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Abstract

Multi-objective optimization problems, which consider multiple objective func-
tions to be optimized, can arise in many real-life scenarios, e.g., when trying
to minimize both the cost and the time needed for traveling between two lo-
cations. In the last few decades, several algorithms have been proposed to
solve multi-objective optimization problems. These algorithms can have very
distinct behaviors, and their performance is often significantly affected by the
problem instance to be solved, the time budget available, or the desirable so-
lution quality. As such, which algorithm performs best often depends on the
scenario that is being considered.

This gives rise to the algorithm selection problem, which is concerned
with the automatic selection of the best algorithm for a given scenario. In
this thesis, we investigate the case of automatically selecting the best multi-
objective optimization algorithm to solve a previously unseen problem instance,
taking into account that the available time budget and desirable solution quality
may be uncertain, and are only known when selecting the algorithm. We make
several contributions in this line.

First, we propose theoretical and empirical models to characterize the any-
time performance of an algorithm, i.e., how solution quality improves over
time, for previously unseen problem instances. Then, considering these mod-
els, we develop an offline selection methodology to select the best algorithm
for a previously unseen problem instance given a utility function that describes
the desirable time budget and solution quality. We also propose an online se-
lection methodology that can swap between multi-objective branch and bound
strategies to improve anytime performance. Lastly, we propose a scalariza-
tion technique and a branch and bound search strategy for multi-objective
optimization problems to achieve a better anytime performance than previ-
ous approaches. Each contribution is backed by an experimental study on a
multi-objective knapsack problem, and the results highlight the quality of the
proposed models, selection methodologies, and algorithms.
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Resumo

Problemas de otimização multi-objetivo, que consideram múltiplas funções ob-
jetivo a otimizar, podem surgir em diversos cenários reais, por exemplo, quando
se quer minimizar tanto o custo como o tempo de uma viagem entre dois locais.
Nas últimas décadas, vários algoritmos foram propostos para resolver proble-
mas multi-objetivo. Estes algoritmos podem ter comportamentos distintos, e o
seu desempenho é tipicamente afetado pela instância do problema a resolver, o
tempo disponível para resolver o problema, e a qualidade da solução desejada.
Como tal, qual o algoritmo que tem melhor desempenho depende do cenário
em consideração.

Isto dá origem ao problema de seleção de algoritmos, que considera a es-
colha automática do algoritmo com melhor desempenho para um dado cenário.
Nesta tese, investigamos a seleção automática do melhor algoritmo para re-
solver instâncias do problema nunca antes vistas, tendo em conta que o tempo
disponível e a qualidade da solução desejada podem ser incertos, e apenas
conhecidos aquando da seleção. Fazemos várias contribuições nesta direção.

Em primeiro lugar, propomos modelos teóricos e empíricos para caracteri-
zar o desempenho de algoritmos anytime, ou seja, modelos que caracterizem a
evolução da qualidade da solução devolvida pelo algoritmo ao longo do tempo,
para instâncias do problema nunca antes vistas. Em segundo lugar, tendo em
conta os modelos propostos, desenvolvemos uma metodologia de seleção of-
fline para selecionar o melhor algoritmo para uma instância do problema nunca
antes vista, dada uma função de utilidade que descreve o tempo disponível e
a qualidade da solução desejada. Também propomos uma metodologia de se-
leção online capaz de mudar de estratégias branch and bound multi-objetivo
de forma a melhorar o desempenho do algoritmo ao longo do tempo. Por fim,
propomos uma técnica de escalarização e uma estratégia de branch and bound
para problemas de otimização multi-objetivo para obter um melhor desem-
penho ao longo do tempo comparativamente a abordagens já existentes. Cada
contribuição é acompanhada por um estudo experimental de um problema
knapsack multi-objetivo, sendo que os resultados destacam a qualidade dos
modelos, metodologias de seleção, e algoritmos propostos.
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Résumé

Les problèmes d’optimisation multi-objectifs, pour lesquels plusieurs objectifs
doivent être optimisés, peuvent survenir dans de nombreux scénarios réels,
par exemple lorsque l’on essaie de minimiser à la fois le coût et le temps néces-
saires pour se déplacer entre deux emplacements. Au cours des dernières
décennies, de nombreux algorithmes ont été proposés afin de résoudre des
problèmes d’optimisation multi-objectifs. Ces algorithmes peuvent avoir des
comportements très distincts et leurs performances sont souvent affectées de
manière significative par l’instance du problème à résoudre, le budget temps
disponible pour la résolution, ou encore la qualité de solution souhaitée. Ainsi,
l’algorithme qui fonctionne le mieux dépend souvent du scénario envisagé.

Cela donne lieu au problème de sélection d’algorithme, qui concerne la
sélection automatique du meilleur algorithme pour un scénario donné. Dans
cette thèse, nous étudions le cas de la sélection automatique du meilleur algo-
rithme d’optimisation multi-objectifs pour résoudre une instance de problème
non-rencontrée auparavant, en tenant compte du fait que le budget temps
disponible et la qualité de solution souhaitée peuvent être incertains, et ne sont
connus qu’à l’étape de la sélection de l’algorithme. Nous apportons plusieurs
contributions dans cette voie.

Dans un premier temps, nous proposons des modèles théoriques et em-
piriques pour caractériser la performance "anytime" d’un algorithme, c’est-à-
dire comment la qualité de solution s’améliore au fil du temps, pour des in-
stances de problème non-rencontrées auparavant. Ensuite, en considérant ces
modèles, nous développons une méthodologie de sélection hors ligne afin de
sélectionner le meilleur algorithme étant donné une fonction d’utilité qui décrit
le budget temps et la qualité de solution souhaités. Nous proposons également
une méthodologie de sélection en ligne qui peut basculer entre des stratégies
de branch and bound multi-objectifs pour améliorer les performances "any-
time". Enfin, nous proposons une technique de scalarisation et une stratégie
de branch and bound pour l’optimisation multi-objectifs afin d’obtenir une
meilleure performance "anytime" que les approches précédentes. Chaque con-
tribution est étayée par une étude expérimentale sur un problème de sac à dos
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multi-objectifs, et les résultats mettent en évidence la qualité des modèles, des
méthodologies de sélection et des algorithmes proposés.
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Chapter 1

Introduction

1.1 Motivations

Multi-Objective Optimization (MOO) deals with the study of problems that
have more than one objective to optimize. Such problems may arise in many
real-world applications. For example, when considering the problem of finding
the optimal path between two cities, several objectives may be considered si-
multaneously, such as minimizing the traveling time, minimizing the monetary
cost of the trip, and maximizing the number of attractions in the path.

One difficulty that commonly arises when tackling MOO problems is the
conflicting nature of the objectives. This typically implies that there exists no
single solution that optimizes all objectives simultaneously. Instead, there is
a set of efficient solutions, namely the efficient set, that represent the optimal
trade-offs between the objectives. A solution is said to be efficient if there is
no other solution that is better or equal for all objectives, and strictly better
for at least one objective. Going back to the previous example, the use of
highways instead of national roads typically minimizes the time needed to
travel between two cities. However, toll costs increase the overall cost of the
trip. On the contrary, opting for national roads can minimize the total cost
of the trip, but is likely to increase the travel time. As such, for a non-trivial
trip, there may be a large number of efficient solutions that consider different
stretches of highway and national roads.

Under the assumption that no preference regarding the objectives is known
a priori, every efficient solution is potentially relevant to a Decision Maker
(DM). Therefore, a common goal in MOO is to find the entire efficient set.
Unfortunately, finding the entire set in a reasonable amount of time can be
infeasible for many problems [15]. As such, it is often more useful to find a
good approximation to the efficient set, namely an approximation set, within a

1



1.2. GOALS & SCOPE 2

reasonable amount of time. However, it is not always clear what is a reasonable
amount of time or a good approximation set when designing an algorithm. For
example, consider an algorithm for a real-time system that can take more or
less time to respond to an event depending on the urgency of the situation.

Anytime algorithms [11, 78] return an approximation for any time budget,
thus offering a trade-off between execution time and approximation quality. As
a result, anytime algorithms are particularly suited for situations like the one
described above, where the anytime preferences of the DM with respect to the
desired approximation set quality or available time budget are uncertain. Inter-
estingly, many commonly used MOO algorithms are inherently anytime since
they keep and extend an archive of feasible solutions, which can be returned
at any time.

Although many anytime MOO algorithms have been proposed over the
years, it is often not clear which algorithm should be selected to solve a pre-
viously unseen problem instance. This selection should take into account the
anytime preferences of the DM since they may impact the choice. For example,
consider a real-time system that receives problem instances to solve. For some
instances, the system needs to return a solution within a short amount of time,
e.g., 1 second. For other instances, the system has more time, e.g., 60 seconds.
For yet other instances, the exact time depends on external factors that are not
yet fully established, but it is known that the algorithm will be interrupted be-
tween two time points, e.g., between 1 and 60 seconds. Depending on the time
available to solve the problem instance, a different algorithm may be chosen.

The problem of automatically selecting an algorithm is commonly known
as the Algorithm Selection Problem (ASP), which was introduced by Rice [67]
and has gathered the attention ofmany researchers, on different areas, in recent
years [41, 44, 69]. However, research for the ASP has mostly focused on select-
ing between single-objective optimization algorithms, and existing method-
ologies are not easily extendable to the multi-objective case [41]. Moreover,
existing algorithm selection methodologies often consider that the anytime
preferences of the DM are known in advance, i.e., when designing or training
the selection methodology. However, in scenarios like the one described in the
previous paragraph, anytime preferences are only known when performing
the selection, or during the execution of the selected algorithm itself.

1.2 Goals & Scope

In this thesis, we are interested in studying the ASP for selecting between
MOO algorithms to solve a previously unseen problem instance. We consider,
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two main perspectives for algorithm selection, offline and online. In the offline
case, our goal is to select the best anytime algorithm to solve a previously
unseen problem instance, before attempting to solve it. Moreover, we consider
that the anytime preferences of the DM are only known when calling the
algorithm selection methodology. In the online case, we want to select and
change algorithms while solving a previously unseen problem instance. In this
case, we consider that the anytime preferences of the DM are unknown, thus
the goal is to optimize the quality of the returned approximation set over time,
namely to improve anytime performance.

Algorithm selection methodologies often make use of theoretical or em-
pirical models to predict the performance of algorithms on previously unseen
instances. In this thesis, we consider the design of such models for predict-
ing the anytime performance of MOO algorithms. We distinguish between
theoretical and empirical models in the sense that latter are built using empir-
ically collected data from previous runs of an algorithm on known problem
instances, whereas the former rely only on the theoretical knowledge of how
an algorithm operates.

We consider that the anytime performance of a MOO algorithm is charac-
terized by a function that maps the time taken by an algorithm, to the quality of
the approximation set that would be returned if the algorithm was interrupted
at that time. For measuring time, we consider the CPU-time taken by the algo-
rithm. However, since CPU-time depends on the empirical environment, we
consider the number of iterations performed by the algorithm when designing
theoretical models. For measuring the quality of an approximation set as a
scalar value, we consider the hypervolume indicator [80], a commonly used
quality indicator in MOO that measures the multi-dimensional area dominated
by the image of an approximation set in the objective space, with respect to a
given reference point.

As such, the main research questions considered for this thesis are the
following:

R1. Can we design theoretical models to predict the anytime performance of
particular MOO algorithms for previously unseen instances with respect
to the number of iterations performed by the algorithm, taking into
account the theoretical behavior of the algorithm?

R2. Can we build empirical models to predict the anytime performance of
MOO algorithms for previously unseen instances from a set of training
instances?
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R3. Can we design an offline algorithm selection methodology to select be-
tween MOO algorithms for solving a previously unseen instance using
the previously designed empirical models of anytime performance?

R4. Can we design an online algorithm selection methodology to select and
swap between MOO algorithms such that anytime performance is opti-
mized?

1.3 Contributions

The main contributions of this thesis, which directly connect to the research
questions presented above, are as follows:

C1. We propose, and empirically analyze, two variants of theoretical model
of anytime performance for bi-objective optimization algorithms that
find, at each iteration, a solution maximizing the accumulated hyper-
volume. Anytime performance is considered in terms of the number
of iterations performed by the algorithm, and the hypervolume of the
archive of collected solutions. The first variant is given by an analytical
methodology that while simple, requires several assumptions. In partic-
ular, it assumes that the non-dominated set can be approximated by a
piecewise linear function with two symmetric segments and no disconti-
nuities. Furthermore, it requires that the objective space is scaled down
such that the non-dominated set is contained in the unit square [0, 1]2,
and that the reference point for the hypervolume is set to the origin. The
second variant is given by an algorithm that generalizes the ideas of the
first variant to require less assumptions. In particular, this variant only
requires that the non-dominated set can be approximated by a piecewise
linear function.

C2. We propose three empirical models to predict the anytime performance
of a MOO algorithm for a previously unseen problem instance. For build-
ing these models we assume that there is a set of training problem in-
stances that can be solved by the algorithm. These models differ in their
assumptions, and in their predictive power. In particular, the first model
has no other assumptions besides having a set of training instances that
can be characterized by a set of instance features, and having collected
anytime performance data for the algorithms on those instances. How-
ever, it can only predict anytime performance for which anytime per-
formance data has been collected, e.g., if anytime performance data was
only collected up to a CPU-time of 10 seconds, it cannot predict anytime
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performance for a CPU-time of 20 seconds. On the other hand, the sec-
ond model can predict beyond the collected anytime performance data
used for training, but assumes that the anytime performance of an algo-
rithm can be characterized by a (non-linear) mixed effects model. The
third model, assumes that a theoretical model of anytime performance
that maps the number of iterations to the archive quality exists for the
current algorithm. Its predictive accuracy depends on the quality of this
theoretical model, and on the accuracy of predicting how much compu-
tational time each iteration takes. Lastly, we perform an empirical study
on the first model.

C3. Wepropose, and empirically analyze, an offline algorithm selection frame-
work to select the best anytime MOO algorithm to solve a previously
unseen problem instance, under the assumption that the anytime prefer-
ences of the decision maker are only (partially) known when performing
the selection and can be characterized by a utility functionwith respect to
time and quality. This framework considers empirical models of anytime
performance, such as the ones described in contribution C2, to predict
the anytime performance of the algorithms on the previously unseen
problem instance. Then, a scalar measure of anytime performance is
computed for each algorithm, which takes into account the predicted
anytime performance and the utility function describing the anytime
preferences of the DM. Finally, the algorithm that optimizes this mea-
sure of anytime performance is selected.

C4. Wepropose, and empirically analyze, an online algorithm selectionmethod-
ology to automatically select and swap between MOO algorithms in or-
der to optimize anytime performance. In particular, this methodology
selects between different branch-and-bound approaches depending on
the active nodes and archive of collected solutions.

The contributions above also led to new anytime MOO approaches:

C5. We propose an 𝜀-constraint scalarization approach for bi-objective op-
timization problems guided by the theoretical model of anytime perfor-
mance from contribution C1.

C6. We propose an indicator-based branch-and-bound framework for MOO
that follows a best-first search strategy. This framework considers the
use of a binary quality indicator to select the best node to be explored at
each iteration. This approach is considered in the context of the online
selection methodology of contribution C4.
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1.4 Publications & Software

The following publications, in chronological order, are a direct result from the
work carried out for this thesis:

P1. A. D. Jesus, L. Paquete, and A. Liefooghe. “A Model of Anytime Al-
gorithm Performance for Biobjective Optimization Problems”. In: Pro-
ceedings LeGO - 14th International Global Optimization Workshop. LeGO
2018. Vol. 2070. AIP Conference Proceedings. AIP, 2019, p. 020049. doi:
10.1063/1.5090016 [39]

In this work, presented at the 14th International Workshop on Global
Optimization (LeGO) organized at the Leiden University, we propose and
empirically analyze the analytical theoretical model of contribution C1.

P2. A. D. Jesus, L. Paquete, and A. Liefooghe. “A Model of Anytime Algo-
rithm Performance for Bi-Objective Optimization”. In: Journal of Global
Optimization 79 (2020), pp. 329–350. doi: 10.1007/s10898-020-00909-
9 [38]

In this work, we propose and empirically analyze the algorithmic theo-
retical model of contribution C1, as well as, the 𝜀-constraint approach of
contribution C5.

P3. A. D. Jesus, A. Liefooghe, B. Derbel, and L. Paquete. “Algorithm Selection
of Anytime Algorithms”. In: Proceedings of the 2020 Genetic and Evolu-
tionary Computation Conference. GECCO 2020. Association for Comput-
ing Machinery, 2020, pp. 850–858. doi: 10.1145/3377930.3390185 [36]

In this work, we propose and empirically analyze the first empirical
model of contribution C2, as well as, the offline algorithm selection frame-
work of contribution C3.

P4. A. D. Jesus, L. Paquete, B. Derbel, and A. Liefooghe. “On the Design and
Anytime Performance of Indicator-based Branch and Bound for Multi-
objective Combinatorial Optimization”. In: Proceedings of the 2021 Ge-
netic and Evolutionary Computation Conference. GECCO 2021. Asso-
ciation for Computing Machinery, 2021, pp. 234–242. doi: 10.1145/
3449639.3459360 [37]

In this work, we propose and empirically analyze the indicator-based
branch-and-bound of contribution C6.

https://doi.org/10.1063/1.5090016
https://doi.org/10.1007/s10898-020-00909-9
https://doi.org/10.1007/s10898-020-00909-9
https://doi.org/10.1145/3377930.3390185
https://doi.org/10.1145/3449639.3459360
https://doi.org/10.1145/3449639.3459360
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P5. A. D. Jesus, L. Paquete, A. Liefooghe, and B. Derbel. “Techniques to
Analyze the Anytime Behavior of Algorithms for Multi-Objective Opti-
mization”. 31st European Conference on Operational Research (EURO
2021). 2021 [40]

In this talk, we present an R package to measure, and visually analyze,
the anytime performance of anytime MOO algorithms.

The following work, is not directly related to this thesis, but analyzes tech-
niques that were used in the implementation of the algorithms for this thesis:

P6. D. M. Dias, A. D. Jesus, and L. Paquete. “A Software Library for Archiv-
ing Nondominated Points”. In: Proceedings of the 2021 Genetic and Evolu-
tionary Computation Conference Companion. GECCO 2021. Association
for Computing Machinery, 2021, pp. 53–54. doi: 10.1145/3449726.
3462737 [13]

In this work we present, and empirically analyze, a C++ library, available
at [14], to perform operations on sets of points in the objective space.
Currently, it includes functions to filter the non-dominated points of a
set, and to update sets of non-dominated points.

The following software resulted from the development of this thesis and has
been made publicly available:

S1. A. D. Jesus. mooutils. Version v0.1.0. Zenodo, 2022. doi: 10.5281/
zenodo.6855879 [35]

A C++ library of multi-objective optimization utilities, including: func-
tions to compare solutions in terms of dominance and lexicographic
orders, data structures to keep mutually non-dominated solutions, data
structures and functions for quality indicators such as the hypervolume,
different solution queues for search algorithms that keep and process
(partial) solutions in specific orders.

S2. A. D. Jesus. mobkp. Version v0.1.1. Zenodo, 2022. doi: 10.5281/zenodo.
6857821 [33]

A C++ library for theMulti-Objective Binary Knapsack Problem (MOBKP)
containing several state-of-the-art algorithms, including the algorithms
of contributions C5 and C6, as well as, a novel data generation procedure
described in contribution C2.

S3. A. D. Jesus. moco_abm. Version v0.2.0. Zenodo, 2019. doi: 10.5281/
zenodo.3548869 [34]

https://doi.org/10.1145/3449726.3462737
https://doi.org/10.1145/3449726.3462737
https://doi.org/10.5281/zenodo.6855879
https://doi.org/10.5281/zenodo.6855879
https://doi.org/10.5281/zenodo.6857821
https://doi.org/10.5281/zenodo.6857821
https://doi.org/10.5281/zenodo.3548869
https://doi.org/10.5281/zenodo.3548869
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A Rust implementation of the algorithmic anytime performance model
of contribution C1.

S4. A. D. Jesus. apm. Version v0.1.1. Zenodo, 2022. doi: 10.5281/zenodo.
6857541 [31]

A C++ library containing the theoretical models of anytime performance
of contribution C1.

S5. A. D. Jesus. anytime. Version v0.0.2. Zenodo, 2022. doi: 10.5281/

zenodo.6856120 [30]

An R library for the analysis of anytime performance presented in publi-
cation P5.

Lastly, the code for the experiments carried out in this thesis is publicly avail-
able at [32].

1.5 Outline

The remainder of this thesis is organized as follows. In Chapter 2, we provide
the general concepts and definitions related to MOO, anytime performance and
algorithm selection. In Chapter 3, we present the theoretical models and exper-
imental analysis of contribution C1, as well as, the 𝜀-constraint algorithm of
contribution C5. In Chapter 4, we present the empirical models and experimen-
tal analysis of contribution C2. In Chapter 5, we present the offline algorithm
selection framework and experimental analysis of contribution C3. In Chap-
ter 6, we give the online selection methodology and experimental analysis of
contribution C4, as well as the branch-and-bound algorithm of contribution C6.
In Chapter 7, we summarize and discuss the main findings of this work, and
possible directions for future work.

https://doi.org/10.5281/zenodo.6857541
https://doi.org/10.5281/zenodo.6857541
https://doi.org/10.5281/zenodo.6856120
https://doi.org/10.5281/zenodo.6856120


Chapter 2

Background

In this chapter, we provide the technical background for this thesis. It is orga-
nized as follows. In Section 2.1, we give the concepts and notations related to
MOO. In Section 2.2, we present the quality indicators that are used to measure
the quality of an approximation set, and discuss their properties. In Section 2.3,
we introduce a benchmark MOO problem and present several approaches to
solve it. In Section 2.4, we provide the concepts related to anytime algorithms
and anytime performance. Lastly, in Section 2.5, we present the ASP and dis-
cuss some techniques that have been employed to solve this problem.

2.1 Multi-Objective Optimization

AMOO problem is characterized by having several, typically conflicting, objec-
tives to be optimized. Assuming, without loss of generality, that all objectives
are to be maximized, a MOO problem with𝑚 objectives is defined as:

argmax
𝑥∈X

𝑓 (𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑚 (𝑥)) (2.1)

where X denotes the set of feasible solutions, and 𝑓𝑖 (𝑥) → R denotes the 𝑖-th
objective function. The space containing X is called the decision space. If the
solutions follow a combinatorial structure we say that the problem is a Multi-
Objective Combinatorial Optimization (MOCO) problem. The image 𝑓 (𝑥) of a
solution 𝑥 ∈ X is called an objective vector. The set of all objective vectors is
denoted byY = {𝑓 (𝑥) : 𝑥 ∈ X}. The space containingY is called the objective
space.

To compare any two points in the objective space we consider the following
binary dominance relations.

Definition 2.1 (Binary dominance relations). Let 𝑦1, 𝑦2 ∈ R𝑚 . We say that:

9
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• 𝑦1 ≥ 𝑦2 (𝑦1 weakly dominates 𝑦2) iff 𝑦1𝑖 ≥ 𝑦2𝑖 for all 𝑖 ∈ {1, . . . ,𝑚}.

• 𝑦1 > 𝑦2 (𝑦1 dominates 𝑦2) iff 𝑦1 ≥ 𝑦2 and 𝑦1 ≠ 𝑦2.

• 𝑦1 ≻ 𝑦2 (𝑦1 strictly dominates 𝑦2) iff 𝑦1𝑖 > 𝑦2𝑖 for all 𝑖 ∈ {1, . . . ,𝑚}.

• 𝑦1 and 𝑦2 are mutually non-dominated iff 𝑦1 ≯ 𝑦2 and 𝑦2 ≯ 𝑦1.

There is often no unique solution that simultaneously optimizes all the
objectives in a MOO problem. Instead, there are several efficient solutions that
represent the trade-offs between the objectives.

Definition 2.2 (Efficiency and non-dominance). A solution 𝑥 ∈ X is efficient,
and its objective vector 𝑓 (𝑥) is non-dominated, iff there is no other solution
𝑥′ ∈ X such that 𝑓 (𝑥′) > 𝑓 (𝑥) holds. The set of all efficient solutions is called
the efficient set and denoted byX𝐸 . The image of the efficient set in the objective
space, Y𝑁 = {𝑓 (𝑥) : 𝑥 ∈ X𝐸}, is called the non-dominated set.

In MOCO it is often useful to distinguish between supported and non-
supported solutions [16].

Definition 2.3 (Supported solutions). An efficient solution 𝑥 ∈ X𝐸 is said to
be supported if it is also a solution to the weighted sum problem

argmax
𝑥∈X

𝜆𝑓 (𝑥) (2.2)

where 𝜆 ∈ R𝑚>0 denotes a vector of positive weights. Otherwise, 𝑥 is said to be
non-supported. The image in the objective space of a (non-)supported solution
is called a (non-)supported objective vector. The sets of all supported solutions
and objective vectors are denoted by X𝑆 and Y𝑆 respectively.

Definition 2.4 (Extreme supported solutions). A solution 𝑥 ∈ X𝐸 is said to
be an extreme supported solution if it is a supported solution and its objective
vector 𝑓 (𝑥) is an extreme point of the convex hull of Y𝑁 . The image of an
extreme supported solution is denoted an extreme supported objective vector.
The sets of all extreme supported solutions and objective vectors are denoted
by X𝐸𝑆 and Y𝐸𝑆 , respectively.

We also consider the following lexicographical relations.

Definition 2.5 (Lexicographical relations). Let 𝑦1, 𝑦2 ∈ R𝑚 . We say that:

• 𝑦1 >lex 𝑦
2 (𝑦1 is lexicographically greater than 𝑦2) iff 𝑦1𝑗 > 𝑦2𝑗 subject to

𝑗 = min{𝑖 : 𝑦1𝑖 ≠ 𝑦2𝑖 }.
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• 𝑦1 ≥lex 𝑦2 (𝑦1 is lexicographically greater than or equal to 𝑦2) iff 𝑦1 = 𝑦2

or 𝑦1 >lex 𝑦
2.

The problem of finding the lexicographically optimal solution, assuming,
without loss of generality, maximizing objectives, is denoted as:

arglexmax
𝑥∈X

(𝑓1(𝑥), . . . , 𝑓𝑚 (𝑥)) (2.3)

Note that every lexicographically optimal solution is also efficient [16].
In the following, we consider several definitions related to sets of solutions

or points in the objective space. First, we consider the definition of a minimal
set.

Definition 2.6 (Minimal set). Let 𝑋 1, 𝑋 2 ⊆ X denote two sets of feasible
solutions. We say that 𝑋 1 is aminimal set of 𝑋 2 iff 𝑋 1 ⊆ 𝑋 2 and for all 𝑥2 ∈ 𝑋 2

there exists 𝑥1 ∈ 𝑋 1 such that 𝑓 (𝑥1) = 𝑓 (𝑥2).

Lastly, to compare between two sets of points in the objective space we
define the following binary set dominance relations.

Definition 2.7 (Binary set dominance relations). Let 𝑌 1, 𝑌 2 ⊆ R𝑚 denote two
sets of points in the objective space. We say that:

• 𝑌 1 ≥ 𝑌 2 (𝑌 1 weakly dominates 𝑌 2) iff for all 𝑦2 ∈ 𝑌 2 there exists 𝑦1 ∈ 𝑌 1

such that 𝑦1 ≥ 𝑦2.

• 𝑌 1 > 𝑌 2 (𝑌 1 dominates 𝑌 2) iff 𝑌 1 ≥ 𝑌 2 and 𝑌 2 ≱ 𝑌 1.

• 𝑌 1 ≻ 𝑌 2 (𝑌 1 strictly dominates 𝑌 2) iff for all 𝑦2 ∈ 𝑌 2 there exists 𝑦1 ∈ 𝑌 1

such that 𝑦1 > 𝑦2.

• 𝑌 1 and 𝑌 2 are mutually non-dominated iff 𝑌 1 ≱ 𝑌 2 and 𝑌 2 ≱ 𝑌 1.

2.2 Quality Indicators

The need to quantify the quality of a set as a scalar value often arises when
comparing sets, e.g., to determine which of two mutually non-dominated sets
is better. To this end, quality indicators have been proposed in the literature [43,
81]. We consider the following two classes of quality indicators.

Definition 2.8 (Unary quality indicator). Let 𝐴 ⊂ R𝑚 be a set of points in the
objective space. A unary quality indicator is a function 𝐼 (𝐴) → R that maps
the set to a real value.
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Definition 2.9 (Binary quality indicator). Let 𝐴, 𝐵 ⊂ R𝑚 be two sets of points
in the objective space. A binary quality indicator is a function 𝐼 (𝐴, 𝐵) → R
that assigns a real value to set 𝐴 with respect to set 𝐵.

In the following, we describe one unary and two binary quality indicators and
their properties. These indicators were chosen for this thesis since they are
commonly used in MOO, and because their order-preserving properties are of
particular interest for the analysis of performance of anytime algorithms.

2.2.1 Hypervolume Indicator

A frequently used unary quality indicator is the hypervolume indicator [80], or
simply hypervolume, which corresponds to the multi-dimensional area domi-
nated by a set of points in the objective space, with respect to a reference point.
Formally, for a set 𝐴 ⊂ R𝑚 and a reference point 𝑟 ∈ R𝑚 , the hypervolume is
defined by:

𝐼𝐻 (𝐴) = Λ ({𝑞 ∈ R𝑚 | ∃ 𝑎 ∈ 𝐴 : 𝑟 ≥ 𝑞 ≥ 𝑎}) (2.4)

where Λ denotes the Lebesgue measure.

One important property of the hypervolume indicator is that it is strictly
order-preserving with respect to the binary dominance relations introduced in
Section 2.1 under a mild assumption [81]. In particular, let 𝐴, 𝐵 ⊂ R𝑚 denote
two sets of points in the objective space such that every point in𝐴 and 𝐵 strictly
dominates the reference point 𝑟 ∈ R𝑚 . Then,𝐴 ≥ 𝐵 implies that 𝐼𝐻 (𝐴) ≥ 𝐼𝐻 (𝐵),
and 𝐴 > 𝐵 implies that 𝐼𝐻 (𝐴) > 𝐼𝐻 (𝐵).

This property gives a relevant implication for our work. In particular, if an
anytime algorithm iteratively adds solutions to an archive set, then the hyper-
volume for that archive will not decrease. If the objective vector of the solution
added to the archive is not weakly dominated by any other point in the archive,
and if it strictly dominates the reference point, then the hypervolume for the
archive will increase. Moreover, among all subsets of feasible objective vectors,
the hypervolume is maximal for any set that contains the non-dominated set.

Another relevant property is that the hypervolume indicator is (strictly)
order-preserving with respect to a (strictly) order-preserving scaling of the
objectives [43]. This means that we can, for example, normalize the objectives
without affecting the order of the approximation sets given by the hypervolume
indicator. However, note that the order of the sets given by the hypervolume
is affected by the setting of the reference point.
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2.2.2 Binary Hypervolume Indicator

Abinary quality indicator related to the hypervolume is the binary hypervolume
indicator [79], or simply binary hypervolume, which corresponds to the multi-
dimensional area dominated by one set but not by another, that is, given two
sets 𝐴, 𝐵 ⊂ R𝑚 , the binary hypervolume is given by:

𝐼𝐻 (𝐴, 𝐵) = 𝐼𝐻 (𝐴 ∪ 𝐵) − 𝐼𝐻 (𝐵) (2.5)

A relevant property of this indicator for this work, in particular for the indicator-
based branch-and-bound approach described in Section 6.1, is that, under some
mild assumptions, the binary hypervolume is (strictly) order-preserving when
fixing the second parameter.

Proposition 2.1. Let 𝐴, 𝐵,𝐶 ⊂ R𝑚 denote three sets of points in the objective
space such that every point in𝐴, 𝐵, and𝐶 , strictly dominates the reference point
𝑟 ∈ R𝑚 , and𝐴 dominates𝐶 . Under these assumptions, the binary hypervolume
is order-preserving for a fixed reference set 𝑅, that is:

𝐴 ≥ 𝐵 =⇒ 𝐼𝐻 (𝐴,𝐶) ≥ 𝐼𝐻 (𝐵,𝐶) (2.6)

Proof. Since 𝐴 ≥ 𝐵 and 𝐴 > 𝐶 then it holds that:

𝐴 ∪𝐶 ≥ 𝐵 ∪𝐶 (2.7)

Then, since all points in 𝐴, 𝐵, and 𝐶 , strictly dominate the reference point and
because the hypervolume is order-preserving, it holds that:

𝐴 ∪𝐶 ≥ 𝐵 ∪𝐶 =⇒ 𝐼𝐻 (𝐴 ∪𝐶) ≥ 𝐼𝐻 (𝐵 ∪𝐶) (2.8)

Lastly:

𝐼𝐻 (𝐴 ∪𝐶) ≥ 𝐼𝐻 (𝐵 ∪𝐶) =⇒ (2.9)

𝐼𝐻 (𝐴 ∪𝐶) − 𝐼𝐻 (𝐶) ≥ 𝐼𝐻 (𝐵 ∪𝐶) − 𝐼𝐻 (𝐶) =⇒ (2.10)

𝐼𝐻 (𝐴,𝐶) ≥ 𝐼𝐻 (𝐵,𝐶) (2.11)

□

Under the same assumptions, it similarly holds that the relation 𝐴 > 𝐵 implies
𝐼𝐻 (𝐴,𝐶) > 𝐼𝐻 (𝐵,𝐶).

It can similarly be shown that when fixing the first parameter, the binary
hypervolume indicator is order-reversing with respect to the dominance of
the second parameter, which is relevant to improve the performance of the
branch-and-bound approach proposed in Section 6.1.
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Proposition 2.2. Let 𝐴, 𝐵,𝐶 ⊂ R𝑚 denote three sets of points in the objective
space. Then binary hypervolume is order-reversing for a fixed first parameter,
that is:

𝐵 ≥ 𝐶 =⇒ 𝐼𝐻 (𝐴, 𝐵) ≤ 𝐼𝐻 (𝐴,𝐶) (2.12)

Proof. By definition:

𝐼𝐻 (𝐴, 𝐵) ≤ 𝐼𝐻 (𝐴,𝐶) =⇒ (2.13)

𝐼𝐻 (𝐴 ∪ 𝐵) − 𝐼𝐻 (𝐵) ≤ 𝐼𝐻 (𝐴 ∪𝐶) − 𝐼𝐻 (𝐶) =⇒ (2.14)

𝐼𝐻 (𝐴 ∪ 𝐵) − 𝐼𝐻 (𝐴 ∪𝐶) ≤ 𝐼𝐻 (𝐵) − 𝐼𝐻 (𝐶) (2.15)

Since 𝐵 ≥ 𝐶 , this is equal to:

𝐼𝐻 (𝐴 ∪ 𝐵 ∪𝐶) − 𝐼𝐻 (𝐴 ∪𝐶) ≤ 𝐼𝐻 (𝐵 ∪𝐶) − 𝐼𝐻 (𝐶) (2.16)

which, given the order-preserving property of the unary hypervolume, is equiv-
alent to:

𝐼𝐻 (𝐵 ∪𝐶) − 𝐼𝐻 (𝐶) − 𝜖 ≤ 𝐼𝐻 (𝐵 ∪𝐶) − 𝐼𝐻 (𝐶) (2.17)

where 𝜖 ≥ 0 corresponds to the intersection of the multi-dimensional area that
is covered by both 𝐴 and 𝐵, but not by 𝐶 . □

Note that by fixing one of the parameters, we could define the indicator
as unary. However, we will not be setting a fixed parameter for the whole
duration of an algorithm. Instead, we will perform some comparisons with one
of the two parameters fixed at specific stages of the algorithm which is why
these properties are relevant, but otherwise we keep changing both parameters
as the algorithm progresses.

2.2.3 The 𝜀-indicator

Another commonly used binary quality indicator is the 𝜀-indicator [81]. For
two sets𝐴, 𝐵 ⊂ R𝑚>0 the (multiplicative) 𝜀-indicator corresponds to the smallest
factor that can be applied to all points in 𝐴 such that it weakly dominates 𝐵,
formally:

𝐼𝜀 (𝐴, 𝐵) = max
𝑟∈𝐵

min
𝑎∈𝐴

max
𝑖∈{1,...,𝑚}

𝑟𝑖/𝑎𝑖 (2.18)

where𝑚 is the number of objectives.
Like in the previous section, a relevant property for this indicator is that it

is order-reversing when fixing the second parameter.

Proposition 2.3. Let 𝐴, 𝐵,𝐶 ⊂ R𝑚>0 denote three sets of points in the objec-
tive space. Then, the 𝜀-indicator is order-reversing when fixing the second
parameter, that is:

𝐴 ≥ 𝐵 =⇒ 𝐼𝜀 (𝐴,𝐶) ≤ 𝐼𝜀 (𝐵,𝐶) (2.19)



2.3. SOLVING THE MULTI-OBJECTIVE BINARY KNAPSACK PROBLEM 15

Proof. If 𝐴 ≥ 𝐵 then it holds that:

∀𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 ∀𝑖 ∈ {1, . . . ,𝑚} 𝑎𝑖 ≥ 𝑏𝑖 (2.20)

Then, it holds that:

∀𝑐 ∈ 𝐶 ∀𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 ∀𝑖 ∈ {1, . . . ,𝑚} 𝑐𝑖/𝑎𝑖 ≤ 𝑐𝑖/𝑏𝑖 (2.21)

which implies that 𝐼𝜀 (𝐴,𝐶) ≤ 𝐼𝜀 (𝐵,𝐶). □

It also holds that the 𝜀-indicator is order-preserving when fixing the first
parameter.

Proposition 2.4. Let𝐴, 𝐵,𝐶 ⊂ R𝑚>0 denote three sets of points in the objective
space. Then, the 𝜀-indicator is order-preserving when fixing the first parameter,
that is:

𝐵 ≥ 𝐶 =⇒ 𝐼𝜀 (𝐴, 𝐵) ≥ 𝐼𝜀 (𝐴,𝐶) (2.22)

Proof. If 𝐵 ≥ 𝐶 then it holds that:

∀𝑐 ∈ 𝐶 ∃𝑏 ∈ 𝐵 ∀𝑖 ∈ {1, . . . ,𝑚} 𝑏𝑖 ≥ 𝑐𝑖 (2.23)

Then, it holds that:

∀𝑎 ∈ 𝐴 ∀𝑐 ∈ 𝐶 ∃𝑏 ∈ 𝐵 ∀𝑖 ∈ {1, . . . ,𝑚} 𝑏𝑖/𝑎𝑖 ≥ 𝑐𝑖/𝑎𝑖 (2.24)

which, from the definition of the 𝜀-indicator, implies that 𝐼𝜀 (𝐴, 𝐵) ≥ 𝐼𝜀 (𝐴,𝐶).
□

2.3 Solving theMulti-ObjectiveBinary Knapsack
Problem

Throughout this thesis, we will use the MOBKP as a benchmark problem in our
experimental studies. This problem has been commonly used as a benchmark
problem in many MOCO studies and many algorithms have been proposed
to solve it, which makes it an interesting problem for algorithm selection and
anytime performance modeling. In the following, we introduce the MOBKP,
and discuss several algorithmic approaches that have been proposed to solve
it and which we will consider in this thesis.

Given a set of 𝑛 items, each of which with an associated weight and𝑚 > 1
values, the MOBKP is the problem of finding the subset of items that maximizes
the sum for each of the𝑚 values, such that the sum of the weights of the chosen
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items does not exceed a given capacity𝑊 ∈ R>0. More formally, it can be
defined as follows:

argmax
𝑥∈{0,1}𝑛

𝑓 (𝑥) =
(
𝑓1(𝑥) =

𝑛∑︁
𝑖=1

𝑣1𝑖 𝑥𝑖, . . . , 𝑓𝑚 (𝑥) =
𝑛∑︁
𝑖=1

𝑣𝑚𝑖 𝑥𝑖

)
s.t.

𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 ≤𝑊
(MOBKP)

where 𝑣 𝑗𝑖 ∈ R>0, 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {1, . . . ,𝑚}, denotes the value for item 𝑖

and objective 𝑗 , and 𝑤𝑖 ∈ R𝑛>0 denotes the weight for item 𝑖 ∈ {1, . . . , 𝑛}. The
binary variable 𝑥𝑖 denotes whether or not an item is chosen for the knapsack,
𝑥𝑖 = 1 or 𝑥𝑖 = 0 respectively.

When solving a MOCO problem the goal is typically to find the efficient
set using an exact approach. However, for large instances, finding the efficient
set in a reasonable amount of time may not be feasible. In such cases, the goal
is to find a set of feasible solutions that gives a good approximation in a rea-
sonable amount of time using an heuristic approach. In the following sections
we describe several approaches for the MOBKP that are used throughout this
thesis. A library containing implementations for these approaches is available
at [33]. Note that many of these approaches can be adapted to other problems
as well.

2.3.1 Scalarization Techniques

Scalarization techniques transform a MOO problem into a series of scalarized
single-objective problems [16].

Dichotomic Weighted Sum

One commonly used scalarization technique for the bi-objective case (𝑚 = 2)
is the Dichotomic Weighted Sum (DWS) method by Aneja and Nair [1]. This
approach works by performing a dichotomic search on the weight values for a
weighted-sum scalarization given by:

argmax
𝑥∈{0,1}𝑛

𝜆1𝑓1(𝑥) + 𝜆2𝑓2(𝑥)

s.t.
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 ≤𝑊
(2.25)

where 𝜆1, 𝜆2 ∈ R>0 represent the weight given to each objective. Note that, this
scalarized problem corresponds to a single-objective binary knapsack problem,
which can be solved by using an appropriate algorithm. The DWS method can
be described as follows [1, 19]:
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• Step 1: Compute lexicographical optimal solutions 𝑥1 and 𝑥2 for prob-
lems arglexmax𝑥∈X (𝑓1(𝑥), 𝑓2(𝑥)) and arglexmax𝑥∈X (𝑓2(𝑥), 𝑓1(𝑥)), re-
spectively. Let 𝑄 = {(1, 2)}, 𝑅 = {𝑥1, 𝑥2}, and 𝑘 = 3.

• Step 2: If𝑄 is empty, stop the algorithm and return 𝑅. Otherwise, choose
an element (𝑟, 𝑠) ∈ 𝑄 and let 𝑄 = 𝑄 \ {(𝑟, 𝑠)}.

• Step 3: Let 𝜆1 = 𝑓2(𝑥𝑠)− 𝑓2(𝑥𝑟 ), 𝜆2 = 𝑓1(𝑥𝑟 )− 𝑓1(𝑥𝑠). Let 𝑥𝑘 be the optimal
solution for the scalarized problem of Equation (2.25) with 𝜆1 and 𝜆2.

• Step 4: If 𝑓 (𝑥𝑘) ≠ 𝑓 (𝑥𝑟 ) and 𝑓 (𝑥𝑘) ≠ 𝑓 (𝑥𝑠), then let 𝑅 = 𝑅 ∪ {𝑥𝑘},
𝑆 = 𝑆 ∪ {(𝑟, 𝑘), (𝑘, 𝑠)}, 𝑘 = 𝑘 + 1. Go to Step 2.

At the end of the algorithm above the output set 𝑅 is a subset of X𝑆 . If there
are multiple optima at step 3 and the algorithm chooses one that maximizes
𝑓1(𝑥) [5], then the output set 𝑅 is also a minimal set of X𝐸𝑆 [1]. Since 𝑅 cannot
be guaranteed to match the efficient set, we consider this to be a heuristic
approach. A generalization of this dichotomic scheme for more than two ob-
jectives is given by Przybylski et al. [66].

𝜀-constraint approaches

Another class of commonly used scalarization approaches are 𝜀-constraint
approaches. These approaches solve a sequence of scalarized problems where
all objectives but one are turned into constraints. As an example, a scalarized
𝜀-constraint problem for the MOBKP, where all objectives except the first one
are turned into constraints, is defined as:

argmax
𝑥∈{0,1}𝑛

𝑓1(𝑥)

s.t.
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 ≤𝑊

𝑓2(𝑥) > 𝜀2

· · ·
𝑓𝑚 (𝑥) > 𝜀𝑚

(2.26)

where 𝜀 𝑗 denotes the constraint value for objective 𝑗 ∈ {2, . . . ,𝑚}. We remark
that the image of a solution to this problem can be dominated, but not strictly
dominated, by an objective vector in the non-dominated set Y𝑁 [16].

A commonly used 𝜀-constraint method for two objectives is given by Srini-
vasan and Thompson [70]. This method starts by solving a scalarized problem
with an arbitrarily small constraint 𝜀2 on the second objective. Then, at each
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iteration, given an optimal solution 𝑥∗ to the scalarized problem in the previ-
ous iteration, it sets 𝜀2 = 𝑓2(𝑥∗) as the constraint value for the new scalarized
problem. A generalization of this idea for two or more objectives is the Adap-
tive 𝜀-constraint (AEPS) method given by Laumanns et al. [45]. This approach
works by partitioning the whole objective space into an hypergrid with re-
spect to the objective functions 𝑓2 to 𝑓𝑚 based on the efficient solutions already
identified. For each grid cell, up to𝑚 scalarized problems are solved to find an
efficient solution. If an efficient solution is found, then the hypergrid is updated
based on the objective values of that solution, otherwise the region for that
grid cell is added to a set of already searched regions. The algorithm continues
until all grid cells have been explored. We remark that, if the solver for the
scalarized 𝜀-constraint problems returns all optimal solutions for each problem,
then this algorithm can find the efficient set. However, if the algorithm can
only return one optimal solution for each problem, as is often the case, then
the algorithm finds a minimal set of the efficient set.

2.3.2 Branch-and-Bound

Branch-and-Bound (BB) approaches implicitly visit all feasible solutions, which
are added to an archive as the algorithm progresses, by recursively dividing
the decision space such that each subdivision involves a subproblem. This
recursive division is commonly represented by a search tree over the decision
variables such that each node corresponds to a partial solution with some de-
cision variables being fixed, and a leaf corresponds to a complete solution.
The subproblem of each node gives rise to a lower and upper bound set. A
lower bound set is a non-empty set of feasible solutions to the subproblem. An
upper bound set is a non-empty set of pairwise mutually non-dominated points
in the objective space that weakly dominates the non-dominated set of the
subproblem [17, 65].

In the following we present two standard BB frameworks. The first, given
in Algorithm 1, corresponds to an eager BB framework where the lower and
upper bound sets of the nodes are computed as soon as that node is found.
The second, given in Algorithm 2, corresponds to a lazy BB framework where
the lower and upper bound sets are computed when the node is selected for
exploration. For both approaches we start by defining a set of active nodes 𝑄
initially containing the root node 𝑟 of the search tree. For the MOBKP, this
node is the partial solution with no fixed variables. Then, archive 𝑆 , which is
used to keep an up to date set of pairwise mutually non-dominated solutions,
is initialized. In the case of the eager framework the archive is initialized with
the lower bound set of the root node. For the case of the lazy framework the
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archive is initially empty.
Then, at each iteration, a node is selected from the set of active nodes 𝑄 to

be explored. In the eager framework, this exploration consists of computing
the branching nodes, and adding them to the set of active nodes𝑄 if the upper
bound set of the branching node is not strictly dominated by the archive 𝑆 .
Otherwise, the branching node can be discarded. If the branching node is
not discarded, then the lower bound set of the branching node is also used to
update the archive set. In the lazy framework, we start by evaluating whether
or not the upper bound set of the current node is strictly dominated by the
archive 𝑆 . If this is true, then that node can be discarded. Otherwise, the lower
bound set of the node is used to update the archive, and the branching nodes
are added to the set of active nodes 𝑄 .

Algorithm 1: Eager Branch-and-Bound Framework
Input :Root node 𝑟
Output :Solution set 𝑠

1 𝑆 ← GetLowerBound(r)
2 𝑄 ← {𝑟 }
3 while 𝑄 ≠ ∅ do
4 node← SelectNode(𝑄)

5 𝑄 ← 𝑄 \ {node}
6 for branch ∈ GetBranches(node) do
7 if 𝑆 ⊁ GetUpperBound(branch) then
8 𝑆 ← 𝑆 ∪ GetLowerBound(branch)
9 𝑄 ← 𝑄 ∪ {branch}

10 end
11 end
12 end
13 return 𝑆

We remark that most approaches in the literature, e.g., [52, 65, 75], follow
an eager approach. Moreover, we note that the computation of a lower bound
set is not strictly required since the leaf nodes correspond to all complete
feasible solutions. However, by using a lower bound set, the algorithm can
add more complete solutions to the archive earlier, which can lead to more
branches being discarded earlier. This can often outweigh the computational
cost of finding the lower bound set and leads to better anytime performance,
and execution time.

In the following sections we discuss which strategies can be employed
by BB approaches to: i) select the next node to be explored; ii) compute the
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Algorithm 2: Lazy Branch-and-Bound Framework
Input :Root node 𝑟
Output :Solution set 𝑠

1 𝑆 ← ∅
2 𝑄 ← {𝑟 }
3 while 𝑄 ≠ ∅ do
4 node← SelectNode(𝑄)

5 𝑄 ← 𝑄 \ {node}
6 if 𝑆 ⊁ GetUpperBound(node) then
7 𝑆 ← 𝑆 ∪ GetLowerBound(node)
8 for branch ∈ GetBranches(node) do
9 𝑄 ← 𝑄 ∪ {branch}

10 end
11 end
12 end
13 return 𝑆

branching nodes; and iii) compute the lower and upper bound sets.

Node Selection

Two commonly used search strategies for selecting the next node to be explored
are Depth First Search (DFS) [52, 75] and Breadth First Search (BFS) [75], which
can be implemented in Algorithms 1 and 2 by using a last-in first-out queue
and a first-in first-out queue for the set of active nodes 𝑄 , respectively. We
remark, that the BFS strategy often suffers from memory issues since it may
need to keep a large amount of nodes in memory. On the other hand, the DFS
strategy can easily get stuck deep in the tree by attempting to explore nodes
that are already dominated by those in the archive.

Therefore, a third strategy, namely Best First Search (BeFS), is to select the
most promising node in the set of active nodes 𝑄 according to some heuristic.
In single-objective optimization this often corresponds to finding the node with
the best, e.g., largest in the case of a maximizing objective, upper bound, since
it suggests that searching in that direction will lead to a solution with a better
objective value. For MOO this is not as straightforward since we are often
dealing with incomparable upper bound sets. This issue is further discussed in
Chapter 6. A fourth and final strategy, namely Best Depth First Search (BeDFS),
is to select the most promising node among those at the deepest level of the
search tree.
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Branching Strategies

We consider the dichotomic branching strategy, which consists of selecting the
next variable that has not yet been fixed, and fixing it to either 0 or 1.

One important aspect is how to define what is the next variable to be
fixed. One option is to consider a fixed order for the variables. In particular,
we considered an arbitrary order, as well as the Osum, Omax, and Omin orders
proposed by Bazgan et al. [3]. The latter orders are based on the orders O 𝑗

that are induced by the increasing ratios 𝑣 𝑗𝑖 /𝑤𝑖 of the items 1 ≤ 𝑖 ≤ 𝑛 for each
objective 1 ≤ 𝑗 ≤ 𝑚. In particular, let 𝑟 𝑗𝑖 denote the rank of item 𝑖 for order O 𝑗 .
Then, Osum denotes the increasing order induced by the sums of the ranks of
each item for orders O 𝑗 , that is the increasing order induced by 𝑟 1𝑖 + . . . + 𝑟𝑚𝑖
for each item 𝑖 . The order Omax gives the increasing order induced by the
maximum rank of each item for orders O 𝑗 . To break ties, the maximum rank
for this order is computed as:

𝑟max(𝑖) = max
1≤ 𝑗≤𝑚

𝑟 𝑗𝑖 +
1
𝑚𝑛

𝑚∑︁
𝑗=1

𝑟 𝑗𝑖 (2.27)

Lastly, Omin denotes the increasing order of the minimum rank of each item
for orders O 𝑗 . To break ties, the minimum rank is computed as:

𝑟min(𝑖) = min
1≤ 𝑗≤𝑚

𝑟 𝑗𝑖 +
1
𝑚𝑛

𝑚∑︁
𝑗=1

𝑟 𝑗𝑖 (2.28)

Our preliminary experiments revealed that the order Osum very often gave
better results than the Omin and Omax orders. As such, we will not show results
for these two orders throughout this thesis. Nonetheless, they are implemented
along with the algorithms in [33].

Alternatively, it is possible to consider a dynamic order that varies between
nodes. However, this is something we did not explore in this thesis. Cerqueus
et al. [6] provides a recent overview of other branching orders and strategies
for the MOBKP when 𝑚 = 2, some of which can be generalized for more
dimensions.

Bound Sets Computation

To compute the lower bound set of a node, i.e., a partial solution to the MOBKP,
we first consider the extensions given by Dantzig’s greedy algorithm [9] for the
single-objective problems given by each objective 𝑗 , 1 ≤ 𝑗 ≤ 𝑚. In particular,
assume that the items with index 1 to 𝑘 have already been fixed for the partial
solution of the current node and that the items with index 𝑖 , 𝑘 < 𝑖 ≤ 𝑛, are
sorted in non-decreasing order of the ratio 𝑣 𝑗𝑖 /𝑤𝑖 for objective 𝑗 . Then, an
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Figure 2.1: Illustration for two objectives of the image of the lower bound set
in the objective space {ℓ1, ℓ2, ℓ𝑤 } and upper bound set {𝑢} for a partial solution
with objective vector 𝑦.

extension for the single-objective problem given by objective 𝑗 consists of
adding all items from 𝑘 + 1 up to, but not including, 𝑏 such that adding item 𝑏

would break the weight constraint. The objective vector for such an extension
is given by:

ℓ 𝑗 =

(
𝑘∑︁
𝑖=1

𝑥𝑖𝑣
1
𝑖 +

𝑏∑︁
𝑖=𝑘+1

𝑣1𝑖 , . . . ,
𝑘∑︁
𝑖=1

𝑥𝑖𝑣
𝑚
𝑖 +

𝑏∑︁
𝑖=𝑘+1

𝑣𝑚𝑖

)
(2.29)

In addition, to refine the lower bound set with a solution that offers a more
balanced trade-off among the objectives, we consider the extension that is
found with Dantzig’s greedy algorithm for the items with index 𝑖 , 𝑘 < 𝑖 ≤ 𝑛,
sorted by the non-decreasing ratio (𝑣1𝑖 + · · · + 𝑣𝑚𝑖 )/𝑤𝑖 . The objective vector of
this extension is denoted by ℓsum. We give an illustration of ℓ1, ℓ2, and ℓsum for
two objectives on the left-hand side of Figure 2.1.

As for the upper bound set, we consider the same set used by Lukata and
Teghem [52]. In particular, for the single-objective problem given by each
objective 𝑗 , 1 ≤ 𝑗 ≤ 𝑚, value 𝑢 𝑗 denotes the upper bound by Martello and Toth
[54]. Then, a point 𝑢 is given by:

𝑢 = (𝑢1, . . . , 𝑢 𝑗 ) (2.30)

which characterizes an upper bound set {𝑢}. This upper bound set is illustrated
on the right-hand side of Figure 2.1.

2.3.3 Dynamic Programming

Another class of exact approaches is Dynamic Programming (DP). Several DP
approaches have been proposed for the MOBKP, many of which extend the
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algorithm by Nemhauser and Ullmann [58] for more objectives. Klamroth and
Wiecek [42] extended the recurrence formulations of previous DP approaches
into a more general framework for the MOBKP. More recently, Bazgan et
al. [3] presented a DP approach based on several complementary dominance
relations. These dominance relations allow to discard partial solutions that
cannot lead to efficient solutions. Figueira et al. [19] proposed some extensions
to this algorithm for the bi-objective (𝑚 = 2) case, by considering a global
lower bound set and different techniques to discard partial solutions based on
their upper bound. Delort and Spanjaard [12] also considered the use of bound
sets to discard partial solutions that cannot lead to efficient solutions for the
bi-objective case.

In this work, we consider the Bazgan-Hugot-Vanderpooten Dynamic Pro-
gramming (BHV-DP) algorithm by Bazgan et al. [3]. This algorithm consists
of 𝑛 stages, such that at any stage 𝑘 the algorithm generates a set of feasible
solutions 𝑋𝑘 where the first 𝑘 items have been set to either 0 or 1, and the re-
maining items are all set to 0. At each stage, the states are generated according
to the following recursion:

𝑋𝑘 = Dom
(
𝑋 ′𝑘

)
(2.31)

𝑋 ′𝑘 = 𝑋𝑘−1 ∪
{
(. . . , 𝑥𝑘−1, 1, 𝑥𝑘+1, . . .) :

𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 ≤𝑊,𝑥 ∈ 𝑋𝑘−1

}
(2.32)

where the initial state 𝑋0 = {(0, . . . , 0)} contains the solution with no chosen
items for the knapsack and Dom(·) denotes one or more dominance relations
that can be used to discard solutions that cannot lead to efficient solutions
at later stages. The following dominance relations are proposed in [3] for
discarding solutions:

• Dom1: Let 𝑥, 𝑥′ ∈ 𝑋 ′
𝑘
. Then, 𝑥 can be discarded if 𝑥′ derives from 𝑥 at

stage 𝑘 , i.e., if 𝑥′ = (. . . , 𝑥𝑘−1, 1, 𝑥𝑘+1, . . .), and if
∑𝑛

𝑖=1𝑤𝑖𝑥𝑖 ≤𝑊 −
∑𝑛

𝑖=𝑘 𝑤𝑖 .

• Dom2: Let 𝑥, 𝑥′ ∈ 𝑋 ′
𝑘
. Then, 𝑥 can be discarded if 𝑓 (𝑥′) > 𝑓 (𝑥) and

𝑘 = 𝑛, or if 𝑓 (𝑥′) > 𝑓 (𝑥), 𝑘 < 𝑛 and
∑𝑛

𝑖=1𝑤𝑖𝑥
′
𝑖 ≤

∑𝑛
𝑖=1𝑤𝑖𝑥𝑖 .

• Dom3: Let 𝑥, 𝑥′ ∈ 𝑋 ′
𝑘
. Then, 𝑥 can be discarded if its upper bound set,

UB(𝑥), is strictly dominated by the image of the lower bound set of 𝑥′,
i.e., {𝑓 (𝑥′′) : 𝑥′′ ∈ LB(𝑥′)} ≻ UB(𝑥).

Note that, dominance relation Dom2 is an extension for the multi-objective
case of the dominance relation byNemhauser andUllmann [58]. For dominance
relationDom3, the authors consider a lower bound set with two solutions that
are found by Dantzig’s greedy algorithm [9] with respect to the orders Omax
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and Osum. The upper bound set is computed using the upper bound extensions
for each objective function byMartello and Toth [54], which has been discussed
in the previous section.

For the bi-objective case, we also consider the B-DP1 extension by Figueira
et al. [19], denoted by Figueira-Paquete-Simões-Vanderpooten Dynamic Pro-
gramming (FPSV-DP). This approach further considers the following domi-
nance relation:

• Dom4: Let 𝑥 ∈ 𝑋 ′
𝑘
. Then, 𝑥 can be discarded if Y𝐸𝑆 ≻ UB(𝑥), where Y𝐸𝑆

denotes the set of extreme supported solutions that can be computed
using the DWS approach.

A possible extension for more dimensions would be to consider the algorithm
by Przybylski et al. [66] to compute theY𝐸𝑆 for more dimensions, or to consider
an alternative set of feasible solutions.

2.3.4 Pareto Local Search

Local search approaches keep an archive of solutions that are iteratively ex-
plored. At each iteration, a solution that has not yet been explored is selected
from the archive, and its neighboring solutions are considered for inclusion
in the archive. A neighborhood is defined according to one or more neigh-
borhood mappings of the form N : X → P(X), where P(X) is the power set
of X, that map a solution to all its neighbors. A local search approach stops
once the neighborhood of every solution in the archive has been explored. A
Pareto Local Search (PLS) approach [60] considers that the archive contains
only mutually non-dominated solutions. Therefore, a neighboring solution is
only added to the archive if it is not dominated by any solution currently in the
archive. Moreover, when a solution is added to the archive every solution in
the archive that becomes dominated by the newly inserted solution is removed.

Algorithm 3 describes a PLS approach for the MOBKP following the 1-
flip-exchange neighborhood described in Liefooghe et al. [48]. This algorithm
takes as input a set 𝑋0 of mutually non-dominated solutions. This set can,
for example, be generated randomly, generated by a heuristic algorithm, or
simply contain a single solution corresponding to the empty knapsack. Sets
𝑋𝑢 and 𝑋𝑎 denote the set of unexplored mutually non-dominated solutions and
the archive of mutually non-dominated solutions, respectively. The Select

method selects a solution from the set of unexplored solutions 𝑋𝑢 . Different
selection mechanisms may be considered. For this thesis, we consider that one
solution is selected randomly. The 1-flip-exchange neighborhood considers two
neighborhood mappings. The first mapping, denoted by FlipNeighborhood in
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the algorithm, gives all solutions that result from exchanging any item in the
current solution. The second mapping, denoted by ExchangeNeighborhood in
the algorithm, gives all solutions that result from exchanging two items in the
current solution. Following the algorithm description in [48], the algorithm
only explores the second mapping if no new non-dominated solution was
found for the first. It is worth noting that, for this neighborhood exploration
definition, the PLS approach may not be able to find the efficient set [48].

Algorithm 3: Pareto Local Search
Input: 𝑋0 (Set of initial mutually non-dominated solutions)

1 𝑋𝑢 ← 𝑋0

2 𝑋𝑎 ← 𝑋0

3 while 𝑋𝑢 ≠ ∅ do
4 𝑥 ← Select(𝑋𝑢)
5 𝑋𝑢 ← 𝑋𝑢 \ {𝑥}
6 aux← 0
7 for 𝑥′ ∈ FlipNeighborhood(𝑥) ∪ ExchangeNeighborhood(𝑥) do
8 if 𝑥′ ∈ ExchangeNeighborhood(𝑥) ∧ aux = 1 then
9 break

10 end
11 if IsDominated(𝑥′, 𝑋𝑎) then
12 continue
13 end
14 𝑋𝑢 ← RemoveDominated(𝑋𝑢, 𝑥

′)
15 𝑋𝑎 ← RemoveDominated(𝑋𝑎, 𝑥

′)
16 𝑋𝑢 ← 𝑋𝑢 ∪ {𝑥′}
17 𝑋𝑎 ← 𝑋𝑎 ∪ {𝑥′}
18 if 𝑥′ ∈ FlipNeighborhood(𝑥) then
19 aux← 1
20 end
21 end
22 end
23 return 𝑋𝑎

2.4 Anytime Algorithms

Anytime algorithms [11, 78], in the context of MOO, can return a set of feasible
solutions for any time budget. This means that a DM can trade-off execution
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time with solution quality. This is relevant in various scenarios, for example,
in real-time systems where the available time for the algorithm varies between
calls, or in composite systems where the allocated time for each algorithm
varies between instances in order to improve the result of the overall system.

A distinction is often made between two categories of anytime algorithms,
interruptible and contract [78]. Interruptible algorithms do not require a priori
knowledge of the available time budget and can return a set of feasible solutions
when interrupted during their execution. By contrast, contract algorithms
require that the time budget is known a priori, and may or may not return a
solution if interrupted before that time ends. MOO approaches that keep an
archive of feasible solutions, such as the ones described in the previous section,
fall into the interruptible category since the archive can always be returned
when the algorithm is interrupted. As such, in this thesis we will focus on
interruptible algorithms.

To study the performance of a single run of an anytime algorithm we de-
fine a performance trace that describes the trade-off between solution quality
and execution time. In the following, a run refers to a single execution of an
algorithm on a particular instance.

Definition 2.10 (Performance trace). The performance trace of a run 𝑟 of an
algorithm 𝑎 is given by a function 𝑄𝑎,𝑟 : R≥0 → R that maps execution time
to the quality of the solution set that would be returned if the algorithm was
interrupted at that time.

A performance trace is said to be monotonic if function 𝑄𝑎,𝑟 (𝑡) is non-
decreasing for increasing values of 𝑡 . If every run of an anytime algorithm gives
a monotonic performance trace then that algorithm is said to have monotonic
behavior. Otherwise, the algorithm is said to have non-monotonic behavior.
Note that algorithms with non-monotonic behavior can typically be made
to have monotonic behavior by keeping the archive with the best quality in
memory. However, this may not always be possible or desirable. For example,
if the objective functions are computationally expensive, the algorithm may
use approximate objective functions that are not order-preserving with respect
to the true objective functions, which may lead to exchanging better solutions
with worse ones. As such, in the following, we want to consider definitions
for anytime performance that are meaningful for both monotonic and non-
monotonic behaviors.

To characterize the anytime performance of an algorithm for a particular
instance, we consider the definition of a performance profile.

Definition 2.11 (Performance Profile). The performance profile of an algorithm
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Figure 2.2: Performance traces (left) and profile (right) of three runs of an
algorithm.

𝑎 on a problem instance 𝜄 is given by a function:

𝑃𝑎,𝜄 (𝑡, 𝑞) → [0, 1] (2.33)

that denotes the probability of a run of algorithm 𝑎 on problem instance 𝜄

finding a solution with quality greater than or equal to 𝑞 at time 𝑡 .

We also consider the definition of an empirical performance profile which
summarizes the anytime performance of an algorithm over a set of runs.

Definition 2.12 (Empirical Performance Profile). For an algorithm 𝑎 and a set
of runs 𝑅, an empirical performance profile is given by a function:

𝑃𝑎,𝑅 (𝑡, 𝑞) = 1
|𝑅 |

∑︁
𝑟∈𝑅


1 if 𝑄𝑎,𝑟 (𝑡) ≥ 𝑞

0 otherwise
(2.34)

that denotes the proportion of runs in 𝑅 that were able to achieve a solution
with quality greater than or equal to 𝑞 at time 𝑡 .

The definition of similar (empirical) performance profiles as a conditional
probability function has been previously considered by Hoos and Stützle [29],
denoted by runtime distribution, and by Chiarandini [7] through the use of the
empirical attainment function [25]. Those profiles consider the probability of
finding a solution of quality greater than or equal to 𝑞 at, or before, execution
time 𝑡 . This definition is equivalent to ours if the performance traces of an
algorithm are all monotonic, but is different when considering algorithms with
non-monotonic performance traces.

Figure 2.2 illustrates the performance traces of three runs of an algorithm
on the left, and the corresponding empirical performance profile over those
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runs on the right. We remark that this gives a similar plot as the empirical
attainment function [50].

Lastly, we remark that aggregating performance traces into a single profile
should be carefully done [29, 78]. For example, if the considered instances have
different quality domains, then their aggregation may not be meaningful. One
possibility to mitigate this issue is, for example, to consider a relative measure
of quality.

2.5 Algorithm Selection

The ASP [67] concerns the selection of an algorithm to solve a previously
unseen instance, such that a given performance measure is optimized. As
discussed in Chapter 1, we distinguish between offline algorithm selection, i.e.,
the problem of selecting an algorithm before attempting to solve the given
problem instance, and online algorithm selection, i.e., the problem of selecting
and swapping algorithms while solving the given problem instance.

Offline Algorithm Selection

Most existing algorithm selectionmethodologies fall into the category of offline
algorithm selection. Moreover, existing methodologies often consider selecting
between single-objective optimization algorithms rather thanMOO algorithms,
and do not consider the anytime preferences of the DM at the time selection.
We refer to Kotthoff [44] and Kerschke et al. [41] for two recent reviews of
existing offline algorithm selection methodologies.

These methodologies are generally divided into two categories, regression
and classification. Regression approaches predict the performance measure for
each algorithm and select the algorithm with maximal value, see for example,
Leyton-Brown et al. [46] and Xu et al. [77]. Classification approaches instead
select an algorithm without predicting the performance measure, for example,
by learning which algorithm gives the best performance measure for different
kinds of instances and utility functions, see for example, Vilas Boas et al. [74]
and Polyakovskiy et al. [64].

Note that, most offline algorithm selection methodologies make use of in-
stance features to characterize a problem instance as a set of measurable val-
ues. For single-objective optimization problems many, general-purpose and
problem-specific, instances features have been proposed, e.g., Nudelman et al.
[59] and Mersmann et al. [55, 56]. For MOO, there has been less research. How-
ever, there are some recent promising developments with respect to general-
purpose instance features, e.g., Daolio et al. [10] and Liefooghe et al. [47, 49].
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Online Algorithm Selection

Online algorithm selection methodologies are less common than offline, but
existing methodologies similarly focus on selecting between single-objective
optimization algorithms. Some methodologies monitor the performance of the
algorithms to detect which ones are more promising and should be given more
time to run, e.g., Gagliolo et al. [23] and Gagliolo and Schmidhuber [22]. Other
approaches, consider selecting between algorithms for exploring a search tree,
e.g, Arbelaez et al. [2] selects the best search strategy at checkpoints in the
search tree. Up to our knowledge, no online algorithm selection methodology
has focused on selecting between (anytime) MOO algorithms. We refer to
Kotthoff [44] for a review of existing online algorithm selection methodologies.

Related Topics

Lastly, two related areas of research are meta-level control and composition
of anytime algorithms [78]. Meta-level control, in the context of anytime al-
gorithms, relates to the problem of deciding when to interrupt an anytime
algorithm and act on the returned solution [28, 71]. Composition of anytime
algorithms, denotes the problem of building a complex system comprised of
one or more anytime algorithm that maximizes the overall performance of the
system [68]. Up to our knowledge, these problems have not been considered
in the context of MOO problems.

2.6 Conclusion

In this chapter, we presented the theoretical background for multi-objective
optimization, and discussed several algorithms for the MOBKP, a benchmark
problem that will be used throughout this thesis.

We also discussed the concepts related to anytime algorithms and anytime
performance since most MOO algorithms naturally fall into this category of
algorithms. Another important aspect to note is that, for non-trivial problem
instances, MOO exact approaches cannot commonly find the efficient set in a
feasible amount of time, and even heuristic algorithms may take too long to
complete in some cases. Moreover, preferences with respect to time budget
and target quality may not be known when developing the algorithms or train-
ing the model, but rather only when selecting the best algorithm to solve a
particular problem instance. As such, it is often more relevant to look at MOO
algorithms as anytime algorithms, and consequently to model and study their
anytime performance rather than simply looking at their performance at the
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end of execution or at a fixed time budget or target quality. This motivates us
to look at the anytime performance of the MOO algorithms when tackling the
ASP.

Lastly, we provided some context regarding the ASP. In particular, we high-
lighted that the ASP has been studied for the selection of single-objective al-
gorithms, often considering fixed time budgets or target qualities, over several
decades. However, researchers have only recently started looking at the ASP
in the context of MOO algorithms. Moreover, these recent works have only
considered offline selection with time budgets that were set before training the
selection model. Still, these recent developments, and the positive results that
are known for the selection of single-objective algorithms, show that this is a
relevant problem to address.



Chapter 3

Theoretical Model of Anytime Per-
formance

Theoretical models can be used to predict the performance of an algorithm
on previously unseen instances without the need to empirically evaluate the
algorithm on a set of training instances beforehand. In this chapter, we give a
theoretical model to approximate the ideal anytime performance of bi-objective
optimization algorithms that (attempt to) collect an efficient solution at each
iteration [38, 39]. Examples are the scalarization techniques introduced in
Section 2.3.1. Anytime performance is considered with respect to the number
of iterations and the quality of the archive of collected solutions measured
with the hypervolume. We also propose an 𝜀-constraint approach guided by
this theoretical model [38] to define the scalarized subproblems that are to be
solved at each iteration. The experimental results show that the theoretical
model can be used to predict the ideal anytime performance, as well as the
anytime performance of the proposed 𝜀-constraint approach.

This chapter is organized as follows. In Section 3.1, we present the theoret-
ical model, and carry out an experimental study to analyze its quality against
the ideal anytime performance. In Section 3.2, we give the 𝜀-constraint ap-
proach guided by the theoretical model, and carry out an experimental study
to analyze its anytime performance. In Section 3.3, we conclude with a sum-
mary of the main findings in this chapter and discuss possible directions for
future research.

3.1 Theoretical Model of Anytime Performance

Consider an iterated algorithm to solve a MOO problem that finds an (efficient)
solution to the problem at each iteration, and keeps an archive of all mutually

31
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non-dominated solutions found. We describe this algorithm by a function 𝐴

that returns the set of solutions found after 𝑖 > 0 iterations:

𝐴(𝑖) = 𝐴(𝑖 − 1) ∪ 𝑥𝑖 (3.1)

where 𝐴(0) = ∅, and 𝑥𝑖 ∈ X denotes the efficient solution found at iteration 𝑖 .
The performance trace of this algorithm with respect to the number of itera-
tions and the hypervolume of the image of the archive in the objective space,
is given by:

𝑄 (𝑖) = 𝐼𝐻 ({𝑓 (𝑥) : 𝑥 ∈ 𝐴(𝑖)}) (3.2)

where 𝑓 (𝑥) denotes the multi-objective function being optimized.
Under the assumption that the number of iterations of the algorithm is

unknown, we define an ideal algorithm 𝐴∗ with complete knowledge of the
efficient set X𝐸 that finds, at each iteration, the solution that contributes the
most to the hypervolume of the archive, that is:

𝐴∗(𝑖) = 𝐴∗(𝑖 − 1) ∪ argmax
𝑥∈X𝐸

𝐼𝐻 ({𝑓 (𝑥′) : 𝑥′ ∈ 𝐴∗(𝑖 − 1) ∪ {𝑥}}) (3.3)

We assume, for the sake of simplicity, that there exists a single optimum for the
problem in the right-hand side of the equation above. Nonetheless, if there are
multiple optima, the formulation can be extended to consider the list of all sets
that maximize the hypervolume at each iteration. The performance traces of
this ideal algorithm gives the ideal performance trace, which can be described
by the following function:

𝑄∗(𝑖) = 𝐼𝐻 ({𝑓 (𝑥) : 𝑥 ∈ 𝐴∗(𝑖)}) (3.4)

Note that this definition of an ideal anytime performance trace does not nec-
essarily give the maximal hypervolume that can be achieved with 𝑖 efficient
solutions. However, a definition that gives, for each iteration, the maximal
hypervolume is often incompatible with an algorithm that collects, at each iter-
ation, a single efficient solution, since the sets of solutions for two consecutive
iterations can differ by more than one solution.

Finding the ideal performance trace requires knowing the efficient set,
which is unrealistic when solving a previously unseen problem instance. In-
stead, we define a theoretical model to approximate the ideal performance trace
for bi-objective optimization problems that does not require such knowledge.
This model works in two phases. In the first phase, we define a piecewise
linear approximation to the non-dominated set under some assumptions. In
particular, we assume that the objective values of the lexicographic optimal
solutions are known and that the non-dominated set can be well approximated



3.1. THEORETICAL MODEL OF ANYTIME PERFORMANCE 33

by the positive quadrant of a superellipse. Although it is not expected that the
non-dominated set matches the positive quadrant of a superellipse exactly, our
findings suggest that this gives a good approximation in practice for many prob-
lems with linear sum objective functions. Emmerich and Deutz [18] have also
considered the use of superellipses for the generation of MOO test problems.

In the second phase, we give two methodologies to compute the perfor-
mance trace of an oracle that collects, at each iteration, a point in the piecewise
linear approximation that maximizes the hypervolume. This oracle is charac-
terized by the increase in hypervolume at each iteration, denoted by𝐶 (𝑖) → R,
which corresponds to the hypervolume contribution of the newly found point
to the archive. As a result, the performance trace for this oracle, which approx-
imates the ideal performance trace, is given by:

𝑄∗(𝑖) =
𝑛∑︁
𝑖=1

𝐶 (𝑖) (3.5)

The first methodology that we give to compute the values of 𝐶 (𝑖), is an an-
alytical formulation that requires several assumptions to hold. In particular,
we assume that the piecewise linear approximation is convex and that it is
given by two symmetric linear segments. Moreover, we assume that the ref-
erence point for the hypervolume indicator is given by the nadir point of the
non-dominated set, i.e., the point given by the minimum coordinate values for
points in the non-dominated set. The second methodology is an algorithm to
compute 𝐶 (𝑖) for any piecewise linear approximation, and for any reference
point setting. Despite being more general, this algorithmic approach is com-
putationally expensive. However, empirical results show that the algorithmic
methodology is still very fast in practice, so this is unlikely to be a problem for
most applications.

The remainder of this section is organized as follows. In Section 3.1.1, we
define the piecewise linear approximation to the non-dominated set. In Sec-
tions 3.1.2 and 3.1.3, we present the analytical and algorithmic methodologies
respectively. In Section 3.1.4, we present an empirical study comparing the per-
formance trace given by our theoretical model against the ideal performance
trace.

3.1.1 Estimating the non-dominated set

Let us assume that the non-dominated set for a bi-objective optimization prob-
lem with maximizing objectives, scaled down to the unit square [0, 1]2, can be
well approximated by the positive quadrant of a superellipse centered in the
origin with both semi-diameters of length one. Formally, this is given by the
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Figure 3.1: Example of the superellipse curve for two distinct values of the
curvature parameter 𝑑 ∈ {0.5, 2}.

following parametric equation:

𝑦1
𝑑 + 𝑦2𝑑 = 1 (3.6)

where 𝑑 > 0 is a parameter that controls the curvature of the superellipse and
𝑦1, 𝑦2 ∈ [0, 1]. Alternatively, the values of 𝑦1 and 𝑦2 can also be defined with
respect to a parameter 𝜃 ∈ [0, 𝜋/2] as follows

𝑦1 = cos2/𝑑 𝜃 (3.7)

𝑦2 = sin2/𝑑 𝜃 (3.8)

Note that, for𝑑 < 1 the resulting approximation is non-convex, whereas for𝑑 ≥
1 it is convex. This is illustrated in Figure 3.1 where we show the approximation
for two distinct values of 𝑑 .

For our theoretical model, we consider an approximation to the positive
quadrant of the superellipse defined by a piecewise linear approximation 𝐺

with ℓ > 0 linear segments defined between consecutive points in the curve
approximation, such that each point 𝑔𝑖 , 𝑖 ∈ {1, . . . , ℓ + 1} can be defined by:

𝑔𝑖 =
(
cos2/𝑑 𝜃𝑖, sin2/𝑑 𝜃𝑖

)
(3.9)

where 𝜃𝑖 < 𝜃𝑖+1 and the values of 𝜃𝑖 are evenly spaced in the interval [0, 𝜋/2].
We found that this simple setting of 𝜃𝑖 provides a good approximation for the
purposes of our model. However, other techniques are available to sample
these points, e.g., see [62].

In Figures 3.2 and 3.3, we plot the superellipse curve given by Equation (3.6)
for two distinct curvature parameters 𝑑 ∈ {0.5, 2}, as well as the correspond-
ing piecewise linear approximations 𝐺 for a varying number of segments ℓ .
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Figure 3.2: Example of the superellipse curve (continuous line) for 𝑑 = 0.5 and
the corresponding piecewise linear approximation (dashed line) for a varying
number of segments ℓ ∈ {1, 2, 3, 4}.

As expected, the piecewise linear approximation better approximates the su-
perellipse curve as the number of segments increases. Moreover, for 𝑑 < 1
the piecewise approximation weakly dominates the superellipse curve and will
therefore overestimate the area dominated by the curve, whereas for 𝑑 > 1 it
will underestimate it.

3.1.2 Analytical methodology

Under some assumptions, we can define a closed formula for the performance
trace of an oracle that collects, at each iteration, a point in the piecewise linear
approximation 𝐺 that maximizes the hypervolume. In particular, we assume
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Figure 3.3: Example of the superellipse curve (continuous line) for 𝑑 = 2 and
the corresponding piecewise linear approximation (dashed line) for a varying
number of segments ℓ ∈ {1, 2, 3, 4}.
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that the piecewise linear approximation is convex, i.e., 𝑑 ≥ 1, and that it has
two linear segments such that 𝜃1 = 0, 𝜃2 = 𝜋/4, and 𝜃3 = 𝜋/2. Moreover, the
reference point for the hypervolume indicator is given by the nadir point of
the piecewise linear approximation, i.e., 𝑟 = (0, 0). Under these assumptions,
the piecewise linear approximation can be defined as:

𝐺 = {(𝑦1, 𝑔(𝑦1)) | 𝑦1 ∈ [0, 1]} (3.10)

𝑔(𝑦1) =
{

𝑝−1
𝑝 𝑦1 + 1 , 0 ≤ 𝑦1 ≤ 𝑝
𝑝

𝑝−1𝑦1 +
𝑝

1−𝑝 , 𝑝 < 𝑦1 ≤ 1
(3.11)

where
𝑝 = cos2/𝑑

𝜋

4
= sin2/𝑑

𝜋

4
(3.12)

The first point collected by the oracle for such a piecewise linear approxi-
mation is found by solving the problem:

argmax
𝑦1∈[0,1]

𝑦1 · 𝑔(𝑦1) (3.13)

This problem has a single global optimum at coordinates (𝑝, 𝑝). As such, the
first point collected by the oracle gives a contribution 𝐶 (1) = 𝑝2.

Subsequent points can be found by considering the regions that are not
dominated by any of the points previously collected. These regions are said
to be uncovered. Regions dominated by at least one of the previously collected
points are said to be dominated. After the first point (𝑝, 𝑝) has been collected,
there are two uncovered regions each defined by a right triangle such that the
hypotenuse corresponds to the non-dominated set of that uncovered region.
In Figure 3.4, we illustrate the uncovered and dominated regions, colored in
gray and black respectively, after collecting one point (left-hand side) and three
points (right-hand side).

To find the largest hypervolume given by the dominated area of a point
in an uncovered region defined by a right triangle such that the set of non-
dominated points is given by the hypotenuse and the reference point is on the
right angle, we solve the following problem:

max 𝑦1 · 𝑦2
s.t. 𝑦2 = −𝑐2

𝑐1
· 𝑦1 + 𝑐2

𝑦1 ∈ [0, 𝑐1]
𝑦2 ∈ [0, 𝑐2]

(3.14)

where 𝑐1 and 𝑐2 denote the length of the catheti of the right triangle on the
𝑦1 and 𝑦2 axes, respectively. This problem has a global optimum of 𝑐1 · 𝑐2/4
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Figure 3.4: Example of the dominated (in black) and uncovered (in gray) regions
after collecting one (left) and three (right) points with the oracle.

at point (𝑦1 = 𝑐1/2, 𝑦2 = 𝑐2/2). Note that, the hypervolume given by the
dominated area of this point corresponds to half the area of the uncovered
region. Moreover, after collecting this point and considering its dominated
area, there are two smaller uncovered regions that are also right triangles, each
of which with catheti that are half the length of those in the original triangle,
and consequently covering a quarter of the area.

After collecting the first point, the resulting uncovered regions are two
equivalent right triangles with catheti of size (1 − 𝑝) and 𝑝 , and an area of
(1 − 𝑝) · 𝑝/2. Then, from Equation (3.14), it follows that the second and third
contributions for points collected by our oracle are𝐶 (2) = 𝐶 (3) = (1−𝑝) ·𝑝/4.
After excluding the regions dominated by the two points providing these con-
tributions, one for each uncovered region, there are four equivalent uncovered
regions as illustrated on the right-hand side of Figure 3.4. After collecting the
points that maximize the hypervolume in all equivalent uncovered regions, the
number of uncovered regions doubles. As such, a general equation for 𝐶 (𝑖) is
given by

𝐶 (𝑖) =
{
𝑝2 𝑖 = 1
(1−𝑝)·𝑝
4⌊log2 𝑖 ⌋ 𝑖 > 1

(3.15)

which shows a logarithmic rate of convergence. Computing the performance
trace of the oracle, given by 𝑄∗( 𝑗) until iteration 𝑗 > 0, which is the result of
the sum of 𝐶 (𝑖), 0 < 𝑖 ≤ 𝑗 , can be done in 𝑂 ( 𝑗) if the value of ⌊log2 𝑖⌋ is kept
updated in constant time.
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Figure 3.5: On the left, an uncovered region defined by a simple polygon (gray
area). On the middle and on the right, the individual segments (black line) of
the polygonal chain, and their respective right triangles (gray area).

3.1.3 Algorithmic methodology

For the general case, i.e., for any number of linear segments ℓ > 0, any curva-
ture parameter 𝑑 > 0, and any reference point 𝑟 ∈ R2, the previous analytical
model does not hold. Instead, we present an algorithm to compute the contri-
butions𝐶 (𝑖), for iterations 𝑖 > 0, which works by keeping an updated set of the
uncovered regions. Note that, only one point from a single uncovered region
is collected at each iteration, and that the uncovered regions share no area. As
such, to avoid repeated calculations, the algorithm keeps a cache of the points
in each uncovered region that contribute the most to the hypervolume of the
archive. Moreover, to efficiently find the largest contribution, the uncovered
regions can be kept in a priority queue with respect to the largest contribution
given by a point in that region.

For the purposes of our algorithm, an uncovered region that results from
the piecewise linear approximation can be described by a simple polygon with
a right angle on the point with the smallest coordinates, i.e., the reference
point for that uncovered region, such that the non-dominated set is given by
the simple polygonal chain opposite to that point. As a result, each segment
of the polygonal chain is part of the hypotenuse of a right triangle with its
right angle on the reference point. In Figure 3.5 we give an illustration of an
uncovered region with a polygonal chain made up of two segments, and the
corresponding right triangles for each segment.

We know from Equation (3.14) that the point with the largest hypervol-
ume for a right triangle with the reference point on the right angle is given
by 𝑧 = (𝑐1/2, 𝑐2/2), where 𝑐1, 𝑐2 are the lengths of the catheti on axes 𝑦1, 𝑦2, re-
spectively. Moreover, the result for that optimization problem is strictly mono-
tonically increasing for 0 ≤ 𝑦1 ≤ 𝑐1/2, and strictly monotonically decreasing
for 𝑐1/2 ≤ 𝑦1 ≤ 𝑐1. As such, the point in a segment of the polygon chain with
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Figure 3.6: First three steps of the algorithmic methodology for a curvature
parameter 𝑑 = 0.5, a number of linear segments ℓ = 2, and a reference point
𝑟 = (0, 0).

the largest hypervolume is the point in that segment closest to 𝑧. Finally, we
can iterate over all segments of the polygonal chain to find the point with the
largest hypervolume for the whole uncovered region. In Figure 3.6, we show
the first three steps of the algorithm for a non-convex piecewise approximation
with ℓ = 2 linear segments.

Note that there may be multiple points that give the same hypervolume
at each iteration. This is the case for the first step illustrated in Figure 3.6
where the points (0.5, 1/6) and (1/6, 0.5) both give the same hypervolume for
a reference point (0, 0). If there are only two points, and the new uncovered
regions that result from selecting either point are equivalent, then we can select
either point since the progression of 𝐶 (𝑖) will be the same regardless of the
choice. We say that two uncovered regions are equivalent, if they have the
same, possibly mirrored, shape. This is the case for the first step illustrated in
Figure 3.6, where selecting the first point leads to uncovered regions that are
mirrored by those that result from selecting the second point. By contrast, if
the resulting uncovered regions are not equivalent, then we need to consider
both choices until a point is found at a later iteration that results in a greater
contribution 𝐶 (𝑖) for either of those choices. We can do this by keeping a list
of priority queues to be processed at each iteration, such that each priority
queue denotes an alternative choice. The number of priority queues in this list
may grow exponentially since we have at most two choices at each iteration.
However, in our experimental analysis we never observedmore than one or two
priority queues in the list at any given time, which suggests that an exponential
scenario is unlikely to occur.

If more than two points give the same contribution, then we show that
we only need to consider choosing between the two lexicographically extreme
points. Let 𝑍 ⊆ 𝐺 be a list of at least three distinct lexicographically sorted
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points that give the same contribution𝐶 (𝑖) for an iteration 𝑖 > 0. Let 𝑍min and
𝑍max be the lexicographically smallest and largest points respectively. Since
the points in 𝑍 are mutually non-dominated and lexicographically sorted, then
𝑍min has the smallest first coordinate, and 𝑍max the smallest second coordinate.
Also, let 𝑟 ∈ R2 be the reference point for the hypervolume such that it is
strictly dominated by every point in the polygonal chain. Then, for any point
𝑦 in the polygonal chain𝐺 that can be selected in the succeeding iteration and
has a larger first coordinate than the previously selected point, it holds that:

∀𝑧 ∈ 𝑍 \ {𝑍min} 𝑦1 > 𝑧1 =⇒ (𝑦1 −𝑍min
1 ) (𝑦2 − 𝑟2) > (𝑦1 − 𝑧1) (𝑦2 − 𝑟2) (3.16)

since 𝑍min
1 < 𝑧1. This implies that, if the succeeding point has a larger first

coordinate than the previously selected point, then choosing 𝑍min in the previ-
ous iteration would yield a strictly larger contribution for 𝑦. Likewise, if point
𝑦 has a smaller first coordinate than the previously selected point, it holds that:

∀𝑧 ∈ 𝑍 \ {𝑍max} 𝑦1 < 𝑧1 =⇒ (𝑦1 − 𝑟1) (𝑦2 −𝑍max
2 ) > (𝑦1 − 𝑟1) (𝑦2 − 𝑧2) (3.17)

since 𝑍max
2 < 𝑧2. This implies, that if the succeeding point has a smaller first co-

ordinate than the previously selected point, then choosing𝑍max in the previous
iteration would yield a strictly larger contribution for 𝑦. As we have covered
every possible succeeding point 𝑦 ∈ 𝐺 , and either of the two lexicographically
extreme points always give a strictly better hypervolume for 𝑦, then we can
discard the other points.

To illustrate this, consider Figure 3.7 where we show the uncovered regions
after selecting one of the three points 𝑍 1 = (0.08, 0.5), 𝑍 2 = (0.2, 0.2), 𝑍 3 =

(0.5, 0.08) that give the same hypervolume for a reference point (0, 0). We
observe that any subsequent point returned in the uncovered regions 𝐴 and 𝐵
resulting from choosing point 𝑍2, will have a strictly larger contribution in the
uncovered regions 𝐴′ and 𝐵′ that result from choosing the lexicographically
largest or smallest points 𝑍3 or 𝑍1 respectively.

In the following we give the complexity of our algorithm for computing
𝐶 (𝑖). At each iteration, the algorithm needs to find an uncovered region with
a point that gives the largest contribution, remove it from the priority queue
containing all uncovered regions, split the region into two new uncovered
regions and insert those regions into the data structure. As such, for the 𝑖-th
call, there are at most 𝑖 uncovered regions in the data structure that need to
be considered. Since the uncovered regions share no area, we only need to
compute the points with the largest contribution in a given region once. Then,
we can keep the uncovered regions in a priority queue supported by max-
heap data structure. Removing the uncovered region with largest hypervolume
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Figure 3.7: Uncovered regions that result from choosing one of three points
with the same hypervolume.

contribution from such a data structure can be done in𝑂 (log 𝑖) time, and insert
new uncovered regions in 𝑂 (1) or 𝑂 (log 𝑖) time depending on the max-heap
data structure chosen.

To find the points in each uncovered region that give the largest hypervol-
umewe need to loop over all segments and find the point for each segment with
maximal hypervolume. This can be done in constant time for each segment,
as discussed previously, and there are at most ℓ segments in each uncovered
region, so this takes 𝑂 (ℓ) time for each region.

Finally, there may be at most 2𝑖 priority queues to be processed at each
iteration if multiple points yield the same contribution. As a result our algo-
rithm has a worst-case time complexity given by𝑂 (2𝑖 (𝑖ℓ + 𝑖 log 𝑖)) for function
𝐶 (𝑖). To approximate 𝑃∗( 𝑗) we can compute 𝐶 ( 𝑗), and sum all the intermedi-
ate values 𝐶 (𝑖), 1 ≤ 𝑖 ≤ 𝑗 , so the worst-case time complexity is also given by
𝑂 (2 𝑗 ( 𝑗ℓ + 𝑗 log 𝑗)). Alternatively, we consider a greedy variant that always se-
lects the lexicographically smallest point when multiple points have the same
hypervolume. The worst-case time complexity of this greedy variant is given
by 𝑂 ( 𝑗ℓ + 𝑗 log 𝑗).

3.1.4 Empirical study

A C++ implementation of the exact and greedy algorithmic methodologies is
available at [31]. In Figure 3.8, we report the average execution times of this
implementation for a varying number of iterations, a varying number of linear
segments, and curvature parameter 𝑑 ∈ {0.5, 2}. The reference point is set to
𝑟 = (0, 0) since it had a negligible impact on the results. The execution times
were taken with the benchmark library [4] (v.1.6.0) considering a MinTime of
10 seconds, which broadly means that for each combination of parameters
the methodologies were repeatedly executed until CPU time was greater than
10 seconds. The experiments were carried out in a computer with an AMD
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Figure 3.8: Execution times in seconds of the algorithmic methodology for a
varying number of iterations, varying number of linear segments, reference
point 𝑟 = (0, 0), and curvature parameter 𝑑 ∈ {0.5, 2}.

Ryzen CPU 5 1600 3.2Ghz processor. The benchmark code and full results are
available at [32].

The results show that both variants are very fast (less than 0.1 seconds on
average) for the given parameters. We expect most practical scenarios to have
a number of linear segments and iterations within the values reported. There is
a small difference between the exact and greedy methodologies since the exact
methodology has to take into account the possibility of more than one point
giving the same maximal contribution. Moreover, if there are multiple points,
which in fact happens for the first iteration of 𝑑 = 0.5, the exact methodology
attempts to detect if the uncovered regions left after selecting each of those
points are equivalent. In this case, the uncovered regions are equivalent. As
such, only a single point needs to be considered and the impact is relatively
small. Otherwise, the impact on performance could be greater. However, as
previously mentioned, in our experiments we did not observe such cases.

In the following, we analyze the quality of our theoretical model on non-
dominated sets that arise from particular MOO problems. First, we consider
non-dominated sets arising from the Unconstrained Binary Knapsack Problem
(UBKP) scaled down to the unit square [0, 1]2, which is formally given by:

argmax
𝑥∈{0,1}𝑛

𝑓 (𝑥) =
(
𝑓1(𝑥) =

∑𝑛
𝑖=1 𝑣𝑖𝑥𝑖∑𝑛
𝑖=1 𝑣𝑖

, 𝑓2(𝑥) = 1 −
∑𝑛

𝑖=1𝑤𝑖𝑥𝑖∑𝑛
𝑖=1𝑤𝑖

)
(3.18)

where 𝑥𝑖 is a binary variable denoting whether or not item 𝑖 has been chosen
for the knapsack, 𝑣𝑖 ∈ [0, 1] denotes a value for that item, and 𝑤𝑖 ∈ [0, 1] de-
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notes a weight for the item. The goal, is to maximize the sum of the values and
minimize the sum of the weights of the chosen items. The values and weights
of the items are randomly generated according to a multivariate uniform distri-
bution in the range [0, 1], with correlation 𝜌 ∈ [−1, 1] following the procedure
described in [72]. The non-dominated set can be found by the DP algorithm of
Nemhauser and Ullmann [58].

Figures 3.9a to 3.9c shows the non-dominated set for instances with corre-
lation 𝜌 ∈ {−0.8, 0.0, 0.8} and problem size 𝑛 = 100. We see that for greater
values of 𝜌 the shape of the non-dominated set almost resembles a line, and
that for smaller values of 𝜌 the non-dominated set resembles a more accentu-
ated convex curve. The same figures show that the non-dominated set can be
well approximated with the positive quadrant of a superellipse with curvature
parameter 𝑑 = log𝑝 0.5, where 𝑝 is found by considering the solution to the
following optimization problem:

argmax
𝑥∈{0,1}𝑛

min {𝑓1(𝑥), 𝑓2(𝑥)} (3.19)

such that if 𝑥′ is the optimal solution to this formulation, then the parameter
is given by 𝑝 = (𝑓1(𝑥′) + 𝑓2(𝑥′))/2.

We remark that the non-dominated sets generated for the UBKP are always
approximated by a convex curve. As such, to validate ourmodel for non-convex
curves, we consider a variant of this problem characterized by a tight capacity
constraint on the number of items to be included in knapsack. We refer to this
variant as the Capacity Constrained UBKP (CCUBKP), which, scaled down to
the unit square [0, 1]2, is formally defined as:

argmax
𝑥∈{0,1}𝑛

𝑓 (𝑥) =
(
𝑓1(𝑥) =

∑𝑛
𝑖=1 𝑣𝑖𝑥𝑖

max 𝑗∈{1,...,𝑛} 𝑣 𝑗
, 𝑓2(𝑥) = 1 −

∑𝑛
𝑖=1𝑤𝑖𝑥𝑖

max 𝑗∈{1,...,𝑛}𝑤 𝑗

)
(3.20)

s.t.
𝑛∑︁
𝑖=1

𝑥𝑖 ≤ 1 (3.21)

This problem is trivial to solve since the set of feasible solutions contains the so-
lutions that result from adding a single item to the knapsack, or none. However,
it allows us to devise instances such that the non-dominated set is non-convex.
In particular, instances for this problem are generated by sampling the value
vector 𝑣 and an auxiliary weight vector𝑤 ′ from equally parameterized Weibull
distributions for a fixed scale parameter 𝜆 = 1, and a varying shape parameter 𝑠 .
Then, the value vector is sorted in increasing order and the auxiliary weight
vector is sorted in decreasing order. The weight vector values are then given
by 𝑤𝑖 = (max 𝑗∈{1,...,𝑛}𝑤 ′𝑗 ) + (min 𝑗∈{1,...,𝑛}𝑤 ′𝑗 ) − 𝑤 ′𝑖 , 𝑖 ∈ {1, . . . , 𝑛}. The non-
dominated set for the CCUBKP is trivially found by enumerating all objective
vectors.
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Note that, by varying the shape parameter 𝑠 , we vary the curvature of the
non-dominated set. In particular, for smaller values of 𝑠 the curvature is more
accentuated, whereas for larger values of 𝑠 the curvature is less accentuated.
In Figures 3.9d to 3.9f we plot the non-dominated sets that arise in problem
instances with shape parameter 𝑠 ∈ {1.6, 2.0, 3.0} and problem size 𝑛 = 2000.
A larger problem size for the CCUBKP was chosen in order to have a similar
number of non-dominated points between the two problems. The plots show
that when 𝑠 increases the non-dominated sets generated for the CCUBKP can be
well approximated with the positive quadrant of a superellipse. The curvature
parameter for the superellipse approximation is given by 𝑑 = log𝑝 0.5, where
𝑝 is found by considering the solution to the following optimization problem:

argmax
𝑥∈{0,1}𝑛

min {𝑓1(𝑥), 𝑓2(𝑥)} (3.22)

s.t.
𝑛∑︁
𝑖=1

𝑥𝑖 ≤ 1 (3.23)

such that if 𝑥′ is the optimal solution to this formulation, then parameter 𝑝 is
given by 𝑝 = (𝑓1(𝑥′) + 𝑓2(𝑥′))/2.

In Figures 3.10 and 3.11 we compare the performance trace given by our the-
oretical model against the ideal performance trace for the instances described
above. We consider a varying number of linear segments for our theoretical
model, and two distinct settings for the reference point. The hypervolume of
the collected points is given relative to the hypervolume of the non-dominated
set. We observe that the theoretical model gives a very good approximation of
anytime performance for ℓ = 10 and ℓ = 100 linear segments, with the latter
showing a slightly better prediction for non-dominated sets that can be approx-
imated by a non-convex curve. We also see that for ℓ = 2 linear segments, the
theoretical model can only adequately estimate the ideal performance trace
when the non-dominated more closely resembles a line, and the reference point
is further away from the non-dominated set. Lastly, note that the model gener-
ally underestimates the hypervolume for the convex case, and overestimates
it for the non-convex case.
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Figure 3.9: Non-dominated set (points in gray) and respective superellipse
approximation (straight black line) for instances of the UBKP with varying
correlation 𝜌 and problem size 𝑛 = 100 (left), and for instances of the CCUBKP
with varying shape parameter 𝑠 and problem size 𝑛 = 2000 (right).
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(c) 𝜌 = 0.8, 𝑟 = (0, 0)
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(e) 𝜌 = 0.0, 𝑟 = (−1,−1)
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Figure 3.10: Results for the theoretical model on non-dominated sets of the
UBKP with 𝑛 = 100, reference point 𝑟 ∈ {(0, 0), (−1,−1)}, and correlation
𝜌 ∈ {−0.8, 0.0, 0.8}.
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(b) 𝑠 = 2.0, 𝑟 = (0, 0)

0.5

0.6

0.7

0.8

0.9

1.0

20 21 22 23 24 25 26 27

Iteration

Re
la
tiv

e
H
yp

er
vo
lu
m
e

Ideal Performance Trace

Theoretical Model (ℓ = 2)

Theoretical Model (ℓ = 10)

Theoretical Model (ℓ = 100)

(c) 𝑠 = 3.0, 𝑟 = (0, 0)
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0.6

0.7

0.8

0.9

1.0

20 21 22 23 24 25 26 27

Iteration

Re
la
tiv

e
H
yp

er
vo
lu
m
e

Ideal Performance Trace

Theoretical Model (ℓ = 2)

Theoretical Model (ℓ = 10)

Theoretical Model (ℓ = 100)
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Figure 3.11: Results for the theoretical model on non-dominated sets of the
CCUBKP with 𝑛 = 2000, reference point 𝑟 ∈ {(0, 0), (−1,−1)}, and shape
parameter 𝑠 ∈ {1.6, 2.0, 3.0}.
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3.2 Guided 𝜀-constraint

In this section, we present an 𝜀-constraint approach guided by our theoreti-
cal model, namely the Guided 𝜀-constraint (GEPS) method. As discussed in
Section 2.3.1 an 𝜀-constraint approach solves a sequence of constrained single-
objective problems to find efficient solutions.

To find an efficient solution, at iteration 𝑖 > 0, to a bi-objective optimization
problem with maximizing objective functions, our approach first solves the
following single-objective problem:

argmax
𝑥∈X

𝑓1(𝑥)

s.t. 𝑓2(𝑥) > 𝜀𝑖
(3.24)

where 𝜀𝑖 denotes a constraint on the second objective for iteration 𝑖 . Note that,
the problem in Equation (3.24) may yield a weakly efficient solution [16], in
particular there may be a solution that gives an equal value for first objective
but a better value the second. As such, to guarantee that we find an efficient
solution, we consider a second problem at each iteration, which is given by:

argmax
𝑥∈X

𝑓2(𝑥)

s.t. 𝑓1(𝑥) ≥ 𝑓1(𝑥′)
(3.25)

where 𝑥′ ∈ X denotes the optimal solution found for the problem of Equa-
tion (3.24).

To set the 𝜀𝑖 constraint at iteration 𝑖 > 0, we start by considering the second
coordinate of the 𝑖-th point returned by our theoretical model. However, if it
is known that no new non-dominated point can be found for that constraint,
then, we consider the first subsequent point collected by our theoretical model
for which a new point may be found. In particular, let 𝑦𝑖2 denote the second
coordinate of the non-dominated point used at iteration 𝑖 to set a constraint 𝜀𝑖 .
Then, we know that no new non-dominated point can be found for a constraint
between 𝑦𝑖2 and 𝜀

𝑖 .
In the following, we report the performance trace for this algorithm against

the ideal anytime performance. We use the GNU Linear Programming Kit MILP
Solver [53] to solve the single-objective subproblems given by Equations (3.24)
and (3.25) for both the UBKP and the CCUBKP. For the theoretical model used
to guide the algorithm, we consider the greedy algorithmic methodology with
a varying number of linear segments ℓ ∈ {2, 10, 100} since it returns at most
one point at each iteration. Note that, if the assumptions for the analytical
methodology are met, the greedy algorithmic methodology gives the same
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result as the analytical methodology. The performance trace is given with
respect to the number of iterations and archive quality expressed in terms of
relative hypervolume, i.e., the ratio between the hypervolume of the archive
and the hypervolume of the non-dominated set. We also report archive quality
in terms of relative hypervolume deviation, that is, the different between the
maximal relative hypervolume, i.e., 1, and the actual relative hypervolume.

In Figures 3.12 and 3.13 we show the results for the first 128 iterations
on instances for the UBKP with problem size 𝑛 = 100, correlation values
𝜌 ∈ {−0.8, 0.0, 0.8}, and reference point 𝑟 ∈ {(0, 0), (−1,−1)}. The correspond-
ing non-dominated sets are shown in Figures 3.9a and 3.9c. In Figures 3.14
and 3.15 we show the results on instances for the CCUBKP for a problem size
𝑛 = 2000, varying shape parameter 𝑠 ∈ {1.6, 2.0, 3.0}, and reference point
𝑟 ∈ {(0, 0), (−1,−1)}. The corresponding non-dominated sets are shown in
Figures 3.9d and 3.9f. Looking at the results, we can see that all three settings
for the number of linear segments are quite good, and the GEPS achieves an
anytime performance trace very close to the ideal one. Nonetheless, using 10
or 100 linear segments seems to provide better results, which is to be expected
since the non-dominated set can be better approximated by the piecewise ap-
proximation in those cases. We observed that these results were coherent for
instances with different problem sizes, different parameters, and different ref-
erence points. Moreover, we expect the results to generalize for any problem
where the scaled non-dominated set can be approximated by the quadrant of
a superellipse, such as the MOBKP.
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Figure 3.12: Results for the UBKP with 𝑛 = 100, reference point 𝑟 = (0, 0), and
varying correlation 𝜌 ∈ {−0.8, 0.0, 0.8}.
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Figure 3.13: Results for the UBKP with 𝑛 = 100, reference point 𝑟 = (−1,−1),
and varying correlation 𝜌 ∈ {−0.8, 0.0, 0.8}.
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Figure 3.14: Results for the CCUBKP with 𝑛 = 2000, capacity constraint 𝑐 = 1,
reference point 𝑟 = (0, 0), and varying shape parameter 𝑠 ∈ {1.6, 2.0, 3.0}.
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Figure 3.15: Results for the CCUBKP with 𝑛 = 2000, capacity constraint 𝑐 = 1,
reference point 𝑟 = (−1,−1), and varying shape parameter 𝑠 ∈ {1.6, 2.0, 3.0}.
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3.3 Discussion

In this chapter, we presented a theoretical model to characterize the perfor-
mance trace given by the trade-off between the number of iterations and the hy-
pervolume for bi-objective optimization algorithms that find, at each iteration,
a solution to the problem, such as scalarization techniques. In the experimen-
tal studies carried out, we observed that our theoretical model approximates
quite well the ideal anytime performance. We also presented an 𝜀-constraint
approach guided by our theoretical model, namely the GEPS, which showed a
performance trace very close to the ideal one.

As evidenced by this algorithm, a possible use of our model is to design
scalarization techniques with good anytime performance. Moreover, our model
can be used to monitor and predict the anytime performance of our algorithm
or techniques that similarly attempt to maximize the hypervolume at each
iteration [61]. For example, it should be possible to detect if an algorithm that
has an anytime performance similar to our model is taking too long to find
each solution, and whether or not it will achieve some desirable quality within
a certain time budget, which may justify a restart or a switch to a different
strategy.

One possible direction for future research, is to extend the model for ap-
proximations of the non-dominated set other than a quadrant of a superellipse.
In practice, this can already be accomplished by our algorithmic methodology
by considering any set of mutually non-dominated, possibly disconnected, lin-
ear segments. However, the main challenge is to define a good piecewise linear
approximation to the non-dominated set. A related idea is to consider a feed-
back loop between our model and a scalarization technique that sequentially
finds efficient solutions. In particular, if the set of linear segments corresponds
to an approximation of the non-dominated set, and throughout the execution
of the scalarization technique we find the actual non-dominated points, then
we can insert these points back into the model to increase the quality of the ap-
proximation in an online fashion, which could be used to better predict where
the next points in the non-dominated set will be. Lastly, a clear direction for
future research is to extend our model for more than 2 objectives. This seems
more challenging in part due to the splitting and tracking of the uncovered
regions after a point with maximal hypervolume contribution is found, since
the regions may no longer be independent, i.e., finding a point in one region
may affect the other regions.

Lastly, for the purposes of algorithm selection in this thesis, it would be
more useful to have a model that considers anytime performance in terms of
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CPU-time rather than the number of iterations. In the next chapter, we discuss
an empirical model to convert the number of iterations given by this theoretical
model to CPU-time by considering empirically collected data.



Chapter 4

Empirical Models of Anytime Per-
formance

In this chapter, we consider the development of empirical models for predicting
the anytime performance of an algorithm, which take into account empirically
collected anytime performance data from previous runs of the algorithm. Un-
like the theoretical model discussed in the previous chapter, these empirical
models can be used to predict anytime performance regardless of time or qual-
ity unit, as long as the anytime performance data to train themodels is collected
in terms of the desired units of time and quality. In particular, this is desirable
for the algorithm selection methodologies that we will be considering in the
following chapters, as we want to consider time in terms of CPU-time, which
was not possible with the theoretical model of the previous chapter.

This chapter is organized as follows. In Section 4.1 we propose three ab-
stract frameworks for the development of empirical models that take into ac-
count anytime performance traces collected for an algorithm on a set of training
instances. Then, in Section 4.2 we propose an empirical model for predicting
the anytime performance of algorithms to the MOBKP that follows the first of
these proposed frameworks. We also carry out an experimental study consid-
ering three algorithms and instances with 2, 3, and 5 objectives, which shows
that the model can often predict the anytime performance correctly. However,
we also highlight some cases for which the model is not as accurate as we
would hope, and we discuss possible reasons for this. Lastly, in Section 4.3 we
summarize the main results of this chapter and discuss possible directions for
future work.

57
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4.1 Frameworks for Empirical Models

In this section we propose three abstract frameworks to guide the development
of empirical models of anytime performance. We recall that we want to develop
empirical models with the goal of predicting the anytime performance of an
algorithm on a previously unseen problem instance. In particular, let 𝜄 denote
a previously unseen problem instance, and let 𝑎 denote an algorithm to solve 𝜄.
We consider that an empirical model to predict the performance of algorithm
𝑎 on instance 𝜄 can be characterized in terms of a performance profile:

𝑃𝑎,𝜄 (𝑡, 𝑞) → [0, 1] (4.1)

that denotes the (approximate) likelihood of algorithm 𝑎 achieving an approxi-
mation with quality greater than or equal to 𝑞 at time 𝑡 , when solving problem
instance 𝜄.

In all the presented frameworks, we assume that there is a set of training
instances I that is known, and that there is a set of runs for algorithm 𝑎

associated to this set of instances, denoted by 𝑅𝑎,I . We generally assume that
the instances on the training data are not too different from the instances for
which we will be predicting anytime performance. In particular, we assume
that when predicting the anytime performance for an instance 𝜄, that there is
a set of instances in the training data set that give an anytime performance
similar to that of instance 𝜄. This is not to say that we cannot predict anytime
performance if there are no such instances in the training data set. However,
we expect the quality of the prediction to be better if there are.

Another relevant aspect regarding the training data set is that in the pre-
sented frameworks the training set may be updated at any time. This may be
particularly relevant in real-world scenarios where one possibility to build the
training data set is to continuously update the training data set with anytime
traces from previously encountered instances.

Lastly, these frameworks are discussed in general terms, since the imple-
mentation details for the model can depend on the prediction scenario, e.g.,
how much human-interaction is possible and what information can be gath-
ered from the problem instances. That being said, an empirical model to predict
the anytime performance of algorithms to the MOBKP problem, following the
first framework, is presented in Section 4.2.3.

4.1.1 Framework I

Given the set of training instances I and a previously unseen instance 𝜄 ∉ I,
a model following this framework starts by selecting a subset of training in-
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stances, denoted by I𝑆 ⊆ I that are expected to have similar anytime per-
formance to instance 𝜄. Then, given a set of runs 𝑅𝑎,I𝑆 denoting the runs of
algorithm 𝑎 on the selected training instances I𝑆 , the model builds and returns
an approximated performance profile given by the empirical performance pro-
file for those runs, that is:

𝑃 I𝑎,𝜄 (𝑡, 𝑞) = 𝑃𝑅𝑎,I𝑆 (𝑡, 𝑞) (4.2)

The key aspect for this model is how to select a subset of training instances
I𝑆 that are expected to have similar anytime performance to the previously
unseen instance 𝜄. One possibility is tomanually design a set of rules to perform
this selection, based on a set of instance features that characterize a problem
instance. This requires that the behavior of algorithm 𝑎 is well known, and that
it is obvious how the different instance features affect anytime performance,
which, arguably, is not often the case.

Another possibility, that requires less human interaction, is to manually
analyze the anytime performance of an algorithm on the training instances,
and to group instances that give similar anytime performance. Then, given a
set of instance features that characterize an instance, we can use classification
techniques to automatically learn to classify the group of instances to which the
previously unseen instance 𝜄 belongs. Alternatively, given a set of measurable
features that characterize the anytime performance of an algorithm on an
instance, we could also build the groups without any human interaction by
using an unsupervised partitioning technique that takes into account those
features, such as 𝑘-means clustering.

Lastly, another possibility is to consider automatic learning techniques that
can learn to select similar instances based on a set of instance features without
the need for human interaction. For example, given a set of instance features
that characterize a problem instance, we can use clustering techniques, such
as a 𝑘-nearest neighbor algorithm, that can select instances that have similar
instance features, and which we expect to have similar anytime performance.
This is the possibility that we consider later in Section 4.2.3 when implementing
our model.

4.1.2 Framework II

To predict the approximation quality at time 𝑡 with the previous framework,
we assume that the runs of an algorithm on the training instance set were
interrupted at a time greater than or equal to 𝑡 , or that the algorithm finished
before time 𝑡 , since otherwise there is no empirical data that can be used to
build the predicted performance profile. This can lead to infeasible training
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times if we want to predict the approximation quality for large values of 𝑡 . To
address this, our second framework considers the use of parametric models that
characterize the anytime performance of an algorithm on the training instances
I, to predict the anytime performance on a previously unseen instance 𝜄 ∉ I.

In the field of statistics, data collected over time for the same subject, in
this case the performance trace of a run, is commonly known as longitudinal
data [20]. An issue posed by longitudinal data is that measurements taken
from the same subject are not independent. To address this, mixed-effects
models where each subject is modeled by a separate curve whose parameters
are a random perturbation of a baseline curve can be considered [20]. Note
that, since the performance traces of an anytime algorithm are not typically
expected to be linear, a non-linear mixed-effects model is likely to be more
appropriate. Assuming that the mean response of a subject 𝑖 at time 𝑡𝑖 𝑗 can
be modeled in terms of a non-linear regression function and random error, a
non-linear mixed effects model is given by:

𝑦𝑖 𝑗 = 𝑓 (𝑡𝑖 𝑗 , 𝛽𝑖) + 𝜖𝑖 𝑗 (4.3)

where the evolution of the mean response 𝑦𝑖 𝑗 is modeled by a non-linear func-
tion 𝑓 (𝑡𝑖 𝑗 , 𝛽𝑖) and a random error term 𝜖𝑖 𝑗 . The non-linear function 𝑓 (𝛽𝑖, 𝑡𝑖 𝑗 )
takes the time parameter 𝑡𝑖 𝑗 and a set of subject-specific parameters 𝛽𝑖 . These
parameters 𝛽𝑖 are commonly defined to linearly depend on a set of covariates
𝐴𝑖 , and random effects 𝑏𝑖 , that is:

𝛽𝑖 = 𝐴𝑖𝛽 + 𝑏𝑖 (4.4)

Alternatively, parameters 𝛽𝑖 can also be modeled by a non-linear function.
We refer to [20] and [63] for a more complete description and discussion of
non-linear mixed effects models.

In the context of anytime algorithms, Gagliolo et al. [21] considered non-
linear mixed-effects models following an exponential decay growth curve to
model the anytime performance of a stochastic single-objective optimization
algorithm and predict the optimum objective value, given a set of 400 instances
and 25 runs of the algorithm for each instance. There were two experiments
that defined subjects for the non-linear mixed effects models differently. In the
first, the authors fit a separate model for each instance, taking into account the
25 runs gathered for each instance as the subjects in the model. In the second
experiment, the authors fit 25 models, such that for each model a single run
for each instance is chosen, and the model takes into account the instances as
the subjects.

For the development of an empirical model under this second framework,
we consider two possibilities to develop the parametric model. For the first
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possibility, we consider the idea of the first experiment by Gagliolo et al. [21],
and fit a separate model for each training instance based on the available runs.
Since each separate model is for a single instance, instance specific features are
not mapped to the response by the model itself. As such, we need to learn to
predict the parameters 𝛽𝑖 of the non-linear function that were fit by the model
from a set of instance features, e.g., by using supervised learning techniques
from machine learning. Then, given a previously unseen instance 𝜄 ∉ I, we
map its instance features to a set of predicted parameters 𝛽𝜄 to be considered
in the non-linear function. The estimated performance trace for an algorithm
𝑎 on a previously unseen instance 𝜄 is given by:

𝑃 II𝑎,𝜄 (𝑡, 𝑞) =

1 if 𝑓𝑎 (𝑡, 𝛽𝜄) ≥ 𝑞

0 otherwise
(4.5)

where 𝑓𝑎 (𝑡, 𝛽𝜄) is the non-linear function considered for algorithm 𝑎 that takes
as parameters the time 𝑡 and the predicted set of parameters 𝛽𝜄 . If, instead,
multiple non-linear mixed-effects models were fit for each instance, e.g., a set
of non-linear mixed-effects models fit using quantile regression methods [24],
then we could learn to predict the parameters from each model and build the
estimated performance profile from multiple curves.

The second possibility we consider is to fit a non-linear mixed-effects model
that takes into account the instances as subjects, e.g., by considering themedian
performance trace for each instance. In this case, instance features can be
given as parameters to the non-linear function. Then, when given a previously
unseen instance 𝜄 ∉ I we can apply the covariates𝐴𝑖 that were fit by the model
to the instance features of 𝜄 to get the predicted median anytime performance
trace for 𝜄. As before, we can consider different models for different quantiles to
have a more complete anytime performance profile. We expect that it is harder
to build a model following this second possibility, since a function needs to
be defined to map the instance features to the non-linear function parameters,
which may not be trivial in many cases. However, it may allow to better predict
instances that are quite different from the training instances.

4.1.3 Framework III

This frameworks assumes a theoretical model that characterizes the perfor-
mance trace of an algorithm on a previously unseen instance with respect
to the number of iterations and archive quality, such as the one presented in
Section 3.1. In particular, let this theoretical model be denoted by a function
𝑄𝑎,𝜄 (𝑖) → R that returns the predicted quality of the archive at iteration 𝑖 ∈ Z>0
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for an algorithm 𝑎 on instance 𝜄. Moreover, let I𝑆 ⊆ I denote a set of selected
training instances that, compared to instance 𝜄, take a similar amount of CPU-
time going from iteration 𝑖 to 𝑖 + 1 for every 𝑖 ∈ Z≥0. Lastly, let 𝑅𝑎,I𝑆 denote
the runs of algorithm 𝑎 on the training instances I𝑆 , and 𝑇𝑎,𝑟 (𝑖) → R≥0 denote
a function that returns the time algorithm 𝑎 took to reach iteration 𝑖 on run 𝑟 .

Then, we define a function:

𝑄𝑎,𝜄,𝑟 (𝑡) = 𝑄𝑎,𝜄
(
min{𝑖 : 𝑇𝑎,𝑟 (𝑖) ≥ 𝑡}) (4.6)

that denotes an approximate performance trace for instance 𝜄 assuming the
CPU-times obtained for run 𝑟 . Finally, the approximate performance profile
obtained by this framework is given by:

𝑃 III𝑎,𝜄 (𝑡, 𝑞) =
1
|𝑅𝑎,I𝑆 |

∑︁
𝑟∈𝑅𝑎,I𝑆


1 if 𝑄𝑎,𝜄,𝑟 (𝑡) ≥ 𝑞

0 otherwise
(4.7)

The key aspect for this framework is how to select training instances that
take a similar amount of time on each iteration, compared to a previously
unseen instance 𝜄. As in Framework I, we can either consider a set of rules
designed by hand, or use (semi)-automated learning techniques to identify
similar instances. However, one important difference is that for this model
we need to take into account what happens at each iteration. For example,
consider the GEPS approach presented in Section 3.2, which can be modeled
by the theoretical model presented in Chapter 3. For an iteration to take a
similar amount of time when solving two distinct instances, the scalarized
𝜀-constraint problems to be solved should have similar difficulty so that they
take a similar amount of time to solve. As such, an approach following this
empirical model should look at instance features that affect the performance
of the solver to the scalarized problem, e.g., how tight the 𝜀𝑖 constraint is at
each iteration.

4.2 Experimental Study

In this section, we carry out an experimental study for an empirical model
implemented according to Framework I. In particular, we consider the use of
this model in predicting the anytime performance of PLS, BHV-DP, and GEPS
algorithms on the MOBKP considering different numbers of objectives. This
section is organized as follows. In Section 4.2.1, we describe the procedure
used to generate the problem instances used in this study. In Section 4.2.3, we
give the implementation details of the model. In Section 4.2.4, we describe the
setup used for the experimental study. And lastly, in Section 4.2.5, we present
and discuss the results of this study.
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4.2.1 Instances

Benchmark instances for the MOBKP are generated according to the following
procedure. For a given number of items 𝑛 ∈ Z>0 and objectives𝑚 ∈ Z≥2, the
item values 𝑣 𝑗𝑖 ∈ [0, 1], 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {1, . . . ,𝑚}, are generated according
to a multi-variate uniform distribution of dimension𝑚, defined by a positive-
definite symmetric correlation matrix 𝐶 of size𝑚 ×𝑚, such that 𝐶𝑎𝑎 = 1 and
𝐶𝑎𝑏 = 𝜌𝑣 for all 𝑎, 𝑏 ∈ {1, . . . ,𝑚} with 𝑎 ≠ 𝑏, that is

©«
1 𝜌𝑣 · · · 𝜌𝑣

𝜌𝑣 1 · · · 𝜌𝑣
...

...
. . .

...

𝜌𝑣 𝜌𝑣 · · · 1

ª®®®®®¬
where 6

𝜋 sin−1 1
2(1−𝑚) < 𝜌𝑣 < 1 denotes the correlation between any two distinct

value vectors 𝑣 𝑗 and 𝑣𝑘 . We follow the procedure described by [73] to generate
the value vectors under these conditions. In particular, we start by generating
vectors (𝑉 1, . . . ,𝑉𝑚) following a multi-normal distribution of means 0 and
correlation matrix 𝑅 = 2 sin( 𝜋6𝐶). Then, the vectors 𝑣1 = 𝜙 (𝑉 1), . . . , 𝑣𝑚 =

𝜙 (𝑉𝑚), such that 𝜙 (·) is the univariate normal cumulative density function,
are uniformly distributed with a correlation matrix 𝐶 .

The weight vector 𝑤 is generated following a uniform distribution in the
range [0, 1] with approximate correlation 𝜌𝑤 to the auxiliary vector

𝑣′ =

(
𝑚∑︁
𝑗=1

𝑣 𝑗1, . . . ,
𝑚∑︁
𝑗=1

𝑣 𝑗𝑛

)
(4.8)

that gives the sum of the values for each item. Let 𝑧 (𝑣′) denote a function
that centers and scales 𝑣′ to have mean 0 and standard deviation 1, and let
𝐸 ∼ N(0, 1) be a vector of size 𝑛 drawn from a normal distribution with mean
0 and standard deviation 1. Then, we consider the following formulation to get
an auxiliary vector𝑤 ′ with correlation approximately 𝜌𝑤 :

𝑤 ′ = 𝜌𝑤𝑧 (𝑣′) + 𝐸
√︁
1 − 𝜌𝑤 2 (4.9)

Note that,𝑤 ′ is not drawn from a population with uniform distribution. How-
ever, we can run a Monte Carlo simulation to repeatedly resample from the
same population as𝑤 ′ and get an empirical cumulative density function. Then,
we can get a vector𝑤 drawn from a approximate uniform distribution with:

𝑤 = 𝜙 (𝑤 ′) (4.10)

where 𝜙 (𝑤 ′) denotes the empirical cumulative density function of the popula-
tion of𝑤 ′. The correlation between𝑤 and 𝑣′ is approximately 𝜌𝑤 .
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Lastly, the weight constraint𝑊 is defined as a ratio of the sum of the items
weights, with respect to a variable 𝜔 ∈ [0, 1] as follows:

𝑊 = 𝜔
𝑛∑︁
𝑖=1

𝑤𝑖 (4.11)

We remark that the commonly used benchmark instance classes described
by Bazgan et al. [3] for two objectives, can be generalized for two and more
objective using the procedure described above, in particular:

A. Uncorrelated instances: 𝜌𝑣 = 0, 𝜌𝑤 = 0, and 𝜔 = 0.5.

B. Unconflicting instances: 𝜌𝑣 is set to a positive value, 𝜌𝑤 = 0, and 𝜔 = 0.5.

C. Conflicting instances: 𝜌𝑣 is set to a negative value, 𝜌𝑤 = 0, and 𝜔 = 0.5.

D. Conflicting instances with correlated weight: 𝜌𝑣 is set to a negative value,
𝜌𝑤 is set to a positive value, and 𝜔 = 0.5.

For this experimental study, we will be considering instances generated
with the following parameters:

• 𝑚 ∈ {2, 3, 5}

• 𝑛 ∈ U (50, 150)

• 𝑝𝑣 ∈ U
(
6
𝜋 sin−1 1

2(1−𝑚) , 1
)

• 𝑝𝑤 ∈ U (−1, 1)

• 𝜔 ∈ U (0.3, 0.7)

whereU(·) denotes the uniform distribution.

4.2.2 Anytime Performance Measure

To measure the performance of an empirical anytime performance profile 𝑃 as
a scalar value, we consider an anytime performance measure given by:

𝑀 (𝑃) =
∫ 𝑞𝑢

𝑞ℓ

∫ 𝑡𝑢

0
𝑃 (𝑡, 𝑞) 𝑑𝑡 𝑑𝑞 (4.12)

where 𝑞ℓ and 𝑞𝑢 denote the lower and upper bound for solution quality, and
𝑡𝑢 denotes the upper bound on time. This is a particular case of the anytime
performance measure given by Jesus et al. [36], and related to the anytime
performance measure given by López-Ibáñez and Stützle [51]. The former will
be presented in more detail in Section 5.1.
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4.2.3 Model Implementation Details

In this section we describe the implementation details of our model, which
follows Framework I. We recall that according to this framework, the goal is
to select a subset of problem instances from the training data set I that are ex-
pected to have similar anytime performance to the previously unseen problem
instance 𝜄 ∉ I for which we want to predict anytime performance. Then, we
take the performance traces collected a priori for the selected instances, and
use them to build a performance profile that predicts the anytime performance
of the previously unseen instance 𝜄.

To define the implementation of our model, we consider a training data
set of problem instances to the MOBKP for which an anytime performance
trace resulting from a single run has been collected for each algorithm. We
also consider the following set of instance features that characterize a problem
instance for the MOBKP as a set of measurable values:

• F1 — the number of decision variables 𝑛;

• F2 — the ratio between the capacity of the knapsack𝑊 , and the sum of
the items’ weights, i.e.:

F2 = 𝑊∑𝑛
𝑖=1𝑤𝑖

(4.13)

where𝑤𝑖 denotes the weight of item 1 ≤ 𝑖 ≤ 𝑛;

• F3 — the mean Spearman’s correlation coefficient between all pairs of
value vectors 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑚, i.e.:

F3 = 1
𝑚(𝑚 − 1)/2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=𝑖+1

𝑟𝑣𝑖𝑣 𝑗 (4.14)

where 𝑟𝑣𝑖𝑣 𝑗 denotes the Spearman’s correlation coefficient between value
vectors 𝑣𝑖 and 𝑣 𝑗 . This feature relates to parameter 𝜌𝑣 that was used to
generate the problem instance;

• F4 — the Spearman’s correlation coefficient between the weights of the
items𝑤 , and the sum of their values, i.e.,

∑𝑚
𝑖=1 𝑣

𝑖 . This feature relates to
parameter 𝜌𝑤 that was used to generate the problem instance.

The empirical model then follows a 𝑘-nearest neighbor algorithm. In partic-
ular, we compute the distance between the features of the problem instances in
the training data set and the features of the previously unseen instance 𝜄. The
distance between features is considered with respect to the weighted Euclidean
norm, i.e.: F 𝜄 − F 𝑗


𝜉
=

√√√ 4∑︁
ℓ=1

(
F 𝜄
𝑘
− F 𝑗

𝑘

)2
𝜉𝑘 (4.15)
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where 𝜉ℓ > 0 denotes the weight for the ℓ-th feature, F 𝜄 denotes the feature
set of the problem instance 𝜄 whose anytime performance we want to model,
and F 𝑗 denotes the feature set of a problem instance 𝑗 in the training data set.
To make it easier to reason about the weights we scale all features to the range
[0, 1] taking into account their range of possible values, i.e.:

• F1 ∈ [50, 150]

• F2 ∈ [0.3, 0.7]

• F3 ∈ [−1/(𝑚 − 1), 1]

• F4 ∈ [−1, 1]

To define the weights 𝜉 for the distance metric, we consider the Spearman’s cor-
relation coefficient between the features and the anytime performance measure
for the instances. In particular, let the 𝜌Fℓ denote the Spearman’s correlation
coefficient for the instance feature Fℓ , then weight 𝜉ℓ is defined as:

𝜉ℓ = exp(4 |𝜌Fℓ |) (4.16)

We consider this definition because we want features that have a large absolute
correlation value to have a significantly larger impact than features that have
a small absolute correlation value. However, we do not want this difference to
be too large, which is why we only multiply the absolute correlation value by
4 and not by a larger number, since features with a small absolute correlation
value might still be relevant to distinguish between otherwise similar instances.
Alternatively, we could set the weight values in a more informed manner, e.g.,
by using a grid search over possible values for the weights and taking into
account the error for the model using different weights. However, this would
result in much higher training times, so we opted to use the above definition
instead since it gave good results in a preliminary analysis.

After computing the distances between each instance from the training data
set and the previously unseen instance 𝜄, we select the 𝑘 instances from the
training data set that minimize the distance. Then, we aggregate the anytime
traces of the algorithm on those instances and build an anytime performance
profile, which is expected to predict the anytime performance of instance 𝜄.
Note that, the range of hypervolume values for different problem instances can
be very different. As such, for the aggregation to be meaningful, we consider
the relative hypervolume for measuring solution quality, which means that
solution is defined in the range [0, 1] for all anytime traces. Since we cannot
always compute the non-dominated set in a feasible amount of time to have
the maximal hypervolume, we use the maximum hypervolume found by any
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of the algorithms we tested for a particular instance in order to compute the
relative hypervolume metric for each instance.

To validate our model, we split our known problem instances into two
distinct data sets: training and testing. In particular, we consider 80% of the
instances for the training data set, and 20% of the instances for the testing data
set. Then, we consider both numerical and visual analysis. For the former, we
consider the difference between the anytime measure of the predicted anytime
performance profile, and the anytimemeasure of the anytime trace gathered for
a problem instance 𝜄 taken from the testing data set. To summarize the quality
of our model over all instances in the testing data set, we consider the Mean
Absolute Error (MAE), which is given by the absolute difference between the
predicted and true anytime measures for each testing problem instance divided
by the number of testing problem instances. For visual analysis, we plot the
predicted performance profile and the true anytime trace.

Selecting an appropriate value for 𝑘 in the 𝑘-nearest neighbor algorithm is
of the utmost importance to the quality of our model. In particular, if the value
for 𝑘 is too small we are likely to select instances that are very similar in terms
of the instances features we considered. However, we might not have enough
anytime traces to build an anytime performance profile that is sufficiently
robust against random variations on anytime performance that may arise from
the stochastic nature of the algorithm, experimental conditions, or from other
instance features that have not been considered. On the other hand, if the
value for 𝑘 is too large we might select instances that are too different from
the instance whose anytime performance we want to predict, which will result
in an anytime performance profile that is not specific enough.

To set parameter 𝑘 for the model, we consider the MAE of our model given
by the Leave-One-Out Cross-Validation (LOOCV) method for different values
of 𝑘 . In LOOCV we take the training data set, leave out one instance, and
use the remaining instances for training our model. Then, we use the trained
model to predict the anytime performance of the left-out instance. We repeat
this process such that every training instance is left out once, and compute the
MAE considering the predicted and true values for each instance. We compute
the MAE for each value of 𝑘 , considering the same set of training problem
instances, and choose the value of 𝑘 that gave the minimum MAE to build our
final model using the full training data set.

We remark that the choice of LOOCV, rather than other resampling meth-
ods, is due to its small bias when considering a small number of samples [57].
Nonetheless, preliminary experiments considering a 10-fold cross-validation
method yielded similar results. The choice of MAE, instead of Root-Mean-



4.2. EXPERIMENTAL STUDY 68

Square Error (RMSE), which is also commonly used, is due to the fact that we
expect that there are a small number of problem instances whose prediction
will give large errors and cannot be significantly improved, and MAE is less
sensitive to large errors since it does not square the errors.

The implementation of this model is available at [32].

4.2.4 Experimental Setup

To test our model we generated 500 instances for each number of objectives
𝑚 ∈ {2, 3, 5}. For each instance, the value of 𝑛 was randomly sampled from
the uniform distribution U (50, 150), the value of 𝜌𝑣 was randomly sampled
from the uniform distribution U

(
6
𝜋 sin−1 1

2(1−𝑚) , 1
)
, the value of 𝜌𝑤 was ran-

domly sampled from the uniform distribution U (−1, 1), and the value of 𝜔
was randomly sampled from the uniform distributionU (0.3, 0.7).

For each instance, we record the anytime performance trace, in terms of
CPU-time and hypervolume, for one run of the BHV-DP and PLS algorithms
for𝑚 ∈ {2, 3, 5} objectives, and the GEPS algorithm for𝑚 = 2 objectives. As
for the configuration of the algorithms, for the BHV-DP algorithm we consider
the ordering of the items given by Omin since it gave the best overall results
during preliminary experiments, which is consistent with the results reported
by Bazgan et al. [3]. For the PLS algorithm, we consider the default ordering of
the items, an initial solution corresponding to the empty knapsack, i.e., 𝑥𝑖 = 0
for all 𝑖 ∈ {1, . . . , 𝑛}, and a random selection of the next item to process. We
chose this configuration since it often achieved a solution with good quality
quickly. For the GEPS algorithm we considered a parameter ℓ = 100, since
it showed good results in Chapter 3, and in preliminary experiments for the
MOBKP. The algorithms were implemented in C++ and are available at [33].

The algorithms were executed on a computer with two Intel(R) Xeon(R)
Silver 4210R CPUs with clock frequency 2.40GHz, 10 cores, and 20 threads
each. The algorithms were executed with a CPU time limit of 100 seconds and
a memory limit of 8 Gb. Moreover, due to the large amount of time required
to run all the experiments, the executions were carried out in parallel, 20 at a
time (corresponding to one execution per CPU core). Although this is likely to
impact the performance of the algorithms, we consider that it does not affect
the results for our models, since both the training and testing instances are
generated under the same conditions. In a real-world scenario, training in-
stances should be generated under the same conditions that the new instances
are expected to be solved on. The code used to generate the problem instances,
and to gather the performance traces of the algorithms, is available at [32].
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4.2.5 Results

In this section we discuss the results of our model for predicting the anytime
behavior of the PLS and BHV-DP algorithms for problem instances with𝑚 ∈
{2, 3, 5} objectives, and of the GEPS algorithm for problem instances with𝑚 = 2
objectives. The code to reproduce these experiments is available at [32].

PLS — 2 Objectives

We start by analyzing the results of predicting the anytime behavior of the PLS
algorithm on problem instances with 2 objectives.

Figure 4.1 gives the density plot of the anytime measure values for problem
instances in the training and testing data sets. Note that, anytime measure is
defined in the range [0, 100] since CPU-time is measured in seconds between
0 and 100, and solution quality, given by the relative hypervolume, is defined
between 0 and 1. The figure shows that both the training and testing data
sets have a similar distribution. As such, we expect to be able to correctly
predict anytime performance for most instances. One exception is for problem
instances with a small anytime measure. Since there are not many problem
instances with anytime performance below 85, we expect that by selecting
a fixed number of similar instances 𝑘 , that the model will inevitably choose
instances that do not have similar anytime anytime behavior.
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Figure 4.1: Anytime measure density plot for training and testing problem
instances. PLS, 2 objectives.
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Figure 4.2: Relation between anytime measure and feature values for training
problem instances. PLS, 2 objectives.

Figure 4.2 shows the relation between feature values and anytime measure
for each problem instance in the training data set. The blue line, given by the
Locally Estimated Scatterplot Smoothing (LOESS) method [8], highlights the
relationship between the feature values and the anytime measure. Table 4.1
gives the Spearman’s correlation coefficient between each feature and the any-
time measure of the training instances. These results suggest that anytime
measure is most impacted by the correlation features, F3 and F4. The capacity
feature, F2, also appears to have an impact on anytime measure, but to a lesser
degree. The problem size feature, F1, appears to have no discernible impact
on anytime measure. Table 4.2 gives the weights that were set according to
Equation (4.16). We recall, that a higher value of 𝜉𝑖 implies that feature F𝑖 has
a larger impact on the computed distance between instances.

Table 4.3 gives the MAE value obtained by LOOCV on the training data

F1 F2 F3 F4
-0.087 0.289 0.620 -0.504

Table 4.1: Spearman’s correlation coefficient between the features and anytime
measures of the training instances. PLS, 2 objectives.
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𝜉1 𝜉2 𝜉3 𝜉4

1.415 3.175 11.919 7.512

Table 4.2: Weights for the distance metric. PLS, 2 objectives.
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Figure 4.3: Histogram of the prediction error in terms of anytime measure for
testing problem instances. The red line corresponds to the median. PLS, 2
objectives.

set for each value of the parameter 𝑘 ∈ {3, 4, . . . , 12} that denotes how many
instances the model selects to build the anytime performance profile that will
predict anytime performance. We see that the best, i.e., minimal, MAE value
is for 𝑘 = 11. As such, we consider 𝑘 = 11 to train the final model using all
instances in the training data set.

3 4 5 6 7 8 9 10 11 12

1.799 1.745 1.709 1.686 1.672 1.660 1.644 1.648 1.643 1.645

Table 4.3: MAE given by LOOCV on the training problem instances. PLS, 2
objectives.

Figure 4.3 gives the distribution of the prediction errors for testing problem
instances considering the final model trained with 𝑘 = 11. In particular, the
prediction error is considering in terms of the difference between the anytime
measure of the predicted anytime performance profile for an instance in the
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Figure 4.4: True and predicted anytime performance for 20 randomly selected
testing problem instances. PLS, 2 objectives.

testing data set, and the anytime measure of the true anytime performance
trace for that instance. We see that most error values are close to zero, and the
median (red line) is also very close to zero. We do see one particularly large
error, but this is not surprising given the fact that the density plots shown
earlier in this section revealed that there were outliers in the testing data set.
Overall, we consider that these results indicate that our empirical model can
accurately predict the anytime measure of the PLS algorithm for previously
unseen problem instances with𝑚 = 2 objectives.

Figure 4.4 shows the true and predicted anytime performance for 20 ran-
domly selected testing problem instances. The black line corresponds to the
true anytime trace gathered for that problem instance, the red region gives
the range of anytime performance traces of the 𝑘 problem instances selected
to build the anytime performance profile used for the prediction, and the red
line gives the median anytime trace of that predicted anytime performance
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Figure 4.5: True and predicted anytime performance for testing problem in-
stances that resulted in the largest prediction errors. PLS, 2 objectives.

profile. We observe that the true anytime trace is often within the red region
and close to the median anytime trace. Moreover, the red region is often quite
small. These observations indicate that our model is often selecting problem
instances with similar anytime behavior for building the predicted anytime per-
formance profile. Therefore, it appears that our model can accurately predict
the anytime performance of the PLS algorithm for previously unseen instances
with𝑚 = 2 objectives quite well. The true anytime trace and predicted anytime
performance of all 100 testing problem instances is presented in Appendix A.1.

Figure 4.5 and Table 4.4 give the predicted and true anytime performance
profiles and measures for the 10 testing problem instances that had the largest
prediction errors. We see that the top 3 largest prediction errors are for in-
stances with a small true anytime measure as we had anticipated in the begin-
ning of this section. Note that, due to the stochastic nature of the algorithm,
and because we only gathered one run for each instance, these large errors
might be a consequence of lucky, or unlucky, runs of the algorithm on partic-
ular instances. As such, one aspect to be studied in the future is the impact
that collecting multiple runs per instance has. Finally, we see that for the last
of these instances, the predicted performance profile is already quite close to
the true anytime behavior. As such, we consider that our model can accurately
predict the anytime performance of the PLS algorithm for problem instances
with𝑚 = 2 objectives.
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Instance Predicted measure True measure Error

207 90.13 68.53 21.60
335 89.34 82.97 6.37
343 93.47 87.21 6.26
142 95.56 90.57 4.99
51 89.35 94.29 -4.94
474 97.20 92.74 4.47
243 97.02 92.63 4.38
395 92.72 88.74 3.99
494 92.27 88.32 3.96
420 93.61 97.36 -3.74

Table 4.4: True and predicted anytime measure values for testing problem
instances that resulted in the largest prediction errors. PLS, 2 objectives.

PLS — 3 Objectives

In this section, we analyze the results of predicting the anytime behavior of
the PLS algorithm for problem instances with 3 objectives.

Figure 4.6 gives the density of anytime measure values for training and
testing problem instances. We see that the distribution is similar for both
types of instances, and that most instances have an anytime measure value
greater than 90. Due to the small number of instances on the left tail, we expect
that these might lead to erroneous predictions. We note that these results are
similar to those of the previous section where we considered instances with 2
objectives. However, there are less significant outliers on the left tail.

Figure 4.7 gives the relation between the anytime measure and feature val-
ues for instances in the training data set , and Table 4.5 gives the corresponding
Spearman’s correlation coefficient between the features and anytime measure
values. We see that the problem size feature, F1, has the most meaningful im-
pact on anytime measure. We also see that features F3 and F4 appear to have
a relevant impact for some instances, but that there are many instances that
always have an anytime measure value of 100 regardless of those features. This

F1 F2 F3 F4
0.559 0.208 -0.134 0.095

Table 4.5: Spearman’s correlation coefficient between the features and anytime
measures of the training instances. PLS, 3 objectives.
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Figure 4.6: Anytime measure density plot for training and testing problem
instances. PLS, 3 objectives.

F3: Mean value correlation F4: Weight-value correlation

F1: Problem size F2: Capacity ratio
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Figure 4.7: Relation between anytime measure and feature values for training
problem instances. PLS, 3 objectives.
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𝜉1 𝜉2 𝜉3 𝜉4

9.373 2.301 1.707 1.461

Table 4.6: Weights for the distance metric. PLS, 3 objectives.

happens because for some instances, especially for small values of 𝑛, the BHV-
DP algorithm can find the efficient set. Therefore, in those cases, the anytime
measure value for the PLS algorithm will be relative to the hypervolume of
the non-dominated set. However, for other instances, the BHV-DP cannot find
the efficient set within the allotted time, and the best known approximation,
in terms of hypervolume, might be given by the PLS algorithm. Therefore, in
those case, the anytime measure value for the PLS algorithm will be relative to
its own approximation, and will have a value of 1. As a result, it seems that F1 is
the feature that best indicates whether or not the PLS algorithm found the best
known approximation, and the correlation features, F3 and F4, better explain
the anytime measure for instances where it did not. Note that, in the previous
case with 2 objectives, the BHV-DP algorithm always finds the efficient set
within the allotted time, so we did not see this behavior. Table 4.6, gives the
weights obtained from the corresponding correlation coefficients according to
Equation (4.16).

Table 4.7 gives the MAE values obtained with the LOOCV method for each
value of the parameter 𝑘 considered. Since the minimumMAE value was found
for 𝑘 = 9, we will consider that value to train our final model on the complete
training data set.

Figure 4.8 shows the distribution of the prediction errors in terms of any-
time measure value for testing problem instances using the final model. We see
that the error for most instances, as well as the median error, are close to zero.
Still, it seems that there are slightly more errors with negative values, which
means that the model is under-estimating the true anytime measure. This is
in contrast to the expected result that the largest errors would be related to
the outliers in the left tail, which is what we saw in the previous section for
instances with 2 objectives. One reason for this, might be related to what was
discussed previously that for some instances the best known approximation

3 4 5 6 7 8 9 10 11 12

1.801 1.820 1.830 1.816 1.821 1.792 1.784 1.811 1.840 1.866

Table 4.7: MAE given by LOOCV on the training problem instances. PLS, 3
objectives.
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Figure 4.8: Histogram of the prediction error in terms of anytime measure for
testing problem instances. The red line corresponds to the median. PLS, 3
objectives.

is given by the BHV-DP algorithm, whereas for others it is given by the PLS
algorithm. As a results of this, for similar instances, it might happen that the
BHV-DP was able to find the efficient set within the allotted time, but for oth-
ers it did not. As such, we might have similar instances with distinct relative
anytime measure values, i.e., close to 100 if PLS found the best known solution,
and significantly below 100 if BHV-DP found the optimal solution. Despite this,
the results show that the model can accurately predict the anytime measure
obtained by the PLS algorithm for instances with 3 objectives in most cases.

Figure 4.9 gives the true and predicted anytime performance for 20 ran-
domly selected testing problem instances. We see that the results are generally
quite good, and that the model can accurately predict the anytime performance
for previously unseen instances. Nonetheless, there are some notable outliers,
e.g., instances 148, 165, 193, 252, and 305. However, Table 4.8 shows that, with
the exception of instance 193, these outliers are in the list of the 10 worst pre-
dictions. Thus, we were a bit unlucky with the random sample, and looking
at the full results in Appendix A.2, it is clear that the model can very often
predict the anytime performance of the PLS algorithm for problem instances
with 3 objectives.

Figure 4.10 and Table 4.8 show the predicted and true anytime performance
and anytime measure for the 10 testing problem instances with the worst pre-
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Figure 4.9: True and predicted anytime performance for 20 randomly selected
testing problem instances. PLS, 3 objectives.

diction error. Some of the largest errors are for instances with a true anytime
measure very close to 100, which is consistent with the analysis regarding
instances whose best known solution may be found by the PLS or BHV-DP
algorithm. There are also some errors for instances with a small true anytime
measure, which is to be expected due to the small number of instances with
those anytime measure values. Nonetheless, we see that the overall anytime
behavior for these instances is not very far from the true anytime trace.
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Figure 4.10: True and predicted anytime performance for testing problem in-
stances that resulted in the largest prediction errors. PLS, 3 objectives.

Instance Predicted measure True measure Error

308 92.04 99.16 -7.12
305 92.23 85.22 7.01
289 93.02 99.98 -6.96
165 90.14 83.65 6.48
282 97.17 91.75 5.42
252 96.72 91.59 5.13
159 90.16 95.22 -5.06
461 94.93 99.98 -5.05
148 96.26 91.56 4.70
130 96.86 92.19 4.67

Table 4.8: True and predicted anytime measure values for testing problem
instances that resulted in the largest prediction errors. PLS, 3 objectives.
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PLS — 5 Objectives

In this section, we analyze the results of predicting the anytime behavior of
the PLS algorithm for problem instances with 5 objectives.

Figure 4.11 shows the density of the anytime measure for testing and train-
ing problem instances. We see a similar density for the two data sets. However,
the testing data set seems to have more instances with an anytime measure
around 90, and less instances with an anytime measure close to 100. As such,
we expect to be able to generally predict anytime performance, but that our
largest errors might be for instances with an anytime measure close to 90.
Compared to the two previous cases where we considered instances with 2
and 3 objectives, the anytime measure values are much closer to 100, i.e., the
maximum possible value. This is a consequence of the best known solution
for instances with 5 objectives being very often found by the PLS algorithm,
instead of the BHV-DP algorithm, since the latter is not often able to find the
efficient set in the given amount of time.

Figure 4.12 gives the relation between the features values and anytime mea-
sure for instances in the training data set, and Table 4.9 gives the corresponding
Spearman’s correlation coefficient. We see that, unlike in the previous cases,
all features have a give a small correlation coefficient, and as such the weights
for the distance metric, shown in Table 4.10, are not too different from each
other.
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Figure 4.11: Anytime measure density plot for training and testing problem
instances. PLS, 5 objectives.
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Figure 4.12: Relation between anytime measure and feature values for training
problem instances. PLS, 5 objectives.

F1 F2 F3 F4
0.130 0.115 -0.063 -0.092

Table 4.9: Spearman’s correlation coefficient between the features and anytime
measures of the training instances. PLS, 5 objectives.

𝜉1 𝜉2 𝜉3 𝜉4

1.680 1.583 1.286 1.445

Table 4.10: Weights for the distance metric. PLS, 5 objectives.
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Table 4.11 gives the MAE values obtained by LOOCV on the training prob-
lem instances for values of parameter 𝑘 = 3, 4, . . . , 12. The best result was
found for 𝑘 = 5, which we use to build the final model.

Figure 4.13 gives the histogram of prediction errors for the testing problem
instances. We see that most errors, and the median, are close to zero, and
that, as expected, the most significant errors are positive, i.e., a consequence of
over-estimating the anytime performance. Nonetheless, we see that the model
can accurately predict the anytime measure values very often.

Figure 4.14 shows the true and predicted anytime performance of 20 ran-
domly selected testing problem instances. We see that for most instances the
prediction is quite good, but there are some outliers. Most notably, instance
412 has a very significant error, but it is worth noting that it is in the fact the
testing instance that has the largest error and a clear outlier. Compared to the
previous scenarios with 2 and 3 objectives, we seem to have larger red regions,

3 4 5 6 7 8 9 10 11 12

1.530 1.525 1.475 1.521 1.546 1.555 1.559 1.539 1.534 1.536

Table 4.11: MAE given by LOOCV on the training problem instances. PLS, 5
objectives.
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Figure 4.13: Histogram of the prediction error in terms of anytime measure
for testing problem instances. The red line corresponds to the median. PLS, 5
objectives.
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Figure 4.14: True and predicted anytime performance for 20 randomly selected
testing problem instances. PLS, 5 objectives.

which corresponds to the region of anytime traces of the training instances
selected for prediction. This suggests that it is harder to find instances with
similar anytime behavior for a larger number of objectives, which is not too
surprising. The results for every testing problem instance can be found in
Appendix A.3.

Figure 4.15 and Table 4.12 give the true and predicted anytime measure and
performance for the testing problem instances with the largest prediction error.
As expected, most of the largest errors are for instances with a true measure
close to 90. Nonetheless, we see that the model can already predict the anytime
performance accurately for the last 5 of these instances, and also taking into
account the full results, we see that our model can accurately predict anytime
behavior often.
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Figure 4.15: True and predicted anytime performance for testing problem in-
stances that resulted in the largest prediction errors. PLS, 5 objectives.

Instance Predicted measure True measure Error

412 95.64 69.40 26.23
461 95.42 88.46 6.95
317 99.75 93.25 6.50
465 96.96 90.79 6.16
13 95.29 89.71 5.59
78 96.28 90.82 5.46
322 95.25 99.97 -4.73
370 96.53 91.98 4.55
490 93.24 97.43 -4.18
7 96.19 99.97 -3.79

Table 4.12: True and predicted anytime measure values for testing problem
instances that resulted in the largest prediction errors. PLS, 5 objectives.
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BHV-DP — 2 Objectives

In this section, we analyze the prediction of anytime performance of the BHV-
DP algorithm for problem instances with 2 objectives.

Figure 4.16 gives the density of anytime measure for problem instances in
the testing training data sets. We can see that the anytime measure is very
close to 100 for most instances. This is due to the fact that the BHV-DP algo-
rithm can often find the efficient set quickly for the instances and time budget
we considered. However, there are some testing instances with an anytime
measure below 97.5 that we expect to lead to large errors since there are very
little training instances with similar values.

Figure 4.17 shows the relation between the instance features and the any-
time measure values, and Table 4.13 gives the Spearman’s correlation coeffi-
cients. Instance features F1 and F3 seem to have the most significant impact
on anytime measure values, followed by F4. On the other hand, F2 seems to
have little or no impact. Table 4.14 gives the weights for the distance metric
computed from the correlation values according to Equation (4.16).

Table 4.15 gives the MAE obtained by LOOCV for values of parameter
𝑘 = 3, 4, . . . , 12. The best value was found for 𝑘 = 9, which consequently is the
value that we will use to build the final model considering all problem instances
in the training data set.
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Figure 4.16: Anytime measure density plot for training and testing problem
instances. BHV-DP, 2 objectives.
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Figure 4.17: Relation between anytime measure and feature values for training
problem instances. BHV-DP, 2 objectives.

F1 F2 F3 F4
-0.576 -0.037 0.658 -0.356

Table 4.13: Spearman’s correlation coefficient between the features and any-
time measures of the training instances. BHV-DP, 2 objectives.

𝜉1 𝜉2 𝜉3 𝜉4

10.016 1.158 13.907 4.149

Table 4.14: Weights for the distance metric. BHV-DP, 2 objectives.

3 4 5 6 7 8 9 10 11 12

0.252 0.249 0.242 0.238 0.234 0.233 0.226 0.231 0.226 0.229

Table 4.15: MAE given by LOOCV on the training problem instances. BHV-DP,
2 objectives.
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Figure 4.18: Histogram of the prediction error in terms of anytime measure for
testing problem instances. The red line corresponds to the median. BHV-DP, 2
objectives.

Figure 4.18 shows the prediction errors, in terms of anytime measure, over
all 100 testing problem instances. The errors are for the most part quite small,
which is expected given that most instances have a similar anytime measure
value as discussed earlier. We also see some significant positive errors that, as
expected, correspond to instances that have a small anytime measure value.

Figure 4.19 gives the true and predicted anytime performance for 20 ran-
domly selected testing problem instances. The results for all 100 testing prob-
lem instances can be found in Appendix A.4. We note that the red region of
anytime traces used to predict the anytime performance of each instance is
generally quite large compared what was seen before when predicting the any-
time behavior of the PLS algorithm. This suggests that accurately predicting
the anytime performance of the BHV-DP algorithm is more difficult, and we
may need to consider more instances or instance features for the model to be
more precise. Still, the tendency of anytime behavior is correctly predicted in
most cases. As such, we consider that the model can accurately predict the
anytime behavior of the BHV-DP algorithm for instances with 2 objectives.

Figure 4.20 and Table 4.16 show the true and predicted anytime measure
and anytime performance for the testing problem instances with the largest
prediction errors. We see that, as expected, the worst predictions are for in-
stances that resulted in a small true anytime measure value.
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Figure 4.19: True and predicted anytime performance for 20 randomly selected
testing problem instances. BHV-DP, 2 objectives.

Instance Predicted measure True measure Error

472 96.06 88.61 7.45
343 99.42 95.04 4.37
496 96.19 92.16 4.03
159 98.89 95.93 2.96
424 98.87 96.90 1.97
467 96.66 95.36 1.30
30 98.71 97.98 0.73
346 99.21 99.68 -0.47
294 97.73 98.08 -0.35
440 99.40 99.06 0.34

Table 4.16: True and predicted anytime measure values for testing problem
instances that resulted in the largest prediction errors. BHV-DP, 2 objectives.
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Figure 4.20: True and predicted anytime performance for testing problem in-
stances that resulted in the largest prediction errors. BHV-DP, 2 objectives.

BHV-DP — 3 Objectives

In this section we analyze the prediction of anytime performance of the BHV-
DP algorithm for problem instances with 3 objectives. Figure 4.21 gives the
distribution of anytime measure values for the training and testing problem
instances. We see a similar distribution between both data sets, but a large
range of anytime measure values. This large range of values is explained
by the fact that the BHV-DP can sometimes take a long time to find a good
approximation on the considered instances. Given that the number of instances
in the training data set is not very extensive when taking into account the
combination of parameters, having a large range of anytime measure values
may suggest that there are not many instances with similar anytime behavior
and instance features, which could result in degraded prediction quality.

Figure 4.22 gives the relation between the feature values and anytime mea-
sure values for the training problem instances, and Table 4.17 gives the cor-
responding Spearman’s correlation coefficient. The results indicate that all

F1 F2 F3 F4
-0.479 -0.247 0.684 -0.313

Table 4.17: Spearman’s correlation coefficient between the features and any-
time measures of the training instances. BHV-DP, 3 objectives.
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Figure 4.21: Anytime measure density plot for training and testing problem
instances. BHV-DP, 3 objectives.

F3: Mean value correlation F4: Weight-value correlation

F1: Problem size F2: Capacity ratio
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Figure 4.22: Relation between anytime measure and feature values for training
problem instances. BHV-DP, 3 objectives.
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𝜉1 𝜉2 𝜉3 𝜉4

6.782 2.684 15.411 3.494

Table 4.18: Weights for the distance metric. BHV-DP, 3 objectives.

3 4 5 6 7 8 9 10 11 12

4.908 5.113 5.088 5.173 5.193 5.233 5.298 5.333 5.442 5.467

Table 4.19: MAE given by LOOCV on the training problem instances. BHV-DP,
3 objectives.

instance features have some impact on the anytime measure value, with the
most significant being F3 and F1. Table 4.18 gives the weight values for the
distance metric obtained with Equation (4.16) from the correlation coefficients.

Table 4.19 gives the MAE values obtained by LOOCV for 𝑘 = 3, 4, . . . , 12.
The best value was found for 𝑘 = 3, which we use to build the final model.

Figure 4.23 gives the histogram of prediction errors for the testing problem
instances. We can see that most errors are close to zero. However, we see a con-
siderable number of instances with significant errors, which is not unexpected
given the large range of anytime measure values discussed before. We expect
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Figure 4.23: Histogram of the prediction error in terms of anytime measure for
testing problem instances. The red line corresponds to the median. BHV-DP, 3
objectives.
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Figure 4.24: True and predicted anytime performance for 20 randomly selected
testing problem instances. BHV-DP, 3 objectives.

that by considering a larger number of training instances the results from our
model could be significantly improved. Nonetheless, as it stands, the quality
of prediction in terms of anytime measure is not very good for this case.

Figure 4.24 gives the true and predicted anytime performance for 20 ran-
domly selected testing instances. The results for every testing problem instance
can be found in Appendix A.5. As in the previous case, we see that the region
of anytime traces, i.e., the red region, is often large despite the fact that we are
selecting 𝑘 = 3 instances. This indicates that the model fails to find instances
that have similar anytime performance, which, as discussed earlier, is expected
due to the large range of anytime measure values. Moreover, we see that in
quite a few cases the prediction is not very good. However, on a more posi-
tive note, we see that the overall tendency of anytime behavior can often be
predicted. This suggests that by considering more instances the model could
better predict anytime behavior.
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Figure 4.25: True and predicted anytime performance for testing problem in-
stances that resulted in the largest prediction errors. BHV-DP, 3 objectives.

Instance Predicted measure True measure Error

402 78.92 42.91 36.01
349 54.12 26.67 27.45
204 68.01 42.91 25.11
346 85.88 61.20 24.68
17 56.65 32.91 23.74
470 79.33 57.35 21.99
289 83.33 61.72 21.61
342 74.42 53.32 21.09
298 75.30 55.63 19.67
452 53.31 34.62 18.69

Table 4.20: True and predicted anytime measure values for testing problem
instances that resulted in the largest prediction errors. BHV-DP, 3 objectives.
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Figure 4.25 and Table 4.20 give the true and predicted anytime measure
and performance for the testing problem instances with the largest prediction
errors. We see that often, the true anytime trace lies on the boundary of the red
region. Moreover, we see that the largest errors happen for instances whose
true anytimemeasure is not very large, despite there beingmore instances with
large anytimemeasure values as seen earlier in the density plot. This reinforces
the idea that by considering more instances the quality of the prediction could
be significantly improved.

BHV-DP — 5 Objectives

In this section, we analyze the prediction of anytime performance of the BHV-
DP algorithm for problem instances with 5 objectives. Figure 4.26 gives the
distribution of anytime measure values for the training and testing problem
instances. We see a similar distribution between both data sets, and that the
generated instances cover the whole range of possible anytime measure values.
As in the previous case, given the fact that we do not have a very extensive set
of training instances, this is likely to result in large prediction errors.

Figure 4.27 gives the relation between the instance features and anytime
measure on training problem instances, and Table 4.21 gives the correspond-
ing Spearman’s correlation coefficient. We see that all features have some
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Figure 4.26: Anytime measure density plot for training and testing problem
instances. BHV-DP, 5 objectives.
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Figure 4.27: Relation between anytime measure and feature values for training
problem instances. BHV-DP, 5 objectives.

F1 F2 F3 F4
-0.489 -0.233 0.719 -0.322

Table 4.21: Spearman’s correlation coefficient between the features and any-
time measures of the training instances. BHV-DP, 5 objectives.

𝜉1 𝜉2 𝜉3 𝜉4

7.061 2.542 17.735 3.630

Table 4.22: Weights for the distance metric. BHV-DP, 5 objectives.

impact on anytime measure, but features F3 and F1 are the ones with the most
significant impact. Table 4.22 gives the weights calculated with Equation (4.16).

Table 4.23 gives the MAE obtained by LOOCV for 𝑘 = 3, 4, . . . , 12. The best
value was found for 𝑘 = 4, which we use to build our final model.

Figure 4.28 gives the prediction errors for the testing problem instances.
We see that the median and largest concentration of errors is close to zero.
However, there are many large prediction errors. This is not unexpected, since
a larger number of objectives will give rise to more distinct behaviors. There-
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3 4 5 6 7 8 9 10 11 12

8.686 8.636 8.859 8.794 8.768 9.022 8.963 8.979 8.917 9.105

Table 4.23: MAE given by LOOCV on the training problem instances. BHV-DP,
5 objectives.

0.0

2.5

5.0

7.5

10.0

12.5

-50 -25 0 25 50
Prediction error

Co
un

t

Figure 4.28: Histogram of the prediction error in terms of anytime measure for
testing problem instances. The red line corresponds to the median. BHV-DP, 5
objectives.

fore, we consider that more instances or features are needed to precisely predict
anytime measure for the BHV-DP algorithm on instances with 5 objectives.

Figure 4.29 gives the true and predicted anytime performance of 20 ran-
domly selected testing problem instances. The results for all 100 testing prob-
lem instances are shown inAppendix A.6. We see that the red region of anytime
traces that make up the predicted anytime performance profile is often quite
large, and in a few cases the true tendency of anytime performance deviates
significantly from the predicted anytime performance. As such, we consider
that the overall prediction is not very good and could be further improved.

Figure 4.30 and Table 4.24 show the true and predicted anytimemeasure and
performance profile for testing problem instances with the largest prediction
errors. It is quite clear that the model is selecting instances that have quite
different anytime behavior, so more information is needed to accurately predict
anytime performance.
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Figure 4.29: True and predicted anytime performance for 20 randomly selected
testing problem instances. BHV-DP, 5 objectives.

Instance Predicted measure True measure Error

288 85.92 35.85 50.07
317 51.82 98.50 -46.67
102 48.17 94.18 -46.01
400 56.81 19.42 37.39
70 62.19 24.99 37.20
465 61.92 98.17 -36.25
13 58.40 93.52 -35.12
217 52.65 84.51 -31.86
188 29.85 3.05 26.80
226 51.14 74.61 -23.47

Table 4.24: True and predicted anytime measure values for testing problem
instances that resulted in the largest prediction errors. BHV-DP, 5 objectives.
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Figure 4.30: True and predicted anytime performance for testing problem in-
stances that resulted in the largest prediction errors. BHV-DP, 5 objectives.

GEPS — 2 Objectives

In this section, we conclude our experimental analysis by looking at the pre-
diction of anytime performance for the GEPS algorithm on problem instances
with 2 objectives.

Figure 4.31 gives the density plot of anytime measure for training and
testing problem instances. We can see that virtually all instances have an
anytime measure close to 100. For this reason, we show in Figure 4.32, the
density of instances with an anytime measure value greater than 99.9. We can
see that the density is similar for both data sets. Still, we see a small number
of testing problem instances below 99.9, but no such instances in the training
data set. As such, we expect our model to give large prediction errors for these.

Figure 4.33 shows the relation between the instance features and anytime
measure for the training problem instances, and Figure 4.34 shows the same
plot for anytime measure values greater than 99.9. Moreover, Table 4.25 gives
the Spearman’s correlation coefficient, on all training instances. We see that
instance feature F3 has the most significant impact on anytime measure. Then,
features F1 and F4 also have some impact but to a lesser degree, and feature F2
has little impact. Table 4.26 gives the weights calculated with Equation (4.16)
according to the correlation coefficients.

Table 4.27 shows the MAE values obtained by the LOOCV method for
𝑘 = 3, 4, . . . , 12. Thus, we choose 𝑘 = 7 to build the final model has it has the
best MAE value.
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Figure 4.31: Anytime measure density plot for training and testing problem
instances. GEPS, 2 objectives.
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Figure 4.32: Anytime measure density plot for training and testing problem
instances, for anytime measures greater than 99.9. GEPS, 2 objectives.
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Figure 4.33: Relation between anytime measure and feature values for training
problem instances. GEPS, 2 objectives.
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Figure 4.34: Relation between anytime measure and feature values for training
problem instances, for anytime measures greater than 99.9. GEPS, 2 objectives.
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F1 F2 F3 F4
-0.385 0.131 0.798 -0.297

Table 4.25: Spearman’s correlation coefficient between the features and any-
time measures of the training instances. GEPS, 2 objectives.

𝜉1 𝜉2 𝜉3 𝜉4

4.667 1.689 24.361 3.286

Table 4.26: Weights for the distance metric. GEPS, 2 objectives.

3 4 5 6 7 8 9 10 11 12

0.080 0.082 0.077 0.075 0.074 0.075 0.076 0.078 0.078 0.078

Table 4.27: MAE given by LOOCV on the training problem instances. GEPS, 2
objectives.

Figure 4.35 gives the histogram of prediction errors on all testing problem
instances. As expected, the errors are very small for almost every instance,
with a few exceptions where anytime measure is significantly over-estimated.
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Figure 4.35: Histogram of the prediction error in terms of anytime measure for
testing problem instances. The red line corresponds to the median. GEPS, 2
objectives.
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Figure 4.36: True and predicted anytime performance for 20 randomly selected
testing problem instances. GEPS, 2 objectives.

Figure 4.36 gives the true and predicted anytime performance for 20 ran-
domly selected testing problem instances. The results for all testing problem
instances can be found in Appendix A.7. We see that, in every case the pre-
dicted anytime performance follows the true anytime trace, despite the fact
that these instances have slightly different anytime behavior, especially for
small CPU times. This shows that our model, does not only give small predic-
tion errors because the differences between the instances are small, but that it
can in fact predict anytime performance quite well.

Figure 4.37 and Table 4.28 show the true and predicted anytime measure
and anytime performance for the testing problem instances with the largest
prediction errors. We see that the first two instances have a significant error,
but also that these are the outliers that we expected at the beginning of this
section. Besides those two instances, the anytime performance of the other 8
instances is predicted quite accurately.
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Figure 4.37: True and predicted anytime performance for testing problem in-
stances that resulted in the largest prediction errors. GEPS, 2 objectives.

Instance Predicted measure True measure Error

424 99.98 92.69 7.29
395 99.79 98.26 1.53
30 99.66 99.98 -0.31
377 99.88 99.99 -0.10
496 99.97 99.89 0.08
472 99.94 99.88 0.06
285 99.94 99.99 -0.06
159 99.99 99.93 0.05
230 99.79 99.74 0.05
316 99.97 99.94 0.04

Table 4.28: True and predicted anytime measure values for testing problem
instances that resulted in the largest prediction errors. GEPS, 2 objectives.



4.3. DISCUSSION 104

4.3 Discussion

In this chapter, we started by presenting three distinct frameworks for creating
empirical models to predict the anytime behavior of algorithms on previously
unseen problem instances, taking into account empirical anytime performance
data collected a priori. Although our goal is to predict anytime performance
for the task of algorithm selection, these empirical models can easily be ap-
plied to other tasks such as automated algorithm configuration and anytime
performance monitoring.

We also performed an experimental study for a model implemented accord-
ing to the first framework, in which we analyzed its performance for predicting
the anytime behavior of the PLS, BHV-DP, and GEPS algorithms on MOBKP
instances with 2, 3, and 5 objectives considering 4 simple instance features.
The results were very good for PLS and GEPS algorithms on problem instances
for all numbers of objectives considered, and for the BHV-DP algorithm on
problem instances with 2 objectives. In particular, we were able to accurately
predict the anytime measure and anytime behavior of almost all testing prob-
lem instances. The results for the BHV-DP algorithm on problem instances
with 3 and 5 objectives were not as good, and there were a considerable num-
ber of instances where the model failed to predict the anytime measure and
anytime behavior with enough precision. However, we consider that the issue
is not with the model itself, but rather the number of training instances avail-
able considering the range of parameters that we considered for generating
instances. As such, it would be relevant to consider a more thorough study
for the prediction of anytime behavior for the BHV-DP algorithm on whether
more instances could improve the quality of the prediction.

Nonetheless, we consider that the resulting models obtained in the exper-
imental study can be used for the task of algorithm selection, since they can
adequately predict the tendency in anytime behavior in most cases, which
might be sufficient for many selection problems. Therefore, we will consider
these models in the following chapter.

For the future, it would be relevant to perform a similar experimental study
for models implemented according to the other frameworks, or even for differ-
ent models following the first framework, e.g., considering a different learning
technique to find similar instances or even to consider manually categorized
instances a priori. Preliminary experiments for a model following the second
framework, showed that it can accurately model and predict anytime behavior.
However, one difficulty that arosewas in choosing an appropriate growth curve
to model the anytime behavior of the algorithms. During these preliminary
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experiments we considered a Weibull growth curve, which worked reasonably
well for many cases, especially for problem instances with 2 and 3 objectives.
However, as the number of objectives grew we saw that perhaps a different
growth curve was needed. Moreover, when taking into account within-group
correlation and variance, we found that estimating the model parameters using
the Generalized Non-Linear Least Squares (GNLS) required very good initial
estimates, otherwise, the GNLS method often failed to find the model param-
eters. Still, this is something that would be interesting to explore further, as
initial results were quite promising.

Finally, it would be interesting to consider the modeling of different prob-
lems and algorithms using these models. Other interesting topics include tak-
ing into account other instance features, and to analyze the impact of different
instance features on prediction quality.





Chapter 5

Offline Algorithm Selection

In this chapter, we consider the development of an automated offline algorithm
selection methodology for selecting between MOO algorithms such that the
anytime performance of the selected algorithm is optimal with respect to the
anytime preferences of the DM. This methodology takes into account models of
anytime performance to predict the anytime performance profile for a previ-
ously unseen problem instance. In the previous chapters we presented both a
theoretical model and an empirical model. In this chapter we will only consider
the later since we want to consider anytime performance in terms of CPU-time.

We assume that the anytime preferences of the DM are known at the time
of selection, and given to the algorithm selection methodology. Moreover, we
consider that the anytime preferences of a DM are given by a general utility
function𝑈 (𝑡, 𝑞) → R≥0 that denotes how likely the chosen algorithm is to be
interrupted at a particular time 𝑡 and archive quality 𝑞. The offline algorithm
selection problem is then defined as:

argmax
𝑎∈A

𝑀 (𝑎, 𝜄,𝑈 ) (5.1)

where A denotes the set of available algorithms, 𝜄 denotes the previously un-
seen instance for which we want to select an algorithm, and 𝑀 (𝑎, 𝜄,𝑈 ) → R
denotes a scalar measure of anytime performance for an algorithm 𝑎 on in-
stance 𝜄 with respect to a utility function 𝑈 that, without loss of generality,
is to be maximized. Note that, we cannot generally expect to have an exact
anytime performance measure for a previously unseen instance. As such, we
will consider approximating the anytime performance measure.

The remainder of this chapter is organized as follows. In Section 5.1, we
give a performance measure to characterize the anytime performance of an
algorithm as a scalar value. In Section 5.2, we give a general offline algorithm
selection methodology based on the empirical models of the previous chapter.

107
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In Section 5.3, we carry out an experimental study to analyze the quality of
the proposed methodology for selecting between anytime algorithms to the
MOBKP. The results indicate that our approach can very often select the best
algorithm. Lastly, in Section 5.4 we summarize the findings of this chapter and
discuss possible directions for future work.

5.1 Anytime Performance Measure

We start by defining a pre-order that denotes whether a performance profile
is at least as good as another with respect to a utility function 𝑈 that denotes
the anytime preferences of the DM.

Definition 5.1 (≥𝑈 pre-order). Given two performance profiles 𝑃 and 𝑃 ′, and
a utility function 𝑈 (𝑡, 𝑞) → R≥0, we define the relation 𝑃 ≥𝑈 𝑃 ′ iff 𝑃 (𝑡, 𝑞) ≥
𝑃 ′(𝑡, 𝑞) holds for every 𝑡 and 𝑞 where𝑈 (𝑡, 𝑞) > 0.

Note that, for two algorithms 𝑎, 𝑏 with performance profiles 𝑃𝑎 and 𝑃𝑏

respectively, a relation 𝑃𝑎 ≥𝑈 𝑃𝑏 means that algorithm 𝑎 is equally likely or
more likely than algorithm 𝑏 to return an archive with quality 𝑞 at time 𝑡 for
every 𝑡, 𝑞 such that 𝑈 (𝑡, 𝑞) > 0. However, there may be problem instances
and/or runs for which algorithm 𝑏 is able to achieve a better archive quality 𝑞
than algorithm 𝑎 at a given time 𝑡 .

The following binary relations between two performance profiles 𝑃 and 𝑃 ′

result from the ≥𝑈 pre-order:

𝑃 =𝑈 𝑃 ′ ⇐⇒ 𝑃 ≥𝑈 𝑃 ′ ∧ 𝑃 ′ ≥𝑈 𝑃 (Equivalence)

𝑃 >𝑈 𝑃 ′ ⇐⇒ 𝑃 ≥𝑈 𝑃 ′ ∧ 𝑃 ′ ≱𝑈 𝑃 (Superiority)

𝑃 ∥𝑈 𝑃 ′ ⇐⇒ 𝑃 ≱𝑈 𝑃 ′ ∧ 𝑃 ′ ≱𝑈 𝑃 (Incomparability)

It is desirable that a performance measure is order-preserving with respect
to the ≥𝑈 pre-order. Moreover, it is relevant that it allows to distinguish be-
tween incomparable performance profiles, that is, the performance measure
can give distinct values for incomparable performance profiles.

In the following we assume, without loss of generality, that the domain for
time is given by R≥0, and that archive quality is given by a finite scalar value
in R to be maximized that is less than or equal to 𝑞𝑢 . Moreover, we consider
that the positive values for our utility function𝑈 are bounded by a finite upper
bound on time 𝑡𝑢 and a finite lower bound on archive quality 𝑞ℓ , that is:

𝑈 (𝑡, 𝑞) →

R≥0 if 𝑡 ≤ 𝑡𝑢 ∧ 𝑞 ≥ 𝑞ℓ

0 otherwise
(5.2)
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Then, a performance measure for anytime performance taking into account
the utility function𝑈 is given by:

𝑀 (𝑃,𝑈 ) =
∫ 𝑞𝑢

𝑞ℓ

∫ 𝑡𝑢

0
𝑈 (𝑡, 𝑞) 𝑃 (𝑡, 𝑞) 𝑑𝑡 𝑑𝑞 (5.3)

We assume that𝑀 (𝑃,𝑈 ) is well-defined, i.e.,𝑈 (𝑡, 𝑞) 𝑃 (𝑡, 𝑞) is integrable on the
interval given by the specified bounds of time and quality.

Similarmeasures can be derived for discrete time and/or quality domains [36].
Note that, López-Ibáñez and Stützle [51] considered the use of the weighted
hypervolume for measuring anytime performance, which gives an equivalent
measure for algorithms with monotonic behavior. However, considering our
definition of a performance profile given in Chapter 2, then our measure gives
a different result for algorithms with non-monotonic behavior.

In the following, we give the properties of our measure with respect to the
≥𝑈 pre-order described earlier.

Proposition 5.1. Performance measure 𝑀 (·,𝑈 ) is order preserving with re-
spect to the ≥𝑈 pre-order, that is:

𝑃 ≥𝑈 𝑃 ′ =⇒ 𝑀 (𝑃,𝑈 ) ≥ 𝑀 (𝑃 ′,𝑈 ) (5.4)

Proof. If 𝑃 ≥𝑈 𝑃 ′, then the following implications hold:

𝑈 (𝑡, 𝑞) > 0 =⇒ 𝑈 (𝑡, 𝑞)𝑃 (𝑡, 𝑞) ≥ 𝑈 (𝑡, 𝑞)𝑃 ′(𝑡, 𝑞) (5.5)

𝑈 (𝑡, 𝑞) = 0 =⇒ 𝑈 (𝑡, 𝑞)𝑃 (𝑡, 𝑞) = 𝑈 (𝑡, 𝑞)𝑃 ′(𝑡, 𝑞) (5.6)

Then if both𝑀 (𝑃,𝑈 ) and𝑀 (𝑃 ′,𝑈 ) are well-defined, which we have assumed
to be, then the above implies that𝑀 (𝑃,𝑈 ) ≥ 𝑀 (𝑃 ′,𝑈 ). □

It can also be shown that our measure is strictly order-preserving, that is:

𝑃 >𝑈 𝑃 ′ =⇒ 𝑀 (𝑃,𝑈 ) > 𝑀 (𝑃 ′,𝑈 )
𝑃 =𝑈 𝑃 ′ =⇒ 𝑀 (𝑃,𝑈 ) = 𝑀 (𝑃 ′,𝑈 )

Proposition 5.2. Performance measure𝑀 (·,𝑈 ) allows to distinguish between
incomparable performance profiles, that is:

𝑃 ∥𝑈 𝑃 ′ ≠⇒ 𝑀 (𝑃,𝑈 ) = 𝑀 (𝑃 ′,𝑈 ) (5.7)

Proof. Let 𝑡𝑢 = 1, 𝑞ℓ = 0, 𝑞𝑢 = 1, and:

𝑈 (𝑡, 𝑞) →

1 if 0 ≤ 𝑡 ≤ 1 ∧ 0 ≤ 𝑞 ≤ 1

0 otherwise
(5.8)
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𝑃 (𝑡, 𝑞) →

0.4 if 0 ≤ 𝑡 ≤ 0.5 ∧ 0 ≤ 𝑞 ≤ 1

0.6 if 𝑡 > 0.5 ∧ 0 ≤ 𝑞 ≤ 1
(5.9)

𝑃 ′(𝑡, 𝑞) →

0.3 if 0 ≤ 𝑡 ≤ 0.5 ∧ 0 ≤ 𝑞 ≤ 1

0.9 if 𝑡 > 0.5 ∧ 0 ≤ 𝑞 ≤ 1
(5.10)

Then 𝑀 (𝑃,𝑈 ) = 0.5 and 𝑀 (𝑃 ′,𝑈 ) = 0.6, and it holds that 𝑃 ∥𝑈 𝑃 ′ and
𝑀 (𝑃,𝑈 ) ≠ 𝑀 (𝑃 ′,𝑈 ). □

5.2 Anytime Algorithm Selection

As discussed in Section 2.5, existing selectionmethodologies can be divided into
two categories, regression and classification approaches. However, existing
methodologies fail to consider the anytime preferences of the DM at the time
of selection. In this section, we consider how the anytime preferences can be
included in an algorithm selection methodology.

Assuming static anytime preferences, i.e., that anytime preferences do not
change between calls to the selection methodology, then a regression approach
could learn to predict the anytime performance measure for the algorithms
from a set of training instances, e.g., by running the algorithms against the
training instances and computing the anytime performance measure for the
given static anytime preferences. If the anytime preferences are instead given
to the algorithm selection methodology then one alternative would be to train
a similar model, but to compute the anytime performance measure against sev-
eral training utility functions, which should represent the true utility functions
that may appear during selection. If the set of expected utility functions is
well known and if the type of the utility function is easily identifiable, then
we can train multiple models, one for each type of utility function. If instead,
the utility functions are not easily identifiable, we may consider using a set
of features related to the utility function, e.g., the time and quality bounds.
However, this is likely to quickly become infeasible as we move to consider
more general utility functions, since we need to introduce more features and
more training utility functions.

In a classification approach, similar issues can arise. However, these may
be somewhat limited by the fact that the classification approach does not need
to learn to predict the quality. For example, consider the comparison of two
algorithms: a heuristic that quickly achieves a good solution but stops on a local
optimum, versus an exact algorithm that slowly starts with worse solutions
but eventually reaches the global optimum. Consider that, for each instance,
there is a time point 𝑡 such that the exact algorithm is always better than the
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heuristic after 𝑡 . If the classification system learns to predict that after 𝑡 the
exact algorithms is always better, then for any utility function with a lower
bound on time greater than 𝑡 the exact approach is better, and there is no need
to consider such utility functions, which may help reducing training times.
However, a larger number of utility functions and/or features may still be
required for the remaining cases.

The issues discussed above mostly stem from the fact that we are trying
to incorporate the utility functions into the training phase. Therefore, we
consider an alternative regression approach that first learns to predict the
anytime performance profile for the instance that we are trying to select an
algorithm for, and only takes into account the utility function when computing
the anytime performance measure to perform the selection. More generally,
we describe this selection approach as follows:

1. Given a set of algorithms A and a set of training instances learn to
predict the performance profile of an algorithm 𝑎 ∈ A for a previously
unseen instance.

2. Given a previously unseen instance 𝜄, predict the approximate perfor-
mance profile 𝑃𝑎,𝜄 for each algorithm 𝑎 ∈ A.

3. Given a utility function 𝑈 , select the algorithm that, without loss of
generality, maximizes𝑀 (𝑃𝑎,𝜄,𝑈 ), i.e.:

argmax
𝑎∈A

𝑀 (𝑃𝑎,𝜄,𝑈 ) (5.11)

Note that,𝑀 (𝑃𝑎,𝜄,𝑈 ) is an approximation to𝑀 (𝑎, 𝜄,𝑈 ).

Throughout this thesis we have already discussed everything that is required
for this methodology. In particular, in Chapter 3 and Chapter 4, we proposed
theoretical and empirical models to predict the anytime performance profile of
an anytime algorithm for a previously unseen instance, and in Section 5.1 we
proposed an anytime performance measure that takes a performance profile
and utility function. In the next section, we implement an algorithm selection
methodology using the empirical model developed in Chapter 4 for predicting
anytime performance of anytime algorithms for MOBKP instances, and the
anytime measure introduced in Section 5.1.

5.3 Experimental Study

In this section, we carry out an experimental study to analyze the quality of the
algorithm selection approach proposed in the previous section. In particular,
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we compare our proposed approach against a random approach that randomly
selects the algorithm to use, and against approaches that always select the same
algorithm. This section is organized as follows. In Section 5.3.1 we describe
the experimental setup. In Section 5.3.2 we show and analyze the results.

5.3.1 Experimental Setup

We consider the same instances, algorithm configurations, and runs that were
used for Section 4.2.4. In particular, we consider 500 instances for each number
of objectives𝑚 ∈ {2, 3, 5}, with the following parameter sampling:

• 𝑛 ∈ U (50, 150);

• 𝜌𝑣 ∈ U
(
6
𝜋 sin−1 1

2(1−𝑚) , 1
)
;

• 𝜌𝑤 ∈ U (−1, 1);

• 𝜔 ∈ U (0.3, 0.7).
For each instance, we record the anytime performance trace, in terms of CPU-
time and hypervolume, for one run of the BHV-DP and PLS algorithms for
𝑚 ∈ {2, 3, 5} objectives, and the GEPS algorithm for 𝑚 = 2 objectives. We
consider a timeout of 100 seconds for algorithm execution. The algorithms are
configured as follows:

• BHV-DP: ordering of the items following Omin;

• PLS: default ordering of the items, initial empty solution 𝑥 = {0, . . . , 0},
random selection of the next item to process;

• GEPS: Parameter ℓ = 100 to build the theoretical model that guides this
approach.

The C++ implementation for the algorithms is available at [33]. The code used
to generate the problem instances, and to gather the performance traces of the
algorithms, is available at [32].

We consider two selection scenarios with distinct utility functions. First,
we consider a scenario where there is almost complete uncertainty in terms
of when the algorithm will be interrupted, with the exception that it will be
stopped before or at time 𝑡𝑢 . Moreover, we consider that there is no anytime
preference with regards to solution quality, and that solution quality is defined
in the range [0, 1]. In this first scenario, the utility function is given by:

𝑈1(𝑡, 𝑞) →

1 if 0 ≤ 𝑡 ≤ 𝑡𝑢 ∧ 0 ≤ 𝑞 ≤ 1

0 otherwise
(5.12)
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The second scenario considers that a time 𝑡∗ is known such that the al-
gorithm will be interrupted at exactly that time. Moreover, we consider that
there is no anytime preference with regards to solution quality, and that solu-
tion quality is defined in the range [0, 1]. In this second scenario, the utility
function is given by:

𝑈2(𝑡, 𝑞) →

1 if 𝑡 = 𝑡∗ ∧ 0 ≤ 𝑞 ≤ 1

0 otherwise
(5.13)

For each scenario, we consider 200 values of 𝑡𝑢 and 𝑡∗ evenly distributed in
the range [1e−4, 1e2] on a log scale.

For our proposed algorithm selection approach, we consider the empirical
models that were trained in Section 4.2, i.e., which correspond to our imple-
mentation of the first empirical model (Section 4.1.1). Moreover, we consider
the same split between testing and training instances that was used in Sec-
tion 4.2, such that the same training instances are used to train the model, and
the testing instances are used for testing our proposed approach. Lastly, if
more than one algorithm maximizes the anytime performance measure, the
approach selects one of them at random.

5.3.2 Results

The following sections show the results of algorithm selection using our pro-
posed approach. In each sectionwe present the results for both utility functions
considering instances with a particular number of objectives. The code to re-
produce the experiments is available at [32].

2 Objectives — 3 Algorithms

In this section, we analyze the automated selection between the PLS, BHV-DP,
and GEPS algorithms for problem instances with 2 objectives.

Table 5.1 gives the accuracy, with respect to the ratio of correct algorithm
selections, on the first selection scenario for five distinct selection approaches:
our proposed approach, a random approach that randomly selects one of the
algorithms, and three other approaches, each of which corresponds to the
selection of a single algorithm at all times as indicated by its name in the table.
This ratio takes into account selection problems for all 100 testing problem
instances and 200 values of 𝑡𝑢 . We see that our approach has an accuracy
value equal to 0.97, which is the highest, and indicates that our approach can
very often choose the best algorithm. The random approach has a accuracy
value close to 1/3, which is to be expected since there are three algorithms for
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Proposed Random PLS BHV-DP GEPS

0.97 0.33 0.07 0.01 0.92

Table 5.1: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the first scenario. 2 objec-
tives, 3 algorithms.

selection. Always selecting the GEPS gives an accuracy equal to 0.92, whereas
the other two algorithms have very low accuracy, which means that the GEPS
is very often the best choice.

Figure 5.1 summarizes the accuracy for the first selection scenario over all
testing instances for each setting of 𝑡𝑢 . We see that after the first values of 𝑡𝑢 ,
our approach always selects the GEPS algorithm, since it follows the line of
the approach that always select the GEPS algorithm. Moreover, we see that for
very small values of 𝑡𝑢 , our proposed approach often selects the PLS algorithm,
since it closely follows the line of the approach that always selects the PLS
algorithm. Selecting the PLS algorithm is clearly a good choice for the first
few values of 𝑡𝑢 . However, as the values of 𝑡𝑢 increase slightly, i.e., for values
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Figure 5.1: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the first scenario at each
value of 𝑡𝑢 . 2 objectives, 3 algorithms.
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Proposed Random PLS BHV-DP GEPS

0.88 0.40 0.06 0.41 0.72

Table 5.2: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the second scenario. 2
objectives, 3 algorithms.

𝑡𝑢 ∈ [2.1e−4, 2.5e−4], our approach has an accuracy close to 0.5. Further
analysis of the data revealed that our approach tends to wrongly select the
GEPS algorithm for those values of 𝑡𝑢 , when it should be selecting the BHV-DP
or PLS algorithms instead. The full prediction results in Appendix A show that
the prediction model for the GEPS algorithm often overestimates the solution
quality obtained by the algorithm at such small CPU-time values. As such, to
improve the accuracy of our proposed selection approach in this scenario we
should focus on improving the prediction at small CPU-time values for the
GEPS algorithm.

Table 5.2 gives the accuracy for the second selection scenario, i.e., with
utility function 𝑈2, and the same five distinct selection approaches. It summa-
rizes the accuracy over the 100 testing instances and 200 values of 𝑡∗. We see
that our approach got the highest accuracy with a value equal to 0.88, which is
slightly worse than before, but still quite good. Note that, the random approach
achieved a value slightly larger than 1/3. This happens because for values of
𝑡∗ close to 100, both the BHV-DP and the GEPS algorithms have found a solu-
tion with optimal solution quality value, and as such, choosing any of those
algorithms is correct. We also see that always selecting the GEPS algorithm
now has slightly worse accuracy, and always selecting the BHV-DP algorithm
has improved significantly. This is due to the fact that the BHV-DP algorithm
can always find the Pareto set within the 100 second timeout, as such, it will
often be the best choice for larger values of 𝑡∗.

Figure 5.2 summarizes the accuracy for the second selection scenario over
all testing instances for each setting of 𝑡∗. For very small values of 𝑡∗ the
behavior is similar to that of the first scenario, that is, our approach can often
select the PLS correctly for very small values of 𝑡∗, but then wrongly selects
the GEPS algorithm for values of 𝑡∗ close to 2e−4, instead of the BHV-DP and
PLS algorithms. However, what is different is the behavior for values of 𝑡∗

greater than 1e−2. For these values, the GEPS is not always the best choice like
in the first scenario, and we see that the BHV-DP steadily becomes the best
choice. In this case, we see that when two choice lies between two algorithms,
our approach can often make the correct selection. However, the fact that
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Figure 5.2: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the second scenario at each
value of 𝑡∗. 2 objectives, 3 algorithms.

accuracy is close to 0.75 at times, indicates that there is still some room for
improvement. The prediction results for the BHV-DP and GEPS algorithms,
which can be seen in Appendix A.4 andAppendix A.7 respectively, indicate that
the issue is the prediction of anytime performance for the BHV-DP algorithm,
which is sometimes not very accurate for CPU-time values greater than 1e−2.
As such, to improve the selection in this case, we would primarily need to
improve the prediction model of the BHV-DP algorithm.

2 Objectives — 2 Algorithms

In the previous section, we saw that the GEPS algorithm was very often better
than the other two algorithms, in particular in the first scenario. Moreover,
the PLS was only the best choice for very small values of 𝑡𝑢 and 𝑡∗. In this
section, we choose to ignore the GEPS algorithm, to better analyze the selection
between the PLS and the BHV-DP algorithms for instances with 2 objectives.

Table 5.3 gives the overall accuracy on the first selection scenario. Our
proposed approach got an accuracy value equal to 0.90, which was the highest.
This is slightly less than in the previous case. However, given that always
selecting the PLS or BHV-DP algorithms resulted in accuracy values equal
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Proposed Random PLS BHV-DP

0.90 0.51 0.63 0.37

Table 5.3: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the first scenario. 2 objec-
tives, 2 algorithms.

to 0.63 and 0.37 respectively, the accuracy of our proposed approach looks
particularly good, and indicates that our approach is consistently selecting the
best algorithm.

Figure 5.3 gives the accuracy on the first selection scenario for different
values of 𝑡𝑢 . We see that the PLS algorithm is often the best choice for smaller
values of 𝑡𝑢 , whereas the BHV-DP algorithm is often the best choice for larger
values of 𝑡𝑢 . As for our approach, we see that it can often select the best
approach and that accuracy only falls slightly below 0.75 for small timeout
values. The prediction results in Appendix A.1 and Appendix A.4, for the PLS
and BHV-DP algorithms respectively, show that the prediction of the PLS algo-
rithm is generally more accurate than that of the BHV-DP. As such, to improve
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Figure 5.3: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the first scenario at each
value of 𝑡𝑢 . 2 objectives, 2 algorithms.
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Proposed Random PLS BHV-DP

0.90 0.50 0.52 0.48

Table 5.4: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the second scenario. 2
objectives, 2 algorithms.

the accuracy, we consider that the primary focus should be on improving the
prediction of anytime performance for the BHV-DP algorithm.

Table 5.4 gives the accuracy on the second selection scenario. We see that
the results are not very different than those in the first scenario, and that our
approach still has the highest accuracy. However, the accuracy of choosing
only the PLS or BHV-DP algorithms is now more balanced. Therefore, the fact
that our proposed approach continues to get such an high accuracy, clearly
indicates that it can often select the best algorithm.

Figure 5.4 gives the accuracy on the second selection scenario for different
values of 𝑡∗. We see a very similar behavior when compared to the first scenario.
In particular, we see that the PLS algorithm is often the best choice for small
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Figure 5.4: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the second scenario at each
value of 𝑡∗. 2 objectives, 2 algorithms.
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values of 𝑡∗, whereas the BHV-DP algorithm is often the best choice for large
values of 𝑡∗. Moreover, we see that our approach can often select the best
algorithm, and that accuracy almost never drops below 0.75. Nonetheless,
there is still room for improvement, and, as before, we consider that to improve
the accuracy of our approach the prediction of anytime performance for the
BHV-DP algorithm should be improved.

3 Objectives — 2 Algorithms

We now turn to the selection between the PLS and BHV-DP algorithms on
problem instances with 3 objectives.

Table 5.5 gives the accuracy on the first selection scenario considering all
testing problem instances and values of 𝑡𝑢 . We see that our proposed approach
got an accuracy value of 0.87, which is the highest. Moreover, we see that
choosing only the PLS algorithm had an accuracy value of 0.74, and choosing
only the BHV-DP algorithm resulted in an accuracy value of 0.26.

Figure 5.5 gives the accuracy on the first scenario for each value of 𝑡𝑢 . We
see that our proposed approach is always equal to or better than the other
approaches. However, we see that for values of 𝑡𝑢 close to 1e−3 it has a signifi-
cantly low accuracy compared to other values of 𝑡𝑢 . The full prediction results
for the PLS and BHV-DP algorithms, which can be seen in Appendix A.2 and
Appendix A.5 respectively, show that the prediction for CPU-times around
1e−3 is generally quite good for both algorithms, save for a few exceptions.
Moreover, for both algorithms the solution quality, in terms of relative hyper-
volume, at that time is often very close to 0. On the one hand, this shows that
small errors in prediction can be significant for selection accuracy, and should
not be discarded. On the other hand, the fact that quality values are so small
indicate that perhaps this is not a very relevant selection scenario. For larger
values of 𝑡𝑢 , we see that the accuracy of our approach is quite good, i.e., with
accuracy values around 0.875, despite the fact that there is no algorithm that
is clearly the best. For large CPU-time values, the prediction results for the
BHV-DP algorithm are clearly worse than for the PLS algorithm. Moreover, in
this case, the differences between the true and the predicted values are more

Proposed Random PLS BHV-DP

0.87 0.50 0.74 0.26

Table 5.5: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the first scenario. 3 objec-
tives, 2 algorithms.
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Figure 5.5: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the first scenario at each
value of 𝑡𝑢 . 3 objectives, 2 algorithms.

significant. Thus, the error in anytime measure due to a wrong selection is ex-
pected to be more significant. Therefore, we consider that to improve selection
we should start by improving the predictions for the BHV-DP algorithm.

Table 5.6 and Figure 5.6 give the accuracy results for the second selection
scenario. We see that the results are quite similar to the first selection scenario.
As before, we consider that accuracy could be further improved, in particular,
for larger values of 𝑡∗, if the prediction of anytime performance for the BHV-DP
algorithm is improved.

Proposed Random PLS BHV-DP

0.87 0.50 0.69 0.31

Table 5.6: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the second scenario. 3
objectives, 2 algorithms.
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Figure 5.6: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the second scenario at each
value of 𝑡∗. 3 objectives, 2 algorithms.

5 Objectives — 2 Algorithms

Lastly, we analyze the selection between the PLS and BHV-DP algorithms for
problem instances with 5 objectives.

Table 5.7 gives the accuracy on the first selection scenario. We see that our
proposed approach got an accuracy value of 0.87, whereas choosing only the
PLS algorithm had an accuracy value of 0.69, and choosing only the BHV-DP
algorithm resulted in an accuracy value of 0.31. These results indicate that our
approach can often select the best algorithm.

Figure 5.7 gives the accuracy on the first selection scenario for each value of
𝑡𝑢 . We see that our proposed approach is often better than the other approaches.

Proposed Random PLS BHV-DP

0.87 0.50 0.69 0.31

Table 5.7: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the first scenario. 5 objec-
tives, 2 algorithms.
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Figure 5.7: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the first scenario at each
value of 𝑡𝑢 . 5 objectives, 2 algorithms.

However, for values of 𝑡𝑢 around 1e−3, we see that it is worse than always se-
lecting the BHV-DP algorithm. Moreover, we get the worst accuracy at those
values of 𝑡𝑢 . Despite this, looking at the full prediction results for the PLS and
BHV-DP algorithms, which can be seen in Appendix A.3 and Appendix A.6 re-
spectively, we see that the prediction is quite good for both algorithms at small
values of CPU-time, and that in both cases the solution quality, measured in
terms of relative hypervolume, is close to zero. The latter observation indicates
that perhaps this is not the most interesting selection scenario. On the other
hand, for larger values of CPU-time, the prediction for the BHV-DP is worse
than the PLS and the differences between the true and the predicted values are
much larger. Therefore, to improve the selection we consider that it would be
more relevant to focus on improving the prediction of anytime performance
for the BHV-DP algorithm, in particular at larger CPU-times, so that not only
is accuracy improved but also that the error when making a wrong selection
is reduced.

Table 5.8 and Figure 5.8 give the accuracy results on the second selection
scenario. We see that the results are quite similar to those of the first scenario.
Therefore, we draw the same conclusions as before.
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Proposed Random PLS BHV-DP

0.86 0.50 0.67 0.33

Table 5.8: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the second scenario. 5
objectives, 2 algorithms.
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Figure 5.8: Accuracy of our proposed approach, a random approach, and ap-
proaches that always select the same algorithm, on the second scenario at each
value of 𝑡∗. 5 objectives, 2 algorithms.

We remark that, despite the fact that the prediction of anytime performance
for the BHV-DP algorithm on instances with 5 objectives often gives a large
error, the selection accuracy remains quite high. The fact that the algorithms
have such a different behavior is an important factor to this. Since otherwise,
the models would need to be much more accurate. However, this is coupled
with the fact that the predicted anytime performance is correctly capturing the
tendency of anytime behavior, even when there is a significant error. Other-
wise, we would not expect such a high accuracy.
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5.4 Discussion

In this section we discussed a measure of anytime performance that can take
into account the anytime preferences of a decision maker, and proposed an
automated algorithm selection approach that can take these anytime prefer-
ences into account when selecting the best algorithm for a previously unseen
instance. This algorithm selection approach considers models of anytime per-
formance for the algorithms we want to select on previously unseen instances,
such as those discussed in Chapters 3 and 4, as well as the discussed anytime
measure to take into account the anytime preferences of a decisionmaker when
selecting the best algorithm. Lastly, we carried out an experimental study to
analyze the quality of this algorithm selection approach in selecting between
algorithms to the MOBKP, considering two distinct utility functions.

This experimental study showed that our selection approach has very good
accuracy, and generally works very well despite the fact that the models of
anytime performance considered were, for some algorithms, not very accu-
rate. Still, we highlighted several cases in which the accuracy of our approach
left something to be desired due to the errors in the models of anytime per-
formance. This shows that our approach relies on the quality of the selected
models, and that to improve its accuracy we need to focus on improving the
quality of the models. One relevant direction for future work is then to extend
the experimental study to better analyze the relation between the models of
anytime performance and the accuracy of our approach both theoretically and
practically. For example, can lower and upper bounds for the accuracy of the
selection approach be defined with respect to the quality of the empirical mod-
els, or how do changes to the empirical models such as using more instances
and instance features affect our selection approach in practice.

Another aspect worth investigating is the time it takes for our approach
to make a selection with respect to the empirical models being used. The
way the code was developed did not allow to perform such measurements
easily, and it was not developed with selection performance in mind. Still,
preliminary experiments with the current code showed that computing the
anytime performance profile and anytime measure for a single algorithm took
about 1e−2 seconds or less for the considered empirical model, which should
be acceptable for most scenarios. Nonetheless, further research is needed to
better study and report the computational effort needed to select an algorithm
with respect to the empirical models being used.

To better put into context the performance of our approach, it would also
be worth investigating other algorithm selection methodologies, to compare
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them to our approach. As previously discussed, one issue with more traditional
classification and regression approaches is that they do not take into account
the anytime preferences of the DM at the time of selection. Still, we could
consider that the anytime preferences of a DM are fixed prior to training, thus
allowing to compare with more traditional classification and regression ap-
proaches. Alternatively, it would be interesting to investigate the development
of new methodologies that can take into account the anytime preferences of
the DM at the time of selection, which would be comparable to our proposed
approach. Lastly, it would be interesting to analyze the quality of the pro-
posed algorithm selection approach in other problems, in particular, problems
appearing in real-world scenarios.





Chapter 6

Online Algorithm Selection

In the previous chapter, we considered the selection of algorithms from an
offline perspective, i.e., selecting the algorithm before starting its execution.
In this chapter, we consider an online perspective for the ASP, that is, we
want to select and change algorithms while already executing an algorithm
to solve a previously unseen problem instance in order to improve anytime
performance. In particular, we consider selecting between branch-and-bound
strategies taking into account the anytime behavior of each strategy, and taking
into account the performance of the strategy that is being executed.

To this end, we will start by proposing an Indicator-based Branch-and-
Bound (IBB) approach that takes into account the potential of a node when
selecting the next node to be explored in terms of a binary quality indicator [37],
and give four selection strategies for this approach based on two distinct binary
quality indicators. Then, we perform an empirical study to analyze the any-
time performance of these selection strategies for the MOBKP, which shows
that these approaches often have better anytime performance compared to
traditional BB selection strategies. This empirical study also shows that not all
selection strategies have the same anytime performance and that the selection
strategy that most often gives the best approximation depends on the CPU-
time and on the number of objectives of the problem instance being solved.
Taking into account these empirical results, we propose an online methodology
that changes between IBB selection strategies during execution based on a set
of simple rules, with the goal of improving anytime performance. Lastly, we
carry out an experimental study to analyze the anytime performance of this
online methodology, which shows that it can often return better or equivalent
approximations compared to the individual IBB selection strategies.

This chapter is organized as follows. In Section 6.1, we present the IBB
approach and the implementation details of four selection strategies for this
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approach. We also present the results of the experimental study analyzing the
anytime performance of these selection strategies. In Section 6.2, we propose
and empirically analyze the online selection methodology to change between
IBB selection strategies. In Section 6.3, we summarize the results of this chapter
and discuss possible directions for future research.

6.1 Indicator-based Branch-and-Bound

6.1.1 Framework

As discussed in Section 2.3.2, BB approaches enumerate feasible solutions by
recursively dividing the decision space such that each subdivision gives way to
a subproblem. Each subdivision is often seen as a node in a search tree. A key
aspect of BB approaches is that lower and upper bound sets can be computed
for each node and used to avoid exploring nodes that cannot lead to efficient
solutions.

An important component for a BB approach, which can greatly impact
its (anytime) performance, is how to select the next node to be explored. In
Section 2.3.2, we discussed four distinct selection strategies: DFS, which selects
the nodes closest to the bottom of the search tree first; BFS, which selects the
nodes closest to the top of the search tree first; BeFS, which selects the most
promising node according to some heuristic criteria; BeDFS, which selects the
most promising node that is closest to the bottom of the search tree. In this
section, we are particularly interested in defining a heuristic to identify the
most promising node in the BeFS and BeDFS strategies, in the context of MOO.
In particular, we propose using binary quality indicators to measure the quality
of the upper bound set of a node with respect to the archive of solutions kept by
the BB algorithm. Two such indicators are the binary hypervolume indicator
and the 𝜀-indicator discussed in Section 2.2. We denote by Indicator-based
Branch-and-Bound (IBB) a BB approach that uses BeFS or BeDFS strategies
guided by quality indicators, as described in the following.

Formally, considering the BB frameworks described in Algorithms 1 and 2
in Section 2.3.2, and that, w.l.o.g., the binary quality indicator considered is to
be maximized, a BeFS selection strategy can be implemented by defining the
SelectNode(Q) function as follows:

SelectNode(𝑄) = argmax
node∈𝑄

𝐼 (𝑈 (node), {𝑓 (𝑥) : 𝑥 ∈ 𝑆}) (6.1)

where 𝑄 denotes the active queue of nodes that can be selected, 𝑈 (node)
denotes the upper bound set of a node, 𝑆 denotes the archive of solutions
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currently kept by the algorithm, and 𝐼 (𝐴, 𝐵) → R denotes a binary quality
indicator that characterizes the quality of a set 𝐴 ⊂ R𝑚 with respect to a set
𝐵 ⊂ R𝑚 . For a BeDFS selection strategy, the SelectNode is similar, but it
considers only the nodes in 𝑄 that are at the deepest level of the search tree.

Note that, under the assumption that the binary quality indicator 𝐼 is order-
preserving for a fixed reference set, then this selection guarantees that the
upper bound set of the chosen node is not dominated by the upper bound sets
of the remaining nodes. Moreover, if the indicator is strictly order-preserving,
and the optimal solution to the selection is unique, then the upper bound set
of the chosen node is further guaranteed to not be weakly dominated by the
upper bound sets of the remaining nodes. In Section 2.2 we have shown that
the binary hypervolume is strictly order-preserving, and that the 𝜀-indicator
is order-reversing, which is functionally equivalent since, by definition, its
negation is order-preserving.

As an example, in Figure 6.1 we illustrate the upper bound set {𝑢} of two
distinct nodes, and in gray the area given by the binary hypervolume indicator
for each upper bound set with respect to the image of the archive in the objec-
tive space (points in black). In this case, our selection strategy would select the
node that gives the upper bound of the left-hand side figure.

A potential issue for this approach is that the computational cost of the
binary quality indicator may be high, thus slowing down the search process
significantly. For example, this can be an issue when considering the binary
hypervolume indicator for problem instances with a large number of objec-
tives [27]. We expect this to be less critical for the BeDFS strategy since it only
considers the nodes that are closest to the bottom of search tree which are
often small in number.

𝑓1

𝑓2

𝑢

𝑓1

𝑓2

𝑢

Figure 6.1: Illustration of the binary hypervolume indicator (in gray) for the
upper bound set {𝑢} of two distinct nodes.
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6.1.2 Implementation Details

In this section we discuss the components of an IBB approach to the MOBKP
problems using the BeFS and BeDFS selection strategies. We consider that the
bound sets are computed according to the strategy described in Chapter 2.

The binary hypervolume and the 𝜀-indicator, described in Section 2.2, are
considered as the binary quality indicators for the BeFS and BeDFS selection
strategies. Since we consider an upper bound set comprised of a single point in
the objective space, the binary hypervolume computation can be formulated
as a hypervolume contribution calculation. For two objectives, the hypervol-
ume contribution can be computed in 𝑂 (log 𝜇) time, where 𝜇 is the number
of solutions in the archive, if the objective vectors of the archive solutions are
kept sorted by one of the objective values and data pertaining to the hyper-
volume calculation with a dimension sweep is kept for each node. For three
objectives, the hypervolume contribution can be computed in 𝑂 (𝜇) time with
the HV3D+-U algorithm [26] if the objective vectors of the archive solutions
are stored in the data structure of the HV3D+ algorithm [26]. For 4 or more
objectives, we consider the use of the WFG algorithm [76], with the sorting
and slicing improvements discussed in that work, which can compute the hy-
pervolume contribution in 𝑂 (𝜇𝑚/2 log 𝜇) time for𝑚 objectives.

To compute the 𝜀-indicator of an upper bound set comprised of a single
point, with respect to the archive 𝐴, we consider the problem:

𝐼𝜀 ({𝑢}, 𝐴) = max
1≤𝑖≤𝑚

max
𝑎∈𝐴

𝑎𝑖/𝑢𝑖 (6.2)

Note that, we can maintain a list of the maximum values of 𝑎𝑖 for each coor-
dinate 𝑖 , 1 ≤ 𝑖 ≤ 𝑚, in an array of size 𝑚, which is trivially updated when
the archive𝐴 is updated. Then, the computation of 𝐼𝜀 ({𝑢}, 𝐴) takes𝑂 (𝑚) time.
As such, calculating the binary 𝜀-indicator is expected to be much faster than
calculating the binary hypervolume for our upper bound set, which should be
particularly noticeable for a high number of objectives.

If a binary quality indicator is order-preserving (or order-reversing) with
respect to the weak dominance relation when fixing the first parameter, which
is the case for the binary hypervolume and 𝜀-indicator as discussed in Sec-
tion 2.2, then its values can be cached for nodes in the queue that have not
yet been selected and kept in a priority queue to more quickly select the next
node to be processed. For a BeFS selection strategy this needs to be a global
priority queue containing all the nodes that can be selected, whereas for the
BeDFS selection strategy we need to maintain a set of priority queue for each
level of the search tree. However, note that when considering a dichotomic
branching strategy, there is in fact no need to keep any priority queue, since
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after selecting the most promising node on a particular level, there is only a
single node remaining at that level.

One potential issue with keeping a priority queue is that when the archive
maintained by the BB changes, then, depending on the quality indicator, the
cached values may need to be updated and the priority queue needs to be
recomputed, which can be quite costly if done often. As such, it is questionable
whether or not the values should be kept in a priority queue. Our preliminary
experiments suggested that for the 𝜀-indicator it is best to maintain a priority
queue at all times, since a reconstruction is rarely required. However, for the
binary hypervolume indicator, we found it was best to use a priority queue
only if the cached values are not updated often. In particular, we start by not
considering a priority queue and instead keep all the nodes in a vector that
can be searched in linear time to find the most promising node. Then, if there
are 10 consecutive calls to the selection methodology that do not update the
hypervolume of the archive, we build a priority queue from that vector. Once
the hypervolume of the archive changes, we go back to not using a priority
queue until there are 10 consecutive calls to the selection methodology that
do not update the hypervolume of the archive. Finally, to avoid unnecessary
quality indicator computations, we only recompute the quality indicator of the
upper bound after the archive changes on the nodes for which the previously
cached value was better than the current best, since the new quality indicator
value will remain the same or decrease.

6.1.3 Experimental Study

In this section, we carry out an experimental study to analyze the (anytime)
performance of the BeFS and BeDFS selection strategies on the MOBKP for
problem instances generated according to the procedure described in Chap-
ter 4. In particular, we considered 100 instances for each number of objectives
𝑚 ∈ {2, 3, 5, 7}. The remaining parameters were randomly sampled from the
following uniform distributions:

• 𝑛 ∈ U (50, 150);

• 𝜌𝑣 ∈ U
(
6
𝜋 sin−1 1

2(1−𝑚) , 1
)
;

• 𝜌𝑤 ∈ U (−1, 1);

• 𝜔 ∈ U (0.3, 0.7).

We consider the following alternatives for the implementation of the BB
and IBB approaches:
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• Branching: Dichotomic;

• Branching order: Default (Random) or Osum;

• Selection strategy: DFS, BFS, 𝜀-indicator BeFS, 𝜀-indicator BeDFS, bi-
nary hypervolume BeFS, binary hypervolume BeDFS.

The BB and IBB approaches were implemented in C++, and the code is
available at [33]. The code was compiled with GCC 10.2.0, and the experiments
were carried out in parallel, one per thread, on a machine with two Intel(R)

Xeon(R) Silver 4210R processors. The algorithms were run with a timeout
of 100 seconds and an 8Gb memory limit.

In the results that follow we consider the performance of the BB and IBB
approaches for different test scenarios. In particular, we measure the hyper-
volume of the archive found by an BB or IBB approach for a given problem
instance considering a given CPU timeout value. There are a total of 100 in-
stances for each number of objectives𝑚 ∈ {2, 3, 5, 7}, and for each instance we
consider 200 distinct CPU timeout values evenly distributed on a log scale in
the range [1e−3, 1e2]. Therefore, we consider a total of 20 000 test scenarios
for each value of𝑚. The code to reproduce the experiments, and to generate
the tables and figures presented in the following sections, is available at [32].

2 objectives

Table 6.1 gives the ratio of test scenarios with 2 objectives for which the BB
and IBB approaches using particular selection strategies found the best known
archive, with respect to the hypervolume quality indicator, and considering
two distinct branching orders. Note that, the best known archive is defined
with respect to all the archives found by any BB or IBB approach using the
same branching order for that test scenario, i.e., for that instance and CPU
timeout value.

For the default branching order, we see that the IBB approaches guided by
the binary hypervolume indicator have the best ratio, and that the traditional
BB approaches have the worst ratio. The IBB approaches guided by the 𝜀-
indicator are slightly better than the BB approaches, but have small ratios
compared against approaches guided by the hypervolume. Note that the sum
of the ratios for each branching order may be greater than 1 since multiple
algorithms can find an archive with the same hypervolume value. This is
likely to happen in scenarios with large CPU timeout values since multiple
approaches may find the Pareto set within that time.

For the Osum branching order, we see that the BB approach using the DFS
selection strategy has the best ratio by a large margin. This indicates that a
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Order BFS DFS HV-BeFS HV-BeDFS 𝜀-BeFS 𝜀-BeDFS

Default 0.13 0.12 0.56 0.42 0.21 0.16
Osum 0.14 0.80 0.28 0.21 0.18 0.18

Table 6.1: Ratio of test scenarios with 2 objectives for which a selection strategy
found the best archive with respect to the hypervolume quality indicator.

good ordering of the items for the MOBKP can lead to a good archive, in terms
of hypervolume, using the DFS selection strategy. Despite this, we see that the
IBB approaches, especially those guided by the hypervolume, can sometimes
find better, or equally good, archives. Moreover, it should be noted that such
an ordering may not be easy to achieve for every problem, and further analysis
of the data reveals that the IBB approaches considering a default branching
order, in particular those guided by the hypervolume quality indicator, can
often achieve archives with hypervolume values that are not much worse, and
sometimes even better, than those found by the DFS selection strategy with the
Osum branching order. This suggests that our IBB approaches are particularly
interesting when a good branching order for the DFS selection strategy is not
known.

Figure 6.2 gives the ratio of test scenarios with specific CPU timeout values
for which a given approach was able to find the best archive. We see that for the
default branching order, the IBB approach guided by the binary hypervolume
using a BeDFS selection strategy got the highest ratio for small CPU timeout
values. However, for larger CPU timeout values the IBB approach guided by
the binary hypervolume using a BeFS selection strategy surpasses it. Note
that, since we are measuring archive quality in terms of hypervolume, it is not
surprising that the approaches guided by the binary hypervolume have the best
performance. Also, note that the sum of ratios at CPU timeout values closer to
100 are clearly greater than for values closer to 1. We recall that this happens
because for some instances the BB and IBB approaches can all find the Pareto
set. For the Osum branching order, we see that the BB approach following a
DFS selection strategy, has the best ratio for all CPU-timeout values.

Figure 6.3 gives the mean error, and standard deviation, in terms of the
difference between the hypervolume found by a given selection strategy and
the hypervolume found by any other strategy considering the same branching
order, when that difference is greater than 0. We discard values where the
difference is equal to 0 because we want to evaluate how close a given strategy
is to the best, when that strategy itself is not the best. For the default branching
order, we see that the BFS and DFS selection strategies give the worst error for
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Figure 6.2: Ratio of test scenarios, with 2 objectives and a given CPU timeout
value, for which a selection strategy found the best archive with respect to the
hypervolume quality indicator.

all timeout values, which means that not only can these selection strategies
rarely find the best archive, as evidenced by the ratios shown previously, but
also that the archives found by those strategies are significantly worse than
those found by the IBB approaches. On the other hand, the BeDFS strategies
give the smallest error for small timeout values, and BeFS strategies give the
smallest error for large timeout values. This indicates that, even when these
strategies cannot find the best archive, the difference in terms of hypervolume
to the best is small. In particular, note that the approaches guided by the 𝜀-
indicator, despite having a small ratio, generally have small errors. As such all
IBB approaches are generally quite good, as they often find the best archive or
otherwise have a small error.

For the Osum branching order, we see that the BFS strategy gives the largest
error, but that the DFS strategy gives the smallest error. This is not too sur-
prising given the results in terms of ratio. But we also see that the errors of
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Figure 6.3: Mean and standard deviation of the difference between the quality
of the archive found by a selection strategy for instances with 2 objectives and
a particular CPU timeout value, and the quality of the best archive found, when
that difference is greater than 0.
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the IBB approaches are now more significant, with the exception of the BeDFS
approach guided by the hypervolume, which generally has a small error. How-
ever, we see that the error for the BeFS strategies is decreasing significantly, and
we would expect the error to become smaller than that of the BeDFS strategies
for larger timeout values.

3 objectives

Table 6.2 gives the ratio of test scenarios with 3 objectives for which a given BB
or IBB approach found a archive with the best hypervolume. For the default
branching order, we see that the BeFS approach guided by the 𝜀-indicator has
the best ratio, followed by the IBB approaches guided by the hypervolume indi-
cator. This contrasts with the previous scenarios with 2 objectives, where the
approaches guided by the hypervolume indicator had much better ratio than
the IBB approaches guided by the 𝜀-indicator. This is not too surprising since
the cost of computing the hypervolume contribution for the upper bound point
is significantly higher than the cost of computing the 𝜀-indicator contribution
for instances with 3 or more objectives, as discussed in Section 6.1.2. Nonethe-
less, the IBB approaches guided by the hypervolume still have a higher ratio
than the BeDFS approach guided by the 𝜀-indicator, despite their increased
computational cost. Lastly, we see that all IBB approaches have better ratio
values than the traditional BB approaches, as in the previous case.

For the Osum branching order, we see that the BB approach using a DFS
selection strategy once again has the best ratio by a large margin. However,
we see that this ratio decreased slightly compared to the previous case with
2 objectives. Moreover, we remark that the IBB approaches guided by the
hypervolume indicator also decreased compared to the previous case, and that
the BeFS approach guided by the 𝜀-indicator increased, such that it is now the
second best approach tied with the BeFS approach guided by the hypervolume
indicator.

Figure 6.4 gives the ratio of test scenarios with a given CPU timeout value,
for which a given approach was able to find the archive with the best hypervol-
ume. For the default branching order, we see that the BeDFS approach guided

Order BFS DFS HV-BeFS HV-BeDFS 𝜀-BeFS 𝜀-BeDFS

Default 0.12 0.11 0.36 0.33 0.42 0.15
Osum 0.12 0.74 0.23 0.15 0.23 0.15

Table 6.2: Ratio of test scenarios with 3 objectives for which a selection strategy
found the best archive with respect to the hypervolume quality indicator.
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Figure 6.4: Ratio of test scenarios, with 3 objectives and a given CPU timeout
value, for which a selection strategy found the best archive with respect to the
hypervolume quality indicator.

by the hypervolume indicator is the approach with the highest ratio for CPU
timeout values below 1e−2. Then, it is tied with the BeFS approach guided by
the hypervolume indicator until a CPU timeout value close to 1e−1. After that,
the BeFS approach guided by the 𝜀-indicator has the best ratio. This shows, that
the IBB approaches guided by the hypervolume indicator are still preferable
in an initial phase, despite the higher computational costs. However, for large
CPU timeout values the BeFS approach guided by the 𝜀-indicator is clearly
preferred.

For the Osum branching order, the DFS is clearly the best selection strategy
at all times, much like it was for 2 objectives, but we see that its ratio is generally
not as high as in that case. With regards to the other approaches, we see that
the BeFS selection strategy guided by the hypervolume has a better ratio for
CPU timeout values below 1e0, but the BeFS selection strategy guided by the
𝜀-indicator has a better ratio for CPU timeout values greater than those.
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Figure 6.5: Mean and standard deviation of the difference between the quality
of the archive found by a selection strategy for instances with 3 objectives and
a particular CPU timeout value, and the quality of the best archive found, when
that difference is greater than 0.
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Figure 6.5 gives the error of the archive found by a selection strategy that
did not find the best archive for instances with 3 objectives. For the default
branching order, we see that the BeDFS selection strategy guided by the hy-
pervolume indicator gives the smallest error for small timeout values, whereas
the BeFS strategy guided by the 𝜀-indicator gives the smallest error for large
timeout values, which is in accordance with the ratio results. When consider-
ing the Osum branching order we see that, besides the DFS strategy, these two
strategies also have the smallest error.

5 objectives

Table 6.3 gives the ratio of test scenarios with 5 objectives for which the differ-
ent selection strategies found the archive with the best hypervolume. For the
default branching order, the BeFS selection strategy guided by the 𝜀-indicator
has the best ratio by a large margin. The second and third best ratios are for
the BeDFS approaches guided by the 𝜀-indicator and hypervolume indicator
respectively. The worst approach is the BeFS approach guided by the hypervol-
ume, which is worse than the naive BB approaches. These results indicate that
the computational cost of the binary hypervolume indicator for 5 objectives is
a problem for the performance of the IBB approaches guided by that indicator.
For the Osum branching order, we see that the IBB approaches guided by the
hypervolume are also the worst. But we see that the BeFS strategy guided by
the 𝜀-indicator has a ratio that is much better than in previous cases, and not
far from the ratio of the DFS strategy, which is still the best.

Figure 6.6 gives the ratio of test scenarios with a given CPU timeout value
for which a given approach was able to find the archive with the best hypervol-
ume. For the default branching order, we see that the BeDFS approach guided
by the 𝜀-indicator is the approach with the highest ratio for CPU timeout val-
ues below 2e−2. For CPU timeout values greater than 2e−2, the BeFS approach
guided by the 𝜀-indicator has the best ratio by a large margin. It is also worth
noting that the IBB approaches guided by the hypervolume indicator have
small ratio for almost all CPU timeout values, with the exception of the BeDFS
approach which can achieve a ratio greater than 0.25 for CPU timeout values

Order BFS DFS HV-BeFS HV-BeDFS 𝜀-BeFS 𝜀-BeDFS

Default 0.10 0.09 0.04 0.14 0.66 0.23
Osum 0.10 0.63 0.05 0.06 0.44 0.12

Table 6.3: Ratio of test scenarios with 5 objectives for which a selection strategy
found the best archive with respect to the hypervolume quality indicator.
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Figure 6.6: Ratio of test scenarios, with 5 objectives and a given CPU timeout
value, for which a selection strategy found the best archive with respect to the
hypervolume quality indicator.

close to 1e−1, despite the fact that the binary hypervolume indicator has a
high computational cost. Note that, in the BeDFS case the binary indicator
does not need to be computed as often, which explains why the approach can
sometimes achieve good results. Nonetheless, this shows that, as expected, the
high computation cost of the hypervolume indicator has a big impact on the
performance of the IBB approaches guided by that indicator. However, we see
that the 𝜀-indicator, which has a small computational cost, can achieve very
good results despite the fact that we are measuring archive quality in terms of
the hypervolume indicator.

For the Osum branching order, the DFS is the best selection strategy for
CPU timeout values smaller than 2e−1, as in the previous cases. However, we
see that the BeFS approach guided by the 𝜀-indicator has a better ratio for CPU
timeout values greater than that. This contrasts with the previous cases for 2
and 3 objectives. One plausible reasoning is that it is more difficult to get a good
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Figure 6.7: Mean and standard deviation of the difference between the quality
of the archive found by a selection strategy for instances with 5 objectives and
a particular CPU timeout value, and the quality of the best archive found, when
that difference is greater than 0.
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approximation of the Pareto front, i.e., an approximation that uniformly covers
the whole Pareto front, with a static order as the number of objectives increases,
due to the conflicting relation between multiple objective functions. That is,
the DFS strategy can quickly find good solutions in a particular direction in
objective space as it goes down in the search tree, which explains why it is
initially quite good. However, the approach then struggles to find solutions that
are far from that initial direction since it gets stuck at the bottom of the search
tree in a particular direction if the lower and upper bounds are not very tight.
On the other hand, the BeFS approach can explore different directions more
easily if the indicator that guides the search favors uniformly distributed points
in the objective space. Nonetheless, further analysis is needed to understand
what problem properties lead to this behavior.

Figure 6.7 gives the mean and standard deviation of the error of a selec-
tion strategy for instances with 5 objectives, when it failed to find the best
archive. For the default branching order, we see that the BeFS selection strat-
egy guided by the 𝜀-indicator most often has the smallest error, and that the
BeDFS approaches guided by either indicator also have small errors when the
CPU timeout values are small. These results are in line with those in Figure 6.6
since the best approaches at each stage, are also the ones that have the smallest
error. For the Osum branching order, we see that the errors of the IBB ap-
proaches follow a similar trend but are significantly larger. On the other hand,
the DFS approach has a very small error at all times. Notably, the small error
for large CPU timeout values indicates that, despite not being the approach
that most often finds the best archive for such timeout values, it can very often
find an archive that is close to the best.

7 objectives

Table 6.4 gives the ratio of test scenarios with 7 objectives for which the dif-
ferent selection strategies found the archive with the best hypervolume. The
results are quite similar to those we found for 5 objectives. In particular, for the
default branching order, the BeFS selection strategy guided by the 𝜀-indicator
has the best ratio by a large margin, the second and third best ratios are for
the BeDFS approaches guided by the 𝜀-indicator and hypervolume indicator
respectively, and the worst approach is by the BeFS approach guided by the
hypervolume. For the Osum branching order, we see that the DFS strategy is
the best, and the BeFS guided by the 𝜀-indicator is the second best, whereas
the other strategies are all much worse than these two. These results, again
highlight that the computational cost of the hypervolume has a large impact
on the performance of the IBB approaches guided by binary hypervolume.
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Order BFS DFS HV-BeFS HV-BeDFS 𝜀-BeFS 𝜀-BeDFS

Default 0.07 0.08 0.01 0.12 0.62 0.21
Osum 0.06 0.65 0.03 0.04 0.39 0.09

Table 6.4: Ratio of test scenarios with 7 objectives for which a selection strategy
found the best archive with respect to the hypervolume quality indicator.

Figure 6.8 gives the ratio of test scenarios with a given CPU timeout value
for which a given approach was able to find the archive with the best hypervol-
ume. Once again, the results are similar to those for instances with 5 objectives.
In particular, for the default branching order, the BeDFS approach guided by
the 𝜀-indicator has a large ratio for small CPU timeout values, and the BeFS
approach guided by the 𝜀-indicator has a much larger ratio than all others
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Figure 6.8: Ratio of test scenarios, with 7 objectives and a given CPU timeout
value, for which a selection strategy found the best archive with respect to the
hypervolume quality indicator.
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strategies for large CPU timeout values. For the Osum branching order, we see
that the DFS strategy has the best ratio most often, but that for large CPU time-
out values the BeFS approach guided by the 𝜀-indicator is better. Notably, the
difference between the ratio of this strategy and the ratio of the DFS strategy
is much greater than for 5 objectives, which suggests that as the number of
objectives increases the difference is likely to be more significant.

Figure 6.9 gives the mean error and corresponding standard deviation for
each selection strategies, when the archive found for instanceswith 7 objectives
was not the best. The results are similar to those for instances with 5 objectives.
However, we can see that both the errors are slightly larger in this case, which
indicates that the error increases with the number of objectives.

6.1.4 Discussion

In the previous section we compared the proposed IBB approaches guided
by the binary hypervolume and 𝜀-indicator against the naive BB approaches
using a DFS and BFS search strategies to solve instances of the MOBKP. In
particular, we analyzed which approaches found the best archive with respect
to the hypervolume quality indicator on a set of instances and CPU timeout
values, considering two distinct branching orders. We also analyzed the mean,
and standard deviation, of the difference in relative hypervolume between the
archive found by a given approach, and the best archive found by any strategy
for the same CPU-time.

For a default branching order, which corresponds to a random ordering of
the items, we saw that the IBB approaches often found the best archive, and
gave the smallest error. In particular, the BeDFS selection strategies often had
the best performance for small CPU timeout values, and the BeFS strategies had
the best performance for medium and large CPU timeout values. Moreover,
for 2 objectives the IBB approaches guided by the hypervolume performed
better, and for 5 and 7 objectives the IBB approaches guided by the 𝜀-indicator
performed better. For 3 objectives, the BeDFS guided by the hypervolume had
better performance for small CPU timeout values, and the BeFS guided by the
𝜀-indicator had better performance for large CPU timeout values. As such, we
conclude that for these MOBKP instances, and for a random branching order
our IBB approach is significantly better than the naive DFS and BFS selection
strategies.

For the Osum branching order the results favored the DFS strategy in most
scenarios, which indicates that a good branching order is particularly important
for that strategy. However, it is worth noting that such an order might not
be available for every problem. Moreover, we saw that for large CPU timeout
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values and instances with 5 and 7 objectives, the DFS approach started to have
worse performance in terms of finding the best archive, and the BeFS strategy
guided by the 𝜀-indicator was more often able to find the best archive. Still, the
difference in archive quality between the archive found by the DFS strategy
and the best archive was quite small, which means that the archive found was
quite good despite not being the best.

Further analysis also revealed that the difference in archive quality between
the best archive found by the IBB approaches with the default order, and the
best archive with the Osum branching order, was often quite small. This sug-
gests that the IBB approaches can often find good archives without the need
to devise any particular branching order.

For future work, we consider that it would be relevant to study the perfor-
mance of the IBB approaches on a broader set of instances to better understand
what characteristics of the problem are significant to each strategy. One ques-
tion that arose, but for which preliminary analysis revealed no answer was
for what kinds of instances is the DFS strategy with a Osum branching order
not the best approach. Moreover, it would be relevant to analyze the impact
of different lower and upper bound sets on the performance of the IBB ap-
proaches. Lastly, it would be interesting to analyze the performance of the IBB
approaches on different problems, in particular, problems for which no clear
branching order is known.

6.2 Branch-and-Bound Online Selection

6.2.1 Methodology

In Section 6.1.3, we highlighted that IBB approaches following a BeDFS search
strategy can achieve good performance for small CPU timeout values, but that
for large medium and large CPU timeout values the BeFS search strategies
more often had the best performance. Analyzing the anytime traces of the
approaches also revealed that the BeDFS can often find an archive with good
quality, but then struggles to significantly improve the archive over time. By
contrast, BeFS approaches cannot find such a good archive for small CPU times,
but can consistently improve archive quality over time.

Taking these observations into account, we propose an online selection
methodology to select between BB search strategies in order to improve any-
time performance. We start with an IBB approach that uses a BeDFS search
strategy. Then, we swap to a BeFS search strategy once we consider that the
initial approach can no longer improve archive quality significantly. In partic-
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ular, we monitor the relative difference in archive quality, with respect to the
total archive quality, over the last 𝑘 explored nodes. If this relative difference is
below a certain threshold value, denoted by 𝛿 , then we swap approaches. Note
that, following the analysis in Section 6.1.3, a BeDFS search strategy guided
by the binary hypervolume is initially considered if𝑚 < 4, or guided by the
𝜀-indicator if𝑚 ≥ 4. Then, we swap to a BeFS search strategy guided by the
binary hypervolume if𝑚 < 3, or guided by the 𝜀-indicator if𝑚 ≥ 3.

Finally, we consider swapping back to the original BeDFS search strategy
if the number of active nodes is greater than a parameter ℓ , to avoid running
out of memory.

6.2.2 Experimental Study

In this section, we carry out an experimental study to analyze the (anytime)
performance of the online selection methodology described in the previous
section. We empirically set the parameters 𝑘 = 100, 𝛿 = 1e−6, and ℓ = 100000
for the online selection methodology since these parameters gave good results
in preliminary experiments. For comparison, we consider the same instances
and algorithms used for the experiments in Section 6.1.3.

The online methodology was implemented in C++, and the code is available
at [33]. The experiments were carried out in parallel, one per thread, on a
machine with two Intel(R) Xeon(R) Silver 4210R processors. The algo-
rithms were run with a timeout of 100 seconds and an 8Gb memory limit. We
consider the performance of the BB, IBB, and online approaches on the same
scenarios presented in Section 6.1.3. The code to reproduce the experiments
and to generate the tables and figures presented in the following sections is
available at [32].

2 Objectives

Table 6.5 gives the ratio of test scenarios with 2 objectives for which an ap-
proach found the best archive. For the default branching order, we see that
the online selection methodology has a high ratio (0.83) that is significantly
larger than all other approaches. This indicates that our approach is working
correctly, and that the changing algorithms positively improves anytime be-
havior. For the Osum branching order, we see that the DFS approach still has
the best ratio, which is not surprising since it was the best approach in the
previous experiments, and was not considered for the online selection method-
ology. However, it is worth noting that the ratio of the DFS approach decreased
slightly, from 0.8 to 0.72, compared to the ratio values without the online selec-
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Order BFS DFS HV-BeFS HV-BeDFS 𝜀-BeFS 𝜀-BeDFS Online

Default 0.12 0.12 0.28 0.16 0.13 0.14 0.83
Osum 0.14 0.72 0.20 0.20 0.17 0.18 0.34

Table 6.5: Ratio of test scenarios with 2 objectives for which a selection strategy
found the best archive with respect to the hypervolume quality indicator.

tion methodology, which means that our online methodology approach could
sometimes find a better archive in cases where the individual IBB approaches
could not. Nonetheless, these results indicate that taking into account the or-
dering of the items to select the initial selection strategy could improve the
performance of our online selection methodology further. Lastly, we see that,
as for the default order, the online selection methodology has the best ratio of
all other approaches.

Figure 6.10 gives the ratio of test scenarios for which a given approach
was able to find the best archive, at different CPU timeout values. For the
default branching order, we see that the online selection methodology has the
best ratio at all times. Note that, despite the fact that our online selection
methodology starts with the BeDFS selection strategy guided by the hypervol-
ume, that same approach is still the second best for small CPU timeout values
despite both approaches being deterministic. This is due to the fact that we
are considering anytime performance in terms of CPU time, as such, slightly
different conditions during the execution of the experiments can lead to either
approach having better performance. However, we see that for CPU timeout
values close to 1e−2, when the BeFS selection strategy guided by the hyper-
volume surpasses the BeDFS, the online methodology is significantly better
than the latter, which indicates that the online methodology is in fact changing
to the BeFS approach correctly, and that this increases anytime performance
significantly. For the Osum branching order, we see that the online selection
methodology is often better than the IBB approaches.

Figure 6.11 gives the mean error, and standard deviation, in terms of the
difference between the relative hypervolume of an archive found by a given
selection strategy and the best archive found by any other strategy considering
the same branching order, when that difference is greater than 0. We see that,
for both branching orders, the online approach has a very small error. As such,
we see that the online approach is not only good in terms of the ratio, but also
that when it does not find the archive with best quality for a particular test
scenario, it finds an archive that is very close to the best.
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Figure 6.11: Mean and standard deviation of the difference, in terms of hyper-
volume, between the archive found by a selection strategy and the best archive
found, when the difference is greater than 0.
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3 Objectives

Table 6.6 gives the ratio of test scenarios where each approach found the best
archive. For the default branching order, we see that the online selection
methodology still has the best ratio. However, there is a decrease compared to
the previous case with 2 objectives. Moreover, we see that the BeFS strategy
guided by the hypervolume increased slightly, and that the other approaches
have similar ratio values. Compared to the results with 3 objectives, but with-
out the online selection methodology, we see that both the strategies consid-
ered in our online selection methodology, that is, the BeDFS strategy guided
by the hypervolume and the BeFS strategy guided by the 𝜀-indicator, decreased
significantly, while the other two IBB strategies did not. As the BeFS strategy
guided by the hypervolume has a ratio that is quite significant, this suggests
that opting not to consider this strategy in our approach is detrimental to the
performance of our online selection methodology. As such, to further improve
our online methodology we should consider both BeFS strategies when chang-
ing algorithms. Unfortunately, preliminary experiments did not reveal any
relation between the characteristics of the instances and which BeFS strategy
had the best performance. Therefore, further analysis is required to better
understand this, and successfully select between the two strategies.

For the Osum branching order, the results are similar to the previous case
with 2 objectives. In particular, we see that the online selection methodology
had better performance than the other IBB approaches, and that the ratio values
for the DFS strategy decreased slightly, from 0.74 to 0.7, compared to the results
without the online selection methodology.

Figure 6.12 gives the ratio at the sampled CPU timeout values. For the
default branching order, we see that, while in the previous case with 2 ob-
jectives the online methodology got a ratio value close to 1 for certain CPU
timeout values, in this case the maximum ratio value is close to 0.75. The fact
that the BeFS strategy guided by the hypervolume has significant ratio values,
indicates that not considering that strategy for online selection is decreasing
the performance of our online methodology. Still, the online methodology has

Order BFS DFS HV-BeFS HV-BeDFS 𝜀-BeFS 𝜀-BeDFS Online

Default 0.11 0.11 0.34 0.15 0.12 0.14 0.65
Osum 0.12 0.70 0.21 0.14 0.14 0.15 0.30

Table 6.6: Ratio of test scenarios with 3 objectives for which a selection strategy
found the best archive with respect to the hypervolume quality indicator.
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the best ratio at all times, which shows that it is expectedly improving any-
time performance. For the Osum branching order, we see that the DFS strategy
clearly has the best ratio at all CPU timeout values. Still, we see that, as with
2 objectives, the online selection methodology is often the best between the
other approaches.

Figure 6.13 gives the error for test scenarios with 3 objectives, at the sam-
pled CPU timeout values. As with 2 objectives, we see that the online selection
methodology has a very small error for both branching orders. This means
that even if it does not find the archive with the best quality, it can find an
archive with quality close to that.
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Figure 6.12: Ratio of test scenarios, with 3 objectives and a given CPU timeout
value, for which a selection strategy found the best archive with respect to the
hypervolume quality indicator.
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Figure 6.13: Mean and standard deviation of the difference, in terms of hyper-
volume, between the archive found by a selection strategy and the best archive
found, when the difference is greater than 0.
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5 Objectives

Table 6.7 gives the ratio of test scenarios with 5 objectives for which each
approach found the best archive. We see that the online selection methodology
has the best ratio for the default branching order, as in previous cases. However,
in contrast with previous cases, the BeFS strategy guided by the 𝜀-indicator
has the best performance among all others. This is not too surprising given
the results we saw without the online selection methodology. However, it is
somewhat surprising that the value is so high considering that we are using that
strategy in our online approach. Moreover, the value for the online selection
methodology is not as high as in previous cases. For the Osum branching order,
we see that, as in previous cases the DFS strategy has the highest ratio, but that
its ratio is slightly lower than for the experiments without the online selection
methodology. However, more surprisingly, we see that the online selection
methodology is the best among the other approaches, but the BeFS strategy
guided by the 𝜀-indicator has a ratio value that is only slightly worse.

Order BFS DFS HV-BeFS HV-BeDFS 𝜀-BeFS 𝜀-BeDFS Online

Default 0.10 0.09 0.04 0.09 0.30 0.14 0.60
Osum 0.10 0.59 0.05 0.06 0.22 0.11 0.36

Table 6.7: Ratio of test scenarios with 5 objectives for which a selection strategy
found the best archive with respect to the hypervolume quality indicator.

Looking at the ratio over different CPU timeout values in Figure 6.14, we
see that at CPU timeout values close to 1e−2 the online selection methodology
improves significantly, which is to be expected due to the swap between strate-
gies, and indicates that the methodology is correctly, and favorably, changing
strategies. However, at around 1e−1, we see a meaningful drop in the ratio
values of the online selection methodology. This appears to coincide, first with
an increase in ratio for the BeDFS strategy guided by the hypervolume indica-
tor, and second with an increase in ratio from the BeFS strategy guided by the
𝜀-indicator. Analysis of the individual anytime traces shows that the BeDFS
strategy guided by the hypervolume can sometimes achieve very good archive
quality at such CPU times, despite a generally worse start compared to the
same strategy guided by the 𝜀-indicator. Therefore, if a DM establishes that
small CPU timeout values are not relevant, and we incorporate that preference
into the selection, then it could make sense to choose the BeDFS guided by the
hypervolume initially. For the second case, the anytime traces reveal that the
BeFS strategy guided by 𝜀-indicator has an anytime performance that is very
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Figure 6.14: Ratio of test scenarios, with 5 objectives and a given CPU timeout
value, for which a selection strategy found the best archive with respect to the
hypervolume quality indicator.

similar to that of the online methodology for large CPU time values. Therefore,
the difference in archive quality between the two is very small, and the drop
in ratio is, for that reason, not very significant.

For the Osum branching order, we see that the DFS approach has very good
ratio values in the beginning but at around 1e−1 our online methodology has
similar ratio values. Moreover, for large CPU timeout values the BeFS approach
guided by the 𝜀-indicator surpasses both the online selection methodology and
the DFS. As discussed in the previous paragraph, this happens because for large
CPU time values both the online methodology and the BeFS strategy have very
similar anytime performance. Therefore, the difference in ratio between the
two is not significant.

Figure 6.15 gives the error for each strategy, when it could not find the
archive with the best quality, in terms of the difference between the quality of
the archive it found and the best. For the default branching order, we see that,
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Figure 6.15: Mean and standard deviation of the difference, in terms of hyper-
volume, between the archive found by a selection strategy and the best archive
found, when the difference is greater than 0.
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as in the previous cases, the error of the online selection methodology is very
small for all CPU timeout values. On the other hand, we see an increase in its er-
ror for the Osum branching order compared to the previous cases. Nonetheless,
it is still the IBB approach with the smallest error.

7 Objectives

Table 6.8 gives the ratio of test scenarios with 7 objectives for which each
strategy was able to find the archive with best quality. Overall, we see that
results are similar to the case of 5 objectives. In particular, for the default
branching order the online methodology has the best ratio value, and the BeFS
strategy guided by the 𝜀-indicator the second best. For the Osum branching
order, we have that the DFS has the best ratio, followed by the online selection
methodology and the BeFS strategy guided by the 𝜀-indicator.

Order BFS DFS HV-BeFS HV-BeDFS 𝜀-BeFS 𝜀-BeDFS Online

Default 0.07 0.07 0.01 0.08 0.26 0.10 0.58
Osum 0.06 0.58 0.03 0.03 0.19 0.08 0.35

Table 6.8: Ratio of test scenarios with 7 objectives for which a selection strategy
found the best archive with respect to the hypervolume quality indicator.

Figure 6.16 gives the ratio values over the CPU timeout values. For the
default branching order, we see that the online selection methodology is not
always the best for very small CPU timeout values. However, analysis of the
individual anytime traces reveals that this happens because both the online
methodology and the BeDFS strategy guided by the 𝜀-indicator have very simi-
lar anytime behavior in the beginning, since the former is using the latter, and
due to fluctuations runtime conditions the latter is sometimes better. However,
after CPU timeout values 1e−2, we see that the online selection methodology
increases significantly due to a meaningful change of algorithms. Then, at CPU
timeout values 1e−1 we see a slight decrease. As in the previous case with 5
objectives, this is first due to the BeDFS strategy guided by the hypervolume in-
dicator sometimes having better performance than the IBB approaches guided
by the 𝜀-indicator at those times, and later because the BeFS strategy guided by
the 𝜀-indicator has very similar anytime performance compared to the online
selection methodology which uses the former. For the Osum branching order,
the results are very similar to the case with 5 objectives.

Figure 6.17 gives the error of each approach at the sampled CPU timeout
values. For the default branching order, we see that the online methodology has
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the smallest error at all times, as in the previous cases. For the Osum branching
order, we see that, besides the DFS approach, the online methodology generally
has the smallest error. However, at CPU timeout values close to 1e−1, the
BeDFS approach guided by the hypervolume has a smaller error, which is in
line, with what was explained in the previous paragraph with regards to the
anytime performance of the approach for those CPU time values.

6.2.3 Discussion

The results for the online selection methodology presented in the previous
section show that this methodology does improve anytime performance, as
we expected during its conception. In particular, we see that the ratio of test
scenarios for which this methodology was able to find the archive the best
quality is generally very high when considering a default branching order.
For the Osum branching order, we saw that the DFS strategy is still often the
best. However, there were a small number of scenarios where the DFS strategy
was better than the individual IBB, but worse than the online methodology.
Nonetheless, this means that only considering IBB approaches is not always
the best approach, since with a good branching order the DFS strategy often
found the best archive.

We also saw that fixing the initial and secondary strategies a priori resulted
in some cases where the other IBB approaches that were not chosen were able
to find an archivewith better quality. As such, in the future, it would be relevant
to consider an online selection methodology that is capable of selecting which
approaches are the best taking into account the characteristics of the instance
being solved, and the anytime preferences of the DM, similarly to the offline
selection methodology presented in Chapter 5.

Lastly, in this experimental study we chose parameters 𝑘 , 𝛿 and ℓ that
gave good results during a preliminary analysis but did not thoroughly study
their effect. As such, it would be relevant to investigate the impact of these
parameters in the future.

6.3 Conclusion

In this chapter, we started by presenting the IBB framework, which consists
of a BB for multi-objective optimization problems guided by quality indicators.
Then, we performed an experimental study on the MOBKP considering four
distinct IBB approaches, that use the BeFS and BeDFS selection strategies,
and two quality indicators, the binary hypervolume and the 𝜀-indicator, and
two naive BB approaches that use the DFS and BFS selection strategies. The
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experimental results showed that our IBB approaches are very often better
than the naive BB approaches, when considering a random ordering of the
items for the MOBKP. Note that we say that an approach is better than another
for a given test scenario, if the quality of the archive returned by that approach,
in terms of hypervolume, is better. Moreover, we noted that the approaches
guided by the hypervolume indicator were often better than the ones guided by
the 𝜀-indicator for instances with 2 objectives, which is to be expected since we
are measuring quality in terms of the hypervolume indicator. However, with
the increase in the number of objectives, the approaches guided by 𝜀-indicator
became better due to the computational overhead of the hypervolume. We also
noted that a good ordering of items can lead to very good results for the DFS
strategy. Despite this, we saw that the difference in quality between the archive
found by some IBB approaches, and the archive found by the DFS strategy, was
often not very large.

Then, we considered an online selection methodology that can change
between IBB strategies online, while solving a previously unseen problem
instance. This is of particular interest, since in the previous results we had
seen that BeDFS strategies were often quite good for small CPU time values,
whereas BeFS strategies were better for large values. Therefore, our online
selection methodology changes between these two strategies. The empirical
results showed that changing algorithms did in fact result in significant im-
provements in anytime performance, and this approach was most often the
best for a random ordering of the items. However, we also noted that, by only
considering two IBB approaches for each problem meant that the results were
not as good as they could have been. Therefore, one direction for future work
is to consider an online selection that can select between any number of BB
and IBB approaches, and perhaps even other algorithms, taking into account
the characteristics of the problem instance. Moreover, we also did not take
into account the anytime preferences of the DM during the selection. As such,
another direction for the future is to incorporate these anytime preferences
into the online selection.

Finally, it would also be relevant to study the performance of the IBB frame-
work, and of the online selection methodology, on other problems, and to
compare it against other state-of-the-art algorithms.





Chapter 7

Conclusion

7.1 Concluding Remarks

In this thesis, we considered the problem of automatically selecting between
algorithms for MOO problems. In particular, we focused on the selection be-
tween anytime MOO algorithms, such that the anytime performance of the
chosen algorithm is optimal with respect to the preferences of the DM. How-
ever, before looking at the ASP problem itself, we started by considering the
problem of theoretically and empirically modeling the anytime performance
of MOO algorithms. In the following, we discuss the main contributions of
each chapter, first related to the theoretical and empirical models of anytime
performance for MOO algorithms, and then with regards to the offline and
online selection of MOO algorithms.

7.1.1 Theoretical Models

In Chapter 3, we presented two variants of a theoretical model of anytime
performance for scalarization techniques to MOO problems with 2 objectives
that find, at each iteration, an efficient solution that maximizes the hyper-
volume contribution. It is worth noting that, when developing these models,
there was no known scalarization technique that found efficient solutions that
maximized hypervolume contribution. However, Paquete et al. [61] have re-
cently proposed such a scalarization technique, whose anytime behavior can,
by definition, be modeled by these theoretical models.

The first model is given by an analytical formulation that, while simple
and computationally fast, requires several assumptions that may not always
be practical, such as the shape of the non-dominated set and the location of
the reference point for the hypervolume indicator. The second model is given
by an algorithm designed to overcome these limitations. It can be used for
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any problem where the set of non-dominated points can be approximated by
a piecewise linear function with any number of linear segments, and for any
reference point. One disadvantage of the second model is that it is slower to
compute than the first model. Still, empirical results showed that it is very fast
for parameterizations that we consider reasonable for most scenarios, and as
such we expect that this is not likely to be a problem in practice.

An experimental study was carried out on two variants of the bi-objective
knapsack problem, showing that these models, especially the second one, can
very accurately model the behavior of a scalarization technique that finds a
solution that maximizes hypervolume contribution at each iteration. More-
over, the model also proved useful in the design of a 𝜀-constraint scalarization
approach that has very good anytime performance. In particular, we used the
model to set the constraint values for the scalarization problem to be solved
at each iteration. This approach guided by our model, showed anytime perfor-
mance that is very close to the anytime performance of a technique that finds
a solution that maximizes the hypervolume contribution at each iteration.

7.1.2 Empirical Models

One disadvantage of the proposed theoretical models is that they cannot model
the anytime performance in terms of CPU time, which we wished to consider
for the ASP in this thesis. As a result, in Chapter 4, we proposed three frame-
works for the development of empirical models that, in order to predict the
anytime performance of MOO algorithms on previously unseen instances, take
into account the anytime performance gathered from runs of those algorithms
on known problem instances.

The first framework, which builds an anytime performance profile of an
algorithm for the previously unseen problem instance from the anytime data
gathered from runs on known instances, can easily be applied to any algo-
rithm and should generally be easy to implement. However, it cannot be used
to predict the anytime performance for CPU times for which anytime data
was not gathered from actual runs on known problem instances. Moreover, it
requires that known problem instances share similarities, in terms of anytime
performance and problem instance features, to unseen problem instances. We
presented an experimental study to analyze the quality of this framework by
implementing an empirical model to predict the anytime behavior of three
MOO algorithms for MOBKP problem instances with 2, 3, and 5 objectives.
The results showed that the model could predict the anytime performance in
most cases. However, for one of the algorithms, the quality of the prediction
was often not very good on instances with 3 and 5 objectives. We believe this
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was likely due to fact that we had a small number of training instances and
instance features.

The second framework considers fitting a (non)-linear model for each
known anytime performance profile in order to predict anytime behavior for
a previously unseen problem instance. As such, empirical models taking into
account this framework should be able to predict, to a certain degree, the any-
time performance for instances that are different than the ones we have for
training, and for CPU-times for which no anytime data is available. However,
it requires that a (non)-linear model can be fitted to the known anytime data,
which might not be trivial. In particular, we performed some preliminary ex-
periments, in which we were able to sometimes fit a non-linear growth model
to the anytime traces of the PLS and BHV-DP algorithms. However, we found
instances for which the same model was clearly not adequate.

The third framework is based on the idea of using a theoretical model that
consider time in terms of the number of iterations, such as the theoretical
models proposed in Chapter 3, and transforming it to a model that considers
anytime performance in terms of CPU time by using empirically collected
anytime data of how long each iteration takes. This framework may also allow
to predict approximation quality for CPU time values for which there is no
empirical data, contrary to the first framework. Moreover, it does not require
that the anytime performance can be modeled by (non)-linear growth model.
However, it requires that a theoretical model is known for the algorithm, which
is admittedly not very common.

At this point, it is worth noting that although our primary interest for the
development of these theoretical and empirical models was in regards to the
ASP, they also have other applications. For example, these models can be used
for the problem of automatically configuring the parameters of an algorithm,
to monitor and compare the performance of algorithms, and to decide when
to stop or restart an algorithm. Moreover, although we studied the empirical
models in the context of MOO, they are applicable to predict the anytime
performance single-objective optimization algorithms as well.

7.1.3 Offline Algorithm Selection

In Chapter 5, we presented an offline algorithm selection framework for select-
ing which anytimeMOO algorithm to execute for a previously unseen instance.
An important aspect in the formulated ASP is that we consider the anytime
preferences of a DM with respect to what the anytime conditions for stopping
the algorithm were, in terms of execution time and archive quality. To this
end, we presented a measure of anytime performance that takes into account a
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utility function describing the utility of execution time and archive quality to
the DM. Moreover, we assumed that these conditions were only known when
giving an instance to the selection methodology, and not before; i.e., they were
not known when training the selection methodology. With this in mind, we
highlighted that traditional classification and regression approaches were not
particularly suited for this selection problem.

As a result, we proposed an offline selection methodology that takes into
account the models of anytime performance such as the ones presented in
Chapters 3 and 4. In particular, it uses models of anytime performance to
predict the anytime performance profile of each algorithm on a previously
unseen instance, and then applies the anytime performance measure with
the utility function defined by the DM to the predicted anytime performance
profile, in order to select the best algorithm.

We carried out an experimental study for selecting between two and three
algorithms to the MOBKP, using the first empirical model to predict anytime
performance, and taking into account two distinct utility functions. The results
showed that our algorithm selection methodology could often select the best
algorithm, and was better than always selecting the same algorithm for nearly
every scenario. One aspect that is particularly relevant to highlight is that our
methodology could often select the best algorithm even in scenarios where the
quality of the prediction of anytime performance given by the empirical model
was not the ideal, as long as the general tendency of anytime behavior was
captured. However, we did see a decrease in selection accuracy in such cases.
This shows that the quality of selection is closely related to the quality of the
model, and we expect that improving the quality of the empirical model will
result in an improved quality for the selection.

7.1.4 Online Algorithm Selection

In Chapter 6, we considered the ASP in an online perspective, that is to se-
lect and change algorithms while solving a problem instance. In particular,
we considered selecting between BB strategies taking into account the any-
time performance of the currently selected strategy and previously gathered
empirical knowledge about each strategy.

To this end, we started by developing and analyzing several BB strategies. In
particular, we presented the IBB framework, that takes into account the quality
of the upper bound set of each node, in terms of quality indicator such as the
hypervolume and 𝜀-indicator. Then, we performed an experimental study to
compare the anytime performance of different IBB strategies, and traditional
BB strategies, on the MOBKP. Experiments revealed that the IBB approaches
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were often much better than traditional BB approaches when no heuristic
for branching is available. However, when a good heuristic for branching is
available, we saw that the traditional DFS strategy was quite good. We also
noted that, the best strategy often varied with time, and that depending on the
number of objectives, the best quality indicator to guide the IBB approaches
also changed.

With this information, we devised a simple online selection methodology
that could change between IBB strategies. This online selection methodology
proved to be quite effective, and was very often the best approach for a random
branching order. However, we identified several scenarios where we expect
that anytime performance can still be improved by considering a more complex
selection strategy. In particular, we only considered changing between two
strategies that were manually pre-selected before execution from the empirical
results we had collected. However, there were several cases in which another
approach was sometimes better. In addition, we only consider selecting be-
tween IBB strategies. However, when a good branching order was available
the traditional DFS strategy was often better than IBB strategies. Therefore,
if we also considered traditional strategies in specific scenarios we could im-
prove the anytime performance of our online methodology. These situations
suggest that a more automatic online methodology, that takes into account
instances features and selects between all known strategies based on those
features, could achieve better anytime performance.

7.2 Future Work

Throughout this thesis, we highlighted several opportunities for future work
with respect to each aspect that was studied, which we summarize in the fol-
lowing sections. We leave out of this summary, future work related to the study
of the algorithms, models, and selection methodologies on different problems
and instances, since it would obviously be interesting to analyze them on dif-
ferent problems, especially on real-world problems. Moreover, we also leave
out future work related to the comparison with other approaches, which would
also be relevant. Instead, we focus on discussing aspects for the algorithms,
models, and methodologies that we believe could be improved in the future, or
even novel approaches based on the ideas discussed in this thesis.

7.2.1 Theoretical Models

A shortcoming of our theoretical model, and consequently of the proposed
GEPS approach, is that it currently only works for MOO problems with 2 ob-
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jectives. Therefore, given the positive results we obtained so far, an important
direction for future work would be to extend the theoretical model for more
dimensions. We consider that there are two main challenges for this. The first
is that the approximation of the non-dominated set can no longer be defined by
a set of linear segments. We believe that for 3 objectives, a representation given
by a set of polygons is feasible, albeit harder to maintain. However, we have
not yet thought about extending it for more dimensions. Another possibility,
even for 2 objectives, would be to consider curved surfaces for approximating
the surface. These may be harder to work with initially, but may more gen-
erally extend for more objectives. The second challenge is related to keeping
the set of unexplored regions up to date, since finding a point in a region can
potentially affect regions other than its own. This makes it harder to define an
analytical model, and makes the algorithmic model less efficient as it can no
longer fully cache the best values for each region.

Another important aspect for our theoretical model that deserves more re-
search is how to approximate the non-dominated set. In this work, we only con-
sidered that the non-dominated set could be well approximated by a quadrant
of a superellipse, which was in turn approximated by a set of linear segments.
This worked quite well for the knapsack problems considered. However, it
obviously does not work for every problem. One possibility would be to con-
sider a subset of supported solutions given by a weighted sum scalarization,
such as the DWS, to derive the linear segments that make up the piecewise
approximation. This has an intrinsic computational cost depending on how
difficult or easy it is to solve such scalarized problems. Moreover, depending
on the problem, the set of supported solutions found may not give a good ap-
proximation. Other possibilities, could, for example, rely on theoretical results
on the shape of the non-dominated set, or on using empirically data to estimate
the piecewise linear function from problem instance features.

7.2.2 Empirical Models

In the implementation of the empirical model following the first framework, we
considered a rather simple selection strategy based on the 𝑘-nearest neighbor
algorithm that selects instances that have similar instance features compared
to the previously unseen problem instance for which we want to predict any-
time performance, since we expect that this will mean that they will have
similar anytime performance compared to the previous unseen instance. This
selection strategy showed very positive results for some scenarios. However, a
natural direction for future research is to consider the use of different selection
strategies, or to further study the parameterization of the current strategy. For
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example, we considered using a fixed value of 𝑘 anytime traces during the
selection. However, this can lead to selecting anytime traces from instances
that are quite far from the instance for which we want to predict anytime per-
formance if there is only a small number of similar instances. Instead, it would
be interesting to consider dynamically setting the value of 𝑘 depending on the
instance for which we are attempting to predict performance. Alternatively,
we could explore assigning different weights for the anytime traces depend-
ing on the distance, which would require incorporating such weights in the
construction of the anytime performance profile.

Another aspect that deserves further investigation is themetric used to tune
and evaluate the model. In particular, the measure of anytime performance
that we considered cannot properly capture the tendency of anytime behavior,
since, to put it simply, it only captures the area under an anytime trace and as
such, two very distinct anytime traces may have the same measure. As such, a
measure that could capture the difference in trend between the predicted and
real anytime performance profile could lead to a better tuning and numerical
evaluation of the model.

Lastly, another direction for future work is to implement empirical models
following the second and third frameworks proposed. We did consider a pre-
liminary model following the second framework that showed some promising
results in preliminary experiments, but which had some issues. Nonetheless,
we believe that if properly investigated it can lead to particularly accurate
predictions.

7.2.3 Offline Algorithm Selection

The proposed offline algorithm selection methodology depends heavily on the
models used to predict the anytime performance of each algorithm. Still, in
this thesis we only investigated its performance for a particular case of a single
empirical model. As such, the first aspect that we consider requires further
work is the study of how the algorithm selection methodology relates to the
chosen model. In particular, it would be interesting to study whether a theoret-
ical relation between the quality of the model and the quality of the selection
can be derived. Moreover, it would be interesting to study how changes to the
model impact the quality of the selection in practice.

Another aspect that was not investigated in this thesis, but that is relevant
for any algorithm selection methodology, is how long does algorithm selection
take, and how does this impact the accuracy of the selection. In particular, it
would be relevant to analyze the computational effort needed to perform algo-
rithm selection, and to see how considering the selection time in the anytime
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performance of the algorithm impacts the selection accuracy of our method-
ology, since time spent selecting an algorithm is time that is not being spent
executing the algorithm.

Lastly, another important direction for future work would be to consider
new selection methodologies that could be compared to our own. In particular,
despite the fact that we have identified potential issues with respect to the use
of more traditional classification and regression approaches considering the
dynamic anytime preferences of a DM, there may be more restricted scenarios
where such approaches are viable and worth exploring.

7.2.4 Online Algorithm Selection

With regards to the proposed IBB approach, one clear direction for future
research is to study the impact of different lower and upper bound sets on the
performance of our approach, compared to more traditional BB approaches.
Moreover, it would also be relevant to study the use and impact of other quality
indicators.

With regards to the proposed online selectionmethodology, one clear short-
coming is that it currently depends on manually setting two strategies between
which we can swap. Moreover, changing between strategies depends only on
the anytime performance of the initial strategy, but not on the expected per-
formance of the next strategy. As such, two important aspects to investigate
further are the use of more than two strategies in the online selection method-
ology, and the automated selection of which strategy to use at each stage
depending on its predicted anytime performance, similar to what we did for
the offline algorithm selection. Another issue, is that the current online selec-
tion methodology was only considered for changing between BB approaches
that use different selection strategies. Therefore, it would relevant to consider
changing between algorithms other than BB variants. One difficulty that we
anticipate is that the change between distinct algorithms may not be ideal,
in the sense that some information collected by one algorithm may not be
leveraged by the other, and some calculations may need to be computed from
scratch.

Lastly, another direction for future work is to incorporate the anytime
preferences of a DM into the online selection methodology as we did with the
offline algorithm selection methodology, such that strategies can be selected
with respect to those preferences.



Acronyms

AEPS Adaptive 𝜀-constraint 18

ASP Algorithm Selection Problem 2, 9, 28, 30, 127, 163–166

BB Branch-and-Bound 18–20, 127, 128, 131–133, 136, 139, 145–147, 160, 161,
166, 167, 170

BeDFS Best Depth First Search 20, 128–134, 136, 139, 140, 142, 143, 145–148,
151, 154, 157, 160, 161

BeFS Best First Search 20, 128, 130–134, 136, 137, 139, 140, 142, 143, 145–148,
151, 154, 155, 157, 160, 161

BFS Breadth First Search 20, 128, 132–134, 145, 160

BHV-DP Bazgan-Hugot-Vanderpooten Dynamic Programming 23, 62, 68, 69,
76–78, 80, 85, 87, 89, 94, 96, 104, 112, 113, 115–123, 165

CCUBKP Capacity Constrained UBKP 44–46, 48–50

DFS Depth First Search 20, 128, 132–134, 136, 137, 139, 140, 142, 145–147, 151,
152, 154, 155, 157, 160, 161, 167

DM Decision Maker 1–3, 5, 25, 28, 107, 108, 110, 125, 154, 160, 161, 163, 165,
166, 170

DP Dynamic Programming 22, 23, 44

DWS Dichotomic Weighted Sum 16, 24, 168

FPSV-DP Figueira-Paquete-Simões-Vanderpooten Dynamic Programming 24

GEPS Guided 𝜀-constraint 49, 50, 55, 62, 68, 69, 98, 104, 112–116, 167

GNLS Generalized Non-Linear Least Squares 105
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Acronyms 172

IBB Indicator-based Branch-and-Bound 127, 128, 130–134, 136, 137, 139, 140,
142, 145–148, 151, 157, 160, 161, 166, 167, 170

LOESS Locally Estimated Scatterplot Smoothing 70

LOOCV Leave-One-Out Cross-Validation 67, 70, 76, 82, 85, 91, 95, 98

MAE Mean Absolute Error 67, 68, 70, 71, 76, 82, 85, 91, 95, 98

MOBKP Multi-Objective Binary Knapsack Problem 7, 15–18, 21–24, 29, 50,
57, 58, 62, 63, 65, 68, 104, 108, 111, 124, 127, 130, 131, 133, 145, 160, 161,
164, 166

MOCO Multi-Objective Combinatorial Optimization 9, 10, 15, 16

MOO Multi-Objective Optimization 1–5, 7–10, 12, 16, 20, 25, 26, 28–31, 33, 43,
107, 128, 163–165, 167

PLS Pareto Local Search 24, 25, 62, 68, 69, 72–74, 76–78, 80, 87, 104, 112–119,
121, 122, 165

RMSE Root-Mean-Square Error 67

UBKP Unconstrained Binary Knapsack Problem 43, 44, 46, 47, 49, 50



Notation

X Feasible solutions set
X𝐸 Efficient set
X𝑆 Supported solutions set
X𝐸𝑆 Extreme supported solutions set
Y Objective vectors set
Y𝑁 Non-dominated set
Y𝑆 Supported objective vectors set
Y𝐸𝑆 Extreme supported objective vectors set
𝑦1 ≥ 𝑦2 Point 𝑦1 weakly dominates 𝑦2

𝑦1 > 𝑦2 Point 𝑦1 dominates 𝑦2

𝑦1 ≻ 𝑦2 Point 𝑦1 strictly dominates 𝑦2

𝑦1 ≥lex 𝑦2 Point 𝑦1 is lexicographically greater than or
equal to 𝑦2

𝑦1 >lex 𝑦
2 Point 𝑦1 is lexicographically greater than 𝑦2

𝑌 1 ≥ 𝑌 2 Set 𝑌 1 weakly dominates 𝑌 2

𝑌 1 > 𝑌 2 Set 𝑌 1 dominates 𝑌 2

𝑌 1 ≻ 𝑌 2 Set 𝑌 1 strictly dominates 𝑌 2

𝐼𝐻 Hypervolume indicator
𝐼𝜀 𝜀-indicator
R The set of real numbers
Z The set of integers

173





List of References

[1] Y. P. Aneja and K. P. K. Nair. “Bicriteria Transportation Problem”. In:
Management Science 25.1 (1979), pp. 73–78. doi: 10.1287/mnsc.25.1.73
(cit. on pp. 16, 17).

[2] A. Arbelaez, Y. Hamadi, and M. Sebag. “Online Heuristic Selection in
Constraint Programming”. In: International Symposium on Combinatorial
Search. 2009 (cit. on p. 29).

[3] C. Bazgan, H. Hugot, and D. Vanderpooten. “Solving Efficiently the 0-
1 Multi-Objective Knapsack Problem”. In: Computers & Operations Re-
search 36.1 (2009), pp. 260–279. doi: 10.1016/j.cor.2007.09.009
(cit. on pp. 21, 23, 64, 68).

[4] benchmark. Version v1.6.0. Google (cit. on p. 42).

[5] F. Bökler. “Output-Sensitive Complexity ofMultiobjective Combinatorial
Optimization with an Application to the Multiobjective Shortest Path
Problem”. PhD thesis. Technischen Universität Dortmund, 2018 (cit. on
p. 17).

[6] A. Cerqueus, X. Gandibleux, A. Przybylski, and F. Saubion. “On Branch-
ing Heuristics for the Bi-Objective 0/1 Unidimensional Knapsack Prob-
lem”. In: Journal of Heuristics 23.5 (2017), pp. 285–319. doi: 10.1007/
s10732-017-9346-9 (cit. on p. 21).

[7] M. Chiarandini. “Stochastic Local SearchMethods forHighly Constrained
Combinatorial Optimisation Problems”. PhD thesis. Darmstadt: Technis-
che Universität, 2005 (cit. on p. 27).

[8] W. S. Cleveland, E. Grosse, and W. M. Shyu. “Local Regression Models”.
In: Statistical Models in S. Routledge, 1992 (cit. on p. 70).

[9] G. B. Dantzig. “Discrete-Variable Extremum Problems”. In: Operations
Research 5.2 (1957), pp. 266–288. doi: 10.1287/opre.5.2.266 (cit. on
pp. 21, 23).

175

https://doi.org/10.1287/mnsc.25.1.73
https://doi.org/10.1016/j.cor.2007.09.009
https://doi.org/10.1007/s10732-017-9346-9
https://doi.org/10.1007/s10732-017-9346-9
https://doi.org/10.1287/opre.5.2.266


LIST OF REFERENCES 176

[10] F. Daolio, A. Liefooghe, S. Verel, H. Aguirre, and K. Tanaka. “Problem
Features versus Algorithm Performance on Rugged Multiobjective Com-
binatorial Fitness Landscapes”. In: Evolutionary Computation 25.4 (2017),
pp. 555–585. doi: 10.1162/evco_a_00193 (cit. on p. 28).

[11] T. Dean and M. Boddy. “An Analysis of Time-Dependent Planning”.
In: Proceedings of the Seventh AAAI National Conference on Artificial
Intelligence. AAAI’88. AAAI Press, 1988, pp. 49–54 (cit. on pp. 2, 25).

[12] C. Delort and O. Spanjaard. “Using Bound Sets in Multiobjective Opti-
mization: Application to the Biobjective Binary Knapsack Problem”. In:
Experimental Algorithms. SEA 2010. Vol. 6049. Lecture Notes in Com-
puter Science. Springer, 2010, pp. 253–265. doi: 10.1007/978-3-642-
13193-6_22 (cit. on p. 23).

[13] D. M. Dias, A. D. Jesus, and L. Paquete. “A Software Library for Archiving
Nondominated Points”. In: Proceedings of the 2021 Genetic and Evolution-
ary Computation Conference Companion. GECCO 2021. Association for
ComputingMachinery, 2021, pp. 53–54. doi: 10.1145/3449726.3462737
(cit. on p. 7).

[14] D. M. Dias, A. D. Jesus, and L. Paquete. nondLib. Version v0.2.0. 2021.
doi: 10.5281/zenodo.4733027 (cit. on p. 7).

[15] M. Ehrgott. “Hard to Say It’s Easy — Four Reasons Why Combinato-
rial Multiobjective Programmes Are Hard”. In: Research and Practice in
Multiple Criteria Decision Making. MCDM. Vol. 487. Lecture Notes in
Economics and Mathematical Systems. Springer, 2000, pp. 69–80. doi:
10.1007/978-3-642-57311-8_5 (cit. on p. 1).

[16] M. Ehrgott. Multicriteria Optimization. 2nd ed. Springer, 2005. doi: 10.
1007/3-540-27659-9 (cit. on pp. 10, 11, 16, 17, 49).

[17] M. Ehrgott and X. Gandibleux. “Bounds and Bound Sets for Biobjective
Combinatorial Optimization Problems”. In: Multiple Criteria Decision
Making in the New Millennium. MCDM. Vol. 507. Lecture Notes in Eco-
nomics and Mathematical Systems. Springer, 2001, pp. 241–253. doi:
10.1007/978-3-642-56680-6_22 (cit. on p. 18).

[18] M. T. M. Emmerich and A. H. Deutz. “Test Problems Based on Lamé
Superspheres”. In: Evolutionary Multi-Criterion Optimization. EMO 2007.
Vol. 4403. Lecture Notes in Computer Science. Springer, 2007, pp. 922–
936. doi: 10.1007/978-3-540-70928-2_68 (cit. on p. 33).

https://doi.org/10.1162/evco_a_00193
https://doi.org/10.1007/978-3-642-13193-6_22
https://doi.org/10.1007/978-3-642-13193-6_22
https://doi.org/10.1145/3449726.3462737
https://doi.org/10.5281/zenodo.4733027
https://doi.org/10.1007/978-3-642-57311-8_5
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/978-3-642-56680-6_22
https://doi.org/10.1007/978-3-540-70928-2_68


LIST OF REFERENCES 177

[19] J. R. Figueira, L. Paquete, M. Simões, and D. Vanderpooten. “Algorith-
mic Improvements on Dynamic Programming for the Bi-Objective {0,1}
Knapsack Problem”. In: Computational Optimization and Applications
56.1 (2013), pp. 97–111. doi: 10.1007/s10589- 013- 9551- x (cit. on
pp. 16, 23, 24).

[20] G. Fitzmaurice, M. Davidian, G. Verbeke, and G. Molenberghs, eds. Lon-
gitudinal Data Analysis. CRC Press, 2008 (cit. on p. 60).

[21] M. Gagliolo, C. Legrand, and M. Birattari. “Mixed-Effects Modeling of
Optimisation Algorithm Performance”. In: Engineering Stochastic Lo-
cal Search Algorithms. Designing, Implementing and Analyzing Effec-
tive Heuristics. SLS 2009. Vol. 5752. Lecture Notes in Computer Science.
Springer, 2009, pp. 150–154. doi: 10.1007/978-3-642-03751-1_17
(cit. on pp. 60, 61).

[22] M. Gagliolo and J. Schmidhuber. “Learning Dynamic Algorithm Port-
folios”. In: Annals of Mathematics and Artificial Intelligence 47.3 (2006),
pp. 295–328. doi: 10.1007/s10472-006-9036-z (cit. on p. 29).

[23] M. Gagliolo, V. Zhumatiy, and J. Schmidhuber. “Adaptive Online Time
Allocation to Search Algorithms”. In: Machine Learning: ECML 2004.
ECML 2004. Vol. 3201. Lecture Notes in Computer Science. Springer,
2004, pp. 134–143. doi: 10.1007/978-3-540-30115-8_15 (cit. on p. 29).

[24] C. E. Galarza, L. M. Castro, F. Louzada, and V. H. Lachos. “Quantile
Regression for Nonlinear Mixed Effects Models: A Likelihood Based
Perspective”. In: Statistical Papers 61.3 (2020), pp. 1281–1307. doi: 10.
1007/s00362-018-0988-y (cit. on p. 61).

[25] V. Grunert da Fonseca, C. M. Fonseca, and A. O. Hall. “Inferential Perfor-
mance Assessment of Stochastic Optimisers and the Attainment Func-
tion”. In: Evolutionary Multi-Criterion Optimization. EMO 2001. Vol. 1993.
Lecture Notes in Computer Science. Springer, 2001, pp. 213–225. doi:
10.1007/3-540-44719-9_15 (cit. on p. 27).

[26] A. P. Guerreiro and C. M. Fonseca. “Computing and Updating Hypervol-
ume Contributions in Up to Four Dimensions”. In: IEEE Transactions on
Evolutionary Computation 22.3 (2018), pp. 449–463. doi: 10.1109/TEVC.
2017.2729550 (cit. on p. 130).

[27] A. P. Guerreiro, C. M. Fonseca, and L. Paquete. “The Hypervolume In-
dicator: Computational Problems and Algorithms”. In: ACM Computing
Surveys 54.6 (2021), 119:1–119:42. doi: 10.1145/3453474 (cit. on p. 129).

https://doi.org/10.1007/s10589-013-9551-x
https://doi.org/10.1007/978-3-642-03751-1_17
https://doi.org/10.1007/s10472-006-9036-z
https://doi.org/10.1007/978-3-540-30115-8_15
https://doi.org/10.1007/s00362-018-0988-y
https://doi.org/10.1007/s00362-018-0988-y
https://doi.org/10.1007/3-540-44719-9_15
https://doi.org/10.1109/TEVC.2017.2729550
https://doi.org/10.1109/TEVC.2017.2729550
https://doi.org/10.1145/3453474


LIST OF REFERENCES 178

[28] E. A. Hansen and S. Zilberstein. “Monitoring and Control of Anytime
Algorithms: A Dynamic Programming Approach”. In: Artificial Intelli-
gence 126.1 (2001), pp. 139–157. doi: 10.1016/S0004-3702(00)00068-0
(cit. on p. 29).

[29] H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations & Appli-
cations. Morgan Kaufmann Publishers Inc., 2005 (cit. on pp. 27, 28).

[30] A. D. Jesus. anytime. Version v0.0.2. Zenodo, 2022. doi: 10.5281/zenodo.
6856120 (cit. on p. 8).

[31] A. D. Jesus. apm. Version v0.1.1. Zenodo, 2022. doi: 10.5281/zenodo.
6857541 (cit. on pp. 8, 42).

[32] A. D. Jesus. Data, Scripts, and Results for: Algorithm Selection for Multi-
Objective Optimization. Zenodo, 2022. doi: 10.5281/zenodo.6858045
(cit. on pp. 8, 43, 68, 69, 112, 113, 132, 147).

[33] A. D. Jesus. mobkp. Version v0.1.1. Zenodo, 2022. doi: 10.5281/zenodo.
6857821 (cit. on pp. 7, 16, 21, 68, 112, 132, 147).

[34] A. D. Jesus. moco_abm. Version v0.2.0. Zenodo, 2019. doi: 10.5281/
zenodo.3548869 (cit. on p. 7).

[35] A. D. Jesus.mooutils. Version v0.1.0. Zenodo, 2022. doi: 10.5281/zenodo.
6855879 (cit. on p. 7).

[36] A. D. Jesus, A. Liefooghe, B. Derbel, and L. Paquete. “Algorithm Selection
of Anytime Algorithms”. In: Proceedings of the 2020 Genetic and Evolu-
tionary Computation Conference. GECCO 2020. Association for Comput-
ing Machinery, 2020, pp. 850–858. doi: 10.1145/3377930.3390185 (cit.
on pp. 6, 64, 109).

[37] A. D. Jesus, L. Paquete, B. Derbel, and A. Liefooghe. “On the Design
and Anytime Performance of Indicator-based Branch and Bound for
Multi-objective Combinatorial Optimization”. In: Proceedings of the 2021
Genetic and Evolutionary Computation Conference. GECCO 2021. Asso-
ciation for Computing Machinery, 2021, pp. 234–242. doi: 10.1145/
3449639.3459360 (cit. on pp. 6, 127).

[38] A. D. Jesus, L. Paquete, and A. Liefooghe. “A Model of Anytime Algo-
rithm Performance for Bi-Objective Optimization”. In: Journal of Global
Optimization 79 (2020), pp. 329–350. doi: 10.1007/s10898-020-00909-
9 (cit. on pp. 6, 31).

https://doi.org/10.1016/S0004-3702(00)00068-0
https://doi.org/10.5281/zenodo.6856120
https://doi.org/10.5281/zenodo.6856120
https://doi.org/10.5281/zenodo.6857541
https://doi.org/10.5281/zenodo.6857541
https://doi.org/10.5281/zenodo.6858045
https://doi.org/10.5281/zenodo.6857821
https://doi.org/10.5281/zenodo.6857821
https://doi.org/10.5281/zenodo.3548869
https://doi.org/10.5281/zenodo.3548869
https://doi.org/10.5281/zenodo.6855879
https://doi.org/10.5281/zenodo.6855879
https://doi.org/10.1145/3377930.3390185
https://doi.org/10.1145/3449639.3459360
https://doi.org/10.1145/3449639.3459360
https://doi.org/10.1007/s10898-020-00909-9
https://doi.org/10.1007/s10898-020-00909-9


LIST OF REFERENCES 179

[39] A. D. Jesus, L. Paquete, and A. Liefooghe. “A Model of Anytime Al-
gorithm Performance for Biobjective Optimization Problems”. In: Pro-
ceedings LeGO - 14th International Global Optimization Workshop. LeGO
2018. Vol. 2070. AIP Conference Proceedings. AIP, 2019, p. 020049. doi:
10.1063/1.5090016 (cit. on pp. 6, 31).

[40] A. D. Jesus, L. Paquete, A. Liefooghe, and B. Derbel. “Techniques to
Analyze the Anytime Behavior of Algorithms for Multi-Objective Opti-
mization”. 31st European Conference on Operational Research (EURO
2021). 2021 (cit. on p. 7).

[41] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann. “Automated
Algorithm Selection: Survey and Perspectives”. In: Evolutionary Compu-
tation 27.1 (2019), pp. 3–45. doi: 10.1162/evco_a_00242 (cit. on pp. 2,
28).

[42] K. Klamroth and M. M. Wiecek. “Dynamic Programming Approaches
to the Multiple Criteria Knapsack Problem”. In: Naval Research Logistics
(NRL) 47.1 (2000), pp. 57–76. doi: 10.1002/(SICI)1520-6750(200002)
47:1<57::AID-NAV4>3.0.CO;2-4 (cit. on p. 23).

[43] J. Knowles and D. Corne. “On Metrics for Comparing Nondominated
Sets”. In: Proceedings of the 2002 Congress on Evolutionary Computation.
CEC 2002. IEEE, 2002, pp. 711–716. doi: 10.1109/CEC.2002.1007013
(cit. on pp. 11, 12).

[44] L. Kotthoff. “Algorithm Selection for Combinatorial Search Problems:
A Survey”. In: Data Mining and Constraint Programming. Vol. 10101.
Lecture Notes in Computer Science. Springer, 2016, pp. 149–190. doi:
10.1007/978-3-319-50137-6_7 (cit. on pp. 2, 28, 29).

[45] M. Laumanns, L. Thiele, and E. Zitzler. “An Efficient, Adaptive Parame-
ter Variation Scheme forMetaheuristics Based on the Epsilon-Constraint
Method”. In: European Journal of Operational Research 169.3 (2006), pp. 932–
942. doi: 10.1016/j.ejor.2004.08.029 (cit. on p. 18).

[46] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and Y. Shoham.
“A Portfolio Approach to Algorithm Selection”. In: Proceedings of the 18th
International Joint Conference on Artificial Intelligence. IJCAI ’03. Morgan
Kaufmann Publishers Inc., 2003, pp. 1542–1543 (cit. on p. 28).

[47] A. Liefooghe, F. Daolio, S. Verel, B. Derbel, H. Aguirre, and K. Tanaka.
“Landscape-Aware Performance Prediction for Evolutionary Multiobjec-
tive Optimization”. In: IEEE Transactions on Evolutionary Computation
24.6 (2020), pp. 1063–1077. doi: 10.1109/TEVC.2019.2940828 (cit. on
p. 28).

https://doi.org/10.1063/1.5090016
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1002/(SICI)1520-6750(200002)47:1<57::AID-NAV4>3.0.CO;2-4
https://doi.org/10.1002/(SICI)1520-6750(200002)47:1<57::AID-NAV4>3.0.CO;2-4
https://doi.org/10.1109/CEC.2002.1007013
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1016/j.ejor.2004.08.029
https://doi.org/10.1109/TEVC.2019.2940828


LIST OF REFERENCES 180

[48] A. Liefooghe, L. Paquete, M. Simões, and J. R. Figueira. “Connectedness
and Local Search for Bicriteria Knapsack Problems”. In: Evolutionary
Computation in Combinatorial Optimization. EvoCOP 2011. Vol. 6622.
Lecture Notes in Computer Science. Springer, 2011, pp. 48–59. doi: 10.
1007/978-3-642-20364-0_5 (cit. on pp. 24, 25).

[49] A. Liefooghe, S. Verel, B. Lacroix, A.-C. Zăvoianu, and J. McCall. “Land-
scape Features and Automated Algorithm Selection for Multi-Objective
Interpolated Continuous Optimisation Problems”. In: Proceedings of the
2021 Genetic and Evolutionary Computation Conference. GECCO 2021.
Association for Computing Machinery, 2021, pp. 421–429. doi: 10.1145/
3449639.3459353 (cit. on p. 28).

[50] M. López-Ibáñez, L. Paquete, and T. Stützle. “Exploratory Analysis of
Stochastic Local Search Algorithms in Biobjective Optimization”. In: Ex-
perimental Methods for the Analysis of Optimization Algorithms. Springer,
2010, pp. 209–222. doi: 10.1007/978-3-642-02538-9_9 (cit. on p. 28).

[51] M. López-Ibáñez and T. Stützle. “Automatically Improving the Anytime
Behaviour of Optimisation Algorithms”. In: European Journal of Opera-
tional Research 235.3 (2014), pp. 569–582. doi: 10.1016/j.ejor.2013.
10.043 (cit. on pp. 64, 109).

[52] U.-E. Lukata and J. Teghem. “Solving Multi-Objective Knapsack Problem
by a Branch-and-Bound Procedure”. In: Multicriteria Analysis. MCDM.
Springer, 1997, pp. 269–278. doi: 10.1007/978-3-642-60667-0_26
(cit. on pp. 19, 20, 22).

[53] A. Makhorin. GLPK. Version v5.0. 2020 (cit. on p. 49).

[54] S. Martello and P. Toth. “An Upper Bound for the Zero-One Knapsack
Problem and a Branch and Bound Algorithm”. In: European Journal
of Operational Research 1.3 (1977), pp. 169–175. doi: 10.1016/0377-
2217(77)90024-8 (cit. on pp. 22, 24).

[55] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G.
Rudolph. “Exploratory Landscape Analysis”. In: Proceedings of the 13th
Annual Conference on Genetic and Evolutionary Computation. GECCO
2011. Association for Computing Machinery, 2011, pp. 829–836. doi:
10.1145/2001576.2001690 (cit. on p. 28).

[56] O. Mersmann, B. Bischl, H. Trautmann, M. Wagner, J. Bossek, and F.
Neumann. “A Novel Feature-Based Approach to Characterize Algorithm
Performance for the Traveling Salesperson Problem”. In: Annals of Math-
ematics and Artificial Intelligence 69.2 (2013), pp. 151–182. doi: 10.1007/
s10472-013-9341-2 (cit. on p. 28).

https://doi.org/10.1007/978-3-642-20364-0_5
https://doi.org/10.1007/978-3-642-20364-0_5
https://doi.org/10.1145/3449639.3459353
https://doi.org/10.1145/3449639.3459353
https://doi.org/10.1007/978-3-642-02538-9_9
https://doi.org/10.1016/j.ejor.2013.10.043
https://doi.org/10.1016/j.ejor.2013.10.043
https://doi.org/10.1007/978-3-642-60667-0_26
https://doi.org/10.1016/0377-2217(77)90024-8
https://doi.org/10.1016/0377-2217(77)90024-8
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1007/s10472-013-9341-2
https://doi.org/10.1007/s10472-013-9341-2


LIST OF REFERENCES 181

[57] A. M. Molinaro, R. Simon, and R. M. Pfeiffer. “Prediction Error Estima-
tion: A Comparison of Resampling Methods”. In: Bioinformatics 21.15
(2005), pp. 3301–3307. doi: 10.1093/bioinformatics/bti499 (cit. on
p. 67).

[58] G. L. Nemhauser and Z. Ullmann. “Discrete Dynamic Programming and
Capital Allocation”. In:Management Science 15.9 (1969), pp. 494–505. doi:
10.1287/mnsc.15.9.494 (cit. on pp. 23, 44).

[59] E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and Y. Shoham.
“Understanding Random SAT: Beyond the Clauses-to-Variables Ratio”.
In: Principles and Practice of Constraint Programming - CP 2004. CP 2004.
Vol. 3258. Lecture Notes in Computer Science. Springer, 2004, pp. 438–
452. doi: 10.1007/978-3-540-30201-8_33 (cit. on p. 28).

[60] L. Paquete, M. Chiarandini, and T. Stützle. “Pareto Local Optimum Sets
in the Biobjective Traveling Salesman Problem: An Experimental Study”.
In:Metaheuristics for Multiobjective Optimisation. Vol. 535. Lecture Notes
in Economics and Mathematical Systems. Springer, 2004, pp. 177–199.
doi: 10.1007/978-3-642-17144-4_7 (cit. on p. 24).

[61] L. Paquete, B. Schulze, M. Stiglmayr, and A. C. Lourenço. “Computing
Representations Using Hypervolume Scalarizations”. In: Computers &
Operations Research 137 (2022), p. 105349. doi: 10.1016/j.cor.2021.
105349 (cit. on pp. 55, 163).

[62] M. Pilu and R. B. Fisher. “Equal-Distance Sampling of Superellipse Mod-
els”. In: Procedings of the 1995 British Machine Vision Conference. BMVC
1995. BMVA Press, 1995, pp. 257–266. doi: 10.5244/C.9.26 (cit. on
p. 34).

[63] J. Pinheiro and D. Bates. Mixed-Effects Models in S and S-PLUS. Statistics
and Computing. Springer, 2000. doi: 10.1007/b98882 (cit. on p. 60).

[64] S. Polyakovskiy, M. R. Bonyadi, M. Wagner, Z. Michalewicz, and F. Neu-
mann. “A Comprehensive Benchmark Set and Heuristics for the Travel-
ing Thief Problem”. In: Proceedings of the 2014 Annual Conference on Ge-
netic and Evolutionary Computation. GECCO 2014. Association for Com-
puting Machinery, 2014, pp. 477–484. doi: 10.1145/2576768.2598249
(cit. on p. 28).

[65] A. Przybylski and X. Gandibleux. “Multi-Objective Branch and Bound”.
In: European Journal of Operational Research 260.3 (2017), pp. 856–872.
doi: 10.1016/j.ejor.2017.01.032 (cit. on pp. 18, 19).

https://doi.org/10.1093/bioinformatics/bti499
https://doi.org/10.1287/mnsc.15.9.494
https://doi.org/10.1007/978-3-540-30201-8_33
https://doi.org/10.1007/978-3-642-17144-4_7
https://doi.org/10.1016/j.cor.2021.105349
https://doi.org/10.1016/j.cor.2021.105349
https://doi.org/10.5244/C.9.26
https://doi.org/10.1007/b98882
https://doi.org/10.1145/2576768.2598249
https://doi.org/10.1016/j.ejor.2017.01.032


LIST OF REFERENCES 182

[66] A. Przybylski, X. Gandibleux, and M. Ehrgott. “A Recursive Algorithm
for Finding All Nondominated Extreme Points in the Outcome Set of a
Multiobjective Integer Programme”. In: INFORMS Journal on Computing
22.3 (2010), pp. 371–386. doi: 10.1287/ijoc.1090.0342 (cit. on pp. 17,
24).

[67] J. R. Rice. “The Algorithm Selection Problem”. In: Advances in Computers
15 (1976), pp. 65–118. doi: 10.1016/S0065-2458(08)60520-3 (cit. on
pp. 2, 28).

[68] S. J. Russell and S. Zilberstein. “Composing Real-time Systems”. In: Pro-
ceedings of the 12th International Joint Conference on Artificial Intelligence.
IJCAI ’91. Morgan Kaufmann Publishers Inc., 1991, pp. 212–217 (cit. on
p. 29).

[69] K. A. Smith-Miles. “Cross-Disciplinary Perspectives on Meta-Learning
for Algorithm Selection”. In:ACMComputing Surveys (CSUR) 41.1 (2008),
p. 6. doi: 10.1145/1456650.1456656 (cit. on p. 2).

[70] V. Srinivasan and G. L. Thompson. “Algorithms for Minimizing Total
Cost, Bottleneck Time and Bottleneck Shipment in Transportation Prob-
lems”. In: Naval Research Logistics Quarterly 23.4 (1976), pp. 567–595.
doi: 10.1002/nav.3800230402 (cit. on p. 17).

[71] J. Svegliato, K. H. Wray, and S. Zilberstein. “Meta-Level Control of Any-
time Algorithms with Online Performance Prediction”. In: Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelli-
gence. IJCAI ’18. 2018. doi: 10.24963/ijcai.2018/208 (cit. on p. 29).

[72] S. Verel, A. Liefooghe, L. Jourdan, and C. Dhaenens. “Analyzing the
Effect of Objective Correlation on the Efficient Set of MNK-Landscapes”.
In: Learning and Intelligent Optimization. LION 2011. Vol. 6683. Lecture
Notes in Computer Science. Springer, 2011, pp. 116–130. doi: 10.1007/
978-3-642-25566-3_9 (cit. on p. 44).

[73] S. Verel, A. Liefooghe, L. Jourdan, and C. Dhaenens. “On the Structure of
Multiobjective Combinatorial Search Space: MNK-landscapes with Cor-
related Objectives”. In: European Journal of Operational Research 227.2
(2013), pp. 331–342. doi: 10.1016/j.ejor.2012.12.019 (cit. on p. 63).

[74] M. G. Vilas Boas, H. G. Santos, L. H. d. C. Merschmann, and G. V. Berghe.
“Optimal Decision Trees for the Algorithm Selection Problem: Integer
Programming Based Approaches”. In: International Transactions in Op-
erational Research (2019). doi: 10.1111/itor.12724 (cit. on p. 28).

https://doi.org/10.1287/ijoc.1090.0342
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1145/1456650.1456656
https://doi.org/10.1002/nav.3800230402
https://doi.org/10.24963/ijcai.2018/208
https://doi.org/10.1007/978-3-642-25566-3_9
https://doi.org/10.1007/978-3-642-25566-3_9
https://doi.org/10.1016/j.ejor.2012.12.019
https://doi.org/10.1111/itor.12724


LIST OF REFERENCES 183

[75] M. Visée, J. Teghem, M. Pirlot, and E. Ulungu. “Two-Phases Method
and Branch and Bound Procedures to Solve the Bi–Objective Knapsack
Problem”. In: Journal of Global Optimization 12.2 (1998), pp. 139–155.
doi: 10.1023/A:1008258310679 (cit. on pp. 19, 20).

[76] L. While, L. Bradstreet, and L. Barone. “A Fast Way of Calculating Exact
Hypervolumes”. In: IEEE Transactions on Evolutionary Computation 16.1
(2012), pp. 86–95. doi: 10.1109/TEVC.2010.2077298 (cit. on p. 130).

[77] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. “SATzilla: Portfolio-
based Algorithm Selection for SAT”. In: Journal of Artificial Intelligence
Research 32 (2008), pp. 565–606. doi: 10.1613/jair.2490 (cit. on p. 28).

[78] S. Zilberstein. “Using Anytime Algorithms in Intelligent Systems”. In:
AI Magazine 17.3 (1996), pp. 73–83. doi: 10.1609/aimag.v17i3.1232
(cit. on pp. 2, 25, 26, 28, 29).

[79] E. Zitzler. “Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications”. PhD thesis. Swiss Federal Institute of Tech-
nology Zurich, 1999 (cit. on p. 13).

[80] E. Zitzler and L. Thiele. “Multiobjective Optimization Using Evolutionary
Algorithms — A Comparative Case Study”. In: Parallel Problem Solving
from Nature — PPSN. PPSN 1998. Vol. 1498. Lecture Notes in Computer
Science. Springer, 1998, pp. 292–301. doi: 10.1007/BFb0056872 (cit. on
pp. 3, 12).

[81] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da
Fonseca. “Performance Assessment of Multiobjective Optimizers: An
Analysis and Review”. In: IEEE Transactions on Evolutionary Computation
7.2 (2003), pp. 117–132. doi: 10.1109/TEVC.2003.810758 (cit. on pp. 11,
12, 14).

https://doi.org/10.1023/A:1008258310679
https://doi.org/10.1109/TEVC.2010.2077298
https://doi.org/10.1613/jair.2490
https://doi.org/10.1609/aimag.v17i3.1232
https://doi.org/10.1007/BFb0056872
https://doi.org/10.1109/TEVC.2003.810758




Appendix A

Empirical Model Results

185



A.1. PLS — 2 OBJECTIVES 186

A.1 PLS — 2 objectives
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Figure A.1: Results of anytime performance prediction on the testing data set.
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Figure A.2: Results of anytime performance prediction on the testing data set.
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Figure A.3: Results of anytime performance prediction on the testing data set.
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A.2 PLS — 3 objectives
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Figure A.4: Results of anytime performance prediction on the testing data set.
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Figure A.5: Results of anytime performance prediction on the testing data set.
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Figure A.6: Results of anytime performance prediction on the testing data set.
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A.3 PLS — 5 objectives
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Figure A.7: Results of anytime performance prediction on the testing data set.
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Figure A.8: Results of anytime performance prediction on the testing data set.
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Figure A.9: Results of anytime performance prediction on the testing data set.
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A.4 BHV-DP — 2 objectives
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Figure A.10: Results of anytime performance prediction on the testing data set.
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Figure A.11: Results of anytime performance prediction on the testing data set.
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Figure A.12: Results of anytime performance prediction on the testing data set.
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A.5 BHV-DP — 3 objectives
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Figure A.13: Results of anytime performance prediction on the testing data set.
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Figure A.14: Results of anytime performance prediction on the testing data set.
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Figure A.15: Results of anytime performance prediction on the testing data set.
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A.6 BHV-DP — 5 objectives
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Figure A.16: Results of anytime performance prediction on the testing data set.
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Figure A.17: Results of anytime performance prediction on the testing data set.
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Figure A.18: Results of anytime performance prediction on the testing data set.
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A.7 GEPS — 2 objectives
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Figure A.19: Results of anytime performance prediction on the testing data set.
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Figure A.20: Results of anytime performance prediction on the testing data set.
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Figure A.21: Results of anytime performance prediction on the testing data set.
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