
HAL Id: tel-03936771
https://hal.science/tel-03936771v1

Submitted on 12 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

CGM-based parallel solutions for a class of non-serial
polyadic dynamic-programming problems

Jerry LACMOU ZEUTOUO

To cite this version:
Jerry LACMOU ZEUTOUO. CGM-based parallel solutions for a class of non-serial polyadic dynamic-
programming problems. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Dschang
(Cameroun), 2022. English. �NNT : �. �tel-03936771�

https://hal.science/tel-03936771v1
https://hal.archives-ouvertes.fr

REPUBLIC OF CAMEROON
PEACE-WORK-FATHERLAND

UNIVERSITY OF DSCHANG

POST GRADUATE SCHOOL

RÉPUBLIQUE DU CAMEROUN
PAIX-TRAVAIL-PATRIE

UNIVERSITÉ DE DSCHANG

ÉCOLE DOCTORALE

DSCHANG SCHOOL OF SCIENCE AND TECHNOLOGY

FUNDAMENTAL COMPUTER SCIENCE, ENGINEERING, AND
APPLICATIONS RESEARCH UNIT (URIFIA)

TOPIC :

CGM-BASED PARALLEL SOLUTIONS FOR A CLASS OF NON-SERIALCGM-BASED PARALLEL SOLUTIONS FOR A CLASS OF NON-SERIAL

POLYADIC DYNAMIC-PROGRAMMING PROBLEMSPOLYADIC DYNAMIC-PROGRAMMING PROBLEMS

Thesis publicly defended for the award of a Doctorat/PhD degree in
Computer Science

Option : Networks and Distributed Services

Specialty : Parallel Computing

By

LACMOU ZEUTOUO Jerry
Registration Number : CM-UDS-11SCI0267

Master of Science in Computer Science

Under the direction of

KENGNE TCHENDJI Vianney
Associate Professor

LÉLÉ Célestin
Professor

On December 21, 2022 in front of the examination panel consisting of

President
TAYOU DJAMEGNI Clémentin Professor University of Dschang
Reporters
LÉLÉ Célestin Professor University of Dschang
KENGNE TCHENDJI Vianney Associate Professor University of Dschang
Examinators
TIEUDJO Daniel Professor University of Ngaoundere
NDOUNDAM René Associate Professor University of Yaounde I
DJOTIO NDIE Thomas Associate Professor University of Yaounde I

Dedication

To my parents :
LACMOU Jean and KUELA SEGNOU Antoinette

• i

Acknowledgements

First of all, I would like to thank the Almighty Lord for the graces and mercies He
has granted upon me throughout this work.

I have lived a fascinating adventure during these years of thesis work. It made
me grow in both my professional and personal lives. I faced difficult moments that
almost made me give up. But thanks to my supervisors, Pr. LÉLÉ Célestin and
Pr. KENGNE TCHENDJI Vianney, who encouraged me, took care of me and gave
me all the necessary materials to carry out this work, I did not give up. You have
made me the man I am today. I also thank Pr. MYOUPO Jean Frédéric who took
a keen regard over my work. It is through him that we were able to carry out our
experimentations on the Dolphin cluster of the MatriCS platform of the University
of Picardie Jules Verne.

I thank all the jury members for the honor you have bestowed upon me in judg-
ing this work. I also express my gratitude to the teaching staff of the Department
of Mathematics and Computer Science. Their invaluable advice and expertise have
allowed me to enrich my knowledge in many fields since I entered the University
of Dschang in 2011.

What about my parents, LACMOU Jean and KUELA SEGNOU Antoinette, to
whom I dedicate this work? Since I was born, you have made a lot of effort to
ensure my education. You have labored and patiently waited until the completion
of this thesis. I can only say thank you. I cannot forget the full support of my
brothers and sisters, Olivier, Marlène, Dimitry, and Rhina. May the Almighty Lord
infinitely bless the DIFO family, the FOGAING family, the SOPFOSSI family, the
LOBE family, the SOUMANA family, the NIMPA family, the ESSOUNGUE fam-
ily, the NGOUEGNI family, the MEBANN family, and the DJOUMESSI family.

My beloved friend, MEBANN Elodie, has always taken care of me throughout
this work. I will always remember all the sacrifices and risks you took for me. My
fan club did not abandon me and did not stop encouraging me : NGUEMKAP Ro-
muald, GUIFO Yvan, DJOUMESSI Kerol, NOUKELA Christian, TESSA Xavier,
DJOUMESSI Gina, NANKEM Ida, and LAMGOAH Marie-Noël.

• ii

I thank my research team. Although we are in different fields, we were able to
make ourselves understood to each other. My elders, Dr. YANKAM Yannick and
Dr. NKONJOH Armel, have contributed a lot to the completion of this work. The
same goes for my cadets MVAH Fabrice, BOGNING Hermann, KAMGA Ingrid,
TESSA Colette, KOMBOU Carole, and DJEUFACK Vadèle. The glances I have
had at your respective works have significantly enhanced the quality of mine.

Thanks to the board of the Koossery Technology company, especially to Mr.
BAKENEGHE Jean-Claude. Without him, this work would be hopeless because
he allowed me to survive financially. He taught me rigor in professional work,
which is obviously reflected in this thesis.

I will be eternally grateful to all the people who contributed in any way to the
writing of this thesis, especially to all those who have proofread this document.

Acknowledgements • iii

Table of Contents

Dedication i

Acknowledgements ii

Abstract vii

Résumé ix

List of Acronyms x

List of Tables xi

List of Figures xiii

List of Algorithms xvii

General Introduction 1
Background . 1
Research problem . 5
Research aim . 6
Our contributions . 7
Thesis outline . 8

Chapter 1 • Parallel Computing and Dynamic Programming 9
1.1 Introduction . 9
1.2 High-performance computing . 9
1.3 Taxonomies of parallel computer architectures 11

1.3.1 Classification according to the number of instruction streams
and data streams . 11

1.3.2 Classification according to the memory 12
1.3.3 Classification according to the network topology 14
1.3.4 Classification according to the granularity 14

• iv

1.4 Designing parallel algorithms . 16
1.4.1 Manual parallelization versus automatic parallelization 16
1.4.2 Control parallelism versus data parallelism 18
1.4.3 Parallel programming models 18
1.4.4 Performance of a parallel algorithm 22

1.5 Parallel computing models . 24
1.5.1 PRAM model . 25
1.5.2 Systolic model . 26
1.5.3 Hypercube model . 27
1.5.4 BSP model . 29
1.5.5 CGM model and motivation behind the choice of this model . 31

1.6 Dynamic programming . 32
1.6.1 Recalling the divide-and-conquer technique 33
1.6.2 Building a dynamic-programming solution 35
1.6.3 Principles of dynamic programming 38

1.7 Taxonomy of dynamic-programming formulations 39
1.8 General dynamic-programming formulation of the studied problems 41
1.9 Summary . 43

Chapter 2 • Parallelization of the Studied Problems : State of the Art 45
2.1 Introduction . 45
2.2 Minimum cost parenthesizing problem 45

2.2.1 Overview . 45
2.2.2 Sequential algorithm of Godbole (1973) 47
2.2.3 Dynamic graph model of Bradford (1994) 51
2.2.4 CGM-based parallel solution of Kechid and Myoupo (2009) . 53
2.2.5 CGM-based parallel solution of Kengne and Myoupo (2012) . 60

2.3 Optimal binary search tree problem 62
2.3.1 Overview . 62
2.3.2 Sequential algorithm of Knuth (1971) 66
2.3.3 CGM-based parallel solution of Kengne et al. (2016) 69

2.4 Triangulation of a convex polygon problem 76
2.4.1 Overview . 76
2.4.2 Sequential algorithm of Yao (1982) 77
2.4.3 CGM-based parallel solution of Kechid and Myoupo (2008b) 81
2.4.4 CGM-based parallel solution of Myoupo and Kengne (2014a) 85
2.4.5 Drawbacks of sequential and CGM-based parallel solutions . 89

Contents • v

2.4.6 Our fast sequential algorithm 90
2.4.7 Experimental results . 93

2.5 Summary . 96

Chapter 3 • Reconciliation of the Minimization of the Number of Com-
munication Rounds and the Load-Balancing of Processors 98
3.1 Introduction . 98
3.2 Dynamic graph model of the OBST problem 99
3.3 First dynamic graph partitioning : irregular partitioning technique . 103

3.3.1 Blocks’ dependency analysis 108
3.3.2 Mapping blocks onto processors 110
3.3.3 CGM-based parallel algorithm for solving the MPP 111
3.3.4 CGM-based parallel algorithm for solving the OBST problem 113
3.3.5 Experimental results . 114
3.3.6 Drawback of the irregular partitioning technique 120

3.4 Second dynamic graph partitioning : k-block splitting technique . . 121
3.4.1 Blocks’ dependency analysis of the MPP 123
3.4.2 CGM-based parallel algorithms to solve the MPP 124
3.4.3 Experimental results . 127
3.4.4 Drawback of the k-block splitting technique 131

3.5 Third dynamic graph partitioning : four-splitting technique 133
3.5.1 CGM-based parallel algorithm to solve the MPP 136
3.5.2 CGM-based parallel algorithm to solve the OBST problem . . 137
3.5.3 Experimental results . 139

3.6 Summary . 149

General Conclusion 151
Re-stating the research problem . 151
Results obtained and critical analysis 152
Further work . 155

Bibliography 157

Appendix A • List of Publications a

Table of Contents • vi

Abstract

We are interested in the parallelization of a class of non-serial polyadic dynamic-
programming problems in this thesis. These problems are characterized by a strong
dependency between subproblems. To design efficient and portable parallel solu-
tions to solve these problems, the CGM (coarse-grained multicomputer) model is
the suitable choice because of its simplicity and its compatibility with most super-
computers.
A CGM-based parallel algorithm is a succession of computation and communica-
tion rounds. The solutions proposed in the literature give the end-user the possi-
bility of minimizing the number of communication rounds or balancing the load
between processors because both objectives are conflicting. Moreover, their main
drawback is to foster the latency time of processors, which accounts for most of
the global communication time.
In this work, we propose an irregular partitioning technique of the dependency
graph to tackle these conflicting objectives. It consists in subdividing the depen-
dency graph into subgraphs (or blocks) of variable size. It ensures that the blocks of
the first steps (or diagonals) are of large sizes to minimize the number of commu-
nication rounds. Thereafter, it decreases these sizes along the diagonals to increase
the number of blocks in these diagonals and allow processors to stay active as long
as possible. These blocks are fairly distributed among processors to minimize their
idle time and balance the load between them. Nevertheless, this strategy induces a
high latency time of processors. Indeed, varying the blocks’ sizes does not enable
them to start evaluating some blocks as soon as the data they need are available. To
get over this shortcoming, we propose strategies to evaluate a block as a sequence
of computation and communication steps of a set of small-size blocks. The experi-
mental results obtained show a significant performance gain compared to the most
efficient solutions proposed in the literature.

Keywords: Dynamic Programming, Parallel Algorithm, CGM Model, Depen-
dency Graph, Irregular Partitioning

• vii

Solutions parallèles sur le modèle CGM
pour une classe de problèmes de

programmation dynamique de type
polyadique non-serial

• viii

Résumé

Nous nous intéressons à la parallélisation d’une classe de problèmes de program-
mation dynamique de type polyadique non-sérial dans cette thèse. Ces problèmes
se caractérisent par une forte dépendance entre les sous-problèmes. Pour concevoir
des solutions parallèles efficaces et portables à la classe de problèmes sus-citée, le
modèle de calcul CGM (coarse-grained multicomputer) est le choix idéal en raison
de sa simplicité et de sa compatibilité avec la plupart des superordinateurs.
Un algorithme CGM est une succession de rondes de calcul et de communication.
Les solutions proposées dans la littérature donnent à l’utilisateur final le choix de
minimiser le nombre de rondes de communication ou d’équilibrer la charge des
calculs entre les processeurs car ces objectifs sont contradictoires. De plus, leur
défaut majeur est de favoriser le temps de latence des processeurs, qui représente
la plus grande partie du temps de communication global.
Dans ce travail, nous proposons une technique de partitionnement irrégulier du
graphe de dépendances pour apporter une solution à ces objectifs contradictoires.
Elle consiste à diviser le graphe de dépendances en sous-graphes (ou blocs) de
tailles variables. Elle assure que les blocs des premières étapes (ou diagonales) sont
de grandes tailles pour minimiser le nombre de rondes de communication. Ensuite,
elle réduit leurs tailles le long des diagonales pour augmenter le nombre de blocs
dans ces diagonales et permettre aux processeurs de rester actifs le plus longtemps
possible. Ces blocs sont distribués de manière équitable sur les processeurs pour
minimiser leur temps d’inactivité et équilibrer leurs charges de calcul. Cependant,
cette stratégie induit un temps de latence élevé des processeurs. En effet, la varia-
tion de la taille des blocs ne leur permet pas de commencer l’évaluation de certains
blocs aussitôt que les données dont ils ont besoin sont disponibles. Pour résoudre
ce problème, nous proposons des stratégies consistant à évaluer un bloc comme
une succession d’étapes de calcul et de communication d’un ensemble de blocs de
petite taille. Les résultats expérimentaux obtenus montrent un gain de performance
significatif comparé aux meilleures solutions proposées dans la littérature.

Mots clés: Programmation Dynamique, Algorithme Parallèle, Modèle CGM, Gra-
phe de Dépendances, Partitionnement Irrégulier.

• ix

List of Acronyms

API Application Programming Interface;
BSP Bulk Synchronuous Parallel;

CGM Coarse-Grained Multicomputer;
CPU Central Processing Unit;
DAG Directed Acyclic Graph;

DP Dynamic Programming;
DSP Digital Signal Processor;
GPU Graphics Processing Unit;

MCOP Matrix Chain Ordering Problem;
MPI Message Passing Interface;
MPP Minimum Cost Parenthesizing Problem;

OBST Optimal Binary Search Tree;
OpenMP Open Multi-Processing;

PRAM Parallel Random Access Memory;
PU Processing Unit;

TCP Triangulation of a Convex Polygon;
VLSI Very-Large-Scale Integration.

• x

List of Tables

1 Example of probabilities of three sorted keys 67
2 Total execution time (in seconds) of sequential and CGM-based parallel

solutions while solving the TCP problem 95

3 Total execution time (in seconds), speedup, and efficiency (in %) for
n ∈ {4096, . . . ,40960}, p ∈ {1,32}, and k ∈ {0,1,2} while solving the
MPP with the irregular partitioning technique 116

4 Total execution time (in seconds), speedup, and efficiency (in %) for
n ∈ {4096, . . . ,40960}, p ∈ {1,32}, and k ∈ {0,1,2} while solving the
OBST problem with the irregular partitioning technique 116

5 Total execution time (in seconds), speedup, and efficiency (in %) for
n ∈ {36864,40960}, p ∈ {64,96,128}, and k ∈ {0,1,2} while solving
the MPP with the irregular partitioning technique 117

6 Total execution time (in seconds), speedup, and efficiency (in %) for
n ∈ {36864,40960}, p ∈ {64,96,128}, and k ∈ {0,1,2} while solving
the OBST problem with the irregular partitioning technique 117

7 Total execution time (in seconds), speedup, and efficiency (in %) for
n ∈ {4096, . . . ,40960}, p = 32, and k ∈ {1,2} while solving the MPP
with the k-block splitting technique . 128

8 Total execution time (in seconds), speedup, and efficiency (in %) for
n ∈ {36864,40960}, p ∈ {64,96,128}, and k ∈ {1,2} while solving the
MPP with the k-block splitting technique 128

9 Total execution time (in seconds), speedup, and efficiency (in %) for
n= 40960, p∈ {32, . . . ,128}, and k∈ {3,4}while solving the MPP with
the k-block splitting technique using the k-block by k-block evaluation
strategy . 129

10 Total execution time (in seconds), speedup, and efficiency (in %) for
n ∈ {4096, . . . ,40960}, p = 32, and k ∈ {2,3,4} while solving the MPP
with the four-splitting technique on the MatriCS platform 140

• xi

11 Total execution time (in seconds), speedup, and efficiency (in %) for
n ∈ {36864,40960}, p ∈ {64,96,128}, and k ∈ {2,3,4} while solving
the MPP with the four-splitting technique on the MatriCS platform . . . 140

12 Total execution time (in seconds), speedup, and efficiency (in %) for n ∈
{4096, . . . ,40960}, p = 32, and k ∈ {1, . . . ,5} while solving the OBST
problem with the four-splitting technique on the MatriCS platform . . . 141

13 Total execution time (in seconds), speedup, and efficiency (in %) for n ∈
{36864,40960}, p ∈ {64,96,128}, and k ∈ {1, . . . ,5} while solving the
OBST problem with the four-splitting technique on the MatriCS platform 141

14 Total execution time (in seconds), speedup, and efficiency (in %) for
n ∈ {4096, . . . ,16384}, p ∈ {1,32}, and k ∈ {1, . . . ,5} while solving the
OBST problem with the four-splitting technique on our Raspberry Pi cluster141

List of Tables • xii

List of Figures

1 Taxonomy of Flynn (1966) . 13
2 Taxonomy of Raina (1992) . 14
3 Static and dynamic network topologies 15
4 Fork-join paradigm in shared-memory programming model 20
5 Network topologies of processors in systolic architectures 27
6 Network topologies of processors in hypercube architectures 28
7 Description of a BSP superstep . 30
8 Recursion tree while computing the 4th Catalan number using the divide-

and-conquer technique . 35
9 Recursion tree and the dynamic-programming table while computing the

4th Catalan number using the top-down approach 37
10 Dependencies between subproblems while computing the 4th Catalan

number using the bottom-up approach 38
11 Task graph and dynamic-programming table used to compute Cost[1,4] 44

12 Dynamic-programming and tracking tables filled while computing the
product of four matrices with respective dimensions (5× 10), (10× 3),
(3×20), and (20×6) . 48

13 Dynamic graphs D4 and D′4 for a problem of size n = 4 52
14 Shortest path matrix partitioning strategy proposed by Kechid and My-

oupo (2009) for n = 32 and p ∈ {2,4,8} 53
15 Dependencies of two blocks SM(i, j) and SM(h, l) after applying the par-

titioning strategy of Kechid and Myoupo (2009) 55
16 Distribution schemes of blocks on processors proposed by Kechid and

Myoupo (2009) . 56
17 Alternative bidirectional projection mapping on four and eight processors 56
18 Shortest path matrix partitioning strategy proposed by Kengne and My-

oupo (2012) for n = 32 and p ∈ {2,3,4,5,6,7,8} 61
19 Snake-like mapping on five and eight processors 61
20 Example of a binary search tree corresponding to the set of letters 〈c, e,

f, g, h, k, l, n, o, r, s〉 sorted in alphabetical order 64

• xiii

21 Five possible binary search trees obtained from the set of sorted keys 〈a,
b, c〉 . 64

22 Task graph and the dynamic-programming table used to compute Tree[0,3] 66
23 Dynamic-programming and tracking tables filled while determining the

optimal binary search binary tree from probabilities of three sorted keys
given in Table 1 . 68

24 Dependencies and extremities of a block SM(i, j) after applying the par-
titioning strategy of Kengne et al. (2016) 72

25 Alternative bidirectional projection mapping and snake-like mapping on
four processors when g = 8 . 73

26 A convex polygon and two different triangulations 76
27 Different ways of triangulating the convex polygon P = 〈5,10,3,20,6〉

and the corresponding parenthesis of the product of four matrices M1,
M2, M3, and M4 . 77

28 A convex polygon P and the corresponding DAG 79
29 Distribution scheme of blocks on three processors proposed by Kechid

and Myoupo (2008b) . 84
30 Distribution scheme of blocks on four processors proposed by Myoupo

and Kengne (2014a) . 89
31 Evaluation of the nonleaf node and dependencies between its cones to be

computed . 90
32 A convex polygon P and the new DAG obtained after building the stack

of every node . 91
33 DAG in the best and the worst cases of a convex polygon P 93
34 Comparison of the total execution time between our solution versus the

sequential solution of Yao (1982) and CGM-based parallel solutions of
Kechid and Myoupo (2008b) and Myoupo and Kengne (2014a) while
solving the TCP problem . 96

35 Comparison of our solution and the best CGM-based parallel solution
while solving the TCP problem . 97

36 Dynamic graphs D3 and D′3 for a problem of size n = 3 100
37 Dynamic graph D′3 filled while determining the optimal binary search

tree from probabilities of three sorted keys given in Table 1 104
38 Fragmentation of a block of size α×β 104
39 Irregular partitioning technique of the shortest path matrix for n = 32,

k ∈ {1,2}, and p ∈ {3, 4, 5, 6, 7, 8} 106

List of Figures • xiv

40 Dependencies of two blocks SM(i, j) and SM(h, l) after applying the ir-
regular partitioning technique . 109

41 Dependencies and extremities of a block SM(i, j) after applying the ir-
regular partitioning technique . 110

42 Snake-like mapping on six processors when k = 1 111
43 Global communication time for n∈{4096, . . . ,40960}, p∈{32, . . . ,128},

and k ∈ {0,1,2} while solving the MPP and the OBST problem with the
irregular partitioning technique . 118

44 Load imbalance of processors for n ∈ {24576,32768,40960}, p = 32,
and k ∈ {0,1,2} while solving the MPP and the OBST problem with the
irregular partitioning technique . 118

45 Computation rate versus communication rate for n∈{8192,24576,40960},
p = 32, and k ∈ {1,2} while solving the MPP and the OBST problem
with the irregular partitioning technique 119

46 Total execution time for n ∈ {4096, . . . ,40960}, p ∈ {32, . . . ,128}, and
k ∈ {0,1,2} while solving the MPP and the OBST problem with the
irregular partitioning technique . 120

47 Drawback of the irregular partitioning technique 121
48 k-block splitting technique of the shortest path matrix for n = 32, k ∈
{1,2}, and p ∈ {3, 4, 5, 6, 7, 8} . 122

49 Dependencies of two k-blocks SM(i, j) and SM(h, l) after applying the
k-block splitting technique . 124

50 Global communication time for n ∈ {4096, . . . ,40960}, p = 32, and k ∈
{0,1,2} while solving the MPP with the k-block splitting technique . . 129

51 Load imbalance of processors for n ∈ {24576,32768,40960}, p = 32,
and k ∈ {0,1,2}while solving the MPP with the k-block splitting technique130

52 Computation rate versus communication rate for n∈{8192,24576,40960},
p = 32, and k ∈ {1,2} while solving the MPP with the k-block splitting
technique . 130

53 Total execution time for n ∈ {4096, . . . ,40960}, p ∈ {32, . . . ,128}, and
k ∈ {0,1,2} while solving the MPP with the k-block splitting technique 131

54 Global communication time and total execution time for n = 40960, p ∈
{32,. . . ,128}, and k ∈ {0, . . . ,4} while solving the MPP with the k-block
splitting technique using the k-block by k-block evaluation strategy . . . 132

55 Four-splitting technique of the shortest path matrix for n= 32, k∈ {1,2},
and p ∈ {3, 4, 5, 6, 7, 8} . 134

List of Figures • xv

56 Steps to evaluate the four subblocks of a given block while solving the
OBST problem with the four-splitting technique 139

57 Global communication time for n∈{4096, . . . ,40960}, p∈{32, . . . ,128},
and k ∈ {0,1,2} while solving the MPP and the OBST problem with the
four-splitting technique on the MatriCS platform 142

58 Comparison of the overall computation time and the global commu-
nication time for n ∈ {24576,32768,40960}, p ∈ {32, . . . ,128}, and
k ∈ {1, . . . ,5} while solving the MPP and the OBST problem with the
four-splitting technique on the MatriCS platform 144

59 Load imbalance of processors for n ∈ {24576,32768,40960}, p = 32,
and k ∈ {0,1,2} while solving the OBST problem with the four-splitting
technique on the MatriCS platform . 146

60 Total execution time for n ∈ {4096, . . . ,40960}, p ∈ {32, . . . ,128}, and
k ∈ {0,1,2} while solving the MPP and the OBST problem with the
four-splitting technique on the MatriCS platform 146

61 Comparison of the overall computation time and the global communica-
tion time for n ∈ {8192,12288,16384}, p = 32, and k ∈ {1, . . . ,5} while
solving the OBST problem with the four-splitting technique on on the
MatriCS platform and our Raspberry Pi cluster 149

List of Figures • xvi

List of Algorithms

1 Divide-and-conquer algorithm to compute the nth Catalan number . 34
2 Dynamic-programming algorithm to compute the nth Catalan num-

ber using the top-down approach 36
3 Dynamic-programming algorithm to compute the nth Catalan num-

ber using the bottom-up approach 37
4 Generic sequential algorithm to solve the studied problems 43
5 Sequential algorithm of Godbole (1973) to solve the MCOP 48
6 CGM-based parallel algorithm of Kechid and Myoupo (2009) to solve

the MPP . 58
7 Finalization phase using in Algorithm 6 to evaluate blocks SM(i, j) . 59
8 Updating phase using in Algorithm 6 to refresh the shortest path costs

to nodes of blocks SM(i, j) . 59
9 CGM-based parallel algorithm of Kengne and Myoupo (2012) to

solve the MPP . 62
10 Sequential algorithm of Godbole (1973) to solve the OBST problem 66
11 Sequential algorithm of Knuth (1971) to solve the OBST problem . 67
12 CGM-based parallel algorithm of Kengne et al. (2016) to solve the

OBST problem . 74
13 Recursif algorithm of Yao (1982) to solve the TCP problem 78
14 Dynamic-programming algorithm of Yao (1982) to solve the TCP

problem . 80
15 CGM-based parallel solution of Kechid and Myoupo (2008b) to solve

the TCP problem . 82
16 Dependency graph partitioning algorithm of Kechid and Myoupo

(2008b) . 83
17 Dependency graph partitioning algorithm of Myoupo and Kengne

(2014a) balancing the load of processors 86
18 Dependency graph partitioning algorithm of Myoupo and Kengne

(2014a) minimizing the number of communication rounds 88
19 Building the stack of every node in the DAG 91

• xvii

20 Our dynamic-programming algorithm to solve the TCP problem . . 92
21 Our CGM-based parallel algorithm based on the irregular partition-

ing technique to solve the MPP . 112
22 Finalization phase using in Algorithm 21 to evaluate blocks SM(i, j)

belonging to the lth level of fragmentation 112
23 Updating phase using in Algorithm 21 to refresh the shortest path

costs to nodes of blocks SM(i, j) belonging to the lth level of frag-
mentation . 112

24 Our CGM-based parallel algorithm based on the irregular partition-
ing technique to solve the OBST problem 113

25 Our CGM-based parallel algorithm based on the k-block splitting
technique to solve the MPP using the diagonal by diagonal evalu-
ation approach . 125

26 Our CGM-based parallel algorithm based on the k-block splitting
technique to solve the MPP using the k-block by k-block evaluation
approach . 126

27 Our CGM-based parallel algorithm based on the four-splitting tech-
nique to solve the MPP . 136

28 Our CGM-based parallel algorithm based on the four-splitting tech-
nique to solve the OBST problem 138

List of Algorithms • xviii

General Introduction

CONTENTS

Background . 1
Research problem . 5
Research aim . 6
Our contributions . 7
Thesis outline . 8

Background

Dynamic programming
Over the last decades, the technological evolution led engineers to confront increas-
ingly complex computational problems in several fields, including artificial intel-
ligence, software engineering, image processing, operations research, economics,
and electronics (Collette and Siarry, 2002). Optimization problems, consisting
in optimizing (minimizing or maximizing) an objective function from input data,
are frequently encountered by engineers. The single-pair shortest path problem is
a well-known example. It consists in finding the shortest path between a single
pair of vertices in a graph such that the sum of the weights of this path’s edges is
the smallest. Finding the best solution among a finite and discrete set of feasible
solutions is called combinatorial optimization. Solving such problems is straight-
forward because we just need to enumerate all the possible combinations, test them
one by one, and choose the best one. Nevertheless, the computational complexity
theory shows that this kind of solution is not practical because its time and space
complexity is exponential (Cormen et al., 2009). Several techniques have been
designed to solve combinatory optimization problems in polynomial time; one of
them is dynamic programming, which is widely studied and used in the literature.

• 1

Developed by Bellman Ford in the 1950s, dynamic programming (DP) consists
in subdividing a problem into a set of subproblems, organizing their evaluations
in such a way that each of them is evaluated just once, and combining their so-
lutions to obtain the optimal solution (Bellman, 1957; Cormen et al., 2009; Lew
and Mauch, 2007). The main goal of DP is to avoid recomputing the solutions
of subproblems during the solving process of a given problem. Dependencies
between subproblems are commonly illustrated by a multi-level directed acyclic
graph (DAG), called task graph or dependency graph. Wah and Li (1988) pre-
sented four groups of dynamic-programming problems1 based on the nature of
the dependency of subproblems and the number of recurrence terms of the objec-
tive function: serial monadic, serial polyadic, non-serial monadic, and non-serial
polyadic. The latter is characterized by a strong dependency between subproblems,
which can lead to an irregular computational load between them. In this thesis, we
are interested in a class of non-serial polyadic dynamic-programming problems,
in particular the minimum cost parenthesizing problem (MPP), the matrix chain
ordering problem (MCOP), the triangulation of a convex polygon (TCP) problem,
and the optimal binary search tree (OBST) problem.

These problems can be solved by the sequential algorithm of Godbole (1973).
It is sufficient to change the definition of the objective function and the input data
according to the semantics of the studied problem. This algorithm runs in O

(
n3
)

time and O
(
n2
)

space by evaluating each of Θ
(
n2
)

subproblems in O(n) time.
However, for the MCOP, the TCP problem, and the OBST problem, there are some
speedup sequential algorithms that significantly reduce the execution time and re-
quire O

(
n2
)

time and space (Knuth, 1971; Yao, 1982). On the one hand, to solve
the OBST problem, the algorithm of Knuth (1971) leverages the table used to store
the indices of optimal subproblems to evaluate the Θ

(
n2
)

subproblems in constant
time. On the other hand, the algorithm of Yao (1982) solves the MCOP and the
TCP problem2 by narrowing down the number of subproblems to Θ(n) through the
quadrangle inequality and evaluating each of them in O(n) time.

Parallel computing : the master idea
A few decades ago, general-purpose computers were fitted with single-core pro-
cessor chips. Nowadays, they are equipped with one or more multi-core processor
chips and a large amount of memory. A core is a processing unit capable of per-

1. A dynamic-programming problem is a problem that can be solved through the dynamic-programming
technique (Kengne, 2014).
2. There exists a one-to-one correspondence between the MCOP and the TCP problem (Hu and Shing,

1982, 1984). Thus, a solution to one of them remains relevant to the other (Yao, 1982).

Parallel computing : the master idea • 2

forming computation operations concurrently (Pacheco and Malensek, 2021). In
spite of this technological leap in hardware, the sequential algorithms of Godbole
(1973), Knuth (1971), and Yao (1982) remain inefficient as the input data size in-
creases. The reason is simple : a sequential algorithm only runs on one processing
unit at a time on a computer, even if that computer has thirty-two, sixty-four, or
one hundred twenty-eight processing units. The performance of such an algorithm
will depend on the power of a processing unit, that is, the number of operations it
is able to perform in one second.

The master idea of parallel computing is to simultaneously use several pro-
cessing units to solve a problem faster by means of a parallel algorithm. Such an
algorithm enables solving a problem in such a way that each processing unit works
on a part of the problem at the same time and cooperates with others to solve the
problem more quickly. It was possible to reduce the execution time of sequential
algorithms that took days, weeks, or months to complete in a few hours, minutes,
or seconds. Parallel computing has emerged at a time when humanity is faced with
increasingly complex problems that need to be solved in a short time, for example
to simulate the reaction of new drugs on the body, to process billions of requests,
to manage millions of banking transactions, and so forth (Sterling et al., 2017).
The need to exploit other computer resources, such as memory to handle problems
with large amounts of data (which could not be handled by a single computer) and
graphics processing unit (GPU) chips to solve problems even faster, has rapidly
become apparent over the years.

A parallel computer is a computer that can execute a parallel algorithm. A
parallel computer architecture consists of one or more parallel computers whose
processing units work together concurrently (Kengne, 2014). An architecture is
said to have a shared memory when the processing units share a common memory
to exchange data, and it is said to have a distributed memory when the processing
units have their own memories and exchange data through a network (Raina, 1992).
These parallel computer architectures are commonly called supercomputers.

Parallel computing model
A parallel computing model is an abstraction of the architecture’s parallel com-
puters intended to be used to formalize in a few parameters the way parallel algo-
rithms will behave in a given architecture (Kengne, 2014). Several models have
been proposed to increase the performance of parallel algorithms. The oldest and
best known of them is the PRAM (Parallel Random Access Memory) model, which
allows the design of parallel algorithms on shared-memory architectures (Czech,

Parallel computing model • 3

2017; Ferreira and Morvan, 1997; JáJá, 1992; Pacheco and Malensek, 2021). Al-
though this model is simple, it does not reflect the characteristics of real parallel
computers it describes because it assumes that access to information in memory is
achieved in constant time; and thus it leads to designing parallel algorithms that are
efficient in theory but inefficient in practice (Kengne, 2014). Other models, such as
the systolic model and the hypercube model better fit distributed-memory architec-
tures (Czech, 2017; Kung, 1982; Kung and Leiserson, 1978; Leighton, 1992). The
main drawback of these models is that they depend on a specific network topol-
ogy3. Thus, parallel algorithms designed in these models are not portable, that is,
the algorithms usually need to be modified when changing architectures to fit the
new architecture (Kengne, 2014).

The bulk synchronous parallel (BSP) model provided a solution to the short-
comings of the previous models (Valiant, 1990). Indeed, it allows better reflecting
the characteristics of real parallel computers by proposing the BSP parallel com-
puter, which is an architecture composed of a set of processors interconnected by a
network and in which two processors can exchange data without going through an
intermediate processor. It is thus easier to design such an architecture being that we
can interconnect general-purpose computers; and thus reduce the cost of design-
ing the architecture compared to systolic and hypercube architectures. Moreover,
through the BSP model, the performance of a parallel algorithm can be estimated
from a few parameters (Kielmann and Gorlatch, 2011; Valiant, 1990).

The coarse-grained multicomputer (CGM) model is a simplified version of the
BSP model (Dehne et al., 1993). It allows formalizing in just two parameters the
performance of a parallel algorithm : the input data size n and the number of pro-
cessors p. A CGM-based parallel algorithm consists in repeating successively two
phases until the problem is solved:

• a computation round where processors perform local computations on their
data using the best sequential algorithm, and;

• a communication round where processors exchange data through the net-
work.

Because of its simplicity and its compatibility with most recent supercomputers,
this model is suitable for designing parallel algorithms for the class of non-serial
polyadic dynamic-programming problems studied in this thesis.

3. A network topology refers to the way in which a set of nodes are connected to each other (Wu and Feng,
1984).

Research problem • 4

Research problem

Of the problems we study, the MPP is the most classical and generic because it
is widely used to represent a large class of non-serial polyadic DP problems. The
sequential algorithm of Godbole (1973) is besides called generic sequential algo-
rithm in the literature (Kechid and Myoupo, 2009; Kengne, 2014). This algorithm
organizes the subproblems level by level to obtain a DAG having the form of an
upper triangular matrix (see Figure 11a). Subproblems of the same level i are eval-
uated at step (or diagonal) i. The parallelization constraint of this problem is the
unevenness of the computational load between different diagonals. In fact, due to
the strong dependency between subproblems, it will have more operations to eval-
uate the subproblems of diagonal (i+ 1) than those of diagonal i. This constraint
will have heavy consequences on the load balancing.

Moreover, the sequential algorithms of Knuth (1971) and Yao (1982) add new
additional constraints, making the parallelization of the MCOP, the TCP problem,
and the OBST problem a bit more difficult. On the one hand, the sequential al-
gorithm of Knuth (1971) does not change the form of the DAG but neither does it
guarantee that subproblems of the same diagonal will have the same computational
load, compared to the sequential algorithm of Godbole (1973) where subproblems
of the same diagonal have the same computational load (the number of operations
is the same to evaluate these subproblems). On the other hand, according to the
input data, the sequential algorithm of Yao (1982) changes the form of the DAG
into a forest consisting of two binary trees (see Figure 28). Indeed, two input data
of the same size but different values will have two different forms of the DAG; as
a result, designers will be compelled to design a CGM-based parallel solution that
fits all possible forms of the DAGs corresponding to different input data.

The standard methodology for designing CGM-based parallel solutions to solve
these problems is to partition the DAG into subgraphs (or blocks) of same size, then
distribute fairly these blocks among processors, and finally compute them in a suit-
able evaluation order. Some research has investigated the parallelization of these
sequential algorithms on the CGM model in the literature (Cáceres et al., 2010;
Fotso et al., 2010; Higa and Stefanes, 2012; Kechid and Myoupo, 2008a, 2008b,
2009; Kengne and Myoupo, 2012; Kengne et al., 2016; Myoupo and Kengne,
2014a, 2014b). Kengne et al. (2016) highlighted the existence of a relationship
between the total execution time, the load balancing, and the number of commu-
nication rounds from the performance of previous CGM-based parallel solutions.
Indeed, according to the partitioning strategy and the distribution scheme strategy

Research problem • 5

used when designing these solutions, they showed that minimizing the number of
communication rounds and balancing the load of processors are two conflicting
objectives when the DAG is partitioned into blocks of the same size :

1 - To promote load balancing, the blocks must be small (Kechid and Myoupo,
2008a, 2008b, 2009). Thus, if each processor has one more block to evalu-
ate than another, their load difference will also be low. However, the number
of communication rounds will be high.

2 - To minimize the number of communication rounds, the blocks must be large
(Kengne and Myoupo, 2012; Myoupo and Kengne, 2014a, 2014b). Thus,
since there will be few blocks, the number of communication rounds will
be reduced. However, the load of processors will be unbalanced.

By generalizing the ideas of the DAG partitioning and distribution scheme intro-
duced in (Kechid and Myoupo, 2008a, 2009; Kengne and Myoupo, 2012; Myoupo
and Kengne, 2014b), Kengne et al. (2016) proposed a CGM-based parallel solution
that gives the end-user the choice to optimize one criterion according to their own
goal, coming for example from the characteristics of parallel computers used.

The main drawback of this solution is the conflicting optimization criteria ow-
ing to the fact that the end-user cannot optimize more than one criterion. Moreover,
these criteria have a significant impact on the latency time of processors, which in
turn has an impact on the global communication time. Recall that the global com-
munication time is obtained by adding up the latency time of processors and the
effective transfer time of data. Indeed, when the number of communication rounds
is high, excessive communication will lead to communication overhead, which will
deteriorate the global communication time. On the other hand, when the load of
processors is unbalanced, the evaluation of a block will take a longer time because
of its larger size. So, a processor that is waiting for this block to start or continue its
computation will wait longer to receive it. As a result, no matter the criterion cho-
sen, the global communication time will decrease the performance of CGM-based
parallel solutions.

Research aim

This thesis aims to design CGM-based parallel solutions that reconcile the conflict-
ing objectives (minimizing the number of communication rounds and balancing the
load of processors) to solve a class of non-serial polyadic dynamic-programming

Research aim • 6

problems. We are confident that solutions where processors evaluate both large
and small blocks will reconcile this trade-off. These solutions should minimize the
number of communication rounds while balancing the load of processors and re-
ducing the global communication time. These solutions should also minimize the
idle time of processors. Indeed, in prior solutions, several processors cannot be ac-
tive at the same time half in the evaluation of blocks. From this point in time, there
are more and more idle processors (one more after each step). However, the closer
one gets to the final steps, the higher the load of blocks becomes, and therefore
their evaluation requires more computation time.

Our contributions

We have proposed three contributions to achieve our goal:

• In (Kengne and Lacmou, 2019; Lacmou and Kengne, 2018), we have pro-
posed an irregular partitioning technique to tackle the conflicting objectives.
It consists in subdividing the dependency graph into blocks of variable size. It
ensures that the blocks of the first diagonals are of large sizes to minimize the
number of communication rounds. Thereafter, it decreases these sizes along
the diagonals to increase the number of blocks in these diagonals and allow
processors to stay active as long as possible. These blocks are fairly dis-
tributed among processors to minimize their idle time and balance the load
between them. Our CGM-based parallel solutions using this technique min-
imize also the overall computation time and the latency time of processors;
and thus reduce the total execution time. They require O

(
n3/p

)
execution

time for the MPP and O
(
n2/
√

p
)

for the OBST problem, each with O
(
k
√

p
)

communication rounds. Here, n is the input data size, p is the number of
processors, and k is the number of times the size of blocks is subdivided.

• In (Lacmou et al., 2021), we have proposed a fast sequential algorithm for
the MCOP and the TCP problem. It consists in organizing the evaluation of
the subproblems according to their dependencies, instead of their precedence
order as in previous solutions (Myoupo and Kengne, 2014a; Yao, 1982), to
solve them fastly by avoiding some unnecessary computations. It requires
O(n) time in many cases. Experimental results performed on the MatriCS
platform showed that this sequential algorithm is ×18.93 faster than the se-
quential algorithm of Yao (1982) and ×5.07 faster than the CGM-based par-
allel solution of Myoupo and Kengne (2014a) on thirty-two processors.

Our contributions • 7

• In (Lacmou et al., 2022a, 2022b, 2022c), we have proposed strategies to re-
duce the latency time of processors by allowing them to start the evaluation
of blocks as soon as possible. Indeed, varying the blocks’ sizes does not en-
able processors to start evaluating small-size blocks as soon as the data they
need are available, although these data are available before the end of the
evaluation of large-size blocks. We have first proposed the k-block splitting
technique consisting in splitting the large-size blocks into a set of smaller-
size blocks called k-blocks. Thus, evaluating a block by a single processor
will consist of computing and communicating each k-block contained in this
block. Experimental results showed that this solution is better than previous
ones but leads to communication overhead when k increases. That is why we
have proposed the four-splitting technique consisting in splitting the large-
size blocks into four small-size blocks. It avoids communication overhead
and significantly reduces the latency time of processors while preserving the
complexity of our solutions using the irregular partitioning technique.

Thesis outline

The remainder of this document is organized as follows:

Chapter 1 : Parallel Computing and Dynamic Programming
This chapter presents the basic concepts of parallel computing and dynamic pro-
gramming (DP), and describes the general DP formulation of the studied problems.

Chapter 2 : Parallelization of the Studied Problems : State of the Art
This chapter reviews the state of the art on parallelizing the class of non-serial
polyadic DP problems we study, and also presents our fast sequential algorithm
which solves the MCOP and the TCP problem with experimental results obtained.

Chapter 3 : Reconciliation of the Minimization of the Number of Communication
Rounds and the Load Balancing of Processors
This chapter outlines our CGM-based parallel solutions that reconcile the conflict-
ing objectives to solve the MPP and the OBST problem.

General Conclusion
This chapter concludes this work and provides some perspectives for future works.

Thesis outline • 8

CHAPTER 1
Parallel Computing and Dynamic
Programming

CONTENTS

1.1 - Introduction . 9
1.2 - High-performance computing . 9
1.3 - Taxonomies of parallel computer architectures 11
1.4 - Designing parallel algorithms . 16
1.5 - Parallel computing models . 24
1.6 - Dynamic programming . 32
1.7 - Taxonomy of dynamic-programming formulations 39
1.8 - General dynamic-programming formulation of the studied problems . 41
1.9 - Summary . 43

1.1 - Introduction

This chapter outlines the basic concepts of parallel computing and dynamic pro-
gramming. Section 1.2 introduces the main idea of high-performance computing.
Section 1.3 describes the taxonomies of parallel computer architectures. Section
1.4 then explains how to design a parallel algorithm. Parallel computing models
are presented in section 1.5 as well as the motivation for choosing the CGM model
in this work. Sections 1.6 and 1.7 present dynamic programming and the classi-
fication of dynamic-programming formulations, respectively. Finally, Section 1.8
describes the class of dynamic-programming problems studied in this thesis.

1.2 - High-performance computing

Toward the end of the 1980s, numerous innovations including the World Wide
Web, Google, Microsoft, and Linux led to the growth and creation of many fields

• 9

in aeronautical research, space research, economics, medicine, military, and so
on. Information and communication technologies have been growing exponentially
ever since, owing to the development of diverse materials and computer systems
(Ozdamli and Ozdal, 2015). Indeed, they allow accessing, processing, analyzing,
storing, or transfering information in different forms to meet a user’s need.

In 2020, a study conducted on government-imposed lockdowns of European
citizens due to the COVID-19 pandemic showed that the volume of Internet traffic
increased by 15-20% almost within a week because the Internet traffic demands
of residential users, especially for remote working, entertainment, commerce, and
education, increased dramatically (Feldmann et al., 2020). In addition, another
study carried out by Li et al. (2019) on the blockchain revealed that fluctuations in
the price of Bitcoin have a significant impact on the global computing power of the
system. Indeed, a high Bitcoin price will attract more computing power to join the
system, while a low Bitcoin price will force computing power to leave the system.

It is therefore virtually impossible to process this massive amount of data in real
time with a conventional computer, although nowadays computers are equipped
with multi-core processor chips. A multi-core processor is a processor made up of
two or more independent processing units, called cores, that perform tasks concur-
rently (Pacheco and Malensek, 2021). Pooling hundreds, thousands, or millions of
processing units and making them cooperate to process massive amounts of data
and solve complex problems is the master idea of high-performance computing
(Sterling et al., 2017). This kind of computer is typically called a supercomputer.
It has been at the heart of the greatest scientific revolutions and discoveries in the
last decades. There are three major types of supercomputers :

• The massive parallel processor, which is a single computer composed of a
large number of processors interconnected through a high-speed network.
These processors are independent, that is, they do not share memory, and
usually each processor runs its own instance of an operating system (Loshin,
2013). Despite the fact that 7.8% of the world’s 500 most powerful super-
computers are massive parallel processors in November 2021 according to
the TOP500 ranking1, Fugaku supercomputer, the first on the list, is a mas-
sive parallel processor. It achieved a benchmark score of 442 Pflop/s with
7630848 cores.

• The cluster, which is a set of standalone computers interconnected by a net-
work (Kengne, 2014). According to the TOP500 ranking, 92.2% of super-

1. https://www.top500.org

High-performance computing • 10

https://www.top500.org

computers are clusters. Made up of 4356 computers (for a total of 2414592
cores) interconnected by a dual-rail Mellanox EDR Infiniband, Summit is
the second most powerful supercomputer in the world with a performance of
148.8 Pflop/s, which is three times less powerful than the first.

• The quantum computer, which uses properties of quantum physics to perform
computations. They aim to solve extremely complex problems the world’s
most powerful supercomputers cannot and will never solve (Steffen et al.,
2011). This technology gained momentum since the first quantum computer
was commercialized by D-Wave in 2011, because since then, Google, Intel,
IBM, and Microsoft are on a hunt for quantum supremacy2.

1.3 - Taxonomies of parallel computer architectures

Parallel computing consists in solving a problem by using several processing units
simultaneously. Each processing unit works on one part of the problem at the
same time and cooperates with others to solve a problem more quickly. A paral-
lel computer is a computer that can perform computation in parallel. A parallel
computer architecture consists of one or more parallel computers whose process-
ing units work together concurrently. Nowadays, general-purpose computers are
parallel computers since they usually have one or more multi-core processor chips
and sophisticated graphics processing unit (GPU) chips. The aspects that distin-
guish parallel computers have a strong consequence on the design of the parallel
algorithms that will be executed on them. A classification according to some cri-
teria, such as the number of instruction streams and data streams, the memory of
parallel computers, the network topology, and the granularity, allows highlighting
these different aspects.

1.3.1 - Classification according to the number of instruction
streams and data streams

The first classification relates to the computation activity of the architecture’s pro-
cessing units according to the number of instruction streams and data streams being
handled. Recall that the instruction stream is the sequence of instructions executed
by a processing unit and the data stream is the sequence of data requested by the

2. The quantum supremacy is the goal of demonstrating that a quantum computer can solve a problem with
such overwhelming speedup that no conventional supercomputer can solve the same problem in a reasonable
amount of time (Zhong et al., 2020).

Taxonomies of parallel computer architectures • 11

instruction stream (Schmidt et al., 2017). Flynn (1966) distinguishes four classes
of architecture :

SISD (Single Instruction stream, Single Data stream) where a single-core pro-
cessor executes a single instruction stream that operates on a single data
stream (see Figure 1a). This architecture refers to the traditional von Neu-
mann architecture.

SIMD (Single Instruction stream, Multiple Data stream) where many process-
ing units, being part of one or more processors, execute a single instruction
stream that operates on different data streams simultaneously (see Figure 1b).
This architecture is suitable for image processing and matrix or vector oper-
ations, and includes some processor chips like vector processors, array pro-
cessors, and GPUs.

MISD (Multiple Instruction stream, Single Data stream) where many process-
ing units execute different instruction streams that operate on a single data
stream (see Figure 1c). This architecture is not very common and is some-
times used to provide fault tolerance with heterogeneous systems running on
the same data to provide independent results that are compared with each
other (Sitaram and Manjunath, 2012).

MIMD (Multiple Instruction stream, Multiple Data stream) where many pro-
cessing units execute different instruction streams that operates on different
data streams (see Figure 1d). Each processing unit has a separate instruction
stream and data stream. This architecture is the most common since most
modern supercomputers fall into this class.

1.3.2 - Classification according to the memory
Based on the address space and physical memory organization of the architecture’s
processing units, which can be shared or distributed, Raina (1992) proposes three
broad classes of architecture:

SASM (Single Address space, Shared Memory) which refers to shared-memory
architectures. The processing units of a multi-core computer share a com-
mon memory through an interconnection network (for example a high-speed
memory bus or a crossbar switch, see Figure 2a). A single operating sys-
tem ensures communication between tasks running on different processing
units by writing to and reading from the global memory. There are three

Taxonomies of parallel computer architectures • 12

(a) SISD

(b) SIMD (c) MISD (d) MIMD

Figure 1 – Taxonomy of Flynn (1966). IS and DS stand for instruction stream and data steam
respectively

subcategories of shared memory architectures depending on memory access
(Kengne, 2014):

• uniform memory access (UMA): where the shared memory is accessed
by all processing units through an interconnection network in the same
way that a single processor accesses its memory. Thus, they have equal
access time to any memory location.

• non-uniform memory access (NUMA) : each processing unit has a por-
tion of shared memory that has a unique address space. Any process-
ing unit can directly access any memory location using its real address.
Therefore, memory access time depends on the distance between the
processing units.

• cache-only memory architecture (COMA): which is similar to NUMA
except that the shared memory is composed of a cache, so that a data
has no proprietary processing unit or specific location in the memory.

DADM (Distributed Address space, Distributed Memory) where several com-
puters are interconnected by a network (see Figure 2b). Each computer has
a single-core processor chip, its own private memory, and its own operat-
ing system. Each processor performs operations on its local memory and if
it needs data from other processors, a communication must be established
between them to exchange data. This architecture corresponds to distributed-
memory architectures.

Taxonomies of parallel computer architectures • 13

(a) SASM (b) DADM (c) SADM

Figure 2 – Taxonomy of Raina (1992)

SADM (Single Address space, Distributed Memory) which combines the fea-
tures of both previous classes (see Figure 2c). This architecture corresponds
to distributed shared memory architectures. It is the most used by supercom-
puters because of its scalability.

1.3.3 - Classification according to the network topology
As seen earlier, the parallel computers of an architecture must be interconnected
by a fast and reliable network to ensure efficient communication between them.
The way they are connected by links (wire or fiber) and switches have a significant
impact on the cost, applicability, scalability and performance of the architecture.
These networks can be divided into two categories :

Static networks where computers are connected by point-to-point links (see Fig-
ures 3a, 3b, 3c, and 3d). The topology defined during the design of the ar-
chitecture does not change. Thus, each computer knows its neighbors as in
Figure 3a, where each computer has two neighbors. If a computer sends a
data to a non-neighboring computer, it must absolutely transit through all the
computers separating them along a given path (Kengne, 2014).

Dynamic networks where each computer is connected to a network of switches
over one or more links (see Figures 3e, 3f, 3g, and 3h). Thus, the topology can
be dynamically updated according to the application requirements running on
the architecture. When a data wants to be sent, switches find optimal paths
between computers.

1.3.4 - Classification according to the granularity
In parallel computation, granularity is the amount of computation related to a task
that has been assigned to a processing unit between communication and/or syn-
chronization phases (Grama et al., 2003). It is also defined as the measure of the

Taxonomies of parallel computer architectures • 14

(a) Static ring (b) Static star (c) Static tree (d) Static cube

(e) Dynamic ring (f) Dynamic star (g) Dynamic tree (h) Dynamic cube

Figure 3 – Static and dynamic network topologies. The circle nodes are parallel computers and
the square nodes are switches. A link connects either two computers, two switches, or
a computer and a switch

ratio of computation to communication (Hwang, 2008). The grain size of a task de-
pends on the type of parallelism that must be performed on the architecture. It has
consequences on the performance of a parallel algorithm such as the total number
of computation and communication steps, and on the load balancing. Two major
types of parallelism exist depending on granularity :

Fine-grained parallelism where the computation to communication ratio is low
because processing units perform small tasks. It implies high communication
overhead as the number of tasks is high. However, this parallelism is suitable
for architectures where communications are fast, such as shared-memory ar-
chitectures, and eases the load balancing (Hwang, 2008). Indeed, the commu-
nication overhead can cause a significant drop in performance if the network
is not fast.

Coarse-grained parallelism where the computation to communication ratio is
high because processing units perform large tasks. Since the number of tasks
is low, it entails low communication overhead (Hwang, 2008). However, this
parallelism makes the load balancing difficult, especially for problems where
the amount of computation of tasks is not the same although they may have
the same size. In addition, it exacerbates the idleness of processing units
because some can perform tasks while others are idle.

Designing parallel algorithms • 15

1.4 - Designing parallel algorithms

Designers of sequential algorithms do not generally care about the characteristics
of the computer where these algorithms will be executed because these algorithms
exploit only a single processing unit of a multi-core or multi-processor computer.
In contrast, a parallel algorithm simultaneously exploits the resources of an ar-
chitecture’s parallel computers (CPU chips, GPU chips, memory, etc.) to solve a
problem on a large amount of data more quickly (and thus potentially speed up the
production time of a product, save money, etc.). This is why designers of parallel
algorithms must know the architecture where these algorithms will be executed.
Indeed, the architecture guides designers on the type of parallelization, the source
of parallelism, the parallel programming model, and the parallel computing model
(described in Section 1.5) to adopt.

1.4.1 - Manual parallelization versus automatic parallelization
There are two approaches to parallelizing a sequential algorithm: manual paral-
lelization and automatic parallelization.

Manual parallelization
The purpose of manual parallelization is to give designers of parallel algorithms
full control over the implementation and execution of the parallel algorithm in a
given architecture. More specifically, the designers must analyze the problem to be
solved, divide the problem into subproblems (or tasks), analyze the dependencies
between tasks, assign the tasks to processing units, define a communication and/or
synchronization scheme to allow processing units to exchange data, organize the
evaluation of the different tasks until the problem is solved completely, combine
the results of different processing units, etc. Of the existing methodologies for
manually designing a parallel algorithm, the best known is that of Foster (1995). It
is made up of four steps:

1 - Partitioning : this process decomposes into tasks the computation that will
be performed to solve the whole problem and the data operated on by this
computation. The tasks obtained after partitioning are intended to be exe-
cuted concurrently.

2 - Communication : this process determines how tasks will communicate with
each other, since the computation to be performed in one task sometimes
requires data associated with another task.

Manual parallelization • 16

3 - Agglomeration : this process goes back to the decision made in the two
previous steps to group tasks into larger tasks according to the architecture’s
parallel computers. This step aims to improve performance and reduce the
cost of developing the parallel algorithm.

4 - Mapping : this process assigns tasks to processing units in an attempt to
maximize the use of processing units and minimize communication costs.
The tasks are assigned either statically (i.e. determined during the imple-
mentation of the algorithm) or dynamically (i.e. determined during the ex-
ecution of the algorithm) to improve load balancing.

Manual parallelization is usually a time-consuming and complex process. Design-
ers typically encounter many errors and when they correct them, they test their
algorithms on large amounts of data (these tests can take days or even weeks) to
observe the performance before adopting or redesigning the proposed algorithm. In
addition, designers need to have a strong background in parallel computing before
designing a parallel algorithm.

Automatic parallelization
Automatic parallelization is the technique of automatically transforming a sequen-
tial algorithm into an equivalent parallel algorithm using the operating system’s
compiler or specific tools (Mabrouk, 2016). Indeed, it is very common to use
iterative structures of nested loops in algorithms; however, these structures con-
sume most of the execution time. It is thus on this part that the compilers ensuring
the automatic parallelization will operate by enabling the parallel execution of the
loop iterations on processing units. This parallelization consists in making the se-
quential algorithm undergo a series of legal transformations, in the sense that they
preserve the semantics of the initial algorithm, by first carrying out an analysis of
dependencies within this sequential algorithm, then detecting the inherent paral-
lelism in the algorithm, and finally determining a series of transformations of this
algorithm in respect with its dependencies and making it possible to extract the
inherent parallelism (Mabrouk, 2016). There are several loop transformations such
as loop distribution, loop interchange, loop skewing, loop fusion, and loop tiling.

Automatic parallelization aims to simplify and reduce the development time of
parallel algorithms, which are significantly more difficult to design than sequential
algorithms, without necessarily having knowledge of parallel computing. Although
it is suitable for shared-memory architectures, it also makes parallel algorithms
more portable. However, when faced with a complex sequential algorithm, some
semantic information can be lost during the analysis of dependencies and can lead

Automatic parallelization • 17

to the production of an incorrect parallel algorithm or a parallel algorithm that is
less efficient than the initial algorithm (Midkiff, 2012). In some cases, for example
when the loops do not have the same number of iterations, automatic parallelization
still requires the intervention of a designer who has a strong competence in parallel
computing.

1.4.2 - Control parallelism versus data parallelism
Consider a sequential algorithm that executes m instructions on each element of an
array of size n. To parallelize this algorithm, the designer must spread the tasks
over the resources of the architecture’s parallel computers. They have a choice
between two sources of parallelism.

The first is to spread the m instructions over processing units. Thus, each pro-
cessing unit will execute a part of instructions on each element of the array (i.e. on
the same data or on different data). This form of parallelism is called control par-
allelism. It is widely used in shared-memory architectures. The efficiency of such
a solution depends on the number of instructions to be performed on each element
of the array. The most common control parallelism is called pipelining.

The second is to spread the n elements of the array over processing units. Each
processing unit will thus execute the m instructions on each element of the subset
of the array that has been assigned to it. This form of parallelism is called data par-
allelism. It is both used on shared-memory and distributed-memory architectures.
The efficiency of this solution depends on the size of the array (i.e. the input data
size). The advent of GPU chips has expanded the usage of this form of parallelism
by designers of parallel algorithms.

It is obviously possible to combine these two forms of parallelism. In that case,
each processing unit will execute part of the instructions on each element of the
subset of the array that has been assigned to it. This type of solution is used in
distributed shared-memory architectures (see Figure 2c). Its objective is to use the
maximum resources of the architecture’s parallel computers to run faster than the
two basic forms.

1.4.3 - Parallel programming models
A parallel programming model is a set of program abstractions for fitting parallel
activities from the application to the underlying architecture’s parallel computers
(Vitorović et al., 2014). It acts as an interface between the parallel algorithm and
the architecture through its basic operations such as arithmetic operations, spawn-
ing of tasks, reading and writing in shared-memory architectures, or sending and

Automatic parallelization • 18

receiving messages in distributed-memory architectures (Kessler and Keller, 2007).
Of the parallel programming models, shared-memory and message-passing mod-
els are the best known. The terminology commonly used in literature is as follows:
tasks are carried out by threads and processes in the shared-memory programming
model and the message-passing programming model, respectively (Czech, 2017;
Pacheco and Malensek, 2021; Quinn, 2003).

Shared-memory programming model
The shared-memory programming model, as the name indicates, is suitable for
shared-memory architectures where the processing units share a common memory
space (see Figure 2a). In this model, the program corresponding to a parallel al-
gorithm is executed by one or more threads, which are assigned equally to each
processing unit by the operating system (Katagiri, 2019b). Indeed, the operat-
ing system allocates some resources to the process, including memory space to
store instructions and data, the set of registers, etc. All the threads running the
process share the address space of a designated area of memory allocated to this
process; but they have also a few resources for their exclusive use, such as the
stack, program counter register, memory to store private variables (Czech, 2017).
So, they implicitly communicate by storing computation results and messages that
can be read by other threads asynchronously (Czech, 2017; Vitorović et al., 2014).
Mechanisms such as locks, semaphores, and monitors are used to ensure mutual
exclusion.

The shared-memory programming model uses the fork-join paradigm, which
corresponds to an on-demand parallelism (Czech, 2017; Quinn, 2003). At the be-
ginning of the program execution, only one thread, called master thread, executes
the sequential portions of the parallel algorithm. In the parts where parallel opera-
tions are required (also called parallel region), the master thread implicitly spawns
or wakes up additional threads; this corresponds to a fork. These operations are
spread over the master thread and the created threads, and they work simultane-
ously to accomplish their tasks. At the end of the execution of the parallel re-
gion, there is a synchronization barrier to allow the created threads to die or be
suspended; this corresponds to a join. Thereafter, the master thread resumes the
execution that was suspended at the time of the encounter with the parallel region
(Czech, 2017; Quinn, 2003). Figure 4 gives an overview.

Nowadays, OpenMP (Open Multi-Processing)3 is the mainstream standard for
shared-memory programming. It is an application programming interface (API)

3. www.openmp.org

Shared-memory programming model • 19

www.openmp.org

Figure 4 – Fork-join paradigm in shared-memory programming model. α refers to the master
thread and β a created thread

that allows writing parallel algorithms in C, C++, and Fortran languages through
compiler directives, library functions, and environment variables. OpenMP does
not provide automatic parallelization (Czech, 2017; Katagiri, 2019b). Indeed, to
design a parallel algorithm with OpenMP, designers usually have to begin with
writing the sequential algorithm before turning it into a parallel algorithm. So
in the first step, designers must identify the parallelism contained in a sequential
algorithm by detecting parallel regions. Then, by applying directives, designers tell
the compiler which sections to run in parallel, and provide information about how
the computation work contained in those sections is spread over the threads. Every
directive begins by the prefix #pragma omp followed by the directive name and the
number of clauses that can be separated by commas or white spaces (Czech, 2017).
The number of threads created by the master thread can be defined by the designer
using the omp_set_num_threads function or the OMP_NUM_THREADS environment
variable.

Message-passing programming model
In message-passing programming model, a set of processes (equally distributed on
processing units) executes the same program on different data, and exchanges data
explicitly by sending and receiving messages (Foster, 1995; Hager and Wellein,
2010; Levesque and Wagenbreth, 2010; Quinn, 2003). Each process has its own ad-
dress space. This model targets distributed-memory architectures (see Figure 2b);
nevertheless it can also be used by shared-memory architectures and distributed
shared-memory architectures (see Figure 2c) (Hager and Wellein, 2010). Unlike
the shared-memory programming model, where threads are created when the pro-
gram first enters a parallel region and are blocked while the program executes a
non-parallel region, in this model, processes are created at the beginning of the
execution and are active until the program terminates (Vitorović et al., 2014). This
model gives designers full responsibility for mapping data to processes, coordinat-
ing data communication and synchronization between processes (Nielsen, 2016).

Message-passing programming model • 20

MPI (Message Passing Interface) is the de facto standard for message-passing
programming. It is a library that provides functions, beginning by the prefix MPI_,
for various kinds of communications and for managing processes (Pacheco and
Malensek, 2021). MPI is implemented by many free softwares, including MPICH4

and OpenMPI5, that are supported by most common programming languages such
as C, C++, Java, Python, and Fortran.

Two functions are fundamental to designing a parallel algorithm using MPI
(Czech, 2017; Foster, 1995). The first function, MPI_Init, must be called to
perform some setup before any other MPI functions and must be called exactly
once per process. The second function is MPI_Finalize. It must be called be-
fore the end of the parallel algorithm to allow the system to cleanup resources
that have been allocated by MPI. No further MPI functions can be called after
MPI_Finalize.

When a user runs this parallel algorithm, he must specify how many processes
should be performed in parallel. Functions MPI_Comm_size and MPI_Comm_rank

respectively determine the number of processes entered by the user and the inte-
ger identifier assigned to the current process. Indeed, processes usually identify
each other by ranks in the range 0,1, . . . , p−1, where p is the number of processes
(Pacheco and Malensek, 2021). These ranks are used by the communication func-
tions to send or receive a message. Two modes of communication exist according
to the number of processes involved (Czarnul, 2018) :

Point-to-point communication where two processes are involved in a commu-
nication routine. If a process A sends a message to a process B, then the
process A must specify the rank of the process B. When the process B needs
to receive the message from the process A, the process B can specify the
rank of the process A. In case the process B does not know who sent the
message, it is possible to allow receiving from any process through the wild-
card MPI_ANY_SOURCE. Point-to-point communication can be characterized
depending on how synchronization is performed (Czarnul, 2018; Katagiri,
2019a):

• The communication is said to be blocking when the receiving function
MPI_Recv does not return to the program after calling the corresponding
sending function MPI_Send until the data are received and the data are
entirely copied into a receiving buffer.

4. www.mpich.org
5. www.open-mpi.org

Message-passing programming model • 21

www.mpich.org
www.open-mpi.org

• The communication is said to be non-blocking when the receiving func-
tion MPI_Irecv returns to the program immediately even if the corre-
sponding sending function MPI_Send is not called. There is also the
sending function MPI_Isend that only starts the sending operation a
message without blocking the process. The process may later use on
the function MPI_Test to query the status of the sending operation or
the function MPI_Wait to wait for its completion (Czech, 2017).

Collective communication where several processes are involved in a communi-
cation routine. In contrast to the point-to-point communication, all processes
involved in a collective call invoke the same function. Some arguments, nev-
ertheless, can be different depending on the rank of a process (Czarnul, 2018).
The following are the characteristics of some of the functions :

• the function MPI_Barrier is used to synchronize processes, i.e. a pro-
cess is only allowed to pass the barrier once each of the other processes
has reached the barrier;

• the function MPI_Bcast is used in the case where one process broadcasts
data to all other processes;

• the function MPI_Alltoall is used in the case where all processes send
data to all other processes.

1.4.4 - Performance of a parallel algorithm
One of the most important tasks for designers of parallel algorithms is to measure
the performance of their algorithms and compare them with those of sequential
algorithms that solve the same problem. The goal is to show how the simultaneous
use of several resources is more efficient than using only one to solve a problem.

Total execution time
The total execution time of a parallel algorithm is usually measured by the dif-
ference between the time the first process starts computation and the time the last
process finishes the computation (Foster, 1995). This definition is not fully adapted
to the shared-memory programming model since the master thread starts and ends
the execution of a parallel algorithm by spawning or waking up additional threads
if needed. In any case, each process (or thread) computes, communicates, or idles
while the algorithm is running. Thus, the execution time is mainly composed of :

1 - The computation time, which is the time where a process or a thread per-
forms the computations to carry out the tasks that have been assigned to it.

Total execution time • 22

It depends on several factors such as the problem size, the number of pro-
cesses, the number of tasks to be performed by a process, the grain size of
a task, the characteristics of processing units and memory, and so on. An
important challenge for designers is usually to allow processes to perform
approximately the same computational load to achieve approximately the
same computation time.

2 - The communication time, which is the time spent by processes or threads to
respectively send and receive messages to each other, or to read and write in
the shared memory. In the message-passing programming model, the com-
munication time is often obtained by adding up the effective transfer time
of the data and the latency time of processes (Kengne, 2014). Recall that
the latency time is the time during which a process waits for a data to con-
tinue its computations. Commonly, intra-processor communication, where
two depending tasks are located on the same processor chip, is faster than
inter-processor communication, where two depending tasks are located on
different processor chips. This is because inter-processor communication
depends on the physical bandwidth of the communication channel linking
the source and destination processors (Foster, 1995).

3 - The idle time, which is the time where a process does neither computation
nor communication while running the parallel algorithm. It is usually due
to a lack of computation in cases where one process performs all the tasks
assigned to it (and thus completes its execution) while the others still have
tasks to perform. It is also due to the operations of spawning or waking
up threads, deleting or suspending threads in the shared-memory program-
ming model. The designers of parallel algorithms seek in most cases to
reduce this idle time by allowing processes to remain active, i.e. to perform
computation or communication, as long as possible.

Denoting respectively by T i
comp, T i

comm, and T i
idle the time spent on computation,

communication, and idling, on the ith process, Foster (1995) expresses the total
execution time Tpar by Equation (1.1) :

Tpar = T i
comp +T i

comm +T i
idle (1.1)

Speedup and efficiency
Speedup is the most commonly used metric for evaluating the performance gain
from parallel computing. It shows how many times the execution time of a sequen-

Speedup and efficiency • 23

tial algorithm, denoted Tseq, can be reduced by using a parallel algorithm (Czech,
2017). The speedup is defined as :

S =
Tseq

Tpar
(1.2)

The number of processes (or threads) p is the maximum value of the speedup, i.e. a
parallel algorithm must be at most p times faster than the best sequential algorithm
using p processes. However, the speedup achieved is typically less than p. The
reason may be due to the fact that some portions of a sequential algorithm cannot be
parallelized, to the unbalanced computational loads of processes, to the overhead
associated with the communication time between processes and synchronization of
their operations (Czech, 2017; Quinn, 2003).

The efficiency of a parallel algorithm is a metric that measures process utiliza-
tion. It highlights the efficiency with which a parallel algorithm uses the resources
of the architecture’s parallel computers (Foster, 1995). It is usually expressed in
percentage and defined as :

E =
Tseq

p×Tpar
=

S
p

(1.3)

Scalability
It is important in analyzing the performance of a parallel algorithm to study how the
performance of the algorithm varies with parameters such as the problem size and
the number of processes (or threads). Let’s refer to a parallel algorithm executing
on the architecture’s parallel computers as a parallel system. The scalability of a
parallel system is a measure of its capacity to increase speedup or maintain constant
efficiency with a growing number of processes used for computation (Czech, 2017;
Foster, 1995; Grama et al., 2003; Quinn, 2003). In general, the efficiency of a
parallel system decreases as the number of processes increases. On the other hand,
when the problem size is increased while keeping the number of processing units
constant, the efficiency of a parallel system increases. A good parallel system is
one in which the efficiency can be kept constant as the number of processes and
the problem size increase (Grama et al., 2003).

1.5 - Parallel computing models

A parallel computing model is an abstraction of an architecture’s parallel com-
puters intended to be used by designers of parallel algorithms (Kengne, 2014). It

Parallel computing models • 24

formalizes in a few parameters the way parallel algorithms will behave in a given
architecture. From the characteristics of a model, it is possible to determine the
time or space complexity of a parallel algorithm without having to implement or
execute it; and thus predict whether or not it will provide good performance, or
compare it with other algorithms solving the same problem to determine which is
the best algorithm for this problem (Kengne, 2014).

A good parallel computing model should meet the following expectations (Fer-
reira and Morvan, 1997; Foster, 1995; JáJá, 1992):

• a model should be simple and should not have too many parameters to facili-
tate its usage;

• a model must be well-defined to serve as a common platform for different
designers;

• a model must reflect the characteristics of most existing architectures;

• parallel algorithms designed according to a model should not be dependent
on a specific architecture;

• theoretical predictions of the performance of parallel algorithms must be in
accordance with their execution on the architecture’s parallel computers;

• a model must survive the evolution of parallel programming models used by
parallel algorithms;

• a model must be deterministic, i.e. when running a parallel algorithm several
times with a particular input on a model, it must always lead to the same
output.

Unfortunately, it is difficult to design a model that meets all of the above criteria
(JáJá, 1992). This section presents the parallel computing models that are most
commonly used to design parallel algorithms.

1.5.1 - PRAM model
The PRAM (Parallel Random Access Memory) is undoubtedly the most popular
shared-memory model in parallel computing (Czech, 2017; Ferreira and Morvan,
1997; JáJá, 1992; Pacheco and Malensek, 2021). This model assumes that a par-
allel computer is composed of a set of processing units and of a memory to which
each processing unit has a constant access time to read and write a data. They
operate synchronously under the control of a common clock during computation

Parallel computing models • 25

steps; hence, access conflicts to the same shared-memory location may occur. Ex-
clusive Read (ER) means that only one processor can read from a memory location
at a given time, and on the other hand, Concurrent Read (CR) means that several
processors can read the contents of the same memory location. A similar classi-
fication has been proposed for write accesses. The writing operation is exclusive
(EW for Exclusive Write) if only one processor can write in a memory cell at a
given time, and concurrent (CW for Concurrent Write) in the case where several
processors can modify the contents of the same memory cell. By combining the
various possibilities of reading and writing, there are four versions of the PRAM
model: ERCW, CRCW, EREW, and CREW (Czech, 2017; JáJá, 1992).

The PRAM model is simple. It allows, in most cases, to know if a problem
can be parallelized or not, to design parallel algorithms without worrying about
communications between processing units, and to easily analyze them (Kengne,
2014). However, this model is too abstract, i.e. it hides the low-level details of
the machines it describes for ease and simplicity, to the point of hiding from de-
signers some that are essential to the design of efficient parallel algorithms. It is
far from real parallel computers because maintaining a constant access time to the
shared memory for a large number of processing units is physically unfeasible and
technically impossible (Czech, 2017). So, a PRAM-based parallel algorithm can-
not be implemented in a real parallel computer and must be readapted to the cho-
sen architecture’s parallel computers (Ferreira and Morvan, 1997; Kengne, 2014).
Moreover, a communication operation is much more expensive than a computation
operation and therefore much more influential on the execution time of parallel al-
gorithms in real parallel computers. Thus, hiding this detail from designers leads
to the design of inefficient parallel algorithms (Kengne, 2014).

1.5.2 - Systolic model
Introduced by Kung and Leiserson (1978), the systolic model has proven to be a
powerful tool for the design of specialized embedded processors. A systolic ar-
chitecture is a network of processors that perform simple operations and exchange
data regularly (Kung, 1982). Indeed, systolic-based parallel algorithms operate
synchronously, that is, at each time unit, a processor receives data from some
neighbors, then performs local computations, and finally sends data to some of
its neighbors (JáJá, 1992).

To describe a systolic architecture, it is necessary to specify many details in-
cluding the network topology of processors, the description of processors, the pro-
gram that processors will execute, and the data stream consumed by the network to

Parallel computing models • 26

(a) Unidirectional linear network (b) Bidirectional linear network

(c) Unidirectional orthogonal network (d) Bidirectional orthogonal network

Figure 5 – Network topologies of processors in systolic architectures

produce a solution. Figures 5a, 5b, 5c, and 5d illustrate some network topologies
of processors in systolic architectures.

The systolic model owes its success to its achievement toward the demand for
extremely fast, low-cost supercomputers, and the significant reduction in execution
time for more sequential algorithms such as matrix-vector multiplication, matrix-
matrix multiplication, matrix inversion, fast Fourier transform, and LU decomposi-
tion. This has led to the realization of specialized embedded processors dedicated
to many applications like image and signal processing (Kung, 1982). However,
this model is too realistic, i.e. it provides designers with the tiniest details (network
topologies, routing techniques, etc.) of the architecture’s parallel computers it de-
scribes in an attempt to increase the efficiency of parallel algorithms, to the point
where these details become intrinsic to the validity and efficiency of the paral-
lel algorithms developed. Thus, running these algorithms on computers other than
those described by this model will greatly degrade their efficiency because they de-
pend heavily on the chosen network topology; consequently, it is often required to
change the parallel algorithm when the network topology evolves (Kengne, 2014).

1.5.3 - Hypercube model
A hypercube architecture is composed of p = 2d processors, indexed from 0 to
p−1, that are interconnected within a d-dimensional cube (Czech, 2017; Ferreira
and Morvan, 1997; JáJá, 1992; Leighton, 1992). The latter is a connected graph
consisting of 2d nodes and d×2d−1 edges. Each node corresponds to a d-bit binary

Parallel computing models • 27

(a) One-dimensional cube (b) Two-dimensional cube (c) Three-dimensional cube

(d) Four-dimensional cube

Figure 6 – Network topologies of processors in hypercube architectures

string, and two nodes are linked with an edge if and only if their binary strings
differ only at one position (Czech, 2017; Leighton, 1992). Figures 6a, 6b, 6c, and
6d respectively depict a one-dimensional, two-dimensional, three-dimensional, and
four-dimensional cube. It can be noticed that 2d processors are needed to extend a
d-dimensional cube into a (d +1)-dimensional cube.

As in the case of the PRAM model and the systolic model, the processors work
synchronously. At each step, each processor can send data to one of its neigh-
bors, receive data from one of its neighbors, and perform local computation on that
data. A message communicated between two non-neighboring processors is routed
through intermediate nodes according to a specific routing algorithm (Mabrouk,
2016). The hypercube model is popular because of its regularity, its versatility, its
many interesting graph-theoretic properties, and its ability to handle many com-

Parallel computing models • 28

putations quickly and simply. However, the logarithmic growth of the number of
connections of each processor with the size of the network is a main drawback
of this model (JáJá, 1992; Leighton, 1992). Moreover, like in the systolic model,
hypercube-based parallel algorithms are not portable (Kengne, 2014).

1.5.4 - BSP model
Valiant (1990) proposed the bulk synchronous parallel (BSP) model as a solution
to the efficiency-portability trade-off caused on the one hand by models that are too
abstract like the PRAM model, and on the other hand by models that are too real-
istic like the systolic and hypercube models. Indeed, the idea of this model comes
from the observation made on the von Neumann (1945) model, which built a bridge
between computer designers and sequential algorithm designers. Von Neumann’s
model allows each of them to focus on their areas of expertise to evolve their differ-
ent technologies (processors, storage memory, networks, programming languages,
compilers, and so on) without worrying about compatibility problems. In the same
vein, Valiant (1990) proposed the BSP parallel computer, which is an architecture
of parallel computers composed of a set of processors equipped with memory, an
interconnection network allowing point-to-point communications between proces-
sors, and a synchronization mechanism allowing a barrier synchronization accross
all processors. The abstraction made on the characteristics of the interconnection
network and on the relationship of the memories with processors allows the BSP
model to encompass all shared-memory architectures and all distributed-memory
architectures; and thus to reflect almost all supercomputers (Kengne, 2014). This
is the reason why this model, like the von Neumann model, is widely used till
nowadays. It served as a core model for the development of other models such as
the LogP model (Culler et al., 1993), the CGM model (Dehne et al., 1993), and
the Multi-BSP model (Valiant, 2011); and the development of libraries such as the
BSPlib library (Hill et al., 1998), the Green BSP library (Goudreau et al., 1999),
the MulticoreBSP library (Yzelman and Roose, 2014).

A BSP-based parallel algorithm consists of a succession of supersteps. As
shown in Figure 7, a superstep has three phases (Kielmann and Gorlatch, 2011;
Valiant, 1990):

1 - A local computation phase where each processor asynchronously performs
computation operations by using the best sequential algorithm that solves
the problem sequentially, on data in the processor’s local memory. These
data are put into the local memory either at beginning of the execution of the
parallel algorithm or by communication operations of previous supersteps.

Parallel computing models • 29

Figure 7 – Description of a BSP superstep

2 - A global communication phase to exchange data between processors. A
communication operation does not become effective before the next super-
step begins, i.e. the receiver cannot use received data until the current su-
perstep is finished.

3 - A synchronization phase to finalize communication operations and enable
access to received data by the receiving processors before any operation of
the next superstep begins.

The performance of a BSP-based parallel algorithm is expressed using three pa-
rameters p, l, and g; where p is the number of processors, l is the time required for
a barrier synchronization, and g is the time needed for transporting a memory word
between two processors (Kielmann and Gorlatch, 2011; McColl, 1995; Valiant,
1990). All communication operations made during a superstep are considered to-
gether in what is called an h-relation. It is a global communication scheme defined
on a set of processors where each one can send or receive at most h words (Kengne,
2014). The execution time of a BSP-based parallel algorithm is the sum of the ex-
ecution times of all supersteps. The execution time of a superstep is obtained by
adding up the maximum local computation times of all processors (denoted by w),
the global communication time, and the synchronization time :

Tsuperstep = w+g×h+ l (1.4)

Parallel computing models • 30

1.5.5 - CGM model and motivation behind the choice of this model
Introduced by Dehne et al. (1993) to parallelize sequential algorithms for geometric
problems, the coarse-grained multicomputer (CGM) model is a simplified version
of the BSP model. It gets rid of the parameters l, g, w, and h of the BSP model and
retains only the parameters n and p, which are the input data size and the number of
processors, respectively. To represent recent supercomputers composed of several
thousand of processors that can process millions or billions of data, this model
considers that p must be significantly smaller than n (p� n). Unlike the BSP
model, this model captures the intrinsic computation and communication features
of real parallel computers at two levels:

At the processors’ memory level: parallel computers of today’s architectures are
equipped with state-of-the-art processors connected to an interconnection
network. The CGM model considers that each of the p processors is en-
dowed with a sizable amount of local memory so that they can store O(n/p)
input data (Olariu, 2008). This is the reason why this model is coarse-grained
(Dehne et al., 1993; Ferreira and Morvan, 1997).

At the communications level: conventional networks allow the transfer of large
amounts of data. The CGM model exploits this feature by allowing proces-
sors to send and receive at most O(n/p) data. Indeed, all the information
sent from a given processor to another processor during a communication
cycle is gathered in a single long message, thereby minimizing the overall
message overhead (Dehne et al., 2002). Moreover, during communication
operations, synchronization is done implicitly, unlike the BSP model where
synchronization is explicitly part of a superstep (Lassous et al., 2000).

The CGM model inherits the portable feature of BSP-based parallel algorithms.
Since most personal computers are parallel computers nowadays, the cost of de-
signing a CGM-compatible architecture is relatively low and easy to build. All
of these make this model the ideal choice for designing parallel algorithms in this
thesis.

A CGM-based parallel algorithm consists of alternating local computation and
global communication rounds, a pair of which corresponding to a BSP superstep
(Dehne et al., 2002). In each computation round, a processor typically processes
its data locally by using the best sequential algorithm to minimize the local compu-
tation time per processor. In each communication round, the total data exchanged
by each processor are limited to O(n/p). Designers of parallel algorithms will
no longer seek to minimize the overall amount of data exchanged, as in the BSP

Dynamic programming • 31

model, but rather design algorithms with a small number of communication rounds
that only depends on p and not on n (Ferreira, 2001; Lassous et al., 2000). Indeed,
for most parallel algorithms based on previous models, the number of communi-
cation rounds and the resulting message overhead dramatically increase when the
input data size and the number of processors grow, resulting in a considerable per-
formance loss. CGM-based parallel algorithms avoid these problems because they
have only a small number of communication rounds whose message size grows
with the input data size, which greatly improves performance and scalability (Chan
et al., 2008; Dehne, 2006). In a nutshell, an efficient CGM-based parallel algorithm
should reduce the number of communication rounds (which should ideally be con-
stant) and the overall computation time.

1.6 - Dynamic programming

In mathematics, combinatorics studies the configurations of a set of discrete and
finite elements to respond to a given problem (Lovász, 2007). Combinatorial prob-
lems occur in many areas of mathematics, including algebra, probability theory,
topology, and geometry. A well-known combinatorics problem is to determine the
number of possible configurations of a given type (graphs, points, arrays). Another
combinatorics problem consists in assigning, from an objective function f based on
the problem semantics, a numerical value f (x) to any configuration x to choose the
best configuration that optimizes (maximizes or minimizes) the function f . This
kind of problem is called combinatorial optimization problems. Many algorithm
design paradigms have been developed to address these problems.

In the 1950s, greedy algorithms were used to solve some problems in data com-
pression (Huffman, 1952) and graph theory (Dijkstra, 1959; Prim, 1957). This
strategy attempts to progressively build the best global solution by choosing at
each step the best local solution. Later on, Land and Doig (1960) proposed the
Branch and Bound strategy. It consists of recursively splitting the search space
into subsets and exploring each of them to find feasible solutions. This strategy
eliminates candidate solutions that will not lead to an optimal solution based on
the properties of the problem. Tabu search is a heuristic method introduced by
Glover (1989, 1990). It consists in determining in a neighborhood the best solution
that optimizes the objective function at each iteration. One of its strengths is to
maintain a tabu list that prevents visiting the solutions already explored. As for
the divide-and-conquer strategy, it recursively decomposes a problem into two or
more subproblems until they are sufficiently small to be solved. Then, it solves

Dynamic programming • 32

these subproblems and gradually builds the original solution from their results.
This technique was invented by Gauss (1866) when he proposed an algorithm to
solve the discrete Fourier transform for interpolating the trajectories of the aster-
oids Pallas and Juno (Heideman et al., 1984). Several decades later, many problems
have been solved using this technique (such as binary search for search problems
or quicksort for sorting problems). Nevertheless, this technique has a drawback
when used to solve some problems. Indeed, during the problem-solving process,
some subproblems are computed as many times as they are encountered. For this
reason, Bellman (1957) proposed a strategy that he called dynamic programming
to solve this kind of problem.

This section describes the dynamic-programming technique. Section 1.6.1 first
recalls the divide-and-conquer technique and presents its main drawback based on
a counting problem. Then, Section 1.6.2 shows how the dynamic programming
overcomes this drawback by defining a solution. Finally, the principles of dynamic
programming are outlined in Section 1.6.3.

1.6.1 - Recalling the divide-and-conquer technique
A divide-and-conquer algorithm breaks down a problem into several smaller sub-
problems that are similar to the original problem, solve them recursively, and then
builds the solution of the original problem by combining the solutions of the sub-
problems (Cormen et al., 2009). There are three main steps in the problem-solving
process that are repeated over and over again until the original problem is solved:

Divide the problem into subproblems until the base case of the recursive condition
is reached. From then on, the problem is no longer divided.

Conquer the subproblems by solving them.

Combine the solved subproblems together to solve the original problem.

Let us apply this technique to determine the nth Catalan number. In combinatorics,
the catalan numbers are a sequence of positive integers that appears in many count-
ing problems (Stanley, 2015), such as :

• counting the number of possible binary search trees with n keys;

• counting the number of ways to parenthesize n objects;

• counting the number of ways to connect the 2n points on a circle to form n
disjoint chords;

Dynamic programming • 33

Algorithm 1 Divide-and-conquer algorithm to compute the nth Catalan number

1: function CATALAN(n)
2: if n = 0 or n = 1 then
3: return 1;
4: else
5: c← 0;
6: for k = 0 to n−1 do
7: c← c+CATALAN (k)×CATALAN (n− k−1);
8: return c;

• counting the number of ways to triangulate a convex polygon with n sides;

• counting the number of non-crossing partitions of a set of n elements, or;

• counting the number of semiorders on n unlabeled items.

These problems satisfy the recurrence equation (1.5). It is straightforward to de-
duce Algorithm 1 from this equation.

Cn =

1 if n = 0 or n = 1,
n−1
∑

k=0
CkCn−k−1 if n > 1.

(1.5)

Figure 8 shows the recursion tree produced by the call Catalan(4) to compute
C4, the 4th Catalan number :

1 - C4 is first divided into two subproblems (C0 and C3);

2 - C0 can be conquered easily but not C3;

2.1 - C3 is divided into C0 and C2;

2.2 - Since C2 can’t be conquered;

2.2.1 - C2 is divided into C0 and C1;

2.2.2 - Since C1 can be conquered, C2 is computed by adding up C0C1 and
C1C0, the combinations of C0 and C1;

2.3 - C0 and C2 is combined to compute C0C2;

2.4 - C3 is reduced to C1, which is conquered and combined to obtain C1C1;

2.5 - C3 is divided into C2 and C0;

2.6 - Since C2 can’t be conquered;

2.6.1 - C2 is divided into C0 and C1;

Dynamic programming • 34

Figure 8 – Recursion tree while computing the 4th Catalan number using the divide-and-conquer
technique

2.6.2 - Since C1 can be conquered, C2 is computed by adding up C0C1 and
C1C0, the combinations of C0 and C1;

2.7 - C2 and C0 is combined to compute C2C0;

2.8 - C3 is finally computed by adding up C0C2, C1C1, and C2C0;

3 - C0 and C3 is combined to obtain C0C3.

It is easy to see that steps 2.2 and 2.6 are similar. Indeed, since the result of
C2 is not saved after computing in step 2.2, it must be computed again in step 2.6.
In Figure 8, the shaded subtrees represent the subproblems that must be performed
more than once when computing C4. C3 is computed two times and C2 is computed
six times. This drawback leads to a poor time complexity because the time to
compute Cn by this recursive function is exponential in n (Cormen et al., 2009).

1.6.2 - Building a dynamic-programming solution
Dynamic programming (DP) is an extension of the divide-and-conquer technique.
Unlike a divide-and-conquer algorithm, a DP algorithm stores the results of sub-
problems when they are first evaluated. Their results are looked up when these
subproblems are encountered the next time during the problem solving process.
This allows bounding the number of subproblems to be evaluated and the number
of operations to be performed to compute a given subproblem. Thus, it is sim-
pler to determine the time and space complexity of a DP algorithm compared to a
divide-and-conquer algorithm, which is usually in polynomial time (Cormen et al.,
2009).

There are two approaches to obtaining the solution of the original problem from
the results of its subproblems: the top-down approach and the bottom-up approach.

Top-down approach • 35

Algorithm 2 Dynamic-programming algorithm to compute the nth Catalan number using
the top-down approach

1: function TOPDOWN-CATALAN(n)
2: let C [0..n] be a table;
3: for k = 0 to n do
4: C [k]←−∞;
5: return LOOKUP(C,n);

6: function LOOKUP(C,k)
7: if C [k]>−∞ then
8: return C [k];
9: else

10: if k = 0 or k = 1 then
11: C [k]← 1;
12: else
13: C [k]← 0;
14: for i = 0 to k−1 do
15: C [k]←C [k]+LOOKUP (C, i)×LOOKUP (C,k− i−1);
16: return C [k];

Top-down approach
This approach is similar to the divide-and-conquer method in that it decomposes
the original problem until it becomes straightforward to solve. However, it stores
the results of subproblems in a table called dynamic-programming table. Algo-
rithm 2 computes the nth Catalan number using this approach.

Figure 9a depicts the recursion tree when computing the 4th Catalan number.
The shaded subtrees represent the subproblems that are avoided when computing
C4 since their results are looked up in the DP table shown in Figure 9b. Indeed, this
table is initialized with a value specifying that the results of subproblems are not
yet stored (see lines 3-4 in Algorithm 2). Thereafter, the Lookup function is called
to retrieve the kth Catalan number from this table. If the result of Ck is present
in the DP table then it is returned (see lines 7-8 in Algorithm 2). Otherwise, Ck

is recursively computed by calling Lookup on its subproblems, stored in the kth
entry of the DP table, and returned (see lines 10-16 in Algorithm 2). Compared to
Algorithm 1, Algorithm 2 runs in O

(
n2
)

time since it has Θ(n) entries in the DP
table and each of them makes at most O(n) recursive calls.

Bottom-up approach
This approach progressively solves the smallest subproblems to build the solution
of the original problem. It is based on the choice of the right order for solving

Bottom-up approach • 36

(a) Recursion tree

(b) Dynamic-programming table

Figure 9 – Recursion tree and the dynamic-programming table while computing the 4th Catalan
number using the top-down approach

Algorithm 3 Dynamic-programming algorithm to compute the nth Catalan number using
the bottom-up approach

1: function BOTTOMUP-CATALAN(n)
2: let C [0..n] be a table;
3: C [0]← 1;
4: C [1]← 1;
5: for k = 2 to n do
6: C [k]← 0;
7: for i = 0 to k−1 do
8: C [k]←C [k]+C [i]×C [k− i−1];
9: return C [n];

the subproblems. This order must guarantee that each subproblem is treated only
once, and that it is only processed after all the subproblems on which it depends
have been computed. For this purpose, the problem is divided into steps. Each step
is composed of several subproblems and has a solving strategy. The solution of
each of the subproblems of a given step depends only on those of the subproblems
belonging to the previous steps, which are stored in the DP table. The subproblems
are solved from the first to the last step. The last step solves usually the original
problem. Algorithm 3 illustrates the computation of the 4th Catalan number using
the bottom-up approach. Since there are Θ(n) steps and each of them takes at most
O(n) time to be solved, this algorithm runs in O

(
n2
)

time and O(n) space.
Dependencies between the subproblems can be represented by a multi-level,

directed and acyclic graph or multi-level DAG (Directed Acyclic Graph) called

Bottom-up approach • 37

Figure 10 – Dependencies between subproblems while computing the 4th Catalan number using
the bottom-up approach

task graph or dependency graph. Each node of the DAG represents a subproblem.
A level (or a step) d is a set of nodes corresponding to the set of subproblems
that must be evaluated at step d. A node Ni is necessary for evaluating the node
N j if there is an arc going from Ni to N j. A node without outgoing (respectively
incoming) arcs corresponds to the original (respectively initial) problem. Figure
10 shows the task graph depicting the dependencies between subproblems while
computing the 4th Catalan number. The node Ni represents the subproblem Ci and
a single node is evaluated at each step. Also, the resolution of the subproblem C3

depends to already computed values of C2, C1, and C0.

1.6.3 - Principles of dynamic programming
We have applied the dynamic-programming technique to determine the nth Catalan
number in Section 1.6.2. In this section, two properties required to apply the DP
technique to optimization problems are studied : the optimal substructure and the
overlapping subproblems.

Optimal substructure
The optimal substructure property, also called principle of optimality (Lew and
Mauch, 2007), is the first criterion that a dynamic-programming problem must
satisfy. This principle is stated in (Bellman, 1957, pp. 83) as follows :

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

More concretely, this principle states that optimal policies have optimal subpoli-
cies (Lew and Mauch, 2007). This means that each substructure must be optimal
within an optimal structure. Hence, whatever the initial state of a problem, the de-
cisions made in the next states must be optimal and consistent with the decisions
made in the previous states. Therefore, the optimal solution of a problem is made

Optimal substructure • 38

up of optimal solutions of its subproblems. A DP formulation seeks to define a
problem in this way (Grama et al., 2003).

Some combinatorial problems may have the optimal substructure property, but
may use too much memory or time to be efficient. Since the DP technique stores
the intermediate results of a problem in a DP table for reuse, computing a solution
from them can be time intensive when there are too many intermediate results. For
example, a set of n elements has 2n subsets and there are n! possible permutations
of characters of a string of length n. Therefore, the DP technique cannot be efficient
to find the best solution for each subpermutation/subset since the DP table would
be gigantic. However, it can be efficient only when there are not too many results
to compute. For example, there are only n(n−1)/2 substrings of a string of length
n and only n(n− 1)/2 possible subtrees of a binary search tree with n keys. In a
nutshell, dynamic programming typically produces good results on objects that can
be ordered linearly and that cannot be reordered (Kengne, 2014).

Overlapping subproblems
The property of overlapping subproblems is the second criterion that a DP problem
must have. This property means that subproblems have to share common subsub-
problem; that is, a subsubproblem can belong to several subproblems. In this kind
of problem, after evaluating a subsubproblem C generated by a subproblem A, it
still needs to be evaluated if it is also generated by a subproblem B. Indeed, C will
be evaluated as many times as it has to be generated by a subproblem. Dynamic
programming leverages this property to store in a table the results of subproblems
that have already been computed. If this subproblem is encountered once again,
then it is looked up in the table instead of being recomputed. The fewer subsub-
problems there are in common, the faster the DP algorithm will be. Nevertheless, if
subproblems generate new subproblems at each step, then it will be more suitable
to drop the DP technique (Cormen et al., 2009).

1.7 - Taxonomy of dynamic-programming formulations

The objective function, which characterizes optimization problems, is formulated
by a recursive equation called functional equation or optimization equation (Grama
et al., 2003; Kengne, 2014; Lew and Mauch, 2007). The left-hand side represents
the unknown value of the optimal solution of a subproblem, and the right-hand
side contains the minimization and/or maximization operations on a set of ele-
ments (each written in terms of solutions of subproblems belonging to the previous

Taxonomy of dynamic-programming formulations • 39

steps). Defining this equation depends on the semantics of the problem to be ad-
dressed. Examples 1 and 2 denote respectively the DP formulations of the all-pairs
shortest path problem by Floyd (1962) and the string-to-string correction problem
by Wagner and Fischer (1974).

Example 1 Consider a weighted graph G, which consists of a set of nodes N and
a set of edges E. An edge from node i to node j in E has a weight ci, j. The cost of
a path is the sum of the edges’ weights in this path. The algorithm of Floyd (1962)
determines the cost sk

i, j of the shortest path between each pair of nodes (i, j) in all
intermediate nodes {1,2, . . . ,k} through Equation (1.6) defined as follows :

sk
i, j =

ci, j if k = 0,

min
{

sk−1
i, j ,

(
sk−1

i,k + sk−1
k, j

)}
if 1≤ k ≤ |N|−1.

(1.6)

Example 2 Given two strings a = a1a2 . . .am and b = b1b2 . . .bn on an alphabet Σ,
the string-to-string correction problem aims to find the distance between a and b
as measured by the minimum number of editing operations (insertions, deletions,
or substitutions) required to transform a into b. The edit distance between a and b
is given by dm,n, and defined by Equation (1.7) :

di, j =

di−1, j−1 if ai = b j,

min

di−1, j +deletion(ai),

di, j−1 + insertion(b j),

di−1, j−1 + substitution(ai,b j)

if ai 6= b j.
(1.7)

A DP formulation is said to be monadic if the functional equation has only one
recurrence term, and it is said to be polyadic otherwise (Wah and Li, 1988). The
DP formulation in Equation (1.7) is monadic since the functional equation involves
one recursive term only. Indeed, the evaluation of the subproblem di, j depends on
only one recursive term (subproblem) at a time : either di−1, j, or di, j−1, or di−1, j−1.
In contrast, The DP formulation in Equation (1.6) is polyadic since the evaluation
of the subproblem sk

i, j involves two subproblems : sk−1
i,k and sk−1

k, j .
A DP formulation can be also classified according to the nature of the depen-

dency of subproblems. If the solution of a subproblem of a given step depends
exclusively on the solutions of subproblems of the immediately preceding step,
then the DP formulation is said to be serial; otherwise, it is said to be nonserial
(Wah and Li, 1988). The DP formulation in Equation (1.6) is serial since the eval-
uation of the subproblem sk

i, j belonging to step k required only the solutions of

Taxonomy of dynamic-programming formulations • 40

subproblems sk−1
i, j , sk−1

i,k , and sk−1
k, j , belonging the previous step k− 1. In contrast,

the DP formulation in Equation (1.7) is nonserial since the evaluation of the sub-
problem di, j belonging to step (j− i− 1) required the solution of the subproblem
di−1, j−1 belonging to step (j− i− 3), and the solutions of subproblems di−1, j and
di, j−1 belonging step (j− i−2).

Wah and Li (1988) classified DP formulations into four categories based on the
above classification criteria : serial monadic, serial polyadic, non-serial monadic,
and non-serial polyadic. So, the DP formulation of Floyd (1962) for the all-pairs
shortest path problem is part of serial polyadic DP formulations, and the DP for-
mulation of Wagner and Fischer (1974) for the string-to-string correction problem
is part of non-serial monadic DP formulations. In this thesis, we are interested in
non-serial polyadic dynamic-programming problems, especially in a class of prob-
lems whose general DP formulation is described in Section 1.8.

1.8 - General dynamic-programming formulation of the
studied problems

Definition 1 A finite semigroupoid (S,R,•) is a nonempty finite set S of elements,
a binary relation R ⊆ S× S, and an associative binary operator • satisfying the
following conditions (Marvins, 1978):

1 - if (a,b) ∈ R, then a•b ∈ S;

2 - (a•b,c) ∈ R iff (a,b• c) ∈ R and (a•b)• c = a• (b• c);

3 - if (a,b) ∈ R and (b,c) ∈ R, then (a•b,c) ∈ R.

Definition 2 An associative product is any product of the form a1•a2•· · ·•an such
that (ai,ai+1) ∈ R, 1 ≤ i ≤ n. A linear product is a product of the form ((· · ·(a1 •
a2)• · · ·)•an) or (a1 • (· · · • (an−1 •an)) · · ·).

Definition 3 A weighted semigroupoid (S,R,•, pc) is a semigroupoid (S,R,•) with
a non-negative product cost function pc. If (ai,a j) ∈ R then pc(ai,a j) is the cost of
evaluating ai •a j. The optimal cost of evaluating an association product ai •ai+1 •
· · · •a j is denoted by Cost[i, j] and defined by:

Cost[i, j] =

{
Init(i) if 1≤ i = j ≤ n,

Opti≤k< j{Cost[i,k]+Cost[k+1, j]+F(i,k, j)} if 1≤ i < j ≤ n,
(1.8)

General dynamic-programming formulation of the studied problems • 41

where n is the problem size and F(i,k, j) = pc(ai • · · · •ak,ak+1 • · · · •a j).

Equation (1.8) shows that the problems studied in this thesis feature the prop-
erties of a DP problem :

• Optimal substructure property : the optimal costs of the subproblems (k, l)
are required for computing the optimal cost of a subproblem (i, j), where
i≤ k < l ≤ j.

• Overlapping subproblems property : consider two subproblems (i, j) and (i+
1, j). The evaluation of these subproblems depends on the common values of
the evaluation of subproblems (k, j), where i+ 1 < k ≤ j. It is the same if
two subproblems (i, j) and (i, j+1) are considered.

In Equation (1.8), Cost[i, j] corresponds to the value of the optimal solution of
the subproblem (i, j). This value is obtained according to the optimum function
Opt (for a maximization problem, Opt = max; otherwise Opt = min) among the
(j− i) possible combinations of the subsubproblems on which the subproblem
(i, j) depends. The value of a combination of two subproblems (i,k) and (k +
1, j), where i≤ k < j, is computed by adding the values of their optimal solutions
and the cost corresponding to the combination of these subproblems given by the
function F(i,k, j) called union function. The basic subproblems are initialized by
the function Init(i).

Several problems can be formulated from Equation (1.8) such as the context-
free grammar parsing problem (Kasami, 1965; Younger, 1967) and the Nussinov
RNA folding problem (Nussinov and Jacobson, 1980). In this thesis, we are in-
terested in the minimum cost parenthesizing problem (MPP), the matrix chain
ordering problem (MCOP), the triangulation of a convex polygon (TCP) prob-
lem, and the optimal binary search tree (OBST) problem. The common feature
of these problems is the minimization of the optimization equation (this means that
Opt = min in Equation (1.8)). However, they differ in the definition of the union
function F and initialization function Init because the definition of these functions
depends on the problem to solve.

A solution based on the exhaustive search of all possible combinations would be
poor because, for a problem of size n, the number of combinations is exponential
in n (see Section 1.6.1). To solve the MCOP, Godbole (1973) proposed the first
polynomial-time sequential algorithm running in O

(
n3
)

time and O
(
n2
)

space.
It became the standard algorithm for solving all problems that can be formulated
by Equation (1.8) because the structure and the complexity of this algorithm are

General dynamic-programming formulation of the studied problems • 42

Algorithm 4 Generic sequential algorithm to solve the studied problems
1: for i = 1 to n do
2: Cost[i, i]← Init(i);
3: for d = 2 to n do
4: for i = 1 to n−d +1 do
5: j← n−d +1;
6: Cost[i, j]← ∞;
7: for k = i to j−1 do
8: c←Cost[i,k]+Cost[k+1, j]+F(i,k, j);
9: if c <Cost[i, j] then

10: Cost[i, j]← c;
11: Track[i, j]← k;

independent of the functions F and Init. This algorithm is often called generic
sequential algorithm in the literature (Kengne, 2014). Algorithm 4 draws the big
picture.

Computing Cost[1,n] involves the solution of all subproblems (i, j), such that
1 ≤ i ≤ j ≤ n. Dependencies between these subproblems can be organized like
a DAG, as shown in Figure 11a for a problem of size n = 4. This figure reveals,
for example, that the value of Cost[1,4] is computed from the optimal solutions of
the pairs of subproblems ((1,1),(2,4)), ((1,2),(3,4)), and ((1,3),(4,4)). Indeed,
Algorithm 4 uses a bottom-up approach to compute the optimal solutions of sub-
problems. The value of the optimal solution of each solved subproblem is stored
in the DP table depicted in Figure 11b. The index k that led to this value among
the (j− i) possible solutions for a subproblem (i, j) is also saved in a table called
tracking table. This table, named Track in Algorithm 4, is similar to the DP table
and is used for the construction of the optimal solution.

1.9 - Summary

This chapter was dedicated to the definition of the basic concepts of parallel com-
puting and dynamic programming. In the first part, we started by giving the prin-
ciple of high-performance computing, which is the raison d’être of parallel com-
puting. Then, after presenting the classifications of parallel computer architectures
according to several criteria, such as the number of instruction streams and data
streams, the memory of parallel computers, the network topology, and the gran-
ularity, we studied different techniques to parallelize a sequential algorithm and
showed how to measure the performance of a parallel algorithm. Finally, we stud-

Summary • 43

(a) Task graph (b) Dynamic-programming table

Figure 11 – Task graph and dynamic-programming table used to compute Cost[1,4]

ied parallel computing models. Different problems of too abstract models like the
PRAM model and too realistic models like the systolic model and the hypercube
model have been highlighted. The BSP model solved the problems of previous
models and the CGM model simplified the BSP model.

In the second part, we first recalled the divide-and-conquer technique and showed
its main drawback before presenting the top-down approach and the bottom-up
approach of dynamic programming, which overcome this drawback. We then
gave the principles of dynamic programming. After classifying the DP formu-
lations, we presented the formulation of the class of non-serial polyadic dynamic-
programming problems that interest us.

Chapter 2 will study in detail the parallelization of the sequential algorithms
that solve each of these problems.

Summary • 44

CHAPTER 2
Parallelization of the Studied Problems
: State of the Art

CONTENTS

2.1 - Introduction . 45
2.2 - Minimum cost parenthesizing problem 45
2.3 - Optimal binary search tree problem 62
2.4 - Triangulation of a convex polygon problem 76
2.5 - Summary . 96

2.1 - Introduction

This chapter reviews the state of the art on parallelization of sequential algorithms
for the minimum cost parenthesizing problem, the matrix chain ordering problem,
the triangulation of a convex polygon problem, and the optimal binary search tree
problem. For each of them, the following points will be presented and studied
successively: the description of the problem and its dynamic-programming (DP)
formulation, the best sequential algorithm that solves this problem, the paralleliza-
tion constraints and the literature review on the parallelization of this sequential
algorithm on parallel computing models, and finally, the best CGM-based paral-
lel solutions. For the special case of the matrix chain ordering problem, we will
present our fast sequential algorithm and experimental results obtained.

2.2 - Minimum cost parenthesizing problem

2.2.1 - Overview
A parenthesizing process is any process that inserts opening and closing paren-
theses between a chain of symbols (characters, numbers, matrices, or objects) in

• 45

order to define the best sequential processing order according to an intended goal
(Kengne, 2014). The minimum cost parenthesizing problem (MPP) of a chain
of symbols consists in finding the parenthesizing that will minimize the cost of the
computations involved on this chain. Depending on the kind of entities in the chain
to parenthesize and the treatment to perform (see the general formulation in Section
1.8), this problem appears in the literature under several variants. A well-known
variant is the parenthesizing problem of the lexical ordering of the computation
blocks for embedded DSP (Digital Signal Processor) applications (Bhattacharyya
and Murthy, 1995). The goal is to find the parenthesizing that minimizes the mem-
ory requirement on the DSP. The most popular variant is the matrix chain ordering
problem (MCOP), which consists in finding the parenthesizing that minimizes the
cost of the product of a chain of matrices (Cormen et al., 2009; Kengne, 2014).

First, consider the cost of multiplying two matrices A and B with respective
dimensions (a0×a1) and (b0×b1). They can be multiplied only if a1 = b0. This
operation requires a0× c× b1 scalar multiplications, where c = a1 = b0, and pro-
duces in output a matrix C with dimensions (a0×b1). The way in which a chain of
matrices is bracketed can have a significant impact on the evaluation of the product
cost. To illustrate this, consider four matrices M1, M2, M3, and M4 with respective
dimensions (5×10), (10×3), (3×20), and (20×6). Evaluating their product can
be done in different ways:

1 - (M1× (M2×M3))×M4, which requires 10× 3× 20 + 5× 10× 20 + 5×
20×6 = 2200 scalar multiplications;

2 - M1×(M2× (M3×M4)), which requires 3×20×6 + 10×3×6 + 5×10×6
= 2460 scalar multiplications;

3 - (M1×M2)× (M3×M4), which requires 5×10×3 + 3×20×6 + 5×3×6
= 600 scalar multiplications.

Thus, the product cost depends on the chosen order although all bracketings yield
the same output matrix M with dimensions (5× 6)1. Therefore, the MCOP con-
sists in finding the optimal order having the lowest cost for multiplying matrices.
The input is a list of (n+1) natural numbers d0,d1, . . . ,dn, representing the dimen-
sions of the matrices (a matrix Mi has dimensions(di−1×di)). The output is the
minimum cost to compute the product of the n matrices.

Note that the MCOP does not multiply the matrices. It simply looks for an order
of multiplication that minimizes the cost. The time spent to determine this optimal

1. The matrix multiplication is associative.

Minimum cost parenthesizing problem • 46

order is commonly offset by the time saved when performing matrix multiplica-
tions using this optimal order; for example, performing 600 scalar multiplications
will theoretically take four less time than 2460 (Cormen et al., 2009). Tradition-
ally, the matrix multiplication was introduced in linear algebra to facilitate and
clarify computations (Marvins, 1978; Schreier and Sperner, 2011). This strong re-
lationship between matrix multiplication and linear algebra remains fundamental
in mathematics, as well as in physics, engineering, and computer science, more
precisely in scientific computing (Lee et al., 2003; Lin, 1994; Yau and Lu, 1993).

Back to the MCOP, the minimum cost for evaluating Mi, j = Mi×Mi+1×·· ·×
M j is denoted by Cost[i, j] and defined by:

Cost[i, j] =

0 if 1≤ i = j ≤ n,

min
i≤k< j

{Cost[i,k]+Cost[k+1, j]+di−1×dk×d j} if 1≤ i < j ≤ n.

(2.1)
Solving M = M1×M2×·· ·×Mi×·· ·×Mn reduces to computing Cost[1,n]. Equa-
tion (2.1) is equivalent to Equation (1.8) as Opt = min, Init(i) = 0, and F(i,k, j) =
di−1×dk×d j, where 1≤ i≤ k ≤ j ≤ n.

2.2.2 - Sequential algorithm of Godbole (1973)
Algorithm 5 gives an overview of the sequential algorithm of Godbole (1973) to
solve the MCOP. Since the optimal product cost of Mi, j never depends on a product
of length greater than (j− i), the subproducts can be organized and computed in
n levels (steps or diagonals) according to their length. Thus, products of length d,
which correspond to Mi,i+d−1 such that 1≤ i≤ i+d−1, are evaluated at diagonal
d in Algorithm 5. The solution of Godbole (1973) aims at filling, diagonal by
diagonal, in cells of the DP table (named Cost in Algorithm 5) and the tracking
table (named Track in Algorithm 5) respectively the value of the optimal product
cost of Mi, j (see line 10 in Algorithm 5) and the value of the index k corresponding
to the pair of subproducts (Mi,k,Mk+1, j), which minimizes Cost[i, j] (see line 11 in
Algorithm 5). The first diagonal of the DP table is initialized to 0 since there is no
product of length 1 (see lines 1-2 in Algorithm 5).

Figures 12a and 12b illustrate, respectively, the DP table and the tracking table
that have been filled while computing the product of four matrices with respective
dimensions (5×10), (10×3), (3×20), and (20×6). Each table is a square matrix
of order n = 4. However, only the part of the table strictly above the main diagonal
(the first diagonal) is used. It is obvious that one can use a single table in which
the part of the table above the main diagonal will be used to store the values of

Minimum cost parenthesizing problem • 47

Algorithm 5 Sequential algorithm of Godbole (1973) to solve the MCOP
1: for i = 1 to n do
2: Cost[i, i]← 0;
3: for d = 2 to n do
4: for i = 1 to n−d +1 do
5: j← n−d +1;
6: Cost[i, j]← ∞;
7: for k = i to j−1 do
8: c←Cost[i,k]+Cost[k+1, j]+di−1×dk×d j;
9: if c <Cost[i, j] then

10: Cost[i, j]← c;
11: Track[i, j]← k;

(a) Dynamic-programming table (b) Tracking table

Figure 12 – Dynamic-programming and tracking tables filled while computing the product of four
matrices with respective dimensions (5×10), (10×3), (3×20), and (20×6)

Cost[i, j], and the part of the table below the main diagonal will be used to store
the values of Track[j, i]. The shaded entries in Figure 12a depict the computation
of Cost[1,4]. The pairs that have the same shading are taken together in line 8 of
Algorithm 5 when computing

Cost[1,4] = min

Cost[1,1]+Cost[2,4]+d0×d1×d4 = 0+540+300 = 840,

Cost[1,2]+Cost[3,4]+d0×d2×d4 = 150+360+90 = 600,

Cost[1,3]+Cost[4,4]+d0×d3×d4 = 450+0+600 = 1050

= 600.

Minimum cost parenthesizing problem • 48

To solve the MCOP, the sequential algorithm of Godbole (1973) requires O
(
n3
)

time. This is deducible since the loops are nested at three deep, and each of them
takes at most (n−1) values. It requires O

(
n2
)

memory space to store the DP table
and the tracking table.

Parallelization constraint of the sequential algorithm of Godbole (1973)
The main parallelization constraint of this algorithm comes from the irregular com-
putational load for the evaluation of subproducts of a diagonal d since the evalua-
tion of subproducts of length d is smaller than subproducts of length (d+1) (it has
more operations to evaluate the subproblems of length (d+1) than those of length
d). Thus, in the parallelization process, this irregular computational load between
the diagonals of the sequential algorithm of Godbole (1973) must be considered.
It can cause the load imbalance between processors and lead to poor efficiency of
the parallel algorithm. Some research has investigated the parallelization of this
sequential solution on different parallel computing models in the literature.

Literature review on the parallelization of the sequential algorithm of
Godbole (1973)
On the PRAM model, Valiant et al. (1983) proposed a general method for paral-
lelizing non-serial polyadic dynamic-programming problems. It requires Θ

(
lg2 n

)
computation time on O

(
n9
)

processors. Rytter (1988) reduced the number of pro-
cessors down to O

(
n6/ lgn

)
by using the specific features of this class of prob-

lems. Later on, Huang et al. (1994) improved this solution by reducing the num-
ber of processors to O

(
n6/ log5 n

)
. On CREW-PRAM machines, Bradford (1994)

and Czumaj (1993) designed solutions running in O
(
log3 n

)
time using respec-

tively O
(
n3/ logn

)
and O

(
n2/ log3 n

)
processors. Tang and Gupta (1995) pre-

sented an algorithm requiring Θ(n) computation time with Θ
(
n2
)

processors. Ra-
manan (1996) is the first to design an algorithm using only O(n) processors with
O
(
log3 n

)
time. Based on the row minima of totally monotone matrices, Brad-

ford et al. (1998) proposed the first parallel polylogarithmic algorithm. It requires
O
(
n log1.5 n

)
time and processors. On CRCW-PRAM machines, Bradford (1994)

proposed an O
(
lg4 n

)
-time algorithm on O(n/ lgn) processors. Later on, Bradford

et al. (1998) improved it to O
(
lg1.5 n

√
lg lgn

)
time using O

(
n
√

lgn
)

processors.
On the systolic model, Guibas et al. (1979) proposed a bidirectional systolic algo-
rithm on O

(
n2
)

processors with O(n) running time. Karypis and Kumar (1993)
mapped a systolic table onto a mesh-connected array of size n2. Myoupo (1992,
1993) proposed a technique for mapping the MCOP to a linear systolic array. On

Literature review on the parallelization of the sequential algorithm of Godbole (1973) • 49

the hypercube model, Ibarra et al. (1991) presented a solution in O
(
n2
)

time on
O(n) processors.

On realistic models of parallel machines, Nishida et al. (2011) presented an ef-
ficient parallel implementation of the sequential algorithm of Godbole (1973) on
GPU architectures. Ito and Nakano (2013) accelerated this solution. Their idea
consists in partitioning the sequential algorithm of Godbole (1973) into many se-
quential kernel calls, selecting the best values for the size and the number of blocks
for each kernel call, and minimizing the memory access overhead. On a NVIDIA
GeForce GTX 680 chip, their solution executes in 5.57 seconds for a problem
of size 8192. Shyamala et al. (2017) accelerated the computation time through
C++ high-performance accelerated massive parallel code. More recently, Diwan
and Tembhurne (2019) designed an adaptive generalized mapping method to par-
allelize non-serial polyadic dynamic-programming problems that utilize GPUs, for
efficient mapping of subproblems onto processing threads in each phase. Biswas
and Mukherjee (2021) proposed a new memory optimized technique and a versa-
tile technique of utilizing shared memory in blocks of threads to minimize time
for accessing dimensions of matrices on GPU architectures. On shared-memory
architectures, Tan et al. (2007) proposed a parallel algorithm based on a pipeline
to fill the DP table by decomposing the computation operators. Mabrouk (2016)
designed solutions based on loop transformations. She showed that the associative
expression evaluation technique with the loop interchange transformation provides
efficient parallel solutions. Many researchers proposed parallel solutions on the
CGM model on distributed-memory architectures. For designing these solutions,
the standard methodology consists of subdividing the dependency graph into sub-
graphs of same size, then distributing these subgraphs fairly among processors, and
finally computing them in a suitable evaluation order.

Based on the sequential algorithm of Godbole (1973), Cáceres et al. (2010)
proposed a CGM-based parallel solution running in O

(
n3/p

)
execution time with

O(p) communication rounds, where n is the input data size and p the number of
processors. Higa and Stefanes (2012) used several concepts from the PRAM-based
parallel algorithm of Bradford (1994) and designed an O

(
n3/p3

)
execution time

with O(1) communication round. They replaced the traditional DP table used in
the sequential algorithm of Godbole (1973) with a weighted DAG. The proces-
sors used in the local computation the algorithm of Dijkstra (1959) and the algo-
rithm of Floyd (1962). Kechid and Myoupo (2009) proposed a CGM-based par-
allel solution, which runs in O

(
n3/p

)
execution time with O(p) communication

rounds. Likewise, the CGM-based parallel solution proposed by Kengne and My-

Literature review on the parallelization of the sequential algorithm of Godbole (1973) • 50

oupo (2012) runs in O
(
n3/p

)
execution time with

⌈√
2p
⌉

communication rounds.
The common point between these last two solutions is that they use the graph model
proposed by Bradford (1994). Before detailing the latter two solutions in Sections
2.2.4 and 2.2.5 respectively, the graph model proposed by Bradford (1994), which
enables to transform the MCOP as a shortest path problem, is presented in Section
2.2.3.

2.2.3 - Dynamic graph model of Bradford (1994)
Dynamic-programming problems are often solved through the shortest path prob-
lems on weighted DAGs. Indeed, Bradford (1994) proposed a graph model called
dynamic graph for the problem that can be formulated by Equation (1.8). For a
problem of size n, this graph is denoted by Dn and defined as follows :

Definition 4 A dynamic graph Dn = (V,E ∪E ′) is defined as a set of vertices,

V = {(i, j) : 1≤ i≤ j ≤ n}∪{(0,0)}

a set of unit edges,

E = {(i, j)→ (i, j+1) : 1≤ i≤ j < n}∪{(i, j) ↑ (i−1, j) : 1 < i≤ j ≤ n}∪
{(0,0)↗ (i, i) : 1≤ i≤ n}

a set of jumpers,

E ′ = {(i, j)⇒ (i, t) : 1≤ i < j < t ≤ n}∪{(s, t) ⇑ (i, t) : 1≤ i < s < t ≤ n}

a weight function W such that

W ((i, j)→ (i, j+1)) = di−1×d j×d j+1 1≤ i≤ j < n
W ((i, j) ↑ (i−1, j)) = di−2×di−1×d j 1 < i≤ j ≤ n
W ((0,0)↗ (i, i)) = 0 1≤ i≤ n
W ((i,k)⇒ (i, j)) = SP[k+1, j]+di−1×dk×d j 1≤ i < k < j ≤ n
W ((k+1, j) ⇑ (i, j)) = SP[i,k]+di−1×dk×d j 1≤ i≤ k < j ≤ n

A square matrix of size n called shortest path matrix, and denoted by SP, is
used to store in the cell SP[i, j] the shortest path from node (0,0) to (i, j). Bradford
(1994) showed that the computation of Cost[i, j] is equivalent to search in Dn the
shortest path from node (0,0) to (i, j). Therefore, it is straightforward to prove that
the algorithm of Godbole (1973) presented in Section 2.2.2 (Algorithm 5) is equiv-
alent to compute the shortest paths from (0,0) to the other vertices in a dynamic
graph Dn, incrementally, diagonal after diagonal, from left to right (Kechid and

Literature review on the parallelization of the sequential algorithm of Godbole (1973) • 51

(a) Dynamic graph D4 (b) Dynamic graph D′4

Figure 13 – Dynamic graphs D4 and D′4 for a problem of size n = 4

Myoupo, 2009; Kengne and Myoupo, 2012). Indeed, each path from the root to
an edge node corresponds to one of the possible parenthesizes in a dynamic graph
given that :

• (i, j)→ (i, j+1) represents the product (Mi×Mi+1×·· ·×M j)×M j+1;

• (i, j) ↑ (i−1, j) represents the product Mi−1× (Mi×Mi+1×·· ·×M j);

• (i,k)⇒ (i, j) and (k+ 1, j) ⇑ (i, j) represent the product (Mi×·· ·×Mk)×
(Mk+1×·· ·×M j).

Thus, the shortest path corresponds to the optimal parenthesizing. Figure 13a
shows a dynamic graph Dn for n = 4. It has the same DAG form representing
the dependency between subproblems depicted in Figure 11a, with an additional
node (0,0).

Given a problem of size n and its corresponding dynamic graph Dn, Theorem 1
can be stated.

Theorem 1 (Duality theorem) If the shortest path from node (0,0) to (i, j) needs
the edge from node (i,k) to (i, j), then there exists a dual shortest path with the
same cost needing the edge from node (k+1, j) to (i, j).

This is a fundamental element of CGM-based parallel algorithms proposed by
(Kechid and Myoupo, 2009; Kengne and Myoupo, 2012) because it avoids com-
putation redundancy of the shortest path costs in Dn. The input graph of these
algorithms is therefore a subgraph of Dn denoted by D′n, in which the set of edges

Literature review on the parallelization of the sequential algorithm of Godbole (1973) • 52

22
11

11

(a) p = 2

11
11

11
11

22

22
22
33 44
33

(b) p = 4

21

1

1

1

1

1

1

1

2
2

653
3

3

74
4

4

8
42
2

2

653
3

3
2

7
65
54

21

1

1

1

1

1

1

1

2
2

653
3

3

74
4

4

8
42
2

2

653
3

3
2

7
65
54

(c) p = 8

Figure 14 – Shortest path matrix partitioning strategy proposed by Kechid and Myoupo (2009) for
n = 32 and p ∈ {2,4,8}

from node (k+1, j) to (i, j), such that 1 ≤ i < k < j ≤ n, is removed. Figure 13b
shows the dynamic graph D′4.

2.2.4 - CGM-based parallel solution of Kechid and Myoupo (2009)

Dynamic graph partitioning
Kechid and Myoupo (2009) partition the shortest path matrix SP into p(p+ 1)/2
submatrices called blocks. A block, denoted by SM(i, j), is a matrix of size θ(n, p)×
θ(n, p), where θ(n, p) = dn/pe. Equation (2.2) shows entries of the shortest path
matrix SP delimiting a block SM(i, j), such that 1≤ i≤ j ≤ n.

SM(i, j) =

 SP[i, j−θ(n, p)+1] · · · SP[i, j]
... · · · ...

SP[i+θ(n, p)−1, j−θ(n, p)+1] · · · SP[i+θ(n, p)−1, j]

(2.2)

Figures 14a, 14b, and 14c depict three scenarios of this partitioning for n = 32
and p ∈ {2,4,8} (the node (0,0) and unit edges of the dynamic graph D′32 have
not been schematized for readability reasons). In each of them, SP is subdivided
into p rows and p columns of blocks. The number of blocks in row i (respectively
in column j) is p− i+ 1 (respectively j). Usually, all blocks are not full when
n mod p 6= 0. Recall that a block is said full when the number of rows is equal to
the number of columns. In these figures, the number in each block represents the
diagonal in which it belongs. The number of blocks in the diagonal d is p−d +1.
Thus, there are p blocks at the first diagonal and one block at the last. The blocks
of the first diagonal are upper triangular matrices of sizes θ(n, p)×θ(n, p).

Blocks’ dependency analysis • 53

Blocks’ dependency analysis
Kechid and Myoupo (2009) showed that the evaluation of shortest paths for dif-
ferent node blocks of the same diagonal can be carried out in parallel. Indeed, the
dependency relationship between blocks, given by Theorem 2, proved that those
on the same diagonal are independent.

Lemma 1 (Nodes’ dependency) To find the shortest path cost to a node (i, j) in
graph D′n, it is necessary to know the shortest path cost to nodes (i, i), . . . ,(i, j−1)
and (i+1, j), . . . ,(j, j).

Proof. To compute the shortest path to a vertex (i, j), it is necessary, for each of its
incoming edges, to have the value of the shortest path to the starting vertex and the
weight of this edge. In the dynamic graph D′n, the edges that reach a vertex (i, j)
come from the set of vertices : S′i, j = (i, i), . . . ,(i, j− 1)∪ (i+ 1, j). The weight
of a jump is W ((i,k)⇒ (i, j)) = SP[k + 1, j] + di−1× dk× d j. The computation
of weights of edges coming from the vertices of S′i, j requires the values of the
shortest paths to the vertices S′′i, j = (i+ 1, j), . . . ,(j, j) of the column j. Thus, the
computation of SP[i, j] involves the values of the shortest paths to the vertices of
the groups S′i, j and S′′i, j. �

Lemma 2 (Weights of jumps to a block) Computing the weights of jumps from
nodes of block SM(i,h) to nodes of block SM(i, j), such that 1 ≤ i ≤ h ≤ j ≤ n,
only involves the shortest path costs to nodes of block SM(h−θ(n, p)+2, j).

Proof. Computing the weights of jumps from a set of successive nodes in the
row i, {(i,h),(i,h + 1), . . . ,(i, l)}, to a node (i,m) such that i ≤ h < l < m, re-
quires only the shortest path costs to nodes {(h+ 1,m), . . . ,(l + 1,m)}, which is
a set of successive nodes of column m. Thus, computing the weight of any row
i′ of block SM(i,h), i.e. (i′,h−θ(n, p)+ 1),(i′,h−θ(n, p)+ 2), . . . ,(i′,h) to each
node (i′, j′) of row i′ in block SM(i, j), i.e. (i′, j− θ(n, p)+ 1),(i′, j− θ(n, p)+
2), . . . ,(i′, j′), . . . ,(i′, j), requires only the shortest path costs to the set of nodes:
{(h−θ(n, p)+2, j′),(h−θ(n, p)+3, j′), . . . ,(h+1, j′)}.

But this set is exactly the set of vertices of column j′ in block SM(h−θ(n, p)+
2, j) with j′ ∈ {(j−θ(n, p)+1),(j−θ(n, p)+2), . . . ,(j−1), j}. Thus, computing
the weights of jumps of each row in SM(i,h) requires only the shortest path costs
of nodes in block SM(h−θ(n, p)+2, j). �

Theorem 2 (Blocks’ dependency) The shortest path costs to every node in blocks
SM(i, j−θ(n, p)),SM(i, j−2×θ(n, p)), . . . ,SM(i, j−(u−1)×θ(n, p)), and SM(i

Blocks’ dependency analysis • 54

Figure 15 – Dependencies of two blocks SM(i, j) and SM(h, l) after applying the partitioning
strategy of Kechid and Myoupo (2009)

+θ(n, p), j), SM(i+2×θ(n, p), j), . . . ,SM(i+(u−1)×θ(n, p), j) are mandatory
to computing the shortest paths to nodes of the block SM(i, j), where u = d(j−
i)/θ(n, p)e.

Figure 15 illustrates an example of dependencies of two blocks SM(i, j) and
SM(h, l). The most shaded blocks are required to evaluate them.

Mapping blocks onto processors
Several distribution schemes have been proposed by Kechid and Myoupo (2009).
The first is a straightforward mapping that consists in assigning, horizontally (re-
spectively vertically), the blocks of the line (respectively column) i to processor
Pi−1. The corresponding communication scheme, depicted in Figure 16a (respec-
tively in Figure 16b), is easily implementable. However, these mappings make
processors idle since after each step, one processor will not have assigned block.
For example, Figure 16a (respectively Figure 16b) shows that the processor Pp−1

(respectively P0) will be idle after the first step, then it will be the turn of the pro-
cessor Pp−2 (respectively P1) after the second step, and so forth. Moreover, these
mappings yield an unbalanced load between them since the processor having the
highest load will evaluate p blocks and the one having the lowest load will evaluate
one block.

The second mapping, called alternative bidirectional projection mapping, fa-
cilitates the cost prediction and implementation of the algorithm while trying to

Mapping blocks onto processors • 55

(a) Horizontal mapping (b) Vertical mapping (c) Alternative bidirectional pro-
jection mapping

Figure 16 – Distribution schemes of blocks on processors proposed by Kechid and Myoupo (2009)

P0 P1 P0 P3
P1
P2 P3
P3

P2 P1

P0 P1 P0 P3
P1
P2 P3
P3

P2 P1

P0 P1 P0 P3
P1
P2 P3
P3

P2 P1

(a) p = 4

P4 P1P2

P4

P6

P

P

6

6

P1

P3

P
P
5

7

P

P

1

3

PPP

P

P

P

P

P

P

P

P

P

PP

P

P

PP

P

P

P

P

P

010

4

2

6

1

5

3

7

3

5

50

2

4

03

5

7

2

7

7

P4 P1P2

P4

P6

P

P

6

6

P1

P3

P
P
5

7

P

P

1

3

PPP

P

P

P

P

P

P

P

P

P

PP

P

P

PP

P

P

P

P

P

010

4

2

6

1

5

3

7

3

5

50

2

4

03

5

7

2

7

7

P4 P1P2

P4

P6

P

P

6

6

P1

P3

P
P
5

7

P

P

1

3

PPP

P

P

P

P

P

P

P

P

P

PP

P

P

PP

P

P

P

P

P

010

4

2

6

1

5

3

7

3

5

50

2

4

03

5

7

2

7

7

(b) p = 8

Figure 17 – Alternative bidirectional projection mapping on four and eight processors

balance the loads between processors. Its principle is illustrated in Figure 16c. An
arrow from a block points to the processor to which it is assigned. To distribute the
p(p+ 1)/2 blocks of the dynamic graph D′n on p processors, one of the p blocks
of the first diagonal is assigned to a processor. The blocks on other diagonals are
projected onto the first diagonal, alternatively, once horizontally and once verti-
cally. This approach allows obtaining horizontal and vertical arrows. Figures 17a
and 17b give an example of this mapping on four and eight processors.

The communication scheme corresponding to this mapping is simple and easy
to implement like the latter two mappings. However, this mapping halves the num-
ber of processors to which a block is sent after being computed. Indeed, a processor
owns half of the blocks on the row to which it has been assigned its first block of

Mapping blocks onto processors • 56

the first diagonal, moving from left to right. It also owns half the blocks of the
blocks on the column by moving from bottom to top. In addition, it balances the
loads between processors better than the last two mappings for the reasons stated
above.

The alternative bidirectional projection mapping, by contrast, promotes the idle-
ness of processors from step (dp/2e+1). Indeed, starting from this step, processor
Pdp/2e becomes idle; for example in Figure 17b, processor P4 after step 4 becomes
idle. Subsequently, after each step, two new processors become idle; for example
in Figure 17b, processors P2 and P3 become idle after step 5. In addition, some
processors from step (dp/2e+1) have a large computational load while others are
idle; for example processors P0, P1, and P7 in Figure 17b, which have two blocks
to be performed after step 4.

CGM-based parallel algorithm
Evaluating blocks of the dynamic graph D′n must be done according to a well-
adapted order following dependencies between them. Indeed, according to Theo-
rem 2, the shortest path costs to nodes of a given block belonging to the diagonal
d cannot be performed before those contained in each of blocks on which they
depend along the preceding diagonals (the diagonals 1,2, . . . ,d− 1). Hence, the
evaluation of blocks of a diagonal d can start after computing blocks of the last
diagonal of blocks on which they depend, i.e. those of diagonal (d−1).

However, Kechid and Myoupo (2009) have shown that the manner of comput-
ing the shortest path costs to nodes of a block allows starting before the end of
the evaluation of blocks belonging to diagonal (d−1). Thus, the evaluation of the
blocks is done in a progressive fashion and starts as soon as possible. Theorem 3
indicates when computations of the shortest path costs to nodes of a block SM(i, j)
can be started.

Theorem 3 After computing solutions of each diagonal h, d(j− i)/2e+ 1 ≤ h ≤
j− i+1, at least two possible values of the shortest path from each node in block
SM(i, j) can be evaluated.

Proof. To evaluate the shortest paths to nodes of a block SM(i, j) of the diagonal
k = j− i+1, for each node, the cost of different edges and the value of the shortest
path to the source node of each of these edges are required. SM(i, j) receives
edges from blocks SM(i, j′), such that j′ ∈ [i, j− 1], and the costs of edges from
a block SM(i, j′) can be evaluated as soon as the values of the shortest path of
nodes of SM(j′, j) are computed (from Lemma 2). This is only possible from

CGM-based parallel algorithm • 57

Algorithm 6 CGM-based parallel algorithm of Kechid and Myoupo (2009) to solve the
MPP

1: for d = 1 to p do
2: Finalization of computations of the shortest path costs to nodes in blocks

belonging to the diagonal d;
3: Communication of block SM(i, j) of current diagonal to processors that hold

upper and right blocks;
4: Update the shortest path costs to each block belonging to diagonals (d +1,d+

2, . . . ,min{2× (d−1), p});

the diagonal t, such that (t ≥ j′− i+ 1) and (t ≥ j− j′+ 1). This implies that:
(t ≥ d j− i/2e+1. Thus, after evaluating the diagonal h, such that t ≤ h≤ j− i+1,
the blocks SM(i,h+ i−1), SM(h+ i−1, j), SM(i, j−h+1), and SM(j−h+1, j)
are evaluated. And thus, two possible values of the shortest path to each of nodes of
SM(i, j) are computable. Those whose incoming edges come from SM(i,h+ i−1)
and SM(i, j−h+1). �

The CGM-based parallel algorithm of Kechid and Myoupo (2009) is a succes-
sion of p similar steps. The blocks are evaluated in parallel from the first diagonal
of blocks, followed by the second, and so on till the last. The overall structure is
given by Algorithm 6.

Evaluating the shortest path cost to a node of a block belonging to the diagonal
d starts at the diagonal dd/2e. After the computation of blocks on diagonal d (line
2 in Algorithm 6), each block is forwarded (line 3 in Algorithm 6) to processors
that need these blocks for updating (line 4 in Algorithm 6) or for finalizing (line 2
in Algorithm 6) the computations of values in next steps. In fact, two tasks have to
be done at step (d +1) :

1 - for each block belonging to the diagonal m, (d + 2 ≤ m ≤ 2d), some new
values may be computed and an update of its temporary values is done (path
relaxation principle (Cormen et al., 2009));

2 - some new values may be computed and a final update of its temporary val-
ues is done for each block of the diagonal (d +1).

These processes are repeated at each step until step p where only the finalization
phase is carried out. At step d = 1, only finalization and communication phases
are executed. It is not difficult to notice that computing the shortest path costs (in
which jumps from blocks SM(i,k) are involved) to blocks SM(i, j) is equivalent

CGM-based parallel algorithm • 58

Algorithm 7 Finalization phase using in Algorithm 6 to evaluate blocks SM(i, j)

1: for d = (j− i−θ(n, p)) to (j− i) do
2: for each node (a,b) of diagonal d belonging to SM(i, j) do
3: SP[a,b]←min{SP[a,b], weight of paths whose final edge are jumps coming

from block SM(i, i+θ(n, p)), weights of paths whose final edges are internal
jumps, weights of paths whose final edges are unit edges};

Algorithm 8 Updating phase using in Algorithm 6 to refresh the shortest path costs to
nodes of blocks SM(i, j)

1: for d = (j− i−θ(n, p)) to (j− i) do
2: M1← matrix-multiplication(+,min) (SM(i,h+ i−1), SM(h+ i−1, j));
3: M2← matrix-multiplication(+,min) (SM(i, j−h+1), SM(j−h+1, j));
4: SP[i, j]←min{SP[i, j],M1,M2};

to the sequential matrix-multiplication (+,min)2 of the two matrices SM(i,k) and
SM(k−θ(n, p)+ 2, j). Pseudocodes of finalization and updating phases in Algo-
rithm 6 are given by Algorithms 7 and 8, respectively.

After the (j− i)th iteration of the above algorithms, the only paths which remain
to evaluate for nodes in SM(i, j) are those whose last edge is :

1 - either an unit edge (vertical or horizontal);

2 - or a horizontal jump, which comes from an internal node in SM(i, j);

3 - or a horizontal jump, which comes from a node in SM(i, i).

In any case, computing the weight induced by each of these paths (due to these
edges) to a node (i′, j′) of SM(i, j) needs the shortest path cost from a node (e′, f ′)
of SM(i, j) such that f ′− e′ < j′− i′. In cases (1) and (2), this value is necessary
to compute the shortest path cost of the start node of the last edge. In case (3), this
value is necessary for computing the weight of the last edge. Therefore, Algorithm
7 is in fact a classical algorithm of the shortest path in SM(i, j), in which each node
can receive a simple edge or a jump from an internal node in the dynamic graph D′n.
In summary, Theorem 4 yields the complexity of the CGM-based parallel solution
of Kechid and Myoupo (2009).

Theorem 4 The CGM-based parallel solution of Kechid and Myoupo (2009) runs
in O

(
n3/p

)
execution time with O(p) communication rounds in the worst case.

2. Matrix-multiplication (+,min) is a matrix multiplication in which the multiplication and summation
operations are replaced by addition and the minimum, respectively.

CGM-based parallel algorithm • 59

2.2.5 - CGM-based parallel solution of Kengne and Myoupo (2012)
This section presents the CGM-based parallel solution of Kengne and Myoupo
(2012). They proposed a partitioning strategy that reduces the number of sub-
graphs (or blocks) of the dynamic graph D′n as the number of processors increases
to minimize the number of communication rounds. The dependencies between
blocks are similar to those of Kechid and Myoupo (2009) since it is only the size of
blocks that changes. Then, they propose a distribution scheme that fairly assigns
blocks onto processors. This mapping balances better the loads between the pro-
cessors than the alternative bidirectional projection mapping proposed by Kechid
and Myoupo (2009) (described in Section 2.2.4). Moreover, it limits to at most
two the number of blocks that a processor must evaluate. Nonetheless, the overall
structure of their CGM-based parallel algorithm is similar to that of Kechid and
Myoupo (2009).

Dynamic graph partitioning
Kengne and Myoupo (2012) subdivide the shortest path matrix SP into f (p) rows
and f (p) columns of blocks, where f (p) =

⌈√
2p
⌉
. A block SM(i, j) is a θ(n, p)×

θ(n, p) matrix, where θ(n, p)= dn/ f (p)e. The size of this block is larger than those
obtained after applying the partitioning strategy of Kechid and Myoupo (2009)
since f (p) < p when p > 2. This means that entries of a block, illustrated by
Equation (2.2), are more extensive and therefore, evaluating a block will require
more computing time.

Figures 18a, 18b, and 18c show three scenarios of this partitioning for n = 32
and p ∈ {2,3,4,5,6,7,8}. SP is partitioned into f (p)(f (p) + 1)/2 blocks. For
example, in Figure 18b (respectively Figure 18c), SP is partitioned into six blocks
(respectively ten blocks) when p ∈ {3,4} (respectively p ∈ {5,6,7,8}). Usually,
all blocks are not full when n mod f (p) 6= 0. For example in Figure 18b, while
blocks in the first two columns are full, those in the third column are not. There are
p blocks at the first diagonal and one block at the last. Recall that in these figures,
the number in each block represents the diagonal in which it belongs.

Mapping blocks onto processors
The mapping proposed by Kengne and Myoupo (2012) consists in assigning the
blocks of a given diagonal from the upper leftmost corner to the lower rightmost
corner. First, the blocks of the first diagonal are assigned from processor P0 to
processor Pf (p)−1. Then, the process is repeated on the next diagonal starting with
processor Pf (p), and so on until a block has been assigned to each processor. The
mapping starts again with processor P0, and continues along the diagonals with a

Mapping blocks onto processors • 60

22
11

11

(a) p = 2

311
11
11

322
22

(b) p ∈ {3,4}

11
11

11
11

22

22
22
33 44
33

(c) p ∈ {5,6,7,8}

Figure 18 – Shortest path matrix partitioning strategy proposed by Kengne and Myoupo (2012)
for n = 32 and p ∈ {2,3,4,5,6,7,8}

P0 P4 P2 P4
P1
P2 P1
P3

P0 P3

P0 P4 P2 P4
P1
P2 P1
P3

P0 P3

P0 P4 P2 P4
P1
P2 P1
P3

P0 P3

(a) p = 5

P0 P4 P7 P1
P1
P2 P6
P3

P5 P0

P0 P4 P7 P1
P1
P2 P6
P3

P5 P0

P0 P4 P7 P1
P1
P2 P6
P3

P5 P0

(b) p = 8

Figure 19 – Snake-like mapping on five and eight processors

snake-like path until the last diagonal f (p). Figures 19a and 19b give an example
of this mapping on five and eight processors.

The communication scheme corresponding to this mapping is simple and easy
to implement like the alternative bidirectional projection mapping proposed by
Kechid and Myoupo (2009). Moreover, this mapping allows processors to remain
active as soon as possible and minimizes the number of communication rounds. It
also ensures load balancing because it allows some processors to evaluate at most
one block more than others. For example, Figure 19b shows that only processors
P0 and P1 evaluate one more block than others. However, this mapping does not
optimize communications since a processor does not usually hold the upper blocks
that are on the same row and column as the block that has been assigned to that
processor.

Mapping blocks onto processors • 61

Algorithm 9 CGM-based parallel algorithm of Kengne and Myoupo (2012) to solve the
MPP

1: for d = 1 to f (p) do
2: Finalization of computations of the shortest path costs to nodes in blocks

belonging to the diagonal d;
3: Communication of block SM(i, j) of current diagonal to processors that hold

upper and right blocks;
4: Update the shortest path costs to each block belonging to diagonals (d +1,d+

2, . . . ,min{2× (d−1), f (p)});

Lemma 3 After partitioning the shortest path matrix into b submatrices (blocks)
such that p < b≤ 2p and applying the snake-like mapping, each processor evalu-
ates at most two blocks.

Proof. The shortest path matrix is partitioned into b = f (p)(f (p)+ 1)/2 blocks,
where f (p) =

⌈√
2p
⌉
. It is deducible that p < b ≤ 2p. Given that the snake-like

mapping allows processors to evaluate at most one block more than others, each
processor evaluates at most two blocks. �

CGM-based parallel algorithm
The CGM-based parallel algorithm of Kengne and Myoupo (2012) is given by
Algorithm 9. It consists of f (p) similar steps as the one in Kechid and Myoupo
(2009). As seen in Section 2.2.4, and according to Theorem 3, the updates for a
block SM(i, j) (which concern jumps from block SM(i,k)) are equivalent to a ma-
trix multiplication (+,min) of matrices SM(i,k) and SM(k−θ(n, p)+2, j). Eval-
uating a block of diagonal d starts as soon as the diagonal dd/2e is evaluated, i.e.
at step (dd/2e+1).

Theorem 5 The CGM-based parallel solution of Kengne and Myoupo (2012) runs
in O

(
n3/p

)
execution time with

⌈√
2p
⌉

communication rounds in the worst case.

2.3 - Optimal binary search tree problem

2.3.1 - Overview
A tree is a data structure that hierarchically represents a set of elements (often
called keys) (Deo, 1974; Knuth, 1997). It consists of a set of vertices and edges. A
node stores a key and an edge is a link between two vertices. A path is a sequence of

Optimal binary search tree problem • 62

vertices in which two consecutive vertices are connected by an edge (Deo, 1974).
Any two vertices in a tree are connected by a single path. In fact, a tree is an
undirected acyclic connected graph (Knuth, 1997).

A rooted tree is a tree in which a vertex has been designated as the root (Knuth,
1997). Consider that there is a path from the root vertex to a vertex x. If there is a
path from x to a vertex y, then x is an ancestor of y, and y is a descendant of x (Deo,
1974). If there are no intermediate vertices on the path between x and y, then x is
a father of y, and y is a child of x (Deo, 1974). The root vertex is the only vertex
that has no parent in a rooted tree. If there is no path between vertex x and another
vertex, then x is a leaf (Deo, 1974).

A binary tree is a rooted tree where each vertex has at most two children: a left
child and a right child (Deo, 1974; Knuth, 1997). The subtree of a vertex x in a
tree is the part of that tree containing x, as well as its descendants. Thus, the left
subtree (respectively the right subtree) of a vertex x is the subtree of the left child
(respectively the right child) of x (Deo, 1974; Knuth, 1997).

A binary search tree is a binary tree that maintains a set of sorted keys according
to the following rule: for each vertex x of the tree, the key of x is larger than all the
keys contained in the left subtree of x and it is smaller than all the keys contained
in the right subtree of x (Nagaraj, 1997). Figure 20 shows an example of a binary
search tree corresponding to the set of keys 〈c, e, f, g, h, k, l, n, o, r, s〉 sorted in
alphabetical order. A binary search tree is typically used to efficiently search for
a particular key among a set of sorted keys. The cost of searching for this key is
equal to length of the path from the root to this key plus one, which is in fact, the
depth of this key (Cormen et al., 2009). For example, in Figure 20, the cost of
searching for the key "n" (the root vertex) is equal to 1 and the cost of searching
for the key "h" is equal to 5.

The overall cost of searching, which is equal to the sum of the cost of search-
ing of each key, must be usually as less as possible in many applications. Self-
balancing binary search trees3 minimize this cost by ensuring that all keys are as
near the root vertex as possible. However, when a query frequency is associated
with each key, this tree will not be the most efficient in some cases. Indeed, it
would be better to place the most frequently queried keys closer to the root vertex,
and to place the less frequently queried keys further from the root vertex. For ex-
ample, consider the set of sorted keys 〈a, b, c〉 with respective frequencies of 3, 1,
and 7. The cost of searching for a key x is equal to the depth of x multiplied by

3. A self-balancing binary search tree is a binary search tree that automatically attempts to keep its height
(maximal number of levels below the root vertex) as small as possible at all times (Knuth, 1998).

Optimal binary search tree problem • 63

Figure 20 – Example of a binary search tree corresponding to the set of letters 〈c, e, f, g, h, k, l, n,
o, r, s〉 sorted in alphabetical order

Figure 21 – Five possible binary search trees obtained from the set of sorted keys 〈a, b, c〉

the frequency of x. Of the five possible binary search trees, depicted in Figure 21,
that can be obtained from these keys, the tree that minimizes the overall cost of
searching is determined as follows:

• for the first tree, it is equal to (1×3)+(2×7)+(3×1) = 20;

• for the second tree, it is equal to (1×3)+(2×1)+(3×7) = 26;

• for the third tree, it is equal to (1×1)+(2×3)+(2×7) = 21;

• for the fourth tree, it is equal to (1×7)+(2×1)+(3×3) = 18;

• for the fifth tree, it is equal to (1×7)+(2×3)+(3×1) = 16.

As shown in Figure 21, the third binary search tree is balanced but the fifth
is not. Nevertheless, the overall search cost of the latter is lower than the self-
balanced binary search tree (the third tree in Figure 21) and is the lowest of all;
thus, it is the optimal binary search tree for the above example.

Optimal binary search tree problem • 64

More formally, the optimal binary search tree (OBST) problem can be de-
fined as follows: consider a set of n sorted keys K = 〈k1,k2, . . . ,kn〉, such that
k1 < k2 < · · · < kn. The probability of finding a key ki is denoted by pi. In the
case where the searched element is not in K, consider a set of (n+1) dummy keys
D = 〈d0,d1, . . . ,dn〉. Indeed, d0 represents the set of values that are smaller than
k1 and dn the set of values that are larger than kn. A dummy key di, such that
1≤ i < n, represents the set of values between ki and ki+1. The probability of find-
ing a dummy key di is denoted by qi. In summary, either the search ends in success
(i.e. finding the searched key ki) or in failure (i.e. finding a dummy key di); thus
the sum of probabilities of success and failure is equal to 1. A binary search tree
T constructed from these keys is composed of n internal vertices in the set K and
(n+1) leaves in the set D. Equation (2.3) gives the overall cost of searching of T :

Cost(T) =
n

∑
i=1

(depth(ki)× pi)+
n

∑
i=0

(depth(di)×qi) (2.3)

where depth(x) is the depth of the key x. The OBST problem consists in finding
the binary search tree that will have the lowest overall cost of searching.

Let w(i, j) = pi+1+ · · ·+ p j +qi+qi+1+ · · ·+q j. The minimum cost of search-
ing of a tree Ti, j from the set of keys Ki, j = 〈ki+1,ki+2, . . . ,k j〉 and the set of dummy
keys Di, j = 〈di,di+1, . . . ,d j〉 is denoted by Tree[i, j] and defined by:

Tree[i, j] =

qi if 0≤ i = j ≤ n,

min
i≤k< j

{Tree[i,k]+Tree[k+1, j]+w(i, j)} if 0≤ i < j ≤ n.
(2.4)

Finding the optimal binary search tree from the set of keys K and the set of dummy
keys D is reduced to compute Tree[0,n]. Equation (2.4) is equivalent to Equation
(1.8) as Opt = min, Init(i) = qi, and F(i,k, j) = w(i, j), where 0≤ i≤ k ≤ j ≤ n.

The straightforward sequential algorithm of Godbole (1973), running in O
(
n3
)

time and O
(
n2
)

space, is given by Algorithm 10. The DP table (named Tree in
Algorithm 10) stores the value of the optimal cost of searching of Ti, j (see line 10
in Algorithm 10). The tracking table (named Cut in Algorithm 10) stores the value
of the index k, which minimizes Tree[i, j] (see line 11 in Algorithm 10). It is the
optimal decomposition value of Ti, j into two subtrees. For a problem of size n = 3,
the DAG and the DP table are illustrated in Figures 22a and 22b, respectively.

Applications of optimal search binary trees are numerous. One of the most ob-
vious is the search for a word in a dictionary. Indeed, from the words of a dictionary
and the access frequency of each word, an optimal binary search tree can be built
to quickly and efficiently answer to a query. An application derived from the latter

Optimal binary search tree problem • 65

Algorithm 10 Sequential algorithm of Godbole (1973) to solve the OBST problem
1: for i = 0 to n do
2: Tree[i, i]← qi;
3: for d = 1 to n do
4: for i = 0 to n−d +1 do
5: j← n−d +1;
6: Tree[i, j]← ∞;
7: for k = i to j−1 do
8: c← Tree[i,k]+Tree[k+1, j]+w(i, j);
9: if c < Tree[i, j] then

10: Tree[i, j]← c;
11: Cut[i, j]← k;

(a) Task graph (b) Dynamic-programming table

Figure 22 – Task graph and the dynamic-programming table used to compute Tree[0,3]

is the translation of a word from one language to another (Cormen et al., 2009). El-
Qawasmeh (2004) used an optimal binary search tree to solve the word prediction
problem. This problem attempts to guess and update the next word in a sentence
as it is typed. In view of these different applications, an optimal binary search tree
should be constructed from the sequential algorithm of Knuth (1971), which is an
improved version of the sequential algorithm of Godbole (1973), running in O

(
n2
)

time and space.

2.3.2 - Sequential algorithm of Knuth (1971)
Knuth (1971) noticed entries of tracking table Cut satisfy the monotonicity property
such that Cut[i, j−1]≤Cut[i, j]≤Cut[i+1, j] for all 0≤ i < j ≤ n. This property
means that computing Cut[i, j] consists in finding all indices between Cut[i, j−1]

Optimal binary search tree problem • 66

Algorithm 11 Sequential algorithm of Knuth (1971) to solve the OBST problem
1: for i = 0 to n do
2: Tree[i, i]← qi;
3: for d = 1 to n do
4: for i = 0 to n−d +1 do
5: j← n−d +1;
6: Tree[i, j]← ∞;
7: for k =Cut[i, j−1] to Cut[i+1, j] do
8: c← Tree[i,k]+Tree[k+1, j]+w(i, j);
9: if c < Tree[i, j] then

10: Tree[i, j]← c;
11: Cut[i, j]← k;

Table 1 – Example of probabilities of three sorted keys

i 0 1 2 3
pi 0.25 0.4 0.15
qi 0.03 0.06 0.07 0.04

and Cut[i+1, j], instead of between i and j as it is done in line 7 of Algorithm 10.
Knuth (1971) thus achieves to evaluate the Θ

(
n2
)

subproblems in constant time.
Algorithm 11 draws a big picture.

Parallelization constraint of the sequential algorithm of Knuth (1971)
One downside to the speedup of Knuth (1971), however, is that the number of com-
parison operations for entries in the same diagonal varies from one entry to another
compared to the classical version. Consider for example the set of three sorted keys
with probabilities given in Table 1. Figures 23a and 23b depict, respectively, the
DP table and the tracking table that have been filled while determining the opti-
mal binary search tree from these probabilities. Figure 23a shows that the value of
Tree[0,3] is computed only from the optimal solutions of the pair of subproblems
((0,1),(2,3)), since Cut[0,2] and Cut[1,3] are equal to 1. Yet in the classical ver-
sion, the value of Tree[0,3] should be computed from the optimal solutions of the
pairs of subproblems ((0,0),(1,3)), ((0,1),(2,3)), and ((0,2),(3,3)). Therefore,
when designing parallel algorithms based on the sequential algorithm of Knuth
(1971), there is no guarantee that the processors will have the same load if entries
on a diagonal are fairly distributed among them, as shown in Figures 19a and 19b
for example. It is the main parallelization constraint of this algorithm.

Literature review on the parallelization of the sequential algorithm of Knuth (1971) • 67

(a) Dynamic-programming table (b) Tracking table

Figure 23 – Dynamic-programming and tracking tables filled while determining the optimal bi-
nary search binary tree from probabilities of three sorted keys given in Table 1

Literature review on the parallelization of the sequential algorithm of
Knuth (1971)
Although parallelization of the sequential algorithm of Godbole (1973) has been
widely studied in the literature on different parallel computing models (see Sec-
tion 2.2.2), little work has been done on parallelization of the sequential algorithm
of Knuth (1971). On the PRAM model, Karpinski and Rytter (1994) designed
a sublinear time parallel algorithm to construct optimal binary search trees. It
requires O

(
n1−ε logn

)
computation time with the total work O

(
n2+2ε

)
for an ar-

bitrarily small constant 0 < ε ≤ 0.5. Recall that the total work is equal to the
computation time multiplied by the number of processors (Karpinski and Rytter,
1994). On CREW-PRAM machines, Karpinski et al. (1996) presented an algo-
rithm running in O

(
n0.6
)

computation time with n processors. On realistic models
of parallel machines, Craus (2002) proposed an O(n)-time parallel algorithm using
O
(
n2
)

processors on very-large-scale integration (VLSI) architectures. Wani and
Ahmad (2019) proposed a parallel implementation of the sequential algorithm of
Knuth (1971) on GPU architectures. For a problem of size 16384, they achieved a
speedup factor of 409 on a NVIDIA GeForce GTX 570 chip and a speedup factor
of 745 on a NVIDIA GeForce GTX 1060 chip. On shared-memory architectures,
after demonstrating that dependencies of subproblems available in the code imple-
menting the sequential algorithm of Knuth (1971) allow generating only 2D tiled
code, using the polyhedral model, Bielecki et al. (2021) proposed a way of trans-

Literature review on the parallelization of the sequential algorithm of Knuth (1971) • 68

forming this algorithm to a modified one exposing dependencies to generate 3D
parallel tiled code. Experimentations conducted using OpenMP demonstrated that
the 3D tiled code considerably outperforms the 2D tiled code.

On distributed-memory architectures, Kechid and Myoupo (2008a) proposed
the first CGM-based parallel solution to solve the OBST problem. It requires
O
(
n2/p

)
execution time with O(p) communication rounds. They improved this

solution in their works done in (Kechid and Myoupo, 2009) to solve the MPP. My-
oupo and Kengne (2014b) built a CGM-based parallel solution, from their proposed
solution in (Kengne and Myoupo, 2012) to solve the MPP, running in O

(
n2/
√

p
)

execution time with
⌈√

2p
⌉

communication rounds. This solution uses the same
partitioning strategy and the same distribution scheme strategy; except that the
evaluation of blocks is not done in a progressive manner. Indeed, Myoupo and
Kengne (2014b) showed that the progressive evaluation is not suitable because of
the speedup of Knuth (1971). Later on, Kengne et al. (2016) highlighted the ex-
istence of a relationship between the execution time, the load balancing, and the
number of communication rounds in a family of CGM-based parallel solutions
solving the OBST problem. They proposed a general methodology for deriving
a CGM-based parallel algorithm in accordance with the user’s parameters. This
solution is described more succinctly in Section 2.3.3.

2.3.3 - CGM-based parallel solution of Kengne et al. (2016)
Looking at the performance of CGM-based parallel solutions proposed by Kechid
and Myoupo (2008a) and Myoupo and Kengne (2014b) to solve the OBST prob-
lem (and the solutions proposed by Kechid and Myoupo (2009) and Kengne and
Myoupo (2012) to solve the MPP), Kengne et al. (2016) noticed that the execution
time was related to the load balancing and the number of communication rounds.
These criteria depend on the partitioning strategy and the distribution scheme strat-
egy used when designing the CGM-based parallel solutions:

1 - When the dependency graph is subdivided into small-size blocks (Kechid
and Myoupo, 2008a, 2009), the load difference between processors is small
if one processor has one more block than another. However, the number of
communication rounds will be high.

2 - When the dependency graph is subdivided into large-size blocks (Kengne
and Myoupo, 2012; Myoupo and Kengne, 2014b), the number of communi-
cation rounds of the corresponding algorithm is reduced since there are few
blocks. However, the load of processors will be unbalanced.

Literature review on the parallelization of the sequential algorithm of Knuth (1971) • 69

These criteria in fact have a significant impact on the global communication time,
which in turn has an impact on the total execution time. Indeed, when the blocks are
small, the number of communication rounds is high since there are many blocks.
Thus, excessive communication will lead to communication overhead, which will
deteriorate the global communication time. On the other hand, when the blocks are
large, the evaluation of a block will take a long time because of the load imbalance.
So a processor that is waiting for this block to start or continue its computation will
wait longer to receive this block. As a result, Kengne et al. (2016) showed that these
criteria are contradictory because it is difficult to simultaneously optimize them in
a CGM-based parallel solution.

Kengne et al. (2016) proposed a CGM-based parallel solution that gives the
end-user the choice to optimize one criterion according to their own goal. They
generalized the ideas of dependency graph partitioning and distribution scheme in-
troduced in (Kechid and Myoupo, 2008a, 2009; Kengne and Myoupo, 2012; My-
oupo and Kengne, 2014b). The end-user derives a CGM-based parallel algorithm
from these parameters:

• g (the granularity) : it is used in the partitioning strategy to define the size
and number of blocks;

• p (the number of processors) : it is used in the distribution scheme strategy
to assign blocks onto processors.

The complexity of the derived CGM-based parallel algorithm depends on these
parameters. Kengne et al. (2016) also proposed a simulator based on the work of
Fotso et al. (2010), which allows users to modify these parameters and observe the
performance (number of blocks, number of communication rounds, load balancing,
and efficiency) of the derived CGM-based parallel algorithm.

Dependency graph partitioning
Kengne et al. (2016) partition the DAG into g(g+ 1) blocks. A block SM(i, j)
is a matrix of size θ(n,g)× θ(n,g), where θ(n,g) = d(n+ 1)/ge. This strategy
encompasses all the previous ones because :

• it is equivalent to Kechid and Myoupo (2008a) when g = 2p;

• it is equivalent to Kechid and Myoupo (2009) when g = p;

• it is equivalent to Myoupo and Kengne (2014b) when g =
⌈√

2p
⌉
.

Blocks’ dependency analysis • 70

It is straightforward to notice that g can be larger, smaller or equal to p. Nev-
ertheless, the blocks obtained after the partitioning must be distributed fairly to
processors whatever the value of g.

Blocks’ dependency analysis
Figures 24a and 24b respectively show an example of dependencies and extremities
of a block SM(i, j) after applying the partitioning strategy of Kengne et al. (2016).
The extremities of SM(i, j) are defined by :

• the leftmost upper entry LUEi j = (i, j−θ(n,g)+1);

• the rightmost upper entry RUEi j = (i, j);

• the leftmost lower entry LLEi j = (i+θ(n,g)−1, j−θ(n,g)+1);

• the rightmost lower entry RLEi j = (i+θ(n,g)−1, j).

Figure 24a illustrates eight points (A, B, C, D, E, F , G, and H) that identify blocks
on which the block SM(i, j) depends :

• A = Tree
[
LUEi, j−3×θ(n,g)−1

]
• B = Tree

[
LUEi, j−θ(n,g)−2

]
• C = Tree

[
LLEi, j−θ(n,g)−2

]
• D = Tree

[
LLEi, j−3×θ(n,g)−1

]
• E = Tree

[
LLEi+θ(n,g)+1, j

]
• F = Tree

[
RLEi+θ(n,g)+1, j

]
• G = Tree

[
RLEi+3×θ(n,g), j

]
• H = Tree

[
LLEi+3×θ(n,g), j

]
All lower blocks that are in the same row and column as the block SM(i, j) are no
longer absolutely required to evaluate SM(i, j) as a consequence of the speedup
of Knuth (1971) (Kengne, 2014). In Figure 24a for example, only the five most
shaded blocks will be needed. In other cases, it could have been just four, three
or two blocks. Moreover, it may happen that some nodes of blocks located in
extremities are needed instead of the whole blocks. It depends on the input data.
Therefore, the speedup of Knuth (1971) does not allow estimating the exact load
of a block before its evaluation (Kengne, 2014).

Mapping blocks onto processors • 71

(a) Dependencies of SM(i, j) (b) Extremities of SM(i, j)

Figure 24 – Dependencies and extremities of a block SM(i, j) after applying the partitioning strat-
egy of Kengne et al. (2016)

However, the blocks on which the block SM(i, j) depends are not located on the
same diagonal as SM(i, j). Consequently, they can be carried out in parallel.

Mapping blocks onto processors
Kengne et al. (2016) implemented the alternative bidirectional projection mapping
(described in Section 2.2.4, page 55) and snake-like mapping (described in Section
2.2.5, page 60). They extended these strategies and let the end-user choose one of
them according to their own goal.

The alternative bidirectional projection mapping is not practical when g < p
because no blocks will be assigned to processors Pg,Pg+1, . . . ,Pp−1; these proces-
sors will remain idle throughout the problem-solving process. It is only practical
when g = k× p, where k is a positive integer. k blocks of the first diagonal are
assigned to a processor. The blocks on other diagonals are then projected onto the
first diagonal. Figure 25a shows an example of this mapping when g= 8 and p= 4.
This mapping minimizes communications and makes the processors less idle com-
pared to Figure 17b when g = p = 8. Indeed, a processor has more than half of the
blocks in the row and in the column to which it has been assigned its first blocks
of the first diagonal. Furthermore, in Figure 25a, the first processor (processor P2)

Mapping blocks onto processors • 72

(a) Alternative bidirectional projection mapping (b) Snake-like mapping

Figure 25 – Alternative bidirectional projection mapping and snake-like mapping on four proces-
sors when g = 8

becomes idle after step 6; yet in Figure 17b, it is after step 4 that the first processor
(processor P4) becomes idle.

The snake-like mapping is convenient whatever the value of g. When g ≥ p,
the blocks of the first diagonal are assigned from processor P0 to processor Pp−1.
Then, the process is repeated starting again with processor P0 until all blocks of
the first diagonal are assigned (when g > p), continues to the next diagonal and
so on until a block has been assigned to each processor. Figure 25b gives an ex-
ample of this mapping when g = 8 and p = 4. This mapping does not minimize
communications enough compared to alternative bidirectional projection mapping.
However, Kengne et al. (2016) have shown that the snake-like mapping is more
efficient and balances the load of processors better than alternative bidirectional
projection mapping.

CGM-based parallel algorithm
The analysis of the dependency of blocks showed that the evaluation of a block
does not always depend on all lower blocks that are in the same row and column as
this block. Evaluating blocks in a progressive fashion, like the MPP (see Section
2.2.4, page 57), would not be ideal because some unnecessary computations could
be performed (Kengne, 2014). Kengne et al. (2016) evaluated blocks in a non-
progressive fashion, i.e. the evaluation of blocks of the diagonal d starts after
computing blocks of the diagonal (d−1).

CGM-based parallel algorithm • 73

Algorithm 12 CGM-based parallel algorithm of Kengne et al. (2016) to solve the OBST
problem

1: for d = 1 to R do
2: Computation of blocks belonging to the round d using Algorithm 11;
3: Communication of entries (Tree and Cut tables) required for computing each

block of rounds {d +1,d +2, . . . ,R};

Lemma 4 states the number of communication rounds of the CGM-based par-
allel algorithm of Kengne et al. (2016). It is equal to g when g ≤ p because each
diagonal of blocks contains at most p blocks; this means that each processor will
evaluate at most one block per diagonal. This is not the case when g > p. In fact, a
processor will evaluate at most k blocks per diagonal when g = k× p. For example
in Figures 25a and 25b, a processor evaluates at most two blocks from diagonal 1
to diagonal 4; and there is 12 communication rounds. Considering R as the number
of communication rounds regardless of the values of g and p, Algorithm 12 gives
an overview of the CGM-based parallel algorithm of Kengne et al. (2016).

Lemma 4 The number of communication rounds of the CGM-based parallel algo-
rithm of Kengne et al. (2016) is defined by:

R =

g if g≤ p,⌈

g(g+1)− p(p−1)
2p

⌉
+ p if g > p.

Proof. When g≤ p, it is clear that there is g communication rounds. When g > p,
diagonals that contain at least p blocks are evaluated in

⌈
g(g+1)−p(p−1)

2p

⌉
communi-

cation rounds. The last (p−1) diagonal of blocks are evaluated in (p−1) rounds.
The potential blocks located in the diagonal that contains p blocks and has not yet
been considered can be evaluated in at most one round. �

Theorem 6 The CGM-based parallel solution of Kengne et al. (2016) runs in
O
(
n2×R/g2

)
execution time with R communication rounds in the worst case.

Simulator of Kengne et al. (2016)
Kengne et al. (2016) proposed a simulator to allow users to modify the parameters
g and p and observe the performance of the derived CGM-based parallel algorithm.
From the partitioning strategy and the distribution scheme strategy, they easily
deduce the size and number of blocks, and the number of communication rounds.
They relied on the work of Fotso et al. (2010), which computes the load of blocks

Simulator of Kengne et al. (2016) • 74

to infer the load imbalance of processors and the efficiency of the derived CGM-
based parallel algorithm. Since the speedup of Knuth (1971) makes it impossible
to predict the exact load of a block, they used the maximum load, i.e. the one
obtained with the sequential algorithm of Godbole (1973).

From Equation (1.8) described in Section 1.8, the evaluation of each entry of
each diagonal d requires 3(d−1) arithmetic operations; since these (d−1) treat-
ments consist of two addition operations and a minimum operation (Fotso et al.,
2010). Consider that the size of a block is m×m, where m = θ(n,g) = d(n+1)/ge.
Blocks of the first diagonal will induce a load of

α = 3×
m

∑
k=1

k (m− k) = 3× (m−1)×m× (m+1)
6

and blocks of a diagonal d > 1 will induce a load of

3×

(
m

∑
k=1

k ((i−2)m+ k)+
m−1

∑
k=1

k (im− k)

)
= 3× (i−1)m3.

Denoting by β = 3×m3, the workload induced by the evaluation of a block
of the first diagonal is α, while those of diagonals i, such that i > 1, are (i− 1)β.
From these values, they estimated the load imbalance of processors and predicted
the efficiency of the algorithm. Recall that the load imbalance of processors is
the load difference between the processor that performs most of the work and the
one that performs the least. For example, if the end-user chooses the alternative
bidirectional projection mapping with g = 8 and p = 4 (illustrated in Figure 25a),
then processor P2 will have the smallest load (2α+16β) and processor P3 will have
the largest (2α+26β). The load imbalance in this case will equal to 10β. On the
other hand, if he chooses the snake-like mapping illustrated in Figure 25b, the load
imbalance will equal to 6β since processor P0 will have a load of (2α+18β) and
processor P3 a load of (2α+24β).

The main shortcoming of this simulator is that it can provide inaccurate load
balancing metrics to the end-user. In fact, as mentioned earlier, this simulator takes
into account the maximum load of blocks to estimate the load of processors. How-
ever, it is not possible to know the exact load of a block because it varies according
to the input data due to the speedup of Knuth (1971). This shortcoming could
mislead the end-user when running the derived CGM-based parallel algorithm on
supercomputers.

Triangulation of a convex polygon problem • 75

Figure 26 – A convex polygon and two different triangulations

2.4 - Triangulation of a convex polygon problem

2.4.1 - Overview
Computational geometry is the branch of computer science that studies algorithms
for geometrical problems. Its application areas include computer graphics, robotics,
geographic information systems, computer-aided design, molecular modeling, met-
allurgy, manufacturing, textile layout, forestry, statistics, and many others. A com-
putational geometry problem usually takes as input a description of one or more
geometric shapes, such as a set of line segments or points. It returns a response to
a query such as the number of points of intersection, or perhaps a new geometric
object (Cormen et al., 2009).

A polygon P is a geometric object that has a structure bordered by connections
between vertices 〈v0,v1, . . . ,vn〉. It is made up of (n+1) side edges viv j such that
j = (i+1) mod (n+1). Any line segment connecting two vertices vi and v j such
that j > (i+ 1) is called a chord. It splits the polygon into two smaller polygons.
A polygon is said to be convex when any chord viv j passes either through the
side edge or through the inside of the polygon, but never through the outside of
the polygon4 (Bradford, 1994). A triangulation of a convex polygon (TCP) can
be thought of as a set of chords that divide the polygon into triangles such that
two chords never intersect except at a vertex. Figure 26 shows a convex polygon
P = 〈v0,v1,v2,v3,v4〉 and two different ways to triangulate it.

In a weighted convex polygon P, a positive integer weight w(v) is assigned to
each vertex v. The cost of a triangle viv jvk of P is the product of the weights of
its vertices, w(vi)×w(v j)×w(vk). The cost of a TCP is the sum of the costs
of its triangles. The problem is to find an optimal triangulation that minimizes

4. A chord always divides a convex polygon into two convex polygons (Bradford, 1994).

Triangulation of a convex polygon problem • 76

Figure 27 – Different ways of triangulating the convex polygon P = 〈5,10,3,20,6〉 and the corre-
sponding parenthesis of the product of four matrices M1, M2, M3, and M4

the cost of P. Denoting by T [i, j] the optimal triangulation cost of a sub-polygon
Pi, j = 〈vi−1,vi, . . . ,v j〉, this problem can be modeled by Equation (2.5) :

T [i, j] =

0 if 1≤ i = j ≤ n,

min
i≤k< j

{T [i,k]+T [k+1, j]+w(vi−1)×w(vk)×w(v j)} if 1≤ i < j ≤ n.

(2.5)
It is easy to see that this equation is equivalent to Equation (2.1) in Section 2.2.1.
In fact, this problem is closely related to the MCOP (Hu and Shing, 1982, 1984;
Yao, 1982). Consider n matrices M1×M2×·· ·×Mi×·· ·×Mn where a matrix Mi

has dimensions (di−1×di). A (n+1)-sided convex polygon P can be constructed
with the matrices dimensions 〈d0,d1, . . . ,dn〉 such that a matrix Mi corresponds
to a side edge di−1di and a product Mi×Mi+1× ·· ·×M j corresponds to a chord
did j. Thus, there exists a one-to-one correspondence between the different ways
of parenthesizing n matrices and the possible ways of triangulating a (n+1)-sided
convex polygon (Hu and Shing, 1982, 1984). An example is illustrated in Figure
27. It is deducible that a solution to one remains relevant to the other; so the
sequential algorithm of Godbole (1973) is relevant to the TCP problem. However,
Yao (1982) improved the sequential algorithm of Godbole (1973) based on the
quadrangle inequality property. It runs in O

(
n2
)

time and space.

2.4.2 - Sequential algorithm of Yao (1982)

Recursive solution
Consider now that the vertices of a convex polygon P are ordered. A particular
ordering is chosen and remains fixed during the triangulation process when some
weights are equal. A vertex at the rank j is designated by w j. So the convex poly-
gon P = 〈5,10,3,20,6〉 of Figure 27 can be represented by 〈w2,w4,w1,w5,w3〉. A
sub-polygon Pi, j of P consists of those vertices lying between wi and w j in a clock-

Recursive solution • 77

Algorithm 13 Recursif algorithm of Yao (1982) to solve the TCP problem

1: function PARTITION(P)
2: if |P| ≤ 2 then
3: return /0;
4: else if P is a triangle then
5: return P;
6: else if w1 and w2 are not adjacent then
7: return PARTITION(P1,2) ∪ PARTITION(P2,1);
8: else if w1 and w3 are not adjacent then
9: return PARTITION(P1,3) ∪ PARTITION(P3,1);

10: else
11: return better of {PARTITION (P2,3)∪PARTITION (P3,2) ,

PARTITION (P1,4)∪PARTITION (P4,1)};

wise traversal. For example in Figure 27, P2,1 = 〈w2,w4,w1〉, P4,3 = 〈w4,w1,w5,w3〉,
and P3,4 = 〈w3,w2,w4〉. The term partition will also be used to refer to a triangula-
tion.

Starting from a quadrilateral, Yao (1982) brought out some properties that led
to Lemma 5 and set up Algorithm 13 to find an optimal triangulation from this
lemma.

Lemma 5 Given a convex polygon P, there exists an optimal partition for which
the following is true :

1 - w1 and w2 are adjacent either by a side edge or by a chord, similarly for w1

and w3;

2 - if both w1w2 and w1w3 are side edges, then either w1w4 or w2w3 exists as a
chord.

As the last clause "else" (line 10 in Algorithm 13) could generate two problems
of size n− c for a small constant c in the worst case, this algorithm requires an
exponential time. Yao (1982) reduces this complexity to O

(
n2
)

time and space by
proposing a dynamic-programming solution divided into two steps :

1 - identify and organize the O
(
n2
)

distinct sub-polygons (subproblems) into a
multi-level DAG;

2 - solve these subproblems in a bottom-up manner as organized in step 1.

Dynamic-programming solution • 78

Figure 28 – A convex polygon P and the corresponding DAG

Dynamic-programming solution
In step 1, the constructed DAG is a forest consisting of two binary trees in which
roots are designated by nodes w1w2 and w2w1. Each binary tree corresponds to
sub-polygons P1,2 and P2,1 such that P = P1,2 ∪P2,1. This DAG is structured as
follows:

1 - a nonleaf node wiw j is a chord of P such that all vertices wk in Pi, j fulfill
k ≥max{i, j};

2 - any nonleaf node wiw j has exactly two child nodes, namely wiwk and wkw j

where k is the smallest index (aside from i and j) in Pi, j;

3 - the leaves are the side edges of P;

4 - an order relation ≺ is defined on the set of nodes such that wi′w j′ ≺ wiw j

implies Pi′, j′ ⊆ Pi, j.

By scanning the weights of P in a clockwise direction, Yao (1982) identifies and
generates the nodes of the DAG in a slightly modified postorder traversal. Figure
28 gives an example of a convex polygon P and the corresponding DAG. Nodes in
this graph are generated in the following order: w1w5, w5w4, w1w4, w4w2, w3w10,
w10w8, w3w8, w8w6, w6w11, w11w7, w6w7, w7w1, w2w9, w9w3, w3w6, w6w1, w2w3,
w3w1, w1w2, w2w1.

A sub-polygon Q of P is called a cone, if Q = Pi, j ∪wiw jwk where b = wiw j

is a chord or a side edge of P, and k ≤ min{i, j}. A cone Q is also designated by
(b,wk〉. The existing partial orders on the nodes of the DAG and on the weights of
P induce a natural alphabetic order on cones. In fact, a cone Q′ = (b′,wk′〉 precedes
a cone Q = (b,wk〉 if either b′ ≺ b, or b′ = b, and k′ ≥ k (Yao, 1982).

Dynamic-programming solution • 79

Algorithm 14 Dynamic-programming algorithm of Yao (1982) to solve the TCP problem
1: for each b = wiw j ∈ B do . B is the ordered set of nodes and consider that i < j
2: if b is a leaf then
3: for all cones Q = (b,wk〉 such that k ≤ i do
4: if wk = wi then
5: Partition [Q]← /0; . Q = wiw j
6: else
7: Partition [Q]← Q; . Q = wiw jwk

8: if b is not a leaf then
9: for all cones Q = (b,wk〉 such that k ≤ i do

10: if wk = wi then
11: Partition [Q]← Partition [(leftChild(b),wi〉]∪

Partition [(rightChild(b),wi〉];
12: else
13: Partition [Q]← better of

{
Partition [(b,wi〉]∪wiw jwk ,
Partition [(leftChild(b),wk〉]∪
Partition [(rightChild(b),wk〉]};

14: return Partition [P1,2]∪Partition [P2,1];

Lemma 6 For a cone Q = (b,wk〉, any sub-polygon that may arise in the execution
of Partition[Q] is either a triangle, or a cone Q′ which precedes Q.

Thus, step 2 of the dynamic-programming algorithm of Yao (1982) consists
of computing and tabulating the solutions to all cones in accordance with their
precedence order. Indeed, evaluating a node b = wiw j of the DAG consists in
computing all the cones Q = (b,wk〉 such that k ≤ i < j. Algorithm 14 draws the
big picture. Partition[Q] refers to the DP table containing the optimal solution to
cone Q. The outer for loop (line 1 in Algorithm 14) iterates over all b in the order
they are generated in step 1. The inner for loops (lines 3 and 9 in Algorithm 14)
iterate over all wk with k ≤ i in decreasing order. As there are at most 2n nodes in
the DAG, and at most n cones to evaluate for a given node, this algorithm runs in
O
(
n2
)

time and space.

Enhancement of Myoupo and Kengne (2014a) : additional
preprocessing routine
When evaluating a node wiw j in Algorithm 14, the vertices of the polygon to be
considered are all wk such that k ≤ i. This evaluation is made in decreasing order
of these weights. Yao (1982) does not explain how to effectively identify these
vertices, nor how to obtain them in decreasing order. Thus, the most natural way
to look for these vertices wk is to scan the entire set of vertices located between
wi and w j and compare their weights to wi. However, some of them may have

Enhancement of Myoupo and Kengne (2014a) : additional preprocessing routine • 80

weights greater than wi. For example in Figure 28, to evaluate the node w3w6, the
set of candidate vertices 〈w11,w7,w1,w5,w4,w2,w9,w3〉 must be entirely scanned
in order to select only three : w3, w2, and w1. This leads to a huge waste of time
because in this case five of the eight candidate vertices are not useful.

To solve this problem, Myoupo and Kengne (2014a) proposed an additional
preprocessing routine to the sequential algorithm of Yao (1982). It consists in
sorting the weights of the polygon vertices, through the quicksort algorithm, before
evaluating the DAG nodes. Thus, the evaluation of the node wiw j starts from the
vertex wi since it is the vertex with the highest weight. It continues in decreasing
order in the sorted weight set of the polygon vertices until the vertex with the lowest
weight. In this way, Myoupo and Kengne (2014a) identify more easily the set of
vertices whose weights are less than or equal to wi. Experimental results showed
that their proposal had a significant improvement over the sequential algorithm
of Yao (1982) in term of execution time. However, it did not change the time
complexity.

Parallelization constraint of the sequential algorithm of Yao (1982)
In contrast to the sequential algorithm of Godbole (1973) where the dependency
graph is the same whatever the dimensions of matrices to be parenthesized, the
DAG corresponding to the sequential algorithm of Yao (1982) is different for two
products of matrices of the same length whose dimensions are not the same. Since
this DAG is not known beforehand, a classical design of a CGM-based parallel
solution based on the sequential algorithm of Yao (1982), like the sequential algo-
rithm of Godbole (1973) for the MPP or the OBST problem, is not possible (Kechid
and Myoupo, 2008b; Myoupo and Kengne, 2014a). Thus, Kechid and Myoupo
(2008b) automated the dependency graph partitioning and the distribution scheme
for each instance of dimensions of matrices.

2.4.3 - CGM-based parallel solution of Kechid and Myoupo
(2008b)

Kechid and Myoupo (2008b) focused on parallelizing step 2 of the O
(
n2
)
-time

dynamic-programming solution of Yao (1982). They did not find it relevant to
parallelize step 1 running in O(n) time since in practice n2/p� n. Algorithm
15 gives an overview of the CGM-based parallel solution of Kechid and Myoupo
(2008b) (it is the same as the one of Myoupo and Kengne (2014a) described in
Section 2.4.4). This solution is broken down into three steps:

Parallelization constraint of the sequential algorithm of Yao (1982) • 81

Algorithm 15 CGM-based parallel solution of Kechid and Myoupo (2008b) to solve the
TCP problem

1: Construction of the DAG;
2: Partitioning of the DAG into subgraphs and mapping onto processors;
3: Evaluation of the subgraphs using Algorithm 14;

1 - First, each processor performs step 1 of the sequential algorithm of Yao
(1982), i.e. the generation of nodes of the DAG.

2 - Then, each processor runs an algorithm called dynamic design algorithm.
This algorithm consists of dividing the DAG into subgraphs called bands,
then subdividing each band into sub-bands called blocks, and finally dis-
tributing each block onto processors. It ensures that blocks of the same
band are independent of each other so that they can be processed in paral-
lel, and that they have the same size to facilitate load balancing during the
mapping.

3 - Finally, processors evaluate the blocks assigned to them in parallel through
a succession of computation and communication rounds.

Dependency graph partitioning
Kechid and Myoupo (2008b) partition the DAG into S bands from the global load
of the DAG obtained by adding up the smallest indexes of the DAG nodes. They
denote by Bi the ith band, i∈ {1,2, . . . ,S}, and by Tcb the maximum load of a band.
Each band Bi is then divided into NBi blocks. Algorithm 16 shows an overview
of the dependency graph partitioning algorithm of Kechid and Myoupo (2008b).
It determines the best value of the triplet (S,Tcb,NBi) that minimizes the overall
computational load per processor expressed by Equation (2.6):

cost =
S

∑
i=1

(NBi/p)×Tcb (2.6)

To produce the partitioning corresponding to a given Tcb, Algorithm 16 traverses
in a bottom-up fashion the original DAG (produced by step 1 of the sequential so-
lution of Yao (1982)) from leaves to build bands one-by-one by making successive
calls to a band-building function (line 11 in Algorithm 16), which takes as input
the current DAG and Tcb, builds a band and returns the number of blocks of this
band. On the first call to this function, the current DAG corresponds to the original
DAG. Then, before each call of this function, the band built at the previous call

Dependency graph partitioning • 82

Algorithm 16 Dependency graph partitioning algorithm of Kechid and Myoupo (2008b)
1: Tc← 0;
2: for each wiw j ∈ B do . B is the ordered set of nodes
3: Tc← Tc +min{i, j};
4: min_cost←+∞;
5: for α = 2 to p do
6: Tcb← Tc/αp;
7: S← 0;
8: i← 1;
9: B′← B;

10: while B′ 6= /0 do
11: NBi← building the band Bi from B′ and Tcb;
12: S← S+1;
13: B′← B′ \{Bi};
14: i← i+1;
15: current_cost← cost of the current partitioning computed by Equation (2.6);
16: if current_cost < min_cost then
17: min_cost← current_cost;
18: Tcboptimal ← Tcb;

19: return the partitioning corresponding to Tcboptimal ;

is truncated from the current DAG (line 13 in Algorithm 16). When the current
DAG becomes empty, the partitioning is completed. Kechid and Myoupo (2008b)
repeat this process (p− 1) times to find the best value of the triplet (S,Tcb,NBi)

that minimizes the cost given by Equation (2.6).

Lemma 7 The dependency graph partitioning algorithm of Kechid and Myoupo
(2008b) requires O(n× p) execution time.

Proof. Nodes in the DAG are traversed (p−1) times to seek the partitioning that
minimizes the cost in Equation (2.6). �

Blocks’ dependency analysis
Since the evaluation of a DAG node (i, j) depends only on the already computed
values of its two child nodes (i,k) and (k, j), the values communicated by pro-
cessors are those of the root nodes of blocks they hold; and these nodes are not
plentiful. Moreover, this information is used only by processors holding the father
nodes of the root nodes of blocks. In other words, the values of the root nodes
of blocks in the band Bi are therefore only communicated to processors that own
blocks in the band Bi+1.

Mapping blocks onto processors • 83

Figure 29 – Distribution scheme of blocks on three processors proposed by Kechid and Myoupo
(2008b)

With such dependencies, the communication time will be very low. Contrary
to all the CGM-based parallel solutions presented so far, in this one, the local
computation time is the main part of the total execution time.

Mapping blocks onto processors
Once the DAG is divided into bands and blocks, Kechid and Myoupo (2008b)
distribute the blocks to processors while ensuring good load balancing. The NBi

blocks in the band Bi are assigned to processors as follows:

• When NBi ≥ p, each processor evaluates dNBi/pe blocks. This mapping
ensures that for each band Bi, blocks assigned to a processor are contiguous
to minimize the amount of data to be communicated.

• When NBi < p, (NBi− p) processors will be idle in the computation round
i. To manage this idleness, Kechid and Myoupo (2008b) uses the snake-like
mapping (described in Section 2.2.5, page 60).

Figure 29 depicts an example of this mapping on three processors. Nodes colored
in black are those of the first band, those colored in gray are those of the second
band, and uncolored nodes are those of the other bands.

Mapping blocks onto processors • 84

Theorem 7 In the worst case, the complexity of the CGM-based parallel solution
of Kechid and Myoupo (2008b) to solve the TCP problem, given in terms of the
BSP cost model, is expressed by:

S×L+S×g×O
(
n2/p

)
+O(n× p)+

S

∑
i=1

(NBi/p)×Tcboptimal

2.4.4 - CGM-based parallel solution of Myoupo and Kengne
(2014a)

Since the dynamic design algorithm (line 2 in Algorithm 15) is executed sequen-
tially on each processor, it must be carried out with minimum time. However, the
solution proposed by Kechid and Myoupo (2008b), running in O(n× p) time to
parallelize the O

(
n2
)
-time sequential algorithm of Yao (1982), will be time in-

tensive when the number of processors increases (although n� p). This is not
interesting because this algorithm must be scalable to the increase of the number
of processors.

Myoupo and Kengne (2014a) improve this solution by making the dynamic
design algorithm less dependent on the number of processors. The strength of
their solution comes from the fact that processors will handle more than half of the
problem without communicating. Indeed, the DAG has at most 2n nodes among
which (n+1) leaves. Since these leaves are all independent, they can be evaluated
in parallel. Moreover, more than half of the computational load is induced by
these leaves because the evaluation of each internal node requires less computation
than that of a given leaf since the computational load induced by an internal node is
smaller than that of each of its two children, and there are more leaves than internal
nodes. Thus, if the first band B1 contains all leaves of the DAG, then it will induce
a computational load greater than half the global load of the DAG. If NB1 ≥ p,
then each processor will evaluate at least one block of the first band. Myoupo
and Kengne (2014a) propose two algorithms for dependency graph partitioning:
one focused on load balancing and the other focused on minimizing the number of
communication rounds. They also improved the distribution scheme proposed by
Kechid and Myoupo (2008b). Their mapping ensures that processors communicate
blocks after computing to start the evaluation of some blocks as soon as possible.

Dependency graph partitioning balancing the load of processors
To balance the load between processors, the size of blocks must be small. So if
some processors have one more block than others, as blocks have a relatively small
load, the load difference will be reasonable. The downside of this approach is

Dependency graph partitioning balancing the load of processors • 85

Algorithm 17 Dependency graph partitioning algorithm of Myoupo and Kengne (2014a)
balancing the load of processors

1: Tmax← 0;
2: for each wiwk and wkw j ∈ B do . B is the ordered set of nodes
3: if wiwk is a leaf then
4: Tmax← Tmax +min{i,k};
5: if wkw j is a leaf then
6: Tmax← Tmax +min{k, j};
7: if wiwk and wkw j are leaves then
8: Tmax← Tmax +min{i, j};
9: Tcb← Tmax/p;

10: S← 0;
11: i← 1;
12: B′← B;
13: while B′ 6= /0 do
14: building the band Bi from B′ and Tcb;
15: S← S+1;
16: B′← B′ \{Bi};
17: i← i+1;
18: return the partitioned DAG;

the growth of the number of blocks, which induce more communication between
processors and thus increase the global communication time.

The principle of this strategy is the following: if (i,k) and (k, j) are two leaves
of the DAG, then their father (i, j) can be part of the first band. Indeed, all internal
nodes whose two children are leaves are all independent, and thus can be evaluated
in parallel. Denoting by Tmax the sum of loads of these internal nodes and that of
all the leaves, Myoupo and Kengne (2014a) show that the best load of blocks of
the first band is Tmax/p. By keeping this load for blocks of next bands, they limit
to two the number of blocks to be mapped onto a processor. Thus, a processor
evaluates either two blocks on the first band B1 (if NB1 > p) and no blocks on the
other bands, or one block on B1 and possibly one block on all bands {2, . . . ,S}.
Algorithm 17 draws the big picture.

Lemma 8 The dependency graph partitioning algorithm of Myoupo and Kengne
(2014a) balancing the load of processors runs in O(n) execution time.

Proof. This algorithm requires just two traverses of the DAG nodes : one to com-
pute Tmax and another to construct the S bands. �

Dependency graph partitioning minimizing the number of communication rounds • 86

Dependency graph partitioning minimizing the number of
communication rounds
The blocks should be as large as possible to minimize the number of communi-
cation rounds. In this way, the number of blocks is minimized and the processors
exchange little information. The drawback of this approach is the possibility of a
serious load imbalance between processors if they do not have the same number of
blocks.

The principle of this strategy is to find the load of the largest first band that
contains at least p blocks by changing the load of blocks. Formally, Myoupo and
Kengne (2014a) assume that the number of blocks of the first band is greater than
or equal to p when Tcb = Tc/2p to vary Tcb in the search interval

[
Tc
2p , . . . ,

Tc
p

]
. If

Tc/p produces less than p blocks in the first band, they consider the median value
1
2

(
Tc
p + Tc

2p

)
= 3Tc

4p . They use each time using the median value between the largest
known good value of Tcb (lower bound of the interval) and the smallest known bad
value (upper bound of the interval) to optimize the result. The process stops when
the search interval reaches the threshold Tc/pk+1, where k is a positive integer;
and the lower bound of the search interval is chosen. Thus, Myoupo and Kengne
(2014a) obtain the load of the largest first band corresponding to the chosen thresh-
old. Denoting by Tint the load of this band, the bands of the DAG are partitioned
into blocks with a load of Tint/p. Algorithm 18 gives an overview of this strategy.

Lemma 9 The dependency graph partitioning algorithm of Myoupo and Kengne
(2014a) that minimizes the number of communication rounds requires O(n log p)
execution time.

Proof. The initial distance between the bounds of the interval in which the best
value of Tcb is found is Tc/p−Tc/2p = Tc/p. This distance is divided by two until
it reaches the threshold Tc/pk+1. Thus, the number of divisions of this interval is the
largest value of m, such that Tc/2m p≥ Tc/pk+1, i.e. pk ≥ 2m where k× ln p≥m ln2
and thus m≤ k× ln p/ ln2.

For each value of Tcb, all nodes of the DAG are traversed to compute the corre-
sponding value of NB1. Thus, O(n log p) execution time are required to determine
the final value of Tcb. After the construction of the first band, a single traversal of
the rest of the graph is performed for the construction of the other bands. �

Mapping blocks onto processors
Myoupo and Kengne (2014a) are based on the distribution scheme proposed by
Kechid and Myoupo (2008b). They are interested on the consecutive assignment

Mapping blocks onto processors • 87

Algorithm 18 Dependency graph partitioning algorithm of Myoupo and Kengne (2014a)
minimizing the number of communication rounds

1: Tc← 0;
2: for each wiw j ∈ B do . B is the ordered set of nodes
3: Tc← Tc +min{i, j};
4: sup← Tc/p;
5: in f ← Tc/2p;
6: gap← dsup− in f e;
7: Tcb← sup;
8: while gap≥ Tc/p2 do
9: NB1← 0;

10: B′← B;
11: while no end band do
12: current_block← building a block from B′ and Tcb;
13: NB1← NB1 +1;
14: B′← B′ \{current_block};
15: if NB1 ≥ p then
16: in f ← Tcb;
17: else
18: sup← Tcb;
19: gap← dsup− in f e;
20: Tcb← d(sup+ in f)/2e;
21: B′← B\{B1};
22: Tcb← in f ;
23: S← 1;
24: i← 2;
25: while B′ 6= /0 do
26: building the band Bi from B′ and Tcb;
27: S← S+1;
28: B′← B′ \{Bi};
29: i← i+1;
30: return the partitioned DAG;

of blocks of a band Bi to a processor, which minimizes the amount of data to be
communicated during communication rounds. Indeed, this strategy does not allow
processors that hold the blocks of the band Bi+1 to start the evaluation of their
blocks as soon as possible. To solve this problem, Myoupo and Kengne (2014a)
first assigns the first p blocks of the band B1 to p processors, then they assign
the rest of the (NB1− p) blocks to processors P0, . . . ,P(NB1−p). Blocks of the band
B2 are assigned to processors starting with processor P(NB1−p+1). This process is
applied until the last band S.

Mapping blocks onto processors • 88

Figure 30 – Distribution scheme of blocks on four processors proposed by Myoupo and Kengne
(2014a)

So, after the evaluation of the first p blocks of the band B1, the values of the root
nodes are communicated to processors owning blocks of the band B2, which can
immediately start the evaluation of their blocks. At the same time, the (NB1− p)
processors with an additional block on band B1 can evaluate their second block.
Figure 30 illustrates an example of this mapping on four processors.

Theorem 8 In the worst case, to solve the TCP problem, the CGM-based parallel
solution of Myoupo and Kengne (2014a) runs in O

(
n2×S/p

)
execution time with

S communication rounds, such that 2≤ S < p.

2.4.5 - Drawbacks of sequential and CGM-based parallel solutions
The trade-off of minimizing the number of communication rounds and balanc-
ing the load of processors still arises despite the CGM-based parallel solutions of
Kechid and Myoupo (2008b) and Myoupo and Kengne (2014a). Moreover, for this
problem, the computation time represents the largest part of the execution time.
Despite the improved sequential algorithm of Myoupo and Kengne (2014a), an
important observation was not made on how to evaluate the nodes of the DAG.

Mapping blocks onto processors • 89

Figure 31 – Evaluation of the nonleaf node a = w3w6 and dependencies between its cones (a,w3〉,
(a,w2〉, and (a,w1〉 to be computed

In fact, neither Yao (1982), nor Kechid and Myoupo (2008b), nor Myoupo and
Kengne (2014a) were interested in the dependencies between cones. They focused
only on dependencies between nodes. Their solutions have the same drawback. It
is about the unnecessary computation of some cones when evaluating a given node
in the DAG. Figure 31 illustrates dependencies between cones of the nonleaf node
a = w3w6 (see Figure 28) with its two sons b = w3w8 and c = w8w6. Let assume
that all cones of nodes b and c are already computed. It is easy to see that the
cones (c,w6〉, (c,w5〉, and (c,w4〉 (which are in the boxes in Figure 31) will not
be useful for the evaluation of the node a. Indeed, according to the definition of
a given node wiw j with its children wiwk and wkw j such that i < j < k, there will
always be (j− i) computed cones that will not be necessary for the evaluation of
the node wiw j and therefore, disregarding this fact can lead to a significant waste
of time. The solution proposed in this thesis consists in organizing the evaluation
of cones following their dependencies to avoid these unnecessary computations.
Section 2.4.6 describes it more precisely.

2.4.6 - Our fast sequential algorithm
Consider a node b = wiw j such that i < j. All the descendants a = wi′w j′ of the
node b must compute a cone Q = (a,wi〉. It is easy to see from the dynamic-
programming equation (lines 10-13 in Algorithm 14) that each descendant a must
first process the cone Q′ = (a,wi′〉 to compute Q. Consider that B is the ordered
set of nodes in the DAG. By going from B in a top-down manner, i.e. from the
last node w2w1 to the first, a stack δb = {wk}k≤i can be built for each node b. A
new DAG, in which each node b is associated to its stack δb, is obtained. Thus,
his evaluation will consist in computing all cones Q = (b,wk〉 such that k ≤ i and
wk ∈ δb. The first cone Q = (b,wk〉 to process is needed to compute the other cones
Q′ = (b,wk′〉 such that k′ < k. Depending on the nature of b, its stack δb will be
constructed as follows:

Mapping blocks onto processors • 90

Algorithm 19 Building the stack of every node in the DAG

1: B′← the reversed B set; . B is the ordered set of nodes in the DAG
2: push(δw2w1,w1);
3: push(δw1w2,w1);
4: for each b = wiw j ∈ B′ do . consider that i < j
5: if b is not a leaf then
6: δleftChild(b)← δb;
7: if leftChild(b) is not a leaf and top

(
δleftChild(b)

)
6= wi then

8: push
(
δleftChild(b),wi

)
;

9: δrightChild(b)← δb;
10: if rightChild(b) is not a leaf and top

(
δrightChild(b)

)
6= wi then

11: push
(
δrightChild(b),wi

)
;

Figure 32 – A convex polygon P and the new DAG obtained after building the stack of every node.
Elements of the stack are colored red. The leftmost vertex corresponds to the top of
the stack

1 - if b is a leaf or not, then assign δb′ to δb, where b′ is the father of b;

2 - if b is not a leaf, then push the vertex wi onto δb if top(δb) 6= wi. Recall that
the function top returns the top of the stack.

Algorithm 19 gives an overview. In the beginning, the vertex w1 is pushed in the
stacks of the last two nodes w1w2 and w2w1 since they are the root nodes of the
DAG. Next, for each node b, δb is built according to its nature. This algorithm
requires O(n) execution time. Consider again the convex polygon P presented
in Figure 28. Figure 32 shows the new DAG obtained after applying Algorithm
19. The overall number of operations to be performed, obtained by adding up the
smallest indexes of the DAG nodes, is 62. However, when the stack size of every
node in the DAG is added up, it is halved.

Our dynamic-programming solution is then divided into three steps :

Mapping blocks onto processors • 91

Algorithm 20 Our dynamic-programming algorithm to solve the TCP problem
1: for each b = wiw j ∈ B do . B is the ordered set of nodes and consider that i < j
2: while δb is not empty do
3: wk← pop(δb);
4: if b is a leaf then
5: if wk = wi then
6: Partition [Q]← /0; . Q = wiw j
7: else
8: Partition [Q]← Q; . Q = wiw jwk

9: if b is not a leaf then
10: if wk = wi then
11: Partition [Q]← Partition [(leftChild(b),wi〉]∪

Partition [(rightChild(b),wi〉];
12: else
13: Partition [Q]← better of

{
Partition [(b,wi〉]∪wiw jwk ,
Partition [(leftChild(b),wk〉]∪
Partition [(rightChild(b),wk〉]};

14: return Partition [P1,2]∪Partition [P2,1];

1 - identify and organize the 2n cones into a multi-level DAG;

2 - build the stack δb for each cone b using Algorithm 19;

3 - evaluate these cones in a bottom-up manner as organized in step 1. This
step is done by Algorithm 20.

Lemma 10 Our dynamic-programming solution requires O(n) execution time in
some cases.

Proof. In this solution, the DAG changes according to the input data and not as a
consequence of the problem size. It makes it difficult to predict exactly how many
operations are to be performed on each node. However, in some cases, each node
will only have to compute a constant number c� 2n of cones. For example in
Figure 33a, each node will only have to execute one cone in the best case. �

Theorem 9 In the worst case, our dynamic-programming solution requires O
(
n2
)

execution time to solve the TCP problem.

Proof. As there are at most 2n nodes in the DAG, it is deducible from Figure 33b
that there are at most (n−2) cones to compute for a given node in the worst case.

�

Experimental setups • 92

(a) The best case (b) The worst case

Figure 33 – DAG in the best and the worst cases of a convex polygon P

2.4.7 - Experimental results

Experimental setups
This section compares the proposed sequential solution with the previous best se-
quential and CGM-based parallel solutions. This experimentation has been per-
formed on the Dolphin cluster of the MatriCS platform of the University of Picardie
Jules Verne5 using 48 nodes called thin nodes with 48 × 128GB of RAM, and 12
named thick nodes with 12 × 512GB of RAM. Each node is made of two Intel
Xeon Processor E5-2680 V4 (35M Cache, 2.40 GHz), and each of them consists
of 14 cores. All nodes are interconnected with OmniPath links providing 100Gbps
throughput. These algorithms have been implemented in the C programming lan-
guage6, and on the operating system CentOS Linux release 7.6.1810. The MPI
library (OpenMPI version 1.10.4) has been used for inter-processor communica-
tion. These algorithms have been executed on five thin nodes.

Note 1 This experimental environment will also be used for the CGM-based par-
allel solutions described in Chapter 3.

Five random data sets have been generated and tests have been carried out on
each of them. The average of these results is presented according to different values
of the pair (n, p). n is the data size, with values in the set 〈512, 1024, 2048, 4096,
8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152,
53248, 57344, 61440, 65536〉, and p is the number of processors, with values in
the set 〈1, 8, 16, 32〉. The proposed dynamic-programming solution is compared
with the classical sequential algorithm of Yao (1982) and the improved sequential

5. https://www.u-picardie.fr/matrics
6. The source codes are available on this URL : https://github.com/compiii/Fast-Seq-Alg-for-MCOP.

Experimental setups • 93

https://www.u-picardie.fr/matrics
https://github.com/compiii/Fast-Seq-Alg-for-MCOP

algorithm by Myoupo and Kengne (2014a). This solution is also compared with
the CGM-based parallel solution of Kechid and Myoupo (2008b) and Myoupo and
Kengne (2014a). Table 2 gives an overview of the total execution time of these
algorithms. For the CGM-based parallel solutions, it is the sum of the partitioning
time, the computation time and the communication time. The CGM-based par-
allel solution proposed by Kechid and Myoupo (2008b) is named Tcb. Those of
Myoupo and Kengne (2014a) are named Tinit sort and Tmax sort. The first one
focuses on minimizing the number of communication rounds, and the second one
on load balancing (Myoupo and Kengne, 2014a). Figures 34a, 34b, 34c, 34d, and
35 are drawn from results obtained in Table 2.

Evolution of the total execution time
Figure 34a shows that the sequential solution of Myoupo and Kengne (2014a) sig-
nificantly improves the total execution time compared to the sequential algorithm
of Yao (1982). When n = 65536, the execution time has been reduced down to
79.55%. Nevertheless, by avoiding unnecessary computations, our solution re-
duced down to 94.72% the execution time and is ×18.93 faster than the previous
one. It is due to the drastic increase in the number of unnecessary computations
when the data size increases. Figures 34b, 34c, and 34d show that the growth in
number of processors does not outperform our solution. The execution time of Tcb
decreases as the number of processors increases. One of the main causes is the use
of the sequential algorithm of Yao (1982) in the local computation phases. Another
reason is the high partitioning time. Indeed, each processor executes a partitioning
algorithm requiring O(n× p) time. Although Tinit sort and Tmax sort reduce the
complexity of this partitioning algorithm, it uses the sequential solution of Myoupo
and Kengne (2014a) during the local computation phases.

Comparison of our solution and the best CGM-based parallel solution
In Figure 35, we compare our solution with Tinit sort, which is the best CGM-based
parallel solution, on large data sizes. Our solution narrows down the total execution
time to 80.31% and is ×5.07 faster than Tinit sort on thirty-two processors when
n = 65536. It is easy to see the impact that the partitioning time has on the total
execution time. When n = 65536, it is part of 52.67% on eight processors, 61.79%
on sixteen processors, and 68.76% on thirty-two processors. Whatever the data
size, it does not reduce as the number of processors increases. It is because this
partitioning algorithm is not parallel. The ideal partitioning algorithm should be
parallel with a complexity in O(n/p) execution time and O(1) communication
round. Algorithms proposed to date scan the 2n nodes of the DAG to estimate the

Comparison of our solution and the best CGM-based parallel solution • 94

Ta
bl

e
2

–
To

ta
le

xe
cu

tio
n

tim
e

(i
n

se
co

nd
s)

of
se

qu
en

tia
la

nd
C

G
M

-b
as

ed
pa

ra
lle

ls
ol

ut
io

ns
w

hi
le

so
lv

in
g

th
e

TC
P

pr
ob

le
m

Se
qu

en
tia

ls
ol

ut
io

ns
C

G
M

-b
as

ed
pa

ra
lle

ls
ol

ut
io

ns

n
O

ur
so

l.
Ya

o
Ya

o
so

rt
Ti

ni
ts

or
t

Tm
ax

so
rt

Tc
b

p
=

8
p
=

16
p
=

32
p
=

8
p
=

16
p
=

32
p
=

8
p
=

16
p
=

32
51

2
0.

00
1

0.
01

0.
00

1
0.

00
1

0.
00

4
0.

00
8

0.
00

9
0.

02
0.

02
0.

00
6

0.
03

0.
06

10
24

0.
00

1
0.

02
0.

00
1

0.
00

3
0.

00
5

0.
01

0.
02

0.
02

0.
05

0.
01

0.
05

0.
22

20
48

0.
01

0.
11

0.
02

0.
01

0.
01

0.
03

0.
01

0.
01

0.
01

0.
06

0.
18

0.
72

40
96

0.
03

0.
42

0.
09

0.
03

0.
03

0.
03

0.
04

0.
03

0.
05

0.
22

0.
64

2.
55

81
92

0.
07

1.
68

0.
37

0.
12

0.
12

0.
15

0.
16

0.
14

0.
14

0.
86

2.
25

9.
02

12
28

8
0.

12
3.

79
0.

81
0.

27
0.

25
0.

23
0.

34
0.

27
0.

23
1.

97
4.

75
18

.4
4

16
38

4
0.

18
6.

68
1.

41
0.

47
0.

42
0.

39
0.

60
0.

47
0.

42
3.

66
7.

99
28

.8
5

20
48

0
0.

24
10

.4
6

2.
17

0.
73

0.
63

0.
63

0.
92

0.
72

0.
63

5.
67

12
.0

4
42

.4
0

24
57

6
0.

32
15

.0
7

3.
13

1.
03

0.
89

0.
85

1.
31

1.
01

0.
87

8.
08

16
.7

6
57

.8
1

28
67

2
0.

38
20

.5
4

4.
25

1.
39

1.
19

1.
12

1.
76

1.
35

1.
17

10
.8

3
22

.5
2

76
.2

9
32

76
8

0.
45

26
.6

7
5.

52
1.

81
1.

58
1.

43
2.

29
1.

75
1.

51
14

.0
5

29
.2

2
98

.2
4

36
86

4
0.

54
33

.8
4

6.
96

2.
29

1.
96

1.
82

2.
90

2.
22

1.
90

18
.1

6
37

.5
4

12
1.

43
40

96
0

0.
62

41
.9

0
8.

60
2.

83
2.

41
2.

20
3.

59
2.

75
2.

34
22

.6
4

46
.1

3
14

8.
44

45
05

6
0.

70
50

.7
7

10
.4

0
3.

44
2.

94
2.

68
4.

33
3.

36
2.

86
26

.8
1

57
.0

5
17

9.
97

49
15

2
0.

80
60

.5
4

12
.3

9
4.

13
3.

53
3.

26
5.

21
3.

98
3.

42
34

.2
6

70
.9

0
22

1.
40

53
24

8
0.

89
71

.1
5

14
.5

0
4.

92
4.

19
3.

75
6.

16
4.

76
4.

04
40

.5
1

86
.8

7
27

0
57

34
4

0.
98

82
.6

2
16

.8
2

5.
73

4.
91

4.
43

7.
18

5.
56

4.
76

49
.3

2
10

8.
69

33
6.

44
61

44
0

1.
07

94
.9

3
19

.2
9

6.
66

5.
67

5.
13

8.
33

6.
45

5.
56

58
.4

8
12

8.
26

44
2.

31
65

53
6

1.
16

10
7.

40
21

.9
6

7.
74

6.
49

5.
89

9.
55

7.
34

6.
31

63
.9

0
15

7.
93

49
4.

87

Comparison of our solution and the best CGM-based parallel solution • 95

 0

 3

 6

 9

 12

 15

 18

 21

 24

 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(s

ec
)

Data size

Yao
Yao sort
Our solution

(a) Our solution versus the sequential solutions

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(s

ec
)

Data size

Tmax sort
Tinit sort
Tcb
Our solution

(b) Our solution versus the CGM-based parallel so-
lutions on eight processors

 0

 1

 2

 3

 4

 5

 6

 7

 8

 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(s

ec
)

Data size

Tmax sort
Tinit sort
Tcb
Our solution

(c) Our solution versus the CGM-based parallel so-
lutions on sixteen processors

 0

 1

 2

 3

 4

 5

 6

 7

 8192 16384 24576 32768 40960 49152 57344 65536

T
im

e
(s

ec
)

Data size

Tmax sort
Tinit sort
Tcb
Our solution

(d) Our solution versus the CGM-based parallel so-
lutions on thirty-two processors

Figure 34 – Comparison of the total execution time between our solution versus the sequential
solution of Yao (1982) and CGM-based parallel solutions of Kechid and Myoupo
(2008b) and Myoupo and Kengne (2014a) while solving the TCP problem

overall computational load to distribute tasks equitably onto processors. However,
in many cases our solution requires O(n) time. Thus, to parallelize our solution,
the partitioning techniques of this DAG must be totally overhauled.

2.5 - Summary

In this chapter, we presented the work done on parallelization of sequential algo-
rithms that solve the MPP, the MCOP, the TCP problem, and the OBST problem.
On the CGM model, the proposed parallel solutions led to a trade-off between min-
imizing the number of communication rounds and balancing the load of processors.
In (Kechid and Myoupo, 2008a, 2008b, 2009), the strategy consists in subdividing
the DAG into small-size blocks to promote the load balancing. In (Kengne and
Myoupo, 2012; Myoupo and Kengne, 2014a, 2014b), the strategy consists in sub-
dividing the DAG into large-size blocks to minimize the number of communication
rounds. Kengne et al. (2016) proposed a CGM-based parallel solution that gives the

Summary • 96

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 8 16 32 1 8 16 32 1 8 16 32 1 8 16 32 1 8 16 32

T
im

e
(s

ec
)

Data size

Partitioning time
Comp. time + Comm. time

6553657344491524096032768

Figure 35 – Comparison of our solution and the best CGM-based parallel solution while solving
the TCP problem

end-user the choice to optimize one criterion according to their own goal. However,
the common problem related to these criteria, regardless of the end-user’s choice,
is the high global communication time that is caused by the high latency time of
processors.

For the MCOP and the TCP problem, we proposed a fast sequential algo-
rithm which, while not solving this trade-off, is faster than previous sequential
and CGM-based parallel algorithms (Kechid and Myoupo, 2008b; Myoupo and
Kengne, 2014a; Yao, 1982). We noticed that these solutions did not take into ac-
count the dependencies of cones during their evaluations. They evaluated cones
according to their order of precedence. We have constructed for each node of the
DAG a stack of cones on which it depends, through an algorithm that requires
O(n) execution time in the worst case, and we have evaluated each node from this
stack. Experimental results performed on the MatriCS platform showed that our
sequential algorithm is ×18.93 faster than the sequential algorithm of Yao (1982)
and ×5.07 faster than the CGM-based parallel solution of Myoupo and Kengne
(2014a) on thirty-two processors. Chapter 3 will outline CGM-based parallel so-
lutions that reconcile these conflicting objectives to solve the MPP and the OBST
problem.

Summary • 97

CHAPTER 3
Reconciliation of the Minimization of
the Number of Communication Rounds
and the Load-Balancing of Processors

CONTENTS

3.1 - Introduction . 98
3.2 - Dynamic graph model of the OBST problem 99
3.3 - First dynamic graph partitioning : irregular partitioning technique . . 103
3.4 - Second dynamic graph partitioning : k-block splitting technique . . . 121
3.5 - Third dynamic graph partitioning : four-splitting technique 133
3.6 - Summary . 149

3.1 - Introduction

This chapter begins by designing, in Section 3.2, a dynamic graph model to solve
the OBST problem and showing that each instance of this problem corresponds to
a one-to-all shortest path problem in this dynamic graph (like in (Bradford, 1994)
to solve the MPP). Thereafter, it describes our CGM-based parallel solutions that
address the trade-off of minimizing the number of communication rounds and bal-
ancing the load of processors. In computation rounds, the sequential algorithm of
Godbole (1973) is used to solve the MPP and the sequential algorithm of Knuth
(1971) is used to solve the OBST problem. These solutions are respectively based
on three dynamic graph partitioning techniques presented in Sections 3.3, 3.4, and
3.5 : the irregular partitioning technique, the k-block splitting technique, and the
four-splitting technique. In these sections, experimental results are presented to
show the performance of each technique.

• 98

3.2 - Dynamic graph model of the OBST problem

Denote by K = 〈k1,k2, . . . ,kn〉 a set of n sorted keys, such that k1 < k2 < · · · < kn.
Some searches may concern values that do not belong to K; so consider a set of
(n+ 1) dummy keys D = 〈d0,d1, . . . ,dn〉 representing values outside K. For each
key ki (respectively dummy key di), pi (respectively qi) is the probability that a
search concerns ki (respectively di). The goal is to build an optimal binary search
tree from these keys. Each key ki is an internal node and each dummy key di is a
leaf. The DP formalization of the OBST problem has been carried out in Section
2.3.1. Let us define the dynamic graph Dn of the OBST problem by a set of vertices
(i, j) and a set of edges, such that 0≤ i≤ j ≤ n.

Two vertices (i, j) and (k,m) are on the same row (respectively on the same
column) if i = k (respectively j = m). They are on the same diagonal (j− i+ 1)
if (j− i) = (m− k). Dn consists of (n+ 1) diagonals of vertices, (n+ 1) rows of
vertices, and (n+ 1) columns of vertices. The cost of the shortest path from an
added virtual vertex (−1,−1) to any vertex (i, j) is stored in SP[i, j], where SP is
a shortest path matrix of size (n+1).

The unit edges are denoted by→, ↑, and↗. The unit edge (i, j)→ (i, j+1) has
a weight equal to q j+1 +w(i, j+ 1) and represents the associative product (ki+1 •
· · · •k j)•k j+1. It is a binary subtree of root k j+1 whose the left part contains the set
of keys Ki, j = 〈ki+1,ki+2, . . . ,k j〉 and the set of dummy keys Di, j = 〈di,di+1, . . . ,d j〉,
and the right part contains the dummy key d j+1. Similarly, the unit edge (i, j) ↑
(i− 1, j) has a weight equal to qi−1 +w(i− 1, j) and represents the product ki •
(ki+1 • · · · • k j), corresponding to a binary subtree of root ki whose the left part
contains the dummy key di−1, and the right part contains the set of keys Ki, j−1 =

〈ki+1,ki+2, . . . ,k j−1〉 and the set of dummy keys Di, j = 〈di,di+1, . . . ,d j〉. For all i
such that 0 ≤ i≤ n, the arrows↗ represent unit edges from (−1,−1) to (i, i) and
their weights are equal to qi.

To represent the split tree, that is, a tree splits into two subtrees, Dn is made
up of edges called jumps. Denote a horizontal jump by ⇒, and a vertical jump
by ⇑. The vertical jump (i, j) ⇑ (s, j) is (i− s) units long and the horizontal jump
(i, j)⇒ (i, t) is (t− j) units long. All non-jump edges are unit edges of length 1.
The shortest path to the node (i, j) through the jumps (i,a)⇒ (i, j) and (a+1, j) ⇑
(i, j), represented by the product (ki+1 • · · · • ka) • (ka+1 • · · · • k j), define the same
binary subtree of root ka+1. The left part of this subtree contains the set of keys
Ki,a = 〈ki+1,ki+2, . . . ,ka〉 and the set of dummy keys Di,a = 〈di,di+1, . . . ,da〉, and
the right part contains the set of keys Ka+1, j = 〈ka+2,ka+3, . . . ,k j〉 and the set of

Dynamic graph model of the OBST problem • 99

(a) Dynamic graph D3 (b) Dynamic graph D′3

Figure 36 – Dynamic graphs D3 and D′3 for a problem of size n = 3

dummy keys Da+1, j = 〈da+1,da+2, . . . ,d j〉. Definition 5 gives the formal definition
of Dn and Figure 36a depicts D3, which refers to a problem of size n = 3.

Definition 5 Given a set of n sorted keys, a dynamic graph Dn = (V,E ∪E ′) is
defined as a set of vertices,

V = {(i, j) : 0≤ i≤ j ≤ n}∪{(−1,−1)}

a set of unit edges,

E = {(i, j)→ (i, j+1) : 0≤ i≤ j < n}∪{(i, j) ↑ (i−1, j) :

0 < i≤ j ≤ n}∪{(−1,−1)↗ (i, i) : 0≤ i≤ n}

a set of jumps,

E ′ = {(i, j)⇒ (i, t) : 0≤ i < j < t ≤ n}∪{(s, t) ⇑ (i, t) :

0≤ i < s < t ≤ n}

a weight function W such that

W ((i, j)→ (i, j+1)) = q j+1 +w(i, j+1) 0≤ i≤ j < n
W ((i, j) ↑ (i−1, j)) = qi−1 +w(i−1, j) 0 < i≤ j ≤ n
W ((−1,−1)↗ (i, i)) = qi 0≤ i≤ n
W ((i,k)⇒ (i, j)) = SP[k+1, j]+w(i, j) 0≤ i < k < j ≤ n
W ((k+1, j) ⇑ (i, j)) = SP[i,k]+w(i, j) 0≤ i≤ k < j ≤ n

There exists a similarity between the shortest path matrix SP and the DP table
Tree (see Equation (2.4)) because the value of SP[i, j] in the dynamic graph Dn is

Dynamic graph model of the OBST problem • 100

identical to Tree[i, j] in the DP table. Computing a shortest path from (−1,−1)
to (i, j) gives the minimum cost of finding the OBST represented by the product
ki+1 • ki • · · · • k j, where 0 ≤ i < j ≤ n. Therefore, finding the shortest path from
(i, j) to (0,n) gives the minimum cost of finding the OBST represented by the
product k1 • · · · • ki •P• k j+1 • · · · • kn, where P = (ki+1 • · · · • k j).

Lemma 11 For all vertices (i,k) in Dn, SP[i,k] can be computed by a path having
edges of length no larger than d(k− i)/2e.

Proof. Suppose that (i, j)⇒ (i,k) is in a shortest path to (i,k) and k− j > d(k−
i)/2e. Hence, SP[i,k] = SP[i, j] +W ((i, j) ⇒ (i,k)) = SP[i, j] + SP[j + 1,k] +
w(i,k). But W ((j + 1,k) ⇑ (i,k)) = SP[i, j] +w(i,k), so SP[i,k] = SP[j + 1,k] +
W ((j+1,k) ⇑ (i,k)). The jump (j+1,k) ⇑ (i,k) is of length j+1− i. Therefore,
since j+ 1− i+ k− j = k− i+ 1 and k− j > d(k− i)/2e, it can be deduced that
j+1− i≤ d(k− i)/2e. On the other hand, a shortest path to (j+1,k) cannot con-
tain a jump longer than k− (j+1). Since k− (j+1) < k− j, this lemma follows
inductively. �

The proof of Lemma 11 leads directly to Theorem 10.

Theorem 10 (Duality Theorem) If a shortest path from (−1,−1) to (i, j) con-
tains the jump (i,k)⇒ (i, j), then there is a dual shortest path containing the unit
edge (k+1, j) ↑ (i, j) when 0≤ i = k < j ≤ n and the jump (k+1, j) ⇑ (i, j) when
0≤ i < k < j ≤ n.

Theorem 10 is fundamental because it makes possible to avoid redundant com-
putations when looking for the value of the shortest path of Dn’s vertices. Indeed,
for any vertex (i, j), among all its shortest paths containing jumps, only those that
contain only horizontal jumps are evaluated. So, the input graph of our CGM-based
parallel solutions is a subgraph of Dn denoted by D′n, in which the set of edges from
(i,k) to (i, j), such that 0 ≤ i = k < j ≤ n, and from (k+ 1, j) to (i, j), such that
0≤ i < k < j ≤ n, is removed. Figure 36b shows the dynamic graph D′3.

From Figures 13b and 36b, a difference between our dynamic graph D′n and the
one proposed by Bradford (1994) to solve the MPP (described in Section 2.2.3) can
be noticed. Indeed, Bradford (1994) only removed vertical jumps in the dynamic
graph D′n. However, when 0≤ i = k < j ≤ n, the shortest path going from (i,k) to
(i, j), corresponding to the horizontal jump (i,k)⇒ (i, j), has the same value as the
one from (k+1, j) to (i, j), corresponding to the unit edge (k+1, j) ↑ (i, j). This
is the reason why in addition to removing vertical jumps, these horizontal jumps in
D′n have also been removed to avoid more redundant computations.

Dynamic graph model of the OBST problem • 101

Theorem 11 Each instance of an OBST problem of size n corresponds to a dy-
namic graph Dn, where SP[i, j] is equal to Tree[i, j]. As a result, the shortest path
from the virtual vertex (−1,−1) to the vertex (0,n) in Dn solves Tree[0,n].

Proof. To prove this theorem, it is sufficient to show that the cost of every path
from (−1,−1) to (0,n) in Dn corresponds to the cost of construction of an OBST of
n elements associative product. In addition, for every tree of n elements associative
product, there is a corresponding path in Dn where both the path and the associative
product have the same cost.

We only show that for each path from (−1,−1) to (0,n) in Dn, there is a cor-
responding associative product of n elements (or n−1 operators "•-s"). This proof
is by induction on lengths of associative products. Consider D4 and the prod-
uct k1 • k2 • k3 • k4. In D4, the jump (0,2)⇒ (0,4) has weight SP[3,4] +w(0,4).
Therefore, the cost of a path using this jump corresponds to the cost of the as-
sociative product (k1 • k2) • (k3 • k4). A symmetric argument holds for the jump
(3,4) ⇑ (0,4). Hence for each associative product there is a path, and for each path
there is an associative product.

Now suppose that the theorem holds for all n ≤ k, where k ≥ 4 and n is the
number of associative operators in a given associative product. Thus, the inductive
hypothesis is for any path in Dn from (−1,−1) to (0,n), where n ≤ k, there is a
corresponding associative product of n elements with the same cost. Without loss
of generality, consider horizontal jumps. For m = 2k, let’s take a path in Dm from
(−1,−1) to (0,m). In the following, it will show that for all m ≤ 2k, there is a
corresponding m elements associative product of the same cost (this proof holds
for both even and odd length products because Dk−1 is a proper subgraph of Dk).

The structure of Dm along with the inductive hypothesis gives:

1 - The cost of a path from (−1,−1) to any node (i, j), such that j− i≤ k, cor-
responds to the cost of a binary search tree of ki+1 • · · · • k j by the inductive
hypothesis. Since the product ki+1•· · ·•k j contains at most k−1 associative
operators ("•-s").

2 - The cost of a path from (i, t) to (1,2k) = (0,m), (1,2k) = (0,m), such that
k ≤ t − i < m, corresponds to the cost of a binary search tree of k1 • · · · •
ki •P•kt+1 • · · ·•km, where P = (ki+1 • · · ·•kt), by the inductive hypothesis.
Since P consists of at least k elements, the product k1 • · · · • ki •P • kt+1 •
· · · • km consists of at most (k−1) associative operators ("•-s").

Suppose that path from (−1,−1) to (1,2k) includes the jump (i, j)⇒ (i, t). Then
assume that j−i< k≤ t−i (otherwise by the inductive hypothesis and the two facts

Dynamic graph model of the OBST problem • 102

above, the proof is complete). Therefore, consider the jump (i, j)⇒ (i, t), where
j− i < k≤ t− i. By the inductive hypothesis and the fact 2, the cost of a path from
(i, t) to (0,m) corresponds to the cost of a binary search tree of k1 • · · · • ki •P •
kt+1 • · · ·•km, where P = (ki+1 • · · ·•kt). Again by the inductive hypothesis and the
fact 1 above, the cost of a path to (i, j) corresponds to the cost of a binary search
tree of ki+1 • · · · • k j, where ki • · · · • k j is a subproduct of P. Furthermore, the jump
(i, j)⇒ (i, t) is a part of a path from (−1,−1) to (0,m) whose cost corresponds to
the cost of the product (ki+1 • · · · • k j) • (k j+1 • · · · • kt). This is because its cost is
SP[j+1, t]+w(i, t) and because t− (j+ i)< j− i, the inductive hypothesis can be
applied. Vertical jumps follow similarly. �

Corollary 1 Any solution of a one-to-all shortest path problem can be used on our
dynamic graph D′n to solve the OBST problem.

Figure 37 shows the dynamic graph D′3 that was filled from a set of three sorted
keys with probabilities given in Table 1. The weights of edges were computed us-
ing the shortest path matrix SP (which is similar to the DP table Tree) and starting
with the first diagonal containing the vertices (0,0), (1,1), (2,2), and (3,3), then
the second diagonal containing the vertices (0,1), (1,2), and (2,3), then the third
diagonal containing the vertices (0,2) and (1,3), and finally the last diagonal con-
taining the vertex (0,3). The shortest path from (−1,−1) to (0,3) is colored in red
in Figure 37. It is equal to 0.03+ 0.4+ 1.37 = 1.8 (note that it is the same value
as Tree [0,3] in Figure 23a). The optimal binary search tree corresponding to this
path is also depicted. Now let’s outline our first dynamic graph partitioning.

3.3 - First dynamic graph partitioning : irregular partitioning
technique

The irregular partitioning technique consists in subdividing the shortest path matrix
into submatrices (blocks) of varying size (irregular size) to allow a maximum of
processors to remain active longer. The idea is to increase the number of blocks
of diagonals whose this number is lower or equal to half of the first one through
the block fragmentation technique. This technique aims to reduce the block size
by dividing it into four subblocks. Figure 38 shows the subblock sizes obtained by
fragmenting a block of arbitrary size α×β.

To minimize the number of communication rounds, it begins to subdivide the
shortest path matrix with large-size blocks from the largest diagonal (the first diag-

First dynamic graph partitioning : irregular partitioning technique • 103

Figure 37 – Dynamic graph D′3 filled while determining the optimal binary search tree from prob-
abilities of three sorted keys given in Table 1

Figure 38 – Fragmentation of a block of size α×β

onal of blocks) to the diagonal located just before the one whose number of blocks
is half of the first one. Then, since the number of blocks per diagonal quickly be-
comes smaller than the number of processors, to increase the number of blocks of
these diagonals and allow a maximum of processors to remain active, it fragments
all the blocks belonging to the next diagonal until the last one to catch up or exceed
by one notch the number of blocks of the first diagonal. It reduces the idle time

First dynamic graph partitioning : irregular partitioning technique • 104

of processors and promotes the load balancing. This process is repeated k time,
after which the block sizes are no longer modify, and the rest of the partitioning
becomes traditional because an excessive fragmentation would lead to a drastic
rise of the number of communication rounds. After performing k fragmentations,
a block belonging to the lth level of fragmentation have been subdivided l times,
0≤ l ≤ k.

In the following, let us consider that the shortest path matrix is of size n for both
the MPP and the OBST problem. Formally, denoting by f (p) =

⌈√
2p
⌉
, θ(n, p) =⌈

n
f (p)

⌉
, and θ(n, p, l) =

⌈
θ(n, p)

2l

⌉
, we subdivide the shortest path matrix SP into

blocks denoted by SM(i, j). SM(i, j) is a matrix of size θ(n, p, l)×θ(n, p, l) belong-
ing to the lth level of fragmentation. Equation (3.1) shows entries of SP delimiting
a block SM(i, j), such that 1≤ i≤ j ≤ n :

SM(i, j) =

 SP[i, j−θ(n, p, l)+1] · · · SP[i, j]
... · · · ...

SP[i+θ(n, p, l)−1, j−θ(n, p, l)+1] · · · SP[i+θ(n, p, l)−1, j]

(3.1)

Figures 39a, 39b, 39c, and 39d illustrate four scenarios of this partitioning for
n = 32, k ∈ {1,2}, and p ∈ {3, 4, 5, 6, 7, 8}. The number in each block represents
the diagonal in which it belongs. In Figure 39d, there are four diagonals of blocks
when no fragmentation is performed (like in Figure 18c). Since the number of
blocks of the third diagonal is equal to the half of the first, the first fragmentation
is performed on the block of this diagonal (the blocks of size 8× 8 is divided in
four blocks of size 4× 4) and the number of diagonals of blocks increases up to
three (see Figure 39c). Then, since the number of blocks of the sixth diagonal is
equal to the half of the first, the second fragmentation is performed on the blocks
of this diagonal (the blocks of size 4×4 is divided in four blocks of size 2×2) and
the number of diagonals of blocks increases up to three. Finally, the shortest path
matrix contains ten diagonals of blocks.

Remark 1 Some relevant points can be noticed about this partitioning :

1 - the blocks of the first diagonal are upper triangular matrices of θ(n, p) rows
and θ(n, p) columns;

2 - all the blocks are usually not full when n mod
(
2k× f (p)

)
6= 0; for example

in Figure 39b where 32 mod
(
22×3

)
= 8 6= 0;

3 - a block belonging to the lth level of fragmentation is full if it is a non-
triangular matrix of size θ(n, p, l)×θ(n, p, l);

First dynamic graph partitioning : irregular partitioning technique • 105

(a) p ∈ {3, 4} and k = 1 (b) p ∈ {3, 4} and k = 2

(c) p ∈ {5, 6, 7, 8} and k = 1 (d) p ∈ {5, 6, 7, 8} and k = 2

Figure 39 – Irregular partitioning technique of the shortest path matrix for n = 32, k ∈ {1,2}, and
p ∈ {3, 4, 5, 6, 7, 8}. For p ∈ {3, 4}, SP is partitioned into fifteen blocks when k = 1
and into twenty-four blocks when k = 2. For p ∈ {5, 6, 7, 8}, SP is partitioned into
nineteen blocks when k = 1 and into twenty-eight blocks when k = 2

4 - one fragmentation increases up to (d f (p)/2e+1) the number of diagonals
(see proof of Lemma 13);

5 - when f (p) is odd, the number of blocks in a diagonal after each fragmenta-
tion exceeds by one notch the number of blocks of the first diagonal. This is
illustrated in Figure 39a, where there are three blocks in the first diagonal
and four blocks in third diagonal.

First dynamic graph partitioning : irregular partitioning technique • 106

Lemma 12 The number of blocks of the shortest path matrix after partitioning is
a function of k (the number of fragmentations) and is equal to:

C =
S(S+1)

2
+

k
2

[
(S+1)(S+2∆)−

⌈
S
2

⌉(⌈
S
2

⌉
−1
)]

with S = f (p) and ∆ = (S mod 2).

Proof. After partitioning, there is exactly S(S+1)/2−dS/2e (dS/2e+1)/2 larger-
size blocks. Depending on the parity of S, two scenarios can arise :

1 - When S is even, there is (k− 1)× (S(S + 1)/2− dS/2e (dS/2e − 1)/2)
blocks in diagonals from the first to the (k− 1)th fragmentation (for ex-
ample the second, the third, and the fourth diagonal on Figure 39b). This
number increases up to (S(S+1)/2+ dS/2e) blocks after the kth fragmen-
tation.

2 - When S is odd, the principle is the same as in the previous scenario, except
that here the fragmentation increases up to (S+1) additional blocks on the
initial block numbers (see point 5 of Remark 1).

Denote by ∆ = (S mod 2) the variable, which determines the parity of S. Thus, we
have:

C = (k−1)×

(
S(S+1)−

⌈S
2

⌉(⌈S
2

⌉
−1
)

2
+∆(S+1)

)
+

⌈
S
2

⌉
+

S(S+1)
2

+∆(S+1)+
S(S+1)−

⌈S
2

⌉(⌈S
2

⌉
+1
)

2

= (k−1)×
(S+1)(S+2∆)−

⌈S
2

⌉(⌈S
2

⌉
−1
)

2
+(S+1)(S+∆)+

⌈
S
2

⌉
1−
⌈S

2

⌉
2

=
S(S+1)

2
+

k
2

[
(S+1)(S+2∆)−

⌈
S
2

⌉(⌈
S
2

⌉
−1
)]

�

Lemma 13 Our irregular partitioning technique of the dynamic graph induces
f (p)+k×(d f (p)/2e+1) diagonal of blocks when the blocks undergo k successive
fragmentations.

Proof. If no fragmentation is performed (if k = 0), then there are f (p) diago-
nals. Suppose there are k fragmentations. One fragmentation increases up to
(d f (p)/2e+ 1) the number of diagonals. Indeed, a fragmentation is performed

First dynamic graph partitioning : irregular partitioning technique • 107

when the number of blocks of a diagonal is equal to d f (p)/2e. This fragmenta-
tion, which decreases the size of blocks by 1/4, creates a diagonal of d f (p)/2e
blocks; then the following diagonals contain successively 2× d f (p)/2e blocks,
(2×d f (p)/2e−1) blocks,. . ., (d f (p)/2e+1) blocks. This is equal to (d f (p)/2e+
1) diagonals (for example the second, the third, and the fourth diagonal on Figure
39b). At the next diagonal, another fragmentation is done. We conclude from all
this that after k fragmentations, we have f (p)+ k× (d f (p)/2e+1) diagonals. �

3.3.1 - Blocks’ dependency analysis

Blocks’ dependency of the MPP
Dependencies between blocks is given by Theorem 12, which is derived from Lem-
mas 1 and 2. It shows that blocks on the same diagonal are independent.

Theorem 12 (Blocks’ dependency) To evaluate the shortest paths of nodes of the
block SM(i, j) belonging to the lth level of fragmentation, the shortest path values
to every node in blocks SM(i, j−θ(n, p, l)), SM(i, j− 2×θ(n, p, l)),. . .,SM(i, j−
(u− 1)× θ(n, p, l)), and SM(i+ θ(n, p, l), j), SM(i+ 2× θ(n, p, l), j),. . .,SM(i+
(u−1)×θ(n, p, l), j) are required, where u = d(j− i)/θ(n, p, l)e.

Figure 40 illustrates an example of dependencies of two blocks SM(i, j) and
SM(h, l) with other blocks (the most shaded blocks). Evaluating the shortest paths
of nodes of blocks belonging to the same diagonal can be carried out in parallel.

Blocks’ dependency of the OBST problem
Figures 41a and 41b respectively show an example of dependencies and extremities
of a block SM(i, j) belonging to the lth level of fragmentation after applying the
irregular partitioning technique. The extremities of SM(i, j) are defined by :

• the leftmost upper entry LUEi j = (i, j−θ(n, p, l)+1);

• the rightmost upper entry RUEi j = (i, j);

• the leftmost lower entry LLEi j = (i+θ(n, p, l)−1, j−θ(n, p, l)+1);

• the rightmost lower entry RLEi j = (i+θ(n, p, l)−1, j).

Figure 41a shows eight points (A, B, C, D, E, F , G, and H) that identify blocks on
which the block SM(i, j) depends :

• A = Tree
[
LUEi, j−3×θ(n,p,l)−1

]
Blocks’ dependency of the OBST problem • 108

Figure 40 – Dependencies of two blocks SM(i, j) and SM(h, l) after applying the irregular parti-
tioning technique

• B = Tree
[
LUEi, j−θ(n,p,l)−2

]
• C = Tree

[
LLEi, j−θ(n,p,l)−2

]
• D = Tree

[
LLEi, j−3×θ(n,p,l)−1

]
• E = Tree

[
LLEi+θ(n,p,l)+1, j

]
• F = Tree

[
RLEi+θ(n,p,l)+1, j

]
• G = Tree

[
RLEi+3×θ(n,p,l), j

]
• H = Tree

[
LLEi+3×θ(n,p,l), j

]
As in (Kengne et al., 2016), all lower blocks and subblocks (a part of a block)
that are in the same row and column as the block SM(i, j) are no longer absolutely
required to evaluate SM(i, j) because of the speedup of Knuth (1971), which does
not allow estimating the exact load of a block before its evaluation (Kengne, 2014).
The blocks on which the block SM(i, j) depends can be carried out in parallel
because they are not located on the same diagonal as SM(i, j) and those belonging
to the same diagonal are independent.

Remark 2 To minimize the amount of data exchanged between processors in com-
munication rounds, each processor must communicate only the subblock of its
block, corresponding to the size of the target block.

Blocks’ dependency of the OBST problem • 109

(a) Dependencies of SM(i, j) (b) Extremities of SM(i, j)

Figure 41 – Dependencies and extremities of a block SM(i, j) after applying the irregular parti-
tioning technique

3.3.2 - Mapping blocks onto processors
We use a snake-like mapping scheme introduced in (Kengne and Myoupo, 2012)
to allow some processors to evaluate at most one block more than the others. This
scheme consists of assigning all blocks of a given diagonal from the leftmost upper
corner to the rightmost lower corner. This process is reiterated until a block has
been assigned to each processor, starting from processor P0 and traveling through
the blocks with a snake-like path. Figure 42 illustrates this mapping on six proces-
sors.

This mapping allows the processors to remain active as soon as possible. It
also ensures the load balancing because it distributes equally small and large size
blocks among processors. However, it does not optimize communications (see
more details in Section 2.2.5, page 60).

Lemma 14 After partitioning the shortest path matrix with the irregular partition-
ing technique and applying the snake-like mapping, the maximum number of blocks
per processor is (3k+2). k is the number of fragmentations performed.

Proof. Depending on the parity of f (p), the following two scenarios can happen:

Blocks’ dependency of the OBST problem • 110

Figure 42 – Snake-like mapping on six processors when k = 1

1 - when f (p) is odd, each processor has to evaluate at most one larger-size
block, 3(k− 1) blocks in the diagonals from the first to the (k− 1)th frag-
mentation and 4 blocks after the kth fragmentation; thus 1+3(k−1)+4 =

(3k+2) blocks in total;

2 - when f (p) is even, each processor has to evaluate at most two larger-size
blocks, 2(k−1) blocks in the diagonals from the first to the (k−1)th frag-
mentation and 3 blocks after the kth fragmentation; thus 2+2(k−1)+3 =

(2k+3) blocks in total.

Since 3k + 2 ≥ 2k + 3 when k ≥ 1, then each processor has to evaluate at most
(3k+2) blocks. �

3.3.3 - CGM-based parallel algorithm for solving the MPP
To solve the MPP, our CGM-based parallel algorithm is a succession of f (p)+
k× (d f (p)/2e+1) similar steps in which the blocks are evaluated in a progressive
fashion as in (Kechid and Myoupo, 2009; Kengne and Myoupo, 2012). Thus, eval-
uating the shortest path cost of nodes of a block belonging to the diagonal d starts
at the diagonal dd/2e. The overall structure is given by Algorithm 21. After the
computation of blocks on diagonal d (line 3 in Algorithm 21), each block is for-
warded (line 4 in Algorithm 21) to processors that need these blocks for updating

Blocks’ dependency of the OBST problem • 111

Algorithm 21 Our CGM-based parallel algorithm based on the irregular partitioning tech-
nique to solve the MPP

1: maxDiag← f (p)+ k× (d f (p)/2e+1);
2: for d = 1 to maxDiag do
3: Finalization of computations of the shortest path costs to nodes in blocks

belonging to the diagonal d;
4: Communication of block SM(i, j) of current diagonal to processors that hold

upper and right blocks;
5: Update the shortest path costs to each block belonging to diagonals (d +1,d+

2, . . . ,min{2× (d−1),maxDiag});

Algorithm 22 Finalization phase using in Algorithm 21 to evaluate blocks SM(i, j) be-
longing to the lth level of fragmentation

1: for d = (j− i−θ(n, p, l)) to (j− i) do
2: for each node (a,b) of diagonal d belonging to SM(i, j) do
3: SP[a,b]←min{SP[a,b], weight of paths whose final edge are jumps coming

from block SM(i, i+θ(n, p, l)), weights of paths whose final edges are
internal jumps, weights of paths whose final edges are unit edges};

Algorithm 23 Updating phase using in Algorithm 21 to refresh the shortest path costs to
nodes of blocks SM(i, j) belonging to the lth level of fragmentation

1: for d = (j− i−θ(n, p, l)) to (j− i) do
2: M1← matrix-multiplication(+,min) (SM(i,h+ i−1), SM(h+ i−1, j));
3: M2← matrix-multiplication(+,min) (SM(i, j−h+1), SM(j−h+1, j));
4: SP[i, j]←min{SP[i, j],M1,M2};

(line 5 in Algorithm 21) or for finalizing (line 3 in Algorithm 21) the computations
of values in next steps. According to Theorem 3, it is deducible that the updates
for a block SM(i, j) belonging to the lth level of fragmentation are equivalent to
a matrix multiplication (+,min) of matrices SM(i,k) and SM(k−θ(n, p, l)+2, j).
Algorithms 22 and 23 show the pseudocodes of finalization and updating phases in
Algorithm 21.

Theorem 13 Our CGM-based parallel solution based on the irregular partition-
ing technique requires O

(
n3/p

)
execution time with d

√
2pe+ k×

(⌈
d
√

2pe
2

⌉
+1
)

communication rounds in the worst case to solve the MPP. k is the number of frag-
mentations performed.

Proof. Let S = f (p) = d2pe. During the computation rounds, evaluating each
block of a diagonal belonging to the lth level of fragmentation through the se-
quential algorithm of Godbole (1973) (used in Algorithm 22) and the sequential
multiplication of two matrices (used in Algorithm 23) requires O

(
n3

23l×(2p)3/2

)
=

Blocks’ dependency of the OBST problem • 112

Algorithm 24 Our CGM-based parallel algorithm based on the irregular partitioning tech-
nique to solve the OBST problem

1: for d = 1 to f (p)+ k× (d f (p)/2e+1) do
2: Computation of blocks belonging to the round d using Algorithm 11;
3: Communication of entries (Tree and Cut tables) required for computing each

block of rounds {d +1,d +2, . . . , f (p)+ k× (d f (p)/2e+1)};

O
(

n3

8l×p
√

p

)
local computation time. So, from the proof of Lemma 13, the evalua-

tion of each diagonal of blocks required :

D = O
(

n3

p
√

p

)
×
⌊

S
2

⌋
+O

(
n3

8× p
√

p

)
×
(⌈

S
2

⌉
+1
)
+O

(
n3

82× p
√

p

)
×(⌈

S
2

⌉
+1
)
+ · · ·+O

(
n3

8k× p
√

p

)
×
(⌈

S
2

⌉
+1
)
+O

(
n3

8k× p
√

p

)
×
⌈

S
2

⌉
= O

(
n3

p

)
+O

(
n3

p
√

p

)
×
(⌈

S
2

⌉
+1
)[

1
8
+

1
82 + · · ·+

1
8k

]
+O

(
n3

8k× p

)
= O

(
n3

p

)
Therefore, this algorithm requires O

(
n3/p

)
execution time. The number of com-

munication rounds is derived from Lemma 13. �

Remark 3 When k = 0, our CGM-based parallel solution based on the irregular
partitioning technique to solve the MPP is reduced to the one in (Kengne and
Myoupo, 2012), running in O

(
n3/p

)
execution time with

⌈√
2p
⌉

communication
rounds.

3.3.4 - CGM-based parallel algorithm for solving the OBST
problem

To solve the OBST problem, our CGM-based parallel algorithm evaluates the val-
ues of shortest paths to each node of a block, starting from the first diagonal of
blocks to the diagonal f (p) + k× (d f (p)/2e+ 1), by using the sequential algo-
rithm of Knuth (1971) in computation rounds; although it does not allow predict-
ing before the beginning of the computation of the block SM(i, j), which will be
the values necessary for its evaluation. This is why the blocks are evaluated in a
non-progressive fashion, that is, the evaluation of blocks of the diagonal d start
after computing blocks of the diagonal (d−1). Algorithm 24 draws a big picture.

Blocks’ dependency of the OBST problem • 113

Theorem 14 Our CGM-based parallel solution based on the irregular partition-
ing technique requires O

(
n2/
√

p
)

execution time with d
√

2pe+k×
(⌈
d
√

2pe
2

⌉
+1
)

communication rounds in the worst case to solve the OBST problem. k is the num-
ber of fragmentations performed.

Proof. It is deducible from Theorem 13. �

Remark 4 When k = 0, our CGM-based parallel solution based on the irregular
partitioning technique to solve the OBST problem is reduced to the one in (Myoupo
and Kengne, 2014b), running in O

(
n2/
√

p
)

execution time with
⌈√

2p
⌉

communi-
cation rounds.

3.3.5 - Experimental results

Experimental setups
This section outlines experimental results of our CGM-based parallel solutions to
solve the MPP and the OBST problem1, and compares them with the best previous
solutions (Kengne and Myoupo, 2012; Myoupo and Kengne, 2014b). These algo-
rithms have been executed on the MatriCS platform (described in Section 2.4.7).
The results are presented following the different values of (n, p,k), where :

• n is the data size, with values in the set 〈4096, 8192, 12288, 16384, 20480,
24576, 28672, 32768, 36864, 40960〉. For the MPP, we have used a ran-
dom data set generated for the TCP problem in Section 2.4.7. For the OBST
problem, we have generated the frequencies for each data size.

• p is the number of processors, with values in the set 〈1, 32, 64, 96, 128〉.
When p = 1, the sequential algorithm of Godbole (1973) is carried out to
solve the MPP and the sequential algorithm of Knuth (1971) to solve the
OBST problem.

• k is the number of fragmentations performed, with values in the set 〈0, 1, 2,
3, 4, 5〉. When k = 0, our CGM-based parallel solutions solving the MPP and
the OBST problem are similar to the one in (Kengne and Myoupo, 2012) and
the one in (Myoupo and Kengne, 2014b), respectively (see Remarks 3 and 4).

Note 2 These parameters will be used in the next CGM-based parallel solutions
described in Sections 3.4 and 3.5.

1. The source codes are available on these URLs : https://github.com/compiii/CGM-Sol-for-MPP and
https://github.com/compiii/CGM-Sol-for-OBST. They implement all the solutions proposed in this chapter.

Experimental setups • 114

https://github.com/compiii/CGM-Sol-for-MPP
https://github.com/compiii/CGM-Sol-for-OBST

Tables 3 and 5 (respectively Tables 4 and 6) show the total execution time, the
speedup, and the efficiency of our CGM-based parallel solutions to solve the MPP
(respectively the OBST problem). Figures 43a, 43b, 43c, 43d, 44a, 44b, 45a, 45b,
46a, 46b, 46c, and 46d are drawn from the results obtained in Tables 3, 4, 5, and 6.

Evolution of the global communication time
Figures 43a, 43b, 43c, and 43d illustrate the global communication time, which
is composed of the latency time of processors and the effective transfer time of
data. In general, the global communication time is higher while solving the MPP
compared to the one that is obtained while solving the OBST problem because
evaluating blocks using the sequential algorithm of Knuth (1971) minimizes the
latency time of processors, since a processor waits less time to start or continue
evaluating a block. However, these figures show that the global communication
time gradually decreases as the number of fragmentations increases. For exam-
ple, on thirty-two processors when n = 40960, Figures 43a and 43c (respectively
Figures 43b and 43d) reveal that the global communication time is reduced down
to 34.98% (respectively 3.87%) when k = 1, and to 45.63% (respectively 40.49%)
when k = 2 for the MPP (respectively the OBST problem). When a fragmentation
is performed, the number of blocks increases by dividing the current size of blocks
into four to form the smaller-size blocks. It allows minimizing the latency time of
processors and the effective transfer time of data since the smaller-size blocks take
less time to evaluate and communicate compared to the larger-size blocks.

Evolution of the load-balancing of processors
Figures 44a and 44b compare the load imbalance on thirty-two processors. The
values are obtained by performing the difference between the average computation
time of processors and the lowest (and highest) computation time among them. The
processor with the lowest or highest computational load varies with the number of
fragmentations for the MPP; for example, when k = 0 and k = 2, respectively,
P5 and P0 have the lowest loads, and P2 and P13 have the highest. However, for
the OBST problem, the speedup of Knuth (1971) does not allow obtaining the
same result as the MPP (yet it is the same dependency graph and the partitioning
techniques are also the same). It is due to the fact that the blocks in the same
diagonal have not the same load; for example, when k = 0 and k = 2, respectively,
P7 and P30 have the lowest loads, and P3 and P22 have the highest.

These figures show that the irregular partitioning technique of the dynamic
graph balances the load of processors better than the regular partitioning technique

Evolution of the load-balancing of processors • 115

Ta
bl

e
3

–
To

ta
l

ex
ec

ut
io

n
tim

e
(i

n
se

co
nd

s)
,s

pe
ed

up
,a

nd
ef

fic
ie

nc
y

(i
n

%
)

fo
r

n
∈
{4

09
6,
..
.,

40
96

0}
,

p
∈
{1

,3
2}

,a
nd

k
∈
{0

,1
,2
}

w
hi

le
so

lv
in

g
th

e
M

P
P

w
ith

th
e

ir
re

gu
la

r
pa

rt
iti

on
in

g
te

ch
ni

qu
e

To
ta

le
xe

cu
tio

n
tim

e
Sp

ee
du

p
E

ffi
ci

en
cy

n
p
=

1
k
=

0
k
=

1
k
=

2
k
=

0
k
=

1
k
=

2
k
=

0
k
=

1
k
=

2
40

96
21

2.
84

32
.1

9
19

.2
9

18
.5

4
6.

61
11

.0
3

11
.4

8
20

.6
6

34
.4

8
35

.8
7

81
92

22
38

.5
2

28
5.

07
16

2.
02

15
7.

90
7.

85
13

.8
2

14
.1

8
24

.5
4

43
.1

8
44

.3
0

12
28

8
80

51
.5

3
98

2.
42

52
5.

23
49

4.
04

8.
20

15
.3

3
16

.3
0

25
.6

1
47

.9
0

50
.9

3
16

38
4

19
42

3.
55

27
28

.2
5

14
35

.7
3

14
00

.9
5

7.
12

13
.5

3
13

.8
6

22
.2

5
42

.2
8

43
.3

3
20

48
0

37
93

2.
72

60
55

.9
1

26
68

.4
7

25
46

.9
2

6.
26

14
.2

2
14

.8
9

19
.5

7
44

.4
2

46
.5

4
24

57
6

65
55

9.
28

11
60

7.
89

50
67

.2
8

50
36

.9
9

5.
65

12
.9

4
13

.0
2

17
.6

5
40

.4
3

40
.6

7
28

67
2

10
46

88
.3

5
19

22
1.

79
86

09
.4

4
84

71
.2

1
5.

45
12

.1
6

12
.3

6
17

.0
2

38
.0

0
38

.6
2

32
76

8
17

28
34

.0
8

28
80

6.
13

14
44

8.
27

13
07

1.
16

6.
00

11
.9

6
13

.2
2

18
.7

5
37

.3
8

41
.3

2
36

86
4

24
37

74
.8

7
41

85
1.

26
25

48
4.

45
17

49
6.

95
5.

82
9.

57
13

.9
3

18
.2

0
29

.8
9

43
.5

4
40

96
0

38
39

76
.5

1
58

07
4.

15
34

11
2.

16
25

86
7.

56
6.

61
11

.2
6

14
.8

4
20

.6
6

35
.1

8
46

.3
9

Ta
bl

e
4

–
To

ta
l

ex
ec

ut
io

n
tim

e
(i

n
se

co
nd

s)
,s

pe
ed

up
,a

nd
ef

fic
ie

nc
y

(i
n

%
)

fo
r

n
∈
{4

09
6,
..
.,

40
96

0}
,

p
∈
{1

,3
2}

,a
nd

k
∈
{0

,1
,2
}

w
hi

le
so

lv
in

g
th

e
O

B
ST

pr
ob

le
m

w
ith

th
e

ir
re

gu
la

r
pa

rt
iti

on
in

g
te

ch
ni

qu
e

To
ta

le
xe

cu
tio

n
tim

e
Sp

ee
du

p
E

ffi
ci

en
cy

n
p
=

1
k
=

0
k
=

1
k
=

2
k
=

0
k
=

1
k
=

2
k
=

0
k
=

1
k
=

2
40

96
62

.3
4

20
.5

8
16

.6
8

13
.1

1
3.

03
3.

74
4.

75
9.

46
11

.6
8

14
.8

5
81

92
51

4.
32

18
0.

82
13

6.
43

10
0.

02
2.

84
3.

77
5.

14
8.

89
11

.7
8

16
.0

7
12

28
8

17
84

.1
9

62
1.

52
47

6.
46

34
3.

27
2.

87
3.

74
5.

20
8.

97
11

.7
0

16
.2

4
16

38
4

43
15

.4
3

15
82

.5
7

11
42

.2
1

81
8.

11
2.

73
3.

78
5.

27
8.

52
11

.8
1

16
.4

8
20

48
0

85
46

.8
6

29
19

.9
1

23
08

.1
9

16
00

.7
5

2.
93

3.
70

5.
34

9.
15

11
.5

7
16

.6
9

24
57

6
14

89
9.

60
59

70
.2

0
39

20
.4

9
27

85
.8

3
2.

50
3.

80
5.

35
7.

80
11

.8
8

16
.7

1
28

67
2

23
80

2.
78

85
27

.8
2

60
78

.2
1

44
28

.9
1

2.
79

3.
92

5.
37

8.
72

12
.2

4
16

.8
0

32
76

8
33

26
3.

71
12

53
3.

26
10

13
0.

78
66

07
.3

6
2.

65
3.

28
5.

03
8.

29
10

.2
6

15
.7

3
36

86
4

48
35

6.
46

17
65

8.
48

13
51

4.
64

94
51

.9
7

2.
74

3.
58

5.
12

8.
56

11
.1

8
15

.9
9

40
96

0
69

72
2.

12
24

91
0.

11
20

93
3.

65
12

98
6.

77
2.

80
3.

33
5.

37
8.

75
10

.4
1

16
.7

8

Evolution of the load-balancing of processors • 116

Table 5 – Total execution time (in seconds), speedup, and efficiency (in %) for n∈{36864,40960},
p∈{64,96,128}, and k∈{0,1,2}while solving the MPP with the irregular partitioning
technique

Total execution time Speedup Efficiency
p k = 0 k = 1 k = 2 k = 0 k = 1 k = 2 k = 0 k = 1 k = 2

n = 36864
64 19656.70 9584.39 8411.20 12.40 25.43 28.98 19.38 39.74 45.28
96 13729.69 7204.86 5995.95 17.76 33.83 40.66 18.50 35.24 42.35
128 10133.01 5393.59 4565.67 24.06 45.20 53.39 18.79 35.31 41.71

n = 40960
64 28392.16 13798.22 11932.76 13.52 27.83 32.18 21.13 43.48 50.28
96 20024.65 10160.46 8904.22 19.18 37.79 43.12 19.97 39.37 44.92
128 14961.59 7917.73 6785.92 25.66 48.50 56.58 20.05 37.89 44.21

Table 6 – Total execution time (in seconds), speedup, and efficiency (in %) for n∈{36864,40960},
p ∈ {64,96,128}, and k ∈ {0,1,2} while solving the OBST problem with the irregular
partitioning technique

Total execution time Speedup Efficiency
p k = 0 k = 1 k = 2 k = 0 k = 1 k = 2 k = 0 k = 1 k = 2

n = 36864
64 11671.40 7610.84 6586.99 4.14 6.35 7.34 6.47 9.93 11.47
96 10128.02 6573.25 5552.72 4.77 7.36 8.71 4.97 7.66 9.07
128 8951.40 5788.29 5126.66 5.40 8.35 9.43 4.22 6.53 7.37

n = 40960
64 16045.47 10456.06 9057.29 4.35 6.67 7.70 6.79 10.42 12.03
96 13928.60 9031.15 7813.92 5.01 7.72 8.92 5.21 8.04 9.29
128 12305.95 7949.95 6707.94 5.67 8.77 10.39 4.43 6.85 8.12

of this graph due to the gradual reduction of the block sizes that allows processors
to remain active as long as possible. Indeed, the fragmentation is performed on
the blocks with the largest loads. So, some small-size blocks (which are in the
upper diagonals) have higher loads than the large ones (which are in the lower di-
agonals). Thanks to the snake-like mapping, which allows distributing blocks onto
processors in an equitable way, a processor can have in the worst case one more
block than another. This greatly contributes to balancing the loads of processors.
When n = 40960 in Figure 44a, the lowest load and the highest load respectively
decrease on average by 25.95% and 43.72% when k = 1, and on average by 51.14%
and 62.29% when k = 2. Similar observations can be made in Figure 44b, except
when n = 40960 and k = 1 where the lowest load narrows down to 27.52% and
the highest load inceases up to 11.89% because of the speedup of Knuth (1971).
However when k = 2, the lowest load and the highest load reduce down to 56.63%
and 42.98%.

Comparison of communication rate and computation rate • 117

 0

 7200

 14400

 21600

 28800

 0 8192 16384 24576 32768 40960

T
im

e
(s

ec
)

Data size

Comm. time for k = 0
Comm. time for k = 1
Comm. time for k = 2

(a) MPP for p = 32

 0

 5400

 10800

 16200

 21600

 0 8192 16384 24576 32768 40960

T
im

e
(s

ec
)

Data size

Comm. time for k = 0
Comm. time for k = 1
Comm. time for k = 2

(b) OBST problem for p = 32

 0

 10800

 21600

 32400

 43200

 32 64 96 128

T
im

e
(s

ec
)

Number of processors

Comm. time for k = 0
Comm. time for k = 1
Comm. time for k = 2

(c) MPP for n = 40960

 0

 5400

 10800

 16200

 21600

 32 64 96 128

T
im

e
(s

ec
)

Number of processors

Comm. time for k = 0
Comm. time for k = 1
Comm. time for k = 2

(d) OBST problem for n = 40960

Figure 43 – Global communication time for n ∈ {4096, . . . ,40960}, p ∈ {32, . . . ,128}, and k ∈
{0,1,2} while solving the MPP and the OBST problem with the irregular partitioning
technique

-150

-100

-50

 0

 50

 100

 150

 200

 250

k=0 k=1 k=2 k=0 k=1 k=2 k=0 k=1 k=2

T
im

e
(m

in
)

Data size

Highest load : P2 (k = 0), P21 (k=1), and P13 (k=2)
Lowest load : P5 (k = 0), P2 (k=1), and P0 (k=2)

409603276824576

(a) MPP

-40

-20

 0

 20

 40

 60

k=0 k=1 k=2 k=0 k=1 k=2 k=0 k=1 k=2

T
im

e
(m

in
)

Data size

Highest load : P3 (k = 0), P25 (k=1), and P22 (k=2)
Lowest load : P7 (k = 0), P6 (k=1), and P30 (k=2)

409603276824576

(b) OBST problem

Figure 44 – Load imbalance of processors for n ∈ {24576,32768,40960}, p = 32, and k ∈
{0,1,2} while solving the MPP and the OBST problem with the irregular partitioning
technique

Comparison of communication rate and computation rate
Figures 45a and 45b show that the communication rate is higher than the com-
putation rate, which means that the global communication time is a significant
part of the total execution time compared to the overall computation time what-
ever the data size and the number of fragmentations on thirty-two processors.

Comparison of communication rate and computation rate • 118

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

k=0 k=1 k=2 k=0 k=1 k=2 k=0 k=1 k=2

R
at

e
(%

)

Data size

Communication rate
Computation rate

40960245768192

(a) MPP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

k=0 k=1 k=2 k=0 k=1 k=2 k=0 k=1 k=2

R
at

e
(%

)

Data size

Communication rate
Computation rate

40960245768192

(b) OBST problem

Figure 45 – Computation rate versus communication rate for n ∈ {8192,24576,40960}, p = 32,
and k ∈ {1,2} while solving the MPP and the OBST problem with the irregular par-
titioning technique

When n = 40960, the computation rate and the communication rate respectively
are 29.78% and 70.22% when k = 0, 22.28% and 77.72% when k = 1, and 14.30%
and 85.70% when k = 2 for the MPP; and respectively are 22.05% and 77.95%
when k = 0, 10.83% and 89.17% when k = 1, and 11.01% and 88.99% when k = 2
for the OBST problem. It is therefore deducible from this observation that the
irregular partitioning technique reduces the overall computation time because the
computation rate is lower and lower when the number of fragmentations increases,
since the computational load of processors is more and more balanced.

Evolution of the total execution time
Figures 46a, 46b, 46c, and 46d show that the minimization of the overall commu-
nication and computation time lead up to a reduction of the total execution time
as the number of fragmentations increases. For example, on thirty-two processors
when n = 40960 in Figures 46a and 46c, the total execution time decreases on av-
erage by 41.26% when k = 1, and on average by 55.46% when k = 2 for the MPP;
in Figures 46b and 46d, the total execution time decreases on average by 15.96%
when k = 1, and on average by 47.87% when k = 2 for the OBST problem. Similar
observations can be made on one hundred and twenty-eight processors. The total
execution time decreases on average by 47.08% when k = 1, and on average by
54.64% when k = 2 for the MPP; and it decreases on average by 35.40% when
k = 1, and on average by 45.50% when k = 2 for the OBST problem.

Tables 3, 4, 5, and 6 show that since the total execution time decreases when the
number of fragmentations increases, the speedup and the efficiency of our CGM-
based parallel solutions increase. On thirty-two processors when n = 40960 in
Table 3 (respectively Table 4), the speedup and the efficiency are equal to 6.61 and

Evolution of the total execution time • 119

 0

 7200

 14400

 21600

 28800

 36000

 0 8192 16384 24576 32768 40960

T
im

e
(s

ec
)

Data size

Exec. time for p = 1
Exec. time for k = 0
Exec. time for k = 1
Exec. time for k = 2

(a) MPP for p = 32

 0

 5400

 10800

 16200

 21600

 0 8192 16384 24576 32768 40960

T
im

e
(s

ec
)

Data size

Exec. time for p = 1
Exec. time for k = 0
Exec. time for k = 1
Exec. time for k = 2

(b) OBST problem for p = 32

 0

 10800

 21600

 32400

 43200

 54000

 32 64 96 128

T
im

e
(s

ec
)

Number of processors

Exec. time for k = 0
Exec. time for k = 1
Exec. time for k = 2

(c) MPP for n = 40960

 0

 5400

 10800

 16200

 21600

 32 64 96 128

T
im

e
(s

ec
)

Number of processors

Exec. time for k = 0
Exec. time for k = 1
Exec. time for k = 2

(d) OBST problem for n = 40960

Figure 46 – Total execution time for n ∈ {4096, . . . ,40960}, p ∈ {32, . . . ,128}, and k ∈ {0,1,2}
while solving the MPP and the OBST problem with the irregular partitioning tech-
nique

20.66% (respectively 2.80 and 8.75%) when k = 0, and increase up to 11.26 and
35.18% (respectively 3.33 and 10.41%) when k = 1, and up to 14.84 and 46.39%
(respectively 5.37 and 16.78%) when k = 2 for the MPP (respectively the OBST
problem). From all this, we can deduce that our CGM-based parallel solutions
based on the irregular partitioning technique are scalable as the data size, the num-
ber of processors, and the number of fragmentations rise.

3.3.6 - Drawback of the irregular partitioning technique
Although the irregular partitioning technique has good performance, it suffers from
an important shortcoming. Indeed, our previous CGM-based parallel solutions
do not allow processors to start evaluating small-size blocks as soon as the data
they need are available. Yet, these data are usually available before the end of
the evaluation of large-size blocks. Figure 47 briefly illustrates this drawback. The
processors colored in yellow (P3 and P7) evaluate the blocks that have been assigned
to them. These blocks need the data (more precisely the most shaded blocks and
subblocks) from the processors colored in green (P0, P1, P2, P4, P5, and P6) to start
or continue their evaluations. P3 (respectively P7) requires the data from P0, P1,

Evolution of the total execution time • 120

Figure 47 – Drawback of the irregular partitioning technique

P5, and P6 (respectively P0, P2, P4, and P5). However, these processors holding
blocks on which P3 and P7 depend must completely finish their evaluations before
communicating them entirely or partially (see Remark 2, page 109) to P3 and P7. As
a result, this shortcoming induces an important latency time of processors, which
is the largest part of the global communication time.

3.4 - Second dynamic graph partitioning : k-block splitting
technique

The k-block splitting technique aims to reduce the latency time of processors by
allowing them to start the evaluation of blocks as soon as possible. The goal is
to give the possibility to processors which depend on them not to wait too much.
This strategy consists in splitting the large-size blocks into a set of smaller-size
blocks called k-blocks after performing k fragmentations. Thus, evaluating a block
by a single processor will consist of computing and communicating each k-block
contained in this block. It will allow processors to start the evaluation of k-blocks
as soon as the data they need will available.

Let f (p) =
⌈√

2p
⌉
, θ(n, p) =

⌈
n

f (p)

⌉
, and θ(n, p, l) =

⌈
θ(n, p)

2l

⌉
. Formally,

we partition the shortest path matrix SP into blocks (denoted by SM(i, j)), and split

Second dynamic graph partitioning : k-block splitting technique • 121

(a) p ∈ {3, 4} and k = 1 (b) p ∈ {3, 4} and k = 2

(c) p ∈ {5, 6, 7, 8} and k = 1 (d) p ∈ {5, 6, 7, 8} and k = 2

Figure 48 – k-block splitting technique of the shortest path matrix for n = 32, k ∈ {1,2}, and
p ∈ {3, 4, 5, 6, 7, 8}. For p ∈ {3, 4}, SP is partitioned into fifteen blocks and twenty-
one k-blocks when k = 1, and into twenty-four blocks and seventy-eight k-blocks when
k = 2. For p ∈ {5, 6, 7, 8}, SP is partitioned into nineteen blocks and thirty-six k-
blocks when k = 1, and into twenty-eight blocks and one hundred and thirty-six when
k = 2

the large-size blocks into a set of k-blocks. SM(i, j) is thus a θ(n, p, l)×θ(n, p, l)
matrix belonging to the lth level of fragmentation and is subdivided into 4k−l k-
blocks of size θ(n, p,k)× θ(n, p,k). Figures 48a, 48b, 48c, and 48d depict four
scenarios of this partitioning for n = 32, k ∈ {1,2}, and p ∈ {3, 4, 5, 6, 7, 8}.

Remark 5 About this partitioning, some points are similar to Remark 1. We enu-
merate the most relevant ones :

Second dynamic graph partitioning : k-block splitting technique • 122

1 - the blocks of the first diagonal are θ(n, p)× θ(n, p) upper triangular ma-
trices splitting into 2k−1(2k + 1) k-blocks; this is illustrated for example
in Figures 48b and 48d where, after performing two fragmentations (i.e.
k = 2), the upper triangular matrices are subdivided into ten k-blocks;

2 - a block belonging to the lth level of fragmentation is full if it is a θ(n, p, l)×
θ(n, p, l) non-triangular matrix;

3 - one fragmentation increases up to (d f (p)/2e+1) the number of diagonal
of blocks (see proof in Lemma 13);

4 - there are 2k× f (p) diagonals of k-blocks after performing k fragmentations.
This is illustrated for example in Figures 48c and 48d where there respec-
tively are eight diagonals of k-blocks when k = 1 and sixteen diagonals of
k-blocks when k = 2.

The purpose of splitting the blocks into a set of k-blocks is to progressively eval-
uate and communicate them during the evaluation of blocks. The k-block splitting
technique is essentially based on the progressive evaluation of the DAG nodes (see
Theorem 3, page 57). It is therefore adequate to solve the MPP because the se-
quential algorithm of Godbole (1973) gives the possibility to evaluate the nodes
in this way. In contrast, the sequential algorithm of Knuth (1971) does not allow
performing this kind of evaluation to solve the OBST problem; this is because
the speedup of Knuth (1971) does not allow knowing when to start or continue the
evaluation of a node. Thus, it would not be meaningful and practical to apply the k-
block splitting technique to solve the OBST problem because a lot of unnecessary
computations could be performed and lead to poor performance.

In summary, the k-block splitting technique is used in this section to solve the
MPP, which is the most classical and generic problem. Blocks’ dependency analy-
sis, CGM-based parallel algorithms derived from this technique, and experimental
results are presented in Sections 3.4.1, 3.4.2, and 3.4.3 respectively.

3.4.1 - Blocks’ dependency analysis of the MPP
From the blocks’ dependency seen in Section 3.3.1 for the irregular partitioning
technique, it is easy to analyze the k-blocks dependency. Indeed, if the blocks on
the same diagonal are independent, then the parts of these blocks, i.e. the k-blocks,
will also be independent. Figure 49 depicts an example of dependencies of two
k-blocks SM(i, j) and SM(h, l) after applying the k-block splitting technique. They
require the already computed values of the most shaded k-blocks, which are part

Second dynamic graph partitioning : k-block splitting technique • 123

Figure 49 – Dependencies of two k-blocks SM(i, j) and SM(h, l) after applying the k-block split-
ting technique

or not of a same block. Evaluating the shortest paths of nodes of k-blocks can be
then carried out in parallel.

3.4.2 - CGM-based parallel algorithms to solve the MPP
Depending on how processors evaluate the k-blocks contained in a block, two ap-
proaches can be derived : the diagonal by diagonal evaluation approach and the
k-block by k-block evaluation approach. The overall structure of our CGM-based
parallel algorithms is similar to Algorithm 2, which is based on the irregular par-
titioning technique, since f (p)+ k× (d f (p)/2e+ 1) diagonal of blocks must be
evaluated in a progressive fashion whatever the chosen approach.

Diagonal by diagonal evaluation approach
The diagonal by diagonal evaluation approach consists in evaluating a block by
computing a set of k-blocks belonging to the same diagonal of k-blocks before
communicating them. This approach will minimize the number of communication
rounds. However, it will not allow processors to evaluate other k-blocks as soon
as the data they need are available. In fact, after performing a k-block, a processor
will compute other k-blocks of the same diagonal before communicating them.

This approach is given by Algorithm 25. Evaluating the shortest path to a node
of a k-block of diagonal d starts at diagonals dd/2e. The number of diagonal of
k-blocks goes from left to right and ranges from 1 to 2k× f (p). At the end of
the computation of k-blocks on diagonal d (line 4 in Algorithm 25), each k-block

Diagonal by diagonal evaluation approach • 124

Algorithm 25 Our CGM-based parallel algorithm based on the k-block splitting technique
to solve the MPP using the diagonal by diagonal evaluation approach

1: maxDiag← f (p)+ k× (d f (p)/2e+1);
2: for u = 1 to maxDiag do
3: for d = d(j− i)/θ(n, p,k)e−2k−l−2 to d(j− i)/θ(n, p,k)e do
4: Finalization of the evaluation of the block SM(i, j) of diagonal u : compute

the shortest path costs to nodes of each k-block of the same diagonal d;
5: Communication of each k-blocks belonging to the same diagonal d to

processors that detain upper blocks and right blocks;
6: for d = d(j′− i′)/θ(n, p,k)e−2k−l′−2 to d(j′− i′)/θ(n, p,k)e do
7: Update the shortest path costs to nodes of each k-blocks contained in the

block SM(i′, j′) of diagonals (u+1,u+2, . . . ,min{2× (u−1),maxDiag});

is forwarded (line 5 in Algorithm 25) to processors that need these k-blocks for
updating (line 7 in Algorithm 25) or for finalizing (line 4 in Algorithm 25) the
computations of values in next steps.

Theorem 15 To solve the MPP, our CGM-based parallel solution based on the k-
block splitting technique using the diagonal by diagonal evaluation approach runs
in O

(
n3/4k p

)
execution time with O

(
2k√p

)
communication rounds in the worst

case.

Proof. Let S = f (p) = d
√

2pe and β = (S mod 2). Algorithm 25 evaluates S+k×
(dS/2e+1) diagonals of blocks. A single processor computes and communicates:

• 2k diagonals of k-blocks in the first diagonal of blocks;

• (2k+1−1) diagonals of k-blocks from the diagonal of blocks 2 to (bS/2c−1);

• (2l+1− 1) diagonals of k-blocks for each (dS/2e+ 1) diagonals of blocks
belonging to the lth level of fragmentation such that 1≤ l < k;

• one diagonal of k-blocks for each (S+β) diagonals of blocks belonging to
the kth level of fragmentation.

Thus, the number of communication rounds is equal to :

D = 2k +
(
2k+1−1

)(⌊S
2

⌋
−1
)
+

(⌈
S
2

⌉
+1
) k−1

∑
l=1

(
2l+1−1

)
+S+β

=

⌊
S
2

⌋(
2k+1−1

)
+

⌈
S
2

⌉(
2k+1− k−3

)
+2k− k−2+S+β

= O
(
2k√p

)
Diagonal by diagonal evaluation approach • 125

Algorithm 26 Our CGM-based parallel algorithm based on the k-block splitting technique
to solve the MPP using the k-block by k-block evaluation approach

1: maxDiag← f (p)+ k× (d f (p)/2e+1);
2: for u = 1 to maxDiag do
3: for each k-block ρ belonging in the block SM(i, j) do
4: Finalization of the evaluation of the block SM(i, j) of diagonal u : compute

the shortest path costs to nodes of the k-block ρ;
5: Communication of the k-block ρ to the processors that detain upper blocks

and right blocks;
6: for each ρ′ ∈ SM(i′, j′) of diagonals (u+1, . . . ,min{2× (u−1),maxDiag}) do
7: Update the shortest path costs to nodes of the k-block ρ′;

Therefore, this algorithm runs in O
(
n3/4k p

)
execution time since evaluating a k-

block requires O
(
n3/8k p

√
p
)

local computation time. �

k-block by k-block evaluation approach
The k-block by k-block evaluation approach consists in evaluating a block by com-
puting and communicating each k-block contained in this block. It will allow the
processors to evaluate other k-blocks as soon as the data they need are available
since a k-block is communicated as soon as a processor has finished computing
it. However, compared to the first, this approach will involve a lot of communi-
cation between them. This approach is not different to the first one, except that
we communicate a k-block immediately after computing it. Algorithm 26 gives an
overview.

Theorem 16 In the worst case, our CGM-based parallel solution based on the
k-block splitting technique to solve the MPP using the k-block by k-block evalu-
ation approach runs in O

(
n3/2k p

)
execution time with O

(
4k√p

)
communication

rounds.

Proof. A single processor computes and communicates:

• 2k−1(2k−1) k-blocks at the first diagonal of blocks;

• 4k k-blocks from the diagonal of blocks 2 to (bS/2c−1);

• 4k−l k-blocks for each (dS/2e+ 1) diagonals of blocks belonging to the lth
level of fragmentation such that 1≤ l < k;

• one k-block for each (S+β) diagonals of blocks belonging to the kth level of
fragmentation.

k-block by k-block evaluation approach • 126

Thus, the number of communication rounds is equal to :

D = 2k−1(2k−1)+4k
(⌊

S
2

⌋
−1
)
+

(⌈
S
2

⌉
+1
) k−1

∑
l=1

4k−l +S+β

= O
(
4k√p

)
Therefore, this algorithm runs in O

(
n3/2k p

)
execution time. �

3.4.3 - Experimental results
This section presents experimental results of our CGM-based parallel solutions
based on the k-block splitting technique to solve the MPP, and compares them
with the best previous solutions. Tables 7 and 8 show the total execution time, the
speedup, and the efficiency of our CGM-based parallel solutions. In these tables,
the solution using the diagonal by diagonal evaluation strategy is referred to dbyd,
and the solution using the k-block by k-block evaluation strategy is referred to
kbyk. Our previous CGM-based parallel solution based on the irregular partitioning
technique (described in Sectoin 3.3) is referred to frag. Figures 50a, 50b, 51a, 51b,
52a, 52b, 53a, 53b, 53c, 53d, 54a, and 54b are drawn from the results obtained in
Tables 3, 5, 7, 8, and 9.

Evolution of the global communication time
Figures 50a and 50b show that the global communication time decreases when the
number of fragmentations increases. To minimize the latency time of processors,
frag reduces the computation time of blocks by reducing their sizes. For example,
on thirty-two processors when n = 40960, the communication time decreases on
average by 34.98% when k = 1 and on average by 45.63% when k = 2. By allowing
processors to receive the data they need as soon as they are available to start or
continue computation, dbyd and kbyk minimize the global communication time
better than frag. For example, on thirty-two processors when n = 40960, dbyd
(respectively kbyk) reduces the global communication time on average by 47.67%
(respectively 48.17%) when k = 1 and on average by 51.64% (respectively 56.97%)
when k = 2. kbyk is better than dbyd because kbyk communicates a k-block as soon
as a processor has finished computing it.

Evolution of the load-balancing of processors
Figures 51a and 51b show that on thirty-two processors, the load-balancing of pro-
cessors for frag, dbyd, and kbyk are nearly the same. When n = 40960 and k = 1
(respectively k = 2), the lowest load and the highest load decrease on average by

Evolution of the load-balancing of processors • 127

Ta
bl

e
7

–
To

ta
le

xe
cu

tio
n

tim
e

(i
n

se
co

nd
s)

,s
pe

ed
up

,a
nd

ef
fic

ie
nc

y
(i

n
%

)f
or

n
∈
{4

09
6,
..
.,

40
96

0}
,p

=
32

,a
nd

k
∈
{1

,2
}

w
hi

le
so

lv
in

g
th

e
M

P
P

w
ith

th
e

k-
bl

oc
k

sp
lit

tin
g

te
ch

ni
qu

e

To
ta

le
xe

cu
tio

n
tim

e
Sp

ee
du

p
E

ffi
ci

en
cy

n
k
=

1
k
=

2
k
=

1
k
=

2
k
=

1
k
=

2
db

yd
kb

yk
db

yd
kb

yk
db

yd
kb

yk
db

yd
kb

yk
db

yd
kb

yk
db

yd
kb

yk
40

96
17

.4
0

16
.1

4
16

.1
5

15
.4

3
12

.2
3

13
.1

9
13

.1
8

13
.7

9
38

.2
1

41
.2

1
41

.1
9

43
.0

9
81

92
14

6.
61

13
5.

66
13

8.
70

13
1.

94
15

.2
7

16
.5

0
16

.1
4

16
.9

7
47

.7
1

51
.5

6
50

.4
4

53
.0

2
12

28
8

47
0.

27
44

3.
62

44
4.

85
43

6.
62

17
.1

2
18

.1
5

18
.1

0
18

.4
4

53
.5

0
56

.7
2

56
.5

6
57

.6
3

16
38

4
12

60
.7

2
12

20
.3

4
12

45
.5

5
11

77
.7

3
15

.4
1

15
.9

2
15

.5
9

16
.4

9
48

.1
5

49
.7

4
48

.7
3

51
.5

4
20

48
0

24
28

.7
6

22
81

.3
0

24
07

.3
8

21
93

.5
3

15
.6

2
16

.6
3

15
.7

6
17

.2
9

48
.8

1
51

.9
6

49
.2

4
54

.0
4

24
57

6
46

99
.2

2
42

92
.9

7
44

70
.5

2
42

05
.9

9
13

.9
5

15
.2

7
14

.6
6

15
.5

9
43

.6
0

47
.7

2
45

.8
3

48
.7

1
28

67
2

75
02

.8
9

74
70

.7
9

66
92

.8
9

63
08

.9
0

13
.9

5
14

.0
1

15
.6

4
16

.5
9

43
.6

0
43

.7
9

48
.8

8
51

.8
6

32
76

8
12

93
0.

32
12

34
3.

33
11

75
6.

47
10

72
5.

43
13

.3
7

14
.0

0
14

.7
0

16
.1

1
41

.7
7

43
.7

6
45

.9
4

50
.3

6
36

86
4

21
79

6.
13

20
46

5.
65

15
56

5.
01

14
60

8.
09

11
.1

8
11

.9
1

15
.6

6
16

.6
9

34
.9

5
37

.2
2

48
.9

4
52

.1
5

40
96

0
29

69
3.

54
28

87
5.

73
23

34
8.

62
21

17
5.

60
12

.9
3

13
.3

0
16

.4
5

18
.1

3
40

.4
1

41
.5

5
51

.3
9

56
.6

7
Ta

bl
e

8
–

To
ta

le
xe

cu
tio

n
tim

e
(i

n
se

co
nd

s)
,s

pe
ed

up
,a

nd
ef

fic
ie

nc
y

(i
n

%
)

fo
r

n
∈
{3

68
64

,4
09

60
},

p
∈
{6

4,
96
,1

28
},

an
d

k
∈
{1

,2
}

w
hi

le
so

lv
in

g
th

e
M

P
P

w
ith

th
e

k-
bl

oc
k

sp
lit

tin
g

te
ch

ni
qu

e

To
ta

le
xe

cu
tio

n
tim

e
Sp

ee
du

p
E

ffi
ci

en
cy

p
k
=

1
k
=

2
k
=

1
k
=

2
k
=

1
k
=

2
db

yd
kb

yk
db

yd
kb

yk
db

yd
kb

yk
db

yd
kb

yk
db

yd
kb

yk
db

yd
kb

yk
n
=

36
86

4
64

83
99

.4
6

77
53

.0
9

72
79

.0
1

67
84

.4
7

29
.0

2
31

.4
4

33
.4

9
35

.9
3

45
.3

5
49

.1
3

52
.3

3
56

.1
4

96
62

89
.9

4
59

95
.5

6
50

53
.2

6
46

63
.6

4
38

.7
6

40
.6

6
48

.2
4

52
.2

7
40

.3
7

42
.3

5
50

.2
5

54
.4

5
12

8
47

82
.5

0
45

02
.3

4
38

31
.6

1
35

07
.8

0
50

.9
7

54
.1

4
63

.6
2

69
.5

0
39

.8
2

42
.3

0
49

.7
0

54
.2

9
n
=

40
96

0
64

12
32

1.
05

11
72

4.
24

10
34

9.
04

94
85

.9
6

31
.1

6
32

.7
5

37
.1

0
40

.4
8

48
.6

9
51

.1
7

57
.9

7
63

.2
5

96
89

24
.6

4
85

69
.3

3
75

92
.0

7
69

31
.4

7
43

.0
2

44
.8

1
50

.5
8

55
.4

0
44

.8
2

46
.6

8
52

.6
8

57
.7

0
12

8
66

71
.5

9
63

17
.0

1
57

13
.9

8
51

63
.6

9
57

.5
5

60
.7

8
67

.2
0

74
.3

6
44

.9
6

47
.4

9
52

.5
0

58
.0

9

Evolution of the load-balancing of processors • 128

Table 9 – Total execution time (in seconds), speedup, and efficiency (in %) for n = 40960, p ∈
{32, . . . ,128}, and k ∈ {3,4} while solving the MPP with the k-block splitting technique
using the k-block by k-block evaluation strategy

Total execution time Speedup Efficiency
p k = 3 k = 4 k = 3 k = 4 k = 3 k = 4
32 29041.75 53490.34 13.22 7.18 41.32 22.43
64 11301.82 18374.91 33.97 20.90 53.09 32.65
96 7908.40 12164.26 48.55 31.57 50.58 32.88
128 5765.98 8729.30 66.59 43.99 52.03 34.36

 0

 7200

 14400

 21600

 28800

 0 8192 16384 24576 32768 40960

T
im

e
(s

ec
)

Data size

Comm. time for k = 0
Comm. time for k = 1 (frag)
Comm. time for k = 1 (dbyd)
Comm. time for k = 1 (kbyk)

(a) k = 1

 0

 5400

 10800

 16200

 21600

 0 8192 16384 24576 32768 40960

T
im

e
(s

ec
)

Data size

Comm. time for k = 0
Comm. time for k = 2 (frag)
Comm. time for k = 2 (dbyd)
Comm. time for k = 2 (kbyk)

(b) k = 2

Figure 50 – Global communication time for n∈{4096, . . . ,40960}, p= 32, and k∈{0,1,2}while
solving the MPP with the k-block splitting technique

25.95% and 43.72% (respectively 51.14% and 62.29%) for frag, on average by
25.51% and 46.92% (respectively 52.51% and 63.81%) for dbyd, and on average
by 25.16% and 46.43% (respectively 50.59% and 64.90%) for kbyk. These results
were predictable because frag, dbyd, and kbyk are essentially based on the irregular
partitioning technique and snake-like mapping. Recall that the irregular partition-
ing technique balances the load of processors better than the regular partitioning
technique because of the gradual reduction of the block sizes that allows processors
to remain active as long as possible. From this, we can conclude that our CGM-
based parallel solutions based on the k-block splitting technique (dbyd and kbyk)
kept the good performance of our CGM-based parallel solution based on the irreg-
ular partitioning technique (frag) with respect to the load-balancing of processors.
They promote the load balancing when the number of fragmentations rises.

Comparison of communication rate and computation rate
Figures 52a and 52b show that the computation rate is lower than the communica-
tion rate on thirty-two processors. It was expected because the evaluation of a block
belonging to the diagonal d starts before the step (d− 1) to minimize its compu-
tation time. The computation rate is lower and lower because when the number of

Comparison of communication rate and computation rate • 129

-150

-100

-50

 0

 50

 100

 150

 200

 250

k=0 frag dbyd kbyk k=0 frag dbyd kbyk k=0 frag dbyd kbyk

T
im

e
(m

in
)

Data size

Highest load : P2 (k = 0) and P21 (frag, dbyd, and kbyk)
Lowest load : P5 (k = 0) and P2 (frag, dbyd, and kbyk)

409603276824576

(a) k = 1

-150

-100

-50

 0

 50

 100

 150

 200

 250

k=0 frag dbyd kbyk k=0 frag dbyd kbyk k=0 frag dbyd kbyk

T
im

e
(m

in
)

Data size

Highest load : P2 (k = 0) and P13 (frag, dbyd, and kbyk)
Lowest load : P5 (k = 0) and P0 (frag, dbyd, and kbyk)

409603276824576

(b) k = 2

Figure 51 – Load imbalance of processors for n ∈ {24576,32768,40960}, p = 32, and k ∈
{0,1,2} while solving the MPP with the k-block splitting technique

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

frag dbyd kbyk frag dbyd kbyk frag dbyd kbyk

R
at

e
(%

)

Data size

Communication rate
Computation rate

40960245768192

(a) k = 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

frag dbyd kbyk frag dbyd kbyk frag dbyd kbyk

R
at

e
(%

)

Data size

Communication rate
Computation rate

40960245768192

(b) k = 2

Figure 52 – Computation rate versus communication rate for n ∈ {8192,24576,40960}, p = 32,
and k ∈ {1,2} while solving the MPP with the k-block splitting technique

fragmentations increases, the computational load between processors is more and
more balanced. When n = 40960 and k = 1 (respectively k = 2), it is 22.28% (re-
spectively 14.30%) for frag, 28.14% (respectively 15.55%) for dbyd, and 26.82%
(respectively 17.15%) for kbyk. Therefore, as for the load-balancing of processors,
dbyd and kbyk kept the good performance of frag.

Evolution of the total execution time
Figures 53a, 53b, 53c, and 53d show that the minimization of the global commu-
nication time (due to the minimization of the latency time of processors) lead up to
a reduction of the total execution time as the number of fragmentations rises. For
example, on thirty-two processors when n = 40960 and k = 1 (respectively k = 2)
in Figures 53a and 53b, the total execution time decreases on average by 41.26%
(respectively 55.46%) for frag, on average by 48.87% (respectively 59.80%) for
dbyd, and on average by 50.28% (respectively 63.54%) for kbyk. Similar obser-
vations can be made on one hundred and twenty-eight processors in Figures 53c

Evolution of the total execution time • 130

 0

 7200

 14400

 21600

 28800

 36000

 0 8192 16384 24576 32768 40960

T
im

e
(s

ec
)

Data size

Exec. time for p = 1
Exec. time for k = 0
Exec. time for k = 1 (frag)
Exec. time for k = 1 (dbyd)
Exec. time for k = 1 (kbyk)

(a) p = 32 and k = 1

 0

 7200

 14400

 21600

 28800

 0 8192 16384 24576 32768 40960

T
im

e
(s

ec
)

Data size

Exec. time for p = 1
Exec. time for k = 0
Exec. time for k = 2 (frag)
Exec. time for k = 2 (dbyd)
Exec. time for k = 2 (kbyk)

(b) p = 32 and k = 2

 0

 10800

 21600

 32400

 43200

 54000

 32 64 96 128

T
im

e
(s

ec
)

Number of processors

Exec. time for k = 0
Exec. time for k = 1 (frag)
Exec. time for k = 1 (dbyd)
Exec. time for k = 1 (kbyk)

(c) n = 40960 and k = 1

 0

 10800

 21600

 32400

 43200

 54000

 32 64 96 128

T
im

e
(s

ec
)

Number of processors

Exec. time for k = 0
Exec. time for k = 2 (frag)
Exec. time for k = 2 (dbyd)
Exec. time for k = 2 (kbyk)

(d) n = 40960 and k = 2

Figure 53 – Total execution time for n ∈ {4096, . . . ,40960}, p ∈ {32, . . . ,128}, and k ∈ {0,1,2}
while solving the MPP with the k-block splitting technique

and 53d; where when n = 40960 and k = 1 (respectively k = 2), the total execution
time decreases on average by 47.08% (respectively 54.64%) for frag, on average by
55.41% (respectively 61.81%) for dbyd, and on average by 57.78% (respectively
65.49%) for kbyk.

Tables 7 and 8 show that the speedup and the efficiency of our CGM-based
parallel solutions rise since the total execution time decreases as the number of
fragmentations increases. On thirty-two processors when n = 40960 and k = 1
(respectively k = 2) in Table 7, the speedup and the efficiency are equal to 12.93
and 40.41% (respectively 16.45 and 51.39%) for dbyd, and increases up to 13.30
and 41.55% (respectively 18.13 and 56.67%) for kbyk.

3.4.4 - Drawback of the k-block splitting technique
The main target of the k-block splitting technique was to reduce the global com-
munication time while keeping the good performance of the irregular partitioning
technique. Experimental results have besides shown that our CGM-based paral-
lel solutions based on the k-block splitting technique, among which the one using
the k-block by k-block evaluation strategy was the best, are better than our solu-

Evolution of the total execution time • 131

 0

 10800

 21600

 32400

 43200

 54000

 32 64 96 128

T
im

e
(s

ec
)

Number of processors

Comm. time for k = 0
Comm. time for k = 1
Comm. time for k = 2
Comm. time for k = 3
Comm. time for k = 4

(a) Global communication time

 0

 10800

 21600

 32400

 43200

 54000

 32 64 96 128

T
im

e
(s

ec
)

Number of processors

Exec. time for k = 0
Exec. time for k = 1
Exec. time for k = 2
Exec. time for k = 3
Exec. time for k = 4

(b) Total execution time

Figure 54 – Global communication time and total execution time for n= 40960, p∈{32,. . . ,128},
and k ∈ {0, . . . ,4} while solving the MPP with the k-block splitting technique using
the k-block by k-block evaluation strategy

tions based on the irregular partitioning technique and that they are scalable to the
increase of the data size and the number of processors.

However, these solutions are not scalable to the increase of the number of frag-
mentations. In fact, the blocks of the first diagonals which are not fragmented (e.g.
the first and second diagonal in Figure 48d) are split either into 2k−1(2k + 1) k-
blocks (for those belonging to the first diagonal), or into 4k k-blocks. For example
on thirty-two processors, after performing four fragmentations, the blocks of the
first diagonal will be subdivided into 23(24 + 1) = 136 k-blocks, and those of the
second, third, and fourth diagonal will be divided into 44 = 256 k-blocks. When
n = 40960, each k-block will be a square matrix of size 320× 320. However, the
blocks on the first diagonals, and therefore the k-blocks that make them up, do
not require a very high computational load compared to the blocks on the last di-
agonals. As a result, the evaluation of the k-blocks seen in the previous example
will not take too much time and will lead to a communication overhead as a con-
sequence of the huge amount of communication that will have to be done by the
processors to exchange very small data in a short time. Recall that the communica-
tion overhead raises the latency time of processors, which accounts for most of the
global communication time. Figures 54a and 54b respectively illustrate the conse-
quences of this shortcoming on the global communication time and the total exe-
cution time when n = 40960. They show that the performance of our CGM-based
parallel solution using the k-block by k-block evaluation strategy deteriorates from
the third fragmentation.

To solve this drawback, one idea would be to fix the number of subblocks be-
longing to a large-size block so that this number no longer increases as the number
of fragmentations rises to minimize the communication between processors and

Evolution of the total execution time • 132

consequently to avoid communication overhead. The partitioning strategy based
on this approach should also be applied to solve the OBST problem because the k-
block splitting technique is not suitable to solve it. Section 3.5 presents a strategy
that meets these expectations.

3.5 - Third dynamic graph partitioning : four-splitting
technique

To avoid the communication overhead caused by the k-block splitting technique
while reducing the latency time of processors, the four-splitting technique con-
sists of splitting the large-size blocks into four small-size blocks (or subblocks)
after performing k fragmentations. The subblocks of the blocks belonging to the
lth level of fragmentation must have the same size as the blocks belonging to the
(l +1)th level of fragmentation. The goal is the same as the k-block splitting tech-
nique, that is, allows processors to start the evaluation of blocks as soon as possi-
ble. Hence, evaluating a block by a single processor will consist of computing and
communicating each subblock contained in this block.

By denoting f (p) =
⌈√

2p
⌉
, θ(n, p) =

⌈
n

f (p)

⌉
, and θ(n, p, l) =

⌈
θ(n, p)

2l

⌉
, for-

mally, we subdivide the shortest path matrix SP into blocks (denoted by SM(i, j)),
and split the large-size blocks into four subblocks. Thus, a block SM(i, j) be-
longing to the lth level of fragmentation, such that l < k, is a θ(n, p, l)×θ(n, p, l)
matrix and is subdivided into four subblocks of size θ(n, p, l + 1)× θ(n, p, l + 1).
The blocks of the kth level of fragmentation are not splitting into four as these are
the smallest blocks. Figures 55a, 55b, 55c, and 55d depict four scenarios of this
partitioning for n = 32, k ∈ {1,2}, and p ∈ {3, 4, 5, 6, 7, 8}.

Remark 6 Some relevant points can be noticed about this partitioning :

1 - the blocks of the first diagonal are θ(n, p)×θ(n, p) upper triangular matri-
ces splitting into tree subblocks;

2 - when k = 1, this partitioning technique is identical to the k-block splitting
technique; for example, Figures 55a and 55c are the same as Figures 48a
and 48c respectively where k = 1;

3 - whatever the number of fragmentations performed, the size of subblocks
(which are the parts of blocks belonging to the lth level of fragmentation)
does not change compared to the k-block splitting technique; for example,

Third dynamic graph partitioning : four-splitting technique • 133

(a) p ∈ {3, 4} and k = 1 (b) p ∈ {3, 4} and k = 2

(c) p ∈ {5, 6, 7, 8} and k = 1 (d) p ∈ {5, 6, 7, 8} and k = 2

Figure 55 – Four-splitting technique of the shortest path matrix for n = 32, k ∈ {1,2}, and p∈ {3,
4, 5, 6, 7, 8}. For p ∈ {3, 4}, SP is partitioned into fifteen blocks and twenty-one
subblocks when k = 1, and into twenty-four blocks and fifty-seven subblocks when
k = 2. For p ∈ {5, 6, 7, 8}, SP is partitioned into nineteen blocks and thirty-six
subblocks when k = 1, and into twenty-eight blocks and seventy-two subblocks when
k = 2

the subblocks of the second diagonal are square matrix of size 4× 4 when
k = 1 in Figure 48c, and are square matrix of size 2×2 in Figure 48c when
k = 2. But in Figures 55c and 55d, the subblocks of the second diagonal are
square matrix of size 4×4.

Third dynamic graph partitioning : four-splitting technique • 134

Lemma 15 After partitioning the shortest path matrix, the total number of sub-
blocks is equal to:

C =
S(S−1)

2
−3
(

∆(S+1)+
⌈

S
2

⌉)
+2k

[
(S+1)(S+2∆)−

⌈
S
2

⌉(⌈
S
2

⌉
−1
)]

with S = f (p) and ∆ = (S mod 2).

Proof. The proof of this lemma can be easily deduced from Lemma 12. The blocks
of the first diagonal are splitting into three subblocks, and the others are splitting
into four subblocks except those belonging to the kth level of fragmentation. By
considering ∆ = (S mod 2) the variable which determines the parity of S, the total
number of subblocks is equal to :

C = 4(k−1)×

(
S(S+1)−

⌈S
2

⌉(⌈S
2

⌉
−1
)

2
+∆(S+1)

)
+

⌈
S
2

⌉
+

S(S+1)
2

+∆(S+1)+4

(
S(S+1)−

⌈S
2

⌉(⌈S
2

⌉
+1
)

2
−S

)
+3S

= 4(k−1)×
(S+1)(S+2∆)−

⌈S
2

⌉(⌈S
2

⌉
−1
)

2
+∆(S+1)+

S(5S+3)
2

−2
⌈

S
2

⌉2

−
⌈

S
2

⌉
=

S(S−1)
2

−3
(

∆(S+1)+
⌈

S
2

⌉)
+2k

[
(S+1)(S+2∆)−

⌈
S
2

⌉(⌈
S
2

⌉
−1
)]
�

The choice to split blocks into four subblocks is not trivial. Indeed, it allows
keeping a coherence with the first step of this partitioning, which is to apply the
irregular partitioning technique. Moreover, the four-splitting technique ensures
that processors do not communicate too many subblocks to avoid communication
overhead. However, the k-block splitting technique starts the evaluation of blocks
earlier than this technique since k-blocks are the smallest blocks. This could have
a significant impact on the latency time of processors.

The analysis of dependencies between subblocks can be derived from the two
previous partitioning techniques. Unlike the k-block splitting technique, which was
not suitable for solving the OBST problem due to the speedup of Knuth (1971), the
four-splitting technique can be used to solve this problem. Indeed, the subblocks
can be progressively evaluated either while solving the MPP, or non-progressively

Third dynamic graph partitioning : four-splitting technique • 135

Algorithm 27 Our CGM-based parallel algorithm based on the four-splitting technique
to solve the MPP

1: maxDiag← f (p)+ k× (d f (p)/2e+1);
2: for u = 1 to maxDiag do
3: for each subblock ρ belonging in the block SM(i, j) do
4: Finalization of the evaluation of the block SM(i, j) of diagonal u : compute

the shortest path costs to nodes of the subblock ρ;
5: Communication of the subblock ρ to the processors that detain upper blocks

and right blocks;

6: for each ρ′ ∈ SM(i′, j′) of diagonals (u+1, . . . ,min{2× (u−1),maxDiag}) do
7: Update the shortest path costs to nodes of the subblock ρ′;

evaluated while solving the OBST problem. The corresponding CGM-based par-
allel algorithms are described in Sections 3.5.1 and 3.5.2 respectively.

3.5.1 - CGM-based parallel algorithm to solve the MPP
Our CGM-based parallel algorithm based on the four-splitting technique to solve
the MPP is given by Algorithm 27. Since the k-block by k-block evaluation ap-
proach has shown the better performance than the diagonal by diagonal evaluation
approach in Section 3.4.3, a similar evaluation approach is used in Algorithm 27.
Indeed, after computing each subblock containing in a block, it is immediately
communicated to processors that need these subblocks for updating (line 7 in Al-
gorithm 27) or for finalizing (line 4 in Algorithm 27) the computations of values in
next steps.

Theorem 17 Our CGM-based parallel solution based on the four-splitting tech-
nique to solve the MPP runs in O

(
n3/p

)
execution time with O

(
k
√

p
)

communi-
cation rounds in the worst case.

Proof. Let S = f (p) = d
√

2pe and β = (S mod 2). A single processor computes
and communicates:

• three subblocks at the first diagonal of blocks;

• four subblocks from the diagonal of blocks 2 to bS/2c−1;

• four subblocks for each (dS/2e+1) diagonals of blocks belonging to the lth
level of fragmentation such that 1≤ l < k;

• one subblock for each (S+β) diagonals of blocks belonging to the kth level
of fragmentation.

Third dynamic graph partitioning : four-splitting technique • 136

During the computation rounds, evaluating each subblock of a block belonging
to the lth level of fragmentation requires O

(
n3

23(l+1)×(2p)3/2

)
= O

(
n3

8l+1×p
√

p

)
local

computation time. So, the evaluation of each diagonal of blocks required :

D = 3×O
(

n3

8× p
√

p

)
+4
(⌊

S
2

⌋
−1
)
×O

(
n3

8× p
√

p

)
+4
(⌈

S
2

⌉
+1
)
×

O
(

n3

82× p
√

p

)
+4
(⌈

S
2

⌉
+1
)
×O

(
n3

83× p
√

p

)
+ · · ·+4

(⌈
S
2

⌉
+1
)
×

O
(

n3

8k× p
√

p

)
+

(⌈
S
2

⌉
+1
)
×O

(
n3

8k× p
√

p

)
+(S+β)×O

(
n3

8k× p
√

p

)
= O

(
n3

p

)
The number of communication rounds is equal to :

E = 3+4
(⌊

S
2

⌋
−1
)
+4(k−1)

(⌈
S
2

⌉
+1
)
+S+β = O(k

√
p)

Therefore, this algorithm requires O
(
n3/p

)
execution time with O

(
k
√

p
)

commu-
nication rounds. �

3.5.2 - CGM-based parallel algorithm to solve the OBST problem
The four-splitting technique can be adapted to evaluate the subblocks that are part
of a block in a non-progressive fashion compared to the k-block splitting tech-
nique. Recall that when the latter is used, the number of subblocks (or k-blocks)
grows drastically as the number of fragmentations rises. When a subblock is non-
progressively evaluated by a processor, it must receive all the data of subblocks
that it needs to start computations. However, since the subblocks are numerous
and small, computing and communicating them to processors that need them will
lead to communication overhead (see Section 3.4.4). With the four-splitting tech-
nique, the blocks are subdivided into at most four regardless of the number of
fragmentations performed. This reduces the number of communication rounds and
the number of steps to evaluate a whole block (it will be done in at most four steps).

Denote the four subblocks of given block by LL, LU , RL, and RU , which re-
spectively correspond to the subblock located in the leftmost lower corner, the
leftmost upper corner, the rightmost lower corner, and the rightmost upper corner.
Figures 56a, 56b, 56c, 56d, 56e, and 56f illustrate the different computation and
communication steps of these subblocks by a processor :

• At step 0 in Figure 56a, no subblocks have started to be evaluated. This means
that the processor is still receiving data of subblocks on which LL depends.

Third dynamic graph partitioning : four-splitting technique • 137

Algorithm 28 Our CGM-based parallel algorithm based on the four-splitting technique
to solve the OBST problem

1: for d = 1 to f (p)+ k× (d f (p)/2e+1) do
2: Computation of the subblocks LL and LU of blocks belonging to the round d

using Algorithm 11;
3: Communication of entries (Tree and Cut tables) of LL and LU required for

computing each block of rounds {d +1,d +2, . . . , f (p)+ k× (d f (p)/2e+1)};
4: Computation of the subblock RL using Algorithm 11;
5: Communication of entries of LL and RL;
6: Computation of the subblock RU using Algorithm 11;
7: Communication of entries of LU , RL, and RU ;

• At step 1 in Figure 56b, LL is computed but it is not communicated because
a communication is not necessary at this step. Indeed, the processors which
will receive LL will not be able to start the computation as soon as possible
because the evaluation is done in a non-progressive fashion. The ideal would
be to wait to compute LU before communicating them together.

• At step 2 in Figure 56c, the processor starts by receiving the lower subblocks
that are in the same row as LU . Then, it computes LU . Finally, it communi-
cates LL and LU to processors that need them. For example, the processor P5

which evaluates the block of the second diagonal in Figure 42 will send LL
and LU to P1 and P3.

• At step 3 in Figure 56d, the processor receives the lower subblocks that are
in the same column as RL. Then, it computes RL. Finally, it communicates
LL and RL to processors that need them. By taking the previous example, P5

will send LL and RL to P0 and P2.

• At step 4 in Figure 56e, the processor computes RU . Thereafter, it com-
municates RL and RU to processors that need them. By taking the previous
example, P5 will send RL and RU to P1 and P4.

• At step 5 in Figure 56f, all subblocks have been computed. The processor
communicates LU and RU to processors that need them. By taking the pre-
vious example, P5 will send LU and RU to P3.

Our CGM-based parallel algorithm based on the four-splitting technique to solve
the OBST problem is given by Algorithm 28.

Theorem 18 Our CGM-based parallel solution based on the four-splitting tech-
nique requires O

(
n2/
√

p
)

execution time with O
(
k
√

p
)

communication rounds in
the worst case to solve the OBST problem.

Third dynamic graph partitioning : four-splitting technique • 138

(a) Step 0 (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4 (f) Step 5

Figure 56 – Steps to evaluate the four subblocks of a given block while solving the OBST prob-
lem with the four-splitting technique. When a subblock is computed and needs to be
communicated, it is colored in gray

Proof. It is deducible from Theorem 17. �

3.5.3 - Experimental results
This section highlights the results obtained from experimentations of our CGM-
based parallel solutions based on the four-splitting technique to solve the MPP and
the OBST problem. These experimentations have been performed on the MatriCS
platform (described in Section 2.4.7) and on our Raspberry Pi cluster (described
hereunder). The execution time, the speedup, and the efficiency are recorded in
Tables 10, 11, 12, 13, and 14. Figures 57a, 57b, 57c, 57d, 58a, 58b, 58c, 58d,
58e, 58f, 58g, 58h, 59a, 59b, 60a, 60b, 60c, 60d, 61a, and 61b have been drawn
from these tables. Our solutions based on the irregular partitioning technique, the
k-block by k-block evaluation strategy, and the four-splitting technique are denoted
by frag, kbyk, and 4s respectively. Recall that kbyk and 4s are similar when k = 1.

Evolution of the global communication time • 139

Ta
bl

e
10

–
To

ta
le

xe
cu

tio
n

tim
e

(i
n

se
co

nd
s)

,s
pe

ed
up

,a
nd

ef
fic

ie
nc

y
(i

n
%

)
fo

r
n
∈
{4

09
6,
..
.,

40
96

0}
,

p
=

32
,a

nd
k
∈
{2
,3
,4
}

w
hi

le
so

lv
in

g
th

e
M

P
P

w
ith

th
e

fo
ur

-s
pl

itt
in

g
te

ch
ni

qu
e

on
th

e
M

at
ri

C
S

pl
at

fo
rm

To
ta

le
xe

cu
tio

n
tim

e
Sp

ee
du

p
E

ffi
ci

en
cy

n
k
=

2
k
=

3
k
=

4
k
=

2
k
=

3
k
=

4
k
=

2
k
=

3
k
=

4
40

96
13

.6
5

14
.6

3
14

.6
6

15
.5

9
14

.5
5

14
.5

2
48

.7
3

45
.4

6
45

.3
7

81
92

10
7.

31
11

5.
40

11
9.

74
20

.8
6

19
.4

0
18

.6
9

65
.1

9
60

.6
2

58
.4

2
12

28
8

40
4.

33
39

6.
91

39
8.

45
19

.9
1

20
.2

9
20

.2
1

62
.2

3
63

.3
9

63
.1

5
16

38
4

10
75

.5
1

92
1.

47
97

6.
78

18
.0

6
21

.0
8

19
.8

9
56

.4
4

65
.8

7
62

.1
4

20
48

0
21

33
.5

8
20

05
.4

6
20

36
.9

5
17

.7
8

18
.9

1
18

.6
2

55
.5

6
59

.1
1

58
.1

9
24

57
6

38
54

.4
1

37
99

.5
9

38
42

.8
5

17
.0

1
17

.2
5

17
.0

6
53

.1
5

53
.9

2
53

.3
1

28
67

2
65

47
.4

5
62

99
.6

3
64

74
.6

8
15

.9
9

16
.6

2
16

.1
7

49
.9

7
51

.9
3

50
.5

3
32

76
8

10
57

8.
86

98
90

.2
3

10
39

7.
02

16
.3

4
17

.4
8

16
.6

2
51

.0
6

54
.6

1
51

.9
5

36
86

4
15

84
2.

78
14

54
3.

44
15

66
7.

99
15

.3
9

16
.7

6
15

.5
6

48
.0

8
52

.3
8

48
.6

2
40

96
0

23
67

0.
69

19
31

1.
50

20
82

6.
53

16
.2

2
19

.8
8

18
.4

4
50

.6
9

62
.1

4
57

.6
2

Ta
bl

e
11

–
To

ta
le

xe
cu

tio
n

tim
e

(i
n

se
co

nd
s)

,s
pe

ed
up

,a
nd

ef
fic

ie
nc

y
(i

n
%

)f
or

n
∈
{3

68
64

,4
09

60
},

p
∈
{6

4,
96
,1

28
},

an
d

k
∈
{2

,3
,4
}

w
hi

le
so

lv
in

g
th

e
M

P
P

w
ith

th
e

fo
ur

-s
pl

itt
in

g
te

ch
ni

qu
e

on
th

e
M

at
ri

C
S

pl
at

fo
rm

To
ta

le
xe

cu
tio

n
tim

e
Sp

ee
du

p
E

ffi
ci

en
cy

p
k
=

2
k
=

3
k
=

4
k
=

2
k
=

3
k
=

4
k
=

2
k
=

3
k
=

4
n
=

36
86

4
64

69
67

.7
0

69
17

.3
2

69
94

.3
1

34
.9

9
35

.2
4

34
.8

5
54

.6
7

55
.0

6
54

.4
6

96
49

81
.2

6
49

15
.0

5
49

32
.4

0
48

.9
4

49
.6

0
49

.4
2

50
.9

8
51

.6
6

51
.4

8
12

8
40

83
.8

3
38

03
.6

9
38

73
.3

8
59

.6
9

64
.0

9
62

.9
4

46
.6

3
50

.0
7

49
.1

7
n
=

40
96

0
64

99
26

.2
0

97
58

.7
2

98
74

.9
2

38
.6

8
39

.3
5

38
.8

8
60

.4
4

61
.4

8
60

.7
6

96
74

39
.8

9
72

45
.4

5
72

96
.0

2
51

.6
1

53
.0

0
52

.6
3

53
.7

6
55

.2
0

54
.8

2
12

8
56

35
.0

9
54

49
.5

0
55

40
.5

1
68

.1
4

70
.4

6
69

.3
0

53
.2

3
55

.0
5

54
.1

4

Evolution of the global communication time • 140

Ta
bl

e
12

–
To

ta
le

xe
cu

tio
n

tim
e

(i
n

se
co

nd
s)

,s
pe

ed
up

,a
nd

ef
fic

ie
nc

y
(i

n
%

)f
or

n
∈
{4

09
6,
..
.,

40
96

0}
,p

=
32

,a
nd

k
∈
{1

,.
..
,5
}

w
hi

le
so

lv
in

g
th

e
O

B
ST

pr
ob

le
m

w
ith

th
e

fo
ur

-s
pl

itt
in

g
te

ch
ni

qu
e

on
th

e
M

at
ri

C
S

pl
at

fo
rm

To
ta

le
xe

cu
tio

n
tim

e
Sp

ee
du

p
E

ffi
ci

en
cy

n
k
=

1
k
=

2
k
=

3
k
=

4
k
=

5
k
=

1
k
=

2
k
=

3
k
=

4
k
=

5
k
=

1
k
=

2
k
=

3
k
=

4
k
=

5
40

96
11

.5
0

9.
90

8.
94

8.
58

8.
52

5.
42

6.
29

6.
97

7.
27

7.
32

16
.9

4
19

.6
7

21
.7

9
22

.7
1

22
.8

7
81

92
97

.3
4

77
.3

0
70

.7
6

69
.1

0
68

.6
4

5.
28

6.
65

7.
27

7.
44

7.
49

16
.5

1
20

.7
9

22
.7

1
23

.2
6

23
.4

2
12

28
8

33
8.

27
26

6.
48

24
3.

43
23

6.
72

23
5.

48
5.

27
6.

70
7.

33
7.

54
7.

58
16

.4
8

20
.9

2
22

.9
0

23
.5

5
23

.6
8

16
38

4
81

3.
47

63
4.

41
58

5.
65

57
2.

21
56

8.
37

5.
30

6.
80

7.
37

7.
54

7.
59

16
.5

8
21

.2
6

23
.0

3
23

.5
7

23
.7

3
20

48
0

16
05

.2
6

12
44

.9
7

11
47

.3
7

11
23

.6
6

11
16

.5
3

5.
32

6.
87

7.
45

7.
61

7.
65

16
.6

4
21

.4
5

23
.2

8
23

.7
7

23
.9

2
24

57
6

27
93

.9
5

21
51

.6
8

19
77

.7
8

19
37

.9
3

19
30

.0
8

5.
33

6.
92

7.
53

7.
69

7.
72

16
.6

7
21

.6
4

23
.5

4
24

.0
3

24
.1

2
28

67
2

44
58

.8
4

34
44

.4
2

31
55

.2
5

30
89

.1
7

30
76

.3
1

5.
34

6.
91

7.
54

7.
71

7.
74

16
.6

8
21

.6
0

23
.5

7
24

.0
8

24
.1

8
32

76
8

66
82

.0
7

51
53

.2
7

47
18

.7
2

46
16

.3
6

45
87

.6
0

4.
98

6.
45

7.
05

7.
21

7.
25

15
.5

6
20

.1
7

22
.0

3
22

.5
2

22
.6

6
36

86
4

95
78

.1
6

73
53

.3
5

67
29

.2
8

65
72

.3
8

65
29

.4
1

5.
05

6.
58

7.
19

7.
36

7.
41

15
.7

8
20

.5
5

22
.4

6
22

.9
9

23
.1

4
40

96
0

13
21

9.
62

10
12

0.
25

92
52

.3
7

90
13

.4
9

89
61

.5
4

5.
27

6.
89

7.
54

7.
74

7.
78

16
.4

8
21

.5
3

23
.5

5
24

.1
7

24
.3

1
Ta

bl
e

13
–

To
ta

le
xe

cu
tio

n
tim

e
(i

n
se

co
nd

s)
,s

pe
ed

up
,a

nd
ef

fic
ie

nc
y

(i
n

%
)

fo
r

n
∈
{3

68
64
,4

09
60
},

p
∈
{6

4,
96

,1
28
},

an
d

k
∈
{1

,.
..
,5
}

w
hi

le
so

lv
in

g
th

e
O

B
ST

pr
ob

le
m

w
ith

th
e

fo
ur

-s
pl

itt
in

g
te

ch
ni

qu
e

on
th

e
M

at
ri

C
S

pl
at

fo
rm

To
ta

le
xe

cu
tio

n
tim

e
Sp

ee
du

p
E

ffi
ci

en
cy

p
k
=

1
k
=

2
k
=

3
k
=

4
k
=

5
k
=

1
k
=

2
k
=

3
k
=

4
k
=

5
k
=

1
k
=

2
k
=

3
k
=

4
k
=

5
n
=

36
86

4
64

68
49

.6
9

52
68

.7
4

47
44

.9
2

46
09

.2
3

44
92

.7
0

7.
06

9.
18

10
.1

9
10

.4
9

10
.7

6
11

.0
3

14
.3

4
15

.9
2

16
.3

9
16

.8
2

96
58

11
.0

6
43

36
.5

3
39

60
.8

1
38

63
.4

8
38

46
.9

7
8.

32
11

.1
5

12
.2

1
12

.5
2

12
.5

7
8.

67
11

.6
2

12
.7

2
13

.0
4

13
.0

9
12

8
51

66
.8

0
38

58
.0

0
34

88
.6

7
34

07
.1

0
33

91
.6

9
9.

36
12

.5
3

13
.8

6
14

.1
9

14
.2

6
7.

31
9.

79
10

.8
3

11
.0

9
11

.1
4

n
=

40
96

0
64

95
64

.8
0

72
56

.8
4

63
33

.7
8

62
08

.7
9

61
77

.5
7

7.
29

9.
61

11
.0

1
11

.2
3

11
.2

9
11

.3
9

15
.0

1
17

.2
0

17
.5

5
17

.6
3

96
79

80
.8

5
59

54
.3

5
54

15
.2

9
52

99
.0

0
52

76
.1

9
8.

74
11

.7
1

12
.8

8
13

.1
6

13
.2

1
9.

10
12

.2
0

13
.4

1
13

.7
1

13
.7

7
12

8
71

15
.2

2
53

16
.1

6
48

15
.6

7
46

88
.9

1
46

70
.7

9
9.

80
13

.1
2

14
.4

8
14

.8
7

14
.9

3
7.

66
10

.2
5

11
.3

1
11

.6
2

11
.6

6
Ta

bl
e

14
–

To
ta

le
xe

cu
tio

n
tim

e
(i

n
se

co
nd

s)
,s

pe
ed

up
,a

nd
ef

fic
ie

nc
y

(i
n

%
)

fo
r

n
∈
{4

09
6,
..
.,

16
38

4}
,

p
∈
{1
,3

2}
,a

nd
k
∈
{1
,.
..
,5
}

w
hi

le
so

lv
in

g
th

e
O

B
ST

pr
ob

le
m

w
ith

th
e

fo
ur

-s
pl

itt
in

g
te

ch
ni

qu
e

on
ou

r
R

as
pb

er
ry

P
ic

lu
st

er

To
ta

le
xe

cu
tio

n
tim

e
Sp

ee
du

p
E

ffi
ci

en
cy

n
p
=

1
k
=

1
k
=

2
k
=

3
k
=

4
k
=

5
k
=

1
k
=

2
k
=

3
k
=

4
k
=

5
k
=

1
k
=

2
k
=

3
k
=

4
k
=

5
40

96
15

2.
45

70
.5

3
61

.7
4

50
.4

5
51

.6
8

52
.2

4
2.

16
2.

47
3.

02
2.

95
2.

92
6.

75
7.

72
9.

44
9.

22
9.

12
81

92
12

52
.7

8
55

3.
87

42
5.

86
41

5.
23

38
5.

80
39

1.
02

2.
26

2.
94

3.
02

3.
25

3.
20

7.
07

9.
19

9.
43

10
.1

5
10

.0
1

12
28

8
43

84
.9

3
26

70
.3

2
16

15
.9

0
14

48
.0

8
13

18
.4

9
13

51
.7

3
1.

64
2.

71
3.

03
3.

33
3.

24
5.

13
8.

48
9.

46
10

.3
9

10
.1

4
16

38
4

10
66

0.
09

48
56

.3
2

40
34

.4
2

38
70

.5
1

36
10

.4
9

34
64

.0
9

2.
20

2.
64

2.
75

2.
95

3.
08

6.
86

8.
26

8.
61

9.
23

9.
62

Evolution of the global communication time • 141

 0

 5400

 10800

 16200

 21600

 0 8192 16384 24576 32768 40960

T
im

e
(s

ec
)

Data size

Comm. time for k = 0
Comm. time for k = 1 (kbyk and 4s)
Comm. time for k = 2 (kbyk)
Comm. time for k = 2 (4s)

(a) MPP for p = 32

 0

 5400

 10800

 16200

 21600

 0 8192 16384 24576 32768 40960

T
im

e
(s

ec
)

Data size

Comm. time for k = 0
Comm. time for k = 1 (frag)
Comm. time for k = 1 (4s)
Comm. time for k = 2 (frag)
Comm. time for k = 2 (4s)

(b) OBST problem for p = 32

 0

 10800

 21600

 32400

 43200

 32 64 96 128

T
im

e
(s

ec
)

Number of processors

Comm. time for k = 0
Comm. time for k = 1 (kbyk and 4s)
Comm. time for k = 2 (kbyk)
Comm. time for k = 2 (4s)

(c) MPP for n = 40960

 0

 5400

 10800

 16200

 21600

 32 64 96 128

T
im

e
(s

ec
)

Number of processors

Comm. time for k = 0
Comm. time for k = 1 (frag)
Comm. time for k = 1 (4s)
Comm. time for k = 2 (frag)
Comm. time for k = 2 (4s)

(d) OBST problem for n = 40960

Figure 57 – Global communication time for n ∈ {4096, . . . ,40960}, p ∈ {32, . . . ,128}, and k ∈
{0,1,2} while solving the MPP and the OBST problem with the four-splitting tech-
nique on the MatriCS platform

Evolution of the global communication time
Figures 57a and 57c compare the global communication time of kbyk and 4s while
solving the MPP by performing one and two fragmentations. Figure 57a shows
that from n = 4096 to 24576, the global communication time of kbyk and 4s is bet-
ter when performing one fragmentation than when performing two. Indeed, while
solving the MPP, the evaluation of the small subblocks requires less time than the
large ones; and thus requires less latency time of processors. Therefore, decreasing
the size of these subblocks by performing more fragmentations will lead to in-
crease the global communication time and minimize the overall computation time.
This will lead to a better total execution time when performing more than one frag-
mentation. For example, on thirty-two processors when n = 24576 in Figure 58a,
the total execution time is made up of 34.39% of computation time and 65.61% of
communication time when k = 1, and 15.30% of computation time and 84.70% of
communication time when k = 2. Now when comparing the global communication
time of kbyk and 4s, it can be noticed that 4s is better than kbyk. Indeed, it is neces-
sary to split the blocks into at most four subblocks because their sizes are not large
enough. Excessive communications degrading the global communication time can

Evolution of the global communication time • 142

be achieved when there are more subblocks than necessary. Figure 57a also shows
that from n = 28800, the global communication time of kbyk when k = 2 is bet-
ter than that of 4s when k = 1 and k = 2. Indeed, large subblocks require more
time to be evaluated; and thus, require more than one fragmentation to minimize
the latency time of processors (this observation is not true in all cases because, for
example on sixty-four processors in Figure 57c, the global communication time of
kbyk and 4s when k = 1 is smaller than when k = 2). In addition, it is necessary
to split large-size blocks into more than four subblocks to allow processors to start
or continue evaluating their blocks as soon as possible. For example on thirty-two
processors when n = 40960, kbyk decreases the global communication time on av-
erage by 56.97% and 4s decreases it on average by 49.96% when k = 2. However,
Figure 58a shows that 4s decreases the global communication time on average by
59.87% when k = 3. This is due to the fact that blocks belonging to the last level of
fragmentation are quite large and require an additional fragmentation when k = 2.
In contrast, Figures 58f, 58g, and 58h show that from sixty-four to one hundred and
twenty-eight processors, the global communication time of kbyk when k = 2 is bet-
ter than that of 4s when k = 3. This is because increasing the number of processors
results in decreasing the size of blocks (as well as subblocks); therefore, applying
a third fragmentation results in minimizing the global communication time, which
is not enough to be better than kbyk when k = 2. Nevertheless, it would have been
wise to split blocks into more than four subblocks when k = 3 to decrease the
latency time as much as possible.

Figures 57b and 57d show that the global communication time of 4s is smaller
than frag while solving the OBST problem by performing one and two fragmen-
tations. It significantly decreases when the number of fragmentations increases.
For example, on thirty-two processors when n = 40960, the global communica-
tion time of frag (respectively 4s) decreases on average by 3.87% (respectively
41.84%) when k = 1 and on average by 40.49% (respectively 54.83%) when k = 2.
These results were expected because 4s minimizes the latency time of processors
by allowing them to start evaluating subblocks as soon as the data they need are
available. Grouping the subblocks into two before communicating also contributes
to this minimization because it limits the number of messages to be exchanged in
the network.

Figures 58a and 58c (respectively 58b and 58d) show that in general the global
communication time and the overall computation time of 4s gradually decrease
while solving the MPP (respectively the OBST problem) by successively perform-
ing four (respectively five) fragmentations. Nevertheless, Figures 58a and 58c

Evolution of the global communication time • 143

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 1 2 3 4 1 2 3 4

T
im

e
(h

ou
r)

Data size

Communication time
Computation time

409603276824576

(a) MPP for p = 32

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

T
im

e
(h

ou
r)

Data size

Communication time
Computation time

409603276824576

(b) OBST problem for p = 32

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 3 4 1 2 3 4 1 2 3 4

T
im

e
(h

ou
r)

Number of processors

Communication time
Computation time

1289664

(c) MPP for n = 40960

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

T
im

e
(h

ou
r)

Number of processors

Communication time
Computation time

1289664

(d) OBST problem for n = 40960

 0

 2

 4

 6

 8

 10

 12

 14

kbyk 4s kbyk 4s kbyk 4s kbyk 4s

T
im

e
(h

ou
r)

Number of fragmentations

Communication time
Computation time

4321

(e) MPP for n = 40960 and p = 32

 0

 1

 2

 3

 4

 5

kbyk 4s kbyk 4s kbyk 4s kbyk 4s

T
im

e
(h

ou
r)

Number of fragmentations

Communication time
Computation time

4321

(f) MPP for n = 40960 and p = 64

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

kbyk 4s kbyk 4s kbyk 4s kbyk 4s

T
im

e
(h

ou
r)

Number of fragmentations

Communication time
Computation time

4321

(g) MPP for n = 40960 and p = 96

 0

 0.5

 1

 1.5

 2

 2.5

kbyk 4s kbyk 4s kbyk 4s kbyk 4s

T
im

e
(h

ou
r)

Number of fragmentations

Communication time
Computation time

4321

(h) MPP for n = 40960 and p = 128

Figure 58 – Comparison of the overall computation time and the global communication time for
n ∈ {24576,32768,40960}, p ∈ {32, . . . ,128}, and k ∈ {1, . . . ,5} while solving the
MPP and the OBST problem with the four-splitting technique on the MatriCS platform

Evolution of the global communication time • 144

show that the global communication time of 4s degrades from the fourth fragmen-
tation because on thirty-two processors when n = 40960, it decreases in average
by 48.17% when k = 1, in average by 49.96% when k = 2, in average by 59.87%
when k = 3, and in average by 56.12% when k = 4. This is due to the fact that
from a certain number of fragmentations, the small subblocks which are close to
the optimal solution (and thus require a high evaluation time using the sequen-
tial algorithm of Godbole (1973)) do not need to be fragmented any more because
they can lead to excessive communications; and thus the latency time of proces-
sors will be increased instead of being reduced. This observation is not the same
for the OBST problem as shown in Figures 58b and 58d because until the fifth
fragmentation the global communication time does not deteriorate. For example,
on thirty-two processors when n = 40960, it decreases in average by 41.84% when
k = 1, in average by 54.83% when k = 2, in average by 58.18% when k = 3, in
average by 59.43% when k = 4, and in average by 69.08% when k = 5. This is
due to the sequential algorithm of Knuth (1971), which is used to evaluate small
subblocks that are close to the optimal solution. Since they do not require a high
evaluation time, processors that need these subblocks will not have to wait long to
receive them.

Evolution of the load-balancing of processors
Figures 59a and 59b show that while solving the OBST problem, our CGM-based
parallel solution based on the four-splitting technique (4s) kept the good perfor-
mance of our CGM-based parallel solution based on the irregular partitioning tech-
nique (frag) with respect to the load-balancing of processors since they promote
the load balancing when the number of fragmentations increases. Indeed, the load-
balancing of processors for frag and 4s are nearly the same. When n = 40960 and
k = 1, the lowest load narrows down to 27.52% for frag and to 27.24% for 4s;
and the highest load increases up to 11.89% for frag and to 11.60% for 4s. In the
same vein when k = 2, the lowest load and the highest load decrease on average
by 56.63% and 42.98% for frag, and on average by 55.73% and 42.77% for 4s. As
for the MPP, these results were predictable because 4s (which is a special case of
kbyk) are based on the irregular partitioning technique and snake-like mapping.

Evolution of the total execution time
Figures 58a, 58b, 58c, 58d, 58e, 58f, 58g, 58h, 60a, 60b, 60c, and 60d illustrate
the total execution time of frag, kbyk, and 4s while solving the MPP and the OBST
problem by performing one, two, three, four, and five fragmentations. As observed
in Sections 3.3.5 and 3.4.3, the global communication time (see above) has a huge

Evolution of the total execution time • 145

-40

-20

 0

 20

 40

 60

k=0 frag 4s k=0 frag 4s k=0 frag 4s

T
im

e
(m

in
)

Data size

Highest load : P3 (k = 0) and P25 (frag and 4s)
Lowest load : P7 (k = 0) and P6 (frag and 4s)

409603276824576

(a) k = 1

-40

-20

 0

 20

 40

 60

k=0 frag 4s k=0 frag 4s k=0 frag 4s

T
im

e
(m

in
)

Data size

Highest load : P3 (k = 0) and P22 (frag and 4s)
Lowest load : P7 (k = 0) and P30 (frag and 4s)

409603276824576

(b) k = 2

Figure 59 – Load imbalance of processors for n ∈ {24576,32768,40960}, p = 32, and k ∈
{0,1,2} while solving the OBST problem with the four-splitting technique on the
MatriCS platform

 0

 7200

 14400

 21600

 28800

 0 8192 16384 24576 32768 40960

T
im

e
(s

ec
)

Data size

Exec. time for p = 1
Exec. time for k = 0
Exec. time for k = 1 (kbyk and 4s)
Exec. time for k = 2 (kbyk)
Exec. time for k = 2 (4s)

(a) MPP for p = 32

 0

 5400

 10800

 16200

 21600

 0 8192 16384 24576 32768 40960

T
im

e
(s

ec
)

Data size

Exec. time for p = 1
Exec. time for k = 0
Exec. time for k = 1 (frag)
Exec. time for k = 1 (4s)
Exec. time for k = 2 (frag)
Exec. time for k = 2 (4s)

(b) OBST problem for p = 32

 0

 10800

 21600

 32400

 43200

 54000

 32 64 96 128

T
im

e
(s

ec
)

Number of processors

Exec. time for k = 0
Exec. time for k = 1 (kbyk and 4s)
Exec. time for k = 2 (kbyk)
Exec. time for k = 2 (4s)

(c) MPP for n = 40960

 0

 5400

 10800

 16200

 21600

 32 64 96 128

T
im

e
(s

ec
)

Number of processors

Exec. time for k = 0
Exec. time for k = 1 (frag)
Exec. time for k = 1 (4s)
Exec. time for k = 2 (frag)
Exec. time for k = 2 (4s)

(d) OBST problem for n = 40960

Figure 60 – Total execution time for n ∈ {4096, . . . ,40960}, p ∈ {32, . . . ,128}, and k ∈ {0,1,2}
while solving the MPP and the OBST problem with the four-splitting technique on the
MatriCS platform

impact on the total execution time, and consequently on the speedup and the ef-
ficiency (as shown in Tables 10, 11, 12, and 13). The results are obvious while
solving the MPP:

• From n = 4096 to 24576 on thirty-two processors, the total execution time
of 4s is better than kbyk when performing two fragmentations. For example

Evolution of the total execution time • 146

when n = 24576 and k = 2, the speedup and the efficiency are equal to 15.59
and 48.71% for kbyk, and increase up to 17.01 and 53.15% for 4s.

• From n = 28800 on thirty-two processors, the total execution time of kbyk
is better than that of 4s when performing two fragmentations. For example
when n = 40960 and k = 2, the speedup and the efficiency are equal to 18.13
and 56.67% for kbyk, and narrow down to 16.22 and 50.69% for 4s.

• From n = 4096 to 40960 on thirty-two processors, the total execution time
of 4s when performing three fragmentations is better than that of kbyk when
performing two fragmentations. For example when n = 40960 and k = 3, the
speedup and the efficiency are equal to 19.88 and 62.14% for 4s.

• When n = 36864 and n = 40960 on sixty-four to one hundred and twenty-
eight processors, the total execution time of kbyk when performing two frag-
mentations is better than 4s when performing three fragmentations. For ex-
ample on one hundred and twenty-eight processors when n = 40960, the
speedup and the efficiency are equal to 74.36 and 58.09% for kbyk when
k = 2, and narrow down to 70.46 and 55.05% for 4s when k = 3.

• From n = 4096 to 40960 on thirty-two to one hundred and twenty-eight pro-
cessors, the total execution time of 4s degrades from the fourth fragmentation.
For example when n = 40960 and k = 4, the speedup and the efficiency of 4s
are equal to 18.44 and 57.62% on thirty-two processors, and equal to 69.30
and 54.14% for 4s on one hundred and twenty-eight processors.

In a nutshell, there is no better choice between kbyk and 4s to solve the MPP
because in some conditions 4s is better than kbyk and in other conditions it is the
opposite. However, we recommend to use 4s to solve this problem since compared
to kbyk, 4s minimizes communication between processors and its performance does
not degrade abruptly when the number of fragmentations increases.

Concerning the OBST problem, the following results can be noticed :

• From n = 4096 to 40960 on thirty-two to one hundred and twenty-eight pro-
cessors, the total execution time of 4s is better than that of frag when per-
forming one and two fragmentations. For example, on thirty-two processors
when n = 40960 and k = 1 (respectively k = 2), the speedup and the effi-
ciency are equal to 3.33 and 10.41% (respectively 5.37 and 16.78%) for frag,
and increase up to 5.27 and 16.48% (respectively 6.89 and 21.53%) for 4s.

Evolution of the total execution time • 147

• When performing three, four, and five additional fragmentations, the total
execution time of 4s keeps good performance, although from the fourth frag-
mentation the performance gain is not meaningful anymore. For example,
on thirty-two processors when n = 40960, the speedup and the efficiency are
equal to 7.54 and 23.55% when k = 3, and increase up to 7.74 and 24.17%
when k = 4, up to 7.78 and 24.31% when k = 5.

From all this, we can deduce that it is better to use our CGM-based parallel so-
lution based on the four-splitting technique to solve the OBST problem since it
outperforms the one using the irregular partitioning technique and it is scalable as
the data size, the number of processors, and the number of fragmentations rise.

What is the ideal number of fragmentations ?
This is a legitimate question because as shown earlier, on the MatriCS platform the
total execution time of 4s degrades from the fourth fragmentation while solving
the MPP but keeps good performance until the fifth fragmentation while solving
the OBST problem. One idea to determine the ideal number of fragmentations
would be to run our CGM-based parallel solution based on the four-splitting tech-
nique to solve the OBST problem for example on another cluster. If we obtain
the same result that was archived on the MatriCS platform then this could guide
us to determine this number. Otherwise, we will deduce that the ideal number of
fragmentations depends on the platform where the parallel algorithm is executed.

To achieve this goal, we have built a cluster consisting of four compute nodes.
Each node is a Raspberry Pi 4 computer model B composed of a 64-bit quad-
core Cortex-A72 processor with 8GB of RAM and an operating system Raspbian
GNU/Linux 11. All nodes are interconnected with Cat8 Ethernet cable through a
TP-Link router (model TL-SG108E) providing 16Gbps throughput and the inter-
processor communication has been ensured by OpenMPI version 4.1.2.

Figures 61a and 61b compare the overall computation time and global commu-
nication time of 4s on thirty-two processors while solving the OBST problem by
performing one, two, three, four, and five fragmentations on the MatriCS platform
and on our Raspberry Pi cluster. It is obvious to notice that whatever the clus-
ter, 4s progressively reduces the global communication time when the number of
fragmentations rises. However on the Raspberry Pi cluster, the performance of 4s
degrades when adding the overall computation time at the fifth fragmentation for
n = 8192 and n = 12288 because the global communication time did not reduce
enough to keep the good performance. For example when n = 12288 in Table 14,
the speedup is equal to 1.64 when k = 1, and increases up to 2.71 when k = 2,

What is the ideal number of fragmentations ? • 148

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

T
im

e
(m

in
)

Data size

Communication time
Computation time

16384122888192

(a) MatriCS platform

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

T
im

e
(m

in
)

Data size

Communication time
Computation time

16384122888192

(b) Raspberry Pi cluster

Figure 61 – Comparison of the overall computation time and the global communication time for
n∈{8192,12288,16384}, p= 32, and k∈{1, . . . ,5}while solving the OBST problem
with the four-splitting technique on on the MatriCS platform and our Raspberry Pi
cluster

up to 3.03 when k = 3, up to 3.33 when k = 4, but the speedup narrows down
to 3.24 when k = 5. This result is due to the fact that the Raspberry Pi cluster
does not have a communication network as fast as the MatriCS platform. Indeed,
an additional fragmentation is no longer necessary from the fourth fragmentation.
Thus, since the network is not very fast, excessive communication caused a drop
in performance. In summary, we deduce that the ideal number of fragmentations
depends on the architecture where the CGM-based parallel solution is executed.

Another relevant observation can be seen on the Raspberry Pi cluster in Figure
61b, where the total execution time of 4s gradually decreases after five successive
fragmentations when n = 16384. As shown in Table 14, the speedup is equal to
2.20 when k = 1, and increases up to 2.64 when k = 2, up to 2.75 when k = 3,
up to 2.95 when k = 4, and up to 3.08 when k = 5. This is due to the fact that
when the input data size increases, fragmentations are more and more required
until the performance gain is not significant or drops. However, as seen earlier, the
performance of 4s degrades at the fifth fragmentation for n = 8192 and n = 12288.
Consequently, we infer that the ideal number of fragmentations also depends on
the input data size.

3.6 - Summary

This chapter presented CGM-based parallel solutions based on three dynamic graph
partitioning techniques that reconcile the trade-off of minimizing the number of
communication rounds and balancing the load of processors to solve the MPP and
the OBST problem. First, we designed a dynamic graph model for the OBST prob-

Summary • 149

lem, like in (Bradford, 1994) for the MPP, that can be used to solve this problem
through a one-to-all shortest path algorithm. We improved the dynamic graph pro-
posed by Bradford (1994) by removing some horizontal jumps in addition to the
vertical jumps in the dynamic graph D′n to avoid more redundant computations.

Then, we proposed an irregular partitioning technique of the dynamic graph to
tackle the conflicting objectives. It consists in subdividing the dynamic graph into
blocks of variable size. Our CGM-based parallel solutions using this technique
require O

(
n3/p

)
execution time to solve the MPP and O

(
n2/
√

p
)

to solve the
OBST problem, each with O

(
k
√

p
)

communication rounds. Experimental results
showed that these solutions minimize the overall computation time and the latency
time, and balance better the load of processors than those using regular partitioning
technique of the dynamic graph.

Finally, we proposed two techniques based on the irregular partitioning tech-
nique to reduce the latency time of processors by allowing them to start the evalu-
ation of blocks as soon as possible. Indeed, varying the blocks’ sizes does not en-
able processors to start evaluating small-size blocks as soon as the data they need
are available, although these data are available before the end of the evaluation
of large-size blocks. We first proposed the k-block splitting technique consisting
in splitting the large-size blocks into a set of smaller-size blocks called k-blocks.
Thus, evaluating a block by a single processor consists of computing and commu-
nicating each k-block contained in this block. Experimental results showed that
our CGM-based parallel solution using this technique is better than previous but
leads to communication overhead when k increases. So, we proposed the four-
splitting technique consisting in splitting the large-size blocks into four small-size
blocks. It avoids communication overhead and significantly reduces the latency
time of processors. Experimental results are showed that our CGM-based paral-
lel solutions using the four-splitting technique are scalable as the data size, the
number of processors, and the number of fragmentations rise. These solutions are
better than those using the irregular partitioning technique and the k-block splitting
technique (although in some cases, the k-block splitting technique is better than the
four-splitting technique while solving the MPP). We also conducted experiments to
determine the ideal number of times the size of the blocks must be subdivided. The
results showed that this number depends on the input data size and characteristics
of the architecture of parallel computers where the solution is executed.

Summary • 150

General Conclusion

CONTENTS

Re-stating the research problem . 151
Results obtained and critical analysis 152
Further work . 155

Re-stating the research problem

In this thesis, we have studied the parallelization on the coarse-grained multicom-
puter (CGM) model of a class of non-serial polyadic dynamic-programming prob-
lems that can be formulated by Equation (1.8). Especially, we are interested in
the minimum cost parenthesizing problem (MPP), the matrix chain ordering prob-
lem (MCOP), the triangulation of a convex polygon (TCP) problem, and the opti-
mal binary search tree (OBST) problem. The standard methodology for designing
CGM-based parallel solutions to solve these problems is to partition the depen-
dency graph into subgraphs (or blocks) of same size, then distribute these blocks
fairly among processors, and finally compute them in a suitable evaluation order.
Kengne et al. (2016) noticed that the execution time was related to the load bal-
ancing and the number of communication rounds. These criteria depend on the
partitioning strategy and the distribution scheme strategy used when designing the
CGM-based parallel solution. Kengne et al. (2016) showed that minimizing the
number of communication rounds and balancing the load between processors are
two conflicting objectives when the dependency graph (or the dynamic graph) is
partitioned into blocks of the same size :

1 - When the dependency graph is subdivided into small-size blocks (Kechid
and Myoupo, 2008a, 2008b, 2009), the load difference between processors

• 151

is small if one processor has one more block than another. However, the
number of communication rounds will be high.

2 - When the dependency graph is subdivided into large-size blocks (Kengne
and Myoupo, 2012; Myoupo and Kengne, 2014a, 2014b), the number of
communication rounds is reduced since there are few blocks. However, the
load of processors will be unbalanced.

By generalizing the ideas of the dependency graph partitioning and distribution
scheme introduced in (Kechid and Myoupo, 2008a, 2009; Kengne and Myoupo,
2012; Myoupo and Kengne, 2014b), Kengne et al. (2016) proposed a CGM-based
parallel solution that gives the end-user the choice to optimize one criterion ac-
cording to their own goal.

The main drawback of this solution is the conflicting optimization criterion ow-
ing to the fact that the end-user cannot optimize more than one criterion. Moreover,
these criteria have a significant impact on the latency time of processors, and con-
sequently on the global communication time.

Results obtained and critical analysis

This thesis intended to design CGM-based parallel solutions that address the trade-
off of minimizing the number of communication rounds and balancing the load of
processors to solve the foregoing problems. To achieve our goal, we have proposed
three techniques.

Irregular partitioning technique
This technique consists in subdividing the dependency graph into blocks of variable
size. It ensures that the blocks of the first diagonals are of large sizes to minimize
the number of communication rounds. Thereafter, it decreases these sizes along the
diagonals to increase the number of blocks in these diagonals and allow processors
to stay active longer. These blocks are distributed fairly among processors to min-
imize their idle time and balance the load between them. Our CGM-based parallel
solutions using this technique require O

(
n3/p

)
execution time to solve the MPP

and O
(
n2/
√

p
)

to solve the OBST problem, each with O
(
k
√

p
)

communication
rounds. n is the input data size, p is the number of processors, and k is the number
of times the size of blocks is subdivided. The sequential algorithm of Godbole
(1973) and the sequential algorithm of Knuth (1971) are respectively used in the
local computation round while solving the MPP and the OBST problem.

Irregular partitioning technique • 152

Experimental results showed that these solutions balance the load of processors
and minimize the overall computation time and the latency time. Consequently,
our solutions significantly reduced the total execution time compared the regular
partitioning technique proposed in (Kechid and Myoupo, 2008a, 2009; Kengne and
Myoupo, 2012; Kengne et al., 2016; Myoupo and Kengne, 2014b).

Nevertheless, this technique also induces a high latency time of processors since
it does not allow processors to start evaluating small-size blocks as soon as the data
they need are available. Yet, these data are usually available before the end of the
evaluation of large-size blocks.

k-block splitting technique
To reduce this latency time, the k-block splitting technique consists in splitting the
large-size blocks into a set of smaller-size blocks called k-blocks after performing
k fragmentations. Thus, to allow processors to start the evaluation of k-blocks as
soon as possible, a single processor evaluates a block by computing and commu-
nicating each k-block contained in this block. This technique is essentially based
on the progressive evaluation of blocks. Indeed, evaluating a block belonging to
the diagonal d in a progressive fashion consists in starting at the diagonal dd/2e.
Therefore, this technique is suitable to solve the MPP because the sequential al-
gorithm of Godbole (1973) gives the possibility to evaluate the nodes of blocks
in this way. The sequential algorithm of Knuth (1971) in contrast does not allow
performing this kind of evaluation to solve the OBST problem because it does not
allow knowing when to start or continue the evaluation of a node. Thus, it was
not meaningful and practical to apply the k-block splitting technique to solve the
OBST problem because a lot of unnecessary computations could be performed and
lead to poor performance.

For the MPP, depending on how processors evaluate the k-blocks contained in
a block, we have derived two approaches :

1 - The diagonal by diagonal evaluation approach, which consists in evaluating
a block by computing a set of k-blocks belonging to the same diagonal
before communicating them. It runs in O

(
n3/4k p

)
execution time with

O
(
2k√p

)
communication rounds.

2 - The k-block by k-block evaluation approach, which consists in evaluating
a block by computing and communicating each k-block contained in this
block. It runs in O

(
n3/2k p

)
execution time with O

(
4k√p

)
communication

rounds.

k-block splitting technique • 153

Experimental results showed that these solutions are better than those based on the
irregular partitioning technique since they significantly reduce the global commu-
nication time. They also showed that the second approach is better than the first
because the second approach communicates a k-block as soon as a processor has
finished computing it.

However, this technique induces a communication overhead when the number
of fragmentations rises. In fact, since the k-block are numerous and small when
k increases, a huge amount of communication must be done by processors to ex-
change data. Experimental results showed that this shortcoming deteriorates the
performance of our CGM-based parallel solution as the communication overhead
raises the latency time of processors, which accounts for most of the global com-
munication time.

Four-splitting technique
The four-splitting technique avoids this communication overhead while reducing
the latency time of processors by splitting the large-size blocks into four small-
size blocks (or subblocks) after performing k fragmentations. Hence, evaluating a
block by a single processor consists of computing and communicating each sub-
block contained in this block. This technique has been used to solve the MPP
and the OBST problem since the subblocks can be evaluated either progressive or
non-progressive fashion unlike the k-block splitting technique. Our CGM-based
parallel solutions using this technique have the same complexity as those using the
irregular partitioning technique.

Experimental results showed a good agreement with theoretical predictions.
Our CGM-based parallel solutions using this technique were better than those us-
ing the irregular partitioning technique and the k-block splitting technique. These
results also showed that while solving the MPP, when the input data size and the
number of processors is large and a number of fragmentations is small, it is prefer-
able to use k-block splitting technique than the four-splitting technique. We also
conducted experimentations to determine the ideal number of times the size of the
blocks must be subdivided. The results showed that this number depends on the
input data size and the architecture where the solution is executed.

Our fast sequential algorithm for the MCOP and the TCP problem
CGM-based parallel solutions proposed by Kechid and Myoupo (2008b) and My-
oupo and Kengne (2014a) to solve the MCOP and the TCP problem, where there is
a one-to-one correspondence between them, exhibit the same trade-off addressed in

Our fast sequential algorithm for the MCOP and the TCP problem • 154

this thesis. Recall that these solutions are based on the O
(
n2
)
-time sequential algo-

rithm of Yao (1982), which change the form of the dependency graph by reducing
the number of subproblems to be performed. We could easily propose CGM-based
parallel solutions using the previous techniques. Nevertheless, after noticing that
some unnecessary computations were performed by the sequential algorithm of
Yao (1982) because the subproblems were evaluated according to their precedence
order, we have begun by solving this issue. We have proposed a fast sequential
algorithm consisting in organizing the evaluation of the subproblems according to
their dependencies to avoid these unnecessary computations. It requires O(n) time
in many cases but requires O

(
n2
)

time in the worst case.
Experimental results performed on the MatriCS platform showed that this se-

quential algorithm is ×18.93 faster than the sequential algorithm of Yao (1982)
and ×5.07 faster than the CGM-based parallel solution of Myoupo and Kengne
(2014a) on thirty-two processors. Therefore, it questions the core idea of partition-
ing techniques proposed by Kechid and Myoupo (2008b) and Myoupo and Kengne
(2014a), which consists in scanning the 2n subproblems of the dependency graph
to estimate the overall computational load to distribute tasks equitably onto proces-
sors (since two input data of the same size but different values have two different
forms of the dependency graph).

Further work

Further research can be conducted to extend this work:

Parallelizing our fast sequential algorithm for the MCOP and the TCP problem
It would be interesting to undertake the challenge to propose a CGM-based par-
allel solution based on our sequential algorithm. Because of its speedup, the best
partitioning technique of the dependency graph proposed in (Myoupo and Kengne,
2014a), which runs in O(n log p) time, must be completely revised. An idea can
be to parallelize it. Another idea can be to skip the step of estimating the over-
all computational load before distributing the nodes equitably onto the processors.
Distribute them randomly could be the best partitioning strategy.

Finding the ideal number of fragmentations before starting or during computations
It would be interesting to determine the ideal number of fragmentations before
starting or during computations since this number depends on the architecture
where the solution is executed. One idea will be to refer to machine learning tech-

Further work • 155

niques to find it before starting according to the characteristics of parallel computer
architectures. Another idea would be to create a dynamic irregular partitioning that
subdivides the dynamic graph into blocks during the resolution of the problem ac-
cording to the parallel computer architecture. It would also be interesting if these
strategies took into account the optimization of other resources such as storage and
energy consumption.

Exploiting the dynamic graph model of the OBST problem
It would be interesting to use our dynamic graph model of the OBST problem to
develop a CGM-based parallel solution running in O

(
n2/p2

)
execution time with

O(1) communication round. One idea can be to inspire ourselves from the work
of Bradford (1994) and Higa and Stefanes (2012) to determine the critical nodes in
the dynamic graph. From these nodes, it will be possible to avoid traversing certain
paths that can never lead to the optimal solution.

Applying our partitioning techniques on other dynamic-programming problems
It would be interesting to propose CGM-based parallel solutions using our parti-
tioning techniques to solve other non-serial polyadic dynamic-programming prob-
lems such as the context-free grammar parsing problem (Kasami, 1965; Younger,
1967) and the Nussinov RNA folding problem (Nussinov and Jacobson, 1980). To
our knowledge, there is no CGM-based parallel solutions that solve these prob-
lems. Another serial monadic, serial polyadic, or non-serial monadic dynamic-
programming problems can be also addressed such as the string editing problem
(Alves et al., 2002; Lacmou et al., 2020) and the longest common subsequence
problem (Garcia et al., 2003). The irregular partitioning technique has been applied
to solve two variants of the longest common subsequence problem in (Kengne et
al., 2022, 2020). It can be interesting to apply the four-splitting technique to im-
prove this solution.

Applying our partitioning techniques on other parallel computer architectures
It would be interesting to apply our partitioning techniques on shared-memory
architectures and GPU architectures. One idea can be to inspire the irregular parti-
tioning technique and the loop tiling transformation to create a new transformation
called irregular loop tiling that should mitigate the workload imbalance of threads.
Indeed, the loop tiling transformation is used in many parallel solutions; for exam-
ple to solve the Nussinov RNA folding problem in (Palkowski and Bielecki, 2017).
Another idea can be to hybridize our solutions on distributed-memory architectures
and those of Mabrouk (2016) on shared-memory architectures.

Further work • 156

Bibliography

Alves, C. E. R., Cáceres, E. N., and Dehne, F. (2002). Parallel Dynamic Program-
ming for Solving the String Editing Problem on A CGM/BSP. In Proceedings
of the 14th Annual ACM Symposium on Parallel Algorithms and Architectures (pp.
275–281). Winnipeg, Manitoba, Canada. https://doi.org/10.1145/564870.564916

Bellman, R. (1957). Dynamic Programming (1st ed.). Princeton University Press.

Bhattacharyya, S. S., and Murthy, P. K. (1995). Optimal Parenthesization of Lex-
ical Orderings for DSP Block Diagrams. In Proceedings of the IEEE Workshop
on VLSI Signal Processing (pp. 177–186). Sakai, Kansai, Japan. https://doi.org/
10.1109/vlsisp.1995.527489

Bielecki, W., Blaszynski, P., and Poliwoda, M. (2021). 3D Parallel Tiled Code
Implementing a Modified Knuth’s Optimal Binary Search Tree Algorithm. Journal
of Computational Science, 48(1). https://doi.org/10.1016/j.jocs.2020.101246

Biswas, G., and Mukherjee, N. (2021). Memory Optimized Dynamic Matrix
Chain Multiplication Using Shared Memory in GPU. In the 2021 International
Conference on Distributed Computing and Internet Technology (pp. 160–172).
Bhubaneswar, Odisha, India. https://doi.org/10.1007/978-3-030-65621-8_10

Bradford, P. G. (1994). Parallel Dynamic Programming (Ph.D. Thesis). Indiana
University.

Bradford, P. G., Rawlins, G. J., and Shannon, G. E. (1998). Efficient Matrix
Chain Ordering In Polylog Time. SIAM Journal on Computing, 27(2), 466–490.
https://doi.org/10.1137/s0097539794270698

Cáceres, E. N., Mongelli, H., Loureiro, L., Nishibe, C., and Song, S. W. (2010).
Performance Results of Running Parallel Applications on the Integrade. Concur-
rency and Computation: Practice and Experience, 22(3), 375–393. https://doi.org/
10.1002/cpe.1524

• 157

https://doi.org/10.1145/564870.564916
https://doi.org/10.1109/vlsisp.1995.527489
https://doi.org/10.1109/vlsisp.1995.527489
https://doi.org/10.1016/j.jocs.2020.101246
https://doi.org/10.1007/978-3-030-65621-8_10
https://doi.org/10.1137/s0097539794270698
https://doi.org/10.1002/cpe.1524
https://doi.org/10.1002/cpe.1524

Chan, A., Dehne, F., Bose, P., and Latzel, M. (2008). Coarse Grained Parallel
Algorithms for Graph Matching. Parallel Computing, 34(1), 47–62. https://doi
.org/10.1016/j.parco.2007.11.004

Collette, Y., and Siarry, P. (2002). Optimisation Multiobjectif (1st ed.). Eyrolles.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction
to Algorithms (3rd ed.). The MIT Press.

Craus, M. (2002). Parallel and Distributed Solutions for the Optimal Binary Search
Tree Problem. In the 2002 International Conference on Coding and Cryptology
(pp. 103–117). Mangalia, Dobroudja, Romania. https://doi.org/10.1007/3-540
-47840-x_10

Culler, D., Karp, R., Patterson, D., Sahay, A., Erik, S. K., Santos, E., . . . von
Eicken, T. (1993). LogP: Towards a Realistic Model of Parallel Computation.
ACM SIGPLAN Notices, 28(7), 1–12. https://doi.org/10.1145/173284.155333

Czarnul, P. (2018). Parallel Programming for Modern High Performance Comput-
ing Systems (1st ed.). CRC Press.

Czech, Z. J. (2017). Introduction to Parallel Computing (1st ed.). Cambridge
University Press.

Czumaj, A. (1993). Parallel Algorithm for the Matrix Chain Product and the
Optimal Triangulation Problems. In Proceedings of the Symposium on Theoretical
Aspects of Computer Science (pp. 294–305). New York, USA. https://doi.org/
10.1007/3-540-56503-5_30

Dehne, F. (2006). Guest Editor’s Introduction. Algorithmica, 45(3), 263–267.
https://doi.org/10.1007/s00453-006-1213-2

Dehne, F., Fabri, A., and Rau-Chaplin, A. (1993). Scalable Parallel Geometric Al-
gorithms for Coarse Grained Multicomputers. In Proceedings of the Ninth Annual
Symposium on Computational Geometry (pp. 298–307). San Diego, California,
USA. https://doi.org/10.1145/160985.161154

Dehne, F., Ferreira, A., Cáceres, E., Song, S. W., and Roncato, A. (2002). Ef-
ficient Parallel Graph Algorithms for Coarse-Grained Multicomputers and BSP.
Algorithmica, 33(2), 183–200. https://doi.org/10.1007/s00453-001-0109-4

Deo, N. (1974). Graph Theory with Applications to Engineering and Computer
Science (1st ed.). Prentice-Hall, Inc.

Bibliography • 158

https://doi.org/10.1016/j.parco.2007.11.004
https://doi.org/10.1016/j.parco.2007.11.004
https://doi.org/10.1007/3-540-47840-x_10
https://doi.org/10.1007/3-540-47840-x_10
https://doi.org/10.1145/173284.155333
https://doi.org/10.1007/3-540-56503-5_30
https://doi.org/10.1007/3-540-56503-5_30
https://doi.org/10.1007/s00453-006-1213-2
https://doi.org/10.1145/160985.161154
https://doi.org/10.1007/s00453-001-0109-4

Dijkstra, E. W. (1959). A Note on Two Problems in Connexion With Graphs.
Numerische Mathematik, 1(1), 269–271. https://doi.org/10.1007/bf01386390

Diwan, T., and Tembhurne, J. (2019). A Parallelization of Non-Serial Polyadic Dy-
namic Programming On GPU. Journal of Computing and Information Technology,
27(2), 55–66. https://doi.org/10.20532/cit.2019.1004579

El-Qawasmeh, E. (2004). Word Prediction Using a Clustered Optimal Binary
Search Tree. Information Processing Letters, 92(5), 257–265. https://doi.org/
10.1016/j.ipl.2004.08.006

Feldmann, A., Gasser, O., Lichtblau, F., Pujol, E., Poese, I., Dietzel, C., . . .
Smaragdakis, G. (2020). The Lockdown Effect: Implications of the COVID-
19 Pandemic on Internet Traffic. In ACM Internet Measurement Conference (pp.
1–18). New York, USA. https://doi.org/10.1145/3419394.3423658

Ferreira, A. (2001). Parallel Computing: Models. In Encyclopedia of Optimization
(Vol. 547, pp. 1934–1939). Springer Boston. https://doi.org/10.1007/0-306-48332
-7_380

Ferreira, A., and Morvan, M. (1997). Models for Parallel Algorithm Design: An
Introduction. In Parallel Computing in Optimization (Vol. 7, pp. 1–26). Springer
Boston. https://doi.org/10.1007/978-1-4613-3400-2_1

Floyd, R. W. (1962). Algorithm 97: Shortest Path. Communications of the ACM,
5(6), 345. https://doi.org/10.1145/367766.368168

Flynn, M. J. (1966). Very High-Speed Computing Systems. Proceedings of the
IEEE, 54(12), 1901–1909. https://doi.org/10.1109/proc.1966.5273

Foster, I. (1995). Designing and Building Parallel Programs: Concepts and Tools
for Parallel Software Engineering (1st ed.). Addison-Wesley.

Fotso, L. P., Kengne, T. V., and Myoupo, J. F. (2010). Load Balancing Schemes
for Parallel Processing of Dynamic Programming on BSP/CGM Model. In the
2010 International Conference on Parallel and Distributed Processing Techniques
and Applications (pp. 710–716). Las Vegas, Nevada, USA. https://hal.archives
-ouvertes.fr/hal-01007650

Garcia, T., Myoupo, J. F., and Seme, D. (2003). A Coarse-Grained Multicomputer
Algorithm for the Longest Common Subsequence Problem. In Proceedings of
the Eleventh Euromicro Conference on Parallel, Distributed and Network-Based
Processing (pp. 349–356). Genova, Liguria, Italy. https://doi.org/10.1109/empdp

Bibliography • 159

https://doi.org/10.1007/bf01386390
https://doi.org/10.20532/cit.2019.1004579
https://doi.org/10.1016/j.ipl.2004.08.006
https://doi.org/10.1016/j.ipl.2004.08.006
https://doi.org/10.1145/3419394.3423658
https://doi.org/10.1007/0-306-48332-7_380
https://doi.org/10.1007/0-306-48332-7_380
https://doi.org/10.1007/978-1-4613-3400-2_1
https://doi.org/10.1145/367766.368168
https://doi.org/10.1109/proc.1966.5273
https://hal.archives-ouvertes.fr/hal-01007650
https://hal.archives-ouvertes.fr/hal-01007650
https://doi.org/10.1109/empdp.2003.1183610
https://doi.org/10.1109/empdp.2003.1183610
https://doi.org/10.1109/empdp.2003.1183610

.2003.1183610

Gauss, C. F. (1866). Theoria Interpolationis Methodo Nova Tractata. In Carl
Friedrich Gauss Werke (pp. 265–327). Göttingen, Basse-Saxe, Allemagne.

Glover, F. (1989). Tabu Search - Part I. ORSA Journal on Computing, 1(3),
190–206. https://doi.org/10.1287/ijoc.1.3.190

Glover, F. (1990). Tabu Search - Part II. ORSA Journal on Computing, 2(1), 4–32.
https://doi.org/10.1287/ijoc.2.1.4

Godbole, S. S. (1973). On Efficient Computation of Matrix Chain Products.
IEEE Transactions on Computers, 100(9), 864–866. https://doi.org/10.1109/
tc.1973.5009182

Goudreau, M. W., Lang, K., Rao, S. B., Suel, T., and Tsantilas, T. (1999). Portable
and Efficient Parallel Computing Using the BSP Model. IEEE Transactions on
Computers, 48(7), 670–689. https://doi.org/10.1109/12.780876

Grama, A., Gupta, A., Karypis, G., and Kumar., V. (2003). Introduction to Parallel
Computing (2nd ed.). Addison Wesley.

Guibas, L. J., Kung, H. T., and Thompson, C. D. (1979). Direct VLSI Imple-
mentation of Combinatorial Algorithms. In Proceedings of the Caltech Confer-
ence On Very Large Scale Integration (pp. 509–525). Pasadena, California, USA.
https://core.ac.uk/reader/9412580

Hager, G., and Wellein, G. (2010). Introduction to High Performance Computing
for Scientists and Engineers (1st ed.). CRC Press.

Heideman, M. T., Johnson, D. H., and Burrus, C. S. (1984). Gauss and the History
of the Fast Fourier Transform. IEEE ASSP Magazine, 1(4), 14–21. https://doi.org/
10.1109/massp.1984.1162257

Higa, D. R., and Stefanes, M. A. (2012). A Coarse-Grained Parallel Algorithm
for the Matrix Chain Order Problem. In Proceedings of the 2012 Symposium on
High Performance Computing (pp. 1–8). Orlando, Florida, USA. https://doi.org/
10.5555/2338816.2338817

Hill, J. M., McColl, B., Stefanescu, D. C., Goudreau, M. W., Lang, K., Rao, S. B.,
. . . Bisseling, R. H. (1998). BSPlib: The BSP Programming Library. Parallel
Computing, 24(14), 1947–1980. https://doi.org/10.1016/s0167-8191(98)00093-3

Hu, T. C., and Shing, M. T. (1982). Computation of Matrix Chain Products. Part I.

Bibliography • 160

https://doi.org/10.1109/empdp.2003.1183610
https://doi.org/10.1109/empdp.2003.1183610
https://doi.org/10.1109/empdp.2003.1183610
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1109/tc.1973.5009182
https://doi.org/10.1109/tc.1973.5009182
https://doi.org/10.1109/12.780876
https://core.ac.uk/reader/9412580
https://doi.org/10.1109/massp.1984.1162257
https://doi.org/10.1109/massp.1984.1162257
https://doi.org/10.5555/2338816.2338817
https://doi.org/10.5555/2338816.2338817
https://doi.org/10.1016/s0167-8191(98)00093-3

SIAM Journal on Computing, 11(2), 362–373. https://doi.org/10.1137/0211028

Hu, T. C., and Shing, M. T. (1984). Computation of Matrix Chain Products. Part II.
SIAM Journal on Computing, 13(2), 228–251. https://doi.org/10.1137/0213017

Huang, S. H. S., Liu, H., and Viswanathan, V. (1994). Parallel Dynamic Program-
ming. IEEE Transactions on Parallel and Distributed Systems, 5(3), 326–328.
https://doi.org/10.1109/71.277784

Huffman, D. A. (1952). A Method for the Construction of Minimum-Redundancy
Codes. Proceedings of the IRE, 40(9), 1098–1101. https://doi.org/10.1109/jrproc
.1952.273898

Hwang, K. (2008). Advanced Computer Architecture: Parallelism, Scalability,
Programmability (2nd ed.). McGraw-Hill Higher Education.

Ibarra, O. H., Pong, T. C., and Sohn, S. M. (1991). Parallel Recognition and
Parsing on the Hypercube. IEEE Transactions on Computers, 40(6), 764–770.
https://doi.org/10.1109/12.90253

Ito, Y., and Nakano, K. (2013). A GPU Implementation of Dynamic Programming
For the Optimal Polygon Triangulation. IEICE Transactions on Information and
Systems, E96-D(12), 2596–2603. https://doi.org/10.1587/transinf.e96.d.2596

JáJá, J. (1992). An Introduction to Parallel Algorithms (1st ed.). Addison Wesley.

Karpinski, M., Larmore, L., and Rytter, W. (1996). Sequential and Paral-
lel Subquadratic Work Algorithms for Constructing Approximately Optimal Bi-
nary Search Trees. In Proceedings of the Seventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (pp. 36–41). Philadelphia, Pennsylvania, USA.
https://doi.org/10.5555/313852.313880

Karpinski, M., and Rytter, W. (1994). On a Sublinear Time Parallel Construc-
tion of Optimal Binary Search Trees. In the 1994 International Symposium on
Mathematical Foundations of Computer Science (pp. 453–461). Košice, Slovakia.
https://doi.org/10.1007/3-540-58338-6_92

Karypis, G., and Kumar, V. (1993). Efficient Parallel Mappings of a Dynamic
Programming Algorithm: A Summary of Results. In Proceedings of the Seventh
International Parallel Processing Symposium (pp. 563–568). Newport, California,
USA. https://doi.org/10.1109/ipps.1993.262817

Kasami, T. (1965). An Efficient Recognition and Syntax Analysis Algorithm

Bibliography • 161

https://doi.org/10.1137/0211028
https://doi.org/10.1137/0213017
https://doi.org/10.1109/71.277784
https://doi.org/10.1109/jrproc.1952.273898
https://doi.org/10.1109/jrproc.1952.273898
https://doi.org/10.1109/12.90253
https://doi.org/10.1587/transinf.e96.d.2596
https://doi.org/10.5555/313852.313880
https://doi.org/10.1007/3-540-58338-6_92
https://doi.org/10.1109/ipps.1993.262817

for Context-Free Languages (Tech. Rep. No. AFCRL-65-758). Bedford, Mas-
sachusetts, USA: Air Force Cambridge Research Laboratory. https://www.ideals
.illinois.edu/bitstream/handle/2142/74304/B4-257.pdf

Katagiri, T. (2019a). Basics of MPI Programming. In The Art of High Performance
Computing for Computational Science (Vol. 1, pp. 27–44). Springer Singapore.
https://doi.org/10.1007/978-981-13-6194-4_2

Katagiri, T. (2019b). Basics of OpenMP Programming. In The Art of High Per-
formance Computing for Computational Science (Vol. 1, pp. 45–59). Springer
Singapore. https://doi.org/10.1007/978-981-13-6194-4_3

Kechid, M., and Myoupo, J. F. (2008a). A Coarse Grain Multicomputer Algo-
rithm Solving the Optimal Binary Search Tree Problem. In the Fifth International
Conference on Information Technology: New Generations (pp. 1186–1189). Las
Vegas, Nevada, USA. https://doi.org/10.1109/itng.2008.158

Kechid, M., and Myoupo, J. F. (2008b). An Efficient BSP/CGM Algorithm for
the Matrix Chain Ordering Problem. In the 2008 International Conference on
Parallel and Distributed Processing Techniques and Applications (pp. 327–332).
Las Vegas, Nevada, USA. https://hal.archives-ouvertes.fr/hal-03267731

Kechid, M., and Myoupo, J. F. (2009). A Coarse-Grain Multicomputer Al-
gorithm for the Minimum Cost Parenthesization Problem. In the 2009 Interna-
tional Conference on Parallel and Distributed Processing Techniques and Appli-
cations (pp. 480–486). Las Vegas, Nevada, USA. https://hal.archives-ouvertes.fr/
hal-01007646

Kengne, T. V. (2014). Solutions Parallèles Efficaces Sur Le Modèle CGM D’Une
Classe de Problèmes Issus de la Programmation Dynamique (Ph.D. Thesis). Uni-
versity of Picardie Jules Verne.

Kengne, T. V., Bogning, T. H., Akong, O. M., Myoupo, J. F., and Lacmou, Z. J.
(2022). A Coarse-Grained Multicomputer Parallel Algorithm for the Sequential
Substring Constrained Longest Common Subsequence Problem. Parallel Comput-
ing, 111(1), 102927. https://doi.org/10.1016/j.parco.2022.102927

Kengne, T. V., and Lacmou, Z. J. (2019). An Efficient CGM-Based Parallel Al-
gorithm for Solving the Optimal Binary Search Tree Problem Through One-to-All
Shortest Paths in a Dynamic Graph. Data Science and Engineering, 4(2), 141–156.
https://doi.org/10.1007/s41019-019-0093-9

Bibliography • 162

https://www.ideals.illinois.edu/bitstream/handle/2142/74304/B4-257.pdf
https://www.ideals.illinois.edu/bitstream/handle/2142/74304/B4-257.pdf
https://doi.org/10.1007/978-981-13-6194-4_2
https://doi.org/10.1007/978-981-13-6194-4_3
https://doi.org/10.1109/itng.2008.158
https://hal.archives-ouvertes.fr/hal-03267731
https://hal.archives-ouvertes.fr/hal-01007646
https://hal.archives-ouvertes.fr/hal-01007646
https://doi.org/10.1016/j.parco.2022.102927
https://doi.org/10.1007/s41019-019-0093-9

Kengne, T. V., and Myoupo, J. F. (2012). An Efficient Coarse-Grain Multicom-
puter Algorithm for the Minimum Cost Parenthesizing Problem. The Journal of
Supercomputing, 61(3), 463–480. https://doi.org/10.1007/s11227-011-0601-9

Kengne, T. V., Myoupo, J. F., and Dequen, G. (2016). High Performance CGM-
based Parallel Algorithms for the Optimal Binary Search Tree Problem. Interna-
tional Journal Grid High Performance Computing, 8(4), 55–77. https://doi.org/
10.4018/ijghpc.2016100104

Kengne, T. V., Nkonjoh, N. A., Lacmou, Z. J., and Myoupo, J. F. (2020). Efficient
CGM-Based Parallel Algorithms for the Longest Common Subsequence Prob-
lem With Multiple Substring-Exclusion Constraints. Parallel Computing, 91(1),
102598. https://doi.org/10.1016/j.parco.2019.102598

Kessler, C., and Keller, J. (2007). Models for Parallel Computing: Review and
Perspectives. PARS-Mitteilunge, 24(1), 13–29. http://www.ida.liu.se/~chrke55/
papers/modelsurvey.pdf

Kielmann, T., and Gorlatch, S. (2011). Bandwidth-Latency Models (BSP, LogP).
In Encyclopedia of Parallel Computing (Vol. 796, pp. 107–112). Springer Boston.
https://doi.org/10.1007/978-0-387-09766-4_189

Knuth, D. E. (1971). Optimum Binary Search Trees. Acta Informatica, 1(1),
14–25. https://doi.org/10.1007/bf00264289

Knuth, D. E. (1997). The Art of Computer Programming, Volume 1: Fundamental
Algorithms (3rd ed.). Addison-Wesley.

Knuth, D. E. (1998). The Art of Computer Programming, Volume 3: Sorting and
Searching (2nd ed.). Addison-Wesley.

Kung, H. T. (1982). Why Systolic Architectures? Computer, 15(1), 37–46.
https://doi.org/10.1109/mc.1982.1653825

Kung, H. T., and Leiserson, C. E. (1978). Algorithms for VLSI Processor Ar-
rays. In Proceedings of a Symposium on Sparse Matrices and Their Applications
(pp. 256–282). Knoxville, Tennesse, USA. https://www.eecs.harvard.edu/~htk/
publication/1980-introduction-to-vlsi-systems-kung-leiserson.pdf

Lacmou, Z. J., and Kengne, T. V. (2018). Speeding up CGM-Based Paral-
lel Algorithm for Minimum Cost Parenthesizing Problem. In the 2018 Interna-
tional Conference on Parallel and Distributed Processing Techniques and Appli-
cations (pp. 401–407). Las Vegas, Nevada, USA. https://hal.archives-ouvertes.fr/

Bibliography • 163

https://doi.org/10.1007/s11227-011-0601-9
https://doi.org/10.4018/ijghpc.2016100104
https://doi.org/10.4018/ijghpc.2016100104
https://doi.org/10.1016/j.parco.2019.102598
http://www.ida.liu.se/~chrke55/papers/modelsurvey.pdf
http://www.ida.liu.se/~chrke55/papers/modelsurvey.pdf
https://doi.org/10.1007/978-0-387-09766-4_189
https://doi.org/10.1007/bf00264289
https://doi.org/10.1109/mc.1982.1653825
https://www.eecs.harvard.edu/~htk/publication/1980-introduction-to-vlsi-systems-kung-leiserson.pdf
https://www.eecs.harvard.edu/~htk/publication/1980-introduction-to-vlsi-systems-kung-leiserson.pdf
https://hal.archives-ouvertes.fr/hal-01900171
https://hal.archives-ouvertes.fr/hal-01900171
https://hal.archives-ouvertes.fr/hal-01900171

hal-01900171

Lacmou, Z. J., Kengne, T. V., and Myoupo, J. F. (2021). A Fast Sequential Al-
gorithm for the Matrix Chain Ordering Problem. Concurrency and Computation:
Practice and Experience, 33(24), e6445. https://doi.org/10.1002/cpe.6445

Lacmou, Z. J., Kengne, T. V., and Myoupo, J. F. (2022a). Coarse-Grained Multi-
computer Parallel Algorithm Using the Four-Splitting Technique for the Minimum
Cost Parenthesizing Problem. In African Conference on Computer Science and Ap-
plied Mathematics (pp. 1–12). Yaounde, Cameroon. https://hal.inria.fr/CARI2022/
hal-03712194

Lacmou, Z. J., Kengne, T. V., and Myoupo, J. F. (2022b). Four-Splitting Based
Coarse-Grained Multicomputer Parallel Algorithm for the Optimal Binary Search
Tree Problem. International Journal of Parallel, Emergent and Distributed Sys-
tems, 37(6), 659–679. https://doi.org/10.1080/17445760.2022.2102168

Lacmou, Z. J., Kengne, T. V., and Myoupo, J. F. (2022c). High-Performance
CGM-Based Parallel Algorithms for Minimum Cost Parenthesizing Problem. The
Journal of Supercomputing, 78(4), 5306–5332. https://doi.org/10.1007/s11227
-021-04069-9

Lacmou, Z. J., Tessa, M. G. C., and Kamga, Y. F. I. (2020). A CGM-Based Paral-
lel Algorithm Using the Four-Russians Speedup for the 1-D Sequence Alignment
Problem. In African Conference on Computer Science and Applied Mathematics
(pp. 1–11). Thies, Senegal. https://hal.inria.fr/CARI2020/hal-02925791

Land, A. H., and Doig, A. G. (1960). An Automatic Method of Solving Discrete
Programming Problems. Econometrica, 28(3), 497–520. https://doi.org/10.2307/
1910129

Lassous, I. G., Gustedt, J., and Morvan, M. (2000). Handling Graphs According to
a Coarse Grained Approach: Experiments with PVM and MPI. In Proceedings of
the Seventh European PVM/MPI Users’ Group Meeting (pp. 72–79). Balatonfüred,
Veszprém, Hungary. https://doi.org/10.1007/3-540-45255-9_13

Lee, H., Kim, J., Hong, S. J., and Lee, S. (2003). Processor Allocation and Task
Scheduling of Matrix Chain Products on Parallel Systems. IEEE Transactions
on Parallel and Distributed Systems, 14(4), 394–407. https://doi.org/10.1109/
tpds.2003.1195411

Leighton, F. T. (1992). Introduction to Parallel Algorithms and Architectures:

Bibliography • 164

https://hal.archives-ouvertes.fr/hal-01900171
https://hal.archives-ouvertes.fr/hal-01900171
https://hal.archives-ouvertes.fr/hal-01900171
https://doi.org/10.1002/cpe.6445
https://hal.inria.fr/CARI2022/hal-03712194
https://hal.inria.fr/CARI2022/hal-03712194
https://doi.org/10.1080/17445760.2022.2102168
https://doi.org/10.1007/s11227-021-04069-9
https://doi.org/10.1007/s11227-021-04069-9
https://hal.inria.fr/CARI2020/hal-02925791
https://doi.org/10.2307/1910129
https://doi.org/10.2307/1910129
https://doi.org/10.1007/3-540-45255-9_13
https://doi.org/10.1109/tpds.2003.1195411
https://doi.org/10.1109/tpds.2003.1195411

Arrays, Trees, Hypercubes (1st ed.). Morgan Kaufmann.

Levesque, J., and Wagenbreth, G. (2010). High Performance Computing : Pro-
gramming and Applications (1st ed.). CRC Press.

Lew, A., and Mauch, H. (2007). Dynamic Programming: A Computational Tool
(1st ed.). Springer Verlag.

Li, G., Zhao, Q., Song, M., Du, D., Yuan, J., Chen, X., and Liang, H. (2019).
Predicting Global Computing Power of Blockchain Using Cryptocurrency Prices.
In the 2019 International Conference on Machine Learning and Cybernetics (pp.
1–6). Kobe, Kansai, Japan. https://doi.org/10.1109/icmlc48188.2019.8949188

Lin, S. S. (1994). A Chained-Matrices Approach For Parallel Computation of
Continued Fractions and Its Applications. Journal of Scientific Computing, 9(1),
65–80. https://doi.org/10.1007/bf01573178

Loshin, D. (2013). Business Intelligence: The Savvy Managers Guide (2nd ed.).
Morgan Kaufmann.

Lovász, L. (2007). Combinatorial Problems and Exercises (2nd ed.). AMS Chelsea
Publishing.

Mabrouk, B. B. (2016). Application de la Programmation Dynamique Parallèle
Pour la Résolution de Problèmes D’Optimisation Combinatoire (Ph.D. Thesis).
Université de Tunis El Manar.

Marvins, M. (1978). Introduction to Modern Algebra (1st ed.). Marcel Dekker.

McColl, W. F. (1995). Scalable Computing. In Computer Science Today : Recent
Trends and Developments (Vol. 1000, pp. 46–61). Springer Verlag. https://doi.org/
10.1007/bfb0015236

Midkiff, S. P. (2012). Automatic Parallelization: An Overview of Fundamental
Compiler Techniques (1st ed.). Morgan Kaufmann.

Myoupo, J. F. (1992). Synthesizing Linear Systolic Arrays for Dynamic Pro-
gramming Problems. Parallel Processing Letters, 2(1), 97–110. https://doi.org/
10.1142/s0129626492000222

Myoupo, J. F. (1993). Mapping Dynamic Programming Onto Modular Linear
Systolic Arrays. Distributed Computing, 6(3), 165–179. https://doi.org/10.1007/
bf02242705

Bibliography • 165

https://doi.org/10.1109/icmlc48188.2019.8949188
https://doi.org/10.1007/bf01573178
https://doi.org/10.1007/bfb0015236
https://doi.org/10.1007/bfb0015236
https://doi.org/10.1142/s0129626492000222
https://doi.org/10.1142/s0129626492000222
https://doi.org/10.1007/bf02242705
https://doi.org/10.1007/bf02242705

Myoupo, J. F., and Kengne, T. V. (2014a). An Efficient CGM-Based Parallel
Algorithm Solving the Matrix Chain Ordering Problem. International Journal of
Grid and High Performance Computing, 6(2), 74–100. https://doi.org/10.4018/
ijghpc.2014040105

Myoupo, J. F., and Kengne, T. V. (2014b). Parallel Dynamic Programming for
Solving the Optimal Search Binary Tree Problem on CGM. International Journal
of High Performance Computing and Networking, 7(4), 269–280. https://doi.org/
10.1504/ijhpcn.2014.062729

Nagaraj, S. (1997). Optimal Binary Search Trees. Theoretical Computer Science,
188(1-2), 1–44. https://doi.org/10.1016/s0304-3975(96)00320-9

Nielsen, F. (2016). Introduction to HPC with MPI for Data Science (1st ed.).
Springer Switzerland.

Nishida, K., Ito, Y., and Nakano, K. (2011). Accelerating the Dynamic Program-
ming For the Matrix Chain Product on the GPU. In Proceedings of the Second
International Conference on Networking and Computing (pp. 320–326). Osaka,
Kansai, Japan. https://doi.org/10.1109/icnc.2011.62

Nussinov, R., and Jacobson, A. B. (1980). Fast Algorithm for Predicting the Sec-
ondary Structure of Single-Stranded RNA. Proceedings of the National Academy
of Sciences of the United States of America, 77(11), 6309–6313. https://doi.org/
10.1073/pnas.77.11.6309

Olariu, S. (2008). Transistional Issues: Fine-Grain Multicomputers. In Handbook
of Parallel Computing: Models, Algorithms and Applications (Vol. 1, pp. 235–
256). CRC Press. https://doi.org/10.1201/9781420011296-16

Ozdamli, F., and Ozdal, H. (2015). Life-long Learning Competence Perceptions
of the Teachers and Abilities in Using Information-Communication Technologies.
Procedia - Social and Behavioral Sciences, 182(1), 718–725. https://doi.org/10
.1016/j.sbspro.2015.04.819

Pacheco, P., and Malensek, M. (2021). An Introduction to Parallel Programming
(2nd ed.). Morgan Kaufmann.

Palkowski, M., and Bielecki, W. (2017). Parallel Tiled Nussinov RNA Folding
Loop Nest Generated Using Both Dependence Graph Transitive Closure and Loop
Skewing. BMC Bioinformatics, 18(1), 290. https://doi.org/10.1186/s12859-017
-1707-8

Bibliography • 166

https://doi.org/10.4018/ijghpc.2014040105
https://doi.org/10.4018/ijghpc.2014040105
https://doi.org/10.1504/ijhpcn.2014.062729
https://doi.org/10.1504/ijhpcn.2014.062729
https://doi.org/10.1016/s0304-3975(96)00320-9
https://doi.org/10.1109/icnc.2011.62
https://doi.org/10.1073/pnas.77.11.6309
https://doi.org/10.1073/pnas.77.11.6309
https://doi.org/10.1201/9781420011296-16
https://doi.org/10.1016/j.sbspro.2015.04.819
https://doi.org/10.1016/j.sbspro.2015.04.819
https://doi.org/10.1186/s12859-017-1707-8
https://doi.org/10.1186/s12859-017-1707-8

Prim, R. C. (1957). Shortest Connection Networks and Some Generalizations. Bell
System Technical Journal, 36(6), 1389–1401. https://doi.org/10.1002/j.1538-7305
.1957.tb01515.x

Quinn, M. J. (2003). Parallel Programming in C with MPI and OpenMP (1st ed.).
McGraw-Hill.

Raina, S. (1992). Virtual Shared Memory: A Survey of Techniques and Systems
(Tech. Rep. No. CSTR-92-36). Bristol, United Kingdom, England: Department
of Computer Science, University of Bristol. https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.60.5133&rep=rep1&type=pdf

Ramanan, P. (1996). An Efficient Parallel Algorithm for the Matrix-Chain-Product
Problem. SIAM Journal on Computing, 25(4), 874–893. https://doi.org/10.1137/
0225039

Rytter, W. (1988). On Efficient Parallel Computations for Some Dynamic Pro-
gramming Problems. Theoretical Computer Science, 59(3), 297–307. https://
doi.org/10.1016/0304-3975(88)90147-8

Schmidt, B., González-Domínguez, J., Hundt, C., and Schlarb, M. (2017). Parallel
programming: Concepts and practice (1st ed.). Morgan Kaufmann.

Schreier, O., and Sperner, E. (2011). Introduction to Modern Algebra and Matrix
Theory (2nd ed.). Dover Publications.

Shyamala, K., Kiran, K. R., and Rajeshwari, D. (2017). Design and Implementa-
tion of GPU-Based Matrix Chain Multiplication Using C++AMP. In Proceedings
of the 2017 Second IEEE International Conference on Electrical, Computer and
Communication Technologies (pp. 1–6). Coimbatore, Tamil Nadu, India: IEEE.
https://doi.org/10.1109/icecct.2017.8117870

Sitaram, D., and Manjunath, G. (2012). Moving To The Cloud : Developing Apps
in the New World of Cloud Computing (1st ed.). Syngress.

Stanley, R. P. (2015). Catalan Numbers (1st ed.). Cambridge University Press.

Steffen, M., Divincenzo, D. P., Chow, J. M., Theis, T. N., and Ketchen, M. B.
(2011). Quantum computing: An IBM perspective. IBM Journal of Research and
Development, 55(5), 1–13. https://doi.org/10.1147/jrd.2011.2165678

Sterling, T., Anderson, M., and Brodowicz, M. (2017). High Performance Com-
puting: Modern Systems and Practices (1st ed.). Morgan Kaufmann.

Bibliography • 167

https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.5133&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.5133&rep=rep1&type=pdf
https://doi.org/10.1137/0225039
https://doi.org/10.1137/0225039
https://doi.org/10.1016/0304-3975(88)90147-8
https://doi.org/10.1016/0304-3975(88)90147-8
https://doi.org/10.1109/icecct.2017.8117870
https://doi.org/10.1147/jrd.2011.2165678

Tan, G., Sun, N., and Gao, G. R. (2007). A Parallel Dynamic Programming
Algorithm on a Multi-Core Architecture. In Proceedings of the 19th Annual ACM
Symposium on Parallel Algorithms and Architectures (pp. 135–144). San Diego,
California, USA. https://doi.org/10.1145/1248377.1248399

Tang, D., and Gupta, G. (1995). An Efficient Parallel Dynamic Programming
Algorithm. Computers Mathematics with Applications, 30(8), 65–74. https://
doi.org/10.1016/0898-1221(95)00138-o

Valiant, L. G. (1990). A Bridging Model for Parallel Computation. Communica-
tions of the ACM, 33(8), 103–111. https://doi.org/10.1145/79173.79181

Valiant, L. G. (2011). A Bridging Model for Multi-Core Computing. Journal
of Computer and System Sciences, 77(1), 154–166. https://doi.org/10.1016/j.jcss
.2010.06.012

Valiant, L. G., Skyum, S., Berkowitz, S., and Rackoff, C. (1983). Fast Parallel
Computation of Polynomials Using Few Processors. SIAM Journal on Computing,
12(4), 641–644. https://doi.org/10.1137/0212043

Vitorović, A., Tomašević, M. V., and Milutinović, V. M. (2014). Manual Paral-
lelization Versus State-of-the-Art Parallelization Techniques: The SPEC CPU2006
as a Case Study. Advances in Computers, 92(1), 203–251. https://doi.org/10.1016/
b978-0-12-420232-0.00005-2

von Neumann, J. (1945). First Draft of a Report on the EDVAC (Tech. Rep. No.
W-670-ORD-4926). Philadelphia, Pennsylvania, USA: Moore School of Electrical
Engineering, University of Pennsylvania. http://web.mit.edu/sts.035/www/pdfs/
edvac.pdf

Wagner, R. A., and Fischer, M. J. (1974). The String-to-String Correction Problem.
Journal of the ACM, 21(1), 168–173. https://doi.org/10.1145/321796.321811

Wah, B. W., and Li, G. J. (1988). Systolic Processing for Dynamic Programming
Problems. Circuits, Systems, and Signal Processing, 7(2), 119–149. https://doi
.org/10.1007/bf01602094

Wani, M. A., and Ahmad, M. (2019). Statically Optimal Binary Search Tree
Computation Using Non-Serial Polyadic Dynamic Programming on GPU’s. In-
ternational Journal of Grid and High Performance Computing, 11(1), 49–70.
https://doi.org/10.4018/ijghpc.2019010104

Wu, C.-l., and Feng, T. (1984). Tutorial: Interconnection Networks for Parallel

Bibliography • 168

https://doi.org/10.1145/1248377.1248399
https://doi.org/10.1016/0898-1221(95)00138-o
https://doi.org/10.1016/0898-1221(95)00138-o
https://doi.org/10.1145/79173.79181
https://doi.org/10.1016/j.jcss.2010.06.012
https://doi.org/10.1016/j.jcss.2010.06.012
https://doi.org/10.1137/0212043
https://doi.org/10.1016/b978-0-12-420232-0.00005-2
https://doi.org/10.1016/b978-0-12-420232-0.00005-2
http://web.mit.edu/sts.035/www/pdfs/edvac.pdf
http://web.mit.edu/sts.035/www/pdfs/edvac.pdf
https://doi.org/10.1145/321796.321811
https://doi.org/10.1007/bf01602094
https://doi.org/10.1007/bf01602094
https://doi.org/10.4018/ijghpc.2019010104

and Distributed Processing (1st ed.). IEEE Press.

Yao, F. F. (1982). Speed-up in Dynamic Programming. SIAM Journal on Algebraic
Discrete Methods, 3(4), 532–540. https://doi.org/10.1137/0603055

Yau, S.-T., and Lu, Y. Y. (1993). Reducing the Symmetric Matrix Eigenvalue
Problem to Matrix Multiplications. SIAM Journal on Scientific Computing, 14(1),
121–136. https://doi.org/10.1137/0914008

Younger, D. H. (1967). Recognition and Parsing of Context-Free Languages in
Time n3. Information and Control, 10(2), 189–208. https://doi.org/10.1016/s0019
-9958(67)80007-x

Yzelman, A. J. N., and Roose, D. (2014). High-Level Strategies for Par-
allel Shared-Memory Sparse Matrix-Vector Multiplication. IEEE Transactions
on Parallel and Distributed Systems, 25(1), 116–125. https://doi.org/10.1109/
tpds.2013.31

Zhong, H.-S., Wang, H., Deng, Y.-H., Chen, M.-C., Peng, L.-C., Luo, Y.-H., . . .
Pan, J.-W. (2020). Quantum Computational Advantage Using Photons. Science,
370(6523), 1460–1463. https://doi.org/10.1126/science.abe8770

Further work • 169

https://doi.org/10.1137/0603055
https://doi.org/10.1137/0914008
https://doi.org/10.1016/s0019-9958(67)80007-x
https://doi.org/10.1016/s0019-9958(67)80007-x
https://doi.org/10.1109/tpds.2013.31
https://doi.org/10.1109/tpds.2013.31
https://doi.org/10.1126/science.abe8770

APPENDIX A
List of Publications

International journals

Kengne Tchendji Vianney and Lacmou Zeutouo Jerry (2019). An Efficient CGM-
Based Parallel Algorithm for Solving the Optimal Binary Search Tree Problem
through One-to-all Shortest Paths in a Dynamic Graph. Data Science and Engi-
neering, 4(2), 141-156. https://doi.org/10.1007/s41019-019-0093-9

Lacmou Zeutouo Jerry, Kengne Tchendji Vianney, and Myoupo Jean Frédéric
(2021). A Fast Sequential Algorithm for the Matrix Chain Ordering Problem.
Concurrency and Computation: Practice and Experience, 33(24), e6445. https://
doi.org/10.1002/cpe.6445

Lacmou Zeutouo Jerry, Kengne Tchendji Vianney, and Myoupo Jean Frédéric
(2022). High-Performance CGM-Based Parallel Algorithms for Minimum Cost
Parenthesizing Problem. The Journal of Supercomputing, 78(4), 5306-5332. https://
doi.org/10.1007/s11227-021-04069-9

Lacmou Zeutouo Jerry, Kengne Tchendji Vianney, and Myoupo Jean Frédéric
(2022). Four-Splitting Based Coarse-Grained Multicomputer Parallel Algorithm
for the Optimal Binary Search Tree Problem. International Journal of Paral-
lel, Emergent and Distributed Systems, 37(6), 659-679. https://doi.org/10.1080/
17445760.2022.2102168

International conference

Lacmou Zeutouo Jerry and Kengne Tchendji Vianney (2018). Speeding up CGM-
Based Parallel Algorithm for Minimum Cost Parenthesizing Problem. In the 2018
International Conference on Parallel and Distributed Processing Techniques and
Applications (pp. 401-407). Las Vegas, Nevada, USA. https://hal.archives-ouvertes
.fr/hal-01900171

• a

https://doi.org/10.1007/s41019-019-0093-9
https://doi.org/10.1002/cpe.6445
https://doi.org/10.1002/cpe.6445
https://doi.org/10.1007/s11227-021-04069-9
https://doi.org/10.1007/s11227-021-04069-9
https://doi.org/10.1080/17445760.2022.2102168
https://doi.org/10.1080/17445760.2022.2102168
https://hal.archives-ouvertes.fr/hal-01900171
https://hal.archives-ouvertes.fr/hal-01900171

Lacmou Zeutouo Jerry, Kengne Tchendji Vianney, and Myoupo Jean Frédéric
(2022). Coarse-Grained Multicomputer Parallel Algorithm Using the Four-Splitting
Technique for the Minimum Cost Parenthesizing Problem. In African Conference
on Computer Science and Applied Mathematics (pp. 1-12), Yaounde, Cameroon.
https://hal.inria.fr/CARI2022/hal-03712194

International conference • b

https://hal.inria.fr/CARI2022/hal-03712194

	 Dedication
	 Acknowledgements
	 Abstract
	 Résumé
	 List of Acronyms
	 List of Tables
	 List of Figures
	 List of Algorithms
	 General Introduction
	 Background
	 Research problem
	 Research aim
	 Our contributions
	 Thesis outline

	1 Parallel Computing and Dynamic Programming
	1.1 Introduction
	1.2 High-performance computing
	1.3 Taxonomies of parallel computer architectures
	1.3.1 Classification according to the number of instruction streams and data streams
	1.3.2 Classification according to the memory
	1.3.3 Classification according to the network topology
	1.3.4 Classification according to the granularity

	1.4 Designing parallel algorithms
	1.4.1 Manual parallelization versus automatic parallelization
	1.4.2 Control parallelism versus data parallelism
	1.4.3 Parallel programming models
	1.4.4 Performance of a parallel algorithm

	1.5 Parallel computing models
	1.5.1 PRAM model
	1.5.2 Systolic model
	1.5.3 Hypercube model
	1.5.4 BSP model
	1.5.5 CGM model and motivation behind the choice of this model

	1.6 Dynamic programming
	1.6.1 Recalling the divide-and-conquer technique
	1.6.2 Building a dynamic-programming solution
	1.6.3 Principles of dynamic programming

	1.7 Taxonomy of dynamic-programming formulations
	1.8 General dynamic-programming formulation of the studied problems
	1.9 Summary

	2 Parallelization of the Studied Problems : State of the Art
	2.1 Introduction
	2.2 Minimum cost parenthesizing problem
	2.2.1 Overview
	2.2.2 Sequential algorithm of Godbole1973
	2.2.3 Dynamic graph model of Bradford1994
	2.2.4 CGM-based parallel solution of Kechid2009
	2.2.5 CGM-based parallel solution of Kengne2012

	2.3 Optimal binary search tree problem
	2.3.1 Overview
	2.3.2 Sequential algorithm of Knuth1971
	2.3.3 CGM-based parallel solution of Kengne2016

	2.4 Triangulation of a convex polygon problem
	2.4.1 Overview
	2.4.2 Sequential algorithm of Yao1982
	2.4.3 CGM-based parallel solution of Kechid2008b
	2.4.4 CGM-based parallel solution of Myoupo2014a
	2.4.5 Drawbacks of sequential and CGM-based parallel solutions
	2.4.6 Our fast sequential algorithm
	2.4.7 Experimental results

	2.5 Summary

	3 Reconciliation of the Minimization of the Number of Communication Rounds and the Load-Balancing of Processors
	3.1 Introduction
	3.2 Dynamic graph model of the OBST problem
	3.3 First dynamic graph partitioning : irregular partitioning technique
	3.3.1 Blocks' dependency analysis
	3.3.2 Mapping blocks onto processors
	3.3.3 CGM-based parallel algorithm for solving the MPP
	3.3.4 CGM-based parallel algorithm for solving the OBST problem
	3.3.5 Experimental results
	3.3.6 Drawback of the irregular partitioning technique

	3.4 Second dynamic graph partitioning : k-block splitting technique
	3.4.1 Blocks' dependency analysis of the MPP
	3.4.2 CGM-based parallel algorithms to solve the MPP
	3.4.3 Experimental results
	3.4.4 Drawback of the k-block splitting technique

	3.5 Third dynamic graph partitioning : four-splitting technique
	3.5.1 CGM-based parallel algorithm to solve the MPP
	3.5.2 CGM-based parallel algorithm to solve the OBST problem
	3.5.3 Experimental results

	3.6 Summary

	 General Conclusion
	 Re-stating the research problem
	 Results obtained and critical analysis
	 Further work

	 Bibliography
	A List of Publications

