under different loads. However, it is undeniable that the 
error of LSTM gradually increases as the prediction continues, especially in the dataset 
with dynamic-load.  

 
(a) 

 
(b) 

Figure 3.4 Single-step prediction at split point A of constant-load dataset, (a) ARIMAX 
model; (b) LSTM model. 
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Dataset Model RMSE Error (range) Note 

Constant-load 
ARIMAX 0.004702 -0.0158 to 0.0135 Figure 3.4 (a) 

LSTM 0.002574 -0.0044 to 0.0105 Figure 3.4 (b) 

Dynamic-load 
ARIMAX 0.006095 -0.0129 to 0.0334 Figure 3.5 (a) 

LSTM 0.005577 -0.0072 to 0.0135 Figure 3.5 (b) 
Table 3.3 Comparison experiments of single-step prediction performance. 

 
(a) 

 
(b) 

Figure 3.5 Single-step prediction at split point A of dynamic-load dataset, (a) ARIMAX 
model; (b) LSTM model. 

In addition, the errors of LSTM are almost always positive when the errors become 
progressively larger, which confirms that the LSTM is limited by the historical data. Not 
to be neglected, the above single-step prediction results depend on future observations 
(test set). In case of observation scarcity, single-step predictions cannot provide long-
term RUL estimates due to the prediction length limitation. Meanwhile, prediction 
results that reflect positive errors tend to provide lifetime valuations larger than the 
actual RUL, which further leads to the risk of fatal failures before maintenance. In 
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summary, LSTM outperforms ARIMAX in single-step prediction, but still relies on multi-
step prediction to achieve long-term prognostics.  

Specifically, it should be noted that (1) Section 3.4.2.1 is devoted to discuss the single-
step prediction capability of well-trained LSTM models in NSD-LSTM. (2) In the actual 
deployment of NSD-LSTM, the single-step prediction performance is considered to be 
fully optimized through the training phase. (3) In practice, highly accurate single-step 
prediction is more meaningful in real-time controlling fuel cell applications.  

3.4.2.2. Evaluating the multi-step prediction performance 
Multi-step prediction provides a longer prediction range and is the prerequisite for 

estimating RUL. To properly evaluate the multi-step prediction capability of the NSD-
LSTM, 20 trend predictions are performed at each split point between points A and B. 
The mean trend is calculated as the multi-step prediction result and then compared with 
the ARIMAX and LSTM.  

 
(a) 

 
(b) 

Figure 3.6 At split point 3 of constant-load dataset, (a) 5 different exogenous 
sequences (XS); At split point 1 of dynamic-load dataset, (b) 5 different exogenous 

sequences (XS). 
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Firstly, as in Figure 3.6 (a) and (b), various XS are generated in the data preprocessing 
phase by setting five different smoothing levels. Subsequently, in the offline phase, NS is 
generated by using ARIMAX model. The generated NS can maintain the historical 
potential trends in the HI, which facilitates to guide the NSD-LSTM during long-term 
degradation prediction.  

 
(a) 

 
(b) 

 
(c) 
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Figure 3.7 At split point 3 of constant-load dataset, (a) 20 predicted degradation 
trends (the colorful lines); At split point 1 of dynamic-load dataset, (b) 20 predicted 

degradation trends (the colorful lines); At split point 3 of dynamic-load dataset, (c) 20 
predicted degradation trends (the colorful lines). 

Secondly, the HI degradation trends (as the colorful lines in Figure 3.7 (a), (b) and (c)) 
predicted by NSD-LSTM remain consistent across the different load data sets. Meanwhile, 
the predicted trends are slightly lower than the test set in most cases. This helps to avoid 
estimating larger RULs and is expected to provide further maintenance 
recommendations with redundancy.  

Thirdly, the prediction results of LSTM eventually converge to a horizontal line as the 
prediction time increases, as in Figure 3.8 (a), (b) and (c). This is reminiscent of the 
prevalent positive errors in the single-step predictions mentioned in Section 3.4.2.1 
(Figure 3.4 (b) and Figure 3.5 (b)). It is confirms that LSTM is difficult to break the 
historical numerical interval, as well as the lack of long-term prediction ability. Further, 
the prediction results of ARIMAX retain partially historical trend information, but are 
generally much lower than the test set. This can cause the estimated RUL to be too small, 
triggering maintenance prematurely and increasing the cost. In contrast, NSD-LSTM 
gives more appropriate predictions.  

 
(a) 

 
(b) 
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(c) 

Figure 3.8 At split point 3 of constant-load dataset, (a) multi-step prediction results 
comparison. At split point 1 of dynamic-load dataset, (b) multi-step prediction results 
comparison. At split point 3 of dynamic-load dataset, (c) multi-step prediction results 

comparison. 

Another interesting feature of the proposed NSD-LSTM model is that both short-term 
voltage fluctuations and long-term voltage evolution in the historical data can be 
captured and reflected in the prediction results. As in Figure 3.7 (c) and Figure 3.8 (c), 
the predicted degradation trends appear to be quite different from the previous ones. 
The predicted trends show a clear and rapid decline at the beginning of the prediction 
horizon, and then gradually restored a quasi-linear decline. Among them, the obvious 
rapid decline in the early stage of the prediction is due to the fact that the relatively 
abnormal voltage drop before the split point is captured by the NSD-LSTM model. The 
abnormal voltage drop may indicate that the fuel cell is undergoing changes in operating 
conditions or encountering the failure of auxiliary equipment. These factors will lead to 
the changes in the HI degradation trend in the future, so it is meaningful to consider 
such abnormal voltage drops in the long-term prognostics. Subsequently, the predicted 
trend returns to a state similar to a quasi-linear decline, and continues to maintain the 
global downward trend contained in the training set. Therefore, the prediction based on 
NSD-LSTM model not only considers the abnormal HI changes that may affect the trend 
evolution, but also adjusts the prediction results in a relatively short time to retain the 
global degradation trend shown in the training set. Such prediction property highlights 
the robustness of NSD-LSTM against the disturbances from system operations and 
recoverable faults.  

Furthermore, on a regular personal computer, the CPU is used for model training and 
prediction. As in Table 3.4, the computing costs of the three models are compared. In the 
training/fitting (offline) phase, the computing cost of NSD-LSTM is slightly higher than 
that of LSTM, and ARIMAX performs the best. In the offline phase, there is usually ample 
time for model training and hyperparameter tuning, so this is acceptable. More 
interestingly, the computing cost of the all models is almost as well during prediction. It 
indicates that NSD-LSTM has the ability to implement online prediction. Specifically, the 
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term “robustness” mentioned in this Chapter mainly refers to an ability of the proposed 
prognostics method to counteract abnormal fluctuations in health indicators and to keep 
the predicted results in line with the inherent degradation trend of the fuel cell.  

Dataset 
Split 
point 

Training/fitting time (s) Predicting time (s) 

ARIMAX LSTM NSD-
LSTM ARIMAX LSTM NSD-

LSTM 
Constant-

load 
3 3.85 57.27 64.45 1.53 1.37 1.44 

Dynamic-
load 

1 3.75 36.70 43.56 1.71 1.57 1.59 
3 3.76 43.83 50.47 1.75 1.33 1.26 

Table 3.4 Comparison of computing costs. 

3.4.2.3. Evaluating RUL estimation 
Thanks to the HI degradation trends predicted by the NSD-LSTM model, RUL can be 

estimated before the fuel cell failure. In order to evaluate the estimated RUL, multiple 
tests are performed between the split points A and B for both datasets.  

Figure 3.9 (a) and (b) show the results of 21 RUL estimations and REs for the 
constant-load dataset. In this case, Figure 3.9 (a) has a dual y-axis. Among them, the left 
green y-axis represents the health indicator with unit V, corresponding to the green 
curve of the dataset. The right red y-axis represents RUL with unit h, corresponding to 
the red curve of the estimated RULs and the blue curve of the real RULs. The estimated 
RULs from the split point A to point B as a whole exhibit a phenomenon that fluctuates 
around the real RULs. It can be observed that the predicted fluctuations of RULs are 
consistent with those of the dataset. Specifically, the predicted RULs from split point A to 
split point 1 gradually approach the real RULs. This is because the training set near the 
split point shows an increasingly steep downward trend, which makes the predicted 
RULs tend from overestimation to the real RULs. The estimated RUL drops significantly 
after split point 1. This is because NSD-LSTM takes into account the abnormal drop in HI 
near the split point. Then the estimated RUL near split point 2 tends to maintain the 
same trend of the dataset. It is worth mentioning that there are several short-term HI 
drops between points 2 and 3 whose effects are not obviously reflected in the RUL 
estimation. The prognostics model tends to maintain the prediction consistency during 
this period. As there is a significant HI drop in the short period before point 3, the 
estimated RUL also drops significantly. Between split point 3 and split point 4, there are 
obvious fluctuations in the dataset, and the estimated RULs also exhibit similar 
fluctuations. Between split point 4 and split point B, the estimated RULs are very close to 
the real RULs. In Figure 3.9 (b), the REs of the estimated RULs are shown. The maximum 
RE is 77.73%, the minimum is 0.01%, and the average is 32.28%. In 21 tests, 17 REs are 
less than 50%, and this is considered to be acceptable for long-term prognostics. It 
should be noted that from split point A to split point B, the real RUL ranges from 3322.2 
h to 1205.1 h, which means that NSD-LSTM need to perform RUL estimation for 
thousands of hours when the test set is unknown. In summary, for the constant-load 
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dataset, the estimated RULs fluctuate near the real RULs, and the fluctuation of the 
estimated RULs is consistent with the evolution trend of the dataset.  

 
(a) 

 
(b) 

Figure 3.9 RUL estimation results from split point A to B for the constant-load dataset, 
(a) 21 estimated RULs versus real RULs and dataset; (b) 21 relative errors.  

Figure 3.10 (a) and (b) shows the 25 RUL estimation results and the REs for the 
dynamic-load dataset. The axis significance is the same as in Figure 3.9 (a) and (b). 
Between split point A and split point 2, the estimated RULs are generally higher than the 
real RULs; and between split point 2 and split point B, the estimated RULs fluctuate near 
the real RULs. The estimated RULs are generally consistent with the dataset in terms of 
fluctuation trends. For instance, the estimated RULs rise slightly after point A, which is 
due to the HI increase related to the recovery from an abnormal stop of the fuel cell 
before point A (“stop 3” in Figure 3.3 (b)). Following that as far as split point 1, the 
dataset exhibits a significant HI drop and a recovery behavior. The estimated RULs also 
show a lagged similar evolution trend. It is worth noting that there are several “sags” in 
the dataset, such as the part between split point A and split point 3. These “sags” can be 
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understood as some recoverable faults or abnormal operating conditions [85]. From the 
results, the NSD-LSTM model can comprehensively consider the long-term and short-
term degradation behaviors. In Figure 3.10 (b), the REs of the 25 estimated RULs are 
shown. The maximum value of REs is 72%, the minimum value is 0.9%, and the average 
value is 26.3%. In 25 tests, 22 REs are lower than 40%, which is considered to be 
acceptable for the prognostics under dynamic operating conditions. It should be noted 
that the real RUL range from split point A to split point B is 600 h to 247.5 h, which 
means that when the test set is unknown, the NSD-LSTM model needs to perform 
hundreds of hours of long-term RUL estimation. In summary, for the dynamic-load 
dataset, the estimated RULs can track the changes in the degradation behavior, and 
provide consistent and robust RUL estimates in the long-term prognostics.  

 
(a) 

 
(b) 

Figure 3.10 RUL estimation results from split point A to B for the dynamic-load dataset, 
(a) 25 estimated RULs versus real RULs and dataset; (b) 25 relative errors. 
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3.4.2.4. Comparison experiments 
In order to further evaluate the consistency and robustness of the proposed 

prognostics strategy, comparison experiments are designed at split points 1, 2, 3 and 4 
of the dynamic-load dataset. It should be pointed out that in these comparison 
experiments, the NARX model uses the same NS of the NSD-LSTM model as the 
exogenous variable. This will help reveal the guiding role of NS and highlight the LSTM 
performance. In addition, the ESN model in the comparison experiments is from [85].  

As in Figure 3.11, the degradation trends predicted by the ESN at each of the four split 
points are different. Especially at split points 3 and 4, the trends predicted by ESN are 
close to the horizontal line. Compared with the ESN model, the trends predicted by the 
NARX model have better consistency at the four split points. However, as the prediction 
time increases, the trends predicted by NARX model gradually become flat.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3.11 Comparison experiment of degradation trend predictions in the dynamic-
load dataset, among them, (a), (b), (c) and (d) represent the results of split points 1, 2, 3, 

and 4, respectively.  

This phenomenon is more pronounced at split points 3 and 4. Compared with the 
previous two models, the prediction results of the NSD-LSTM model show the best 
consistency and are closest to the test set. Especially at split points 3 and 4, the 
predicted trends of NARX and NSD-LSTM seems to be similar in the early stage of 
prediction, and both show a rapid decline thanks to the guidance of the NS. Then, the 
well-trained LSTM in NSD-LSTM provides more “long-term memory” information about 
the degradation trend for the prediction process, which enables NSD-LSTM to maintain 
stable and consistent trend prediction performance.  

In the comparison experiment on the constant-load dataset, as shown in Table 3.5 
and Figure 3.12 (a) and (b), the consistency of the NARX model is the worst, the 
consistency of the NSD-LSTM model is better. It is of interest that the ESN model 
performs slightly better than the NSD-LSTM model in terms of consistency, but 
unfortunately, the prediction accuracy of the ESN model does not decrease as expected 
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as the operating time increases. Specifically, at split point 1, the RE performances of the 
NARX and NSD-LSTM model are similar, while ESN model performs better. At split point 
2, the prediction performance of all three models decreases, with the NARX model being 
the worst. At split point 3 and split point 4, both the NARX model and the NSD-LSTM 
model show a trend of gradually improving prediction accuracy, with the NSD-LSTM 
being more significant. Comparatively, the ESN model performs poorly.  

Split 
point 

Operating 
time (h) 

RUL (h) RE (%) 

Actual NARX ESN 
NSD-
LSTM 

NARX ESN 
NSD-
LSTM 

1 5580.5 3002.8 2369.8 2778.8 3549.9 21.08 7.46 18.22 
2 6078.3 2505.0 4645.9 2024.5 3699.8 85.47 19.18 47.70 
3 6573.2 2010.1 3271.9 1462.3 1786.2 62.77 27.25 11.14 
4 7151.6 1431.7 1252.6 1052.6 1431.9 12.51 26.48 0.01 

Table 3.5 Comparison experiments in the constant-load. 

 
(a) 

 
(b) 

Figure 3.12 Comparison experiment of RUL estimations in the constant-load dataset, 
(a) estimated RULs; (b) relative errors. 
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In the comparison experiment on the dynamic-load dataset, as shown in Table 3.6 
and Figure 3.13 (a) and (b), the consistency of the ESN model is the worst, the 
consistency of the NARX model is slightly better, and the consistency of the NSD-LSTM 
model is the best. Specifically, at split point 1, the performances of the three models are 
similar. At split point 2, the RUL estimated by the ESN model has increased significantly, 
and the RE has exceeded 130%. What is more serious is that at split point 3 and split 
point 4, the REs of the ESN model have exceeded 590% and 410%, respectively. In 
contrast, the RULs estimated by the NARX and NSD-LSTM models fluctuate close to the 
real RULs. The NARX model performs worse than the NSD-LSTM model at all four split 
points. Especially at split point 2, the RE of NARX exceeds 200%. In summary, compared 
with the other two models, the NSD-LSTM model is capable of reproducing the short-
term and long-term degradation behaviors and provides a more consistent prediction of 
the degradation trends. The RULs estimated by the NSD-LSTM model are more reliable, 
with enhanced robustness. 

 
(a) 

 
(b) 

Figure 3.13 Comparison experiment of RUL estimations in the dynamic-load dataset, 
(a) estimated RULs; (b) relative errors.  
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Split 
Point 

Operating 
time (h) 

RUL (h) RE (%) 

Actual NARX ESN 
NSD-
LSTM 

NARX ESN 
NSD-
LSTM 

1 808.5 526.5 798.0 361.5 649.5 51.57 31.34 23.36 
2 882.0 453.0 1381.5 1042.5 777.0 204.97 130.13 71.52 
3 955.5 379.5 202.5 2637.0 246.0 46.64 594.86 35.18 
4 1029.0 306.0 457.5 1561.5 348.0 49.51 410.29 13.73 

Table 3.6 Comparison experiments in the dynamic-load. 

3.5. Discussion 
In this Chapter, the fuel cell prognostics are discussed and the proposed NSD-LSTM 

model shows a satisfactory prediction performance. Especially, it outperforms other 
state-of-the-art prognostics methods in some cases, which can be considered to arise 
from the following factors.  

(1) In comparison experiments, the ESN model effectively identifies a part of the 
degradation trend, especially 100-200 hours before the prediction starting 
point. However, due to the effect of system disturbances/recoverable faults, a 
short-term trend may differ significantly from the inherent degradation trend. 
This results in poor prediction performance, especially in the dynamic load 
dataset.  

(2) In the comparison experiments, the NARX model predicts similar degradation 
trends as the NSD-LSTM model. This is due to the fact that both use the same 
NS, which also illustrates the availability and consistency of NS in guiding 
predictions.  

(3) The prediction accuracy of the NARX model is slightly lower, which is due to 
the influence of the historical data interval on its prediction range. Especially, 
the phenomenon is more significant in Figure 3.11 (d). Along with the 
prediction time (step), the degradation trend predicted by NARX gradually 
converges to the horizontal line, which leads to the predicted RUL abnormally 
higher. In contrast, the NSD-LSTM can “remember” and “inherit” the historical 
degradation trend to break the numerical interval limitation.  

In summary, the navigation sequence generated by the ARIMAX model is fed into the 
well-trained LSTM to reinforce the performance of long-term degradation trend 
prediction and RUL estimation. From the comparison experiment results, the main 
contributions are summarized as follows.  

(1) Compared with the existing LSTM-based prognostics models, the NSD-LSTM 
model achieves credible degradation prediction with longer prediction 
horizons. Based on the long-term prediction, RUL estimation is further realized.  

(2) Thanks to the guidance and improvement of navigation sequence, the NSD-
LSTM gains the ability to break the numerical interval of historical-based 
training set, and the predicted long-term degradation trends are consistent.  
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(3) Both the long-term and the short-term degradation behaviors are considered 

comprehensively in the fuel cell prognostics. Due to this property, better 

degradation prediction and RUL estimation results are obtained compared to 

several state-of-the-art methods.  

Furthermore, it is worth noting that average cell voltage is to some extent not the 

optimal health indicator. Especially for the case of variable load conditions, it is 

necessary to extract reliable health indicators, e.g., physically interpretable, monotonic, 

with significant trends. Meanwhile, the accuracy and horizon of the prognostics deserve 

to be enhanced.  
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4. Hybrid prognostics based on degradation 
behavior model and symbolic-LSTM 

4.1. Introduction 
PHM has the ability to improve FC durability and is considered as one of the superior 

solutions [27]. In PHM, the accuracy of prognostics plays a deterministic role in the 
timing of maintenance/control deployment and affects the effectiveness of health 
management. Prognostics provides the basis for the “Predict”–”Maintain” strategy 
considered as an alternative of the “Failure”-”Replace” strategy [31]. The former is 
considered to be better not only to improve the durability but also to reduce the 
maintenance cost [19]. Accordingly, for FC ageing prognostics, the core task involves 
refining the HI, predicting the SoH and/or the RUL [10]. For FC operating in constant 
conditions, some measurements (such as stack voltage [33, 35]) can be directly assigned 
as HI. On the other hand, dynamic operating conditions not only affect the transient 
response of PEMFC performance [24], but also make it difficult to evaluate directly the 
degradation from measurements. As a result, a suitable HI needs to be extracted for 
long-term ageing prognostics under dynamic conditions. Whereas, facing the complex 
operating conditions in transportation applications, it is still challenging to effectively 
decouple the system dynamics from the ageing effects and obtain physically 
interpretable HI.  

In the phase of SoH/RUL prediction, the performance of model-free or data-driven 
based methods is encouraging. This is due to the fact that such methods adeptly learn 
and predict the trend characteristics of HI [31]. In particular, methods in LSTM 
framework have demonstrated their strong performance in short-term SoH prediction. 
However, LSTM performance becomes unsatisfactory with increased prediction horizon 
length which is observed and indicated in previous Chapter. Interestingly, the cause of 
this issue may stem from the powerful “memory” ability of the LSTM, which incorrectly 
records irrelevant features in the training set. In general, the LSTM based prognostics 
model still need to be improved in HI long-term prediction.  

Another key challenge for developing credible FC prognostics tools, especially for 
PEMFC applied in transportation, is the scarcity of long-term ageing data. A recent 
review [92] comprehensively reports state-of-the-art durability experimental methods 
for vehicle-oriented PEMFC. The use of the Accelerated Stress Test (AST) not only 
enables the assessment of FC lifetime, but also effectively reduces the experimental cost 
and time.  

To tackle the above issues, this Chapter proposes a hybrid prognostics strategy for 
PEMFC in transportation applications, consisting of model-based HI extraction and 
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model-free RUL prediction. Specifically, a time-varying degradation model based on the 
FC electrochemical mechanism is developed to track the load dynamics. The model 
parameters are identified in variable width intervals, specifying the equivalent 
resistance and the reconstructed virtual-constant power as HIs, respectively. In the 
phase of RUL prediction, a reduced-dimensional symbolic representation based LSTM 
model is used to predict the possible trends of HI. Subsequently, a series of predicted 
trends form a probability density distribution and RUL is calculated. Finally, the 
proposed method is validated using a vehicle application-oriented long-term AST 
dataset.  

The remainder of this Chapter is as follows: Section 4.2 presents the proposed 
degradation mechanism model. In Section 4.3, the RUL prediction model and the hybrid 
prognostics strategy are talked about. The experiments used to validate the method are 
described in Section 4.4. Section 4.5 summarizes the prognostics results. The Chapter is 
finally concluded in Section 4.6.  

4.2. Model-based dynamics health indicator 
extraction 

4.2.1. Degradation mechanism model 
Utilizing electrochemical mechanisms such as the models based on polarization 

curves has been recognized as effective to explain FC voltage losses [117]. The 
polarization curve model contains the voltage losses due to activation (𝑉𝑎𝑐𝑡), ohmic (𝑉𝑟), 
and concentration (𝑉𝑐𝑜𝑛𝑐), and is generally expressed as  

𝐸𝑐𝑒𝑙𝑙 = 𝐸𝑟𝑒𝑣 − 𝑣 = 𝐸𝑟𝑒𝑣 − 𝑉𝑎𝑐𝑡 − 𝑉𝑟 − 𝑉𝑐𝑜𝑛𝑐 (4.1) 

where 𝐸𝑐𝑒𝑙𝑙 is the cell voltage, 𝐸𝑟𝑒𝑣 is the reversible open-circuit voltage, 𝑣 is the 
global overpotential. A typical polarization curve model is for single cell modelling and 
generalizes to an n-cell stack level (𝐸𝑠𝑡𝑎𝑐𝑘 = 𝑛 ⋅ 𝐸𝑐𝑒𝑙𝑙) ignoring inter-cell differences. 
However, this model is generally suitable for portraying a PEMFC voltage response to 
static operating conditions and is unable to track transient voltage evolutions in 
dynamic conditions.  

A typical electrochemical reaction interface is depicted in Figure 4.1. The 
electrochemical characteristics of the reaction interface are represented by using a 
resistor (𝑅𝑑𝑦𝑛) and a capacitor (𝐶𝑑𝑙) in parallel, as in Figure 4.1 (a). Here, 𝑅𝑑𝑦𝑛 is called 
the dynamic resistor to quantify the electrochemical reaction dynamic characteristics. 
Generally, these dynamics include not only the charge transport caused by 
electrochemical reaction kinetics, but also the mass transport due to reactant/product 
concentration differences. Further 𝑅𝑑𝑦𝑛 can be decomposed into two resistors 𝑅𝑎𝑐𝑡 and 
𝑅𝑐𝑜𝑛𝑐. In this case, 𝑅𝑎𝑐𝑡 (a. k. a., Faradaic resistor) models the charge transport, which 
corresponds to the linear part of the activation overpotential. Similarly, 𝑅𝑐𝑜𝑛𝑐 is used to 
simplify the Warburg element to simulate the mass transport, which corresponds to the 
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linear part of the concentration overpotential. 𝑅𝑟 is the resistor corresponding to ohmic 
losses.  

 
(a) (b) 

Figure 4.1 PEMFC electrochemical mechanism schematic: (a) equivalent circuit 
model; (b) physical representation of an electrochemical reaction interface. 

Based on this, the three voltage losses can be refined by using the following equations,  
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 (4.2) 

where, 𝑗 is the stack current density, 𝑗𝑙𝑜𝑠𝑠 is the crossover current density, 𝑗𝑒𝑥𝑐ℎ is the 
exchange current density; 𝑗𝑚𝑎𝑥 is limiting current density. R is Molar gas constant 
(8.3145 J/mol/K), F is Faraday constant (96485 C/mol). 𝛼𝑎+𝑐 is the transfer coefficient, 
𝛽𝑎+𝑐 is a parameter related to the number of electrons transferred in the overall 
reaction. Both 𝛼𝑎+𝑐 and 𝛽𝑎+𝑐 combine the effects of the anode and the cathode. 𝑇 is the 
operating temperature (thermodynamic temperature) of the cell. Further, 𝑅𝑟 and 𝑅𝑑𝑦𝑛 
are combined as the equivalent resistance (𝑅𝑒𝑞𝑢), which represents the overall 
resistance of the cell, as  

𝑅𝑟 + 𝑅𝑎𝑐𝑡 + 𝑅𝑐𝑜𝑛𝑐 = 𝑅𝑟 + 𝑅𝑑𝑦𝑛 = 𝑅𝑒𝑞𝑢 (4.3) 

In addition, 𝐶𝑑𝑙  is called the double-layer capacitor, which corresponds to the 
capacitance characteristics of the reaction interface. As in Figure 4.1 (b), in the 
electrochemical reaction, significant charge separation occurs at the reaction interface, 
with electrons and ions accumulating respectively on the electrode and electrolyte sides. 
The reaction interface behaves like a capacitor due to the charge separation 
phenomenon. As shown in the figure, the electrode/electrolyte interface is not smooth, 
which makes 𝐶𝑑𝑙  evident and not ignorable [112].  

In general, the output voltage/power shows decreases along with the PEMFC 
degradation. In the case of the equivalent circuit modelling, as in Figure 4.1(a), the 
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decrease in 𝐸𝑐𝑒𝑙𝑙 can be attributed to the effect of time-varying parameters such as 𝑅𝑟 , 
𝑅𝑑𝑦𝑛, 𝐶𝑑𝑙  and 𝐸𝑟𝑒𝑣. These parameters can be candidates for health indicators in Section 
4.2.2. There are diverse methods to achieve degradation model parameter identification, 
such as polarization curve-fitting. The direct use of classical polarization curve-fitting is 
reliable at constant load conditions. This Chapter aims to identify the dynamic behaviour 
of the fuel cell, especially at load switching moments. Thus, to identify the time-varying 
dynamics of the equivalent circuit in Figure 4.1(a), the following equation is utilized.  

𝑣(𝑡) + 𝑅𝑑𝑦𝑛𝐶𝑑𝑙
𝑑𝑣(𝑡)
𝑑𝑡

= �𝑅𝑟 + 𝑅𝑑𝑦𝑛�𝑗(𝑡) + 𝑅𝑟𝑅𝑑𝑦𝑛𝐶𝑑𝑙
𝑑𝑗(𝑡)
𝑑𝑡

 (4.4) 

Further, the one-sided Laplace transform of the left and right sides of equation (4.4) 
can be done to obtain the system transfer function, as  

𝐻(𝑠) =
𝑉(𝑠)
𝐽(𝑠) =

𝑅𝑟𝑠 + �𝑅𝑟 + 𝑅𝑑𝑦𝑛� �𝑅𝑑𝑦𝑛𝐶𝑑𝑙��
𝑠 + 1 �𝑅𝑑𝑦𝑛𝐶𝑑𝑙�⁄

=
𝑞1𝑠 + 𝑞2
𝑠 + 𝑝1

 (4.5) 

where 𝐻(𝑠) is considered as a single-input, single-output system. 𝑝1 represents the 
Laplace variable of the denominator polynomial, and 𝑞1 and 𝑞2 represent the Laplace 
variables of the numerator polynomial. By feeding the data of both temporal input 𝑗(𝑡) 
and output 𝑣(𝑡), the model parameters 𝑝1, 𝑞1 and 𝑞2 can be identified. The model 
parameters 𝑅𝑟 , 𝑅𝑑𝑦𝑛, 𝐶𝑑𝑙  and 𝐸𝑟𝑒𝑣 can further be deduced. The parameter identification 
process is summarized as follows.  

In general, the refined choice of filter 𝐿(𝑠) is used to cope with the disturbances 
embedded in the system when estimating the system variables [118].  

𝐿(𝑠) =
1

𝐴(𝑠) (4.6) 

In fact, 𝐴(𝑠) is the denominator of 𝐻(𝑠), for which the unknown part is replaced by 
the estimated value. Based on this, the following equation is obtained after filtering 
equation (4.4).  

𝐿(𝑠)𝑣′(𝑡) = −𝑝1𝐿(𝑠)𝑣(𝑡) + 𝑞1𝐿(𝑠)𝑗′(𝑡) + 𝑞2𝐿(𝑠)𝑗(𝑡) + 𝐿(𝑠)𝑒(𝑡) 
= 𝜑𝑇(𝑡)𝜃 + 𝐿(𝑠)𝑒(𝑡) 

(4.7) 

where 𝑣′(𝑡) and 𝑗′(𝑡) correspond to the first order derivatives of the variables, 𝑒(𝑡) is 
the disturbance of the system, and 𝜑(𝑡) and 𝜃 are as follows,  

�𝜑
(𝑡) = [−𝐿(𝑠)𝑣(𝑡)  ,   𝐿(𝑠)𝑗′(𝑡)  ,    𝐿(𝑠)𝑗(𝑡)]𝑇

𝜃 = [𝑝1  ,   𝑞1  ,    𝑞2]𝑇  (4.8) 

Considering that typically 𝑒(𝑡) is not necessarily white noise, the Instrumental 
Variable (IV) method is chosen in order to reduce the estimation bias. The predicted 
output 𝑣�(𝑡) will constitute the instrument vector 𝜁(𝑡),  

𝜁𝑇(𝑡) = [−𝐿(𝑠)𝑣�(𝑡)  ,   𝐿(𝑠)𝑗′(𝑡)  ,    𝐿(𝑠)𝑗(𝑡)] (4.9) 
The parameters are subsequently estimated using the following equation,  

𝜃� = �� 𝜁𝑇(𝑡𝑖)𝜑(𝑡𝑖)
𝑁

𝑖=1
�
−1

� 𝜁𝑇(𝑡𝑖)[𝐿(𝑠)𝑣′(𝑡𝑖)]
𝑁

𝑖=1
 (4.10) 

where 𝜃� represents the estimated parameters [118].  
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4.2.2. Health indicator extraction based on variable 
width division 

The electrochemical mechanism-based degradation model described above has the 
ability to characterize the short-term dynamics. Concerning the long-term ageing, the 
electrochemical characteristics of FC change over time and some ageing-related 
parameters can be used to reflect the FC long-term evolution. A HI extraction method 
based on variable width division is therefore proposed in this Chapter, as in Figure 4.2. 
Specifically, the samples of current density, cell temperature and cell voltage within a 
time slot are set as inputs, while the degradation model parameters are set as model 
identification outputs among which health indicators are further selected. It is worth 
mentioning that cell temperature has a relationship with the thermal characteristics, 
and affects the power output performance/degradation behaviour of the stack/system 
[119]. Considering the generalization of the method, several of the measurements are 
difficult to obtain in some cases (e.g., dead-ended mode). Moreover, at this moment, air 
pressure and stoichiometry are highly coupled to temperature [120]. Therefore, the use 
of cell temperature as an input variable is beneficial to profile the factors affecting 
durability that are not covered by the electrochemical mechanistic model.  

In general, all parameters in Equations (4.1) to (4.3) are time-varying except for the 
Molar gas constant (R) and Faraday constant (F). Identifying all time-varying 
parameters is beneficial to model fuel cells comprehensively, but leads to higher 
computational costs and difficulty in practical deployment. One potential solution is to 
simplify appropriately the model by making some of the variable parameters constant 
and considering the ageing effects using the remaining variable parameters.  

 
Figure 4.2 Schematic of variable width division-based health indicator extraction. 

As the FC ageing is relatively slow, the ageing-related parameters can be considered 
constant in short-term time slots (hourly level). The time slot width should be set in the 
way that the data within the time slot contain sufficient system dynamics for model 
identification. As shown on the right side of Figure 4.2, the variable parameters, i.e., 𝐸𝑟𝑒𝑣, 
𝐶𝑑𝑙 , 𝑅𝑟 , and 𝑅𝑒𝑞𝑢 are identified in each time slot via the model identification procedure 
presented in Equations (4.6) to (4.10). It is worth mentioning that in some studies (e.g., 
[27]), the constant parameters considered in this Chapter are also used to indicate 
degradation. Nevertheless, most of them are difficult to model precisely or can be 
considered combined in variable parameters to simplify the model properly. For 
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instance, the impact of degradation on 𝑗𝑙𝑜𝑠𝑠 can be reflected and quantified using 𝐸𝑟𝑒𝑣. 
Thus, 𝑗𝑙𝑜𝑠𝑠 is considered as a constant while 𝐸𝑟𝑒𝑣 is set as a variable parameter.  

Once identified, the parameters that demonstrate evident time-varying 
characteristics can be considered as the candidates for HI. By further analyzing the 
trendiness/smoothness of the candidates, the HI suitable for prognostics is selected. In 
addition, it is possible to consider bringing all the identified parameters into Equations 
(4.1)-(4.3) and replacing the original dynamic operating current density with a virtual 
constant current. Accordingly, the virtual steady-state voltage and power can be 
calculated. It is thus possible to analyze the output power drop as HI at different loads, 
especially at nominal power/full load.  

4.3. Model-free remaining useful life 
prediction 

4.3.1. Symbolic-based fuel cell health indicator 
conversion 

The fuel cell health indicator conversion method used in this Chapter, called adaptive 
Brownian bridge-based aggregation, allows the representation and reconstruction of a 
health indicator. ABBA uses increments in time and value coordinates to capture data 
trends in health indicator without preprocessing [121]. The implementation of the 
representation consists of two stages: compression and digitization. 

The core of compression is to divide the 𝑛-dimensional health indicator 𝑋 =
(𝑥1, 𝑥2,⋯ , 𝑥𝑛) ∈ ℝ𝑛 into 𝑚 segments 𝑄 = (𝑄1,𝑄2,⋯ ,𝑄𝑚) ∈ ℝ𝑚 . Then the compression 
is achieved by approximating 𝑋 with straight polygonal chain. To do this, ABBA selects 
𝑚 + 1  breakpoints �𝑥�𝑖1 = 𝑥1 < 𝑥�𝑖2 < ⋯ < 𝑥�𝑖𝑚+1 = 𝑥𝑛�  in 𝑋 . The 𝑖ℎ  is the time index 
corresponding to the ℎ-th (ℎ = 1,2,⋯ ,𝑚 + 1) breakpoint. So the 𝑗-th (𝑗 = 1,2,⋯ ,𝑚) 
segment can be written as 𝑄𝑗 = �𝑥�𝑖𝑗 , 𝑥�𝑖𝑗+1,⋯ , 𝑥�𝑖𝑗+1�. In this segment, time direction 
increment and numerical direction increment are 𝑙𝑒𝑛𝑗 = 𝑖𝑗+1 − 𝑖𝑗 and 𝑖𝑛𝑐𝑗 = 𝑥�𝑖𝑗+1 − 𝑥�𝑖𝑗  
respectively. Further, the squared Euclidean distance of the values in 𝑄𝑗 from the 
polygonal chain is bounded by �𝑙𝑒𝑛𝑗 − 1� ∙ 𝑡𝑜𝑙2, as  

�

⎝

⎛𝑥�𝑖𝑗 + 𝑖𝑛𝑐𝑗 ∙
𝑖 − 𝑖𝑗
𝑙𝑒𝑛𝑗�����������

linear approximation

− 𝑥𝑖⏟
actual
value⎠

⎞

2
𝑖𝑗+1

𝑖=𝑖𝑗

≤ �𝑙𝑒𝑛𝑗 − 1� ∙ 𝑡𝑜𝑙2 (4.11) 

From the inequation, the compression rate which is represented by 𝑙𝑒𝑛𝑗  can be 
regulated by setting the tolerance parameter 𝑡𝑜𝑙. Usually, this value ranges from 0.05 to 
0.5 and a large tol indicates a coarser compression process [121].  

Subsequently, the appropriate time and value increments form a tuple 𝐷𝑗 =
�𝑙𝑒𝑛𝑗 , 𝑖𝑛𝑐𝑗�. Thus, the time series 𝑋 is represented by 2 × 𝑚-dimensional tuples-set 𝐷 as  
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𝑋 = (𝑥1,𝑥2,⋯ , 𝑥𝑛) ⇒ 𝐷 = [(𝑙𝑒𝑛1, 𝑖𝑛𝑐1), (𝑙𝑒𝑛2, 𝑖𝑛𝑐2),⋯ , (𝑙𝑒𝑛𝑚, 𝑖𝑛𝑐𝑚)] (4.12) 
Before implementing digitization, each tuple needs to be standardized and scaled. 

Specifically, the scaling factors 𝜔𝑙𝑒𝑛 and 𝜔𝑖𝑛𝑐 are introduced, which represent the length 
and incremental weights, respectively. Both can take values between 0 and 1 and satisfy 
𝜔𝑙𝑒𝑛 + 𝜔𝑖𝑛𝑐 = 1. The scaled set of tuples 𝐷 can be calculated by  

𝐷 =

⎣
⎢
⎢
⎢
⎡�𝜔𝑙𝑒𝑛 ∙

𝑙𝑒𝑛1
𝜎𝑙𝑒𝑛

,𝜔𝑖𝑛𝑐 ∙
𝑖𝑛𝑐1
𝜎𝑖𝑛𝑐

� , �𝜔𝑙𝑒𝑛 ∙
𝑙𝑒𝑛2
𝜎𝑙𝑒𝑛

,𝜔𝑖𝑛𝑐 ∙
𝑖𝑛𝑐2
𝜎𝑖𝑛𝑐

� ,

⋯ , �𝜔𝑙𝑒𝑛 ∙
𝑙𝑒𝑛𝑚
𝜎𝑙𝑒𝑛

,𝜔𝑖𝑛𝑐 ∙
𝑖𝑛𝑐𝑚
𝜎𝑖𝑛𝑐

�
⎦
⎥
⎥
⎥
⎤
 (4.13) 

where 𝜎𝑙𝑒𝑛 and 𝜎𝑖𝑛𝑐 are the standard deviation of the segment lengths and the segment 
increments, respectively.  

The first step of digitization is to further assign 𝐷 to 𝑘 clusters 𝑆 = (𝑆1, 𝑆2,⋯ , 𝑆𝑘) by 
minimizing the Within-cluster Sum of Squares (WCSS)  

𝑊𝐶𝑆𝑆 = arg min
𝐷𝑙∈𝑆

� � �𝐷𝑙 − 𝜇𝑙�
2

𝐷𝑙∈𝑆𝑙

𝑘

𝑙=1

 (4.14) 

where, the “arg min𝑥∈𝑆 𝑓(𝑥)” represent arguments 𝑥 for which 𝑓(𝑥) attains its smallest 
value. The ‖∙‖2  denotes the Euclidean norm, and 𝜇𝑙  is the center of the 𝑙-th (𝑙 =
1,2,⋯ ,𝑘) cluster 𝑆𝑙. Further, as in Equation (4.15), 𝑘 letter symbols can be used to 
represent each cluster separately. In practical deployments, the value of 𝑘 can be 
specified manually, as will be discussed in detail in the subsequent numerical example.  

𝐷 ⇒ 𝑆 = (𝑆1, 𝑆2,⋯ , 𝑆𝑘) ⇒ 𝐿 = (𝑎, 𝑏, 𝑐,⋯ , 𝑘)���������
𝑘 symbols

 (4.15) 

The second step of the digitization is to use the letters in 𝐿 to replace the tuples in the 
corresponding clusters in 𝐷 so that a string 𝐴 can be obtained:  

𝐷 ⇒ 𝐴 = (𝑠𝑦1, 𝑠𝑦2,⋯ , 𝑠𝑦𝑚) (4.16) 
where 𝑠𝑦𝑗 ∈ 𝐿. So far ABBA converts an 𝑛-dimensional health indicator into an 𝑚-letter 
one. The digitalized data maintains meaningful information in the original health 
indicator and is more lightweight, which is beneficial for the rapid deployment of a 
neural network in the following step. On the other hand, in contrast to the 
representation, the reconstruction means that ABBA converts symbolic string back to a 
health indicator. Reconstruction can be considered as the inverse process of 
representation and applies a similar mathematical approach [121].  

A numerical example is shown in Figure 4.3, using ABBA to represent the fuel cell 
health indicator. 𝑡𝑜𝑙 = 0.1 is set in the compression phase and ABBA divides the health 
indicator into 21 segments. Subsequently, 𝜔𝑙𝑒𝑛 = 𝜔𝑖𝑛𝑐 = 0.5, i.e., the segment lengths 
and segment increments are weighted equally. Two clusters (𝑘 = 2) are used in Figure 
4.3 (a), and the obtained symbols are represented as "abbbbbbbbbbbbbbabbbbb". Then, 
three clusters (𝑘 = 3) are used in Figure 4.3 (b), and the obtained symbols are 
represented as "cdedededdedededcdeded". Figure 4.3 (c) shows the process of ABBA 
implementation when 𝑘 = 3. It is seen that more detailed features can be depicted with 
a bigger 𝑘 value.  
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(a) 

 
(b) (c) 

Figure 4.3 Symbolic representation of the time series, (a) setting to k=2 (2 symbols), 
the time series representation is "abbbbbbbbbbbbbbabbbbb"; (b) setting to k=3 (3 

symbols), the time series representation is "cdedededdedededcdeded"; (c) the 
implementation of ABBA at k=3. 

4.3.2. ABBA-LSTM 
The Raw-LSTM (a. k. a., Vanilla-LSTM) encounters performance decreasing in long-

term prediction, especially when there is a lack of training data concerning the 
prediction horizon [109]. In the stage of SoH prediction, we use an LSTM model with 
adaptive Brownian bridge-based aggregation (ABBA-LSTM) to tackle this issue. The core 
idea is to express the original data with reduced dimensional symbols/letters to 
improve the sensitivity of Raw-LSTM to trend features. Specifically, ABBA-LSTM can be 
divided into three parts: representation, prediction, and reconstruction, as in Figure 4.4.  

 
Figure 4.4 Flowchart of the proposed ABBA-LSTM prognostics model. 

(1) Representation 
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As described in section 4.3.2, there are two steps. First, Compression 
converts an n-dimensional historical HI (time series X) into a tuples-set 
(D). Second, in Digitization, by standardization and scaling, an alphabet set 
(L) corresponding to k clustering categories is constructed. The tuples in D 
are expressed using the letters in L to obtain the character series A of 
length m.  

(2) Prediction 
In the prediction part, a 5-layer LSTM model is utilized, where the input is 
the character series A. After two LSTM layers, a fully connected layer and a 
Softmax layer, the output character series B contains the predictions for p 
time steps.  

(3) Reconstruction 
The predicted character series needs to be recovered as a time series 
before it is used for FC prognostics, and this part is regarded as the inverse 
process of representation. Converting character series B to predicted time 
series Y is realized by Inverse-digitization and Inverse-compression.  

To describe this process more clearly, a series of notation marks involved in the 
ABBA-LSTM prognostics model are shown in Table 4.1. The detailed operations listed in 
Figure 4.4 for each step of ABBA can be found in Section 4.3.1.  

Type Notation of sets Remark 
Time series 𝑋 = (𝑥1, 𝑥2,⋯ , 𝑥𝑛) ∈ ℝ𝑛 Historical health indicator 

Compression 𝐷 = �
(𝑙𝑒𝑛1, 𝑖𝑛𝑐1), (𝑙𝑒𝑛2, 𝑖𝑛𝑐2)

,⋯ , (𝑙𝑒𝑛𝑚, 𝑖𝑛𝑐𝑚) � ∈ ℝ2×𝑚 Time and numerical 
increment tuples-set 

Digitization 𝐿 = (𝑎, 𝑏, 𝑐,⋯ ,𝑘) Alphabet set representing 
clusters' categories 

Digitization 𝐴 = (𝑠𝑦1, 𝑠𝑦2,⋯ , 𝑠𝑦𝑚), 
where 𝑠𝑦𝑖 ∈ 𝐿 (𝑖 = 1, … ,𝑚) 

m-dimensional character 
series 

Prediction 
𝐵 = �𝑏1,𝑏2,⋯ , 𝑏𝑝� 
where 𝑏𝑗 ∈ 𝐿 (𝑗 = 1, … , 𝑝) 

p-dimensional predicted 
set of characters 

Inverse-
digitization 𝐷� = �

(𝑙�̂�𝑛1, 𝑖𝑛�𝑐1), (𝑙�̂�𝑛2, 𝑖𝑛�𝑐2)
,⋯ , �𝑙�̂�𝑛𝑝, 𝑖𝑛�𝑐𝑝�

� ∈ ℝ2×𝑝  Predicted increments 
tuples-set 

Inverse-
compression 𝑌 = �𝑦1,𝑦2,⋯𝑦𝑞� ∈ ℝ𝑞 Predicted health indicator 

(q time steps) 
Table 4.1 Notation marks during health indicator series conversion 

4.3.3. Hybrid prognostics strategy 
The central goal of hybrid prognostics is to predict RUL. The failure threshold directly 

determines the EoL of fuel cells. In 2011, the United States Department of Energy 
defined EoL as a 10% loss of initial performance, which is suitable for constant current 
operating conditions. However, when a PEMFC operates in dynamic load conditions, 
there is still no agreement on the definition of the FT [30]. In some cases, different FTs 
lead to significantly different RULs [92]. Furthermore, desirable FTs should be closely 
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related to the application. It is not optimal to have a single/uniform FT for fuel cells from 
different applications.  

A Probable Failure Range (PFR) and a Calculable Failure Range (CFR) are proposed in 
this Chapter. Specifically, as shown in Figure 4.5 (a), the prediction starting point (𝑡0) 
and the extreme point of recoverable fault (𝑡𝑙𝑖𝑚𝑖𝑡) divide the ageing data into three parts: 
training, prognostics, and invalid data. Before 𝑡0 is considered as the observed historical 
data (a. k. a., training set), which is used to train the prognostics model. Then between 𝑡0 
and 𝑡𝑙𝑖𝑚𝑖𝑡 is the prognostics zone (a. k. a., test set). It is worth noting that the operation 
time corresponding to 𝑡𝑙𝑖𝑚𝑖𝑡 is usually less than or equal to the one corresponding to 
𝑡𝑒𝑛𝑑 (complete failure point or data ending point). In the case where 𝑡𝑙𝑖𝑚𝑖𝑡 is not equal to 
𝑡𝑒𝑛𝑑, the part between the two points is defined as invalid data. This is because the 
performance recovery that occurs after 𝑡𝑙𝑖𝑚𝑖𝑡 is not sufficiently reliable and may cause 
serious errors in the prognostics. The range between the expected earliest failure point 
(𝑡𝑎1) and the 𝑡𝑒𝑛𝑑 is considered as PFR, and the range between the 𝑡𝑎1  and the 𝑡𝑙𝑖𝑚𝑖𝑡 is 
considered as CFR.  

 
(a) (b) 

Figure 4.5 Schematic of hybrid prognostics: (a) segmentation of health indicator 
(data set), and failure ranges; (b) when prediction starting point is t0, zoom-in 

prognostics part and predict remaining useful life. 

As a fuel cell runs, fresh observations are constantly acquired. The 𝑡0, which divides 
the “history” from the “future”, will also be updated to deploy the next-round of 
prognostics. For a particular prediction starting time point, the zoom-in illustration of 
the prognostics part is shown in Figure 4.5 (b). By setting l random initial weight 
parameters, the ABBA-LSTM model can output a series of predicted health indicator 
𝑌� = (𝑌1,𝑌2, … ,𝑌𝑙), where  𝑌𝑗 ∈ ℝ𝑞  is the 𝑗-th (𝑗 = 1,2, … , 𝑙) predicted degradation trend. 
The CFR contains h failure thresholds 𝐹𝑇 = (𝐹𝑇1,𝐹𝑇2, … ,𝐹𝑇ℎ).  

(1) For the i-th (𝑖 = 1, 2, . . . ,ℎ) failure threshold 𝐹𝑇𝑖 
Based on the health indicator series 𝑌�  and 𝐹𝑇𝑖, a series of RUL (𝑅𝑈𝐿𝑖) can 
be calculated as 

�
𝑅𝑈𝐿𝑖 = �𝑅𝑈𝐿𝑖1 ,𝑅𝑈𝐿𝑖2 , … ,𝑅𝑈𝐿𝑖𝑗 , … ,𝑅𝑈𝐿𝑖𝑙� ∈ ℝ

𝑙

𝑅𝑈𝐿𝑖𝑗 = 𝑡𝑖𝑗 − 𝑡0
𝑅𝑈𝐿𝑎𝑖 = 𝑡𝑎𝑖 − 𝑡0

 (4.17) 
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where 𝑅𝑈𝐿𝑖𝑗  is the j-th (𝑗 = 1,2, … , 𝑙)  element in 𝑅𝑈𝐿𝑖 . 𝑡𝑖𝑗  is the 𝑗 -th 
predicted end-of-life at 𝐹𝑇𝑖, i.e., the operation time at the crossing point of 
the j-th health indicator 𝑌𝑗  and 𝐹𝑇𝑖. 𝑡𝑎𝑖  actual end-of-life at 𝐹𝑇𝑖, i.e., is the 
operation time at the crossing point of actual HI and 𝐹𝑇𝑖. 𝑅𝑈𝐿𝑎𝑖  is the 
actual RUL value. Estimate the probability density distribution (𝑃𝑖) based 
on the RUL series 𝑅𝑈𝐿𝑖, as  

𝑓�𝑅𝑈𝐿𝑃𝑖� = 𝑃𝑖  (4.18) 
where 𝑅𝑈𝐿𝑃𝑖  corresponds to the RUL values of the horizontal coordinate 
of 𝑃𝑖 . The final predicted RUL value (𝑅𝑈�𝐿𝑖) at 𝐹𝑇𝑖 can be obtained as  

𝑅𝑈�𝐿𝑖 = argmax
𝑅𝑈𝐿𝑃𝑖∈𝑅𝑈𝐿𝑖

𝑓�𝑅𝑈𝐿𝑃𝑖� (4.19) 

where the “argmax𝑥∈𝑆 𝑓(𝑥)” represent arguments 𝑥 for which 𝑓(𝑥) attains 
its largest value.  

(2) For the failure threshold series 𝐹𝑇 
Each failure threshold contained in 𝐹𝑇 corresponds to a predicted RUL 
value as described above, and h predicted RUL values constitute a final 
predicted RUL series 𝑅𝑈�𝐿 = �𝑅𝑈�𝐿1,𝑅𝑈�𝐿2, … ,𝑅𝑈�𝐿ℎ� ∈ ℝℎ.  

4.4. Vehicle-oriented long-term accelerated 
stress test experiments 

To validate properly the proposed hybrid prognostics method, long-term dynamic 
ageing experimental data ([122]) from a vehicle-oriented commercial PEMFC single cell 
is used. Specifically, a test station with integrated control and observation is used to 
deploy the ageing experiment, and to activate the PEMFC before performing the test. The 
relative humidity of the cathode and anode is regulated by the built-in humidifier of the 
test station. A peripheral water-cooling system is used to handle the operating 
temperature of PEMFC. The main technical parameters of the PEMFC are listed in Table 
4.2, where the cathode/anode inlet pressures and relative humidity, as well as the 
operating temperature, are set to the desired optimal values.  

Items Values 
Active surface (cm2) 25 
Hydrogen inlet-pressure (kPa) 110 
Air inlet-pressure (kPa) 110 
Operating temperature (°C) 85 
Hydrogen relative humidity (%) 50 
Air relative humidity (%) 80 
Full load current (A) 35.6 
Load currents involved in 
dynamic load cycles (A) 

0; 1.78; 4.45; 9.51; 
10.4; 14.85; 20.75; 29.65 

Table 4.2 Dynamic ageing test conditions. 
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(a) 

 
(b) 

Figure 4.6 Cyclic dynamic loading for accelerated stress testing: (a) overall dynamic 
voltage; (b) around 500 hours, current density, voltage and operating temperature in 

one cycle, and zoom-in details. 

This ageing experiment can be considered as an in-situ accelerated stress test [92], 
which is designed with reference to the New European Driving Cycle (NEDC) [122]. As 
shown in Figure 4.6, each cycle lasts for 1,181 s, including the urban condition 
(performed 4 times) and the suburban condition (performed one time). Nine different 
load currents (0-100%) are involved as shown in Table 4.2. The entire ageing 
experiment consists of 3,076 cycles, accounting for approximately 1,008 hours. A 
polarization curve test is performed before the start of the overall ageing experiment. 
Subsequently, the AST is suspended every 50 hours and resumed until the end of the 
polarization curve test (non-shutdown). In addition, every 100 hours, a planned 
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shutdown of 12 hours is executed to simulate the shutdown-condition of the actual 
vehicle. It is worth mentioning that typically the shutdown comes with a performance 
recovery of the PEMFC. This is realistic, but it inevitably causes fluctuations in HI, 
making the prognostics challenging.  

 
(a) 

 
(b) 

Figure 4.7 Anode gas pressure conditions and total stack flow, (a) the relationship 
between anode gas pressure and abnormal operation; (b) the relationship between total 

stack flow and abnormal operation. 

During the ageing experiments, the test station and peripheral equipment encounter 
some anomalies, which are referred to as abnormal operations in this Chapter. As in 
Figure 4.7 (a), the inlet/outlet pressure of hydrogen is set at the optimal value of 110 
kPa. However, significant fluctuations arise in practice. Coincidentally, as in Figure 4.7 
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(b), the total stack flow of H2/Air also exhibit the related abnormal operations. Among 
them,  

(1) Point A is a sharp oscillation of the inlet pressure that occurred at around 150 
hours, corresponding to the shutdown-like voltage dip in Figure 4.6 (a). 

(2) Point B is the frequent and more violent hydrogen supply anomalies starting at 
around 660 hours, as in the blue dashed box in Figure 4.7 (a).  

(3) Point C, some gas pressure/flow anomalies lasting more than 10 hours are 
observed during 750-800 hours.  

More details of the experimental data can be found in [100, 122].  

  
(a) (b) 

  
(c) (d) 

Figure 4.8 Current density-voltage scatterplot in, (a) overall (0-1008 hours); (b) 0-1 
hours; (c) 500-501 hours; (d) 1007-1008 hours. 

Figure 4.8 (a) is the overall (0-1008 hours) current density-voltage scatterplot, which 
contains the long-term degradation and anomalous operations. The following 
phenomena are contained in Figure 4.8 (b)-(d),  

(1) ageing experiments with 9 different loads including full load, which covers 
most of the operating conditions.  
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(2) the decrease in voltage with time, which reflects the degradation in 
performance;  

(3) unlike the typical polarization curve, the data points are more dispersive due 
to the inclusion of short-term (transient) dynamics.  

(4) The cell dynamic load operates mainly in the ohmic losses region. In these 
cases, the degradation model proposed in this Chapter can be used to handle 
the dynamics.  

Frankly, for most fuel cells, whether in the form of a single cell or a stack and 
regardless of the output power levels, it is recommended typically to operate in the 
ohmic losses region, which represents high efficiency. Recall that this Chapter is based 
on single-cell modelling that can be extended to a stack. Therefore, the use of the above 
experimental data to verify the prognostics strategy does not limit its generality.  

4.5. Prognostics results evaluation and 
discussion 

4.5.1. Evaluation criteria 
In this Chapter, two metrics are used to evaluate the hybrid prognostics method, RE 

and Prognostics Horizon (PH). Among them, RE can be defined by Equation (3.19). In 
this case, 𝑥 in Equation (3.19) can be the actual single-cell voltage (𝐸𝑐𝑒𝑙𝑙) or the actual 
remaining useful life (𝑅𝑈𝐿𝑎𝑖); 𝑥� corresponds to the identified/reconstructed single-cell 
voltage (𝐸�𝑐𝑒𝑙𝑙) or the predicted remaining useful life (𝑅𝑈�𝐿𝑖).  

Subsequently, the predicted RUL is further evaluated using PH, the definition of which 
differs from those proposed in [30, 123]. In this Chapter, PH is defined using a Trust 
Area (TA), which is the area between the upper/lower trustworthiness boundaries 
parallel to the actual RUL. In the CFR, the i-th (𝑖 = 1,2, . . . ,ℎ) failure threshold 𝐹𝑇𝑖 
corresponds to the 𝑇𝐴𝑖 as follows  

𝑅𝑈𝐿𝑎𝑖 − 𝑡𝑎𝑖 ⋅ 𝛼𝑙𝑜𝑤 ≤ 𝑇𝐴𝑖 ≤ 𝑅𝑈𝐿𝑎𝑖 + 𝑡𝑎𝑖 ⋅ 𝛼𝑢𝑝 (4.20) 
where 𝛼𝑙𝑜𝑤 and 𝛼𝑢𝑝 are used to adjust the tolerance of 𝑇𝐴𝑖, the smaller they are the 
tighter the trust area (and the smaller the range of 𝑇𝐴𝑖). In this Chapter, 𝛼𝑙𝑜𝑤 and 𝛼𝑢𝑝 
are set to 15% and 5%, respectively. The 𝑃𝐻𝑖 as follows 

𝑃𝐻𝑖 = 𝑡𝑎𝑖 − 𝑡1𝑠𝑡𝑖  (4.21) 
where 𝑡1𝑠𝑡𝑖  denotes the earliest time point after which the predicted RULs are all within 
the 𝑇𝐴𝑖 . The larger PH is, the more sufficient time is guaranteed for 
control/maintenance and the more effective the prognostics.  

4.5.2. Evaluation of extracted health indicator 
Based on the analysis for the current density-voltage scatterplot in Section 4.4, equal 

interval division is chosen for the HI extraction. The width of each time slot is set to the 
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duration of three dynamic cycles (about one hour). In Table 4.3, the identified 
parameters are listed, along with the type of voltage losses to which they belong.  

Parameter Value/Range Overpotential losses 
αa+c 0.74 Activation 

jloss (mA/cm2) 10 Activation 
jexch (mA/cm2) 9 Activation 

βa+c 0.13 Concentration 
jmax (A/cm2) 3.539 Concentration 
Cdl (mF/cm2) 64 to 464 Activation & Concentration 
Rdyn (Ωcm2) -0.007 to 0.053 Activation & Concentration 
Rr (Ωcm2) 0.03 to 0.08 Ohmic 

Requ (Ωcm2) 0.0344 to 0.1002 Ohmic (nominal) 
Erev (V) 0.923 to 0.967 - 

Table 4.3 Parameter identification results. 

In Figure 4.9, the identified variable parameters are shown. By introducing all 
identified parameters into Equations (4.1)-(4.3) and setting the operating current at 
35.6 A, the equivalent full-load power (𝑃𝑒𝑞𝑢) is calculated and illustrated in Figure 4.9 (f). 
In overall, almost all the variable parameters show a significant jump at point A, this is 
caused by a severe fault in the hydrogen supply. Meanwhile, there is a clear change of 
the trend after point B, which can be considered as an effect of the abnormal gas 
pressure/flow operation mentioned in Section 4.4 (Figure 4.7 (a) and (b)). There are 
some obvious outlier points in 𝐶𝑑𝑙  and the trend characteristics are not obvious. In 
addition, all other variable parameters show different levels of trend characteristics 
until point B. To be specific, 𝐸𝑟𝑒𝑣and 𝑃𝑒𝑞𝑢 appear to possess generally decreasing trends, 
but 𝑃𝑒𝑞𝑢 looks smoother. 𝑅𝑟 , 𝑅𝑑𝑦𝑛 and 𝑅𝑒𝑞𝑢 imply generally increasing trends, with 𝑅𝑒𝑞𝑢 
showing a more clearly monotonous trend. Moreover, considering that both 𝑅𝑒𝑞𝑢 and 
𝑃𝑒𝑞𝑢  are the parameters that characterize the overall situation with physical 
interpretation, they are designated as 𝐻𝐼1 and 𝐻𝐼2, respectively. It is worth mentioning 
that the trend features inherent in the identified parameters are consistent with the 
experimental data or have physical interpretability. Moreover, some parameters are not 
selected as HIs, but they can still be potential candidates. For instance, the trend feature 
of 𝐶𝑑𝑙  is not obvious, but its outliers indicate some abnormal operation of the fuel cell. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 4.9 Parameters identification: (a) reversible open-circuit voltage (Erev); (b) 
Ohmic resistor (Rr); (c) dynamic resistor (Rdyn); (d) double-layer capacitor (Cdl). (e) 

equivalent resistance (Requ); (f) equivalent full-load power (Pequ). 

The final output of the degradation mechanism model is the single cell voltage. Thus, 
the cell voltage values calculated by the identified model are compared with the actual 
measurements to evaluate the model identification performance. As an example, Figure 
4.10 (a) and (b) show the comparison corresponding to a dynamic cycle around 500 
hours. Figure 4.10 (a) shows that the operating voltages and the reconstructed voltages 
which can match well to each other. Figure 4.10 (b) shows the current density-voltage 
plot in which the overall match is satisfactory. It is worth noting that, after load 
switching, as in Figure 4.6 (b), the voltage exhibits an overshoot-like dynamic. Especially 
at the instants of switching, such dynamics correspond to the points in Figure 4.10 (b) 
where the experimental data are out of the identification curve. At these points, the 
reconstructed voltage fitting performance is slightly worse. That is because, as 
mentioned in Section 4.2, simplifications are considered when modelling the 
degradation mechanism. Furthermore, to quantitatively evaluate the model 
performance, the relative error (𝑅𝐸𝐸) in terms of single-cell voltage is calculated using 
Equation (3.19) and illustrated in Figure 4.10 (c). Observations for the ageing test are 
sampled at 1 Hz, so the 𝑅𝐸𝐸  is calculated over more than 3.6 million data points. The 
average 𝑅𝐸𝐸  is less than 1%, which demonstrates the effectiveness of the proposed 
model and model identification method. 
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(a) 

 
 

(b) 

 
(c) 

Figure 4.10 Evaluation of dynamic load identification performance: (a) identification 
of the cell voltage; (b) current density-voltage plot of identification results; (c) relative 

error of identification results. 

4.5.3. Evaluation of predicted remaining useful life 
In evaluating the performance of the proposed RUL prediction method, the prediction 

starting points and failure range are set based on the analysis of 𝐻𝐼1 and 𝐻𝐼2, as in 
Figure 4.11. In particular, a change in operational behaviour after point B is considered. 
As a consequent change in the degradation trend is observed after B, the HI after the 
maximum/minimum point near B (approximately hour 640) is set as invalid. For the 
useful HI, RUL predictions are deployed at 50-hour intervals from about 50 hours to 



73 

about 500 hours. Meanwhile, a CFR consisting of a series of failure thresholds is set in 
place of a single failure threshold. For 𝐻𝐼1, the CFR is 0.0961-0.1001 Ωcm2 ; while the 
CFR for 𝐻𝐼2 is set to 32.74-32.82 W.  

 
(a) 

 
(b) 

Figure 4.11 Health indicator and failure range for prognostics: (a) equivalent 
resistance (HI1); (b) equivalent full-load power (HI2). 

For 𝐻𝐼1, the performance of the proposed method in terms of RUL prediction is 
evaluated as shown in Figure 4.12. In the first two test points, the predicted RUL does 
not enter the TA. This is mainly because the training data in the early stage are not 
sufficient to capture the global evolution trend. With increased training data, the 
prediction error gradually decreases and predicted RUL enters the TA. The calculated 
PH exceeds 350 hours on different FTs. If the full useful lifetime is set to 640 hours, this 
means that the PH exceeds 50% of it. In addition, to evaluate more appropriately the 
prognostics performance, comparison experiments are deployed using the 
autoregressive integrated moving average model. As in Figure 4.12 (a), some prediction 
results of the ARIMA model exhibit greater errors compared to the ABBA-LSTM. In 
terms of consistency, the two models perform similarly. On the other hand, in Figure 
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4.12 (b), the prediction performance is quantitatively evaluated using Equation (3.19). 
Overall, the prediction errors maintain high stability when FT varies. Moreover, the 
average relative error in the CFR is 15.5%.  

 
(a) 

 
(b) 

Figure 4.12 For HI1, RUL prediction performance and evaluation at different failure 
thresholds: (a) comparison experiments and prognostics horizon evaluation; (b) relative 

error of the CFR (0.0961-0.1001 Ωcm2). 

The same performance evaluation is deployed on 𝐻𝐼2, as in Figure 4.13. Thanks to 𝐻𝐼2 
being smoother, the prediction performance is better than 𝐻𝐼1 overall. For different FTs, 
PHs are greater than 400 hours which accounts for more than 60% of the full useful 
lifetime. In the best case, PH exceeds 450 hours, which means that satisfactory 
prognostics results can be given with only 50 hours of ageing data. Additionally, in the 
comparison experiments, as in Figure 4.13 (a), almost all the predictions of the ARIMA 
model are lower than the actual RUL, and most of them perform worse than the ABBA-
LSTM. On the other hand, the performance of the relative error is stable within the CFR. 
Then the average relative error in the CFR is 11.4%.  
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(a) 

 
(b) 

Figure 4.13 For HI2, RUL prediction performance and evaluation at different failure 
thresholds: (a) comparison experiments and prognostics horizon evaluation; 

(b) relative error of the CFR (32.74-32.82 W). 

4.6. Discussion 
In this Chapter, a hybrid prognostics strategy is proposed for predicting the 

remaining useful life of fuel cells. A degradation mechanism model is used to handle the 
dynamic operating conditions of FC and extract the health indicators that can be used for 
prognostics. In addition, the proposed method is validated using the accelerated stress 
test/dynamic load cycle ageing test data of a vehicle-oriented PEMFC. The results show 
that the proposed degradation mechanism model can effectively track both the 
dynamics caused by load transitions and the ageing-related parameter variation. The 
average relative error of the model output is less than 1%. Furthermore, two different 
health indicators, i.e., equivalent resistance (𝐻𝐼1) and full power (𝐻𝐼2), are extracted and 
the ABBA-LSTM RUL prediction model is evaluated in the set failure region of the two 
health indicators respectively. The RUL predictions based on 𝐻𝐼1 and 𝐻𝐼2  are not 
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entirely consistent, especially at the earliest two “prediction start points”. This result can 
be attributed to the following factors.  

(1) Generally, RUL prediction precision is related to the size of the historical 
dataset. The prediction results based on 𝐻𝐼1 and 𝐻𝐼2 are limited by the training 
set size at the initial “prediction start points”, thus the performances are not 
satisfactory.  

(2) Overall, the fluctuation of 𝐻𝐼1 is larger than that of 𝐻𝐼2. After superimposing 
the limitation of the training data size, the prediction performance based on 
𝐻𝐼1 is worse in the earliest two prediction points. 

(3) As more data are available for training the model, the predictions gradually 
converge to the actual RUL. For both HIs, since the third “prediction start 
point”, the predictions almost all fall in the trust area.  

(4) The ARIMA model used for performance comparison also exhibits the above 
characteristics, although its performance is inferior to that of the ABBA-LSTM 
in general.  

In summary, the results show that the prognostics horizon that exceeds 60% of the 
useful full lifetime can be achieved, and the relative error of RUL prediction can reach 
11.4%. The proposed hybrid strategy has the ability to handle long-term prognostics 
that are full of dynamics in automobile applications. However, there are non-negligible 
computational costs to deploy such a prognostics strategy. It is essential to reduce the 
computational cost while further optimizing the prognostics accuracy for potential 
online deployments.  
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5. Hybrid prognostics approach based on 
HHT and symbolic-GRU 

5.1. Introduction 
PHM assesses and predicts the evolving behavior of engineering equipment, systems 

and structures to enable the prediction of failures and the avoidance of accidents, and 
ultimately to achieve reliable, efficient, economical and safe operations [25, 26]. Machine 
learning and deep learning are already successful in the fields of control and computer 
vision [124]. In reliability engineering and safety analysis, data-centric PHM methods 
will undoubtedly be booming as well [125]. For PEMFCs, the PHM is also a promising 
solution for durability enhancement. As one of the keys to PHM, “Prognostics” tracks the 
health status of PEMFCs. In turn, the RUL can be predicted to support Condition-based 
Maintenance (CBM) [11]. However, dynamic mission profiles make it difficult to access 
the HI directly. As mentioned in the previous Chapters, scholars have proposed several 
fruitful prognostics methods for variable load conditions. However, these methods have 
shortcomings such as high computational cost, requiring extra characterization tests, 
and hardly tracking transient dynamics.  

On the other hand, the degradation behaviour of PEMFC is coupled with dynamic 
operations, which makes it difficult to predict both the inherent degradation trend and 
the RUL. Some scholars prefer to deploy short-term prognostics (single-step-ahead 
prediction) under dynamic mission profiles [95, 100, 101]. In practice, highly accurate 
single-step-ahead prediction is more meaningful for the real-time control and 
monitoring of fuel cells. In contrast, the prognostics dedicated RUL prediction needs to 
extend the prognostics horizon to the order of hundreds to thousands of hours. Thus 
long-term prognostics provide ample time to develop maintenance schedules to avoid 
fatal failures. Most long-term prognostics methods for dynamic mission profiles are 
based on the multi-step-ahead prediction and set a fixed FT for method evaluation. The 
proposed prognostics methods often need cautious model configurations and the RUL 
performance in these proposed works is not fully justified due to limited data and 
evaluation criteria. 

In summary, although studies involving PEMFC durability are highly noted, long-term 
prognostics under dynamic loading profiles has not yet been fully addressed. The main 
challenges arise from the following two-fold questions:  

(1) How to extract the health indicator from dynamic mission profiles efficiently 
without disturbing PEMFC operation.  

(2) How to extend the scale of prognostics horizon and to achieve stable 
prognostics performance under different failure thresholds.  
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To cope with the above issues, a data-driven prognostics method based on time-
frequency analysis and symbolic recurrent neural networks is proposed in this Chapter. 
Specifically, the long-term degradation component of the dynamic stack voltage is first 
extracted as HI using the Hilbert-Huang transform. The HI is compressed using adaptive 
Brownian bridge-based aggregation and represented as a reduced-dimensional 
symbolic sequence [121]. The trend of the represented symbolic sequence is predicted 
by gated recurrent unit-based RNN, which in turn is used to reconstruct the HI trend and 
estimate the RUL. The proposed method is evaluated using dynamic load ageing 
experimental data from two different types of PEMFCs. In comparison with other state-
of-the-art methods, the proposed method takes the shortest computational time while 
extracting reliable HI. In the RUL prediction phase, the proposed method provides 
effective PH up to hundreds of hours scale and shows consistency at different FTs.  

5.2. Hilbert-Huang transform-based health 
indicator extraction 

As the PEMFC operates under dynamic load profiles, the real-time measurements, 
such as fuel cell voltage, exhibit non-linear and non-stationary characteristics. The HHT, 
proposed by Huang et al., is adaptive and highly efficient [126]. In this Chapter, HHT is 
considered an appropriate tool to deal with non-linear and non-stationary signals and 
therefore used to extract the health indicator [127]. In fact, HHT is already being applied 
in the prognostics of complex systems/devices, e.g., lithium-ion batteries [128-130], 
rolling element bearings [131], and nuclear power plants [132]. In the field of fuel cells, 
HHT is also used for diagnostics [133] and prognostics [134]. The HHT consists of two 
steps: First, the input signal is decomposed into a series of Intrinsic Mode Function (IMF) 
and a residual using Empirical Mode Decomposition (EMD). Second, the Hilbert 
spectrum of each IMF is obtained by deploying the Hilbert Transform (HT). The 
combination of EMD and Hilbert Spectral Analysis (HSA) provides a time-frequency-
energy analysis method [127].  

Generally, EMD sifting is iteratively implemented and stopped under the condition 
that a monotonic residual is obtained. The residual reflects the trend characteristics in 
the original signal [134]. The residual contributes to revealing the physical 
characteristics of the signal as it is the low frequency or null component. In this Chapter, 
the dynamic voltage of the PEMFC is used as the input signal of EMD sifting. The proper 
residual from the input signal is identified by iteratively implementing EMD and 
designated as HI. Considering the Instantaneous Frequency (IF) is one of the key 
features for analyzing the signal based on natural conditions [127]. In this Chapter, an HI 
extraction process based on IF analysis is proposed as shown in Figure 5.1. Instead of 
pursuing a completely monotonic residual as the stop condition of the EMD sifting 
process, the method analyzes whether the IF of the residual is below a set threshold.  
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Figure 5.1 Hilbert-Huang transform-based health indicator extraction process. 

As shown in Figure 5.1, the specific sifting process is explained as follows. 
(1) Identify all extrema of the input signal 𝑥(𝑡). The upper envelope curve 𝑒𝑚𝑎𝑥(𝑡) 

and the lower envelope curve 𝑒𝑚𝑖𝑛(𝑡) are formed by fitting the maximal and 
minimal points through cubic spline curves, respectively. The mean envelope 
function 𝑚1,1(𝑡) is calculated as below  

𝑚1,1(𝑡) = �𝑒𝑚𝑎𝑥(𝑡) + 𝑒𝑚𝑖𝑛(𝑡)� 2⁄  (5.1) 

(2) Subtract 𝑚1,1(𝑡) from 𝑥(𝑡) to obtain the first component ℎ1,1(𝑡),  

ℎ1,1(𝑡) = 𝑥(𝑡) −𝑚1,1(𝑡) (5.2) 

IMF should satisfy the following criteria [126]:  

 The number of poles and zeros should not differ by more than one; 
 The mean of the upper and lower envelope curves should be zero.  

ℎ1,1(𝑡) is defined as the first IMF 𝑐1(𝑡) if it satisfies the criteria. Otherwise, 
repeat steps (1)-(2) until the requirements are satisfied at the j-th repetition,  

ℎ1,𝑗(𝑡) = ℎ1,𝑗−1(𝑡) −𝑚1,𝑗(𝑡) (5.3) 

Then ℎ1,𝑗(𝑡) is specified as 𝑐1(𝑡).  
(3) Subtract 𝑐1(𝑡) from 𝑥(𝑡) to obtain the first residual 𝑟1(𝑡),  

𝑟1(𝑡) = 𝑥(𝑡) − 𝑐1(𝑡) (5.4) 
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(4) The Hilbert transform is deployed only for the residual to obtain its IF, and the 
decomposition is stopped when the IF is less than a pre-set frequency 
threshold. Otherwise, the residual is used as the input signal and the above 
steps are repeated until the IF is satisfied at the n-th repetition. Then the final 
residual is 𝑟𝑛(𝑡) and is specified as HI,  

𝑟𝑛(𝑡) = 𝑟𝑛−1(𝑡) − 𝑐𝑛(𝑡) (5.5) 

Up to this point, 𝑥(𝑡) can be expressed by the following equation,  

𝑥(𝑡) = 𝑟𝑛(𝑡) + � 𝑐𝑛(𝑡)
𝑛

𝑖=1
 (5.6) 

In addition, the residual signal implies the long-term degradation trend 
characteristics of the PEMFC stack voltage. The IF threshold is set based on the time 
scale of PEMFC degradation and the time-frequency-energy characteristics of the stack 
voltage signal. The details about Hilbert transform as follows.  

For the i-th residual 𝑟𝑖(𝑡), where 𝑖 = 1, … ,𝑛. The Hilbert transform of the residual 
(e.g., ℋ𝑖(𝑡)) can be calculated as follow,  

ℋ𝑖(𝑡) =
1
𝜋
𝑃𝑉�

𝑟𝑖(𝜏)
𝑡 − 𝜏

∞

−∞
𝑑𝜏 (5.7) 

where PV is the Cauchy principal value. The 𝑧𝑖(𝑡), which is an analytical function of 𝑟𝑖(𝑡), 
can be constructed as the following equation,  

𝑧𝑖(𝑡) = 𝑟𝑖(𝑡) + 𝑗ℋ𝑖(𝑡) = 𝑎𝑖(𝑡)𝑒𝑗𝜙𝑖(𝑡) (5.8) 
where j is the imaginary unit. The amplitude function 𝑎𝑖(𝑡) and the instantaneous phase 
function 𝜙𝑖(𝑡) can be expanded as following equation,  

�𝑎𝑖(𝑡) = �𝑟𝑖2(𝑡) + ℋ𝑖
2(𝑡)

𝜙𝑖(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛[ℋ𝑖(𝑡) 𝑟𝑖(𝑡)⁄ ]
 (5.9) 

The instantaneous frequency 𝜔𝑖(𝑡) is calculated by the following equation,  

𝜔𝑖(𝑡) =
1

2𝜋
𝑑𝜙𝑖(𝑡)
𝑑𝑡

 (5.10) 

Then, the instantaneous energy 𝜀𝑖(𝑡), corresponding to 𝑟𝑖(𝑡), is calculated by the 
following equation,  

�
𝜀𝑖(𝑡) = � 𝐻2

𝜔𝑖
+

𝜔𝑖
−

(𝜔𝑖, 𝑡) 𝑑𝜔𝑖

𝐻(𝜔𝑖, 𝑡) = 𝑅𝑒�𝑎𝑖(𝑡)𝑒𝑗𝜙𝑖(𝑡)�
 (5.11) 

where 𝜔𝑖
+ and 𝜔𝑖

− are the frequency range upper and lower bounds of 𝑟𝑖(𝑡). The 
𝐻(𝜔𝑖, 𝑡) is the Hilbert spectrum of 𝑟𝑖(𝑡), and 𝑅𝑒[𝑓(𝑥)] denotes to extract the real 
component of the function 𝑓(𝑥).  

5.3. Symbolic GRU-based lifetime prediction 
The essential task of prognostics is to track the degradation trend of HI and predict 

the RUL. Thanks to the convincing time series processing capability, several LSTM 
framework-based RUL prediction methods are developed for different applacations [135, 
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136]. Compared to LSTM, GRU effectively simplifies the hidden unit structure and 
reduces the number of parameters [137, 138]. This facilitates the training/prediction 
efficiency of GRU and promises to improve the real-time prognostics performance. The 
GRU-based degradation prediction method is successfully applied in fields such as aero-
propulsion system [139] and lithium-ion batteries [129, 130]. As mentioned in the 
previous Chapters, the performance of raw LSTM is not satisfactory in multi-step-ahead 
prediction in the application of fuel cell prognostics. Similarly, GRU suffers from this 
issue.  

 
(a) 

 
(b) 

Figure 5.2 Symbolic GRU-based degradation trends prediction process, (a). ABBA-
GRU structure; (b). GRU architecture.  

This Chapter proposes an ABBA-based GRU (ABBA-GRU) model to tackle multi-step-
ahead prediction involved in prognostics. The historical HI is used as input, while the 
output is the predicted trend. The core of the ABBA-GRU model includes three 
components: conversion, prediction, and reconstruction, as in Figure 5.2 (a) and Table 
5.1. To improve prediction efficiency and accuracy, HI is normalized and re-scaled to 
between zero and one before being fed to ABBA-GRU.  
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Conversion, a. k. a. representation, is a data dimensionality reducing process that 
transforms a time series into a symbolic series. In the first step, the time series (X) is 
changed into the increments-tuple set (D) by compression; in the second step, D is 
converted into the symbolic series (A) by digitization. A is to be used as the input for the 
prediction phase.  

Step Data type Notation 
Input Time series 𝑋 = (𝑥1, 𝑥2,⋯ , 𝑥𝑛) ∈ ℝ𝑛 

Representation 
Compression Time and numerical 

increments-tuple set 𝐷 = �
(𝑙𝑒𝑛1, 𝑖𝑛𝑐1), (𝑙𝑒𝑛2, 𝑖𝑛𝑐2)
,⋯ , (𝑙𝑒𝑛𝑚 , 𝑖𝑛𝑐𝑚) � ∈ ℝ2×𝑚 

Digitization Alphabet set 𝐿 = (𝑎, 𝑏, 𝑐,⋯ , 𝑘), k types of clusters 
Symbolic series 𝐴 = (𝑎1,𝑎2,⋯ , 𝑎𝑚) ∈ 𝐿𝑚 

Prediction Symbolic series 
(predicted) 𝐵 = �𝑏1, 𝑏2,⋯ , 𝑏𝑝� ∈ 𝐿𝑝  

Reconstruction 

Inverse 
digitization 

Increments-tuple set 
(predicted) 𝐷� = �

(𝑙�̂�𝑛1, 𝑖𝑛�𝑐1), (𝑙�̂�𝑛2, 𝑖𝑛�𝑐2)
,⋯ , �𝑙�̂�𝑛𝑝, 𝑖𝑛�𝑐𝑝�

� ∈ ℝ2×𝑝 

Inverse 
compression 

(Output) 

Time series 
(predicted) 𝑌 = �𝑦1 ,𝑦2,⋯ ,𝑦𝑞� ∈ ℝ𝑞  

Table 5.1 Degradation trend prediction steps and notation defination. 

A five-layer GRU model is used in the prediction phase, as in Figure 5.2 (a). 
Meanwhile, Figure 5.2 (b) shows the structure of a typical GRU hidden unit. The 
previous hidden state (ℎ𝑡−1) together with the current symbol (𝑎𝑡) constitute the input. 
After proper processing by the reset gate (𝑟𝑡) and update gate (𝑧𝑡), the current hidden 
state (ℎ𝑡 , i.e., predicted symbol) is output. In a GRU layer, the hidden units are linked 
sequentially to form a chain. The functional equations of the GRU are as follows.  

⎩
⎪
⎨

⎪
⎧𝑟𝑡 = 𝜎(𝑊𝑟𝑎𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)
𝑧𝑡 = 𝜎(𝑊𝑧𝑎𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)
ℎ�𝑡 = 𝑡𝑎𝑛ℎ[𝑊ℎ𝑎𝑡 + 𝑈ℎ(𝑟𝑡 ∘ ℎ𝑡−1) + 𝑏ℎ]
ℎ𝑡 = (1 − 𝑧𝑡) ∘ ℎ𝑡−1 + 𝑧𝑡 ∘ ℎ�𝑡

 (5.12) 

where 𝜎 and tanh represent the activation functions, which are sigmoid and hyperbolic 
tangent, respectively. 𝑊𝑥, 𝑈𝑥, and 𝑏𝑥 are the input weight matrix, the unit internal weight 
matrix, and the bias vector, respectively. Among them, the subscript 𝑥 corresponds to 𝑟 
(reset gate), 𝑧 (update gate), and ℎ (hidden state). The ℎ�𝑡 is unit internal hidden state (a. 
k. a., candidate activation) vector. The operator “∘” denotes Hadamard product.  

The reconstruction phase can be considered as the inverse process of conversion. The 
predicted symbolic series (B) is changed into the predicted increments-tuple set (𝐷�) by 
inverse digitization. Subsequently, 𝐷� is changed into the predicted time series (Y) by 
inverse compression. More details about ABBA can be found in Section 4.3.1.  

This Chapter sets multiple failure thresholds to evaluate the consistency and 
credibility of the prognostics approach. At the i-th failure threshold, as in Figure 5.3, 
multiple (here N) ABBA-GRU models are constructed by setting different initial weight 
matrices. Multiple predicted degradation trends are used to calculate the corresponding 
RULs respectively. Afterwards, the Probability Distribution Function (PDF) of the RULs 
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is generated. The RUL corresponding to the maximum of the PDF is considered the final 
prediction.  

 
Figure 5.3 Remaining useful life prediction process and multiple failure thresholds 

evaluation. 

5.4. PEMFC ageing experiments under 
dynamic load 

Two long-term ageing experiments under dynamic load are implemented in this 
Chapter. Although they have been mentioned in the previous Chapters, it is still 
necessary to make some of their details specific. These durability tests are from two 
different types of PEMFCs, an open cathode/dead-end anode PEMFC (hereafter referred 
to as FC-1) and a vehicle-oriented commercial PEMFC (hereafter referred to as FC-2). 
The operating conditions of FC-1 and FC-2 are shown in Table 5.2.  

Parameter 
Value 

FC-1 FC-2 
Active surface (cm2) 33.63 25 
Pressure at hydrogen inlet (bar) 1.35 1.1 
Pressure at air inlet (bar) 1.013 (i.e., 1 atm) 1.1 
Nominal output power (W) 73.5 23.14 

Operating temperature (°C) 
29.6 to 51.7 

(Corresponding to current) 
85 

Number of cells 15 1 

Temperature regulate mode 24-V dc air fan 
External 

circulating 
water pump 

Humidity regulate mode 
Non-humidifier 

(self-humidified) 
Built-in 

humidifier 
Table 5.2 Ageing experiments operating conditions. 
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The FC-1 is compactly designed for hybrid electric bicycles. The stack of FC-1 contains 
15 cells with an integrated 24 V DC-fan for air supply and temperature regulation. The 
operating temperature of FC-1 is related to the load current, which can be expressed by 
the following equation.  

𝑇FC1 = 2.5074𝐼FC1 + 30.3585 (5.13) 

where 𝑇FC1  and 𝐼FC1  are the operating temperature and load current of FC-1, 
respectively. In addition, FC-1 is self-humidifying and performs a purge lasting 0.5 s per 
30 s. The mean cell voltage profile from the dynamic load cycle of FC-1 is shown in 
Figure 5.4 (a), whereas the current profile is shown in Table 4.2. In each dynamic cycle, 
the load current of FC-1 is organized into seven test steps that repeatedly switch 
between 0 A and 8 A. In this way, the start-up/standby operating conditions in the 
hybrid system are simulated. More details about FC-1 and durability testing can be 
found in Section 3.3 and/or literature [85].  

 
(a) 

 
(b) 

Figure 5.4 Voltage profiles of dynamic load cyclic from fuel cell ageing experiments, 
(a). FC-1; (b). FC-2. 
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The FC-2, produced by Wuhan New Energy Co., Ltd, is a PEMFC for automotive 
applications [122]. The stack of FC-2 contains a single cell. Ageing experiments are 
deployed on the Greenlight test station. The built-in humidifier is placed at the cathode 
and anode. The operating temperature is regulated using an external circulating water 
pump [100]. The cell voltage profile of the FC-2 dynamic load cycle is shown in Figure 
5.4 (b), and the current profile is shown in Table 5.3. One dynamic cycle consists of two 
phases, each consisting of seven test steps. The first phase, called “Urban”, is designed to 
simulate the frequent load switching of the vehicle at low speeds. The second phase, 
called “Suburban”, is designed to simulate the vehicle switching between loads at 
medium/high speeds. In each dynamic cycle, “Urban” is repeated four times and then 
“Suburban” is executed once [100]. More details about FC-2 and ageing tests can be 
found in Section 4.4 and/or literature [100, 122].  

Test 
step 

FC-1 FC-2 

Duration 
(s) 

Current 
(A) 

Urban condition Suburban condition 
Duration 

(s) 
Current 

(A) 
Duration 

(s) 
Current 

(A) 
1 108 0 13 4.45 46 1.78 
2 59 8 33 1.78 58 20.75 
3 76 0 35 9.51 82 14.85 
4 186 8 47 1.78 85 20.75 
5 96 0 20 14.85 50 29.65 
6 252 8 25 10.4 44 35.6 
7 108 0 22 1.78 36 0 

Table 5.3 Current profiles of dynamic load cyclic 

5.5. Prognostics performance evaluation 

5.5.1. Evaluation metrics 
Among various evaluation metrics, the prognostics horizon and the Relative Accuracy 

(RA) are considered both effective and widely used [3]. For the i-th failure threshold, a 
trust area (𝑇𝐴𝑖) is set which can be calculated by Equation (4.20). In this Chapter, the 
tolerance adjustment factors for 𝑇𝐴𝑖 bounds are set as 𝛼𝑙𝑜𝑤 = 0.2 and 𝛼𝑢𝑝 = 0.1. The 
prognostics horizon (𝑃𝐻𝑖) at this point can be calculated by Equation (4.21).  

In addition, another trust area is further defined stringently, for instance, using the 

𝛼– 𝜆 performance to set the trust area (𝑇𝐴𝑖
𝛼–𝜆) as follows,  

𝑅𝑈𝐿𝑎𝑖(1 − 𝛼𝑙𝑜𝑤) ≤ 𝑇𝐴𝑖𝛼–𝜆 ≤ 𝑅𝑈𝐿𝑎𝑖�1 + 𝛼𝑢𝑝� (5.14) 

The trust area 𝑇𝐴𝑖
𝛼–𝜆  tightens over time, requiring more demanding prognostics 

performance. 𝑅𝑈𝐿𝑎𝑖  is actual remaining useful life.  
Moreover, it is essential to calculate the relative accuracy of the predicted RUL for 

quantitatively evaluating the prediction performance. The calculation procedure is as 
follows,  
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𝑅𝐴𝑖 = 1 −
�𝑅𝑈𝐿𝑎𝑖 − 𝑅𝑈�𝐿𝑖�

𝑅𝑈𝐿𝑎𝑖
 (5.15) 

where the relative accuracy 𝑅𝐴𝑖  corresponding to the i-th failure threshold. 𝑅𝑈�𝐿𝑖 
corresponds to the predicted remaining useful life.  

5.5.2. Evaluate the feasibility of the extracted HI 
The programs used in this Chapter are developed in Python 3.7.11, Keras version 

2.4.3, and Tensorflow version 1.15.0 backend software environments. They are 
deployed on a desktop computer containing an Intel Xeon E3-1230-v3 processor @ 3.3 
GHz and 16 GB memory.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5.5 For FC-1, (a). IMFs and residual obtained by EMD; Time-frequency-energy 
spectrum: (b) the dynamic voltage, (c) all IMFs, (d) the residual. 

The HHT-based method proposed in Section 5.2 is utilized to extract the HI, and the 
threshold of IF is set to 0.005 Hz. The dynamic voltage of FC-1 is decomposed into eleven 
IMFs and one residual, while the dynamic voltage of FC-2 is decomposed into nine IMFs 
and one residual. Figure 5.5 (a) and Figure 5.6 (a) show the partial (1st, 5th, 9th) IMFs 
and the final residual of FC-1 and FC-2, respectively. Besides, Figure 5.5 (b), (c), and (d) 
show the time-frequency-energy spectrum of the dynamic voltage (original signal), all 
IMFs, and residual of FC-1, respectively. Similarly, Figure 5.6 (b), (c), and (d) correspond 
to FC-2. The HHT-based HI extraction method square effectively separates the high-
frequency features (IMFs) and the low-frequency feature (residual) of the dynamic 
voltage signal. By analyzing the instantaneous energy distribution of IMFs, it facilitates 
to identify fuel cell abnormal operation. For instance, in Figure 5.5 (c) and Figure 5.6 (c), 
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most of the instantaneous energies are at low levels. Whereas several obvious 
instantaneous energy anomaly peaks can be found, which correspond to the abnormal 
operation of FC-1 and FC-2 mentioned in Section 3.3 and/or Section 4.4. In contrast, the 
residual retains a relatively high level of instantaneous energy, as in Figure 5.5 (d) and 
Figure 5.6 (d). The instantaneous energy distribution of the residual shows a natural 
decreasing trend along the ageing time. This allows the residual to indicate the intrinsic 
degradation process of stack voltage.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5.6 For FC-2, (a). IMFs and residual obtained by EMD; Time-frequency-energy 
spectrum: (b) the dynamic voltage, (c) all IMFs, (d) the residual. 

In addition, the rationality of the proposed method is evaluated by comparing it with 
two other HI extraction methods. The first method uses the degradation model proposed 
in [103]. The equivalent internal resistance is obtained by piecewise linear regression 
and the virtual steady-state voltage is reconstructed as HI. Hereinafter, it is called the 
“Curve-fitting” method. The second method utilizes the linear parameter-varying model 
structure, as in [85], which in turn is combined with autoregressive model with 
exogenous input. Hereinafter, it is called “LPV-ARX” method. The virtual steady-state 
voltage is extracted as HI by combining time-varying properties identification and 
sliding-window methods. The HIs extracted by all three methods are normalized and 
rescaled into the range of zero to one. As in Figure 5.7, all three methods match well on 
both PEMFC stacks, besides a few outlier points. In particular, they all capture the 
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inherent voltage degradation trend. This is crucial for both analyzing the PEMFC 
degradation and predicting the RUL.  

 
(a) 

 
(b) 

Figure 5.7 Comparison of health indicators extracted based on HHT with the other 
two methods, for (a) FC-1; (b) FC-2. 

Method 
Execution time (s) 

FC-1 FC-2 
Curve-fitting 55.61 51.85 

LPV-ARX 1167.77 518.42 
HHT 21.73 16.93 

Table 5.4 Computational cost comparison of the three methods. 

Further, the computational costs of the three methods are compared, as in Table 5.4. 
LPV-ARX has the highest computational cost and is significantly more than the other 
methods. The computational cost of HHT is slightly lower than that of Curve-fitting. It is 
noteworthy that the FC-1 ageing test duration is about 50% longer than the FC-2. The 
increase in ageing data causes the computational cost of LPV-ARX to expand significantly. 
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In contrast, for the other two methods, the computational cost impact of the increased 
ageing data is not significant.  

5.5.3. Evaluate the predicted lifetime 
For properly evaluating the RUL prediction performance, nine prognostics test points 

are set for FC-1, as in Figure 5.8 (a), with 147.5 hours between each two prognostics 
points. Meanwhile, twelve prognostics test points are set for FC-2, as in Figure 5.8 (b), 
with 49 hours between each two prognostics points. Then, ten failure thresholds from 0 
to 0.09 spacing 0.01 are set. Twenty ABBA-GRU models are deployed with random 
initialization of the weight matrix, and for each model, the configuration is as follows: 
ABBA tolerance is set to 0.001; The types of clusters coefficient k is chosen adaptively 
between 1 and 100; Two GRU layers are included, each with 50 hidden units. The 
training process is optimized using Adam [116], the training learning rate is set to 0.001, 
the batch size is 128, and the maximum training epoch is 10,000.  

 
(a) 

 
(b) 

Figure 5.8 Prognostics points set on health indicators, for (a) FC-1, (b) FC-2; 
Comparison of trends predicted by ABBA-LSTM and ABBA-GRU, (a) from FC-1 at hour 

590, (b) from FC-2 at hour 343. 
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In order to concretize the enhancement of the GRU model on the prediction 
performance, a comparison experiment between the ABBA-LSTM model and the ABBA-
GRU model is arranged. In this case, the ABBA-LSTM model is set up in the same way as 
Chapter 4. For FC-1, one of the degradation trends predicted by each model at hour 590 
is shown in Figure 5.8 (a). For FC-2, one of the degradation trends predicted by each 
model at hour 343 is shown in Figure 5.8 (b). The degradation trends predicted by the 
two models are similar, but there are differences in the computational costs. In 
comparison, the computational cost of the ABBA-GRU model is reduced by more than 
30%, as in Table 5.5.  

 
(a) 

 
(b) 

Figure 5.9 The predicted RULs at different failure thresholds from: (a) FC-1; (b) FC-2. 

The ABBA-GRU model is deployed at each prognostics point and the RUL is predicted. 
The RUL prediction results for FC-1 and FC-2 are shown in Figure 5.9 (a) and (b), 
respectively. For FC-1, all PHs reach 1032.5 hours. Among all the 90 prognostics points 
under different failure thresholds, 63 points meet the 𝛼– 𝜆 performance requirements, 
with a passing rate of 70%. For FC-2, the maximum PH is 441 hours, the minimum is 392 
hours, and the average is 411.6 hours. Among all the 120 prognostics points under 
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different failure thresholds, 92 points met the 𝛼– 𝜆 performance requirements, with a 
passing rate of 77%.  

Method Training duration (s) Prediction duration (s) 
FC-1 FC-2 FC-1 FC-2 

ABBA-LSTM 689.42 524.26 53.59 49.22 
ABBA-GRU 465.72 354.15 37.28 34.24 

Table 5.5 Computational cost comparison of ABBA-LSTM and ABBA-GRU. 

 
(a) 

 
(b) 

Figure 5.10 The distribution of RAs at different failure thresholds from: (a) FC-1; (b) 
FC-2. 

Figure 5.10 (a) and (b) show the relative accuracies for FC-1 and FC-2, respectively. 
The red “+” in the upper part of Figure 5.10 (a) and (b) corresponds to the RA of outlier 
points. Overall, the accuracy of the prediction improves over time. The distribution of RA 
under different failure thresholds fluctuates slightly and is consistent overall. In 
summary, the prognostics performance of the proposed method is stable with 
satisfactory accuracy under different failure thresholds.  
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5.6. Discussion 
In this Chapter, a data-driven prognostics approach is proposed for fuel cells under 

dynamic operating conditions. A Hilbert-Huang transform-based method is utilized to 
extract the health indicator from the dynamic voltage of fuel cells. The historical health 
indicator data is used to train the ABBA-GRU model, which in turn predicts the 
degradation trends and the remaining useful life of the stack. Dynamic load ageing 
experiments are carried out on two different types of fuel cells, and the prognostics 
approach is evaluated with the ageing data. The following conclusions can be 
summarized from the experimental and simulation results.  

(1) The extracted health indicators characterize the inherent degradation 
behaviour of the stack voltage and the extraction method is computationally 
low-cost.  

(2) The symbolic-based gated recurrent unit model provides a credible 
prognostics horizon of up to 2-6 weeks.  

(3) While obtaining similar prediction performance as the ABBA-LSTM model, the 
computational cost of the ABBA-GRU model is reduced by 30%.  

(4) The ABBA-GRU model exhibits satisfactory relative accuracy and consistency 
under multiple failure thresholds.  

The above approach enhances real-time performance while providing a credible 
prognostics horizon and appropriate prediction accuracy. It facilitates the online 
deployment of the prognostics method.  
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6. Conclusion and perspectives 

6.1. Main contributions summary 
Shortage of durability is an essential factor limiting the large-scale commercial rollout 

of fuel cells. The prognostics technology is beneficial to provide suitable operating 
control and maintenance schedule that can enhance durability and reduce cost. This 
dissertation aims to address the challenges of extracting health indicators under 
variable load conditions, improving the accuracy/efficiency of predicting degradation 
states, enhancing the reliability of estimating remaining useful life, etc. The main 
contributions are summarized as follows.  

A navigation sequence driven LSTM model for long-term prognostics is proposed. In 
this case, a navigation sequence is firstly generated by using an autoregressive 
integrated moving average model with exogenous variables. The sequence is then fed 
iteratively into LSTM in the implementation stage to achieve long-term perdition. The 
simulation and experimental results show that the cumulative error of multi-step 
prediction of the LSTM model is optimized. Prediction results are able to break through 
the limitations of historical degradation data. The proposed prognostics strategy has 
better long-term degradation trend prediction consistency and remaining useful life 
estimation robustness.  

In order to extract reliable degradation indicators for prognostics in FC operating 
under variable load conditions and to improve the long-term prediction performance of 
the prognostics model. A fusion prognostics strategy is proposed. Specifically, the 
system dynamics is identified by using an electrochemical mechanism model and the 
degradation indexes are extracted based on the identified model parameters. 
Subsequently, a reduced-dimensional symbolic representation based long short-term 
memory network is developed for predicting the evolution of degradation. The 
degradation mechanism model can be used to identify degradation indexes in dynamic 
operating conditions. Based on the prognostics model, accurate RUL prediction can 
further be achieved over the extracted degradation indexes.  

A hybrid "data-driven" + "data-driven" approach is proposed for fuel cell prognostics 
under dynamic operating conditions. Based on the modified HHT method, health 
indicators are extracted from the dynamic voltage of the fuel cell. The GRU model is used 
to replace the LSTM for improving the computational efficiency. The health indicators 
extracted by this method are reliable and the algorithm is computationally low-cost. 
This data-driven hybrid prognostics-based approach can provide a hundreds of hours 
prognostics horizon. Robust prognostics performance consistency is exhibited under 
several different failure thresholds.  
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6.2. Perspectives 
Although the above work has been able to accurately extract and/or predict some of 

the health indicators, it is still not fully apply this result to diverse practical operating 
conditions of fuel cells.  

In future work, efforts will be made to explore the effects of loading conditions on 
various degradation processes. Attempt to differentiate the degradation stages of fuel 
cells, e.g., according to the rate of degradation. Develop specific prognostics strategies 
for different degradation stages. In addition to variable loads, more variable operating 
parameters that may cause fuel cell performance degradation should be considered, 
such as ambient temperature, humidity, altitude, cleanliness of the air, etc. In parallel, 
the sensitivity of the prognostics models will be investigated under different practical 
operating conditions. Try to explore and focus on the commonality of degradation in 
different models/power fuel cells aiming to improve the prognostics model sensitivity. 

In terms of historical degradation data processing, when recoverable performance 
loss is frequent, the prognostics is usually not satisfactory. Efforts to explore further 
separation of recoverable performance loss and inherent long-term degradation 
characteristics will hopefully alleviate this issue. For instance, the identification and 
removal of non-natural aging components from health indicators will be explored, as 
well as the appropriate combination of multiple health indicators to improve aging 
prediction performance. 

In the area of life-extension-based operational control, efforts will be made to explore 
prognostics-based operational monitoring and maintenance decisions to extend the life 
of fuel cells. For instance, try to find out which operating conditions bring the least loss 
of fuel cell performance. This will be useful to support the life extension strategy. 
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