Keywords: quantum optics, open quantum systems, phase transitions, polaritons, nonequilibrium systems, many-body physics, reservoir engineering, quantum simulation, frustrated magnetism, reservoir computing, machine learning, relativistic quantum information, quantum engineering optique quantique, systèmes quantiques ouverts, transitions de phase, polaritons, systèmes hors équilibre, physique à N corps, ingénierie de réservoir, simulation quantique, magnétisme frustré, calcul par réservoir, apprentissage automatique, information quantique relativiste, ingénierie quantique

This thesis is devoted to the study of reservoir-induced dynamics and reservoir computing in the context of quantum optics, structured along three major axes: (1) the dissipative dynamics of a quantum system in the presence of the environment (modeled as a reservoir); (2) harnessing dissipation as a resource by appropriate design of the reservoir to achieve desired control over a quantum system (reservoir engineering) and (3) exploiting the dynamics of a reservoir itself for information-processing applications (reservoir computing). In the first part, we study a dissipative phase transition in a photonic system subjected to a coherent optical drive. We propose an all-optical technique of tuning the spatial geometry of the system in situ and demonstrate that a first-order dissipative phase transition emerges in a two-dimensional (2D) configuration but not in 1D. We show the experiments validating our theoretical predictions, representing the first experimental demonstration of the role of dimensionality in determining criticality in photonic systems. In the second part, we address the theory of reservoir engineering. We derive the effective dynamics induced by a strongly dissipative single-mode reservoir, and propose a photonic quantum simulator for antiferromagnetic spins by applying the theory. We show that the reservoir is capable of mediating both coherent and dissipative antiferromagneticlike couplings between the simulated spins, and that the dissipative coupling alone can induce frustration in the system. The final part explores the paradigm of reservoir computing in relativistic quantum information. Here, the reservoir refers to a generic physical system with nontrivial response dynamics when subjected to some input, that one can exploit to construct useful representations of the input information. The system studied consists of a quantum detector undergoing relativistic motion inside a cavity, that can be implemented on analog platforms such as circuit QED. We illustrate the proposed reservoir-computing scheme with a supervised classification task via numerical simulation of the system, and show that the relativistic quantum effects bring a considerable enhancement to the performance of the classifier. This shows that one can harness information-processing power from the fundamental laws of physics, providing a first instance of relativity-inspired quantum reservoir computing.
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Ever since Max Planck's quantum hypothesis in his explanation of blackbody radiation in the year 1900 [START_REF] Planck | Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum[END_REF], the development of modern quantum mechanics in the early decades of the XX th has revolutionized our understanding of the universe around us. While quantum physics proves to be one of the most successful theories ever invented in the history of science surviving precise experimental tests1 [START_REF] Kleppner | One Hundred Years of Quantum Physics[END_REF], and serves as the fundamental framework for the standard model of modern particle physics [START_REF] Gaillard | The standard model of particle physics[END_REF], it has hardly been an easy pill to swallow due to its counterintuitiveness, even for the founders of this theory. Niels Bohr, who proposed the first successful quantum model for the Hydrogen atom [START_REF] Bohr | I. on the constitution of atoms and molecules[END_REF], once said to Werner Heisenberg, "those who are not shocked when they first come across quantum theory cannot possibly have understood it." [START_REF] Heisenberg | Physics and Beyond: Encounters and Conversations[END_REF] Indeed, unlike in classical mechanics, where the state of a particle can be completely specified by its position and momentum, the state of a quantum mechanical particle lives in a (possibly infinite-dimensional) complex vector space known as the Hilbert space and can be a coherent superposition of classically different states, i.e. it can be both here and there at the same time. Moreover, the coherence signifies that the different states involved in a superposition have well-defined phase relations, such that they can interfere with each other just like waves do2 , which manifests the famous wave-particle duality. While it might still be acceptable to imagine a single electron in a double-slit experiment [START_REF] Davisson | Diffraction of Electrons by a Crystal of Nickel[END_REF] to go through both slits and interfere with itself, or to interpret the angular momentum of a silver atom to be both up and down in the Stern-Gerlach experiment [START_REF] Gerlach | Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld[END_REF], it would be a daunting idea to consider a macroscopic cat as being in a coherent superposition of being both dead and alive. The celebrated Schrödinger's cat thought experiment was original conceived by Erwin Schrödinger [START_REF] Schrödinger | Die gegenwärtige Situation in der Quantenmechanik[END_REF] in a discussion with Albert Einstein as a "ridiculous case" to question the interpretation of quantum mechanics.

Although it still remains a philosophical debate to explain how quantum theory might correspond to some "reality", general consensus has been reached among physicists regarding why we never observe macroscopic objects (such as cats) in coherent superposition states. This is because every realistic system is in contact with its surrounding environment, which can be regarded as a reservoir consisting of virtually infinitely many degrees of freedom. This interaction causes the system to be entangled with the environment, such that the coherence irreversibly leaks into the environment and can no longer be recovered on the system alone. This process is known as decoherence, and has been well supported by experimental evidences [START_REF] Myatt | Decoherence of quantum superpositions through coupling to engineered reservoirs[END_REF]. The larger a system is, the more it couples to the environment, which means that it will suffer more decoherence and retain less quantumness, therefore aligning better with our daily intuitions.

Today, merely a century after the birth of quantum mechanics, we are in the midst of the second quantum revolution [START_REF] Macfarlane | Quantum technology: the second quantum revolution[END_REF], where the rapid development in experimental techniques has started to allow us to conceive and construct complex devices exploiting the fundamental laws of quantum mechanics. One of the most exciting avenues of research in quantum technologies is quantum computing [START_REF] Steane | Quantum computing[END_REF], a field at the interface of information theory, computer science and quantum physics, which can date back to the idea of simulating quantum physics using quantum systems as presented by Richard Feynman in 1982 [START_REF] Feynman | Simulating physics with computers[END_REF]. Due to the immensity of the Hilbert space and the inherent parallelism provided by quantum superpositions, quantum computers are expected to overwhelmingly beat their classical counterparts in solving certain classes of problems [START_REF] Nielsen | Quantum Computation and Quantum Information: 10th Anniversary Edition[END_REF]. While classical computers can be easily built in large scales with more than a hundred billion transistors on a single chip that runs under room conditions, quantum computers are much more fragile since their advantage relies on the quantumness, which can be easily destroyed by the environment via decoherence, the same process that kills the Schrödinger's cat [START_REF] Ball | How decoherence killed Schrödinger's cat[END_REF]. Among several explored implementations for quantum computing, such as trapped ions [START_REF] Cirac | Quantum Computations with Cold Trapped Ions[END_REF][START_REF] Häffner | Quantum computing with trapped ions[END_REF][START_REF] Blatt | Quantum simulations with trapped ions[END_REF], nuclear magnetic resonance [START_REF] Warren | The Usefulness of NMR Quantum Computing[END_REF][START_REF] Jones | Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer[END_REF] and quantum dots [START_REF] Loss | Quantum computation with quantum dots[END_REF][START_REF] Kloeffel | Prospects for Spin-Based Quantum Computing in Quantum Dots[END_REF], quantum optical platforms [START_REF] Kok | Linear optical quantum computing with photonic qubits[END_REF][START_REF] O'brien | Optical Quantum Computing[END_REF][START_REF] Menicucci | One-Way Quantum Computing in the Optical Frequency Comb[END_REF] and superconducting circuits [START_REF] You | Superconducting Circuits and Quantum Information[END_REF][START_REF] Wendin | Quantum information processing with superconducting circuits: a review[END_REF] (which are analogs of quantum optics) are often considered as the most promising candidates. The first demonstrations of quantum advantage have been realized on these platforms (for specific and limited tasks) in very recent years [START_REF] Arute | Quantum supremacy using a programmable superconducting processor[END_REF][START_REF] Zhong | Quantum computational advantage using photons[END_REF]. Yet, there is still a long way ahead before large-scale universal and fault-tolerant quantum computers can be realized. Despite remarkable advances in experimental techniques of isolating and protecting a quantum system, a finite coupling to the environment cannot yet be avoided [START_REF] Unruh | Maintaining coherence in quantum computers[END_REF][START_REF] Pellizzari | Decoherence, Continuous Observation, and Quantum Computing: A Cavity QED Model[END_REF][START_REF] Zurek | Decoherence, einselection, and the quantum origins of the classical[END_REF] due to the macroscopic nature of the experimental devices.

We are currently in the so-called Noisy Intermediate-Scale Quantum (NISQ) [START_REF] Preskill | Quantum Computing in the NISQ era and beyond[END_REF] era, where quantum devices have to live with noise and decoherence, but can still be useful in other applications, such as exploring many-body quantum physics and quantum neuromorphic computing [START_REF] Marković | Quantum neuromorphic computing[END_REF]. It is therefore a crucial problématique to understand the dynamics of quantum system in the inevitable presence of the environment, that is commonly modeled as a reservoir. Several paths of research can be identified following our discussion, which will be the main subjects treated in this manuscript.

Dissipative quantum dynamics

When coupled to a reservoir, a quantum system exhibits dissipative dynamics and can be treated in the framework of open quantum systems [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF]. In contrast to equilibrium physics, where the state of a system relaxes to thermal equilibrium with the environment, a dissipative system with an external drive evolves towards a nonequilibrium steady state, which can exhibit rich and exotic properties that are absent in their equilibrium counterparts [START_REF] Comaron | Dynamical Critical Exponents in Driven-Dissipative Quantum Systems[END_REF][START_REF] Zhu | Dicke time crystals in driven-dissipative quantum many-body systems[END_REF][START_REF] Landa | Multistability of Driven-Dissipative Quantum Spins[END_REF]. In the first part of the manuscript, the driven-dissipative dynamics of light will be studied in a quantum optical system, namely the semiconductor microcav-ity [START_REF] Carusotto | Quantum fluids of light[END_REF]. Due to the light-matter interaction, the photons can strongly interact with each other in such cavities, making them ideal platforms for studying many-body physics and hydrodynamics of photons [START_REF] Brambilla | Transverse laser patterns. II. Variational principle for pattern selection, spatial multistability, and laser hydrodynamics[END_REF][START_REF] Staliunas | Laser Ginzburg-Landau equation and laser hydrodynamics[END_REF]. In particular, we will study a dissipative phase transition [START_REF] Kessler | Dissipative phase transition in a central spin system[END_REF] of light, an out-of-equilibrium phenomenon resulting from the rich interplay between the driving, the quantum fluctuations and dissipation. We will also show the first experimental demonstration of the role of spatial dimensionality in determining phase transitions of photons based on our theoretical study [γ].

Reservoir engineering

Since coupling to a reservoir is inevitable for a quantum system, we can rather try to harness the effect of dissipation to achieve desirable control on the system via appropriate design of the reservoir and the coupling, a process called reservoir engineering. Indeed, it has been demonstrated that engineered dissipation does not necessarily lead to decoherence, but can instead help stabilize certain quantum states (even analogs of Schrödinger cats) [START_REF] Leghtas | Confining the state of light to a quantum manifold by engineered two-photon loss[END_REF][START_REF] Minganti | Exact results for Schrödinger cats in driven-dissipative systems and their feedback control[END_REF][START_REF] Touzard | Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation[END_REF][START_REF] Grimmer | Machine learning quantum field theory with local probes[END_REF]. In the second part of the manuscript, we show how a strongly dissipative cavity can serve as an engineered reservoir when coupled to another quantum system. The dissipative nature of the reservoir implies that it has a much faster time scale as compared to the system it couples to, such that the fast and slow dynamics effectively decouple, which allows us to derive an effective description in terms of the system alone by adiabatically eliminating the fast dynamics of the reservoir [START_REF] Denis | Permanent Directional Heat Currents in Lattices of Optomechanical Resonators[END_REF][START_REF] Denis | Reservoir-induced control and learning in quantum and classical systems[END_REF]. The effective dynamics induced by the reservoir can be regarded as both coherent and dissipative couplings between the system's degrees of freedom mediated via the reservoir, which can be harvested as computational resources, such as for analog simulation of antiferromagnetism and frustration [α].

Reservoir computing

In recent years, the field of machine learning has blossomed with a wide variety of applications [START_REF] Lecun | Deep learning[END_REF][START_REF] Goodfellow | Adaptive Computation and Machine Learning Series[END_REF], and is now going hand-in-hand with quantum physics. On one hand, artificial neural networks have been proven to be powerful tools for solving quantum many-body problems [START_REF] Carleo | Constructing exact representations of quantum many-body systems with deep neural networks[END_REF][START_REF] Choo | Fermionic neural-network states for abinitio electronic structure[END_REF][START_REF] Choo | Symmetries and Many-Body Excitations with Neural-Network Quantum States[END_REF][START_REF] Hartmann | Neural-Network Approach to Dissipative Quantum Many-Body Dynamics[END_REF][START_REF] Melko | Restricted Boltzmann machines in quantum physics[END_REF][START_REF] Nagy | Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems[END_REF][START_REF] Sharir | Deep Autoregressive Models for the Efficient Variational Simulation of Many-Body Quantum Systems[END_REF][START_REF] Vicentini | Variational Neural-Network Ansatz for Steady States in Open Quantum Systems[END_REF][START_REF] Yoshioka | Constructing neural stationary states for open quantum many-body systems[END_REF], designing quantum circuits [START_REF] Yoshioka | Constructing neural stationary states for open quantum many-body systems[END_REF][START_REF] Fösel | Reinforcement Learning with Neural Networks for Quantum Feedback[END_REF][START_REF] Nautrup | Optimizing Quantum Error Correction Codes with Reinforcement Learning[END_REF] and beyond [START_REF] Pilozzi | Machine learning inverse problem for topological photonics[END_REF][START_REF] Torlai | Neuralnetwork quantum state tomography[END_REF][START_REF] Carleo | Machine learning and the physical sciences[END_REF][START_REF] Fratalocchi | NIST-certified secure key generation via deep learning of physical unclonable functions in silica aerogels[END_REF]. On the other hand, the field of quantum machine learning [START_REF] Schuld | An introduction to quantum machine learning[END_REF][START_REF] Biamonte | Quantum machine learning[END_REF] has also emerged in the last decade, where potential advantages of quantum systems in machine-learning applications are explored. We will be focusing on the latter aspect in this manuscript, and more specifically the paradigm of quantum reservoir computing [START_REF] Mujal | Opportunities in Quantum Reservoir Computing and Extreme Learning Machines[END_REF].

In this context, the term reservoir refers to a generic quantum system that exhibits nontrivial response dynamics when subjected to some input (just like an actual reservoir of water), such that it effectively transforms the input into a (high-dimensional) feature space, that we can exploit to perform machine-learning tasks, such as learning to approximate a function. Such paradigm requires virtually no degree of control over the physical system acting as the reservoir, which is therefore well suited for NISQ applications. The last part of the manuscript will explore the framework of reservoir computing for a relativistic quantum system, where the feature-space embedding is provided by the quantum dynamics of a detector undergoing relativistic motion inside a cavity. This is a typical model studied in the field of relativistic quantum information [START_REF] Peres | Quantum information and relativity theory[END_REF][START_REF] Mann | Relativistic quantum information[END_REF], where one seeks to understand and harness relativistic effects in quantum information-processing protocols. By exploiting the framework of reservoir computing, we demonstrate that one can harness information-processing power from relativistic effects stemming from the fundamental laws of physics [ ].

Structure of the manuscript

Chapter 1 will give an overview of a few general concepts in quantum optics and provide the theoretical building blocks for the rest of the manuscript. The notion of photons will first be introduced by quantizing the classical electromagnetic field in a cavity. The master-equation formalism will then be derived, which allows modeling the drivendissipative dynamics of a quantum system coupled to a reservoir (the environment). This will be followed by discussions on light-matter interactions in various systems, in both static and relativistic regimes.

Chapter 2 is dedicated to the study of critical phenomena of light in a nonlinear photonic system based on our work [γ]. The background and theoretical framework for studying dissipative phase transitions will be discussed in the beginning. We then introduce the experimental technique proposed for probing the role of spatial dimension in determining phase transitions in such photonic systems, followed by our theoretical predictions and the experimental results obtained by our collaborators at Laboratoire Kastler Brossel.

In Chapter 3, the general theory for deriving the effective dynamics induced by a reservoir will be presented, with a focus on the special case of a single-mode dissipative cavity serving as the reservoir. The theoretical framework therein prepares for the discussion in the following chapter.

Chapter 4 will present the results in our work [α], which builds on the general theory introduced in the previous chapter. A photonic simulator of antiferromagnetism will be proposed, where the desired effective dynamics is realized via reservoir engineering. This will be supported by numerical simulations presented thereafter. We further demonstrate that the dissipative effective coupling mediated by the engineered reservoir is capable of inducing frustration in the simulated antiferromagnetic system.

Chapter 5 will explore the paradigm of relativistic quantum reservoir computing [ ]. We will first introduce the general background of relativistic quantum information and reservoir computing, and provide the necessary theoretical tools for treating reservoircomputing problems. The proposed information-processing protocol will then be presented and demonstrated on an illustrative supervised-learning task, showing the enhanced performance provided by relativistic quantum dynamics. A possible analog implementation scheme in circuit QED platforms will also be discussed.

Finally, the manuscript will be closed in the general conclusion, where we summarize the main results and the perspectives.

Theory of quantum optics

This chapter will give a short introduction to the theory of quantum optics, with the aim of laying the theoretical building blocks for the topics covered in the present manuscript. In quantum optics, light is studied as a quantized field, where the elementary excitations take the form of individual quanta of light, known as photons. Historically, the idea of a particle theory of light was first founded by Isaac Newton in his work on optics [START_REF] Newton | Opticks or a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light : also two Treatises of the Species and Magnitude of Curvilinear Figures[END_REF]. Roughly two hundred years later, Max Planck hypothesized that light be emitted in discrete quanta of energy in his theory of blackbody radiation [START_REF] Planck | Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum[END_REF] introduced in the year 1900 (that is often regarded as the birth of quantum physics), which was further evidenced by the photoelectric effect as explained by Albert Einstein in 1905 [START_REF] Einstein | Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt[END_REF]. This lead to the modern formulations of quantum mechanics in the mid-1920s. Later in the 1960s, the demonstration of the first working lasers [START_REF] Maiman | Stimulated Optical Radiation in Ruby[END_REF] marked the beginning of modern quantum optics, which focuses on the study of interaction between light and matter at a quantum level. Quantum optics today plays an important role in modern physics, with applications ranging from quantum metrology [START_REF] Giovannetti | Advances in quantum metrology[END_REF] (which lead to the first observation of gravitational waves [START_REF]Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF]) to quantum information and computation [START_REF] Bennett | Quantum information and computation[END_REF].

Our discussion will start with the quantum description of a cavity resonator, the paradigmatic system of central importance in quantum optics. In Sec. I, we will start from the classical Maxwell equations and perform the quantization procedure, from which the notion of photons naturally appear. In Sec. II, the effect of the surrounding environment on the cavity will be discussed by modeling the cavity field coupled to a reservoir. Under certain approximations, an effective description known as the master equation can be derived, which allows us to model the driven-dissipative dynamics of photons in the cavity. Starting from Sec. III, we will introduce light-matter interactions based on a simple phenomenological model describing a quantum detector inside an optical cavity. Sec. III focuses on the regime where both the cavity and detector are at rest, which is the conventional setting considered in quantum optics. In particular, exciton-polariton systems will be discussed in detail, as a typical platform for strong light-matter interactions. In Sec. IV, we will focus on the regime where the quantum detector undergoes (relativistic) motion in a static cavity (or free field), where the same theoretical framework established in the previous sections allows us to derive some elegant results such as the Unruh effect and Hawking radiation. Finally, we conclude this chapter in Sec. V.

I Quantum description of a cavity resonator

One of the most important systems studied in quantum optics is the cavity resonator, which in the simplest case can be schematically visualized as a device consisting of two parallel mirrors capable of confining light. When the mirrors are highly reflective, light will go through many round trips between them before escaping. Therefore, if one places atoms inside the cavity, this will allow the study of interactions between light and matter in a well-controlled setting, a subject known as cavity quantum electrodynamics (QED) [START_REF] Haroche | Cavity Quantum Electrodynamics[END_REF][START_REF] Berman | Cavity quantum electrodynamics[END_REF][START_REF] Walther | Cavity quantum electrodynamics[END_REF]. To prepare for this discussion, we first provide a brief introduction to the quantum model of light, obtained by quantizing the classical theory of electromagnetism.

I.1 From Maxwell's equations to photons

The classical theory of electromagnetism is summarized by the famous Maxwell's equations [START_REF] Maxwell | VIII. A dynamical theory of the electromagnetic field[END_REF], which well established the wave-like aspect of light before the dawn of quantum physics. In the absence of sources (charge or currents), these equations can be written as

∇ × B = 1 c 2 ∂ ∂t E , ∇ • E = 0 , ∇ × E = - ∂ ∂t B , ∇ • B = 0 , (1.1) 
where E and B are the electric and magnetic fields, and c = 1/ √ ε 0 µ 0 is the speed of light in vacuum, with ε 0 the vacuum permittivity and µ 0 the vacuum permeability. In the covariant formalism of electromagnetism, it is convenient to define the four-potential A µ = (φ/c, A), with φ the electric potential and A the magnetic vector potential, such that

E = -∇φ - ∂ ∂t A , B = ∇ × A . (1.2)
Defining the electromagnetic field strength tensor [START_REF] Minkowski | Die grundgleichungen für die elektromagnetischen vorgänge in bewegten körpern[END_REF] 

F µν ≡ ∂ µ A ν -∂ ν A µ ,
the Maxwell's equations can be elegantly derived from the Lagrangian density

1 L = - 1 4µ 0 F µν F µν = 1 2 ε 0 E 2 - 1 µ 0 B 2 , (1.3)
which is a Lorentz scalar. The equations of motion are obtained by the variational principle2 :

δS ≡ δ d 4 x L = 0 =⇒ ∂ µ F µν = 0 , (1.4)
giving the first line of Eq. (1.1). The other two equations can be written as the Bianchi identity

∂ µ F νλ + ∂ ν F λµ + ∂ λ F µν = 0 , (1.5)
which is automatically satisfied by electromagnetic fields derived from a four-potential A µ , as one can explicitly check using the definition of F µν . The Lagrangian density (1.3) also gives us the conjugate momentum Π µ and the Hamiltonian density H3 :

Π µ = ∂L ∂(∂ 0 A µ ) , H = Π µ ∂ 0 A µ -L = 1 2 ε 0 E 2 + 1 µ 0 B 2 , ( 1.6) 
which will be useful when we perform the canonical quantization of the electromagnetic field later. Note that the field strength tensor F µν is invariant under the gauge transformation A µ → A µ -∂ µ χ for any scalar function χ(x µ ). In the so-called Lorenz gauge where one chooses χ(x µ ) such that ∂ µ A µ = 0, the equation of motion becomes

A ν ≡ ∂ µ ∂ µ A ν = 0 . (1.7)
In free space, this equation admits plane wave solutions of the form

A µ ∝ µ (k)e ±i(ω k t-k•x)
with the dispersion relation ω k = c k and µ is a polarization vector. One can further impose the Coulomb gauge condition by setting A 0 = 0, which implies ∇ • A = 0 and uniquely determines A µ with no more gauge freedom left. Note that this choice leads to k • = 0, which means that only two physical independent degrees of freedoms (the two transverse polarizations) are allowed in the four-component vector A µ . In fact, this redundancy in the degree of freedom of A µ resulting from the gauge invariance of electromagnetism makes the canonical quantization of the electromagnetic an awkward subject [START_REF] Peskin | An Introduction to quantum field theory[END_REF]. One typically needs to explicitly choose a gauge that breaks the Lorentz symmetry (which is not elegant), such as the Coulomb gauge, or use modern methods to perform a gauge-invariant quantization, as detailed in [START_REF] Weinberg | The quantum theory of fields[END_REF][START_REF] Weinberg | The quantum theory of fields[END_REF].

For simplicity, let us continue our discussion in the Coulomb gauge, and quantize the electromagnetic field propagating along a single direction (the z direction) in a cavity consisting of two infinite planar mirrors (parallel to the Oxy plane) separated by a distance of L C along the z axis, as sketched in Fig. 1.1. Assuming the cavity mirrors to be ideal conductors, the electric field (and hence the vector potential, since we are in the Coulomb gauge) must have zero tangential component at the cavity walls z = z * ∈ {0, L c }. We will consider the quantization of the field within some volume V = L c A delimited by a surface area of A along the cavity plane 4 . The general solution of the field can therefore be expanded in the orthonormal basis of sine functions:

A(t, z) = ∞ n=1 2 σ=1 σ q n,σ (t) 2 ε 0 V sin(k n z) , (1.8) 
where k n = nπ/L c and σ is a unit vector that satisfies † σ σ = δ σ,σ and † σ e z = 0, representing the two possible transverse polarizations of the electric field propagating 

L = A dxdy Lc 0 dz 1 2 ε 0 E 2 - 1 µ 0 B 2 = n,σ 1 2 q2 n,σ -c 2 k 2 n q 2 n,σ , H = A dxdy Lc 0 dz 1 2 ε 0 E 2 + 1 µ 0 B 2 = n,σ 1 2 p 2 n,σ + c 2 k 2 n q 2 n,σ , (1.9) 
with p n,σ = qn,σ the conjugate momentum. The equations above describe nothing but a set of decoupled unit-mass simple harmonic oscillators with frequencies ω n = ck n . The canonical quantization then follows directly by promoting the conjugate variable to operators (p n,σ , q n,σ ) → (p n,σ , qn,σ ) satisfying the canonical commutation relation [q n,σ , pn ,σ ] = i δ n,n δ σ,σ . Defining the usual creation and annihilation operators â( †) (1.12)

n,σ via qn,σ = 2ω n â † n,σ + ân,σ , pn,σ = i ω n 2 â † n,σ -ân,σ , ( 1 
The state vector |ψ lives in the Hilbert space spanned by the Fock basis

|N l 1 , N l 2 , . . . , N l i , . . . ≡ 1 N l 1 ! N l 2 ! • • • N l i ! • • • (â † l 1 ) N l 1 (â † l 2 ) N l 2 • • • (â † l i ) N l i • • • |0 , (1.13)
where l ≡ (n, σ) labels the mode number and polarization and |0 is the vacuum state defined by âl |0 = 0 , ∀l. N l ≥ 0 represents the number of elementary excitations, known as photons, in the l-th mode of the cavity. Finally, we can write the operators for the field observables in the interaction picture5 :

Â(t, z) = l l ε 0 V ω l âl e -iω l t + â † l e iω l t sin(k l z) , Ê(t, z) = i l l ω l ε 0 V âl e -iω l t -â † l e iω l t sin(k l z) , B(t, z) = 1 c l (e z × l ) ω l ε 0 V âl e -iω l t + â † l e iω l t cos(k l z) , (1.14)
where the quantity ω l /ε 0 V has the dimension of electric field. So far, we have only considered modes with zero wavevector component parallel to the cavity planes, which is a valid assumption in many quantum-optical settings, as the cavity modes can be laterally confined with various experimental techniques [START_REF] Amo | Cavity Polaritons: Crossroad Between Non-Linear Optics and Atomic Condensates[END_REF][START_REF] Daïf | Polariton quantum boxes in semiconductor microcavities[END_REF], making the cavity effectively a "photonic box"6 . We will also ignore the polarization (spin) degree of freedom of the photons from now on, which is a safe assumption for all the phenomenology considered in this manuscript as one often works with a single polarization in many experimental circumstances in quantum optics [START_REF] Carusotto | Quantum fluids of light[END_REF]. In addition, as the energy spacing between different modes is inversely proportional to the cavity length (ω n = cnπ/L), in situations where all relevant physical processes happen quasiresonantly around the energy of a certain mode, it is customary to assume that the cavity hosts only a single photonic mode.

In the complementary scenario where the cavity photons are not confined laterally and are free to propagate in the plane parallel to the cavity mirrors, the Hamiltonian for the quantized field reads

7 Ĥ = kz d 2 k ω(k)â † (k)â(k), (1.15) 
where k z = nπ/L is quantized as before (hence the discrete sum), while the in-plane component k forms a continuum and serves as a good quantum number due to the translational symmetry of the system in the Oxy plane. The commutation relations become

[â(k), â † (k )] = δ kz,k z δ 2 (k -k ).
For a fixed k z , the dispersion relation with 10
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respect to k ≡ k is ω(k) = c k 2 z + k 2 ω k=0 + k 2 2m cav , ( 1.16) 
where ω k=0 = ck z and m cav = ω k=0 /c 2 is the effective mass of the cavity photon, which arises due to the confinement along the z direction. This dispersion relation resembles that of a relativistic particle with rest mass m cav , and is approximately parabolic for small in-plane wavevector k. For cavities embedding a medium with constant refractive index n 0 , it suffices to rescale the speed of light c → c/n 0 in the above expressions to obtain the correct dispersion relation.

II Coupling to a reservoir

The Schrödinger equation (1.12) we wrote down previously for the cavity field is valid if the cavity is free from interaction with any other system. However, this is never the case in reality, as the perfect isolation of a quantum system still presents a major experimental challenge (which is one of our biggest obstacles to realizing universal quantum computers8 [START_REF] Unruh | Maintaining coherence in quantum computers[END_REF][START_REF] Pellizzari | Decoherence, Continuous Observation, and Quantum Computing: A Cavity QED Model[END_REF]). In other words, a realistic quantum system is constantly interacting with its environment [START_REF] Zurek | Decoherence, einselection, and the quantum origins of the classical[END_REF], and is therefore part of a (much) larger (and messy) quantum system with virtually infinitely many degrees of freedom, making the exact modeling of its dynamics intractable in practice. Luckily, under certain approximations, an effective description involving only the system's degrees of freedom can be derived, which allows us to study the dissipative dynamics of the system under the influence of the environment. This can be achieved by modeling the environment as a Markovian reservoir that is weakly coupled to the system, and we will follow [START_REF] Denis | Reservoir-induced control and learning in quantum and classical systems[END_REF] to derive the so-called master equation formalism.

II.1 Master equation

Let us model the environment with a reservoir consisting of a large set of harmonic oscillators (bosonic modes), which can well describe, for example, the electromagnetic field in the environment when the system of interest is an optical cavity, a typical scenario considered in this manuscript. In this section, we will focus of a single bosonic mode of the system weakly coupled to the reservoir, i.e. a local reservoir for the system. The more general case involving possibly nonlocal reservoirs will be discussed in Chapter 3.

The bare Hamiltonians of the system ( ĤS ) and the reservoir ( ĤR ) are given by

ĤS = ω S â † â , ĤR = λ ω λ ĉ † λ ĉλ , (1.17)
where â (ĉ λ ) is the annihilation operator of the system (reservoir) mode with bare angular frequency ω S (ω λ ). Assuming that the system and the reservoir, originally decoupled, are put into contact at time t 0 , the system-reservoir coupling can be captured by the interaction Hamiltonian ĤI = Ŝ ⊗ R ,

≡ (â + â † ) ⊗ λ g * λ ĉλ + g λ ĉ † λ , (1.18) 
which takes a minimally coupled form, where we absorbed the coupling constants g λ (with dimension of frequency) into the bath operator R. The full state of the systemreservoir ensemble can be represented by a density matrix ρSR , that undergoes unitary time evolution generated by Hamiltonian:

d dt ρSR = - i ĤS + ĤR + ĤI , ρSR . (1.19)
We now transform into the interaction picture (see Appendix A) using the free Hamiltonian Ĥ0 ≡ ĤS + ĤR , and denote the transformed operators by Õ(t) = e i Ĥ0 (t-t 0 )/ Ôe -i Ĥ0 (t-t 0 )/ . The dynamical equation can then be rewritten as

d dt ρSR (t) = - i HI (t), ρSR (t) , (1.20) 
which can be integrated to give

ρSR (t) = ρSR (t 0 ) - i t t 0
dt HI (t ), ρSR (t ) .

(

Plugging this back to Eq. (1.20) and taking the partial trace over the reservoir degrees of freedom, we obtain the effective dynamics for the reduced density matrix of the system ρS ≡ Tr R [ρ SR ]:

d dt ρS (t) = - 1 2 t t 0 dt Tr R HI (t), [ HI (t ), ρSR (t )] , (1.22) 
where we assumed Tr R {[ HI (t), ρSR (t 0 )]} = 0 (which is satisfied for example when the reservoir is initially in a thermal state). This equation is still exact yet intractable, and we need further assumptions to simplify it. We now assume that the system-reservoir coupling is sufficiently weak to have negligible influence on the state of the reservoir, such that the reservoir is constantly in its steady state ρR (t 0 ) with respect to its bare Hamiltonian [i.e. we have [ ĤR , ρR ] = 0 and ρR (t) = ρR (t) = ρR (t 0 ), ∀t]. This is known as the Born approximation, where we replace ρSR in the integrand by the factorized tensor product ρSR (t) ρS (t) ⊗ ρR (t 0 ), (1.23) which is valid for coarse-grained time scales with respect to the lifetime of the reservoir excitations τ R due to the interaction with the system. This leads to a closed equation for the system density matrix when inserted into Eq. ( We now transform back into the Schrödinger picture and invoke the form of the interaction Hamiltonian ĤI = Ŝ ⊗ R. Defining the reservoir correlation function

G(τ ) ≡ R(t 0 + τ ) R(t 0 ) = Tr Re -i ĤR τ Rρ R (t 0 )e i ĤR τ , (1.25)
the equation of motion becomes

d dt ρS (t) = - i ĤS , ρS (t) - t-t 0 0 dτ G(τ ) Ŝ, e -i ĤS τ Ŝ ρS (t -τ )e i ĤS τ + H.c. (1.26)
which involves the state of the reservoir at times prior to t. We now perform the Markov approximation by ignoring the effect of the reservoir on the dynamics of the system state at time scales τ τ R [i.e. assuming e -i ĤS τ ρS (t -τ )e i ĤS τ = ρS (t), which is equivalent to setting ρS (t ) = ρS (t) in Eq. (1.24)] and by pushing the reference time to the past infinity t 0 → -∞, resulting in a Markovian equation of motion known as the Bloch-Redfield master equation [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF]:

d dt ρS (t) = - i ĤS , ρS (t) - ∞ 0 dτ G(τ ) Ŝ, S(-τ )ρ S (t) + H.c. = - i ĤS , ρS (t) + V ρS (t), Ŝ + Ŝ, ρS (t) V † , (1.27) 
where we defined

V = ∞ 0 dτ G(τ ) S(-τ ) = Γ(ω S )â + Γ(-ω S )â † , ( 1.28) 
with Γ(ω) = ∞ 0 dτ G(t)e iωτ the reservoir correlation spectrum. To make the equation preserve the semipositivity of the system density matrix, we further perform the rotatingwave approximation by keeping only the resonant terms in the commutators involving V ( †) and Ŝ. After splitting the real and imaginary parts of the spectral function Γ(ω) ≡ 1 2 γ(ω) + iΛ(ω), this approximation leads to the Lindblad master equation

d dt ρS = - i ĤS + ω LS â † â, ρS + γ(ω S )D[â]ρ S + γ(-ω S )D[â † ]ρ S , (1.29) 
where ω LS = Λ(ω S ) + Λ(-ω S ) is the Lamb-shift frequency and the dissipator is defined as

D[ L]ρ = Lρ L † - 1 2 L † Lρ + ρ L † L (1.30)
for a Lindblad jump operator L and density matrix ρ. The Lindblad master equation (1.29) generates a dynamical map that is completely positive and trace preserving (CPTP). Indeed, one can show [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF] that for a quantum system undergoing generic CPTP dynamics, the evolution of its density matrix ρ can always be cast into the Lindblad form as

d dt ρ = L(ρ) ≡ - i Ĥ, ρ + j γ j D[ Lj ]ρ , (1.31)
where we denoted the generator of this dynamical map by the superoperator L known as the Liouvillian.

Surprisingly, the formalism presented above can be directly exploited to derived the Unruh effect [START_REF] Fulling | Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time[END_REF][START_REF] Davies | Scalar production in Schwarzschild and Rindler metrics[END_REF][START_REF] Unruh | Notes on black-hole evaporation[END_REF], which is closely related to the celebrated Hawking radiation [START_REF] Hawking | Particle creation by black holes[END_REF] of black holes, without invoking the machinery of quantum field theory in curved spacetimes. We will postpone this derivation to Sec. IV.3 when we introduce the relativistic quantum model for light-matter interactions. To prepare for this discussion, let us now study the dynamics of the system when coupled to a heat bath.

Case of a heat bath

Consider now the case where the reservoir is a heat bath in a thermal state with inverse temperature β = 1/k B T , its density matrix can then be written as

ρR = e -β ĤR
Tr e -β ĤR , (1.32) which represents the canonical thermal equilibrium distribution. The reservoir correlation function can then be explicitly evaluated:

G(τ ) = Tr Re -i ĤR τ Rρ R (t 0 )e i ĤR τ = e i ĤR τ Re -i ĤR τ R R = λ,λ g * λ ĉλ e -iω λ τ + g λ ĉ † λ e iω λ τ g * λ ĉλ + g λ ĉ † λ R = λ |g λ | 2 (n λ + 1)e -iω λ τ + nλ e iω λ τ = ∞ 0 dω D(ω)|g(ω )| 2 (n β (ω ) + 1)e -iω τ + nβ (ω )e iω τ , (1.33) 
where

• R ≡ Tr[•ρ R ], nλ ≡ ĉ † λ ĉλ R = 1/(e β ω λ -1) ≡ nβ (ω λ )
is the mean population of mode λ, and in the last step we introduced the density of states D(ω) to pass from the sum to the integral λ → dω D(ω ). The spectrum can then be computed via the Fourier transform

Γ(ω) = ∞ 0 dτ G(τ )e iωτ = 1 2 γ(ω) + iΛ(ω) , γ(ω) = ∞ 0 dω 2πD(ω )|g(ω )| 2 [(n β (ω ) + 1)δ(ω -ω ) + nβ (ω )δ(ω + ω )] =    2πD(ω)|g(ω)| 2 [n β (ω) + 1], ω ≥ 0 ; 2πD(-ω)|g(-ω)| 2 nβ (-ω), ω < 0 , Λ(ω) = P ∞ 0 dω D(ω )|g(ω )| 2 nβ (ω ) + 1 ω -ω + nβ (ω ) ω + ω , ( 1.34) 
where P denotes the Cauchy principal value, which arises from the identity ∞ 0 dτ e iωτ = πδ(ω) + iP{1/ω}. We finally arrive at the standard form of the quantum optical master equation: which is a thermal state associated to the bare Hamiltonian of the system at the same temperature as the reservoir. Later in Sec. IV.3 we will see that the same steady state can be achieved when the reservoir is in the (Minkowski) vacuum while the system undergoes an eternally accelerated motion, where the latter perceives an effective temperature proportional to its acceleration.

d dt ρS = - i ĤS + ω LS â † â, ρS + ( N + 1)γD[â]ρ S + N γD[â † ]ρ S , ( 1 

Drive and dissipation

Consider now a single-mode optical cavity of frequency ω S as the system. At low-enough temperatures, we typically have N 0 for optical frequencies, which means that the steady state given by Eq. (1.36) is effectively the vacuum state with zero photons in the cavity. To inject photons, one can drive the cavity with a laser, which can be modeled by a time-dependent Hamiltonian term describing an external monochromatic coherent field coupled to the cavity mode:

Ĥdrive (t) = (â + â † )(F e -iω d t + F * e iω d t ) , (1.37) 
where F is the amplitude of drive, with angular frequency ω d . Assuming the drive amplitude is weak compared to the cavity bare frequency, i.e. |F |/ω S 1, the drive can be regarded as a perturbation such that it does not affect our derivation of the master equation above. Therefore, we simply add Ĥdrive to the master equation (1.35) to model the driven-dissipative dynamics of the cavity. By transforming into the rotating frame9 defined by Û † = e iω d â † ât and neglecting fast-rotating terms ∼ e ±i(ω S +ω d )t , the master equation takes a time-independent form10 

d dt ρ = -i -∆â † â + (F * â + F â † ), ρ + γD[â]ρ , (1.38) 
where ∆ ≡ ω d -ω S is the drive-cavity detuning. As one can explicitly verify, the steady state is a coherent state11 ρSS = |α α| with amplitude

α = iF i∆ -γ 2 ,
(1.39) and the mean photon population is given by |α| 2 = |F | 2 /(∆ 2 +γ 2 /4), which is a Lorentzian form as a function of the pump frequency. Therefore, the dissipation rate γ is also known as the cavity line width, that can be determined experimentally via spectroscopy.

III Light-matter interaction

As electromagnetism is a linear theory in terms of its fields, free photons cannot interact with each other directly [though in quantum electrodynamics, they can interact indirectly via the Euler-Heisenberg process by exchanging electron and positron pairs [START_REF] Heisenberg | Folgerungen aus der diracschen theorie des positrons[END_REF][START_REF] Aaboud | Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC[END_REF], whose cross section is ridiculously small for photons in the visible spectrum and negligible for quantum optics]. However, effective photon-photon interactions can be easily achieved via light-matter coupling, such as by inserting a nonlinear medium in an optical cavity resonator, which effectively replaces the electron-positron pairs in the photon-photon scattering process by electron-hole pairs provided by the medium, and require much lower energies to produce. Such hybrid light-matter systems provide a versatile platform for studying quantum many-body phenomena [START_REF] Carusotto | Quantum fluids of light[END_REF][START_REF] Tomadin | Many-body phenomena in QED-cavity arrays [Invited[END_REF], quantum computing [START_REF] Monroe | Quantum information processing with atoms and photons[END_REF] and quantum simulation [START_REF] Houck | On-chip quantum simulation with superconducting circuits[END_REF][START_REF] Noh | Quantum simulations and many-body physics with light[END_REF]. The simplest quantum model for light-matter interaction is the Jaynes-Cummings model [START_REF] Jaynes | Comparison of quantum and semiclassical radiation theories with application to the beam maser[END_REF], which describes the coupling between a two-level atom (at a fixed position) and a single mode of the electromagnetic field inside a cavity. In this manuscript, instead of repeating the standard microscopic derivation that one can find in any quantum optics textbook (for example [START_REF] Scully | Quantum Optics[END_REF]), we will start from a simple phenomenological model (the Unruh-DeWitt model [START_REF] Unruh | Notes on black-hole evaporation[END_REF][START_REF] Unruh | What happens when an accelerating observer detects a Rindler particle[END_REF]), and show how it reduces to the light-matter interaction model used in quantum optics under quite general assumptions.

III.1 The Unruh-DeWitt model (without moving parts)

The Unruh-DeWitt model was originally proposed to explain certain phenomena predicted by quantum field theory in general relativistic settings, such as Hawking radiation [START_REF] Hawking | Particle creation by black holes[END_REF]. It consists of a massless scalar quantum field minimally coupled to a point-like detector via monopole interaction [START_REF] Hawking | General Relativity: An Einstein Centenary Survey[END_REF], where the scalar field can well approximate the electromagnetic field when there is no exchange of angular momentum between the detector and the field [START_REF] Martín-Martínez | Wavepacket detection with the Unruh-DeWitt model[END_REF]. In this section, we will first consider the simple case where the detector is at rest (at position x 0 12 ) inside a cavity with discrete field modes (the more general case will be discussed in Sec. IV.2). The full Hamiltonian reads

Ĥ = Ĥfield + Ĥdet + ĤI , = n ω n â † n ân + Ω b † b + λ m φ(x 0 ) , (1.40)
where φ is the quantum field operator in the Schrödinger picture, with mode expansion

φ(x) = n u n (x)â n + u * n (x)â † n ; (1.41)
b is the lowering operator for the detector, whose monopole 13 is m ≡ b + b † . In the originally proposed model, the detector is considered to be a two-level system with b = Chapter 1. Theory of quantum optics σ-≡ (σ xiσ y )/2. We will also consider the case where the detector is a harmonic oscillator [START_REF] Brown | Detectors for probing relativistic quantum physics beyond perturbation theory[END_REF] with annihilation operator b. Note that we have the commutation relation [ b, b † b] = b in both scenarios, which means that the Hamiltonian will continue to share the same form in the interaction picture. Indeed, transforming into the interaction picture14 with the free Hamiltonian Ĥ0 = Ĥfield + Ĥdet , we have

ĤI (t)/ = λ m(t) φ(t, x 0 ) = λ( be -iΩt + b † e iΩt ) n u(x 0 )â n e -iωnt + u * (x 0 )â † e iωnt = λ n u(x 0 ) ân be -i(ωn+Ω)t + ân b † e -i(ωn-Ω)t + H.c. . (1.42)
Now suppose that λ Ω, ω n and that the detector's frequency is quasiresonant with one of the cavity modes Ω ω , such that their detuning is much smaller than the level spacing of the cavity spectrum. Then, the only relevant (slowly-oscillating) terms in the interaction Hamiltonian will be ĤI / = λu (x 0 )â b † e -i(ω -Ω)t + H.c. , (1.43) and the contribution from all the other terms will average to zero due to their fast oscillating nature, which is the usual rotating-wave approximation. Defining the Rabi frequency Ω R ≡ λu (x 0 ) 15 and dropping the index for the resonant cavity mode, the total Hamiltonian can be written back in the Schrödinger picture as

Ĥ = ωâ † â + Ω b † b + Ω R (â b † + â † b) . (1.44)
Note that in the case where b = σ-, this is nothing but the well-known Jaynes-Cummings model. In what follows, we will focus on the case where b is a bosonic annihilation operator. The Hamiltonian then describes two linearly coupled harmonic oscillators, which provides a good model for exciton-photon coupling in a single-mode cavity.

III.2 Exciton-polaritons in a single-mode cavity

An exciton is a hydrogen-atom-like quasiparticle composed of an electron-hole pair bound by Coulomb attraction [START_REF] Knox | Theory of excitons[END_REF], that can be found as elementary excitations in semiconductor quantum wells (QWs, properly engineered two-dimensional heterostructures that confine both the electrons and holes within a thin layer of semiconductor). At low exciton densities, i.e. the interparticle distance being much larger than their Bohr radius, such QW excitations are quasi-bosonic particles as one can neglect Pauli exclusion effects for the electrons and holes [START_REF] Carusotto | Quantum fluids of light[END_REF]. When a QW is embedded in a laterally confined photonic box with the exciton frequency quasiresonant to one of the cavity modes, the coupling between the QW and the cavity can be well approximated by the Hamiltonian (1.44), with b the annihilation operator for the exciton mode.

As this Hamiltonian is symmetric and bilinear in the mode operators, it can be readily diagonalized by a Bogoliubov transformation:

Ĥ/ = â † b † ω Ω R Ω R Ω â b = â † b † P T DP â b , ( 1.45) 
where

D = ω LP 0 0 ω UP , P = C -X X C , ( 1.46) 
that can be expressed as the original Hamiltonian parameters as

ω UP,LP = ω + Ω 2 ± ω -Ω 2 2 + Ω 2 R ; X, C =   1 + Ω R ω LP -ω ±2   -1/2
.

(1.47)

The Hamiltonian therefore becomes decoupled in terms of the two normal modes: .48) which are known as the lower (LP) and upper (UP) polaritons. They are hybrid excitations of light and matter (QW excitons in the present case), and are also called dressed photons.

âLP âUP ≡ C -X X C â b , Ĥ = ω LP â † LP âLP + ω UP â † UP âUP , ( 1 
As the Bogoliubov coefficients satisfy |C| 2 + |X| 2 = 1, we define the exciton (photon) fraction of the lower (upper) polariton mode to be |X| 2 , as represented in Fig. 1.2. At resonance (ω = Ω), the two branches reach their minimum separation 2Ω R with equal exciton-photon fraction for both UP and LP modes. For large detunings, the normal modes reduce to purely photonic or excitonic ones, that are effectively decoupled.

Effective photon-photon interactions

Unlike photons, the excitons can interact with each other via the Coulomb force, an additional term Ĥnl is therefore due in the Hamiltonian to correct for this nonlinear effect. This can be modeled by a Kerr nonlinearity that represents a two-body contact potential [START_REF] Carusotto | Quantum fluids of light[END_REF]:

Ĥnl / = V 2 b †2 b2 = V 2 -Xâ † LP + Câ † UP 2 (-Xâ LP + Câ UP ) 2 V 2 X 4 â †2 LP â2 LP + C 4 â †2 UP â2 UP + 4X 2 C 2 â † LP âLP â † UP âUP , (1.49)
where V represents the nonlinearity strength. In the second line, we used the reverse Bogoliubov transformation b = -Xâ LP + Câ UP to rewrite the nonlinear Hamiltonian in terms of the polariton modes, and in the last step we performed again the rotating-wave approximation to keep only the resonant terms, which is valid when the Rabi splitting 2Ω R between UP and LP modes is much larger than any other relevant energy scale in the system, the regime that we will work with in the following sections. Consequently, both the lower and upper polariton modes inherent the Kerr nonlinearity with strengths U LP = V X 4 and U UP = V C 4 respectively, and the two modes are nonlinearly coupled via a cross-Kerr interaction of strength 4V X 2 C 2 . This can be interpreted as an effective interaction between the dressed photons, that is mediated via the coupling to the matter degrees of freedom. Note that this nonlinearity is also present in the Jaynes-Cummings model (i.e. when b = σ-), since the two-level system can be understood as the hardcore limit V → ∞ for the Bosonic mode.

Driven-dissipative Kerr model

As discussed in Sec. II, real life cavities are subject to dissipation due to their interaction with the environment, the polariton modes therefore have finite line widths. Under typical experimental circumstances, one drives quasiresonantly the lower-polariton mode. In the regime of large Rabi splitting between LP and UP, we can safely ignore the UP mode and describe the dynamics of the system uniquely with the LP mode. This implies that we are working in the so-called strong-coupling regime [START_REF] Carusotto | Quantum fluids of light[END_REF], where the Rabi splitting exceeds the linewidths of the bare cavity and the exciton. The free (i.e. undriven) Hamiltonian then reads (dropping the LP subscript):

ĤKerr / = ωâ † â + U 2 â †2 â2 , (1.50)
which effectively describes a single-mode photonic cavity with Kerr nonlinearity. This so-called Kerr model is extremely useful and serves as the building block for many problems in quantum optics and condensed matter physics, such as the Bose-Hubbard model [START_REF] Gersch | Quantum Cell Model for Bosons[END_REF], which describes a lattice of such nonlinear Bosonic modes that are linearly coupled between neighbors. Another typical implementation of the Kerr model can be found in superconducting circuits (circuit QED [START_REF] Blais | Circuit quantum electrodynamics[END_REF]), where an LC oscillator with a Josephson junction (a nonlinear element) gives rise to the same Hamiltonian (1.50) when quantized 16 . The full driven-dissipative master equation for the LP mode is then17 

d dt ρ = - i ĤKerr + Ĥdrive , ρ + γD[â]ρ , (1.51)
where Ĥdrive is the same as the previously considered driving term (1.37). Transforming again into the frame rotating at ω d as done in Sec. II.1, the equation becomes

d dt ρ = i -∆â † â + U 2 â †2 â2 + (F * â + F â † ), ρ + γD[â]ρ , ( 1.52) 
with ∆ = ω d -ω, which has an additional nonlinear term compared to Eq. (1.38). When U = 0, the steady state will no longer be a coherent state, but one can make the mean-field approximation for weak nonlinearities by assuming the state to be coherent, and solve for the dynamics of the amplitude α ≡ â = Tr[ρâ]:

d dt α = -i -∆α + U |α| 2 α + F - γ 2 α , (1.53) 
where the cubic terms comes from the factorization â †m ân α * m α n by the mean-field approximation. The steady-state solution α SS satisfies the nonlinear relation

|α SS | 2 (∆ -U |α SS | 2 ) 2 + γ 2 4 = |F | 2 , ( 1.54) 
which admits bistable solutions if ∆ > √ 3γ/2 (assuming U > 0), as illustrated by the S-shaped curve in Fig. 1.3.

Note that if one solves the master equation (1.52) directly, the exact solution for the steady state is always unique [START_REF] Bartolo | Exact steady state of a Kerr resonator with one-and two-photon driving and dissipation: Controllable Wignerfunction multimodality and dissipative phase transitions[END_REF] even in the mean-field bistable regime, as the quantum fluctuations induce switchings between the two classical solutions and the unique steadystate density matrix corresponds to their average. However, a bistable behavior similar to the mean-field prediction can be observed experimentally [START_REF] Rodriguez | Probing a Dissipative Phase Transition via Dynamical Optical Hysteresis[END_REF][START_REF] Baas | Optical bistability in semiconductor microcavities in the nondegenerate parametric oscillation regime: Analogy with the optical parametric oscillator[END_REF], due to the fact that the switching time can be astronomical if the system approaches criticality, which causes the observed state to depend on the initial conditions and exhibit hysteresis in an experiment with finite duration. Such critical phenomena will be discussed in more detail in Chapter 2. 

|F | 2 • U/γ 3 |α SS | 2 • U/γ ∆ < √ 3 2 γ ∆ = √ 3 2 γ ∆ > √ 3 2 γ

III.3 Exciton-polaritons in a planar cavity

Consider now a planar cavity with no lateral confinement, i.e. both photons and excitons can move freely in the cavity plane. The in-plane wavevector k is therefore a good quantum number due to the in-plane translational symmetry, and k z takes discrete values due to the cavity confinement. For a fixed k z , the quadratic part Ĥ0 (without Kerr nonlinearity) of the total Hamiltonian is the integral over all k modes18 :

Ĥ0 = d 2 k Ĥ(k) , (1.55) 
where the contribution from each k takes the same form as Eq. (1.44) 19 in the rotatingwave approximation:

Ĥ(k)/ = ω(k)â † (k)â(k) + Ω(k) b † (k) b(k) + Ω R â(k) b † (k) + â † (k) b(k) , ( 1.56) 
where ω(k) is the dispersion relation of the cavity photon given by Eq. (1.16) and is sketched in Fig. 1.4, and Ω(k) is that of the exciton, which takes a similar form (denoting k ≡ k ): with m X the exciton mass. As typically m X m cav [START_REF] Carusotto | Quantum fluids of light[END_REF], we can ignore the exciton dispersion in practice and consider Ω(k) = Ω as a constant. Ĥ(k) can be diagonalized in the same way as done in Sec. III.2, giving

Ω(k) = Ω k=0 + k 2 2m X , ( 1.57) 
Ĥ(k) = ω LP (k)â † LP (k)â LP (k) + ω UP (k)â † UP (k)â UP (k) , (1.58) 
where ω UP,LP (k) is given by Eq. (1.47) with the appropriate dispersion relations ω(k) and Ω(k) inserted into the expression. The resulting spectrum is plotted in Fig. 1.4 for typical parameters in semiconductor planar microcavities (the values considered in [γ]), which is essentially the same plot as Fig. 1.2 but with the horizontal axis reparametrized by the in-plane wavevector k.

Driven-dissipative dynamics

When the system is driven quasi-resonantly close to the bottom of the LP branch, we can again ignore the UP modes provided that Ω R is much larger than other energy scales [START_REF] Carusotto | Quantum fluids of light[END_REF].

The coherent drive [with spatial-temporal profile F(r, t)] in terms of the LP field can be written as Ĥdrive = d 2 r F(r, t) ψ † (r) + F * (r, t) ψ(r) , (1.59) where ψ(r) is the position-space representation of the annihilation operator âLP (k) related via the Fourier transform,

ψ(r) ≡ 1 2π d 2 k âLP (k)e ik•r , âLP (k) = 1 2π d 2 r ψ(r)e -ik•r , (1.60)
for the in-plane position vector r ≡ (x, y). The nonlinear part of the Hamiltonian can be approximated by the effective LP-LP contact potential [START_REF] Carusotto | Quantum fluids of light[END_REF] with strength g:

Ĥnl = d 2 r g 2 ψ † (r) 2 ψ(r) 2 , (1.61)
which is the continuous analogue of the Kerr nonlinearity. The quadratic part Ĥ0 can also be written in the position representation (keeping only the LP terms):

Ĥ0 = d 2 k ω LP (k)â † LP (k)â LP (k) d 2 ψ † (r) ω k=0 LP - 2 ∇ 2 2m ψ(r) , (1.62)
where we approximated the bottom of the LP branch by a parabolic dispersion relation ω LP (k) ω k=0 LP + k 2 /2m, with m the effective LP mass. Finally, the driven-dissipative dynamics of the LP field under the Born-Markov approximation can be cast in the Lindblad master equation in terms of its density matrix ρ:

d dt ρ = - i Ĥ0 + Ĥnl + Ĥdrive , ρ + D ρ , (1.63)
with the dissipator

D ρ = d 2 r γ 2 2 ψ(r)ρ ψ † (r) -ψ † (r) ψ(r), ρ , (1.64) 
where γ is the LP dissipation rate. Under the mean-field approximation ψ †m (r) ψn (r) ψ † (r) m ψ(r) n , the dynamical equation for the mean field ψ ≡ ψ can be derived from the master equation:

i ∂ ∂t ψ(r, t) = ω k=0 LP - ∇ 2 2m ψ(r, t) + g|ψ(r, t)| 2 ψ(r, t) -i γ 2 ψ(r, t) + F(r, t) , (1.65)
which is known as the driven-dissipative Gross-Pitaevskii equation [START_REF] Carusotto | Quantum fluids of light[END_REF].

Planar cavity as a "continuous lattice"

As the planar cavity is a continuous system (in terms of the spatial coordinates), one typically needs to perform certain kind of discretization in order to study it numerically. In fact, upon discretizing using a square grid with step size ∆x × ∆x, the master equation (1.63) for the LP field in the planar cavity can be exactly mapped to that of a driven-dissipative Bose-Hubbard lattice consisting of coupled Kerr resonators. The discretization consists of the approximation

d 2 rf (r) -→ j ∆x 2 f (r j ) , (1.66)
where r j denotes the j-th lattice site, for a (possibly operator-valued) function f (r). The discretized commutation relation hence becomes [ ψ(r j ), ψ † (r j )] = δ j,j /∆x 2 . We can define the dimensionless annihilation operator âj ≡ ψ(r j )∆x, whose action is to annihilate an excitation at the grid site j, with the standard Bosonic commutation relations [â j , â † j ] = δ j,j . The Laplacian in the Hamiltonian (1.62) can be discretized via the finite-difference formula

∇ 2 ψ(r j ) = (∂ 2 x + ∂ 2 y ) ψ(r) σ∈{x,y} ψ(r j + ∆xe σ ) + ψ(r j -∆xe σ ) -2 ψ(r j ) ∆x 2 = j ∈N (j) âj -zâ j ∆x 4 , (1.67)
where N (j) denotes the set of neighboring sites of j, and z = 4 is the coordination number (number of nearest neighbors per site) in 2D. The discretized full Hamiltonian reads

Ĥ/ = j ω 0 â † j âj + U 2 â †2 j â2 j + F j (t)â † j + F * j (t)â j -J j,j â † j âj , ( 1.68) 
where j, j denotes (ordered) pairs of nearest neighbor, with the identification for the parameters

J = 2m∆x 2 , ω 0 = ω k=0 LP + zJ , U = g ∆x 2 , F j (t) = F(r j , t)∆x . (1.69)
The dissipator becomes

D ρ = γ 2 j 2â j ρâ † j -â † j âj , ρ , (1.70) 
which, together with the Hamiltonian (1.68), completely defines the dynamics of the lattice. This discretized model describes a lattice of driven-dissipative single-mode Kerr resonators with bare frequency ω 0 and Kerr nonlinearity U on each site. The kinetic energy of the polaritons becomes a coupling term with amplitude J, which allows excitations to hop between the neighboring lattice sites. The planar cavity can therefore be regarded as the continuous limit ∆x → 0 of the driven-dissipative Bose-Hubbard lattice.

IV Light-matter interaction under relativistic settings

Our discussion of light-matter interaction based on the cavity-detector (Unruh-DeWitt) model so far does not involve any mechanically moving parts yet, i.e. both the matter and the cavity are assumed to be at fixed positions. In this section, we will partially lift this constraint and allow the matter (the detector) to move within a static setup (cavity or free space). (Note that we will not consider the complementary scenario, where the cavity is in motion, throughout this manuscript, although it is equally interesting. A well-known phenomenon in this regime the dynamical Casimir effect [START_REF] Wilson | Observation of the dynamical Casimir effect in a superconducting circuit[END_REF][START_REF] Fulling | Radiation from a moving mirror in two dimensional space-time: Conformal anomaly[END_REF], where an accelerated mirror can produce photons out of the vacuum.) When the motion of the detector inside the cavity is relativistic, this brings a subtle complication to our consideration. While the time evolution of a quantum system is generated by the Hamiltonian operator, time is an observer-dependent notion in relativity, i.e. if different parts in a system are undergoing relative motion, they will experience different times in general. One therefore needs to be careful with the question: "with respect to which time is the Hamiltonian generating time-translation ?" The answer to this question will lead to the general Unruh-DeWitt model that we will introduce in Sec. IV.2, which is capable of describing the quantum dynamics of a detector undergoing relativistic motion coupled to a quantum field. Before arriving at this model, we will first introduce how the Hamiltonian transforms under a reparametrization of the time (following the discussion in [START_REF] Brown | Detectors for probing relativistic quantum physics beyond perturbation theory[END_REF][START_REF] Martín-Martínez | Relativistic quantum optics: The relativistic invariance of the light-matter interaction models[END_REF]), which is inevitable when changing between reference frames with relative motion.

IV.1 Hamiltonian as the generator of time translation

Let us consider a general time-dependent Hamiltonian Ĥt (t), which generates translation in time with respect to some time parameter t via the Schrödinger equation

d dt |ψ(t) = - i Ĥt (t)|ψ(t) , (1.71)
for the quantum state of some system |ψ(t) , and the superscript in the Hamiltonian serves to specify the parameter with respect to which the Hamiltonian generates time translation. Suppose we want to reparametrize the time with a new parameter τ via a given function t(τ ). The time-translation generator for the reparametrized state |ψ(τ ) ≡ |ψ(t(τ )) can be found by differentiating with respect to the new parameter τ :

d dτ |ψ(t(τ )) = dt(τ ) dτ d dt |ψ(t) t=t(τ ) = dt(τ ) dτ - i Ĥt (t)|ψ(t) t=t(τ ) ≡ - i Ĥτ (τ )|ψ(τ ) , (1.72) 
from which we identify the Hamiltonian for the parameter τ :

Ĥτ (τ ) = dt(τ ) dτ Ĥt (t(τ )) . (1.73)
Note that the appearance of the redshift factor dt/dτ guarantees the invariance of the time-evolution operator under reparametrization:

Û = T exp - i dτ Ĥτ (τ ) = T exp - i dτ dt dτ Ĥt (t) = T exp - i dt Ĥt (t) .
(1.74)

IV.2 The Unruh-DeWitt model for a relativistic detector

We are now ready to introduce the relativistic model for light-matter interaction. Consider an idealized point-like detector moving along a classical world line x µ (τ ) = (ct(τ ), x(τ )), that is coupled to a quantum field (for example, the field in a static cavity) in Minkowski spacetime. Similar to Eq. (1.40), the Hamiltonian is still of the form 

Ĥ = Ĥfield + Ĥdet + ĤI , ( 1 
= Ω b † b . (1.77)
The interaction Hamiltonian is still 20 Ĥτ

I (τ ) = λ m φ(x(τ )) = λ( b † + b) n u n (x(τ ))â n + u * n (x(τ ))â † n , (1.78) 
which is local on the world line of the detector and generates time translation in the detector's proper frame with respect to τ . We will be studying the dynamics of the detector in its proper frame in this manuscript, and we therefore choose to parameterize the total Hamiltonian using the proper time τ . Using Eq. (1.73), the Hamiltonian can be written as

Ĥτ (τ ) = dt(τ ) dτ Ĥt field + Ĥτ det + Ĥτ I (τ ) = Ĥτ field (τ ) + Ĥτ det + Ĥτ I (τ ) , (1.79) 
where t(τ ) is given by the time component of the detector's world line. Let us now transform into the interaction picture using the (proper-time dependent) free Hamiltonian Ĥτ field (τ ) + Ĥτ det . Since the τ -dependence in Ĥτ field appears as a global factor, the free Hamiltonian commutes with itself between different times. The unitary transformation operator is therefore simply (See Appendix A)

Û0 (τ ) = exp - i τ 0 dτ dt dτ Ĥt field + Ĥτ det = exp - i Ĥt field t(τ ) + Ĥτ det τ = exp -i n ω n â † n ân t(τ ) -iΩ b † bτ ,
(1.80) 20 The following discussion also applies when the quantum field φ admits a continuum mode expansion.

Chapter 1. Theory of quantum optics which gives the interaction-picture Hamiltonian

Hτ I (τ ) = Û † 0 (τ ) Ĥτ I Û0 (τ ) = λ b † e iΩτ + be -iΩτ n u n (x(τ ))â n e -iωnt(τ ) + u * n (x(τ ))â † n e iωnt(τ ) = λ m(τ ) φ[x µ (τ )] , (1.81) 
where m(τ ) is the detector's monopole operator in the interaction picture, and φ[x µ (τ )] is the interaction-picture quantum field operator evaluated at the world line of the detector. Eq. (1.81) is the Unruh-DeWitt Hamiltonian, which accounts for relativistic effects in light-matter interaction for a detector undergoing general motion. Note that we are no longer performing the rotating-wave nor single-mode approximation here, as the resonance condition in the phases -i[Ωτ ± ω n t(τ )] depends on the parametrization t(τ ), which is a manifestation of the time-dilation effect in relativity.

It is worth clarifying at this point that the Unruh-DeWitt model is a semiclassical model for light-matter (field-detector) interaction in the sense that 1. the detector is a first-quantized quantum-mechanical particle (unlike in quantum field theory where particles can be created or annihilated) undergoing classical motion on a specified trajectory x µ (τ ) ;

2. the background spacetime is treated in a completely classical manner, which is fixed and thus not accounting for any possible coupling to the quantum field (which may carry energy and momentum) 21 .

Very recently, there has been theoretical studies to generalize the Unruh-DeWitt model by considering a second-quantized detector [START_REF] Giacomini | Second-quantized Unruh-DeWitt detectors and their quantum reference frame transformations[END_REF] or quantum superpositions of the detector's motion [START_REF] Foo | Unruh-deWitt detectors in quantum superpositions of trajectories[END_REF][START_REF] Foo | Thermality, causality, and the quantumcontrolled Unruh-deWitt detector[END_REF][START_REF] Barbado | Unruh effect for detectors in superposition of accelerations[END_REF], which address the first remark above. Regarding the second, a fully quantum model requires a quantized theory of gravity, which is still an open challenge to date. Decades of effort has given rise to candidates such as string theory [START_REF] Becker | String theory and m-theory: a modern introduction[END_REF] and loop quantum gravity [START_REF] Rovelli | Loop Quantum Gravity[END_REF], which are beyond the scope of the present manuscript. Despite its semiclassical nature, the Unruh-DeWitt model serves as a good approximation in the context of quantum optics. This model combined with the master-equation formalism in Sec. II.1 can be used to demonstrate an interesting phenomenon originally predicted by quantum field theory in curved spacetime, which is the Unruh effect.

IV.3 Unruh effect

We now set c = = 1 to simplify the notations. Consider now the detector, whose internal degree of freedom is modeled by a harmonic oscillator, that is moving along the world line x µ (τ ) = (t(τ ), x(τ )) with constant proper acceleration through the (3+1)D 22Minkowski vacuum of a massless scalar field φ in free space to which it is weakly coupled. In the interaction picture, the quantum field operator φ admits the mode expansion (see Appendix B)

φ(t, x) = d 3 k (2π) 3 2 1 2ω k âk e -i(ω k t-k•x) + â † k e i(ω k t-k•x) , (1.82)
with the dispersion relation ω k = k . The interaction Hamiltonian is given by Eq. (1.78), which takes the form of Eq. (1.18) (by identifying Ŝ = m and R = λ φ). This allows us to derive the master equation for the density matrix ρ of the detector using the formalism presented in Sec. II.1. As we consider an eternally accelerated detector, we can assume the reservoir correlation function G(τ ) to be translational invariant with respect to τ , which is given by23 

G(τ ) = λ 2 0| φ[x(τ )] φ[x(0)]|0 = λ 2 D + [x(τ ), x(0)], (1.83) 
where we identify the so-called positive frequency Wightman function [START_REF] Birrell | Quantum Fields in Curved Space[END_REF] for the massless scalar field, defined as

D + (x, x ) = 0| φ(x) φ(x )|0 .
Using the mode expansion (1.82), this Wightman function can be explicitly evaluated to be

D + (x, x ) = - 1 4π 2 1 (x 0 -x 0 -i ) 2 -x -x 2 , ( 1.84) 
where > 0 is an infinitesimal positive real quantity added to the imaginary part of the time coordinate 24 when computing the Wightman function to make the integral over k converge. Let us assume that the detector moves along the x 1 axis with constant proper acceleration a. Its world line can be expressed as (see Appendix C)

x 0 (τ ) = 1 a sinh(aτ ) , x 1 (τ ) = 1 a cosh(aτ ) , x 2 (τ ) = x 3 (τ ) = 0 , ( 1.85) 
as illustrated by the hyperbola in Fig. 1.5(a). The correlation function is then

G(τ ) = - λ 2 4π 2 1 [x 0 (τ ) -x 0 (0) -i ] 2 -[x 1 (τ ) -x 1 (0)] 2 = - λ 2 a 2 16π 2 sinh -2 aτ 2 -i = - λ 2 4π 2 ∞ n=-∞ 1 (τ -i -i2πn/a) 2 , (1.86)
where we used the identity sinh -2 (z) = n∈Z (z + inπ) -2 . The real part of the reservoir correlation spectrum can be obtained via the Fourier transform 25 :

γ(ω) = ∞ -∞ dτ e iωτ G(τ ) = - λ 2 4π 2 ∞ n=-∞ ∞ -∞ dτ e iωτ (τ -i -i2πn/a) 2 =        λ 2 ω 2π 1 e 2πω/a -1 + 1 , ω ≥ 0 ; -λ 2 ω 2π 1 e -2πω/a -1 , ω < 0 , (1.87)
where the integral is first performed for each k using the residual theorem (and the contour to chose depends on the sign of ω), and then summed over k as a geometric series. Note that we have picked up the Planck factor

nβ (ω) = 1 e β ω -1 , β = 2πc a ≡ 1 k B T Unruh , ( 1.88) 
with the SI units restored. This corresponds to a temperature of

T Unruh = a 2πck B , (1.89) 
which is the Unruh temperature. Denoting γ ≡ λ 2 Ω 2π , N ≡ nβ (Ω) and using Eq. (1.29), we immediately recover the same master equation (1.35) for the detector, whose steady state is consequently the thermal state at the Unruh temperature. This means that the Minkowski vacuum perceived by the accelerated detector is no longer void of particles, but instead appears to be a thermal bath with temperature proportional to the acceleration. This seems to contradict the conservation of energy at first sight, as one might argue that the reservoir state in any instantaneous inertial frame comoving with the detector should always be vacuum and cannot supply energy to the detector. There is of course no paradox [START_REF] Hawking | General Relativity: An Einstein Centenary Survey[END_REF]. As the acceleration of the detector must be maintained by an external agent (such as a rocket booster), we are constantly feeding energy into the detectorreservoir system. From the point of view of an inertial observer, the work done by the external agent causes the detector to emit particles, which are then absorbed by itself, the net effect being the detection of a thermal spectrum.

Alternatively, the Unruh effect can also be derived in the frame of the accelerated observer, where the positive and negative frequency modes of the quantum field are defined with respect to the observer's proper time instead of the Minkowski coordinate time. The mode operators in different frames are related by a Bogoliubov transformation, where, in particular, the annihilation operator defined in the accelerated frame is a combination of both annihilation and creation operators of the static frame. Therefore, the accelerated observer will in general disagree with an inertial observer on the particle content of a given quantum state, and perceive the Minkowski vacuum to be a thermal state in his/her frame.

A detailed derivation using quantum field theory in curved spacetimes26 can be found in textbooks such as [START_REF] Carroll | Spacetime and geometry: An introduction to general relativity[END_REF].

Let us conclude our discussion on the Unruh effect by remarking that the direct observation of the Unruh temperature would require extremely high accelerations. Indeed, one can see from Eq. (1.89) that to achieve a temperature of 1 kelvin via the Unruh effect, the required acceleration would be on the order of 10 20 m/s 2 , which is well beyond experimental reach. Recently, there have been several theoretical proposals to measure the Unruh effect via indirect signatures, such as using Berry's phase [START_REF] Martín-Martínez | Using Berry's Phase to Detect the Unruh Effect at Lower Accelerations[END_REF] or classical electrodynamics [START_REF] Cozzella | Proposal for Observing the Unruh Effect using Classical Electrodynamics[END_REF], which are in principle within reach of current technologies.

IV.4 Hawking radiation

Finally, let us end this chapter with a very brief introduction to Hawking radiation, which is an elegant result that follows naturally from the Unruh effect and the equivalence principle. The spacetime diagram for an eternally accelerated observer with constant proper acceleration a in the Minkowski spacetime is shown in Fig. 1.5, where the world line of the observer is a hyperbola given by Eq. (1.85), with asymptotes x = ±t. As the light cones are at ±45 • everywhere in this diagram, the observer perceives a future horizon as he/she cannot receive any light signal from the region t ≥ x, and a past horizon as no signal sent from the observer can reach the region t ≤ -x. This situation bears striking similarity with the scenario where an observer hovers at a static position outside a black hole, as depicted in Fig. 1.5(b) for the maximally extended Schwarzschild spacetime in Kruskal-Szekeres coordinates (T, X) where the world line is also a hyperbola with asymptotes X = ±T , and the future horizon X = T is the celebrated event horizon of the black hole. The similarity between the two pictures is in fact physical, as formalized by Rindler [START_REF] Rindler | Kruskal Space and the Uniformly Accelerated Frame[END_REF], and can be used to derive the temperature of Hawking radiation from a black hole.

The spacetime outside a chargeless and spinless black hole can be described in the Schwarzschild coordinates (t, r, θ, φ), and the metric is given by27 [START_REF] Misner | Gravitation[END_REF][START_REF] Schwarzschild | Über das gravitationsfeld einer kugel aus inkompressibler flüssigkeit nach der einsteinschen theorie[END_REF] 

ds 2 ≡ g µν dx µ dx ν = 1 - 2GM r dt 2 -1 - 2GM r -1 dr 2 -r 2 (dθ 2 + sin 2 θdφ 2 ) , (1.90)
where M is the mass and G is the gravitational constant, and the event horizon is located at the Schwarzschild radius r S ≡ 2GM . For an observer with constant spatial coordinates at (r, θ, φ), one can show via elementary calculations in general relativity that he/she experiences a constant proper acceleration with magnitude28 

a(r) = GM r 2 1 - 2GM r . (1.91)
Chapter 1. Theory of quantum optics , which also has constant proper acceleration. In both diagrams, light cones are at ±45 degrees everywhere, and the world line of the observer is a hyperbola. The observer perceives a horizon (unidirectional membrane beyond which no signal can be sent to / received from the observer) in both scenarios.
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Indeed, one needs to constantly accelerate (such as by firing a rocket booster or hanging on a rope) to resist the gravitational pull of the black hole and hover at a static position. This quantity diverges to infinity29 as r → r + S , such that at scales set by a -1 r S , the spacetime looks locally flat close to the horizon [START_REF] Carroll | Spacetime and geometry: An introduction to general relativity[END_REF][START_REF] Rindler | Kruskal Space and the Uniformly Accelerated Frame[END_REF]. Assuming that the state of a scalar quantum field looks like the Minkowski vacuum (free of excitations) in any freefalling (i.e., inertial) frame close to the horizon, we can then deduce using the equivalence principle that the observer at r → r + S experiences an Unruh temperature of

T Unruh (r) = a(r) 2π . (1.92)
This thermal radiation propagates to infinity with a redshift factor [START_REF] Carroll | Spacetime and geometry: An introduction to general relativity[END_REF] V (r) ≡ g tt (r)

g tt (∞) = 1 - 2GM r , (1.93)
where g tt is the coefficient of dt 2 in the metric (1.90). The temperature of the radiation perceived by a static observer at infinity is therefore (restoring the SI units)

T Hawking = lim r→r + S V (r)T Unruh (r) = 1 2π × GM r 2 S = c 3 8πk B GM , (1.94)
which is known as the Hawking temperature. This predicts that the black hole's horizon emits a blackbody radiation at temperature T Hawking , which is therefore expected to consume the black hole's mass and cause black hole evaporation. Again, these theorized phenomena are extremely hard, if not impossible, to detect directly. For a black hole with the same initial mass as the sun, the Hawking temperature would be around merely 60 nanokelvins, which is much fainter than the cosmic microwave background radiation which is at 2.7 K. The inverse proportionality to the mass in Eq (1.94) suggests that one could have better chances of detecting Hawking radiation with micro black holes [START_REF] Dimopoulos | Black Holes at the Large Hadron Collider[END_REF][START_REF] Atwood | THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION[END_REF], yet there has not been direct experimental evidence to date. Interestingly, analog (acoustic) black holes have been successfully implemented with Bose-Einstein condensates in exciton-polariton platforms [START_REF] Nguyen | Acoustic Black Hole in a Stationary Hydrodynamic Flow of Microcavity Polaritons[END_REF] (that we have introduced in Sec. III) as well as other systems [START_REF] Steinhauer | Observation of quantum Hawking radiation and its entanglement in an analogue black hole[END_REF][START_REF] Muñoz De Nova | Observation of thermal Hawking radiation and its temperature in an analogue black hole[END_REF][START_REF] Kolobov | Observation of stationary spontaneous Hawking radiation and the time evolution of an analogue black hole[END_REF], where the equivalent of Hawking radiation can be experimentally observed.

V Conclusion

In this chapter, we have reviewed the general concepts in quantum optics that the remainder of this manuscript is based upon. Starting from the Maxwell equations, we performed the quantization of the electromagnetic field, which allows for a quantum description of cavity resonators. We then introduced the model for light-matter interactions in the static regime, and derived the driven-dissipative dynamics for nonlinear photonic cavities, which are the systems studied in Chapters 2 to 4. Finally, we discussed the light-matter interaction model in the noninertial (relativistic) regime with the pedagogic example of the Unruh effect (and Hawking radiation), setting the ground for our study of relativistic reservoir computing in Chapter 5.

Dissipative phase transition of light

In this chapter, we will investigate critical phenomena in optical systems, as a result of the collective behavior of interacting photons in a many-body context. In particular, we will be interested in the role of spatial dimensionality in determining the presence of phase transitions in photonic systems. The considered physical system is a planar semiconductor microcavity in the strong light-matter coupling regime, where polariton excitations are injected by a quasi-resonant optical driving field. As shown in the previous chapter, this system can be regarded as the continuous limit of a driven-dissipative Bose-Hubbard lattice considered in many previous theoretical works. We propose a technique for tuning the spatial dimension of the system, where the geometry is controlled by designing the intensity profile of the driving field. We investigate the emergence of criticality by increasing the spatial size of the driven region, which approaches the thermodynamic limit in the present context. We show that no phase transition occurs using a 1D driving geometry, while for a 2D configuration we do observe the emergence of a first-order phase transition.

The demonstrated technique allows all-optical and in-situ control of the system geometry, providing a versatile platform for exploring the many-body physics of photons. This chapter is structured as follows. We will introduce the context and general theory of dissipative phase transitions in Sec. I. Then, in Sec. II we will set the ground for discussing the first-order dissipative phase transitions in photonic system with the pedagogic example of a single-mode Kerr resonator. Sec. III introduces the technique we propose for probing the role of dimensionality in dissipative phase transitions of continuous photonic system, where we describe in detail our theoretical model and the experiments performed by the group of A. Bramati at Laboratoire Kastler Brossel confirming our theoretical predictions. The original results of our study are presented in Sec. IV. Finally, we conclude this chapter in Sec. V.

I Introduction

The study of phase transitions and critical phenomena is at the heart of condensed matter physics and material science [START_REF] Stanley | Introduction to phase transitions and critical phenomena[END_REF]. A phase refers to a state of matter with essentially uniform physical properties throughout the material, and phase transitions are abrupt changes of the state of matter under the modification of certain external parameters. One of the most well known examples might be the transition of water (under atmospheric pressure) from solid ice1 to liquid and to vapor, when the temperatures is increased. Such abrupt changes can be modeled as nonanalytical behavior of the system state as a function of the external parameters. For a physical system with finite number N of degrees of freedom, the dependence of the state is usually smooth on parameters such as the temperature, such that no phase transition can occur. However, in the thermodynamic limit where N → ∞, one can expect nonanalytical dependence (such as a cusp) to emerge. Indeed, phases transitions are collective phenomena in the organization of complex physical systems, that bear striking similarity to collective behavior found in biological swarms [START_REF] Buck | Synchronous rhythmic flashing of fireflies. ii[END_REF] and even in our social dynamics [START_REF] Durkheim | Les formes élémentaires de la vie religieuse : le système totémique en Australie[END_REF][START_REF] Castellano | Statistical physics of social dynamics[END_REF], all of which being vivid manifestations of more is different [START_REF] Anderson | More Is Different[END_REF].

I.1 Phase transitions in different regimes

Phase transitions are present in different regimes of physics, while the mechanism behind can be dramatically different, as summarized in Table 2.1. For systems in thermal equilibrium at finite temperature T , the state ρ of a system with Hamiltonian Ĥ minimizes the free energy

F (ρ) ≡ Ĥ ρ -T S(ρ) , ( 2.1) 
where S denotes the entropy. Thermal phase transitions in such systems are then driven by thermal fluctuations due to the competition between the energy and the entropy. Such systems are commonly referred to as "classical" since one assumes that the thermal fluctuations completely dominate over the quantum ones, i.e. k B T ω, with ω the characteristic frequency scale of the system. In the opposite limit where T → 0, the entropy plays no more role and the state minimizing the energy is consequently the ground state of the Hamiltonian, which can be a function of some other parameter than the temperature, such as an external field applied to the system. When the ground state depends non-analytically on the external parameter, this is referred as a quantum phase transition, which is driven by quantum fluctuations due to the Heisenberg uncertainty principle (i.e. the competition of noncommuting terms in the Hamiltonian) [START_REF] Sachdev | Quantum phase transitions[END_REF]. One spectacular example of quantum phase transition is the superconductor-insulator transition [START_REF] Gantmakher | Superconductor-insulator quantum phase transition[END_REF] that occurs to certain materials close to the absolute zero temperature.

On the other hand, open quantum systems subject to driving and dissipation can exhibit dissipative phase transitions for the non-equilibrium steady state, where the physics is decided by the rich interplay between the Hamiltonian evolution, dissipation-induced fluctuations and driving. Driven-dissipative phase transitions have been theoretically studied for various systems, such as photonic resonators [START_REF] Bartolo | Exact steady state of a Kerr resonator with one-and two-photon driving and dissipation: Controllable Wignerfunction multimodality and dissipative phase transitions[END_REF][START_REF] Carmichael | Breakdown of Photon Blockade: A Dissipative Quantum Phase Transition in Zero Dimensions[END_REF][START_REF] Weimer | Variational Principle for Steady States of Dissipative Quantum Many-Body Systems[END_REF][START_REF] Benito | Degenerate parametric oscillation in quantum membrane optomechanics[END_REF][START_REF] Mendoza-Arenas | Beyond mean-field bistability in driven-dissipative lattices: Bunching-antibunching transition and quantum simulation[END_REF][START_REF] Casteels | Power laws in the dynamic hysteresis of quantum nonlinear photonic resonators[END_REF][START_REF] Casteels | Critical dynamical properties of a first-order dissipative phase transition[END_REF][START_REF] Casteels | Quantum entanglement in the spatial-symmetry-breaking phase transition of a driven-dissipative Bose-Hubbard dimer[END_REF][START_REF] Foss-Feig | Emergent equilibrium in many-body optical bistability[END_REF][START_REF] Biondi | Nonequilibrium gas-liquid transition in the driven-dissipative photonic lattice[END_REF][START_REF] Biella | Phase diagram of incoherently driven strongly correlated photonic lattices[END_REF][START_REF] Savona | Spontaneous symmetry breaking in a quadratically driven nonlinear photonic lattice[END_REF][START_REF] Verstraelen | Gaussian trajectory approach to dissipative phase transitions: The case of quadratically driven photonic lattices[END_REF][START_REF] Vicentini | Critical slowing down in driven-dissipative Bose-Hubbard lattices[END_REF], exciton-polariton condensates [START_REF] Sieberer | Dynamical Critical Phenomena in Driven-Dissipative Systems[END_REF][START_REF] Sieberer | Nonequilibrium functional renormalization for driven-dissipative Bose-Einstein condensation[END_REF][START_REF] Altman | Two-Dimensional Superfluidity of Exciton Polaritons Requires Strong Anisotropy[END_REF][START_REF] Dagvadorj | Firstorder dissipative phase transition in an exciton-polariton condensate[END_REF], and spin systems [START_REF] Kessler | Dissipative phase transition in a central spin system[END_REF][START_REF] Lee | Unconventional Magnetism via Optical Pumping of Interacting Spin Systems[END_REF][START_REF] Jin | Cluster Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin Systems[END_REF][START_REF] Lee | Antiferromagnetic phase transition in a nonequilibrium lattice of Rydberg atoms[END_REF][START_REF] Chan | Limit-cycle phase in driven-dissipative spin systems[END_REF][START_REF] Rota | Critical behavior of dissipative two-dimensional spin lattices[END_REF][START_REF] Overbeck | Multicritical behavior in dissipative Ising models[END_REF][START_REF] Roscher | Phenomenology of first-order dark-state phase transitions[END_REF]. Experimental investigations have studied dissipative phase transitions in single-mode semiconductor microcavity pillars [START_REF] Rodriguez | Probing a Dissipative Phase Transition via Dynamical Optical Hysteresis[END_REF] and superconducting resonators [START_REF] Fink | Signatures of a dissipative phase transition in photon correlation measurements[END_REF][START_REF] Fitzpatrick | Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice[END_REF]. In this chapter, we will be focusing on dissipative phase transitions in the non-equilibrium steady state of photonic systems. 

Relevant quantity

Free energy 

F (ρ) = Ĥ ρ -T S(ρ) Eigenvalues of Ĥ E : Ĥ|ψ = E|ψ Eigenvalues of L λ : L(ρ) =

I.2 Phase transitions in driven-dissipative open quantum systems

The dynamics of an open quantum system can be modeled by the Lindblad master equation (1.31)

d dt ρ = Lρ , ( 2.2) 
where L is the Liouvillian superoperator that generates the time evolution, which we assume to be independent of time 2 . The full information on the system dynamics is contained in the spectrum of the Liouvillian {λ j , ρj } j , where ρj is the right eigenmatrix of the superoperator L with eigenvalue λ j , i.e.

Lρ j = λ j ρj , (

with Re[λ j ] ≤ 0, ∀j [START_REF] Minganti | Spectral theory of Liouvillians for dissipative phase transitions[END_REF] and it is customary to order the eigenvalues by increasing absolute value of the real part |Re

[λ 0 ]| < |Re[λ 1 ]| < • • • .
Under quite general conditions, the Liouvillian admits a unique steady state

Lρ SS = 0 , Tr[ρ SS ] = 1 , (2.4)
which is a right eigenmatrix associated to λ 0 = 0, and the eigenmatrices with Re[λ j ] = 0 are all traceless [START_REF] Minganti | Spectral theory of Liouvillians for dissipative phase transitions[END_REF]. Similarly, one can also define the left eigenmatrices of the Liouvillian via the relation L † σj = λ * j σj with the normalization Tr[σ † j ρk ] = δ jk . Assuming that the eigenmatrices {ρ j } j form a complete basis for the operator space, the time evolution of any initial density matrix ρ(0) can be accessed via the unique decomposition

ρ(0) = ρSS + j≥1 c j ρj , ρ(t) = e Lt ρ(0) = ρSS + j≥1 c j e λ j t ρj , (2.5) with c j = Tr[σ † j ρ(0)].
It is then clear that the long-time behavior is governed by the Liouvillian gap defined as λ ≡ |Re[λ 1 ]|, also known as the asymptotic decay rate [START_REF] Kessler | Dissipative phase transition in a central spin system[END_REF], since it gives the slowest relaxation rate towards the steady state3 : ρ(t → ∞) ρSS + c 1 e -λt ρ1 .

(2.6)

As a dissipative phase transition in the steady state is characterized by the nonanalytical behavior of ρSS , which is associated to the eigenvalue λ 0 , it is therefore necessary to have a level crossing in the Liouvillian spectrum for the phase transition to occur [START_REF] Kato | Perturbation theory for linear operators[END_REF], which corresponds to the closure of the Liouvillian gap λ → 0. This implies via Eq. (2.6) that the time required to relax towards the steady state would diverge to infinity when the gap closes, which is known as the critical slowing down and can result in metastable states.

Formally, for a system admitting a thermodynamic limit N → ∞, a dissipative phase transition of order M can be characterized by the nonanalytical behavior of some observable Ô when an external parameter ξ approaches the critical value ξ c , and the order is the smallest integer M such that [START_REF] Minganti | Spectral theory of Liouvillians for dissipative phase transitions[END_REF] 

lim ξ→ξc ∂ M ∂ξ M lim N →∞ Tr[ρ SS (ξ, N ) Ô] = ∞ .
(2.7)

II Dissipative phase transitions in photonic systems

Let us focus on first-order dissipative phase transitions in photonic systems from now on.

In terms of the definition (2.7), the observable Ô can be chosen as the photon population, the parameter ξ is the drive applied to the system, and the thermodynamic limit N → ∞ will be explained later. A first-order (M = 1) transition then means a discontinuity in the population as a function of the drive, since its first derivative diverges according to the definition. We will first illustrate this phenomenon in the pedagogic example of a single-mode Kerr cavity and then show its natural relation with the driven-dissipative Bose-Hubbard lattice.

II.1 Single-mode Kerr cavity

Let us consider again the driven-dissipative Kerr model introduced in Sec. III.2 of the previous chapter, with the master equation (1.52) that we copy below for convenience:

Ĥ/ = -∆â † â + U 2 â †2 â2 + F * â + F â † , d dt ρ = Lρ = - i [ Ĥ, ρ] + γD[â]ρ , ( 2.8) 
where we assume U > 0. For reasons that will become clear in the next section (II.2), we introduce a dimensionless parameter N such that

U = U 0 N , F = √ N F 0 , (2.9)
and the thermodynamic limit for this system will be defined as N → ∞. Note that this scaling increases the drive and weakens the nonlinearity while keeping U F 2 constant, and therefore this thermodynamic limit can be understood as the limit of infinite number of photons in the cavity. This also implies that the mean-field solution of the rescaled steadystate population â † â SS /N as a function of F 0 will be independent of N . In particular, the mean-field theory always predicts bistable solutions in the regime of ∆ > √ 3γ/2, as shown by the dashed line in Fig. 2.1(a). The exact solution to the master equation is also shown for different values of the scaling parameter N in the same plot. Note that the exact steady-state is unique for each value of F even in the bistable regime predicted by mean-field theory. The population â † â SS /N exhibits a crossover from the lower branch to the higher one, with the slope increasing with N , which implies the emergence of a first-order phase transition in the limit N → ∞. This observation is consistent with the behavior of the Liouvillian gap λ presented in Fig. 2.1(b), obtained by exact diagonalization of the Liouvillian L. The gap shows a dip for driving values close to the crossover |F | 2 9γ 2 , which lowers as N increases. This implies the closure of the gap in the thermodynamic limit N → ∞ at the critical driving value, and that the relaxation time from some initial state towards the steady state diverges. In practice, this means that if the system is prepared in a low-(high-) population state with the driving just above (below) the critical value, the state is metastable and will remain stuck for a time on the order of 1/λ before relaxing to the steady state, which explains the optical bistability or hysteresis observed in actual experiments with finite duration [START_REF] Rodriguez | Probing a Dissipative Phase Transition via Dynamical Optical Hysteresis[END_REF].

II.2 Bose-Hubbard lattice

The thermodynamic limit defined via the scaling (2.9) may seem artificial at first sight, but it is in fact closely related to the usual thermodynamic limit of a Bose-Hubbard lattice with N sites [START_REF] Casteels | Critical dynamical properties of a first-order dissipative phase transition[END_REF]. Consider a D-dimensional hypercubic lattice of driven-dissipative Kerr resonators with nearest-neighbor coupling and periodic boundary conditions, whose Hamiltonian is given by Eq. (1.68): which we have rewritten in the rotating frame assuming a single-tone constant drive that uniformly addresses all sites, with the dissipator (1.70):

Ĥ/ = j -∆â † j âj + U 2 â †2 j â2 j + F * âj + F â † j -J j,j â † j âj , ( 2 
D ρ = γ 2 j 2â j ρâ † j -â † j âj , ρ = γ j D[â j ]ρ . (2.11)
To reveal the connection with the single-cavity model, let us consider the lattice in the momentum space via the discrete Fourier transform on the operators:

âk = 1 √ N j e -ik•r j âj , âj = 1 √ N k e ik•r j âk , ( 2.12) 
where the quasimomentum k

≡ (k 1 , k 2 , • • • , k d , • • • , k D )
takes values on the D-dimensional reciprocal lattice and r j is the position of the j-th site. The Hamiltonian becomes

Ĥ/ = - k ∆ + 2J D d=1 cos(k d a) â † k âk + U 2N k,p,q â † k â † p âq âk+p-q + √ N (F * â0 + F â † 0 ) , (2.13)
where a is the lattice constant. The dissipator remains local in the momentum space:

D ρ = γ k D[â k ]ρ . (2.14)
We notice that since the drive is uniform in the position representation, only the k = 0 mode is driven, while all k modes are equally dissipated. As a rough approximation, we can assume that the excitations in all the k = 0 modes (due to coupling to the k = 0 via the four-wave scattering term) are negligible and keep only the k = 0 terms in the model. This results in the single-mode Hamiltonian

Ĥ/ = -∆ 0 â † 0 â0 + U 2N â †2 0 â2 0 + √ N (F * â0 + F â † 0 ) , ( 2.15) 
where ∆ 0 ≡ ∆ + zJ is the detuning with respect to the k = 0 mode, with z = 2D the coordination number. We have therefore recovered the scaling (2.9) defined previously, and the quantity â † 0 â0 /N can be interpreted as an approximation for the population density on the lattice. The thermodynamic limit N → ∞ then naturally signifies the limit of infinitely large lattice.

Role of dimensionality

The naïve single-mode approximation above suggests that a first-order dissipative phase transition (as discussed in Sec. II.1) may take place in the Bose-Hubbard lattice as well. While this argument seems valid for high dimensions where one expects the fluctuations in k = 0 modes to be suppressed, there is no guarantee that these fluctuations will not deplete the criticality in systems of low dimensionality. Indeed, the emergence of a phase transition can be drastically affected by the spatial dimensionality of the system in general [START_REF] Sachdev | Quantum phase transitions[END_REF]. Recent theoretical works on the driven-dissipative Bose-Hubbard lattice [START_REF] Foss-Feig | Emergent equilibrium in many-body optical bistability[END_REF][START_REF] Vicentini | Critical slowing down in driven-dissipative Bose-Hubbard lattices[END_REF] predicted that a first-order dissipative phase transition emerges in two-dimensional (2D) lattices (with periodic boundary conditions), while in 1D chains there is no critical phenomenon. Their results show that while the k = 0 mode is dominant in population, local fluctuations in low dimension (1D) are significant enough to destroy the criticality.

In what follows, we propose a technique for probing the emergence of this first-order phase transition as a function of the spatial dimension in a continuous photonic system, and show the experiments performed by our collaborators which confirm our predictions.

III Technique for probing a dimension-dependent phase transition in a continuous photonic system

Let us explore the role of spatial dimension for a dissipative phase transition using a planar semiconductor microcavity, where polariton excitations are injected via quasi-resonant driving. As illustrated in Sec. III.3 of the previous chapter, this system can be regarded as the continuous limit of the Bose-Hubbard lattice considered in the recent theoretical works [START_REF] Foss-Feig | Emergent equilibrium in many-body optical bistability[END_REF][START_REF] Vicentini | Critical slowing down in driven-dissipative Bose-Hubbard lattices[END_REF]. We propose theoretically an all-optical way to enforce the dimensionality via the spatial shape of the driving beam. In particular, we consider a top-hat spot with constant driving intensity. The shape of the spot can be tailored in-situ to create a 2D or 1D geometry 4 . This scheme also features "diffusive" boundary conditions, since the polaritons can diffuse away from the driven region. While increasing the spatial size of the spot, which is the thermodynamic limit in the present context, we show in the next section (IV) that a first-order phase transition occurs using a 2D geometry, while it disappears in the 1D configuration. This technique has been experimentally implemented by the group of A. Bramati [Laboratoire Kastler Brossel (LKB), Sorbonne Université], providing the first experimental demonstration of the role of dimensionality in driven-dissipative phase transitions of photonic systems.

III.1 Theoretical model

Consider a planar semiconductor microcavity in the strong light-matter coupling regime, where polariton excitations are coherently injected by a quasi-resonant optical drive. As introduced in Sec. III.3 of the previous chapter, the system dynamics can be described in terms of the lower polariton field ψ(r), where r = (x, y) are in-plane coordinates parallel to the cavity mirrors. Within the mean-field approximation, the time evolution of ψ(r) ≡ ψ(r) in the frame rotating at the driving frequency ω d can be described by the driven-dissipative Gross-Pitaevskii equation (1.65) [START_REF] Carusotto | Quantum fluids of light[END_REF]:

i ∂ ∂t ψ(r, t) = -∆ -2m ∇ 2 ψ(r, t) + g|ψ(r, t)| 2 ψ(r, t) -i γ 2 ψ(r, t) + F(r) , (2.16) 
where ∆ = ω d -ω k=0 LP is the detuning of the drive with respect to the k = 0 mode of the lower polariton branch, m is the lower-polariton effective mass, g is the polaritonpolariton interaction constant, γ is the lower-polariton decay rate and F(r) encodes the amplitude and spatial shape of the coherent drive.

In the following, We adopt a top-hat driving scheme [see Fig. 2.2(c)], where the amplitude F(r) is defined by

F(r) = F 1 A (r), (2.17) 
where 1 A is the indicator function of a compact region A of the plane, such that the drive is constant within the region A and zero elsewhere. To force a 1D geometry, the driving region will be chosen as an elliptical spot with fixed minor axis b and variable major axis l b. To induce a 2D geometry, instead, the driving region will be chosen as a circular disk of variable diameter l. The only difference between the 1D and 2D configurations is the spatial shape of the top-hat drive, while the planar microcavity sample is the same. Note that the way we distinguish 1D and 2D is not via the absolute size of the top-hat spot, but the different ways they approach the thermodynamic limit: in 1D only the major axis l increases with b fixed, such that in the thermodynamic limit lim l→∞ b/l = 0, whereas in 2D both axes increase at the same rate, keeping the spot always circular and its aspect ratio constant. The boundary conditions in terms of the driven region are therefore of diffusive nature, which means that the polaritons can freely diffuse and decay out of the driving spot.

In order to probe a dissipative phase transition with respect to the driving intensity I = |F | 2 , we will be interested in the steady-state polariton density averaged over a disk 40 Chapter 2. Dissipative phase transition of light D of diameter l D at the center of the driven region:

n SS D = 1 µ(D) D d 2 r|ψ SS (r)| 2 , ( 2.18) 
where µ(D) denotes the area of the disk D and ψ SS is the steady-state field such that ∂ t ψ SS = 0. In the thermodynamic limit of l → ∞, a transition between two phases is characterized by the non-analytical behavior of n SS D when I tends to some critical value I c . As defined in Eq. (2.7), a transition of order M in our specific case can be described as [START_REF] Minganti | Spectral theory of Liouvillians for dissipative phase transitions[END_REF] lim

I→Ic ∂ M ∂I M lim l→∞ n SS D = +∞. (2.19)
In this study, we will present a first order (M = 1) phase transition, that is a discontinuity of steady-state polariton density n SS D with respect to the drive intensity I, which are the two quantities that we measure in our experiments.

III.2 Experimental setup

The sample used in the experiments performed by our collaborators at LKB is a 2λ GaAs high-finesse semiconductor microcavity cooled to the temperature of 4K in an open-flow helium cryostat. The cavity embeds three In 0.04 Ga 0.96 As quantum wells (QWs) between a pair of distributed Bragg mirrors made of 21 (top) and 24 (bottom) alternated layers of GaAs/AlAs. Each QW is located on an antinode of the cavity electromagnetic field to have a strong coupling of QW excitons to the cavity photons, giving rise to the excitonpolariton modes. The cavity spacer has a small wedge ( w 0.7 µeV/µm) whereby the photon-exciton detuning can be finely adjusted to around 0 meV by changing the excitation position. At this detuning the lower polariton branch has an effective mass m = 5.7×10 -5 m e , where m e is the bare electron mass. The Rabi frequency, the lower-polariton decay rate and the polariton-polariton interaction constant are respectively measured to be Ω R = 5.1 meV, γ = 0.08 meV, and g = 0.01 meV•µm 2 . The drive detuning is fixed at ∆ = γ with respect to the bottom of the lower polariton branch. This implies that the Rabi frequency Ω R , which determines the minimum splitting between the lower and upper polariton branches, is much larger than all the other energy scales in the problem. We can therefore consider effectively only the lower polariton in our theoretical treatment [START_REF] Carusotto | Quantum fluids of light[END_REF].

The polaritons are excited by a circularly polarized continuous-wave Ti:Sapphire laser whose output Gaussian mode is reshaped with a spatial light modulator (SLM) (Fig. 2.2). The SLM liquid crystal matrix plane is imaged on that of the cavity and contains a blazed grating of tunable contrast, which diffracts in the first order a fraction of the driving field intensity. The first order component is sent at normal incidence through the cavity, while the non-diffracted part (zero order) is blocked in the Fourier plane with a slit [Fig. 2.2(a)]. The intensity distribution between the zero and the first order components is modified by locally adjusting the grating contrast. In this way, with a well-calibrated anti-Gaussian contrast gradient -minimum at the center and maximum at the edge of the spot -a flat top-hat intensity profile is produced in the first order component. Then, by adding a non-diffracting mask over the grating, one can select which area of the beam profile is reflected into the first order component. Thus, the shape of the driving spot in the cavity reproduces the one defined by the contours of the mask [Fig. 2.2(c)]. With this reshaping method, a 2D circular driving spot or a 1D elliptical one can be achieved by configuring the SLM with a blazed grating masked by a circular aperture or by a narrow slit respectively (see Fig. 2.2). In the following, the spot sizes in the cavity plane are tuned by changing the mask dimension. For the 1D geometry, the minor axis of intensity profile is set at b = 6.4µm. This value is chosen such that it is large compared to the optical wavelength of the laser to avoid undesirable diffraction effects so as to produce a welldefined top-hat. At the same time, it is small enough to ensure that the crossover slope of the steady-state polariton density as a function of the drive for the smallest top-hat is mild enough to be measured experimentally, which allows us to study the asymptotic behavior (convergence or divergence) of the growing slope.

In order to probe the phase transition, an acousto-optic modulator (AOM) modulates the driving field power with a low-frequency ramp (200 Hz) of sufficient amplitude to be able to scan a wide range of polariton density. The input and output intensities of the cavity are measured using two photodiodes which detect through pinholes (of diameter l D = 5µm) at the center of the driving spot. Note that as the probing disk D is placed concentrically with the top-hat profile, the chosen value ensures that it is always contained within the driven region. However, we expect that asymptotically (in the limit of large l), the observed effects should not depend on its specific position as long as the probing disk is far enough from the boundary (or the edges of the major axis in the 1D case) of the tophat. The polariton density is then directly observed as a function of the driving intensity by plotting, one with respect to the other, the powers detected by the two photodiodes [see Fig. 

III.3 Numerical methods

The mean-field equation (2.16) is a partial differential equation, which typically requires certain kind of discretization to be solved numerically. We performed a finite-difference discretization and verified the convergence in terms of both the discretization step size and the size of the simulated system. In the case of the 2D configuration, a further simplification can be made exploiting the symmetry of the system.

Driven-dissipative dynamics in polar coordinates

In the configuration where a 2D round top-hat is applied, we can efficiently simulate the mean-field equation by adopting the polar coordinates and taking advantage of the cylindrical symmetry of the problem. The Laplacian of a scalar field φ in polar coordinates (r, θ) can be written as

∇ 2 φ = ∂ 2 r φ + 1 r 2 ∂ 2 θ φ + r∂ r φ . (2.20)
In the presence of cylindrical symmetry (where we ignore the effect of the wedge), we can look for solutions of the form ψ = ψ(r, t) that have no angular dependence, which means III. Technique for probing a dimension-dependent phase transition in a continuous photonic system 43

∂ θ ψ = 0. Therefore, Eq. (2.16) becomes the radial equation

i ∂ ∂t ψ(r, t) = -∆ -2m ∂ 2 r + 1 r ∂ r ψ + g|ψ| 2 ψ -i γ 2 ψ + F(r), (2.21) 
which significantly reduces the computational cost.

The truncated Wigner approximation method

To justify the use of the mean-field (MF) approximation for our numerical simulations, we benchmark the solutions against the truncated Wigner (TW) approximation method [START_REF] Carusotto | Quantum fluids of light[END_REF][START_REF] Vogel | Quasiprobability distributions in dispersive optical bistability[END_REF], which requires discretizing the quantum lower-polariton field ψ in the cavity into a 2D lattice. We denote ϕ j = ϕ(r j ) the complex field amplitude (not to be confused with the mean-field classical parameter ψ in the Gross-Pitaevskii equation) at the lattice position r j , and ∆V = ∆x 2 the size of the elementary cell of the discrete lattice (where we adopt a step length of ∆x when discretizing both dimensions). Note that the discretized field operators satisfy the commutation relation [ ψj , ψ † j ] = δj, j /∆V . The time evolution of the discretized field can be exactly described by a third-order partial differential equation in terms of its Wigner distribution (which is a representation of the density matrix [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF]). In the limit of g/(γ∆V ) 1, the third-order derivative terms can be neglected, resulting in a Fokker-Planck equation [START_REF] Carmichael | Statistical methods in quantum optics[END_REF], that can be solved using stochastic trajectories defined via the set of Langevin equations in terms of the amplitude ϕ j :

dϕ j (t) =F j {ϕ}dt + γ 4∆V dW j , (2.22) 
where F j {ϕ} = F {ϕ}(r = r j ) is the drift force on the lattice site j, with

F {ϕ}(r) = -i -∆ -2m ∇ 2 -i γ 2 + g |ϕ(r, t)| 2 - 1 ∆V ϕ(r, t) + F(r) (2.23)
and dW j is a zero-mean complex Gaussian noise satisfying dW j dW j =0, dW * j dW j =2dtδ j,j .

(2.24)

Within this formalism, the expectation values for symmetrized products of field operators [START_REF] Vogel | Quasiprobability distributions in dispersive optical bistability[END_REF] are given by the statistical expectation over different stochastic trajectories:

{( ψ † j ) n , ψm k )} s =E (ϕ * j,r ) n ϕ m k,r 1 N traj r (ϕ * j,r ) n ϕ m k,r , (2.25) 
where the index r labels the N traj random trajectories. For example, the polariton density at each site, that we are interested in, can be calculated as

n j = ψ † j ψj = 1 2 ( ψ † j ψj + ψj ψ † j ) - 1 2 [ ψj , ψ † j ] = { ψ † j , ψj } s - 1 2∆V 1 N traj r ϕ * j,r ϕ j,r - 1 2∆V
.

(2.26)

We performed the truncated Wigner simulations for the 2D configuration with a tophat spot l = 45µm driving the centre of a 105µm × 105µm square lattice (this corresponds to a non-driven region with minimum width 30µm surrounding the driving spot, which, as we verified, is sufficient for the result to converge), where the discretization is set to ∆x = 2µm (thus g/(γ∆V ) = 0.03125). This will be the largest driving spot considered in our results, and it therefore suffices to verify the validity of the mean-field approximation for this case, which is expected to be the closest case to possible criticality. Note that the lattice has 53 × 53 = 2809 sites, which is the number of coupled stochastic differential equations to solve in each single trajectory. For comparison, we simulate the same configuration (l = 45µm at the centre of a disk with diameter 105µm) with the mean-field equation in polar coordinates as introduced previously, with a discretization step length of ∆r = 0.5µm in the radial dimension, where we have only 105 deterministic equations to solve. In Fig. 2.3 we compare the time evolution of the polariton density averaged over the probing disk with driving F = 1.35γ/µm, (I = |F | 2 = 1.8225γ 2 /µm 2 ), simulated with the two aforementioned methods, where we averaged over N traj = 1000 trajectories in the truncated Wigner simulation. The relative error in the polariton density stays well below 5% of the steady-state density throughout the time evolution, and decreases to less than 1% as the steady state is reached, showing a good agreement between the two. In Fig. 2.4 we compare the steady-state polariton density averaged over the probing disk for different driving intensities across the crossover, and we took N traj = 100 for each driving value due to the high computational cost. The relative error in the driving intensity stayed well below 1% throughout the crossover. We therefore choose to use the mean-field equation for the numerical study, which gives accurate results at much lower computational cost as compared to the truncated Wigner method. 

IV Results and discussion

To investigate the steady-state behavior of the system and probe the phase transition, we solved Eq. (2.16) numerically with the experimental parameters introduced in the previous section. Throughout the simulation results presented in this section, the cavity wedge is not taken into account for more efficient simulations. The effect of the cavity wedge will be discussed later in Sec. IV.3. The detuning is set to ∆ = γ in the simulation (same value as in the experiments), which is in the regime where a driven-dissipative Kerr cavity exhibits mean-field bistability [START_REF] Rodriguez | Probing a Dissipative Phase Transition via Dynamical Optical Hysteresis[END_REF][START_REF] Baas | Optical bistability in semiconductor microcavities in the nondegenerate parametric oscillation regime: Analogy with the optical parametric oscillator[END_REF]. This can be equivalently viewed as the approximation of considering only the k = 0 mode under uniform drive F [START_REF] Casteels | Critical dynamical properties of a first-order dissipative phase transition[END_REF], since the steady-state mean-field equation can be written as

|ψ SS | 2 ∆ -g|ψ SS | 2 2 + γ 2 4 = |F | 2 , ( 2.27) 
which is essentially the same as Eq. (1.54) for a single-mode Kerr resonator. Note that the non-linear relation between |ψ SS | 2 and I = |F | 2 predicts a bistable regime if ∆/γ > √ 3/2, as shown by the dashed line in Fig. 2.5(d), that we will compare with our numerical results. In all the simulations, the diameter of the probing disk D is set to l D = 5µm.

IV.1 Steady-state behavior

In Fig. } of the crossover from low density to high density (obtained with a noise-robust numerical differentiation method [START_REF] Chartrand | Numerical Differentiation of Noisy, Nonsmooth Data[END_REF]) is monitored as a function of the top-hat size l, which allows us to probe (2.27). Note that as the top-hat increases in size, the slope in the 1D configuration quickly saturates for increasing size l, while in the 2D configuration the slope sharply increases in both theory and experiment, as expected for a first order phase transition. the emergence of phase transitions defined by Eq. (2.19). In the 1D configuration, where the top-hat drive takes the shape of an elliptical spot with fixed minor axis, the slope S(l) saturates to a finite value with low enhancement [S(l)/S(l 0 ) < 2 with l 0 = 15µm for all values of l measured] as the major axis l increases, signifying a smooth crossover with no phase transition in the thermodynamic limit.

In sharp contrast to the 1D configuration, with a 2D driving geometry, the slope presents a significant enhancement (by a factor of around 40 in theory, and a comparable value in the experimental results) as the top-hat diameter l increases, suggesting the emergence of a first-order phase transition in the thermodynamic limit of l → ∞. We would like to also point out that, while in the 1D configuration we observed no bistability, in the experiments with 2D geometry we observed slight bistability for top-hat diameters l 35µm [in this case we consistently took the lower branch when computing the slope (the higher one would give similar results)], which is consistent with the critical slowing down (see Sec. IV.2) of the dynamics as the system approaches criticality in 2D. Note that for S(l)/S(l 0 ) 10 [corresponding to a top-hat size of l results in Fig. 2.5(e)], the curve becomes almost vertical, which makes the numerically computed derivatives more sensitive to small errors in the measurements, resulting in the relatively larger errorbars on the experimental curve in Fig. 2.5(f) in this regime. The deviation between the theoretical and the experimental curves could originate from a slightly higher detuning in the experiment than the nominal value ∆ = γ. Nevertheless, the main objective of this plot is to show the divergence in the 2D configuration for both theory and experiment, which is in clear contrast to the 1D case.

IV.2 Critical slowing down of the dynamics in the 2D configuration

In a master-equation formalism of the problem

d dt ρ = Lρ , ( 2.28) 
The slowest relaxation dynamics of the density matrix towards the steady state is governed by the spectral gap λ of the Liouvillian superoperator L, which is also known as the asymptotic decay rate [START_REF] Minganti | Spectral theory of Liouvillians for dissipative phase transitions[END_REF]. As introduced in Sec. I.2, a dissipative phase transition can be characterised by the closing of the Liouvillian gap λ → 0 in the thermodynamic limit, and is associated with a critical slowing down in the transient dynamics [START_REF] Vicentini | Critical slowing down in driven-dissipative Bose-Hubbard lattices[END_REF][START_REF] Minganti | Spectral theory of Liouvillians for dissipative phase transitions[END_REF].

To further investigate the dynamical properties of the emerging criticality in 2D, we simulate the time evolution of the polariton density n D (t) averaged over the probing disk towards the steady state n SS D in the 2D configuration, with a vacuum initial state. For driving intensities close to the critical point, the difference n D (t)-n SS D decays exponentially to zero for large time scales t 1/γ, as reported in Fig. 2.6(a) showing the particular case of I = 1.7689γ 2 /µm 2 for different driving spot sizes l. The decay exhibits a critical slowing down as l increases, and we can estimate the Liouvillian gap λ by fitting the decay to an exponential form n D (t) = n SS D + A exp(-λt), as the asymptotic decay is dominated by the Liouvillian gap in this regime [START_REF] Vicentini | Critical slowing down in driven-dissipative Bose-Hubbard lattices[END_REF][START_REF] Minganti | Spectral theory of Liouvillians for dissipative phase transitions[END_REF]. The dependence of λ as a function of the driving intensity I and spot size l is quantified in Fig. 2.6(b) and (c): λ(I) presents a dip for each size l, and the minimum keeps decreasing as the driven area is increased. This evidence suggests the closing of the Liouvillian gap λ in the thermodynamic limit, confirming the emergence of the first-order dissipative phase transition from the dynamical point of view. We can also estimate the critical driving intensity to be I c 1.76γ 2 /µm 2 from this figure.

Note that in our theoretical results, unlike the prediction of the single-mode mean-field theory given by Eq. (2.27), where the steady-state should always exhibit bistability across the transition, no bistability has been observed throughout the presented simulations (for larger sizes in 2D we would expect its appearance as we approach the limit of driving only the k = 0 mode), despite the absence of quantum fluctuations in the mean-field equation. This can be explained by the fact that our top-hat drive (that is non-uniform across the planar microcavity) excites both the k = 0 mode and other k = 0 modes. While only the k = 0 mode is responsible for the phase transition [START_REF] Casteels | Critical dynamical properties of a first-order dissipative phase transition[END_REF][START_REF] Vicentini | Critical slowing down in driven-dissipative Bose-Hubbard lattices[END_REF], the other k = 0 modes serve as a reservoir in the Fourier k space, whose fluctuations, despite being at the mean-field level, suffice to suppress the bistability.

IV.3 Effect of the cavity wedge

In order to study the effect of the cavity wedge that we excluded for a more efficient solution of the mean-field equation, we present in this section the simulation results of the 2D configuration with the wedge taken into account. The detuning ∆ becomes position dependent and can be modelled as ∆(x, y) =∆(x 0 ) + w(x -x 0 ), (2.29) where we have orientated the x axis along the gradient of the wedge. The steady-state polariton density distribution of the lower phase in the planar microcavity typically exhibits a distorted ring-shaped pattern, shown in Fig. 2.7(a) and (b), as the result of the wedge breaking the cylindrical symmetry of the system, whereas the distorsion is less visible in the higher density phase, as shown in Fig. 2.7(c) and (d). Despite the distortion, we obtain qualitatively similar behavior of the steady state as a function of the drive (Fig. 2.8) compared to the case without wedge. Note that for top-hat sizes l 40µm (which is the main range of our experimental results), the difference in the maximum slope between the two cases remains minor, which justifies our choice of neglecting the wedge in 2D simulations when comparing the results to the experiments, in return for more efficient simulations. On the other hand, for larger driving spots in 2D experiments where the wedge is present, we should expect a less significant growth or even the saturation of the slope compared to the ideal wedgeless scenario.

V Conclusion and outlook

In this chapter, we have investigated the emergence of a first-order dissipative phase transition of polaritons in a planar microcavity subjected to a top-hat driving scheme with naturally diffusive boundary conditions. We have shown that the emergence of criticality in such photonic system with Kerr nonlinearity is determined by the spatial dimension via the geometry imposed by the top-hat driving spot: a 1D geometry leads to a crossover behavior with no phase transition, while a 2D geometry shows a behavior consistent with a first-order transition between two phases with different densities. Our theoretical predictions have been validated by the experiments performed by our collaborators at LKB, which, to the best of our knowledge, is the first experimental demonstration of the role of dimensionality in determining criticality in driven-dissipative photonic systems.

The technique presented in this work allows the study of both 1D and 2D problems using the same planar cavity. The ability to control the criticality of the system via the spatial profile of the drive can also bring new insights to the design of polaritonic devices such as all-optical polariton transistors [START_REF] Ballarini | All-optical polariton transistor[END_REF]. This scheme can be potentially generalized to more complicated geometries imprinted by the shape of the driving field, such as fractal patterns or quasi-periodic lattices, which could open the possibilities for studying effects of gradual changes of the dimensionality on phase transitions, paving the way to a novel approach to exploring the many-body physics of photons and critical phenomena.

The original results presented in this chapter are published in [γ].

dissipative reservoir

In the previous chapter, we have seen how dissipative dynamics of a photonic system can give rise to intriguing phenomena such as dissipative phase transitions. On the other hand, one can also actively harness dissipation as a resource for engineering quantum systems, the possibility that we will now explore. In this chapter, we will focus on the scenario where a quantum system is coupled to a strongly dissipative reservoir, such that the reservoir degrees of freedom can be eliminated adiabatically due to their fast time scales.

The main difference with respect to the master equation derived in Chapter 1 is that we no longer assume the reservoir to be local. In other words, different (and possibly distant) modes in the system can share a common reservoir that is spatially extended, resulting in nonlocal effects within the system, which can be harnessed to achieve engineered couplings between the system's degrees of freedom. This chapter is structured as follows. In Sec. I, we will derive the general theory for the effective dynamics induced by a single-mode dissipative reservoir, where the coupling is assumed to be linear with an arbitrary system operator. This scenario is then recast in a more general picture in Sec. II using the theory presented in [START_REF] Denis | Permanent Directional Heat Currents in Lattices of Optomechanical Resonators[END_REF]. Finally, to prepare for the discussion in the next Chapter, we present in Sec. III a simple example of the application of the general theory, where one can realize two-photon drive and dissipation by adiabatically eliminating a single-mode dissipative cavity as the reservoir.

I Single-mode reservoir

Let us consider a simple case, where a (possibly open) quantum system is coupled to a strongly dissipative single-mode oscillator (such as a bad cavity) that we will refer to as the "reservoir", with bosonic annihilation operator b. The assumption of strong dissipation implies that the typical time scale of the reservoir dynamics is much shorter than that of the system, such that the reservoir can be traced out adiabatically, resulting in an effective description in terms of the system alone, which is similar to our derivation of the master equation by eliminating the environmental degrees of freedom.

Formally, consider the system-reservoir entity subjected to the master equation

1 d dt ρSR = L S ρSR + L R ρSR -i[ ĤI , ρSR ] , ( 3.1) 
where L S is the bare Liouvillian of the system which involves only operators acting on the system's Hilbert space. L R is the bare Liouvillian of the reservoir, of which we assume the form

L R (•) = -i[-∆b † b, •] + γ b D[ b](•) , (3.2)
where ∆ is some constant of the dimension of frequency, and γ b is the dissipation rate of the reservoir. Note that this form guarantees that the steady-state of L R is the vacuum, such that any reservoir correlation function decays to 0 at a time scale of ∼ γ -1 b , which allows us to proceed with the adiabatic elimination of the reservoir mode. The interaction Hamiltonian ĤI represents the system-reservoir coupling, which we assume to be linear:

ĤI = λγ b ( Â † b + Âb † ) , ( 3.3) 
where  acts only on the system's Hilbert space, and λ is a dimensionless small quantity which serves as a reminder that the system-reservoir coupling rate is small compared to the reservoir relaxation rate. We also make the adiabatic assumption:

L S ρSR /γ b λ 2 , ( 3.4) 
i.e. that the system bare dynamics is much slower compared to that of the reservoir. This typically requires us to work in some rotating frame where the possibly fast frequencies in L S are eliminated, and consequently ∆ can be interpreted as a detuning. As the reservoir is strongly dissipated, we can perturbatively develop ρSR around the reservoir vacuum:

ρSR =ρ 00 |0 0| + λ(ρ 01 |0 1| + ρ10 |1 0|) + λ 2 (ρ 11 |1 1| + ρ02 |0 2| + ρ20 |2 0|) + O(λ 3 ) , ( 3.5) 
where |m n| acts on the reservoir's Hilbert space, and ρmn acts on that of the system. We aim to find the effective dynamics of the system in terms of the reduced density matrix

ρS = Tr R [ρ SR ] ρ00 + λ 2 ρ11 , ( 3.6) 
where the reservoir mode is traced out and we keep terms up to second order in λ. By plugging the ansatz (3.5) into the master equation (3.1), we obtain

1 γ b d dt ρ00 = 1 γ b L s (ρ 00 ) -iλ 2 ( Â † ρ10 -ρ01 Â) + λ 2 ρ11 + O(λ 3 ) , 1 γ b d dt ρ10 = -i Âρ 00 + i ∆ γ b - 1 2 )ρ 10 + O(λ) , 1 γ b d dt ρ11 = -i( Âρ 01 -ρ10 Â † ) -ρ11 + O(λ) , ρ01 = ρ † 10 , (3.7) 
where the dynamics for ρ10 and ρ11 are calculated to the zeroth order in λ since they are already second order terms in the equation for ρ00 , which is the relevant quantity for ρS .

Let us now focus on the right-hand side of the equation for ρ10 , where the time dependence of ρ00 makes the equation hard to solve exactly. However, our adiabatic assumption implies that ∂ t ρ00 ∼ λ 2 γ b , while ρ10 is damped at rate γ b , which is much faster than the temporal variation of ρ00 . We can therefore make the adiabatic approximation that ρ10 is constantly in its steady state on time scales much larger than γ -1 b . This gives ρ10 = S Âρ 00 + O(λ) , (3.8) where the dimensionless factor S is defined as

S ≡ iγ b i ∆ -γ b 2 ≡ 1 γ b Λ - i 2 Γ , Λ = γ 2 b ∆ ∆2 + γ 2 b 4 , Γ = γ 3 b ∆2 + γ 2 b 4 , ( 3.9) 
that we decompose into real and imaginary parts for future convenience. With a similar argument applied to the equation for ρ11 , we find

ρ11 = γ -1 b Γ Âρ 00 Â † + O(λ) . (3.10)
Inserting these back into Eq. (3.7), we obtain the effective master equation for the reduced density matrix of the system

d dt ρS = L S ρS -i[λ 2 Λ Â † Â, ρS ] + λ 2 ΓD[ Â]ρ S , (3.11) 
with the appearance of an effective Hamiltonian term

Ĥ(1) S ≡ λ 2 Λ Â † Â , ( 3.12) 
which resembles the Lamb shift that appeared in our derivation of the Lindblad master equation. Indeed, in the case where the system consists of a single mode  = â, we recover exactly the same form of the master equation (1.35) with the reservoir in the thermal vacuum, and this derivation can be regarded as an explicit special case of the discussion in Sec. II.1 of Chapter 1 where the reservoir has only one mode. Eq. (3.11) above is the main analytical result of this chapter (developed from [α] and inspired by [START_REF] Leghtas | Confining the state of light to a quantum manifold by engineered two-photon loss[END_REF]) that we will further elaborate in Sec. III with a concrete example. Despite its simplicity, this model bears remarkable differences compared to the master equation (1.35) describing the effect of a local reservoir coupled to a system mode. In general, the system operator  can involve several modes which are possibly distant, making the reservoir effectively extended in space. The effective coherent contribution Ĥ(1) S from the reservoir then results in an effective coupling between different system modes on top of the Lamb shift, which can be visualized as system excitations traveling between different modes via (virtual) excitations of the reservoir [START_REF] Denis | Permanent Directional Heat Currents in Lattices of Optomechanical Resonators[END_REF]. Furthermore, the effective dissipator D[ Â] can also induce a dissipative coupling between system modes, that is mediated via the coupling to the reservoir as well. These reservoir-induced effects potentially allow the design of lattices with engineered couplings, which we will further explore later in the next chapter.

II The generic master equation

The result above can be alternatively cast in a more general framework. In this section, we will derive (following [START_REF] Denis | Permanent Directional Heat Currents in Lattices of Optomechanical Resonators[END_REF][START_REF] Denis | Reservoir-induced control and learning in quantum and classical systems[END_REF]) the effective master equation for a generic open quantum system (with time-independent bare Liouvillian L S ) coupled to an extended reservoir (with time-independent bare Liouvillian2 L R ). The full master equation still takes the form of Eq. (3.1), where we now assume the generic form for the interaction Hamiltonian

ĤI = λ j Ŝj ⊗ Rj , ( 3.13) 
where Ŝi and Ri act on the Hilbert spaces of the system and the reservoir respectively, and λ 1 is still a small dimensionless constant. Following the same procedure as Sec. II.1 of Chapter 1, the Born-Markov approximation leads to an equation similar to Eq. (1.25) [START_REF] Denis | Permanent Directional Heat Currents in Lattices of Optomechanical Resonators[END_REF]:

d dt ρS (t) = L S ρS (t) + L (1) 
S ρS (t) , L

S ρS (t) = -λ 2 ij ∞ 0 dτ G ij (τ )[ Ŝi , e L S τ ( Ŝj ρS (t -τ ))] + H.c. -λ 2 ij ∞ 0 dτ G ij (τ )[ Ŝi , e -i ĤS τ Ŝj e i ĤS τ ρS (t)] + H.c. , (1) 
where ĤS is the system bare Hamiltonian, introduced to approximate the effect of L S on time scales τ τ R (lifetime of reservoir excitations). G ij (τ ) is the reservoir correlation function defined as G ij (τ ) = Tr Ri e L R τ ( Rj ρR (0)) ≡ Ri (τ ) Rj (0) , (3.15) which is taken on the reservoir steady state (therefore invariant by translations in time) using the bare Liouvillian of the reservoir. Indeed, effects due to the system's back action will be at most of order O(λ) and negligible, as L

S is already of second order in λ, which is the highest order we keep3 . To proceed with the rotating wave approximation as done in Sec. II.1 of Chapter 1, we can decompose the system operators into eigenmodes of the system Hamiltonian [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF]:

Ŝi = α ŝi,α , [ ĤS , ŝi,α ] = -ω α ŝi,α , (3.16) 
where the set {ω α } α contains all possible energy differences between eigenstates of ĤS . 4This allows us to simplify Eq. (3.14) via the relation e -i ĤS τ ŝi,α e i ĤS τ = e iωατ ŝi,α , (3.17)

which is reminiscent of the transformation of ladder operators between the Schrödinger picture and the interaction picture. The eigenoperator ŝi,α can therefore be regarded as a generalized ladder operator which induces transitions between energy levels of difference ω α . Assuming that the energy spectrum of ĤS is discrete and that the energy differences |ω α -ω α | are much larger than the system's own relaxation rate for ω α = ω α (which is the typically the case in quantum optics [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF]), we can keep only the resonant terms in Eq. (3.14), finding

L (1) S ρS (t) = λ 2 i,j,α G α ij [ŝ j,α ρS (t), ŝ † i,α ] + H.c. , (3.18) 
with the reservoir correlation spectrum G α ij defined via the Fourier transform

G α ij ≡ ∞ 0 dτ G α ij (τ )e iωατ . ( 3 

.19)

To reveal the Lindblad form of Eq. (3.18), let us decompose G α ij (viewed as a matrix labeled by α) into Hermitian and anti-Hermitian parts:

G α ≡ 1 2 Γ α + iΛ α , (3.20) 
where Γ α and Λ α are Hermitian matrices. We can therefore diagonalize Γ with a unitary matrix U α :

U α Γ α U α † = diag(γ α 1 , γ α 2 , • • • ) , (3.21) 
which brings Eq. (3.18) into the Lindblad form:

L (1) S ρS (t) = -i   λ 2 i,j,α Λ α ij ŝ † i,α ŝj,α , ρS (t)   + λ 2 i,α γ α i D   j U α ij ŝj,α   ρS (t) , ( 3.22) 
giving rise to a Lamb-shift-like Hamiltonian term and a dissipative term, both of which can be nonlocal, resulting in reservoir-mediated couplings between different system modes, as we have discussed in Sec. I. Note that this is also the most generic master equation one can obtain for the system coupled to a possibly extended reservoir [START_REF] Denis | Permanent Directional Heat Currents in Lattices of Optomechanical Resonators[END_REF], while assuming no more that the usual Born, Markov and rotating-wave approximations.

II.1 The single-mode reservoir revisited

To recover our results in Sec. I on a single-mode dissipative reservoir using the generic formalism presented above, let us identify the operators in the interaction Hamiltonian (3.3) using the notations in the current section:

Ŝ1 ≡ Â , Ŝ2 ≡ Â † , R1 ≡ γ b b † , R2 ≡ γ b b , (3.23)
and invoke the reservoir's bare Liouvillian (3.2), whose steady state is the vacuum. The correlation functions G ij (τ ) can then be calculated using the quantum regression theorem [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF], and the only nonvanishing one reads

G 21 (τ ) = γ 2 b b(τ ) b † (0) R = γ 2 b e (i ∆-γ b 2 )τ . (3.24)
To find the effective dynamics up to second order in λ as we did in Sec. I, it suffices to approximate the integrand of Eq. (3.14) up to zeroth order in λ. This can be achieved by approximating G 21 in Eq. (3.14) with the Dirac delta

G 21 (τ ) γ 2 b γ b 2 -i ∆ δ(τ ) = 1 2 Γ + iΛ δ(τ ) , (3.25)
where Γ and Λ are defined in Eq. (3.10). This delta-correlation approximation in fact follows from our adiabatic assumption (3.4), such that ω α /γ b ∼ O(λ 2 ) for the frequencies involved in the eigendecomposition of Â. One can validate this approximation for G 21 via explicit calculation of the correlation spectrum: 

G 21 (ω α ) ≡ γ 2 b ∞ 0 dτ G 21 e iωατ = γ 2 b γ b 2 -i( ∆ + ω α ) = G 21 (0) + γ b O(λ 2 ) , ( 3 
S ρS = λ 2 1 2 Γ + iΛ [ Âρ S , Â † ] + H.c. = -i[λ 2 Λ Â † Â, ρS ] + λ 2 ΓD[ Â]ρ S , (3.27) 
which is exactly Eq. (3.11).

III Example: realization of two-photon drive and dissipation

To appreciate the general result derived above and prepare for our discussion on quantum simulation of antiferromagnetism in the next Chapter, let us apply the theory to a simple example where we derive an effective two-photon drive and dissipation via adiabatic elimination of a single-mode reservoir. Our starting point will be the following Hamiltonian (written in a rotating frame) for a degenerate parametric oscillator [START_REF] Carmichael | Statistical Methods in Quantum Optics 2: Non-Classical Fields[END_REF]: γ a . This model can be readily realized in circuit QED platforms [START_REF] Leghtas | Confining the state of light to a quantum manifold by engineered two-photon loss[END_REF][START_REF] Blais | Circuit quantum electrodynamics[END_REF][START_REF] Devoret | Superconducting circuits for quantum information: an outlook[END_REF][START_REF] Blais | Quantum-information processing with circuit quantum electrodynamics[END_REF], where two cavities are coupled nonlinearly via a Josephson junction, and the lossy cavity (with mode b) is subjected two a two-tone single-body driving scheme (see [START_REF] Leghtas | Confining the state of light to a quantum manifold by engineered two-photon loss[END_REF] for details) 5 . Denoting λ ≡ |g|/γ b , we assume F/γ b ∼ O(λ) and γ a /γ b ∼ O(λ 2 ) as considered in [START_REF] Leghtas | Confining the state of light to a quantum manifold by engineered two-photon loss[END_REF]. To make the bare dynamics of mode b match the form (3.2), we can displace the reservoir mode by redefining b → b + β to eliminate the driving term, where β is a constant that we now determine. In the displaced frame, the Hamiltonian reads ] is known as the two-photon loss, since it has the effect of annihilating two photons at a time upon acting on a state, and η corresponds to the two-photon loss rate. Similarly, the effective Hamiltonian Ĥ2 is known as the two-photon drive (or quadratic drive, since it is quadratic in the mode operator as opposed to a single-body drive) with G the two-photon drive amplitude. Finally, the rotating-frame Hamiltonian (3.30) can be written in the lab frame

Ĥ = F b † + F * b + gâ †2 b + g * â2 b † , ( 3 
Ĥ = (F - i 2 γ b β) b † + (F * + i 2 γ b β * ) b + gâ †2 b + g * â2 b † + gβâ †2 + g * β * â2 , ( 3 
Ĥ2 (t) = G 2 â †2 e -iω d t + G * 2 â2 e iω d t (3.32)
with the time-dependence restored, where ω d is the driving frequency.

III.1 The quadratically driven Kerr cavity

A Kerr cavity (of bare frequency ω 0 ) subjected to two-photon drive can be described by the Hamiltonian (in the frame rotating at the frequency ω d /2)

Ĥ = -∆â † â + U 2 â †2 â2 + G 2 â †2 + G * 2 â2 , ( 3.33) 
where ∆ = ω d /2 -ω 0 is the drive-cavity detuning, together with the master equation The nonlinearity is U = 5γ for both plots. In the limit of large driving, the infidelity tends to zero, implying the accuracy of the ansatz ρans .

d dt ρ = -i[ Ĥ, ρ] + γD[â]ρ + ηD[â]ρ , ( 3 
with one-and two-photon loss rates γ and η respectively. This model has been explored extensively both theoretically [START_REF] Minganti | Exact results for Schrödinger cats in driven-dissipative systems and their feedback control[END_REF][START_REF] Bartolo | Exact steady state of a Kerr resonator with one-and two-photon driving and dissipation: Controllable Wignerfunction multimodality and dissipative phase transitions[END_REF][START_REF] Rota | Quantum critical regime in a quadratically driven nonlinear photonic lattice[END_REF][START_REF] Bartolo | Homodyne versus photon-counting quantum trajectories for dissipative Kerr resonators with two-photon driving[END_REF][START_REF] Mirrahimi | Dynamically protected cat-qubits: a new paradigm for universal quantum computation[END_REF] and experimentally [START_REF] Leghtas | Confining the state of light to a quantum manifold by engineered two-photon loss[END_REF], and has sparkled rapidly growing interest in communities of quantum information [START_REF] Mirrahimi | Dynamically protected cat-qubits: a new paradigm for universal quantum computation[END_REF] and quantum simulation. Indeed, due to the presence of the quadratic drive instead of a single-body drive, the Liouvillian represented by Eq. (3.34) preserves the Z 2 parity symmetry (â → -â) of the photonic field, leading to bimodal states, which are ideal candidates for qubits or spin simulators. In particular, the steady state of the quadratically-driven Kerr cavity can be approximated by a statistical mixture of coherent states with opposite phases and equal probability:

ρans (α) = 1 2 (|α α| + |-α -α|) . (3.35)
As shown in Fig. 3.1, we have simulated the exact steady states ρSS of the master equation (3.34) and compared it to the ansatz ρSS (α SS ) with α SS = Tr(ρ SS â2 ) via the fidelity measure defined as

F(ρ 1 , ρ2 ) ≡ Tr ρ2 ρ1 ρ2 2 , (3.36)
for various values of ∆, η and G. The ansatz proves to be an accurate description of the exact steady state in the regime of strong two-photon drive, as indicated by the decreasing infidelity 1 -F(ρ ans , ρSS ). The state ρans can be equivalently written in an orthonormal basis 6 |C ± (α) ≡ N ± (|α ± |-α ), which are known as Schrödinger cat states with opposite parities, and

N ± = 1/ 2(1 ± e -2|α| 2 ) is the normalization factor such that ρans = 1 2 (|α α| + |-α -α|) = 1 4N 2 + |C + (α) C + (α)| + 1 4N 2 - |C -(α) C -(α)| .
(3.37) Note that in the limit of large driving G → ∞, we have |α| → ∞ [START_REF] Rota | Quantum critical regime in a quadratically driven nonlinear photonic lattice[END_REF], α|-α → 0 and N ± → 1/ √ 2, making the two bases {|C ± } and {|±α } essentially the same up to a rotation. Moreover, in the absence of single-body loss γ and the Kerr nonlinearity U , the steady state will be confined in the quantum manifold spanned by |C ± , which includes all the coherent superpositions of these states instead of a classical mixture, making the system effectively a qubit commonly referred to as the cat qubit. This has been experimentally demonstrated on circuit QED platforms in regimes with the twophoton loss η significant enough compared to single-photon loss γ, such that coherent dynamics can be observed in the transient [START_REF] Leghtas | Confining the state of light to a quantum manifold by engineered two-photon loss[END_REF][START_REF] Heeres | Implementing a universal gate set on a logical qubit encoded in an oscillator[END_REF][START_REF] Lescanne | Exponential suppression of bit-flips in a qubit encoded in an oscillator[END_REF]. Such two-photon-driven cavities can also be engineered to couple to each other [START_REF] Schoelkopf | Wiring up quantum systems[END_REF], allowing one to build artificial photonic lattices [START_REF] Houck | On-chip quantum simulation with superconducting circuits[END_REF][START_REF] Schmidt | Circuit QED lattices: towards quantum simulation with superconducting circuits[END_REF][START_REF] Tsomokos | Using superconducting qubit circuits to engineer exotic lattice systems[END_REF]. In the next chapter, we will propose a simple simulator of antiferromagnetism and frustration using quadratically driven Kerr cavity with engineered coupling and dissipation.

Dissipation-induced antiferromagneticlike frustration in coupled photonic resonators

In this chapter, we propose a photonic quantum simulator for antiferromagnetic spin systems based on the general theory derived in the previous chapter. We consider a scheme where quadratically driven dissipative Kerr cavities are indirectly coupled via lossy ancillary cavities, which can be adiabatically eliminated as a dissipative reservoir. We show that the resulting effective dynamics consists of dissipative and Hamiltonian antiferromagneticlike couplings between the system cavities. By solving the master equation for a triangular configuration, we demonstrate that the non-equilibrium steady state of the system bears full analogy with the ground state of an antiferromagnetic Ising model, exhibiting key signatures of frustration. We show that when the effective photon hopping amplitude is zero, the engineered nonlocal dissipation alone is capable of inducing antiferromagnetic interaction and frustration. This scheme applies to more general lattice geometries, providing a simple recipe for simulating antiferromagnetism and frustration on a controlled quantum optical platform. This chapter is structured as follows. We first introduce the background and context in Sec. I. In Sec. II we present the considered scheme consisting of target and ancillary cavities and then derive the effective dynamics for the system using results from the previous chapter. In Sec. III we present and discuss numerical results for the dimer and triangular geometries. Finally, we draw our conclusions and perspectives in Sec. IV.

I Introduction

For decades, the physics of frustrated systems has gathered a great deal of interest as a fundamental problem in condensed matter physics. In a system with multiple constraints that cannot be satisfied simultaneously, the emerging frustration leads to interesting properties such as highly degenerate ground states [START_REF] Ramirez | Strongly geometrically frustrated magnets[END_REF][START_REF] Moessner | Geometrical frustration[END_REF], extensive entropy at zero temperature [START_REF] Chalker | Hidden order in a frustrated system: Properties of the Heisenberg Kagomé antiferromagnet[END_REF] and exotic phases of matter, with connections to high-T c superconductivity [START_REF] Si | Strong correlations and magnetic frustration in the high T c iron pnictides[END_REF][START_REF] Hur | Superconductivity close to the Mott state: From condensedmatter systems to superfluidity in optical lattices[END_REF] or quantum critical phases [START_REF] Ramires | Frustration can be critical[END_REF]. Although first studied in water ice [START_REF] Giauque | The entropy of water and the third law of thermodynamics. The heat capacity of ice from 15 to 273°K[END_REF], the phenomenon of frustration has later been particularly explored in spin systems [START_REF] Wannier | Antiferromagnetism. the triangular ising net[END_REF][193][START_REF] Balents | Spin liquids in frustrated magnets[END_REF][START_REF] Zhou | Quantum spin liquid states[END_REF][START_REF] Yan | Spin-liquid ground state of the S= 1/2 kagome Heisenberg antiferromagnet[END_REF][START_REF] Shimizu | Spin liquid state in an organic Mott insulator with a triangular lattice[END_REF][START_REF] Coldea | Experimental realization of a 2D fractional quantum spin liquid[END_REF], usually as a result of an antiferromagnetic interaction combined with incompatible geometric constraints. A simple and paradigmatic model consists of antiferromagnetically interacting spins arranged on a triangular lattice, a system admitting a spin-liquid phase as its ground state [START_REF] Savary | Quantum spin liquids: a review[END_REF].

Recent impressive developments in experimental techniques have triggered an increasing interest in the field of quantum simulation of spin systems using Rydberg atoms [START_REF] Weimer | A rydberg quantum simulator[END_REF][START_REF] Cantat-Moltrecht | Long-lived circular Rydberg states of laser-cooled rubidium atoms in a cryostat[END_REF], quantum gas microscopes [START_REF] Kuhr | Quantum-gas microscopes: a new tool for cold-atom quantum simulators[END_REF], optical [START_REF] Pierangeli | Large-Scale Photonic Ising Machine by Spatial Light Modulation[END_REF][START_REF] Pierangeli | Adiabatic evolution on a spatial-photonic Ising machine[END_REF][START_REF] Pierangeli | Scalable Spin-Glass Optical Simulator[END_REF] and photonic simulators [START_REF] Aspuru-Guzik | Photonic quantum simulators[END_REF][START_REF] Hartmann | Quantum simulation with interacting photons[END_REF][START_REF] Angelakis | Quantum simulations with photons and polaritons[END_REF] with semiconductors [START_REF] Carusotto | Quantum fluids of light[END_REF][START_REF] Amo | Exciton-polaritons in lattices: A non-linear photonic simulator[END_REF][START_REF] Boulier | Microcavity polaritons for quantum simulation[END_REF][START_REF] Berloff | Realizing the classical XY Hamiltonian in polariton simulators[END_REF][START_REF] Goblot | Nonlinear Polariton Fluids in a Flatband Reveal Discrete Gap Solitons[END_REF] or circuit quantum electrodynamics (QED) [START_REF] Schmidt | Circuit QED lattices: towards quantum simulation with superconducting circuits[END_REF][START_REF] Haroche | From cavity to circuit quantum electrodynamicst[END_REF]214]. However, their application on simulating frustrated spin systems is in its infancy. A recent theoretical study [START_REF] Rota | Simulating frustrated antiferromagnets with quadratically driven QED cavities[END_REF] revealed that coupled quadratically driven photonic cavities can simulate the antiferromagnetic Ising model [START_REF] Wannier | Antiferromagnetism. the triangular ising net[END_REF], yet the model relies on a negative photon hopping amplitude between cavities, the implementation of which remains a major challenge despite possible realizations with sophisticated techniques [START_REF] Kounalakis | Tuneable hopping and nonlinear cross-Kerr interactions in a high-coherence superconducting circuit[END_REF][START_REF] Haddadi | Photonic molecules: tailoring the coupling strength and sign[END_REF].

In this chapter, we propose a simple realization of antiferromagneticlike frustration in lattices of quadratically driven dissipative photonic cavities achieved via reservoir engineering. By indirectly coupling the target cavities (system) via lossy ancillary cavities (engineered reservoir), we obtain an effective description for the system with both an antiferromagneticlike Hamiltonian interaction (an effective photon hopping amplitude that can be tuned to be negative) and nonlocal dissipation coupling that is capable of inducing antiferromagnetic behavior in the system. By simulating the effective model via a consistently derived master equation for the reduced density matrix, we determine the first-order coherence correlation function and the von Neumann entropy. We demonstrate that when applied to a triangular geometry, our scheme yields a simulator for antiferromagnetically coupled Ising spins exhibiting key signatures of frustration.

II Theoretical model

Let us consider a one-dimensional (1D) chain of N pairs of single-mode cavities with annihilation operators {â 1 , b1 , â2 , b2 , • • • , âN , bN } and periodic boundary conditions. The system cavities are described by the bosonic mode annihilation operators âj while the lossy reservoir cavities by the operators bj . Each system site is coupled to the neighboring reservoir sites via the photon hopping coupling with amplitude J (> 0). Each system cavity is also assumed to have a mode frequency ω 0 and Kerr nonlinearity U and is subjected to a coherent two-photon drive with amplitude G, driving frequency ω d , and two-photon dissipation rate η. The reservoir cavity modes have frequency ω 0 -∆ and are assumed to be undriven and linear. We further assume the presence of single-photon loss for both the system sites (with rate γ) and the reservoir ones (with rate γ b ). The considered ensemble is schematically depicted in Fig. 4.1 (left panel) for the case N = 3. The Hamiltonian of the ensemble reads

Ĥ(t) = j Ĥj (t) , Ĥj (t) = ω 0 â † j âj + (ω 0 -∆) b † j bj -J (â j + âj+1 ) b † j + (â † j + â † j+1 ) bj + U 2 â †2 j â2 j + G 2 â †2 j e -iω d t + G * 2 â2 j e iω d t . (4.1)
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â1 b1 â2 b2 â3 b3 G ηD[â 2 j ] γ b D[ bj ] γD[â j ] J > 0 γ b >> γ Tr {b j } â1 â2 â3 κD[â j + âj+1 ] J eff Figure 4
.1: Schematic of the considered system-reservoir ensemble for the case with N = 3 system cavities, where âj is the photon annihilation operator on the j-th cavity, G is the two-photon driving amplitude, γ is the single-photon loss rate, and η is the two-photon loss rate. The system cavities are coupled indirectly via the undriven lossy reservoir cavities: bj is the corresponding ancillary mode annihilation operator and γ b γ is its singlephoton loss. The hopping coupling constant J between reservoir and system cavities is assumed to be positive. The effective model for the system is obtained by tracing out the ancillary degrees of freedom. This produces an effective coupling between system cavities that has both a coherent contribution (via the photon hopping J eff ) and a dissipative part (via the dissipator κD[â j + âj+1 ]). The effective hopping amplitude J eff can be tuned to be negative, positive, or zero depending on the choice of parameters. The nonlocal dissipator has a symmetric jump operator that favors antiferromagnetic-like correlations.

Under the Born-Markov approximation, the state of the ensemble can be described by the density matrix ρ whose dynamics is governed by the Lindblad master equation:

dρ dt = -i[ Ĥ, ρ] + j γD[â j ] + γ b D[ bj ] + ηD[â 2 j ] ρ . (4.2)
We are interested in the regime where γ b γ, such that the modes bj can be traced out with the adiabatic elimination techniques derived in Chapter 3. As we will show in the following, the resulting effective dynamics introduces antiferromagneticlike interactions between the system sites.

II.1 Theoretical intuition for the dimer case

To understand why this configuration can give rise to antiferromagneticlike interaction, let us first focus on the basic building block of our proposed scheme -a dimer consisting of N = 2 system cavities as illustrated in Fig. 4.2. In the absence of the ancillary reservoir cavity, the tight-binding (linear) part of the Hamiltonian is simply (assuming rotatingwave approximation for the coupling) The normal mode splitting is 2|J| with the antibonding mode having a higher energy. (b) Same quantities for two cavities indirectly coupled via an ancillary cavity of bare frequency ω 0 -∆, with J > 0 and ∆ J. The two normal modes with higher energies resemble the bonding and antibonding modes, while the bonding mode has a higher energy. This implies an effective coupling J eff < 0 between the two indirectly coupled cavities.

Ĥ0 = ω 0 (â † 1 â1 + â † 2 â2 ) -J(â † 1 â2 + â † 2 â2 ) = â † 1 â † 2 ω 0 -J -J ω 0 â1 â2 , ( 4 
which can be diagonalized just as we did in Sec. III.2 of Chapter 1 to give an antisymmetric "antibonding" mode and a symmetric "bonding" mode with eigenfrequency ω ± J respectively. Note that when J > 0, which is the usual case in quantum optics, the bonding mode will have lower energy, as illustrated in Fig. 4.2(a). In other words, if we seek to achieve a negative coupling J, the bonding mode should be made to have a high energy compared to the antibonding one. This can be achieved by adding an ancillary cavity at bare frequency ω 0 -∆ and let the two system cavities both couple to the ancilla (with amplitude J > 0) instead of a direct coupling between them, as illustrated in Fig. 4.2(b). The tight-binding Hamiltonian of the ensemble then takes the form

Ĥ0 = ω 0 (â † 1 â1 + â † 2 â2 ) + (ω 0 -∆) b † b -J(â † 1 + â † 2 ) b -J(â 1 + â2 ) b † = â † 1 â † 2 b †    ω 0 0 -J 0 ω 0 -J -J -J ω 0 - ∆      â1 â2 b    , (4.4)
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ω 1 = ω 0 + 1 2 8J 2 + ∆2 -∆ , ω 2 = ω 0 , ω 3 = ω 0 - 1 2 8J 2 + ∆2 + ∆ , (4.5)
which are order by decreasing energy assuming ∆ > 0. The amplitudes of the eigenmodes are represented in Fig. 4.2(b) in the regime of ∆ J, where ω 2 corresponds to the antisymmetric antibonding mode, ω 1 corresponds to a bonding-like mode which is symmetric in â1 and â2 but with a small residual amplitude for the b mode, and ω 3 is at a much lower energy, with the amplitudes mostly localized on the reservoir mode. With this configuration, we have successfully achieved a symmetric mode being on a higher energy than the antisymmetric mode, as if the effective coupling J eff between the bare system modes were negative. As a rough estimate, the splitting between these two eigenmodes can be identified to be ∼ 2J eff via analogy with the scenario in Fig. 4.2. In the limit of large ∆/J, this effective coupling is estimated to be

J eff 1 2 (ω 2 -ω 1 ) J 2 ∆ . ( 4.6) 
This estimation, however, fails to capture the full effective dynamics arising from the reservoir. For example, the finite linewidths of the bare modes due to dissipation are not taken into account, and the limit ∆/J → ∞ is not physically valid either, since it implies the breakdown of the rotating-wave approximation which is assumed when writing down the tight-binding Hamiltonian. To better describe the effective dynamics in terms of the two indirectly coupled cavities, we shall resort to the general theory presented in Chapter 3, which allows us to adiabatically trace out the ancilla mode.

II.2 Adiabatic elimination of the reservoir mode

Let us consider the system and reservoir described by the Hamiltonian (4.4), with the single-body dissipations γD[â] and γ b D[ b]. In the regime where γ b γ, the reservoir mode b can be traced out adiabatically. Defining λ ≡ J/γ b , which we assume to be a small quantity, we will consider the regime where γ/γ b ∼ O(λ 2 ). As argued in Chapter 1 when we wrote down the driven-dissipative master equations (1.38) and (1.52), assuming the drive G and nonlinearity U to be only perturbative, these terms can be added afterwards when we have derived the effective master equation for the undriven linear system. To apply our result in Sec. I of Chapter 3, we first rewrite the Hamiltonian (4.4) in the frame rotating at ω 0 define by the unitary transformation Û † (t) ≡ exp iω 0 (â

† 1 â1 + â † 2 â2 + b † b)t , which reads Ĥ0 = -∆b † b + λγ b ( Â † b + Âb † ) , (4.7) 
with  = -(â 1 + â2 ), and the dissipators take the same form as in the nonrotating frame.

We have recovered the same form as Eqs. (3.2) and (3.3), and can therefore read off the effective master equation for the system modes from Eq. (3.11):

d dt ρ = -i[-Ĥeff , ρ] + γD[â] + κD[â 1 + â2 ] , Ĥeff = -J eff (â † 1 + â † 2 )(â 1 + â2 ) = -J eff (â † 1 â1 + â † 2 â2 ) -J eff (â † 1 â2 + â1 â † 2 ) , (4.8) 
with the effective parameters defined as

J eff = -J 2 ∆ γ 2 b 4 + ∆2 , κ = γ b J 2 γ 2 b 4 + ∆2 , ( 4.9) 
where J eff gives the strength of the Lamb shift and the effective photon hopping between the system sites, which are the coherent contributions of the reservoir to the effective dynamics. Note that J eff agrees with our naive estimate (4.6) in the previous section in the limit of large ∆. In addition, we also obtain a dissipative coupling of rate κ, since the dissipator D[â 1 + â2 ] is nonlocal.

II.3 Effective driven-dissipative dynamics

The effective model derived above can be easily generalized to the case with N cavities, since the reservoir sites are independent of each other and can hence be eliminated separately. Each reservoir site with bj sandwiched between the cavities of modes âj and âj contributes to a Lamb shift -J eff (â † j âj + â † j âj ), an effective coherent coupling -J eff (â † j âj + â † j âj ) and a dissipative coupling κD[â j + âj ], when adiabatically traced out, as illustrated in Fig. 4.1 (right panel). Restoring the Kerr and drive terms, the effective model for the full system-reservoir ensemble defined by Eqs. (4.1) and (4.2) reads (in the frame rotating at the frequency ω d /2):

Ĥeff = j -∆ eff â † j âj + U 2 â †2 j â2 j + G 2 â †2 j + G * 2 â2 j -J eff j,j â † j âj , ( 4.10) 
where the summation of j, j runs over nearest neighbors, and ∆ eff ≡ ω d /2 -ω 0 + zJ eff is the effective detuning, with z = 2 (the coordination number) in the case of a 1D chain. The effective master equation for the reduced density matrix of the target system is a Lindlad equation described by the effective Liouvillian L eff defined as

L eff (•) = -i[ Ĥeff , •] + j (γD[â j ] + ηD[â 2 j ] + κD[â j + âj+1 ])(•). (4.11) 
From now on, it will be convenient to work with the effective parameters ∆ eff , J eff , and κ, as the original Hamiltonian parameters can be obtained as functions of them: The dashed line indicates the boundary of the region satisfying J < 0.1γ b . These plots indicates that in the regime of small J eff , relatively small values of the system-reservoir coupling and detuning are required to achieve the effective model, which are consistent with our assumptions for the adiabatic elimination. and the transformation is well defined as long as κ > 0. The dependence of the original parameters J and ∆ on the effective parameters J eff and κ are shown in Fig. 4.3 for the case of γ b = 1000γ, with the boundary of the region satisfying J < 0.1γ b marked by dashed lines1 . This roughly indicates the "safe zone" for the effective parameters, as our adiabatic elimination assumes J/γ b to be a small quantity. On the other hand, the detuning between the system and reservoir cavities should not be too large, as the form of our coupling Hamiltonian assumes the rotating-wave approximation. Fig. 4.3(b) shows that for the regime of small J eff (which will be the case considered in the main results of the current chapter, where we will study the effective of a purely dissipative coupling κ > 0 with J eff = 0), a relatively small detuning ∆ is required2 , which is consistent with our rotating-wave approximation.

∆ =∆ eff -zJ eff , (4.12) ∆ = - γ b J eff κ , ( 4.13) 
J = κγ b 4 + γ b J 2 eff κ , ( 4 
At this stage, it is already important to summarize the main features of the proposed scheme:

1. The nearest neighbors in the effective model are dissipatively coupled via the dissipators κD[â j + âj+1 ], that preserve the Z 2 symmetry of the system (invariance under a global sign change âj → -â j , ∀j) and are capable of inducing frustration, as we will show in the next section.

2. The effective photon hopping amplitude J eff can be tuned and can be also negative when ∆ > 0.

3. This scheme is not limited to 1D arrays and can be easily adapted for more general lattices by placing an ancilla between neighboring sites j, j , so that the two system sites sharing a reservoir will experience an effective photon hopping J eff of tunable sign together with a dissipative coupling κD[â j + âj ].

As studied in [START_REF] Rota | Simulating frustrated antiferromagnets with quadratically driven QED cavities[END_REF] and discussed in Sec. III.1 of Chapter 3, in the limit of G/γ → ∞, each cavity will be driven into a statistical mixture of two coherent states with opposite phase |±α and we have α → ∞ in this limit3 . Thus, the steady state can be mapped to Ising spins with the identification |α → |↑ , |-α → |↓ , since we have

lim |α|→∞ -α|α = lim |α|→∞ exp (-2|α| 2 ) = 0. ( 4.15) 
The operator âj can be mapped to ασ z j when projected onto the spin basis in the limit of large driving. Therefore, from the spin point of view, the Hamiltonian (4.10) gives an effective Ising interaction σz j σz j with coupling constant proportional to J eff . The nonlocal dissipator D[â j + âj+1 ] is expected to induce anti-alignment of nearest neighbors, i.e. |±α, ∓α, ±α, ∓α, • • • . In fact, the jump operator destroys excitations where there is alignment.

III Results and discussion

To investigate the behavior of the steady state of the system, we numerically solve the master equation using the effective model to obtain the steady state density matrix ρSS that satisfies L eff ρSS = 0, where the detuning is set to ∆ eff = J eff in order to favor the k = π modulation of the photonic field |±α, ∓α, ±α, ∓α, • • • (the phase of the driven cavity field changes by π moving from one cavity to the nearest one), corresponding to the k = π mode in the single-particle spectrum of the Bose-Hubbard Hamiltonian [START_REF] Rota | Simulating frustrated antiferromagnets with quadratically driven QED cavities[END_REF]. We will be interested in the first-order coherence correlation function, defined as

g (1) 1,2 = Tr[ρ SS â † 1 â2 ] Tr[ρ SS â † 1 â1 ] , ( 4.16) 
and the von Neumann entropy

S = -Tr[ρ SS ln ρSS ]. (4.17) 
Note that with the mapping âj → ασ z j , we have g 

III.1 The dimer system

To reveal the antiferromagnetic behavior of the considered system, we first investigate the case with N = 2 sites. In this dimer configuration, we expect to see the antiferromagnetic ordering since there is no geometric frustration. In Fig. 4.4(a)-(c) we present the results

68

Chapter 4. Dissipation-induced antiferromagneticlike frustration in coupled photonic resonators for a finite value of the effective photon hopping amplitude J eff = -5γ < 0 and different values of the nonlocal dissipative coupling κ. As the driving G increases, the correlation g

(1)
1,2 converges to -1, directly witnessing the antiferromagnetic alignment of the simulated spins in the two sites. Moreover, the entropy converges to ln(2) for all values of κ. This suggests that the steady-state density matrix can be approximated by the ansatz

ρ2 (α) = 1 2 (|α, -α α, -α| + |-α, α -α, α|) (4.18)
in the strong driving limit. Indeed, as shown in the figure, the fidelity F between the steady-state density matrix ρSS and the ansatz ρ2 (α SS ) converges to 1 for increasing driving G. Such fidelity is defined as

F(ρ SS , ρ2 (α SS )) = Tr ρ2 ρSS ρ2 2 , ( 4.19) 
where α SS = Tr(ρ SS â2 1 ). Note that when the dissipative coupling strength κ increases, we achieve also a faster convergence, which implies that the dissipator κD[â j + âj+1 ] enhances the antiferromagnetic interaction. Importantly, the nonlocal dissipative coupling alone is sufficient to obtain the key antiferromagnetic signatures [i.e. g

(1)

1,2 → 1, S → ln(2) and F → 1], as shown in Fig. 4.4(d)-(f) where J eff = 0. In fact, this antiferromagnetic character can be preserved even for a positive J eff that is sufficiently small. We present in Fig. 4.4(g)-(i) the result for the N = 2 system with a positive J eff = 0.4γ > 0, where the key antiferromagnetic signatures are preserved. This shows that the antiferromagnetic effect due to the nonlocal dissipative coupling can even overcome a moderate ferromagnetic coherent coupling. which further stresses the dissipative origin of the antiferromagnetic behavior in our setup.

III.2 The trimer system

We now consider the more interesting case of N = 3 where geometric frustration can emerge. Similar to the N = 2 case, we expect the steady-state density matrix to be approximated by the ansatz

ρ3 (α) = 1 6 (|α, α, -α α, α, -α| + |α, -α, α α, -α, α| + |-α, α, α -α, α, α| + |-α, -α, α -α, -α, α| + |-α, α, -α -α, α, -α| + |α, -α, -α α, -α, -α|), (4.20) 
where we have a clear analogy with the sixfold degenerate ground state of the antiferromagnetic triangular Ising model. We first demonstrate that with a finite value of J eff < 0, our model is capable of simulating the frustrated Ising spins. 1,2 converges asymptotically to -1/3, which is also the spin correlation value in the corresponding antiferromagnetic triangular Ising model [START_REF] Stephenson | Ising-model spin correlations on the triangular lattice[END_REF]. The von Neumann entropy S converges asymptotically to ln (6), agreeing with the sixfold degenerate ground state of the simulated antiferromagnetic Ising mode. Furthermore, the fidelity F of the density matrix ρSS with respect to the ansatz ρ3 also converges to 1, validating the analogy with the spin system we made previously.

F ( ρ2 , ρSS ) (c) κ = γ κ = 2γ κ = 4γ κ = 8γ κ = 16γ 0 10 20 G/γ (f) κ = 4γ κ = 8γ κ = 16γ 0 10 20 G/γ (i) κ = 4γ κ = 8γ κ = 16γ
Our most important result is for the case of ∆ = J eff = 0 and κ > 0, as summarized in Fig. 4.6. Despite the absence of a coherent antiferromagnetic interaction in the Hamiltonian, we successfully recovered the key signatures of frustration [g

(1)
1,2 → -1/3, S → ln [START_REF] Heisenberg | Physics and Beyond: Encounters and Conversations[END_REF] and F(ρ 3 , ρSS ) → 1]. For comparison, we also simulated the trivial hypothetical scenario of κ = 04 , in which case the correlation g

(1)
1,2 = 0 as the modes âj are entirely decoupled, and the entropy tends to ln(8) instead of ln [START_REF] Heisenberg | Physics and Beyond: Encounters and Conversations[END_REF], corresponding to the 2 3 = 8-fold degener- [START_REF] Menicucci | One-Way Quantum Computing in the Optical Frequency Comb[END_REF] 
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III.3 Benchmarking the effective model against exact results

To benchmark the effective model we derived above, we first simulate the N = 2 systemreservoir ensemble using the full master equation and compare the results with those obtained using the effective model. Note that as we have only two system sites, it suffices to consider only one ancilla cavity (b 1 ), sandwiched between the two system cavities (a 1 , a 2 ), in the full simulation. We denote the steady-state density matrix of the full model by ρfull SS , obtained by solving the master equation [Eq. (4.

2)]: To quantify the benchmarking, we have calculated the fidelity F between the two solutions, defined as F = F(ρ SS , ρfull,r SS ), of course by using the same parameters. To demonstrate the validity of the effective model, here we report results of simulations for ∆ eff = J eff = -5γ, U = 4γ, and η = γ, which are the same parameters used to calculate As shown in Fig. 4.7, for γ b /γ = 10, the infidelity 1 -F is tiny, being at least smaller than 10 -2 for all the considered combinations of κ and G, even when the adiabatic assumption γ γ b is not fully respected. When the ratio is set to γ b = 100γ, we have 1 -F 10 -4 in all cases tested, indicating that the effective model we derived provides a very accurate description of the full model in the adiabatic limit.

Lρ full SS = 0. ( 4 
The benchmarking for the N = 3 case is extremely difficult, as the full system-reservoir ensemble contains 6 modes in total, and the dimension of the Hilbert space (with a truncation on the occupation number that is sufficient for convergence) required for the numerical simulation is exponentially larger than the N = 2 case, which contains only 3 modes. Therefore, we chose to benchmark the effective model in the regime of very low photon numbers for a single set of parameters (see caption of Fig. 4.8), and compare the time evolution between the exact model and the effective one. In Fig. 4.8(a), the photon occupation number of the system ( â † j âj full ) and reservoir modes ( b † j bj full ), and the unnormalized system correlation function â † j âj+1 full obtained by simulating the full model are plotted as a function of the time. The corresponding quantities given by the effective model are not shown, as they overlap almost exactly with the exact solutions. The infidelity 1 -F between the density matrices of the two solutions are shown in Fig. 4.8(b) along the time evolution, indicating that the effective model remains accurate for the trimer system. 

IV Conclusion and outlook

In this chapter, we have proposed a reservoir-engineering scheme allowing for the quantum simulation of frustrated Ising antiferromagnets with coupled photonic resonators subjected to coherent two-photon pumping. We have shown theoretically that the proposed configuration displays a dissipative coupling inducing antiferromagneticlike behavior and frustration even when the effective photon hopping amplitude is zero. By numerically solving the master equation for the cases with two and three system sites, respectively, we demonstrated the full analogy between the steady state of our model and the antiferromagnetic Ising model supported by the first-order coherence correlation and the von Neumann entropy.

The scheme proposed here provides a building block for simulating antiferromagnetic spin lattices, where the interaction depends on the easily tunable coherent photon hopping amplitude and the dissipative coupling rate, and which can be implemented in quantum optical platforms.

The original results presented in this chapter are published in [α].

Relativistic quantum reservoir computing

So far, we have explored the effective dynamics that a reservoir can induce on quantum systems in different regimes. Namely, we have seen in Chapter 1 and 2 how uncontrolled local thermal reservoirs give rise to dissipative dynamics in the system. We then discussed in Chapter 3 and 4 how one can harness the dissipation of nonlocal reservoirs to achieve both coherent and dissipative effective couplings in the system. This process is known as reservoir engineering, where one designs the reservoir (and its coupling to the system) to obtain desired effective dynamics in the system. There can be, however, an alternative point of view, where it suffices to engineer only the reservoir experienced by the system instead of the reservoir itself. Indeed, from our discussion on light-matter interaction under relativistic settings in Chapter 1, in order for a quantum detector weakly coupled to a reservoir to experience a temperature T , one can either directly prepare the reservoir in a thermal state with temperature T and leave the detector static, or let the reservoir be in the vacuum state but give the detector an eternal acceleration a = 2πT . This might seem ridiculously useless in practice, yet it bears fundamental interest in the field of relativistic quantum information, where one tries to understand and harness the effect of relativity in controlling quantum systems and processing quantum information, at least in theory.

(Later we shall see that analog implementation of relativistic quantum models is also possible.) This is exactly the motivation of this chapter, where we will study relativistic quantum reservoir computing, a paradigm yet to be explored in relativistic quantum information. It is worth clarifying now that the significance of the term reservoir in the context of reservoir computing subtly differs from what we have been considering in previous chapters. Here, a reservoir generally refers to some physical system (not necessarily coupled to another system in a bipartite setting) that exhibits nontrivial dynamics when subjected to some kind of input, such that it is capable of transforming the input into some useful representation that one can exploit to process the input information.

In this chapter, we present a machine-learning scheme based on the relativistic dynamics of a quantum system. We consider a paradigmatic model describing a quantum detector undergoing relativistic motion inside a cavity resonator. An equivalent analog model can be realized for example in a circuit QED platform subject to properly modulated driving fields. We exploit the reservoir-computing framework where the input data are embedded in the the acceleration of the detector and the output data are obtained by linear combinations of measured observables. As an illustrative example, we simulate such a relativistic quantum reservoir-computing protocol for a supervised classification task, showing a significant enhancement of the learning performance in the relativistic regime.

This chapter is structured as follows. Sec. I gives a very brief introduction to relativistic quantum information and reservoir computing, the two fields that we would like to blend in this chapter. In Sec. II, we will review the general concepts in supervised learning and reservoir computing, to prepare for the presentation of our relativistic quantum reservoircomputing protocol in Sec. III. In Sec. IV, we discuss the results obtained for an illustrative supervised classification task, together with with a possible implementation scheme with circuit QED. Finally, we conclude this chapter in Sec. V.

I Introduction

The interplay between general relativity and quantum physics has always been a fascinating field of research that is of fundamental importance. For instance, it was predicted from the study of quantum field theory in curved spacetime that a non-inertial observer in a quantum field would observe a different state compared to an inertial observer. As we have introduced in Sec. IV of Chapter 1, a famous example is the Unruh effect, where a uniformly accelerated observer in Minkowski vacuum detects a thermal bath at finite temperature, which bears the same nature as the celebrated black hole Hawking radiation.

On the other hand, the rapid development of quantum-information theory in the past decades has lead to the emergence of the exciting field of relativistic quantum information [START_REF] Peres | Quantum information and relativity theory[END_REF][START_REF] Mann | Relativistic quantum information[END_REF], where one seeks to understand and harness relativistic effects in quantum information-processing protocols. In particular, it has been demonstrated that non-inertial motion, or, via the equivalence principle, gravitational fields, can be used to generate quantum gates. Recent theoretical works have demonstrated that a nonuniformly accelerated cavity can generate cluster states [START_REF] Bruschi | Towards universal quantum computation through relativistic motion[END_REF], two-mode squeezing [START_REF] Bruschi | Relativistic Motion Generates Quantum Gates and Entanglement Resonances[END_REF], mode mixing [START_REF] Bruschi | Mode-mixing quantum gates and entanglement without particle creation in periodically accelerated cavities[END_REF] as well as other entangling gates [START_REF] Friis | Quantum gates and multipartite entanglement resonances realized by nonuniform cavity motion[END_REF] for continuous-variable quantum computing [START_REF] Braunstein | Quantum information with continuous variables[END_REF]. In the complementary scenario, where a cavity remains inertial but hosts accelerated detectors, it has also been shown that universal single-qubit rotations can be performed [START_REF] Martín-Martínez | Processing Quantum Information with Relativistic Motion of Atoms[END_REF]. While all the existing proposals for relativistic quantum computing require a very challenging control of mechanical motion, the corresponding models can be however synthesized in artificial platforms [START_REF] Johansson | Dynamical Casimir Effect in a Superconducting Coplanar Waveguide[END_REF][START_REF] Del Rey | Simulating accelerated atoms coupled to a quantum field[END_REF][START_REF] Felicetti | Relativistic motion with superconducting qubits[END_REF] such as those based on circuit QED [START_REF] Blais | Circuit quantum electrodynamics[END_REF] or trapped ions [START_REF] Duan | Colloquium: Quantum networks with trapped ions[END_REF].

In recent years, reservoir computing has emerged as an appealing paradigm of information processing [START_REF] Tanaka | Recent advances in physical reservoir computing: A review[END_REF]. This framework consists in approximating a target function by feeding its arguments as an input of a physical system referred to as the reservoir, whose dynamics nonlinearly maps the data into a high dimensional space. The resulting output data are then fed into a parametrized linear transformation to yield a trial function. These parameters are finally optimized through supervised learning. The advantage of this framework is that one may harness computing resources from the (usually nonlinear) dynamics of a physical system while requiring virtually no degree of control over it, and the computational cost involved in the training process remains relatively modest. This has led to proposals and realizations in diverse platforms, including free-space optics [START_REF] Der Sande | Advances in photonic reservoir computing[END_REF][START_REF] Sunada | Using multidimensional speckle dynamics for high-speed, large-scale, parallel photonic computing[END_REF][START_REF] Pierangeli | Photonic extreme learning machine by free-space optical propagation[END_REF], photonics [START_REF] Vandoorne | Experimental demonstration of reservoir computing on a silicon photonics chip[END_REF][START_REF] -L. Coarer | All-Optical Reservoir Computing on a Photonic Chip Using Silicon-Based Ring Resonators[END_REF], nonlinear polariton lattices [START_REF] Opala | Neuromorphic Computing in Ginzburg-Landau Polariton-Lattice Systems[END_REF][START_REF] Ballarini | Polaritonic Neuromorphic Computing Outperforms Linear Classifiers[END_REF][START_REF] Mirek | Neuromorphic Binarized Polariton Networks[END_REF], memristors [START_REF] Kulkarni | Memristor-based reservoir computing[END_REF][START_REF] Du | Reservoir computing using dynamic memristors for temporal information processing[END_REF] and beyond [START_REF] Boyn | Learning through ferroelectric domain dynamics in solid-state synapses[END_REF][START_REF] Nakane | Reservoir Computing With Spin Waves Excited in a Garnet Film[END_REF][START_REF] Marković | Reservoir computing with the frequency, phase, and amplitude of spin-torque nano-oscillators[END_REF][START_REF] Marcucci | Theory of Neuromorphic Computing by Waves: Machine Learning by Rogue Waves, Dispersive Shocks, and Solitons[END_REF]. Very recently, such an approach has been explored in a quantum context [START_REF] Marković | Quantum neuromorphic computing[END_REF][START_REF] Bravo | Quantum Reservoir Computing Using Arrays of Rydberg Atoms[END_REF], with applications in quantum metrology [START_REF] Ghosh | Quantum reservoir processing[END_REF][START_REF] Ghosh | Reconstructing Quantum States With Quantum Reservoir Networks[END_REF], quantum-state control [START_REF] Ghosh | Quantum Neuromorphic Platform for Quantum State Preparation[END_REF][START_REF] Ghosh | Realising and compressing quantum circuits with quantum reservoir computing[END_REF][START_REF] Krisnanda | Creating and concentrating quantum resource states in noisy environments using a quantum neural network[END_REF] and image recognition [δ, 250]; although, to the best of our knowledge, never yet in a relativistic scenario. Surprisingly, reservoir computing has been demonstrated to have a high performance in much less well-controlled situations, such as speech recognition using an actual bucket of water [START_REF] Fernando | Pattern Recognition in a Bucket[END_REF], as well as other classification tasks performed using cat brains [START_REF] Nikolić | Temporal dynamics of information content carried by neurons in the primary visual cortex[END_REF] and gene regulatory networks in the bacterium Escherichia Coli [START_REF] Jones | Is there a Liquid State Machine in the Bacterium Escherichia Coli?[END_REF]. Although it was long thought that a strong nonlinearity of the equations of motion was an essential element of reservoir computing, recent works have shown great performances relying on systems with almost no intrinsic nonlinearity, namely by exploiting the nonlinearity of the measurement [START_REF] Pierangeli | Photonic extreme learning machine by free-space optical propagation[END_REF][START_REF] Dong | Optical Reservoir Computing Using Multiple Light Scattering for Chaotic Systems Prediction[END_REF][START_REF] Rafayelyan | Large-Scale Optical Reservoir Computing for Spatiotemporal Chaotic Systems Prediction[END_REF] or drawing links with approximate kernel evaluation [START_REF] Saade | Random projections through multiple optical scattering: Approximating Kernels at the speed of light[END_REF][START_REF] Ohana | Kernel Computations from Large-Scale Random Features Obtained by Optical Processing Units[END_REF][START_REF] Denis | Photonic Kernel Machine Learning for Ultrafast Spectral Analysis[END_REF]. In this chapter, we take a step further and study the performance of a reservoir consisting of coupled linear oscillators whose nonlinear dynamics stem from their relativistic motion, thus harnessing computing resources from the nonlinearity of fundamental laws of physics. Before introducing our relativistic quantum model, let us first briefly review the general concepts in supervised learning and reservoir computing.

II Supervised learning and reservoir computing

The goal of supervised machine learning is to try to best approximate a (usually nonlinear) target function y = f (x) of some D-dimensional input vector x = (x 1 , x 2 , . . . , x D ) with a parametrized trial function ŷ = f (x) from a set of known example pairs. The input data are distributed in some input space according to a probability measure µ(dx), from which a restricted set of samples with their corresponding target values is known, {(x (i) , y (i) )} i . These are split into a training set of size N train , that one exploits to optimize the trial function f (hence the name "supervised learning"), and a testing set of size N test , used to asses the performance of the trained model. This optimization procedure (commonly referred to as training) is typically done by minimizing a task-dependent cost function that quantifies the error of the parametrized model over the training dataset. The simplest and perhaps also the best known example of supervised learning is the task of linear regression, where one tries to fit a set of data points to a straight line (or a hyperplane in general for multiple input arguments). In this case, the trial function is simply a linear combination of its input arguments, parametrized by the linear weights whose optimization can be achieved (analytically) by minimizing the sum of squared errors, known as the method of least squares [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF].

In general, the architecture of the model is determined by the parametrization of the trial function. A popular category of parametrizations in the context of machine learning is known as the artificial neural network (ANN) [START_REF] Hassoun | Fundamentals of Artificial Neural Networks[END_REF], where the trial function consists of layers1 of parametrized nonlinear transformations, which mimics the architecture of our brains, and has been proven to be universal function approximators. Such ANN models and are typically implemented by software that runs on standard (i.e., von Neumann architecture [START_REF] Neumann | First draft of a report on the EDVAC[END_REF]) computers, and usually contain numerous trainable parameters. A simpler alternative approach is provided by the architecture of "shallow models", such as General scheme of constructing a reservoir-computing trial function f (x) using a physical system. The system, prepared in a fixed initial state ρ0 , is subjected to a time evolution depending on the input x. This dependence can be realized, for example, via some kind of driving on the system determined by x, such as considered in [δ]. We formally denote this time evolution with the dynamical map M x (t), which gives the state of the evolved physical system at a later time: ρx (t) = M x (t)[ρ 0 ]. During this time evolution, a set of observables { Ôi } i are measured at different times {t j } j . [We assume ensemble measurements for quantum systems, such that we can measure the expectation values of multiple (possibly noncommuting) observables.] The input x is therefore transformed into a feature vector X(x) containing N feat features of the form Tr[ρ x (t j ) Ôi ] (the order does not matter). Finally, the trial function is obtained by linearly transforming the feature vector: f (x) = w T X(x), and the components of w are the linear weights to be optimized.

ρ0 M x (t) ρx (t) = M x (t)[ρ 0 ] features X(x) = Tr[ρ x (t 1 ) Ô1 ], • • • , Tr[ρ x (t i ) Ôj ], • • • , Tr[ρ x (t M ) ÔN ] T N feat features x X(x) X feature map f : x → w T X(
reservoir computing or extreme learning learning machines [START_REF] Huang | Extreme learning machine: Theory and applications[END_REF], which will be the main focus of this chapter.

II.1 Reservoir computing

The architecture of reservoir-computing models can be viewed as a simplified version of neural networks, such that the parameters in the network are randomly fixed and not optimized, except for those in the final linear output layer. Therefore, the construction of the trial function f (x) can be seen as a two-fold procedure:

1. the input x is transformed into a feature vector X(x) via the fixed neural network, whose action can be formally viewed as a feature map X(•) from the input space to the feature space;

2. The feature vector is linearly transformed to yield the trial function2 f (x) = w T X(x) , (5.1) where w represents the linear weights to be optimized.

Note that the feature map X(•) in the step (1) above is a fixed transformation that contains no parameter to be optimized. This makes reservoir computing particularly suitable for implementation in physical systems, since one can exploit the natural dynamics of a system to perform the feature map that transforms the input, while requiring very little control3 over the system. The general scheme of constructing a reservoir-computing trial function using a physical system is represented in Fig. 5.1. The system is subject to some time dynamics depending on the input x, and then several system observables are measured at different times to yield the feature vector X(x) of length N feat . In order for the trial function f (x) = w T X(x) to be expressive (i.e., to be able to approximate many classes of functions), one typically expects the physical system to have rich dynamics, such that the feature map X(•) is very nontrivial, which is why such physical systems are referred to as "reservoirs" in the context of reservoir computing.

II.2 Optimization

Given the training set S = {(x (i) , y (i) )} N train i , the optimal weights can be determined by minimizing a cost function of the form

C(w | S) = 1 N train N train i=1 E y (i) , f (x (i) ) + l • J(w) , w = argmin w {C(w | S)} , (5.2)
where E(y (i) , f (x (i) )) is a pointwise error function that measures the prediction error of the trial function for the i-th sample point in the training set, and J(w) is a penalty function that is generally chosen to be increasing with the norm of w, and l is known as the regularization parameter that controls the strength of the penalty. This regularization term can be understood as a soft cutoff on the number of free parameters in the model, which serves to prevent overfitting. In this chapter, we will consider the error function to be the squared error:

E y (i) , f (x (i) ) = 1 2 y (i) -f (x (i) ) 2 , ( 5.3) 
which is a popular choice for regression and corresponds to least square problems. It has also been shown to perform well for classification [START_REF] Suykens | Least Squares Support Vector Machine Classifiers[END_REF], although most classification problems are commonly treated with other cost error functions [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF]. We also choose the so-called L 2 regularization, which takes the form

J(w) = 1 2 w 2 2 = 1 2 w 2 i . (5.4)
This regularization is (on average) equivalent to having a zero-mean Gaussian noise of variance l in the measured features [i.e. components of the feature vector X(x)] [START_REF] Goodfellow | Adaptive Computation and Machine Learning Series[END_REF]. These choices completely define the cost function:

C(w | S) = 1 2N train N train i=1 y (i) -w T X(x (i) ) 2 + l 2 w 2 2 , ( 5.5) 
detector with proper frequency Ω, minimally coupled to a quantum field φ inside an optical cavity that stationarily lies in (1+1)D Minkowski spacetime. As we have derived in Sec. IV.2 of Chapter 1, the interaction-picture Hamiltonian takes the Unruh-DeWitt form [START_REF] Unruh | Notes on black-hole evaporation[END_REF][START_REF] Unruh | What happens when an accelerating observer detects a Rindler particle[END_REF][START_REF] Brown | Detectors for probing relativistic quantum physics beyond perturbation theory[END_REF] Ĥ(τ ) = λ m(τ ) φ[x µ (τ )] , (5.18) where τ is the proper time of the detector, λ is the coupling constant, and m(τ ) = be -iΩτ + b † e iΩτ is the monopole operator of the detector that depends on its annihilation (creation) operator b ( b † ). Finally, x µ (τ ) = (t(τ ), x(τ )) is the world line of the detector.

In the scenario involving no exchange of angular momentum, the cavity field φ can be well approximated by a massless scalar field. For a cavity with perfectly reflecting mirrors [START_REF] Martín-Martínez | Processing Quantum Information with Relativistic Motion of Atoms[END_REF][START_REF] Ahmadzadegan | Measuring motion through relativistic quantum effects[END_REF], the quantum field admits the following mode expansion (see Appendix B):

φ(t, x) = ∞ n=1 1 √ ω n L e -iωnt ân + e iωnt â † n sin(k n x) , (5.19) 
where ω n = k n = nπ/L and L is the cavity length. The mode operators (denoting â0 ≡ b for the detector) satisfy bosonic commutation relations [â n , â † m ] = δ nm . The full interaction Hamiltonian is therefore

Ĥ(τ ) = λ ∞ n=1 sin[k n x(τ )] √ Lω n × bâ n e -i[Ωτ +ωnt(τ )] + bâ † n e -i[Ωτ -ωnt(τ )] + H.c. , (5.20) 
where both rotating and counter-rotating terms are present and contribute in the noninertial regime [START_REF] Scully | Quantum Optics[END_REF][START_REF] Birrell | Quantum Fields in Curved Space[END_REF][START_REF] Martín-Martínez | Processing Quantum Information with Relativistic Motion of Atoms[END_REF][START_REF] Šoda | Acceleration-Induced Effects in Stimulated Light-Matter Interactions[END_REF].

Let us prepare the cavity in a single-mode coherent state |α ω i whose frequency is resonant with that of the detector [START_REF] Martín-Martínez | Processing Quantum Information with Relativistic Motion of Atoms[END_REF][START_REF] Ahmadzadegan | Measuring motion through relativistic quantum effects[END_REF]. As shown in [START_REF] Martín-Martínez | Processing Quantum Information with Relativistic Motion of Atoms[END_REF], for a qubit detector undergoing constant acceleration for a finite period of time in a cavity prepared in a single-mode coherent state, the main effect (of first order in λ) in the qubit dynamics is a coherent rotation on the Bloch sphere instead of thermalization (e.g. Unruh effect6 ), which is of second order in λ. This therefore serves to amplify the noninertial effects on the detector dynamics. Let us also consider the detector initially in its ground state ρ0,(a) = |0 a 0 a |. The initial density matrix of the detector-cavity ensemble then reads:

ρ0 = ρ0,(a) ⊗ |α ω i α ω i | ⊗ j =i |0 ω j 0 ω j |.
(5.21)

For a given x µ (τ ), the time evolution of the density matrix is given by dρ(τ ) dτ = -i[ Ĥ(τ ), ρ(τ )]. (5.22) Since all the considered modes are bosonic and the Hamiltonian is quadratic, the Gaussianity of the initial state is preserved during the evolution. The dynamics of ρ(τ ) can therefore be solved exactly using the covariance-matrix formalism for Gaussian states [START_REF] Brown | Detectors for probing relativistic quantum physics beyond perturbation theory[END_REF][START_REF] Simon | Gaussian pure states in quantum mechanics and the symplectic group[END_REF][START_REF] Weedbrook | Gaussian quantum information[END_REF][START_REF] Adesso | Continuous Variable Quantum Information: Gaussian States and Beyond[END_REF] (see Appendix D).
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III.1 Reservoir-computing protocol

Now we show how the dynamics of the considered relativistic quantum system can be harnessed to perform reservoir-computing tasks. The goal is to learn a (nonlinear) function f (x) of the D-dimensional input x = (x 1 , x 2 , . . . , x D ). In the framework of reservoir computing, our system is used to perform the feature map X(•) obtained in a two-step procedure:

(i) each input x determines a specific world line of the detector;

(ii) a set of observables of the detector are measured at different times to yield the feature vector X(x).

This is schematically represented in Fig. 5.2, which can be viewed as an explicit example of the general scheme presented in Fig. 5.1.

Assuming that for every component x i in the input vector x we have x i,min ≤ x i ≤ x i,max , we map them linearly to acceleration values in a fixed range between a 0 and a 0 +∆a, namely

x i → a i = a 0 + ∆a × x i -x i,min x i,max -x i,min . (5.23)
We then impose a piecewise-constant proper acceleration [START_REF] Vriend | The Unruh Effect in Slow Motion[END_REF] a(τ ) to the harmonic detector. The pieces have proper acceleration values (a

1 , -a 1 , -a 1 , a 1 , • • • , a N , -a N , -a N , a N )
and each piece has a duration of T /2 in the proper frame of the detector, and we repeat this encoding sequence m times. Assuming the detector to be initially at rest at x µ (τ = 0) = (t = 0, x = 0), this acceleration profile guarantees that at each instant τ = nT , n ∈ N, the detector is at rest, and that at τ = 2nT it comes back to its original spatial position at x = 0. Note that for a circuit QED implementation the modulation of the driving fields can directly control the analog of the proper acceleration with respect to the proper time τ (see Sec. IV.1). The detector world line for a general proper acceleration a(τ ) is (see Appendix C for a derivation)

x(τ ) = τ 0 dτ sinh[ξ(τ )] , t(τ ) = τ 0 dτ cosh[ξ(τ )], (5.24) 
where ξ(τ ) = τ 0 dτ a(τ ) is the rapidity [START_REF] Rindler | Introduction to Special Relativity[END_REF]. Instead, in the Newtonian case, the (unphysical) world line is simply

x Newt (τ ) = τ 0 dτ ξ(τ ) , t Newt (τ ) = τ.
(5.25)

Each input data point x determines a single time evolution of the system ρ(τ ). We can then measure the detector at times τ n = n × ∆T to obtain the expectation values of the quadrature operators q

= ( b + b † )/ √ 2, p = i( b † -b)/ √ 2 
and of the number operator n = b † b. The measurements are then collected into a feature vector X(x) [START_REF] Grimmer | Machine learning quantum field theory with local probes[END_REF] [see Fig. 5.2(e)]. Finally, our trial function reads f (x) = w T X(x) + b, (5.26) where the weight w and bias b are parameters to be optimized in order for f to approximate the target function f . To simplify the notation, in the following we will absorb b into the vector w by appending a constant component 1 to the vector X(x). This gives back our trial function the form f (x) = w T X(x) as considered previously in the general framework introduced in Sec. II.

IV Results and discussion

As an illustrative example, we consider a nontrivial task: the two-spiral classification problem [START_REF] Lang | Learning to tell two spiral apart[END_REF]. The goal is to distinguish two interlocking spiral planar patterns. This task serves as a well-known benchmark for binary pattern classification that is considered hard for multi-layer perceptron models due to its complicated decision boundary [START_REF] Yu | A backpropagation algorithm with adaptive learning rate and momentum coefficient[END_REF]. The input data are the two coordinates of each point in the two-spiral pattern x = (x 1 , x 2 ). The task function f to be learned is such that f (x) = 1 if the point belongs to the first spiral branch, and f (x) = -1 for the other branch [see Fig. 5.2(a)]. To train the model, we draw a training dataset of N train = 4000 sample points {x (1) , x (2) , • • • , x (N train ) } with labels y (i) = f (x (i) ) and minimize the L 2 -regularized least-square cost function (5.5), and the optimal weights are given by (5.7). The performance of the model is then evaluated Throughout our simulations, we fixed the coupling constant to λ = 0.1Ω, the interval of measurement to ∆T = T /2 and ∆a/a 0 = 0.1. The detector's proper frequency is set to be resonant with the third cavity mode 7 Ω = ω 3 , the latter being initially in a coherent state |α with α = 10i. We express all quantities in natural units with the scale fixed by Ω. The regularization is set to l = 10 -6 ; this is equivalent to having a Gaussian measurement noise of variance l in the observables [START_REF] Goodfellow | Adaptive Computation and Machine Learning Series[END_REF]. Fig. 5.3(a) shows the distribution of testing samples in feature space, represented by f (x). The same quantities are plotted in Fig. 5.3(b) in a non-relativistic setting, that is, considering Newtonian world lines [Eq. (5.25)]. As appears from Fig. 5.3(a) and (b), the relativistic model correctly separates the two classes with high accuracy. By contrast, the system undergoing unphysical Newtonian dynamics exhibits a poor performance. The empirical kernel spectra of the two models are plotted in Fig. 5.3(c), where we show the first 40 nonzero eigenvalues in descending order. The flatter distribution of the relativistic kernel spectrum implies that for a fixed cutoff threshold on the eigenvalues (or a fixed regularization [START_REF] Denis | Photonic Kernel Machine Learning for Ultrafast Spectral Analysis[END_REF]), it has more eigenfunctions with nonzero eigenvalues that can contribute to the expressivity of the trial function f in comparison with the Newtonian model. Importantly, this relativistically enhanced kernel expressivity associated to the dynamics is task-independent and explains the much higher accuracy achieved by the relativistic model for the specific two-spiral classification task.

In Fig. 5.3(d), we examine the impact of the acceleration time T on the performance of the model. As T increases, the inaccuracy (1 -A) of the relativistic model decreases to around 0, whereas the performance of the Newtonian model remains poor. This is consistent with the results of Fig. 5.3(e), where we vary the base acceleration a 0 for fixed T . Therein, we also found the inaccuracy of the relativistic model to be decreasing as a function of a 0 as the motion enters the relativistic regime, and a poor performance of the Newtonian model, which remains insensitive to a 0 .

In Fig. 5.3(f) we study the effect of the number of repetitions m of the encoding sequence on the performance. As we are taking measurements at a constant interval ∆T , a larger value of m allows for more features to be collected in the feature vector X(x), improving the efficiency. By contrast, in the Newtonian setting, the supplementary features are close-to-linearly related to the previous ones, thus yielding a negligible improvement. The induced nonlinearity of the feature map associated to the dynamics of the relativistic reservoir ensures that the generated features remain nontrivial after many repetitions. The advantage of the relativistic model can be understood from Eq. (5.20). Indeed, as discussed in Ref. [START_REF] Martín-Martínez | Processing Quantum Information with Relativistic Motion of Atoms[END_REF], the phases e -i[Ωτ ±ωnt(τ )] depend nontrivially on τ due to the relativistic (time-dilation) effects, which yields an input-dependent modulation of the cavity-detector resonance condition, absent in the Newtonian model, where one always has t Newt (τ ) = τ .

IV.1 Implementation with circuit QED

The accelerations considered in the presented scheme are on the order of cΩ, which is proportional to the detector's proper frequency. As discussed in [START_REF] Martín-Martínez | Processing Quantum Information with Relativistic Motion of Atoms[END_REF], for a detector gap on the order of GHz, this corresponds to an acceleration of 10 16 g (where g is the Earth's surface gravitational acceleration) and is far beyond experimental reach, which is common for almost all existing proposals for relativistic quantum information. However, as shown in the literature [START_REF] Del Rey | Simulating accelerated atoms coupled to a quantum field[END_REF], the Hamiltonian (5.20) can be synthesized on circuit QED platforms.

We hereby present a potential analog implementation of the proposed relativistic model with circuit QED inspired by [START_REF] Del Rey | Simulating accelerated atoms coupled to a quantum field[END_REF], which consists of a Josephson artificial atom with bosonic mode operator b (simulating the harmonic oscillator detector) coupled to a transmission line microwave cavity in the strong-coupling regime [see Fig. where ω 0 is the cavity bare frequency, is the energy of the artificial atom, and we assumed that the Josephson junction has negligible nonlinearity. This can be achieved for example by replacing a single Josephson junction with a sufficiently long chain of junctions 8 . The opposite extreme case, where the Josephson atom is a two-level system (qubit), yields similar results, as revealed by corresponding simulations reported in Section IV.2. ζ(τ ) is a driving function that takes the following form 9 :

ζ(τ ) = d dτ F (τ ) , F (τ ) = F + (τ ) + F -(τ ) , (5.28) 
where

F ± = cos[ω ± τ ∓ θ ∓ (τ )] -cos[ω ± τ ∓ θ ± (τ )] . (5.29)
Assuming that the phases θ ± (τ ) are modulated slowly compared to the driving frequencies ω ± , as will indeed be the case in what follows, the driving function ζ(τ ) can be well approximated by

ζ(τ ) -ω + sin[ω + τ -θ -(τ )] + ω + sin[ω + τ -θ + (τ )] -ω -sin[ω -τ + θ + (τ )] + ω -sin[ω -τ + θ -(τ )].
(5.30)

The interaction Hamiltonian in the Schrödinger picture is ĤI = g( b † + b)(â + â † ). Passing to the interaction picture with respect to Ĥ0 (τ ) and assuming η 1 in the driving term, we get ĤI (τ ) =g[ b † e i τ G(τ ) + H.c.](âe -iω 0 τ + H.c.) , G(τ ) =e iηF (τ ) 1 + iηF (τ ) .

(5.31)

To simulate a harmonic oscillator with proper frequency Ω and world line x µ (τ ) = (t(τ ), x(τ )) coupled to the n-th mode of a massless scalar field of frequency ω n = k n as considered in our protocol, we now choose ω ± = ± ω 0 -Ω as the driving frequencies and θ ± (τ ) = ω n t(τ ) ± k n x(τ ) as the phase modulations. In the regime where , ω 0 , | ± ω 0 | g, the interaction Hamiltonian becomes (keeping only slowly rotating terms)

ĤI (τ ) gη sin[k n x(τ )]× b(âe -i[Ωτ +ωnt(τ )] + â † e -i[Ωτ -ωnt(τ )]
) + H.c. , (5.32) which takes the form of the interaction Hamiltonian (5.20) for a single mode of the quantum field. Note that since we always consider a single-mode coherent state as the field initial state in our model, the main contribution to the dynamics of the harmonic oscillator comes uniquely from this mode, as one can verify using perturbation theory [START_REF] Martín-Martínez | Processing Quantum Information with Relativistic Motion of Atoms[END_REF]. We also checked numerically that a single-mode approximation for the quantum field is enough for obtaining accurate results for the simulations presented in this chapter. Nonetheless, it is possible to simulate the full many-mode Hamiltonian by using multiple modes in the circuit QED microwave cavity. As considered in [START_REF] Del Rey | Simulating accelerated atoms coupled to a quantum field[END_REF], the energy scales and ω 0 for circuit QED are in the GHz regime, while g, Ω and ω n can be on much slower time scales, such as in the MHz regime. The modulation rate of the phases θ± (τ ) can be expressed in terms of the simulated time-dependent acceleration a(τ ) as [using the world line in Eq. (C.5)]

θ± (τ ) = d dτ [ω n t(τ ) ± k n x(τ )] = ω n cosh[ξ(τ )] ± k n sinh[ξ(τ )] = ω n cosh τ 0 dτ a(τ ) ± k n sinh τ 0 dτ a(τ ) .
(5.33)

Let us consider a typical world line studied in our simulations, for example with a 0 = 2, ∆a/a 0 = 0.1, T = 2 and ω n = Ω [the values used in Fig. 5.3(f)] in the units fixed by Ω. Then, we have θ± (τ ) 10Ω, meaning that the phases in the driving (5.29) need to be modulated at roughly the same timescale as Ω, in the MHz band, which is much slower than the circuit QED timescales and should be experimentally feasible.

Finally, let us consider a concrete example of typical parameter values of the analog circuit QED system. Let the parameters of the system be ω 0 = 1 GHz, = 1.1 GHz, Ω = 1 MHz, g = 10/ √ 3π MHz 3.3 MHz, η = 0.01. The driving frequencies are then ω + = 2.099 GHz and ω -= 0.099 GHz. This simulates the harmonic detector coupled to the n = 3 mode of the quantum field (with Ω = ω n = k n and λ = 0.1Ω) as considered in our simulations. To simulate the acceleration sequence in our protocol for the case of a 0 = 2, ∆a/a 0 = 0.1 and T = 2, the required phase modulations θ ± (τ ) as well as their rates θ(τ ), given by Eq. (5.33), are plotted in Fig. 5.4.

IV.2 Results with a qubit instead of a harmonic oscillator

We report here the simulation results when we replace the harmonic detector with a qubit (two-level atom initially in its ground state) for the same parameters considered in the simulations with a harmonic detector. To model the configuration with the qubit, we have to replace the bosonic mode operator b with the Pauli operator σ-in the Hamiltonian. Since the Gaussian formalism can no longer be applied, we assumed a single-mode approximation for the quantum field (considering only the mode that is initially in the coherent state and in resonance with the proper frequency of the qubit), which matches the exact form of the single-mode circuit-QED Hamiltonian in Eq. (5.32). The feature vector now contains the expectation values of the operators that are respectively analogous to the bosonic occupation number and the quadratures, namely σ+ σ-, (σ -+ σ+ )/ √ 2 and i(σ + -σ-)/ √ 2. This is equivalent to measuring the Pauli operators σz , σx and σy for the qubit model. We recover results similar to the case of the harmonic detector. Note that the Newtonian model has a slightly improved yet still very poor performance, which can be ascribed to the additional nonlinearity provided by the qubit. These results clearly show that the details of the spectrum of the detector are not crucial for the expressive power of the relativistic quantum dynamics. 

V Conclusions

We have shown how relativistic quantum dynamics can provide a dramatic enhancement of the expressive power for reservoir computing. Given that analogs of the considered relativistic quantum model can be implemented in state-of-the-art quantum platforms, such as superconducting circuits and trapped ions, our theoretical findings pave the way to relativity-inspired machine-learning protocols with enhanced capabilities.

The original results presented in this chapter are published in [ ].

General conclusion

In this manuscript, we have explored reservoir-induced dynamics and reservoir computing in the context of quantum optics. In the current Noisy Intermediate-Scale Quantum (NISQ) era, reservoir is an inevitable subject in the study of quantum technologies, since it can, for example, represent the omnipresent environment that couples to the quantum devices of interest. In this context, our results can be arranged into three major directions of research:

1. dissipative dynamics of a quantum system due to coupling to the environment (an uncontrolled reservoir);

2. harnessing dissipation as a resource by appropriate design of the reservoir to achieve desired effective control over a quantum system (reservoir engineering);

3. exploiting the rich dynamics of a reservoir itself for information-processing applications (reservoir computing).

1.-Along the first path, we studied a dissipative phase transition in a photonic system. We proposed a technique for probing the role of spatial dimensionality in determining criticality, and implemented it in a planar semiconductor microcavity subjected to a coherent optical drive. In our scheme, the spatial geometry of the system is controlled by designing the intensity profile of the drive, and can therefore be tuned in situ and in an alloptical way. Our theoretical findings suggest that a first-order dissipative phase transition emerges for the 2D geometry, and is absent in 1D. This prediction has been experimentally observed and represents the first experimental demonstration of a dimension-dependent phase transition in photonic systems. Our results also suggest that the optical response of the cavity can be tuned as a function of the driving intensity profile, which could be useful for designing polaritonic devices such as all-optical polariton transistors, which rely on the switching between the low and high output intensities as a function of the input (drive) intensity. On the other hand, the flexibility of the proposed scheme provides the possibility of studying more complicated geometries on the same underlying cavity substrate, such as fractal patterns or fractional dimensions, which could be exploited to address the problem of lower critical dimension. Furthermore, it could be worth exploring phase transitions with spontaneous symmetry breaking with the proposed setup by considering, for example, an incoherent drive [which preserves the U (1) symmetry in the phase of the photonic field] or N -photon drive (with Z n symmetry). Our finding hopefully paves the way to a novel approach to exploring the many-body physics of photons and critical phenomena in the out-of-equilibrium regime.
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2.-We then addressed the theory of reservoir engineering, where the setup consists of a bipartite system-reservoir ensemble, with the reservoir having a much faster time scale allowing it to be adiabatically eliminated. We explicitly derived the general effective dynamics induced by a single-mode reservoir (a strongly dissipative cavity mode) and found that it is capable of creating both coherent and dissipative couplings between the system's degrees of freedom that the reservoir couples to. This was then illustrated with an application in quantum simulation of antiferromagnetism. We proposed a setup where spins are simulated by quadratically driven photonic cavities, and their interaction is mediated via the engineered reservoir consisting of single-mode dissipative cavities. The theoretical result previously derived allowed us to obtain an effective description, where coherent and dissipative couplings induced by the reservoir are identified, both capable of mimicking antiferromagnetism. In particular, we demonstrated via numerical simulations that the effective dissipative coupling alone is inducing frustration in the steady state of the system. As our setup can be easily generalized to larger geometries such as lattices, this could be a promising experimental platform for simulating frustrated spin systems such as spin glasses and spin liquids, where the couplings can be easily tuned.

3.-Finally, we introduced the paradigm of relativistic quantum reservoir computing, where the framework of reservoir computing is explored in the context of relativistic quantum information. We designed an information-processing protocol based on the Unruh-DeWitt model for relativistic light-matter interactions, where a quantum detector undergoes relativistic motion inside a cavity. We proposed to embed the input information in the motion of the detector, and exploited its quantum dynamics to perform a featurespace embedding, which nonlinearly transforms the input into a high-dimension space, providing useful representations of the input. This was demonstrated with the illustrative example of the two-spiral supervised classification problem, a well-known benchmark for binary classifiers. We then showed using kernel theory that the proposed reservoircomputing model exhibits enhanced performance when the motion of the detector enters relativistic regime. The enhancement can be understood as the relativistic effects (such as time dilation) providing nontrivial modulations in the resonance condition of the detectorcavity interaction, and can therefore be regarded as computing power harnessed from the fundamental laws of physics. We further discussed a possible analog implementation in circuit QED platforms, endowing the proposed scheme with practical interest. Our theoretical findings could pave the way to relativity-inspired machine-learning devices or algorithms with enhanced capabilities.

I Interaction picture

A particularly useful frame in situations involving interactions between different parts of a system is the so-called interaction picture, which is given by the time-evolution operator generated by the free (non-interacting) Hamiltonian Ĥ0 of the system. While it is assumed in many texts that Ĥ0 be time-independent, this condition is in fact not necessary for defining the transformation, as we will clarify in the following.

Consider a generic Hamiltonian of the form Ĥ(t) = Ĥ0 (t) + ĤI (t) , (A.5)

where we assume time dependence for both the free and the interaction Hamiltonians. The time evolution operator Û0 (t) generated by Ĥ0 is given by the (A.7)

As the free Hamiltonian has been eliminated, this interaction picture is useful for studying the dynamics stemming only from the interaction ĤI . In order to obtain practical expressions for HI (t), Ĥ0 (t) is usually chosen such that it commutes with itself at different times, i.e. [ Ĥ0 (t), Ĥ0 (t )] = 0 , ∀t, t , which is a typical case that arises when performing a reparametrization of the time. In this case, the transformation is simply Û0 (t) = e -i t 0 Ĥ0 (t)dt , (A.8) which does not involve time-ordering and the transformed Hamiltonian can be efficiently evaluated.

B Scalar quantum field theory

We present here (by following [START_REF] Carroll | Spacetime and geometry: An introduction to general relativity[END_REF]) the quantization of a real scalar field in the (d+1)dimensional Minkowski spacetime (i.e. one time dimension and d spatial dimensions) with the metric η µν = diag(+1, -1, • • • , -1). The Lagrangian density for the classical real scalar field φ(x µ ) is given by:

L = 1 2 η µν (∂ µ φ)(∂ ν φ) - 1 2 m 2 φ 2 , (B.1)
where m is the mass parameter. This determines the conjugate momentum 

Π = ∂L ∂(∂ 0 φ) = φ , (B.

I Quantization in a cavity

Let us first consider the field in a cavity with Dirichlet boundary conditions (corresponding to perfectly reflecting mirrors in the case of an optical field). Let the cavity be represented

D Gaussian formalism

we briefly summarize the Gaussian formalism for calculating the time-evolution of a Bosonic quantum system with a quadratic Hamiltonian and a Gaussian initial state. We denote the vector of bosonic mode operators by where 1 This property can also be regarded as the definition of a Gaussian state

Ψ = (â 0 , â1 , â2 , • • • , âN , â † 0 , â † 1 , â † 2 , • • • , â † N ) T , (D.
Ω = 0 1 -1 0 = -Ω T (D.

E Résumé substantiel

Cette thèse explore la dynamique induite par réservoir et le traitement de l'information par réservoir dans des systèmes d'optique quantique. Elle est structurée autour de trois directions de recherche principales :

(i) la dynamique dissipative d'un système quantique en contact avec son environnement (chapitres 1 et 2) ;

(ii) le contrôle d'un système quantique par ingénierie de réservoir (chapitres 3 et 4) ;

(iii) l'apprentissage automatique au moyen de réservoirs (chapitre 5).

Dans un premier temps, la dynamique effective d'un système quantique faiblement couplé à son environnement est décrite par le formalisme des systèmes quantiques ouverts, où l'environnement est modélisé par un réservoir thermique non contrôlé à la dynamique de relaxation rapide. L'évolution temporelle de l'état du système, représenté par sa matrice densité ρ, s'écrit sous la forme d'une équation maîtresse de Lindblad (on adopte le système définie ici pour un opérateur de saut quelconque L. Dans ce contexte, nous étudions la dynamique dissipative d'un système photonique soumis à un pompage optique cohérent quasirésonant. Nous proposons une technique permettant de contrôler la géométrie spatiale du système in situ de manière purement optique et l'implémentons sur une plateforme consistant en une microcavité planaire en matériau semiconducteur. Les excitations élémentaires de ce système, rendu non-linéaire grâce au couplage fort entre la matière et la lumière, sont des quasiparticules hybrides issues de ce couplage, appelées des polaritons. Dans l'approximation du champ moyen, la dynamique effective du champ polaritonique ψ est donnée par l'équation de Nous présentons également la confirmation expérimentale de nos prédictions par nos collaborateurs au laboratoire Kastler Brossel, ce qui constitue la première démonstration expérimentale du rôle de la dimensionnalité spatiale dans la l'existence des transitions de phase dans des systèmes photoniques. Les chapitres 3 et 4 sont consacrés à l'étude théorique de l'ingénierie de réservoir, qui consiste à agir sur l'environnement d'un système quantique afin de contrôler sa dynamique effective induite. Nous déduisons d'abord la dynamique effective générale d'un système couplé à un réservoir fortement dissipatif à un seul mode bosonique. L'évolution de l'état de l'ensemble bipartite ρSR est décrite par l'équation maîtresse suivante : Ce formalisme est ensuite appliqué à l'étude d'un réseau de cavités photoniques (le système), qui sont couplées de façon indirecte via des cavités auxiliaires fortement dissipatives (le réservoir). Grâce à un tel dispositif physique, où chaque cavité du système est soumise à un pompage à deux photons, nous proposons un simulateur photonique pour des spins antiférromagnétiques. Ce pompage quadratique a pour effet de placer l'état de chaque cavité du système dans un mélange statistique d'états cohérents aux phases opposées (voir la discussion dans la section III du chapitre 3), ce qui simule des spins. Pour une chaîne unidimensionnelle périodique (voir la figure 4 Ces observations sont confirmées par des simulations numériques. Dans un premier temps, nous étudions un système à N = 2 cavités, en traçant la fonction de corrélation g 1,2 → -1/3 et S → ln [START_REF] Heisenberg | Physics and Beyond: Encounters and Conversations[END_REF]. Notons que le couplage dissipatif effectif seul en absence du couplage cohérent effectif est capable d'induire cette frustration (voir les figures 4.5 et 4.6). Nous vérifions également l'exactitude du modèle effectif par rapport à l'équation maîtresse complète et constatons une correspondance très fidèle (voir les figures 4.7 et 2.3). Le dispositif proposé peut jouer le rôle d'un élément constitutif d'un simulateur de lattices de spins antiférromagnétiques, facilement implémentable sur des plateformes photoniques.

Enfin, nous introduisons le paradigme de l'apprentissage automatique par réservoir quantique relativiste dans le chapitre 5. Nous exploitons la dynamique d'un système quantique relativiste (le réservoir dans le contexte actuel) pour traiter de l'information d'entrée x. Dans cette tâche d'apprentissage automatique supervisé, l'on cherche à approximer une fonction f (x) inconnue par un ansatz f (x) d'après un échantillon limité de paires de valeurs S = {(x (j) , f (x (j) ))} j . Le système étudié comprend un détecteur quantique en mouvement relativiste dans une cavité optique initialisée dans un état cohérent (voir la figure 5 avec le vecteur de poids w que nous optimisons analytiquement à l'aide de l'échantillon S (voir la discussion de la section III du chapitre 5). Nous évaluons le protocole proposé sur une tâche de classification binaire en simulant numériquement le système et mettons en évidence une augmentation de la performance dans le régime relativiste du mouvement. Nous analysons les représentations de l'entrée apprises par le système à l'aide de la théorie des machines à noyau et constatons que la fonction ansatz est considérablement plus expressive dans le régime relativiste (voir la figure 5.3). Aussi Proposons-nous une implémentation analogique du protocole dans des plateformes à base de circuits supraconducteurs, rendant possible la construction de dispositifs d'apprentissage automatique inspirés de la relativité.
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 8111 Figure 1.1: Schematic representation of an optical cavity consisting of two parallel mirrors separated by a distance of L c , with electromagnetic fields propagating orthogonal to the mirrors, along the z direction. The mode function for an x-polarized electric field in the n = 5 mode is sketched.
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 10 with the standard bosonic commutation relations [â n,σ , â † n ,σ ] = δ n,n δ σ,σ , the Hamiltonian operator finally takes the familiar shape completely determines the dynamics of the cavity field via the Schrödinger equation i d dt |ψ = Ĥ|ψ .
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 112 Figure 1.2: Frequencies of the upper and lower polariton modes as a function of the photon-exciton detuning, with the exciton fraction represented in the colorbar. The minimum splitting between the two branches is 2Ω R with equal exciton-photon fractions in both modes, attained at zero detuning.
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 13 Figure 1.3: Steady-state population α SS of a single-mode Kerr cavity as a function of the drive intensity |F | 2 in the mean-field approximation, for different regimes of the pumpcavity detuning ∆ = ω d -ω. The mean-field solution is bistable for detunings larger than √ 3γ/2.
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 14 Photon
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 15 Figure 1.5: Spacetime diagram for (a) an observer with constant proper acceleration in Minkowski spacetime, and (b) a static observer outside a Schwarzschild black hole (in Kruskal-Szekeres coordinates), which also has constant proper acceleration. In both diagrams, light cones are at ±45 degrees everywhere, and the world line of the observer is a hyperbola. The observer perceives a horizon (unidirectional membrane beyond which no signal can be sent to / received from the observer) in both scenarios.
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  Figure 2.1: (a) Rescaled steady-state population â † â SS /N from the exact solution of the master equation (solid lines) and the mean-field solution (dashed line) and (b) the Liouvillian gap λ of the driven-dissipative Kerr cavity as a function of the drive intensity |F | 2 , for different values of the scaling parameter N (see colorbar). The exact solution is unique as opposed to the bistability predicted by mean-field theory. As N increases, a first-order phase transition emerges, accompanied by the closure of the Liouvillian gap at the critical driving intensity. Parameters: ∆ = 2γ(> √ 3γ/2) and U = 0.1γ.
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 22 Figure 2.2: Sketch of the experimental setup by the group of A. Bramati at LKB [γ]. The laser is slaved using a proportional-integral-derivative (PID) controller, an arbitrary function generator (AFG) and an acousto-optic modulator (AOM) loop to produce a power ramp; its intensity profile is reshaped using a spatial light modulator (SLM). Two photodiodes (PD) measure the power inside disks of diameter l D = 5µm at the center of the beams at the sample input and output. (a) Pump intensity profile shaping method: the light (dark) beam represents the zero (first) order of the diffracted beam from the SLM. (b) Output intensity from the sample as a function of the input intensity, plotted for a pump detuning of ∆ = γ and a 2D top-hat drive of diameter l = 30µm. (c) SLM phase pattern (upper) for obtaining 2D (left) and 1D (right) flat-top beam profiles (middle) of different sizes and intensities (bottom).

  2.2(b)].
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 23 Figure 2.3: Left: time evolution of the polariton density averaged over the probing disk, computed with both mean-field (dashed line) and truncated Wigner (diamonds) methods. Right: relative error in the mean-field results with respect to the steady-state density, as a function of time, where δn D (t) = |n TW D (t) -n MF D (t)|. The driving is F = 1.35γ/µm, (I = |F | 2 = 1.8225γ 2 /µm 2 ) with a top-hat size of l = 45µm. Error bars are within the symbol size.
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 24 Figure 2.4: Left: steady-state polariton density averaged over the probing disk as a function of the drive, computed with both mean-field (dashed line) and truncated Wigner (diamonds) methods. Right: relative error of the driving in the mean-field results as a function of the density, where δI = I TW -I MF . The top-hat size is l = 45µm. Error bars are within the symbol size.

  2.5(a)-(c) [(d)-(f)] we present the results obtained from our theoretical model and the LKB experiments for the 1D (2D) driving geometry. In both configurations, the steady-state polariton density n SS D averaged over the probing disk increases as a function of the driving intensity I and the maximum slope S(l) = max I { ∂n SS D (I,l) ∂I

Figure 2 . 5 :

 25 Figure 2.5: (a) [(b)] Results from our theory and LKB experiments for the steady-state polariton density n SS D averaged over the probing disk as a function of the drive intensity I for different top-hat spot sizes l (see colorbar) in the 1D configuration with detuning ∆ = γ. (c) The maximum derivative S(l) for each top-hat size l normalized by the maximum derivative at l 0 = 15µm, for both theoretical and experimental results (see legend). (d)-(f) The same quantities as in (a)-(c) for the 2D configuration. The dashed line in (d) is the prediction of the mean-field theory in Eq.(2.27). Note that as the top-hat increases in size, the slope in the 1D configuration quickly saturates for increasing size l, while in the 2D configuration the slope sharply increases in both theory and experiment, as expected for a first order phase transition.
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 26 Figure 2.6: Critical slowing down and the closing of the Liouvillian gap for a 2D top-hat drive observed in numerical simulations. (a) The relaxation of n D (t) towards the steady state n SS D for difference driving spot sizes l (see legend) at I = 1.7689γ 2 /µm 2 . (b) The Liouvillian gap λ evaluated from the asymptotic decay rate as a function of the driving intensity I for different values of l. The error bars are within the symbol size. (c) The minimum of λ as a function of l.
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 22728 Figure 2.7: Steady-state polariton density (see colorbar) distribution in the planar microcavity simulated with experimental parameters with a 2D top-hat (l = 40µm) for different driving and wedge values (see annotation); the detuning with respect to the center of the driving spot is ∆ = γ. The left (resp. right) column corresponds to the wedge value w = 0.7µeV (resp. w = 0). The driving in the top (resp. bottom) row corresponds to the lower (resp. higher) density phase close to the crossover.

  .26) where the approximately flat spectrum implies the Dirac-delta correlation. Inserting the correlation function (3.25) back into Eq. (3.14), we obtain L

. 28 )

 28 where the modes â and b are subjected to single-body losses γ a D[â] and γ b D[ b] respectively, with γ b

. 29 )

 29 where the first line can be made to vanish by setting β = 2F/iγ b , which is precisely the mean field solution of b given by the bare dynamics of the reservoir, whose steady state is consequently the vacuum in the displaced frame. The redefined operator b therefore represents the quantum fluctuations on top of the coherent state (in the nondisplaced frame) to which the reservoir is driven. The bare Liouvillian of the reservoir now becomes L R = γ b D[ b], which is of the form (3.2) with ∆ = 0. We can then identify the interaction Hamiltonian ĤI from the second line, which is of the form (3.3), where we have  = g * â2 /|g|. The last line corresponds to a bare system Hamiltonian ĤS G ≡ -4igF/γ b . With all the assumptions of Sec. I satisfied, we can now read off the effective dynamics of the mode â from Eq. (3.11): d dt ρS = -i[ Ĥ2 , ρS ] + γ a D[â]ρ S + ηD[â 2 ]ρ S , (3.31) with η ≡ 4|g| 2 /γ b . The effective dissipator D[â 2
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 31 Figure 3.1: Infidelity 1 -F(ρ ans , ρSS ) of the ansatz ρans with respect to the exact steady state ρSS of the quadratically driven Kerr cavity for (a) η = 0 and different detunings ∆ (see colorbar) and (b) fixed ∆ = 0 and different two-photon loss rates η (see colorbar).The nonlinearity is U = 5γ for both plots. In the limit of large driving, the infidelity tends to zero, implying the accuracy of the ansatz ρans .
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 42 Figure 4.2: (a) Normal mode amplitudes and corresponding eigenfrequencies of two directly coupled cavities of bare frequency ω 0 with coupling amplitude J > 0. The normal mode splitting is 2|J| with the antibonding mode having a higher energy. (b) Same quantities for two cavities indirectly coupled via an ancillary cavity of bare frequency ω 0 -∆, with J > 0 and ∆ J. The two normal modes with higher energies resemble the bonding and antibonding modes, while the bonding mode has a higher energy. This implies an effective coupling J eff < 0 between the two indirectly coupled cavities.
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 43 Figure 4.3: The original Hamiltonian parameters J and ∆ of the system-reservoir ensemble (see colorbar) as a function of the effective parameters κ and J eff plotted for γ b = 1000γ.The dashed line indicates the boundary of the region satisfying J < 0.1γ b . These plots indicates that in the regime of small J eff , relatively small values of the system-reservoir coupling and detuning are required to achieve the effective model, which are consistent with our assumptions for the adiabatic elimination.
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 4 [START_REF] Bohr | I. on the constitution of atoms and molecules[END_REF] summarizes the steady-state behavior of
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 44 Figure 4.4: Steady-state behavior of the N = 2 system with U = 4γ and η = γ. (a) The first-order coherence correlation function g (1) 1,2 , (b) the von Neumann entropy S and (c) the fidelity F between the numerical solution ρSS and the ansatz ρ2 are plotted vs the two-photon driving amplitude G, with a finite antiferromagnetic effective coupling ∆ eff = J eff = -5γ. (d)-(f) Same quantities for zero coherent effective coupling, i.e. J eff = 0 and the dissipative coupling alone. (g)-(i) Same quantities for a small ferromagnetic coupling J eff = 0.4γ > 0 in the presence of the dissipative coupling. Different markers (see legend) correspond to different values of the effective nonlocal dissipation rate κ.
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 45 Figure 4.5: Steady-state behavior of the N = 3 triangular system for ∆ eff = J eff = -5γ, U = 10γ and η = γ. All quantities are plotted vs the two-photon driving G. The panels report the results for (a) the first-order coherence correlation function g (1) 1,2 [(d) the quantity |g (1) 1,2 + 1/3|], (b) the von Neumann entropy S [(e) the quantity S -ln(6)], and (c) the fidelity F between the numerical solution ρSS and the ansatz ρ3 [(f) the quantity 1-F]. The lower panels are all plotted in log-log scale, showing the asymptotic convergence of the respective quantities.
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 46 Figure 4.6: Same as Fig. 4.5 but with ∆ eff = J eff = 0, U = 10γ and η = γ. Note that here the antiferromagnetic frustration effects are purely of a dissipative nature via the nonlocal dissipative coupling.
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 212210047 Figure 4.7: The infidelity 1 -F of the effective model steady-state density matrix ρSS with respect to the reduced density matrix ρfull,r SS calculated from the full solution as a function of the driving G for different values of the nonlocal dissipative coupling κ. Dissipation parameters: (a) γ b /γ = 10 and (b) γ b /γ = 100. The other parameters are ∆ eff = J eff = -5γ, U = 4γ, and η = γ. The effective model is extremely accurate in a wide range of parameters as witnessed by the very small infidelities.
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 4 4(a)-(c), using different values of γ b /γ.
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 48 Figure 4.8: Benchmarking of the effective model for the trimer configuration. (a) The time evolution of the occupation number of the system ( â † j âj full ) and reservoir modes ( b † j bj full ), and the unnormalized system correlation function â † j âj+1 full given by the full model. The corresponding quantities predicted by the effective model (unshown) overlap almost exactly with the exact solutions. (b) The infidelity 1 -F between the system density matrices obtained from the effective model ρ and from the full model ρfull,r as a function of time. The infidelity remains on the order of 10 -6 throughout the time evolution. Parameters: γ b = 1000γ, ∆ eff = J eff = -γ, U = 10γ, η = γ, κ = 8γ and G = 2γ. The initial state is the vacuum state for the ensemble.
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 51 Figure 5.1: General scheme of constructing a reservoir-computing trial function f (x) using a physical system. The system, prepared in a fixed initial state ρ0 , is subjected to a time evolution depending on the input x. This dependence can be realized, for example, via some kind of driving on the system determined by x, such as considered in[δ]. We formally denote this time evolution with the dynamical map M x (t), which gives the state of the evolved physical system at a later time: ρx (t) = M x (t)[ρ 0 ]. During this time evolution, a set of observables { Ôi } i are measured at different times {t j } j . [We assume ensemble measurements for quantum systems, such that we can measure the expectation values of multiple (possibly noncommuting) observables.] The input x is therefore transformed into a feature vector X(x) containing N feat features of the form Tr[ρ x (t j ) Ôi ] (the order does not matter). Finally, the trial function is obtained by linearly transforming the feature vector: f (x) = w T X(x), and the components of w are the linear weights to be optimized.
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 52 Figure 5.2: Scheme of the relativistic reservoir-computing protocol illustrated with a binary classification task. (a) Each input x = (x 1 , x 2 ) of the dataset is linearly mapped to acceleration values (a 1 , a 2 ) according to Eq. (5.23). (b) The acceleration values are used to construct a piecewise-constant acceleration profile a(τ ). (c) The quantum detector, initially at rest in the cavity prepared in a single-mode coherent state, undergoes noninertial motion with proper acceleration a(τ ). (d) Analog circuit QED system where the analogous of the proper acceleration is controlled by modulated driving fields. (e) Observables of the detector are measured at different times giving the feature vector X(x) and the affine trial function f (x) = w T X(x) + b. (f) The classification result is predicted by sgn[ f (x 1 , x 2 )].

Figure 5 . 3 :

 53 Figure 5.3: Figures of merit of the relativistic reservoir-computing protocol evaluated on the two-spiral classification problem. (a) The distribution of the testing samples in the feature space represented by f (x). Light and dark histograms correspond to samples belonging to different branches of the spiral pattern. Parameters: a 0 = 3, T = 2 and m = 4. (b) Same quantity plotted for the Newtonian model with the same parameters. (c) The empirical kernel spectrum computed for the relativistic (solid line) and Newtonian (dashed line) models with same parameters. The first 40 nonzero empirical eigenvalues γl are plotted in descending order. (d) Inaccuracy of the relativistic (triangles) and Newtonian (squares) models evaluated on both the training (solid lines) and testing (dashed lines) set, as a function of the acceleration time T . Parameters: a 0 = 1 and m = 4. (e) Same quantities plotted as a function of the base acceleration a 0 , for T = 2 and m = 4. (f) Same quantities plotted as a function of the number of repetitions m, for a 0 = 2 and T = 2. Quantities are expressed in natural units, where the scale is fixed by the proper frequency of the atom Ω.

  5.2(d)]. Denoting the microwave cavity mode operator by â, the noninteracting Hamiltonian of the system is Ĥ0 (τ ) = ω 0 â † â + b † b + ηζ(τ ) b † b , (5.27)
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 54 Figure 5.4: The phase modulations θ ± (τ ) (left panel) and the corresponding rates θ± (τ ) that provide the desired simulation of the accelerated motion, where Ω = 1 MHz. Note that modulation rates are in the regime of θ± (τ ) 10Ω = 10 MHz.
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 55 Figure 5.5: Performances of the reservoir-computing model with a qubit replacing the harmonic oscillator. Same parameters as Fig. 5.3(d) and (e) respectively, showing very similar results.

  ) 2 ≡ δ ij (∂ i )(∂ j ) with the indices i, j running through only the spatial coordinates. The equation of motion of the field can be obtained by the variational principle:δ d d+1 x L = 0 =⇒ φ + m 2 φ = 0 , (B.4)which is the Klein-Gordon equation[START_REF] Klein | Quantentheorie und fünfdimensionale Relativitätstheorie[END_REF][START_REF] Gordon | Der Comptoneffekt nach der Schrödingerschen Theorie[END_REF]. Note that for the massless scalar field m = 0, this equation reduces to φ = 0, which resembles the Maxwell equations in the Lorenz gauge (1.7) for a single field component. The canonical quantization of the field proceeds by promoting the conjugate variables to operators (φ, Π ) → ( φ, Π ) and by imposing the equal-time commutation relations:φ(t, x), Π (t, x ) = iδ (d) (xx ) , (B.5)and all the other equal-time commutators vanish.

  1) that satisfies the commutation relation Ψi , Ψj = Ω ij , (D.2)

3 )

 3 is the symplectic form. If the Hamiltonian can be written in the form of the Gaussianity of states[START_REF] Simon | Gaussian pure states in quantum mechanics and the symplectic group[END_REF]. The Heisenberg equations of motion can be written asd dt Ψ = -iΩF sym (t) Ψ, (D.5)where F sym = F + F T . We now define the propagator S(t) via the relationΨ(t) = S(t) Ψ(0), (D.6)which can be efficiently constructed by solving the first order linear differential equationd dt S(t) = -iΩF sym (t)S(t) (D.7)with the initial condition S(0) = 1. The evolution of the covariance matrixσ ij = Ψi Ψj -Ψi Ψj (D.8)is given by σ(t) = S(t)σ(0)S T . (D.9) σ together with Ψ will completely specify a Gaussian state 1 .

  d'unités naturelles où = c = 1) : d dt ρ = L(ρ) ≡ -i Ĥ, ρ + j D[ Lj ]ρ , (E.1) où le liouvillien L désigne le superopérateur générateur de cette dynamique. Ci-dessus, le hamiltonien Ĥ détermine l'évolution unitaire du système. Les effets dissipatifs issus du réservoir sont décrits par les dissipateurs, ayant pour action D[ L]ρ = Lρ L † -

  d dt ρSR = L S ρSR + L R ρSRi[ ĤI , ρSR ] . (E.4) Nous supposons le liouvillien libre du réservoir sous la forme L R (•) = -i[-∆b † b, •] + γ b D[ b](•) et un hamiltonien de couplage donné par ĤI = λγ b (  † b + Âb † ) , où b est l'opérateur d'annihilation du réservoir, γ b désigne le taux de relaxation de ce dernier et l'opérateur  n'agit que sur le système (dont le liouvillien libre est L S ). Enfin, λ 1 est une constante sans dimension pour marquer la faiblesse relative du couplage par rapport à γ b . Dans l'approximation adiabatique L S ρSR /γ b λ 2 , la dynamique effective du système est donnée par l'équation maîtresse suivante :d dt ρS = L S ρSi[λ 2 Λ Â † Â, ρS ] + λ 2 ΓD[ Â]ρ S , (E.5)où les quantités Λ et Γ ne dépendent que des paramètres ∆ et γ b du réservoir (voir la discussion dans la section I du chapitre 3). Cette dynamique effective intègre les contributions cohérente et dissipative du réservoir, permettant de coupler effectivement différents degrés de liberté du système via le réservoir.

2 =

 2 Tr[ρ SS â † 1 â2 ]/Tr[ρ SS â † 1 â1 ] et l'entropie de von Neuman S = -Tr[ρ SS ln ρSS ] en fonction de l'amplitude du pompage G (voir la figure 4.4). Dans la limite du fort pompage, g

et

  S convergent vers -1 et ln(2) respectivement, signe d'un anti-alignement des phase entre les deux cavité. Le système à N = 3 cavités est ensuite traité de la même façon et nous constatons les signatures d'une frustration géométrique mise en évidence par g[START_REF] Planck | Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum[END_REF] 

  .2). Il est décrit par le hamiltonien dit d'Unruh-DeWitt :Ĥ(τ ) = λ m(τ ) φ[x µ (τ )] , (E.10) où λ est la constante de couplage, l'opérateur m désigne le monopole du détecteur, φ est celui du champ quantique dans la cavité et x µ (τ ) ≡ (t(τ ), x(τ )) décrit la ligne d'univers (trajectoire dans l'espace-temps) du détecteur paramétrisée, par son temps propre τ . Nous proposons d'encoder l'entrée x dans le mouvement relativiste du détecteur avec une séquence d'accélérations propres paramétrisées par x et de mesurer certaines observables du détecteur au cours de son évolution temporelle pour construire un vecteur de caractéristiques (feature) de l'entrée X(x). La fonction ansatz prend la forme d'une transformation linéaire du vecteur de caractéristiques : f (x) = w T X(x) , (E.11)

  .[START_REF]Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF] but the terms in Eq. (1.40) cannot be directly added as they are not generating time translation with respect to the same time. The free field Hamiltonian with respect to the Minkowski coordinate time t is (using the notation in Sec. III.1)

	Ĥt field =	n	ω n	â † n ân ,	(1.76)

and the free detector Hamiltonian for its proper time τ (time measured by a clock carried by the detector) is Ĥτ det

Table 2 .

 2 

	λρ

1: Comparison between the thermal phase transition, the quantum phase transition and the dissipative phase transition. Adapted from

[START_REF] Kessler | Dissipative phase transition in a central spin system[END_REF]

.

  Using the generic expression for the effective Hamiltonian derived above, we have, in the frame defined by Û0 (t),

				Schrödinger equation
	i	d dt	Û0 (t) = Ĥ0 (t) Û0 (t) .	(A.6)
	Ĥ (t) = Û † 0 (t) Ĥ0 (t) + ĤI (t) Û0 (t) -i Û † 0 (t) = H0 (t) + HI (t) -i Û † 0 (t) 1 i Ĥ0 (t) Û0 (t) d dt	Û0 (t)
	= H0 (t) + HI (t) -H0 (t)	
	= HI (t) .			

  le désaccord entre la fréquence du pompage et celle du mode fondamental de la cavité, m est la masse effective du polariton, g décrit la nonlinéarité et γ est le taux de dissipation. La dimension du système est ajustée en modulant le profil de l'intensité du pompage F(r) et nous étudions l'émergence de la criticalité en augmentant l'étendue spatiale du pompage (voir la figure 2.2). En mesurant l'intensité de sortie en fonction de celle du pompage sur l'état stationnaire du système, nous mettons en évidence avec nos résultats théoriques l'émergence d'une transition de phase du premier ordre dans la configuration à deux dimensions et son absence en une dimension (voir la figure5.3).

							Gross-
	Pitaevskii :				
	i	∂ ∂t	ψ(r, t) = -∆ -2m	∇ 2 ψ(r, t) + g|ψ(r, t)| 2 ψ(r, t) -i	γ 2	ψ(r, t) + F(r) ,	(E.3)
	où ∆ désigne				

  .1), le hamiltonien total de l'ensemble système-réservoir s'écrit comme Ĥ(t) = désigne l'amplitude du couplage, ∆ est le désaccord entre la fréquence d'une cavité du système et celle d'une cavité du réservoir, U représente la nonlinéarité Kerr et G est l'amplitude du pompage à deux photons (de fréquence ω d ). L'équation maîtresse totale de l'ensemble est ainsi donnée par Dans le régime γ b γ, le formalisme exposé plus haut nous permet d'éliminer de façon adiabatique le réservoir (voir la discussion de la section II.2 du chapitre 4), ce qui donne le liouvillien effectif du systèmeL eff (•) = -i[ Ĥeff , •] +ici exprimé dans un référentiel tournant à la fréquence ω d /2. Les paramètres effectifs ∆ eff , J eff et κ sont des fonctions des paramètres originaux du liouvillien total et représentent les contributions cohérente et dissipative du réservoir à la dynamique effective du système. En particulier, le signe du couplage cohérent effectif J eff est réglable selon le choix des paramètres et donnera une interaction antiférromagnétique dans le cas J eff < 0. D'autre part, le dissipateur effectif κD[â j +â j+1 ] est nonlocal et a pour effet d'annihiler l'alignement des phases dans des cavités voisines, ce qui privilégie ainsi un ordre antiférromagnétique des phases.

					Ĥj (t) ,							
				j											
		Ĥj (t) = ω 0	â † j âj + (ω 0 -∆) b † j bj -J (â j + âj+1 ) b † j + (â † j + â † j+1 ) bj	(E.6)
				+	U 2	â †2 j	â2 j +	G 2	â †2 j e -iω d t +	G * 2	â2 j e iω d t ,
	où J dρ dt	= -i[ Ĥ, ρ] +					
										j	(γD[â j ] + ηD[â 2 j ] + κD[â j + âj+1 ])(•) ,	(E.8)
	avec le hamiltonien effectif									
	Ĥeff =	j	-∆ eff	â † j âj +	U 2	â †2 j	â2 j +	G 2	â †2 j +	G * 2	â2 j -J eff	j,j	(â † j âj + âj	â † j ) ,	(E.9)

j γD[â j ] + γ b D[ bj ] + ηD[â 2 j ] ρ . (E.7)

Let us not forget that there is another elegant theory in physics that deserves this claim, namely general relativity, which, unfortunately has not yet been successfully reconciled with quantum physics, despite being conceived by Albert Einstein[START_REF] Einstein | Die Grundlage der allgemeinen Relativitätstheorie[END_REF], a pioneer in quantum mechanics.

Note that this is different from a probabilistic mixture of classical states, in which case no interference would occur.

The raising and lowering of indices are done with the Minkowski metric tensor, i.e. η µν = diag(+1, -1, -1, -1) when expressed in Cartesian coordinates x µ ≡ (x 0 , x 1 , x

, x

) = (ct, x, y, z). Throughout this manuscript, we always adopt the sign convention with "+" for the timelike component and "-" for the spacelike ones in the metric. In addition, we adopt Einstein's summation convention where repeated indices are summed over.2 Note that the dynamical field is A µ , with respect to which the action S is varied.

We dropped a total derivative term in H that will vanish when integrated over all space, by assuming that the fields must vanish at infinity.

This helps to obtain correct dimensions for the quantized field.

For free fields this is same as the Heisenberg picture. See Appendix A for more details.

Strictly speaking, the mode functions will differ since the confinement modifies the boundary conditions, but one can perform a similar quantization procedure for the specific geometry and arrive at the same Hamiltonian[START_REF] Kakazu | Quantization of electromagnetic fields in cavities and spontaneous emission[END_REF].

[START_REF] Davisson | Diffraction of Electrons by a Crystal of Nickel[END_REF] We ignore the zero-point energy from now on.

And since quantum computing (or any other quantum technology) always necessitates certain measurement steps, a quantum system of practical interest shall not be isolated at least when we need to measure it.

Note that throughout this manuscript, we adopt the convention ρ → Û † ρ Û and Ĥ → Û † Ĥ Ûi Û † ∂ t Û for changing the internal frame. See Appendix A for more details

.[START_REF] Myatt | Decoherence of quantum superpositions through coupling to engineered reservoirs[END_REF] We absorb the Lamb shift into the cavity frequency ω

S .[START_REF] Macfarlane | Quantum technology: the second quantum revolution[END_REF] A coherent state can be defined as â|α ≡ α|α , i.e. the eigenstate of the annihilation operator with eigenvalue α.

Not to be confused with the zeroth spacetime coordinate x 0 . In fact, as the coordinate tuple x µ is not a four-vector in general, its index should never be lowered.

Not to be confused with the concept of "electric monopole". In fact, this quantity can be physically interpreted as the electric dipole moment in the case of a two-level detector.

We use the same symbol for an operator in different frames when there is no ambiguity from the context.

Note that u n (x) is a real function for a Cavity with Dirichlet boundary conditions. Otherwise, the complex phase could be absorbed into the mode operator if it were complex.

In semiconductor platforms one typically has U > 0, where as for in circuit QED we have U < 0 and the nonlinearity can be made much higher (with respect to the line width) compared to semiconductor platforms.

By a similar argument to our discussion in Sec. II.1, we assume that the presence of Kerr nonlinearity does not affect the form of the master equation. In other words, we are assuming here that the reservoir spectrum is flat on the scale of ω ± U .

We drop the subscript in k for the rest of this section, i.e. denoting k ≡ (k x , k y ) since the in-plane wavevector uniquely determines the total wavevector for a fix k z .

The photons couple to the excitons with the same k due to conservation of the in-plane momentum.

In classical general relativity, the spacetime metric g µν satisfies the Einstein field equation[START_REF] Misner | Gravitation[END_REF] R µν -1 2 g µν R = 8πGT µν , where the right-hand side describes the distribution of energy and momentum of matter, and the left-hand side describes the shape of spacetime, which is a (very complicated) function of the metric.

This notations means we consider 3 spatial dimensions and 1 time dimension.

We drop the index µ for the spacetime coordinates inside function arguments when there is no ambiguity.

This technique is known as an analytic continuation where we extended the domain of the function from the real line to the complex plane. It is customary to keep the i in intermediate calculations (and absorb finite positive quantities into ), and take the limit → 0 + only at the end. Therefore, we are effectively considering the principal value of the integral (as a distribution).

Note that G(τ ) * = G(-τ ).

Note that the spacetime in the frame of the accelerated observer is still flat with zero curvature, as it is just the flat Minkowski spacetime written in different coordinates.

Note that we are using the (+, -, -, -) signature.

If we plug in the mass and the radius of the earth for M and r respectively we find the gravitational acceleration a 9.8m/s 2 that we experience every day. This is because the coordinates are chosen to reduce to the usual spherical coordinates where/when the spacetime is approximately flat.

This implies that it is impossible to hover anything massive on (or beyond) the black hole horizon.

A less well-known example might be the fact that there are more than 10 different phases of water ice, and new ones are still being discovered[START_REF] Hansen | The everlasting hunt for new ice phases[END_REF].

This can be achieved in typical quantum optical models with periodic drive when we adopt the rotating wave approximation and transform into an appropriate frame. Even if the rotating wave approximation does not apply, one could still make the generator time-independent via the Floquet approach[START_REF] Boité | Metastability in the driven-dissipative Rabi model[END_REF][START_REF] Boité | Theoretical Methods for Ultrastrong Light-Matter Interactions[END_REF] and consider the dynamics in an extended Hilbert space.

This expression assumes no degeneracy in the real part of the first nonzero eigenvalue. In the degenerate case, λ 1 may have an imaginary part resulting in oscillations of ρ(t)[START_REF] Minganti | Spectral theory of Liouvillians for dissipative phase transitions[END_REF], which will be eventually washed out due to the damping by the negative real part. Therefore, the long-term relaxation rate is still λ in the presence of degeneracy.

In principle, one could also use etching techniques, that may lead to better defined structures, to study the effect of spatial dimension on dissipative phase transitions. However, the present all-optical

Let us adopt natural units with = c = 1 from now on to simplify the notations.

Again, we work in a frame where the steady state of L R is of thermal nature (such as the vacuum state), such that all correlations decay to 0 fast enough, allowing us to perform the adiabatic elimination.

Note that this is also the lowest order where we can have nontrivial effective dynamics stemming from the system-reservoir coupling, as is the case in our derivation of the master equation in Sec. II.1 of Chapter 1, which is also explicit from our discussion in Sec. I.

Note that this definition implies [ Ĥs , ŝ † i,α ] = +ω α ŝi,α .

For simplicity, we did not include Kerr terms in the Hamiltonian (3.28), which are present in[START_REF] Leghtas | Confining the state of light to a quantum manifold by engineered two-photon loss[END_REF], as these terms have negligible effect on the adiabatic elimination in the regime they considered

Note that |±α are not orthogonal states as α|-α = e -2|α| 2 .

This boundary depends on the value of γ b /γ. For a larger γ b , the boundary will be pushed further to include larger values of J eff and κ

For example, the value of ω 0 /γ is on the order of 10 5 for the semiconductor polariton microcavity considered in[γ], which is a typical case in quantum optics.

This can be concluded with a semiclassical analysis as derived in Ref.[START_REF] Rota | Quantum critical regime in a quadratically driven nonlinear photonic lattice[END_REF].

Note that in our effective model we always have κ > 0. The case where κ = 0 is simulated only for illustrative purposes to show the direct effect of the dissipative coupling.

In the sense of function compositions.

In the case of a classification problem, i.e. where the target function f (x) attributes the input x to a class (out of a finite number of possible classes), the prediction given by the trial function f (x) is to be understood up to a discretization of its output value. For example, in a binary classification problem, a popular choice is to associate the sign of the trial function sgn[ f (x)] to the predicted classes.

This is opposed to implementing neural networks in physical systems, where extremely accurate control would be required since the network parameters should be updated during the optimization.

Note that target output values associated to the inputs are not required to estimate this eigendecomposition. In other words, the eigendecomposition only depends on the distribution of the input data and is independent on the specific task.

Consider the eigenvalue problem Φ T Φu = λu for some λ = 0 and u = 0 (therefore Φu = 0). Premultiplication by Φ gives (ΦΦ T )(Φu) = λ(Φu), i.e. λ is also an eigenvalue of ΦΦ T .

Unruh effect in a cavity has been studied in[START_REF] Brown | Detectors for probing relativistic quantum physics beyond perturbation theory[END_REF].

This is to ensure that the cavity is long enough for the atom to remain inside. For the circuit QED implementation this is not an important detail.

The anharmonicity of a Josephson atom can be made arbitrarily small by replacing a junction by a chain of junctions, as the anharmonicity scales as 1/N 2 J where N J is the number of junctions

Note that our driving term is different from that in[START_REF] Del Rey | Simulating accelerated atoms coupled to a quantum field[END_REF], as they considered simulating a quantum field in free space, while in the present work, the simulated quantum field is confined within a cavity with Dirichlet boundary conditions, resulting in different mode functions.
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Summary

whose minimization is a convex problem and can be analytically solved by setting ∂ ∂w (w | S) = 0 .

(5.6)

Denoting Φ the N feat × N train matrix whose j-th column is X(x (j) ), and y the column vector of the training labels y (i) , the solution to the equation above can be written as w = (ΦΦ T + lN train 1) -1 Φy .

(5.7)

II.3 The kernel point of view

The representation of the input data in the feature space via the feature map realized by the reservoir is best understood by introducing the kernel function [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF] k(x, x ) = X(x ) T X(x) , (5.8) which is a scalar product in the feature space, and can be understood as a measure of similarity between two inputs x and x . As this function is symmetric and positive-definite, Mercer's theorem [START_REF] Mercer | XVI. Functions of positive and negative type, and their connection the theory of integral equations[END_REF][START_REF] Paulsen | An Introduction to the Theory of Reproducing Kernel Hilbert Spaces[END_REF] guarantees that the kernel function admits an eigendecomposition of the form:

where {γ i } i are the positive (due to the positivity of the kernel function) eigenvalues and {ψ i } i are the associated eigenfunctions which are orthonormal with respect to the inner product on L 2 µ [the space of square-integrable functions on the input space with respect to the probability measure µ(dx)]:

(5.10)

The eigendecomposition (5.9) can be found by solving the eigenvalue problem:

which can be empirically estimated from a set of samples drawn from the input distribution µ(dx), for example the training set 4 . Indeed, one can approximate the distribution µ(dx) by the empirical one [START_REF] Williams | Using the nyström method to speed up kernel machines[END_REF]:

(5.12)

This translates Eq. (5.11) into a discrete eigenvalue problem:

(5.13)

Chapter 5. Relativistic quantum reservoir computing

The empirical eigenvalues γ are therefore the nonzero eigenvalues of the matrix K/N train where K is known as the empirical kernel matrix defined by

(5.14)

Recalling that we previously defined Φ ij = X i (x (j) ), it follows that

which is a matrix of size N train × N train . As one can easily check 5 , K shares the same nonzero eigenvalues with the N feat × N feat matrix k ≡ ΦΦ T . As we will be working in the regime where the dataset contains much more samples than the number of features, i.e. N train N feat , it is therefore more suitable to diagonalize the smaller matrix k/N train to find the empirical spectrum of the kernel.

We now show that the spectrum of the kernel contains crucial information on the expressivity of the reservoir-computing model. The set of kernel eigenfunctions {ψ i } i can be completed to be an orthonormal basis of L 2 µ by including eigenfunctions associated with γ i = 0. The trial function (5.1) can then be expanded in the above kernel eigenbasis as

where {β j } j are the weights to be optimized, which can be viewed as the independent degrees of freedom (due to the orthogonality of the eigenbasis) of the model. It then follows [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF] that the regularization penalty (5.4) in the cost function (5.5) becomes

in the kernel eigenbasis representation. The effect of the regularization becomes clear: the smaller the eigenvalue γ j , the more the corresponding eigenfunction ψ j is penalized (i.e. it cannot have a large weight in the trial function). In other words, the regularization acts as a soft cutoff on the eigenfunctions such that those with vanishingly small associated eigenvalues do not contribute to the trial function [START_REF] Denis | Photonic Kernel Machine Learning for Ultrafast Spectral Analysis[END_REF], and vice versa. One can therefore use the kernel spectrum to assess the expressivity of the model without training on a specific task.

III Relativistic quantum reservoir-computing model

Let us now exploit the framework of reservoir computing in the context of relativistic quantum information. Consider the paradigmatic model describing a quantum harmonic

A Change of frame and interaction picture

The change of frame for the internal degrees of freedom of a quantum operator Ô(t) can be described by a unitary transformation, that we denote by

where Û † (t) Û (t) = 1 and we assume that the transformation can be time-dependent. Note that the unitary condition immediately implies that

which means that i Û † d Û dt is hermitian. Consider now a density matrix ρ(t) that follows a completely positive trace preserving (CPTP) time-evolution, that can be in general cast in the Lindblad form dρ dt = -i Ĥ, ρ +

and we allow the Hamiltonian Ĥ and the jump operators Lj to have time dependence. The time-evolution of the density matrix ρ = Û † ρ Û in the transformed frame is therefore

We can identify the effective Hamiltonian Ĥ = Hi Û † d Û dt for the transformed frame, which has a term reminiscent of a fictitious force in addition to the naive transformation if Û is time-dependent. by the Hyperrectangular region V ≡ {0 ≤ x j ≤ L j | j = 1, • • • , d}, and the boundary condition can be written as φ(t, x ∈ ∂V) = 0. One can find a family of standingwave solutions {u n (x µ )} n∈Z d that satisfy the equation of motion (B.4) and the Dirichlet boundary condition:

with V ≡ Π d j=1 L j the volume of the cavity. Note that the spectrum is discrete due to the boundary conditions. It is straightforward to verify that they form an orthonormal basis

where the Klein-Gordon inner product is defined as

and the integral is performed on a constant-time hypersurface Σ t . The quantized field φ can then be written as a mode expansion in terms of these basis functions

where the operators â † n and ân satisfy the Bosonic commutation relations ân , â † n = δ n,n , (B.10)

as one can verify using ân = u n , φ KG and the commutation relations (B.5). This mode expansion also allows us to write the Hamiltonian as

For the (1+1)-dimensional (d = 1) cavity of length L considered in Chapter 5, the mode expansion of the massless (m = 0) scalar field is therefore

which is Eq. (5.19) used in Chapter 5.

II Quantization in free space

Another scenario we considered in the main text is the scalar field in free space, when we derived the Unruh effect in Sec. IV.3 of Chapter 1. The quantization in this case is done in a very similar way as above, where we wish to write down the mode expansion in terms of an orthonormal basis and the corresponding creation and annihilation operators. Such a basis can be the family of plane-wave solutions {v k (x µ )} k∈R d , where

which satisfies the orthonormality condition:

Note that we have the Dirac deltas instead of the Kronecker deltas as the modes form a continuum in free space. The mode expansion of the field operator is then

with the Bosonic commutation relations for the creation and annihilation operators:

The Hamiltonian is, accordingly,

where the divergent integral over 1 2 δ (d) (0) [bearing the same origin as the infinite sum over the constant 1 2 in the cavity Hamiltonian (B.11)] is known as the zero-point energy, which can lead to physical consequences such as the Casimir effect [START_REF] Casimir | On the attraction between two perfectly conducting plates[END_REF][START_REF] Bressi | Measurement of the Casimir Force between Parallel Metallic Surfaces[END_REF]. The zero-point energy is also related to open challenges in physics such as the cosmological constant problem [START_REF] Weinberg | The cosmological constant problem[END_REF]. However, in the scope of the present manuscript, it is safe to ignore this term in all our calculations.

Finally, for the (3+1)-dimensional (d = 3) free space, the mode expansion (B.15) for the massless scalar field is

which is Eq. (1.82) considered in Sec. IV.3 of Chapter 1.

C World line of an accelerated observer

We derive here the world line for an observer with time-dependent proper acceleration a(τ ) in 1+1D Minkowski spacetime with metric η µν = diag(+1, -1) and natural units c = 1. We parametrize the world line by the proper time x µ (τ ) = (t(τ ), x(τ )) and denote u µ (τ ) = d dτ x µ (τ ) = (u t (τ ), u x (τ )), a µ (τ ) = d dτ u µ (τ ) = (a t (τ ), a x (τ )).

(C.1)

From the definition of these quantities, we get