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Context of the thesis 1.2.1 The growth of biking

More than two hundred years have passed since the very familiar bike technology was proposed by baron Karl Von Drais in Germany in 1817, and yet the 21th century is on the verge of re-introducing it as a key solution to modern issues. With the Pan-European Master Plan for

Cycling Promotion [4] 27 European countries agreed on investing in infrastructures, research and policies to put biking at the center of global strategy for better health, transport and environment. The expected impact of this plan is multi-fold :

• On health, the increase in regular physical activity associated with biking increases the average life expectancy. In addition, commuting by bike promote social physical distancing and reduces the risks of contamination, which is more than relevant in this covid pandemic times.

• On sustainability, the use of bikes implies a drastic decrease in noise, fine particles and carbon dioxide emissions compared to fossil-fuel based solutions.

• On transportation, because bikes are extremely space and energy efficient they are expected to reduces traffic and congestion.

• On economy, because the use of bikes for small trips encourages proximity shopping.

Moreover, users have now access to a large variety of biking technologies. In addition to the classical mechanical bike, affordable electrical solutions are available. Examples are the Powered Bicycles (PB), which can move solely using their electrical motor, or Power Assisted Bicycles (PAB), which use the electrical motor to enhance the cycling capacity of the rider. Electric bicycles, or e-bikes, were first proposed in Japan in 1980s [6] to ease the access to biking to elderly communities. The first models were limited by the weight of electrical motors and the 1.2. CONTEXT OF THE THESIS autonomy of batteries but in the 2000s, the development of Li-ion batteries and the dramatic increase in their efficiency as well as a reduction of their cost, made the e-bike technology a real alternative on the market.

Thanks to their increased speed, lesser feeling of exhaustion and a reduced environmental impact, e-bikes convinced city commuters to keep their car in the garage [9]. Medium and large cities started implementing Intelligent Transport Systems (ITS) such as Bike Sharing Systems (BSS) or E-Bike Sharing Systems (EBSS) allowing users to pick and drop a bike using an app for their transportation [8]. This market is in expansion, with an annual growth rate of 79.3%

for both BSS and EBSS combined between 2008 and 2018.

Exercise to tackle sedentary behaviours

As stated in [11], sedentary behaviours can be defined in opposition to physical activity :

"physical activity is defined as any bodily movement produced by skeletal muscles that requires energy expenditure and can be performed at a variety of intensities, as part of work, domestic chores, transportation or during leisure time, or when participating in exercise or sports activities. At the low end of the intensity range, sedentary behavior is defined as any waking behavior while in a sitting, reclining or lying posture with low energy expenditure".

and examples of sedentary behaviors are watching television, working on a computer, playing video games, reading or phone calling. In France, in 2015, the ESTEBAN study [1] pointed out that physical inactivity is spreading in the population. For example, adults spend an average of 6 hours and 35 minutes inactive during a day. This number tends to be worse for younger adults, with 7 hours a day for 18-39 years old, compared to older adults, with 5 hours 48 minutes for 55-74 years old. Sedentary behaviors are very widely spread, with 89% of the population qualifying for moderate to high levels of physical inactivity.

This high level of physical inactivity has a negative effect on the health of the population. The World Health Organization (WHO) reported that physical inactivity had direct consequences on all-cause mortality, cardiovascular mortality, cancer mortality, cardiovascular disease incidence and type-2 diabetes incidence among others [3], which directly translates in a reduced life expectancy. Furthermore, direct consequences of physical inactivity like diabetes, obesity or heart diseases, recently turned out to be comorbidities in case of covid 19 contamination which increased the likely of occurrence of severe form of the disease and complications. In France, the cost related to physical inactivity was estimated to be as high as 17 billions euros per year in 2018 [10], with 87% of this amount being attributed to the direct cost on health systems and 12% of this amount to productivity losses. Worldwide, physical inactivity is considered responsible of up to 3.2 million deaths each year according to the WHO [7].

CHAPTER 1. INTRODUCTION

In order to tackle this issue, the WHO published a set of guidelines and suggestions addressed to policymakers [2] such as :

• spreading knowledge about the risks and benefits associated with physical activity and inactivity using advertisement campaigns, training of health and education professional, creation of MOOCs and podcasts, etc.

• enabling active transportation modes like biking or walking by restricting the access of specific areas to motor vehicles, reducing the maximum speed limits, building cycling paths, etc.

• encouraging the practice of a physical activity in schools and workplaces.

Prescribed exercise for prevention and therapy

According to the WHO, a regular physical activity plays a role in preventing non-communicable diseases such as cardiovascular diseases, type-2 diabetes, breast or colon cancer and the maintenance of a healthy weight [3].

In addition to this prevention role, exercise is also used as an active part of treatments for chronic diseases [5]. The intensity, frequency and duration as well as the type of prescribed exercise sessions are tailored to the patient's physical aptitudes and psycho-social resources so that the risks-benefits trade-off is maximized. For example :

• for type-2 diabetes, muscle strengthening combined with endurance activities of moderate to strong intensity is advised.

• for chronic obstructive pulmonary diseases (COPD), long-term regular endurance and muscle strengthening is advised.

• for asthma, endurance exercise increasing the maximum aerobic capacity (V O 2max ) is advised.

Nowadays, these sessions are mostly performed at the hospital, under the supervision of health professionals like in the university hospital of Grenoble, in the Sport et Pathologies department. As stated in [5], the success of such approaches depends on their flexibility in terms of intensity, frequency and duration in order to fit the patients' needs but also on the understanding and control the patients have of their treatment. They are often assisted by technology with the patients' vital signals being monitored during the exercise sessions and the use of tunable cycle-ergometer or treadmills.

THESIS MOTIVATION AND OBJECTIVES

Thesis motivation and objectives

The objective of this thesis is to design theoretical and practical solutions to the problem of controlling the physiological response of a given individual during biking exercise using the electrical assistance of an e-bike. The main motivation is to propose a device, here an electric-bike, able to control the intensity of exercise in an automatic fashion and in an uncontrolled setup. The assistance strategy is personalized to the user with the use of a respiratory gas exchange model identified using personal exercise data. Such electric-bike provides new guarantees compared to the ones commonly proposed on the market, for which the assistance strategy does not depend on a physiological understanding of the user. Such electric-bike could be found suitable in rehabilitation strategies or personalized training strategies.

To achieve this objective, multiple problems are tackled :

• First, the dual system {cyclist and e-bike} to be controlled is modelled in order to simulate its behavior and apply control systems theory.

• Second, to estimate in real-time the evolution of such system, state observers and estimators are designed.

• Finally, using the previous items, a control law for the electrical assistance of the e-bike is proposed in order to regulate physiological quantities during cycling.

The organization of the manuscript is the following :

• In chapter one, an overview of the phenomenon determining the response of the human body to exercise from the exercise physiology perspective is given. This overview includes a description of the different metabolic pathways used in order to produce mechanical power, of the different regimes of exercise. This chapter also covers the role played by respiratory gas exchanges, such as oxygen consumption and carbon dioxide production, during exercise. The muscle structure is also presented and the effects of training are described.

• In chapter two, an overview of the models proposed to describe an exercising individual from the control science perspective is given. First, different models previously proposed to describe the evolution of respiratory gas exchange or heart rate during exercise are presented. Then, a more detailed description of the respiratory gas exchange model chosen for this thesis is given, with an explanation of its structure, of its identification protocol and of its validation. Finally, a novel approach is proposed in order to simulate the behavior of an exercising cyclist in simulation. This approach is based on a force-velocity characteristics which allows to generate realistic mechanical and physiological signals for any predefined exercise session.

• In chapter three, estimation strategies are proposed in order to estimate respiratory gas exchange during exercise. First a set-membership state observer is proposed and its performances are analyzed in simulation. Then a robust proportional integral observer is proposed in order to tackle the influence of model uncertainties in estimation. The use of a discrete-time Kalman filter, coupled with a heart rate characteristic, is explored in order to estimate respiratory gas exchange in a non-invasive way. Finally, an external force estimator is proposed based on a robust proportional integral state observer.

• In chapter four, two control strategies are proposed in order to control the respiratory gas exchanges of the cyclist during exercise. The first strategy is based on a proportional integral controller and the second on a linear quadratic regulator. Both control strategies are validated in simulations and experimentally using an e-bike prototype. Also, the simulation strategy proposed in Chapter 3 is validated using the data collected during experimental scenarios.

Contributions of the thesis

The main contributions of the thesis are the following :

• A large review of literature is given regarding the modeling and control of physiological variables during exercise, from the physiology and the control science perspectives.

• A model of the mechanical behaviour of the cyclist based on the use of a pedalling force and velocity characteristic is proposed. An experimental protocol is proposed in order to identify this characteristic from experimental data. This model is then used in order to simulate realistic cyclist behaviours for arbitrary biking scenarios.

• Two strategies are proposed in order to estimate the respiratory gas exchanges of an exercising cyclist. The first one is based on a set-membership observer which allows to define uncertainty bounds on the estimation. The second one is based on a robust proportional integral observer and in addition to the respiratory gas exchange variables, estimates the basal metabolic rate of the cyclist during exercise.

• Finally, two strategies are proposed in order to control the respiratory gas exchanges of an exercising cyclist using the electrical assistance of an e-bike. The first one is based on a proportional integral controller and the second on a linear quadratic regulator. Both strategies aim at automatically choosing the level of electrical assistance to control the intensity of the effort of the cyclist.
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Spatio-temporal trends of e-bike sharing system deployment: A review in europe, north america and asia. Anybody can describe the feelings associated with the practice of sport, of a long or short exercise. The warming up of the body, with each breath getting longer and deeper, the increase of the heart rate and its resonating sound in the head. The feeling of exhaustion, getting out of breath, with cramps and muscle pains. Also, the feeling of wellness, when drinking water or eating, after a sport session. However, not anybody can describe in detail the physiological processes ensuring the adaptation of the body to exercise. Exercise physiology is the branch of science dedicated to the understanding of this topic and in this chapter, we will try to summarize its key aspects.

The metabolic pathways during exercise

During exercise, a human organism transforms chemical substrates stored in the body such as glucids, lipids or proteins into an organic compound called adenosine triphosphate (ATP). ATP is the chemical energy currency used in the cells to produce muscular contractions during effort.

Energy is produced when ATP is hydrolyzed to adenosine diphosphate (ADP), by losing a phosphate compound (P i ). It is stored in small quantities in the cells, in order to ensure the first 5 seconds of contraction, but has to be produced in a continuous fashion to ensure the power production during exercise. To do so, multiple chemical reactions happen in parallel producing ATP. Each of these reactions also create by-products such as lactate or carbon dioxide which have to be processed by the organism in order to maintain the homeostasis, the nominal steady state of the body. In the following, an overview of the four main pathways for ATP production and their use during exercise is given.

Two main distinctions are made in order to differentiate the metabolic pathways of exercise.

The first one regards the use of dioxygen (O 2 ), or not, in the reactions. In the case where dioxygen is not required, the reaction is labeled as anaerobic and when it is the reaction is labeled as aerobic. The second distinction regards the production of lactate (La) in the process.

In the case where lactate is not produced the reaction is alactic and in the case where lactate is produced the reaction is called lactic.

The phosphagen pathway

The first pathway to mention is the phosphagen pathway. This pathway is anaerobic, and is the first one to be triggered when an effort is performed. This pathway uses the phosphocreatine (PCr), stored in the muscles, to produce ATP in a very fast and intense fashion. The reaction used is the following :

P Cr + ADP ⇀ ↽ AT P + Cr (2.1)
However, PCr is stored in little quantities in the muscles, and this pathway can only be activated in the first seconds of exercise, until the PCr resources are empty. Reaction (2.1) is 

The anaerobic alactic pathway

The anaerobic pathway starts in the cytoplasm of the cell with the glycolysis. The glycolysis is a chemical reaction oxidizing a molecule of glucose into pyruvate. Glycolysis can be expressed as a total of 3 different chemical reactions happening in parallel :

glucose + 2N AD + → 2 pyruvate + 2N ADH + 2H + (2.2) N AD + + 2H + + 2e -⇀ ↽ 2N ADH + H + (2.3) 2ADP + 2P i + 2H + → 2AT P + 2H 2 O (2.4)
These reactions are summed up in Fig. At this point, pyruvate and ATP are produced from glucose and without using oxygen.

Glycolysis is thus anaerobic. However, two different following reactions using the pyruvate are possible. The first one is the pyruvate decarboxylation, which occurs in presence of oxygen and degrades pyruvates without producing lactate. The metabolic pathway composed of the glycolysis followed by the pyruvate decarboxylation is called the anaerobic alactic pathway. It is depicted in Fig. 2.3.

For the chemical reaction to occur, the pyruvate is first moved from the cytosol of the cell inside a mitochondrion. A figure of a eukaryote cell is depicted in Fig. 

Anaerobic lactic pathway

In order to deal with the pyruvate produced by the glycolysis in absence of oxygen, a different reaction takes place in the cytosol : the fermentation. This reaction produces lactate (La), responsible for the acidification of the muscle which translates into muscle fatigue and pain.

Again, this reaction is catalyzed by the NAD interconversion. It is depicted in Fig. 2.4. The metabolic pathway composed of the glycolysis followed by the fermentation is called the Lactate is then either used as a substrate in the Krebs cycle (also called the citric acid cycle) in order to produce additional ATP or is cleared by the organism. There are multiple lactate clearance mechanism, the main ones are the lactate oxidation and the glyconeogenesis.

anaerobic lactic pathway. pyruvate + N ADH → La + N AD + (2.6)

NAD interconversion

2H + +2e - H + 2 N AD + 2 N ADH 2H + +2e - H + 2 CO 2 + 2 Acetyl -CoA 2 N ADH

NAD interconversion

2H + +2e - H + 2 N AD + 2 N ADH 2H + +2e - H + 2 N ADH 2 pyruvate 2 N AD + Cytosol 2 La
The lactate oxidation occurs in the cytoplasm of the muscle cells. It is depicted in Fig. 2.5.
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This reaction consists in the oxidation of the lactate back to pyruvate and is catalyzed by the lactate dehydrogenase enzyme according to the following equation :

2La + 2N AD + → 2 pyruvate + 2N ADH (2.7)
Gluconeogenesis is a part of the Cori cycle in which the lactate present in the muscles is moved to the liver in order to be converted to glycogen which will later be used to generate glucose.

During intense workout, the previously mentioned clearance mechanism can fall short in comparison to the rate of production of lactate. This implies a rise in the muscle and blood lactate concentration called the lactate threshold. This threshold can be used in order to define the tolerance of a training individual to exercise intensity by identifying the maximal power output that can be sustained without an increase in lactate concentrations. This intensity is coined as the maximal lactate steady state (MLSS).

Lactate oxidation (2.7). This reaction produces pyruvate from the lactate (La) produced by the fermentation (2.6).

2 N AD + 2 N ADH 2H + +2e - H + 1 La 1 N AD + 1 pyruvate 1 N ADH + H + Cytosol Lactate dehydrogenase

The aerobic pathway

The last pathway is the aerobic pathway. This pathway requires an adequation of the oxygen supply and demand of the organism to face the intensity of the effort. This pathway is the main
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one used throughout our lives and is the most efficient. This pathway uses glucose, with the oxydative phosphorilation, or fatty acids, with the β-oxidation, as substrates.

The oxidative phosphorilation occurs in the matrix of the mitochondria. For this reaction to happen, a proton gradient is required between matrix of the mitochondrion and the intermembrane space of the mitochondrion. This means that protons H + have to displaced from the matrix to the inter-membrane space. This task is performed by the electron transport chain.

The electron transport chain is a series of reactions happening in the matrix and its membrane in which a flow of electron implies the displacement of protons from the matrix to the inter-membrane space. Electron carriers like succinate F ADH 2 or nicotinamide adenine dinucleotide N ADH are oxidized under the action of proteins (or complexes) resulting in the transport of protons H + . Also, water H 2 O is formed after an atom of oxygen O accepts two electrons and two protons ; the energy released by this reaction is used to move additional protons through the membrane.

Then, the imbalance in protons between the matrix and the inter-membrane space is used to power the oxidative phosphorilation. The protons come back to the matrix through the complex 5 (or ATP synthase). The movement of protons back to the matrix mechanically enables the reaction of phosphorylation, producing ATP. This reaction is depicted in Fig. 2

.6.

A summary of the different reactions involved in the aerobic and anaeroic pathways is given in Fig. 2.7

Metabolic pathways activation and efficiency

The type of metabolic pathway that is used during exercise depends on different factors. The first factor is the duration of the effort.

When an individual is performing an intense effort in a sudden manner (a sprint for example), the organism has to face a high power expenditure with the cardiovascular and ventilatory systems close to resting performances. The oxygen and substrates required to use the aerobic pathway cannot yet reach the muscles and other pathways are used to cope with the cardiovascular and ventilatory systems response time. The pathway activation is described in Fig. 2.8.

1. The first ATP molecules to be consumed are the "free" ATP stored in the muscle cells.

Because they are stored in very little quantities, they can only fuel the effort during the first 5 seconds.

2. The phosphagen pathway is then used, using the phosphocreatine molecules in the muscle to produce ATP. This pathway is mainly used for very high intensity efforts in very short periods of time (such as weight lifting). Again, because phosphocreatine is stored in little quantities in the muscle, this pathway is not sustainable for more than 10 seconds.

3. Then, during the first two minutes, the anaerobic pathway is used.

CHAPTER 2. EXERCISE PHYSIOLOGY CONCEPTS

Oxidative Phosphorilation 

C1 & C3 C5 1 N ADH 1 N AD + 8 H + 4 H + 1 F ADH 2 1 F ADH C2 & C3 C4 4 H + 1 O 2 + 4 H + 2 H 2 O 4 H + 4 H + 4 H + Figure 2
.6: This diagram represents the reaction of oxidative phosphorilation. First, the electron transport chain moves protons H + from the matrix to the inter-membrane space. Then, this H + gradient is used to power the oxidative phosphorilation as the protons move back to the matrix from the inter-membrane space. This reaction constitutes the aerobic pathway.

4. After two minutes, the heart rate and ventilation have reached their steady state. The muscles are well alimented with oxygen and substrates and the aerobic pathway is used.

The second factor is the intensity of the effort, meaning the power output required.

At high effort intensity, the human body can reach physiological limits, preventing certain pathways to be used sustainably. It is agreed on that one of the main factors limiting the exercise capacity is the oxygenation. This translates in an index called V O 2max , corresponding to the maximal oxygen intake (in L/min). This index depends on the individual and is susceptible to be increased through training. An overview of this concept is given in [1].

Multiple factors can explain this plateau in oxygen consumption during effort :

1. The limitation of the cardiac output is one of them [17]. Cardiac output is defined as the product of heart rate and stroke volume and is expressed in L/min. While the maximal heart rate during exercise is mostly explained by age, the stroke volume is likely to be improved with endurance training. A larger cardiac output allows to move larger quantities of oxygen from the lungs to the muscles. 2. An other factor is the pulmonary diffusion. Pulmonary diffusion is the capacity of the lungs to exchange oxygen and carbon dioxide between the blood and the atmosphere. For untrained individuals, this factor is rarely limiting but it can come into play for highly trained athletes.

3. The blood volume and flow is also to be taken into account. Blood, and more precisely, red blood cells, are responsible for carrying the oxygen from the lungs to the muscles.

Endurance training is susceptible to increase the total blood volume, by increasing the CHAPTER 2. EXERCISE PHYSIOLOGY CONCEPTS plasma volume. Increasing the blood volume reduces its viscosity, which improves the oxygen distribution to the muscles. 4. Substrates availability plays a significant role as well. In particular, glucose resources, which are replenished by eating carbohydrates, can run low during endurance exercise and limit the performances of the individual.

When muscles are not well oxygenated, anaerobic pathways are used to compensate the limitations of the aerobic pathway. The anaerobic pathway is not sustainable and such rate of exercise can not be maintained for a long period of time without consequences. Thus, the terms aerobic and anaerobic are used to characterize the regime of effort as well : when only the aerobic pathway is used (in low effort intensity) the effort is labeled as aerobic and when anaerobic pathways add up to it (in high effort intensity) the effort is labeled as anaerobic. To quote Wasserman [26] :

"If the number of muscle units which must contract to generate the required power exceeds the oxygen delivery and exhaust the O 2 stores, the oxygen level will drop to critical levels in each muscle unit and prevent the ATP, which is needed for the muscle contraction, from being generated at an adequate rate by the respiratory enzymes in the mitochondria. This will result in increased anaerobic glycolysis to sustain the availability of ATP. The consequence is an increased rate of lactic acid production."

The different regimes of exercise

Seminal works of Wasserman and colleagues proposed a paradigm in which respiratory gas exchanges are used in order to characterize the individual response to exercise. In particular, they proposed the concept of anaerobic threshold (AT) as a tipping point in an incremental exercise in which the body increases the contribution of the anaerobic pathway to face the power output demand. This concept is based on the observation that intramuscular thresholds, such as the lactate threshold, correlate in time with a nonlinear increase in the exhaled carbon dioxide and air flow. This observation is helpful in practice since it cancels the need of blood sampling and analysis during exercise. Even though the causality between these two phenomenons is questioned nowadays, the AT is still widely used by practitioners since it is one of the best predictors of individual physical performances.

An other threshold was proposed by Monod and Scherrer in [20] under the name of critical power. In their study, the authors were interested in defining the amount of work a muscle can do before being exhausted and the conditions for fatigueless tasks. They defined the critical power as the maximum rate of exercise that can be sustained for long periods of time without The two previous thresholds, the anaerobic threshold (AT) and the critical power (CP), can be used to partition the exercise intensity domain as explained in [19,22]. Theses domains are coined as moderate, heavy, severe and extreme, ranging from the lowest intensity to the highest. Theses domains are depicted in Fig. 2.9, inspired from [21]. They are defined such that each of them triggers a different physiological reaction :

• The moderate domain corresponds to the region below the anaerobic threshold (AT).

Hence, the lactate clearance mechanism are regulating the lactate (La) around its nominal values. Respiratory gas exchanges reach a steady state. The exercise is comfortable.

• The heavy domain corresponds to the region above the AT and below the critical power (CP). In this region, the lactate concentration starts rising but eventually reaches a steady state.

• The severe domain corresponds to the region at which the exercise ends because of exhaustion, which can happen before or soon after reaching V O 2max . In this region, the lactate concentration increases continually. • Finally, in the extreme domain, the exercise intensity is so high that V O 2max can not be reached before exhaustion.

For an overview of the different methods aiming at defining exercise intensity regions, the reader is referred to the following review work by Jamnick and colleagues [16].

The study of gas exchange during exercise

Because monitoring physiological reactions happening at the muscular cell level is extremely difficult and invasive, exercise physiologists have developed tools to study exercise on a macroscopic level. One of these tools is the study of respiratory gas exchange and was initially suggested by Hill and colleagues, after noting a correlation between the intensity of the exercise and the consumption of oxygen.

Ergospirometry, the measurement of gas exchanges

The measurement of respiratory gas exchange is called spirometry and is used as a proxy to gather live information about physiological phenomenons happening in the body. Quantities such as the air flow of gas exhaled V E (in L/min), the flow of oxygen consumed in V O 2 (L/min) or the flow of carbon dioxide produced V CO 2 (in L/min) are of particular interest.
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In the early 1900s, these quantities were estimated by closed-circuit spirometer using impermeable canvas bags, like in the Douglas bags method (2.10a). The bags were filled with the exhaled gases and their content was analyzed after the exercise by emptying them. Open circuit methods were then developed, like the portable respirometer of Nathan Zuntz, used for high altitude studies.

Later, in the 1970s, the first online measurements appeared thanks to the progress in microelectronics and sensor technology, like the Cosmed K2 for example. However only a measurement of V O 2 was available at that time.

In the middle of the 1990s, V CO 2 was measured using infra-red CO 2 sensors, like with the Cosmed K4. With both V O 2 and V CO 2 measured, online studies of the respiratory exchange ratio (RER) became possible.

Finally, in the 2000s, breath-by-breath (BxB) measurement became possible based on comparisons between the gas mixture of the air inhaled and exhaled, as well as the airflow. The spirometer Metamax 3B (2.10b) is based on such technology.

Modelling gas exchange during exercise

In order to understand the processes ensuring the oxygenation of the muscles and the removal of wastes during exercise, physiologists have tried to describe the evolution of gas exchange along time, also called gas exchange kinetics. They designed various tests, collected experimental data from different groups, in order to investigate the nature of gas exchange kinetics and the links existing with intra-body reactions. They mostly focused their effort in describing the kinetics of oxygen consumption V O 2 and the carbon dioxide production V CO 2 during effort. A brief summary of their results is given in the following sections.

V O 2 during exercise : a linear description with nonlinear limitations

After noting the correlation between the intensity of the exercise and the oxygen consumption, a natural assumption to describe V O 2 kinetics was to consider first order dynamics. For example, in [13], it was formulated that for a constant work rate the consumption of oxygen during effort could be described using two constant parameters a 0 and k and take the following exponential form :

V O 2 (t) = a 0 (1 -e -kt ) (2.8)
Here, a 0 is the static gain of the exponential response, and k its time constant. In their paper, it was expected that these two quantities are independent of the work rate, at least for moderate intensities, where only the aerobic metabolism is active. Based on experimental data, they showed that these parameters can however show inter-individual variability. Other studies formulated similar conclusions, for example [5].
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The same authors proposed a new approach in [14]. There, an additional, slower, exponential component parameterized by a 2 and k 2 was used to model the V O 2 kinetics :

V O 2 (t) = a 1 (1 -e -k 1 t ) + a 2 (1 -e -k 2 t ) (2.9)
From experimental data, they noted that the first fast component was the most significant, but that during more intense workout the second term, the slow component, became present too. They interpreted this as a relation between the slow component and the lactate clearance mechanisms. This result was latter confirmed in [2,4,8,28].

Then, the existence of a V O 2 slow component grew in credibility and studies describing its behaviour and proposing physiological justifications were published. In [10], it was proposed that the apparition of the slow component depends on the exercise intensity. Authors made a distinction between exercise performed below the lactate threshold (LT) and where V O 2 reaches a steady state quickly following a mono-exponential response ; and exercise performed above the (LT) where the V O 2 steady state is delayed by a slower component. The response time of the V O 2 could be greatly increased, from the average 3 minutes below CP to up to 15 minutes above CP. In [25], different justifications for this intensity dependence were investigated. One of them was the temperature : it was hypothesized that the slow component was caused by an increased body temperature. This was then proved wrong by [18] were exercising muscles were artificially heated during exercise without significant increase in V O 2 . Finally, in [23], it was shown that the type of muscle fiber used had an effect. Indeed, the use of fast-twitch fibers, whose efficiency is lower, during high intensity exercise, would generate an additional oxygen consumption.

In order to add some degree of complexity to the V O 2 kinetics model, the use of delays was also explored. For example, in [7], delays were proposed for both the fast and the slow components :

V O 2 (t) = A(1 -e (-t-T D )/τ ) (2.10) V O 2 (t) = A 1 (1 -e (-t-T D )/τ 1 ) + A 2 (1 -e (-t-T D )/τ 2 ) (2.

11)

With A, A 1 , A 2 the static gains, τ , τ 1 , τ 2 the time constants and T D the delay. This delay is motivated by the mechanical delays present all along the oxygen transport chain, from the lungs to the muscles. By designing step exercise sessions with rest to exercise and exercise to exercise transitions, Hughson and Morissey showed that this delay, or the time response in general, of V O 2 kinetics could depend on the exercise intensity the individual is starting from [15]. They found that V O 2 was reaching steady state quicker after a step from prior exercise, which was confirmed later in [12].
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The 2-phased nonlinear carbon dioxide production

As described in [27], the V CO 2 kinetics exhibit a 2-phased behaviour. First, in the moderate exercise domain, V CO 2 increases mono-exponentially until it reaches its steady state and is linearly related to V O 2 . However, beyond the anaerobic threshold (AT), its behaviour changes.

Indeed, after crossing the lactate threshold (LT), the rate of production of lactates becomes higher than the rate at which it is metabolized by bicarbonate HCO3 -in the blood, which translates in a excess of carbon dioxide in the lungs. Furthermore, beyond the LT, the V O 2 slow component appears, implying an additional oxygen consumption and carbon dioxide production.

Thus, the behaviour of V CO 2 kinetics depends on the AT. Using this property, Beaver, Wasserman, Ward and colleagues proposed a method to determine the AT from gas exchange measurements [3]. This method is called the V-slope method. In order to identify the AT, an exercising individual performs an incremental cycling test, in which the load increases of a fixed amount, after a fixed period of time (usually 15 Watts every minutes) until exhaustion. During this exercise session, gas exchange is monitored, V O 2 and V CO 2 in particular. The AT is then identified, by computing the intersection of two tangent curves in the V O 2 -V CO 2 plane, one computed before the AT and one after. Thus, the AT can be expressed in the same units as

V O 2 , or converted to a mechanical power as shown in (2.11). This method has the advantage of estimating the AT in a non-invasive manner compared to the traditional blood sampling and analysis, and it thus vastly employed.

V CO 2 V O 2 time power time V O 2 AT (V O2) AT (V O2) AT (power)
Figure 2.11: Determination of the anaerobic threshold (AT) using the V-slope method. On the left, the AT is identified at the intersection of two tangeant curves, the blue one for the low intensity region of exercise and the red one for the high intensity region of exercise. At the AT, the proportionality between V O 2 and V CO 2 changes. The AT is expressed in terms of V O 2 or in term of power output by associating the identified AT (V O 2 ) with the power produced during the incremental exercise test. 

Indirect calorimetry

Calorimetry is the study of energy exchanges along time. In terms of exercise physiology this corresponds to the calories burnt during a workout session. Initially the main motivations were to maximize human productivity and reduce the energy cost required to perform specific tasks.

The first method used to estimate this quantity is called direct calorimetry, and requires the studied individual to be kept inside an insulated room (similar to a chemical calorimeter) during the whole duration of the exercise. The second method is the indirect calorimetry and is based on the measurement of respiratory gas exchanges. The latter is easier to implement and can be performed on a mobile subject. The substrates being oxidized at the cellular level are inferred from measurements of V O 2 and V CO 2 and the corresponding energy is computed. For example, formulas are known to estimate the carbohydrates and lipid oxidation as presented in [6] :

Carbohydrates Oxydation (mg/min) = 4.585 V CO 2 -3.2255 V O 2 (2.12) Lipid Oxydation (mg/min) = -1.7012 V CO 2 + 1.6946 V O 2 (2.13)

Substrates, the body energy resources

During exercise, two main substrates are used to fuel the muscles : glucose and fatty acids.

Both these molecules can be stored in organs, or in the blood. For example, glucose is stored in the blood plasma or in the muscles and the liver under the form of glycogen. Similarly, fatty acids are stored in the blood plasma or in the muscles under the form of triglyceride. Depending on the intensity and duration of the effort, the contribution of each substrates can vary.

First, regarding the exercise intensity :

• at low effort intensity (around 25% of V O 2max ), the main contribution comes from plasma fatty acids (85%) and in smaller proportions from plasma glucose and muscle triglyceride.

• at moderate effort intensity (around 65% of V O 2max ), half of the energy comes from glucose oxidation and half from fatty acids oxidation (with equal contributions of plasma fatty acids and muscle triglyceride).

• at high effort intensity (around 85% of V O 2max ), the rate of oxidation of fatty acids becomes insufficient and glucose is used as the main energy source (65%).

The potential energy of fatty acids is higher than the one of glucose, however, because its rate of oxidation is limited, when the effort intensity increased the glucose pathway is used to compensate.

Then, even when the effort intensity is constant, duration has an impact as pathways change over time :
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• at low effort intensity (around 25% of V O 2max ), the oxidation of plasma fatty acid is sufficient to ensure energy production and can be used for hours.

• at moderate effort intensity (around 65% of V O 2max ), fatty acids and glucose are overall used in the same proportion all along the exercise. However, as muscle stocks of triglyceride and glycogen run lower, the plasma fatty acids and plasma glucose contributions increase.

During rest, the stocks of glycogen are replenished after eating carbohydrates and the stores of fatty acids after eating lipids.

The nature of the substrate oxidized during exercise can be determined using indirect calorimetry. This technique is based on the measurement of gas exchange during effort. In particular, the respiratory exchange ratio (RER) computed by dividing the volume flow of carbon dioxide exhaled by the volume flow of oxygen inhaled (both expressed in L/min). The RER varies depending on the kind of substrate oxidized, for exemple, it is close to 1 when carbohydrates are used and close to 0.7 when fatty acids are used. For detailed explanations on this subject, the reader is referred to [9,11].

The cardiovascular and respiratory systems

The cardiovascular system is constituted of the heart and the network of blood vessels. Its function is to ensure the blood flow to the organs and muscles in order to bring the necessary substrates and oxygen and remove the wastes. Additional functions are also to regulate the hormones level and the body temperature. The blood vessels network is constituted of elements of different size, ranging from the smallest, the capillaries, to the biggest, the arteries. The heart behaves like a pump that regulates the blood flow and pressure. The heart rate of contraction, expressed in beats/min, increases during exercise. The regulation of the heart rate is performed by the autonomic nervous system via the action of the sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS). The sympathetic nervous system can increase the heart rate by releasing hormones like epinephrine. The parasympathetic nervous system can decrease the heart rate by releasing hormones like acetylcholine. The heart rate is also affected by exterior factors like the sleep level, caffeine or respiration.

The respiratory system is constituted of the lungs, nose, mouth and trachea. It is an interface between the atmosphere and the body and it ensures the exchange of gas through ventilation. The lungs contain capillaries and dedicated cells called alveoli which purpose is to extract the carbon dioxide from the blood to the inside of the lungs and to increase the oxygen concentration of the blood. Thus, blood rich in carbon dioxide enters the right atrium of the heart, is pumped to the lungs, and comes back to the left atrium of the heart, rich in oxygen, ready to fuel to body. These cells are fueled by capilaries, bringing oxygen and substrates and removing wastes.

Muscles fibers belong to three different types depending on their mechanical properties and the metabolic pathway used :

1. The type I fibers, or slow oxidative (SO) fibers -these fibers are powered by aerobic oxidation and are used for endurance exercise like running, swimming or cycling.

2. The type IIa fibers, or fast twitch oxydative-glycolytic (FOG) fibers -these fibers are powered both by aerobic oxidation and anaerobic glycolysis and are used for power exercise like weight lifting, sprinting or jumping.

3. The type IIb fibers, or fast twitch glycolytic (FG) fibers -these fibers are similar to the IIa fibers but are solely powered by anaerobic glycolysis.

The distribution of these muscles fibers depends on each muscle. For example, the biceps (in the arm) is constituted of around 50% of type I fibers, the soleus (in the leg) of around 80% of type I fibers and the orbicularis oculi (in the eye) of around 15% of type I fibers. The
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distribution also depends on the physical activity. For example, the total skeletal muscle mass of sedentary individuals is constituted of around 50% of type I fibers and 50% of type II fibers but endurance runners will develop their type I muscle mass while sprinter will develop their type II muscle mass.

Training and benefits 2.7.1 The consequences of physical activity

A regular physical activity has beneficial effects on health. In fact, the world health organization (WHO) recommends at least two and a half hours of exercise per week for adults.

A regular physical activity triggers physiological modifications :

• endurance training at low to moderate intensities for long durations (from 20 min to hours) improves health and performances as it increases the aerobic capacity (V O 2max ).

This can be explained by a increased number of alveoli in the lungs, an increase in number and in size of mitochondria and an increased size of the heart. In addition, it reduces blood pressure, and increase the rate of clearance of lactate.

• strength training increases the stocks of phosphocreatine PCr in the muscles, thus extending the action of the phosphagen pathway.

• high intensity interval training increases the rate of production of ATP by the glycolytic pathway.

For more information on this subject the reader is referred to [24].

Physical exercise for rehabilitation

Because of the benefits that exercise yields, it is used by physicians in rehabilitation programs in order to treat chronic diseases such as diabetes, chronic obstructive pulmonary disease (COPD) or cancer.

Because the patients benefit from exercise but their physical conditions is weakened due to their disease, the exercise sessions are performed with care. Indeed, they often happen at the hospital, supervised by health practitioners. The exercise sessions are monitored by recording respiratory gas exchange variables, blood pressure or electrocardiogram (ECG) signals. Also, the exercise sessions are tailored to the individual. For example the Borg rating of perceived exhaustion (RPE) can be used. This scale associates a number to the exercise level from 0, for no exhaustion, to 20 for maximal exhaustion. The exercise intensity can also be chosen as a multiple of the basal metabolic rate using the metabolic equivalent of task (MET) or fractions of the maximal aerobic capacity of the individual V O 2max .

CHAPTER 2. EXERCISE PHYSIOLOGY CONCEPTS

Conclusion

In this chapter an overview of the physiological concepts involved in the understanding of the exercise is given.

First, the complexity of the energy production process at a microscopic level is showed. This process is ensured by a complex set of chemical reactions, using different substrates, producing energy and waste with different efficiencies. Two main pathways are used to simply describe the energy production process : the aerobic pathway, fueled by oxygen O 2 , efficient but slow to activate ; and the anaerobic pathway, quick to activate in absence of O 2 but less efficient and not durable due to the wastes it produces and the depletion of substrates stocks.

Then, the proxy strategies used by the physiologist to study exercise at a macroscopic level are described. These strategies are based on live measurement of respiratory gas exchanges called spirometry. As part of these strategies, physiologists use measurements of the oxygen consumption V O 2 and the carbon dioxide production V CO 2 in order to derive information of the physiological stress undergone by the body, on the exercise capacity of individuals or on the resources used by the body. To understand V O 2 and V CO 2 , models describing their evolution during exercise were proposed by physiologists. These models showed that even though both these variables can be fairly accurately described by simple mono-exponential models for low intensity of effort, they fail in describing complex behaviours like the slow oxygen component or the anaerobic threshold, which calls for more complex model structures.
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In the previous chapter, attempts to use mathematical modelling to describe the adaptation of the human body to exercise are presented. The models presented come from the exercise physiology research community and have for goal to describe as best as possible the evolution of respiratory gas exchange and heart rate during exercise. In this chapter, propositions coming from the control research community to describe the same phenomenons are presented. Then, the formulation, identification and validation of the respiratory gas exchange model used in this thesis is presented. A novel bio-mechanical model to describe the interaction between the cycling force and cycling velocity is proposed and validated using experimental data. Finally, both the respiratory gas exchange model and the bio-mechanical models are used in a new simulation strategy aiming at generating realistic cyclist behaviours in simulation.

Control systems theory applied to physiological modelling

Control systems is the science aiming at manipulating physical quantities by operating actuators in an automated fashion. In order to do so, models describing the input-output relationships ruling the behaviour of the considered system are derived. More precisely, the "behaviour" of a system is the dynamic evolution of quantities called states under the action of the actuators and possibly external disturbances. The concept of system is extremely generic, and virtually any process exhibiting input-output relationships can qualify, like vehicles, chemical reactors, thermostats, robots, etc.

To implement automated control strategies, control scientists first try to propose a rigid mathematical description of the considered system : a model. Under close examination, every system is unique but share similar properties with others. Thus, the control system theory is very rich of the families of mathematical models that can be used in order to describe the physical world, which makes it very adaptable and powerful.

As described in Subsection 2.3.2, the entire human body, but more specifically the cardiovascular and respiratory systems, vary under the influence of work rate during exercise. In particular, it was shown that the evolution in time of the oxygen consumption or the carbon dioxide production can be described to a certain extent using mathematical relationships. This is the starting point of a successful modelling investigation which is why researchers from the control system community attempted to propose accurate models of the evolution of physiological quantities during exercise. In the next sections, models proposed to describe the evolution the heart rate (HR) and the respiratory gas exchange (RGE) are presented.

Physiology and control : two different philosophies of modelling

One main difference that can be noted between the modelling approaches proposed by physiologists and control scientists is that while the models proposed by physiologists focus on the description of the evolution of physiological signals, control scientists focus on the robustness of
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their models, particularly their ability to predict future data from independent data-set of the one used for the identification.

Also, physiologists pay attention to justify the structure of their model based on literature and theory. This is not necessary true for the control community where usually the quality of a model is evaluated based on its ability to achieve "good" performances, in terms of control of the variable of interest or of the prediction of the modelled quantities. Thus, a performing control model can be purely mathematical, while it is not so likely for physiology models.

"Black box models like Hammerstein-Wiener models do not offer the same understanding as physiological models have, but they bring other advantages. Detached from physiological evidence they are more flexible and can adjust better to data and therefore, may deliver better fitting results." [6]

Heart rate models

Various approaches have been proposed by the control community to model the evolution of heart rate during exercise. They differ by the mathematical structure used to describe the phenomenon, by the input/output relationships chosen and by the type of physical activity described. A non-exhaustive review of these approaches in proposed in the following. For a comparative review of analytical models and machine learning models, the reader is referred to [25] and [24].

Cheng and colleagues in [11] focused on characterizing the evolution of heart rate during treadmill exercises. The model they proposed is nonlinear, expressed in continuous time, and relates the heart rate with the speed of the treadmill in the following way :

ẋ1 (t) = -a 1 x 1 (t) + a 2 x 2 (t) + a 2 u 2 (t) (3.1) ẋ2 (t) = -a 3 x 2 (t) + Φ(z(t)) (3.2) z(t) = x 1 (t) (3.3) Φ(z(t)) = a 4 x 1 (t) 1 + exp(-(x 1 (t) -a 5 )) (3.4)
with a 1 , a 2 , a 3 , a 4 and a 5 positive scalars, x 1 the HR component related to the central response to exercise (i.e. the action of the sympathetic and parasympathetic neural responses) and

x 2 the slower and peripheral effects (such as the increase in body temperature, hyperventilation or loss of body fluids). The input u is the speed of the treadmill. This model was used to design control strategies to pilot the HR during treadmill exercises.
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For rhythmic exercises like walking, cycling and rowing, Baig and colleagues proposed a model relating the exercise rate (in Hertz) to the heart rate (in beats per minutes) in [7]. The main motivation of choosing the exercise rate as input is that it does not depend on the type of physical activity performed. In their study they first showed the limits of a linear time invariant (LTI) description of the phenomenon and then opted for a linear time varying (LTV) approach.

The model they proposed is the following :

(3.5) y(t) = a 1 (t)y(t -1) + a 2 (t)y(t -2) + ... + a p (t)y(t -p) + b 1 (t)u(t -1) + b 2 (t)u(t -2) + ... + b p (t)u(t -p)
The parameters of the model a 1 (t), ..., a p (t) and b 1 (t), ..., b p (t) are time-varying and are estimated online using a Kalman Filter (KF). In their study, the order of the model p was chosen equal to 2.

The choice of a second order model with time varying coefficients to describe HR was later confirmed in [20]. This paper is a comparative study of the performances of LTI, LTV, first order and second order models to describe the evolution of HR during running exercises. It showed that HR was best described by second order LTV dynamic equations. Authors considered two inputs for their models, the power output (in Watts) and the slope of the road (in degrees).

The different model structures are the following :

y k = -a 1 y k-1 + b 0 u k-δ (3.6) y k = -a 1 y k-1 -a 2 y k-2 + b 0 u k-δ + b 1 u k-δ-1 (3.7) 
y k = -a 1 y k-1 + b 1,0 u 1,k-δ1 + b 2,0 u 2,k-δ2 (3.8) 
y k = -a 1 y k-1 -a 2 y k-2 + b 1,0 u 1,k-δ1 + b 1,1 u 1,k-δ1-1 + b 2,0 u 2,k-δ2 + b 2,1 u 2,k-δ2-1 (3.9)
with y the measured heart rate, u 1 the measured power output and u 2 the road gradient.

Scalars δ1 and δ2 are time delays for both the inputs. Coefficients a i and b i,j could either be time invariant or time variant.

A nonlinear model relating the evolution of HR to the power output (in Watts) and the rate of exercise (in Hertz) during cycling was proposed in [26]. It is defined as follows :

ṙ = A(r -r 0 ) α (r x -r) β (D -r) γ (3.10) Ḋ = B(f (p, w) -D) κ (3.11) f (p, w) = c 0 + c 1 p + c 2 ω + c 3 p 2 + c 4 ω 2 + c 5 pω (3.12)
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with r the heart rate and ṙ its time derivative, A, B, α, β, γ, κ, c 0 , c 1 , c 2 , c 3 , c 4 , c 5 are constant parameters, r 0 and r x correspond to the basal and maximal HR respectively. The term D represents the heart rate demand, associated with the exercise intensity, and Ḋ its time derivative. The input p corresponds to the power output (in Watts) and ω to the exercise rate (in Hertz).

Gas exchange models

On the same line, different approaches have been explored in order to model the evolution of respiratory gas exchange during exercise. In the next sections, an overview of these methods is given. First, gas exchange models for simulation are presented. Then, parametric and non parametric analytical models are presented. Finally, approaches based on machine learning and wearable sensors are presented.

Simulation models

Simulation models are dynamic models which consist in the direct translation of the physical laws describing a system (like mass conservation, fluid transport, etc). For respiratory gas exchange, a simulation model was developed as a PhD work by Thamrin [36] in 2008.

In this work, the entire respiratory control system during exercise is modeled. The model is constituted of different compartments : the lungs, the brain, the muscle and the tissues departments. This structure allows for a deep level of detail regarding each element. For example, in the muscle compartment, the acidosis phenomenon is taken into account with the accumulation of lactate in the muscle, allowing to take into account the influence of exercise intensity on the respiratory system.

Because the focus of this model is essentially descriptive, it is possible to include physiological variables which would not be taken into account in a control oriented model (like the partial pressure of oxygen in the blood P a O 2 ). It is also possible to make hypotheses regarding the implicit feedback strategies happening in the body in order to regulate respiratory gas exchanges.

One advantage of such model is to carry on theoretical investigation regarding the influence of specific parameters on the closed loop respiratory gas exchange system. For example, investigating the influence of an increased inspired fraction of carbon dioxide on the transient and steady state values of ventilation, and their adequacy with similar experimental results.

However, even if this high level of complexity is essential for such "sand-box" model, it makes it impossible to be used in practical situations for estimation and/or control, contrarily to the models presented in the following sections.
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Parametric analytical models

First, the parametric analytical models are presented. These models have in common that they are defined by a rigid, predefined structure, parameterized by coefficients which value is determined as part of one or multiple optimization problems. The optimization is solved in order to minimize a cost function depending in most cases on the prediction error of the model. The choice of their structure is usually informed by theory and practical considerations in order to take into account known linear or nonlinear behaviours for example. These models are designed for a specific goal, which can be the estimation of respiratory gas exchange, their control during exercise, or both.

A common approach to design parametric analytical models of respiratory gas exchange is the use of Hammerstein-Wiener models. This structure allows to separate the linear and nonlinear parts of a system. Common subcases of Hammerstein-Wiener models are the Hammerstein models, which are constituted of a nonlinear input affecting linear dynamics, and Wiener models which are linear dynamics whose output depends nonlinearly on the states as depicted in Figure 3.1. In the case of respiratory gas exchange during exercise, such structure is interesting for multiple reasons. As showed in Section (2.3.2), the mono-exponential behaviour of V O 2 and V CO 2 in the moderate intensity region can be described by linear dynamics, nonlinearities such as the anaerobic threshold can be described by an output nonlinearity and the dependency of V O 2 and V CO 2 to the effort intensity can be described by an input nonlinearity.

f (u) g(x) ẋ = Ax + Bw
Initially investigated by Su and colleagues in 2007, the Hammerstein model structure was proposed to describe the evolution of V O 2 during treadmill exercises [35]. The authors considered the speed v of the treadmill (in m/sec) as the input of their model. They split the identification process in two phases. First, the linear component of the model was identified using linear regression and experimental data of V O 2 acquired during an exercise session. During this session, the treadmill speed profile was designed as a Pseudo Random Binary Signal (PRBS), a common excitation signal for model identification. Then, the nonlinear input component was identified using the Support Vector Regression (SVR) technique. This model was later used in order to regulate the oxygen consumption during treadmill exercises by conveniently chosing
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the speed of the treadmill. In 2009, they extended this approach in order to estimate the oxygen consumption in a non-invasive way using wearable HR sensors and accelerometers using an

Hammerstein model [34].

Later, in 2008, a similar approach was used by Hunt and colleagues in [17] in order to control the physiological response of an individual during robotic-assisted gait exercises on treadmills. There, they proposed a stochastic Hammerstein model. The stochastic component came from the choice of affecting the Hammerstein with a Poisson process in order to take into account the irregularities of the human ventilation during exercise. The authors chose a smooth gain affecting the input of the linear system to take the nonlinearties of the V O 2 response during exercise. As previously, this model was then used for control purposes.

Finally, in 2012, Baig and colleagues proposed to estimate the oxygen consumption during rhythmic exercise (like cycling and rowing) in a non-invasive fashion using a Hammerstein model [8]. To do so, they used a wearable device measuring the heart rate (HR) and the respiratory rate (RespR) as well as a separate measure of the frequency of exercise also called exercise rate (ER). They found that the input linearity depended on the type of activity performed (cycling or rowing).

An interesting approach was used by Artiga Gonzalez and colleagues in 2015 in [4] to estimate oxygen consumption during cycling exercise sessions of varying intensity. The model they proposed is closely connected to physiology theory since it uses the Critical Power (CP) as a parameter of the model in order to define the exercise regions which dictate the behaviour of the system. As part of the data acquisition process, the studied individual performed an incremental test which was also used to determine the value P c of the CP as the exercise intensity at which the blood lactate increased substantially.

The model they proposed followed the following equations :

V O 2 (t) = V O 2base + x 1 (t) + x 2 (t) (3.13) ẋ1 = τ -1 1 (A 1 (P ) -x 1 ) (3.14) ẋ2 = τ -1 2 (A 2 (P ) -x 2 ) (3.15)
As shown in equation (3.14), the equation depends on 3 components, the constant basal oxygen consumption V O 2base , the first fast dynamic oxygen component x 1 and the slow oxygen component x 2 . The fast and slow oxygen components have different time constants, τ 1 and τ 2 respectively with τ 1 <τ 2 . The terms A 1 and A 2 both relate to the static gain of each component, and are supposed to depend on the power output P . This dependence is structured as follows : supposed that the quality of the estimation could be improved by including the identification of the CP in the optimization problem itself. They also suggested that removing the slow component from the model, or at least question its additive exponential nature could lead to better results. These works led to other publications [5,6].

A 1 (P ) = min(s • P, V O 2max -V O 2base ) (3.16) A 2 (P ) = V ∆ • exp(-(P c -P )/∆) (if P ≤ P c ) V O 2max -V O 2base -A 1 (P ) (if P >P c ) (3.
The last approach to be mentioned is of Ludwig and colleagues in 2016 [23]. In their paper, they studied the use of a convolution model, with a reduced number of parameters, in order to describe the responses of V O 2 , V CO 2 and HR during exercise. The model is formulated as follows :

y(t) = a 2 • 1 a 1 (u * e -τ /a 1 )(t) a 4 + a 3 (3.18)
with (u * e -τ /a 1 ) representing the discrete time convolution of lag τ , τ u(τ

) • x(t -τ )
and a 1 , a 2 , a 3 and a 4 scalar coefficients. In their paper, they explain the link existing between this model and the traditional Hammerstein-Wiener approaches. The paper illustrates the method with an HR model and validate it using experimental data. Finally, authors claim that the accuracy of the proposed model is equivalent to other analytical approaches but has the advantage of depending on only 4 parameters.

Nonparametric analytical models

As mentioned before, the respiratory gas exchange system contains its share of nonlinearities.

In a parametric identification strategy, the structure of the model has to be chosen beforehand, with a given number of parameters, which might not necessary be suitable for the considered system. This difficulty motivated the use of nonparametric identification methods to tackle the issue of finding accurate models to respiratory gas exchange during exercise.

The main difference between parametric and nonparametric approaches is that nonparametric approaches focus directly on modelling the frequency or time response of the system, for example, the finite input response (FIR). This type of methods is usually applied to nonlinear systems
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and the parameters of the parametric identification are replaced by a basis of nonlinear kernel functions covering the input space of the system. The choice of the kernel's shape is a problem in itself, and many different shapes have been explored (linear, radial basis, splines). For a detailed comparison of parametric and nonparametric methods, readers are referred to [29] and references therein.

For the estimation of V O 2 during treadmill exercises Ye and colleagues developed a nonparametric approach in [39,40]. In these papers, the finite impulse response (FIR) between the treadmill speed and the oxygen consumption is identified using stable spline kernels and radial basis kernels. They concluded that stable splines performed better, and that the proposed model was suitable for V O 2 estimation during treadmill exercises.

Also, in 2022, YU and colleagues proposed to use a nonparametric approach to model the oxygen consumption during stair exercises [41]. They compared the prediction performances of their approach to other parametric approaches.

Machine learning models

Finally, with the development of machines learning methods, neural networks have been applied

to the estimation of physiological variables during exercise. These methods present several advantages. They are usually based on the measurement of easily accessible signals (like heart rate, ventilation, accelerations, etc.) which can be monitored using wearable devices and allow the estimation of gas exchange in free exercise setups (like outdoor running or cycling for example). Thanks to their flexibility, neural networks can merge input signals which would be difficult to relate in a structured fashion (like body accelerations and heart rate for example).

In Table 3.1, a brief summary of the applications of neural networks to respiratory gas exchange during exercise is given. For a comparative review of AI methods, readers are referred to [42].

Explored gas exchange model

In this thesis, estimation and control strategies are based on the respiratory gas exchange model developed during the previous PhD work of Nadia Rosero in Gipsa-lab [18]. In particular, a model was proposed to describe the evolution of both the oxygen consumption and the carbon dioxide production during cycling. In the following sections the structure of this model, the identification and the validation process are presented. 

Structure of the model

The model proposed in [18] belongs to the family of parametric analytical models. In opposition to the vast majority of approaches that were presented so far, this model allows the estimation of both the oxygen consumption and the carbon dioxide production. It focuses on the estimation of respiratory gas exchange during cycling, but can virtually be applied to any type of exercise where the power output is easily measured or estimated. The model is formulated as follows :

x k+1 = Ax k + Bu k + Bw 0 y k = C(ρ k )x k (3.19)
where x k ∈ R 3 is the state vector at instant k given by

x k = [x 1 , x 2 , x 3 ] T with x 1 = mO 2
the consumed mass of oxygen per unit of time (in g/min), x 2 = mCO 2 the aerobically produced mass of carbon dioxide per unit of time (in g/min) and x 3 = εCO 2 stands for the anaerobically produced mass of carbon dioxide per unit of time or excess of CO 2 (in g/min).

The input u k ∈ R stands for the mechanical power developed by the cyclist at the pedal level (in Watts). The symbol w 0 models an additional unknown power production (for instance, the power required for other physiological functions such as digesting, breathing, etc).

The output vector y k ∈ R 2 is given by y k = [y 1 , y 2 ] T with y 1 = x 1 the consumed oxygen mass per unit of time (in g/min) and y 2 = x 2 + ρx 3 the total carbon dioxide mass per unit of time (in g/min) mCO tot 2 formed by adding the aerobic CO 2 contribution to a fraction ρ of the excess of carbon dioxide εCO 2 . Matrices A and B are constant. Matrix C(ρ k ) depends affinely in the parameter ρ k as follows : The varying parameter ρ k is the fraction of excess of carbon dioxide present in the total mass of CO 2 measured in output of the system. It is not a variable that can be directly measured in practice, thus, it is modeled as the following function of the states :

C(ρ k ) = 1 0 0 0 1 ρ k (3.20)
z k = x 1k -x 2k -ρ k-1 x 3k ρ k = 0.5 + 0.5 tanh z T -z k h (3.21)
By definition, ρ takes its values between 0 and 1 with ρ = 0 corresponding to an aerobic effort and ρ = 1 corresponding to an anaerobic effort. The index z k takes its values around 0 when there is a balance between mO 2 and mCO 2 , corresponding to an aerobic effort. When the anaerobic threshold is crossed, the additional carbon dioxide production due to εCO 2 implies a growth of z k in the negatives values. Here, z T is the translation of the anaerobic threshold in the index z k and h is a scalar modulating the rate of variation between the aerobic and the anaerobic pathways. The value of z T is computed automatically during the identification process. The transition function is represented in Fig. 3.2.

The behaviour of the transition function is illustrated in Fig. 3.3. During an incremental exercise, the anaerobic contribution of carbon dioxide production, computed as ρ • ϵCO 2 , is adding up to the aerobic contribution. The maximal carbon dioxide production is reached when ρ = 1, in higher intensities of exercise.

The linear dynamics of the system are determined by matrices A and B. These matrices are constant, and parameterized by coefficients θ i in the following fashion :

A =    θ 1 θ 2 0 0 θ 3 0 0 θ 5 θ 6    B =    θ 4 θ 4 θ 7    (3.22)
In total, the model is parameterized by 10 coefficients : θ 1 , ..., θ 7 , w 0 , z T and h. These parameters depend on the individual and on the level of training and are identified using respiratory gas exchange and power output data. The identification methodology is detailed in section 3.2.3. In this test, the power developed by the cyclist increases linearly with time. The aerobic contribution is mCO 2 , the second state of the system (i.e. ρ = 0). The total carbon dioxide production mCO 2tot is the second output of the system. The maximum carbon dioxide production is mCO 2tot computed with ρ = 1. For low effort intensities, the total carbon dioxide production is close to the aerobic contribution. For high effort intensities, the total carbon dioxide production is close to the maximum carbon dioxide production due to the increase in the anaerobic contribution.

The structure of the model is similar to the one of a Wiener model, with linear dynamics and the output being a nonlinear map of the states. More precisely, it belongs to the class of quasi linear parameter varying system (qLPV). Linear parameter varying systems are systems with a linear structure but with matrices that depend on a varying parameter. Here, the varying parameter is ρ. Because this parameter depends on the state of the system through the variable z, the system is called quasi-LPV. This structure is interesting because it allows the use of specific techniques from robust control and estimation theory. 

x + = Ax + Bu + Bw 0 C(ρ(x)) u w 0 x   mO 2 mCO 2 ϵCO 2   y mO 2 mCO 2tot
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Theoretical and practical motivations

The formulation of the previous model is based on several assumptions :

• The influence of the oxygen slow component is neglected here. The dynamics of mO 2 are supposed to be purely linear.

• The influence of exercise intensity is taken into account via the distinction between the aerobic and anaerobic carbon dioxide production.

• A smooth transition between the aerobic and anaerobic modes is modeled by the continuous function ρ.

• The basal metabolic rate is supposed to be constant and modeled by w 0 .

• The states of the system are expressed in mass. In the following, the density of dioxygen and carbon dioxide at 20°C and normal pressure conditions are supposed equal to δ 1 = 1.429 (kg/m 3 ) and δ 2 = 1.842 (kg/m 3 ) respectively. This way, the dependency of respiratory gas exchange to temperature and pressure conditions can be taken into account.

• The model is expressed in discrete time in order to ease its implementation on microcontrollers. It is identified at a constant sampling time T e = 1 sec.

Identification protocol

As described in [33], two main approaches are available to identify LPV systems.

The first one is the local approach. It supposes that the varying parameter of the LPV model is available and can be set at frozen values while collecting the input and output data necessary to identify linear time invariant (LTI) models around these points by prediction error minimization. These models are then interpolated to obtain the full model in LPV form.

The second one is the global approach. This method uses input and output data as well as varying parameter data, which are directly measured or estimated, in order to identify the model in LPV form. However, these methods require a persisting excitation of the varying parameter during data collection, which can be difficult to ensure in practice.

In the proposed model, the varying parameter is the fraction ρ of εCO 2 that is measured in the output of the system, and can not be directly measured or controlled. This parameter takes continuous values between two extreme setups, the first one being the aerobic state, during low intensity effort, and the second one being the anaerobic state, during high intensity effort.

Based on insights coming from the exercise physiology literature, equation (3.21) was proposed to model its behaviour. In this context, neither the local or the global approach can grasp the problem completely, thus, an hybrid approach was used. 

Data collection and processing

In order to identify the parameters of the model, experimental data is collected and processed.

The signals of interest are the oxygen consumption V O 2 , the carbon dioxide production V CO 2 and the power developed at the pedal level.

These signals are collected from two separate sources : the respiratory gas exchange signals are collected using an electronic ergospirometer (in our case the Cortex Metamax 3B ) and the mechanical signals (like the pedalling cadence and the torque applied on the pedal) are measured directly on the electric bike (using connected pedals Powertap P1 ).

The respiratory gas exchange signals are measured breath-by-breath (BxB) which means that the respired gas is analyzed after each inhalation and each exhalation. Thus, the sampling period of these signals is not constant. Because the gas exchange model has to be identified at a constant sampling time T e, these signals are re-sampled by interpolation using the spline method implemented in MATLAB. An example of such interpolation is showed in Fig. 3.5. The mechanical signals are also resampled using the same technique.

After processing, new data sets are available are composed of synchronized V O 2 , V CO 2 and power signals sampled uniformly. These data sets are used during the identification process to compute the parameters of the model.

Exercise profiles

In order to identify a model able to predict the behaviour of respiratory gas exchange for any exercise situation, the data sets used for the identification need to contain enough information First, the incremental cycling test is performed. This test is constituted of a resting period, followed by increments of 20 watts every minute until exhaustion. The aim of this test is to identify the maximal exercise capacity of the individual. The maximal exercise capacity is expressed in Watts as the maximal power P max reached during the incremental test. The maximal capacity P max is then used to calibrate the following tests. An example of the power profile of the incremental test is given in Fig. 3.6.

Then, the iso-power cycling test is performed. This test is composed by three steps of constant power separated by periods of rest. The first and last step are of 50% of the P max identified in the ICT and the middle step is of 80% of the P max . The amplitude of the steps are chosen so that the first and last step are supposed aerobic and the middle step anaerobic. Thus, the dependency of the gas exchange dynamics to the effort intensity can be explored during the model identification. The on-off nature of the exercise is also useful to exhibit the kinetics of the gas exchange system. An example of the power profile of the iso-power test is given in Fig. 3.7.

Finally, the validation cycling test is performed. The purpose of this test is to provide an independent data-set than the ones used for the system identification in order to validate the model on new data. This test is constituted of a series of steps of varying intensity, very similar to what can be expected during an outdoor biking session. An example of the power profile of the validation test is given in Fig. 3.8.

Successive parametric optimization

In order to choose the most appropriate parameter values for the model, optimization problems are solved using experimental data. Because the role of the model is to provide a good estimation of the evolution of respiratory gas exchange during exercise, the cost function J(p) of this optimization problem depends on the prediction error of the model and is expressed as follows : 

J(p) := N k=1 ∥y(k) -y m (p, k)∥ 2 (3.
y k =C(ρ k )x k (3.26) ρ k =ρ(z k ) (3.27)

1) Identification of the aerobic mode of the model

The parametric identification of the aerobic dynamics requires a sequence of data where the pedal power corresponds to an aerobic exercise, i.e. of moderate intensity. Here, we use the data of the first step of the ISO cycling test.

The identification process is carried out by considering only the parameters describing the aerobic dynamics which are θ i for i = {1, . . . , 4} and w 0 .

Here, ρ = 0 because it is assumed that there is no excess of carbon dioxide production in the considered data set due to the aerobic nature of the effort performed.

The optimization problem is formulated as follows :

Find the vector of parameters 

p 1 = [θ 1 , θ 2 ,
A 1 =    θ 1 θ 2 0 0 θ 3 0 0 * *    B 1 =    θ 4 θ 4 *    C 1 = 1 0 0 0 1 0 (3.28)
The value of the coefficients denoted by * is identified during the next steps of the identification process. A comparison of the experimental signals and the output of the model is shown in Fig. 3.9.

2) Identification of the anaerobic mode of the model

The parametric identification of the anaerobic dynamics requires a sequence of data where the pedal power corresponds to an anaerobic exercise, i.e. a high intensity workout. The identification process is carried out by considering only the parameters describing the anaerobic dynamics, which are θ i for i = {5, 6, 7}.

Here, ρ = 1 because it is assumed that there is an important excess of carbon dioxide production in the considered data set. Coefficients θ i for i = {1, . . . , 4} and w 0 are set to their identified value.

The optimization-based identification problem is formulated as follows :

Find the vector of parameters p 2 = [θ 5 , θ 6 , θ 7 ] T which minimizes (3.24), subject to (3.25) 
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3) Identification of the transition function ρ

Concerning the identification of the parameters of the transition function ρ(z k ), given by (3.21), a data sequence including moderate and high intensity exercise has to be used. In this case, the full iso-power cycling test was used.

The optimization problem is formulated as follows :

Find the vector of parameters At the end of step 3) all the parameters of the model have been assigned a value. However, each parameter was identified using specific scenarios. In order to reach good performances for non-specific scenarios, a last parametric identification problem is solved.

To do so, all the parameters are re-identified using the ICT and ISO datasets combined. The initial conditions for the optimization vector are taken equal to the parameter values obtained in steps 1), 2) and 3).

The optimization problem is formulated as follows :

Find the vector of parameters p 4 = [θ 1 , θ 2 , θ 3 , θ 4 , θ 5 , θ 6 , θ 7 , w 0 , z t , h] which minimizes (3. A comparison of the experimental signals and the output of the model is shown in Fig. 3.12.

Model validation

Lastly, in order to verify that the model can perform well in any situations, its accuracy is tested using data-sets independent from the ones used for the identification. In this case, the validation cycling test is used.

A comparison of the experimental signals and the output of the model is shown in Fig. 3.13.

After validation, it was concluded that the proposed respiratory gas exchange model is able to This model is used in this thesis as part of state estimation, control and simulation strategies.

Simulating cycling behaviors

In the previous sections, the development of a respiratory gas exchange model during exercise was presented. One of the main objectives of this thesis is to use this model in order to design control laws for an electric bike. To do so, the previous gas exchange model had to be completed using additional information regarding the dynamics of the bike and its interactions with the rider.

In this section, an approach is proposed in order to perform realistic simulations of cycling sessions based on models. To do so, two main problems have to be solved :

• First, the mechanical interactions of the bike and the environment (like the slope of the road for example) have to be described realistically using physical laws.

• Second, the behaviour of the cyclist has to be modeled. This problem is harder to tackle since a large number of factors influence the cycling behaviour of the cyclist (like its physical fitness, implicit feedback loops, road condition, etc.).

These two issues have already been considered in literature and the readers are referred to the very rich review work of Schwab and Meijaard regarding the modelling of bicycle dynamics and riders tracking behaviour using control theory [31].

The bicycle system if considered in all its complexity can lead to heavy nonlinear models.

In the following, simple equations are proposed to describe the behaviour of the bike and the cyclist.

Equations of the bike's dynamics

In order to model the interactions between the bike, the cyclist and the environment, simplifying hypotheses were performed :

• H1 -The movement of the bike takes place in the (⃗ x 0 , ⃗ y 0 ) plane.

• H2 -The force applied by the cyclist is purely radial.

• H3 -The rolling movement of the bike wheels happens without sliding.

• H4 -The reduction ratio of the gears and chain is constant.

• H5 -The bike is not equipped with a freewheel system.

• H6 -The power transmission between the pedal and the rear wheel happens without loss.
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As conservative as these hypotheses may seem, they do not reduce the practical implementability of the solutions proposed, and are required in order to simplify the simulation setup and equation derivations. For example, the proposed control laws and estimators remain valid if the reduction ratio varies over time (H4) or if the real bike is equipped with a freewheel (H5).

The system considered is constituted of both the bike and the cyclist, moving linearly on a slope of angle α in the (⃗ x 0 , ⃗ y 0 ) plane. In the following, the linear forces are expressed using the notation ⃗ F {P } and the torques ⃗ C {P } with P the point of application. The forces applied on the system are expressed at the point of contact C between the rear wheel and the ground :

⃗ y 0 ⃗ x 0 α ⃗ x α
• the action of gravity ⃗ F g = -M tot • g • ⃗ y 0 , with M tot = M bike + M cyclist the mass of the system.

• a viscous friction component ⃗ F vis = -β • v 2 • ⃗ x α with β a positive constant and v the linear speed of the bike projected on ⃗ x α .

• the action of the electrical assistance ⃗

F mot{C} = F mot{C} • ⃗ x α .
• the action of the cyclist ⃗

F cyc{C} = F cyc{C} • ⃗ x α .
A cinematic model of the bike is given in Fig. 3.15 and the forces applied on the bike are represented in Fig. 3.16. The norms of ⃗ F mot and ⃗ F cyc are expressed as follows :

F mot{C} = C mot{M } • R w (3.30) F cyc{C} = F cyc{P } • R P C (3.31)
The point M is located in the center of the rear wheel and the point P is located in the center of one of the pedals. The constant R P C is the reduction ratio between the points P and C and is calculated using the gear ratio R as well as the pedalling radius R p and the rear wheel radius R w :

R P C = R p R w • R (3.32)
The relationships between the pedalling speed v p and the speed of the bike v, as well as the force exerted by the cyclist on the pedal level F cyc{P } and the force exerted by the cyclist on the contact point C, F cyc{C} , are recovered by conservation of the power. Indeed, using hypothesis H6, we have :

P cyc{C} = P cyc{P } (3.33)
with P cyc{P } the power developed by the cyclist on the pedal and P cyc{C} the power developed by the cyclist on the wheel. By expanding this equation further, and using the definition of the reduction radio R =

wp w = Rsp Rcr = C cyc{K} C cyc{M }
we have :

for the forces

P cyc{C} = P cyc{P } (3.34) 
F cyc{C} • v = F cyc{P } • v p (3.35) 
F cyc{C} • R w • w = F cyc{P } • R p • w p (3.36) F cyc{C} = F cyc{P } • R p R w • w p w (3.37) F cyc{C} = F cyc{P } • R p R w • R (3.38) F cyc{C} = F cyc{P } • R P C (3.39)
for the speeds The fundamental principle of dynamics applied to the contact point C gives :

P cyc{C} = P cyc{P } (3.40)
F cyc{C} • v = F cyc{P } • v p (3.41) C cyc{M } • R w • v = C cyc{K} • R p • v p (3.42) v = C cyc{K} C cyc{M } • R p R • v p (3.43) v = R • R p R w • v p (3.44) v = R P C • v p (3.45) 3.3. SIMULATING CYCLING BEHAVIORS ⃗ v -→ v p R p ω p ω R w R cr R sp
M tot • d⃗ v dt = ⃗ R (3.46) M tot • d⃗ v dt = ⃗ F ext{C} + ⃗ F cyc{C} + ⃗ F mot{C} (3.47)
with ⃗ F ext{C} = ⃗ F g + ⃗ F vis the sum of the action of gravity and viscous friction.

A discrete time version of equation (3.47) can be recovered by using a first order approxi-

mation dv dt ≈ v(k+1)-v(k)
Te (with T e the sampling period) and projecting on ⃗ x α :

M tot • d⃗ v dt (t) • ⃗ x α = ⃗ R(t) • ⃗ x α (3.48) M tot • d⃗ v dt (t) • ⃗ x α = ⃗ F ext{C} (t) • ⃗ x α + ⃗ F cyc{C} (t) • ⃗ x α + ⃗ F mot{C} (t) • ⃗ x α (3.49) M tot • d⃗ v dt (t) • ⃗ x α = ( ⃗ F g{C} (t) + ⃗ F vis{C} (t)) • ⃗ x α (3.50) + ⃗ F cyc{C} (t) • ⃗ x α + ⃗ F mot{C} (t) • ⃗ x α (3.51) M tot • dv dt (t) = -M tot • g • sin(α(t)) -K vis • v 2 (t) + F cyc (t) + F mot (t) (3.52) M tot • v(k + 1) -v(k) T e = -M tot • g • sin(α(k)) -K vis • v 2 (k) + F cyc (k) + F mot (k) (3.53)
And finally :

v(k + 1) = v(k) - g M tot T e • sin(α(k)) - K vis M tot T e • v 2 (k) + 1 M tot T e • F cyc (k) + 1 M tot T e • F mot (k) (3.54) 
Thus, we expressed the relationship describing the evolution of the bike speed depending on the forces applied to it. The action of the motor F mot (k) is computed as the output of a control law. In order to express the action of the cyclist F cyc (k) in simulation, a novel approach is proposed in the following section.

The cycling force -velocity characteristic

Force -velocity characteristics in the literature

In order to perform simulations, the behaviour of the cyclist has to be approximated. One solution is to model it as a closed-loop system tracking a given speed or position trajectory over time. However, the objectives taken into account by a real cyclist during exercise are multi-fold and such strategy turns out to be oversimplifying.

In this approach, we propose to use a force-velocity characteristic of the cyclist in order to generate realistic F cyc profiles in simulation. This choice is based on physiological considerations.

Indeed, in 1938, Hill and colleagues demonstrated that a relationship existing between the load applied to a contracting muscle and its maximum speed of contraction [16]. The characteristic they proposed is the following :

(F + a) • (v + b) = c (3.55)
with F the load, v the speed of contraction and a, b and c constant parameters. Formulated as such, this relationship can rewritten as

F = c -ab -av v + b (3.56)
which is a rectangular hyperbola with asymptotes F = -1 and v = -b. This formulation is interesting because it describes the fact that the faster the contraction happens the lesser the force, or as Hill hypothesized :

"the force exerted is greater the less rate of movement, and vice versa" [15] An other interesting feature of this description is that a reachable maximal force F max value (at v = 0) and maximal speed value v max (at F = 0) are admitted by the characteristic as described in Fig. 3.17, which translate the physical limitations of an exercising individual. This characteristic shows that the force applied by a muscle decreases with the speed of its contraction. The maximal force F max is applied at v = 0, and no force is applied for speeds higher than v max .

F v F max v max -1 -b F(v)
Later, other models were proposed to describe this behaviour. These new approaches differed by the relationship they studied, which was either the force -velocity F(v) relationship or the torque -pedalling rate relationship C(w). Different shapes have been proposed to describe the characteristics, like linear, hyperbolic or double hyperbolic relationships. They also focused on different physical activities, in order to study the influence of training on the shape of the characteristics. A brief summary of these approaches is proposed in Table 3.2, and readers are referred to the rich review paper of Alcazar and colleagues [1] for a more detailed analysis.

Authors

Year Relationship Model Activity Tihanyi et al. [37] 1982 F(v) hyperbola knee extensions McCartney et al. [27] 1985 C(w) inverse cycling Vandewalle et al. [38] 1987 F(v) linear cycling Seck et al. [32] 1995 C(w) linear cycling Buttelli et al. [10] 1996 C(w) linear cycling Rahmani et al. [30] 2001 F(v) linear squat Morin et al. [28] 2002 F(v) linear cycling Kholer et al. [19] 2005 F(v), C(w) linear, quadratic cycling Dorel et al. [12] 2005 C(w) linear, quadratic cycling Gardner et al. [14] 2007 C(w) linear cycling Table 3.2: Muscle characteristics in the literature.

The concept of cycling characteristics was used by Li and Horowitz in order to design adaptive control strategies for exercise machines in their pair papers [21,22]. In order to do so, they first extended the concept of Hill characteristics in order to take into account the pedal angle during cycling. The new relationship they proposed took the form of what they called a

Hill surface F(θ, v). This Hill surface was used to characterise the personal cycling behaviour of the rider and was identified online using force, velocity and angle measurements in order to adapt the control strategy to the user. An example of Hill surface is represented in Fig. 3.18.

This plot shows that for every pedal angle, a decreasing curve can be found between the force applied and the pedalling velocity. It also shows that for specific pedal angles, where the pedal sprocket is horizontal, the force applied is maximal, and where the pedal sprocket is vertical, the force applied is minimal. In order to simplify the parametrization of such curve F(θ, v), they supposed affine relations F(v) = a(θ) + b(θ)v for each angle θ as shown in Fig. 3.19.

As mentioned in this section, a rigid mathematical relationship can be defined in order to model the decrease in the magnitude of the force applied by a contracting muscle in regard to the speed of contraction. Such relationship depends on the type of muscle considered and, to a larger extent, to the individual performing the effort. Thus, the force -velocity characteristic has personalized and descriptive properties. In the next sections, we propose to use such characteristic as a mean to generate realistic cycling force and velocity profiles in order to perform simulations.

Cycling characteristic : theoretical proposition

In this thesis, a cycling force -velocity characteristic was proposed. This characteristic relates the pedalling force on the pedal F cyc{P } to the pedalling speed v p in an affine fashion. For simplicity, in this section the point of application of the pedalling force is omitted and

F cyc ≡ F cyc{P } .
The proposed characteristic is given by : Figure 3.18: Hill surface proposed in [21], associating a Hill characteristic to any angle of the pedalling rotation.

Figure 3.19: Affine approximation of a "slice" of the Hill surface for a given angle proposed in [21]. Here, x refers to the pedal angle θ and ẋ to the pedalling speed v.

F cyc (v p ) = F max (if v p ≤ 0) (3.57) F cyc (v p ) = av p + b (if 0 ≤ v p ≤ v max ) (3.58) F cyc (v p ) = 0 (if v p ≥ v max ) (3.59)
with a and b constant parameters, F max = b and v max = -b a . A representation of this characteristic is given in Fig. 3.20.

The main region of operation is given by equation (3.58), in this region the force applied on the pedal decreases affinely with the pedalling speed.

The region defined by equation (3.57) implies that for negative v p the force applied on the pedal is equal to the maximum force F max . This is useful in simulation since it translates the will of the cyclist to always cycle forward. Also, this assumption is not a issue in practice since most bikes are equipped with a freewheel system that prevents the rider to cycle backward.

Finally, the region defined by equation (3.59) implies that for pedalling velocities higher than v max the cyclist does not apply any force on the pedal. This assumptions translates the fact that if the speed of the bike is too high, the cyclist can not contribute in accelerating it through pedalling. Furthermore, the existence of such speed is given by the physiological limitations of the cyclist. 

F cyc v p F max = b v max = -b a F cyc (v p )

Cycling characteristic : practical validation

After proposing a structure for the cycling force -velocity characteristic, experimental data collection sessions were performed. The goal was to collect pedalling force and velocity signals for a given individual, identify the parameters a and b of the characteristic and check the validity of the identified characteristic against independent validation data. Here, we see that the pedalling speed decreases and the pedalling force increases when the torque increases, which confirms the shape of the cycling characteristic.

1) Identification data collection

First, an exercise protocol was designed in order to collect the pedalling force and velocity data-sets required for the parameter identification. For the exercise session, the cyclist was asked to pedal at a chosen comfortable pedalling rate against a torque load increasing linearly with time generated by the electrical motor of the bike.

The test lasted 10 minutes and the torque load varied between 0 N.m to 12 N.m. The cyclist was free to adjust its pedalling speed during the test. The collected experimental signals are showed in Fig. 3.21. During this test, the pedalling speed showed a slight decrease as the torque load increased and the pedalling force increased as the torque load increased. This translates in a correlation between an increase of the pedalling force when the pedalling speed decreases, which is coherent with the shape chosen for the characteristic.

2) Identification of the cycling characteristic

Then, the cycling characteristic was identified using the experimental data. In order to compute the parameters a and b of the characteristic, a polynomial of order 1, F char cyc = av meas p +b, was identified in order to minimize the least square error between the measured cyclist force F meas cyc and the cyclist force computed using the characteristic F char cyc . To do so, the polyfit MATLAB function was used. The fit between F meas cyc and F char cyc computed using the identification data is showed in Fig. 3.22, and a comparison between the characteristic and the identification (F meas cyc , v meas cyc ) pairs is showed in Fig. 3.23. One can notice that the experimental pedalling force and velocity data reproduces a decreasing behaviour, captured successfully by an affine equation, as expected.

3) Validation data collection

In order to validate the robustness of the identified characteristic new data-sets were collected. A different cycling scenario, inspired from the respiratory gas exchange validation test of section 3.2, was chosen.

In this scenario, the torque load applied was piece-wise constant. It took values between 2N.m and 10N.m and changed every minute for a total of 8 minutes. The collected experimental signals are showed in Fig. 3.24.

4) Validation of the cycling characteristic

The fit between F meas cyc and F char cyc computed using the identification data is showed in (participants 1 and 2) and one trained individual (participant 3). One can notice that the maximal force F max , computed at v p = 0, is much higher for participant 3, which correlates with the prior knowledge on its physical condition. The maximum pedalling speed v max computed at F cyc = 0 does not differ greatly between the different participants, which can be explained by the fact that usually cyclist find a comfortable pedalling speed between 1 rotation per second and 2 rotations per second, corresponding here to 0.78m/sec and 1.57m/sec.

5) Conclusion

The experimental tests permitted to draw several conclusions :

• C1 -The affine structure chosen for the characteristic is coherent with experimental data.

• C2 -The cycling characteristic is robust against independent data.

• C3 -The cycling characteristic captures inter-individual differences.

Simulation strategy

After validating the proposed cycling characteristic in practice, we propose to use such characteristic in order to generate realistic cycling force F cyc profiles. To do so, at each instant k of the simulation, the characteristic is used to choose the value for F cyc (k) associated with the current value of pedaling speed v p (k). The value of F cyc (k) is then used in the discrete time fundamental principal of dynamics applied to the bike and cyclist system, along with the current exterior force F ext (k) and motor force F mot (k) in order to compute the speed of the bike at the next instant v(k + 1). A scheme of the simulation strategy is proposed in Fig. 3.28. The evolution of the mechanical and physiological quantities of the system is showed in Fig. 3.29. Initially, because the speed of the bike is equal to 0 and the slope is equal to 0, the only contribution is the pedalling force of the cyclist F cyc . At v p = 0, the cyclist applies the maximum force F max and the speed of the bike increases. With v increasing, the viscous friction increases, and the the pedalling force decreases. A first steady state is found when the system reaches a balance between the power developed by the cyclist P cyc and the power depleted by the external actions P ext as shown is Fig. 3.30. The respiratory gas exchange increase due to the increase in P cyc .

F cyc (v p ) M tot • d⃗ v dt = ⃗ R R P C v(k) v p (k) F cyc (k) v(k + 1) F ext (k) F mot (k)
Then, at t = 150 sec, the slope of the road increases. The action of gravity F g adds up to the viscous friction and the speed of the bike decreases. With the speed decreasing, the 

P cyc = F cyc • v p and P ext = F ext • v = (F g + F vis ) • v.
action of the cyclist F cyc increases to reach a new steady state. One can notice the two different equilibriums on the cycling characteristic showed in Fig. 3.31. The second equilibrium implies a higher pedalling power for the cyclist, which translate in a increase in respiratory gas exchanges.

To conclude, the use of the cyclist force -velocity characteristic is very useful in order to generate realistic behaviours for simulations. Such a simulator is crucial in order to design control laws for the electric bike, since in practice both the cyclist and the electrical assistance are interacting with each other as two independent closed-loop systems, and the outcome of this interaction is hard to predict before testing the control law on the real system. 

Conclusion

In this chapter, the mechanical and physiological modeling of a cyclist is presented.

First, an overview of the existing control science methods used to model respiratory gas exchange and heart rate during exercise is given.

Then, the considered model for respiratory gas exchange used in this thesis is presented. It is showed that using experimental signals of power at the pedal level, oxygen consumption and carbon dioxide production during exercise, it is possible to identify a model for the respiratory gas exchange of a given individual. The identified is personal, and needs to be identified using a proposed protocol for any new considered individual. This model allows the prediction of both the oxygen consumption and the carbon dioxide production of an exercising cyclist.

In order to propose a model describing the behaviour of the system constituted of both the cyclist and the bike, a novel approach is proposed in order to model the pedalling force and velocity of a cyclist. This approach is based on a force-velocity characteristics that is identified using experimental data from an incremental torque cycling test.

Finally, together with a 2D dynamical model of the bike, the force-velocity characteristic of the cyclist is used to propose a new simulation strategy aiming at generating realistic cycling and respiratory gas exchange signals for arbitrary biking scenarios in simulation. This contribution is interesting since it allows to integrate human-like behaviours in a simulated environment, which can then be used for cyclist performance prediction or control law design.

CHAPTER 4. ESTIMATION OF RESPIRATORY GAS EXCHANGE DURING EXERCISE

In control applications, more than often, the states of the system to be controlled are not directly accessible through measurements. However, many control strategies are based on the knowledge of the states, which is why the problem of estimating state variables is so crucial.

Usually, state estimation strategies are based on the conjoint knowledge of a plant model and direct measurements of states or outputs like for the very classical Luenberger state observer [28].

For general setups, when the plant model is not known with full accuracy, or the measurements are corrupted by noise, different strategies have been developed. One of the main objective of such strategies is to derive uncertainty bounds on the state measurement based on design assumptions on the magnitude of the uncertainties and noises affecting the system. Such estimation strategies can be referred to as bounded estimation approaches.

The first section of this chapter is dedicated to give an overview of the different bounded estimation strategies, with a highlight of the set-membership estimation method proposed by Nassim Loukkas which inspired the work presented in the second section of this chapter. The second and third sections are dedicated to the online estimation of respiratory gas exchange during exercise, based respectively on a set-membership observer and a proportional-integral observer.

This chapter requires some understanding of Linear Matrix Inequalities (LMI) and their manipulation. As an introduction, the reader is referred to this guide by Caverly and Forbes [6]. In order to solve LMIs on Matlab, the CVX toolbox was used [18,19]. This chapter also involves some ellipsoidal geometry concepts, which are partly presented in the documentation of the Ellipsoidal Toolbox by Kurzhanskiy [31]. This toolbox is used in order to plot ellipsoidal sets on Matlab.

Bounded state estimation approaches

Two main families of approaches have been proposed in order to estimate the states of a system with uncertainty bounds : the stochastic approaches and the deterministic approaches. In this section, an overview of these two families is given.

Stochastic approaches

The adjective stochastic refers to a phenomenon that is described by a random probability distribution. In the context of state estimation, stochastic approaches are based on the consideration that the system of interest is random in nature. This is justified by the fact that in practice any measurement is affected by a random noise which, if taken into accounts, affects the whole estimation strategy.

The main stochastic state estimation approach was proposed by Kalman in 1960 and was later named after him as the Kalman Filter (KF) [28]. Initially developed for linear systems, it
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was later extended to nonlinear systems in [27]. The Kalman Filter is based on an iterative procedure in two steps. The first step is the prediction step : a prior estimate of the state variable and the model of the system are used to produce a prediction of the next state variable. The second step is the update step : using a measurement of the output of the system, the previous estimation is updated. To update the estimate of the state, the algorithm uses information on the accuracy of the model and of the measurement under the form of covariance matrices. The Kalman Filter produces a final estimate of the state as a weighted average between the model and the measurement with the most accurate of the two weighting more than the other. By design, the estimate produced by the Kalman Filter is proved to be optimal in the case of a linear system affected by white Gaussian noise.

Later, this estimation technique was extended to the case of uncertain linear systems. Two objectives arise in this setup : the gain of the Kalman Filter is chosen such that it takes into account all the possible values of the system's parameters, and, bounds on the estimation are computed to be as less conservative as possible. For the discrete-time case several approaches have been proposed. Xie and colleagues studied systems affected by norm bounded parameter uncertainties on the state and output matrices in [32], Chen and colleagues proposed the concept of Interval Kalman Filter (IKF) for interval systems where the system matrices belong to known intervals in [21]. In these two approaches, bounds on the estimation error covariance are computed based on the solution of two Riccati equations. New estimation bounds were proposed by Zhu and colleagues in [START_REF] Zhu | Design and analysis of discrete-time robust kalman filters[END_REF]. All three approaches only considered additive noise in the design and Yang and colleagues extended the method to the case of multiplicative noises as well in [15].

Stochastic approaches, in particular the Kalman Filter, have proven to be efficient solutions for state estimation with many implementation examples along the years. However, the need for known statistical distributions of the disturbances affecting the model and the measurement beforehand is challenging in practice.

Deterministic approaches

Another set of approaches to bounded state estimation is the one of deterministic approaches.

The adjective deterministic in control theory relates to methods that allow to formulate hard guarantees on the behavior of the system. In this sense, it is radically different from stochastic approaches. For example, while stochastic approaches are used to derive confidence intervals on the state estimate depending on a given likelihood (x belongs to [-1; 1] with a confidence level of 95%), deterministic approaches are used to derive intervals, potentially more conservative, but true at all time (x is guaranteed to belong to [-1.6; 1.6]). To derive deterministic estimation strategies, a common approach is to suppose that the uncertainties and the noise affecting the system belong to known sets or intervals at the design stage itself. From these hypotheses, sets including the estimation error at all time can be derived and propagated along time.

A famous deterministic state estimation approach is the one of interval observers. It consists in framing the state estimate with lower and upper bounds at all time coming from two sub-observers. To do so, in addition to the stability constraint, the observer state matrix has to be positive definite in the discrete-time setup and Metzler in the continuous-time setup. These two constraints are difficult to satisfy at all time and strategies have been proposed based on constant or time-varying transformations to ensure it. Even when these conditions are fulfilled, they often conflict with the performances of the state observer, with for example observer gains implying a slow convergence rate of the estimation in order to fulfill the positivity and stability constraints. This kind of state observer is particularly applied to fault diagnosis or biological systems like in [17]. The observer gain satisfying the constraints can be computed as the solution of a Linear Matrix Inequality (LMI) like in [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF] or [13]. Recent approaches are exploring solutions where the conditions on the observer matrices are relaxed like in [36]. For a review of interval state observer methods readers are referred to [29].

Another approach is the one of set-membership observers. It is based on the hypothesis that the uncertainties and noises affecting the system belong to known sets and that their influence can be propagated in time in order to define a set containing the estimation errors.

In some cases, the propagation is non conservative and is based on the successive intersection of a reachable set defined by the dynamics of the system and a compatible set defined from measurements. In these cases, the estimation error set is computed by solving an optimization problem online, aiming at finding the least conservative set in adequation with the reachable and compatible sets. Here, a tradeof between the conservatism of the computed set and the computational burden of the solution has to be found. The complexity of the optimization problem to solve is directly related to the complexity of the shape used to define the estimation error set, and various shapes have been proposed in the literature. Initially, Schweppe proposed to use an ellipsoid in order to frame the estimation error in his seminal paper [41] but later other shapes were proposed like paralellotopes, polyhedrons or polytopes. An illustration of the differences in the conservatism of different set shapes is proposed in Fig. 4.2. Simple shapes like ellipsoids, which are defined by a positive matrix of the order of the system, are convenient in terms of computations but might introduce some conservativeness in the estimation. More complicated shapes like polyhedrons can provide a tighter estimation of the states of the system, but because they are defined by an arbitrary high number of elements (each vertex for example) they can introduce additional complexity in the computations. An illustration of the different shapes used in given in Fig. 

Explicit Error Bounds Set-Membership observer

In 2018, a novel set-membership observer design approach was proposed as part of the Ph.D thesis work of Nassim Loukkas in Gipsa-lab. In this work, a method is proposed in order to design a robust set-membership observer for Linear Time Invariant (LTI) and Linear Parameter Varying (LPV) systems undergoing state and output disturbances. A robust gain for the state observer is computed using the Bounded Real Lemma (BRL) and bounds on the estimation error are derived from ellipsoidal invariant sets. Even though this method is part of the previously mentioned set-membership approaches, it stands out by the fact that it is based solely on the solution of an offline optimization problem and is implemented similarly to a classical Luenberger state observer, reducing greatly the computational burden compared to the classical set-membership approaches. In the following, an overview of the method is given as well as an illustration of its performances based on a numerical example. The proof of the theorems are omitted since they are found in the original manuscript.

Problem statement

The approach is designed for discrete time LTI and LPV systems of the following form :
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The estimation error at time k is defined as follows :

e k = x k -xk (4.3)
Using (4.1) and (4.2), its dynamics are expressed as :

e k+1 = Ã(ρ k )e k + E(ρ k )w k (4.4) with Ã(ρ k ) = A(ρ k ) -L(ρ k )C, E(ρ k ) = F(ρ k ) -L(ρ k )Z and w k = d k v k T .
In order to perform the state estimation, the dynamics (4.4) must be stable for all values of the scheduling parameter ρ k , and the observer gain L(ρ k ) must ensure a good rejection of both state and output disturbances. To do so, some design hypotheses are proposed :

• H1 -The scheduling parameter ρ k is known at all time and takes values in a known polytopic set Ω ρ .

• H2 -There is a known vector w such that w T k w k ≤ wT w for all instant k.

1) Computation of the punctual state observer robust gain

The hypothesis H1 is useful in order to compute a valid observer L(ρ k ) for all the possible values of the scheduling parameter. Indeed, it is known that for affine LPV systems (i.e. for LPV systems whose matrices depend affinely on the scheduling parameter) the following proposition holds [8] :

Proposition 4.1. Consider the LPV system (4.1), for a given scheduling parameter ρ ∈ Ω ρ , there exists a column vector α ∈ R N , formed by positive scalar elements α i ≥ 0, {1, . . . , N } such that :

θ T 1 θ T 2 • • • θ T N 1 1 • • • 1 α = ρ 1 (4.5)
where the row vectors θ i ∈ R 1×L , are the a priori known vertices of the polytopic set

Ω ρ ⊂ R L .
This proposition implies that the matrices of an LPV system can be expressed as a convex combination of the vertex matrices, which are computed at the vertex values θ i of the scheduling parameter. In other words, any matrix M(ρ) can be expressed as :

M(ρ) = N i=1 α i M i (4.6) with M i = M(θ i ).
The equation (4.6) is called the polytopic decomposition of the matrix M. In this decomposition, the value of α at instant k, α k , depends on the value of the scheduling parameter ρ at instant k, ρ k . An illustration in the 2 dimensional case is presented in Fig. 4.3. This decomposition is very useful for the design of the observer since its convexity property implies that a state observer gain stabilizing each of the vertex dynamics will stabilize the LPV state observer on the whole set of variation of the scheduling parameter Ω ρ . This property is called the vertex property and was defined by Apkarian and colleagues in [2]. Thus, in order to stabilize the estimation error dynamics (4.4), a parameter dependent observer gain L(ρ k ) can be found by stabilizing each of the vertex dynamics. To do so, a design strategy based on the Bounded Real Lemma (BRL) is proposed. It consists in finding a quadratic Lyapunov function V(e k ) = e T k Pe k with matrix P symmetric positive definite, stabilizing each vertex of the polytopic decomposition of (4.4). Furthermore, this Lyapunov function is chosen so that the following dissipation inequality is ensured :

ρ 1 ρ 2 ρ θ 1 θ 2 θ 3 θ 4 ρ = α 1 × θ 1 + α 2 × θ 2 + α 3 × θ 3 + α 4 × θ 4 ρ 1 ρ 2 ρ 2 ρ 1 α 1 = ρ1-ρ1 ρ1-ρ1 ρ2-ρ2 ρ2-ρ2 α 2 = ρ1-ρ1 ρ1-ρ1 -ρ2+ρ2 ρ2-ρ2 α 4 = -ρ1+ρ1 ρ1-ρ1 -ρ2-ρ2 ρ2-ρ2 α 3 = -ρ1+ρ1 ρ1-ρ1 ρ2-ρ2 ρ2-ρ2
V(e k+1 ) -V(e k ) ≤ -e T k Qe k + γ 2 w T k w k (4.7)
Such Lyapunov function is computed by solving N Linear Matrix Inequalities (LMI), with N being the number of vertices of the polytopic decomposition.

The LMI to be solved is defined in the following theorem :

Theorem 1. Consider the system (4.4) and a given matrix Q ≻ 0. The observer gains L i which minimize the H ∞ norm of the system (4.4) are found if there exist a symmetric positive definite matrix P, a positive scalar γ ≥ 0 and matrices U i satisfying the following condition :

4.1. BOUNDED STATE ESTIMATION APPROACHES     -P + Q 0 n×m A i T P -C T U i T ⋆ -γ 2 I m PF i -U i Z T ⋆ ⋆ -P     ⪯ 0 (4.8)
for i = {1, . . . , N }. Moreover, the observer matrices can be obtained as :

L i = P -1 U i (4.9)
and the observer gain matrix :

L(ρ k ) = N i=1 α i L i (4.10)
In the previous theorem, the scalar γ corresponds to the H ∞ performance criterion which quantifies the disturbances rejection of the state observer and we have :

∥e k ∥ 2 2 ∥w k ∥ 2 2 ≤ γ 2 (4.11)
Solving an LMI is an optimization problem and in this case γ can be seen as the cost to be minimized in order to ensure the lowest gain possible between the disturbances and the estimation error.

One can notice that the matrix P, matrices U i and scalar γ, solutions of the previous LMI, all depend on the design choice of the symmetric definite positive matrix Q. In practice such matrix can easily be defined as Q = GG T with G ∈ R n an arbitrary vector. The relationship between the matrix Q and the definition of the invariant sets used to derive the estimation error bounds is explained later in the section and is illustrated in Section 4.1.3.4.

After this LMI is solved, the robust observer gain stabilizing the estimation error dynamics (4.4) is chosen, but the estimation error bounds ē still need to be defined.

2) Computation of the estimation error bounds

As mentioned previously, the estimation error bounds are derived from ellipsoidal invariant sets computed for the observer. Before defining such invariant sets, some basic definitions and properties of ellipsoidal geometry and invariant sets theory are recalled.

Definition 4.1.1 (Ellipsoidal set). Let P ∈ R n×n be a symmetric positive definite matrix and r ∈ R a scalar, then the set

Ψ P = x ∈ R n |x T Px ≤ r (4.12)
defines the interior of an ellipsoid centered on 0. The matrix P is called the shape matrix of the ellipsoid. In the special case where P = λI n with λ ∈ R * the set Ψ P is a centered ball. 

∀x k ∈ S and ∀w k ∈ W, f (x k , w k ) ∈ S
In order to define an ellipsoidal invariant set for the estimation error of the observer, the variables P, Q, λ and γ obtained after the computation of the observer gain are used.

As mentioned previously the Lyapunov function solution of the LMI (4.8) respects the dissipation inequality (4.7), thus :

V(e k+1 ) -V(e k ) ≤ -e T k Qe k + γ 2 w T k w k (4.14)
By using hypothesis H2, we have : Based on this property, Loukkas proved the following theorem in order to derive a Robustly Positive Invariant (RPI) set for the state estimation error : Theorem 2. Consider the system (4.4) with bounded disturbances. If there exist a common symmetric positive definite matrix P and a scalar γ ≥ 0, for a given matrix Q verifying the condition (4.8), then the following set Ψ P is an RPI set for system (4.4) :

V(e k+1 ) -V(e k ) ≤ -e T k Qe k + γ 2 wT w (4.15) 4.1. BOUNDED STATE ESTIMATION APPROACHES e 1 e 2 Ψ Q Ψ P Ψ Q = e T Q e ≤ γ 2 w T w } Ψ P = e T P e ≤ λ max (P )γ 2 w T w } V (k + 1) > V (k) V (k + 1) < V (k)
Ψ P = e k ∈ R n |e T k Pe k ≤ 1 λ γ 2 wT w (4.16)
where, for a given non-zero vector e k , the scalar λ ≥ 0 satisfies :

λ ≤ e T k Qe k e T k Pe k ≤ 1 (4.17)
In practice, the scalar λ can be chosen as the minimum generalized eigenvalue of the pair (Q, P).

Theorem 2 shows that using the variables Q, P, γ and w from the computation of the observer gain, it is possible to express an ellipsoidal invariant set Ψ P for the state estimation errors. Then, using the projection property of ellipsoids of Definition 4.1.2, it is possible to define deterministic confidence intervals on the estimation error : .

A summary of the 1-step synthesis is given in Algorithm 1.

Algorithm 1 H ∞ set-membership observer design for LPV systems (1-step synthesis)

Require: Matrices A i , B i , F i , for i = {1, . . . , N }, C and Z describing system (4.1). Initialize design matrix Q. for <i=1 to i=N> do Find matrices P, U i and the minimum γ satisfying LMI (4.8).

Compute

L i = P -1 U i . Compute Ãi = A i -L i C. Compute E i = F i -L i Z . end for Compute L i = P -1 U i . Compute ē = diag P 1 λ γ 2 wT w -1/2 .

2-steps design strategy

In the previous section, we showed that for a given system and a given matrix Q, a state observer gain and estimation error bounds can be computed by solving one or several Linear Matrix Inequalities (LMI). In this section, a heuristic proposed by Loukkas in order to choose a good candidate for the matrix Q is described.

The heuristic proposed by Loukkas is based on the multivariate Chebyshev inequality.

Initially proposed in 1867 by Chebyshev for the monovariate case, this inequality was recently extended to the multivariate case in [START_REF] Stellato | Multivariate Chebyshev Inequality With Estimated Mean and Variance[END_REF]. This inequality is stated as follows : Theorem 3. Let ξ ∈ R n ξ be a random vector variable of covariance matrix Σ and mean µ.

Let λ ∈ R * a nonzero scalar. Then :

P (ξ -µ) T Σ -1 (ξ -µ) ≥ λ 2 ≤ min 1, n ξ λ 2 (4.19)
with P the probability measure on R n ξ .

Theorem 3 states that, for a given random variable ξ and a given nonzero scalar λ, the probability that a realization ξ k of ξ exits the ellipsoid

Ψ Σ = ξ ∈ R n ξ |ξ T Σ -1 ξ ≥ λ 2 is bounded by n ξ λ 2 .
The shape of the ellipsoid Ψ Σ is defined by the covariance matrix Σ, and its size by the scalar λ. From Theorem 3 it can be noticed that the larger the value of λ, the smaller is the probability that the realization exits the ellipsoid Ψ Σ .
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As such, Ψ Σ is not an invariant set for ξ but the idea of the heuristic proposed by Loukkas is to choose the design matrix Q equal to the inverse of the covariance matrix Σ -1 in order to take the distribution of the estimation error into account when shaping the ellipsoidal invariant set Ψ P .

In order to compute such covariance matrix for the estimation error dynamics (4.4), a result from [30] is used. This paper states that for a discrete-time system x k+1 = Ax k + w k , affected by a zero-mean white random sequence w of covariance matrix Σ w = Σ T w ≻ 0, the covariance matrix of the state vector Σ x can be recovered by solving the following Lyapunov equation :

Σ x = AΣ x A T + Σ w (4.20)
In the heuristic, Loukkas proposed to apply this method to the estimation error dynamics (4.4), by solving the following Lyapunov equation for each vertex of the polytopic decomposition :

Σ ei = Ãi Σ ei ÃT i + E i Σ wi E T i (4.21)
Because à = A -LC, a first synthesis needs to be performed in order to compute a temporary observer gain L by solving LMI (4.8) using Q = I n .

In the considered case, w is a uniform disturbance belonging to the interval [-w; w], thus its covariance matrix is chosen as Σ w = var(w) = 1 12 ( w -(-w)) 2 I n . The covariance matrix of the estimation error is then computed as an average of the vertex covariance matrices :

Σ e = 1 N N i=1 Σ ei (4.22)
Finally, an observer synthesis is performed by solving LMI (4.8) using

Q = Σ -1 e .
A summary of the 2-steps synthesis is given in Algorithm 2.

Illustration using a numerical LTI system in simulation

In order to illustrate the observer design strategy, the following disturbed discrete-time LTI system is considered :

x k+1 = Ax k + Bu k + Fd k y k = Cx k + Zv k (4.23) 
with :

A = 0.2 0.2 0 0.5 , B = 1 1 , F = 0 0.1 , C = 1 0 , Z = 0.1 (4.24)
Algorithm 2 H ∞ set-membership observer design for LPV systems (2-steps synthesis)

Require: Matrices A i , B i , F i , for i = {1, . . . , N }, C and Z describing system (4.1). Disturbance covariance matrix Σ w . Initialize design matrix Q to I n . for <i=1 to i=N> do Find matrices P, U i and the minimum γ satisfying LMI (4.8).

Compute

L i = P -1 U i . Compute Ãi = A i -L i C. Compute E i = F i -L i Z . end for for <i=1 to i=L> do
Compute Σ ei by solving (4.21). end for Compute the average covariance matrix Σ e as in (4.22). Define Q = Σ -1 e . for <i=1 to i=N> do Find matrices P, U i and the minimum γ satisfying LMI (4.8).

Compute

L i = P -1 U i . Compute ē = diag P 1 λ γ 2 wT w -1/2
.

The state and output disturbances vector

w k = d k v k T
is supposed to be bounded by w = 1 1 T so that for all k we have :

w T k w k ≤ wT w (4.25)
1) Influence of the initialization of Q First, the influence of the choice of the design matrix Q is illustrated by comparing the shape of the sets Ψ Q and Ψ P for different matrices Q after applying the 1-step synthesis.

Three different matrices Q are considered :

Q I = 1 0 0 1 , Q 10I = 10 0 0 10 , Q 101 = 10 0 0 1
A comparison between the sets Ψ Q and Ψ P is showed in Fig. 4.5. One can notice that the value chosen for the coefficients of Q have an influence on the size and the shape of the sets Ψ Q and Ψ P . It is thus important to choose Q so that the sets Ψ Q and Ψ P are adapted to the distribution of the estimation errors. 

2) Comparison of the 1-step and 2-steps syntheses

Then, the utility of the 2-step synthesis is illustrated by comparing the performances of two observers : the 1-step observer, computed using the 1-step algorithm, and the 2-step observer, computed using the 2-step algorithm. In the following, matrices and vectors with sub index 1 relate to the 1-step synthesis, and matrices and vectors with sub index 2 relate to the 2-step synthesis.

The first synthesis is initialized with Q = I 2 . After completing the 1-step algorithm, the following values are returned :

P 1 = 17.36 -5.09 -5.09 2.97 , L 1 = 0.34 0.65 , ē1 = 0.39 0.93 , γ 1 = 0.18
Then, following the 2-step algorithm, the estimation error covariance matrix is computed : The responses of the two observers are showed in Fig. 4.6. In this simulation, the system is undergoing a step input from u = 0 to u = 1. The noise signals d and v are generated randomly according to a uniform distribution between -1 and 1 as chosen for the design. The estimation and the estimation error bounds of both the states of the system is showed for the 1-step synthesis and the 2-steps synthesis and are compared to the real state signals.

Σ e = 0.
One can notice that the H ∞ factor γ is larger for the 2-steps synthesis than for the 1-step synthesis which implies a degradation in the noise to signal gain. However, the estimation bounds after the 2-steps are smaller and thus less conservative. A comparison between the sets Ψ Q and Ψ P obtained after the 1-step and 2-steps syntheses is showed in Fig. 4.7. One can notice that after the 2-steps synthesis, the invariant set Ψ P is much more adapted to the actual distribution of the estimation error.

Robust Set-Membership observer for respiratory gas exchange estimation

In the previous section, the set-membership observer proposed by Loukkas was presented and illustrated. This observer is intended for discrete-time LTI and LPV systems affected by bounded disturbances. In this thesis, an attempt to adapt of the work of Loukkas is proposed in order to extend the usability of such set-membership observer to discrete-time LTI and LPV systems affected by bounded disturbances with parameter dependent output matrix.

In this section, the derivation of a new LMI condition to achieve state estimation in the context of parameter dependent output is presented. Then, this new design strategy is applied to the problem of estimating respiratory gas exchange during exercise.

Adaptation of the Explicit Error Bounds

Set-Membership observer to the parameter dependent output case

Problem statement

We consider the following discrete-time disturbed LPV system with parameter-dependant output :

x k+1 = A(ρ k )x k + B(ρ k )u k + F(ρ k )d k y k = C(ρ k )x k + Zv k (4.26) Vectors x k , u k , y k , d k and v k and matrices A(ρ k ), B(ρ k ), F(ρ k )
and Z(ρ k ) are defined as in (4.1). We suppose that the output matrix C(ρ k ) depends on the scheduling parameter ρ k in an affine fashion.

The goal of the design strategy is to find a constant robust parameter observer gain L ∈ R n×p and estimation error bounds ē so that the following state-observer is performed : One can notice that compared to (4.2), the output matrix C(ρ k ) is now depending on the scheduling parameter and the robust observer gain L is no longer depending on the scheduling parameter. This design choice is explained in the next section.

xk+1 = (A(ρ k ) -LC(ρ k ))x k + B(ρ k )u k + Ly k (4.

Computation of the punctual state observer robust gain

Similarly to the approach proposed by Loukkas, the punctual state observer robust gain L is computed by solving a finite number of LMIs corresponding to the stabilization of the vertex estimation error dynamics. However, the dependency of the output matrix C(ρ k ) to the scheduling parameter does not allow to solve the exact same LMI problem.

Let us recall the LMI (4.8) proposed by Loukkas :

    -P + Q 0 n×m A i T P -C T U i T ⋆ -γ 2 I m PF i -U i Z T ⋆ ⋆ -P     ⪯ 0 (4.28)
using equation (4.9), we can replace U i by PL i and we have :

    -P + Q 0 n×m A i T P -C T L i T P T ⋆ -γ 2 I m PF i -PL i Z T ⋆ ⋆ -P     ⪯ 0 (4.29) 
One can notice this LMI involves products between matrices C and L, which implies that only one of them can be depending on the scheduling parameter ρ in order to use the vertex property. Because we are interested in designing a state observer for systems with parameter dependent output, we look for a robust constant observer gain L. The problem to solve is the following :

Theorem 4. Consider the system (4.4) and a given matrix Q ≻ 0. The observer gain L which minimizes the H ∞ norm of the system (4.4) is found if there exist a symmetric positive definite matrix P, a positive scalar γ ≥ 0 and matrix U satisfying the following condition :

    -P + Q 0 n×m A i T P -C T i U T ⋆ -γ 2 I m PF i -UZ T ⋆ ⋆ -P     ⪯ 0 (4.30)
for i = {1, . . . , N }. Moreover, the observer matrix can be obtained as :

L = P -1 U (4.31)
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Proof. Suppose that there are a quadratic Lyapunov function V(e k ) = e T k Pe k with P = P T ≻ 0 a symmetric semi-definite positive matrix, and a positive scalar γ ≥ 0 satisfying the dissipation inequality (4.32) :

V(e k+1 ) -V(e k ) ≤ -e T k Qe k + γ 2 w T k w k (4.32)
By definition of V, we have :

e T k+1 Pe k+1 + e T k (-P + Q)e k -γ 2 w T k w k ≤ 0 (4.33)
Using the estimation error dynamic equation (4.4), we have :

[ Ã(ρ k )e k + E(ρ k )w k ] T P[ Ã(ρ k )e k + E(ρ k )w k ] + e T k (-P + Q)e k -γ 2 w T k w k ≤ 0 (4.34)
By developing we have :

e T k [ ÃT (ρ k )P Ã(ρ k ) -P + Q]e k + e T k ÃT (ρ k )PE(ρ k )w k + w T k E T (ρ k )P Ãe k + w T k E T (ρ k )PE(ρ k )w k -γ 2 w T k w k ≤ 0 (4.35) 
Which is equivalent to :

e T k w T k T ÃT (ρ k )P Ã(ρ k ) -P + Q ÃT (ρ k )PE(ρ k ) ⋆ E T (ρ k )PE(ρ k ) -γ 2 I m e k w k ≤ 0 (4.36) ÃT (ρ k )P Ã(ρ k ) -P + Q ÃT (ρ k )PE(ρ k ) ⋆ E T (ρ k )PE(ρ k ) -γ 2 I m ⪯ 0 (4.37) ÃT E T T P Ã E + -P + Q 0 n×m ⋆ -γ 2 I m ⪯ 0 (4.38)
Using the Schur complement, we have :

   -P + Q 0 n×m ÃT (ρ k )P ⋆ -γ 2 I m E T (ρ k )P ⋆ ⋆ -P    ⪯ 0 (4.39)
By definition of Ã(ρ k ) and E(ρ k ), we have :

   -P + Q 0 n×m (A(ρ k ) -LC(ρ k )) T P ⋆ -γ 2 I m [F(ρ k ) -L(ρ k )Z] T P ⋆ ⋆ -P    ⪯ 0 (4.40)
By developing and posing U = PL, we have :

    -P + Q 0 n×m A T (ρ k )P -C T (ρ k )U T ⋆ -γ 2 I m PF(ρ k ) -UZ T ⋆ ⋆ -P     ⪯ 0 (4.41)
And finally, using the vertex property, we have :

    -P + Q 0 n×m A i T P -C T i U T ⋆ -γ 2 I m PF i -UZ T ⋆ ⋆ -P     ⪯ 0 (4.42)
A similar 2-steps strategy can be used in order to reduce the conservatism of the solution.

The adapted design steps are presented in Algorithm 3.

Algorithm 3 H ∞ set-membership observer design for LPV systems with parameter dependant output (2-steps synthesis)

Require:

Matrices A i , B i , F i , C i for i = {1, .
. . , N }, and matrix Z describing system (4.26). Disturbance covariance matrix Σ w . Initialize design matrix Q to I n . for <i=1 to i=N> do Find matrices P, U i and the minimum γ satisfying LMI (4.30).

Compute

L = P -1 U. Compute Ãi = A i -LC i . Compute E i = F i -LZ .

end for for <i=1 to i=L> do

Compute Σ ei by solving (4.21). end for Compute the average covariance matrix Σ e as in (4.22). Define Q = Σ -1 e . for <i=1 to i=N> do Find matrices P, U and the minimum γ satisfying LMI (4.30).

Compute L = P -1 U.

Compute ē = diag

P 1 λ γ 2 wT w -1/2 .

Estimation of respiratory gas exchange during exercise

Problem statement

In Chapter 3, the respiratory gas exchange model proposed by Rosero was introduced :

ROBUST SET-MEMBERSHIP OBSERVER FOR RESPIRATORY GAS EXCHANGE ESTIMATION

x k+1 = Ax k + Bu k + Bw 0 y k = C(ρ k )x k (4.43) 
In this section, we are interested in applying the observer design methodology proposed in Section 4.2.1 to the system (4.43) in order to estimate respiratory gas exchange during exercise.

To do so, the following disturbed version of system (4.43) is considered :

x k+1 = Ax k + Bu k + Bw 0 + Fd k y k = C(ρ k )x k + Zv k (4.44)
In order to implement this state observer, several hypotheses are performed :

• H1 -The respiratory gas exchange model of the exercising cyclist is available.

• H2 -The power developed at the pedal level u k is available for measurements.

• H3 -The maximal amplitudes of the state and output disturbances affecting the gas exchange model are known.

• H4 -The total carbon dioxide exhaled by the cyclist y k = mCO 2k is available for measurements.

Because the control strategy to be implemented is tailored to the cyclist, the respiratory gas exchange dynamics of any new user has to be identified, which ensures H1.

Most electric bicycles are equipped with pedaling torque and pedaling speed sensors, thus the pedaling power can easily be computed, which ensures H2.

In order to satisfy H3, maximum values d for the state disturbance d k and v for the output disturbance v k must be chosen. In practice, information on the accuracy of the sensors is available and can be used to choose v. The value of d is more of a design choice. In the following we propose to choose it in order to model the state disturbances as a bias on the basal power

w 0 .
Ensuring H4 in practice can be more difficult. In fact, the same ergo-spirometer used for respiratory gas exchange measurements during the model identification process can be used.

However, most of these ergo-spirometers measure either only the oxygen consumption mO 2 or both the oxygen consumption mO 2 and the the carbon dioxide production mCO 2tot . In both cases, using such technology implies a costly and cumbersome implementation. Thankfully, a relationship between the minute ventilation VE is known for healthy subjects [START_REF] Ward | Ventilation/carbon dioxide output relationships during exercise in health[END_REF] and translates the need of a carbon dioxide measurement to a ventilation measurement, much simpler to achieve in practice : Here, the observer is the robust set-membership observer.

VE = m VCO2 + c (4.45) 
with VE and VCO2 expressed in L.min -1 , m = 25 and c = 4 for healthy subjects. For this reason, in the following we assume that H4 is fulfilled and consider a direct measurement of carbon dioxide for simplicity.

Illustration in simulation

In order to illustrate the observer design strategy, the following disturbed discrete-time respiratory gas exchange system is considered : The state disturbance D x = Fd k is supposed to be equal to 50% of the basal power w 0 , thus we choose :

           x k+1 = Ax k + Bu k + Bw 0 + Fd k y k = C(ρ k )x k + Zv k z k = x 1k -x 2k -ρ k-1 x 3k ρ k = 0.5 + 0.5 tanh z T -z k h ( 4 
F = 1 2 Bw 0 , d = 1 (4.48)
The output disturbance D y = Zv k is supposed to be at most equal to 0.5 g/min which is the typical accuracy of carbon dioxide sensors. In simulation, the output disturbance D y is generated as a uniform noise between -v and v. Thus we choose :

4.3. ROBUST PROPORTIONAL INTEGRAL OBSERVER FOR RESPIRATORY GAS EXCHANGE ESTIMATION Z = 0.5, v = 1 (4.49)
A description of the simulation setup is given in Fig. 4.8. As mentionned in hypothesis H4, the measured output y m is the total carbon dioxide exhaled by the cyclist. Thus we have :

y m k = C m (ρ k )x k + Zv k = 0 1 ρ k x k + Zv k (4.50)
The scheduling parameter ρ k , which corresponds to the fraction of excess of carbon dioxide measured by the carbon dioxide sensor, is not measured in practice. Thus, in order to compute it, the estimated state vector xk is used.

After applying Algorithm 3 to the system (4.46), the following values are returned :

P =    8 
.24 -7.73 0.79 -7.73 7.26 -0.75 0.79 -0.75 0.17

   , L =    4.1 4.5 1.3  
  10 -3 , ē =    0.22 0.24 0.08    , γ = 9.2
The estimation of the states of the system in simulation is shown in Fig. 4.9. The power input profile is constituted of steps of random magnitude. One can notice that the scheduling parameter ρ takes values in its full range of variation. The real states of the system belong to the uncertainty interval which ensures the robustness of the observer.

The estimation of the outputs of the system in simulation is shown in Fig. 4.10. The state observer is able to provide a good estimation of both the oxygen consumption y 1 = mO 2 and the total carbon dioxide production y 2 = mCO 2 .

These results are obtained when the model used for the state observer is completely accurate and the only differences with the nominal system are due to the state disturbance D x and output disturbance D y . Fig. 4.11 shows the estimated states when parametric uncertainties are added to the real respiratory gas exchange system. In this case, the parameters of the matrix A differ to up to 10% from their nominal value. One can notice that in this case the estimation error bounds are not satisfied anymore.

Thus, we conclude that, as such, the adapted observer synthesis proposed in Section 4.2.1 provides a good estimation of respiratory gas exchanges but is not robust to parametric uncertainties. In the next section, an attempt to improve the robustness of the state observer to parametric uncertainties is presented.

Robust Proportional Integral observer for respiratory gas exchange estimation

In the previous section, a method to estimate respiratory gas exchange during exercise was presented based on a set-membership observer. It was showed that this estimation method performs well in simulation but fails in the case where the parameters of the system are affected by uncertainties. In this section, we propose to use a robust proportional integral (RPI) observer in order to estimate respiratory gas exchanges during exercise. The objective of this approach is to make the estimation more robust to parametric uncertainties. First, the design of the observer is presented and then its behavior is illustrated in simulations.

This work was submitted and accepted at the SAFE 2022 conference in Cyprus.

The basal metabolic rate

The basal metabolic rate (BMR) is a physiological quantity characterizing the energy consump- gender and weight [23,24,34,35]. Also, the BMR can vary for a given individual depending on temperature [33], altitude [20] or training level [16].

In order to develop control laws allowing the regulation of physiological variables such as the respiratory gas exchanges or the energy expenditure, the variability of the BMR has to be taken into account. Thus, in this section, we propose to estimate its value in real-time.

Problem statement

Here, we explore the use of a Proportional Integral (PI) observer for estimating both the respiratory gas exchange variables (the amounts of O 2 intake and CO 2 output) and the basal metabolic rate (BMR). Several methods for designing PI observers have been proposed in the literature, some of them are known under the name of disturbance observer based control (DOBC) and are aiming at estimating and compensating the influence of disturbances and uncertainties on a closed-loop system. For continuous-time linear and non-linear frameworks, an extensive review of these methods can be found in [9] and a chronological overview in [39]. DOBC can be found under different forms, in [37] the disturbance is reconstructed using a filter with appropriate bandwidth, in [22] an extended state observer (ESO) is proposed, [25,26] developed the idea of unknown input observers (UIO) and [42,43] of equivalent input disturbances (EID).

The considered gas exchange dynamics is the following uncertain discrete-time linear system with a linear parameter varying matrix output matrix : Figure 4.11: Evolution of the system's states, state estimates and estimation error bounds for the adapted synthesis. The states of the real system are shown in full blue lines, their estimate in full red lines and the error bounds in dashed red lines. In this case, the coefficients of the real system differ to up to 10% of their nominal value.

x(k + 1) = Ax(k) + Bu(k) + B(w 0 + p(k)) + Fd(k) y(k) = C(ρ(k))x(k) + Zv(k) (4.51)
where p(k) ∈ R is a piece-wise constant disturbance signal modelling unknown variations of the basal power with respect to the nominal one w 0 .

In order to recover the value of the unknown basal disturbance p(k), we propose to use a proportional integral (PI) observer. To design such observer, we first extend the states of system (4.51) as follows :

x e (k) = x(k) p(k) (4.52)
We can now re-write (4.51) as :

x The coefficient θ >0, in matrix F e , is a constant parameter used during the observer design process. This coefficient is necessary to establish a non-zero transfer function between disturbances d(k) and the extended state p(k), allowing an H ∞ observer synthesis. The value of that parameter θ can be considered as a degree of freedom to design an observer with suitable speed convergence and noise attenuation.

Here, we assume that there exists a constant observer gain L ∈ R 4 such that the following parameter-dependent state observer can be performed for any value of ρ(k) : Thus, the problem is to find a constant observer gain L ∈ R n×p for the parameter dependent state-observer (4.54) such that for all ρ(k) the dynamics (4.56) are stable with a quadratic H ∞ performance γ, i.e. such that the ratio between the estimation error and the disturbance w(k)

is bounded in the sense of the L 2 norm: ∥e(k)∥ 2 <γ∥w(k)∥ 2 .

Matrix C e is depending on the varying parameter ρ(k). Because ρ(k) belongs to the known interval [0; 1] we perform the following polytopic decomposition for C e :

C e (ρ(k)) = α 0 (k)C e0 + α 1 (k)C e1 (4.57)
where for all k α 0 (k) ≥ 0, α 1 (k) ≥ 0 and

α 0 (k) + α 1 (k) = 1 (4.58)
Matrices C e0 and C e1 are the vertex matrices of the decomposition and are computed by evaluating C e (ρ(k)) its extreme values, respectively C e (0) and C e (1). A similar decomposition is applied to the system matrix Ãe (ρ(k)) :

ROBUST PROPORTIONAL INTEGRAL OBSERVER FOR RESPIRATORY GAS EXCHANGE ESTIMATION

The output disturbance D y = Zv k is supposed to be at most equal to 0.1 g/min. In simulation, the output disturbance D y is generated as a uniform noise between -v and v. Thus we choose :

Z = 0.1, v = 1 (4.64)
After applying Theorem 4.60 to the system (4.53), the following values are returned : 

P =       0.
   , L r =    0.0041 0.0049 0.0023    , γ r = 0.0352,
We run a simulation under which the ideal system (4.51) is affected by the exact same disturbances and uncertainties as the ones chosen for the design and estimate the states using both the robust PI observer and the simple robust observer.

Fig. 4.12 shows the evolution of the states and output of the real system and the states estimated by the designed robust PI observer and by the same robust observer but without the estimation of d. Three simulations were performed using the same power profile but different disturbance and noise signals. The power profile was generated using piece-wise constant power levels of random magnitude such that the parameter ρ takes values in its full range of variation.

The evolution of the varying parameter ρ and of its estimation are shown, the mismatch between them can be explained by the estimation errors on the state and the tendency of ρ to vary abruptly.

Fig. 4.13 shows the evolution of the estimation error for each state of the system, in each simulation and for both the robust PI observer and the robust observer. It shows that for every scenario, the estimation error of the robust PI observer tends to 0, while the estimation of the robust observer is not. Thus, the proposed observer is robust to piece-wise constant disturbances affecting the basal power of the system. Multiple simulations were ran using different observer gains L based on different values of θ chosen for the design. We can see that higher values for θ allow a faster but noisier convergence of the estimation. Lower values for θ allow a smoother but slower convergence of the estimation.

Parameter θ can then be used as a tuning parameter for the observer taking into account the noise levels affecting the state and output of the considered system. In our example θ = 0.25 appeared to be a good trade-off.

In practice, estimated values of gas exchange variables and basal power are used by practitioners to characterize the effort performed. For example, the respiratory quotient (RQ) allows to estimate the contribution of carbohydrates and fats oxidized during the exercise and is defined as follows : fails to recover the real RQ between t = 500 sec and t = 950 sec. This shows that even if the estimation errors are slightly higher with the robust observer for the chosen levels of disturbance p, the consequences in the interpretation of the results can be significant.

RQ = V CO 2 /V O 2 = δ 1 mCO 2 /
To conclude, we saw in this section that the proposed robust proportional observer was able to estimate the value of the disturbance affecting the basal metabolic rate. This observer is performing better than the observer proposed in Section 4.2.2 when the basal power is not known accurately. The robust proportional observer can be used in practice to estimate respiratory gas exchanges more accurately and recover the value of the basal metabolic rate in real time.

Conclusion

In this chapter, two methods are proposed in order to estimate the respiratory gas exchange of a cyclist during exercise.

First, an adaptation of the Explicit Error Bounds Set-Membership observer proposed by Loukkas to the case of parameter dependent output LPV systems is presented. The synthesis of this observer is based on the solution of multiple Linear Matrix Inequality problems in order to compute the observer gain and uncertainty bounds on the estimation. This observer can type of activity, their duration, their frequency and on their intensity. This last parameter is the hardest to handle and there is no consensus regarding the way to ensure it. For example, the intensity of the exercise can be defined based on mechanical variables, based on the heart rate or based on the respiratory gas exchanges. An overview of these different approaches is given in the next paragraphs. For a complete review of these approaches the reader is referred to [23,24].

The mechanical variables used to quantify the intensity of exercise are related to the rate of exercise and often depends on the type of activity considered. For example, during weight-lifting exercise, fractions of the one-repetition maximum (1-RM), corresponding to the maximal weight that a subject can lift, drag or push one time, are used. In aqua-running, the walking cadence can be chosen. These variables relate to the mechanical power developed in a given activity, which is why for cycling tests on cycle-ergometer, the mechanical power developed on the pedal can be used directly as an index for exercise prescription. These indexes have the advantage to be directly manipulated and/or measured during the physical activity. However, because of their mechanical nature, they are likely to produce different physiological responses depending on the considered individual and require the expertise of the practitioner to be tuned properly.

The intensity of exercise can also be defined using the maximal heart rate. Two main approaches are used. The first one is a percentage of the maximal heart rate HR max , and is labeled %HR max . This method is convenient in the sense that based on a maximal effort test, the exercise range is defined using on the maximal heart rate reached, which makes it convenient to use. However, this method does not take into account the differences in basal heart rate. The second one is a percentage of the reserve heart rate of the individual %HRR, corresponding to a fraction of the heart rate above the basal level. These indexes have the advantage to be based on heart rate measurements which are usually non-invasive and inexpensive but because the heart rate is sensibly affected by external factors like fatigue, stress, temperature, and because of its variability during exercise, these indexes can be hard to manage.

Finally, indexes based on respiratory gas exchanges are also formulated. Similarly to %HR max and %HRR, a fraction of the maximal oxygen consumption %V O 2max or a fraction of the reserve oxygen consumption %V O 2 R can be used. Physiological thresholds, identified using respiratory gas exchanges, can also be used like the aerobic threshold AerT or the anaerobic threshold AnT . While the thresholds indexes are reputed to reflect the physiological response of the individual more accurately, they also are more difficult to measure and implement.

In order to ensure that the prescriptions are respected by the training individual, automated control strategies have been developed. An overview of these methods is given in the following sections.

Control of the developed mechanical work

Several examples of automatic exercise systems controlling the intensity of the exercise can be found in the literature. Some of them regard the exercise on treadmills using robot assisted gait. In these systems, the body weight of the training individual is supported and the walking movement is assisted using robotic limb actuators. These systems are used for the rehabilitation of neurologically impaired patients, amputees or patient with spinal cord injuries. One of such applications is the work of Pennycott and colleagues [30], in which they proposed a strategy aiming at estimating and controlling the work rate of the exercising individual by changing the level of assistance at the legs level. In their approach, both the target work rate and the estimated work rate are showed to the exercising individual, which then chooses the level of assistance in order to follow the reference. A similar human-in-the-loop strategy was later developed by Hunt and colleagues [21]. In their approach, the work rate was estimated using direct measurements of inhaled oxygen and exhaled carbon dioxide.

Some applications were based on the use of the electrical assistance of an e-bike. For example, Mayr and colleagues developed a prototype of what they call a health e-bike [3]. This electrical bike was designed as a rehabilitation tool aiming at controlling the power developed by the cyclist and avoid over-exercising. The strategy implemented was based on a bike equipped with an electric motor, a speed sensor and a torque sensor and the power regulation was ensured by a PI controller. A similar approach was proposed by Afonso and colleagues : using a rule-based controller they could regulate either the cycling torque [1] or the power output of the cyclist [2].

Instead of avoiding over exercising, the purpose of the application proposed by De la Iglesia and colleagues [11] was to use the commuting time spent on an electrical bicycle in order to train. Based on information such as the height and weight of the user, as well as knowledge of the route to be taken, their algorithm chooses the assistance level for different bouts of the path. The assistance level is derived algebraically from an estimation of the forces applied on the bike. Their application is coupled with an app aiming at promoting exercise by tracking the user's progression and comparing it with the one of other users. Wan and colleagues proposed a cycling power management strategy to optimally assist the cyclist based on a fatigue model, the status of the battery and the inclination of the road [39]. Finally, Mayerhofer and colleagues proposed a model between the cycling cadence and the power output on flat surfaces [25]. They used this model in order to develop a power output control strategy based on a PI controller.

In this strategy, the output of the controller is a periodic sound signal played to the cyclist and whose frequency is used to adjust the pedaling frequency to meet the reference power output. To make outdoor training possible and to ensure the autonomy of the user, applications involving e-bikes were also proposed. Meyer and colleagues proposed a nonlinear controller in order to regulate heart rate during cycling using the electrical assistance of the bike [27]. The controller is constituted of a feedback component based on a heart rate measurement and a feedforward component based on an estimation of the cycling torque applied by the cyclist at the desired heart rate. The controller is designed to reject disturbances such as the wind or the road slope. The bike is equipped with sensors monitoring the cycling speed and torque and the heart rate of the cyclist is measured by a chest strap. Corno and colleagues proposed to regulate the heart rate during exercise by piloting a continuously varying transmission system on the bike [10]. To do so, they modeled both the bike and the cyclist and proposed two different controllers : a proportional integral controller and a second-order sliding mode controller. Both controllers were compared experimentally and were successful in regulating the heart rate.

Finally, Neuber and colleagues developed an e-bike to train safely. They tested both a PI and a PID controller which were calibrated heuristically to different users [28]. The controllers were tested for heart rate values ranging between 60% and 100% of the maximal heart rate.

Control of respiratory gas exchange during exercise

Regarding the control of respiratory gas exchange, all the applications found in the literature are dedicated to the control of the oxygen consumption during exercise. Most of these applications are designed for treadmill exercise. Hunt and colleagues were involved in multiple studies aiming at modelling and controlling the oxygen consumption of a training individual during robotic gait treadmill exercises. In [14], a dynamic output feedback was designed and tested in simulation in order to produce a linear increase in oxygen uptake during exercise by controlling the work

REGULATION OF RESPIRATORY GAS EXCHANGE USING A PROPORTIONAL INTEGRAL CONTROLLER

Contribution of the thesis

In the next Section, the contribution of the thesis regarding the control of physiological variables during cycling is presented. Two different control strategies are proposed and compared in simulation and experimentally. The first approach is based on a proportional integral (PI) controller and the second on a linear quadratic regulator (LQR) with integral action. The two control strategies are used in order to regulate the respiratory gas exchanges of the cyclist during exercise, more precisely the oxygen consumption or the carbon dioxide production.

Regulation of respiratory gas exchange using a proportional integral controller

The first approach to control respiratory gas exchange presented in this thesis is based on a Proportional Integral (PI) controller. It is applicable to the control of the oxygen consumption or of the carbon dioxide production during exercise. In this section, the formulation of the controller is presented and then its performances are assessed in simulation.

Problem Statement

In order to regulate respiratory gas exchange during biking exercise, the strategy proposed in this thesis is to control the electrical assistance level the e-bike automatically. This strategy is fairly intuitive : because it is not possible to control the biking conditions (slope, wind, etc.) at all time, the electrical assistance is used to adjust the mechanical load undergone by the cyclist. When the load is too large, the assistance level increases, and when it is too small, the assistance level decreases.

This intuition can be put in equations. In Chapter 3, the fundamental principle of dynamics applied to the contact point C between the rear wheel and the ground gives :

M tot • d⃗ v dt = ⃗ F ext{C} + ⃗ F cyc{C} + ⃗ F mot{C} (5.1)
By computing the scalar product with the bike speed vector ⃗ v on both sides of the equation we have :

M tot • d⃗ v dt • ⃗ v = ⃗ F ext{C} • ⃗ v + ⃗ F cyc{C} • ⃗ v + ⃗ F mot{C} • ⃗ v (5.2)
This allows to formulate a relationship between the powers applied to the bike and the derivative of the kinetic energy

E c = 1 2 • M tot • v 2 :
dE c dt = P ext + P cyc + P mot (5.3) which can be used to express the power developed by the cyclist : 

Tuning of the proportional integral controller gains

Depending on the value chosen for the PI gains K p and K i , the behaviour of the closed loop system can change dramatically. For the safety of the e-bike user, the gains of the controller are calibrated in simulation prior the practical implementation on the bike prototype. To do so, the simulation strategy presented in Chapter 3 is used.

The scenario is the following, a cyclist described by a fixed force-velocity characteristic is riding the bike on a flat surface. The bike is subject to two external forces : the friction of the air and the action of the electrical assistance. From Fig. 5.2 one can notice that for each controller, the control effort settles at a negative value. This can be explained by the fact that the reference oxygen consumption to track z ref = 1.8 g/min implies an energy expenditure higher than the basal power w 0 , thus the cyclist has to perform an additional effort in order to reach it. This additional effort is ensured by a load imposed by the electrical assistance to the cyclist, which explains its negative value.

The first controller to be proposed is the controller C controllers succeed in regulating z to the reference value. However, the time response of both controllers contains one or multiple overshoots and the control effort required is dramatically increased, especially at the start of the simulation when z is far from the reference. In practice, overshoot would imply periods of time when the cyclist is unable to exert mechanical power to the bike, since its velocity is entirely ensured by the electric motor. This should be avoided to guarantee a smooth ride to the user. Finally, a last proportional integral controller C 4 is considered. The integral gain chosen for this controller is significantly lower than the of one of C 2 and C 3 . One can notice that the time response of z presents very little overshoot and that the control effort is significantly smoother than the ones of C 2 and C 3 . Also, the settling time achieved by C 4 is significantly lower than the one of C 2 and C 3 . However, since a strong integral term also ensure a better tracking of the reference controller C 3 is also a good candidate controller.

In the following section, controllers C 3 and C 4 are chosen and tested in simulation in a realistic scenario.

Validation of the proportional integral controller in simulation

In order to validate controllers C 3 and C 4 , a new simulation scenario is considered. In real life applications, the cyclist and the e-bike are subject to external forces which need to be compensated by the electrical assistance. Here, we consider a scenario in which the slope of the First, controller C 4 is considered. Fig. 5.3 shows the evolution of the mechanical variables (slope of the road, forces affecting the bike, speed of the bike) and the physiological variables (oxygen consumption, carbon dioxide production and excess of carbon dioxide) of the system.

One can notice that for each of the variables, two steady states are reached : a first one for the flat road portion and a second one for the positive slope road portion. For the C 4 controller, the first steady state is reached quickly on flat road, as it was designed for in the previous section. However, in the slope portion, this controller is much slower in regulating gas exchange variables to the reference value.

This slow convergence clearly appears is Fig. 5.4 which represents the evolution of the powers applied by the cyclist, exteriors forces and the electrical motor along time. The slope of the road changes at instant t = 600sec, which implies a dramatic increase in the power applied by the exterior forces due to the added contribution of gravity. This increase in P ext implies an increase in the power developed by the cyclist P cyc , which has to be compensated by the electrical assistance which takes around 600sec to happen.

By looking at Fig. 5.5, one can notice that the slow compensation of P ext by the electrical control cost. For example, comparatively large coefficients in matrix Q compared to matrix R will produce a more aggressive controller with high convergence speed and tracking accuracy but at the cost of a large control effort. Similarly, comparatively large coefficients in matrix R compared to matrix Q will produce an economical controller but at the expense of the convergence speed and tracking accuracy. Because Q and R are matrices, this is also true component-wise, it is then possible to favor the aggressivity or the economy of some of the states compared to some others.

In order to design the linear quadratic regulator (LQR), the formulation of the respiratory gas exchanges model (5.6) proposed in the previous section is used. However, because an integral action is added, the dynamics of the system are extended in the following way : 

xk+1 = Ãx k -Bu k + Bd k + B w ỹk = C(ρ k )x k (5.
à = A 0 HC(ρ k ) 1 , B = B 0 , C(ρ k ) = C(ρ k ) 0
In this thesis, the design of the LQR is based on the solution of a Linear Matrix Inequality (LMI) problem. The problem is expressed as follows :

Theorem 6. Consider the system (5.13) and given symmetric definite positive matrices Q and R. The robust LQR gain K which minimizes the cost J as defined in (5.12) is found if there exist a symmetric positive definite matrix P and matrices Y and W satisfying the following conditions :

-P + Q Ã0 P -BY ⋆ -P ⪯ 0 (5.14) -P + Q Ã1 P -Y ⋆ -P ⪯ 0 (5.15) W C lqr P + D lqr Y ⋆ P ⪰ 0 (5.16) 
with C lqr = Q 1/2 0 , D lqr = 0 R 1/2 and K = YP -1 . Matrices Ã0 and Ã1 correspond to the vertex matrices computed for ρ = 0 and ρ = 1 respectively.

Unfortunately, this result was not be proved in the scope of this thesis. However, since Theorem 6 still led to interesting practical results the latter are presented in the following sections.

Validation of the linear quadratic regulator in simulation

In this section, the performances of the LQR are assessed in simulation and compared to the ones of the previous PI controller. As for the validation of the PI controller, the regulated output is the oxygen consumption and the scenario contains a flat road portion and a positive slope portion.

In order to compute a valid candidate for the LQR gain K, a similar tuning strategy as the one described in Section 5.2.2 is used. Here the following values for the design matrices are considered : .9: Evolution of the mechanical and physiological variables of the cyclist for the linear quadratic regulator (LQR). The left column corresponds to the evolution of the mechanical variables, with first the slope of the road in degrees, then the forces applied on the bike and last the the speed of the bike. The right column corresponds to the evolution of the respiratory gas exchange variables, with first the oxygen consumption, then the aerobic carbon dioxide production and last the excess of carbon dioxide production.

Q =       1 
One can notice that larger values are given to the coefficients related the controlled output z = x 1 and the integral term s = x 4 in order to favor the states involved in the control. A smaller value is chosen for R in order to ensure a short settling time and a fast rejection the external disturbances.

Similarly to Section 5.2.3, the evolution of the physiological and mechanical variables of the system are shown in Fig. 5.9 and the evolution of the powers affecting the system in Fig. 5.10.

In Fig. 5.11, the evolution of the regulated variable is shown. It can be seen that the oxygen consumption is regulated to the reference value. Also, in comparison with the PI controller, the LQR ensures a tracking of the reference on flat road without overshoot. A comparison between the performances of the LQR with controllers C 3 and C 4 is shown in Fig. 5.12. This figure

shows that the LQR ensures a fast convergence without overshoot on flat road similarly to the C 3 PI controller. However, on the slope portion, the LQR converges quickly to the reference similarly to the C 4 PI controller.

In conclusion, the LQR appears to be a good compromise between the previously proposed PI controllers C 3 and C 4 , ensuring good performances on both flat roads and slopes. .10: Evolution of the powers applied on the bike for the linear quadratic regulator (LQR), with the power applied by the cyclist (in blue), the power applied by the external forces (in red) and the power applied by the motor (in yellow).

Contribution of physiological control strategies

In the previous sections, control laws were proposed in order to control respiratory gas exchange during exercise. However, one can wonder about the practical interest of such strategy. In this section, we study the differences in terms of oxygen consumption for the rider between a bike without electrical assistance, a bike equipped with an amplifying assistance and a bike equipped with the proposed LQR strategy.

One of the most common control approach for the electrical assistance of e-bikes is the amplifying strategy. Based on an estimation or a measure of the force to torque applied by the cyclist to the bike, this strategy uses the electric assistance of the bike to amplify the action of the cyclist on the bike. It is formulated in the following way :

F mot = K amp F cyc (5.17)
with K amp a nonzero positive scalar. Such control law artificially makes the rider stronger, and thus alleviate the perceived load.

The comparison between the different electrical assistance strategies is shown in Fig. 5.13.

The simulation scenario is the same as the one used for the validation of the PI controller and the LQR, with a flat road during the first half of the simulation and a positive slope in the second half. The oxygen consumption z and the power of the electrical assistance u are shown in blue lines for the bike without electrical assistance. Here, the power developed by simulations. In this section, experimental results obtained using both control strategies are presented.

Experimental setup and scenario

In order to validate the respiratory gas exchanges control strategies, the control laws are coded and implemented on an e-bike prototype developed in Gipsa-lab. A picture of the e-bike prototype is showed in Fig. 5.14. The control laws are used in order to control the electrical assistance of the bike.

To implement the control laws, some knowledge about the states of the system are required.

For the PI controller the regulated variable z is supposed known at all times in order to compute the tracking error e. For the LQR, the full states of the respiratory gas exchanges model x are supposed to be known. Because a full implementation of the control strategies using direct measurement of respiratory gas exchanges and/or a state observer could not be performed, a non-invasive approach was used. Instead of measuring directly respiratory gas exchanges and estimating the state variables, the gas exchanges model was used to predict respiratory gas exchanges in open-loop based on the computation of the mechanical power developed by the cyclist on the pedal. The implementation scheme is given in Fig. 5.15.

Different scenarios are considered to assess the performances of the control laws. First, the control laws are validated indoor. To do so, the electrical motor of the bike is used to generate the road profile as well as the assistance. The road profile is generated as a torque load step profile with C ext = 5 N m between t = 0 sec and t = 300 sec, with C ext = 10 N m between Then, the control laws are validated outdoor. To do so, a path was defined and biked through using each control strategy. When a control law was used, the goal was to regulate the oxygen consumption of the cyclist to a reference z ref = 1.2 g/min. A summary of the different scenarios is given in For the sake of comparison, the scenarios In0 and Out0 are performed with using the electrical assistance. The results of scenario In0 are showed in Fig. 5.17 and the results of scenario Out0 are show in Fig. 5.18. The reference oxygen consumption z ref = 1.2 g/min was chosen so that it is exceeded by the cyclist without using a control strategy. The power profiles of the indoor and outdoor tests are very different, which allows to draw different conclusions from each test. 

Validation of the proportional integral controller

In this section the results obtained with the PI controller are presented. The controller C 3 , with gains K p = 30 and K i = 1.5, is used.

The results of the indoor test In1 are showed in Fig. 5.19. In this test, both the estimated oxygen consumption from the model and the real oxygen consumption are regulated to the desired value z ref = 1.2 g/min. However, since the model estimation of mO 2 is fed to the PI controller, mO 2 model is regulated more accurately. In the first minute of the simulation, the PI controller increases the load perceived by the cyclist in order to fasten the convergence of mO 2 to the reference and an overshoot occurs for both the measured and estimated mO 2 .

When the step in C ext occurs at t = 300 sec, the controller increases the assistance provided to the cyclist in order to reject the disturbance.

The results of the outdoor test Out1 are showed in Fig. 5.20. In this test, the external forces profile is not as steady as for the indoor scenario. The variations of the road slope and cycling conditions make it harder for the controller to regulate the oxygen consumption. Both the estimated and the measured oxygen consumption show oscillations around the reference value z ref .

In this scenario, because the value chosen for the reference oxygen consumption z ref is low, the control effort applied by the electrical assistance to maintain it is pretty high, up to 300 W atts.

In both scenarios, the control law successfully regulated the real oxygen consumption of the cyclist around the reference value. However, oscillations and overshoots occur, especially in the outdoor scenario, which need to be reduced to improve the performances of the control strategy.

Validation of the linear quadratic regulator

In this section the results obtained with the LQR are presented. The controller is defined as in Section 5.3.2.

The results of the indoor test In1 are showed in Fig. 5.21. The intended scenario was the same as for tests In0 and In1, however, due to a technical defect, the torque load C ext was not applied during the test. Thus, instead of 3 different external torque steps, no external torque was applied. In these conditions, the electrical assistance had to provide the load applied to the cyclist in order to regulate the oxygen consumption to the reference z ref . the measured oxygen consumption did not follow the same trajectory. The fact that the performances of the LQR appear worse than the performances of the PI controller for the outdoor test can be explained that in order to be implemented, the PI controller solely depends on an oxygen consumption estimation (which is usually well provided by the gas exchanges model) while the LQR requires a full knowledge of the system, which is harder to ensure. During this test, the electrical assistance exclusively assisted the cyclist, to up to 250 W atts.

Conclusion

Several conclusions can be drawn from the experimental results previously presented :

• C1 -Both control strategies showed a significant effect on the oxygen consumption of the cyclist during exercise compared to a ride without electrical assistance.

• C2 -Both control strategies managed to regulate the estimated oxygen consumption of the model around the reference value which is very encouraging. The PI controller showed more oscillations compared to the LQR.

• C3 -The ability of the control strategies to regulate the real oxygen consumption is less clear however. Here the implementation scheme chosen makes it so that the controllers are not aware on a measured value of the regulated signal z and solely depends on its estimation provided by the gas exchange model. To conclude on the ability of the control data points leave the characteristics and translate vertically.

Conclusion

Several conclusions can be drawn from the experimental results previously presented :

• C1 -The simulation strategy based on a force-velocity characteristic of the cyclist appears to be a valuable tool to simulate realistic cycling behaviours.

• C2 -The force-velocity characteristic is able to produce high fidelity cycling power profiles in simulation, which enable an accurate predicting of the respiratory gas exchanges of the cyclist in chosen road profiles and cycling conditions.

• C3 -The force-velocity characteristic however does not reproduce the tendency of the cyclist to regulate its pedalling speed around a fixed value, which prevents the estimation of realistic pedalling force and pedalling speed in simulation. This aspect can be further explored in order to improve the performances of the simulation strategy.

• C4 -This simulation strategy is applicable to the tuning of control laws in simulation or to the prediction of the physiological stress experienced by an individual in a given exercise scenario.

Conclusion

In this chapter, two control strategies aiming at controlling the respiratory gas exchange of an exercising cyclist are proposed. Both control strategies consist in controlling the electrical assistance of an e-bike in order to regulate the load perceived by the cyclist. Two main quantities can be controlled : the oxygen consumption and the carbon dioxide production during exercise.

The first control strategy is based on a proportional integral (PI) controller and the second one on a linear quadratic regulator (LQR). Both control laws were designed in simulation and validated experimentally after being implemented on an e-bike prototype. Both control laws were able to control the oxygen consumption of the cyclist during indoor and outdoor cycling tests and can be considered as valid candidates for future implementation on dedicated e-bike systems.

Also, in this chapter the performances of the simulation strategy used in this thesis in order to reproduce realistic cycling behaviours for a cyclist in simulation were examined. This control strategy is based on a pedalling force-velocity characteristic identified using experimental data.

The control strategy proved to be a valuable tool for the design of the control laws since both of them were tuned and validated in simulation before practical implementation. Furthermore, the control strategy showed very good repeatability when compared to experimental data recovered during real biking scenarios.

CHAPTER 6. DISCUSSION AND CONCLUSION

Discussion

In Chapter 2, key concepts of the exercise physiology theory were presented. Mainly, the existence of a connection between the power developed during an exercise session and the oxygen consumption and carbon production of the exercising individual. The nature of this link was examined by reviewing the different models to explain respiratory gas exchange that were proposed by the exercise physiology community. From a control science point of view, these models highlight the complex dynamics explaining respiratory gas exchange, including both linear and nonlinear components. Also, in this chapter, the benefits of exercise on health were presented. As such, this chapter constitutes a motivation to develop accurate models and control laws in order to control respiratory gas exchange during exercise, which is the main objective of this thesis.

In Chapter 3, the system studied in this thesis is defined. This system is constituted of both a cyclist and an electric bike. The aim of this chapter is to propose a description of the physiological, behavioural and mechanical interactions existing in this system. In order to describe the physiology of the exercising cyclist, a respiratory gas exchange model is used. A proposition to describe the behaviour of an exercising cyclist, in terms of pedalling force and pedalling speed, was given in terms of a force-velocity characteristic. Finally, the mechanical interactions between the bike, the rider and the environment are described using the first principle of dynamics. Based on theses three elements, a simulation strategy is proposed in order to reproduce realistic cycling behaviours in simulation for arbitrary road conditions and electrical assistance strategies. As such, this chapter constitutes the modelling and the simulation steps of the control science approach to the control of respiratory gas exchange during exercise. In this thesis, these modelling and simulation choices turned out successful to provide a simple but complete description of the bike and cyclist system and were mainly used to design control laws for the electrical assistance of the bike.

In the future, additional modeling efforts could be done in order to improve the cyclist model. For example, a description of the fatigue of the cyclist could be added in the model based on blood lactate. Additional physiological variables, like heart rate, could be added in order to propose a more complete description of the physiological status of the cyclist. In this thesis, the model describing the respiratory gas exchange of a cyclist is identified once using exercise tests data. However, it is yet not known if this model remains valid for long periods of time after identification, and especially if the training or health condition of the considered individual affects its accuracy. Thus a study of the evolution during time of the identified gas exchange model could be explored. Finally, the force-velocity characteristic proved to be a useful tool in order to generate realistic cyclist power profiles in simulation. However, this characteristic tends to underestimate the tendency of the cyclist of regulate its pedalling speed The main difficulty of estimating respiratory gas exchange during exercise is the invasiveness of the gas exchange measurements, since a mask is required. Both solutions proposed in this chapter are based on measurements of the carbon dioxide production or of the ventilation, which are both performed using a spirometry mask. In the future, solutions to estimate respiratory gas exchange in a non-invasive and accurate fashion are needed in order to propose an easy to use solution for the control of respiratory gas exchange during exercise using an e-bike. To do so, additional non invasive measurements could be considered, like the body temperature, or the heart rate during exercise.

Finally, In Chapter 5, two control laws are proposed in order to regulate the oxygen consumption or the carbon dioxide production during exercise using the electrical assistance of an e-bike. The first control law is a proportional integral (PI) controller and the second one an LMI-based linear quadratic regulator (LQR). Both control laws are designed in simulation, using the simulation strategy proposed in Chapter 3, and then validated during experimental indoor and outdoor scenarios. Both control strategies show encouraging results. The simulation strategy itself is validated using experimental data and proves to be able to generate accurate respiratory gas exchange profiles, cyclist power output profiles and control effort profiles.

In this chapter, both control laws perform well in simulation, especially the linear quadratic regulator (LQR). However, in order to be implemented on the real system, the respiratory gas exchange model is used in open loop in order to provide the required information regarding the states of the system to the controllers. Because of this implementation choice, it is hard to
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 21 Figure 2.1: Diagram of a eukaryote cell.
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 23 Figure 2.3: This diagram represents the reaction of pyruvate decarboxylation (2.5) (on the left). This reaction results in the production of ATP and CO 2 from the pyruvate produced by the glycolysis (2.2). The glycolysis together with the pyruvate decarboxylation constitute the anaerobic alactic pathway.
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 24 Figure 2.4: This diagram represents the reaction of fermentation (2.6) (on the left). This reaction produces lactate (La) from the pyruvate produced by the glycolysis (2.2). The glycolysis together with the fermentation constitute the anaerobic lactic pathway.
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 25 Figure 2.5: This diagram represents the reaction of lactate oxidation (2.7). This reaction produces pyruvate from the lactate (La) produced by the fermentation (2.6).
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 28 Figure 2.8: This diagram represents the chronology of activation of the different exercise pathways, from the onset of exercise to steady state.
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 29 Figure 2.9: Exercise intensity domains
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 2 Figure 2.10: (a) Picture of the Douglas bags method, (b) picture of the Metamax 3B portative gas exchange analyzer.

CHAPTER 2 .

 2 EXERCISE PHYSIOLOGY CONCEPTS

Figure 2 . 12 :

 212 Figure 2.12: Diagram of the blood flow between the heart and the lungs.
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 6 Muscle structure and use during exerciseBody movement is ensured by the contraction of skeletal muscles. This contraction is triggered by an electrical current coming from the motor nerves and motoneurons, and implies a rotation of the bones around the joints. Muscles constitute around 40% of the total mass of the body. They are constituted of cylindrical muscle cells called myofibrils formed by fibers called myofilaments.
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 31 Figure 3.1: Hammerstein-Wiener models.
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  ) with s the constant slope of the slow component, V ∆ the maximum amplitude of the slow component, ∆ the decay constant of the slow component and V O 2max the maximal aerobic capacity of the exercising individual. During model validation, authors concluded that the model performed well in low intensities, but had the tendency to overestimate the slow component for high effort intensities. They
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 232 Figure 3.2: Evolution of the transition function ρ along the index z k in blue. The index corresponding to the anaerobic threshold (AT), z T , is represented in red. The region right of z T is considered mostly aerobic and the region left of z T mostly anaerobic.
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 33 Figure 3.3: Contributions of the aerobic and anaerobic components in carbon dioxide production during a simulated incremental test.In this test, the power developed by the cyclist increases linearly with time. The aerobic contribution is mCO 2 , the second state of the system (i.e. ρ = 0). The total carbon dioxide production mCO 2tot is the second output of the system. The maximum carbon dioxide production is mCO 2tot computed with ρ = 1. For low effort intensities, the total carbon dioxide production is close to the aerobic contribution. For high effort intensities, the total carbon dioxide production is close to the maximum carbon dioxide production due to the increase in the anaerobic contribution.
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 34 Figure 3.4: Similarities with the Wiener structure.
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 35 Figure 3.5: Resampled V O 2 and V CO 2 using the MATLAB spline interpolation method.
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 36 Figure 3.6: Power profile for the incremental cycling test (ICT). This test is constituted of steps of 20 Watts every minute until the maximal power P max is reached.
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 37 Figure 3.7: Power profile for the iso-power cycling test (ISO). The first and the last step are performed at 50% of the maximal power P max reached during the incremental cycling test (ICT) and the middle step is performed at 80% of P max .
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 38 Figure 3.8: Power profile for the validation cycling test (VAL). This test is constituted of steps of random intensity aiming at reproducing an outdoor cycling session. The total duration of this test is 20 min.
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 39 Figure 3.9: Fit between the experimental gas exchange signals and the output of the model for the aerobic mode.
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 310 Figure 3.10: Fit between the experimental gas exchange signals and the output of the model for the anaerobic mode.
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 3311 Figure 3.11: Fit between the experimental gas exchange signals and the output of the model for the transition function.

  24), subject to (3.25), (3.26) and (3.27), with matrices A(θ) and B(θ) defined in (3.22) and using the previously obtained parameters, i.e. [θ, w] T . The matrix C(ρ k ) is defined as in (3.20) with ρ k defined as in (3.21).
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 312313 Figure 3.12: Refining of the parameters of the model.
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 314 Figure 3.14: Bicycle in the plane.
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 315316 Figure 3.15: Cinematic model of the bike.

Figure 3 . 17 :

 317 Figure 3.17: This figure represents the force -velocity muscle characteristic proposed by Hill.This characteristic shows that the force applied by a muscle decreases with the speed of its contraction. The maximal force F max is applied at v = 0, and no force is applied for speeds higher than v max .

Figure 3 . 20 :

 320 Figure 3.20: Proposed cycling force -velocity characteristic.

Figure 3 . 21 :

 321 Figure3.21: Experimental load profile for the identification of the cycling characteristic. Here, we see that the pedalling speed decreases and the pedalling force increases when the torque increases, which confirms the shape of the cycling characteristic.

Figure 3 . 22 :

 322 Figure 3.22: Fit of the cycling characteristic on the identification data-set.
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 3323324 Figure 3.23: Experimental cycling characteristic against identification data.

Figure 3 . 25 :

 325 Figure 3.25: Fit of the cycling characteristic on the validation data-set.

Figure 3 . 26 :

 326 Figure 3.26: Experimental cycling characteristic against validation data.

Fig. 3 .

 3 Fig. 3.25, and a comparison between the characteristic and the identification (F meas cyc , v meas cyc ) pairs is showed in Fig. 3.26. These figures show a good fit between the previously identified characteristic and the validation data. This shows that the identified characteristic is able to reproduce similar pedalling force F cyc based on values of pedalling speed v p for a given individual.

Figure 3 . 27 :

 327 Figure 3.27: Comparison of the identified experimental cycling characteristics for 3 different individuals.
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 3281 Figure 3.28: Cycling simulation method.
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 329330 Figure3.29: Evolution of the mechanical and physiological quantities of the system. The mechanical variables are displayed in the left column, with the angle of the slope α in degrees, the forces applied on the bike (the cyclist force F p in blue, and the external force F ext in red) and the bike velocity v. The physiological variables are displayed in the right column, with the oxygen consumption mO 2 , the aerobic carbon dioxide production mCO 2 and the excess of carbon dioxide production ϵCO 2 .

Figure 3 . 31 :

 331 Figure3.31: Superposition of the (F cyc ,v p ) and (P cyc ,v p ) pairs with the hypothesized forcevelocity characteristic (on the left) and power -velocity characteristic (on the right). The power -velocity characteristic is obtained by multiplying the force -velocity characteristic by v p .
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 41 Figure 4.1: Different set shapes used in set-membership estimation.

Figure 4 . 2 :

 42 Figure 4.2: Conservatism of ellipsoidal and polyhedral bounding. Here the conservatism (in green) of the ellipsoidal bounding is larger than the one of the polyhedral bounding, especially on the e 2 axis.

Figure 4 . 3 :

 43 Figure 4.3: Polytopic decomposition, a 2 dimensional example.
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 41212 Orthogonal Projection). Let P ∈ R n×n be a symmetric positive definite matrix and r ∈ R a scalar and define the ellipsoid Ψ P as described in Definition 4.1.1. Let y ∈ Ψ P a vector belonging to the ellipsoid Ψ P . Define x = diag P r Then we have-x i ≤ y i ≤ xi (4.13)for i = {1, . . . , n}.The intervals defined by x frame the ellipsoid Ψ P and define lower and upper bounds on each coordinate of the space for any elements y in Ψ P . Definition 4.1.3 (Ellipsoid Inclusion). Let r ∈ R a nonzero scalar. Let P ∈ R n×n be a symmetric positive definite matrix. Let B r = x ∈ R n |x T I n x ≤ r be the centered ball of radius √ r. Let Ψ P = x ∈ R n |x T Px ≤ λ max (P)r . Then Ψ P is the smallest centered ellipsoid with shape matrix P including the ball B r . Definition 4.1.4 (Positive Invariant Set). A set S is a positive invariant set for the dynamic system x k+1 = f (x k ) if ∀x k ∈ S, f (x k ) ∈ S Definition 4.1.5 (Robustly Positive Invariant Set). A set S is a robustly positive invariant set for the dynamic system x k+1 = f (x k , w k ) with w ∈ W an exogenous signal, if

Figure 4 . 4 :

 44 Figure 4.4: Evolution of the Lyapunov function in the state space.
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 4 ESTIMATION OF RESPIRATORY GAS EXCHANGE DURING EXERCISE-ē ≤ e k ≤ ē (

Figure 4 . 5 :

 45 Figure 4.5: Comparison of different sets Ψ Q and Ψ P based on different matrices Q for the 1-step synthesis.

Figure 4 . 6 :

 46 Figure 4.6: Evolution of the system's states, state estimates and estimation error bounds for the 1-step and 2-steps syntheses.
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 2 ROBUST SET-MEMBERSHIP OBSERVER FOR RESPIRATORY GAS EXCHANGE ESTIMATION

Figure 4 . 7 :

 47 Figure 4.7: Comparison of different sets Ψ Q and Ψ P for the 1-step and 2-steps syntheses with an initial matrix based on different matrices Q = I 2 .

  27) and such that x k ∈ [x k ; xk ] for all k with x k = xkē and xk = xk + ē.
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CHAPTER 4 .Figure 4 . 8 :

 448 Figure 4.8: Simulation setup for design validation. The gas exchange model generates the current state x and the state observer the state estimation x from input and output measurements.Here, the observer is the robust set-membership observer.

10 - 3

 103 , w 0 = 12.8, z T = -0.22, h = 0.05(4.47) 

Figure 4 . 9 :

 49 Figure 4.9: Evolution of the system's states, state estimates and estimation error bounds for the adapted synthesis. The states of the real system are shown in full blue lines, their estimate in full red lines and the error bounds in dashed red lines.

  tion of the human body at rest and can be expressed in Watts. It comprises the minimum functions the body requires such as breathing, regulating the body temperature or ensuring the brain activity. The BMR is closely connected to the oxygen consumption and the carbon dioxide production of the individual. Methods exploiting this connection are known under the name of indirect-calorimetry. It has been shown that the BMR varies between individual based on parameters like age,4.3. ROBUST PROPORTIONAL INTEGRAL OBSERVER FOR RESPIRATORY GAS EXCHANGE ESTIMATION

Figure 4 . 10 :

 410 Figure 4.10: Evolution of the system's outputs, output estimates and estimation error bounds for the adapted synthesis. The outputs of the real system are shown in full blue lines, their estimate in full red lines and the error bounds in dashed red lines.

  e (k + 1) = A e x e (k) + B e (u(k) + w 0 ) + F e d(k) y(k) = C e (ρ(k))x e (k) + Zv(k) (4.53)4.3. ROBUST PROPORTIONAL INTEGRAL OBSERVER FOR RESPIRATORY GAS EXCHANGE ESTIMATION

  xe (k + 1) = Ãe (ρ(k))x e (k) + B e (u(k) + w 0 ) + Ly(k) ŷ(k) = C(ρ(k))x e (k) (4.54) with Ãe (ρ(k)) = A e -LC e (ρ(k)). Now, defining the state estimation error at instant k as follows: e(k) = x e (k)xe (k) (4.55) we can write its dynamics as: e(k + 1) = Ã(ρ(k))e(k) + Ew(k) (4.56) with E = F -LZ and w(k) = d(k) v(k) T .

Fig. 4 .

 4 Fig.4.14 shows that for each simulation the robust PI observer is able to reconstruct the value of p.

4. 3 .Figure 4 . 14 :

 3414 Figure 4.14: Estimation of the constant disturbance p after simulating 3 times the system for the same power profile but different noises and disturbances affecting the system.

Fig. 4 .

 4 Fig. 4.15 shows the influence of the parameter θ in the quality of the disturbance estimation.

Fig. 4 .Figure 4 . 15 :

 4415 Fig.4.16 shows the values of RQ computed for each simulation and their estimated values using the robust PI observer and the robust observer. We can see that the estimation provided by the robust PI observer are accurate and that the estimation of RQ provided by the robust observer can show significant mismatch. For example, in RQ1 and RQ2, the robust observer

5. 1 .

 1 CONTROL OF PHYSIOLOGICAL VARIABLES 5.1 Control of physiological variables 5.1.1 Exercise prescription Exercise physiology practitioners are often expected to prescribe exercise sessions as part of therapy or training programs. To trigger specific physiological responses the exercise sessions are adapted to the considered individual. The exercise sessions vary depending on the considered

Figure 5 . 1 :

 51 Figure 5.1: Implementation scheme of the PI controller.

5. 2 .Figure 5 . 3 :

 253 Figure 5.3: Evolution of the mechanical and physiological variables of the cyclist for the C 4 controller.The left column corresponds to the evolution of the mechanical variables, with first the slope of the road in degrees, then the forces applied on the bike and last the the speed of the bike. The right column corresponds to the evolution of the respiratory gas exchange variables, with first the oxygen consumption, then the aerobic carbon dioxide production and last the excess of carbon dioxide production.

Figure 5 . 6 :Figure 5 . 7 :

 5657 Figure 5.6: Evolution of the mechanical and physiological variables of the cyclist for the C 3 controller. The left column corresponds to the evolution of the mechanical variables, with first the slope of the road in degrees, then the forces applied on the bike and last the the speed of the bike. The right column corresponds to the evolution of the respiratory gas exchange variables, with first the oxygen consumption, then the aerobic carbon dioxide production and last the excess of carbon dioxide production.

5. 3 .Figure 5 . 8 :

 358 Figure 5.8: Evolution of the controlled output for the C 3 controller compared to the reference z ref (first figure), of the slope of the road in degrees (second figure), and of the powers applied to the bike (last figure).

13 )

 13 Here xk = x k s k T with s k the cumulative sum of the tracking error at instant k defined as in (5.8), w = w 0 -z ref T and :

Figure 5

 5 Figure 5.9: Evolution of the mechanical and physiological variables of the cyclist for the linear quadratic regulator (LQR). The left column corresponds to the evolution of the mechanical variables, with first the slope of the road in degrees, then the forces applied on the bike and last the the speed of the bike. The right column corresponds to the evolution of the respiratory gas exchange variables, with first the oxygen consumption, then the aerobic carbon dioxide production and last the excess of carbon dioxide production.

Figure 5

 5 Figure 5.10: Evolution of the powers applied on the bike for the linear quadratic regulator (LQR), with the power applied by the cyclist (in blue), the power applied by the external forces (in red) and the power applied by the motor (in yellow).

Figure 5 .

 5 Figure 5.14: SPIRO E-bike prototype developed at Gipsa-lab.

Figure 5 . 15 :

 515 Figure 5.15: Implementation scheme of the control strategies for the experimental validation scenarios.

For

  the indoor and the outdoor tests the respiratory gas exchanges data were collected using the portable ergospirometer Cortex Metamax 3B. The mechanical variables of pedalling torque and pedalling cadence were measured directly on the e-bike prototype. Since the signals are affected by a fair amount a noise, filtered versions are sometimes included in the next sections and are labeled with (F n ) with n the size of the moving average window used for filtering. The measured ones are labeled with (M). An example of an original oxygen consumption signal and its filtered version is presented in Fig.5.16.

5. 5 .Figure 5 . 16 :

 5516 Figure 5.16: Comparison of the oxygen consumption signal mO 2 before and after filtering for the In0 scenario. Here the filter applied is a moving average filter with a window size of n = 11 samples.

CHAPTER 5 .Figure 5 . 17 :

 5517 Figure 5.17: Evolution of the cyclist oxygen consumption (first figure), of the power developed by the cyclist (second figure) and of the external torque profile (last figure) for scenario In0. No control strategy is used. The test is performed indoor.
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 5518519 Figure 5.18: Evolution of the cyclist oxygen consumption (first figure) and of the power developed by the cyclist (second figure) for scenario Out0. No control strategy is used. The test is performed outdoor.

CHAPTER 5 .Figure 5 . 20 :Figure 5 . 21 :

 5520521 Figure 5.20: Evolution of the cyclist oxygen consumption (first figure) and of the power developed by the cyclist and the motor (second figure), for scenario Out1. The PI control strategy is used. The test is performed outdoor.
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 5522 Figure 5.22: Evolution of the cyclist oxygen consumption (first figure) and of the power developed by the cyclist and the motor (second figure), for scenario Out2. The LQR strategy is used. The test is performed indoor.

5. 6 .Figure 5 . 23 :

 6523 Figure 5.23: Evolution of the real and simulated cyclist oxygen consumption (first figure), total carbon dioxide production (second figure), and power developed by the cyclist (last figure) for scenario In0.

Figure 5 . 24 :

 524 Figure 5.24: Evolution of the real and simulated pedalling speed (first figure) and pedalling torque (second figure) for scenario In0.

Figure 5 . 26 :

 526 Figure 5.26: Evolution of the real and simulated cyclist oxygen consumption (first figure), total carbon dioxide production (second figure), power developed by the cyclist (third figure) and power developed by the motor (last figure) for scenario In1.

Figure 5 . 27 :

 527 Figure 5.27: Evolution of the real and simulated pedalling speed (first figure) and pedalling torque (second figure) for scenario In1.

Figure 5 . 28 :

 528 Figure 5.28: Comparison of the simulation and experimental data to the identified characteristics of the cyclist for scenario In1. The left column corresponds to the force-velocity characteristic and the right column to the power-velocity characteristic.

  

  

  

  2.2. THE DIFFERENT REGIMES OF EXERCISEfatigue. This threshold is interesting because any exercise above of it will inevitably imply that the physiological limits of the individual are reached after some time.

	high intensity
	Extreme	increasing La without steady state
		and VO2max is not reached
	Severe	increasing La without steady state and VO2max is reached
		Critical Power
	Heavy	increasing La with steady state
		Anaerobic Threshold
	Moderate	low La
	low intensity

Table 3 .
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	Authors	Year	Inputs		Output Model
	Fudge et al. [13]	2007	HR, 3D accelera-	V O 2	linear regressions
			tions		
	Altini et al. [2]	2016	3D accelerations	V O 2	linear, exponential and logistic
						transfer functions
	Borror et al. [9]	2019	HR, ḢR, power,	V O 2	shallow neural network
			cadence,	body	
			mass		
	Zignoli et al. [43] 2020	HR, power, ca-	V O 2	recurrent neural network
			dence, respiratory	
			frequency		
	Amelard et al. [3] 2021	power, V E, HR,	V O 2	temporal convolutional network
			HR variability	

1: Machine Learning methods in the literature

  δ 2 mO 2 (4.65) With V CO 2 , the volume of CO 2 produced per unit of time, V O 2 , the volume of O 2 consumed per unit of time, δ 1 = 1.429kg/m 3 , the density of O 2 at 20 • C, δ 2 = 1.842kg/m 3 , the density of CO 2 at 20 • C. It is known that values of RQ around 1 suggest that carbohydrates are oxidized and values of RQ around 0.7 suggest that fats are oxidized.

  Many applications have been proposed in order to regulate the heart rate during exercise. These applications often use cycle-ergometers, e-bikes or treadmills. In this section, we focus on the solutions involving cycle-ergometers and e-bikes. Additional references are given in Table5.1 regarding other kinds of systems.For indoor training and rehabilitation, heart rate control solutions have been developed using cycle-ergometers. For example, Paradiso and colleagues proposed a nonlinear controller in order to regulate both the heart rate and heart rate variability during exercise[29]. Leitner and colleagues proposed to use a linear quadratic regulator (LQR) coupled with heart rate and ventilation measurement in order to regulate heart rate during exercise. However, the linear model they proposed supposed an aerobic regime of effort. More recently, Verrelli and colleagues made theoretical contributions to the problem of control heart rate based on a specific second order nonlinear model[38]. The solution they proposed could ensure the regulation of heart rate without taking into account stability and global attractivity constraints, common for this kind of system.

	5.1. CONTROL OF PHYSIOLOGICAL VARIABLES
	5.1.3 Control of heart rate during exercise

Table 5 . 2

 52 The electrical assistance level is piloted by the PI controller, whose gains K p and K i are chosen beforehand, in order to ensure the regulation of the oxygen consumption of the cyclist to z ref = 1.8 g/min. Different sets of gains are compared in terms of settling time, control effort and overshoot.Four different controllers C 1 , C 2 , C 3 and C 4 are presented. The value of their respective gains K p and K i are given in Table5.2. The evolution of the regulated variable as well as the control effort for the different controllers is described in Fig.5.2.

	Controller	K p K i
	C 1	10	0
	C 2	10	2
	C 3	30	1.5
	C 4	10	0.15

: Gain sets of the different controller.

  1 . This controller is a fully proportional controller with no integral component. One can notice that such controller fails in regulating the oxygen consumption to the reference value due to the classical steady state error associated with proportional controllers. The second and third controllers C 2 and C 3 are proportional integral controllers with different proportional and integral gains. One can notice that both Comparison of four different controllers C 1 , C 2 , C 3 and C 4 in terms of time response (first figure) and in terms of control effort (second figure). In the first figure, the reference z ref = 1.8 g/min is plotted in black full line, the black dashed lines are drawn to assess st 5% the settling time at 5%.
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	Name Location Controller
	In0	Indoor	No assistance
	In1	Indoor	PI controller
	In2	Indoor	LQR
	Out0	Outdoor No assistance
	Out1	Outdoor PI controller
	Out2	Outdoor LQR

Table 5 .

 5 

3: Experimental scenarios.

  6.1. DISCUSSION around a fixed value, which prevents it to generate realistic pedalling force and pedalling speed profiles in simulation. In the future, the force-velocity characteristic could be improved to this end.In Chapter 4, estimation strategies are proposed in order to estimate the respiratory gas exchange of the cyclist during exercise. The first one is an Explicit Error Bounds Set-Membership observer and is used to estimate the oxygen consumption, aerobic carbon dioxide production and the anaerobic carbon dioxide production during exercise based on ventilation or carbon dioxide measurements. By design, this state observer is robust to state and output disturbances and provides uncertainty bounds on the estimated states. The second one is a Robust Proportional Integral observer and is used to estimate respiratory gas exchange and reconstruct model errors under the form of a basal power disturbance based on ventilation or carbon dioxide measurements. It can be used to estimate respiratory gas exchange with good accuracy even when the respiratory gas exchange model is slightly inaccurate or to reconstruct the basal metabolic rate of the cyclist during exercise. Both estimation strategies are validated in simulation.
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Chapter 4

Estimation of respiratory gas exchange during exercise [41] 1968 Ellipsoids Bertsekas et al. [4] 1971 Ellipsoids Spathopoulos et al. [START_REF] Spathopoulos | A state-set estimation algorithm for linear systems in the presence of bounded disturbances[END_REF] 1996 Polyhedrons Chisci et al. [10] 1996 Paralellotopes Savkin et al. [40] 1998 Ellipsoids El Ghaoui et al. [14] 2001 Ellipsoids Durieu et al. [12] 2001 Ellipsoids Rakovic et al. [38] 2004 Polyhedrons Alamo et al. [1] 2005 Zonotopes Becis-Aubry et al. [3] 2008 Ellipsoids Chabane et al. [7] 2014 Ellipsoids Combastel et al. [11] 2015 Zonotopes Shen et al. [START_REF] Shen | Low-complexity ISS state estimation approach with bounded disturbances: Low-complexity ISS state estimation approach with bounded disturbances[END_REF] 2018 Ellipsoids / Paralellotopes Table 4.1: Set-membership approaches in the literature.

with x k ∈ R n the state of the system at instant k, u k ∈ R m the input of the system at instant k and y k ∈ R p the output of the system at instant k. The system is affected by state and output disturbances d k ∈ R n d and v k ∈ R nv respectively. Matrices A, B and F depend on a parameter vector ρ k ∈ R L in an affine fashion, which is supposed to be known at all time. In the LTI case ρ k is supposed constant, and in the LPV case it is supposed time-varying and perfectly measured. Matrices A, B, F, C and Z have appropriate dimensions and the pair (A, C) is supposed observable for any values of the parameter ρ k .

The goal of the design strategy is to find a robust parameter observer gain L(ρ k ) ∈ R n×p in the LPV case (and L in the LTI case) and estimation error bounds ē so that the following state-observer is performed :

and such that

In the following, the proposed design strategy is described in the general LPV case and illustrated using a numerical LTI system in simulation.

1-step design strategy

In this section, the design of the state observer, including the computation of an appropriate observer gain L(ρ k ) and the computation of estimation error bounds based on ellipsoidal invariant sets, is presented.

with Ãe0 = A e -LC e0 and Ãe1 = A e -LC e1 .

In order to design the state observer, we solve an Linear Matrix Inequality (LMI) problem, formulated in the following theorem :

Theorem 5. Consider the system (4.56) and a given matrix Q ≻ 0. The observer gain L which minimizes the H ∞ norm of the system (4.56) is found if there exist a symmetric positive definite matrix P, a positive scalar γ ≥ 0 and matrix U satisfying the following condition :

for every vertex of the polytopic decomposition, j = {0,1}. Moreover, the observer matrix can be obtained as :

Illustration in simulation

To validate the observer design methodology, we compute a state observer for system (4.53)

undergoing state and output disturbances (d and v), as well as a constant disturbance p on w 0 .

Here, we choose θ = 0.25.

The measured output y m is the total carbon dioxide exhaled by the cyclist. Thus we have :

The scheduling parameter ρ k , which corresponds to the fraction of excess of carbon dioxide measured by the carbon dioxide sensor, is not measured in practice. Thus, in order to compute it, the estimated state vector xk is used.

We suppose that the model mismatch can be split into two contributions. First, a constant disturbance p, modelling a low bandwidth component due to the uncertainty on the value of w 0 and taking up to 100% of the hypothesized value for w 0 . Then, a random component d following a uniform distribution, modelling a high bandwidth component and taking up to 10% of the hypothesized value for w 0 . Thus we choose : be used in practice to estimate the oxygen consumption and carbon dioxide production of the cyclist. However, this observer requires the respiratory gas exchange model of the cyclist to be perfectly known and is not robust to parametric uncertainties.

In order to propose an estimation strategy that is robust to parametric uncertainties, a robust proportional integral observer was designed. For this observer, the assumption is made that the basal metabolic rate of the cyclist is susceptible to vary. The robust proportional integral observer is designed so that both the oxygen consumption, the carbon dioxide production and the variation of the basal power are estimated during exercise.

Chapter 5

Control of physiological quantities during cycling

Contents Authors Year Activity Strategy Su et al. [37] 2007 Treadmill H ∞ controller Cheng et al. [9] 2008 Treadmill Switched LQ controller Su et al. [36] 2010 Treadmill MPC Mazenc et al. [26] 2010 Treadmill Nonlinear controller Zhang et al. [40] 2012 Treadmill Switched MPC Scalzi et al. [34] 2012 Treadmill Nonlinear controller Sarabadami et al. [33] 2015 Rehabilitation Self learning fuzzy controller Argha et al. [4] 2015 Ergometer Adaptive integral slidingmode controller Asheghan et al. [6] 2016 Treadmill Nonlinear controller Hunt et al. [18] 2016 Treadmill Nonlinear controller Girard et al. [13] 2016 Treadmill Robust PID Hunt et al. [15] 2016 Treadmill Nonlinear controller Ibeas et al. [22] 2016 Treadmill Linear state feedback Argha et al. [5] 2016 Ergometer PID controller Hunt et al. [16] 2017 Treadmill Stochastic optimal controller Hunt et al. [17] 2018 Treadmill Optimal controller Esmaeili et al. [12] 2019 Treadmill Robust controller Hunt et al. [19] 2019 Treadmill / ergometer Nonlinear controller Table 5.1: Heart rate control strategies in the literature.

rate of the individual. In [20], two dynamic output feedback controllers were used to control the oxygen consumption and the speed of a treadmill in order to produce a step response in the oxygen consumption. The method was validated experimentally. In [31], two dynamic output feedback controller were used to control the oxygen consumption and the work rate during treadmill exercise. The method was validated experimentally. In [35], a linear model of consumed oxygen during exercise was used to control the oxygen consumption during treadmill exercise. A dynamic output feedback was used to control the oxygen consumption while a human-in-the-loop controller was used to control the work rate of exercise. This approach was used to track oxygen consumption ramps experimentally. Finally, in [32], a similar approach was adapted to the control of oxygen consumption during stair climbing exercises.

Very few examples of control of oxygen during biking exercise can be found in the literature.

One can mention the PhD work of Baig [7] dedicated to the modelling and control of oxygen consumption during rythmic exercises. As part of this PhD work, one paper was published describing a human-in-the-loop solution to control oxygen consumption. This strategy is based on a self bio-feedback controller, consisting in a flashing indicator used to require the user to increase, decrease or stabilize the exercise rate (corresponding to the pedaling cadence in biking) [8]. The objective of this controller was to keep the oxygen consumption between a 5% range of a reference oxygen consumption. The method was validated experimentally.

We can then replace the input of the respiratory gas exchange model presented in Chapter 3 to obtain :

which can then be expressed as :

Here, the new input of the system is u = P mot and the term d = dEc dt -P ext is a state disturbance. One can notice that because u and d are affecting the states x of the system in the same way (through matrix B), u can be used to cancel the influence of d. In other words, the influence of the external actions can be cancelled by choosing the power of the electrical assistance appropriately.

In this section, we propose to use a proportional integral controller in order to adapt P mot in real time. Because the regulation of either the oxygen consumption mO 2 or the carbon dioxide production mCO 2tot can be performed, in the following we denote z the regulated output, which is expressed as :

with H a constant matrix. In the case of the oxygen consumption regulation, we have H O2 = 1 0 and in the case of the carbon dioxide production, we have H CO2 = 0 1 .

Here, we assume that z is known (by measurement or estimation) at all time and is used to compute successively the tracking error e, the cumulative sum of the errors s and the control input u as follows :

with K p the proportional gain and K i the integral gain. The methodology used to tune K p and K i is described in the next section. The implementation scheme of the PI controller for respiratory gas exchange estimation is given in Fig. 5.1. assistance implies a slow convergence of z to z ref .

Then, we assess the performances of controller C 3 over the same scenario. By looking at Finally, Fig. 5.8 shows that for both the flat portion and the slope portion the system reaches steady state in around 120sec.

In conclusion, even though controller C 3 implies a higher control effort and an overshoot in the time response of the regulated z, it is still the best solution given that in a real scenario, the bike and the cyclist undergo external disturbances which have to be compensated quickly by the electrical assistance. In the following, we choose controller C 3 as the validated PI control solution.

Regulation of respiratory gas exchange using a linear quadratic regulator

In the previous section, the use of a proportional integral controller was proposed in order to regulate respiratory gas exchange during exercise. In this section, a different strategy based on a robust integral linear quadratic controller is proposed. First, the formulation of the controller is presented and then its performances are assessed in simulation.

Problem statement

The LQR is defined by a constant gain K, which is used to compute the control action u as follows :

The LQR is an optimal controller in the sense that the gain K is computed so that the following cost J is minimized :

with Q and R symmetric positive matrices. The idea is to use these matrices as design parameters in order to find a trade-off between the performances of the controller and the the cyclist depends directly on the road slope since no assistance is provided to the cyclist. In this simulation, the amplifying strategy is defined with a gain K amp = 2. Using this control strategy reduces the load perceived by the cyclist and, compared to the scenario without assistance, the oxygen consumption of the cyclist stabilizes at lower values, which is explained by a reduced physiological stress for the cyclist. However, even with the amplifying strategy, the power developed by the cyclist depends on the road slope. Finally, with the LQR the electrical assistance adapts to the road condition and ensures a steady oxygen consumption during the ride as shown in the previous section.

Thus, we showed that a dedicated control strategy is the only way to truly regulate the physiological response of the cyclist to exercise.

Experimental validation of the linear quadratic regulator and proportional integral controller

In the previous sections, two strategies for the regulation of respiratory gas exchanges during exercise, based respectively on a PI controller and a LQR, were formulated and validated in strategies to regulate the real oxygen consumption of the cyclist, further tests are needed with a more accurate estimation and/or a direct measurement of the respiratory gas exchanges.

Experimental validation of the simulation strategy

In the previous section, experimental results obtained using the two control strategies were presented. The availability of experimental data represented the opportunity to validate the simulation strategy proposed in Chapter 3 and used for the tuning of the controllers. In order to do so, the indoor scenarios In0 and In1 are reproduced in simulation and the simulation results are compared to the experimental results. This is particularly interesting because, in order to perform the simulations, the behaviour of the cyclist is modeled under the form of a cyclist force-velocity characteristic identified using experimental data. Thus it is not obvious a priori that such model is valid and produces a realistic cycling behaviour.

Validation on scenario In0

First, the indoor scenario In0, with no electrical assistance, is reproduced in simulation. The evolution of the respiratory gas exchanges and the power developed by the cyclist is presented in Fig. 5.23. From this figure, it can be seen that the respiratory gas exchanges are reproduced accurately in the aerobic region (low intensity effort) but show a slight mismatch in high intensity effort. The power developed by the cyclist however is very accurately estimated in simulation, which is a very important feature since the estimation of the respiratory gas exchanges directly depends on it.

The evolution of the power developed by the cyclist in simulation is associated with the choice made for the cycling force-velocity characteristic. This characteristic is defined as a rigid relationship between the pedaling force and the pedaling speed, and was chosen linear in this thesis. In Fig. 5.25, the evolution of the measured pedalling speed and torque as well as their simulated equivalents are shown. From this figure, it can be seen that for the low intensity segments of the scenario, the pedalling speed and the pedalling torque are predicted accurately.

However, in the high intensity segment, the simulation predicts a decrease in pedalling speed coupled with an increase in pedalling torque, that does not happen in practice. Here, it seems that the cyclist is regulating the pedalling speed to a fixed value throughout the session, which is not reproduced by the characteristic.

Finally in Fig. 5.25, the force-velocity and the power-velocity characteristics are compared to the simulated and measured data. It is interesting to see that initially, the experimental data points lie on both characteristics. However, in the high intensity segment of the scenario, the experimental data points translate vertically instead of following the characteristics because of the fixed pedalling velocity chosen by the cyclist. When the power-velocity is considered, it can be seen that the experimental data points gather at the same P cyc than the simulated characteristic, which is coherent with the observations in Fig. 5.23.

Validation on scenario In1

Then, the indoor scenario In1, with the PI controller, is reproduced in simulation. The evolution of the respiratory gas exchanges and the power developed by the cyclist and the electrical assistance is presented in Fig. 5.26. Similarly to the previous scenario, the power developed by the cyclist and the power developed by the electrical assistance are very well predicted in simulation. It is especially true during transients, where the spikes in P cyc and P mot are well reproduced. This is interesting because it makes the reading of the experimental respiratory gas exchange data easier to interpret, especially the variations in oxygen consumption during transients.

In Fig. 5.28, the evolution of the measured pedalling speed and torque as well as their simulated equivalents are shown. In this scenario, the simulated pedalling torque is very well predicted in simulation, but as for scenario In0, the cycling speed remains almost constant around the same value during the experimental scenario, which is not predicted by the characteristic.

Finally in Fig. 5.25, the force-velocity and the power-velocity characteristics are compared to the simulated and measured data. The same conclusions can be drawn for this scenario and the previous one. Initially, the experimental data points are located on the characteristics but because the pedalling speed remains constant during the exercise session, the experimental conclude regarding the performances of the controllers since none of them has access to a live measurements of the system states, but only to open loop estimates. In the future, with more accurate and less invasive estimation strategies for respiratory gas exchange estimation, the performances of both controllers could be assessed more accurately. Also, in the considered experimental scenarios, the choice of a low reference value for the oxygen consumption turned out questionable, and more experimental tests using a larger variety of references is needed.

Longer outdoor biking tests, including a larger variety of raod profiles could also be considered for the evaluation of the controllers' performances.

Conclusion

To conclude, in this thesis a control system approach to the problem of regulating the exercise intensity of a cyclist was proposed. This approach is based on the control of the respiratory gas exchange of the cyclist using the electrical assistance of an e-bike. To do so, several contributions were made. First, a complete model of the cyclist and bicycle was proposed based on a respiratory gas exchange model and on a force-velocity characteristic of the cyclist. Based on this cyclist characteristic, a simulation strategy generating realistic respiratory gas exchange and cyclist power profiles was proposed. Two methods were proposed in order to estimate the respiratory gas exchange of the cyclist, one based on an Explicit Error Bounds Set-Membership observer and one based on a Robust Proportional Integral state observer. Two control laws were proposed in order to control the oxygen consumption or the carbon dioxide production of the cyclist during exercise, one based on a Proportional Integral (PI) controller, and one on a LMI-based Linear Quadratic Regulator (LQR). Both control laws were implemented on an e-bike prototype and validated in real outdoor and indoor conditions.