Monsieur Tamy Boubekeur

Virtual Spherical Light VSL Virtual Disc Light SVD Singular Value Decomposition LRMC Low-Rank Matrix Completion AMC Adaptive Matrix Completion BAMC Boolean Adaptive Matrix Completion RMSE Root Mean Squared Error ESS Effective Sample Size ESS Effective Sample Size surrogate SMC Sequential Monte Carlo RIS Resampled Importance Sampling BSDF Bidirectional Scattering Distribution Function CDF Cumulative Distribution Function PPG Practical Path Guiding

Rendering photo-realistic images of a virtual scene requires the simulation of how light interacts with it. This typically requires a large number of samples detailing the received and outgoing radiance between surfaces. As this is an expensive process, it is important to be efficient with this information. This thesis investigates two different areas for this. The first is the Low-Rank Matrix Completion problem, which looks to fill in the missing entries of some partially observed low-rank matrix. We apply this to the Many-Lights problem, a direct lighting problem that involves rendering scenes with large numbers of lights. This problem is particularly suited to Low-Rank Matrix Completion as the matrix formulation of it is shown to be approximately low-rank. We propose a modified version of the Adaptive Matrix Completion algorithm, which we term Boolean Adaptive Matrix Completion, to reduce the number of visibility computations between lights and surfaces, allowing significantly faster renderings of the final images. The second area we investigate is the efficient reuse of Monte-Carlo samples when the probability measure has changed. This is important as naively combining samples taken from different probability distributions can lead to higher variance, or even bias. We propose a hybrid method, which we term Reweighting-Augmentation, which aims to address this. We investigate this method in two different application areas. The first is progressive path tracing with animated cameras, where the sampling distribution changes on glossy surfaces due to a change in the incident direction. The second is the Practical Path Guiding algorithm, where sampling distributions change as the irradiance function of a scene is iteratively learned. We found that our proposed method showed promising results for the former, allowing for reduced variance in the final generated images. Although we did not obtain positive results for the latter, we believe that the problem should still be investigated further and there is reason to remain positive.

iii

Chapter 1 Introduction

Generating synthetic images of virtual scenes that closely mimic reality has become increasingly commonplace in the modern era. This is particularly useful in various media fields, such as film and video games, as it helps the audience suspend their disbelief.

The methods that deal with the generation of these images, referred to as photo-realistic rendering methods, approach the problem by taking as input a description of the virtual scene, simulating how light interacts with it, and then determining the light reaching the virtual camera taking the picture.

Although this problem is well understood, solving it is still difficult. This is because simulating light, particularly in the case of complex scenes, can be very computationally expensive. This is because we need to solve the rendering equation [START_REF] Kajiya | The rendering equation[END_REF], a recursive integral equation that describes the outgoing equilibrium radiance, which has no closed-form equation as it differs depending on the scene.

There have been numerous methods proposed to solve this, either by discretizing the scene and solving for it using an algorithm such as the Finite Elements Method [START_REF] Michael | The hemi-cube: a radiosity solution for complex environments[END_REF], or using Monte-Carlo methods such as Monte-Carlo Markov Chains [START_REF] Veach | Metropolis light transport[END_REF] or the Monte-Carlo method for integration [START_REF] Kajiya | The rendering equation[END_REF].

Despite the different approaches, these methods all have the common characteristic of needing to compute samples, with more samples resulting in a more accurate approximation of the rendering equation, leading to a more accurate final image. These samples detail the energy transfer between surface points, and can be expensive to compute due to the need to consider the scene geometry. Thus, it is important to be efficient both in determining where to compute these, and how to best use their information.

Our work is focused on this, and looks to investigate two problem areas. The first is in the context of the Instant Radiosity algorithm [START_REF] Keller | Instant Radiosity[END_REF], an efficient photo-realistic rendering algorithm that represents the total lighting in the scene with a discrete set of point light sources. An issue with this method is that it requires a large number of these light sources to accurately depict lighting in complex scenes, leading to long computation times.

We formulate this as a Low-Rank Matrix Completion problem, which deals with inferring unknown entries within a partially observed low-rank matrix. Low-Rank Matrix Completion is particularly applicable to this problem as it already has a well studied matrix formulation [START_REF] Hašan | Matrix row-column sampling for the many-light problem[END_REF] that has been shown to be approximately low-rank.

The second is in the context of Monte-Carlo rendering methods, which traditionally take a long time to render an image due to the need to compute many different randomly taken samples. More modern approaches aim to alleviate this burden by either learning more accurate sampling distributions, or by amortizing the sampling process across multiple frames. An issue that occurs here is that the probability distributions may change. Naive combination of samples may lead to sub-optimal usage, resulting in higher variance or bias. We tackle this by investigating more optimal methods to reuse these samples across different probability measures. We conduct our study of these methods in two separate domains. The first is progressive path tracing in glossy scenes with animated camera movements. Samples here are amortized across different frames, with their probabilities changing across frames due to a change in incident direction if they lie on a glossy surface. The second is in the context of the Practical Path Guiding [START_REF] Müller | Practical Path Guiding for Efficient Light-Transport Simulation[END_REF] algorithm, which aims to iteratively learn better sampling distributions. The sampling distributions in this algorithm changes every iteration as it progressively improves its approximation to mimic the lighting in the scene.

Low-Rank Matrix Completion with Instant Radiosity

Instant Radiosity [START_REF] Keller | Instant Radiosity[END_REF] is a photo-realistic rendering method that aims to simplify the process by decoupling light computations from scene geometry. It achieves this by reducing the overall process to a series of direct lighting computations to a set of point light sources using an intermediate step, which propagates a set of virtual point lights into the scene.

The general method can be separated into two stages. First, random paths are scattered from light sources into the scene, with each path vertex being recorded as a virtual point light. Afterwards, each pixel is rendered by tallying the direct light contribution from these point light sources to the surface points in the pixel.

Instant Radiosity can be thought of as a hybrid between the above stated Finite Elements and Monte-Carlo methods. Much like the Finite Elements method, it first looks to compute the indirect lighting of the scene through an initial pass, and then uses this indirect lighting information to compute the final image for arbitrary camera arrangements. However, unlike the Finite Elements method, it computes this indirect lighting through the casting of random paths, which is the method predominantly used in Monte-Carlo methods. It has been noted by Keller [Kel97] that this method can be framed as a special case of a specific Monte-Carlo algorithm, namely the bidirectional path tracer [START_REF] Eric | Bi-directional path tracing[END_REF][START_REF] Veach | Robust Monte Carlo methods for light transport simulation[END_REF]. This method is fast as it can take advantage of modern hardware, which is well suited to the problem of computing direct lighting to point light sources. However, it can still take a long time to render complex scenes with some degree of accuracy. This is because a very large number of virtual lights are required to accurately represent the lighting in these scenes. This problem, termed the Many-Lights problem, can be alleviated with Many-Lights Methods, which typically expedite the computation process using techniques such as clustering and sampling to reduce the computational complexity to sub-linear time.

A useful formulation of the Many-Lights problem is introduced in the work of Hasan et al. [START_REF] Hašan | Matrix row-column sampling for the many-light problem[END_REF], where the problem is treated as a matrix, termed the Many-Lights matrix. The columns of this matrix represent the virtual lights, the rows represent the surface points to be rendered, and each entry is the direct light contribution from the corresponding light source to the corresponding surface point.

An interesting property of this matrix is that it is approximately low-rank, which means that most of its information lies within some lower dimensional manifold. This opens up the possibility not fully computing the matrix, and instead using some technique such as Low-Rank Matrix Completion to infer the rest of the information.

It is our aim to further investigate this. Specifically, we look to use a modified version of the Adaptive Matrix Completion algorithm introduced by Krishnamurthy and Singh [START_REF] Krishnamurthy | On the power of adaptivity in matrix completion and approximation[END_REF] to infer the visibility information between the lights and surface points. This visibility information is then combined with shading information that is fully computed. This is advantageous as computing visibility is typically the bottleneck when computing the direct lighting contribution from a virtual light source to a surface point, as it requires the consideration of scene geometry. Furthermore, as visibility is boolean, we can introduce simplifications to the matrix completion process, leading to lower overhead costs. Finally, computing the lighting contribution without considering visibility is fast and can be trivially parallelized on the GPU.

Summary of Hypotheses

Our hypotheses for the first part of this thesis can be summarized as follows:

• Low-Rank Matrix Completion can be applied to the Many-Lights problem, and will result in improved computational performance compared to computing all the contributions from all virtual lights.

• Low-Rank Matrix Completion is preferable compared to other state-of-the-art Many-Lights methods, and will high quality images at faster speeds.

Reusing Samples across Probability Measures

Due to its generality, the Monte-Carlo method for integration is a popular choice for approximating the rendering equation. The general approach, termed path tracing, aims to achieve this by scattering paths from the camera into the scene, and estimating their transported energy to their corresponding pixel.

There are modern use-cases where the probability distribution for drawing samples changes.

Examples of when this occur include when animations in the scene can result in changes of sampling distributions due to changes in the material functions, and when unknown parts of the sampling distributions are iteratively learned through some guiding process.

This is an issue as we cannot directly combine samples drawn from different distributions. Instead, we need employ some method to update them so that their information density adheres to a single distribution.

Commonly used methods for this include rejection sampling and reweighting. However, these methods are inefficient due to either discarding samples, or assigning sub-optimal weights. Furthermore, they have strict support requirements for the sampling functions, and do not handle cases where the integration domain of the new sampling distribution covers new areas.

We propose and investigate a different method to dealing with this, namely reweighting-augmentation. This is a modification to the hybrid rejection-augmentation method introduced by Zhang and Shields [START_REF] Zhang | Efficient Monte Carlo resampling for probability measure changes from Bayesian updating[END_REF], and looks to reweight the portion of the previous samples where we have an excess, and allocate new samples in the areas where we have a deficit. This allows us to make better use of previous samples lying in these deficit areas, as they are not assigned weights.

We look to investigate the application of this method in two different areas of path tracing. The first is progressive path tracing, which amortizes the cost of sampling over multiple frames. As this amortization leads to combining samples from previous frames in the current, animations can cause complications as they can give rise to sampling distribution changes.

We hypothesize that reweighting-augmentation can be used to efficiently combine these samples, leading to lower variance. We look to specifically study the case where camera movement is animated in glossy scenes. This causes changes in the sampling distributions of the first vertex of each path if its material is glossy. This is because the sampling distributions are typically dependent on the material function, which are in turn dependent on the incident direction.

Limiting our study to just camera animations allows us to operate solely in image space, resulting in reduced memory usage and computational overhead.

The second area we look to investigate is path guiding, which refers to a group of methods that aim to iteratively learn the incident radiance of the scene, and incorporate that into the sampling distributions. Although these methods achieve better sampling distributions, there is inefficiency in how they use the samples as most of them discard the samples used to learn these distributions.

We aim to investigate the efficient reuse of samples in one of these algorithms, termed Practical Path-Guiding [START_REF] Müller | Practical Path Guiding for Efficient Light-Transport Simulation[END_REF]. This algorithm iteratively learns and stores the incident radiance into a tree structure, and has proved to be popular partially due to the simplicity of its implementation. As the incident radiance changes between iterations due to it being better learned, and because it is used in the sampling distributions, we can look to employ methods that combine samples across different probability measures to make better use of samples from previous iterations.

We separate our investigation here into two parts. The first deals with using our proposed reweighting-augmentation method to allow for the efficient reuse of training samples from previous iterations in learning of the current. We believe that this should perform better than the previous strategy of simply discarding the samples as it effectively doubles the number of training samples taken at each training iteration, resulting in faster learning of the incident radiance.

The second deals with using a surrogate to the Effective Sample Size metric [START_REF] Kong | A note on importance sampling using standardized weights[END_REF], termed ESS, to combine intermediate images generated from the samples of each iteration to render a final image that has lower variance. We hypothesize that this should outperform the previous average inverse variance weighting used by Muller et al. [START_REF] Müller | Practical Path Guiding for Efficient Light-Transport Simulation[END_REF] as it is more localized and should be more stable as it does not need to estimate the variance of the sampling distribution with respect to the target function.

Summary of Hypotheses

Our Hypotheses for the second portion of this thesis are as follows:

• Our proposed reweighting-augmentation method outperforms previous methods for combining samples across probability measures.

• Reweighting-augmentation provides better images at the same number of samples in the context of progressive path tracers when the camera is animated compared to the previous combination method of reweighting.

• Introducing reweighting-augmentation as a mechanism to reuse samples from previous iterations in Practical Path-Guiding allows for improved learning of the incident radiance.

• Using ESS to combine intermediate renders in Practical Path-Guiding is preferable to using the previous method of average inverse variance.

Contributions 1.3.1 Low-Rank Matrix Completion with Instant Radiosity

We summarize our contributions on the use of Low-Rank Matrix Completion in the context of Instant Radiosity as:

• We propose a new Many-Lights algorithm that infers visibility using Matrix Completion. This allows for significant improvement in computation speeds compared to previous methods as visibility computations are the bottleneck of the Instant Radiosity.

• We introduce and investigate a variation of the Adaptive Matrix Completion algorithm specifically tailored to boolean visibility. This variation drastically minimizes the overhead and computational complexity of the matrix completion process, which is important as using traditional matrix completion methods have a very high overhead when compared to simply evaluating the entire Many-Lights matrix, and typically result in slower computation times for all but the most ideal cases. • We propose a method to adaptively sample visibility between surface points and virtual lights, allowing for more accurate inference of visibility information when using matrix completion. This allows for a relaxation in the incoherence constraints for the matrix, allowing for accurate completion of the matrix with a smaller number of samples.

Reusing Samples across Probability Measures

Our contributions for the reuse of samples across different probability distributions can be summarized as:

• We propose reweighting-augmentation, a hybrid method that allows for the efficient combination of samples drawn from different probability distributions. It achieves this by assigning new samples to the areas where there is a deficit in sample density, resulting in no sub-optimal weights being assigned for these samples. It differs from the previously proposed rejection-augmentation method in the context of photo-realistic rendering algorithms, as having more individual samples in areas where there is an excess is preferable to discarding them due to sampling distributions typically not accounting for albedo.

• We propose and provide a preliminary investigation of a framework that uses reweightingaugmentation in the context of progressive path tracing in scenes with an animated camera.

We hypothesize that employing reweighting-augmentation in these cases will result in lower variance when combining the samples across different frames due to changes in the sampling distributions caused by changes in the material functions.

• We provide a preliminary investigation of the integration of reweighting-augmentation to the Practical Path-Guiding algorithm to make better use of training samples. We believe that this will allow for the better learning of the incident radiance fields, ergo lower variance in the final rendered images.

• We investigate the commonly used surrogate of the Effective Sample Size metric, termed ESS, in the context of Practical Path-Guiding. We use this to determine the weights to combine the intermediate renders of each training iteration to generate the final render. We hypothesize that it will outperform the previous method of using average inverse variance as it is more localized and stable.

Structure

We first provide a brief background on the general problem of photo-realistic rendering in Chapter 2.

We aim to achieve this by first briefly introducing the underlying physics, specifically the various models of light, as well as a brief introduction and discussion on the field of Radiometry. We then briefly introduce the various methods for photo-realistic rendering in computer graphics. We then divide the remainder of the thesis into two parts, each focusing on a separate contribution area.

The first deals with the use of Low-Rank Matrix Completion for the Many-Lights problem. This is separated into Chapter 3, which provides background information on Instant Radiosity, the Many-Lights problem, and various existing Many-Lights Methods. Chapter 4, which provides background on the Matrix Completion problem, as well as some well known matrix completion algorithms. Chapter 5, which details our work in applying Low-Rank Matrix Completion to the Many-Lights problem. Finally Chapter 6, which details and discusses our findings, and concludes this part of our work.

For the second part, which deals with the reuse of samples across different probability measures, Chapter 7 provides a background on methods that allow for the combination of samples taken across different probability distributions. Chapter 8 provides both a background to progressive path tracing, how we employ reweighting-augmentation in its context, as well as provides preliminary results and conclusions. Chapter 9 provides a background to Practical Path-Guiding, describes how we apply both reweighting-augmentation and ESS to it, and gives preliminary results and conclusions.

Finally, we conclude the entirety of our work in Chapter 10.

Chapter 2

The Physics of Light and Photo-Realistic Rendering

Rendering realistic images of virtual scenes requires simulating the physics of light within them. For this, computer graphics borrows heavily from radiometry, a field of physics that deals with the measurement of electromagnetic radiation. This acts as a natural base for photo-realistic rendering, as light is also a part of this.

The aim of this chapter is to frame the contributions of this thesis by providing a brief overview on the fundamentals of photo-realistic rendering. We aim to achieve this by first providing a general overview on the different physical models of light in Section 2.1. The aim here is not to be exhaustive in our description of light, but rather to explore its properties, and how they may give rise to certain physical phenomena which we may look to approximate in computer graphics.

We then proceed to give a brief overview of Radiometry in Section 2.2. Specifically, we aim to provide definitions for some of its most important quantities, describe how it can be used to render photo-realistic images of scenes, and discuss how it relates to the various physical models of light.

Finally, in Section 2.3, we provide context for the contributions of our thesis by giving a high-level overview of the different approaches taken in photo-realistic rendering. We aim to achieve this by discussing the main approaches to photo-realistic rendering, and then referring to these to frame the context in which we make our contributions.

Physical Models of Light

We interact with light on a daily basis, and it is key to how we perceive our surroundings. Although the greeks and the arabs had some understanding on the behaviours of light, it is not until the last few centuries that we have developed theoretical models on the physics of light. Since then, three major models for light have been developed, each incrementally improving our understanding on the nature of this phenomenon.

Ray Model of Light

The ray model of light, first formalized as a theory by Isaac Newton in the 17th century, treats light as a set of tiny perfectly elastic particles called corpuscles. These corpuscles travel in straight lines, termed light rays, in some emitted directions from light sources until they encounter some matter. They are then either reflected, transmitted, or absorbed. Finally, some of the reflected or transmitted corpuscles reach our eyes, allowing us to see them. An illustration of this model can be seen in Figure 2.1, where light is reflected and refracted from its interaction with material.

Although eventually shown to be not entirely correct, the ray model gives an intuitive understanding on how light behaves, and is still used in various fields, including computer graphics. This is because it is powerful enough to model a vast range of natural phenomena, such as reflection, refraction, participating media (Figure 2.2), and caustics (Figure 2.3). Furthermore, by treating corpuscles When this occurs, it can either be absorbed, as shown in A where all but green light is absorbed by the surface resulting in its green appearance, reflected, which is also demonstrated in A where light is scattered in many directions, or refracted, as shown in B. as having different colours, it is also able to provide rudimentary (although often incorrect or oversimplified) explanations for certain colour specific effects, such as material colour, Rayleigh scattering (Figure 2.4), and dispersion (Figure 2.5).

Wave Model of Light

The wave model of light was also developed in the 17th century, by Christian Huygens. This model treats light as an oscillation, similar to sound, through a medium termed the aether. This was later expanded upon by James Clerk Maxwell, who proposed electromagnetism, a theory that unified electricity and magnetism. He hypothesized that light is similar to that of other electromagnetic waves, and is caused by the oscillations of perpendicular electric and magnetic fields. This has since been verified experimentally by Heinrich Hertz during his experiments with Radio waves, which are also electromagnetic waves, albeit at a much longer wavelength.

The wave model of light is able to explain a plethora of new phenomena that have been observed in the 17th and 18th century, for example interference (Figure 2.6), diffraction (Figure 2.7), and polarization, for which we do not provide an example image due to it being unobservable by the human eye, but it is worthwhile to note that it affects the energy of reflected or refracted light. The wave model of light also correctly predicts that the speed of light decreases in denser mediums, as opposed to increases as predicted by the ray model of light.

Photon Model of Light

Our most recent model for light thus far is the photon model, where light is modeled to consist of packets of energy that can interact with matter. These packets of energy are termed photons, and have properties of both particles and waves, such as momentum and frequency. In this model, the photons can be absorbed or emitted, with absorption occurring when the photons encounter some matter and its energy is converted to some other form, such as electrical charge or heat, and emission occurring due to a decrease in the energy of an electron. , allowing for light to be focused to a localized area. This is caused by a quantum effect, where excited electrons emit two photons that are coherent with each other when absorbing an incoming photon.

Figure 2.10: Fluorescence results in the emission of lower wavelength photons than those absorbed. This can be seen on the left image, where scorpions re-emit photons in the visible spectrum when absorbing uv light [Flu]. Phosphorescence is the re-emission of absorbed photons after a significant delay, anywhere between a few milliseconds to multiple hours. The light here can also sometimes be of a lower frequency. The right image shows an example of this, where the eagle toy glows in the dark without any immediate stimulus [Pho].

The photon model provides explanation for the wave-particle nature of light, which was initially shown in the double slit experiment. It also explains a slew of phenomena, including the photoelectric effect (Figure 2.8), lasers (Figure 2.9), fluorescence, and phosphorescence (both in Figure 2.10).

Radiometry

Photo-realistic rendering in computer graphics is based on radiometry. This is a field that deals with the measurement of radiation, most commonly electromagnetic. In photo-realistic rendering, we need to measure the intensity of light at surface locations visible to the virtual camera in order to determine their final shading. Thus, radiometry acts as a natural foundation for photo-realistic rendering due to light being part of the electromagnetic spectrum.

We will begin by first providing definitions and a brief description on the four fundamental radiometric quantities. We then provide a brief discussion on how these quantities can be combined with material models to determine the light intensity leaving surface points towards the virtual camera, which will determine the shading of these surface points. Finally, we discuss some of the drawbacks of radiometry.

Radiometric Quantities

Radiant Flux

The radiant flux is defined as the amount of energy per some unit of time, and can be expressed as

Φ = dQ dt (2.1)
where Q is the radiant energy, and the unit of measurement for Φ being watts.

Radiant flux is typically measured over the entire electromagnetic spectrum, however, we can also take into account wavelength using spectral radiant flux, which is defined as the radiant flux per unit wavelength interval

Φ λ = dQ λ dt = dΦ dλ (2.
2)

The unit of measurement for spectral radiant flux is watt nm .

Irradiance

The irradiance is the radiant flux per unit area, and is measured as watt m 2 . The irradiance can be expressed as

E = dΦ dA (2.3)
where dA is the change in surface area.

Irradiance generally refers to the incident radiation. In the case where we want to refer to the radiance flux leaving the surface per unit area, we can refer instead to the exitance, which is denoted by M . This can also be referred to as the radiosity, which is denoted by the symbol J, or emissivity. The latter term is however no longer used, as it is now reserved for a property of material surfaces.

Like radiant flux, irradiance can also take into account the wavelength by using spectral irradiance. This is defined as

E λ = dE dλ = d 2 Φ dAdλ (2.4)
and has the unit of measurement watt m 2 nm .

Radiant Intensity

Radiant intensity refers to the solid angle density of radiant flux, ie. the amount of incoming energy for some set of directions. This quantity is defined as

I = dΦ dω (2.5)
where dω denotes the change in solid angle, and has a unit of measurement watt sr .

To account for different wavelengths, spectral radiant intensity can be used, which is defined as

I λ = dI dλ = d 2 Φ dωdλ (2.6)
and has the unit of measurement watt sr.nm . Radiance

Radiance is the radiant intensity per unit area, and is defined as

L = d 2 Φ dωdAω • n (2.7)
where dAω • n refers to the projected surface area, an area that is defined by the orthogonal projection of ω onto a hypothetical plane defined by the normal n of the surface element. The unit of measurement for radiance is watt m 2 sr . Spectral radiance, which takes into account different wavelengths, is defined as

L λ = dL dλ = d 3 Φ dωdAω • ndλ (2.8)
with the unit of measurement watt m 2 sr.nm . The radiance described in this section is the incoming radiance, and is termed incident radiance. However, radiance can also refer to the energy leaving a surface. This has the same unit of measurement as incident radiance, and is termed the exitant radiance. This is of paramount importance to photo-realistic rendering, as determining the appearance of a surface point is tantamount to determining the exitant radiance in the direction of the virtual camera.

Materials

The material properties at a surface point can interact with the incoming light in a variety of ways, such as absorbing it, scattering it, or changing its frequency. It plays a key role in radiometric quantities leaving the surface point, such as exitance and exitant radiance, thus, its proper modeling is important for understanding the resultant behaviour of light when it interacts with a surface.

Ideal Lambertian Surfaces

Figure 2.11: A perfectly Lambertian material reflects or transmits incoming light equally in all directions. Shown here is a lambertian reflector, but the same idea applies for transmission, just in the opposite direction of the surface. One of the most straightforward materials to model are ideal Lambertian surfaces (Figure 2.11). These materials emit light equally in all directions directly proportional to its exitance, which is computed as the integral of its incident radiance. Although ideal Lambertian surfaces do not exist in reality, they are frequently used in photo-realistic rendering to approximate a plethora of rough surfaces (Figure 2.12). A major reason for this is their directional independence, which changes the surface material functions from 7-dimensional (3 for position, 2 for incident direction, 2 for exitant direction) to 5-dimensional, as exitant direction no longer needs to be modeled. This allows certain algorithms to become more computationally tractable, for example the Radiosity method [START_REF] Michael | The hemi-cube: a radiosity solution for complex environments[END_REF].

The Bidirectional Scattering Distribution Function

Contrary to ideal Lambertian materials, materials in reality scatter light in a non-uniform manner. This scattering depends on a variety of factors, such as the properties of the material, the normal of the surface, and the incident direction of light.

To model the scattering properties of a material, we use the bidirectional scattering distribution function (BSDF). This mathematically describes how light is scattered when interacting with some given material, and can be thought of as a probability distribution function which describes the probability of light scattering in some direction given some incoming direction.

Scattering can refer to the propagation of light through both transmission and reflection. It should be noted that rather than using a unified BSDF, these two concepts are treated separately in radiometry (Figure 2.13). Transmission is modeled using the bidirectional transmittance distribution function (BTDF), whereas reflection is modeled using the bidirectional reflectance distribution function (BRDF).

The BTDF has a hemispherical domain that is opposite to that of the surface normal, whereas the BRDF has a hemispherical domain that is on the same side of the surface normal. The union of these two domains are thus the sphere of directions surrounding the surface point, which can be thought of as the domain of the entire BSDF.

The Rendering Equation

With the above, we are able to derive a mathematical expression for the exitant radiance in a given direction: where L o is the exitant radiance, L e is the emitted radiance, f denotes the BSDF, L i is the incident radiance, and |ω i • n| is the cosine falloff for the projected solid angle. For the variables, ω o is the outgoing direction, ω i the incident direction, p the surface point position, n the surface point normal, t the time, λ the wavelength, and Ω the sphere of directions around the surface point.

L o (ω o , p, n, t, λ) = L e (ω o , p, λ, t) + Ω f (ω o , ω i , p, λ, t)L i (ω i , p, λ, t)|ω i • n|dw i (2.9)
Equation 2.9 first appeared, in the context of photo-realistic rendering, simultaneously in the work of Kajiya [Kaj86] and Immel et al. [START_REF] Immel | A radiosity method for non-diffuse environments[END_REF], and is termed the rendering equation. It should be noted that the version presented provides the exitant radiance for a specific wavelength and time. We can integrate over the additional ranges of wavelength and time should we wish to determine the average exitant radiance for those.

Drawbacks of Radiometric Model of Light

Radiometry simplifies the description of light by following a geometric paradigm that can be equated to the ray model discussed at the start of this chapter. Due to this, it suffers from the same limitations.

For example, as it does not deal with the wave properties of light, it can only consider light to be unpolarized and incoherent. This means that it is unable to model certain effects, such as polarization and interference. Radiometry also does not consider the quantum behaviour of light, and thus, cannot model phenomena explained by the photon-model of light from a first principles standpoint. However, this is often unnecessary, as it is usually sufficient to incorporate these phenomena through the use of empirical models.

Finally, as radiometry only performs measurements at interfaces where light interacts with matter, it does not consider cases where the path of light might change in between these interfaces. This can be caused by wave diffraction, or by relativity where the path of light is bent by matter.

Photo-Realistic Rendering

Photo-realistic rendering requires the simulation of light and its interaction with virtual scenes in order to determine the final colours of each pixel of an image to be rendered. This is achieved by determining the amount of energy leaving the surfaces corresponding to the pixel in the direction of the virtual camera. Photo-realistic rendering achieves this by using concepts from classical radiometry, particularly the aforementioned exitant radiance.

Computing the exitant radiance can unfortunately be rather complex, as we need to know the incident radiance in order to do so, which requires knowing the exitant radiance of surfaces contributing to the incident radiance ad infinitum. Fully computing this is extremely expensive, however, there have been a number of algorithms that have arisen that aim to efficiently achieve this.

This section aims to both introduce some of these methods, as well as frame the contributions of this thesis. This is achieved by giving a brief overview of the field of photo-realistic rendering, including some of the most popular paradigms, and discussing how the work in this thesis relates to these. For a more comprehensive overview on the field, we refer the reader to the survey by Ritschel et al. [START_REF] Ritschel | The State of the Art in Interactive Global Illumination[END_REF].

Finite Elements Method and Radiosity

Figure 2.14: Radiosity separates rendering into two stages. In the first, the equilibrium radiance is iteratively computed for all surface areas in the scene, as indicated by the yellow arrows. In the second stage, we determine the appearance of an image by querying the radiance going to some virtual camera, indicated by the green arrows.

One popular approach to generate photo-realistic images is the Radiosity method [START_REF] Michael | The hemi-cube: a radiosity solution for complex environments[END_REF], which first iteratively computes the equilibrium exitant radiance in the scene using the finite elements method, and then uses this information to determine the energy from the visible surfaces to the virtual camera. Figure 2.14 illustrates the general approach taken by Radiosity.

Although the first step of this method is typically slow, it only needs to be performed once as it is view independent. After this, an arbitrary number of images from arbitrary camera configurations can be generated efficiently. Unfortunately, this no longer holds when dealing with dynamic scenes, as one has to re-compute the equilibrium radiance whenever the scene changes due to the radiance distribution changing. Another drawback to this method is that it is limited to scenes with fully diffuse surfaces (ie. perfect lambertian materials). There are two main reasons why this is the case. The first is that diffuse materials are 5-dimensional, as they are invariant to the exitant radiance direction. This means that we only need to store the equilibrium exitant radiance as a three-dimensional field. This is because the exitant radiance for these materials is the same as their exitance, thus, we only need to know the surface point position to know its outgoing energy. Other materials are 7-dimensional, which means that we need to store two additional dimensions accounting for the outgoing light direction. This leads to significantly higher storage costs.

The second is that the finite elements method discretizes the radiance function in order to make the computations tractable. This discretization is not particularly noticeable for diffuse materials due to the smooth nature of their shading, however, visually obvious artefacts may manifest for materials with sharper lobes, such as glossy surfaces.

Although one can alleviate this issue with a finer level of discretization, it significantly increases the computational and storage costs. Furthermore, if one were to allow for arbitrary materials, one would need an arbitrary level of accuracy in the discretization. An extreme, but rather common, example of this is the pathological purely specular materials, which are modeled using Dirac Delta functions and used to approximate surfaces such as mirrors and glass. Here, one would require infinite discretization accuracy both spatially and directionally.

Monte-Carlo Methods

A more general approach to solving Equation 2.9 is through random sampling, where the integral to be solved is treated as a recursive function due to the incident radiance term L i . Each sample can be viewed as a path through the scene, with each recursion of the integral corresponding to a path vertex. There are various methods for generating these paths, and they can be divided into two general groups. The first uses the Monte-Carlo method for expected value estimation to estimate the integral. There are various different approaches within this group, with perhaps the simplest being unidirectional path-tracing [START_REF] Kajiya | The rendering equation[END_REF]. In this approach, paths are sampled from the camera to the scene. The paths are terminated either when they reach a light source, as emission sources are typically treated as perfect black bodies in photo-realistic rendering, or by using some technique such as Russian Roulette sampling. Figure 2.15 illustrates the unidirectional approach.

Monte-Carlo Method for Expected Value

Although these paths can be sampled uniformly, photo-realistic rendering typically employs importance sampling to reduce variance. This importance sampling is traditionally performed on a sub-path basis by taking into account the integral locally at each vertex, however, there has been more recent work that takes into account the entire integral function at once [START_REF] Zheng | Learning to Importance Sample in Primary Sample Space[END_REF]. Another approach is bidirectional path-tracing [LW93; Vea98], where sub-paths are generated, in a similar manner to unidirectional path-tracers, from both the camera and light sources of the scene. These sub-paths are then connected in order to form the full paths. Figure 2.16 illustrates this approach.

Bidirectional methods are advantageous as they can have better convergence in cases where light sources are difficult to reach if we were to solely sample paths from the virtual camera. This can occur in the classical unidirectional path tracer when the incident radiance L i dominates the material function f , as we often draw samples from the material function.

Monte Carlo Markov Chains

The second group of methods for generating paths are Monte-Carlo Markov Chains (MCMCs). The general idea here is to construct a Markov Chain which has the desired equilibrium distribution, ie. the distribution the Markov chain will converge to after a sufficient number of samples. Figure 2.17 illustrates an example MCMC.

Photo-realistic rendering employs these methods by constructing equilibrium distributions for these MCMCs so that they reflect Equation 2.9, which will greatly reduce the variance of the final estimates, allowing for more efficient rendering. A popular example of this is Metropolis Light Transport [START_REF] Veach | Metropolis light transport[END_REF], which extends the original Metropolis-Hastings algorithm [START_REF] Metropolis | Equation of State Calculations by Fast Computing Machines[END_REF] in the space of light paths (Figure 2.18).

Although MCMCs have been shown to work well, they suffer from a series of issues, such as there being cases where certain groups of paths are difficult to find, leading to their effects being difficult to render (Figure 2.19). These methods are also notoriously difficult to implement correctly, and are difficult to parallelize due to their dependent nature. Mutations can be achieved by modifying this path in some way, such as perturbing, adding, or removing vertices.

Recent Developments

Monte-Carlo methods are popular due to their generality, and can render a host of different real-life materials, geometries, and phenomena, as long as they can be modeled. However, they typically require large numbers of samples to converge to a good quality image, with poor quality images having large amounts of noise.

There have been a slew of more recent work which aim to address the various drawbacks of Monte-Carlo methods. For example, denoising which uses filters and deep neural-networks [Mar+17; Sch+17; Has+20] to remove the noise from images which have not fully converged, path-guiding [Vor+14; MGN17; VKK18] which aims to learn the incident radiance L i in order to obtain better sampling distributions for unidirectional path-tracers, and progressive path tracing methods [WDP99; Neh+07; Tat+14] that aim to amortize the cost of sampling across frames, allowing for the use of Monte-Carlo methods in real-time applications.

Our work also aims to improve Monte-Carlo rendering. We present a sampling technique, termed reweighting-augmentation, in the second part of this thesis, and apply it to both path guiding and progressive path-tracing.

Biased Methods

The above discussed methods are termed unbiased methods, in that they will, on average, obtain the correct solution to Equation 2.9. However, there also exists a large number of biased methods in photo-realistic rendering. These will not produce the correct solution on average, and will have some residual error. However, the error of many of these methods can be made arbitrarily small by increasing their sample size.

The generally accepted view in photo-realistic rendering is that biased methods are typically more performant when compared to their unbiased counterparts, and thus are preferred in cases where this is a concern. Certain biased methods also do not exhibit any noise, and thus are preferred in cases where this in undesirable.

Some examples of biased methods include irradiance caching [START_REF] Ward | A ray tracing solution for diffuse interreflection[END_REF], which aims to sparsely compute the scene's irradiance, and interpolates to obtain the missing values for diffuse surfaces, photon mapping [START_REF] Wann | Importance driven path tracing using the photon map[END_REF], which stores the indirect lighting in the scene as a set of photon hits, and Instant Radiosity [START_REF] Keller | Instant Radiosity[END_REF], which uses a set of virtual lights to render a scene's indirect lighting.

The first part of this thesis deals with efficiently rendering scenes with large numbers of light sources, which can commonly arise from a method such as Instant Radiosity.

Real-Time Photo-Realistic Rendering

Photo-realistic rendering in real-time often requires compromising the physical accuracy of rendered images with their performance, as we are only allowed a very short amount of time per frame. This need has given rise to a slew of computationally cheap methods that roughly approximate natural phenomena. Some examples of these methods include such as using texture maps [START_REF] Blinn | Texture and reflection in computer generated images[END_REF] for effects such as reflection and lighting, screen space ambient occlusion [START_REF] Bavoil | Image-space horizon-based ambient occlusion[END_REF], shadow mapping [START_REF] Williams | Casting curved shadows on curved surfaces[END_REF], and voxel cone-tracing [START_REF] Crassin | Interactive Indirect Illumination Using Voxel Cone Tracing[END_REF].

Although our work does not look to explore real-time photo-realistic rendering, progressive pathtracing can naturally be applied to this setting as it amortizes the cost of sampling over multiple frames. Instant Radiosity can also be used in a real-time setting if the number of virtual lights is low. A downside to this approach is that large numbers of VPLs are required to accurately represent the lighting in complex scenes, which once again results in long processing times. This is particularly a problem in glossy scenes, as sharper material functions exacerbate the visual artefacts caused by the discretization of indirect light, resulting in many more virtual lights being needed. Many-Lights Methods tackle this using a plethora of different approaches to reduce the problem to sub-linear time. The proposed method in the first portion of this thesis also falls into this category of methods.

Part I Matrix Completion with the Many-Lights Problem

This chapter aims to introduce the IR algorithm (Section 3.1) as well as an improvement on VPLs termed Virtual Spherical Lights (Section 3.2), and provide an overview on the various Many-Lights Methods proposed thus far (Section 3.3).

Instant Radiosity

IR is a photo-realistic rendering method that aims to reduce the rendering problem to directly lighting the scene with a set of VPLs. It achieves this by representing the indirect lighting of the scene with these VPLs. The general algorithm can be divided into two stages, emission and gathering.

The emission stage first generates random paths from light sources. This is achieved by sampling the starting vertex of the path directly from the emitters, which can be done using emitter sampling techniques such as those proposed by Shirley et al. [START_REF] Shirley | Monte Carlo techniques for direct lighting calculations[END_REF], and then iteratively sampling the local material function at each subsequent path vertex to acquire new directions. Path termination occurs when either a maximum depth has been reached, or through the use of russian roulette sampling. The latter is a technique which probabilistically terminates paths based on how much energy they carry, with accepted paths being scaled up to account for bias.

The vertices of each path are stored as VPLs. These are oriented point lights, with their normal being determined by the intersected geometry, and their emission energy and direction being determined by both the strength of the incoming energy, as well as the material. A special case of the above is when the initial sampled emitter is either a point or directional light. Here, the initial VPL will be stored as such as there is no corresponding surface point. This means that there is no positional information for directional lights, and no orientation information for point lights.

During gathering, each receiving point, which can be either a pixel or sub-pixel depending on the number of samples per pixel, is shaded by tallying the contributions from each VPL. Specifically,

Emission Gathering

Figure 3.1: The two stages of IR illustrated in the Cornell box scene. In emission, the paths marked in white are sampled from the emitter with each vertex, marked with the yellow circles, stored as VPLs. In gathering, the receiving point indicated with the blue dot is shaded by tallying the contributions from all VPLs, marked with green lines. the shading of the receiving point r can be computed as:

L o (r, ω o) = k∈S f (r, ω i , ω o)L i k (r, ω i)V k (r)|ω i • n| (3.1)
where ω o is the direction from the camera to r, S is the set containing all VPLs, f is the material function at r, L i k is the incident radiance from the k th VPL, and V k is a binary visibility function that determines if there is a direct line of sight between r and the k th VPL. This equation has similarities to the rendering equation presented in Chapter 2.2.3, and is used as a discrete approximation to it in the context of Instant Radiosity.

These shaded receiving points are then combined to form the final image. Figure 3.1 illustrates IR applied to the Cornell box scene. The VPLs, denoted as yellow circles, are initially generated by storing each vertex of the paths sampled from the light source. The receiving point, denoted with the blue circle, is shaded by tallying the contributions from all VPLs.

IR is advantageous as it is both noiseless and fast to compute. The former can be explained by rephrasing IR as a specific case of Bi-Directional Path Tracing [START_REF] Eric | Bi-directional path tracing[END_REF], where each eye sub-path length is one and each randomly sampled path during emission is a light sub-path (Figure 3.2).

Noise is removed as computing the shading for each receiving point is equivalent to sharing the light sub-paths between all receiving points.

This sharing also contributes to the faster performance, as new light sub-paths do not need to be computed for each eye sub-path. Another factor to the fast performance is that IR reduces the shading to a series of direct lighting computations to point or directional light sources, a process that is well suited to current rendering hardware.

Despite its advantages, IR has a major drawback in that its VPLs lie on geometrical surfaces. As these surfaces have zero distance to the VPLs, and due to the VPLs' energy falloff being computed with d 2 due to them being singularities, points on the surface that are both near to the VPLs and can receive light (which occurs in areas such as corners) will have very high energy, resulting in bright spots. This can be seen in Figure 3.3 where VPLs sitting near the corners of the scene cause bright spots.

Another drawback to IR is that it discretizes the indirect lighting in scenes. Although this does not cause visually noticeable problems in scenes with ideal diffuse materials, it poses a challenge when there are glossy materials, as the discretization error becomes more prominent. Glossy surfaces also may result in additional bright spots, due to light being both emitted and reflected unevenly.

To combat the above issues, one can either use a very large number of VPLs, resulting in very long computation times, or set a minimum value for d, which both biases the render and limits IR's use-case to lower energy scenarios, such as fully diffuse scenes.

Virtual Spherical Lights

To deal with the clamping issue of IR, Hasan et al. replace the point light sources with spherical ones [START_REF] Hašan | Virtual spherical lights for many-light rendering of glossy scenes[END_REF]. These spheres, termed Virtual Spherical Lights (VSLs), allow for higher energy scenes as they replace the d 2 term with integration over the solid angle subtended by the VSL's sphere. Figure 3.4 illustrates the VSL model.

This method still has bias because the size of the VSLs greatly impact how much energy is in the scene, as the energy for a VSL remains constant regardless of its size. Larger VSLs normalize the energy over a larger surface area, resulting in dimmer scenes, whereas smaller VSLs have the opposite problem, and can cause bright spots as they approach singularity.

Furthermore, to keep the computational performance at a respectable level, VSLs avoid casting new rays over the area covered by the VSL by setting the material, visibility, and geometry to be equal to that of the central point. This means that we cannot render highly glossy scenes unless there is a sufficiently large number of VSLs, as there will still be discretization error. Also, sampling is now required to integrate the contribution of the VSLs, meaning that some noise is re-introduced to the final render.

Overall, although VSLs allows for the rendering of certain glossy scenes without the issue of bright spots, its drawbacks necessitate investigating more general solutions to rendering VPLs.

Scalable Many-Lights Methods

An alternative approach to VSLs is to render the scene with a massive number of VPLs. Due to the large number, the energy for each VPL is a lot lower, which means that less clamping is required. Furthermore, a larger number of VPLs also means that light from the surfaces is better approximated, allowing for more accurate glossy reflections and correct energy within the scene.

Adding more VPLs increases the computational time linearly. This is problematic as complex scenes require millions of VPLs to render correctly, resulting in these scenes being impractical to render. This problem is termed the Many-Lights problem.

Scalable Many-Lights Methods look to tackle the Many-Lights problem, with some explicitly aimed at IR whereas others aimed at the general problem of rendering scenes with many emitters. These methods approach the problem in a variety different ways, but can be grouped into hierarchical clustering methods (Section 3.3.1), matrix-based methods (Section 3.3.2), light sampling methods (Section 3.3.3), and visibility approximation methods (Section 3.3.4).

Although these are the main categories, each method is not necessarily exclusive to any one of these. For example, our proposed method falls into the categories of hierarchical clustering, matrix-based, and visibility approximation methods. For this reason, we may introduce some methods multiple times, but will focus on discussing the part which is relevant to the actual category in its respective section.

Hierarchical Clustering

Hierarchical clustering methods take advantage of the fact that many VPLs have similar characteristics by clustering similar VPLs together, and then evaluating the contribution between clusters and surface points. The clustering is performed hierarchically, with the idea that should a cluster be found to not represent the lighting accurately, that it can simply be subdivided.

Lightcuts

Perhaps the best known hierarchical clustering algorithm is Lightcuts [START_REF] Walter | Lightcuts: a scalable approach to illumination[END_REF]. The method approaches the Many-Lights problem in two steps. The first clusters the lights into a binary tree, termed the light tree. This is performed by greedily combining the two most similar clusters, and then grouping them as children under a parent cluster. The similarity measure used here is based both on the bounding boxes encompassing the clusters, as well as how closely their orientation cones are aligned. An illustration of the final result of this process can be seen in Figure 3.5.

After grouping the children, the parent cluster adopts the properties, such as orientation and position, of one of the child clusters. This is so that the contribution from the cluster can be computed the same as a contribution from a single light, improving performance. The chosen child cluster is selected with a probability proportional to its emitted energy, thus, this representative process does not introduce any additional bias into the process.

The second step occurs during rendering. A Lightcut is first extracted for every receiving point. A Lightcut is a cut from the light tree, with a cut being defined as a set of nodes from a tree that satisfies the condition of any path from the root of the tree to a leaf node will contain exactly one node from the cut. This means that the nodes in the Lightcut fully encompass the information of the tree without any duplicates. Figure 3.6 shows an example of a cut.

The selection of a Lightcut should be such that there is finer resolution for clusters that both have higher variance and contribute a lot to the receiving point's shading. This is done by estimating the contribution of a cluster, and refining if it is larger than some threshold. This is typically set to be a percentage of the total estimated radiance of all lights, with Walter et al. [START_REF] Walter | Lightcuts: a scalable approach to illumination[END_REF] noting that no errors were observed with a threshold of 2%.

After the Lightcut is extracted, it is used to shade the receiving point. This is done by tallying the contributions from each cluster to the receiving point using their representative positions and orientations. This cut satisfies the condition that any possible path from the root of the tree to any leaf node will only contain only a single teal node.

Lightcuts with Multiple Receiving Points

The original Lightcuts method extracts a separate Lightcut for each receiving point. This can be inefficient as it does not take into account the fact that receiving points close together most likely have similar lighting conditions, ergo similar Lightcuts.

Multi-dimensional Lightcuts by Walter et al. [START_REF] Walter | Multidimensional lightcuts[END_REF] takes this into account by also hierarchically clustering receiving points that lie within a pixel into a gather tree. To find a Lightcut for groups of receiving points, they propose traversing the product graph of the two trees, and using a heuristic during splitting to determine whether the light tree node or the receiver tree node should be split. Figure 3.7, taken from the work of Walter et al. [START_REF] Walter | Multidimensional lightcuts[END_REF], illustrates the possible traversal of a simple product graph.

Bus et al. extends the idea of Multi-dimensional Lightcuts with IlluminationCut [START_REF] Bus | IlluminationCut[END_REF], which enables the receiver tree to encompass all receiving points. This is very similar to Multi-dimensional Lightcuts with the main difference being that it allows for the grouping of receiving points across different pixels.

An alternative way to have Lightcuts shared between different pixels is the work of Rehfeld and Dachsbacher [START_REF] Rehfeld | Lightcut interpolation[END_REF]. They compute Lightcuts for only a sparse set of receiving points, and interpolate these Lightcuts otherwise. An extension to this interpolation idea lies in the work of Vibert et al. [START_REF] Walter | Bidirectional lightcuts[END_REF], who use it for Virtual Ray Lights in the context of rendering participating media.

Bidirectional Lightcuts by Walter et al. [START_REF] Walter | Bidirectional lightcuts[END_REF] takes advantage of the fact that Multi-Dimensional Lightcuts can handle a far larger number of receiving points by extending the algorithm to allow the receiving point generation to more varied eye path lengths. This allows them to correctly render paths where the first few vertices are specular or highly glossy, generalizing the method to a far greater number of scenarios.

Improving the Accuracy of Lightcuts

Errors in Lightcuts can be caused by two main factors. The first is the use of static representative lights, which causes banding artefacts due to sampling correlation. The work of Yuksel [START_REF] Yuksel | Stochastic Lightcuts[END_REF] and Lin and Yuksel [START_REF] Lin | Real-Time Stochastic Lightcuts[END_REF] aim to address this by instead sampling the representative during each cluster evaluation. This allows them to replace the banding artefacts with noise.

The second is the fact that the Lightcuts method does not handle visibility between clusters and receiving points. This results in sub-optimal Lightcut refinement, resulting in a poorer set of clusters. Huo et al. [START_REF] Huo | Adaptive matrix column sampling and completion for rendering participating media[END_REF] attempt to tackle this by sampling and interpolating sparse visibility information throughout the nodes of the light tree. While this approach works well, there is the downside that incorrect interpolation of visibility information can lead to early termination of a subtree, which once again leads to sub-optimal refinement of the Lightcut.

Precomputing Lightcuts

A drawback to the original Lightcuts method is that they need to be computed at runtime. This is undesirable as extracting them incurs sizeable computational overhead. Bus et al. [START_REF] Bus | Global Illumination Using Well-Separated Pair Decomposition: Global Illumination Using WSPD[END_REF] investigate a method to alleviate this by precomputing Lightcuts before render time. They achieve this by using the concept of well-separated pair decomposition to precompute the Lightcuts based on their geometric properties. During rendering, the clustering that is closest to the receiving point is selected and further refined to be more accurate for the specific point. Maria et al. [START_REF] Maria | Visibility based WSPD for Global Illumination[END_REF] extend this to take into account visibility, a term previously ignored by other hierarchical clustering methods.

Fast Generation of Light Trees

Another issue with the Lightcuts method is the O(n 2) construction of the light tree. To address this, Walter [START_REF] Walter | Fast agglomerative clustering for rendering[END_REF] investigates some fast implementations to the tree construction, and compares it to top-down divisive construction. Although their construction algorithms were fast, they still expectedly scaled worse than the divisive algorithm, with the trade-off being the quality of the clustering.

Matrix-based Methods

The Many-Lights Matrix and Row Column Matrix Sampling

Hasan et al. [START_REF] Hašan | Matrix row-column sampling for the many-light problem[END_REF] shows in their Row Column Matrix sampling algorithm that rendering with many lights can be formulated as a matrix (Figure 3.8). This matrix, termed the Many-Lights Matrix, is formulated by having the columns represent the lights, and having the rows represent receiving points. Each individual element in this matrix is then the contribution from the corresponding light to the respective receiving point. The shading colour of each receiving point can then be computed as the L 1 norm of its respective row.

Key to their work is showing that the Many-Lights Matrix is approximately low-rank in most cases. This can be seen by plotting the singular values of the matrix, which can be obtained using Singular Value Decomposition (SVD). A matrix that is low-rank means that its information lies within a lower dimensional vector space, ie. its columns or rows can be reconstructed by linearly recombining a far smaller set of basis columns or rows respectively. Similarly, a matrix that is approximately low-rank means that most of its information lies within a low number of dimensions, and its entries can be closely approximated using a small basis. This means that the full matrix does not have to be known, and can instead be inferred by using a small subset of the rows and columns of the matrix.

Row Column Matrix sampling aims to take advantage of this by first computing some randomly sampled rows of the matrix, and then using this information to cluster the columns. Final rendering of the image is then performed by using these clustered columns.

Localized Clustering for the Many-Lights Matrix

An issue with Row Column Matrix sampling is that it looks to extract a global set of clusters for all receiving points. This is inefficient, as different points require different sets of clusters to be rendered correctly. Thus, a very large number of clusters is typically required to render complex scenes.

Ou and Pellacini [START_REF] Ou | LightSlice: matrix slice sampling for the many-lights problem[END_REF] aim to tackle this with LightSlice. They achieve this by slicing up the receiving points based on their position and orientation. An initial rough global set of clusters, extracted using the same method as Row Column Matrix sampling, is then further refined for each slice. This allows for fewer clusters per receiving point, as more global clusters are typically required to capture the same lighting compared to the number local clusters.

This method unfortunately suffers from two major issues. The first is that the refinement often causes slice-based artefacts, where one slice has significantly different lighting than its neighbors, and the other is that it requires very large amounts of memory for the initial clustering step. It should be noted that we constructed this matrix for the purposes of illustration, thus we use luminance rather than separating out the different colour channels. We cropped this image for legibility as the first singular value is over 500.

Explicitly Exploiting the Low-Rank Nature of the Many-Lights Matrix

Although the previous two methods aim to take advantage of the approximately low-rank nature of the Many-Lights Matrix, they do not do this explicitly by looking to recombine some basis vectors, but instead indirectly by using the supposedly correctly sampled information to perform clustering.

Contrary to these, Huo et al. [START_REF] Huo | Adaptive matrix column sampling and completion for rendering participating media[END_REF] approach the problem from a more mathematically rigorous angle. In this work, they first use heuristics to approximate the visibility term of the matrix. They then assume that the errors introduced by these heuristics are high-rank, and use low-rank and sparse matrix separation to remove the high-rank error from the low-rank matrix, resulting in a mostly correct final matrix.

Alternative to low-rank and sparse matrix separation, another set of methods that exploit low-rank matrix structure are low-rank matrix completion algorithms. Huo et al. [START_REF] Huo | Adaptive matrix column sampling and completion for rendering participating media[END_REF] investigate the use of these in the context of inferring the Many-Lights matrix that contains participating media. Matrix completion is particularly well suited to these problems as the Many-Lights matrix for these scenes are particularly low-rank.

Our work is closely related to both the above discussed low-rank and sparse matrix separation and low-rank matrix completion methods. Much like the former, we also aim to infer the visibility information between the receiving points and the lights, as this is the computational bottleneck. Furthermore, we base our work on the same low-rank matrix completion algorithm as Huo et al. [START_REF] Huo | Adaptive matrix column sampling and completion for rendering participating media[END_REF]. However, there are key differences. For example, we only deal with a boolean matrix, do not deal with participating media and ergo have higher rank matrices, and introduce a variety of modifications to the used low-rank matrix completion algorithm to specifically tailor it to Many-Lights matrices.

Matrix-Based Methods in Photo-Realistic Rendering

There have also been formulations of similar matrices in other areas of photo-realistic rendering. For example, Huang and Ramamoorthi [START_REF] Fu | Sparsely Precomputing The Light Transport Matrix for Real-Time Rendering[END_REF] apply sparse sampling to the problem of precomputed radiance transfer. They first select a small subset of vertices which they sample densely, then they sparsely sample the other vertices and interpolate from the dense vertices using locally low rank approximations.

Wang et al. [START_REF] Wang | Kernel Nyström method for light transport[END_REF] also use a similar matrix formulation for image-based relighting. They reconstruct the matrix by first acquiring a relatively small number of images with different lighting configurations for the columns, and using a three laser dual camera setup to acquire the rows. The rest of the matrix is then reconstructed by using the Generalized Nyström method.

As the matrix used here is very similar to the Many-Lights matrix, many of their ideas can be directly ported over. However, the method is slow due to both their optimization process for selecting a basis, as well as the matrix multiplications required to reconstruct the full matrix.

VPL Sampling

Another method for reducing the computational time is to instead evaluate a randomly sampled subset of the lights. According to Monte-Carlo theory, the ideal scenario is to sample from a distribution that assigns selection probabilities proportional to the lights' contributions to the receiving point, as this would only require a single sample. However, knowing this information requires computing their actual contribution. Thus, the majority of the work in this area aims at closely approximating this instead.

An initial example of light sampling lies in the work of Shirley et al. [START_REF] Shirley | Monte Carlo techniques for direct lighting calculations[END_REF], where lights are divided into bright and dim. For the bright lights, their probability is set to be equal to their computed contribution without taking into account visibility, whereas the dim lights are uniformly sampled.

This approach unfortunately does not deal well with cases where the lights all have roughly the same contribution, as it becomes difficult to determine which bucket a light belongs to. Furthermore, the estimation of the pdf of a bright light involves evaluating its contribution, which can be expensive if there are many of them, as this occurs per receiving point.

Wang and Akerlund [START_REF] Wang | Bidirectional Importance Sampling for Unstructured Direct Illumination[END_REF] extend this idea by basing their sampling on Lightcuts. They first extract a Lightcut for each receiving point. Lights are then sampled by first sampling clusters proportional to their estimated contribution, and then lights within these clusters uniformly. This method drastically reduces computation time, as one only needs to estimate the contribution between entire clusters and the receiving point. However, like the work of Shirley et al. [START_REF] Shirley | Monte Carlo techniques for direct lighting calculations[END_REF], it does not handle visibility which may lead to high variance in certain scenarios.

Accounting for Visibility when Sampling

There have also been various methods that look to take into account visibility. One way of achieving this is to perform a pre-pass that sparsely computes the visibility between lights and the receiver, and then use this information during rendering.

The work of Georgiev et al. [START_REF] Georgiev | Importance Caching for Complex Illumination[END_REF] is an example of this, where they fully compute the VPL contributions, including visibility, at a sparse set of receiving points during a pre-computation step. During rendering, they use the information from the closest fully computed points in four increasingly conservative sampling distributions, and sample from them using multiple-importance sampling.

Wu and Chuang [START_REF] Wu | VisibilityCluster: Average Directional Visibility for Many-Light Rendering[END_REF] propose an alternative approach that uses average visibility values. They first divide the receiving points into slices and cluster the lights using Lightcuts. Then, they sparsely sample the visibility within each slice between randomly sampled receiving points and lights within the cluster. If the variance of the visibility is found to be above a certain threshold, they further refine the slices and resample. Otherwise, they assign the average visibility to all receiving points in the slice.

More recently, Bitterli et al. [START_REF] Bitterli | Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting[END_REF] combine weighted reservoir sampling with Resampled Importance Sampling [START_REF] Talbot | Importance resampling for global illumination[END_REF] to progressively allow for the sampling of lights from an increasingly larger pool. They also show that weighted reservoir sampling can be used to efficiently share candidate samples across nearby receiving points, allowing for a much larger sample pool without the need to explicitly compute and store the probabilities of all candidates.

Although they do not look to explicitly sample with visibility, they do evaluate the visibility of candidate samples before sharing between receiving points, allowing for some visibility reuse. This does however have the effect of potentially missing out on a large contributing light that becomes unoccluded in the shared receiving point due to the discontinuous nature of how visibility changes to point light sources.

Progressively Learning the Sampling Distribution

The previously discussed methods aim to approximate sampling distributions using a pre-pass, but it is also possible to progressively learn it. Donikian et al. [START_REF] Donikian | Accurate direct illumination using iterative adaptive sampling[END_REF] achieve this by progressively refining a set of distributions which are modeled on statistics obtained from previous samples over fixed size image blocks. These distributions are then blended to achieve the final sampling distribution.

Another more recent example of this is the work of Vevoda et al. [START_REF] Vévoda | Bayesian online regression for adaptive direct illumination sampling[END_REF], who learn sampling distributions online. They learn the sampling probabilities of clusters for each receiving point using online bayesian regression, allowing for more flexibility and robustness compared to the mixture approach by Donikian et al. [START_REF] Donikian | Accurate direct illumination using iterative adaptive sampling[END_REF].

Visibility Approximation

Determining if there is a direct line of sight between a light and a receiving point requires consideration of the scene geometry. A common method for determining this is casting a ray and checking against the scene geometry to see if there is an intersection between the receiving point and the light. Contrary to this, computing the contribution without considering the visibility between the two only requires multiplying the incoming light with the local material.

As the visibility is the computational bottleneck in this process, it makes sense to address it separately. One method to optimize this process is to approximate the visibility instead of fully computing it. As visibility approximation is a very thoroughly researched topic, we will only look to describe some of the more relevant methods to the Many-Lights problem.

These methods typically tend to avoid fully computing visibility by exploiting its the coherent nature. This manifests in two ways: the first is that nearby lights tend to have the same visibility to some given receiving point; and the second is that neighboring receiving points tend to have have the same visibility to some given light.

Exploiting Light Coherence

Coherent Shadow maps by Ritschel et al. [Rit+07;[START_REF] Ritschel | The State of the Art in Interactive Global Illumination[END_REF] is an example of a method that exploits the coherence in lights by pre-computing all possible visibility queries for an object using just a few shadow maps. This is achieved by exploiting the coherence of shadows to similar angular incoming rays of light. Unfortunately, this technique is per-object and does not scale well to complex scenes.

Another work that exploits coherence in lights is Precomputed Visibility cuts by Akerlund et al. [START_REF] Åkerlund | Precomputed visibility cuts for interactive relighting with dynamic BRDFs[END_REF]. This is a hierarchical clustering method similar to Lightcuts, and approximates visibility to clusters of lights in the case of dynamic environmental lighting. This is achieved by discretizing the lighting and storing it in a binary tree, and then pre-computing the visibility to these discrete lights. During rendering, a cut is extracted from this binary tree to approximate the visibility of a cluster to the receiving points.

The previously discussed sampling work of Georgiev et al. [START_REF] Georgiev | Importance Caching for Complex Illumination[END_REF] can also be seen as an exploitation of visibility coherence between the lights, as nearby cached lighting information, which includes visibility, is combined to define the sampling distributions for the lights. Similar to this is the work by Vevoda et al. [START_REF] Vévoda | Bayesian online regression for adaptive direct illumination sampling[END_REF], which also learns to approximate visibility implicitly for clusters of lights from new progressive samples.

Exploiting Receiving Point Coherence

In the case of exploiting visibility coherence between receiving points, Hart et al. [START_REF] Hart | Direct illumination with lazy visibility evaluation[END_REF] use flooding in image space to detect if neighboring pixels share blocking geometry. Whilst this method works well in simple scenes, the fact that they operate on a triangle level makes for poor scaling to scenes with more complex geometry.

Another example is the work of Fernandez et al. [START_REF] Fernandez | Local illumination environments for direct lighting acceleration[END_REF], who also exploit receiver coherence by separating the scene into cells and then only evaluating the light sources and occluders that are relevant for the current cell. This simplifies the problem by both reducing the number of visibility computations required, as well as the amount of geometry one would need to check intersections against. Both the lights and geometry are determined through approximating visibility through sampling. A downside to this method is that the sampling process can miss occluders by just not sampling them, or miss lights due to complex visibility within a cell.

The progressive sampling method by Donikian et al. [START_REF] Donikian | Accurate direct illumination using iterative adaptive sampling[END_REF] can also be seen as a method for exploiting coherence with the receiving points, as it shares information between fixed size image blocks. As the image blocks are arbitrary, there is a possibility of receiving points within the same image block being far apart, whereas points in different image blocks being close, leading to some loss of accuracy and inefficiency.

Exploiting Light and Receiving Point Coherence

Exploiting the receiver or emitter coherences are not mutually exclusive, and there have been methods that look to exploit both. For example Ben-Artzi et al. [START_REF] Ben-Artzi | Efficient Shadows for Sampled Environment Maps[END_REF], who speed up visibility tests in scenes with environment maps by both discretizing the environment map and hierarchically sharing visibility between receivers, with the uncertain areas being evaluated using a flooding approach.

The work of Wu and Chuang [START_REF] Wu | VisibilityCluster: Average Directional Visibility for Many-Light Rendering[END_REF] is another example of this, as it approximates average visibility between light clusters and receiver slices. They achieve this by sparsely sampling visibility and using the average if the variance is below a threshold, otherwise they further refine the receiver slice and sample again.

IlluminationCut [START_REF] Bus | IlluminationCut[END_REF] can also be seen as an example of exploiting both coherences. This is because it employs a visibility approximation method that sparsely samples visibility within a light sub-tree to the corresponding gather sub-tree. If the visibility values are the same, then they simply use the value as is, otherwise they further refine the samples by subdividing the light sub-tree and adding more samples.

The low-rank and sparse matrix separation work of Huo et al. [START_REF] Huo | Adaptive matrix column sampling and completion for rendering participating media[END_REF] is a final example of a method that exploits both coherences. It achieves this by approximating the visibility between a set of lights and receiving points through the use of three heuristics, namely k-nearest neighbors, linear, and Naive Bayes. It refines this approximation by using low-rank and sparse matrix separation to remove the sparse errors introduced by these heuristics.

Chapter 4

Inferring Incomplete Matrices

Inferring missing entries in a partially observed matrix occurs in many areas, with perhaps the most famous example being the Netflix problem [Net]. Netflix is a popular online video streaming website for series and movies. Due to the large amount of content, it is of paramount importance for Netflix to be able to suggest shows to viewers. They achieve this using ratings, either directly or based on a user's watch history. However, this information may be sparse. Luckily, they can leverage information from other viewers, allowing for recommendations based on the preferences of similar viewers.

The above process can be formulated as a sparse matrix by treating the shows as the columns, the viewers as the rows, and the various ratings as the elements of the matrix. As the number of underlying reasons for why a user would enjoy some show is likely to be much lower than the total number of viewers or shows, we can say that the matrix is low-rank. Generating suggestions for viewers can thus be seen as filling in this sparse matrix, ergo a Low-Rank Matrix Completion (LRMC) problem.

Computing the Many-Lights matrix can also be formulated as a LRMC problem. Although we have the capability of computing all its entries, we can also look to only sparsely compute the matrix and infer the rest of its information, potentially speeding up processing times. This is possible because the matrix has been shown to be approximately low-rank.

The aim of this chapter is to provide preliminaries for the LRMC problem, including a formal definition (Section 4.1) and some popular algorithms that aim to solve it (Section 4.2). We also discuss two similar problems, Compressive Sensing and Low-Rank and Sparse Matrix Separation, and how they have been applied to the Many-Lights or similar problems (Section 4.3).

The Low-Rank Matrix Completion Problem

The LRMC problem can be defined as inserting in the missing entries of a partially observed lowrank matrix, for example as shown in Figure 4.1. Specifically, LRMC aims to recover the simplest version of the matrix. This is because the general problem of completing a matrix is ill-posed, and there can typically be an infinite number of configurations for the missing elements.

The rank of a matrix can be defined by how many basis columns or rows it has, with the columns and rows of the matrix all being linear combinations of these respectively. An example of this is shown in Figure 4.2, where the rows and columns of a 5 × 5 matrix are reproduced with two basis rows and columns respectively, showing that its rank is 2.

The matrix rank can be thought of as its complexity, with a higher rank matrix having a higher complexity, and vice versa. This is because the basis vectors can be thought of as latent factors which determine the actual dimensionality of the matrix's information. For example, although the matrix in Figure 4.2 has 5 dimensions, its data actually lies on a 2-dimensional plane. For this reason, the LRMC problem uses the matrix's rank as the metric for its simplicity.

A 1,1 ? ? ? The low-rank matrix completion problem deals with filling in the missing elements, marked with red question marks, with inferred values, marked in blue. With this low-rank constraint, we can formulate the problem mathematically as an optimization problem. min

? A 2,2 A 2,3 A 2,4 ? ? A 3,3 ? A 4,1 ? ? ? A 1,1 A 1,2 A 1,3 A 1,4 A 2,1 A 2,2 A 2,3 A 2,4 A 3,1 A 3,2 A 3,3 A 3,4 A 4,1 A 4,2 A 4,3 A 4,4
c+2d 3 1 2 2 4 2c 2 2 0 2 4 c+d 2 1 1 1.5 3 c 1 0 1 0.5 1 d 1 1 0 1 2 a+b a b a+0.5b 2a+b
X rank(X) s.t. A(X) = b (4.1)
where X ∈ R m×n is the matrix to be recovered and A : R m×n → R p is a linear map that maps X to the observation vector b ∈ R p .

Required number of observations

A pertinent question to raise is how many observations are needed to accurately reconstruct the matrix to its ground truth state using LRMC. Although this differs depending on the algorithm used, as well as how the initial observations were obtained, there are two factors that play a role. These are the rank and coherence of the matrix.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                 Figure 4.3:
The efficiency of matrix completion algorithms depend on matrix rank and coherence. These matrices are both of rank one; the matrix on the left is incoherent and can be completed by sampling any row or column, whereas the matrix on the right is very coherent and will require a far larger number of samples to have a reasonable probability of completing it, as we need to exactly sample the first element.

Rank

Matrix rank is defined as the number of linearly independent basis vectors needed to represent the information contained in the matrix. As we need to know all the basis vectors for both the column and row space of a matrix to accurately complete it, a higher rank is directly correlated to needing to observe more of the matrix.

In the case where we know exactly which rows and columns of a matrix are linearly independent, and assuming we have control over how to observe the matrix, we can reconstruct the matrix with

X = CQ -1 R (4.2)
where C and R are some set of rows and columns of X that form a basis for both its column and row space respectively, and Q is a square matrix that is the intersect of C and R.

Coherence

Equation 4.2 represents the ideal case. In practice, we typically do not know which rows and columns of the matrix are linearly independent without fully observing the matrix. Furthermore, it may often be impractical to observe entire columns and rows of a matrix. In the Netflix problem, this would correspond to a subset of viewers having watched all possible shows, and also all viewers having watched the same subset of shows.

To account for the above, the general matrix completion problem typically assumes that the initial observations of the matrix are randomly sampled. However, with this comes another issue: coherence.

The coherence of a matrix can be defined as how closely the singular vectors of the matrix correlates to the standard basis, and can be thought of as the level of information localization within a matrix. Formally, the coherence µ of some subspace S ∈ R d can be defined as [START_REF] Candès | Exact Matrix Completion via Convex Optimization[END_REF]:

µ(S) = d r max 1≤i≤d ∥P U e i ∥ 2 2 (4.3)
where r is the rank, P A is the projection onto subspace A, and e i is the standard basis. It can be seen that 1 ≤ µ ≤ d r . When µ = 1, the information is spread perfectly uniformly across the dimensions, whereas the opposite is true when µ = d r . Figure 4.3 shows an example of how coherence affects sampling. Although both the shown matrices are of rank one, the left example can be reconstructed by sampling any random row and column, whereas the same strategy will most likely result in just having a zero matrix for the right example. In order to accurately reconstruct the right matrix with a reasonably high probability, we would need to sample almost the entire matrix.

µ is used extensively in matrix completion literature on both the row and column spaces of X to both determine what low-rank matrices can be reconstructed accurately with a low number of samples, as well as to determine the number of samples required. This number differs depending on the actual formulation of the problem so we will not be covering them here, but to give an example, Candès and Recht [START_REF] Candès | Exact Matrix Completion via Convex Optimization[END_REF] show that for some matrix X ∈ R d×d , if the number of samples satisfies

n ≥ Cµ 0 n 6 5 r log d (4.4)
then X can be accurately reconstructed with exceedingly high probability. Here, µ 0 is the maximum coherence of the row and column spaces of X, r is the rank, and C is some positive constant.

The above is primarily in the case of assuming uniform samples. In the case where samples are allocated proportionally to the features of the matrix, the assumptions for µ may be relaxed. For example in the work of Krishnamurthy and Singh [START_REF] Krishnamurthy | On the power of adaptivity in matrix completion and approximation[END_REF], where they make no assumptions about the row-space of X as they adaptively sample it. This is advantageous as it allows for the matrix completion process to generalize to a wider variety of different matrices, and also allows for a lower number of required observations.

We would like to point out that as we are working with boolean matrices, we cannot use the provided formulation of coherence as it does not directly translate. However, the general concept is still applicable and we still use it to motivate various algorithmic decisions, which we justify through numerical results.

Algorithms for Completing Matrices

There is a vast amount of literature aimed at tackling the LRMC problem, with many employing different formulations to solving Equation 4.1. Instead of being overly exhaustive in our review, we will instead aim to only elaborate only on the methods we have investigated. We refer the reader to the survey by Nguyen et al. [START_REF] Luong Trung Nguyen | Low-Rank Matrix Completion: A Contemporary Survey[END_REF] for more comprehensive coverage.

Semidefinite Programming

Although Equation 4.1 provides us with an intuitive formulation for the matrix completion problem, directly solving it is impractical. This is because it is both NP-Hard, and known algorithms for solving it have a complexity of O(2 2 n) [START_REF] Candès | Exact Matrix Completion via Convex Optimization[END_REF]. Because of this, Candès and Recht [START_REF] Candès | Exact Matrix Completion via Convex Optimization[END_REF] formulate the problem instead as min

X ∥X∥ * s.t. A(X) = b (4.5)
where ∥Y ∥ * is the nuclear norm of the matrix Y , which is defined as the L 1 norm of its singular values.

This formulation is advantageous as the nuclear norm has been shown to be the convex envelope of the rank of a matrix, ie. the best convex approximation. To solve the above, they cast it as a semidefinite program min

Y tr(Y) s.t. A(X) = b, Y ≥ 0 (4.6)
where tr(Z) is the trace of some matrix Z, and

Y = W 1 X X T W 2 (4.7)
This can be solved for using a variety of off-the-shelf solvers, with Candès and Recht specifically using SDPT3 [START_REF] Toh | SDPT3-a MATLAB software package for semidefinite programming, version 1.3[END_REF].

A major drawback to casting the problem as a semidefinite program is that the state of the art solvers rely on solving systems of linear equations to determine the Newtonian direction. Due to this, they are only able to solve for matrices up to around 100 × 100.

Singular Value Thresholding

Cai et al. [START_REF] Cai | A Singular Value Thresholding Algorithm for Matrix Completion[END_REF] propose Singular Value Thresholding as an alternative method for solving for Equation 4.5. They model the problem as min

X τ ∥X∥ * + 1 2 ∥X∥ 2 F s.t. A(X) = b (4.8)
where ∥Y ∥ F is the Frobenius norm of some matrix Y , and τ is a thresholding parameter. It can be seen that the above is approximately equivalent to Equation 4.5 for large values of τ , as the first term will dominate the second.

The result of this can then be obtained by solving the Lagrangian

L(X, Y) = τ ∥X∥ * + 1 2 ∥X∥ 2 F + ⟨Y , P Ω (B) -P Ω (X)⟩ (4.9)
where B denotes some matrix containing the initial sample set, P Ω (Z) denotes some matrix that has the same values as matrix Z at the observed indices Ω and zeroes otherwise, and ⟨U , V ⟩ denotes the inner product between matrices U and V .

Cai et al. [START_REF] Cai | A Singular Value Thresholding Algorithm for Matrix Completion[END_REF] solve for Equation 4.9 using a two-step iterative process

X k = D τ (Y k-1) (4.10a) Y k = Y k-1 + δ k P Ω (B -X k) (4.10b)
where δ k is some series of step sizes, and D τ (Z) is a soft-thresholding operator on some matrix Z that shrinks all of its singular values by τ up until a mimimum value of 0.

One of the major performance benefits of this algorithm is that they do not need to compute the full SVD for D τ . This is because singular values that fall below τ result in the corresponding singular vectors being zeroed, and thus do not need to be computed. This can be achieved using the various existing truncated SVD algorithms, with the paper using the Lanczos iterations implementation within PROPACK [Lar]. An alternative to this is the more recent randomized truncated SVD algorithm proposed by Halko et al. [START_REF] Halko | Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions[END_REF], which may allow for running times one or two orders of magnitude faster.

Although Singular Value Thresholding boasts significantly better computation times and the reconstruction of much larger matrices, it still requires at least a partial singular value decomposition on the full matrix. Furthermore, its performance deteriorates in the case where higher rank matrices are involved, as the performance gained from using truncated SVD becomes far less obvious.

Adaptive Matrix Completion

Krishnamurthy and Singh [START_REF] Krishnamurthy | Low-rank matrix and tensor completion via adaptive sampling[END_REF] consider the LRMC problem in the case where samples are adaptively taken, rather than assumed to be uniformly distributed. They relax the assumptions on the coherence properties of the matrix by adaptively sampling the columns of the matrix, which lowers the number of required samples to accurately complete the matrix with an exceedingly large probability. Algorithm 1 The Adaptive Matrix Completion algorithm procedure Complete(X r×c , k)

Q ← ∅ Let Ω be the set of k indices drawn from U (0, r) for Each column X i ∈ X do Sample X i Ω if Q Ω Q † Ω X i Ω -X i Ω 2 2 > 0 then Fully sample X i and add to Q Resample Ω from U (0, r) else X i ← QQ † Ω X i Ω end if end for return X end procedure
They design a streaming algorithm, termed Adaptive Matrix Completion (AMC), that progressively builds a basis Q, which represents the column space of X. This is achieved by progressively subsampling the columns of X, and then projecting them onto the subspace of Q to see if they lie within it. This is achieved by checking if

Q Ω Q † Ω X i Ω -X i Ω 2 2 > 0 (4.11)
where Y † refers to the pseudo-inverse of some matrix Y , Ω refers to the set of sampled indices, Y Ω refers to some matrix Y truncated to only contain the rows from Ω, and X i Ω refers to the sub-sampled column to be added to the matrix. In the case where Equation 4.11 is true, X i is fully sampled and added to Q, otherwise, it is reconstructed with

X i = QQ † Ω X i Ω (4.12)
Other than relaxing the coherence constraints on the row-space of X, the proposed method also allows for better computation times. This is because although the pseudo-inverse of a matrix can be expensive to compute for large matrices, Q is typically small for low-rank matrices. It is also progressively constructed and is not its full size for much of the completion process.

It is also possible to cache Q † Ω until a new basis vector needs to be added, as Krishnamurthy and Singh [START_REF] Krishnamurthy | On the power of adaptivity in matrix completion and approximation[END_REF] note that resampling Ω every iteration results in a log dependence on the matrix dimensions. Finally, adding more columns after the point that Q has been fully constructed only has a linear increase in processing time. A full description of the proposed method is detailed in Algorithm 1. Despite its upsides, AMC is only useable in situations where we have control over how samples are taken, and thus it does not apply to the general matrix completion problem. Furthermore, its performance benefits are greatly reduced when the matrix is of higher rank, as the basis Q will be large and its pseudo-inverse will need to be recomputed often. The size of Ω will also have an impact here, as a small Ω may lead to sampling some invariant subspace, resulting in many basis vectors being missed.

We found AMC to be particularly suited to the Many-Lights problem. This is not only because of the above stated advantages of performance and coherence, but also due to us being able to substitute the projection operator for something more suitable to boolean matrices, as we only look to complete visibility. Its streaming nature also allows us to design an adaptive sampling method for the column space of X, allowing for further relaxation on the coherence constraints. Here, the initial signal x is sparse, meaning that we do not need many measurements to be able to reconstruct it correctly.

Compressive Sensing and Low-Rank and Sparse Matrix Separation

Compressive sensing and low-rank and sparse matrix separation are similar to the problem of LRMC. Although our work does not explicitly deal with either, we will nonetheless give a highlevel overview of these problems, as well as how they might relate to the problem of expediting the computation of the Many-Lights matrix.

Compressive Sensing

The problem of signal reconstruction can be phrased formally using the classical linear algebra problem of y = Ax (4.13)

where the observed values y and the measurement matrix A are known.

Classical signal processing theory uses the Nyquist-Shannon sampling theorem to determine how frequently one needs to sample a signal in order to reconstruct it accurately. However, Candès et al. [START_REF] Candes | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF] showed that this is unnecessary in the case where the signal is sparse. Figure 4.4 shows an example of this, where the sparse signal x is measured by a measurement matrix A to give us some measurements y.

If A obeys the restricted isometry property, which essentially states that it should be mostly orthogonal, and y has enough samples, then one is able to accurately reconstruct a sparse signal by formulating the problem as min Applying compressive sensing directly to reconstructing the Many-Lights matrix is problematic as the matrix is often dense. However, it being approximately low-rank implies that it is mostly sparse in some basis. This means that we could potentially reconstruct the matrix in this space, and then subsequently transform it back to the initial domain.

Sen and Darabi [START_REF] Sen | Compressive Rendering: A Rendering Application of Compressed Sensing[END_REF] use this idea in image space, where they only render part of the image, and then estimate a wavelet basis, which the image is sparse in, to generate the rest of the image.

Although their approach is on the final rendered image, there are many similarities between this and the Many-Lights matrix, as each column of the matrix is essentially an image rendered using a single light.

Low-Rank and Sparse Matrix Separation

The low-rank and sparse matrix separation problem deals with separating some matrix X into a low-rank matrix L, and a sparse matrix S, as shown in Figure 4.5. Formally, this problem can be defined as min

L,S rank(L) + λ ∥S∥ 0 s.t. X = L + S (4.16)
where λ is some weight used to combine the two objectives of the objective function. Like both compressive sensing and LRMC, the above is NP-Hard. Thus, the convexly relaxed version is instead used, which is min

L,S ∥L∥ * + λ ∥S∥ 1 s.t. X = L + S (4.17)
This problem has already been investigated in the context of speeding up the computation of the Many-Lights matrix by Huo et al. [START_REF] Huo | Adaptive matrix column sampling and completion for rendering participating media[END_REF]. They propose a method which computes an approximate matrix using various heuristics for visibility. Then, they make the assumption that the Many-Lights matrix is low-rank and the error introduced is high rank and sparse. With these, they solve for equation 4.17 to separate out the error and acquire the correct matrix.

It should be noted that the choice of λ is key. Too low a value results in much of the error still remaining, and too high a value results in the discarding critical information. This means that using this method requires much trial and error with regards to this parameter.

Another downside to this method is that the Many-Lights matrix is in fact not low-rank, but only approximately low-rank. This means that there are often features lying in the less important basis vectors, and discarding them may result in some blurred features. This method is also limited to diffuse scenes, as glossy materials often give rise to higher-rank matrices.

Chapter 5

Approximating Visibility in the Many-Lights Problem using Adaptive Matrix Completion

We design and implement a system to speed up the rendering process in Many-Lights problems. We achieve this by not fully computing visibility between the receiving points and the lights. Instead, We formulate the visibility information as a matrix, and complete it using Adaptive Matrix Completion (AMC) [START_REF] Krishnamurthy | On the power of adaptivity in matrix completion and approximation[END_REF]. Our approach is divided into the following steps:

• Generate receiving points,

• Generate VPLs,

• Divide receiving points into slices,

• Cluster VPLs,

• Apply AMC to approximate visibility between clustered VPLs and receivers,

• Shade the receivers with the approximated visibility information,

• Combine slices to generate the final image.

The rest of this chapter will go on to describe each of these steps. Figure 5.1 shows a diagram of this shows an overview of our approach.

Generating receiving points

We begin by casting paths from the camera into the scene, sampling new vertices for the path until either a non-specular material has been hit, or a maximum path length has been reached. If the final path vertex is non-specular, we store it as a 6-dimensional vector, representing both the position and normal. The initial path direction is generated by sampling from the corresponding pixel's area uniformly. In the case where there are multiple samples per pixel, we stratify the samples into pixel sub-areas, and sample from those. Figure 5.2 illustrates this process, where the receiving points are denoted as yellow squares.

VPL generation

We generate VPLs the same way as Instant Radiosity, which is shown in Figure 3.1. We commence by randomly sampling paths from light sources within the scene. We first sample a random position and direction from light sources, and then continue sampling new directions at each subsequent vertex using the local material distribution.

We store each path vertex as an oriented VPL with their emission profile determined by the irradiance and surface normal at the vertex. For cases where the initial vertex is sampled from a directional or point light source, we instead store the VPL to be of that type as there is no corresponding positional or directional information respectively.

We terminate these random walks using russian roulette sampling, but also set a maximum path length so that we don't end up with pathological cases where the path lengths become too large.

Dividing receiving points into slices

A straightforward way to formulate the matrix would be to have all the receiving points as rows of the matrix, and all the lights as columns. However, this results in extremely large matrices. To give an example, a relatively common rendering setup is one sample-per-pixel with a resolution of 1920 × 1080. In this case, assuming we have 100, 000 lights, our matrix will be 100, 000 × 2, 073, 600.

This is an issue as many matrix operations, such as SVD, will both be impractically slow and use too much memory. This also means that our method will not scale well with samples per pixel, resolution, and scene complexity.

Our way around this is to divide the matrix row-wise into slices. This allows the computations to scale linearly to the resolution and samples per pixel. We achieve this using a k-d tree. The tree contains all receiving points within the root node, and then iteratively splits nodes according to the largest spread amongst the position and normal dimensions of the points contained within. This is done until the number of receiving points in a node are below a specified threshold. As the positions are not normalized, they can have lengths that differ greatly from the normals. We weight the normals so that the two are treated with a roughly equal amount of importance. Receiving points are generated by casting paths from the camera into the scene, which are terminated if they encounter a non-specular surface or the path has reached a maximum depth. We store this final path vertex as a receiving point if it is non-specular. For example here, the first points are stored except when the rays hit the mirror, in which case we continue the path until a non-specular surface is reached, which we then store.

Specifically, we weight the normals with 0.05 * D, where D is the scene bounding sphere radius. We also set the maximum slice size to 1024, which we found to work well for all scenes.

There are various other benefits to slicing the receivers. One is that it lowers the rank of the matrix by disregarding more distant and irrelevant information, allowing for a decrease in the total number of samples required. It also allows for localized per-slice light clustering, which reduces the number of light clusters needed, and the number of columns of each matrix slice. Finally, slicing the receiving points separates the higher ranked areas of the scene from the lower ranked ones. This allows us to derive a strategy to adaptively adjust the sample rates for each slice, further improving sample efficiency.

VPL clustering

Although dividing the receivers into slices reduces the matrix row-wise, it does not not alter the number of columns. This can be done with light clustering. As we are representing each slice with a matrix, all points within the slice need to share the same light clusters, as the columns of the columns represent these.

There are many clustering algorithms that satisfy this, such as row-column matrix sampling [START_REF] Hašan | Matrix row-column sampling for the many-light problem[END_REF] and LightSlice [START_REF] Ou | LightSlice: matrix slice sampling for the many-lights problem[END_REF]. These matrix-based approaches typically have a large memory and processing overhead. We instead opt to use a modified version of the Lightcuts [START_REF] Walter | Lightcuts: a scalable approach to illumination[END_REF] method, which we found to achieve a good balance between computational time and cluster quality.

We modify the Lightcuts method so that it better suits our needs. First we extract a Lightcut for each slice, rather than each receiving point. This is achieved by iteratively splitting nodes according to their average estimated contribution until a certain number of clusters have been reached.

We do not terminate based on the percentage of total contribution criteria that is used in Lightcuts. We found it easier to test the scalability of our methods with an exact number of clusters. However, there is no reason in practice to also not include this as a condition for further optimization. Furthermore, although we found that the average estimated contribution provided good results, one could use the maximum estimated contribution instead for a more conservative estimate. This may be work better for highly glossy scenes, as lighting effects are more localized, leading to uneven light contributions across the slice.

Secondly, we modify the construction of the light tree. We found bottom-up approaches to be too slow and not scale well due to their O(n 2) complexity, whereas the clusters generated by top-down approaches were not of high enough quality.

To remedy this, we use a hybrid top-down bottom-up construction method, where top-down division occurs until the light clusters reach a specified size, after which the original bottom-up approach is used. This allows both better scaling, and better quality clusters on the finer levels.

For the top-down approach, we repeatedly divide the lights according to their projection onto the largest principal-axis obtained by taking into account both the positions and weighted emission directions of the lights within the cluster. We choose this over simply dividing by the largest dimension as we found it to be marginally better without any noticeable increase in processing times as the covariance matrices are small. The bottom-up portion of our clustering is done in the same manner as the original Lightcuts algorithm, by greedily grouping pairs of the most similar clusters.

The Visibility Matrix

It is difficult to determine how many initial samples are required when naively applying the Low-Rank Matrix Completion problem to the Many-Lights matrix. This is because both the rank and coherence of the matrix are unknown. They are also scene dependent, as multiple variables such as material, geometric, and light placement all have a major impact. There is no strict upper or lower bound, as the rank can range from rank-1 in the case where all receiving points are not visible to the light, to full rank in the case of a scene with only fully specular surfaces.

We alleviate this problem by splitting the matrix into shading and visibility components: where • is the element-wise multiplication of the two matrices, V is a matrix of boolean coefficients encoding whether or not there is a direct line of sight between the light source and the receiving point, and S is a matrix of real coefficients encoding all other shading information between the receiving point and light source.

M r×c = S r×c • V r×c (5.1)
The aim here is to perform matrix completion on V , and directly compute S. This is desirable as there are fewer factors directly impacting the rank and coherence of V . Specifically, although materials still play some role in determining the placement of the light sources, they no longer directly impact the rank and coherence of the matrix.

The result of this is that the rank and coherence of V are a lot more consistent across scenes compared to M , allowing for less trial and error when dealing with the sampling parameters. Figure 5.4 shows an example of this, where the ranks for visibility and luminance are displayed.

Furthermore, as V is boolean, it is low-rank rather than approximately low-rank, as it does not have slowly varying values like M . This means that we don't need to put in some threshold to cut off the less important principal axes during matrix completion, so no energy is lost.

Another benefit for separation is that S is straightforward to compute, and only requires local information. This means that we can easily transfer its computation to the GPU. S and V are also independent, thus, we are able to fully utilize our hardware by computing V on the CPU and S on the GPU.

Finally, due to its boolean nature, we found that completing V allows for a variety of improvements and optimizations to the matrix completion process itself. This includes improvements to the computational complexity of the algorithm and improvements to its sampling method, which relaxes the constraints on column coherence. These are discussed in the next section.

1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 - - 0 0 1 - 0 - 1 1 0 0 0 1 0 1 0 0 Q x Ω x Figure 5.5: A reduced matrix Q is used to reconstruct a sub-sampled row x Ω to get x.
The leading values of each row and the corresponding values in the sampled vector determine if a row should be considered. Here, the first and second rows are summed as the corresponding indices in the sub-sampled vector are 1. Not all values of x match x Ω , indicating that x Ω does not lie within the range space of Q.

• The second issue lies within the reconstruction operation

Q Ω Q † Ω M i Ω ,
which can be very expensive for higher rank matrices. This is because both matrix multiplication and pseudoinverse have cubic complexity. The higher the matrix rank, the more Q Ω increases both row and column wise. The row size increase is dictated by the row sample rate Ω, which has to be larger to accurately recover information, whereas a larger rank implies more basis vectors, which means that there will be more columns in Q.

Gauss-Jordan Elimination

We remedy the first problem by treating the matrix as a matrix of discrete boolean values. We replace the pseudo-inverse operation, which operates on real matrices, with Gauss-Jordan elimination.

The aim of the pseudo-inverse operation is to determine if the sub-sampled column M i Ω can be accurately reconstructed using some linear coefficients and Q Ω , and if so, the same coefficients are used with the full columns of Q to infer the rest of the information in M i .

We can achieve the equivalent for boolean matrices by defining Q to be over a Galois Field of size 2 (GF (2)), which has the boolean AND as the multiplication operator, and the boolean XOR as the addition operator. This makes it reversible and we can therefore perform Gauss-Jordan elimination on Q T to put it in reduced row echelon form. This means that the leading 1 of each row is the only 1 that occurs in its respective column.

To see if M i Ω lies within Q, we can check the leading 1 of each column in Q T with the corresponding indices in M i Ω . If there is a corresponding 1, then the column is considered for recombination. After we obtain all the columns to be recombined, we add them to get the reconstructed column. If this column has different values in the observed indices than the observed vector, then we know that Q cannot accurately reconstruct M i Ω , otherwise, the column is most likely correctly constructed and can be used as is.

Figure 5.5 illustrates the Gauss-Jordan elimination method for reconstructing a column, where the first and second columns are added in an attempt to reconstruct the sub-sampled column x, which is shown as a row for legibility reasons. It can be seen that with this strategy, areas where the visibility doesn't change has sparse numbers of samples, whereas the opposite is true in areas where visibility changes a lot.

Boolean Matching

Although Gauss-Jordan elimination remedies the first issue, its computational complexity is the same as SVD, and thus also does not scale well. This can be alleviated using an approximation. Careful inspection of V (Figure 5.6) reveals that its low-rank nature is in large part due to large coherent areas in the matrix, where multiple columns have the same value.

This allows us to replace Equation 4.12 with merely verifying if either

M i Ω exists in Q Ω ∪!Q Ω ,
where !A is the boolean not of A. If some matching column Q Ω k or !Q Ω k is found, then it is assigned to M i . We resolve the case of multiple matches by randomly selecting a column. However, this does mean that the sampling population may be insufficient. We dynamically adjust the row sample-rate to mitigate this (Section 5.6.3).

This approximation is O(mn) rather than O(mn 2), which allows for linear scaling to both row sample-rate as well as number of clusters. The matching process can also be reduced to basic boolean operations and the columns of Q also only requires boolean values to be stored, lowering both the memory and processing footprint. However, this method may not extend well to general low-rank boolean matrices, where more than a single column may be required to reconstruct M i .

Adaptively Sampling the rows

Although AMC relaxes the coherence constraints on the row space of M , column space coherence still causes issues as AMC typically uses uniform sampling without replacement to obtain M i Ω . To counteract this, we allocate the samples proportionally to where the features occur, which in our case, means locations where there are more visibility changes.

Assume we want to allocate samples proportionally for some visibility vector v. One way to model this is by dividing the vector into buckets based on contiguous equal values, allocating an equal number of samples to each. The idea here is that more samples are allocated in areas with small buckets, which in turn results in more samples being allocated in regions where visibility changes a lot, as can be seen in Figure 5.7.

We use a two-step process to assign samples to this vector. The first selects a bucket with uniform probability, and the second step selects an index within the bucket uniformly (Figure 5.8). The 1 1 0 0 0 1 1 1 0 0

P = 1 4 × 1 2 = 1 8 b 1 b 2 b 3 b 4 v Figure 5
.8: The visibility vector v is separated into four buckets based on equal contiguous values. Each bucket has a uniform probability of being selected, and each index in a bucket also has a uniform probability of being selected. The probability of selecting the first index is therefore

1 4 × 1 2 = 1 8 .
Algorithm 3 Update step for importance sampling procedure Update(d, c) Let b n be a vector of buckets of c containing indices

d i ← d i + 1 size(b j)×n , i ∈ b j return d end procedure
probability of selecting an index v j can thus be written as:

P (v j) = P (B)P (v j |B) = 1 b × s (5.2)
where b is the number of buckets, j is the index of the vector to be sampled, B is the bucket that the index belongs to, and s is the number of indices in the bucket.

The above approach describes the case where v is known. We do not have this knowledge of this when sampling M i . However, AMC streams the columns of M , meaning that we can use information from previous columns to derive improved sampling distributions for future ones.

To achieve this, we first need to enforce some level of similarity between the columns, as otherwise the gathered information will be uncorrelated. We achieve this by further dividing V column-wise based on the octant of the incoming light direction to the centroid of the slice. For each sliced matrix V i ∈ R m×n , we maintain a discrete distribution d m i which we use to sample the columns. This distribution starts with a uniform probability of 1 m for each index, and is updated every time a column is fully sampled using

d new i j = αd old i j + P (v j) α + 1 (5.3)
where α is the previous number of fully sampled columns. Algorithm 3 details the update process.

Dynamically adjusting per slice row sample-rate

A side-effect of dividing the receiving points into slices is that different slices can have vastly different ranks and coherences. Thus, it is inefficient to have a fixed sample-rate for all slices.

Having it be too high would be wasteful for slices of lower rank, but having it be too low would result in higher rank slices not being reconstructed properly.

Ideally one would adjust the sample-rate according to both the slice rank and coherence for each slice, but these can't be determined without sampling. We therefore use a verification approach, where we evaluate the correctness of each completed column with a set of additional sparse samples, and increase the sample-rate accordingly up to some pre-specified maximum value if the sampled values and the reconstructed ones do not match. The sparse sampling and verification procedure is detailed in Algorithm 4.

0 1 0 - 0 - - 1 1 0 0 0 0 1 0 1 Figure 5
.10: The basis vector with the smallest Hamming distance (bottom) to the sampled column (top) is used to help partially sample the column. For the sampled column, the black rectangles indicate the octree nodes, black numbers the initial sample set, blue numbers the sampled values due to a mismatch between the basis and sampled columns, green numbers the verification samples, and red rectangle the mismatch between sampled and basis columns. The verification sample succeeds in this case, but if it were to fail, the octree is either further divided with more verification samples being allocated, or in the case that we are dealing with a leaf node, all values in the node are fully sampled.

Virtual Disc Lights

An issue we found with VSLs is that they tend to over-estimate energy in certain scenarios. This occurs when the spheres are either large or close to the receiving points, which results in the apparent surface area of the VSL from the viewpoint of the receiving point being larger than the area that this sphere aims to represent.

We propose Virtual Disc Lights to remedy this, which uses oriented discs instead of spheres as the model for emitters. This has almost identical computational costs but provides a more conservative estimate for the solid angle subtended by the VSL. Furthermore, it approximates VSLs as the lights become smaller or move farther away, as the solid angle between oriented discs and spheres converge to be roughly equal. Figure 5.11 shows both our approach, as well as the original issue with spherical lights.

An additional benefit to our method is that it requires less samples, as the VSL algorithm determines the number of samples required proportionally to the solid angle subtended by the light.

Summary

To summarize our approach, the full rendering algorithm can be separated into the VPL and receiver generation, receiver slicing, VPL clustering, visibility completion, shading, and recombination steps. We pipeline the clustering, shading, and visibility completion steps so that the CPU can process new slices while the GPU is busy with others. We validate the boolean matching approximation of BAMC to both the original AMC method, as well as BAMC which uses Gauss Jordan elimination. Specifically, we look to investigate both the computational scalability (Figure 6.1) as well as the error (Figure 6.2) of the methods.

The first is achieved by varying the number of columns and rows, which corresponds to the number of clusters and row sample-rate respectively. The latter is achieved by comparing the RMSE against the row sample-rate. We compare the methods across three scenes of different geometrical and material complexities, namely the Kitchen, the San-Miguel, and the Classroom scenes. We provide full tabulated statistics for these results in Appendix A.1

We found BAMC scales linearly with respect to both rows and columns of the matrix, whereas AMC and BAMC with Gauss Jordan elimination scale quadratically on one of the axes. Thus, while the execution times are similar for low row sample-rates and clusters, AMC and BAMC with Gauss Jordan elimination quickly become computationally infeasible when these values are increased.

This is because AMC uses SVD, which has a complexity of O(mn 2), where n is the smaller dimension. Since the SVD is performed on Q Ω to obtain the pseudo-inverse, varying the row sample-rate, which has a direct influence on the number of rows of Q Ω , results in a quadratic increase in time.

BAMC with Gauss Jordan elimination has a similar issue, but is quadratic in the column direction instead. This is because the Gauss Jordan elimination must be performed on Q rather than Q Ω as we need to recombine the full columns. Although changing the number of samples taken per column affects the algorithm cost in terms of visibility needed to be computed, the algorithm overhead remains the same as the number of rows in Q does not change.

Another method to modify the number of rows is to increase the slice size. We choose not to do this here as we believed just modifying row sample-rate is enough of an illustration, but it should likewise cause a quadratic performance increase for both methods. This is particularly true for BAMC with Gauss Jordan Elimination as the rows of Q will also increase in this case.

One can also see from Figure 6.2 that despite BAMC providing much better scaling in terms of computational cost, it does not lose any accuracy, improving at roughly the same rate as the other two methods. This is most likely mainly due to how the low-rank nature of visibility matrices manifest as many columns having the same values, and can typically be reconstructed with a single basis column. This unfortunately also means that these results will most likely not generalize to arbitrary boolean matrices.

Adaptive Sampling

We evaluate our adaptive sampling method against the original uniform sampling across three different scenes, with Figure 6.3 showing their performance when the row sample-rate is varied. We found the algorithm to perform noticeably better with adaptive sampling in scenes where there are many small features. In these scenes, one can end up with many light leaks when using uniform sampling, as it can miss these features. Adaptive sampling, on the other hand, can drastically reduce these, as seen in Figure 6.4.

One possible issue with our adaptive sampling method is that we are only splitting the matrix depending on the quadrant of the direction vector between the VPL and the slice centroid. This could lead to degenerate cases where VPLs within the same quadrant do not correlate to each other due to complex occlusions, which would result in a poor sampling distribution (Figure 6.5). This could explain why adaptive sampling performs poorly in the Kitchen scene, as one of the light sources is hidden from most of the scene. 6.1 show how adaptive row sample-rates improves the accuracy and reduces the number of required samples in the Classroom scene when compared to using a static row samplerate for all slices. An additional benefit is that there is no more need to tune the row sample-rates for each scene, as low-rank areas are automatically detected.

Adapting Row Sample-Rates

Recursive Column Sampling

Table 6.2 show comparisons between our recursive sampling method and the standard non-recursive alternative. We found the recursive method to not show any improvement in sample-rates in the Kitchen and San Miguel scenes, which are more geometrically complex. Its improvement was more noticeable in the simpler Sponza scene, although even here the improvement was minor.

We hypothesize that the better performance in the Sponza scene is because the high-rank areas, ie. the penumbral regions, are more localized, a scenario which the recursive sampling method can exploit effectively. The minor benefits of the method most likely lie in the fact that it is only performed when full column sampling is required. As this is typically only done for a small subset of columns, it stands to reason that the observed benefits are not particularly large.

These results are still preliminary, and further investigation is required into better ways of performing the sampling of the columns. One possible idea is to perform an early termination on the sampling process if no features have been detected, however, this might be risky in highly coherent columns where a larger number of samples are required to detect any features.

Completing visibility with Nuclear Norm Minimization

We performed some experiments with the nuclear-norm minimization formulation using the Singular Value Thresholding algorithm by Cai et al. [START_REF] Cai | A Singular Value Thresholding Algorithm for Matrix Completion[END_REF] to validate our choice of using the AMC algorithm. For this, we used the same clustering and receiver slicing, with only the visibility approximation portion being different.

We implemented two versions of this. The first uses the Jacobi SVD provided by Eigen. The reason we used this instead of the hypothetically faster bidiagonal divide and conquer approach is because we found that the latter sometimes gave us unstable values, resulting in visual bugs. The second uses the Randomized truncated SVD algorithm [Tul] to only extract the first n singular values, which drastically improves the performance. Figure 6.7 shows images generated from these two methods. We found that although the randomized truncated SVD is much faster than the Jacobi SVD, both methods are far too slow to be useful, taking 7.34 and 45.74 minutes respectively. This is contrary to fully computing the image, which only takes around 5s. Furthermore, as Singular Value Thresholding requires the initial samples to be known, we are unable to perform any kind of adaptive sampling. Thus, the sample rate ends up being far larger than what we see in BAMC. For the shown images, 25% visibility samples were used.

Finally, we found that there are many slice-based artefacts and noise, which are caused both due to not enough initial samples being taken, as well as the optimization process not running for enough iterations.

Comparisons to Other Many-Lights Methods

Experimental setup

Selected Many-Lights Methods

We evaluate the BAMC method for visibility by comparing it to LightSlice [START_REF] Ou | LightSlice: matrix slice sampling for the many-lights problem[END_REF], IlluminationCut [START_REF] Bus | IlluminationCut[END_REF], and Matrix Separation [START_REF] Huo | Adaptive matrix column sampling and completion for rendering participating media[END_REF]. The methods are selected for both their proximity to ours, as well as their good reported results in literature. We also compare the BAMC method to full sampling, ie. just the slicing and clustering part of our system with full visibility evaluations. This is to provide a clear idea of the actual performance gain achieved through using BAMC, the main contribution of this work.

For the implementation of these methods, we obtained the source code for both Lightslice [OP] and IlluminationCut [BMB] online, and the Matrix Separation source code directly from the authors.

We ported these integrators into our system, built in Mitsuba 0.6 [START_REF] Wenzel | Mitsuba renderer[END_REF], to have matching material models.

Comparison Metric

We perform the comparisons with the selected methods against ground truth images obtained by brute-force computing all the VPL contributions for the scenes, each rendered with 100k VPLs at 2×2 samples per pixel. We treat each sample as a separate receiver with its own shading and visibility, and average the values for the final pixel colour.

In order to obtain a time error trade-off, we vary either the error threshold or the number of clusters to be extracted. Although most of the selected methods can handle both, we choose only one or the other. Specifically, we use the exact number of clusters for all methods except for IlluminationCut, as this traverses down both light and receiver trees and thus error threshold is a more natural variable. For our time-error plots, we use the root-mean-squared error (RMSE) to the ground-truths as our error metric, and total processing time as the time metric.

Parameters

As our method is adaptive by nature, we did not need to tune the parameters. We use fixed parameters of α = 2.5%, β = 2.5%, ω = 40% for all test scenes, where α is the initial row samplerate, β is how much the row sample-rate increases when verification fails, and ω is the maximum row sample-rate.

Hardware Details

We performed our tests on an Intel Xeon ES-2630 v3 @ 2.40GHz CPU with a nVidia GeForce GTX 1080 Ti and 32GB of RAM. We found that for the largest scenes, such as San-Miguel, our memory usage topped at about 10GB. This is due to the batching size of our GPU jobs as well as the number of slices being processed in parallel. We found each slice to use roughly 70MB in the absolute worst case. We select 12 different scenes for our test cases. These were obtained from the online repositories of both Bitterli [START_REF] Bitterli | Rendering resources[END_REF] and McGuire [START_REF] Mcguire | Computer Graphics Archive[END_REF]. Figure 6.8 shows ground truth renders of these scenes. These test scenes can be divided up into glossy and diffuse, with Virtual Disc Lights being used to render the glossier scenes, and Virtual Point Lights being used to render the more diffuse. We don't compare IlluminationCut or Matrix Separation in our four glossier scenes as their source code doesn't handle Virtual Disc Lights. The rest of this subsection provides a description of each scene. We present our results in the following subsection. Cornell Box

Test scenes

The Cornell box is our simplest scene, and is used primarily to see if completing visibility has much of an impact on scenes with both simple geometry and lighting. Furthermore, as the geometry is simple, we are able to use it to detect issues with our method as it is easier to conceptualize how the light interacts with the scene. The resolution for this scene is 800 × 600 and we use VPLs.

Hairball

The hairball scene consists of a ball of hair placed inside the Cornell box. This scene can be challenging as the strands of hair cause many high frequency occlusions between the receiving points and the VPLs, resulting in much more frequent changes in visibility between points in close proximity. The resolution for this scene is 800 × 600 and we use VPLs.

Sponza

The Sponza scene is a relatively simple scene from a visibility point of view. Some areas are primarily in light, whereas others are primarily in shadow. We found this scene useful in determining how efficiently BAMC can approximate visibility information in a scenario where large areas of receivers have very similar visibility information. The resolution for this scene is 1280 × 720 and we use VPLs.

San Miguel

The San Miguel scene contains several complex high polygon trees, and evaluates how well our method performs in scenes with large numbers of small overlapping occluders, ie. the leaves of the trees. Furthermore, as this scene has a high polygon count, it can give us an idea of how well the method scales to geometrical complexity within scenes. The resolution for this scene is 1280 × 720 and we use VPLs.

Staircase

The staircase scene is another simple scene from a visibility standpoint. Much like the Sponza scene, many receiving points share similar visibility. However, this scene has some glossier materials, such as the wood, meaning that errors in visibility approximations would become potentially a lot more obvious. The resolution for this scene is 720 × 1280 and we use VPLs.

Living Room

The living room scene has similar characteristics to the staircase scene in that the visibility is relatively simple and the materials are glossier. The exception here is the carpet, which has many small strands of geometry that may occlude each other from the lights, potentially causing issues in approximating visibility in those areas. Another potentially challenging area is in the crevices of the sofa, as these areas are narrow and have very different visibility to other nearby receiving points. The resolution for this scene is 1280 × 720 and we use VPLs.

Breakfast Room

The breakfast room also has high frequency occluders, specifically in the form of the blinds in front of the window. However, unlike previous scenes where the high frequency occluders result in low frequency soft-shadows (ie. penumbra), causing errors in the approximation to not be obvious, the resulting shadows from the blinds are high frequency and very visible on the walls. This allows us to get a better idea of how accurate the approximations actually are, as opposed to just the integral looking mostly correct. The resolution for this scene is 1280 × 720 and we use VPLs. Classroom

The classroom scene is similar to the breakfast room as there are many high frequency visibility changes caused by the legs of the chairs and tables. Furthermore, this scene is perhaps even more challenging as it contains glossier materials, in the form of both the chair and table surfaces, causing incorrect visibility approximations on these surfaces to be extremely obvious. Finally, the whiteboard at the front of the classroom is challenging as its direct lighting is complicated due to the myriad of window frames. Incorrect visibility approximations or poor clusterings here result in the shadows not being smooth. The resolution for this scene is 1280 × 720 and we use VPLs.

Modern Hall

The modern hall scene is perhaps the simplest of our glossier scenes, with most of the scene being thoroughly lit. As this scene has numerous emitters spread evenly throughout, it is a useful test case for evaluating how our methods performs in cases where the distribution of lights is highly uniform. The resolution for this scene is 1024 × 1024 and we use VDLs.

Bathroom

The bathroom scene is like the breakfast room in that it also has blinds that cause a lot of high frequency visibility changes. However, different to the breakfast scene, these changes should appear smooth on the walls. Furthermore, this scene has a slew of highly glossy materials, which further accentuate mistakes to visibility. Other than the blinds, the rest of the scene has relatively simple visibility as the rest of the occluders are quite large. The resolution for this scene is 1024 × 1024 and we use VDLs.

Kitchen

The kitchen scene serves as a general test for glossier scenes as it contains a variety of different materials and geometry. It also contains many subtle soft shadows for which accurate approximation may be difficult. An example of this is the mug's shadow on the wooden surface. Finally, it also has a light that contributes little to the majority of the scene. The resolution for this scene is 1280 × 720 and we use VDLs.

Grey & White Room

The grey & white room represents a challenging case for visibility as the directional lights incoming from the windows are blocked by the frames in the window, resulting in many high frequency occlusions that should look smooth on the projected surface. This is very similar to the case of the whiteboard in the classroom scene, however, the surface is glossy and thus errors are accentuated. The resolution for this scene is 1280 × 720 and we use VDLs.

Results

Figures 6.9, 6.10, and 6.11 show results for the Kitchen, San-Miguel, and Sponza scenes respectively. We provide our full results in Appendix A.2.

The BAMC method performed relatively consistently across all scenes, requiring roughly 15%-25% visibility samples and completing the rest. It performed the best in the Sponza scene, where as little as 7.16% samples were required, and the worst in the hairball scene, where as many as 46.45% samples were used.

The reason for the former is because many of the receiving points shared very similar visibility patterns. Furthermore, there aren't many receiving points that fall inside the penumbral region of the shadows, a case where BAMC struggles. The reason why BAMC struggles in the hairball scene is also due to penumbra. The large number of small hair-like occluders cause large portions of both the floor and the hairball itself to sit in penumbra. It should be noted that although the method performed poorly in the hairball scene, it still outperformed the others.

Another characteristic we noticed with BAMC is that the percentage of visibility samples taken increases along with the number of clusters. This is primarily due to our adaptive row sample-rate strategy. We increase the row sample-rate if an error is detected, but don't use a mechanism to decrease it. Thus, having more clusters will naturally increase the number of samples taken, as more visibility errors may be detected through our verification samples. One method to possibly remedy this is to introduce some strategy to reduce the row sample-rate after no errors have been detected for some time.

LightSlice

BAMC renders images with similar or better quality at least 3 times faster than LightSlice, with the exception being glossy scenes where the methods are comparable. However, the error of BAMC is spread throughout the scene, whereas much of the error in Lightslice manifests as slice artefacts, resulting in images that are far poorer visually.

Another issue with Lightslice is that its initial clustering phase constructs a matrix containing all lights for a subset of the receiving points. This does not scale well to larger numbers of VPLs, as it both increases the startup processing time, as well as the memory cost. This can be somewhat counteracted by increasing the slice size, but this comes at a cost of either accuracy, or requiring a much larger number of clusters per slice.

An advantage that Lightslice has over our method is that by explicitly computing the contributions in the initial clustering step, it implicitly considers visibility. This leads to higher quality clusters, and remedies certain banding errors that occur from using the clustering methods that do not consider visibility, such as Lightcuts.

Matrix Separation

We found that Matrix Separation performs similarly to our method when the number of clusters is low. However, increasing the number of clusters typically does not greatly improve its final render, whereas our method continues to improve.

One possible reason for this is the validation process for its predictors. Although lowering the error threshold should provide better results, the samples used are quite sparse and performed uniformly. This means that it is very easy to miss sampling places where there were errors. Another possible cause is the clustering method used. Although it is very similar to Lightcuts, nodes also borrow information from their nearest neighbors, which may contain some sparse visibility samples. This may result in poor clusters if the sparse visibility samples do not correctly capture the visibility of the neighborhood, as some nodes may terminate prematurely during Lightcut extraction.

Ground Truth (100k VPLs) Our method Our method (Full Visibility)

An additional issue with the method is the use of Low-Rank and Sparse Matrix separation itself.

Although the separation process removes some error caused by the predictors, it also removes sharp features, which results in some blurring. This can be seen in the provided error images, where a lot of the error for matrix separation comes from the edges of objects.

Finally, we found that there were many predictor artefacts that the separation process could not remove. These are often more structered, and appear as lower-rank features within the matrix, and therefore are not detected by the algorithm. To counteract this, we had to set the column energy threshold to be very low. However, This resulted in a very high number of visibility samples in some scenes.

IlluminationCut

We found IlluminationCut to perform much more poorly compared to ours in all scenes, often only obtaining comparable RMSE values when the image has rendered for over 10× longer. Possible reasons for this are excessive refinement in areas with a low error, and cases where the light tree 0 1 splits far more than the gather tree, which results in a much larger number of clusters per receiving point.

Ground Truth (100k VPLs) Our method Our method (Full Visibility)

Like IlluminationCut, our clustering method is also based on Lightcuts. However, we don't use a gather tree, and instead cluster based on pre-determined slices. This drastically reduces the number of clusters that need to be evaluated. Despite the simpler approach and potentially lower quality clusters, we found that the performance gain compensates and thus we can extract more clusters for the same performance cost.

An interesting discovery when evaluating IlluminationCut is that its adaptive visibility sampling strategy drastically outperforms BAMC in simple scenes. There are two reasons for this. The first is that not many samples are allocated and sampling is uniform. This causes features to be missed and thus no further refinement is performed. This is particularly common in simple scenes where large areas of shadowing are mostly similar, with small sparse localized features.

The second reason is that their adaptive sampling strategy uses a recursive refining method. This means that far fewer samples are allocated to feature-less areas. Although we also aim to achieve this with our recursive sampling method, we have a minimum number of samples per column determined by the row sample-rate, whereas their method can terminate early if no noticeable features are detected. Full visibility sampling BAMC performs 3 -10× faster than just slicing and clustering for the same number of clusters, with the exception being the Hairball scene where it is only roughly 2× faster due to the large number of visibility samples. These results are expected as BAMC has very little overhead, thus, the performance gain from inferring visibility is much more noticeable. We also found that the RMSE was similar between the two, showing that not much accuracy is lost during the completion process and the visibility is mostly correct.

Limitations

There are various drawbacks to our proposed method. This section aims to discuss these, as well as propose some possible solutions.

Visual Artefacts

Figure 6.12: Light leaks can be caused by insufficient sampling in high rank areas (top). Increasing the number of verification samples improves this (bottom).

Our method produces two types of artefacts. The first are artefacts caused from incorrect completion of visibility, which has a chance of occuring in high rank or coherent slices. These typically appear as light leaks or darkened patches, as seen in Figure 6.12. The primary cause of these is not allocating enough samples when sub-sampling the columns, as not enough samples may result in the algorithm missing key features. One way to bypass this is to increase the number of verification samples taken for the adaptive sampling process, as this will help detect if a column can be properly reconstructed with the current basis vectors. Furthermore, our adaptive sampling scheme also helps alleviate some of these issues. Another type of artefact that manifests is banding on glossy surfaces (Figure 6.13). This is because our clustering method does not take into account visibility, which means that the light tree may be overly refined for clusters that are occluded, and insufficiently refined for clusters that are not. This might not necessarily be an issue in diffuse scenes, as the shading is smooth and the energy is dispersed evenly, but the problem becomes obvious on glossy surfaces.

Our method is mostly independent of the clustering algorithm used, with the only restriction being that the clustering method has to extract the same clusters for groups of receiving points. This means that to remedy the banding issue, it is possible to switch out the clustering method for one that does handle visibility. This is what we did in Figure 6.13, where the bottom image was rendered using Lightslice as the clustering algorithm, removing the banding artefacts.

The main reason we did not use Lightslice overall was due to its memory and processing cost drawbacks mentioned in Section 6.2.3. Furthermore, Lightslice typically uses larger receiver slices to reduce memory and processing cost. These slices may be impractically large for BAMC, as small errors in completed columns will necessitate the full visibility sampling of receiving points that are far away and not particularly relevant.

The rank of visibility

We found that low rank areas in the visibility matrix are caused primarily when multiple columns have the same visibility patterns. High rank areas, on the other hand, occur when large numbers of columns vary slightly. This typically translates physically to the penumbral regions of the scene, as can be seen in Figure 6.14. These columns can unfortunately not be completed with the existing basis columns, and need to be fully sampled. This is a drawback of completing boolean matrices, as these areas are typically visually smooth, and can be approximated with some sparse samples and interpolation. Another possible method of dealing with this is to allow for approximate completion by taking into account the estimated energy from the cluster to the receiving point and weighting the errors with this. We can then choose whether to fully sample, or just use the approximately correct basis column, depending on this energy.

Full Column Sampling when Error is Detected

Another issue with the proposed method is the full column sampling used when a portion of the column is not correctly reconstructed. Although our recursive column sampling somewhat mitigates this issue, it does not reduce the number of samples as much as we expected, and thus a better column sampling strategy should be investigated.

Non-Shrinking Row Sample-Rates

The non-shrinking adaptive row sample-rate is also a problem when large numbers of clusters are used. An investigation into a method that shrinks this value if no errors are detected could improve performance.

Conclusion and Future Work

We have presented and evaluated a method to infer the visibility between receiving points and lights for the Many-Lights problem using a modified version of the AMC algorithm. For a given scene, it only needs a fraction of the total visibility samples to accurately approximate the actual visibility between receivers and lights, resulting in roughly over a 3× speedup compared to methods such as IlluminationCut and LightSlice, and converging better and being more general than Matrix Separation.

There are a variety of avenues to investigate for future work. We propose the following:

• Investigate an improved clustering method that handles visibility, • Improve column sampling to be more efficient when an error is detected,

• Introduce a method that shrinks the row sample-rates if no error has been detected for some time,

• Improve the completion process for penumbral regions,

• Extend the method to area lights,

• Investigate the possibility of using deep-learning to complete the matrices instead,

• Integrate our method with light sampling.

Part II

Using Samples Across Probability Measures in Monte Carlo Rendering

Chapter 7

Sample Reuse Across Probability Measures

Perhaps the most popular method for computing the integral of some given function is using Monte-Carlo simulations to estimate the expectation of some random variable p(x). To achieve this, we formulate the integral as

f (x)p(x)dx (7.1)
where the function p is some valid probability distribution that integrates to 1. We can estimate the expectation of p(x) by averaging randomly drawn

x i samples from p E x∼p [f x] ≈ 1 N N i=1 f (x i) (7.2)
which gives us an estimate to the integral f (x)p(x)dx.

An issue arises when we cannot directly sample from p. This may be due to p being too complex, too expensive to sample from, or unknown. In these cases, we can instead take samples from some surrogate function q that is close to p. However, as the probability measures of p and q are different, we need to employ some strategy to update the samples so that we obtain a correct estimate.

A similar problem to the above is when we already have some samples drawn from some other distribution. As acquiring samples can be expensive, we ideally still want to make use of their information in computing Equation 7.2. Here, we also need to employ some methods to update these samples as the distribution which they were sampled from is different from p.

It can be seen that the above two problems are essentially the same, and the same group of methods can be used to address them. This chapter focuses on providing both the preliminaries for some sample reuse methods, as well some examples of how they are applied to Monte-Carlo rendering. We also propose and describe an additional method, termed reweighting-augmentation, that we hypothesize will work well in the case of reusing samples in Monte-Carlo rendering.

The focus of our work for the second part of the thesis is to investigate how this reweightingaugmentation method performs in the context of Monte-Carlo rendering. We achieve this by studying two separate application areas, which are detailed in Chapters 8 and 9.

For convenience purposes, we will refer to the current probability distribution from here on out as p, and the distribution that the samples were drawn from as q.

Existing Sample Reuse Methods

Rejection Sampling

The idea behind rejection sampling is to discard samples taken from q until their distribution matches p. This can be done by majorizing q over p with some constant C, and then accept the Cq(x) . This allows the remaining samples drawn from q to reflect the distribution p. The point samples shown are stratified across the y-axis for legibility. We use the beta distribution to illustrate, with α = 2, β = 2 for q, and α = 10, β = 10 for p.

samples taken from q with a probability of p over the majorized function. Figure 7.1 shows an illustration of this.

Formally, this is stated as

P accept (x) = p(x) Cq(x) Cq(x) >= p(x) , ∀x (7.3)
As it can be seen, C is not unique, and any value that satisfies the condition can be used. However, a larger C results in lower acceptance probabilities, ergo more samples being rejected. For maximum sample reuse efficiency, C should be the smallest possible value. Specifically, the ideal scenario has

C = max p(x) q(x) (7.4)
Rejection sampling requires that S(q) ⊆ S(p), where S(f) denotes the support of some function f , ie. where the function is nonzero. This is because the previous samples do not cover the area where p(x) > 0 and q(x) = 0. As rejection sampling does not have a way of introducing information to these areas, using it will give a biased estimate. This case also does not work mathematically, as we are unable to majorize q over p as Equation 7.4 gives infinity due to the divide by zero.

A less extreme version of the above is when p(x) ≫ q(x) for some values of x. Although one can apply rejection sampling here, we need very large values of C to majorize q over p, resulting in most samples being rejected. This is undesirable as this behavior typically occurs in the low importance regions of the distributions, where small differences can result in very large values of C. A very common occurrence for this is in the tails of the distributions that approach zero at different rates.

Another drawback to this method is that it can be difficult to compute the optimal value for C when p and q are non-trivial or unknown. This typically results in using a sub-optimal value for C, resulting in more samples being rejected than strictly necessary. Despite its drawbacks, there is an interesting variation of rejection sampling frequently used in Monte-Carlo Rendering called Russian Roulette sampling. Here, we reject samples taken from p against a scaled down version of p

P accept (x) = Cp(x) p(x) 0 < C ≤ 1 (7.5)
and then normalize the accepted samples by 1 C as Cp(x) is not a valid probability distribution since it does not integrate to 1, but instead to C. This method allows us to avoid computing some samples in areas where noise is not particularly visible, such as dark areas, allowing for improved efficiency.

Rejection sampling has also been used in the work of Burke et al. [START_REF] Burke | Bidirectional importance sampling for direct illumination[END_REF], where they use it to draw samples according to the product of the BSDF and direct lighting from an environmental map. They found that there are often cases where large numbers of samples are rejected, leading to undeterministic computation times. They also relied on heuristics to find an approximate C, leading to a larger than necessary number of samples being rejected.

They used rejection sampling in a specific case where the target distribution is known, as both the environment map and BSDF is known beforehand. This is not the case in the general light transport problem, where the irradiance also includes indirect illumination and is recursive and unknown.

Due to its drawbacks, rejection sampling is unfortunately not a viable solution for us as we are primarily interested in investigating the efficient reuse of samples across different probability distributions for Monte-Carlo rendering. This is particularly because rejection sampling, even in the best case scenario, is at most equally efficient in sample usage as reweighting [START_REF] Chen | Another look at rejection sampling through importance sampling[END_REF]. Furthermore, reweighting is also a more general and robust method, and in the case of light transport where colour is typically not taken into account in sampling distributions, can provide better sample to noise ratio.

Reweighting

Reweighting assigns each sample x i drawn from q with a weight of p(x i) q(x i) , so that they appear as if they were drawn from p. This weighting accounts for the probability discrepancy between p and q so that there appears to be more samples where q(x) < p(x), and less where q(x) > p(x). These weighted samples can then be used directly in Equation 7.2. We provide an illustration of reweighting in Figure 7. 2 Reweighting is particularly advantageous in cases where p is unknown a priori, where we can simply take the evaluated value from the entire integral and divide it by the probability. This means that the method is much more general than others which require previous knowledge of both p and q.

Another benefit of reweighting is that it does not discard or add more samples, resulting in deterministic computational performance. This is particularly important in fields where new samples are either prohibitively expensive, or impossible.

Like rejection, reweighting also requires that S(q) ⊆ S(p). This is because reweighting does not allow for the introduction of new information, leading to areas where p(x) > 0 and q(x) = 0 to be unaccounted for. Using reweighting in these cases will result in the Monte-Carlo process converging to an incorrect estimate.

Another issue with this method occurs when p and q differ significantly. Cases where q ≫ p will result in large numbers of samples with very small weights in low importance areas, and cases where p ≫ q will result in small numbers of very highly weighted samples in areas of high importance.

Before After

Figure 7.2: Reweighting gives samples drawn from q a weight of p(x) q(x) . This has the effect of making the samples appear to be more or less dense, thus reflecting the distribution p. The point samples shown are given a size relative to their weight, and are stratified across the y-axis for legibility. We use the beta distribution to illustrate, with α = 2, β = 2 for q, and α = 10, β = 10 for p.

The samples are thus far less efficient than if they were to be drawn directly from p, resulting in high variance.

One can use the Effective Sample Size [START_REF] Kong | A note on importance sampling using standardized weights[END_REF] (ESS) metric to evaluate the quality of the reweighted samples. ESS tells us how many actual samples from p the initial set of samples from q are worth, and is defined as

ESS = N var(p) var(q) (7.6)
where var(g) is the variance of the samples drawn from some distribution g. This is difficult to compute accurately as computing the variance often requires solving integrals as complex as the target. Thus, approximations are instead used, with one of the more popular being

ESS = (N i=1 w i) 2 N i=1 w 2 i = 1 N i=1 w2 i (7.7)
where wi denotes the normalized weight. Although easier to compute, Equation 7.7 is also constrained to 1 ≤ ESS ≤ N , meaning that it cannot detect cases where q is a better surrogate than p, and cases of infinite variance. It is also only dependent on the weights and does not take the target function f into account. We refer the reader to a paper by Elvira et al. [START_REF] Víctor Elvira | Rethinking the effective sample size[END_REF] for a more detailed discussion on ESS and ESS.

Importance Sampling

A direct application of reweighting is the importance sampling method. Reweighting is used here to update samples from some known surrogate q to some target distribution p, which may be unknown.

f (x)p(x)dx = E x∼p [f] ≈ 1 N N i=1 f (x)p(x) q(x) (7.8
) This is commonly used Monte-Carlo renderers in computer graphics to estimate the outgoing reflected radiance, as the target distribution is typically not known due to the irradiance being unknown. Samples are typically drawn using part of the material function, an estimate of the irradiance, or some mixture of the these [START_REF] Veach | Optimally combining sampling techniques for Monte Carlo rendering[END_REF] as the surrogate, and then reweighted to the target using

L(w o , n) = L i (w i)f (w i , w o)(w i • n)dx = E w i ∼p [L] ≈ 1 N N i=1 L i (w i)f (w i , w o)(w i • n) q(w i) (7.9)
where L i is the irradiance function, f is the material function, w i is the incident light direction, w o is the outgoing light direction, n is the surface normal, and p is the unknown target sampling distribution.

Path Guiding

Another more recent field in Monte-Carlo rendering that uses reweighting is that of Path-Guiding. These methods aim to assign samples more efficiently by taking into account the full incident radiance field, and achieve this by iteratively learning this. They draw samples from a distribution estimating the incident radiance field, and then use these to further improve the distribution. This differs from previous approaches where only incident radiance from direct light sources are accounted for.

A slew of different representations for the learned distribution have been investigated for path guiding, with some examples including histograms [Jen95; SL06; DK16], cones [START_REF] Hey | Importance sampling with hemispherical particle footprints[END_REF], Gausian mixture models [START_REF] Vorba | Online learning of parametric mixture models for light transport simulation[END_REF], spatial-trees [START_REF] Müller | Practical Path Guiding for Efficient Light-Transport Simulation[END_REF], Bayesian models [START_REF] Vévoda | Bayesian online regression for adaptive direct illumination sampling[END_REF], and deep neural-networks [START_REF] Müller | Neural Importance Sampling[END_REF].

Resampled Importance Sampling

Another application of reweighting is Resampled Importance Sampling (RIS). This method had already been known in statistical literature for some time [Tan93; Gel+95; SG92], but was studied formally in the context of Monte-Carlo rendering by Talbot et al. [START_REF] Talbot | Importance resampling for global illumination[END_REF]. The idea behind this technique is to allow for the sampling from some arbitrary distribution p using some surrogate distribution q. This is achieved by generating candidates samples, and then sampling those candidates with a discrete distribution formed using probabilities proportional to weights obtained through reweighting.

RIS has been applied to a myriad of different methods in Monte-Carlo rendering. Some examples of these include:

• Burke et al. [START_REF] Burke | Bidirectional importance sampling for direct illumination[END_REF] using it to sample from the product of both the BSDF and incident direct lighting from an environmental map,

• Zheng and Zwicker [START_REF] Zheng | Learning to Importance Sample in Primary Sample Space[END_REF] drawing samples with it so that they are proportional to a desired target distribution in order to train a neural network to warp the primary sample space for paths, and

• Bitterli et al. [START_REF] Bitterli | Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting[END_REF] using it in conjunction with reservoir sampling to efficiently share candidate samples across the image, allowing for the fast sampling of large numbers of lights.

Augmentation

Instead of inefficiently using the previous samples, either by discarding or assigning suboptimal weights, we can instead look to supplement them with new samples until the desired distribution is reached. Zhang and Shields [START_REF] Zhang | Efficient Monte Carlo resampling for probability measure changes from Bayesian updating[END_REF] propose the augmentation method for this purpose, where they draw some additional samples using an augmented distribution p aug , which is derived by treating p as a mixture distribution. Figure 7.3 illustrates their approach.

Before After Figure 7.3: Augmentation majorizes p over q with the constant C, and then draws a set number of samples from the augmented distribution p aug (x) = Cp(x) -q(x).

Combining these augmented samples and the ones from q results in the sample density reflecting p. The point samples shown are stratified across the y-axis for legibility.

We use the beta distribution to illustrate, with α = 10, β = 10 for q, and α = 2, β = 2 for p. We flip the parameters for p and q as it is both easier to majorize, and better illustrates the augmentation process.

To determine p aug , they treat p as a mixture of two distributions q and p aug p(x) = Bp aug (x) + q(x) A (7.10) rewriting the above, they define p aug as

p aug (x) = Ap(x) -q(x) B (7.11)
With this, all that is left is computing the constants A and B. From Equation 7.11, one can derive the following constraints as p aug has to be a valid probabiliy distribution

Ap(x) ≥ q(x), ∀x ⇒ A ≥ q(x) p(x) , ∀x B = Ap(x) -q(x)dx = A -1 (7.
12)

It can be seen that B is directly reliant on A, which is a constant that majorizes p over q and is non-unique. The intuition is that by majorizing p over q and then subtracting q from that, we get a function that represents where samples need to be added to the ones taken from q in order to have the same distribution as p. Normalizing this function by its area gives us a probability distribution which, if we sample the correct number of times, will allow the total samples to follow p.

The ratio of the samples for q and p aug needs to be 1 A : B A respectively. Assuming that we have N initial samples, we need to draw C = BN = (A -1)N number of samples from p aug . As can be seen, A needs to be as small as possible in order to minimize the number of new samples needed. This means that A should let p tightly majorize q, meaning that

A = max p(x) q(x) (7.13)
The augmentation method has the opposite support requirements as reweighting and rejection sampling, and requires that S(q) ⊆ S(p). This is because while it can introduce new information where there previously wasn't any, it has no mechanism to nullify previous information. Mathematically, cases where this condition is not met means that no value of A can majorize p over q.

A less extreme version of the above is when q ≫ p. This can occur commonly when the tails of the distributions approach zero at different rates. This leads to very large values for A, resulting in the need to take an infeasibly large number of extra samples.

This method is also not use-able when taking new samples is either impossible or prohibitively expensive, or when prior knowledge of either p or q are unavailable.

Augmentation allows for the efficient use of samples drawn from surrogate distributions, and can be desirable in applications where new samples will be taken after the probability measure has changed. This is because one can simply sample the augmented samples as part of the new samples, assuming there is a large enough sample budget. It is also robust to cases where the integration domain expands, as it is able to introduce new information.

Although certain Monte-Carlo rendering applications, such as path guiding and progressive path tracing, continuously take new samples, augmentation is not a robust method for these. The sampling distributions can differ significantly, resulting in large majorization constants. This leads to large numbers of required augmented samples, far exceeding the sample budget. Although we can still make the estimate unbiased by scaling down the previous samples with smaller weights, this bypasses the primary benefit of augmentation, as the previous samples will now be less efficient. A particularly bad case for this is when the tails of the distributions cause a very large A. This results in essentially discarding all the previous samples as their weights will be close to zero.

Rejection-Augmentation

A major downside to both rejection sampling and the augmentation method is that they require majorization. This restricts their use in real-world applications as sampling distributions can often have small changes which cause very large majorization constants. In addition to this, they also have support requirements which limit their use when the integration domain changes.

To counteract their drawbacks, Zhang and Shields [START_REF] Zhang | Efficient Monte Carlo resampling for probability measure changes from Bayesian updating[END_REF] propose to join the two methods. They achieve this by partitioning the integration domain into

S + , p(x) > q(x) S -, p(x) ≤ q(x) , ∀x (7.14)
with the aim of performing augmentation on S + and rejection sampling on S -. Figure 7.5 illustrates the general idea of this method.

To achieve the above, they rewrite p and q as

p(x) = χ p+ p + (x) + χ p -p -(x) q(x) = χ q+ q + (x) + χ q -q -(x) (7.

15)

.4: Rejection-Augmentation rejects samples when q(x) > p(x), and creates augmented samples where p(x) > q(x). This results in the overall distribution of the samples to reflect p. The point samples are stratified across the y-axis for legibility.

We use the beta distribution to illustrate, with α = 10, β = 10 for q, and α = 2, β = 2 for p.

where

χ p+ p + = S+ p(x)dx χ p -p -= S - p(x)dx χ q+ q + = S+ q(x)dx χ q -q -= S - q(x)dx (7.16) and p + (x) = p(x) χ p+ , x ∈ S + p -(x) = p(x) χ p - , x ∈ S - q + (x) = q(x) χ q+ , x ∈ S + q -(x) = q(x) χ q - , x ∈ S - (7.17)
Using above definitions, they separate the full integral into a sum of the integrals in S + and S -, which is written as

f (x)p(x)dx = χ p+ S+ f (x)p + (x)dx + χ p - S - f (x)p -(x)dx (7.
18) To perform rejection sampling in S -, they first majorize q -(x) over p -(x). Recalling that p(x) ≤ q(x), x ∈ S -, it can be seen that χq - χp - is the optimal majorization constant, as

q(x) ≥ p(x) ⇒ χ q -q -(x) ≥ χ p -p -(x) ⇒ χ q - χ p - q -(x) ≥ p -(x) , x ∈ S - (7.19)
Old samples can then be accepted with the probability

P accept (x) = χ p -p -(x) χ q -q -(x) = p(x) q(x) , x ∈ S - (7.20)
We can simply choose to accept the samples based directly on their corresponding probabilities in both p and q, with no majorization being required to achieve the optimal number of accepted samples.

For augmentation, using the same reasoning as shown in the rejection portion, we can define

A = χp + χq +
as the optimal majorization constant for majorizing p + (x) over q + (x), where x ∈ S + . Thus, we can define p + (x) as a mixture distribution

p + (x) = Bp +aug (x) + q + (x) A = χ q+ (χp + χq + -1)p +aug (x) + χ q+ q + (x) χ p+ = (χ p+ -χ q+)p +aug (x) + χ q+ q + χ p+ (x) , x ∈ S + (7.21)
The augmented distribution can therefore be defined as

p aug (x) = χ p+ p + (x) -χ q+ q + (x) χ p+ -χ q+ = p(x) -q(x) χ p+ -χ q+ , x ∈ S + (7.22)
which can be seen to be a valid probability distribution as

S+ p(x) -q(x)dx = χ p+ -χ q+ (7.23)
To determine the number of samples we need to take, we first need to determine how many of the previous samples fall (on average) into S + . This can be done using using

N + = χ q+ N (7.24)
Using this, the number of samples needed to be taken from q aug can be computed as

C + = (A -1)N + = (χ p+ χ q+ - χ q+ χ q+)N + = (χ p+ -χ q+)N (7.25)
Combining the rejection and augmentation methods eliminates the need for majorization as the intersection points ensure tight majorization in the respective areas. This is beneficial as it minimizes the number of rejected samples in S -, and the number of required augmented samples in S + . It also eliminates constraints on the support, as the methods are only applied in areas where their support requirements are met. Thus, this method is robust to any changes to the integration domain.

A major downside to this method is that it can be difficult to sample from p aug . Although p and q can be easy to invert, their positive difference function might not be. We also need to integrate both p(x) and q(x) in S + in order to find p +aug , which involves finding the roots of p(x) -q(x).

Another issue with the method is that, unlike augmentation, we are no longer fully efficient with our previous samples. This is because we can discard samples that fall into S -. This can be mitigated by multiplying p(x) with a constant K in Equation 7.14, where 0 ≤ K ≤ max q(x) p(x) , ∀x. This allows us to control how much of each strategy is applied, with only rejection being applied when K = 0, and only augmentation being applied when K = max q(x) p(x) . We use this constant to adapt the method to the specific use-case. For example methods that have a large budget for new samples can use a larger K for more augmentation, whereas methods that have a small budget can use a smaller K so that more rejection sampling is performed.

A final issue with this method is that it still requires new samples, thus, it is still not applicable in certain domains. This is not the general case in Monte-Carlo rendering, where acquiring new samples is a relatively straightforward task.

Reweighting-Augmentation

.5: Reweighting-Augmentation reweights samples when q(x) > p(x), and creates augmented samples where p(x) > q(x). This results in the overall distribution of the samples to reflect p. Compared to rejection-augmentation, one can see that there are far more samples in S -, which results in better variance since sampling distributions in Monte-Carlo rendering usually do not take into account albedo. The point samples are given sizes proportional to their weights, and stratified across the y-axis for legibility. We use the beta distribution to illustrate, with α = 10, β = 10 for q, and α = 2, β = 2 for p.

We propose a variation of the rejection-augmentation method previously discussed for the purposes of Monte-Carlo rendering, which we term reweighting-augmentation. Like rejection-augmentation, this method is also a hybrid method, and looks to combine reweighting and augmentation. We achieve this in the same way as rejection-augmentation, by dividing the integration domain into S + and S -. Augmentation is once again performed on S + , whereas reweighting is performed on S -.

Augmentation is performed in exactly the same way as the rejection-augmentation method, and we won't re-describe it here. Reweighting, on the other hand, can be done by assigning samples that fall into S -with a weight

w x = p -(x) q -(x) = p(x)χ q - q(x)χ p - (7.26)
The benefits and drawbacks of combining reweighting and augmentation are similar to that of rejection-augmentation. We hypothesize that reweighting-augmentation is more advantageous in Monte-Carlo rendering for two reasons.

The main benefit that reweighting-augmentation has over rejection-augmentation is that it can have better integral estimates for S -due to having a larger sample resolution in this area. An example of this is in the case of non-spectral renderers, which typically do not take into account colour, and rather use the total amount of energy across the different colour channels. Different incoming colours in S -can be an additional cause for variance, thus, it helps to have more sample resolution in this case.

Preliminary Results

Before applying our proposed reweighting-augmentation method to Monte-Carlo rendering, we first look to investigate it in the context of several one dimensional functions. We achieve this by comparing our proposed method with some of the previously discussed methods in Section 7.1.

Experimental Setup

We compare how different methods perform in the evaluation of the integral f (x)p(x)dx (7.27) when drawing samples from some distribution q(x). For this, we use three different versions of f (x), as well as three different pairs of p(x) and q(x), giving us a total of nine different test cases. For the three different versions of f (x), we have: The three different pairs of p(x) and q(x) we use for our preliminary experiments. Here, q(x) is denoted with magenta, and p(x) is denoted with turquoise.

f 1 (x) f 2 (x) f 3 (x)
f 1 (x) = (1 -x) 2 f 2 (x) = 5(1 -x) 2 -cos(50xΠ) f 3 (x) = 1 -α(x -0.
The three different pairs of p(x) and q(x) are defined as:

p 1 (x) = β(2, 3), q 1 (x) = β(3, 2) p 2 (x) = β(2, 5), q 2 (x) = β(5, 2) p 3 (x) = β(2, 8), q 3 (x) = β(8, 2) (7.29)
where β(a, b) denotes the beta probability distribution with parameters a and b. Figure 7.7 illustrates these pairs of probability distributions, with q(x) being magenta, and p(x) being turquoise.

Figure 7.8: One can see that for the first pair of p(x) and q(x), their majorization constant tends to infinity as the distributions approach zero at different rates. The same, albeit more extreme, behaviour is observed for the other pairs of p(x) and q(x).

We specifically look to compare our reweighting-augmentation method with both the reweighting and rejection-augmentation methods. We don't compare against the augmentation nor the rejection sampling methods as we found that, even in these simple cases, their majorization constants tends to infinity. Figure 7.8 illustrates this for the first pair of p(x) and q(x) by plotting both p 1 (x) q 1 (x) and q 1 (x)

p 1 (x) .
We use execution time to control our experiments, ie. all the methods are set to run for the same amount of time. We do this for fairness, as reweighting is significantly computationally cheaper than the hybrid methods in these simple test cases. This is because we use resampled importance sampling to draw samples from the augmented distributions in these cases, rather than look to derive a closed form solution. This causes the cost of sampling to dominate the cost of computing the samples, as the functions to compute are straightforward. Finally, we compare the results obtained against ground truth values, obtained by estimating the integral using 100000 samples from p(x). Table 7.1: Our preliminary results for reweighting-augmentation when compared to both reweighting and rejection-augmentation across the nine different scenarios. The ground truth values are given below each pair, and standard deviations are given in parentheses.

Results and Discussion

Table 7.1 shows our preliminary results for all nine different scenarios. We found that the general trend for reweighting was that it outperformed the hybrid methods in the first pair, but its performance drastically deteriorated for the second and third pairs, when p(x) and q(x) start diverging significantly.

The better performance for the first pair can be attributed to the fact that the distributions are still close, thus, the large number of additional samples that reweighting is able to take due to it being computationally cheaper more than accounts for the loss in efficiency when using the previous samples. However, once the distributions diverge more, these additional samples are no longer sufficient, thus, the performance of reweighting starts to fall drastically below the hybrid methods.

An exception to the above trend is with f 3 (x), where reweighting performs the best throughout all three pairs of probability distributions. This is because f 3 (x) only contains information in S -, which also spikes very locally. The high sample density from reweighting enables a better chance for detecting this spike, allowing for a more accurate estimate for the integral.

We found the hybrid methods to perform very similar across the different scenarios, outperforming reweighting for the second and third pairs of distributions, and achieving good integral estimates for the first pair despite performing worse than reweighting. This similarity in their performance is expected, as the two methods have very similar mechanics. However, an exception can be observed for f 3 (x), where reweighting-augmentation drastically outperforms rejection-augmentation, with the estimates of the latter often being completely incorrect.

The reason behind this is that reweighting-augmentation retains the previous samples in S -, whereas rejection-augmentation discards them. This results in a much higher sample resolution in S -for the former method, especially as the two distributions diverge, allowing for improved detection of the spike of f 3 (x) in S -. Overall, we can see that although reweighting and rejection-augmentation have specific scenarios where they perform poorly, reweighting-augmentation performs well across the various scenarios tested, which motivates our study of it in more complex scenarios, specifically in the context of photo-realistic rendering.

Conclusion

We have performed a series of preliminary experiments to evaluate the viability of reweightingaugmentation when compared to the other aforementioned sample reuse methods. We found that our proposed method performs at a consistently high level across the various test scenarios, whereas the other tested methods, namely reweighting and rejection-augmentation, all have scenarios where they perform very poorly. This motivates our study of reweighting-augmentation in Monte-Carlo rendering. We will explore two such applications of it in following two chapters.

Chapter 8 Example Application: Progressive Path Tracing

The advent of both real-time denoisers [Cha+17; Mar+17; Sch+17; SPD18; Kos+19; Men+20; Has+20] and dedicated ray-tracing hardware, such as the NVIDIA-RTX, has given rise to a wave of research focused on adapting the traditionally off-line path tracing algorithm to real-time applications. These approaches, termed Progressive Path Tracing methods, achieve this by amortising the Monte-Carlo samples temporally across multiple frames, and then either using the estimates directly or as input to a denoiser.

Although the results have been impressive, there are still two main issues in animated scenes. The first is caused by either the rendering equation changing, or by occlusions and dis-occlusions to previous rendered pixels. Failing to address these will result in visual artefacts, which typically manifest as ghosting, for example shown in Figure 8.1.

These are straightforward to resolve, and require either a history validation step to determine whether to discard the previous samples, or the updating of the previous sample information to adhere to the new rendering equation.

The second issue is that the sampling distributions can change, which is caused by factors influencing the distributions changing. Some examples of these include material functions and the distribution of direct light. It is important to take this into account when combining samples from previous frames with the current as a poor combination strategy can lead to higher variance, and possibly bias. This chapter investigates our proposed reweighting-augmentation method for the latter issue. We study the case where changes in sampling distributions are caused by changes in the material function of glossy surfaces due to changes in camera positions.

We limit our study to this use-case because it allows us to locally modify the material function of only the first vertex of each path. Consequentially, we do not need to deal with the problem globally, but rather only in screen space. This allows us to reduce memory usage and processing costs, as we do not need to store the full sample paths, but rather just their final values.

The rest of the chapter is structured as follows: we give a more thorough introduction to both Progressive Path Tracing, as well as the problems encountered with animated scenes in Section 8.1, we describe how reweighting-augmentation can be applied to Progressive Path Tracing to allow for efficient use of previous samples in Section 8.2, we provide some preliminary results and discussions in Section 8.3, and finally conclude the case study in Section 8.4.

Progressive Path Tracing

Progressive path tracing techniques aim to alleviate the cost of path tracing by amortizing the sampling process over multiple frames. This is advantageous as it both allows for more immediate feedback, expediting the workflows of end users, as well as opens up the possibility of using path tracing in real-time applications, such as video games.

The algorithm is straightforward in static environments. An accumulation buffer [START_REF] Haeberli | The accumulation buffer: hardware support for highquality rendering[END_REF] is used to keep track of the integral estimates for all previous frames. To generate the image for the current frame, the integral estimates from samples taken during the current frame are blended with the integral estimates stored in the accumulation buffer using

p i = (1 -α)a i + αc i α = S i N i (8.1)
where a and c are the accumulation buffer and the current integral estimates respectively, N i is the total number of samples taken for the corresponding pixel, and S i is the number of new samples taken for the pixel for the current frame.

To be of use for real-time applications, such as video games, the above needs to be adapted for dynamic environments. However, this introduces two complications:

• The sampling functions may change between frames,

• The accumulation buffer may contain outdated information. The mixture distribution shown in purple is the resultant sample distribution when combining equal numbers of samples from p and q. The many samples that lie on the tail of p leads to higher variance in the case where p is a better approximation of the target distribution.

The rest of this section will go on to describe these, and methods to address them.

Change of sampling distribution

There are cases when the probability distribution for a sample changes between frames. That is, the probability of selecting exactly the same path in the new frame is different from the previous.

This occurs because importance sampling is a common strategy for deriving new path directions at surface points. As quantities used by the surrogate distribution may change between frames, the surrogate distribution also changes. Some examples of these quantities include the material function and the distribution of incoming direct light. Directly combining the previous samples with the current in this context can often lead to higher variance or bias.

Higher Variance

The case of higher variance occurs when the integration domains are the same, but the surrogate distributions differ significantly. We can look at this through the lens of reweighting. We first note that because all the samples are reweighted to the unknown rendering equation in importance sampling, intermediate reweighting steps between sampling distributions become implicit as the reweighting terms cancel out as

f (x) p(x) q(x) t(x) p(x) = f (x) t(x) q(x) (8.2)
where p is the current sampling distribution, q is the previous sampling distribution, and t is the unknown target sampling distribution. From this, it can be seen that direct sample combination, when reweighted with their own respective weight, is tantamount to reweighting.

Rougher Glossier

Figure 8.3: Glossy material models can vary drastically with just a small change in incident direction. The above shows two different cases, the left illustrates rougher materials, whereas the right one illustrates glossier materials. One can see that there is less overlap between the two distributions in the glossier case, leading to a poorer effective sample size.

Thus, although we still get an unbiased integral estimate with direct sample combination, cases where p and q differ significantly result in poor variance. This is because the samples from q have a very poor Effective Sample Size relative to the samples from p.

Another way of looking at this is by viewing the total samples as being drawn using a mixture distribution of p and q. Cases where the two distributions differ significantly result in large parts of the mixture distribution sitting mostly on the tails of p, which in most cases is a better approximation of the unknown target distribution. Figure 8.2 illustrates this.

This case occurs commonly in Progressive Path Tracing. This is due to a combination of three factors:

• Material functions are typically used as part of sampling functions,

• Other than purely specular materials, their distribution encompasses the entire hemisphere,

• The one-sample Multiple Importance Sampling model is typically used to combine them with other distributions, which results in a mixture distribution that is a linear combination of the different distributions.

We look to deal with a specific case of this problem, which is when the material functions of glossy surfaces change due to a change of incident direction caused by camera movement. p and q differ greatly in cases where the camera movement is large, or when the material is highly glossy, leading to poor variance when naively combining the previous samples with the current. Figure 8.3 illustrates this.

To improve the efficiency of the previous samples, one ideally wants to assign weights that are as close as possible to 1. This would result in the mixture distribution being closer to p. Although p can be exactly achieved with augmentation (Section 7.1.3), it is impractical as the number of required samples is unbounded. We instead apply reweighting-augmentation method, which is still more efficient than reweighting as samples where p(x) ≥ q(x) have a weight of 1.

Bias

Bias occurs when the integration domain changes. This is because samples contain information where q(x) > 0, p(x) = 0, and do not contain information where q(x) = 0, p(x) > 0. Directly combining the previous samples will therefore converge to an incorrect integral estimate, leading to bias.

An example of when this occurs in practice is when a surface's normal is animated, which leads to a change in the integration hemisphere. Another example of this is when we use product sampling instead of the one sample Multiple Importance Sampling model to combine different sampling distributions. As we are multiplying the distributions, some contributing distribution falling to zero results in the entire surrogate distribution falling to zero.

We do not study this case despite reweighting-augmentation also being able to handle changes in the integration domain. This is because changes that cause this typically lead to changes globally, requiring us to store entire sample paths rather than just the first path vertex in the case of camera movement. However, investigating reweighting-augmentation for this problem is a possible future research direction.

Outdated information in Accumulation Buffer

Another issue that occurs in dynamic scenes is that the accumulation buffer may have outdated information. Using the accumulation buffer in these cases without updating their values to the correct ones will yield ghosting artefacts, such as those shown in Figure 8.1 at the start of this chapter.

The outdated information can be caused by two factors:

• The pixel no longer corresponds to the same surface area in the scene,

• The rendering equation has changed at the surface point.

Pixel No Longer Corresponds to Same Surface Area

As both the camera and objects in the scene may move, shaded pixels no longer remain in the same screen position. To remedy this, pixels are backprojected to find their corresponding values in the accumulation buffer. Unfortunately, this step is not sufficient, as previous surface points may become occluded or disoccluded, which can occur due to rotation or another object moving in front of it. A history validation process is typically used for these cases, with invalid pixels in the accumulation buffer being discarded. The typical method for checking if a pixel has a valid history is by checking if there is some significant depth discrepancy between the current pixel and its corresponding accumulated pixel. In the case where history validation fails, we simply set S i = 0, N i = 1 in Equation 8.1 for the corresponding pixel. Figure 8.4 illustrates backprojection, including cases where it fails.

Changing Rendering Equation

Another case where the value in the accumulated buffer can be outdated is when the rendering equation changes at the surface point. This can be caused by a change in either the incident radiance field or the material function.

Changes in the material function can brought about by a variety of factors, with some examples being:

• Change in the incident direction, which can be brought about by a change in the camera position,

• Change in the material parameters such as roughness, which can be brought about when animating these,

• Change in the surface normal, which can occur in the case of animated normal maps.

Although we can invalidate the history of these pixels in the same way as backprojection, this is not a good strategy in cases where materials in large portions of the scene change, such as scenes with many glossy objects. This is because most of the previous samples will be discarded.

An alternative approach is to store each individual sample instead of the previous accumulated pixels. This allows us to update the value of each sample with the new material values. A downside to this approach is that it requires a large amount of memory as all samples need to be stored, and does not scale to increasing numbers of samples per pixel.

A change in the incident radiance field at an accumulated pixel occurs either from objects moving around the scene, resulting in a change in the scene's light distribution, or due to a material function change at proceeding vertices in the path. This is a difficult problem, as the invalidation process used in backprojection will lead to most, if not all previous values being discarded. Furthermore, we cannot use the same approach as when the material function changes, as the new incident radiance distribution is unknown and will require resampling to acquire the new information.

There has been work done in addressing this problem, although these are limited in scope due to its complexity. One example is Zimmer et al. [START_REF] Zimmer | Path-space Motion Estimation and Decomposition for Robust Animation Filtering[END_REF] who use manifold exploration to keep track of the next non-specular vertex [START_REF] Zimmer | Path-space Motion Estimation and Decomposition for Robust Animation Filtering[END_REF]. This can be done as there is just a single possible outgoing direction for a purely specular surface. However, this method is biased as the incident directions of the stored value can be different from that obtained from manifold exploration, leading to incorrect values for glossy surfaces.

This idea has since been extended to highly glossy materials. An example of this is the work of Mara et al. [START_REF] Mara | An efficient denoising algorithm for global illumination[END_REF] who use reflection motion vectors for all glossy surfaces. This method is also biased, and becomes increasingly inaccurate as the roughness increases. Zeng et al. [START_REF] Zeng | Temporally Reliable Motion Vectors for Real-time Ray Tracing[END_REF] extend this to instead use a random vector sampled in a Gaussian distribution around a deterministic vector, which is generated from the peak of the glossy lobe. This approach improves on the previous as it preserves roughness.

A drawback to all the above methods is that they rely on motion vectors. This means that path vertices that are not directly rendered by previous frames are invalid. They are also only applicable for the first few vertices of a path. For specular paths, the longer the path the more likely there will be a vertex that is either not within view or is not purely specular. For glossy surfaces, the possible pixels will be impractically large after just a few bounces.

We do not need to deal with changing incident radiance fields as we limit our case study to only allow for the animation of camera movement. However, a future research direction would be to take into account part of the incident radiance, that being the distribution of direct lighting.

Progressive Path Tracing with Reweighting-Augmentation

Overview

We present a new algorithm that improves the efficiency of previous samples after a change in the material function is caused by camera movement. We achieve this by using our proposed reweighting-augmentation method to combine the previous samples, rather than the typical approach of directly combining them, which is equivalent to reweighting. We limit our case study to just camera movement as it is an effective way of changing the material function of the previous samples without changing their incident radiance field.

Our method can be separated into the following steps:

• Compute and store initial samples from the initial camera position,

• Change the scene camera configuration,

• Backproject initial samples to obtain their new pixel positions,

• Generate new samples,

• Combine the samples to generate the final image. We build our system on top of Mitsuba 0.6 [START_REF] Wenzel | Mitsuba renderer[END_REF], with our integrator being a modified version of its unidirectional path tracer. Other than the incorporation of our algorithm, the main difference between our integrator and the original is that we do not use next-event estimation. This is because we wanted a clearer idea of the performance with respect to sampling the material function, and thus chose to eliminate any additional sampling methods.

Initial Samples

We first render the scene from an initial camera configuration with some pre-specified number of samples per pixel, using the Bidirectional Scattering Distribution Function (BSDF) to sample new directions at each path vertex. We store each individual sample as we look to update their values rather than discarding them when validation fails. For each path, we store the following information:

• Position of first vertex,

• Incident radiance to the first path vertex, ie. the energy from the rest of the path,

• Outgoing direction of first path vertex,

• Normal of first path vertex,

• Material of first path vertex.

The position is stored for backprojection purposes, whereas the other information is used for both applying the new material value, as well as computing the augmented functions. We instead perform backprojection per pixel by using the surface point corresponding to its center. We cast a ray from the new camera and check for distance to validate. The red sample shows an example of an invalid pixel, whereas the green is valid. All samples in the pixel, marked with the blue dotted lines, are used in the corresponding pixel of the next camera position should the validation pass.

Change of Scene Camera

After we perform the initial scene render, we update the camera information with the new configuration. Although we allow both translation and rotation for generality, only translation has an actual effect on the material function since we are using the pinhole camera model.

Backproject Initial Samples

We backproject the samples taken from the previous camera configuration to obtain their corresponding pixels for the new one. The most accurate method to do this would be to backproject each individual sample. However, this would result in a large overhead. Thus, we opt to instead backproject per pixel by backprojecting the surface point corresponding to the center of the pixel obtained through casting a ray. We found that this simplification did not lead to significant visual artefacts in practice.

We validate a previous pixel by checking if the distance from its center surface point is significantly different from the center surface point of the corresponding pixel for the new camera configuration, which is also obtained by raycasting.

After backprojection, we store in a buffer how many previous samples fall into each pixel for the new camera. This will be used later to both determine the number of samples to draw from the augmented distribution, as well as to determine how to combine the old and new samples.

Generate New Samples

We use the reweighting-augmentation method to generate new samples for the first vertex of each path up until the required amount, and then use BSDF sampling afterwards. q(x) . The final samples are drawn from these candidates with a probability proportional to their weights. Their distribution should then reflect that of p(x). The point samples are stratified along the y-axis for legibility purposes only.

Reweighting-augmentation separates the integral computation into two separate integrals in the domains of S + where p(x) > q(x), and S -where p(x) ≤ q(x). The idea is to perform reweighting on S -, where there is an excess of previous samples, and augmentation on S + , where there is a deficit of samples.

We do not need to acquire new samples in S -as there is already an excess from the samples of the previous camera configuration.

To perform augmentation on S + , we need to combine the previous samples that fall into S + with new samples drawn from the augmented distribution. To obtain these, we draw N (χ p+ -χ q+) samples from

p aug (x) = p(x) -q(x) χ p+ -χ q+ , x ∈ S + (8.3)
One way to sample from p aug is using the Inverse CDF method. This first finds the Cumulative Distribution Function (CDF) of p aug , and then samples from the inverted CDF uniformly, which gives a value proportional to p aug .

Although this method is straightforward to use, it requires us to find the CDF of p aug , which is its integral. This is unfortunately not straightforward, as we would need to determine where S + lies. This involves finding the roots of p(x) -q(x), the number of which is unbounded. This is a particular sticking point, as finding χ p+ and χ q+ also involves finding the roots.

We opt to instead use Resampled Importance Sampling (RIS) [START_REF] Talbot | Importance resampling for global illumination[END_REF] to generate our samples.

As can be seen in Figure 8.6, this method can be separated into the following steps:

• Candidate samples are generated using a surrogate probability distribution,

• Candidate samples are assigned a weight p(x) q(x) , • Samples are selected from the candidates with a probability proportional to their weights. This method is preferable for us as it allows us to sample from p aug without needing to analytically find its integral and roots. It also allows us to support any material function without needing to derive an augmented function for every model. Lastly, we can also use the candidate samples to estimate the integrals χ p+ and χ q+ .

We first generate some number of candidate samples for each pixel. We set the number of candidates to be equal to N cand = k × min(N , B), where N is the number of previous samples for the pixel, k is some positive integer, and B is the sample budget for the new camera configuration. We use this instead of kN (χ p+ -χ q+) as these integrals are unknown before generating the candidates, which we use to estimate these values.

The candidates are generated for a pixel by casting min(N , B) rays into the scene, and then sampling the BSDF at each ray's intersection point k times to obtain candidate outgoing directions. The candidate samples are used to estimate the average χ p+ and χ q+ for the pixel, which are then used in computing the augmented sampling distribution. We use the new BSDF as the surrogate function to generate the candidates as there will be a higher sample density in S + , leading to both more stable estimates for χ p+ and χ q+ and better candidates.

After generating the samples and obtaining the average estimates of χ p+ and χ q+ for a given pixel, we select from the candidates, with replacement, N (χ p+ -χ q+) samples with a probability proportional to their weights. We fully sample the paths for these and write their output into the buffer B aug . We use p + (x) as the probability to reweight these samples to the target, as this is the probability that the samples in this region will reflect when combined with the previous samples that fall in S + .

If we have any sample budget remaining, we use it to allocate samples with their first vertex directions drawn from p(x), and store their results into the buffer B standard .

One downside with RIS is that it has the requirement that S(q) ⊆ S(p). This is generally not a problem for BSDFs, as they usually encompass the entire hemisphere surrounding the normal. An exception to this is when the integration domain changes, which is caused by purely specular materials. We deal with this by discarding the old samples and use only the new ones. This does unfortunately mean that perfect reflections and refractions will have higher variance, as they have lower sample counts.

Apply Previous Samples

Updating and Storing Samples

The stored samples need to be modified in two ways to be used. The first is to update their material value, and the second is to make them appear as if they were taken from p rather than q. For the first, we obtain the final sample value by multiplying the incident radiance with the new material function. For the second, we first determine if the sample lies in S -or S + , and then decide how to modify them thereafter.

For some sample x, we check its area by evaluating if p(x) > q(x). If this is true, the sample lies in S + , otherwise it lies in S -.

In the case where the sample lies in S -, reweighting is implicit as the samples are eventually reweighted to the unknown rendering equation. As the samples need to be drawn from q -rather than q, and need to appear to be drawn from p -, we additionally scale them by χq - χp - . We compute these values as χ q -= 1 -χ q+ χ p -= 1 -χ p+ (8.4) for numerical stability reasons, as there will typically be more candidate samples in S + compared to S -. For samples lying in S + , we first need to correct their previous reweighting by q(x), and afterwards apply the new reweighting to be according to p + (x). They are thus all weighted with q(x) p+(x) . We store the integral estimates for samples that lie in S -into the buffer B rw , and the estimates for the samples that lie in S + in B aug . Figure 8.7 illustrates how we store these samples.

Dealing with Undersampling

There are cases where the number of required augmented samples exceeds the sample budget. To correct for these cases, we scale the augmented samples up by Naug N , where N aug is the number of required augmented samples, and N is the actual number of augmented samples taken. This will allow the sample density to reflect that of p. As the effective samples are no longer the same as the actual number of samples, we scale all saved samples in S + as well as the augmented samples by Nprev + +N Nprev + +Naug . An unfortunate side effect of applying this scaling is that previous samples will contribute less, leading to a loss in sample reuse efficiency for samples in S + .

Combining All Samples

To combine the integral estimates from the separate buffers, we use

B f inal i = αB standard i + (1 -α)(χ p+ B aug i + χ p -B rw i) α = N standard N total (8.5)
where N standard is the number of new samples taken normally using BSDF sampling, and N total is the total number of samples taken for both the previous and current distribution. As the estimates from B rw i are reweighted, the integral estimate obtained from χ p+ B aug + χ p -B rw is worse than the one stored in B standard . Thus, combining with α = N standard N total is sub-optimal, and a better method could be to instead set α to be proportional to the inverse variance. However, we found this to be unnecessary, especially since the variance estimate can be unstable for small numbers of samples.

Results and Discussion

Experimental Setup

Selected Strategies

We evaluate the performance of the reweighting-augmentation method by comparing it to three other strategies, selected to examine different aspects of the method.

• Reweighting, which simply uses the previous samples as is. This is because the reweighting is implicit due to the integration domain remaining the same and all the samples eventually being reweighted to the unknown rendering equation. Comparing against reweighting allows us to evaluate how much more efficient the samples in S + are due to sampling from the augmented distributions. It also gives us an idea of when it is useful to use reweightingaugmentation, as there are cases where the sampling distributions deviate little.

• Discarding all previous samples. Although this may seem suboptimal, we found it to perform better than reweighting in cases where camera movements are large and the materials are smooth. This is because the sampling functions deviate significantly in these cases, resulting in reweighted samples having a poor ESS, which ends up increasing variance. Comparing against the discarding strategy will therefore provide us useful information on whether it is worth employing the reweighting-augmentation method in cases such as these.

• The last strategy we compare against also only takes samples from the new camera view. However, the samples per pixel used here is equal to the total sampling budget (ie. budget for the previous plus the current camera views). This strategy should almost always perform better than the reweighting-augmentation method, and gives us an idea of how much sample efficiency is lost in reweighting-augmentation compared to the ideal case. This is because the ESS is equal to exactly the sampling budget in this case. We term this strategy Full Sampling in our discussions.

There exists a pathological case for the last strategy where it can be worse than reweighting or reweighting-augmentation. This occurs when the previous sampling function is better than the current, which is caused when both the incident radiance dominates the material function, and the material function of the previous camera view more closely corresponds to the incident radiance.

In this case, the previous samples will actually be more efficient than the current. We found this case to not manifest in any particular noticeable way in practice. This is most likely because the incident radiance term typically only dominates the material term in cases where the material is very rough, which is also when the sampling distributions do not change much.

Evaluation

We apply the methods by first rendering the scene at a set number of samples per pixel from an initial camera view, and then move the camera and render the scene from a second camera view with another pre-specified number of samples per pixel. The final render is then achieved by combining the previous and new samples.

We test our method across five different scenes each with three different secondary camera configurations, Figure 8.8 shows these. The first three are variations of the Cornell Box obtained from the Mitsuba repository [START_REF] Wenzel | Mitsuba renderer[END_REF], each with different material configurations. This scene is chosen for its simplicity, which allows us to eliminate many other variables, such as complex geometry, which may contribute to variance.

The material configurations used are

• rough, where α = 0.25 for the white wall, ceiling, light, and boxes, and α = 0.1 for the coloured walls

• moderate, where α = 0.1 for the white wall, ceiling, light, and boxes, and α = 0.02 for the coloured walls

• smooth, where α = 0.025 for the white wall, ceiling, light, and boxes, and α = 0.01 for the coloured walls with the material model used being Cook-Torrance with GGX [START_REF] Walter | Microfacet Models for Refraction through Rough Surfaces[END_REF].

The same secondary camera configurations are used for all three Cornell Box scenes. The initial camera position is at p = [0, 0, 0], whereas the secondary camera positions are:

• Small, where p = [10, 10, 0]

• Moderate, where p = [50, 50, 0]

• Large, where p = [100, 100, 0] Reweighting-augmentation, on the other hand, does not assign weights to samples in S + , the area where reweighting scales samples up, and therefore has no fireflies. The dimming is also no longer an issue, as the integral estimates from the previous samples in S -are assigned a very low weight, as χ p -is typically very small when the sampling distributions deviate a lot.

An interesting result with regards to reweighting is that in glossier scenes, its performance stops deteriorating when the camera goes from a moderate to large distance. This is because by the time the camera has moved a moderate distance from the initial position, the ESS is already extremely poor and thus cannot get much worse. This hypothesis is further supported by the fact that reweighting continues to get worse in the scenes with moderately glossy, albeit at a slower rate.

Discard

The discard strategy, although performing relatively better in scenes where the materials are glossy and the camera distances are large, is still not as good as reweighting-augmentation. This shows that it is almost always worth employing reweighting-augmentation, rather than just discarding all the samples. However, as expected, we did find that discarding the previous samples rendered better results than reweighting in cases where the sample distributions deviated drastically.

An exception to this is in the Modern Hall scene when the camera distance is large, where it performed similarly to reweighting-augmentation. We found that the higher error with reweightingaugmentation was not due the method itself, but rather due to artefacts close to bright light sources caused by our simplified backprojection approach. The overall image from reweightingaugmentation still has much better variance than the discard strategy, including on the highly glossy floor.

Full Sample

As expected, assigning the entire sample budget to the second camera configuration always performs better than all other methods. It can be seen that, when compared to reweighting-augmentation, the two methods perform similarly on rougher surfaces with a small camera distance, and diverge as both the camera distance increases and the materials become smoother. This shows that reweighting-augmentation becomes less efficient with sample usage when the sampling distributions diverge. This is an expected result, as samples in S -still need to be reweighted, and in the case where the sampling distributions are significantly different, most previous samples will fall into this region. The good performance of reweighting-augmentation is primarily from efficient sample usage in S + , as no reweighting needs to be performed. Following this, a natural idea is to then try have more of the previous samples lie in S + , as they will be better used.

Adjusting S -and S +

As mentioned in Section 7.2, it is possible to adjust how much of each strategy is used by applying a multiplier c to p(x) when determining S + and S -, which will change the size of S + , resulting in more or less samples lying within. To investigate how well this works, we performed some experiments by varying the value of c. The specific values we used were 0.01, 0.1, 1, 1.5, 2, 10, 100. We performed the experiments in the moderately glossy and very glossy Cornell Box scenes. Figure 8.11 shows our results, with RMSE on the y-axis, and values for c on the x-axis. The figure is in log-scale to account for the different values of c. We found that the best results were when c was close to 1, with the performance deteriorating as it diverges from 1. This makes intuitive sense when c < 1, as that would mean more of the previous samples are reweighted. It is less intuitive for the case where c > 1, but can still be adequately explained.

The number of augmented samples is a function of the integral of p (Equation 7.25). If we multiply p with some constant c, we naturally have to take into account this change of area. Thus, increasing S + also involves taking more augmented samples. While this is not the problem if the number of required augmented samples lies within the sampling budget, it will need to be addressed if this is not the case to account for bias.

As mentioned in Section 8.2.6, we deal with this by scaling up the augmented samples and then renormalizing to make it appear as if more augmented samples were taken. However, the renormalization scales down the previous samples in S + , essentially discarding much of their information. Thus, for large values of c, it will essentially be similar to sampling directly from p and discarding the previous samples, leading to suboptimal variance.

We found that ideally one should keep c close to 1. However, this is only for our test case where the number of previous and new samples were equal, as we assign 128 samples to each. If there is a larger sampling budget for the new camera view, then it is beneficial to increase c more, as there is enough sampling budget to account for it. Having c be a small number can be advantageous in the opposite case, as reweighting can be preferable to scaling down the previous samples. This is especially true in the case of rougher materials, where the sampling distributions do not change much, and reweighting is close to optimal. One last issue we would like to address is how the method starts performing very poorly as c increases. Although this should theoretically be capped to be at worst the same as the discard strategy in Figure 8.9, in reality there are numerical stability issues caused by the scaling up the augmented samples, which exacerbates some undesirable artefacts caused by augmentation. Figure 8.12 shows an example of this.

Selecting number of RIS Candidates

An additional parameter that needs to be considered is the number of candidate samples drawn for RIS. This is important not only because it reduces the chances of duplicate samples during the resampling stage, but also because we use them to estimate the integrals χ p+ and χ q+ . We evaluate how the number of RIS candidates affect the overall render by investigating how it influences both the integral estimates, as well as the overall RMSE. We do this by varying the number of candidate samples.

k = 1 k = 3 k = 5 k = 10 0 >0.1
Figure 8.13 shows images of the integral estimates for p(x) -q(x). There is a significant amount of noise at 1× candidate samples, which is particularly noticeable in the back wall. The noise dissipates as the number of candidate samples is increased, with it being almost unnoticeable at 10× samples.

Figure 8.14 shows a plot of RMSE versus number of candidate samples. We found that the improvements stopped at around 3× candidate samples. It is for this reason that we set the number of candidate samples to 3× for our other experiments. The evening out of the performance is mostly expected, as both the probability of having duplicate samples and the noise of the integral estimates asymptotically approach zero when increasing the number of candidates.

From Figure 8.14, a question arises as to whether the improvement in performance is primarily from having more candidate samples, or having more stable integral estimates. To test this, we compare the RMSE of two renders. One with 3× candidate samples for RIS and 1× candidate samples for estimating integrals, and another with 1× candidate samples for RIS and 3× candidate samples for estimating integrals. Figure 8.15 shows our obtained solutions for these.

As can be seen, the render with more RIS candidate samples and less integral samples performed worse than the render with less RIS candidate samples and more integral samples. As their errors correspond with k = 1 and k = 3 in Figure 8.14, we can conclude that the primary contributor to the improvement seen there is most likely due to more stable integral estimates. It thus stands It can be seen that the primary source of error comes from poor integral estimates.

to reason that, if we can find a more effective method of estimating χ p+ and χ q+ , we can generate fewer RIS samples and save some computational processing time.

Conclusions, Drawbacks, and Future Work

In this chapter, we have discussed the problem of changing material functions in progressive path tracing methods, and how our reweighting-augmentation method can be used to improve the efficiency of previous samples in this context, allowing for improved convergence speeds.

Our preliminary experiments focus on animated camera positions, and showed that reweightingaugmentation indeed allows for improved convergence. This is particularly noticeable in scenes with highly glossy materials, as the material function changes a lot more with respect to incident direction in these cases.

Drawbacks

Our proposed method has various drawbacks, with the most pertinent being that individual samples need to be separately stored. This is required in order to both update the samples with their new material values, as well as to apply the scaling constants. However, this means that the method is not scalable to the number of samples per pixel due to memory constraints.

Chapter 9 Example Application: Practical Path Guiding

A recent trend in photo-realistic rendering is to generate more accurate surrogate distributions for importance sampling by taking into account the incident radiance portion of the rendering equation. These methods, termed Path guiding methods, are contrary to more traditional approaches which consider only entities known before the actual rendering process, such as the Bidirectional Scattering Distribution Function (BSDF) and the distribution of incoming direct light.

Taking into account incident radiance is advantageous as it allows the surrogate sampling distribution to be closer to the rendering equation, allowing for more efficient use of samples, ergo less variance. The best case scenario of this is when the sampling distribution is directly proportional to the rendering equation, as we would only need a single sample to acquire the integral. This can be seen as the integral can then be written as

L o (x) = c I(x)p(x)dx p(x) = L i (x)f (x) cos(x) (9.1)
where L i (x) is the incident radiance, f (x) is the material function, I(x) is a constant function that has the same domain as p(x), and p(x) is the sampling distribution.

As the incident radiance is unknown, these methods have to first learn it. This is typically achieved through an iterative sample-update process, where samples containing incident radiance information are drawn using some prior distribution, and then used to update a posterior distribution, which then can used to draw new samples for either the new learning iteration or for the final render.

Path guiding methods are particularly advantageous in cases where the incident radiance both dominates the material function and differs substantially from the distribution of direct lighting. An example of this occurring in scenes is when a highly glossy object, such as a mirror, reflects indirect light onto some diffuse surface, as shown in Figure 9.1.

Although these methods achieve very impressive results, there is a question as to how we could better use the training samples. This is because although there have been some attempts to reuse them for later stages of training and also for the final render [START_REF] Müller | Practical Path Guiding for Efficient Light-Transport Simulation[END_REF], the general prevailing strategy is to simply discard them after their current training iteration. Frequently given reasons for this are that they are drawn from sub-optimal distributions, thus may lead to higher variance, and also that they may cause bias if their integration domains are different.

We aim to investigate this further, separating our study into two areas. The first is investigating a method for incorporating the training samples into the final render using the ESS metric discussed in Section 7.1.2. The second is investigating how training samples from previous training iterations can be efficiently reused using the reweighting-augmentation method discussed in Section 7.2. The rest of the chapter is structured as follows: we describe PPG in Section 9.1, we introduce how we plan on reusing training samples for PPG in Section 9.2, we provide preliminary results and discussions in Section 9.3, and finally draw our conclusions and recommend future directions of research in Section 9.4.

Practical Path Guiding

Practical Path Guiding (PPG) [START_REF] Müller | Practical Path Guiding for Efficient Light-Transport Simulation[END_REF] is a guiding algorithm that learns the incident radiance field, and stores it into a spatial-directional tree (s-d tree). This tree is a 5-dimensional spatial structure which first discretizes the scene spatially, and then directionally at each spatial cell.

The learning process occurs iteratively, with the samples from each training iteration being used to learn the incident radiance for the next iteration's s-d tree, and the samples from the final iteration being used to generate the final rendered image. Algorithm 5 provides a high-level overview of PPG, where f is the material sampling distribution, L i is the spatial-directional tree storing the incident radiance, k denotes the current iteration, and n denotes the number of samples for the current iteration. The function M IS denotes using multiple importance sampling to combine the passed distributions, notF inal denotes a check to see if the current iteration is the last one, and refine denotes the refinement process for the spatial-directional tree. The tree first discretizes the scene spatially using a k-d tree, and then directionally using a quad-tree.

Check for Termination

PPG checks for termination at the start of every iteration. There are currently two different settings for this, one being time and the other being number of samples.

Generating New Samples

Samples are generated at each path vertex using MIS [START_REF] Veach | Optimally combining sampling techniques for Monte Carlo rendering[END_REF] to combine the incident radiance field, which is stored in the directional tree of the related spatial tree leaf node, with the BSDF of the vertex.

Sampling the BSDF is performed as per usual, and dependent on the material model. For sampling the incident radiance, the directional tree is traversed level by level until a leaf node is reached, and then the region of the leaf node is sampled uniformly. The local selection probability of each child is proportional to its energy compared to its siblings, and is normalized to the area of the child, which is 0.25 since we are using a quad-tree with equal area children.

The final probability of selecting a leaf node is the probabilities at each level multiplied. This is the same for all point samples generated within this node as they are sampled uniformly. Figure 9.3 illustrates this process.

PPG uses the one-sample model for MIS, which is equivalent to sampling from a mixture distribution that is a linear combination of the two probabilities

p(x) = αf (x) + (1 -α)L i (x) (9.2)
The initial implementation of PPG used α = 0.5, which might be inefficient as it can differ significantly from the ideal target function t(x) = f (x)L i (x) cos(x). This typically occurs when either the incident radiance or the material function dominates each other, as illustrated in Figure 9.4. Müller [M 19] introduced an improvement to this, which aims to adapt α for each spatial node so that p(x) moves towards t(x). This is achieved by minimizing the Kullback-Leibler divergence between p(x) and t(x) using gradient descent. 3: Shown here is a simple directional tree with each leaf-node containing the total radiance sampled, and each parent containing the sum of the children's nodes. Nodes are locally sampled proportionally to their incident radiance ratio to other children. Their probability is this value normalized by their area with respect to the parent's, which is 0.25 as we are using a quad-tree with 4 equal area children. Their final probability can be found by multiplying the local probability of each of their parents.

Recording Samples

The generated samples are recorded into the spatial-directional tree during every training iteration. This is done by adding the luminance of the incident radiance to the corresponding spatial and directional tree nodes for each sampled path vertex.

Next Event Estimation

In addition to storing just the indirect lighting for a path vertex, PPG also allows for the incorporation of next event estimation, which involves additionally sampling the direct lighting at each path vertex. It allows for two strategies, kickstart and always.

In kickstart, next event estimation is used only in the first few training iterations. This allows the s-d tree to quickly learn a good estimate of the incident radiance field, bootstrapping the training process. Always, on the other hand, uses next event estimation for all iterations, with the downside being that it is more expensive than kickstart.

Spatio-Directional Filtering

An issue with the original sample recording process of PPG is that it introduced noticeable discretization errors, caused by the spatial and directional discretization of the scene. Müller [M 19] proposed an extension to PPG to alleviate this centered on filtering. This method operates by instead splatting the incident radiance into the s-d tree, rather than simply recording the values at the corresponding spatial leaf node. Figure 9.5, taken from Müller [M 19], shows an example of both the artefacts and the improvements from using filtering.

The splatting process involves recording the weighted incident radiance at all leaf nodes of the spatial tree that overlap with the spatial footprint of the sample. The size of this footprint is determined by the size of the spatial leaf node where the sample resides, and is centered on the sample. They determine the weight of each record by computing the proportion of the overlap between the corresponding leaf node and the spatial footprint.

A similar process is performed when splatting the incident radiance into the directional trees. The primary difference here is that the filtering is performed based on area over the cylindrical domain, rather than volume.

As the above can be computationally expensive, a cheaper approach is also proposed. Instead of splatting, nodes are instead stochastically selected with a probability proportional to the overlap.

Refining the S-D Tree

The s-d tree is refined at the end of each training iteration. This is so the areas that have more information can have a higher resolution for capture in the proceeding training iterations. The spatial tree is refined according to the number of samples. During refinement, a leaf-node is recursively bisected along one of its dimensions until the number of samples falls below a prespecified threshold. The actual dimension to divide along alternates between the three spatial dimensions.

The directional tree is refined depending on the amount of energy. Like the spatial tree, a leaf-node is recursively divided until the energy falls under a pre-specified threshold. However, the node is divided into 4, rather than 2. Furthermore, shrinkage also occurs in cases where non-leaf nodes have energy that fall under the threshold. This shrinkage both conserves memory, and deals with noisy areas where samples are sparse.

After refinement, the tree is cleared and readied for the next training iteration. This is the common strategy in guiding, and is done for two main reasons. The first is that reusing the often worse previous information can be a detriment to the variance of the incident radiance field of the following iteration. The second is that the integration domain may change, thus, there is bias if we simply reuse the samples.

The second reason does not hold in the case of using PPG for static scenes. This is because the material models stay the same, and always play a part in the sampling distribution as long as α > 0. This, combined with the fact that the incident radiance field's domain is dependent on the BSDFs domain (S(L i) ⊆ S(f)) as the initial iteration uses only BSDF sampling, means that the integration domain will always remain the same.

Rendering the Final Image

The samples generated during the final iteration are used to render the final image. An iteration is determined to be the final one if it reaches the allocated computational budget by the end of the iteration. Another case is when the hypothetical next iteration would have less budget than the current. In this case, PPG merely allocates that iteration's budget to the current, and sets the current iteration to be the final.

An extension is proposed by Müller et al. [START_REF] Müller | Practical Path Guiding for Efficient Light-Transport Simulation[END_REF], which aims to also make use of intermediate renders generated from the samples of previous training iterations. They propose to use inverse variance weighting to combine the images with the final one, resulting in a better final render. However, as the variance estimates for a single pixel estimate can be noisy, they propose to instead use the average variance across the entire image. They mentioned that this method is biased, but observed no noticeable impact from the bias. We further explore this in Section 9.2.2.

Reusing Training Samples in Practical Path Guiding

Our aim is to investigate methods for increasing the efficiency of reusing training samples in PPG.

To this end, we divide our research into two areas:

• Investigate reusing training samples for s-d trees of future iterations,

• Investigate using ESS to combine intermediate renders from training iterations.

Figure 9.6 illustrates the areas of PPG that we aim to tackle in red, and shows where they lie within the PPG algorithm.

Reusing Training Samples with Reweighting-Augmentation

PPG, as well as many other path guiding methods, discards training samples between iterations. This is because training samples are drawn from previous distributions, which most likely will be of poorer quality than the current. This can be a detriment to the variance of the learned incident radiance field. This makes sense as, assuming the integration domains are the same, directly using the previous samples amounts to implicit reweighting due to the eventual reweighting to the unknown target distribution

f (x) p(x) q(x) t(x) p(x) = f (x) t(x) q(x) (9.3)
Thus, simply combining the samples suffers from the same drawbacks that reweighting does, such as poor effective sample sizes leading to increased variance in cases where p and q differ substantially.

In the case where the integration domains are not the same, one cannot simply recombine the previous samples directly without bias. Although we can bypass this in the case where S(p) ⊂ S(q) by introducing a mechanism that discards the sample if the new probability is zero, there is no way to directly account for scenarios where S(q) ⊂ S(p). This is not an issue for PPG assuming the scene remains static and α does not drop to zero. This is because the sampling distributions' integration domains are dependent on the BSDF, which remains static throughout learning.

We hypothesize that reweighting-augmentation will be a better method for combining these training samples, as it makes more efficient use of the samples in S + as no reweighting occurs there. An additional benefit to this method is that it can handle changes in the integration domain. This opens up the possibility of using it in sampling schemes that are not using the one sample MIS model, such as product sampling.

Incorporating reweighting augmentation into PPG requires the following steps:

• Compute an augmented incident radiance distribution, termed the augmented s-d tree,

• Estimate the integrals χ p+ and χ q+ ,

• Combine current and previous training samples. The augmented tree is computed by first setting its structure to the union of of the other two directional trees. We set the values in its leaf nodes to be equal to the probability difference of corresponding leaf nodes between the other two trees, with negative values clamped to 0. We deal with the case where leaf nodes do not correspond by using the probability of the last traversable leaf node. The values shown in the nodes here are their final probabilities. As they are purely for the purposes of illustration, they do not integrate to 1.

The Augmented S-D Tree

The augmented distribution for the current training iteration can be computed as

p aug (x) = (αf (x) + (1 -α)L ip (x)) -(αf (x) + (1 -α)L iq (x)) αf (x) + (1 -α)L ip (x) -αf (x) + (1 -α)L iq (x)dx = (1 -α)L ip (x) -(1 -α)L iq (x) (1 -α) L ip (x) -L iq (x)dx = L ip (x) -(1 -α)L iq (x) L ip (x) -L iq (x)dx (9.4)
As can be seen, if α remains constant between iterations, the augmented distribution can be computed using solely the incident radiance fields stored in the s-d trees. We achieve this by first setting the augmented s-d tree structure to be the union of the previous and current directional trees for the corresponding spatial node. We then set the leaf node values of the augmented tree to be the probability difference between the corresponding leaf nodes of the other two trees, with a minimum value of 0. The values are then percolated up by setting the parents values to the sum of the children.

We use probability instead of the actual stored values for normalization purposes, as the nodes may have different numbers of samples. We deal with the case where the leaf nodes between the two trees do not correspond by using the probability of the last traversable leaf node. This is possible because the probability of selecting a point within leaf nodes are uniform. Figure 9.7 illustrates our process.

We draw N (χ p+ -χ q+) samples from p aug , where N is the number of samples that the spatial node contained during the previous training iteration. We reweight both these samples as well as the previous samples in S + using p(x) = αf (x) + (1 -α)L ip (x) rather their actual sampling probabilities, as the overall samples from S + must follow p when combined with the previous samples. We sample normally from p(x) after the number of required augmented samples has been reached.

Computing Integrals

Although p aug can be computed without considering the BSDFs, χ p+ and χ q+ cannot.

Unfortunately, there are complications if we are to use the continuous functions directly in our calculations. For the case where a node in the current tree has no corresponding node in the previous, we simply add the total scaled energy from the subtree of the previous tree to the current. Figure 9.8 illustrates our approach of incorporating previous samples into the current tree.

A downside to our approach is that the samples from the previous iteration can be of poorer quality. Not only is their sampling distribution poorer, but they may also have a coarser resolution. However, we found this preferable to the memory intensive alternative of storing all the samples.

Dealing with Undersampling

There are unfortunately cases where we do not draw enough samples from p aug , as there is no guarantee on the number of times we will visit the spatial node. We correct for this by scaling the taken augmented samples up by A B , where A is the number of required augmented samples, and B is the number of taken samples for the spatial node for the current iteration.

An issue with this scaling up is that it would effectively increase the number of taken samples for the current iteration, which will result in even more samples required for the proceeding iteration etc. To correct for this cascading effect, we re-normalize all samples so that it would appear that only B new samples were taken. This involves scaling all values in the directional tree by C+B C+A , where C is the number of samples taken for the spatial node in the previous iterations. A downside to dealing with undersampling this way is that the previous samples lose some efficiency, as they are all weighted down.

Changes to PPG

PPG is a complex algorithm with many moving parts. In order to obtain a better idea of the performance characteristics of our method, we choose to simplify the PPG algorithm in some aspects, with the idea that we will re-introduce these elements once we have verified our algorithm. These simplifications include

= (N i=1 w i) 2 N i=1 w 2 i (9.8)
which should provide more stable weights as it relies solely on the probability distributions, and not on the function we are looking to integrate.

Sampling the above is still expensive, as we would still need to cast rays to account for the full path probability. A simplification to this is to only consider the distribution at the first path vertex. This is because it is the largest determining factor of the final probability distribution. This is both because it is the first term in the recursive probability function, and because the recursive probability distributions are dependent on the initial vertex distribution, with similar initial distributions more likely resulting in similar distributions further down the path.

Although ESS can occur on a per sample or per pixel level, we instead look to compute it per spatial tree node. Instead of sampling, we compute and use the weights of corresponding leaf nodes. We achieve this by once again simultaneously traversing the two trees and using the probability values stored in the corresponding leaf nodes. We use the average BSDF values stored in the tree to account for MIS.

Application to PPG

We cast a ray through the center of a pixel to determine the corresponding spatial tree node. We then use this node's directional trees for determining ESS.

A note on average inverse variance and bias

We would also like to address the previous claim that average inverse radiance method is biased. We first take into account that corresponding pixels of the intermediate and final rendered images

• are reweighted to the unknown target distribution,

• share the same integration domain if α > 0.

This means that they can be combined using arbitrary weights, as the samples are implicitly reweighted between iterations and thus have the same information density. This can be seen as:

Ω f (x)t(x)dx = E x∼t [f (x)] = E x∼q f (x) t(x) q(x) Ω f (x)t(x)dx = E x∼t [f (x)] = E x∼p f (x) t(x) p(x)
, x ∈ Ω (9.9)

Combining these with some arbitrary normalized weights κ and ξ will result in κ Ω f (x)t(x)dx + ξ For this reason, we believe that the average inverse variance method is in fact unbiased as long as α does not fall to 0 for some spatial tree node.

Results and Discussion

Experimental Setup

We perform preliminary evaluations on the efficacy of both the usage of ESS to combine intermediate renders, and the use of reweighting-augmentation to incorporate previous training samples.

We conduct our experiments in two different scenes. The first is a simple scene designed specifically so that large parts of it has complex incident radiance that dominates the BSDF. This is done by using a fractal texture to map the specularity on one of the walls, which reflects directional light onto the diffuse floor. We obtained the fractal texture from Pixabay [Pix]. We term this scene the Fractal Reflectance scene.

The second scene we use is the modified version of the Kitchen scene used originally by Muller et al. [START_REF] Müller | Practical Path Guiding for Efficient Light-Transport Simulation[END_REF] to evaluate PPG. We use this scene has it is representative of a more realistic scene setup. Figure 9.9 shows ground truth renders of both our test scenes.

Reweighting-Augmentation on Training Samples

We evaluate our method of using reweighting-augmentation to combine training samples by comparing it to three other strategies:

• The first is discarding the training samples from previous training iterations. This is chosen as it gives us a baseline to compare against, as it is the strategy used by the original PPG algorithm,

• The second strategy we compare against is reweighting. This simply involves not clearing the spatial-directional tree after each training iteration, as the reweighting is implicit due to the integration domains remaining the same because of MIS. Comparisons against it will provide us with an idea of how more efficient usage of previous training samples can impact learning speeds. It will also give us an idea of the context that this is useful, as there will be regions in the scene where sampling distributions change little.

• We also look to compare against discarding but with double the number of training samples each iteration. The idea behind this is that it will be as if we are using the previous training samples, but all drawn from the current distribution and stored at the correct resolution. This will provide us with an upper-bound on the possible performance gain from more efficient training sample reuse. We do not count these extra training samples in the total budget.

We compare the methods by plotting the RMSE against the number of samples per pixel. We obtain the RMSE by comparing the renders with ground truth images obtained at 100k samples per pixel. We use 127, 255, 511, and 1023 as our sample per pixel configurations. We also compare the methods for different spatial tree depths, as this is currently static in our experiments. We set a fixed depth of 12, 14, 16, and 18 for these trees, and perform the renders at 255 samples per pixel.

Using ESS to Recombine Training Renders

We compare our proposed use of ESS to combine intermediate renders to three other strategies:

• The first is discarding all intermediate renders, using only the render generated from the final iteration for the final image. This gives us a baseline to compare against.

• The second strategy compared against is combining the images directly, weighted proportionally to their number of samples per pixel. This can be seen as reweighting, and gives us an idea of how useful it is to use a more complex method, such as ESS, rather than simply combining the pixels.

• Finally, the third strategy compared against is the average inverse variance extension to PPG. Comparing against this allows us to examine if ESS is better than the previous proposed method.

We compare the above methods to ESS in both test scenes using RMSE as a performance metric. This is obtained by comparing their rendered images, taken at 511 samples per pixel, to ground truth images taken at 100k samples per pixel. Figure 9.12 shows plots for results when varying the number of samples per pixel and Figure 9.13 shows plots for results when varying the static spatial tree depth. We also provide same parameter renders for both scenes in Figures 9.10 and 9.11. Full renders and statistics can be found in Appendices C.1 and C.2.

Results for Reweighting-Augmentation on Training Samples

Samples Per Pixel

We found that the results obtained by all four methods to be very similar in the Kitchen scene. This shows that the incident radiance field is relatively straightforward to learn in most areas of the scene, and allocating more training samples does not necessarily result in better learned distributions.

For the Fractal reflectance scene, we found the reweighting-augmentation method to perform very similarly to the original PPG algorithm, which simply discards training samples after every iteration. In fact, we found it to perform slightly worse with lower numbers of samples per pixel, and only becomes very negligibly better as the number of samples per pixel increases. This shows us that it is not worth using, at least for the given scene.

We believe that there are a few contributing factors to this poor performance. The first is how we implemented the combination of previous samples, which is by adding together the aggregate values stored within the trees. As the directional trees get refined only after every iteration, of which there are few when the number of samples per pixel are low, the resolution of previous training samples is very coarse.

Adding these coarser values to the trees from newer iterations may not only result in not much new information being added, but may also smooth out finer details learned in the newer iterations, resulting in a loss of definition in the new sampling trees. This is supported by the fact that as the number of samples increases, the relative performance of reweighting-augmentation also becomes better. The poor results from reweighting also support this hypothesis, as not clearing the tree essentially amounts to the same process. .12: RMSE plotted against samples per pixel for both our test scenes. The results use a fixed static tree depth of 16. We found that the different methods had slightly different performance for the Fractal Reflectance scene, they all converged to the same performance at 1023 samples per pixel. We also observed no difference in performance in the kitchen scene. Scenes with more difficult to learn radiance may result in larger differences between the methods.

Another contributing factor could be how we compute the integrals χ p+ and χ q+ . To compute these, we use the discretized average material values of the points that lie within the spatial node, which are stored in the respective directional tree nodes during the sampling process. As this process requires sampling, it may be noisy, especially in earlier iterations when there aren't that many samples. This is especially true for difficult to reach spatial nodes with small numbers of samples.

Lastly, there lies an issue with sampling from augmented distributions. Sampling from these allows us to adhere the aggregate samples to the current sampling distribution. However, it does not necessarily help us with discovering new incident radiance information.

Allocating a substantial portion of the sampling budget to sample from these distributions may therefore slow down the learning of the incident radiance, especially in the earlier iterations where there are few samples and much of the incident radiance is unknown. This is exacerbated by the fact that the distributions are initially noisy. Thus, sampling from these distributions early may result in exploitation of poor areas. A way around this could be to only employ the method for the last few iterations.

Despite its poor performance, we did find that reweighting-augmentation outperformed reweighting in the Fractal reflectance scene. This shows that the more efficient use of previous samples in S + still has an effect. Despite this, the improvement was not particularly large, especially when compared to the ideal case of assigning double the number of training samples each iteration. This is both due to how we add the trees, but also due to the use of MIS. As we use the standard α = 0.5, the sampling distributions differ by at most an area of 0.5 even in the most extreme cases, as the BSDF functions remain the same. This results in there being not much more efficiency to be gained. It is likely that we would observe a larger difference in performance should either product sampling or the optimization of α be used.

Finally, we noticed that the sampling distributions in the Fractal reflectance scene mostly converged after 1023 samples per pixel. This can be seen as all the strategies converge to about the same performance at this configuration. It is possible that we could observe more benefit from reweighting-augmentation when used in cases where the distributions are more difficult to learn.

Spatial Tree Depth

As we fixed the depth of the spatial trees, we wanted to investigate if this also impacted how the methods performed. We found that all methods performed similarly for shallower trees, with the .13: RMSE plotted against spatial tree depth. The results were rendered using 255 samples per pixel. The Double training samples method worked best for larger static tree depths, primarily due to it having more samples at the correct resolution. We observed no differences between the methods in the Kitchen scene, possibly because the incident radiance is relatively low frequency and thus a larger spatial tree depth does not better capture it. In practice, spatial tree depth should not have much effect on training as it is dynamically adjusted.

double training sample method performing better for deeper trees in the Fractal reflectance scene. This makes sense as smaller spatial nodes means each directional tree has less samples, thus having more samples will help with learning. Contrary to this, a larger number of samples does not seem to improve learning by much when the spatial nodes are coarse. In practice, this should not have much effect on the training, as the spatial nodes are split according to how many samples lie within them.

Results for ESS to Recombine Training Renders

Fractal Reflection Kitchen Reweighting 0.02255(0.0003) 0.06062(0.00146) ESS 0.01977(0.00044) 0.06162(0.00184) Average Inverse Variance 0.01875(0.00033) 0.06089(0.00144) Discard 0.02164(0.00034) 0.06142(0.00141) We found that reweighting performs the worst in the Fractal reflectance scene. This is most likely because the initial renders have a very poor sampling distributions. Combining the renders with this method will therefore result in higher variance images, as the poorer renders have been allocated weights that are too large.

However, this method performed the best in the Kitchen scene. This can be attributed to both the diffuse surfaces in the scene, and the incident radiance being relatively straightforward to learn. This means that the sampling distributions are similar between iterations, resulting in reweighting being close to optimal.

We found average inverse variance to work the best in the Fractal reflectance scene, and outperforms our proposed method of using ESS in both test scenes. We believe the reason for this is that, although average inverse variance is performed over the image and thus loses efficiency, the fact that it uses variance means that it takes into account the target function, as well as the recursive parts of the equation. Contrary to this, ESS does not consider the target function, and our implementation also only considers the first vertex of each path. Adding to this, we compute ESS per spatial tree node, which also averages the values, albeit on a finer scale.

A potentially better way to use ESS would be to compute it per pixel. However, this is computationally expensive and would require sampling. A way around this would be to use the weights from the samples taken during the iterations, but this would require storing them, which would be expensive memory-wise.

Conclusions and Future Work

We have proposed and investigated two methods that aim at more efficiently utilizing training samples in PPG in this chapter. The first is the use of ESS to combine the intermediate renders taken after each training iteration, and the second is using reweighting-augmentation to efficiently reuse training samples from previous iterations.

We found that ESS does not perform better than the current method of using average inverse variance to combine the samples. This can be attributed both to the fact that ESS, unlike variance, does not take into account the target function, and that we only consider the first path vertex when estimating this.

We also found that reweighting-augmentation showed no substantial performance gain over the previous strategy of simply discarding the training samples. We believe that this is caused by a combination of factors, such as how we are adding the samples together, our estimation of the integrals, and an imbalance between exploration and exploitation.

However, we did notice that its relative performance improved as the number of samples per pixel increased, which could allude to it performing relatively better in cases where a larger number of samples are required to correctly learn the incident radiance field. Due to this, we believe there are many different directions in which to expand our study. These include:

• Evaluating the method in scenes with more complex and difficult to learn incident radiance, which may provide a better idea of the usefulness of the method. We would also like to investigate the method in the context of only applying it to later iterations, as this may help balance exploration with exploitation,

• Investigate the method with both the adaptive MIS extension proposed for PPG, as well as product sampling. This is because sampling distributions may differ more from iteration to iteration when the incident radiance dominates the BSDF, which may mean that the efficiency gained from reweighting-augmentation could be more obvious. Reweighting-augmentation also has an additional benefit in the context of product sampling, as it can effectively handle changes in the integration domain, which occurs in product sampling when the incident radiance either falls to zero, or becomes nonzero in certain regions,

• Investigate specific implementation improvements, such as better methods of incorporating samples from previous iterations, as well as better methods of estimating the integrals. Additionally, we would like to re-incorporate many parts of PPG that we omitted for the sake of simplicity, such as NEE and dynamic spatial trees,

• Study reweighting-augmentation in other path guiding methods, as there may be better contexts in which it can be applied.

Progressive Path Tracing

We investigated our reweighting-augmentation method in the context of a progressive path tracing framework that allows for the animation of camera movement. We found that the method allows for more efficient incorporation of previous samples compared to directly combining them, allowing for a noticeable reduction in variance.

We found the improved variance to be particularly noticeable in scenes with lots of highly glossy materials. This is primarily due to the fact that sampling distributions differ more with highly glossy materials, resulting in the naive reweighting method having very poor efficiency due to highly sub-optimal weights. Reweighting-augmentation, on the other hand, partially bypasses this issue as it assigns no weights to samples that fall in the area where there is a deficit, and instead opts to take new samples to account for the difference in information density.

Despite the upsides, the introduced method still has many drawbacks. These include the need to store every sample, resulting in very high memory usage, and the need to use Resampled Importance Sampling to both estimate the integrals and sample from the augmented distributions, resulting in a higher overhead costs and some numerical instabilities.

There are numerous avenues for future work, including:

• Adapt the method to work with an accumulation buffer, rather than individual samples,

• Investigate the possibility of deriving closed form equations for the augmented distributions,

• Extend the study to a wider range of scenes,

• Investigate the method for animations not limited to just camera movement.

Practical Path-Guiding

We investigated two different methods for reusing samples in the context of Practical Path Guiding. The first is using our proposed reweighting-augmentation method to reuse training samples from previous iterations in the learning of the current. We unfortunately found that this method does not provide any substantial improvement over previous methods, and in fact performs worse than just discarding all previous training samples in cases where there is a small number of samples per pixel.

We hypothesize that this is caused by a combination of factors, including how we are incorporating previous training samples, how we are estimating the integrals, and how sampling from the augmented distributions results in more exploitation of current knowledge rather than learning new knowledge through exploration.

The second method involves investigating the use of the Effective Sample Size surrogate ESS to combine the intermediate renders from the various iterations to generate the final image. We found that this method performed worse than the previously proposed average inverse variance weighting.

We believe that this is because average inverse variance takes into account the target function, and also handles the recursive elements of the sampling distribution. ESS, on the other hand, just deals with the weights of the sampling distributions. Our implementation of it also only accounts for the first vertex of each path.

Despite not observing positive results, we believe that there is avenue for future research in this area, particularly in the case of using reweighting-augmentation to incorporate previous training samples into future iterations. Future directions of research include:

• Extending our experiments to scenes with more difficult to learn incident radiance,

• Investigating the exploration exploitation tradeoff when using reweighting-augmentation, • Applying reweighting-augmentation when sampling from either the α optimization for MIS, or the product distribution of the material function and the learned incident radiance,

• Reincorporating the parts that we omitted from the original Practical Path Guiding algorithm, such as next event estimation, dynamic spatial trees, and spatial filtering,

• Extending study to other guiding methods, such as Gaussian Mixture Models or Bayesian learning.

Additional Future Work

In addition to the future work proposed in the two prior sections, we would additionally like to investigate if there are other areas in Monte-Carlo rendering where a change of sampling distribution occurs, and if the proposed methods also apply to these.

Figure 2 . 1 :

 21 Figure 2.1: The Ray Model of Light. Light travels in straight lines until it encounters some matter. When this occurs, it can either be absorbed, as shown in A where all but green light is absorbed by the surface resulting in its green appearance, reflected, which is also demonstrated in A where light is scattered in many directions, or refracted, as shown in B.

Figure 2 . 2 :

 22 Figure 2.2: Light can be scattered by participating media, which results in visible visual effects, such as the godrays seen in this photo.

Figure 2 . 3 :

 23 Figure 2.3: Caustics are intense localized sections of light caused by many overlapping light rays (envelopes) resulting from light being unevenly reflected or refracted by smooth surfaces. These can be seen on the sand underneath the water, where the caustics are caused due to the refraction of sunlight through the water.

Figure 2 . 4 :

 24 Figure 2.4: Rayleigh scattering is caused by light being scattered more by molecules if it is closer to their resonant frequencies. This explains why the sky appears blue during the day, as well as why clouds and the sun have a reddish-orange hue at dawn and dusk.

Figure 2 . 5 :

 25 Figure 2.5: Rainbows [Rai] are caused by the refraction of light by rain droplets, which disperses light into its different colours due to the amount the light bends depending on the colour of the light. Newton hypothesized that this is because the corpuscles speed up in these medium, by different amounts, however, as shown in the wave model, this is because light slows down in denser medium.

Figure 2 . 6 :

 26 Figure 2.6: Iridescence in soap bubbles[Soa] is one natural example of interference manifesting visually. This is caused by multiple reflections within the bubble, where the reflected light constructively or destructively interferes with the various frequencies of incident light.

Figure 2 . 7 :

 27 Figure 2.7: Diffraction causes the bending of light when it encounters an obstacle or an opening. This can lead to visual effects such as spikes, such as those seen in stars imaged with reflector telescopes [Dif](right), or dispersion in the case where the obstacles or openings are of similar size to the light wavelength, for example with CDs [Cdd](left).

Figure 2 . 8 :

 28 Figure 2.8: The photoelectric effect refers to the ejection of electrons when materials encounter photons above a specific wavelength. Although this effect is typically not visible, modern camera sensors (both CCD and CMOS) are based on it.

Figure 2 . 9 :

 29 Figure 2.9: Lasers emit coherent beams of light [Las], allowing for light to be focused to a localized area. This is caused by a quantum effect, where excited electrons emit two photons that are coherent with each other when absorbing an incoming photon.

Figure 2 .

 2 Figure 2.12: All materials in this scene, termed San Miguel, use the Lambertian material model to define how they reflect light.

Figure 2 .

 2 Figure 2.13:The BSDF for a material can be defined as both the BRDF, which defines reflection, as well as the BTDF, which defines transmission.

Figure 2 . 15 :

 215 Figure 2.15: In the unidirectional path tracer, random paths are cast from some virtual camera into the scene. Each path represents a random sample for the integral of the corresponding pixel, and each vertex of the path corresponds with an additional recursion of the rendering equation.

Figure 2 .

 2 Figure 2.16: Bidirectional path tracers also cast random paths. However, they do this both from light sources and the virtual camera, forming eye (teal) and light (yellow) sub-paths. These sub-paths are then joined together (shown in magenta) to form the final samples. It should be noted that these sub-paths don't have to have a one-to-one relationship as shown in this figure. Multiple light sub-paths can be used for an eye sub-path and vice versa.

Figure 2 .

 2 Figure 2.17: A simple Monte-Carlo Markov Chain, with the circles representing states, and the arrows and numbers representing transitions and their probabilities. The equilibrium distribution is obtained by traversing this a sufficiently large number of times from some arbitrary start position.

Figure 2 .

 2 Figure 2.18: In Metropolis Light Transport, each path is viewed as a state.Mutations can be achieved by modifying this path in some way, such as perturbing, adding, or removing vertices.

Figure 2 .

 2 Figure 2.19: It is difficult to transition between the left and right portions of this Monte-Carlo Markov Chain, as there is only one low probability link between the two.This means that there is a high likelihood of not exploring half of the states if the number of traversals is insufficient.

Figure 3 . 2 :

 32 Figure 3.2: IR viewed as Bi-Directional Path Tracing. Eye sub-paths of length 1 are marked in blue, with light sub-paths being marked in white. The joining paths are marked in green.

Figure 3 . 3 :

 33 Figure 3.3: Bright spots caused by the VPLs being singularities and lying on the surfaces of the geometry within the scene.

Figure 3 . 4 :

 34 Figure 3.4: The contribution from a VSL to a point is computed by estimating its contribution over the solid angle subtended by the VSL's hemisphere. This is computed via sampling, shown with the dotted purple lines. Instead of casting rays, the normal, marked in blue, the visibility, marked in green, and the material of the central point of the VSL are used.

Figure 3 . 5 :

 35 Figure 3.5: Hierarchically clustering the lights involves pairing similar clusters based on their proximity and orientation. The arrows here indicate which nodes in the tree correspond to which clusters. No arrows were drawn between the lights and leaf nodes for the sake of legibility.

Figure 3 . 6 :

 36 Figure 3.6: An example cut of a tree, with nodes in the cut being marked in teal.This cut satisfies the condition that any possible path from the root of the tree to any leaf node will only contain only a single teal node.

Figure 3 . 7 :

 37 Figure 3.7: An illustration taken from Walter et al. [Wal+06] showing how the product graph is traversed. At any given time, either the light tree can be refined, as shown by the horizontal arrows, or the gather tree can be refined, as shown by the vertical arrows.

Figure 3 . 8 :

 38 Figure 3.8: The Many-Lights matrix has lights as columns and receiving points as rows. Each element in the matrix is the contribution of the light to the receiving point, typically taking into account the material term of the receiving points as well.

Figure 3 .

 3 9 shows an example of this, where the singular values of the Many-Lights matrix of the Cornell Box scene with 256 VPLs are plotted.

Figure 3 . 9 :

 39 Figure 3.9: The singular values of the Many-Lights Matrix of a Cornell Box scene with 256 VPLs. One can see that the singular values tail off drastically, showing that most of the energy lies within the first few basis vectors.It should be noted that we constructed this matrix for the purposes of illustration, thus we use luminance rather than separating out the different colour channels. We cropped this image for legibility as the first singular value is over 500.

Figure 4 .

 4 Figure 4.1: The low-rank matrix completion problem deals with filling in the missing elements, marked with red question marks, with inferred values, marked in blue.

Figure 4 . 2 :

 42 Figure 4.2: The columns and rows of the 5 × 5 matrix are all linear combinations of the basis columns and rows which are marked with a, b, c, and d.

Figure 4 . 4 :

 44 Figure 4.4:An example case of where compressive sensing can be applied. Here, the initial signal x is sparse, meaning that we do not need many measurements to be able to reconstruct it correctly.

x ∥x∥ 0 s

 0 .t. y = Ax (4.14) As this is NP-Hard, the convexly relaxed version of it is typically solved for min x ∥x∥ 1 s.t. y = Ax (4.15)

Figure 4 . 5 :

 45 Figure 4.5: An example case of low-rank and sparse matrix separation. Here, the higher rank matrix X is separated into the sum of a low-rank matrix L and a sparse matrix S.

Figure 5 . 1 :

 51 Figure 5.1: The architecture for our system. Nodes in blue are computed on the CPU, whereas nodes in red are computed on the GPU.

 Figure 5.3 shows an example of the slices generated with this method within the Cornell box scene.

Figure 5 .

 5 Figure 5.2:Receiving points are generated by casting paths from the camera into the scene, which are terminated if they encounter a non-specular surface or the path has reached a maximum depth. We store this final path vertex as a receiving point if it is non-specular. For example here, the first points are stored except when the rays hit the mirror, in which case we continue the path until a non-specular surface is reached, which we then store.

Figure 5 . 3 :

 53 Figure 5.3: Cornell box receiving points sliced according to their position and orientation at 4 samples per pixel.

Figure 5 . 4 :

 54 Figure 5.4: The ranks of both the kitchen and Cornell box scenes for both visibility and luminance, with the luminance rank being computed by counting the number of singular values over 0.0001. It can be seen that the rank for visibility is a lot more stable across scenes, remaining at a relatively constant level. The rank for luminance, on the other hand, can vary a lot a lot as it is also dependent on the materials.

Figure 5 . 6 :

 56 Figure 5.6: A sorted lower rank visibility matrix of a slice within the kitchen scene with the VPLs as columns and receivers as rows. Low-rank columns are marked in blue, high-rank columns are marked in red, and highly coherent columns are marked in green.

Figure 5 . 7 :

 57 Figure 5.7: An equal number of three samples are allocated here for each bucket.It can be seen that with this strategy, areas where the visibility doesn't change has sparse numbers of samples, whereas the opposite is true in areas where visibility changes a lot.

Figure 5 .Figure 6 . 2 :

 562 Figure 5.11: Large or close VSLs (yellow circle) cause receiving points (teal circle) that lie close to, or within them to overestimate their solid angle compared to the actual geometry covered by the light. The red dotted line illustrates this, where the projected surface area from the actual solid angle far exceeds that which the VSL covers. Using oriented discs (green line) is an alternative to have a more conservative estimate for this. As can be seen with the blue dotted line, the projected surface area is far closer to what is covered by the light.)

Figure 6 . 3 :

 63 Figure 6.3: Sample-rate versus error plotted compared for uniform and importance sampling across three scenes.

Figure 6 .

 6 Figure 6.6 and Table6.1 show how adaptive row sample-rates improves the accuracy and reduces the number of required samples in the Classroom scene when compared to using a static row samplerate for all slices. An additional benefit is that there is no more need to tune the row sample-rates for each scene, as low-rank areas are automatically detected.

Figure 6 . 4 :

 64 Figure 6.4: Adaptive sampling (bottom) compared to uniform sampling (top) in the San Miguel scene at α = 15%. Adaptive sampling removes many of the light leaks.

Figure 6 . 5 :

 65 Figure 6.5: Although all three emitters, which are marked in yellow and green, are in the same quadrant of the blue slice, they have very different visibility patterns due to the complex blockers marked in black.

Figure 6 . 6 :

 66 Figure 6.6: Adaptive row sample-rates (top) is far more efficient than static sampling (middle, bottom) at removing light-leak artefacts in the classroom scene.

Figure 6 . 7 :

 67 Figure 6.7: Completing the visibility matrix with Singular Value Thresholding with (right) and without truncated svd (left) with 1000 clusters.

Figure 6 . 8 :

 68 Figure 6.8: Ground truth images of our test scenes. From left to right, top to bottom: Cornell Box, Hairball, Sponza, San Miguel, Staircase, Living Room, Breafast Room, Classroom, Modern Hall, Bathroom, Kitchen, and Grey & White Room. The top 8 scenes are diffuse, whereas the bottom 4 are glossy. The images are padded with black borders to account for the different aspect ratios.

Figure 6 . 9 :

 69 Figure 6.9: Equal time renders (~60s) and time vs error for kitchen scene. Error images show L 1 error.

Figure 6 . 10 :

 610 Figure 6.10: Equal time renders (~125s) and time vs error plot for San Miguel scene. Error images show L 1 error.

Figure 6 . 11 :

 611 Figure 6.11: Equal time renders (~140s) and time vs error plot for Sponza scene.Error images show L 1 error.

Figure 6 . 13 :

 613 Figure 6.13: Poor refining caused by clustering not handling visibility can be enhanced by glossy surfaces, causing banding (top). Switching to a LightSlice alleviates this (bottom).

Figure 6 .

 6 Figure 6.14: Top left: rank of visibility matrix for each slice (blue = lowest rank, red = high rank). Top right: number of visibility samples computed for each slice. It is correlated with the rank of visibility matrix. Regions with higher rank correspond to penumbral regions, with many small variations across many columns. Bottom: ordered visibility matrix from a penumbra region. Columns boxed in red all have variations.

Figure 7 . 1 :

 71 Figure 7.1: Rejection sampling majorizes q over p with the constant C, and then rejects the samples with a probability p(x)

Figure 7 . 6 :

 76 Figure 7.6: The three different versions of f (x) that we use for our preliminary experiments.

Figure 7 . 7 :

 77 Figure 7.7:The three different pairs of p(x) and q(x) we use for our preliminary experiments. Here, q(x) is denoted with magenta, and p(x) is denoted with turquoise.

Figure 8 . 1 :

 81 Figure 8.1: The bottom magnified window shows occlusion ghosting artefacts caused by backprojecting from a previously occluded sample, and the right magnified window shows reflection ghosting artefacts caused by using information from an outdated rendering equation.

Figure 8 . 2 :

 82 Figure 8.2:The mixture distribution shown in purple is the resultant sample distribution when combining equal numbers of samples from p and q. The many samples that lie on the tail of p leads to higher variance in the case where p is a better approximation of the target distribution.

Figure 8 . 4 :

 84 Figure 8.4:Backprojection and cases where it fails. The corresponding pixel position from the previous camera position is found for the green surface point using backprojection. This fails in the case of the red surface point due to occluding geometry that now covers it, and in the case of the blue as the surface point was previously occluded and thus no information for it exists.

Figure 8 . 5 :

 85 Figure 8.5: Our simplified backprojection strategy.We instead perform backprojection per pixel by using the surface point corresponding to its center. We cast a ray from the new camera and check for distance to validate. The red sample shows an example of an invalid pixel, whereas the green is valid. All samples in the pixel, marked with the blue dotted lines, are used in the corresponding pixel of the next camera position should the validation pass.

Figure 8 . 6 :

 86 Figure 8.6: In RIS, point sample candidates are drawn using the surrogate q(x), with each assigned a weight of p(x)

Figure 8 . 7 :

 87 Figure 8.7: We scale previous samples that fall into S + with q(x) p + (x) and then combine them with the samples drawn from p aug in the buffer B aug . We scale previous samples that fall into S -with χq - χp - and store them in B rw .

Figure 8 . 8 :

 88 Figure 8.8: Ground truth images of our test scenes. Each new scene is a row, and each new camera configuration is a column. The first column shows the initial camera configurations, whereas the proceeding three columns show the secondary camera configurations.

Figure 8 . 9 :

 89 Figure 8.9: RMSE plotted against camera distance for our five scenes.

Figure 8 .

 8 Figure 8.10: Renders for the different strategies for the Cornell Box scene with moderate material roughness at a large camera displacement. The error shown is L 1 .

Figure 8 .

 8 Figure 8.11: RMSE against c multipliers for adjusting S + in the reweightingaugmentation method. A larger c means expanding S + at the cost of a diminishing S -. We use a log-scale on the y-axis to account for the vastly different values of c.

Figure 8 .

 8 Figure 8.12: Backprojection (right) and Augmentation (bottom) artefacts are exacerbated due to numerical instability caused by a large c, as shown in this render of a smooth scene with c = 10.

Figure 8 .

 8 Figure 8.13: Noisiness of integral estimates with different numbers of RIS candidates. A larger number of candidate solutions results in less noisy integral estimates.

Figure 8 .0 >0. 1 Figure 8 . 15 :

 81815 Figure 8.14: RMSE versus number of candidate samples in the glossier Cornell Box scene with a large camera displacement.Integals k = 1 RIS k = 3 Integals k = 3 RIS k = 1

Figure 9 . 1 :

 91 Figure 9.1: Shown here is a case where a point on a diffuse surface receives light indirectly through a mirror, with no other incoming light as the wall behind it is perfectly absorbent. Sampling just the material will be inefficient as the light is coming from a small area on the hemisphere.

Figure 9 . 2 :

 92 Figure 9.2: S-d tree structure from a diagram taken from Müller et al. [MGN17].The tree first discretizes the scene spatially using a k-d tree, and then directionally using a quad-tree.

Figure 9 .

 9 Figure9.3: Shown here is a simple directional tree with each leaf-node containing the total radiance sampled, and each parent containing the sum of the children's nodes. Nodes are locally sampled proportionally to their incident radiance ratio to other children. Their probability is this value normalized by their area with respect to the parent's, which is 0.25 as we are using a quad-tree with 4 equal area children. Their final probability can be found by multiplying the local probability of each of their parents.

Figure 9 . 4 :

 94 Figure 9.4: Comparisons of the product distribution against MIS with α = 0.5 in the case where the BSDF and incident radiance distributions are significantly different. While the MIS and product distributions have some similarities, they differ substantially and thus sampling from the MIS distribution will result sub-optimal weights.

Figure 9 . 5 :

 95 Figure 9.5: The discretization caused by the s-d tree can cause noticeable boundary artefacts (left). The spatio-directional filtering alleviates this (right). These images were taken from Müller [M 19].

Figure 9 . 6 :

 96 Figure 9.6: The PPG framework with the areas that we aim to focus on, which are marked in red. These are namely the use of Effective Sample Size to combine training renders, and the use of reweighting-augmentation to reuse older training samples.

Figure 9 . 7 :

 97 Figure 9.7:The augmented tree is computed by first setting its structure to the union of of the other two directional trees. We set the values in its leaf nodes to be equal to the probability difference of corresponding leaf nodes between the other two trees, with negative values clamped to 0. We deal with the case where leaf nodes do not correspond by using the probability of the last traversable leaf node. The values shown in the nodes here are their final probabilities. As they are purely for the purposes of illustration, they do not integrate to 1.

Figure 9 . 8 :

 98 Figure 9.8: Our process of incorporating information from samples of the previous iterations, stored in the tree p comb i , into samples of the current iteration, stored in tree p i+1 . This gives us the sampling tree for the next iteration p comb i+1 . Shown here are both cases of mismatching tree structures. Also shown is the structure of p comb i+1 , which is the same as p i+1 . The above is the case of what happens with reweighting. One would need to multiply the values by their respective scaling factors for reweightingaugmentation.

•

 No Next Event Estimation • No optimization of α for MIS • No spatial filtering • No spatial-tree refinement, instead set to fixed resolution • No combination of training iteration renders from p being given a weight of 1. With this, we can look to use the surrogate ESS

Figure 9 . 9 :

 99 Figure 9.9: Ground truth renders of our test scenes.

Figure 9 .Figure 9 .

 99 Figure 9.10: Renders and error images for the different strategies for the Fractal Reflectance scene. These renders were all taken at 255 samples per pixel at spatial tree depth of 16. The different techniques performed equally with the exception of the Double Training method, which had less variance due to learning a better incident radiance field from the extra training samples.

Figure 9

 9 Figure 9.12: RMSE plotted against samples per pixel for both our test scenes. The results use a fixed static tree depth of 16. We found that the different methods had slightly different performance for the Fractal Reflectance scene, they all converged to the same performance at 1023 samples per pixel. We also observed no difference in performance in the kitchen scene. Scenes with more difficult to learn radiance may result in larger differences between the methods.

Figure 9

 9 Figure 9.13: RMSE plotted against spatial tree depth. The results were rendered using 255 samples per pixel. The Double training samples method worked best for larger static tree depths, primarily due to it having more samples at the correct resolution. We observed no differences between the methods in the Kitchen scene, possibly because the incident radiance is relatively low frequency and thus a larger spatial tree depth does not better capture it. In practice, spatial tree depth should not have much effect on training as it is dynamically adjusted.

Chapter 3 Instant Radiosity and The Many-Lights Problem

	Traditional photo-realistic rendering methods typically require long processing times to generate
	acceptable images. Instant Radiosity (IR) [Kel97] alleviates this by reducing the process to a series
	of direct lighting computations to a set of point light sources, a problem well suited to modern
	rendering hardware. It achieves this by introducing an intermediate step that generates a set of
	Virtual Point Lights (VPLs) which represent the indirect lighting within the scene.

Table 6 . 1 :

 61 Statistics when comparing adaptive row sample-rates to static row sampling in the classroom scene.

Table 6 . 2

 62

		sample percentage 25.83% (0.05%)	25.83% (0.08%)	19.62% (0.04%)	19.65% (0.06%)
	Kitchen	time	96.58s (0.67s)	95.74s (0.88s)	279.95s (2.51s)	277.80s (1.84s)
		error (rmse)	0.0757 (0.0010)	0.0764 (0.0018)	0.0643 (0.0086)	0.0641 (0.0088)
		sample percentage 25.48% (0.10%)	25.41% (0.12%)	19.94% (0.14%)	19.84% (0.06%)
	San-Miguel	time	134.17s (1.73s)	131.97s (0.63s)	389.71s (4.57s)	389.55s (3.60s)
		error (rmse)	0.0482 (0.0002)	0.0482 (0.0001)	0.0137 (0.0004)	0.0139 (0.0005)
		sample percentage 12.56% (0.10%)	15.63% (0.08%)	10.10% (0.06%)	11.80% (0.07%)
	Sponza	time	56.32s (0.81s)	59.76s (0.88s)	162.02s (1.29s)	169.24s (0.48s)
		error (rmse)	0.0515 (0.0001)	0.0514 (0.0000)	0.0079 (0.0006)	0.0073 (0.0008)

Recursive 1spp Non Recursive 1spp Recursive 4spp Non Recursive 4spp : Statistics for our recursive sampling method in the Kitchen, San-Miguel, and Sponza scenes, with standard deviations given in parentheses.

Initial Small Moderate Large Cornell Box Rough Cornell Box Moderate Cornell Box Smooth Kitchen Modern Hall

Table 9 .

 9 1: RMSE of different training rendering combination methods, at 511 samples per pixel. The values in parentheses give the standard deviation.

Table 9 .

 9 1 shows the RMSE obtained by the different training render combination methods with images rendered at 511 samples per pixel.

 Table C.2: Statistics for Progressive Path Tracing by spatial tree depth across all scenes. Shown in parentheses are the standard deviations.

			12	14	16	18
		Rew-Aug 0.02955(0.0002) 0.02802(0.00027) 0.03019(0.00064) 0.03346(0.00118)
	Fractal Reflectance	Rew None	0.0308(0.00036) 0.02896(0.00029) 0.03135(0.00057) 0.03521(0.00081) 0.03035(0.0003) 0.02856(0.00032) 0.02965(0.00066) 0.03249(0.00072)
		Double	0.0302(0.00045) 0.02845(0.00035) 0.02804(0.00026) 0.02833(0.00047)
		Rew-Aug 0.08089(0.00169) 0.08132(0.00111) 0.08065(0.00099)	0.081(0.00256)
	Kitchen	Rew None	0.08056(0.00185) 0.08187(0.00199) 0.0797(0.00134) 0.08065(0.00243) 0.08117(0.00127) 0.08184(0.00169) 0.08057(0.00163) 0.08183(0.00085)
		Double	0.08104(0.00238) 0.08153(0.00278) 0.08033(0.00165) 0.08127(0.00262)

Acknowledgements

I would first and foremost like to thank my thesis supervisor Nicolas for his guidance during my doctoral studies. The research was not always smooth, but your patience really helped me pull

Sample Ω as α indices from discrete distribution ∥d∥

Approximating visibility using Adaptive Matrix Completion

We use the AMC algorithm described in Section 4.2.3 for completing the visibility matrices of each slice. However, we introduce a few modifications to tailor it to boolean matrix completion for visibility. Specifically:

• we change the pseudo-inverse to a simplified boolean match • we adaptively sample the column space using already sampled information

• we dynamically adjust the row sample rates

The full algorithm is detailed in Algorithm 2, which we term Boolean Adaptive Matrix Completion (BAMC) for convenience. The rest of this section will go on to elaborate on both the workings and motivations of our modifications.

Eliminating the pseudo-inverse

The original AMC algorithm can be directly applied to V by setting known entries to either 1 or -1 for visible and not visible entries respectively, and applying the algorithm to this matrix. However, doing this has two major drawbacks:

• The first is that the matrix is treated as a real matrix, ie. V ∈ R m×n . This causes the unknown values projected onto the range-space of Q using the pseudo-inverse to most likely no longer be 1 or -1, but rather either between or around these values. This is not an issue if we are just looking to compute the integral, but we can no longer apply the visibility information for other applications, such as sampling. While values between 1 and -1 can technically still be used, values above 1 or below -1 do not have a straightforward interpretation. Algorithm 4 Verification for dynamically adjusting row sample-rates procedure Verify(c n , Ω, β) k ← ceil(β × n) Let Π be the set of k indices drawn from U (0, n), Π ∩ Ω = ∅ Sample c Π if c Π ̸ = c Π then return false elsereturn true end if end procedure Figure 5.9: A more ideal way of completing the matrix. We ideally want to mostly fully sample the areas of the matrix outlined in red, and complete the areas outlined in blue with as few samples as possible. Currently, the small regions outlined in red are causing the entire columns to be sampled.

Recursive column sampling

An issue with the AMC algorithm is that we need to fully sample a column even if a tiny part of it is incorrect. This is highly inefficient in cases where only a few rows are high-rank, as illustrated in Figure 5.9.

The ideal way around this is to slice the receiving points in such a way that the high-rank and low-rank areas are separate. However, this is tricky to determine a priori. We instead investigate solving the problem with a recursive sampling approach.

The general idea is to change the full column sampling, which is performed when there is no matching basis column, to only sample areas of the column that are incorrect. This is achieved by first partitioning each slice of receivers with an octree as a pre-process. During full sampling, we locate the basis vector with the smallest Hamming distance to the sampled column, and keep a list of what samples are different. We then traverse the octree, sampling all leaf-nodes that have different values, and filling in the rest of the values with the values from the selected basis column.

We also cast a sparse number of verification samples on the unsampled portions of the column. If they cause a mismatch, we either subdivide and add more verification samples if the octree node is a non-leaf node, or we fully sample the receiving points in the node should it be a leaf node. Figure 5.10 illustrates our approach.

Shading

We shade receivers without checking for visibility on the GPU, as this only requires local information. This is done in conjunction with the BAMC algorithm that runs on the CPU. The visibility and shading information is joined afterwards to form the final contributions for the slice. We use a modified version of the Virtual Spherical Lights [START_REF] Hašan | Virtual spherical lights for many-light rendering of glossy scenes[END_REF] method in glossier scenes, which we term Virtual Disc Lights, and oriented diffuse VPLs with clamping for more diffuse scenes.

Chapter 6

Evaluation of Boolean Adaptive Matrix Completion for the Many-Lights problem

This chapter aims to evaluate our proposed BAMC method for completing visibility in Many-Lights problems. We structure our findings into three separate sections. We first validate our various algorithmic design choices in Section 6.1. We then evaluate our method as a whole by comparing it to three other methods across a wide range of different scenes in Section 6.2. We discuss the limitations of our method in Section 6.3. Finally, we conclude and propose future research directions in Section 6.4.

Validation for algorithm design choices

This section is aims to validate our algorithmic design choices. This includes our boolean matching modification to AMC, our adaptive visibility sampling method, our proposed method for adapting the row sample-rates across slices, and our recursive column sampling method. For completeness, we also provide some preliminary results using the popular Singular Value Thresholding algorithm [START_REF] Cai | A Singular Value Thresholding Algorithm for Matrix Completion[END_REF] to better motivate basing our method on Adaptive Matrix Completion. We also experiment in two more complex scenes with different materials setups, which will provide us with an idea of how the method performs in a more realistic setting. The scenes chosen for this are the Kitchen, which is more diffuse but also has some glossy materials mixed in, and the Modern Hall, which is highly glossy. Both scenes were obtained from the online repository of Bitterli [START_REF] Bitterli | Rendering resources[END_REF].

Boolean Adaptive Matrix Completion

The Kitchen has an initial camera position of p = [1.21, 1.3, 3.85], with its secondary camera positions being:

• Small, where p = [1, 1, 3.85]

• Moderate, where p = [0, 1, 3.85]

• Large, where p = [-1, 1, 3.85] We also rotate the camera slight as it moves towards the wall in order to not render mostly just the wall.

The Modern Hall has an initial camera position of p = [6.91, 1.15, 2.55], with its secondary camera positions being:

• Small, where p = [6.91, 1.65, 1]

• Moderate, where p = [6.91, 1.65, 0]

• Large, where p = [6.91, 1.65, -1] For our sample budget, we set the initial camera samples to 128, and the final camera samples also to 128, resulting in a total budget of 256 samples per pixel. We use the same number of samples for each method, as unlike the preliminary experiments performed in the previous chapter, the cost of computing samples dominates that of sampling in this case, resulting in the use of RIS not introducing a significant processing overhead. We use RMSE as our metric to evaluate the different strategies, which we obtain by comparing the various strategies against ground truth images rendered at 20k samples per pixel. We set the RIS candidate budget to be 3 × min(α, β), where α is the maximum sample budget for the second camera configuration, and β is the number of previous samples corresponding to the pixel.

Comparisons

Figure 8.9 shows the RMSE against camera distance for each of the five different scenes. The graphs give an idea of the sample efficiency of the various methods as the sampling distributions diverge. We also provide the images rendered, as well as their corresponding error images, for the large camera distance render in the Cornell Box with moderate material roughness scene in Figure 8.10. This is to give an idea of the visual impact of each method. The full set of renders is provided in Appendix B.

Reweighting

When comparing reweighting and reweighting-augmentation, we see that they perform essentially identically in the scenes with rougher materials. This is because the sampling distributions remain very similar, therefore not much efficiency is lost through reweighting. However, as the materials get smoother, and as the cameras diverge, the performance of reweighting deteriorates whereas reweighting-augmentation performs relatively consistently. This is expected as reweighting assigns weights to all samples, whereas reweighting-augmentation only does this for samples lying in S -.

Other than having lower error, reweighting-augmentation also does not have the visual artefacts that manifest in the reweighting method, that being fireflies or missing energy. These occur in reweighting because large numbers of previous samples lie in the tails of the new rendering equation when the distributions differ significantly. This results in a large number of samples essentially having zero energy, with a few samples having almost infinite energy. This is compounded by numerical stability issues when dealing with such small values. Another drawback to our proposed method is our use of candidate samples for both RIS and estimating the function integrals. This is inefficient as it requires extra sampling of the material function, leading to additional overhead. Using these samples to estimate the integrals may also lead to some instability with regards to the estimates, leading to poorer renders.

Future Work

There are a slew of possibilities for future research. We propose:

• Derive a method that uses reweighting-augmentation with a single accumulation buffer, rather than storing each sample individually. Although this would most likely be biased, it can still possibly be an improvement on current approaches,

• Derive closed form equations for the differences of some material models. This would allow us to both directly sample from the difference function, as well as allow us to directly compute the exact integrals,

• Extend our experiments to a wider range of scenes,

• Extend the method to incorporate other sampling strategies, such as a change to the direct lighting distribution. This means that we also need to extend the method to handle the problem globally rather than just in screen space. Algorithm 5 General outline of Practical Path Guiding algorithm. procedure Practical Path Guiding(F , I, n) M ← ∅ k = 0 while Termination condition not met do

PPG can be separated into the following stages: We will proceed to detail each of these steps in the remainder of this section.

Initialization

Initialization in PPG primarily deals with the creation of the s-d tree, a spatial structure that is used to discretize the incident radiance field within a scene. This tree can be viewed as a two-level nested tree. On the upper level is a spatial tree that discretizes the scene according to the three spatial dimensions, and in each leaf node of the spatial tree is a directional tree, which discretizes the incident radiance along the sphere of directions for the points lying within the leaf node.

The spatial tree is implemented using a k-d tree, and starts with only a single node. The idea is that it will be further refined after each training iteration based on the number of samples that appear in each node. The directional trees are implemented as sparse quad-trees. Like the spatial tree nodes, the directional tree nodes are also split during the refinement process, based on some function of their energy ratio compared to the total energy of the directional tree. Unlike the spatial tree, directional trees starts with a more than just a single level, with the default starting depth in the current PPG implementation being 4. Figure 9.2 is taken from Müller et al. [START_REF] Müller | Practical Path Guiding for Efficient Light-Transport Simulation[END_REF] and illustrates the structure of an s-d tree.

In addition to the spatial-directional tree, the initial samples-per-pixel also need to be set. This number starts low and is doubled after every training iteration. PPG starts with 4 samples per pixel for the first iteration. The first issue is that, since the incident radiance fields are discrete, it is unclear as to where the intersections occur, as well as how many. This makes it tricky to determine the domains to integrate for the material functions. Furthermore, as the sampling distributions are two dimensional over the hemisphere of a point, there can easily be an infinite number of roots for p(x) -q(x).

Another issue is that as vertices within a single spatial node can have different BSDFs, we will either need to compute the integrals for every sample, or deal with some average BSDF which combines all possible BSDFs proportionally to how often they occur within the node.

Both options here are unfortunately prohibitively expensive. The first proposal requires the estimating χ p+ and χ q+ for every single path vertex, whereas the second requires thorough sampling of a 5-dimensional function (both position and incident direction) to approximate.

We instead opt to work with a discretized version of the average material function, which is used solely to compute χ p+ and χ q+ . This is done by supplementing the s-d tree with BSDF information, which we record in tandem with the incident radiance.

Finally, we compute χ p -and χ q -as 1 -χ p+ and 1 -χ q+ , as the integrals need to sum to 1.

Incorporate Previous Samples

One method of incorporating the previous training samples is to store and re-apply them. However, this approach requires full information on the paths, and is therefore extremely memory intensive and does not scale to the number of samples per pixel.

To illustrate the memory usage of this approach, consider the simple case where for each path vertex we need to store at least its position (12 bytes), normal (8 bytes), incident radiance (12 bytes), and material type (1 byte). Here, assuming we have an average path length of 5 and are rendering at 255 samples per pixel to a 1920 × 1080 image, we would need to store about 175GBs of data, too much for a standard computer to handle.

We choose to instead operate directly with the information stored in the spatial-directional tree of the previous iteration. The previous directional tree represents a discretized version of the aggregate samples taken from that iteration. Assuming that the two tree structures are identical, adding the values stored in the corresponding nodes is equivalent to combining the samples from the two iterations.

As we are merely treating the s-d trees as sets of discretized samples, this approach can also be applied for the reweighting-augmentation method. To achieve this, we first need to determine if the leaf-nodes are in S + or S -. This can be done by checking their incident radiance probabilities against each other, as the material functions are the same in the case that α is constant throughout the iterations. If L ip (x) > L iq (x), then the node lies in S + , and S -if otherwise.

For nodes that lie in S -, values from the previous tree are scaled with the constant value χ p - χq - χp - = χ q -and values from the current tree are scaled with χ p -. For nodes that fall into S + , the values from the previous tree are scaled with χ p+ q(x) p+(x) and the values from the current tree are scaled with χ p+ . We determine q(x) and p(x) using the stored average BSDF values in the s-d tree.

To find corresponding nodes, we simultaneously traverse down the two trees, adding the scaled values in the corresponding nodes. However, as the trees can have different structures due to refinement, there may not be a corresponding node in the other tree.

To account for the case where a node in the previous tree has no corresponding node in the current, we divide the energy up amongst the children in the current corresponding sub-tree weighted according to their respective areas. We do, however, look to further explore the combination of training iteration renders in a more isolated environment in this project. We elaborate on this in the following section.

Combining Renders from Training Iterations

Section 9.1.6 mentioned that one of the proposed extensions to PPG is to combine the intermediate renders from the different training iterations using weights proportional to the average inverse variance of samples across the entire image. The authors noted that this method was biased, and also mentioned that using the average inverse variance is sub-optimal, as the per pixel variance of samples can change significantly across the rendered image.

Another method to combine the renders is to weight the pixels proportionally to their number of samples per pixel. However, this is sub-optimal as a sample drawn from an earlier training distribution is not equivalent to one drawn in the final distribution, resulting in higher than desired variance.

Much care needs to be taken in order to achieve optimal variance when combining the pixels. This is because giving pixels from poorer distributions relative weights that are too large can result in higher variance.

A commonly used method to combine these is the inverse variance weighting method. However, this is costly to estimate accurately, and thus not feasible. We aim to instead investigate weighting with the Effective Samples Size metric ESS, which gives us the equivalent number of effective samples drawn from q to p. We specifically investigate the use of one of its surrogates, ESS, to determine pixel combination ratios as ESS also requires estimating variance.

ESS as Inverse Variance

We first show that using ESS to combine the samples is optimal by equating it with the inverse variance strategy.

Recall that the ESS ratio is defined by Kong [Kon92] as

var(p) var(q) (9.5)

Combining samples from training distributions q 1 (x)...q n (x) with samples from the final iteration p(x) using ESS to weight them can be done with weights var(p) var(q 1) , ..., var(p) var(q n) , var(p) var(p) (9.6)

As the numerator is constant, and because the weights are normalized, the weighting for the samples can also be expressed as 1 var(q 1) , ...,

which is equivalent to inverse variance weighting.

A Surrogate for ESS

An issue with using ESS is that it requires the variance of the distributions, and thus has the same issue as inverse variance weighting. However, as we are primarily interested in a relative weighting system, we can choose to instead use one of the surrogates to ESS.

A reasonable assumption to make with PPG is that p will better represent the target function than any of the training distributions q i . Thus, we can choose to derive weights relative to p, with pixels

Chapter 10

Conclusion & Future Directions

In this thesis, we have discussed and investigated techniques that allow for the more efficient use of computed samples in the context of photo-realistic rendering. For this, we focused on two different problems areas: Low-Rank Matrix Completion, which we applied to the Many-Lights problem; and sample reuse across probability measures, which we applied to both progressive path tracing and the Practical Path Guiding algorithm.

We found that our work allowed for the more efficient usage of sampled information in both areas, leading to a more accurate final rendered images for the same computational cost.

Low-Rank Matrix Completion with Many-Lights Problems

We proposed and investigated a framework that allows for the fast and accurate inference of visibility between surface points and virtual lights. This framework is centered around the Adaptive Matrix Completion algorithm, which we adapted to specifically tailor it to the problem of completing boolean visibility matrices.

We found the results to be promising, with the framework achieving significantly faster computation times compared to methods such as IlluminationCut and LightSlice, and both having better convergence and being more general than the Matrix Separation method.

For future avenues of research, we propose:

• Investigating a more visibility aware clustering algorithm,

• Improving the column sampling scheme to be more efficient,

• Adapting the algorithm to work with area lights,

• Investigating the possible use of deep-learning to complete these matrices,

• Adapt the framework to incorporate light sampling using the inferred visibility.

We believe that these directions of research will allow the method to be more efficient with the sample usage, allowing for fewer samples to be taken, have less visual artefacts, and be more general, allowing it to be extended to scenarios that deal with more than just light sources that have a singular position or direction.

Reusing Samples across Probability Distributions

We investigated combining samples across multiple probability distributions in the context of Monte-Carlo rendering. We proposed a reweighting-augmentation method that allows for the efficient reuse of samples in these cases, and investigated two separate application areas where it may apply. The application areas are progressive path tracing with animated cameras, and the Practical Path Guiding algorithm. We additionally also investigated the commonly used ESS surrogate to the Effective Sample Size metric in the context of Practical Path Guiding.

Appendix A Additional Results for BAMC A.1 BAMC Scalability Results

San Miguel Classroom Kitchen 1280 x 720 @ 4, 100k VPLs 1280 x 720 @ 4, 100k VPLs 1280 x 720 @ 4, 100k

A.2 Full Results for Comparisons Against Other Many-Lights Methods

We provide equal time images along with their error images and their time versus error plots. These are as follows: • San Miguel in We also provide tables detailing the full set of data obtained.

C.2 Comparisons by Static Spatial Tree Depth

We provide the full results for our Practical Path Guiding Experiments when varying the depth of the spatial tree. These are as follows:

•

C.3 Intermediate Render Combination Results

We provide the full results for our Practical Path Guiding Experiments when combining intermediate renders to generate the final image. These are as follows:

•